Sample records for bacterial genome-reductive evolution

  1. Correlation between genome reduction and bacterial growth.

    PubMed

    Kurokawa, Masaomi; Seno, Shigeto; Matsuda, Hideo; Ying, Bei-Wen

    2016-12-01

    Genome reduction by removing dispensable genomic sequences in bacteria is commonly used in both fundamental and applied studies to determine the minimal genetic requirements for a living system or to develop highly efficient bioreactors. Nevertheless, whether and how the accumulative loss of dispensable genomic sequences disturbs bacterial growth remains unclear. To investigate the relationship between genome reduction and growth, a series of Escherichia coli strains carrying genomes reduced in a stepwise manner were used. Intensive growth analyses revealed that the accumulation of multiple genomic deletions caused decreases in the exponential growth rate and the saturated cell density in a deletion-length-dependent manner as well as gradual changes in the patterns of growth dynamics, regardless of the growth media. Accordingly, a perspective growth model linking genome evolution to genome engineering was proposed. This study provides the first demonstration of a quantitative connection between genomic sequence and bacterial growth, indicating that growth rate is potentially associated with dispensable genomic sequences. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  2. The Divided Bacterial Genome: Structure, Function, and Evolution.

    PubMed

    diCenzo, George C; Finan, Turlough M

    2017-09-01

    Approximately 10% of bacterial genomes are split between two or more large DNA fragments, a genome architecture referred to as a multipartite genome. This multipartite organization is found in many important organisms, including plant symbionts, such as the nitrogen-fixing rhizobia, and plant, animal, and human pathogens, including the genera Brucella , Vibrio , and Burkholderia . The availability of many complete bacterial genome sequences means that we can now examine on a broad scale the characteristics of the different types of DNA molecules in a genome. Recent work has begun to shed light on the unique properties of each class of replicon, the unique functional role of chromosomal and nonchromosomal DNA molecules, and how the exploitation of novel niches may have driven the evolution of the multipartite genome. The aims of this review are to (i) outline the literature regarding bacterial genomes that are divided into multiple fragments, (ii) provide a meta-analysis of completed bacterial genomes from 1,708 species as a way of reviewing the abundant information present in these genome sequences, and (iii) provide an encompassing model to explain the evolution and function of the multipartite genome structure. This review covers, among other topics, salient genome terminology; mechanisms of multipartite genome formation; the phylogenetic distribution of multipartite genomes; how each part of a genome differs with respect to genomic signatures, genetic variability, and gene functional annotation; how each DNA molecule may interact; as well as the costs and benefits of this genome structure. Copyright © 2017 American Society for Microbiology.

  3. Microbial minimalism: genome reduction in bacterial pathogens.

    PubMed

    Moran, Nancy A

    2002-03-08

    When bacterial lineages make the transition from free-living or facultatively parasitic life cycles to permanent associations with hosts, they undergo a major loss of genes and DNA. Complete genome sequences are providing an understanding of how extreme genome reduction affects evolutionary directions and metabolic capabilities of obligate pathogens and symbionts.

  4. The Genome of the Obligate Intracellular Parasite Trachipleistophora hominis: New Insights into Microsporidian Genome Dynamics and Reductive Evolution

    PubMed Central

    Heinz, Eva; Williams, Tom A.; Nakjang, Sirintra; Noël, Christophe J.; Swan, Daniel C.; Goldberg, Alina V.; Harris, Simon R.; Weinmaier, Thomas; Markert, Stephanie; Becher, Dörte; Bernhardt, Jörg; Dagan, Tal; Hacker, Christian; Lucocq, John M.; Schweder, Thomas; Rattei, Thomas; Hall, Neil; Hirt, Robert P.; Embley, T. Martin

    2012-01-01

    The dynamics of reductive genome evolution for eukaryotes living inside other eukaryotic cells are poorly understood compared to well-studied model systems involving obligate intracellular bacteria. Here we present 8.5 Mb of sequence from the genome of the microsporidian Trachipleistophora hominis, isolated from an HIV/AIDS patient, which is an outgroup to the smaller compacted-genome species that primarily inform ideas of evolutionary mode for these enormously successful obligate intracellular parasites. Our data provide detailed information on the gene content, genome architecture and intergenic regions of a larger microsporidian genome, while comparative analyses allowed us to infer genomic features and metabolism of the common ancestor of the species investigated. Gene length reduction and massive loss of metabolic capacity in the common ancestor was accompanied by the evolution of novel microsporidian-specific protein families, whose conservation among microsporidians, against a background of reductive evolution, suggests they may have important functions in their parasitic lifestyle. The ancestor had already lost many metabolic pathways but retained glycolysis and the pentose phosphate pathway to provide cytosolic ATP and reduced coenzymes, and it had a minimal mitochondrion (mitosome) making Fe-S clusters but not ATP. It possessed bacterial-like nucleotide transport proteins as a key innovation for stealing host-generated ATP, the machinery for RNAi, key elements of the early secretory pathway, canonical eukaryotic as well as microsporidian-specific regulatory elements, a diversity of repetitive and transposable elements, and relatively low average gene density. Microsporidian genome evolution thus appears to have proceeded in at least two major steps: an ancestral remodelling of the proteome upon transition to intracellular parasitism that involved reduction but also selective expansion, followed by a secondary compaction of genome architecture in some, but

  5. Recombination-Driven Genome Evolution and Stability of Bacterial Species.

    PubMed

    Dixit, Purushottam D; Pang, Tin Yau; Maslov, Sergei

    2017-09-01

    While bacteria divide clonally, horizontal gene transfer followed by homologous recombination is now recognized as an important contributor to their evolution. However, the details of how the competition between clonality and recombination shapes genome diversity remains poorly understood. Using a computational model, we find two principal regimes in bacterial evolution and identify two composite parameters that dictate the evolutionary fate of bacterial species. In the divergent regime, characterized by either a low recombination frequency or strict barriers to recombination, cohesion due to recombination is not sufficient to overcome the mutational drift. As a consequence, the divergence between pairs of genomes in the population steadily increases in the course of their evolution. The species lacks genetic coherence with sexually isolated clonal subpopulations continuously formed and dissolved. In contrast, in the metastable regime, characterized by a high recombination frequency combined with low barriers to recombination, genomes continuously recombine with the rest of the population. The population remains genetically cohesive and temporally stable. Notably, the transition between these two regimes can be affected by relatively small changes in evolutionary parameters. Using the Multi Locus Sequence Typing (MLST) data, we classify a number of bacterial species to be either the divergent or the metastable type. Generalizations of our framework to include selection, ecologically structured populations, and horizontal gene transfer of nonhomologous regions are discussed as well. Copyright © 2017 by the Genetics Society of America.

  6. The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution.

    PubMed

    van de Guchte, M; Penaud, S; Grimaldi, C; Barbe, V; Bryson, K; Nicolas, P; Robert, C; Oztas, S; Mangenot, S; Couloux, A; Loux, V; Dervyn, R; Bossy, R; Bolotin, A; Batto, J-M; Walunas, T; Gibrat, J-F; Bessières, P; Weissenbach, J; Ehrlich, S D; Maguin, E

    2006-06-13

    Lactobacillus delbrueckii ssp. bulgaricus (L. bulgaricus) is a representative of the group of lactic acid-producing bacteria, mainly known for its worldwide application in yogurt production. The genome sequence of this bacterium has been determined and shows the signs of ongoing specialization, with a substantial number of pseudogenes and incomplete metabolic pathways and relatively few regulatory functions. Several unique features of the L. bulgaricus genome support the hypothesis that the genome is in a phase of rapid evolution. (i) Exceptionally high numbers of rRNA and tRNA genes with regard to genome size may indicate that the L. bulgaricus genome has known a recent phase of important size reduction, in agreement with the observed high frequency of gene inactivation and elimination; (ii) a much higher GC content at codon position 3 than expected on the basis of the overall GC content suggests that the composition of the genome is evolving toward a higher GC content; and (iii) the presence of a 47.5-kbp inverted repeat in the replication termination region, an extremely rare feature in bacterial genomes, may be interpreted as a transient stage in genome evolution. The results indicate the adaptation of L. bulgaricus from a plant-associated habitat to the stable protein and lactose-rich milk environment through the loss of superfluous functions and protocooperation with Streptococcus thermophilus.

  7. Within-host evolution of bacterial pathogens

    PubMed Central

    Didelot, Xavier; Walker, A. Sarah; Peto, Tim E.; Crook, Derrick W.; Wilson, Daniel J.

    2016-01-01

    Whole genome sequencing has opened the way to investigating the dynamics and genomic evolution of bacterial pathogens during colonization and infection of humans. The application of this technology to the longitudinal study of adaptation in the infected host — in particular, the evolution of drug resistance and host adaptation in patients chronically infected with opportunistic pathogens — has revealed remarkable patterns of convergent evolution, pointing to an inherent repeatability of evolution. In this Review, we describe how these studies have advanced our understanding of the mechanisms and principles of within-host genome evolution, and we consider the consequences of findings such as a potent adaptive potential for pathogenicity. Finally, we discuss the possibility that genomics may be used in the future to predict the clinical progression of bacterial infections, and to suggest the best treatment option. PMID:26806595

  8. Within-host evolution of bacterial pathogens.

    PubMed

    Didelot, Xavier; Walker, A Sarah; Peto, Tim E; Crook, Derrick W; Wilson, Daniel J

    2016-03-01

    Whole-genome sequencing has opened the way for investigating the dynamics and genomic evolution of bacterial pathogens during the colonization and infection of humans. The application of this technology to the longitudinal study of adaptation in an infected host--in particular, the evolution of drug resistance and host adaptation in patients who are chronically infected with opportunistic pathogens--has revealed remarkable patterns of convergent evolution, suggestive of an inherent repeatability of evolution. In this Review, we describe how these studies have advanced our understanding of the mechanisms and principles of within-host genome evolution, and we consider the consequences of findings such as a potent adaptive potential for pathogenicity. Finally, we discuss the possibility that genomics may be used in the future to predict the clinical progression of bacterial infections and to suggest the best option for treatment.

  9. Host-symbiont co-speciation and reductive genome evolution in gut symbiotic bacteria of acanthosomatid stinkbugs

    PubMed Central

    Kikuchi, Yoshitomo; Hosokawa, Takahiro; Nikoh, Naruo; Meng, Xian-Ying; Kamagata, Yoichi; Fukatsu, Takema

    2009-01-01

    Background Host-symbiont co-speciation and reductive genome evolution have been commonly observed among obligate endocellular insect symbionts, while such examples have rarely been identified among extracellular ones, the only case reported being from gut symbiotic bacteria of stinkbugs of the family Plataspidae. Considering that gut symbiotic communities are vulnerable to invasion of foreign microbes, gut symbiotic associations have been thought to be evolutionarily not stable. Stinkbugs of the family Acanthosomatidae harbor a bacterial symbiont in the midgut crypts, the lumen of which is completely sealed off from the midgut main tract, thereby retaining the symbiont in the isolated cryptic cavities. We investigated histological, ecological, phylogenetic, and genomic aspects of the unique gut symbiosis of the acanthosomatid stinkbugs. Results Phylogenetic analyses showed that the acanthosomatid symbionts constitute a distinct clade in the γ-Proteobacteria, whose sister groups are the obligate endocellular symbionts of aphids Buchnera and the obligate gut symbionts of plataspid stinkbugs Ishikawaella. In addition to the midgut crypts, the symbionts were located in a pair of peculiar lubricating organs associated with the female ovipositor, by which the symbionts are vertically transmitted via egg surface contamination. The symbionts were detected not from ovaries but from deposited eggs, and surface sterilization of eggs resulted in symbiont-free hatchlings. The symbiont-free insects suffered retarded growth, high mortality, and abnormal morphology, suggesting important biological roles of the symbiont for the host insects. The symbiont phylogeny was generally concordant with the host phylogeny, indicating host-symbiont co-speciation over evolutionary time despite the extracellular association. Meanwhile, some local host-symbiont phylogenetic discrepancies were found, suggesting occasional horizontal symbiont transfers across the host lineages. The symbionts

  10. Bacterial Genome Instability

    PubMed Central

    Darmon, Elise

    2014-01-01

    SUMMARY Bacterial genomes are remarkably stable from one generation to the next but are plastic on an evolutionary time scale, substantially shaped by horizontal gene transfer, genome rearrangement, and the activities of mobile DNA elements. This implies the existence of a delicate balance between the maintenance of genome stability and the tolerance of genome instability. In this review, we describe the specialized genetic elements and the endogenous processes that contribute to genome instability. We then discuss the consequences of genome instability at the physiological level, where cells have harnessed instability to mediate phase and antigenic variation, and at the evolutionary level, where horizontal gene transfer has played an important role. Indeed, this ability to share DNA sequences has played a major part in the evolution of life on Earth. The evolutionary plasticity of bacterial genomes, coupled with the vast numbers of bacteria on the planet, substantially limits our ability to control disease. PMID:24600039

  11. Assessing the Robustness of Complete Bacterial Genome Segmentations

    NASA Astrophysics Data System (ADS)

    Devillers, Hugo; Chiapello, Hélène; Schbath, Sophie; El Karoui, Meriem

    Comparison of closely related bacterial genomes has revealed the presence of highly conserved sequences forming a "backbone" that is interrupted by numerous, less conserved, DNA fragments. Segmentation of bacterial genomes into backbone and variable regions is particularly useful to investigate bacterial genome evolution. Several software tools have been designed to compare complete bacterial chromosomes and a few online databases store pre-computed genome comparisons. However, very few statistical methods are available to evaluate the reliability of these software tools and to compare the results obtained with them. To fill this gap, we have developed two local scores to measure the robustness of bacterial genome segmentations. Our method uses a simulation procedure based on random perturbations of the compared genomes. The scores presented in this paper are simple to implement and our results show that they allow to discriminate easily between robust and non-robust bacterial genome segmentations when using aligners such as MAUVE and MGA.

  12. Evolution of Salmonella-Host Cell Interactions through a Dynamic Bacterial Genome

    PubMed Central

    Ilyas, Bushra; Tsai, Caressa N.; Coombes, Brian K.

    2017-01-01

    Salmonella Typhimurium has a broad arsenal of genes that are tightly regulated and coordinated to facilitate adaptation to the various host environments it colonizes. The genome of Salmonella Typhimurium has undergone multiple gene acquisition events and has accrued changes in non-coding DNA that have undergone selection by regulatory evolution. Together, at least 17 horizontally acquired pathogenicity islands (SPIs), prophage-associated genes, and changes in core genome regulation contribute to the virulence program of Salmonella. Here, we review the latest understanding of these elements and their contributions to pathogenesis, emphasizing the regulatory circuitry that controls niche-specific gene expression. In addition to an overview of the importance of SPI-1 and SPI-2 to host invasion and colonization, we describe the recently characterized contributions of other SPIs, including the antibacterial activity of SPI-6 and adhesion and invasion mediated by SPI-4. We further discuss how these fitness traits have been integrated into the regulatory circuitry of the bacterial cell through cis-regulatory evolution and by a careful balance of silencing and counter-silencing by regulatory proteins. Detailed understanding of regulatory evolution within Salmonella is uncovering novel aspects of infection biology that relate to host-pathogen interactions and evasion of host immunity. PMID:29034217

  13. Attenuated Virulence and Genomic Reductive Evolution in the Entomopathogenic Bacterial Symbiont Species, Xenorhabdus poinarii

    PubMed Central

    Ogier, Jean-Claude; Pagès, Sylvie; Bisch, Gaëlle; Chiapello, Hélène; Médigue, Claudine; Rouy, Zoé; Teyssier, Corinne; Vincent, Stéphanie; Tailliez, Patrick; Givaudan, Alain; Gaudriault, Sophie

    2014-01-01

    Bacteria of the genus Xenorhabdus are symbionts of soil entomopathogenic nematodes of the genus Steinernema. This symbiotic association constitutes an insecticidal complex active against a wide range of insect pests. Unlike other Xenorhabdus species, Xenorhabdus poinarii is avirulent when injected into insects in the absence of its nematode host. We sequenced the genome of the X. poinarii strain G6 and the closely related but virulent X. doucetiae strain FRM16. G6 had a smaller genome (500–700 kb smaller) than virulent Xenorhabdus strains and lacked genes encoding potential virulence factors (hemolysins, type 5 secretion systems, enzymes involved in the synthesis of secondary metabolites, and toxin–antitoxin systems). The genomes of all the X. poinarii strains analyzed here had a similar small size. We did not observe the accumulation of pseudogenes, insertion sequences or decrease in coding density usually seen as a sign of genomic erosion driven by genetic drift in host-adapted bacteria. Instead, genome reduction of X. poinarii seems to have been mediated by the excision of genomic blocks from the flexible genome, as reported for the genomes of attenuated free pathogenic bacteria and some facultative mutualistic bacteria growing exclusively within hosts. This evolutionary pathway probably reflects the adaptation of X. poinarii to specific host. PMID:24904010

  14. Phages and the Evolution of Bacterial Pathogens: from Genomic Rearrangements to Lysogenic Conversion

    PubMed Central

    Brüssow, Harald; Canchaya, Carlos; Hardt, Wolf-Dietrich

    2004-01-01

    Comparative genomics demonstrated that the chromosomes from bacteria and their viruses (bacteriophages) are coevolving. This process is most evident for bacterial pathogens where the majority contain prophages or phage remnants integrated into the bacterial DNA. Many prophages from bacterial pathogens encode virulence factors. Two situations can be distinguished: Vibrio cholerae, Shiga toxin-producing Escherichia coli, Corynebacterium diphtheriae, and Clostridium botulinum depend on a specific prophage-encoded toxin for causing a specific disease, whereas Staphylococcus aureus, Streptococcus pyogenes, and Salmonella enterica serovar Typhimurium harbor a multitude of prophages and each phage-encoded virulence or fitness factor makes an incremental contribution to the fitness of the lysogen. These prophages behave like “swarms” of related prophages. Prophage diversification seems to be fueled by the frequent transfer of phage material by recombination with superinfecting phages, resident prophages, or occasional acquisition of other mobile DNA elements or bacterial chromosomal genes. Prophages also contribute to the diversification of the bacterial genome architecture. In many cases, they actually represent a large fraction of the strain-specific DNA sequences. In addition, they can serve as anchoring points for genome inversions. The current review presents the available genomics and biological data on prophages from bacterial pathogens in an evolutionary framework. PMID:15353570

  15. Genome evolution and nitrogen fixation in bacterial ectosymbionts of a protist inhabiting wood-feeding cockroaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tai, Vera; Carpenter, Kevin J.; Weber, Peter K.

    By combining genomics and isotope imaging analysis using high-resolution secondary ion mass spectrometry (NanoSIMS), we examined the function and evolution of Bacteroidales ectosymbionts of the protistBarbulanymphafrom the hindguts of the wood-eating cockroachCryptocercus punctulatus. In particular, we investigated the structure of ectosymbiont genomes, which, in contrast to those of endosymbionts, has been little studied to date, and tested the hypothesis that these ectosymbionts fix nitrogen. Unlike with most obligate endosymbionts, genome reduction has not played a major role in the evolution of the Barbulanympha ectosymbionts. Instead, interaction with the external environment has remained important for this symbiont as genes for synthesismore » of transporters, outer membrane proteins, lipopolysaccharides, and lipoproteins have been retained. The ectosymbiont genome carried two complete operons for nitrogen fixation, a urea transporter, and a urease, indicating the availability of nitrogen as a driving force behind the symbiosis. NanoSIMS analysis ofC. punctulatushindgut symbionts exposedin vivoto 15N 2 supports the hypothesis thatBarbulanymphaectosymbionts are capable of nitrogen fixation. This genomic andin vivofunctional investigation of protist ectosymbionts highlights the diversity of evolutionary forces and trajectories that shape symbiotic interactions. The ecological and evolutionary importance of symbioses is increasingly clear, but the overall diversity of symbiotic interactions remains poorly explored. Here in this study, we investigated the evolution and nitrogen fixation capabilities of ectosymbionts attached to the protist Barbulanympha from the hindgut of the wood-eating cockroach Cryptocercus punctulatus. In addressing genome evolution of protist ectosymbionts, our data suggest that the ecological pressures influencing the evolution of extracellular symbionts clearly differ from intracellular symbionts and organelles. Using NanoSIMS analysis

  16. Genome evolution and nitrogen fixation in bacterial ectosymbionts of a protist inhabiting wood-feeding cockroaches

    DOE PAGES

    Tai, Vera; Carpenter, Kevin J.; Weber, Peter K.; ...

    2016-05-27

    By combining genomics and isotope imaging analysis using high-resolution secondary ion mass spectrometry (NanoSIMS), we examined the function and evolution of Bacteroidales ectosymbionts of the protistBarbulanymphafrom the hindguts of the wood-eating cockroachCryptocercus punctulatus. In particular, we investigated the structure of ectosymbiont genomes, which, in contrast to those of endosymbionts, has been little studied to date, and tested the hypothesis that these ectosymbionts fix nitrogen. Unlike with most obligate endosymbionts, genome reduction has not played a major role in the evolution of the Barbulanympha ectosymbionts. Instead, interaction with the external environment has remained important for this symbiont as genes for synthesismore » of transporters, outer membrane proteins, lipopolysaccharides, and lipoproteins have been retained. The ectosymbiont genome carried two complete operons for nitrogen fixation, a urea transporter, and a urease, indicating the availability of nitrogen as a driving force behind the symbiosis. NanoSIMS analysis ofC. punctulatushindgut symbionts exposedin vivoto 15N 2 supports the hypothesis thatBarbulanymphaectosymbionts are capable of nitrogen fixation. This genomic andin vivofunctional investigation of protist ectosymbionts highlights the diversity of evolutionary forces and trajectories that shape symbiotic interactions. The ecological and evolutionary importance of symbioses is increasingly clear, but the overall diversity of symbiotic interactions remains poorly explored. Here in this study, we investigated the evolution and nitrogen fixation capabilities of ectosymbionts attached to the protist Barbulanympha from the hindgut of the wood-eating cockroach Cryptocercus punctulatus. In addressing genome evolution of protist ectosymbionts, our data suggest that the ecological pressures influencing the evolution of extracellular symbionts clearly differ from intracellular symbionts and organelles. Using NanoSIMS analysis

  17. Conditions for the Evolution of Gene Clusters in Bacterial Genomes

    PubMed Central

    Ballouz, Sara; Francis, Andrew R.; Lan, Ruiting; Tanaka, Mark M.

    2010-01-01

    Genes encoding proteins in a common pathway are often found near each other along bacterial chromosomes. Several explanations have been proposed to account for the evolution of these structures. For instance, natural selection may directly favour gene clusters through a variety of mechanisms, such as increased efficiency of coregulation. An alternative and controversial hypothesis is the selfish operon model, which asserts that clustered arrangements of genes are more easily transferred to other species, thus improving the prospects for survival of the cluster. According to another hypothesis (the persistence model), genes that are in close proximity are less likely to be disrupted by deletions. Here we develop computational models to study the conditions under which gene clusters can evolve and persist. First, we examine the selfish operon model by re-implementing the simulation and running it under a wide range of conditions. Second, we introduce and study a Moran process in which there is natural selection for gene clustering and rearrangement occurs by genome inversion events. Finally, we develop and study a model that includes selection and inversion, which tracks the occurrence and fixation of rearrangements. Surprisingly, gene clusters fail to evolve under a wide range of conditions. Factors that promote the evolution of gene clusters include a low number of genes in the pathway, a high population size, and in the case of the selfish operon model, a high horizontal transfer rate. The computational analysis here has shown that the evolution of gene clusters can occur under both direct and indirect selection as long as certain conditions hold. Under these conditions the selfish operon model is still viable as an explanation for the evolution of gene clusters. PMID:20168992

  18. Dynamics of Genome Rearrangement in Bacterial Populations

    PubMed Central

    Darling, Aaron E.; Miklós, István; Ragan, Mark A.

    2008-01-01

    first characterization of genome arrangement evolution in a bacterial population evolving outside laboratory conditions. Insight into the process of genomic rearrangement may further the understanding of pathogen population dynamics and selection on the architecture of circular bacterial chromosomes. PMID:18650965

  19. Genome dynamics and its impact on evolution of Escherichia coli.

    PubMed

    Dobrindt, Ulrich; Chowdary, M Geddam; Krumbholz, G; Hacker, J

    2010-08-01

    The Escherichia coli genome consists of a conserved part, the so-called core genome, which encodes essential cellular functions and of a flexible, strain-specific part. Genes that belong to the flexible genome code for factors involved in bacterial fitness and adaptation to different environments. Adaptation includes increase in fitness and colonization capacity. Pathogenic as well as non-pathogenic bacteria carry mobile and accessory genetic elements such as plasmids, bacteriophages, genomic islands and others, which code for functions required for proper adaptation. Escherichia coli is a very good example to study the interdependency of genome architecture and lifestyle of bacteria. Thus, these species include pathogenic variants as well as commensal bacteria adapted to different host organisms. In Escherichia coli, various genetic elements encode for pathogenicity factors as well as factors, which increase the fitness of non-pathogenic bacteria. The processes of genome dynamics, such as gene transfer, genome reduction, rearrangements as well as point mutations contribute to the adaptation of the bacteria into particular environments. Using Escherichia coli model organisms, such as uropathogenic strain 536 or commensal strain Nissle 1917, we studied mechanisms of genome dynamics and discuss these processes in the light of the evolution of microbes.

  20. Genomes of the T4-related bacteriophages as windows on microbial genome evolution.

    PubMed

    Petrov, Vasiliy M; Ratnayaka, Swarnamala; Nolan, James M; Miller, Eric S; Karam, Jim D

    2010-10-28

    The T4-related bacteriophages are a group of bacterial viruses that share morphological similarities and genetic homologies with the well-studied Escherichia coli phage T4, but that diverge from T4 and each other by a number of genetically determined characteristics including the bacterial hosts they infect, the sizes of their linear double-stranded (ds) DNA genomes and the predicted compositions of their proteomes. The genomes of about 40 of these phages have been sequenced and annotated over the last several years and are compared here in the context of the factors that have determined their diversity and the diversity of other microbial genomes in evolution. The genomes of the T4 relatives analyzed so far range in size between ~160,000 and ~250,000 base pairs (bp) and are mosaics of one another, consisting of clusters of homology between them that are interspersed with segments that vary considerably in genetic composition between the different phage lineages. Based on the known biological and biochemical properties of phage T4 and the proteins encoded by the T4 genome, the T4 relatives reviewed here are predicted to share a genetic core, or "Core Genome" that determines the structural design of their dsDNA chromosomes, their distinctive morphology and the process of their assembly into infectious agents (phage morphogenesis). The Core Genome appears to be the most ancient genetic component of this phage group and constitutes a mere 12-15% of the total protein encoding potential of the typical T4-related phage genome. The high degree of genetic heterogeneity that exists outside of this shared core suggests that horizontal DNA transfer involving many genetic sources has played a major role in diversification of the T4-related phages and their spread to a wide spectrum of bacterial species domains in evolution. We discuss some of the factors and pathways that might have shaped the evolution of these phages and point out several parallels between their diversity

  1. Genomes of the T4-related bacteriophages as windows on microbial genome evolution

    PubMed Central

    2010-01-01

    The T4-related bacteriophages are a group of bacterial viruses that share morphological similarities and genetic homologies with the well-studied Escherichia coli phage T4, but that diverge from T4 and each other by a number of genetically determined characteristics including the bacterial hosts they infect, the sizes of their linear double-stranded (ds) DNA genomes and the predicted compositions of their proteomes. The genomes of about 40 of these phages have been sequenced and annotated over the last several years and are compared here in the context of the factors that have determined their diversity and the diversity of other microbial genomes in evolution. The genomes of the T4 relatives analyzed so far range in size between ~160,000 and ~250,000 base pairs (bp) and are mosaics of one another, consisting of clusters of homology between them that are interspersed with segments that vary considerably in genetic composition between the different phage lineages. Based on the known biological and biochemical properties of phage T4 and the proteins encoded by the T4 genome, the T4 relatives reviewed here are predicted to share a genetic core, or "Core Genome" that determines the structural design of their dsDNA chromosomes, their distinctive morphology and the process of their assembly into infectious agents (phage morphogenesis). The Core Genome appears to be the most ancient genetic component of this phage group and constitutes a mere 12-15% of the total protein encoding potential of the typical T4-related phage genome. The high degree of genetic heterogeneity that exists outside of this shared core suggests that horizontal DNA transfer involving many genetic sources has played a major role in diversification of the T4-related phages and their spread to a wide spectrum of bacterial species domains in evolution. We discuss some of the factors and pathways that might have shaped the evolution of these phages and point out several parallels between their diversity

  2. Chance and necessity in the genome evolution of endosymbiotic bacteria of insects.

    PubMed

    Sabater-Muñoz, Beatriz; Toft, Christina; Alvarez-Ponce, David; Fares, Mario A

    2017-06-01

    An open question in evolutionary biology is how does the selection-drift balance determine the fates of biological interactions. We searched for signatures of selection and drift in genomes of five endosymbiotic bacterial groups known to evolve under strong genetic drift. Although most genes in endosymbiotic bacteria showed evidence of relaxed purifying selection, many genes in these bacteria exhibited stronger selective constraints than their orthologs in free-living bacterial relatives. Remarkably, most of these highly constrained genes had no role in the host-symbiont interactions but were involved in either buffering the deleterious consequences of drift or other host-unrelated functions, suggesting that they have either acquired new roles or their role became more central in endosymbiotic bacteria. Experimental evolution of Escherichia coli under strong genetic drift revealed remarkable similarities in the mutational spectrum, genome reduction patterns and gene losses to endosymbiotic bacteria of insects. Interestingly, the transcriptome of the experimentally evolved lines showed a generalized deregulation of the genome that affected genes encoding proteins involved in mutational buffering, regulation and amino acid biosynthesis, patterns identical to those found in endosymbiotic bacteria. Our results indicate that drift has shaped endosymbiotic associations through a change in the functional landscape of bacterial genes and that the host had only a small role in such a shift.

  3. Comparative Genomic Analyses of the Bacterial Phosphotransferase System

    PubMed Central

    Barabote, Ravi D.; Saier, Milton H.

    2005-01-01

    We report analyses of 202 fully sequenced genomes for homologues of known protein constituents of the bacterial phosphoenolpyruvate-dependent phosphotransferase system (PTS). These included 174 bacterial, 19 archaeal, and 9 eukaryotic genomes. Homologues of PTS proteins were not identified in archaea or eukaryotes, showing that the horizontal transfer of genes encoding PTS proteins has not occurred between the three domains of life. Of the 174 bacterial genomes (136 bacterial species) analyzed, 30 diverse species have no PTS homologues, and 29 species have cytoplasmic PTS phosphoryl transfer protein homologues but lack recognizable PTS permeases. These soluble homologues presumably function in regulation. The remaining 77 species possess all PTS proteins required for the transport and phosphorylation of at least one sugar via the PTS. Up to 3.2% of the genes in a bacterium encode PTS proteins. These homologues were analyzed for family association, range of protein types, domain organization, and organismal distribution. Different strains of a single bacterial species often possess strikingly different complements of PTS proteins. Types of PTS protein domain fusions were analyzed, showing that certain types of domain fusions are common, while others are rare or prohibited. Select PTS proteins were analyzed from different phylogenetic standpoints, showing that PTS protein phylogeny often differs from organismal phylogeny. The results document the frequent gain and loss of PTS protein-encoding genes and suggest that the lateral transfer of these genes within the bacterial domain has played an important role in bacterial evolution. Our studies provide insight into the development of complex multicomponent enzyme systems and lead to predictions regarding the types of protein-protein interactions that promote efficient PTS-mediated phosphoryl transfer. PMID:16339738

  4. Defense islands in bacterial and archaeal genomes and prediction of novel defense systems.

    PubMed

    Makarova, Kira S; Wolf, Yuri I; Snir, Sagi; Koonin, Eugene V

    2011-11-01

    The arms race between cellular life forms and viruses is a major driving force of evolution. A substantial fraction of bacterial and archaeal genomes is dedicated to antivirus defense. We analyzed the distribution of defense genes and typical mobilome components (such as viral and transposon genes) in bacterial and archaeal genomes and demonstrated statistically significant clustering of antivirus defense systems and mobile genes and elements in genomic islands. The defense islands are enriched in putative operons and contain numerous overrepresented gene families. A detailed sequence analysis of the proteins encoded by genes in these families shows that many of them are diverged variants of known defense system components, whereas others show features, such as characteristic operonic organization, that are suggestive of novel defense systems. Thus, genomic islands provide abundant material for the experimental study of bacterial and archaeal antivirus defense. Except for the CRISPR-Cas systems, different classes of defense systems, in particular toxin-antitoxin and restriction-modification systems, show nonrandom clustering in defense islands. It remains unclear to what extent these associations reflect functional cooperation between different defense systems and to what extent the islands are genomic "sinks" that accumulate diverse nonessential genes, particularly those acquired via horizontal gene transfer. The characteristics of defense islands resemble those of mobilome islands. Defense and mobilome genes are nonrandomly associated in islands, suggesting nonadaptive evolution of the islands via a preferential attachment-like mechanism underpinned by the addictive properties of defense systems such as toxins-antitoxins and an important role of horizontal mobility in the evolution of these islands.

  5. Theory of microbial genome evolution

    NASA Astrophysics Data System (ADS)

    Koonin, Eugene

    Bacteria and archaea have small genomes tightly packed with protein-coding genes. This compactness is commonly perceived as evidence of adaptive genome streamlining caused by strong purifying selection in large microbial populations. In such populations, even the small cost incurred by nonfunctional DNA because of extra energy and time expenditure is thought to be sufficient for this extra genetic material to be eliminated by selection. However, contrary to the predictions of this model, there exists a consistent, positive correlation between the strength of selection at the protein sequence level, measured as the ratio of nonsynonymous to synonymous substitution rates, and microbial genome size. By fitting the genome size distributions in multiple groups of prokaryotes to predictions of mathematical models of population evolution, we show that only models in which acquisition of additional genes is, on average, slightly beneficial yield a good fit to genomic data. Thus, the number of genes in prokaryotic genomes seems to reflect the equilibrium between the benefit of additional genes that diminishes as the genome grows and deletion bias. New genes acquired by microbial genomes, on average, appear to be adaptive. Evolution of bacterial and archaeal genomes involves extensive horizontal gene transfer and gene loss. Many microbes have open pangenomes, where each newly sequenced genome contains more than 10% `ORFans', genes without detectable homologues in other species. A simple, steady-state evolutionary model reveals two sharply distinct classes of microbial genes, one of which (ORFans) is characterized by effectively instantaneous gene replacement, whereas the other consists of genes with finite, distributed replacement rates. These findings imply a conservative estimate of at least a billion distinct genes in the prokaryotic genomic universe.

  6. Mobile Bacterial Group II Introns at the Crux of Eukaryotic Evolution

    PubMed Central

    Lambowitz, Alan M.; Belfort, Marlene

    2015-01-01

    SUMMARY This review focuses on recent developments in our understanding of group II intron function, the relationships of these introns to retrotransposons and spliceosomes, and how their common features have informed thinking about bacterial group II introns as key elements in eukaryotic evolution. Reverse transcriptase-mediated and host factor-aided intron retrohoming pathways are considered along with retrotransposition mechanisms to novel sites in bacteria, where group II introns are thought to have originated. DNA target recognition and movement by target-primed reverse transcription infer an evolutionary relationship among group II introns, non-LTR retrotransposons, such as LINE elements, and telomerase. Additionally, group II introns are almost certainly the progenitors of spliceosomal introns. Their profound similarities include splicing chemistry extending to RNA catalysis, reaction stereochemistry, and the position of two divalent metals that perform catalysis at the RNA active site. There are also sequence and structural similarities between group II introns and the spliceosome’s small nuclear RNAs (snRNAs) and between a highly conserved core spliceosomal protein Prp8 and a group II intron-like reverse transcriptase. It has been proposed that group II introns entered eukaryotes during bacterial endosymbiosis or bacterial-archaeal fusion, proliferated within the nuclear genome, necessitating evolution of the nuclear envelope, and fragmented giving rise to spliceosomal introns. Thus, these bacterial self-splicing mobile elements have fundamentally impacted the composition of extant eukaryotic genomes, including the human genome, most of which is derived from close relatives of mobile group II introns. PMID:25878921

  7. Parallel Histories of Horizontal Gene Transfer Facilitated Extreme Reduction of Endosymbiont Genomes in Sap-Feeding Insects

    PubMed Central

    Sloan, Daniel B.; Nakabachi, Atsushi; Richards, Stephen; Qu, Jiaxin; Murali, Shwetha Canchi; Gibbs, Richard A.; Moran, Nancy A.

    2014-01-01

    Bacteria confined to intracellular environments experience extensive genome reduction. In extreme cases, insect endosymbionts have evolved genomes that are so gene-poor that they blur the distinction between bacteria and endosymbiotically derived organelles such as mitochondria and plastids. To understand the host’s role in this extreme gene loss, we analyzed gene content and expression in the nuclear genome of the psyllid Pachypsylla venusta, a sap-feeding insect that harbors an ancient endosymbiont (Carsonella) with one of the most reduced bacterial genomes ever identified. Carsonella retains many genes required for synthesis of essential amino acids that are scarce in plant sap, but most of these biosynthetic pathways have been disrupted by gene loss. Host genes that are upregulated in psyllid cells housing Carsonella appear to compensate for endosymbiont gene losses, resulting in highly integrated metabolic pathways that mirror those observed in other sap-feeding insects. The host contribution to these pathways is mediated by a combination of native eukaryotic genes and bacterial genes that were horizontally transferred from multiple donor lineages early in the evolution of psyllids, including one gene that appears to have been directly acquired from Carsonella. By comparing the psyllid genome to a recent analysis of mealybugs, we found that a remarkably similar set of functional pathways have been shaped by independent transfers of bacterial genes to the two hosts. These results show that horizontal gene transfer is an important and recurring mechanism driving coevolution between insects and their bacterial endosymbionts and highlight interesting similarities and contrasts with the evolutionary history of mitochondria and plastids. PMID:24398322

  8. Coordinated Changes in Mutation and Growth Rates Induced by Genome Reduction

    PubMed Central

    Nishimura, Issei; Kurokawa, Masaomi; Liu, Liu

    2017-01-01

    ABSTRACT Genome size is determined during evolution, but it can also be altered by genetic engineering in laboratories. The systematic characterization of reduced genomes provides valuable insights into the cellular properties that are quantitatively described by the global parameters related to the dynamics of growth and mutation. In the present study, we analyzed a small collection of W3110 Escherichia coli derivatives containing either the wild-type genome or reduced genomes of various lengths to examine whether the mutation rate, a global parameter representing genomic plasticity, was affected by genome reduction. We found that the mutation rates of these cells increased with genome reduction. The correlation between genome length and mutation rate, which has been reported for the evolution of bacteria, was also identified, intriguingly, for genome reduction. Gene function enrichment analysis indicated that the deletion of many of the genes encoding membrane and transport proteins play a role in the mutation rate changes mediated by genome reduction. Furthermore, the increase in the mutation rate with genome reduction was highly associated with a decrease in the growth rate in a nutrition-dependent manner; thus, poorer media showed a larger change that was of higher significance. This negative correlation was strongly supported by experimental evidence that the serial transfer of the reduced genome improved the growth rate and reduced the mutation rate to a large extent. Taken together, the global parameters corresponding to the genome, growth, and mutation showed a coordinated relationship, which might be an essential working principle for balancing the cellular dynamics appropriate to the environment. PMID:28679744

  9. Coordinated Changes in Mutation and Growth Rates Induced by Genome Reduction.

    PubMed

    Nishimura, Issei; Kurokawa, Masaomi; Liu, Liu; Ying, Bei-Wen

    2017-07-05

    Genome size is determined during evolution, but it can also be altered by genetic engineering in laboratories. The systematic characterization of reduced genomes provides valuable insights into the cellular properties that are quantitatively described by the global parameters related to the dynamics of growth and mutation. In the present study, we analyzed a small collection of W3110 Escherichia coli derivatives containing either the wild-type genome or reduced genomes of various lengths to examine whether the mutation rate, a global parameter representing genomic plasticity, was affected by genome reduction. We found that the mutation rates of these cells increased with genome reduction. The correlation between genome length and mutation rate, which has been reported for the evolution of bacteria, was also identified, intriguingly, for genome reduction. Gene function enrichment analysis indicated that the deletion of many of the genes encoding membrane and transport proteins play a role in the mutation rate changes mediated by genome reduction. Furthermore, the increase in the mutation rate with genome reduction was highly associated with a decrease in the growth rate in a nutrition-dependent manner; thus, poorer media showed a larger change that was of higher significance. This negative correlation was strongly supported by experimental evidence that the serial transfer of the reduced genome improved the growth rate and reduced the mutation rate to a large extent. Taken together, the global parameters corresponding to the genome, growth, and mutation showed a coordinated relationship, which might be an essential working principle for balancing the cellular dynamics appropriate to the environment. IMPORTANCE Genome reduction is a powerful approach for investigating the fundamental rules for living systems. Whether genetically disturbed genomes have any specific properties that are different from or similar to those of natively evolved genomes has been under

  10. Continuing Evolution of Burkholderia mallei Through Genome Reduction and Large-Scale Rearrangements

    DTIC Science & Technology

    2010-01-22

    in Materials and Methods. b NRPS, nonribosomal peptide synthase ; PKS, polyketide synthase ; RND, resistance nodulation-division like pump. Losada et al...genomics, genome erosion, bacterial virulence. ª The Author(s) 2010. Published by Oxford University Press on behalf of the Society for Molecular Biology...creativecommons.org/licenses/by-nc/ 2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original

  11. Draft Genomes, Phylogenetic Reconstruction, and Comparative Genomics of Two Novel Cohabiting Bacterial Symbionts Isolated from Frankliniella occidentalis.

    PubMed

    Facey, Paul D; Méric, Guillaume; Hitchings, Matthew D; Pachebat, Justin A; Hegarty, Matt J; Chen, Xiaorui; Morgan, Laura V A; Hoeppner, James E; Whitten, Miranda M A; Kirk, William D J; Dyson, Paul J; Sheppard, Sam K; Del Sol, Ricardo

    2015-07-15

    Obligate bacterial symbionts are widespread in many invertebrates, where they are often confined to specialized host cells and are transmitted directly from mother to progeny. Increasing numbers of these bacteria are being characterized but questions remain about their population structure and evolution. Here we take a comparative genomics approach to investigate two prominent bacterial symbionts (BFo1 and BFo2) isolated from geographically separated populations of western flower thrips, Frankliniella occidentalis. Our multifaceted approach to classifying these symbionts includes concatenated multilocus sequence analysis (MLSA) phylogenies, ribosomal multilocus sequence typing (rMLST), construction of whole-genome phylogenies, and in-depth genomic comparisons. We showed that the BFo1 genome clusters more closely to species in the genus Erwinia, and is a putative close relative to Erwinia aphidicola. BFo1 is also likely to have shared a common ancestor with Erwinia pyrifoliae/Erwinia amylovora and the nonpathogenic Erwinia tasmaniensis and genetic traits similar to Erwinia billingiae. The BFo1 genome contained virulence factors found in the genus Erwinia but represented a divergent lineage. In contrast, we showed that BFo2 belongs within the Enterobacteriales but does not group closely with any currently known bacterial species. Concatenated MLSA phylogenies indicate that it may have shared a common ancestor to the Erwinia and Pantoea genera, and based on the clustering of rMLST genes, it was most closely related to Pantoea ananatis but represented a divergent lineage. We reconstructed a core genome of a putative common ancestor of Erwinia and Pantoea and compared this with the genomes of BFo bacteria. BFo2 possessed none of the virulence determinants that were omnipresent in the Erwinia and Pantoea genera. Taken together, these data are consistent with BFo2 representing a highly novel species that maybe related to known Pantoea. © The Author(s) 2015. Published by

  12. Nondegenerative Evolution in Ancient Heritable Bacterial Endosymbionts of Fungi.

    PubMed

    Mondo, Stephen J; Salvioli, Alessandra; Bonfante, Paola; Morton, Joseph B; Pawlowska, Teresa E

    2016-09-01

    Bacterial endosymbionts are critical to the existence of many eukaryotes. Among them, vertically transmitted endobacteria are uniquely typified by reduced genomes and molecular evolution rate acceleration relative to free-living taxa. These patterns are attributable to genetic drift-dominated degenerative processes associated with reproductive dependence on the host. The degenerative evolution scenario is well supported in endobacteria with strict vertical transmission, such as essential mutualists of insects. In contrast, heritable endosymbionts that are nonessential to their hosts and engage occasionally in horizontal transmission are expected to display deviations from the degenerative evolution model. To explore evolution patterns in such nonessential endobacteria, we focused on Candidatus Glomeribacter gigasporarum ancient heritable mutualists of fungi. Using a collection of genomes, we estimated in Glomeribacter mutation rate at 2.03 × 10(-9) substitutions per site per year and effective population size at 1.44 × 10(8) Both fall within the range of values observed in free-living bacteria. To assess the ability of Glomeribacter to purge slightly deleterious mutations, we examined genome-wide dN/dS values and distribution patterns. We found that these dN/dS profiles cluster Glomeribacter with free-living bacteria as well as with other nonessential endosymbionts, while distinguishing it from essential heritable mutualists of insects. Finally, our evolutionary simulations revealed that the molecular evolution rate acceleration in Glomeribacter is caused by limited recombination in a largely clonal population rather than by increased fixation of slightly deleterious mutations. Based on these patterns, we propose that genome evolution in Glomeribacter is nondegenerative and exemplifies a departure from the model of degenerative evolution in heritable endosymbionts. © The Author 2016. Published by Oxford University Press on behalf of the Society for

  13. On the evolution of bacterial multicellularity.

    PubMed

    Lyons, Nicholas A; Kolter, Roberto

    2015-04-01

    Multicellularity is one of the most prevalent evolutionary innovations and nowhere is this more apparent than in the bacterial world, which contains many examples of multicellular organisms in a surprising array of forms. Due to their experimental accessibility and the large and diverse genomic data available, bacteria enable us to probe fundamental aspects of the origins of multicellularity. Here we discuss examples of multicellular behaviors in bacteria, the selective pressures that may have led to their evolution, possible origins and intermediate stages, and whether the ubiquity of apparently convergent multicellular forms argues for its inevitability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Comparative genomics and evolution of eukaryotic phospholipidbiosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lykidis, Athanasios

    2006-12-01

    Phospholipid biosynthetic enzymes produce diverse molecular structures and are often present in multiple forms encoded by different genes. This work utilizes comparative genomics and phylogenetics for exploring the distribution, structure and evolution of phospholipid biosynthetic genes and pathways in 26 eukaryotic genomes. Although the basic structure of the pathways was formed early in eukaryotic evolution, the emerging picture indicates that individual enzyme families followed unique evolutionary courses. For example, choline and ethanolamine kinases and cytidylyltransferases emerged in ancestral eukaryotes, whereas, multiple forms of the corresponding phosphatidyltransferases evolved mainly in a lineage specific manner. Furthermore, several unicellular eukaryotes maintain bacterial-type enzymesmore » and reactions for the synthesis of phosphatidylglycerol and cardiolipin. Also, base-exchange phosphatidylserine synthases are widespread and ancestral enzymes. The multiplicity of phospholipid biosynthetic enzymes has been largely generated by gene expansion in a lineage specific manner. Thus, these observations suggest that phospholipid biosynthesis has been an actively evolving system. Finally, comparative genomic analysis indicates the existence of novel phosphatidyltransferases and provides a candidate for the uncharacterized eukaryotic phosphatidylglycerol phosphate phosphatase.« less

  15. Genome Evolution in the Obligate but Environmentally Active Luminous Symbionts of Flashlight Fish

    PubMed Central

    Hendry, Tory A.; de Wet, Jeffrey R.; Dougan, Katherine E.; Dunlap, Paul V.

    2016-01-01

    The luminous bacterial symbionts of anomalopid flashlight fish are thought to be obligately dependent on their hosts for growth and share several aspects of genome evolution with unrelated obligate symbionts, including genome reduction. However, in contrast to most obligate bacteria, anomalopid symbionts have an active environmental phase that may be important for symbiont transmission. Here we investigated patterns of evolution between anomalopid symbionts compared with patterns in free-living relatives and unrelated obligate symbionts to determine if trends common to obligate symbionts are also found in anomalopid symbionts. Two symbionts, “Candidatus Photodesmus katoptron” and “Candidatus Photodesmus blepharus,” have genomes that are highly similar in gene content and order, suggesting genome stasis similar to ancient obligate symbionts present in insect lineages. This genome stasis exists in spite of the symbiont’s inferred ability to recombine, which is frequently lacking in obligate symbionts with stable genomes. Additionally, we used genome comparisons and tests of selection to infer which genes may be particularly important for the symbiont’s ecology compared with relatives. In keeping with obligate dependence, substitution patterns suggest that most symbiont genes are experiencing relaxed purifying selection compared with relatives. However, genes involved in motility and carbon storage, which are likely to be used outside the host, appear to be under increased purifying selection. Two chemoreceptor chemotaxis genes are retained by both species and show high conservation with amino acid sensing genes, suggesting that the bacteria may actively seek out hosts using chemotaxis toward amino acids, which the symbionts are not able to synthesize. PMID:27389687

  16. Defense Islands in Bacterial and Archaeal Genomes and Prediction of Novel Defense Systems ▿†‡

    PubMed Central

    Makarova, Kira S.; Wolf, Yuri I.; Snir, Sagi; Koonin, Eugene V.

    2011-01-01

    The arms race between cellular life forms and viruses is a major driving force of evolution. A substantial fraction of bacterial and archaeal genomes is dedicated to antivirus defense. We analyzed the distribution of defense genes and typical mobilome components (such as viral and transposon genes) in bacterial and archaeal genomes and demonstrated statistically significant clustering of antivirus defense systems and mobile genes and elements in genomic islands. The defense islands are enriched in putative operons and contain numerous overrepresented gene families. A detailed sequence analysis of the proteins encoded by genes in these families shows that many of them are diverged variants of known defense system components, whereas others show features, such as characteristic operonic organization, that are suggestive of novel defense systems. Thus, genomic islands provide abundant material for the experimental study of bacterial and archaeal antivirus defense. Except for the CRISPR-Cas systems, different classes of defense systems, in particular toxin-antitoxin and restriction-modification systems, show nonrandom clustering in defense islands. It remains unclear to what extent these associations reflect functional cooperation between different defense systems and to what extent the islands are genomic “sinks” that accumulate diverse nonessential genes, particularly those acquired via horizontal gene transfer. The characteristics of defense islands resemble those of mobilome islands. Defense and mobilome genes are nonrandomly associated in islands, suggesting nonadaptive evolution of the islands via a preferential attachment-like mechanism underpinned by the addictive properties of defense systems such as toxins-antitoxins and an important role of horizontal mobility in the evolution of these islands. PMID:21908672

  17. Implications of the plastid genome sequence of typha (typhaceae, poales) for understanding genome evolution in poaceae.

    PubMed

    Guisinger, Mary M; Chumley, Timothy W; Kuehl, Jennifer V; Boore, Jeffrey L; Jansen, Robert K

    2010-02-01

    Plastid genomes of the grasses (Poaceae) are unusual in their organization and rates of sequence evolution. There has been a recent surge in the availability of grass plastid genome sequences, but a comprehensive comparative analysis of genome evolution has not been performed that includes any related families in the Poales. We report on the plastid genome of Typha latifolia, the first non-grass Poales sequenced to date, and we present comparisons of genome organization and sequence evolution within Poales. Our results confirm that grass plastid genomes exhibit acceleration in both genomic rearrangements and nucleotide substitutions. Poaceae have multiple structural rearrangements, including three inversions, three genes losses (accD, ycf1, ycf2), intron losses in two genes (clpP, rpoC1), and expansion of the inverted repeat (IR) into both large and small single-copy regions. These rearrangements are restricted to the Poaceae, and IR expansion into the small single-copy region correlates with the phylogeny of the family. Comparisons of 73 protein-coding genes for 47 angiosperms including nine Poaceae genera confirm that the branch leading to Poaceae has significantly accelerated rates of change relative to other monocots and angiosperms. Furthermore, rates of sequence evolution within grasses are lower, indicating a deceleration during diversification of the family. Overall there is a strong correlation between accelerated rates of genomic rearrangements and nucleotide substitutions in Poaceae, a phenomenon that has been noted recently throughout angiosperms. The cause of the correlation is unknown, but faulty DNA repair has been suggested in other systems including bacterial and animal mitochondrial genomes.

  18. Insights from 20 years of bacterial genome sequencing

    DOE PAGES

    Land, Miriam L.; Hauser, Loren; Jun, Se-Ran; ...

    2015-02-27

    Since the first two complete bacterial genome sequences were published in 1995, the science of bacteria has dramatically changed. Using third-generation DNA sequencing, it is possible to completely sequence a bacterial genome in a few hours and identify some types of methylation sites along the genome as well. Sequencing of bacterial genome sequences is now a standard procedure, and the information from tens of thousands of bacterial genomes has had a major impact on our views of the bacterial world. In this review, we explore a series of questions to highlight some insights that comparative genomics has produced. To date,more » there are genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. However, the distribution is quite skewed towards a few phyla that contain model organisms. But the breadth is continuing to improve, with projects dedicated to filling in less characterized taxonomic groups. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system provides bacteria with immunity against viruses, which outnumber bacteria by tenfold. How fast can we go? Second-generation sequencing has produced a large number of draft genomes (close to 90 % of bacterial genomes in GenBank are currently not complete); third-generation sequencing can potentially produce a finished genome in a few hours, and at the same time provide methlylation sites along the entire chromosome. The diversity of bacterial communities is extensive as is evident from the genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. Genome sequencing can help in classifying an organism, and in the case where multiple genomes of the same species are available, it is possible to calculate the pan- and core genomes; comparison of more than 2000 Escherichia coli genomes finds an E. coli core genome of about 3100 gene families and a total of about 89,000 different gene families. Why do we care about

  19. Insights from 20 years of bacterial genome sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Land, Miriam L.; Hauser, Loren; Jun, Se-Ran

    Since the first two complete bacterial genome sequences were published in 1995, the science of bacteria has dramatically changed. Using third-generation DNA sequencing, it is possible to completely sequence a bacterial genome in a few hours and identify some types of methylation sites along the genome as well. Sequencing of bacterial genome sequences is now a standard procedure, and the information from tens of thousands of bacterial genomes has had a major impact on our views of the bacterial world. In this review, we explore a series of questions to highlight some insights that comparative genomics has produced. To date,more » there are genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. However, the distribution is quite skewed towards a few phyla that contain model organisms. But the breadth is continuing to improve, with projects dedicated to filling in less characterized taxonomic groups. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system provides bacteria with immunity against viruses, which outnumber bacteria by tenfold. How fast can we go? Second-generation sequencing has produced a large number of draft genomes (close to 90 % of bacterial genomes in GenBank are currently not complete); third-generation sequencing can potentially produce a finished genome in a few hours, and at the same time provide methlylation sites along the entire chromosome. The diversity of bacterial communities is extensive as is evident from the genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. Genome sequencing can help in classifying an organism, and in the case where multiple genomes of the same species are available, it is possible to calculate the pan- and core genomes; comparison of more than 2000 Escherichia coli genomes finds an E. coli core genome of about 3100 gene families and a total of about 89,000 different gene families. Why do we care about

  20. Multiple losses of photosynthesis and convergent reductive genome evolution in the colourless green algae Prototheca.

    PubMed

    Suzuki, Shigekatsu; Endoh, Rikiya; Manabe, Ri-Ichiroh; Ohkuma, Moriya; Hirakawa, Yoshihisa

    2018-01-17

    Autotrophic eukaryotes have evolved by the endosymbiotic uptake of photosynthetic organisms. Interestingly, many algae and plants have secondarily lost the photosynthetic activity despite its great advantages. Prototheca and Helicosporidium are non-photosynthetic green algae possessing colourless plastids. The plastid genomes of Prototheca wickerhamii and Helicosporidium sp. are highly reduced owing to the elimination of genes related to photosynthesis. To gain further insight into the reductive genome evolution during the shift from a photosynthetic to a heterotrophic lifestyle, we sequenced the plastid and nuclear genomes of two Prototheca species, P. cutis JCM 15793 and P. stagnora JCM 9641, and performed comparative genome analyses among trebouxiophytes. Our phylogenetic analyses using plastid- and nucleus-encoded proteins strongly suggest that independent losses of photosynthesis have occurred at least three times in the clade of Prototheca and Helicosporidium. Conserved gene content among these non-photosynthetic lineages suggests that the plastid and nuclear genomes have convergently eliminated a similar set of photosynthesis-related genes. Other than the photosynthetic genes, significant gene loss and gain were not observed in Prototheca compared to its closest photosynthetic relative Auxenochlorella. Although it remains unclear why loss of photosynthesis occurred in Prototheca, the mixotrophic capability of trebouxiophytes likely made it possible to eliminate photosynthesis.

  1. Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs

    PubMed Central

    Green, Richard E; Braun, Edward L; Armstrong, Joel; Earl, Dent; Nguyen, Ngan; Hickey, Glenn; Vandewege, Michael W; St John, John A; Capella-Gutiérrez, Salvador; Castoe, Todd A; Kern, Colin; Fujita, Matthew K; Opazo, Juan C; Jurka, Jerzy; Kojima, Kenji K; Caballero, Juan; Hubley, Robert M; Smit, Arian F; Platt, Roy N; Lavoie, Christine A; Ramakodi, Meganathan P; Finger, John W; Suh, Alexander; Isberg, Sally R; Miles, Lee; Chong, Amanda Y; Jaratlerdsiri, Weerachai; Gongora, Jaime; Moran, Christopher; Iriarte, Andrés; McCormack, John; Burgess, Shane C; Edwards, Scott V; Lyons, Eric; Williams, Christina; Breen, Matthew; Howard, Jason T; Gresham, Cathy R; Peterson, Daniel G; Schmitz, Jürgen; Pollock, David D; Haussler, David; Triplett, Eric W; Zhang, Guojie; Irie, Naoki; Jarvis, Erich D; Brochu, Christopher A; Schmidt, Carl J; McCarthy, Fiona M; Faircloth, Brant C; Hoffmann, Federico G; Glenn, Travis C; Gabaldón, Toni; Paten, Benedict; Ray, David A

    2015-01-01

    To provide context for the diversifications of archosaurs, the group that includes crocodilians, dinosaurs and birds, we generated draft genomes of three crocodilians, Alligator mississippiensis (the American alligator), Crocodylus porosus (the saltwater crocodile), and Gavialis gangeticus (the Indian gharial). We observed an exceptionally slow rate of genome evolution within crocodilians at all levels, including nucleotide substitutions, indels, transposable element content and movement, gene family evolution, and chromosomal synteny. When placed within the context of related taxa including birds and turtles, this suggests that the common ancestor of all of these taxa also exhibited slow genome evolution and that the relatively rapid evolution of bird genomes represents an autapomorphy within that clade. The data also provided the opportunity to analyze heterozygosity in crocodilians, which indicates a likely reduction in population size for all three taxa through the Pleistocene. Finally, these new data combined with newly published bird genomes allowed us to reconstruct the partial genome of the common ancestor of archosaurs providing a tool to investigate the genetic starting material of crocodilians, birds, and dinosaurs. PMID:25504731

  2. Gene calling and bacterial genome annotation with BG7.

    PubMed

    Tobes, Raquel; Pareja-Tobes, Pablo; Manrique, Marina; Pareja-Tobes, Eduardo; Kovach, Evdokim; Alekhin, Alexey; Pareja, Eduardo

    2015-01-01

    New massive sequencing technologies are providing many bacterial genome sequences from diverse taxa but a refined annotation of these genomes is crucial for obtaining scientific findings and new knowledge. Thus, bacterial genome annotation has emerged as a key point to investigate in bacteria. Any efficient tool designed specifically to annotate bacterial genomes sequenced with massively parallel technologies has to consider the specific features of bacterial genomes (absence of introns and scarcity of nonprotein-coding sequence) and of next-generation sequencing (NGS) technologies (presence of errors and not perfectly assembled genomes). These features make it convenient to focus on coding regions and, hence, on protein sequences that are the elements directly related with biological functions. In this chapter we describe how to annotate bacterial genomes with BG7, an open-source tool based on a protein-centered gene calling/annotation paradigm. BG7 is specifically designed for the annotation of bacterial genomes sequenced with NGS. This tool is sequence error tolerant maintaining their capabilities for the annotation of highly fragmented genomes or for annotating mixed sequences coming from several genomes (as those obtained through metagenomics samples). BG7 has been designed with scalability as a requirement, with a computing infrastructure completely based on cloud computing (Amazon Web Services).

  3. Bacterial genome reduction using the progressive clustering of deletions via yeast sexual cycling

    DOE PAGES

    Suzuki, Yo; Assad-Garcia, Nacyra; Kostylev, Maxim; ...

    2015-02-05

    The availability of genetically tractable organisms with simple genomes is critical for the rapid, systems-level understanding of basic biological processes. Mycoplasma bacteria, with the smallest known genomes among free-living cellular organisms, are ideal models for this purpose, but the natural versions of these cells have genome complexities still too great to offer a comprehensive view of a fundamental life form. Here in this paper we describe an efficient method for reducing genomes from these organisms by identifying individually deletable regions using transposon mutagenesis and progressively clustering deleted genomic segments using meiotic recombination between the bacterial genomes harbored in yeast. Mycoplasmalmore » genomes subjected to this process and transplanted into recipient cells yielded two mycoplasma strains. The first simultaneously lacked eight singly deletable regions of the genome, representing a total of 91 genes and ~10%of the original genome. The second strain lacked seven of the eight regions, representing 84 genes. Growth assay data revealed an absence of genetic interactions among the 91 genes under tested conditions. Despite predicted effects of the deletions on sugar metabolism and the proteome, growth rates were unaffected by the gene deletions in the seven-deletion strain. These results support the feasibility of using single-gene disruption data to design and construct viable genomes lacking multiple genes, paving the way toward genome minimization. The progressive clustering method is expected to be effective for the reorganization of any mega-sized DNA molecules cloned in yeast, facilitating the construction of designer genomes in microbes as well as genomic fragments for genetic engineering of higher eukaryotes.« less

  4. Bacterial genome reduction using the progressive clustering of deletions via yeast sexual cycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Yo; Assad-Garcia, Nacyra; Kostylev, Maxim

    The availability of genetically tractable organisms with simple genomes is critical for the rapid, systems-level understanding of basic biological processes. Mycoplasma bacteria, with the smallest known genomes among free-living cellular organisms, are ideal models for this purpose, but the natural versions of these cells have genome complexities still too great to offer a comprehensive view of a fundamental life form. Here in this paper we describe an efficient method for reducing genomes from these organisms by identifying individually deletable regions using transposon mutagenesis and progressively clustering deleted genomic segments using meiotic recombination between the bacterial genomes harbored in yeast. Mycoplasmalmore » genomes subjected to this process and transplanted into recipient cells yielded two mycoplasma strains. The first simultaneously lacked eight singly deletable regions of the genome, representing a total of 91 genes and ~10%of the original genome. The second strain lacked seven of the eight regions, representing 84 genes. Growth assay data revealed an absence of genetic interactions among the 91 genes under tested conditions. Despite predicted effects of the deletions on sugar metabolism and the proteome, growth rates were unaffected by the gene deletions in the seven-deletion strain. These results support the feasibility of using single-gene disruption data to design and construct viable genomes lacking multiple genes, paving the way toward genome minimization. The progressive clustering method is expected to be effective for the reorganization of any mega-sized DNA molecules cloned in yeast, facilitating the construction of designer genomes in microbes as well as genomic fragments for genetic engineering of higher eukaryotes.« less

  5. Parasitism drives host genome evolution: Insights from the Pasteuria ramosa-Daphnia magna system.

    PubMed

    Bourgeois, Yann; Roulin, Anne C; Müller, Kristina; Ebert, Dieter

    2017-04-01

    Because parasitism is thought to play a major role in shaping host genomes, it has been predicted that genomic regions associated with resistance to parasites should stand out in genome scans, revealing signals of selection above the genomic background. To test whether parasitism is indeed such a major factor in host evolution and to better understand host-parasite interaction at the molecular level, we studied genome-wide polymorphisms in 97 genotypes of the planktonic crustacean Daphnia magna originating from three localities across Europe. Daphnia magna is known to coevolve with the bacterial pathogen Pasteuria ramosa for which host genotypes (clonal lines) are either resistant or susceptible. Using association mapping, we identified two genomic regions involved in resistance to P. ramosa, one of which was already known from a previous QTL analysis. We then performed a naïve genome scan to test for signatures of positive selection and found that the two regions identified with the association mapping further stood out as outliers. Several other regions with evidence for selection were also found, but no link between these regions and phenotypic variation could be established. Our results are consistent with the hypothesis that parasitism is driving host genome evolution. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  6. Comparative genomics of Mortierella elongata and its bacterial endosymbiont Mycoavidus cysteinexigens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uehling, J.; Gryganskyi, A.; Hameed, K.

    Endosymbiosis of bacteria by eukaryotes is a defining feature of cellular evolution. In addition to well-known bacterial origins for mitochondria and chloroplasts, multiple origins of bacterial endosymbiosis are known within the cells of diverse animals, plants and fungi. Early-diverging lineages of terrestrial fungi harbor endosymbiotic bacteria belonging to the Burkholderiaceae. Furthermore, we sequenced the metagenome of the soil-inhabiting fungus Mortierella elongata and assembled the complete circular chromosome of its endosymbiont, Mycoavidus cysteinexigens, which we place within a lineage of endofungal symbionts that are sister clade to Burkholderia. The genome of M. elongata strain AG77 features a core set of primarymore » metabolic pathways for degradation of simple carbohydrates and lipid biosynthesis, while the M. cysteinexigens (AG77) genome is reduced in size and function. Experiments using antibiotics to cure the endobacterium from the host demonstrate that the fungal host metabolism is highly modulated by presence/ absence of M. cysteinexigens. In independent comparative phylogenomic analyses of fungal and bacterial genomes we find that they are consistent with an ancient origin for M. elongata M. cysteinexigens symbiosis, most likely over 350 million years ago and concomitant with the terrestrialization of Earth and diversification of land fungi and plants.« less

  7. Comparative genomics of Mortierella elongata and its bacterial endosymbiont Mycoavidus cysteinexigens

    DOE PAGES

    Uehling, J.; Gryganskyi, A.; Hameed, K.; ...

    2017-01-11

    Endosymbiosis of bacteria by eukaryotes is a defining feature of cellular evolution. In addition to well-known bacterial origins for mitochondria and chloroplasts, multiple origins of bacterial endosymbiosis are known within the cells of diverse animals, plants and fungi. Early-diverging lineages of terrestrial fungi harbor endosymbiotic bacteria belonging to the Burkholderiaceae. Furthermore, we sequenced the metagenome of the soil-inhabiting fungus Mortierella elongata and assembled the complete circular chromosome of its endosymbiont, Mycoavidus cysteinexigens, which we place within a lineage of endofungal symbionts that are sister clade to Burkholderia. The genome of M. elongata strain AG77 features a core set of primarymore » metabolic pathways for degradation of simple carbohydrates and lipid biosynthesis, while the M. cysteinexigens (AG77) genome is reduced in size and function. Experiments using antibiotics to cure the endobacterium from the host demonstrate that the fungal host metabolism is highly modulated by presence/ absence of M. cysteinexigens. In independent comparative phylogenomic analyses of fungal and bacterial genomes we find that they are consistent with an ancient origin for M. elongata M. cysteinexigens symbiosis, most likely over 350 million years ago and concomitant with the terrestrialization of Earth and diversification of land fungi and plants.« less

  8. Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs.

    PubMed

    Green, Richard E; Braun, Edward L; Armstrong, Joel; Earl, Dent; Nguyen, Ngan; Hickey, Glenn; Vandewege, Michael W; St John, John A; Capella-Gutiérrez, Salvador; Castoe, Todd A; Kern, Colin; Fujita, Matthew K; Opazo, Juan C; Jurka, Jerzy; Kojima, Kenji K; Caballero, Juan; Hubley, Robert M; Smit, Arian F; Platt, Roy N; Lavoie, Christine A; Ramakodi, Meganathan P; Finger, John W; Suh, Alexander; Isberg, Sally R; Miles, Lee; Chong, Amanda Y; Jaratlerdsiri, Weerachai; Gongora, Jaime; Moran, Christopher; Iriarte, Andrés; McCormack, John; Burgess, Shane C; Edwards, Scott V; Lyons, Eric; Williams, Christina; Breen, Matthew; Howard, Jason T; Gresham, Cathy R; Peterson, Daniel G; Schmitz, Jürgen; Pollock, David D; Haussler, David; Triplett, Eric W; Zhang, Guojie; Irie, Naoki; Jarvis, Erich D; Brochu, Christopher A; Schmidt, Carl J; McCarthy, Fiona M; Faircloth, Brant C; Hoffmann, Federico G; Glenn, Travis C; Gabaldón, Toni; Paten, Benedict; Ray, David A

    2014-12-12

    To provide context for the diversification of archosaurs--the group that includes crocodilians, dinosaurs, and birds--we generated draft genomes of three crocodilians: Alligator mississippiensis (the American alligator), Crocodylus porosus (the saltwater crocodile), and Gavialis gangeticus (the Indian gharial). We observed an exceptionally slow rate of genome evolution within crocodilians at all levels, including nucleotide substitutions, indels, transposable element content and movement, gene family evolution, and chromosomal synteny. When placed within the context of related taxa including birds and turtles, this suggests that the common ancestor of all of these taxa also exhibited slow genome evolution and that the comparatively rapid evolution is derived in birds. The data also provided the opportunity to analyze heterozygosity in crocodilians, which indicates a likely reduction in population size for all three taxa through the Pleistocene. Finally, these data combined with newly published bird genomes allowed us to reconstruct the partial genome of the common ancestor of archosaurs, thereby providing a tool to investigate the genetic starting material of crocodilians, birds, and dinosaurs. Copyright © 2014, American Association for the Advancement of Science.

  9. Draft Genomes, Phylogenetic Reconstruction, and Comparative Genomics of Two Novel Cohabiting Bacterial Symbionts Isolated from Frankliniella occidentalis

    PubMed Central

    Facey, Paul D.; Méric, Guillaume; Hitchings, Matthew D.; Pachebat, Justin A.; Hegarty, Matt J.; Chen, Xiaorui; Morgan, Laura V.A.; Hoeppner, James E.; Whitten, Miranda M.A.; Kirk, William D.J.; Dyson, Paul J.; Sheppard, Sam K.; Sol, Ricardo Del

    2015-01-01

    Obligate bacterial symbionts are widespread in many invertebrates, where they are often confined to specialized host cells and are transmitted directly from mother to progeny. Increasing numbers of these bacteria are being characterized but questions remain about their population structure and evolution. Here we take a comparative genomics approach to investigate two prominent bacterial symbionts (BFo1 and BFo2) isolated from geographically separated populations of western flower thrips, Frankliniella occidentalis. Our multifaceted approach to classifying these symbionts includes concatenated multilocus sequence analysis (MLSA) phylogenies, ribosomal multilocus sequence typing (rMLST), construction of whole-genome phylogenies, and in-depth genomic comparisons. We showed that the BFo1 genome clusters more closely to species in the genus Erwinia, and is a putative close relative to Erwinia aphidicola. BFo1 is also likely to have shared a common ancestor with Erwinia pyrifoliae/Erwinia amylovora and the nonpathogenic Erwinia tasmaniensis and genetic traits similar to Erwinia billingiae. The BFo1 genome contained virulence factors found in the genus Erwinia but represented a divergent lineage. In contrast, we showed that BFo2 belongs within the Enterobacteriales but does not group closely with any currently known bacterial species. Concatenated MLSA phylogenies indicate that it may have shared a common ancestor to the Erwinia and Pantoea genera, and based on the clustering of rMLST genes, it was most closely related to Pantoea ananatis but represented a divergent lineage. We reconstructed a core genome of a putative common ancestor of Erwinia and Pantoea and compared this with the genomes of BFo bacteria. BFo2 possessed none of the virulence determinants that were omnipresent in the Erwinia and Pantoea genera. Taken together, these data are consistent with BFo2 representing a highly novel species that maybe related to known Pantoea. PMID:26185096

  10. Genomes in turmoil: quantification of genome dynamics in prokaryote supergenomes.

    PubMed

    Puigbò, Pere; Lobkovsky, Alexander E; Kristensen, David M; Wolf, Yuri I; Koonin, Eugene V

    2014-08-21

    Genomes of bacteria and archaea (collectively, prokaryotes) appear to exist in incessant flux, expanding via horizontal gene transfer and gene duplication, and contracting via gene loss. However, the actual rates of genome dynamics and relative contributions of different types of event across the diversity of prokaryotes are largely unknown, as are the sizes of microbial supergenomes, i.e. pools of genes that are accessible to the given microbial species. We performed a comprehensive analysis of the genome dynamics in 35 groups (34 bacterial and one archaeal) of closely related microbial genomes using a phylogenetic birth-and-death maximum likelihood model to quantify the rates of gene family gain and loss, as well as expansion and reduction. The results show that loss of gene families dominates the evolution of prokaryotes, occurring at approximately three times the rate of gain. The rates of gene family expansion and reduction are typically seven and twenty times less than the gain and loss rates, respectively. Thus, the prevailing mode of evolution in bacteria and archaea is genome contraction, which is partially compensated by the gain of new gene families via horizontal gene transfer. However, the rates of gene family gain, loss, expansion and reduction vary within wide ranges, with the most stable genomes showing rates about 25 times lower than the most dynamic genomes. For many groups, the supergenome estimated from the fraction of repetitive gene family gains includes about tenfold more gene families than the typical genome in the group although some groups appear to have vast, 'open' supergenomes. Reconstruction of evolution for groups of closely related bacteria and archaea reveals an extremely rapid and highly variable flux of genes in evolving microbial genomes, demonstrates that extensive gene loss and horizontal gene transfer leading to innovation are the two dominant evolutionary processes, and yields robust estimates of the supergenome size.

  11. Evolution and dynamics of megaplasmids with genome sizes larger than 100 kb in the Bacillus cereus group.

    PubMed

    Zheng, Jinshui; Peng, Donghai; Ruan, Lifang; Sun, Ming

    2013-12-02

    Plasmids play a crucial role in the evolution of bacterial genomes by mediating horizontal gene transfer. However, the origin and evolution of most plasmids remains unclear, especially for megaplasmids. Strains of the Bacillus cereus group contain up to 13 plasmids with genome sizes ranging from 2 kb to 600 kb, and thus can be used to study plasmid dynamics and evolution. This work studied the origin and evolution of 31 B. cereus group megaplasmids (>100 kb) focusing on the most conserved regions on plasmids, minireplicons. Sixty-five putative minireplicons were identified and classified to six types on the basis of proteins that are essential for replication. Twenty-nine of the 31 megaplasmids contained two or more minireplicons. Phylogenetic analysis of the protein sequences showed that different minireplicons on the same megaplasmid have different evolutionary histories. Therefore, we speculated that these megaplasmids are the results of fusion of smaller plasmids. All plasmids of a bacterial strain must be compatible. In megaplasmids of the B. cereus group, individual minireplicons of different megaplasmids in the same strain belong to different types or subtypes. Thus, the subtypes of each minireplicon they contain may determine the incompatibilities of megaplasmids. A broader analysis of all 1285 bacterial plasmids with putative known minireplicons whose complete genome sequences were available from GenBank revealed that 34% (443 plasmids) of the plasmids have two or more minireplicons. This indicates that plasmid fusion events are general among bacterial plasmids. Megaplasmids of B. cereus group are fusion of smaller plasmids, and the fusion of plasmids likely occurs frequently in the B. cereus group and in other bacterial taxa. Plasmid fusion may be one of the major mechanisms for formation of novel megaplasmids in the evolution of bacteria.

  12. Evolution of bacterial virulence.

    PubMed

    Diard, Médéric; Hardt, Wolf-Dietrich

    2017-09-01

    Bacterial virulence is highly dynamic and context-dependent. For this reason, it is challenging to predict how molecular changes affect the growth of a pathogen in a host and its spread in host population. Two schools of thought have taken quite different directions to decipher the underlying principles of bacterial virulence. While molecular infection biology is focusing on the basic mechanisms of the pathogen-host interaction, evolution biology takes virulence as one of several parameters affecting pathogen spread in a host population. We review both approaches and discuss how they can complement each other in order to obtain a comprehensive understanding of bacterial virulence, its emergence, maintenance and evolution. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Sugar Lego: gene composition of bacterial carbohydrate metabolism genomic loci.

    PubMed

    Kaznadzey, Anna; Shelyakin, Pavel; Gelfand, Mikhail S

    2017-11-25

    Bacterial carbohydrate metabolism is extremely diverse, since carbohydrates serve as a major energy source and are involved in a variety of cellular processes. Bacterial genes belonging to same metabolic pathway are often co-localized in the chromosome, but it is not a strict rule. Gene co-localization in linked to co-evolution and co-regulation. This study focuses on a large-scale analysis of bacterial genomic loci related to the carbohydrate metabolism. We demonstrate that only 53% of 148,000 studied genes from over six hundred bacterial genomes are co-localized in bacterial genomes with other carbohydrate metabolism genes, which points to a significant role of singleton genes. Co-localized genes form cassettes, ranging in size from two to fifteen genes. Two major factors influencing the cassette-forming tendency are gene function and bacterial phylogeny. We have obtained a comprehensive picture of co-localization preferences of genes for nineteen major carbohydrate metabolism functional classes, over two hundred gene orthologous clusters, and thirty bacterial classes, and characterized the cassette variety in size and content among different species, highlighting a significant role of short cassettes. The preference towards co-localization of carbohydrate metabolism genes varies between 40 and 76% for bacterial taxa. Analysis of frequently co-localized genes yielded forty-five significant pairwise links between genes belonging to different functional classes. The number of such links per class range from zero to eight, demonstrating varying preferences of respective genes towards a specific chromosomal neighborhood. Genes from eleven functional classes tend to co-localize with genes from the same class, indicating an important role of clustering of genes with similar functions. At that, in most cases such co-localization does not originate from local duplication events. Overall, we describe a complex web formed by evolutionary relationships of bacterial

  14. A Primer on Infectious Disease Bacterial Genomics

    PubMed Central

    Petkau, Aaron; Knox, Natalie; Graham, Morag; Van Domselaar, Gary

    2016-01-01

    SUMMARY The number of large-scale genomics projects is increasing due to the availability of affordable high-throughput sequencing (HTS) technologies. The use of HTS for bacterial infectious disease research is attractive because one whole-genome sequencing (WGS) run can replace multiple assays for bacterial typing, molecular epidemiology investigations, and more in-depth pathogenomic studies. The computational resources and bioinformatics expertise required to accommodate and analyze the large amounts of data pose new challenges for researchers embarking on genomics projects for the first time. Here, we present a comprehensive overview of a bacterial genomics projects from beginning to end, with a particular focus on the planning and computational requirements for HTS data, and provide a general understanding of the analytical concepts to develop a workflow that will meet the objectives and goals of HTS projects. PMID:28590251

  15. Genome-based approaches to develop vaccines against bacterial pathogens.

    PubMed

    Serruto, Davide; Serino, Laura; Masignani, Vega; Pizza, Mariagrazia

    2009-05-26

    Bacterial infectious diseases remain the single most important threat to health worldwide. Although conventional vaccinology approaches were successful in conferring protection against several diseases, they failed to provide efficacious solutions against many others. The advent of whole-genome sequencing changed the way to think about vaccine development, enabling the targeting of possible vaccine candidates starting from the genomic information of a single bacterial isolate, with a process named reverse vaccinology. As the genomic era progressed, reverse vaccinology has evolved with a pan-genome approach and multi-strain genome analysis became fundamental for the design of universal vaccines. This review describes the applications of genome-based approaches in the development of new vaccines against bacterial pathogens.

  16. The Extent of Genome Flux and Its Role in the Differentiation of Bacterial Lineages

    PubMed Central

    Nowell, Reuben W.; Green, Sarah; Laue, Bridget E.; Sharp, Paul M.

    2014-01-01

    Horizontal gene transfer (HGT) and gene loss are key processes in bacterial evolution. However, the role of gene gain and loss in the emergence and maintenance of ecologically differentiated bacterial populations remains an open question. Here, we use whole-genome sequence data to quantify gene gain and loss for 27 lineages of the plant-associated bacterium Pseudomonas syringae. We apply an extensive error-control procedure that accounts for errors in draft genome data and greatly improves the accuracy of patterns of gene occurrence among these genomes. We demonstrate a history of extensive genome fluctuation for this species and show that individual lineages could have acquired thousands of genes in the same period in which a 1% amino acid divergence accrues in the core genome. Elucidating the dynamics of genome fluctuation reveals the rapid turnover of gained genes, such that the majority of recently gained genes are quickly lost. Despite high observed rates of fluctuation, a phylogeny inferred from patterns of gene occurrence is similar to a phylogeny based on amino acid replacements within the core genome. Furthermore, the core genome phylogeny suggests that P. syringae should be considered a number of distinct species, with levels of divergence at least equivalent to those between recognized bacterial species. Gained genes are transferred from a variety of sources, reflecting the depth and diversity of the potential gene pool available via HGT. Overall, our results provide further insights into the evolutionary dynamics of genome fluctuation and implicate HGT as a major factor contributing to the diversification of P. syringae lineages. PMID:24923323

  17. The Nature and Evolution of Genomic Diversity in the Mycobacterium tuberculosis Complex.

    PubMed

    Brites, Daniela; Gagneux, Sebastien

    2017-01-01

    The Mycobacterium tuberculosis Complex (MTBC) consists of a clonal group of several mycobacterial lineages pathogenic to a range of different mammalian hosts. In this chapter, we discuss the origins and the evolutionary forces shaping the genomic diversity of the human-adapted MTBC. Advances in whole-genome sequencing have brought invaluable insights into the macro-evolution of the MTBC, and the biogeographical distribution of the different MTBC lineages, the phylogenetic relationships between these lineages. Moreover, micro-evolutionary processes start to be better understood, including those influencing bacterial mutation rates and those governing the fate of new mutations emerging within patients during treatment. Current genomic and epidemiological evidence reflect the fact that, through ecological specialization, the MTBC affecting humans became an obligate and extremely well-adapted human pathogen. Identifying the adaptive traits of human-adapted MTBC and unraveling the bacterial loci that interact with human genomic variation might help identify new targets for developing better vaccines and designing more effective treatments.

  18. Phenotypic convergence in bacterial adaptive evolution to ethanol stress.

    PubMed

    Horinouchi, Takaaki; Suzuki, Shingo; Hirasawa, Takashi; Ono, Naoaki; Yomo, Tetsuya; Shimizu, Hiroshi; Furusawa, Chikara

    2015-09-03

    Bacterial cells have a remarkable ability to adapt to environmental changes, a phenomenon known as adaptive evolution. During adaptive evolution, phenotype and genotype dynamically changes; however, the relationship between these changes and associated constraints is yet to be fully elucidated. In this study, we analyzed phenotypic and genotypic changes in Escherichia coli cells during adaptive evolution to ethanol stress. Phenotypic changes were quantified by transcriptome and metabolome analyses and were similar among independently evolved ethanol tolerant populations, which indicate the existence of evolutionary constraints in the dynamics of adaptive evolution. Furthermore, the contribution of identified mutations in one of the tolerant strains was evaluated using site-directed mutagenesis. The result demonstrated that the introduction of all identified mutations cannot fully explain the observed tolerance in the tolerant strain. The results demonstrated that the convergence of adaptive phenotypic changes and diverse genotypic changes, which suggested that the phenotype-genotype mapping is complex. The integration of transcriptome and genome data provides a quantitative understanding of evolutionary constraints.

  19. Genus-wide comparison of Pseudovibrio bacterial genomes reveal diverse adaptations to different marine invertebrate hosts.

    PubMed

    Alex, Anoop; Antunes, Agostinho

    2018-01-01

    Bacteria belonging to the genus Pseudovibrio have been frequently found in association with a wide variety of marine eukaryotic invertebrate hosts, indicative of their versatile and symbiotic lifestyle. A recent comparison of the sponge-associated Pseudovibrio genomes has shed light on the mechanisms influencing a successful symbiotic association with sponges. In contrast, the genomic architecture of Pseudovibrio bacteria associated with other marine hosts has received less attention. Here, we performed genus-wide comparative analyses of 18 Pseudovibrio isolated from sponges, coral, tunicates, flatworm, and seawater. The analyses revealed a certain degree of commonality among the majority of sponge- and coral-associated bacteria. Isolates from other marine invertebrate host, tunicates, exhibited a genetic repertoire for cold adaptation and specific metabolic abilities including mucin degradation in the Antarctic tunicate-associated bacterium Pseudovibrio sp. Tun.PHSC04_5.I4. Reductive genome evolution was simultaneously detected in the flatworm-associated bacteria and the sponge-associated bacterium P. axinellae AD2, through the loss of major secretion systems (type III/VI) and virulence/symbioses factors such as proteins involved in adhesion and attachment to the host. Our study also unraveled the presence of a CRISPR-Cas system in P. stylochi UST20140214-052 a flatworm-associated bacterium possibly suggesting the role of CRISPR-based adaptive immune system against the invading virus particles. Detection of mobile elements and genomic islands (GIs) in all bacterial members highlighted the role of horizontal gene transfer for the acquisition of novel genetic features, likely enhancing the bacterial ecological fitness. These findings are insightful to understand the role of genome diversity in Pseudovibrio as an evolutionary strategy to increase their colonizing success across a wide range of marine eukaryotic hosts.

  20. Genus-wide comparison of Pseudovibrio bacterial genomes reveal diverse adaptations to different marine invertebrate hosts

    PubMed Central

    Alex, Anoop

    2018-01-01

    Bacteria belonging to the genus Pseudovibrio have been frequently found in association with a wide variety of marine eukaryotic invertebrate hosts, indicative of their versatile and symbiotic lifestyle. A recent comparison of the sponge-associated Pseudovibrio genomes has shed light on the mechanisms influencing a successful symbiotic association with sponges. In contrast, the genomic architecture of Pseudovibrio bacteria associated with other marine hosts has received less attention. Here, we performed genus-wide comparative analyses of 18 Pseudovibrio isolated from sponges, coral, tunicates, flatworm, and seawater. The analyses revealed a certain degree of commonality among the majority of sponge- and coral-associated bacteria. Isolates from other marine invertebrate host, tunicates, exhibited a genetic repertoire for cold adaptation and specific metabolic abilities including mucin degradation in the Antarctic tunicate-associated bacterium Pseudovibrio sp. Tun.PHSC04_5.I4. Reductive genome evolution was simultaneously detected in the flatworm-associated bacteria and the sponge-associated bacterium P. axinellae AD2, through the loss of major secretion systems (type III/VI) and virulence/symbioses factors such as proteins involved in adhesion and attachment to the host. Our study also unraveled the presence of a CRISPR-Cas system in P. stylochi UST20140214-052 a flatworm-associated bacterium possibly suggesting the role of CRISPR-based adaptive immune system against the invading virus particles. Detection of mobile elements and genomic islands (GIs) in all bacterial members highlighted the role of horizontal gene transfer for the acquisition of novel genetic features, likely enhancing the bacterial ecological fitness. These findings are insightful to understand the role of genome diversity in Pseudovibrio as an evolutionary strategy to increase their colonizing success across a wide range of marine eukaryotic hosts. PMID:29775460

  1. Metabolic Complementarity and Genomics of the Dual Bacterial Symbiosis of Sharpshooters

    PubMed Central

    Wu, Dongying; Daugherty, Sean C; Van Aken, Susan E; Pai, Grace H; Watkins, Kisha L; Khouri, Hoda; Tallon, Luke J; Zaborsky, Jennifer M; Dunbar, Helen E; Tran, Phat L; Moran, Nancy A

    2006-01-01

    Mutualistic intracellular symbiosis between bacteria and insects is a widespread phenomenon that has contributed to the global success of insects. The symbionts, by provisioning nutrients lacking from diets, allow various insects to occupy or dominate ecological niches that might otherwise be unavailable. One such insect is the glassy-winged sharpshooter (Homalodisca coagulata), which feeds on xylem fluid, a diet exceptionally poor in organic nutrients. Phylogenetic studies based on rRNA have shown two types of bacterial symbionts to be coevolving with sharpshooters: the gamma-proteobacterium Baumannia cicadellinicola and the Bacteroidetes species Sulcia muelleri. We report here the sequencing and analysis of the 686,192–base pair genome of B. cicadellinicola and approximately 150 kilobase pairs of the small genome of S. muelleri, both isolated from H. coagulata. Our study, which to our knowledge is the first genomic analysis of an obligate symbiosis involving multiple partners, suggests striking complementarity in the biosynthetic capabilities of the two symbionts: B. cicadellinicola devotes a substantial portion of its genome to the biosynthesis of vitamins and cofactors required by animals and lacks most amino acid biosynthetic pathways, whereas S. muelleri apparently produces most or all of the essential amino acids needed by its host. This finding, along with other results of our genome analysis, suggests the existence of metabolic codependency among the two unrelated endosymbionts and their insect host. This dual symbiosis provides a model case for studying correlated genome evolution and genome reduction involving multiple organisms in an intimate, obligate mutualistic relationship. In addition, our analysis provides insight for the first time into the differences in symbionts between insects (e.g., aphids) that feed on phloem versus those like H. coagulata that feed on xylem. Finally, the genomes of these two symbionts provide potential targets for

  2. Contribution of Mobile Group II Introns to Sinorhizobium meliloti Genome Evolution.

    PubMed

    Toro, Nicolás; Martínez-Abarca, Francisco; Molina-Sánchez, María D; García-Rodríguez, Fernando M; Nisa-Martínez, Rafael

    2018-01-01

    Mobile group II introns are ribozymes and retroelements that probably originate from bacteria. Sinorhizobium meliloti , the nitrogen-fixing endosymbiont of legumes of genus Medicago , harbors a large number of these retroelements. One of these elements, RmInt1, has been particularly successful at colonizing this multipartite genome. Many studies have improved our understanding of RmInt1 and phylogenetically related group II introns, their mobility mechanisms, spread and dynamics within S. meliloti and closely related species. Although RmInt1 conserves the ancient retroelement behavior, its evolutionary history suggests that this group II intron has played a role in the short- and long-term evolution of the S. meliloti genome. We will discuss its proposed role in genome evolution by controlling the spread and coexistence of potentially harmful mobile genetic elements, by ectopic transposition to different genetic loci as a source of early genomic variation and by generating sequence variation after a very slow degradation process, through intron remnants that may have continued to evolve, contributing to bacterial speciation.

  3. Contribution of Mobile Group II Introns to Sinorhizobium meliloti Genome Evolution

    PubMed Central

    Toro, Nicolás; Martínez-Abarca, Francisco; Molina-Sánchez, María D.; García-Rodríguez, Fernando M.; Nisa-Martínez, Rafael

    2018-01-01

    Mobile group II introns are ribozymes and retroelements that probably originate from bacteria. Sinorhizobium meliloti, the nitrogen-fixing endosymbiont of legumes of genus Medicago, harbors a large number of these retroelements. One of these elements, RmInt1, has been particularly successful at colonizing this multipartite genome. Many studies have improved our understanding of RmInt1 and phylogenetically related group II introns, their mobility mechanisms, spread and dynamics within S. meliloti and closely related species. Although RmInt1 conserves the ancient retroelement behavior, its evolutionary history suggests that this group II intron has played a role in the short- and long-term evolution of the S. meliloti genome. We will discuss its proposed role in genome evolution by controlling the spread and coexistence of potentially harmful mobile genetic elements, by ectopic transposition to different genetic loci as a source of early genomic variation and by generating sequence variation after a very slow degradation process, through intron remnants that may have continued to evolve, contributing to bacterial speciation. PMID:29670598

  4. Directed evolution of cell size in Escherichia coli.

    PubMed

    Yoshida, Mari; Tsuru, Saburo; Hirata, Naoko; Seno, Shigeto; Matsuda, Hideo; Ying, Bei-Wen; Yomo, Tetsuya

    2014-12-17

    In bacteria, cell size affects chromosome replication, the assembly of division machinery, cell wall synthesis, membrane synthesis and ultimately growth rate. In addition, cell size can also be a target for Darwinian evolution for protection from predators. This strong coupling of cell size and growth, however, could lead to the introduction of growth defects after size evolution. An important question remains: can bacterial cell size change and/or evolve without imposing a growth burden? The directed evolution of particular cell sizes, without a growth burden, was tested with a laboratory Escherichia coli strain. Cells of defined size ranges were collected by a cell sorter and were subsequently cultured. This selection-propagation cycle was repeated, and significant changes in cell size were detected within 400 generations. In addition, the width of the size distribution was altered. The changes in cell size were unaccompanied by a growth burden. Whole genome sequencing revealed that only a few mutations in genes related to membrane synthesis conferred the size evolution. In conclusion, bacterial cell size could evolve, through a few mutations, without growth reduction. The size evolution without growth reduction suggests a rapid evolutionary change to diverse cell sizes in bacterial survival strategies.

  5. [Plasticity of bacterial genomes: pathogenicity islands and the locus of enterocyte effacement (LEE)].

    PubMed

    Kirsch, Petra; Jores, Jörg; Wieler, Lothar H

    2004-01-01

    Many bacterial virulence attributes, like toxins, adhesins, invasins, iron uptake systems, are encoded within specific regions of the bacterial genome. These in size varying regions are termed pathogenicity islands (PAIs) since they confer pathogenic properties to the respective micro-organism. Per definition PAIs are exclusively found in pathogenic strains and are often inserted near transfer-RNA genes. Nevertheless, non-pathogenic bacteria also possess foreign DNA elements that confer advantageous features, leading to improved fitness. These additional DNA elements as well as PAIs are termed genomic islands and were acquired during bacterial evolution. Significant G+C content deviation in pathogenicity islands with respect to the rest of the genome, the presence of direct repeat sequences at the flanking regions, the presence of integrase gene determinants as other mobility features,the particular insertion site (tRNA gene) as well as the observed genetic instability suggests that pathogenicity islands were acquired by horizontal gene transfer. PAIs are the fascinating proof of the plasticity of bacterial genomes. PAIs were originally described in human pathogenic Escherichia (E.) coli strains. In the meantime PAIs have been found in various pathogenic bacteria of humans, animals and even plants. The Locus of Enterocyte Effacement (LEE) is one particular widely distributed PAI of E coli. In addition, it also confers pathogenicity to the related species Citrobacter (C.) rodentium and Escherichia (E.) alvei. The LEE is an important virulence feature of several animal pathogens. It is an obligate PAI of all animal and human enteropathogenic E. coli (EPEC), and most enterohaemorrhegic E. coli (EHEC) also harbor the LEE. The LEE encodes a type III secretion system, an adhesion (intimin) that mediates the intimate contact between the bacterium and the epithelial cell, as well as various proteins which are secreted via the type III secretion system. The LEE encoded

  6. Genomic features of bacterial adaptation to plants

    PubMed Central

    Levy, Asaf; Gonzalez, Isai Salas; Mittelviefhaus, Maximilian; Clingenpeel, Scott; Paredes, Sur Herrera; Miao, Jiamin; Wang, Kunru; Devescovi, Giulia; Stillman, Kyra; Monteiro, Freddy; Alvarez, Bryan Rangel; Lundberg, Derek S.; Lu, Tse-Yuan; Lebeis, Sarah; Jin, Zhao; McDonald, Meredith; Klein, Andrew P.; Feltcher, Meghan E.; del Rio, Tijana Glavina; Grant, Sarah R.; Doty, Sharon L.; Ley, Ruth E.; Zhao, Bingyu; Venturi, Vittorio; Pelletier, Dale A.; Vorholt, Julia A.; Tringe, Susannah G.; Woyke, Tanja; Dangl, Jeffery L.

    2017-01-01

    Plants intimately associate with diverse bacteria. Plant-associated (PA) bacteria have ostensibly evolved genes enabling adaptation to the plant environment. However, the identities of such genes are mostly unknown and their functions are poorly characterized. We sequenced 484 genomes of bacterial isolates from roots of Brassicaceae, poplar, and maize. We then compared 3837 bacterial genomes to identify thousands of PA gene clusters. Genomes of PA bacteria encode more carbohydrate metabolism functions and fewer mobile elements than related non-plant associated genomes. We experimentally validated candidates from two sets of PA genes, one involved in plant colonization, the other serving in microbe-microbe competition between PA bacteria. We also identified 64 PA protein domains that potentially mimic plant domains; some are shared with PA fungi and oomycetes. This work expands the genome-based understanding of plant-microbe interactions and provides leads for efficient and sustainable agriculture through microbiome engineering. PMID:29255260

  7. Genome Calligrapher: A Web Tool for Refactoring Bacterial Genome Sequences for de Novo DNA Synthesis.

    PubMed

    Christen, Matthias; Deutsch, Samuel; Christen, Beat

    2015-08-21

    Recent advances in synthetic biology have resulted in an increasing demand for the de novo synthesis of large-scale DNA constructs. Any process improvement that enables fast and cost-effective streamlining of digitized genetic information into fabricable DNA sequences holds great promise to study, mine, and engineer genomes. Here, we present Genome Calligrapher, a computer-aided design web tool intended for whole genome refactoring of bacterial chromosomes for de novo DNA synthesis. By applying a neutral recoding algorithm, Genome Calligrapher optimizes GC content and removes obstructive DNA features known to interfere with the synthesis of double-stranded DNA and the higher order assembly into large DNA constructs. Subsequent bioinformatics analysis revealed that synthesis constraints are prevalent among bacterial genomes. However, a low level of codon replacement is sufficient for refactoring bacterial genomes into easy-to-synthesize DNA sequences. To test the algorithm, 168 kb of synthetic DNA comprising approximately 20 percent of the synthetic essential genome of the cell-cycle bacterium Caulobacter crescentus was streamlined and then ordered from a commercial supplier of low-cost de novo DNA synthesis. The successful assembly into eight 20 kb segments indicates that Genome Calligrapher algorithm can be efficiently used to refactor difficult-to-synthesize DNA. Genome Calligrapher is broadly applicable to recode biosynthetic pathways, DNA sequences, and whole bacterial genomes, thus offering new opportunities to use synthetic biology tools to explore the functionality of microbial diversity. The Genome Calligrapher web tool can be accessed at https://christenlab.ethz.ch/GenomeCalligrapher  .

  8. SuperPhy: predictive genomics for the bacterial pathogen Escherichia coli.

    PubMed

    Whiteside, Matthew D; Laing, Chad R; Manji, Akiff; Kruczkiewicz, Peter; Taboada, Eduardo N; Gannon, Victor P J

    2016-04-12

    Predictive genomics is the translation of raw genome sequence data into a phenotypic assessment of the organism. For bacterial pathogens, these phenotypes can range from environmental survivability, to the severity of human disease. Significant progress has been made in the development of generic tools for genomic analyses that are broadly applicable to all microorganisms; however, a fundamental missing component is the ability to analyze genomic data in the context of organism-specific phenotypic knowledge, which has been accumulated from decades of research and can provide a meaningful interpretation of genome sequence data. In this study, we present SuperPhy, an online predictive genomics platform ( http://lfz.corefacility.ca/superphy/ ) for Escherichia coli. The platform integrates the analytical tools and genome sequence data for all publicly available E. coli genomes and facilitates the upload of new genome sequences from users under public or private settings. SuperPhy provides real-time analyses of thousands of genome sequences with results that are understandable and useful to a wide community, including those in the fields of clinical medicine, epidemiology, ecology, and evolution. SuperPhy includes identification of: 1) virulence and antimicrobial resistance determinants 2) statistical associations between genotypes, biomarkers, geospatial distribution, host, source, and phylogenetic clade; 3) the identification of biomarkers for groups of genomes on the based presence/absence of specific genomic regions and single-nucleotide polymorphisms and 4) in silico Shiga-toxin subtype. SuperPhy is a predictive genomics platform that attempts to provide an essential link between the vast amounts of genome information currently being generated and phenotypic knowledge in an organism-specific context.

  9. New perspectives on bacterial ferredoxin evolution

    NASA Technical Reports Server (NTRS)

    George, D. G.; Hunt, L. T.; Yeh, L.-S. L.; Barker, W. C.

    1985-01-01

    Ferredoxins are low-molecular-weight, nonheme, iron proteins which function as electron carriers in a wide variety of electron transport chains. Howard et al. (1983) have suggested that the amino end of Azotobacter vinelandii ferredoxin shows a greater similarity to the carboxyl end of ferredoxin from Chromatium vinosum and that their half-chain sequences are homologous when the half-chains of either species are considered in inverse order. Examination of this proposition has made it necessary to reevaluate previous conclusions concerning the evolution of bacterial ferredoxin. Attention is given to the properties of the bacterial ferredoxin sequences, and the evolution of the bacterial ferredoxins.

  10. Harnessing CRISPR-Cas systems for bacterial genome editing.

    PubMed

    Selle, Kurt; Barrangou, Rodolphe

    2015-04-01

    Manipulation of genomic sequences facilitates the identification and characterization of key genetic determinants in the investigation of biological processes. Genome editing via clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) constitutes a next-generation method for programmable and high-throughput functional genomics. CRISPR-Cas systems are readily reprogrammed to induce sequence-specific DNA breaks at target loci, resulting in fixed mutations via host-dependent DNA repair mechanisms. Although bacterial genome editing is a relatively unexplored and underrepresented application of CRISPR-Cas systems, recent studies provide valuable insights for the widespread future implementation of this technology. This review summarizes recent progress in bacterial genome editing and identifies fundamental genetic and phenotypic outcomes of CRISPR targeting in bacteria, in the context of tool development, genome homeostasis, and DNA repair. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Gekko japonicus genome reveals evolution of adhesive toe pads and tail regeneration

    PubMed Central

    Liu, Yan; Zhou, Qian; Wang, Yongjun; Luo, Longhai; Yang, Jian; Yang, Linfeng; Liu, Mei; Li, Yingrui; Qian, Tianmei; Zheng, Yuan; Li, Meiyuan; Li, Jiang; Gu, Yun; Han, Zujing; Xu, Man; Wang, Yingjie; Zhu, Changlai; Yu, Bin; Yang, Yumin; Ding, Fei; Jiang, Jianping; Yang, Huanming; Gu, Xiaosong

    2015-01-01

    Reptiles are the most morphologically and physiologically diverse tetrapods, and have undergone 300 million years of adaptive evolution. Within the reptilian tetrapods, geckos possess several interesting features, including the ability to regenerate autotomized tails and to climb on smooth surfaces. Here we sequence the genome of Gekko japonicus (Schlegel's Japanese Gecko) and investigate genetic elements related to its physiology. We obtain a draft G. japonicus genome sequence of 2.55 Gb and annotated 22,487 genes. Comparative genomic analysis reveals specific gene family expansions or reductions that are associated with the formation of adhesive setae, nocturnal vision and tail regeneration, as well as the diversification of olfactory sensation. The obtained genomic data provide robust genetic evidence of adaptive evolution in reptiles. PMID:26598231

  12. Genome engineering and gene expression control for bacterial strain development.

    PubMed

    Song, Chan Woo; Lee, Joungmin; Lee, Sang Yup

    2015-01-01

    In recent years, a number of techniques and tools have been developed for genome engineering and gene expression control to achieve desired phenotypes of various bacteria. Here we review and discuss the recent advances in bacterial genome manipulation and gene expression control techniques, and their actual uses with accompanying examples. Genome engineering has been commonly performed based on homologous recombination. During such genome manipulation, the counterselection systems employing SacB or nucleases have mainly been used for the efficient selection of desired engineered strains. The recombineering technology enables simple and more rapid manipulation of the bacterial genome. The group II intron-mediated genome engineering technology is another option for some bacteria that are difficult to be engineered by homologous recombination. Due to the increasing demands on high-throughput screening of bacterial strains having the desired phenotypes, several multiplex genome engineering techniques have recently been developed and validated in some bacteria. Another approach to achieve desired bacterial phenotypes is the repression of target gene expression without the modification of genome sequences. This can be performed by expressing antisense RNA, small regulatory RNA, or CRISPR RNA to repress target gene expression at the transcriptional or translational level. All of these techniques allow efficient and rapid development and screening of bacterial strains having desired phenotypes, and more advanced techniques are expected to be seen. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Darwinian evolution in the light of genomics

    PubMed Central

    Koonin, Eugene V.

    2009-01-01

    Comparative genomics and systems biology offer unprecedented opportunities for testing central tenets of evolutionary biology formulated by Darwin in the Origin of Species in 1859 and expanded in the Modern Synthesis 100 years later. Evolutionary-genomic studies show that natural selection is only one of the forces that shape genome evolution and is not quantitatively dominant, whereas non-adaptive processes are much more prominent than previously suspected. Major contributions of horizontal gene transfer and diverse selfish genetic elements to genome evolution undermine the Tree of Life concept. An adequate depiction of evolution requires the more complex concept of a network or ‘forest’ of life. There is no consistent tendency of evolution towards increased genomic complexity, and when complexity increases, this appears to be a non-adaptive consequence of evolution under weak purifying selection rather than an adaptation. Several universals of genome evolution were discovered including the invariant distributions of evolutionary rates among orthologous genes from diverse genomes and of paralogous gene family sizes, and the negative correlation between gene expression level and sequence evolution rate. Simple, non-adaptive models of evolution explain some of these universals, suggesting that a new synthesis of evolutionary biology might become feasible in a not so remote future. PMID:19213802

  14. Evolution of genome size and genomic GC content in carnivorous holokinetics (Droseraceae).

    PubMed

    Veleba, Adam; Šmarda, Petr; Zedek, František; Horová, Lucie; Šmerda, Jakub; Bureš, Petr

    2017-02-01

    Studies in the carnivorous family Lentibulariaceae in the last years resulted in the discovery of the smallest plant genomes and an unusual pattern of genomic GC content evolution. However, scarcity of genomic data in other carnivorous clades still prevents a generalization of the observed patterns. Here the aim was to fill this gap by mapping genome evolution in the second largest carnivorous family, Droseraceae, where this evolution may be affected by chromosomal holokinetism in Drosera METHODS: The genome size and genomic GC content of 71 Droseraceae species were measured by flow cytometry. A dated phylogeny was constructed, and the evolution of both genomic parameters and their relationship to species climatic niches were tested using phylogeny-based statistics. The 2C genome size of Droseraceae varied between 488 and 10 927 Mbp, and the GC content ranged between 37·1 and 44·7 %. The genome sizes and genomic GC content of carnivorous and holocentric species did not differ from those of their non-carnivorous and monocentric relatives. The genomic GC content positively correlated with genome size and annual temperature fluctuations. The genome size and chromosome numbers were inversely correlated in the Australian clade of Drosera CONCLUSIONS: Our results indicate that neither carnivory (nutrient scarcity) nor the holokinetism have a prominent effect on size and DNA base composition of Droseraceae genomes. However, the holokinetic drive seems to affect karyotype evolution in one of the major clades of Drosera Our survey confirmed that the evolution of GC content is tightly connected with the evolution of genome size and also with environmental conditions. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Hamiltonella defensa, genome evolution of protective bacterial endosymbiont from pathogenic ancestors.

    PubMed

    Degnan, Patrick H; Yu, Yeisoo; Sisneros, Nicholas; Wing, Rod A; Moran, Nancy A

    2009-06-02

    Eukaryotes engage in a multitude of beneficial and deleterious interactions with bacteria. Hamiltonella defensa, an endosymbiont of aphids and other sap-feeding insects, protects its aphid host from attack by parasitoid wasps. Thus H. defensa is only conditionally beneficial to hosts, unlike ancient nutritional symbionts, such as Buchnera, that are obligate. Similar to pathogenic bacteria, H. defensa is able to invade naive hosts and circumvent host immune responses. We have sequenced the genome of H. defensa to identify possible mechanisms that underlie its persistence in healthy aphids and protection from parasitoids. The 2.1-Mb genome has undergone significant reduction in size relative to its closest free-living relatives, which include Yersinia and Serratia species (4.6-5.4 Mb). Auxotrophic for 8 of the 10 essential amino acids, H. defensa is reliant upon the essential amino acids produced by Buchnera. Despite these losses, the H. defensa genome retains more genes and pathways for a variety of cell structures and processes than do obligate symbionts, such as Buchnera. Furthermore, putative pathogenicity loci, encoding type-3 secretion systems, and toxin homologs, which are absent in obligate symbionts, are abundant in the H. defensa genome, as are regulatory genes that likely control the timing of their expression. The genome is also littered with mobile DNA, including phage-derived genes, plasmids, and insertion-sequence elements, highlighting its dynamic nature and the continued role horizontal gene transfer plays in shaping it.

  16. Analysis of bacterial genomes from an evolution experiment with horizontal gene transfer shows that recombination can sometimes overwhelm selection

    PubMed Central

    2018-01-01

    Few experimental studies have examined the role that sexual recombination plays in bacterial evolution, including the effects of horizontal gene transfer on genome structure. To address this limitation, we analyzed genomes from an experiment in which Escherichia coli K-12 Hfr (high frequency recombination) donors were periodically introduced into 12 evolving populations of E. coli B and allowed to conjugate repeatedly over the course of 1000 generations. Previous analyses of the evolved strains from this experiment showed that recombination did not accelerate adaptation, despite increasing genetic variation relative to asexual controls. However, the resolution in that previous work was limited to only a few genetic markers. We sought to clarify and understand these puzzling results by sequencing complete genomes from each population. The effects of recombination were highly variable: one lineage was mostly derived from the donors, while another acquired almost no donor DNA. In most lineages, some regions showed repeated introgression and others almost none. Regions with high introgression tended to be near the donors’ origin of transfer sites. To determine whether introgressed alleles imposed a genetic load, we extended the experiment for 200 generations without recombination and sequenced whole-population samples. Beneficial alleles in the recipient populations were occasionally driven extinct by maladaptive donor-derived alleles. On balance, our analyses indicate that the plasmid-mediated recombination was sufficiently frequent to drive donor alleles to fixation without providing much, if any, selective advantage. PMID:29385126

  17. Genomic features of bacterial adaptation to plants

    DOE PAGES

    Levy, Asaf; Salas Gonzalez, Isai; Mittelviefhaus, Maximilian; ...

    2017-12-18

    Plants intimately associate with diverse bacteria. Plant-associated bacteria have ostensibly evolved genes that enable them to adapt to plant environments. However, the identities of such genes are mostly unknown, and their functions are poorly characterized. In this study, we sequenced 484 genomes of bacterial isolates from roots of Brassicaceae, poplar, and maize. We then compared 3,837 bacterial genomes to identify thousands of plant-associated gene clusters. Genomes of plant-associated bacteria encode more carbohydrate metabolism functions and fewer mobile elements than related non-plant-associated genomes do. We experimentally validated candidates from two sets of plant-associated genes: one involved in plant colonization, and themore » other serving in microbe–microbe competition between plant-associated bacteria. We also identified 64 plant-associated protein domains that potentially mimic plant domains; some are shared with plant-associated fungi and oomycetes. In conclusion, this work expands the genome-based understanding of plant–microbe interactions and provides potential leads for efficient and sustainable agriculture through microbiome engineering.« less

  18. Genomic features of bacterial adaptation to plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levy, Asaf; Salas Gonzalez, Isai; Mittelviefhaus, Maximilian

    Plants intimately associate with diverse bacteria. Plant-associated bacteria have ostensibly evolved genes that enable them to adapt to plant environments. However, the identities of such genes are mostly unknown, and their functions are poorly characterized. In this study, we sequenced 484 genomes of bacterial isolates from roots of Brassicaceae, poplar, and maize. We then compared 3,837 bacterial genomes to identify thousands of plant-associated gene clusters. Genomes of plant-associated bacteria encode more carbohydrate metabolism functions and fewer mobile elements than related non-plant-associated genomes do. We experimentally validated candidates from two sets of plant-associated genes: one involved in plant colonization, and themore » other serving in microbe–microbe competition between plant-associated bacteria. We also identified 64 plant-associated protein domains that potentially mimic plant domains; some are shared with plant-associated fungi and oomycetes. In conclusion, this work expands the genome-based understanding of plant–microbe interactions and provides potential leads for efficient and sustainable agriculture through microbiome engineering.« less

  19. Uniparental Inheritance Promotes Adaptive Evolution in Cytoplasmic Genomes.

    PubMed

    Christie, Joshua R; Beekman, Madeleine

    2017-03-01

    Eukaryotes carry numerous asexual cytoplasmic genomes (mitochondria and plastids). Lacking recombination, asexual genomes should theoretically suffer from impaired adaptive evolution. Yet, empirical evidence indicates that cytoplasmic genomes experience higher levels of adaptive evolution than predicted by theory. In this study, we use a computational model to show that the unique biology of cytoplasmic genomes-specifically their organization into host cells and their uniparental (maternal) inheritance-enable them to undergo effective adaptive evolution. Uniparental inheritance of cytoplasmic genomes decreases competition between different beneficial substitutions (clonal interference), promoting the accumulation of beneficial substitutions. Uniparental inheritance also facilitates selection against deleterious cytoplasmic substitutions, slowing Muller's ratchet. In addition, uniparental inheritance generally reduces genetic hitchhiking of deleterious substitutions during selective sweeps. Overall, uniparental inheritance promotes adaptive evolution by increasing the level of beneficial substitutions relative to deleterious substitutions. When we assume that cytoplasmic genome inheritance is biparental, decreasing the number of genomes transmitted during gametogenesis (bottleneck) aids adaptive evolution. Nevertheless, adaptive evolution is always more efficient when inheritance is uniparental. Our findings explain empirical observations that cytoplasmic genomes-despite their asexual mode of reproduction-can readily undergo adaptive evolution. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Kullback Leibler divergence in complete bacterial and phage genomes

    PubMed Central

    Akhter, Sajia; Kashef, Mona T.; Ibrahim, Eslam S.; Bailey, Barbara

    2017-01-01

    The amino acid content of the proteins encoded by a genome may predict the coding potential of that genome and may reflect lifestyle restrictions of the organism. Here, we calculated the Kullback–Leibler divergence from the mean amino acid content as a metric to compare the amino acid composition for a large set of bacterial and phage genome sequences. Using these data, we demonstrate that (i) there is a significant difference between amino acid utilization in different phylogenetic groups of bacteria and phages; (ii) many of the bacteria with the most skewed amino acid utilization profiles, or the bacteria that host phages with the most skewed profiles, are endosymbionts or parasites; (iii) the skews in the distribution are not restricted to certain metabolic processes but are common across all bacterial genomic subsystems; (iv) amino acid utilization profiles strongly correlate with GC content in bacterial genomes but very weakly correlate with the G+C percent in phage genomes. These findings might be exploited to distinguish coding from non-coding sequences in large data sets, such as metagenomic sequence libraries, to help in prioritizing subsequent analyses. PMID:29204318

  1. Kullback Leibler divergence in complete bacterial and phage genomes.

    PubMed

    Akhter, Sajia; Aziz, Ramy K; Kashef, Mona T; Ibrahim, Eslam S; Bailey, Barbara; Edwards, Robert A

    2017-01-01

    The amino acid content of the proteins encoded by a genome may predict the coding potential of that genome and may reflect lifestyle restrictions of the organism. Here, we calculated the Kullback-Leibler divergence from the mean amino acid content as a metric to compare the amino acid composition for a large set of bacterial and phage genome sequences. Using these data, we demonstrate that (i) there is a significant difference between amino acid utilization in different phylogenetic groups of bacteria and phages; (ii) many of the bacteria with the most skewed amino acid utilization profiles, or the bacteria that host phages with the most skewed profiles, are endosymbionts or parasites; (iii) the skews in the distribution are not restricted to certain metabolic processes but are common across all bacterial genomic subsystems; (iv) amino acid utilization profiles strongly correlate with GC content in bacterial genomes but very weakly correlate with the G+C percent in phage genomes. These findings might be exploited to distinguish coding from non-coding sequences in large data sets, such as metagenomic sequence libraries, to help in prioritizing subsequent analyses.

  2. Hexavalent chromium reduction by bacterial consortia and pure strains from an alkaline industrial effluent.

    PubMed

    Piñón-Castillo, H A; Brito, E M S; Goñi-Urriza, M; Guyoneaud, R; Duran, R; Nevarez-Moorillon, G V; Gutiérrez-Corona, J F; Caretta, C A; Reyna-López, G E

    2010-12-01

    To characterize the bacterial consortia and isolates selected for their role in hexavalent chromium removal by adsorption and reduction. Bacterial consortia from industrial wastes revealed significant Cr(VI) removal after 15 days when incubated in medium M9 at pH 6·5 and 8·0. The results suggested chromium reduction. The bacterial consortia diversity (T-RFLP based on 16S rRNA gene) indicated a highest number of operational taxonomic units in an alkaline carbonate medium mimicking in situ conditions. However, incubations under such conditions revealed low Cr(VI) removal. Genomic libraries were obtained for the consortia exhibiting optimal Cr(VI) removal (M9 medium at pH 6·5 and 8·0). They revealed the dominance of 16S rRNA gene sequences related to the genera Pseudomonas/Stenotrophomonas or Enterobacter/Halomonas, respectively. Isolates related to Pseudomonas fluorescens and Enterobacter aerogenes were efficient in Cr(VI) reduction and adsorption to the biomass. Cr(VI) reduction was better at neutral pH rather than under in situ conditions (alkaline pH with carbonate). Isolated strains exhibited significant capacity for Cr(VI) reduction and adsorption. Bacterial communities from chromium-contaminated industrial wastes as well as isolates were able to remove Cr(VI). The results suggest a good potential for bioremediation of industrial wastes when optimal conditions are applied. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology. No claim to Mexican Government works.

  3. Genome Evolution and Phylogenomic Analysis of Candidatus Kinetoplastibacterium, the Betaproteobacterial Endosymbionts of Strigomonas and Angomonas

    PubMed Central

    Alves, João M.P.; Serrano, Myrna G.; Maia da Silva, Flávia; Voegtly, Logan J.; Matveyev, Andrey V.; Teixeira, Marta M.G.; Camargo, Erney P.; Buck, Gregory A.

    2013-01-01

    It has been long known that insect-infecting trypanosomatid flagellates from the genera Angomonas and Strigomonas harbor bacterial endosymbionts (Candidatus Kinetoplastibacterium or TPE [trypanosomatid proteobacterial endosymbiont]) that supplement the host metabolism. Based on previous analyses of other bacterial endosymbiont genomes from other lineages, a stereotypical path of genome evolution in such bacteria over the duration of their association with the eukaryotic host has been characterized. In this work, we sequence and analyze the genomes of five TPEs, perform their metabolic reconstruction, do an extensive phylogenomic analyses with all available Betaproteobacteria, and compare the TPEs with their nearest betaproteobacterial relatives. We also identify a number of housekeeping and central metabolism genes that seem to have undergone positive selection. Our genome structure analyses show total synteny among the five TPEs despite millions of years of divergence, and that this lineage follows the common path of genome evolution observed in other endosymbionts of diverse ancestries. As previously suggested by cell biology and biochemistry experiments, Ca. Kinetoplastibacterium spp. preferentially maintain those genes necessary for the biosynthesis of compounds needed by their hosts. We have also shown that metabolic and informational genes related to the cooperation with the host are overrepresented amongst genes shown to be under positive selection. Finally, our phylogenomic analysis shows that, while being in the Alcaligenaceae family of Betaproteobacteria, the closest relatives of these endosymbionts are not in the genus Bordetella as previously reported, but more likely in the Taylorella genus. PMID:23345457

  4. Use of Optical Mapping in Bacterial Genome Finishing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Dibyendu

    2010-06-03

    Dibyendu Kumar from the University of Florida discusses whole-genome optical mapping to help validate bacterial genome assemblies on June 3, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.

  5. Whole-genome sequencing in bacteriology: state of the art

    PubMed Central

    Dark, Michael J

    2013-01-01

    Over the last ten years, genome sequencing capabilities have expanded exponentially. There have been tremendous advances in sequencing technology, DNA sample preparation, genome assembly, and data analysis. This has led to advances in a number of facets of bacterial genomics, including metagenomics, clinical medicine, bacterial archaeology, and bacterial evolution. This review examines the strengths and weaknesses of techniques in bacterial genome sequencing, upcoming technologies, and assembly techniques, as well as highlighting recent studies that highlight new applications for bacterial genomics. PMID:24143115

  6. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes

    PubMed Central

    Liu, Shengyi; Liu, Yumei; Yang, Xinhua; Tong, Chaobo; Edwards, David; Parkin, Isobel A. P.; Zhao, Meixia; Ma, Jianxin; Yu, Jingyin; Huang, Shunmou; Wang, Xiyin; Wang, Junyi; Lu, Kun; Fang, Zhiyuan; Bancroft, Ian; Yang, Tae-Jin; Hu, Qiong; Wang, Xinfa; Yue, Zhen; Li, Haojie; Yang, Linfeng; Wu, Jian; Zhou, Qing; Wang, Wanxin; King, Graham J; Pires, J. Chris; Lu, Changxin; Wu, Zhangyan; Sampath, Perumal; Wang, Zhuo; Guo, Hui; Pan, Shengkai; Yang, Limei; Min, Jiumeng; Zhang, Dong; Jin, Dianchuan; Li, Wanshun; Belcram, Harry; Tu, Jinxing; Guan, Mei; Qi, Cunkou; Du, Dezhi; Li, Jiana; Jiang, Liangcai; Batley, Jacqueline; Sharpe, Andrew G; Park, Beom-Seok; Ruperao, Pradeep; Cheng, Feng; Waminal, Nomar Espinosa; Huang, Yin; Dong, Caihua; Wang, Li; Li, Jingping; Hu, Zhiyong; Zhuang, Mu; Huang, Yi; Huang, Junyan; Shi, Jiaqin; Mei, Desheng; Liu, Jing; Lee, Tae-Ho; Wang, Jinpeng; Jin, Huizhe; Li, Zaiyun; Li, Xun; Zhang, Jiefu; Xiao, Lu; Zhou, Yongming; Liu, Zhongsong; Liu, Xuequn; Qin, Rui; Tang, Xu; Liu, Wenbin; Wang, Yupeng; Zhang, Yangyong; Lee, Jonghoon; Kim, Hyun Hee; Denoeud, France; Xu, Xun; Liang, Xinming; Hua, Wei; Wang, Xiaowu; Wang, Jun; Chalhoub, Boulos; Paterson, Andrew H

    2014-01-01

    Polyploidization has provided much genetic variation for plant adaptive evolution, but the mechanisms by which the molecular evolution of polyploid genomes establishes genetic architecture underlying species differentiation are unclear. Brassica is an ideal model to increase knowledge of polyploid evolution. Here we describe a draft genome sequence of Brassica oleracea, comparing it with that of its sister species B. rapa to reveal numerous chromosome rearrangements and asymmetrical gene loss in duplicated genomic blocks, asymmetrical amplification of transposable elements, differential gene co-retention for specific pathways and variation in gene expression, including alternative splicing, among a large number of paralogous and orthologous genes. Genes related to the production of anticancer phytochemicals and morphological variations illustrate consequences of genome duplication and gene divergence, imparting biochemical and morphological variation to B. oleracea. This study provides insights into Brassica genome evolution and will underpin research into the many important crops in this genus. PMID:24852848

  7. A world without bacterial meningitis: how genomic epidemiology can inform vaccination strategy.

    PubMed

    Rodrigues, Charlene M C; Maiden, Martin C J

    2018-01-01

    Bacterial meningitis remains an important cause of global morbidity and mortality. Although effective vaccinations exist and are being increasingly used worldwide, bacterial diversity threatens their impact and the ultimate goal of eliminating the disease. Through genomic epidemiology, we can appreciate bacterial population structure and its consequences for transmission dynamics, virulence, antimicrobial resistance, and development of new vaccines. Here, we review what we have learned through genomic epidemiological studies, following the rapid implementation of whole genome sequencing that can help to optimise preventative strategies for bacterial meningitis.

  8. Convergent adaptive evolution in marginal environments: unloading transposable elements as a common strategy among mangrove genomes.

    PubMed

    Lyu, Haomin; He, Ziwen; Wu, Chung-I; Shi, Suhua

    2018-01-01

    Several clades of mangrove trees independently invade the interface between land and sea at the margin of woody plant distribution. As phenotypic convergence among mangroves is common, the possibility of convergent adaptation in their genomes is quite intriguing. To study this molecular convergence, we sequenced multiple mangrove genomes. In this study, we focused on the evolution of transposable elements (TEs) in relation to the genome size evolution. TEs, generally considered genomic parasites, are the most common components of woody plant genomes. Analyzing the long terminal repeat-retrotransposon (LTR-RT) type of TE, we estimated their death rates by counting solo-LTRs and truncated elements. We found that all lineages of mangroves massively and convergently reduce TE loads in comparison to their nonmangrove relatives; as a consequence, genome size reduction happens independently in all six mangrove lineages; TE load reduction in mangroves can be attributed to the paucity of young elements; the rarity of young LTR-RTs is a consequence of fewer births rather than access death. In conclusion, mangrove genomes employ a convergent strategy of TE load reduction by suppressing element origination in their independent adaptation to a new environment. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  9. SIMBA: a web tool for managing bacterial genome assembly generated by Ion PGM sequencing technology.

    PubMed

    Mariano, Diego C B; Pereira, Felipe L; Aguiar, Edgar L; Oliveira, Letícia C; Benevides, Leandro; Guimarães, Luís C; Folador, Edson L; Sousa, Thiago J; Ghosh, Preetam; Barh, Debmalya; Figueiredo, Henrique C P; Silva, Artur; Ramos, Rommel T J; Azevedo, Vasco A C

    2016-12-15

    The evolution of Next-Generation Sequencing (NGS) has considerably reduced the cost per sequenced-base, allowing a significant rise of sequencing projects, mainly in prokaryotes. However, the range of available NGS platforms requires different strategies and software to correctly assemble genomes. Different strategies are necessary to properly complete an assembly project, in addition to the installation or modification of various software. This requires users to have significant expertise in these software and command line scripting experience on Unix platforms, besides possessing the basic expertise on methodologies and techniques for genome assembly. These difficulties often delay the complete genome assembly projects. In order to overcome this, we developed SIMBA (SImple Manager for Bacterial Assemblies), a freely available web tool that integrates several component tools for assembling and finishing bacterial genomes. SIMBA provides a friendly and intuitive user interface so bioinformaticians, even with low computational expertise, can work under a centralized administrative control system of assemblies managed by the assembly center head. SIMBA guides the users to execute assembly process through simple and interactive pages. SIMBA workflow was divided in three modules: (i) projects: allows a general vision of genome sequencing projects, in addition to data quality analysis and data format conversions; (ii) assemblies: allows de novo assemblies with the software Mira, Minia, Newbler and SPAdes, also assembly quality validations using QUAST software; and (iii) curation: presents methods to finishing assemblies through tools for scaffolding contigs and close gaps. We also presented a case study that validated the efficacy of SIMBA to manage bacterial assemblies projects sequenced using Ion Torrent PGM. Besides to be a web tool for genome assembly, SIMBA is a complete genome assemblies project management system, which can be useful for managing of several

  10. Are there laws of genome evolution?

    PubMed

    Koonin, Eugene V

    2011-08-01

    Research in quantitative evolutionary genomics and systems biology led to the discovery of several universal regularities connecting genomic and molecular phenomic variables. These universals include the log-normal distribution of the evolutionary rates of orthologous genes; the power law-like distributions of paralogous family size and node degree in various biological networks; the negative correlation between a gene's sequence evolution rate and expression level; and differential scaling of functional classes of genes with genome size. The universals of genome evolution can be accounted for by simple mathematical models similar to those used in statistical physics, such as the birth-death-innovation model. These models do not explicitly incorporate selection; therefore, the observed universal regularities do not appear to be shaped by selection but rather are emergent properties of gene ensembles. Although a complete physical theory of evolutionary biology is inconceivable, the universals of genome evolution might qualify as "laws of evolutionary genomics" in the same sense "law" is understood in modern physics.

  11. Structure and Evolution of Chlorate Reduction Composite Transposons

    PubMed Central

    Clark, Iain C.; Melnyk, Ryan A.; Engelbrektson, Anna; Coates, John D.

    2013-01-01

    ABSTRACT The genes for chlorate reduction in six bacterial strains were analyzed in order to gain insight into the metabolism. A newly isolated chlorate-reducing bacterium (Shewanella algae ACDC) and three previously isolated strains (Ideonella dechloratans, Pseudomonas sp. strain PK, and Dechloromarinus chlorophilus NSS) were genome sequenced and compared to published sequences (Alicycliphilus denitrificans BC plasmid pALIDE01 and Pseudomonas chloritidismutans AW-1). De novo assembly of genomes failed to join regions adjacent to genes involved in chlorate reduction, suggesting the presence of repeat regions. Using a bioinformatics approach and finishing PCRs to connect fragmented contigs, we discovered that chlorate reduction genes are flanked by insertion sequences, forming composite transposons in all four newly sequenced strains. These insertion sequences delineate regions with the potential to move horizontally and define a set of genes that may be important for chlorate reduction. In addition to core metabolic components, we have highlighted several such genes through comparative analysis and visualization. Phylogenetic analysis places chlorate reductase within a functionally diverse clade of type II dimethyl sulfoxide (DMSO) reductases, part of a larger family of enzymes with reactivity toward chlorate. Nucleotide-level forensics of regions surrounding chlorite dismutase (cld), as well as its phylogenetic clustering in a betaproteobacterial Cld clade, indicate that cld has been mobilized at least once from a perchlorate reducer to build chlorate respiration. PMID:23919996

  12. Three tiers of genome evolution in reptiles

    PubMed Central

    Organ, Chris L.; Moreno, Ricardo Godínez; Edwards, Scott V.

    2008-01-01

    Characterization of reptilian genomes is essential for understanding the overall diversity and evolution of amniote genomes, because reptiles, which include birds, constitute a major fraction of the amniote evolutionary tree. To better understand the evolution and diversity of genomic characteristics in Reptilia, we conducted comparative analyses of online sequence data from Alligator mississippiensis (alligator) and Sphenodon punctatus (tuatara) as well as genome size and karyological data from a wide range of reptilian species. At the whole-genome and chromosomal tiers of organization, we find that reptilian genome size distribution is consistent with a model of continuous gradual evolution while genomic compartmentalization, as manifested in the number of microchromosomes and macrochromosomes, appears to have undergone early rapid change. At the sequence level, the third genomic tier, we find that exon size in Alligator is distributed in a pattern matching that of exons in Gallus (chicken), especially in the 101—200 bp size class. A small spike in the fraction of exons in the 301 bp—1 kb size class is also observed for Alligator, but more so for Sphenodon. For introns, we find that members of Reptilia have a larger fraction of introns within the 101 bp–2 kb size class and a lower fraction of introns within the 5–30 kb size class than do mammals. These findings suggest that the mode of reptilian genome evolution varies across three hierarchical levels of the genome, a pattern consistent with a mosaic model of genomic evolution. PMID:21669810

  13. Extremely Low Genomic Diversity of Rickettsia japonica Distributed in Japan.

    PubMed

    Akter, Arzuba; Ooka, Tadasuke; Gotoh, Yasuhiro; Yamamoto, Seigo; Fujita, Hiromi; Terasoma, Fumio; Kida, Kouji; Taira, Masakatsu; Nakadouzono, Fumiko; Gokuden, Mutsuyo; Hirano, Manabu; Miyashiro, Mamoru; Inari, Kouichi; Shimazu, Yukie; Tabara, Kenji; Toyoda, Atsushi; Yoshimura, Dai; Itoh, Takehiko; Kitano, Tomokazu; Sato, Mitsuhiko P; Katsura, Keisuke; Mondal, Shakhinur Islam; Ogura, Yoshitoshi; Ando, Shuji; Hayashi, Tetsuya

    2017-01-01

    Rickettsiae are obligate intracellular bacteria that have small genomes as a result of reductive evolution. Many Rickettsia species of the spotted fever group (SFG) cause tick-borne diseases known as "spotted fevers". The life cycle of SFG rickettsiae is closely associated with that of the tick, which is generally thought to act as a bacterial vector and reservoir that maintains the bacterium through transstadial and transovarial transmission. Each SFG member is thought to have adapted to a specific tick species, thus restricting the bacterial distribution to a relatively limited geographic region. These unique features of SFG rickettsiae allow investigation of how the genomes of such biologically and ecologically specialized bacteria evolve after genome reduction and the types of population structures that are generated. Here, we performed a nationwide, high-resolution phylogenetic analysis of Rickettsia japonica, an etiological agent of Japanese spotted fever that is distributed in Japan and Korea. The comparison of complete or nearly complete sequences obtained from 31 R. japonica strains isolated from various sources in Japan over the past 30 years demonstrated an extremely low level of genomic diversity. In particular, only 34 single nucleotide polymorphisms were identified among the 27 strains of the major lineage containing all clinical isolates and tick isolates from the three tick species. Our data provide novel insights into the biology and genome evolution of R. japonica, including the possibilities of recent clonal expansion and a long generation time in nature due to the long dormant phase associated with tick life cycles. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  14. MIPS bacterial genomes functional annotation benchmark dataset.

    PubMed

    Tetko, Igor V; Brauner, Barbara; Dunger-Kaltenbach, Irmtraud; Frishman, Goar; Montrone, Corinna; Fobo, Gisela; Ruepp, Andreas; Antonov, Alexey V; Surmeli, Dimitrij; Mewes, Hans-Wernen

    2005-05-15

    Any development of new methods for automatic functional annotation of proteins according to their sequences requires high-quality data (as benchmark) as well as tedious preparatory work to generate sequence parameters required as input data for the machine learning methods. Different program settings and incompatible protocols make a comparison of the analyzed methods difficult. The MIPS Bacterial Functional Annotation Benchmark dataset (MIPS-BFAB) is a new, high-quality resource comprising four bacterial genomes manually annotated according to the MIPS functional catalogue (FunCat). These resources include precalculated sequence parameters, such as sequence similarity scores, InterPro domain composition and other parameters that could be used to develop and benchmark methods for functional annotation of bacterial protein sequences. These data are provided in XML format and can be used by scientists who are not necessarily experts in genome annotation. BFAB is available at http://mips.gsf.de/proj/bfab

  15. Whole-genome sequencing of staphylococcus haemolyticus uncovers the extreme plasticity of its genome and the evolution of human-colonizing staphylococcal species.

    PubMed

    Takeuchi, Fumihiko; Watanabe, Shinya; Baba, Tadashi; Yuzawa, Harumi; Ito, Teruyo; Morimoto, Yuh; Kuroda, Makoto; Cui, Longzhu; Takahashi, Mikio; Ankai, Akiho; Baba, Shin-ichi; Fukui, Shigehiro; Lee, Jean C; Hiramatsu, Keiichi

    2005-11-01

    Staphylococcus haemolyticus is an opportunistic bacterial pathogen that colonizes human skin and is remarkable for its highly antibiotic-resistant phenotype. We determined the complete genome sequence of S.haemolyticus to better understand its pathogenicity and evolutionary relatedness to the other staphylococcal species. A large proportion of the open reading frames in the genomes of S.haemolyticus, Staphylococcus aureus, and Staphylococcus epidermidis were conserved in their sequence and order on the chromosome. We identified a region of the bacterial chromosome just downstream of the origin of replication that showed little homology among the species but was conserved among strains within a species. This novel region, designated the "oriC environ," likely contributes to the evolution and differentiation of the staphylococcal species, since it was enriched for species-specific nonessential genes that contribute to the biological features of each staphylococcal species. A comparative analysis of the genomes of S.haemolyticus, S.aureus, and S.epidermidis elucidated differences in their biological and genetic characteristics and pathogenic potentials. We identified as many as 82 insertion sequences in the S.haemolyticus chromosome that probably mediated frequent genomic rearrangements, resulting in phenotypic diversification of the strain. Such rearrangements could have brought genomic plasticity to this species and contributed to its acquisition of antibiotic resistance.

  16. Whole-Genome Sequencing of Staphylococcus haemolyticus Uncovers the Extreme Plasticity of Its Genome and the Evolution of Human-Colonizing Staphylococcal Species

    PubMed Central

    Takeuchi, Fumihiko; Watanabe, Shinya; Baba, Tadashi; Yuzawa, Harumi; Ito, Teruyo; Morimoto, Yuh; Kuroda, Makoto; Cui, Longzhu; Takahashi, Mikio; Ankai, Akiho; Baba, Shin-ichi; Fukui, Shigehiro; Lee, Jean C.; Hiramatsu, Keiichi

    2005-01-01

    Staphylococcus haemolyticus is an opportunistic bacterial pathogen that colonizes human skin and is remarkable for its highly antibiotic-resistant phenotype. We determined the complete genome sequence of S.haemolyticus to better understand its pathogenicity and evolutionary relatedness to the other staphylococcal species. A large proportion of the open reading frames in the genomes of S.haemolyticus, Staphylococcus aureus, and Staphylococcus epidermidis were conserved in their sequence and order on the chromosome. We identified a region of the bacterial chromosome just downstream of the origin of replication that showed little homology among the species but was conserved among strains within a species. This novel region, designated the “oriC environ,” likely contributes to the evolution and differentiation of the staphylococcal species, since it was enriched for species-specific nonessential genes that contribute to the biological features of each staphylococcal species. A comparative analysis of the genomes of S.haemolyticus, S.aureus, and S.epidermidis elucidated differences in their biological and genetic characteristics and pathogenic potentials. We identified as many as 82 insertion sequences in the S.haemolyticus chromosome that probably mediated frequent genomic rearrangements, resulting in phenotypic diversification of the strain. Such rearrangements could have brought genomic plasticity to this species and contributed to its acquisition of antibiotic resistance. PMID:16237012

  17. Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations

    DOE PAGES

    Bendall, Matthew L.; Stevens, Sarah L.R.; Chan, Leong-Keat; ...

    2016-01-08

    Multiple models describe the formation and evolution of distinct microbial phylogenetic groups. These evolutionary models make different predictions regarding how adaptive alleles spread through populations and how genetic diversity is maintained. Processes predicted by competing evolutionary models, for example, genome-wide selective sweeps vs gene-specific sweeps, could be captured in natural populations using time-series metagenomics if the approach were applied over a sufficiently long time frame. Direct observations of either process would help resolve how distinct microbial groups evolve. Using a 9-year metagenomic study of a freshwater lake (2005–2013), we explore changes in single-nucleotide polymorphism (SNP) frequencies and patterns of genemore » gain and loss in 30 bacterial populations. SNP analyses revealed substantial genetic heterogeneity within these populations, although the degree of heterogeneity varied by >1000-fold among populations. SNP allele frequencies also changed dramatically over time within some populations. Interestingly, nearly all SNP variants were slowly purged over several years from one population of green sulfur bacteria, while at the same time multiple genes either swept through or were lost from this population. Furthermore, these patterns were consistent with a genome-wide selective sweep in progress, a process predicted by the ‘ecotype model’ of speciation but not previously observed in nature. In contrast, other populations contained large, SNP-free genomic regions that appear to have swept independently through the populations prior to the study without purging diversity elsewhere in the genome. Finally, evidence for both genome-wide and gene-specific sweeps suggests that different models of bacterial speciation may apply to different populations coexisting in the same environment.« less

  18. Uniparental Inheritance Promotes Adaptive Evolution in Cytoplasmic Genomes

    PubMed Central

    Christie, Joshua R.; Beekman, Madeleine

    2017-01-01

    Eukaryotes carry numerous asexual cytoplasmic genomes (mitochondria and plastids). Lacking recombination, asexual genomes should theoretically suffer from impaired adaptive evolution. Yet, empirical evidence indicates that cytoplasmic genomes experience higher levels of adaptive evolution than predicted by theory. In this study, we use a computational model to show that the unique biology of cytoplasmic genomes—specifically their organization into host cells and their uniparental (maternal) inheritance—enable them to undergo effective adaptive evolution. Uniparental inheritance of cytoplasmic genomes decreases competition between different beneficial substitutions (clonal interference), promoting the accumulation of beneficial substitutions. Uniparental inheritance also facilitates selection against deleterious cytoplasmic substitutions, slowing Muller’s ratchet. In addition, uniparental inheritance generally reduces genetic hitchhiking of deleterious substitutions during selective sweeps. Overall, uniparental inheritance promotes adaptive evolution by increasing the level of beneficial substitutions relative to deleterious substitutions. When we assume that cytoplasmic genome inheritance is biparental, decreasing the number of genomes transmitted during gametogenesis (bottleneck) aids adaptive evolution. Nevertheless, adaptive evolution is always more efficient when inheritance is uniparental. Our findings explain empirical observations that cytoplasmic genomes—despite their asexual mode of reproduction—can readily undergo adaptive evolution. PMID:28025277

  19. [Advances in microbial genome reduction and modification].

    PubMed

    Wang, Jianli; Wang, Xiaoyuan

    2013-08-01

    Microbial genome reduction and modification are important strategies for constructing cellular chassis used for synthetic biology. This article summarized the essential genes and the methods to identify them in microorganisms, compared various strategies for microbial genome reduction, and analyzed the characteristics of some microorganisms with the minimized genome. This review shows the important role of genome reduction in constructing cellular chassis.

  20. Phylogeny Inference of Closely Related Bacterial Genomes: Combining the Features of Both Overlapping Genes and Collinear Genomic Regions

    PubMed Central

    Zhang, Yan-Cong; Lin, Kui

    2015-01-01

    Overlapping genes (OGs) represent one type of widespread genomic feature in bacterial genomes and have been used as rare genomic markers in phylogeny inference of closely related bacterial species. However, the inference may experience a decrease in performance for phylogenomic analysis of too closely or too distantly related genomes. Another drawback of OGs as phylogenetic markers is that they usually take little account of the effects of genomic rearrangement on the similarity estimation, such as intra-chromosome/genome translocations, horizontal gene transfer, and gene losses. To explore such effects on the accuracy of phylogeny reconstruction, we combine phylogenetic signals of OGs with collinear genomic regions, here called locally collinear blocks (LCBs). By putting these together, we refine our previous metric of pairwise similarity between two closely related bacterial genomes. As a case study, we used this new method to reconstruct the phylogenies of 88 Enterobacteriale genomes of the class Gammaproteobacteria. Our results demonstrated that the topological accuracy of the inferred phylogeny was improved when both OGs and LCBs were simultaneously considered, suggesting that combining these two phylogenetic markers may reduce, to some extent, the influence of gene loss on phylogeny inference. Such phylogenomic studies, we believe, will help us to explore a more effective approach to increasing the robustness of phylogeny reconstruction of closely related bacterial organisms. PMID:26715828

  1. Shewanella spp. Genomic Evolution for a Cold Marine Lifestyle and In-Situ Explosive Biodegradation

    PubMed Central

    Zhao, Jian-Shen; Deng, Yinghai; Manno, Dominic; Hawari, Jalal

    2010-01-01

    Shewanella halifaxensis and Shewanella sediminis were among a few aquatic γ-proteobacteria that were psychrophiles and the first anaerobic bacteria that degraded hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Although many mesophilic or psychrophilic strains of Shewanella and γ-proteobacteria were sequenced for their genomes, the genomic evolution pathways for temperature adaptation were poorly understood. On the other hand, the genes responsible for anaerobic RDX mineralization pathways remain unknown. To determine the unique genomic properties of bacteria responsible for both cold-adaptation and RDX degradation, the genomes of S. halifaxensis and S. sediminis were sequenced and compared with 108 other γ-proteobacteria including Shewanella that differ in temperature and Na+ requirements, as well as RDX degradation capability. Results showed that for coping with marine environments their genomes had extensively exchanged with deep sea bacterial genomes. Many genes for Na+-dependent nutrient transporters were recruited to use the high Na+ content as an energy source. For coping with low temperatures, these two strains as well as other psychrophilic strains of Shewanella and γ-proteobacteria were found to decrease their genome G+C content and proteome alanine, proline and arginine content (p-value <0.01) to increase protein structural flexibility. Compared to poorer RDX-degrading strains, S. halifaxensis and S. sediminis have more number of genes for cytochromes and other enzymes related to RDX metabolic pathways. Experimentally, one cytochrome was found induced in S. halifaxensis by RDX when the chemical was the sole terminal electron acceptor. The isolated protein degraded RDX by mono-denitration and was identified as a multiheme 52 kDa cytochrome using a proteomic approach. The present analyses provided the first insight into divergent genomic evolution of bacterial strains for adaptation to the specific cold marine conditions and to the degradation of the

  2. Genomics of Bacterial and Archaeal Viruses: Dynamics within the Prokaryotic Virosphere

    PubMed Central

    Krupovic, Mart; Prangishvili, David; Hendrix, Roger W.; Bamford, Dennis H.

    2011-01-01

    Summary: Prokaryotes, bacteria and archaea, are the most abundant cellular organisms among those sharing the planet Earth with human beings (among others). However, numerous ecological studies have revealed that it is actually prokaryotic viruses that predominate on our planet and outnumber their hosts by at least an order of magnitude. An understanding of how this viral domain is organized and what are the mechanisms governing its evolution is therefore of great interest and importance. The vast majority of characterized prokaryotic viruses belong to the order Caudovirales, double-stranded DNA (dsDNA) bacteriophages with tails. Consequently, these viruses have been studied (and reviewed) extensively from both genomic and functional perspectives. However, albeit numerous, tailed phages represent only a minor fraction of the prokaryotic virus diversity. Therefore, the knowledge which has been generated for this viral system does not offer a comprehensive view of the prokaryotic virosphere. In this review, we discuss all families of bacterial and archaeal viruses that contain more than one characterized member and for which evolutionary conclusions can be attempted by use of comparative genomic analysis. We focus on the molecular mechanisms of their genome evolution as well as on the relationships between different viral groups and plasmids. It becomes clear that evolutionary mechanisms shaping the genomes of prokaryotic viruses vary between different families and depend on the type of the nucleic acid, characteristics of the virion structure, as well as the mode of the life cycle. We also point out that horizontal gene transfer is not equally prevalent in different virus families and is not uniformly unrestricted for diverse viral functions. PMID:22126996

  3. Ancient bacterial endosymbionts of insects: Genomes as sources of insight and springboards for inquiry.

    PubMed

    Wernegreen, Jennifer J

    2017-09-15

    Ancient associations between insects and bacteria provide models to study intimate host-microbe interactions. Currently, a wealth of genome sequence data for long-term, obligately intracellular (primary) endosymbionts of insects reveals profound genomic consequences of this specialized bacterial lifestyle. Those consequences include severe genome reduction and extreme base compositions. This minireview highlights the utility of genome sequence data to understand how, and why, endosymbionts have been pushed to such extremes, and to illuminate the functional consequences of such extensive genome change. While the static snapshots provided by individual endosymbiont genomes are valuable, comparative analyses of multiple genomes have shed light on evolutionary mechanisms. Namely, genome comparisons have told us that selection is important in fine-tuning gene content, but at the same time, mutational pressure and genetic drift contribute to genome degradation. Examples from Blochmannia, the primary endosymbiont of the ant tribe Camponotini, illustrate the value and constraints of genome sequence data, and exemplify how genomes can serve as a springboard for further comparative and experimental inquiry. Copyright © 2017. Published by Elsevier Inc.

  4. Statistical Analysis of Hurst Exponents of Essential/Nonessential Genes in 33 Bacterial Genomes

    PubMed Central

    Liu, Xiao; Wang, Baojin; Xu, Luo

    2015-01-01

    Methods for identifying essential genes currently depend predominantly on biochemical experiments. However, there is demand for improved computational methods for determining gene essentiality. In this study, we used the Hurst exponent, a characteristic parameter to describe long-range correlation in DNA, and analyzed its distribution in 33 bacterial genomes. In most genomes (31 out of 33) the significance levels of the Hurst exponents of the essential genes were significantly higher than for the corresponding full-gene-set, whereas the significance levels of the Hurst exponents of the nonessential genes remained unchanged or increased only slightly. All of the Hurst exponents of essential genes followed a normal distribution, with one exception. We therefore propose that the distribution feature of Hurst exponents of essential genes can be used as a classification index for essential gene prediction in bacteria. For computer-aided design in the field of synthetic biology, this feature can build a restraint for pre- or post-design checking of bacterial essential genes. Moreover, considering the relationship between gene essentiality and evolution, the Hurst exponents could be used as a descriptive parameter related to evolutionary level, or be added to the annotation of each gene. PMID:26067107

  5. The Perchlorate Reduction Genomic Island: Mechanisms and Pathways of Evolution by Horizontal Gene Transfer.

    PubMed

    Melnyk, Ryan A; Coates, John D

    2015-10-26

    Perchlorate is a widely distributed anion that is toxic to humans, but serves as a valuable electron acceptor for several lineages of bacteria. The ability to utilize perchlorate is conferred by a horizontally transferred piece of DNA called the perchlorate reduction genomic island (PRI). We compared genomes of perchlorate reducers using phylogenomics, SNP mapping, and differences in genomic architecture to interrogate the evolutionary history of perchlorate respiration. Here we report on the PRI of 13 genomes of perchlorate-reducing bacteria from four different classes of Phylum Proteobacteria (the Alpha-, Beta-, Gamma- and Epsilonproteobacteria). Among the different phylogenetic classes, the island varies considerably in genetic content as well as in its putative mechanism and location of integration. However, the islands of the densely sampled genera Azospira and Magnetospirillum have striking nucleotide identity despite divergent genomes, implying horizontal transfer and positive selection within narrow phylogenetic taxa. We also assess the phylogenetic origin of accessory genes in the various incarnations of the island, which can be traced to chromosomal paralogs from phylogenetically similar organisms. These observations suggest a complex phylogenetic history where the island is rarely transferred at the class level but undergoes frequent and continuous transfer within narrow phylogenetic groups. This restricted transfer is seen directly by the independent integration of near-identical islands within a genus and indirectly due to the acquisition of lineage-specific accessory genes. The genomic reversibility of perchlorate reduction may present a unique equilibrium for a metabolism that confers a competitive advantage only in the presence of an electron acceptor, which although widely distributed, is generally present at low concentrations in nature.

  6. A universe of dwarfs and giants: genome size and chromosome evolution in the monocot family Melanthiaceae.

    PubMed

    Pellicer, Jaume; Kelly, Laura J; Leitch, Ilia J; Zomlefer, Wendy B; Fay, Michael F

    2014-03-01

    • Since the occurrence of giant genomes in angiosperms is restricted to just a few lineages, identifying where shifts towards genome obesity have occurred is essential for understanding the evolutionary mechanisms triggering this process. • Genome sizes were assessed using flow cytometry in 79 species and new chromosome numbers were obtained. Phylogenetically based statistical methods were applied to infer ancestral character reconstructions of chromosome numbers and nuclear DNA contents. • Melanthiaceae are the most diverse family in terms of genome size, with C-values ranging more than 230-fold. Our data confirmed that giant genomes are restricted to tribe Parideae, with most extant species in the family characterized by small genomes. Ancestral genome size reconstruction revealed that the most recent common ancestor (MRCA) for the family had a relatively small genome (1C = 5.37 pg). Chromosome losses and polyploidy are recovered as the main evolutionary mechanisms generating chromosome number change. • Genome evolution in Melanthiaceae has been characterized by a trend towards genome size reduction, with just one episode of dramatic DNA accumulation in Parideae. Such extreme contrasting profiles of genome size evolution illustrate the key role of transposable elements and chromosome rearrangements in driving the evolution of plant genomes. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  7. Genome-Enabled Molecular Tools for Reductive Dehalogenation

    DTIC Science & Technology

    2011-11-01

    Genome-Enabled Molecular Tools for Reductive Dehalogenation - A Shift in Paradigm for Bioremediation - Alfred M. Spormann Departments of Chemical...Genome-Enabled Molecular Tools for Reductive Dehalogenation 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...Applications Technical Session No. 3D C-77 GENOME-ENABLED MOLECULAR TOOLS FOR REDUCTIVE DEHALOGENATION PROFESSOR ALFRED SPORMANN Stanford

  8. Genome-wide signals of positive selection in human evolution

    PubMed Central

    Enard, David; Messer, Philipp W.; Petrov, Dmitri A.

    2014-01-01

    The role of positive selection in human evolution remains controversial. On the one hand, scans for positive selection have identified hundreds of candidate loci, and the genome-wide patterns of polymorphism show signatures consistent with frequent positive selection. On the other hand, recent studies have argued that many of the candidate loci are false positives and that most genome-wide signatures of adaptation are in fact due to reduction of neutral diversity by linked deleterious mutations, known as background selection. Here we analyze human polymorphism data from the 1000 Genomes Project and detect signatures of positive selection once we correct for the effects of background selection. We show that levels of neutral polymorphism are lower near amino acid substitutions, with the strongest reduction observed specifically near functionally consequential amino acid substitutions. Furthermore, amino acid substitutions are associated with signatures of recent adaptation that should not be generated by background selection, such as unusually long and frequent haplotypes and specific distortions in the site frequency spectrum. We use forward simulations to argue that the observed signatures require a high rate of strongly adaptive substitutions near amino acid changes. We further demonstrate that the observed signatures of positive selection correlate better with the presence of regulatory sequences, as predicted by the ENCODE Project Consortium, than with the positions of amino acid substitutions. Our results suggest that adaptation was frequent in human evolution and provide support for the hypothesis of King and Wilson that adaptive divergence is primarily driven by regulatory changes. PMID:24619126

  9. Comparative Genomics Reveals High Genomic Diversity in the Genus Photobacterium.

    PubMed

    Machado, Henrique; Gram, Lone

    2017-01-01

    Vibrionaceae is a large marine bacterial family, which can constitute up to 50% of the prokaryotic population in marine waters. Photobacterium is the second largest genus in the family and we used comparative genomics on 35 strains representing 16 of the 28 species described so far, to understand the genomic diversity present in the Photobacterium genus. Such understanding is important for ecophysiology studies of the genus. We used whole genome sequences to evaluate phylogenetic relationships using several analyses (16S rRNA, MLSA, fur , amino-acid usage, ANI), which allowed us to identify two misidentified strains. Genome analyses also revealed occurrence of higher and lower GC content clades, correlating with phylogenetic clusters. Pan- and core-genome analysis revealed the conservation of 25% of the genome throughout the genus, with a large and open pan-genome. The major source of genomic diversity could be traced to the smaller chromosome and plasmids. Several of the physiological traits studied in the genus did not correlate with phylogenetic data. Since horizontal gene transfer (HGT) is often suggested as a source of genetic diversity and a potential driver of genomic evolution in bacterial species, we looked into evidence of such in Photobacterium genomes. Genomic islands were the source of genomic differences between strains of the same species. Also, we found transposase genes and CRISPR arrays that suggest multiple encounters with foreign DNA. Presence of genomic exchange traits was widespread and abundant in the genus, suggesting a role in genomic evolution. The high genetic variability and indications of genetic exchange make it difficult to elucidate genome evolutionary paths and raise the awareness of the roles of foreign DNA in the genomic evolution of environmental organisms.

  10. Mitochondrial Evolution

    PubMed Central

    Gray, Michael W.

    2012-01-01

    Viewed through the lens of the genome it contains, the mitochondrion is of unquestioned bacterial ancestry, originating from within the bacterial phylum α-Proteobacteria (Alphaproteobacteria). Accordingly, the endosymbiont hypothesis—the idea that the mitochondrion evolved from a bacterial progenitor via symbiosis within an essentially eukaryotic host cell—has assumed the status of a theory. Yet mitochondrial genome evolution has taken radically different pathways in diverse eukaryotic lineages, and the organelle itself is increasingly viewed as a genetic and functional mosaic, with the bulk of the mitochondrial proteome having an evolutionary origin outside Alphaproteobacteria. New data continue to reshape our views regarding mitochondrial evolution, particularly raising the question of whether the mitochondrion originated after the eukaryotic cell arose, as assumed in the classical endosymbiont hypothesis, or whether this organelle had its beginning at the same time as the cell containing it. PMID:22952398

  11. Xylella genomics and bacterial pathogenicity to plants.

    PubMed

    Dow, J M; Daniels, M J

    2000-12-01

    Xylella fastidiosa, a pathogen of citrus, is the first plant pathogenic bacterium for which the complete genome sequence has been published. Inspection of the sequence reveals high relatedness to many genes of other pathogens, notably Xanthomonas campestris. Based on this, we suggest that Xylella possesses certain easily testable properties that contribute to pathogenicity. We also present some general considerations for deriving information on pathogenicity from bacterial genomics. Copyright 2000 John Wiley & Sons, Ltd.

  12. The History of Bordetella pertussis Genome Evolution Includes Structural Rearrangement

    PubMed Central

    Peng, Yanhui; Loparev, Vladimir; Batra, Dhwani; Bowden, Katherine E.; Burroughs, Mark; Cassiday, Pamela K.; Davis, Jamie K.; Johnson, Taccara; Juieng, Phalasy; Knipe, Kristen; Mathis, Marsenia H.; Pruitt, Andrea M.; Rowe, Lori; Sheth, Mili; Tondella, M. Lucia; Williams, Margaret M.

    2017-01-01

    ABSTRACT Despite high pertussis vaccine coverage, reported cases of whooping cough (pertussis) have increased over the last decade in the United States and other developed countries. Although Bordetella pertussis is well known for its limited gene sequence variation, recent advances in long-read sequencing technology have begun to reveal genomic structural heterogeneity among otherwise indistinguishable isolates, even within geographically or temporally defined epidemics. We have compared rearrangements among complete genome assemblies from 257 B. pertussis isolates to examine the potential evolution of the chromosomal structure in a pathogen with minimal gene nucleotide sequence diversity. Discrete changes in gene order were identified that differentiated genomes from vaccine reference strains and clinical isolates of various genotypes, frequently along phylogenetic boundaries defined by single nucleotide polymorphisms. The observed rearrangements were primarily large inversions centered on the replication origin or terminus and flanked by IS481, a mobile genetic element with >240 copies per genome and previously suspected to mediate rearrangements and deletions by homologous recombination. These data illustrate that structural genome evolution in B. pertussis is not limited to reduction but also includes rearrangement. Therefore, although genomes of clinical isolates are structurally diverse, specific changes in gene order are conserved, perhaps due to positive selection, providing novel information for investigating disease resurgence and molecular epidemiology. IMPORTANCE Whooping cough, primarily caused by Bordetella pertussis, has resurged in the United States even though the coverage with pertussis-containing vaccines remains high. The rise in reported cases has included increased disease rates among all vaccinated age groups, provoking questions about the pathogen's evolution. The chromosome of B. pertussis includes a large number of repetitive mobile

  13. Large scale genomic analysis shows no evidence for pathogen adaptation between the blood and cerebrospinal fluid niches during bacterial meningitis

    PubMed Central

    Lees, John A.; Kremer, Philip H. C.; Manso, Ana S.; Croucher, Nicholas J.; Ferwerda, Bart; Serón, Mercedes Valls; Oggioni, Marco R.; Parkhill, Julian; Brouwer, Matthijs C.; van der Ende, Arie; van de Beek, Diederik

    2017-01-01

    Recent studies have provided evidence for rapid pathogen genome diversification, some of which could potentially affect the course of disease. We have previously described such variation seen between isolates infecting the blood and cerebrospinal fluid (CSF) of a single patient during a case of bacterial meningitis. Here, we performed whole-genome sequencing of paired isolates from the blood and CSF of 869 meningitis patients to determine whether such variation frequently occurs between these two niches in cases of bacterial meningitis. Using a combination of reference-free variant calling approaches, we show that no genetic adaptation occurs in either invaded niche during bacterial meningitis for two major pathogen species, Streptococcus pneumoniae and Neisseria meningitidis. This study therefore shows that the bacteria capable of causing meningitis are already able to do this upon entering the blood, and no further sequence change is necessary to cross the blood–brain barrier. Our findings place the focus back on bacterial evolution between nasopharyngeal carriage and invasion, or diversity of the host, as likely mechanisms for determining invasiveness. PMID:28348877

  14. Evolution and genome architecture in fungal plant pathogens.

    PubMed

    Möller, Mareike; Stukenbrock, Eva H

    2017-12-01

    The fungal kingdom comprises some of the most devastating plant pathogens. Sequencing the genomes of fungal pathogens has shown a remarkable variability in genome size and architecture. Population genomic data enable us to understand the mechanisms and the history of changes in genome size and adaptive evolution in plant pathogens. Although transposable elements predominantly have negative effects on their host, fungal pathogens provide prominent examples of advantageous associations between rapidly evolving transposable elements and virulence genes that cause variation in virulence phenotypes. By providing homogeneous environments at large regional scales, managed ecosystems, such as modern agriculture, can be conducive for the rapid evolution and dispersal of pathogens. In this Review, we summarize key examples from fungal plant pathogen genomics and discuss evolutionary processes in pathogenic fungi in the context of molecular evolution, population genomics and agriculture.

  15. Reproductive Mode and the Evolution of Genome Size and Structure in Caenorhabditis Nematodes

    PubMed Central

    Fierst, Janna L.; Willis, John H.; Thomas, Cristel G.; Wang, Wei; Reynolds, Rose M.; Ahearne, Timothy E.; Cutter, Asher D.; Phillips, Patrick C.

    2015-01-01

    The self-fertile nematode worms Caenorhabditis elegans, C. briggsae, and C. tropicalis evolved independently from outcrossing male-female ancestors and have genomes 20-40% smaller than closely related outcrossing relatives. This pattern of smaller genomes for selfing species and larger genomes for closely related outcrossing species is also seen in plants. We use comparative genomics, including the first high quality genome assembly for an outcrossing member of the genus (C. remanei) to test several hypotheses for the evolution of genome reduction under a change in mating system. Unlike plants, it does not appear that reductions in the number of repetitive elements, such as transposable elements, are an important contributor to the change in genome size. Instead, all functional genomic categories are lost in approximately equal proportions. Theory predicts that self-fertilization should equalize the effective population size, as well as the resulting effects of genetic drift, between the X chromosome and autosomes. Contrary to this, we find that the self-fertile C. briggsae and C. elegans have larger intergenic spaces and larger protein-coding genes on the X chromosome when compared to autosomes, while C. remanei actually has smaller introns on the X chromosome than either self-reproducing species. Rather than being driven by mutational biases and/or genetic drift caused by a reduction in effective population size under self reproduction, changes in genome size in this group of nematodes appear to be caused by genome-wide patterns of gene loss, most likely generated by genomic adaptation to self reproduction per se. PMID:26114425

  16. Defining the Estimated Core Genome of Bacterial Populations Using a Bayesian Decision Model

    PubMed Central

    van Tonder, Andries J.; Mistry, Shilan; Bray, James E.; Hill, Dorothea M. C.; Cody, Alison J.; Farmer, Chris L.; Klugman, Keith P.; von Gottberg, Anne; Bentley, Stephen D.; Parkhill, Julian; Jolley, Keith A.; Maiden, Martin C. J.; Brueggemann, Angela B.

    2014-01-01

    The bacterial core genome is of intense interest and the volume of whole genome sequence data in the public domain available to investigate it has increased dramatically. The aim of our study was to develop a model to estimate the bacterial core genome from next-generation whole genome sequencing data and use this model to identify novel genes associated with important biological functions. Five bacterial datasets were analysed, comprising 2096 genomes in total. We developed a Bayesian decision model to estimate the number of core genes, calculated pairwise evolutionary distances (p-distances) based on nucleotide sequence diversity, and plotted the median p-distance for each core gene relative to its genome location. We designed visually-informative genome diagrams to depict areas of interest in genomes. Case studies demonstrated how the model could identify areas for further study, e.g. 25% of the core genes with higher sequence diversity in the Campylobacter jejuni and Neisseria meningitidis genomes encoded hypothetical proteins. The core gene with the highest p-distance value in C. jejuni was annotated in the reference genome as a putative hydrolase, but further work revealed that it shared sequence homology with beta-lactamase/metallo-beta-lactamases (enzymes that provide resistance to a range of broad-spectrum antibiotics) and thioredoxin reductase genes (which reduce oxidative stress and are essential for DNA replication) in other C. jejuni genomes. Our Bayesian model of estimating the core genome is principled, easy to use and can be applied to large genome datasets. This study also highlighted the lack of knowledge currently available for many core genes in bacterial genomes of significant global public health importance. PMID:25144616

  17. Bacterial flagella and Type III secretion: case studies in the evolution of complexity.

    PubMed

    Pallen, M J; Gophna, U

    2007-01-01

    Bacterial flagella at first sight appear uniquely sophisticated in structure, so much so that they have even been considered 'irreducibly complex' by the intelligent design movement. However, a more detailed analysis reveals that these remarkable pieces of molecular machinery are the product of processes that are fully compatible with Darwinian evolution. In this chapter we present evidence for such processes, based on a review of experimental studies, molecular phylogeny and microbial genomics. Several processes have played important roles in flagellar evolution: self-assembly of simple repeating subunits, gene duplication with subsequent divergence, recruitment of elements from other systems ('molecular bricolage'), and recombination. We also discuss additional tentative new assignments of homology (FliG with MgtE, FliO with YscJ). In conclusion, rather than providing evidence of intelligent design, flagellar and non-flagellar Type III secretion systems instead provide excellent case studies in the evolution of complex systems from simpler components.

  18. Comparative Genomics Reveals High Genomic Diversity in the Genus Photobacterium

    PubMed Central

    Machado, Henrique; Gram, Lone

    2017-01-01

    Vibrionaceae is a large marine bacterial family, which can constitute up to 50% of the prokaryotic population in marine waters. Photobacterium is the second largest genus in the family and we used comparative genomics on 35 strains representing 16 of the 28 species described so far, to understand the genomic diversity present in the Photobacterium genus. Such understanding is important for ecophysiology studies of the genus. We used whole genome sequences to evaluate phylogenetic relationships using several analyses (16S rRNA, MLSA, fur, amino-acid usage, ANI), which allowed us to identify two misidentified strains. Genome analyses also revealed occurrence of higher and lower GC content clades, correlating with phylogenetic clusters. Pan- and core-genome analysis revealed the conservation of 25% of the genome throughout the genus, with a large and open pan-genome. The major source of genomic diversity could be traced to the smaller chromosome and plasmids. Several of the physiological traits studied in the genus did not correlate with phylogenetic data. Since horizontal gene transfer (HGT) is often suggested as a source of genetic diversity and a potential driver of genomic evolution in bacterial species, we looked into evidence of such in Photobacterium genomes. Genomic islands were the source of genomic differences between strains of the same species. Also, we found transposase genes and CRISPR arrays that suggest multiple encounters with foreign DNA. Presence of genomic exchange traits was widespread and abundant in the genus, suggesting a role in genomic evolution. The high genetic variability and indications of genetic exchange make it difficult to elucidate genome evolutionary paths and raise the awareness of the roles of foreign DNA in the genomic evolution of environmental organisms. PMID:28706512

  19. Short- and Long-term Evolutionary Dynamics of Bacterial Insertion Sequences: Insights from Wolbachia Endosymbionts

    PubMed Central

    Cerveau, Nicolas; Leclercq, Sébastien; Leroy, Elodie; Bouchon, Didier; Cordaux, Richard

    2011-01-01

    Transposable elements (TE) are one of the major driving forces of genome evolution, raising the question of the long-term dynamics underlying their evolutionary success. Long-term TE evolution can readily be reconstructed in eukaryotes, thanks to many degraded copies constituting genomic fossil records of past TE proliferations. By contrast, bacterial genomes usually experience high sequence turnover and short TE retention times, thereby obscuring ancient TE evolutionary patterns. We found that Wolbachia bacterial genomes contain 52–171 insertion sequence (IS) TEs. IS account for 11% of Wolbachia wRi, which is one of the highest IS genomic coverage reported in prokaryotes to date. We show that many IS groups are currently expanding in various Wolbachia genomes and that IS horizontal transfers are frequent among strains, which can explain the apparent synchronicity of these IS proliferations. Remarkably, >70% of Wolbachia IS are nonfunctional. They constitute an unusual bacterial IS genomic fossil record providing direct empirical evidence for a long-term IS evolutionary dynamics following successive periods of intense transpositional activity. Our results show that comprehensive IS annotations have the potential to provide new insights into prokaryote TE evolution and, more generally, prokaryote genome evolution. Indeed, the identification of an important IS genomic fossil record in Wolbachia demonstrates that IS elements are not always of recent origin, contrary to the conventional view of TE evolution in prokaryote genomes. Our results also raise the question whether the abundance of IS fossils is specific to Wolbachia or it may be a general, albeit overlooked, feature of prokaryote genomes. PMID:21940637

  20. Short- and long-term evolutionary dynamics of bacterial insertion sequences: insights from Wolbachia endosymbionts.

    PubMed

    Cerveau, Nicolas; Leclercq, Sébastien; Leroy, Elodie; Bouchon, Didier; Cordaux, Richard

    2011-01-01

    Transposable elements (TE) are one of the major driving forces of genome evolution, raising the question of the long-term dynamics underlying their evolutionary success. Long-term TE evolution can readily be reconstructed in eukaryotes, thanks to many degraded copies constituting genomic fossil records of past TE proliferations. By contrast, bacterial genomes usually experience high sequence turnover and short TE retention times, thereby obscuring ancient TE evolutionary patterns. We found that Wolbachia bacterial genomes contain 52-171 insertion sequence (IS) TEs. IS account for 11% of Wolbachia wRi, which is one of the highest IS genomic coverage reported in prokaryotes to date. We show that many IS groups are currently expanding in various Wolbachia genomes and that IS horizontal transfers are frequent among strains, which can explain the apparent synchronicity of these IS proliferations. Remarkably, >70% of Wolbachia IS are nonfunctional. They constitute an unusual bacterial IS genomic fossil record providing direct empirical evidence for a long-term IS evolutionary dynamics following successive periods of intense transpositional activity. Our results show that comprehensive IS annotations have the potential to provide new insights into prokaryote TE evolution and, more generally, prokaryote genome evolution. Indeed, the identification of an important IS genomic fossil record in Wolbachia demonstrates that IS elements are not always of recent origin, contrary to the conventional view of TE evolution in prokaryote genomes. Our results also raise the question whether the abundance of IS fossils is specific to Wolbachia or it may be a general, albeit overlooked, feature of prokaryote genomes.

  1. Physical Mapping and Refinement of the Painted Turtle Genome (Chrysemys picta) Inform Amniote Genome Evolution and Challenge Turtle-Bird Chromosomal Conservation.

    PubMed

    Badenhorst, Daleen; Hillier, LaDeana W; Literman, Robert; Montiel, Eugenia Elisabet; Radhakrishnan, Srihari; Shen, Yingjia; Minx, Patrick; Janes, Daniel E; Warren, Wesley C; Edwards, Scott V; Valenzuela, Nicole

    2015-06-24

    Comparative genomics continues illuminating amniote genome evolution, but for many lineages our understanding remains incomplete. Here, we refine the assembly (CPI 3.0.3 NCBI AHGY00000000.2) and develop a cytogenetic map of the painted turtle (Chrysemys picta-CPI) genome, the first in turtles and in vertebrates with temperature-dependent sex determination. A comparison of turtle genomes with those of chicken, selected nonavian reptiles, and human revealed shared and novel genomic features, such as numerous chromosomal rearrangements. The largest conserved syntenic blocks between birds and turtles exist in four macrochromosomes, whereas rearrangements were evident in these and other chromosomes, disproving that turtles and birds retain fully conserved macrochromosomes for greater than 300 Myr. C-banding revealed large heterochromatic blocks in the centromeric region of only few chromosomes. The nucleolar-organizing region (NOR) mapped to a single CPI microchromosome, whereas in some turtles and lizards the NOR maps to nonhomologous sex-chromosomes, thus revealing independent translocations of the NOR in various reptilian lineages. There was no evidence for recent chromosomal fusions as interstitial telomeric-DNA was absent. Some repeat elements (CR1-like, Gypsy) were enriched in the centromeres of five chromosomes, whereas others were widespread in the CPI genome. Bacterial artificial chromosome (BAC) clones were hybridized to 18 of the 25 CPI chromosomes and anchored to a G-banded ideogram. Several CPI sex-determining genes mapped to five chromosomes, and homology was detected between yet other CPI autosomes and the globally nonhomologous sex chromosomes of chicken, other turtles, and squamates, underscoring the independent evolution of vertebrate sex-determining mechanisms. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira

    PubMed Central

    Fouts, Derrick E.; Matthias, Michael A.; Adhikarla, Haritha; Adler, Ben; Amorim-Santos, Luciane; Berg, Douglas E.; Bulach, Dieter; Buschiazzo, Alejandro; Chang, Yung-Fu; Galloway, Renee L.; Haake, David A.; Haft, Daniel H.; Hartskeerl, Rudy; Ko, Albert I.; Levett, Paul N.; Matsunaga, James; Mechaly, Ariel E.; Monk, Jonathan M.; Nascimento, Ana L. T.; Nelson, Karen E.; Palsson, Bernhard; Peacock, Sharon J.; Picardeau, Mathieu; Ricaldi, Jessica N.; Thaipandungpanit, Janjira; Wunder, Elsio A.; Yang, X. Frank; Zhang, Jun-Jie; Vinetz, Joseph M.

    2016-01-01

    Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1) the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2) genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12) autotrophy as a bacterial virulence factor; 3) CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade’s refractoriness to gene targeting; 4) finding Leptospira pathogen-specific specialized protein secretion systems; 5) novel virulence-related genes/gene families such as the Virulence Modifying (VM) (PF07598 paralogs) proteins and pathogen-specific adhesins; 6) discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7) and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately pathogenic

  3. What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira.

    PubMed

    Fouts, Derrick E; Matthias, Michael A; Adhikarla, Haritha; Adler, Ben; Amorim-Santos, Luciane; Berg, Douglas E; Bulach, Dieter; Buschiazzo, Alejandro; Chang, Yung-Fu; Galloway, Renee L; Haake, David A; Haft, Daniel H; Hartskeerl, Rudy; Ko, Albert I; Levett, Paul N; Matsunaga, James; Mechaly, Ariel E; Monk, Jonathan M; Nascimento, Ana L T; Nelson, Karen E; Palsson, Bernhard; Peacock, Sharon J; Picardeau, Mathieu; Ricaldi, Jessica N; Thaipandungpanit, Janjira; Wunder, Elsio A; Yang, X Frank; Zhang, Jun-Jie; Vinetz, Joseph M

    2016-02-01

    Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1) the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2) genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12) autotrophy as a bacterial virulence factor; 3) CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade's refractoriness to gene targeting; 4) finding Leptospira pathogen-specific specialized protein secretion systems; 5) novel virulence-related genes/gene families such as the Virulence Modifying (VM) (PF07598 paralogs) proteins and pathogen-specific adhesins; 6) discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7) and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately pathogenic

  4. Measuring cancer evolution from the genome.

    PubMed

    Graham, Trevor A; Sottoriva, Andrea

    2017-01-01

    The temporal dynamics of cancer evolution remain elusive, because it is impractical to longitudinally observe cancers unperturbed by treatment. Consequently, our knowledge of how cancers grow largely derives from inferences made from a single point in time - the endpoint in the cancer's evolution, when it is removed from the body and studied in the laboratory. Fortuitously however, the cancer genome, by virtue of ongoing mutations that uniquely mark clonal lineages within the tumour, provides a rich, yet surreptitious, record of cancer development. In this review, we describe how a cancer's genome can be analysed to reveal the temporal history of mutation and selection, and discuss why both selective and neutral evolution feature prominently in carcinogenesis. We argue that selection in cancer can only be properly studied once we have some understanding of what the absence of selection looks like. We review the data describing punctuated evolution in cancer, and reason that punctuated phenotype evolution is consistent with both gradual and punctuated genome evolution. We conclude that, to map and predict evolutionary trajectories during carcinogenesis, it is critical to better understand the relationship between genotype change and phenotype change. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  5. Insights into the genome evolution of Yersinia pestis through whole genome comparison with Yersinia pseudotuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souza, B; Stoutland, P; Derbise, A

    2004-01-24

    Yersinia pestis, the causative agent of plague, is a highly uniform clone that diverged recently from the enteric pathogen Yersinia pseudotuberculosis. Despite their close genetic relationship, they differ radically in their pathogenicity and transmission. Here we report the complete genomic sequence of Y. pseudotuberculosis IP32953 and its use for detailed genome comparisons to available Y. pestis sequences. Analyses of identified differences across a panel of Yersinia isolates from around the world reveals 32 Y. pestis chromosomal genes that, together with the two Y. pestis-specific plasmids, represent the only new genetic material in Y. pestis acquired since the divergence from Y.more » pseudotuberculosis. In contrast, 149 new pseudogenes (doubling the previous estimate) and 317 genes absent from Y. pestis were detected, indicating that as many as 13% of Y. pseudotuberculosis genes no longer function in Y. pestis. Extensive IS-mediated genome rearrangements and reductive evolution through massive gene loss, resulting in elimination and modification of pre-existing gene expression pathways appear to be more important than acquisition of new genes in the evolution of Y. pestis. These results provide a sobering example of how a highly virulent epidemic clone can suddenly emerge from a less virulent, closely related progenitor.« less

  6. Comparative genomics of the marine bacterial genus Glaciecola reveals the high degree of genomic diversity and genomic characteristic for cold adaptation.

    PubMed

    Qin, Qi-Long; Xie, Bin-Bin; Yu, Yong; Shu, Yan-Li; Rong, Jin-Cheng; Zhang, Yan-Jiao; Zhao, Dian-Li; Chen, Xiu-Lan; Zhang, Xi-Ying; Chen, Bo; Zhou, Bai-Cheng; Zhang, Yu-Zhong

    2014-06-01

    To what extent the genomes of different species belonging to one genus can be diverse and the relationship between genomic differentiation and environmental factor remain unclear for oceanic bacteria. With many new bacterial genera and species being isolated from marine environments, this question warrants attention. In this study, we sequenced all the type strains of the published species of Glaciecola, a recently defined cold-adapted genus with species from diverse marine locations, to study the genomic diversity and cold-adaptation strategy in this genus.The genome size diverged widely from 3.08 to 5.96 Mb, which can be explained by massive gene gain and loss events. Horizontal gene transfer and new gene emergence contributed substantially to the genome size expansion. The genus Glaciecola had an open pan-genome. Comparative genomic research indicated that species of the genus Glaciecola had high diversity in genome size, gene content and genetic relatedness. This may be prevalent in marine bacterial genera considering the dynamic and complex environments of the ocean. Species of Glaciecola had some common genomic features related to cold adaptation, which enable them to thrive and play a role in biogeochemical cycle in the cold marine environments.

  7. Within-Genome Evolution of REPINs: a New Family of Miniature Mobile DNA in Bacteria

    PubMed Central

    Bertels, Frederic; Rainey, Paul B.

    2011-01-01

    Repetitive sequences are a conserved feature of many bacterial genomes. While first reported almost thirty years ago, and frequently exploited for genotyping purposes, little is known about their origin, maintenance, or processes affecting the dynamics of within-genome evolution. Here, beginning with analysis of the diversity and abundance of short oligonucleotide sequences in the genome of Pseudomonas fluorescens SBW25, we show that over-represented short sequences define three distinct groups (GI, GII, and GIII) of repetitive extragenic palindromic (REP) sequences. Patterns of REP distribution suggest that closely linked REP sequences form a functional replicative unit: REP doublets are over-represented, randomly distributed in extragenic space, and more highly conserved than singlets. In addition, doublets are organized as inverted repeats, which together with intervening spacer sequences are predicted to form hairpin structures in ssDNA or mRNA. We refer to these newly defined entities as REPINs (REP doublets forming hairpins) and identify short reads from population sequencing that reveal putative transposition intermediates. The proximal relationship between GI, GII, and GIII REPINs and specific REP-associated tyrosine transposases (RAYTs), combined with features of the putative transposition intermediate, suggests a mechanism for within-genome dissemination. Analysis of the distribution of REPs in a range of RAYT–containing bacterial genomes, including Escherichia coli K-12 and Nostoc punctiforme, show that REPINs are a widely distributed, but hitherto unrecognized, family of miniature non-autonomous mobile DNA. PMID:21698139

  8. Within-genome evolution of REPINs: a new family of miniature mobile DNA in bacteria.

    PubMed

    Bertels, Frederic; Rainey, Paul B

    2011-06-01

    Repetitive sequences are a conserved feature of many bacterial genomes. While first reported almost thirty years ago, and frequently exploited for genotyping purposes, little is known about their origin, maintenance, or processes affecting the dynamics of within-genome evolution. Here, beginning with analysis of the diversity and abundance of short oligonucleotide sequences in the genome of Pseudomonas fluorescens SBW25, we show that over-represented short sequences define three distinct groups (GI, GII, and GIII) of repetitive extragenic palindromic (REP) sequences. Patterns of REP distribution suggest that closely linked REP sequences form a functional replicative unit: REP doublets are over-represented, randomly distributed in extragenic space, and more highly conserved than singlets. In addition, doublets are organized as inverted repeats, which together with intervening spacer sequences are predicted to form hairpin structures in ssDNA or mRNA. We refer to these newly defined entities as REPINs (REP doublets forming hairpins) and identify short reads from population sequencing that reveal putative transposition intermediates. The proximal relationship between GI, GII, and GIII REPINs and specific REP-associated tyrosine transposases (RAYTs), combined with features of the putative transposition intermediate, suggests a mechanism for within-genome dissemination. Analysis of the distribution of REPs in a range of RAYT-containing bacterial genomes, including Escherichia coli K-12 and Nostoc punctiforme, show that REPINs are a widely distributed, but hitherto unrecognized, family of miniature non-autonomous mobile DNA.

  9. Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world

    PubMed Central

    Koonin, Eugene V.; Wolf, Yuri I.

    2008-01-01

    The first bacterial genome was sequenced in 1995, and the first archaeal genome in 1996. Soon after these breakthroughs, an exponential rate of genome sequencing was established, with a doubling time of approximately 20 months for bacteria and approximately 34 months for archaea. Comparative analysis of the hundreds of sequenced bacterial and dozens of archaeal genomes leads to several generalizations on the principles of genome organization and evolution. A crucial finding that enables functional characterization of the sequenced genomes and evolutionary reconstruction is that the majority of archaeal and bacterial genes have conserved orthologs in other, often, distant organisms. However, comparative genomics also shows that horizontal gene transfer (HGT) is a dominant force of prokaryotic evolution, along with the loss of genetic material resulting in genome contraction. A crucial component of the prokaryotic world is the mobilome, the enormous collection of viruses, plasmids and other selfish elements, which are in constant exchange with more stable chromosomes and serve as HGT vehicles. Thus, the prokaryotic genome space is a tightly connected, although compartmentalized, network, a novel notion that undermines the ‘Tree of Life’ model of evolution and requires a new conceptual framework and tools for the study of prokaryotic evolution. PMID:18948295

  10. Dynamic evolution of Geranium mitochondrial genomes through multiple horizontal and intracellular gene transfers.

    PubMed

    Park, Seongjun; Grewe, Felix; Zhu, Andan; Ruhlman, Tracey A; Sabir, Jamal; Mower, Jeffrey P; Jansen, Robert K

    2015-10-01

    The exchange of genetic material between cellular organelles through intracellular gene transfer (IGT) or between species by horizontal gene transfer (HGT) has played an important role in plant mitochondrial genome evolution. The mitochondrial genomes of Geraniaceae display a number of unusual phenomena including highly accelerated rates of synonymous substitutions, extensive gene loss and reduction in RNA editing. Mitochondrial DNA sequences assembled for 17 species of Geranium revealed substantial reduction in gene and intron content relative to the ancestor of the Geranium lineage. Comparative analyses of nuclear transcriptome data suggest that a number of these sequences have been functionally relocated to the nucleus via IGT. Evidence for rampant HGT was detected in several Geranium species containing foreign organellar DNA from diverse eudicots, including many transfers from parasitic plants. One lineage has experienced multiple, independent HGT episodes, many of which occurred within the past 5.5 Myr. Both duplicative and recapture HGT were documented in Geranium lineages. The mitochondrial genome of Geranium brycei contains at least four independent HGT tracts that are absent in its nearest relative. Furthermore, G. brycei mitochondria carry two copies of the cox1 gene that differ in intron content, providing insight into contrasting hypotheses on cox1 intron evolution. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  11. Physical Mapping and Refinement of the Painted Turtle Genome (Chrysemys picta) Inform Amniote Genome Evolution and Challenge Turtle-Bird Chromosomal Conservation

    PubMed Central

    Badenhorst, Daleen; Hillier, LaDeana W.; Literman, Robert; Montiel, Eugenia Elisabet; Radhakrishnan, Srihari; Shen, Yingjia; Minx, Patrick; Janes, Daniel E.; Warren, Wesley C.; Edwards, Scott V.; Valenzuela, Nicole

    2015-01-01

    Comparative genomics continues illuminating amniote genome evolution, but for many lineages our understanding remains incomplete. Here, we refine the assembly (CPI 3.0.3 NCBI AHGY00000000.2) and develop a cytogenetic map of the painted turtle (Chrysemys picta—CPI) genome, the first in turtles and in vertebrates with temperature-dependent sex determination. A comparison of turtle genomes with those of chicken, selected nonavian reptiles, and human revealed shared and novel genomic features, such as numerous chromosomal rearrangements. The largest conserved syntenic blocks between birds and turtles exist in four macrochromosomes, whereas rearrangements were evident in these and other chromosomes, disproving that turtles and birds retain fully conserved macrochromosomes for greater than 300 Myr. C-banding revealed large heterochromatic blocks in the centromeric region of only few chromosomes. The nucleolar-organizing region (NOR) mapped to a single CPI microchromosome, whereas in some turtles and lizards the NOR maps to nonhomologous sex-chromosomes, thus revealing independent translocations of the NOR in various reptilian lineages. There was no evidence for recent chromosomal fusions as interstitial telomeric-DNA was absent. Some repeat elements (CR1-like, Gypsy) were enriched in the centromeres of five chromosomes, whereas others were widespread in the CPI genome. Bacterial artificial chromosome (BAC) clones were hybridized to 18 of the 25 CPI chromosomes and anchored to a G-banded ideogram. Several CPI sex-determining genes mapped to five chromosomes, and homology was detected between yet other CPI autosomes and the globally nonhomologous sex chromosomes of chicken, other turtles, and squamates, underscoring the independent evolution of vertebrate sex-determining mechanisms. PMID:26108489

  12. Evolution Analysis of Simple Sequence Repeats in Plant Genome.

    PubMed

    Qin, Zhen; Wang, Yanping; Wang, Qingmei; Li, Aixian; Hou, Fuyun; Zhang, Liming

    2015-01-01

    Simple sequence repeats (SSRs) are widespread units on genome sequences, and play many important roles in plants. In order to reveal the evolution of plant genomes, we investigated the evolutionary regularities of SSRs during the evolution of plant species and the plant kingdom by analysis of twelve sequenced plant genome sequences. First, in the twelve studied plant genomes, the main SSRs were those which contain repeats of 1-3 nucleotides combination. Second, in mononucleotide SSRs, the A/T percentage gradually increased along with the evolution of plants (except for P. patens). With the increase of SSRs repeat number the percentage of A/T in C. reinhardtii had no significant change, while the percentage of A/T in terrestrial plants species gradually declined. Third, in dinucleotide SSRs, the percentage of AT/TA increased along with the evolution of plant kingdom and the repeat number increased in terrestrial plants species. This trend was more obvious in dicotyledon than monocotyledon. The percentage of CG/GC showed the opposite pattern to the AT/TA. Forth, in trinucleotide SSRs, the percentages of combinations including two or three A/T were in a rising trend along with the evolution of plant kingdom; meanwhile with the increase of SSRs repeat number in plants species, different species chose different combinations as dominant SSRs. SSRs in C. reinhardtii, P. patens, Z. mays and A. thaliana showed their specific patterns related to evolutionary position or specific changes of genome sequences. The results showed that, SSRs not only had the general pattern in the evolution of plant kingdom, but also were associated with the evolution of the specific genome sequence. The study of the evolutionary regularities of SSRs provided new insights for the analysis of the plant genome evolution.

  13. One Bacterial Cell, One Complete Genome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woyke, Tanja; Tighe, Damon; Mavrommatis, Konstantinos

    2010-04-26

    While the bulk of the finished microbial genomes sequenced to date are derived from cultured bacterial and archaeal representatives, the vast majority of microorganisms elude current culturing attempts, severely limiting the ability to recover complete or even partial genomes from these environmental species. Single cell genomics is a novel culture-independent approach, which enables access to the genetic material of an individual cell. No single cell genome has to our knowledge been closed and finished to date. Here we report the completed genome from an uncultured single cell of Candidatus Sulcia muelleri DMIN. Digital PCR on single symbiont cells isolated frommore » the bacteriome of the green sharpshooter Draeculacephala minerva bacteriome allowed us to assess that this bacteria is polyploid with genome copies ranging from approximately 200?900 per cell, making it a most suitable target for single cell finishing efforts. For single cell shotgun sequencing, an individual Sulcia cell was isolated and whole genome amplified by multiple displacement amplification (MDA). Sanger-based finishing methods allowed us to close the genome. To verify the correctness of our single cell genome and exclude MDA-derived artifacts, we independently shotgun sequenced and assembled the Sulcia genome from pooled bacteriomes using a metagenomic approach, yielding a nearly identical genome. Four variations we detected appear to be genuine biological differences between the two samples. Comparison of the single cell genome with bacteriome metagenomic sequence data detected two single nucleotide polymorphisms (SNPs), indicating extremely low genetic diversity within a Sulcia population. This study demonstrates the power of single cell genomics to generate a complete, high quality, non-composite reference genome within an environmental sample, which can be used for population genetic analyzes.« less

  14. MOSAIC: an online database dedicated to the comparative genomics of bacterial strains at the intra-species level.

    PubMed

    Chiapello, Hélène; Gendrault, Annie; Caron, Christophe; Blum, Jérome; Petit, Marie-Agnès; El Karoui, Meriem

    2008-11-27

    The recent availability of complete sequences for numerous closely related bacterial genomes opens up new challenges in comparative genomics. Several methods have been developed to align complete genomes at the nucleotide level but their use and the biological interpretation of results are not straightforward. It is therefore necessary to develop new resources to access, analyze, and visualize genome comparisons. Here we present recent developments on MOSAIC, a generalist comparative bacterial genome database. This database provides the bacteriologist community with easy access to comparisons of complete bacterial genomes at the intra-species level. The strategy we developed for comparison allows us to define two types of regions in bacterial genomes: backbone segments (i.e., regions conserved in all compared strains) and variable segments (i.e., regions that are either specific to or variable in one of the aligned genomes). Definition of these segments at the nucleotide level allows precise comparative and evolutionary analyses of both coding and non-coding regions of bacterial genomes. Such work is easily performed using the MOSAIC Web interface, which allows browsing and graphical visualization of genome comparisons. The MOSAIC database now includes 493 pairwise comparisons and 35 multiple maximal comparisons representing 78 bacterial species. Genome conserved regions (backbones) and variable segments are presented in various formats for further analysis. A graphical interface allows visualization of aligned genomes and functional annotations. The MOSAIC database is available online at http://genome.jouy.inra.fr/mosaic.

  15. Genomic organization and evolution of the Atlantic salmon hemoglobin repertoire

    PubMed Central

    2010-01-01

    Background The genomes of salmonids are considered pseudo-tetraploid undergoing reversion to a stable diploid state. Given the genome duplication and extensive biological data available for salmonids, they are excellent model organisms for studying comparative genomics, evolutionary processes, fates of duplicated genes and the genetic and physiological processes associated with complex behavioral phenotypes. The evolution of the tetrapod hemoglobin genes is well studied; however, little is known about the genomic organization and evolution of teleost hemoglobin genes, particularly those of salmonids. The Atlantic salmon serves as a representative salmonid species for genomics studies. Given the well documented role of hemoglobin in adaptation to varied environmental conditions as well as its use as a model protein for evolutionary analyses, an understanding of the genomic structure and organization of the Atlantic salmon α and β hemoglobin genes is of great interest. Results We identified four bacterial artificial chromosomes (BACs) comprising two hemoglobin gene clusters spanning the entire α and β hemoglobin gene repertoire of the Atlantic salmon genome. Their chromosomal locations were established using fluorescence in situ hybridization (FISH) analysis and linkage mapping, demonstrating that the two clusters are located on separate chromosomes. The BACs were sequenced and assembled into scaffolds, which were annotated for putatively functional and pseudogenized hemoglobin-like genes. This revealed that the tail-to-tail organization and alternating pattern of the α and β hemoglobin genes are well conserved in both clusters, as well as that the Atlantic salmon genome houses substantially more hemoglobin genes, including non-Bohr β globin genes, than the genomes of other teleosts that have been sequenced. Conclusions We suggest that the most parsimonious evolutionary path leading to the present organization of the Atlantic salmon hemoglobin genes involves

  16. Nothing in Evolution Makes Sense Except in the Light of Genomics: Read-Write Genome Evolution as an Active Biological Process.

    PubMed

    Shapiro, James A

    2016-06-08

    The 21st century genomics-based analysis of evolutionary variation reveals a number of novel features impossible to predict when Dobzhansky and other evolutionary biologists formulated the neo-Darwinian Modern Synthesis in the middle of the last century. These include three distinct realms of cell evolution; symbiogenetic fusions forming eukaryotic cells with multiple genome compartments; horizontal organelle, virus and DNA transfers; functional organization of proteins as systems of interacting domains subject to rapid evolution by exon shuffling and exonization; distributed genome networks integrated by mobile repetitive regulatory signals; and regulation of multicellular development by non-coding lncRNAs containing repetitive sequence components. Rather than single gene traits, all phenotypes involve coordinated activity by multiple interacting cell molecules. Genomes contain abundant and functional repetitive components in addition to the unique coding sequences envisaged in the early days of molecular biology. Combinatorial coding, plus the biochemical abilities cells possess to rearrange DNA molecules, constitute a powerful toolbox for adaptive genome rewriting. That is, cells possess "Read-Write Genomes" they alter by numerous biochemical processes capable of rapidly restructuring cellular DNA molecules. Rather than viewing genome evolution as a series of accidental modifications, we can now study it as a complex biological process of active self-modification.

  17. Comparative functional pan-genome analyses to build connections between genomic dynamics and phenotypic evolution in polycyclic aromatic hydrocarbon metabolism in the genus Mycobacterium.

    PubMed

    Kweon, Ohgew; Kim, Seong-Jae; Blom, Jochen; Kim, Sung-Kwan; Kim, Bong-Soo; Baek, Dong-Heon; Park, Su Inn; Sutherland, John B; Cerniglia, Carl E

    2015-02-14

    The bacterial genus Mycobacterium is of great interest in the medical and biotechnological fields. Despite a flood of genome sequencing and functional genomics data, significant gaps in knowledge between genome and phenome seriously hinder efforts toward the treatment of mycobacterial diseases and practical biotechnological applications. In this study, we propose the use of systematic, comparative functional pan-genomic analysis to build connections between genomic dynamics and phenotypic evolution in polycyclic aromatic hydrocarbon (PAH) metabolism in the genus Mycobacterium. Phylogenetic, phenotypic, and genomic information for 27 completely genome-sequenced mycobacteria was systematically integrated to reconstruct a mycobacterial phenotype network (MPN) with a pan-genomic concept at a network level. In the MPN, mycobacterial phenotypes show typical scale-free relationships. PAH degradation is an isolated phenotype with the lowest connection degree, consistent with phylogenetic and environmental isolation of PAH degraders. A series of functional pan-genomic analyses provide conserved and unique types of genomic evidence for strong epistatic and pleiotropic impacts on evolutionary trajectories of the PAH-degrading phenotype. Under strong natural selection, the detailed gene gain/loss patterns from horizontal gene transfer (HGT)/deletion events hypothesize a plausible evolutionary path, an epistasis-based birth and pleiotropy-dependent death, for PAH metabolism in the genus Mycobacterium. This study generated a practical mycobacterial compendium of phenotypic and genomic changes, focusing on the PAH-degrading phenotype, with a pan-genomic perspective of the evolutionary events and the environmental challenges. Our findings suggest that when selection acts on PAH metabolism, only a small fraction of possible trajectories is likely to be observed, owing mainly to a combination of the ambiguous phenotypic effects of PAHs and the corresponding pleiotropy- and epistasis

  18. Mitochondrial genome evolution in the Saccharomyces sensu stricto complex.

    PubMed

    Ruan, Jiangxing; Cheng, Jian; Zhang, Tongcun; Jiang, Huifeng

    2017-01-01

    Exploring the evolutionary patterns of mitochondrial genomes is important for our understanding of the Saccharomyces sensu stricto (SSS) group, which is a model system for genomic evolution and ecological analysis. In this study, we first obtained the complete mitochondrial sequences of two important species, Saccharomyces mikatae and Saccharomyces kudriavzevii. We then compared the mitochondrial genomes in the SSS group with those of close relatives, and found that the non-coding regions evolved rapidly, including dramatic expansion of intergenic regions, fast evolution of introns and almost 20-fold higher rearrangement rates than those of the nuclear genomes. However, the coding regions, and especially the protein-coding genes, are more conserved than those in the nuclear genomes of the SSS group. The different evolutionary patterns of coding and non-coding regions in the mitochondrial and nuclear genomes may be related to the origin of the aerobic fermentation lifestyle in this group. Our analysis thus provides novel insights into the evolution of mitochondrial genomes.

  19. Massively Convergent Evolution for Ribosomal Protein Gene Content in Plastid and Mitochondrial Genomes

    PubMed Central

    Maier, Uwe-G; Zauner, Stefan; Woehle, Christian; Bolte, Kathrin; Hempel, Franziska; Allen, John F.; Martin, William F.

    2013-01-01

    Plastid and mitochondrial genomes have undergone parallel evolution to encode the same functional set of genes. These encode conserved protein components of the electron transport chain in their respective bioenergetic membranes and genes for the ribosomes that express them. This highly convergent aspect of organelle genome evolution is partly explained by the redox regulation hypothesis, which predicts a separate plastid or mitochondrial location for genes encoding bioenergetic membrane proteins of either photosynthesis or respiration. Here we show that convergence in organelle genome evolution is far stronger than previously recognized, because the same set of genes for ribosomal proteins is independently retained by both plastid and mitochondrial genomes. A hitherto unrecognized selective pressure retains genes for the same ribosomal proteins in both organelles. On the Escherichia coli ribosome assembly map, the retained proteins are implicated in 30S and 50S ribosomal subunit assembly and initial rRNA binding. We suggest that ribosomal assembly imposes functional constraints that govern the retention of ribosomal protein coding genes in organelles. These constraints are subordinate to redox regulation for electron transport chain components, which anchor the ribosome to the organelle genome in the first place. As organelle genomes undergo reduction, the rRNAs also become smaller. Below size thresholds of approximately 1,300 nucleotides (16S rRNA) and 2,100 nucleotides (26S rRNA), all ribosomal protein coding genes are lost from organelles, while electron transport chain components remain organelle encoded as long as the organelles use redox chemistry to generate a proton motive force. PMID:24259312

  20. Evolution of the Largest Mammalian Genome.

    PubMed

    Evans, Ben J; Upham, Nathan S; Golding, Goeffrey B; Ojeda, Ricardo A; Ojeda, Agustina A

    2017-06-01

    The genome of the red vizcacha rat (Rodentia, Octodontidae, Tympanoctomys barrerae) is the largest of all mammals, and about double the size of their close relative, the mountain vizcacha rat Octomys mimax, even though the lineages that gave rise to these species diverged from each other only about 5 Ma. The mechanism for this rapid genome expansion is controversial, and hypothesized to be a consequence of whole genome duplication or accumulation of repetitive elements. To test these alternative but nonexclusive hypotheses, we gathered and evaluated evidence from whole transcriptome and whole genome sequences of T. barrerae and O. mimax. We recovered support for genome expansion due to accumulation of a diverse assemblage of repetitive elements, which represent about one half and one fifth of the genomes of T. barrerae and O. mimax, respectively, but we found no strong signal of whole genome duplication. In both species, repetitive sequences were rare in transcribed regions as compared with the rest of the genome, and mostly had no close match to annotated repetitive sequences from other rodents. These findings raise new questions about the genomic dynamics of these repetitive elements, their connection to widespread chromosomal fissions that occurred in the T. barrerae ancestor, and their fitness effects-including during the evolution of hypersaline dietary tolerance in T. barrerae. ©The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. Bacterial genome engineering and synthetic biology: combating pathogens.

    PubMed

    Krishnamurthy, Malathy; Moore, Richard T; Rajamani, Sathish; Panchal, Rekha G

    2016-11-04

    The emergence and prevalence of multidrug resistant (MDR) pathogenic bacteria poses a serious threat to human and animal health globally. Nosocomial infections and common ailments such as pneumonia, wound, urinary tract, and bloodstream infections are becoming more challenging to treat due to the rapid spread of MDR pathogenic bacteria. According to recent reports by the World Health Organization (WHO) and Centers for Disease Control and Prevention (CDC), there is an unprecedented increase in the occurrence of MDR infections worldwide. The rise in these infections has generated an economic strain worldwide, prompting the WHO to endorse a global action plan to improve awareness and understanding of antimicrobial resistance. This health crisis necessitates an immediate action to target the underlying mechanisms of drug resistance in bacteria. The advent of new bacterial genome engineering and synthetic biology (SB) tools is providing promising diagnostic and treatment plans to monitor and treat widespread recalcitrant bacterial infections. Key advances in genetic engineering approaches can successfully aid in targeting and editing pathogenic bacterial genomes for understanding and mitigating drug resistance mechanisms. In this review, we discuss the application of specific genome engineering and SB methods such as recombineering, clustered regularly interspaced short palindromic repeats (CRISPR), and bacterial cell-cell signaling mechanisms for pathogen targeting. The utility of these tools in developing antibacterial strategies such as novel antibiotic production, phage therapy, diagnostics and vaccine production to name a few, are also highlighted. The prevalent use of antibiotics and the spread of MDR bacteria raise the prospect of a post-antibiotic era, which underscores the need for developing novel therapeutics to target MDR pathogens. The development of enabling SB technologies offers promising solutions to deliver safe and effective antibacterial therapies.

  2. Pan genome and CRISPR analyses of the bacterial fish pathogen Moritella viscosa.

    PubMed

    Karlsen, Christian; Hjerde, Erik; Klemetsen, Terje; Willassen, Nils Peder

    2017-04-20

    Winter-ulcer Moritella viscosa infections continue to be a significant burden in Atlantic salmon (Salmo salar L.) farming. M. viscosa comprises two main clusters that differ in genetic variation and phenotypes including virulence. Horizontal gene transfer through acquisition and loss of mobile genetic elements (MGEs) is a major driving force of bacterial diversification. To gain insight into genomic traits that could affect sublineage evolution within this bacterium we examined the genome sequences of twelve M. viscosa strains. Matches between M. viscosa clustered, regularly interspaced, short palindromic, repeats and associated cas genes (CRISPR-Cas) were analysed to correlate CRISPR-Cas with adaptive immunity against MGEs. The comparative genomic analysis of M. viscosa isolates from across the North Atlantic region and from different fish species support delineation of M. viscosa into four phylogenetic lineages. The results showed that M. viscosa carries two distinct variants of the CRISPR-Cas subtype I-F systems and that CRISPR features follow the phylogenetic lineages. A subset of the spacer content match prophage and plasmid genes dispersed among the M. viscosa strains. Further analysis revealed that prophage and plasmid-like element distribution were reflected in the content of the CRISPR-spacer profiles. Our data suggests that CRISPR-Cas mediated interactions with MGEs impact genome properties among M. viscosa, and that patterns in spacer and MGE distributions are linked to strain relationships.

  3. Computational Analysis of Uncharacterized Proteins of Environmental Bacterial Genome

    NASA Astrophysics Data System (ADS)

    Coxe, K. J.; Kumar, M.

    2017-12-01

    Betaproteobacteria strain CB is a gram-negative bacterium in the phylum Proteobacteria and are found naturally in soil and water. In this complex environment, bacteria play a key role in efficiently eliminating the organic material and other pollutants from wastewater. To investigate the process of pollutant removal from wastewater using bacteria, it is important to characterize the proteins encoded by the bacterial genome. Our study combines a number of bioinformatics tools to predict the function of unassigned proteins in the bacterial genome. The genome of Betaproteobacteria strain CB contains 2,112 proteins in which function of 508 proteins are unknown, termed as uncharacterized proteins (UPs). The localization of the UPs with in the cell was determined and the structure of 38 UPs was accurately predicted. These UPs were predicted to belong to various classes of proteins such as enzymes, transporters, binding proteins, signal peptides, transmembrane proteins and other proteins. The outcome of this work will help better understand wastewater treatment mechanism.

  4. IonGAP: integrative bacterial genome analysis for Ion Torrent sequence data.

    PubMed

    Baez-Ortega, Adrian; Lorenzo-Diaz, Fabian; Hernandez, Mariano; Gonzalez-Vila, Carlos Ignacio; Roda-Garcia, Jose Luis; Colebrook, Marcos; Flores, Carlos

    2015-09-01

    We introduce IonGAP, a publicly available Web platform designed for the analysis of whole bacterial genomes using Ion Torrent sequence data. Besides assembly, it integrates a variety of comparative genomics, annotation and bacterial classification routines, based on the widely used FASTQ, BAM and SRA file formats. Benchmarking with different datasets evidenced that IonGAP is a fast, powerful and simple-to-use bioinformatics tool. By releasing this platform, we aim to translate low-cost bacterial genome analysis for microbiological prevention and control in healthcare, agroalimentary and pharmaceutical industry applications. IonGAP is hosted by the ITER's Teide-HPC supercomputer and is freely available on the Web for non-commercial use at http://iongap.hpc.iter.es. mcolesan@ull.edu.es or cflores@ull.edu.es Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. ABCdb: an online resource for ABC transporter repertories from sequenced archaeal and bacterial genomes.

    PubMed

    Fichant, Gwennaele; Basse, Marie-Jeanne; Quentin, Yves

    2006-03-01

    The ATP-binding cassette (ABC) transporters are one of the major classes of active transporters. They are widespread in archaea, bacteria, and eukaryota, indicating that they have arisen early in evolution. They are involved in many essential physiological processes, but the majority import or export a wide variety of compounds across cellular membranes. These systems share a common architecture composed of four (exporters) or five (importers) domains. To identify and reconstruct functional ABC transporters encoded by archaeal and bacterial genomes, we have developed a bioinformatic strategy. Cross-reference to the transport classification system is used to predict the type of compound transported. A high quality of annotation is achieved by manual verification of the predictions. However, in order to face the rapid increase in the number of published genomes, we also include analyses of genomes issuing directly from the automated strategy. Querying the database (http://www-abcdb.biotoul.fr) allows to easily retrieve ABC transporter repertories and related data. Additional query tools have been developed for the analysis of the ABC family from both functional and evolutionary perspectives.

  6. Evolution and Diversity of Transposable Elements in Vertebrate Genomes.

    PubMed

    Sotero-Caio, Cibele G; Platt, Roy N; Suh, Alexander; Ray, David A

    2017-01-01

    Transposable elements (TEs) are selfish genetic elements that mobilize in genomes via transposition or retrotransposition and often make up large fractions of vertebrate genomes. Here, we review the current understanding of vertebrate TE diversity and evolution in the context of recent advances in genome sequencing and assembly techniques. TEs make up 4-60% of assembled vertebrate genomes, and deeply branching lineages such as ray-finned fishes and amphibians generally exhibit a higher TE diversity than the more recent radiations of birds and mammals. Furthermore, the list of taxa with exceptional TE landscapes is growing. We emphasize that the current bottleneck in genome analyses lies in the proper annotation of TEs and provide examples where superficial analyses led to misleading conclusions about genome evolution. Finally, recent advances in long-read sequencing will soon permit access to TE-rich genomic regions that previously resisted assembly including the gigantic, TE-rich genomes of salamanders and lungfishes. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. The Small Nuclear Genomes of Selaginella Are Associated with a Low Rate of Genome Size Evolution.

    PubMed

    Baniaga, Anthony E; Arrigo, Nils; Barker, Michael S

    2016-06-03

    The haploid nuclear genome size (1C DNA) of vascular land plants varies over several orders of magnitude. Much of this observed diversity in genome size is due to the proliferation and deletion of transposable elements. To date, all vascular land plant lineages with extremely small nuclear genomes represent recently derived states, having ancestors with much larger genome sizes. The Selaginellaceae represent an ancient lineage with extremely small genomes. It is unclear how small nuclear genomes evolved in Selaginella We compared the rates of nuclear genome size evolution in Selaginella and major vascular plant clades in a comparative phylogenetic framework. For the analyses, we collected 29 new flow cytometry estimates of haploid genome size in Selaginella to augment publicly available data. Selaginella possess some of the smallest known haploid nuclear genome sizes, as well as the lowest rate of genome size evolution observed across all vascular land plants included in our analyses. Additionally, our analyses provide strong support for a history of haploid nuclear genome size stasis in Selaginella Our results indicate that Selaginella, similar to other early diverging lineages of vascular land plants, has relatively low rates of genome size evolution. Further, our analyses highlight that a rapid transition to a small genome size is only one route to an extremely small genome. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Genome size diversity in orchids: consequences and evolution

    PubMed Central

    Leitch, I. J.; Kahandawala, I.; Suda, J.; Hanson, L.; Ingrouille, M. J.; Chase, M. W.; Fay, M. F.

    2009-01-01

    Background The amount of DNA comprising the genome of an organism (its genome size) varies a remarkable 40 000-fold across eukaryotes, yet most groups are characterized by much narrower ranges (e.g. 14-fold in gymnosperms, 3- to 4-fold in mammals). Angiosperms stand out as one of the most variable groups with genome sizes varying nearly 2000-fold. Nevertheless within angiosperms the majority of families are characterized by genomes which are small and vary little. Species with large genomes are mostly restricted to a few monocots families including Orchidaceae. Scope A survey of the literature revealed that genome size data for Orchidaceae are comparatively rare representing just 327 species. Nevertheless they reveal that Orchidaceae are currently the most variable angiosperm family with genome sizes ranging 168-fold (1C = 0·33–55·4 pg). Analysing the data provided insights into the distribution, evolution and possible consequences to the plant of this genome size diversity. Conclusions Superimposing the data onto the increasingly robust phylogenetic tree of Orchidaceae revealed how different subfamilies were characterized by distinct genome size profiles. Epidendroideae possessed the greatest range of genome sizes, although the majority of species had small genomes. In contrast, the largest genomes were found in subfamilies Cypripedioideae and Vanilloideae. Genome size evolution within this subfamily was analysed as this is the only one with reasonable representation of data. This approach highlighted striking differences in genome size and karyotype evolution between the closely related Cypripedium, Paphiopedilum and Phragmipedium. As to the consequences of genome size diversity, various studies revealed that this has both practical (e.g. application of genetic fingerprinting techniques) and biological consequences (e.g. affecting where and when an orchid may grow) and emphasizes the importance of obtaining further genome size data given the considerable

  9. Hypothesis: Gene-rich plastid genomes in red algae may be an outcome of nuclear genome reduction.

    PubMed

    Qiu, Huan; Lee, Jun Mo; Yoon, Hwan Su; Bhattacharya, Debashish

    2017-06-01

    Red algae (Rhodophyta) putatively diverged from the eukaryote tree of life >1.2 billion years ago and are the source of plastids in the ecologically important diatoms, haptophytes, and dinoflagellates. In general, red algae contain the largest plastid gene inventory among all such organelles derived from primary, secondary, or additional rounds of endosymbiosis. In contrast, their nuclear gene inventory is reduced when compared to their putative sister lineage, the Viridiplantae, and other photosynthetic lineages. The latter is thought to have resulted from a phase of genome reduction that occurred in the stem lineage of Rhodophyta. A recent comparative analysis of a taxonomically broad collection of red algal and Viridiplantae plastid genomes demonstrates that the red algal ancestor encoded ~1.5× more plastid genes than Viridiplantae. This difference is primarily explained by more extensive endosymbiotic gene transfer (EGT) in the stem lineage of Viridiplantae, when compared to red algae. We postulate that limited EGT in Rhodophytes resulted from the countervailing force of ancient, and likely recurrent, nuclear genome reduction. In other words, the propensity for nuclear gene loss led to the retention of red algal plastid genes that would otherwise have undergone intracellular gene transfer to the nucleus. This hypothesis recognizes the primacy of nuclear genome evolution over that of plastids, which have no inherent control of their gene inventory and can change dramatically (e.g., secondarily non-photosynthetic eukaryotes, dinoflagellates) in response to selection acting on the host lineage. © 2017 Phycological Society of America.

  10. Rapid and Recent Evolution of LTR Retrotransposons Drives Rice Genome Evolution During the Speciation of AA-Genome Oryza Species

    PubMed Central

    Zhang, Qun-Jie; Gao, Li-Zhi

    2017-01-01

    The dynamics of long terminal repeat (LTR) retrotransposons and their contribution to genome evolution during plant speciation have remained largely unanswered. Here, we perform a genome-wide comparison of all eight Oryza AA-genome species, and identify 3911 intact LTR retrotransposons classified into 790 families. The top 44 most abundant LTR retrotransposon families show patterns of rapid and distinct diversification since the species split over the last ∼4.8 MY (million years). Phylogenetic and read depth analyses of 11 representative retrotransposon families further provide a comprehensive evolutionary landscape of these changes. Compared with Ty1-copia, independent bursts of Ty3-gypsy retrotransposon expansions have occurred with the three largest showing signatures of lineage-specific evolution. The estimated insertion times of 2213 complete retrotransposons from the top 23 most abundant families reveal divergent life histories marked by speedy accumulation, decline, and extinction that differed radically between species. We hypothesize that this rapid evolution of LTR retrotransposons not only divergently shaped the architecture of rice genomes but also contributed to the process of speciation and diversification of rice. PMID:28413161

  11. Retroelements and their impact on genome evolution and functioning.

    PubMed

    Gogvadze, Elena; Buzdin, Anton

    2009-12-01

    Retroelements comprise a considerable fraction of eukaryotic genomes. Since their initial discovery by Barbara McClintock in maize DNA, retroelements have been found in genomes of almost all organisms. First considered as a "junk DNA" or genomic parasites, they were shown to influence genome functioning and to promote genetic innovations. For this reason, they were suggested as an important creative force in the genome evolution and adaptation of an organism to altered environmental conditions. In this review, we summarize the up-to-date knowledge of different ways of retroelement involvement in structural and functional evolution of genes and genomes, as well as the mechanisms generated by cells to control their retrotransposition.

  12. Evolution of gastropod mitochondrial genome arrangements

    PubMed Central

    2008-01-01

    Background Gastropod mitochondrial genomes exhibit an unusually great variety of gene orders compared to other metazoan mitochondrial genome such as e.g those of vertebrates. Hence, gastropod mitochondrial genomes constitute a good model system to study patterns, rates, and mechanisms of mitochondrial genome rearrangement. However, this kind of evolutionary comparative analysis requires a robust phylogenetic framework of the group under study, which has been elusive so far for gastropods in spite of the efforts carried out during the last two decades. Here, we report the complete nucleotide sequence of five mitochondrial genomes of gastropods (Pyramidella dolabrata, Ascobulla fragilis, Siphonaria pectinata, Onchidella celtica, and Myosotella myosotis), and we analyze them together with another ten complete mitochondrial genomes of gastropods currently available in molecular databases in order to reconstruct the phylogenetic relationships among the main lineages of gastropods. Results Comparative analyses with other mollusk mitochondrial genomes allowed us to describe molecular features and general trends in the evolution of mitochondrial genome organization in gastropods. Phylogenetic reconstruction with commonly used methods of phylogenetic inference (ME, MP, ML, BI) arrived at a single topology, which was used to reconstruct the evolution of mitochondrial gene rearrangements in the group. Conclusion Four main lineages were identified within gastropods: Caenogastropoda, Vetigastropoda, Patellogastropoda, and Heterobranchia. Caenogastropoda and Vetigastropoda are sister taxa, as well as, Patellogastropoda and Heterobranchia. This result rejects the validity of the derived clade Apogastropoda (Caenogastropoda + Heterobranchia). The position of Patellogastropoda remains unclear likely due to long-branch attraction biases. Within Heterobranchia, the most heterogeneous group of gastropods, neither Euthyneura (because of the inclusion of P. dolabrata) nor Pulmonata

  13. Convergent evolution of the genomes of marine mammals

    USGS Publications Warehouse

    Foote, Andrew D.; Liu, Yue; Thomas, Gregg W.C.; Vinař, Tomáš; Alföldi, Jessica; Deng, Jixin; Dugan, Shannon; van Elk, Cornelis E.; Hunter, Margaret; Joshi, Vandita; Khan, Ziad; Kovar, Christie; Lee, Sandra L.; Lindblad-Toh, Kerstin; Mancia, Annalaura; Nielsen, Rasmus; Qin, Xiang; Qu, Jiaxin; Raney, Brian J.; Vijay, Nagarjun; Wolf, Jochen B. W.; Hahn, Matthew W.; Muzny, Donna M.; Worley, Kim C.; Gilbert, M. Thomas P.; Gibbs, Richard A.

    2015-01-01

    Marine mammals from different mammalian orders share several phenotypic traits adapted to the aquatic environment and therefore represent a classic example of convergent evolution. To investigate convergent evolution at the genomic level, we sequenced and performed de novo assembly of the genomes of three species of marine mammals (the killer whale, walrus and manatee) from three mammalian orders that share independently evolved phenotypic adaptations to a marine existence. Our comparative genomic analyses found that convergent amino acid substitutions were widespread throughout the genome and that a subset of these substitutions were in genes evolving under positive selection and putatively associated with a marine phenotype. However, we found higher levels of convergent amino acid substitutions in a control set of terrestrial sister taxa to the marine mammals. Our results suggest that, whereas convergent molecular evolution is relatively common, adaptive molecular convergence linked to phenotypic convergence is comparatively rare.

  14. Convergent evolution of the genomes of marine mammals

    PubMed Central

    Foote, Andrew D.; Liu, Yue; Thomas, Gregg W.C.; Vinař, Tomáš; Alföldi, Jessica; Deng, Jixin; Dugan, Shannon; van Elk, Cornelis E.; Hunter, Margaret E.; Joshi, Vandita; Khan, Ziad; Kovar, Christie; Lee, Sandra L.; Lindblad-Toh, Kerstin; Mancia, Annalaura; Nielsen, Rasmus; Qin, Xiang; Qu, Jiaxin; Raney, Brian J.; Vijay, Nagarjun; Wolf, Jochen B. W.; Hahn, Matthew W.; Muzny, Donna M.; Worley, Kim C.; Gilbert, M. Thomas P.; Gibbs, Richard A.

    2015-01-01

    Marine mammals from different mammalian orders share several phenotypic traits adapted to the aquatic environment and are therefore a classic example of convergent evolution. To investigate convergent evolution at the genomic level, we sequenced and de novo assembled the genomes of three species of marine mammals (the killer whale, walrus and manatee) from three mammalian orders that share independently evolved phenotypic adaptations to a marine existence. Our comparative genomic analyses found that convergent amino acid substitutions were widespread throughout the genome, and that a subset were in genes evolving under positive selection and putatively associated with a marine phenotype. However, we found higher levels of convergent amino acid substitutions in a control set of terrestrial sister taxa to the marine mammals. Our results suggest that while convergent molecular evolution is relatively common, adaptive molecular convergence linked to phenotypic convergence is comparatively rare. PMID:25621460

  15. Evolution of genome size and complexity in the rhabdoviridae.

    PubMed

    Walker, Peter J; Firth, Cadhla; Widen, Steven G; Blasdell, Kim R; Guzman, Hilda; Wood, Thomas G; Paradkar, Prasad N; Holmes, Edward C; Tesh, Robert B; Vasilakis, Nikos

    2015-02-01

    RNA viruses exhibit substantial structural, ecological and genomic diversity. However, genome size in RNA viruses is likely limited by a high mutation rate, resulting in the evolution of various mechanisms to increase complexity while minimising genome expansion. Here we conduct a large-scale analysis of the genome sequences of 99 animal rhabdoviruses, including 45 genomes which we determined de novo, to identify patterns of genome expansion and the evolution of genome complexity. All but seven of the rhabdoviruses clustered into 17 well-supported monophyletic groups, of which eight corresponded to established genera, seven were assigned as new genera, and two were taxonomically ambiguous. We show that the acquisition and loss of new genes appears to have been a central theme of rhabdovirus evolution, and has been associated with the appearance of alternative, overlapping and consecutive ORFs within the major structural protein genes, and the insertion and loss of additional ORFs in each gene junction in a clade-specific manner. Changes in the lengths of gene junctions accounted for as much as 48.5% of the variation in genome size from the smallest to the largest genome, and the frequency with which new ORFs were observed increased in the 3' to 5' direction along the genome. We also identify several new families of accessory genes encoded in these regions, and show that non-canonical expression strategies involving TURBS-like termination-reinitiation, ribosomal frame-shifts and leaky ribosomal scanning appear to be common. We conclude that rhabdoviruses have an unusual capacity for genomic plasticity that may be linked to their discontinuous transcription strategy from the negative-sense single-stranded RNA genome, and propose a model that accounts for the regular occurrence of genome expansion and contraction throughout the evolution of the Rhabdoviridae.

  16. Evolution of Genome Size and Complexity in the Rhabdoviridae

    PubMed Central

    Walker, Peter J.; Firth, Cadhla; Widen, Steven G.; Blasdell, Kim R.; Guzman, Hilda; Wood, Thomas G.; Paradkar, Prasad N.; Holmes, Edward C.; Tesh, Robert B.; Vasilakis, Nikos

    2015-01-01

    RNA viruses exhibit substantial structural, ecological and genomic diversity. However, genome size in RNA viruses is likely limited by a high mutation rate, resulting in the evolution of various mechanisms to increase complexity while minimising genome expansion. Here we conduct a large-scale analysis of the genome sequences of 99 animal rhabdoviruses, including 45 genomes which we determined de novo, to identify patterns of genome expansion and the evolution of genome complexity. All but seven of the rhabdoviruses clustered into 17 well-supported monophyletic groups, of which eight corresponded to established genera, seven were assigned as new genera, and two were taxonomically ambiguous. We show that the acquisition and loss of new genes appears to have been a central theme of rhabdovirus evolution, and has been associated with the appearance of alternative, overlapping and consecutive ORFs within the major structural protein genes, and the insertion and loss of additional ORFs in each gene junction in a clade-specific manner. Changes in the lengths of gene junctions accounted for as much as 48.5% of the variation in genome size from the smallest to the largest genome, and the frequency with which new ORFs were observed increased in the 3’ to 5’ direction along the genome. We also identify several new families of accessory genes encoded in these regions, and show that non-canonical expression strategies involving TURBS-like termination-reinitiation, ribosomal frame-shifts and leaky ribosomal scanning appear to be common. We conclude that rhabdoviruses have an unusual capacity for genomic plasticity that may be linked to their discontinuous transcription strategy from the negative-sense single-stranded RNA genome, and propose a model that accounts for the regular occurrence of genome expansion and contraction throughout the evolution of the Rhabdoviridae. PMID:25679389

  17. Nothing in Evolution Makes Sense Except in the Light of Genomics: Read–Write Genome Evolution as an Active Biological Process

    PubMed Central

    Shapiro, James A.

    2016-01-01

    The 21st century genomics-based analysis of evolutionary variation reveals a number of novel features impossible to predict when Dobzhansky and other evolutionary biologists formulated the neo-Darwinian Modern Synthesis in the middle of the last century. These include three distinct realms of cell evolution; symbiogenetic fusions forming eukaryotic cells with multiple genome compartments; horizontal organelle, virus and DNA transfers; functional organization of proteins as systems of interacting domains subject to rapid evolution by exon shuffling and exonization; distributed genome networks integrated by mobile repetitive regulatory signals; and regulation of multicellular development by non-coding lncRNAs containing repetitive sequence components. Rather than single gene traits, all phenotypes involve coordinated activity by multiple interacting cell molecules. Genomes contain abundant and functional repetitive components in addition to the unique coding sequences envisaged in the early days of molecular biology. Combinatorial coding, plus the biochemical abilities cells possess to rearrange DNA molecules, constitute a powerful toolbox for adaptive genome rewriting. That is, cells possess “Read–Write Genomes” they alter by numerous biochemical processes capable of rapidly restructuring cellular DNA molecules. Rather than viewing genome evolution as a series of accidental modifications, we can now study it as a complex biological process of active self-modification. PMID:27338490

  18. Functionally Structured Genomes in Lactobacillus kunkeei Colonizing the Honey Crop and Food Products of Honeybees and Stingless Bees

    PubMed Central

    Tamarit, Daniel; Ellegaard, Kirsten M.; Wikander, Johan; Olofsson, Tobias; Vásquez, Alejandra; Andersson, Siv G.E.

    2015-01-01

    Lactobacillus kunkeei is the most abundant bacterial species in the honey crop and food products of honeybees. The 16 S rRNA genes of strains isolated from different bee species are nearly identical in sequence and therefore inadequate as markers for studies of coevolutionary patterns. Here, we have compared the 1.5 Mb genomes of ten L. kunkeei strains isolated from all recognized Apis species and another two strains from Meliponini species. A gene flux analysis, including previously sequenced Lactobacillus species as outgroups, indicated the influence of reductive evolution. The genome architecture is unique in that vertically inherited core genes are located near the terminus of replication, whereas genes for secreted proteins and putative host-adaptive traits are located near the origin of replication. We suggest that these features have resulted from a genome-wide loss of genes, with integrations of novel genes mostly occurring in regions flanking the origin of replication. The phylogenetic analyses showed that the bacterial topology was incongruent with the host topology, and that strains of the same microcluster have recombined frequently across the host species barriers, arguing against codiversification. Multiple genotypes were recovered in the individual hosts and transfers of mobile elements could be demonstrated for strains isolated from the same host species. Unlike other bacteria with small genomes, short generation times and multiple rRNA operons suggest that L. kunkeei evolves under selection for rapid growth in its natural growth habitat. The results provide an extended framework for reductive genome evolution and functional genome organization in bacteria. PMID:25953738

  19. Genome Evolution in the Primary Endosymbiont of Whiteflies Sheds Light on Their Divergence

    PubMed Central

    Santos-Garcia, Diego; Vargas-Chavez, Carlos; Moya, Andrés; Latorre, Amparo; Silva, Francisco J.

    2015-01-01

    Whiteflies are important agricultural insect pests, whose evolutionary success is related to a long-term association with a bacterial endosymbiont, Candidatus Portiera aleyrodidarum. To completely characterize this endosymbiont clade, we sequenced the genomes of three new Portiera strains covering the two extant whitefly subfamilies. Using endosymbiont and mitochondrial sequences we estimated the divergence dates in the clade and used these values to understand the molecular evolution of the endosymbiont coding sequences. Portiera genomes were maintained almost completely stable in gene order and gene content during more than 125 Myr of evolution, except in the Bemisia tabaci lineage. The ancestor had already lost the genetic information transfer autonomy but was able to participate in the synthesis of all essential amino acids and carotenoids. The time of divergence of the B. tabaci complex was much more recent than previous estimations. The recent divergence of biotypes B (MEAM1 species) and Q (MED species) suggests that they still could be considered strains of the same species. We have estimated the rates of evolution of Portiera genes, synonymous and nonsynonymous, and have detected significant differences among-lineages, with most Portiera lineages evolving very slowly. Although the nonsynonymous rates were much smaller than the synonymous, the genomic dN/dS ratios were similar, discarding selection as the driver of among-lineage variation. We suggest variation in mutation rate and generation time as the responsible factors. In conclusion, the slow evolutionary rates of Portiera may have contributed to its long-term association with whiteflies, avoiding its replacement by a novel and more efficient endosymbiont. PMID:25716826

  20. Origin and evolution of SINEs in eukaryotic genomes.

    PubMed

    Kramerov, D A; Vassetzky, N S

    2011-12-01

    Short interspersed elements (SINEs) are one of the two most prolific mobile genomic elements in most of the higher eukaryotes. Although their biology is still not thoroughly understood, unusual life cycle of these simple elements amplified as genomic parasites makes their evolution unique in many ways. In contrast to most genetic elements including other transposons, SINEs emerged de novo many times in evolution from available molecules (for example, tRNA). The involvement of reverse transcription in their amplification cycle, huge number of genomic copies and modular structure allow variation mechanisms in SINEs uncommon or rare in other genetic elements (module exchange between SINE families, dimerization, and so on.). Overall, SINE evolution includes their emergence, progressive optimization and counteraction to the cell's defense against mobile genetic elements.

  1. Neptune: a bioinformatics tool for rapid discovery of genomic variation in bacterial populations

    PubMed Central

    Marinier, Eric; Zaheer, Rahat; Berry, Chrystal; Weedmark, Kelly A.; Domaratzki, Michael; Mabon, Philip; Knox, Natalie C.; Reimer, Aleisha R.; Graham, Morag R.; Chui, Linda; Patterson-Fortin, Laura; Zhang, Jian; Pagotto, Franco; Farber, Jeff; Mahony, Jim; Seyer, Karine; Bekal, Sadjia; Tremblay, Cécile; Isaac-Renton, Judy; Prystajecky, Natalie; Chen, Jessica; Slade, Peter

    2017-01-01

    Abstract The ready availability of vast amounts of genomic sequence data has created the need to rethink comparative genomics algorithms using ‘big data’ approaches. Neptune is an efficient system for rapidly locating differentially abundant genomic content in bacterial populations using an exact k-mer matching strategy, while accommodating k-mer mismatches. Neptune’s loci discovery process identifies sequences that are sufficiently common to a group of target sequences and sufficiently absent from non-targets using probabilistic models. Neptune uses parallel computing to efficiently identify and extract these loci from draft genome assemblies without requiring multiple sequence alignments or other computationally expensive comparative sequence analyses. Tests on simulated and real datasets showed that Neptune rapidly identifies regions that are both sensitive and specific. We demonstrate that this system can identify trait-specific loci from different bacterial lineages. Neptune is broadly applicable for comparative bacterial analyses, yet will particularly benefit pathogenomic applications, owing to efficient and sensitive discovery of differentially abundant genomic loci. The software is available for download at: http://github.com/phac-nml/neptune. PMID:29048594

  2. Increasing genomic diversity and evidence of constrained lifestyle evolution due to insertion sequences in Aeromonas salmonicida.

    PubMed

    Vincent, Antony T; Trudel, Mélanie V; Freschi, Luca; Nagar, Vandan; Gagné-Thivierge, Cynthia; Levesque, Roger C; Charette, Steve J

    2016-01-12

    Aeromonads make up a group of Gram-negative bacteria that includes human and fish pathogens. The Aeromonas salmonicida species has the peculiarity of including five known subspecies. However, few studies of the genomes of A. salmonicida subspecies have been reported to date. We sequenced the genomes of additional A. salmonicida isolates, including three from India, using next-generation sequencing in order to gain a better understanding of the genomic and phylogenetic links between A. salmonicida subspecies. Their relative phylogenetic positions were confirmed by a core genome phylogeny based on 1645 gene sequences. The Indian isolates, which formed a sub-group together with A. salmonicida subsp. pectinolytica, were able to grow at either at 18 °C and 37 °C, unlike the A. salmonicida psychrophilic isolates that did not grow at 37 °C. Amino acid frequencies, GC content, tRNA composition, loss and gain of genes during evolution, pseudogenes as well as genes under positive selection and the mobilome were studied to explain this intraspecies dichotomy. Insertion sequences appeared to be an important driving force that locked the psychrophilic strains into their particular lifestyle in order to conserve their genomic integrity. This observation, based on comparative genomics, is in agreement with previous results showing that insertion sequence mobility induced by heat in A. salmonicida subspecies causes genomic plasticity, resulting in a deleterious effect on the virulence of the bacterium. We provide a proof-of-concept that selfish DNAs play a major role in the evolution of bacterial species by modeling genomes.

  3. The map-based genome sequence of Spirodela polyrhiza aligned with its chromosomes, a reference for karyotype evolution.

    PubMed

    Cao, Hieu Xuan; Vu, Giang Thi Ha; Wang, Wenqin; Appenroth, Klaus J; Messing, Joachim; Schubert, Ingo

    2016-01-01

    Duckweeds are aquatic monocotyledonous plants of potential economic interest with fast vegetative propagation, comprising 37 species with variable genome sizes (0.158-1.88 Gbp). The genomic sequence of Spirodela polyrhiza, the smallest and the most ancient duckweed genome, needs to be aligned to its chromosomes as a reference and prerequisite to study the genome and karyotype evolution of other duckweed species. We selected physically mapped bacterial artificial chromosomes (BACs) containing Spirodela DNA inserts with little or no repetitive elements as probes for multicolor fluorescence in situ hybridization (mcFISH), using an optimized BAC pooling strategy, to validate its physical map and correlate it with its chromosome complement. By consecutive mcFISH analyses, we assigned the originally assembled 32 pseudomolecules (supercontigs) of the genomic sequences to the 20 chromosomes of S. polyrhiza. A Spirodela cytogenetic map containing 96 BAC markers with an average distance of 0.89 Mbp was constructed. Using a cocktail of 41 BACs in three colors, all chromosome pairs could be individualized simultaneously. Seven ancestral blocks emerged from duplicated chromosome segments of 19 Spirodela chromosomes. The chromosomally integrated genome of S. polyrhiza and the established prerequisites for comparative chromosome painting enable future studies on the chromosome homoeology and karyotype evolution of duckweed species. © 2015 IPK Gatersleben. New Phytologist © 2015 New Phytologist Trust.

  4. Origin and evolution of SINEs in eukaryotic genomes

    PubMed Central

    Kramerov, D A; Vassetzky, N S

    2011-01-01

    Short interspersed elements (SINEs) are one of the two most prolific mobile genomic elements in most of the higher eukaryotes. Although their biology is still not thoroughly understood, unusual life cycle of these simple elements amplified as genomic parasites makes their evolution unique in many ways. In contrast to most genetic elements including other transposons, SINEs emerged de novo many times in evolution from available molecules (for example, tRNA). The involvement of reverse transcription in their amplification cycle, huge number of genomic copies and modular structure allow variation mechanisms in SINEs uncommon or rare in other genetic elements (module exchange between SINE families, dimerization, and so on.). Overall, SINE evolution includes their emergence, progressive optimization and counteraction to the cell's defense against mobile genetic elements. PMID:21673742

  5. The continuity of bacterial and physicochemical evolution: theory and experiments.

    PubMed

    Spitzer, Jan

    2014-01-01

    The continuity of chemical and biological evolution, incorporating life's emergence, can be explored experimentally by energizing 'dead' bacterial biomacromolecules with nutrients under cycling physicochemical gradients. This approach arises from three evolutionary principles rooted in physical chemistry: (i) broken bacterial cells cannot spontaneously self-assemble into a living state without the supply of external energy - 2nd law of thermodynamics, (ii) the energy delivery must be cycling - the primary mechanism of chemical evolution at rotating planetary surfaces under solar irradiation, (iii) the cycling energy must act on chemical mixtures of high molecular diversity and crowding - provided by dead bacterial populations. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  6. [Evolution of genomic imprinting in mammals: what a zoo!].

    PubMed

    Proudhon, Charlotte; Bourc'his, Déborah

    2010-05-01

    Genomic imprinting imposes an obligate mode of biparental reproduction in mammals. This phenomenon results from the monoparental expression of a subset of genes. This specific gene regulation mechanism affects viviparous mammals, especially eutherians, but also marsupials to a lesser extent. Oviparous mammals, or monotremes, do not seem to demonstrate monoparental allele expression. This phylogenic confinement suggests that the evolution of the placenta imposed a selective pressure for the emergence of genomic imprinting. This physiological argument is now complemented by recent genomic evidence facilitated by the sequencing of the platypus genome, a rare modern day case of a monotreme. Analysis of the platypus genome in comparison to eutherian genomes shows a chronological and functional coincidence between the appearance of genomic imprinting and transposable element accumulation. The systematic comparative analyses of genomic sequences in different species is essential for the further understanding of genomic imprinting emergence and divergent evolution along mammalian speciation.

  7. Evolution of bird genomes-a transposon's-eye view.

    PubMed

    Kapusta, Aurélie; Suh, Alexander

    2017-02-01

    Birds, the most species-rich monophyletic group of land vertebrates, have been subject to some of the most intense sequencing efforts to date, making them an ideal case study for recent developments in genomics research. Here, we review how our understanding of bird genomes has changed with the recent sequencing of more than 75 species from all major avian taxa. We illuminate avian genome evolution from a previously neglected perspective: their repetitive genomic parasites, transposable elements (TEs) and endogenous viral elements (EVEs). We show that (1) birds are unique among vertebrates in terms of their genome organization; (2) information about the diversity of avian TEs and EVEs is changing rapidly; (3) flying birds have smaller genomes yet more TEs than flightless birds; (4) current second-generation genome assemblies fail to capture the variation in avian chromosome number and genome size determined with cytogenetics; (5) the genomic microcosm of bird-TE "arms races" has yet to be explored; and (6) upcoming third-generation genome assemblies suggest that birds exhibit stability in gene-rich regions and instability in TE-rich regions. We emphasize that integration of cytogenetics and single-molecule technologies with repeat-resolved genome assemblies is essential for understanding the evolution of (bird) genomes. © 2016 New York Academy of Sciences.

  8. Listeria Genomics

    NASA Astrophysics Data System (ADS)

    Cabanes, Didier; Sousa, Sandra; Cossart, Pascale

    The opportunistic intracellular foodborne pathogen Listeria monocytogenes has become a paradigm for the study of host-pathogen interactions and bacterial adaptation to mammalian hosts. Analysis of L. monocytogenes infection has provided considerable insight into how bacteria invade cells, move intracellularly, and disseminate in tissues, as well as tools to address fundamental processes in cell biology. Moreover, the vast amount of knowledge that has been gathered through in-depth comparative genomic analyses and in vivo studies makes L. monocytogenes one of the most well-studied bacterial pathogens. This chapter provides an overview of progress in the exploration of genomic, transcriptomic, and proteomic data in Listeria spp. to understand genome evolution and diversity, as well as physiological aspects of metabolism used by bacteria when growing in diverse environments, in particular in infected hosts.

  9. Involvement of β-carbonic anhydrase (β-CA) genes in bacterial genomic islands and horizontal transfer to protists.

    PubMed

    Zolfaghari Emameh, Reza; Barker, Harlan R; Hytönen, Vesa P; Parkkila, Seppo

    2018-05-25

    Genomic islands (GIs) are a type of mobile genetic element (MGE) that are present in bacterial chromosomes. They consist of a cluster of genes which produce proteins that contribute to a variety of functions, including, but not limited to, regulation of cell metabolism, anti-microbial resistance, pathogenicity, virulence, and resistance to heavy metals. The genes carried in MGEs can be used as a trait reservoir in times of adversity. Transfer of genes using MGEs, occurring outside of reproduction, is called horizontal gene transfer (HGT). Previous literature has shown that numerous HGT events have occurred through endosymbiosis between prokaryotes and eukaryotes.Beta carbonic anhydrase (β-CA) enzymes play a critical role in the biochemical pathways of many prokaryotes and eukaryotes. We have previously suggested horizontal transfer of β-CA genes from plasmids of some prokaryotic endosymbionts to their protozoan hosts. In this study, we set out to identify β-CA genes that might have transferred between prokaryotic and protist species through HGT in GIs. Therefore, we investigated prokaryotic chromosomes containing β-CA-encoding GIs and utilized multiple bioinformatics tools to reveal the distinct movements of β-CA genes among a wide variety of organisms. Our results identify the presence of β-CA genes in GIs of several medically and industrially relevant bacterial species, and phylogenetic analyses reveal multiple cases of likely horizontal transfer of β-CA genes from GIs of ancestral prokaryotes to protists. IMPORTANCE The evolutionary process is mediated by mobile genetic elements (MGEs), such as genomic islands (GIs). A gene or set of genes in the GIs are exchanged between and within various species through horizontal gene transfer (HGT). Based on the crucial role that GIs can play in bacterial survival and proliferation, they were introduced as the environmental- and pathogen-associated factors. Carbonic anhydrases (CAs) are involved in many critical

  10. The function and evolution of the Aspergillus genome

    PubMed Central

    Gibbons, John G.; Rokas, Antonis

    2012-01-01

    Species in the filamentous fungal genus Aspergillus display a wide diversity of lifestyles and are of great importance to humans. The decoding of genome sequences from a dozen species that vary widely in their degree of evolutionary affinity has galvanized studies of the function and evolution of the Aspergillus genome in clinical, industrial, and agricultural environments. Here, we synthesize recent key findings that shed light on the architecture of the Aspergillus genome, on the molecular foundations of the genus’ astounding dexterity and diversity in secondary metabolism, and on the genetic underpinnings of virulence in Aspergillus fumigatus, one of the most lethal fungal pathogens. Many of these insights dramatically expand our knowledge of fungal and microbial eukaryote genome evolution and function and argue that Aspergillus constitutes a superb model clade for the study of functional and comparative genomics. PMID:23084572

  11. SINEs as driving forces in genome evolution.

    PubMed

    Schmitz, J

    2012-01-01

    SINEs are short interspersed elements derived from cellular RNAs that repetitively retropose via RNA intermediates and integrate more or less randomly back into the genome. SINEs propagate almost entirely vertically within their host cells and, once established in the germline, are passed on from generation to generation. As non-autonomous elements, their reverse transcription (from RNA to cDNA) and genomic integration depends on the activity of the enzymatic machinery of autonomous retrotransposons, such as long interspersed elements (LINEs). SINEs are widely distributed in eukaryotes, but are especially effectively propagated in mammalian species. For example, more than a million Alu-SINE copies populate the human genome (approximately 13% of genomic space), and few master copies of them are still active. In the organisms where they occur, SINEs are a challenge to genomic integrity, but in the long term also can serve as beneficial building blocks for evolution, contributing to phenotypic heterogeneity and modifying gene regulatory networks. They substantially expand the genomic space and introduce structural variation to the genome. SINEs have the potential to mutate genes, to alter gene expression, and to generate new parts of genes. A balanced distribution and controlled activity of such properties is crucial to maintaining the organism's dynamic and thriving evolution. Copyright © 2012 S. Karger AG, Basel.

  12. Construction of an infectious clone of canine herpesvirus genome as a bacterial artificial chromosome.

    PubMed

    Arii, Jun; Hushur, Orkash; Kato, Kentaro; Kawaguchi, Yasushi; Tohya, Yukinobu; Akashi, Hiroomi

    2006-04-01

    Canine herpesvirus (CHV) is an attractive candidate not only for use as a recombinant vaccine to protect dogs from a variety of canine pathogens but also as a viral vector for gene therapy in domestic animals. However, developments in this area have been impeded by the complicated techniques used for eukaryotic homologous recombination. To overcome these problems, we used bacterial artificial chromosomes (BACs) to generate infectious BACs. Our findings may be summarized as follows: (i) the CHV genome (pCHV/BAC), in which a BAC flanked by loxP sites was inserted into the thymidine kinase gene, was maintained in Escherichia coli; (ii) transfection of pCHV/BAC into A-72 cells resulted in the production of infectious virus; (iii) the BAC vector sequence was almost perfectly excisable from the genome of the reconstituted virus CHV/BAC by co-infection with CHV/BAC and a recombinant adenovirus that expressed the Cre recombinase; and (iv) a recombinant virus in which the glycoprotein C gene was deleted was generated by lambda recombination followed by Flp recombination, which resulted in a reduction in viral titer compared with that of the wild-type virus. The infectious clone pCHV/BAC is useful for the modification of the CHV genome using bacterial genetics, and CHV/BAC should have multiple applications in the rapid generation of genetically engineered CHV recombinants and the development of CHV vectors for vaccination and gene therapy in domestic animals.

  13. Genomic Evidence for the Evolution of Streptococcus equi: Host Restriction, Increased Virulence, and Genetic Exchange with Human Pathogens

    PubMed Central

    Paillot, Romain; Steward, Karen F.; Webb, Katy; Ainslie, Fern; Jourdan, Thibaud; Bason, Nathalie C.; Holroyd, Nancy E.; Mungall, Karen; Quail, Michael A.; Sanders, Mandy; Simmonds, Mark; Willey, David; Brooks, Karen; Aanensen, David M.; Spratt, Brian G.; Jolley, Keith A.; Maiden, Martin C. J.; Kehoe, Michael; Chanter, Neil; Bentley, Stephen D.; Robinson, Carl; Maskell, Duncan J.; Parkhill, Julian; Waller, Andrew S.

    2009-01-01

    The continued evolution of bacterial pathogens has major implications for both human and animal disease, but the exchange of genetic material between host-restricted pathogens is rarely considered. Streptococcus equi subspecies equi (S. equi) is a host-restricted pathogen of horses that has evolved from the zoonotic pathogen Streptococcus equi subspecies zooepidemicus (S. zooepidemicus). These pathogens share approximately 80% genome sequence identity with the important human pathogen Streptococcus pyogenes. We sequenced and compared the genomes of S. equi 4047 and S. zooepidemicus H70 and screened S. equi and S. zooepidemicus strains from around the world to uncover evidence of the genetic events that have shaped the evolution of the S. equi genome and led to its emergence as a host-restricted pathogen. Our analysis provides evidence of functional loss due to mutation and deletion, coupled with pathogenic specialization through the acquisition of bacteriophage encoding a phospholipase A2 toxin, and four superantigens, and an integrative conjugative element carrying a novel iron acquisition system with similarity to the high pathogenicity island of Yersinia pestis. We also highlight that S. equi, S. zooepidemicus, and S. pyogenes share a common phage pool that enhances cross-species pathogen evolution. We conclude that the complex interplay of functional loss, pathogenic specialization, and genetic exchange between S. equi, S. zooepidemicus, and S. pyogenes continues to influence the evolution of these important streptococci. PMID:19325880

  14. bcgTree: automatized phylogenetic tree building from bacterial core genomes.

    PubMed

    Ankenbrand, Markus J; Keller, Alexander

    2016-10-01

    The need for multi-gene analyses in scientific fields such as phylogenetics and DNA barcoding has increased in recent years. In particular, these approaches are increasingly important for differentiating bacterial species, where reliance on the standard 16S rDNA marker can result in poor resolution. Additionally, the assembly of bacterial genomes has become a standard task due to advances in next-generation sequencing technologies. We created a bioinformatic pipeline, bcgTree, which uses assembled bacterial genomes either from databases or own sequencing results from the user to reconstruct their phylogenetic history. The pipeline automatically extracts 107 essential single-copy core genes, found in a majority of bacteria, using hidden Markov models and performs a partitioned maximum-likelihood analysis. Here, we describe the workflow of bcgTree and, as a proof-of-concept, its usefulness in resolving the phylogeny of 293 publically available bacterial strains of the genus Lactobacillus. We also evaluate its performance in both low- and high-level taxonomy test sets. The tool is freely available at github ( https://github.com/iimog/bcgTree ) and our institutional homepage ( http://www.dna-analytics.biozentrum.uni-wuerzburg.de ).

  15. Programming cells by multiplex genome engineering and accelerated evolution.

    PubMed

    Wang, Harris H; Isaacs, Farren J; Carr, Peter A; Sun, Zachary Z; Xu, George; Forest, Craig R; Church, George M

    2009-08-13

    The breadth of genomic diversity found among organisms in nature allows populations to adapt to diverse environments. However, genomic diversity is difficult to generate in the laboratory and new phenotypes do not easily arise on practical timescales. Although in vitro and directed evolution methods have created genetic variants with usefully altered phenotypes, these methods are limited to laborious and serial manipulation of single genes and are not used for parallel and continuous directed evolution of gene networks or genomes. Here, we describe multiplex automated genome engineering (MAGE) for large-scale programming and evolution of cells. MAGE simultaneously targets many locations on the chromosome for modification in a single cell or across a population of cells, thus producing combinatorial genomic diversity. Because the process is cyclical and scalable, we constructed prototype devices that automate the MAGE technology to facilitate rapid and continuous generation of a diverse set of genetic changes (mismatches, insertions, deletions). We applied MAGE to optimize the 1-deoxy-D-xylulose-5-phosphate (DXP) biosynthesis pathway in Escherichia coli to overproduce the industrially important isoprenoid lycopene. Twenty-four genetic components in the DXP pathway were modified simultaneously using a complex pool of synthetic DNA, creating over 4.3 billion combinatorial genomic variants per day. We isolated variants with more than fivefold increase in lycopene production within 3 days, a significant improvement over existing metabolic engineering techniques. Our multiplex approach embraces engineering in the context of evolution by expediting the design and evolution of organisms with new and improved properties.

  16. Alignment-free detection of horizontal gene transfer between closely related bacterial genomes.

    PubMed

    Domazet-Lošo, Mirjana; Haubold, Bernhard

    2011-09-01

    Bacterial epidemics are often caused by strains that have acquired their increased virulence through horizontal gene transfer. Due to this association with disease, the detection of horizontal gene transfer continues to receive attention from microbiologists and bioinformaticians alike. Most software for detecting transfer events is based on alignments of sets of genes or of entire genomes. But despite great advances in the design of algorithms and computer programs, genome alignment remains computationally challenging. We have therefore developed an alignment-free algorithm for rapidly detecting horizontal gene transfer between closely related bacterial genomes. Our implementation of this algorithm is called alfy for "ALignment Free local homologY" and is freely available from http://guanine.evolbio.mpg.de/alfy/. In this comment we demonstrate the application of alfy to the genomes of Staphylococcus aureus. We also argue that-contrary to popular belief and in spite of increasing computer speed-algorithmic optimization is becoming more, not less, important if genome data continues to accumulate at the present rate.

  17. An Inherited Efficiencies Model of Non-Genomic Evolution

    NASA Technical Reports Server (NTRS)

    New, Michael H.; Pohorille, Andrew

    1999-01-01

    A model for the evolution of biological systems in the absence of a nucleic acid-like genome is proposed and applied to model the earliest living organisms -- protocells composed of membrane encapsulated peptides. Assuming that the peptides can make and break bonds between amino acids, and bonds in non-functional peptides are more likely to be destroyed than in functional peptides, it is demonstrated that the catalytic capabilities of the system as a whole can increase. This increase is defined to be non-genomic evolution. The relationship between the proposed mechanism for evolution and recent experiments on self-replicating peptides is discussed.

  18. Evolution of Sphingomonad Gene Clusters Related to Pesticide Catabolism Revealed by Genome Sequence and Mobilomics of Sphingobium herbicidovorans MH.

    PubMed

    Nielsen, Tue Kjærgaard; Rasmussen, Morten; Demanèche, Sandrine; Cecillon, Sébastien; Vogel, Timothy M; Hansen, Lars Hestbjerg

    2017-09-01

    Bacterial degraders of chlorophenoxy herbicides have been isolated from various ecosystems, including pristine environments. Among these degraders, the sphingomonads constitute a prominent group that displays versatile xenobiotic-degradation capabilities. Four separate sequencing strategies were required to provide the complete sequence of the complex and plastic genome of the canonical chlorophenoxy herbicide-degrading Sphingobium herbicidovorans MH. The genome has an intricate organization of the chlorophenoxy-herbicide catabolic genes sdpA, rdpA, and cadABCD that encode the (R)- and (S)-enantiomer-specific 2,4-dichlorophenoxypropionate dioxygenases and four subunits of a Rieske non-heme iron oxygenase involved in 2-methyl-chlorophenoxyacetic acid degradation, respectively. Several major genomic rearrangements are proposed to help understand the evolution and mobility of these important genes and their genetic context. Single-strain mobilomic sequence analysis uncovered plasmids and insertion sequence-associated circular intermediates in this environmentally important bacterium and enabled the description of evolutionary models for pesticide degradation in strain MH and related organisms. The mobilome presented a complex mosaic of mobile genetic elements including four plasmids and several circular intermediate DNA molecules of insertion-sequence elements and transposons that are central to the evolution of xenobiotics degradation. Furthermore, two individual chromosomally integrated prophages were shown to excise and form free circular DNA molecules. This approach holds great potential for improving the understanding of genome plasticity, evolution, and microbial ecology. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. Independent evolution of genomic characters during major metazoan transitions.

    PubMed

    Simakov, Oleg; Kawashima, Takeshi

    2017-07-15

    Metazoan evolution encompasses a vast evolutionary time scale spanning over 600 million years. Our ability to infer ancestral metazoan characters, both morphological and functional, is limited by our understanding of the nature and evolutionary dynamics of the underlying regulatory networks. Increasing coverage of metazoan genomes enables us to identify the evolutionary changes of the relevant genomic characters such as the loss or gain of coding sequences, gene duplications, micro- and macro-synteny, and non-coding element evolution in different lineages. In this review we describe recent advances in our understanding of ancestral metazoan coding and non-coding features, as deduced from genomic comparisons. Some genomic changes such as innovations in gene and linkage content occur at different rates across metazoan clades, suggesting some level of independence among genomic characters. While their contribution to biological innovation remains largely unclear, we review recent literature about certain genomic changes that do correlate with changes to specific developmental pathways and metazoan innovations. In particular, we discuss the origins of the recently described pharyngeal cluster which is conserved across deuterostome genomes, and highlight different genomic features that have contributed to the evolution of this group. We also assess our current capacity to infer ancestral metazoan states from gene models and comparative genomics tools and elaborate on the future directions of metazoan comparative genomics relevant to evo-devo studies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Whole-genome sequence of the Tibetan frog Nanorana parkeri and the comparative evolution of tetrapod genomes.

    PubMed

    Sun, Yan-Bo; Xiong, Zi-Jun; Xiang, Xue-Yan; Liu, Shi-Ping; Zhou, Wei-Wei; Tu, Xiao-Long; Zhong, Li; Wang, Lu; Wu, Dong-Dong; Zhang, Bao-Lin; Zhu, Chun-Ling; Yang, Min-Min; Chen, Hong-Man; Li, Fang; Zhou, Long; Feng, Shao-Hong; Huang, Chao; Zhang, Guo-Jie; Irwin, David; Hillis, David M; Murphy, Robert W; Yang, Huan-Ming; Che, Jing; Wang, Jun; Zhang, Ya-Ping

    2015-03-17

    The development of efficient sequencing techniques has resulted in large numbers of genomes being available for evolutionary studies. However, only one genome is available for all amphibians, that of Xenopus tropicalis, which is distantly related from the majority of frogs. More than 96% of frogs belong to the Neobatrachia, and no genome exists for this group. This dearth of amphibian genomes greatly restricts genomic studies of amphibians and, more generally, our understanding of tetrapod genome evolution. To fill this gap, we provide the de novo genome of a Tibetan Plateau frog, Nanorana parkeri, and compare it to that of X. tropicalis and other vertebrates. This genome encodes more than 20,000 protein-coding genes, a number similar to that of Xenopus. Although the genome size of Nanorana is considerably larger than that of Xenopus (2.3 vs. 1.5 Gb), most of the difference is due to the respective number of transposable elements in the two genomes. The two frogs exhibit considerable conserved whole-genome synteny despite having diverged approximately 266 Ma, indicating a slow rate of DNA structural evolution in anurans. Multigenome synteny blocks further show that amphibians have fewer interchromosomal rearrangements than mammals but have a comparable rate of intrachromosomal rearrangements. Our analysis also identifies 11 Mb of anuran-specific highly conserved elements that will be useful for comparative genomic analyses of frogs. The Nanorana genome offers an improved understanding of evolution of tetrapod genomes and also provides a genomic reference for other evolutionary studies.

  1. Chemically synthesized silver nanoparticles as cell lysis agent for bacterial genomic DNA isolation

    NASA Astrophysics Data System (ADS)

    Goswami, Gunajit; Boruah, Himangshu; Gautom, Trishnamoni; Jyoti Hazarika, Dibya; Barooah, Madhumita; Boro, Robin Chandra

    2017-12-01

    Silver nanoparticles (AgNPs) have seen a recent spurt of use in varied fields of science. In this paper, we showed a novel application of AgNP as a promising microbial cell-lysis agent for genomic DNA isolation. We utilized chemically synthesized AgNPs for lysing bacterial cells to isolate their genomic DNA. The AgNPs efficiently lysed bacterial cells to yield good quality DNA that could be subsequently used for several molecular biology works.

  2. The Evolution of the Human Genome

    PubMed Central

    Simonti, Corinne N.; Capra, John A.

    2015-01-01

    Human genomes hold a record of the evolutionary forces that have shaped our species. Advances in DNA sequencing, functional genomics, and population genetic modeling have deepened our understanding of human demographic history, natural selection, and many other long-studied topics. These advances have also revealed many previously underappreciated factors that influence the evolution of the human genome, including functional modifications to DNA and histones, conserved 3D topological chromatin domains, structural variation, and heterogeneous mutation patterns along the genome. Using evolutionary theory as a lens to study these phenomena will lead to significant breakthroughs in understanding what makes us human and why we get sick. PMID:26338498

  3. Genome-Wide Identification of Regulatory Sequences Undergoing Accelerated Evolution in the Human Genome

    PubMed Central

    Dong, Xinran; Wang, Xiao; Zhang, Feng; Tian, Weidong

    2016-01-01

    Accelerated evolution of regulatory sequence can alter the expression pattern of target genes, and cause phenotypic changes. In this study, we used DNase I hypersensitive sites (DHSs) to annotate putative regulatory sequences in the human genome, and conducted a genome-wide analysis of the effects of accelerated evolution on regulatory sequences. Working under the assumption that local ancient repeat elements of DHSs are under neutral evolution, we discovered that ∼0.44% of DHSs are under accelerated evolution (ace-DHSs). We found that ace-DHSs tend to be more active than background DHSs, and are strongly associated with epigenetic marks of active transcription. The target genes of ace-DHSs are significantly enriched in neuron-related functions, and their expression levels are positively selected in the human brain. Thus, these lines of evidences strongly suggest that accelerated evolution on regulatory sequences plays important role in the evolution of human-specific phenotypes. PMID:27401230

  4. Bacterial genomes in epidemiology—present and future

    PubMed Central

    Croucher, Nicholas J.; Harris, Simon R.; Grad, Yonatan H.; Hanage, William P.

    2013-01-01

    Sequence data are well established in the reconstruction of the phylogenetic and demographic scenarios that have given rise to outbreaks of viral pathogens. The application of similar methods to bacteria has been hindered in the main by the lack of high-resolution nucleotide sequence data from quality samples. Developing and already available genomic methods have greatly increased the amount of data that can be used to characterize an isolate and its relationship to others. However, differences in sequencing platforms and data analysis mean that these enhanced data come with a cost in terms of portability: results from one laboratory may not be directly comparable with those from another. Moreover, genomic data for many bacteria bear the mark of a history including extensive recombination, which has the potential to greatly confound phylogenetic and coalescent analyses. Here, we discuss the exacting requirements of genomic epidemiology, and means by which the distorting signal of recombination can be minimized to permit the leverage of growing datasets of genomic data from bacterial pathogens. PMID:23382424

  5. The FUN of identifying gene function in bacterial pathogens; insights from Salmonella functional genomics.

    PubMed

    Hammarlöf, Disa L; Canals, Rocío; Hinton, Jay C D

    2013-10-01

    The availability of thousands of genome sequences of bacterial pathogens poses a particular challenge because each genome contains hundreds of genes of unknown function (FUN). How can we easily discover which FUN genes encode important virulence factors? One solution is to combine two different functional genomic approaches. First, transcriptomics identifies bacterial FUN genes that show differential expression during the process of mammalian infection. Second, global mutagenesis identifies individual FUN genes that the pathogen requires to cause disease. The intersection of these datasets can reveal a small set of candidate genes most likely to encode novel virulence attributes. We demonstrate this approach with the Salmonella infection model, and propose that a similar strategy could be used for other bacterial pathogens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Comparative Bacterial Proteomics: Analysis of the Core Genome Concept

    PubMed Central

    Callister, Stephen J.; McCue, Lee Ann; Turse, Joshua E.; Monroe, Matthew E.; Auberry, Kenneth J.; Smith, Richard D.; Adkins, Joshua N.; Lipton, Mary S.

    2008-01-01

    While comparative bacterial genomic studies commonly predict a set of genes indicative of common ancestry, experimental validation of the existence of this core genome requires extensive measurement and is typically not undertaken. Enabled by an extensive proteome database developed over six years, we have experimentally verified the expression of proteins predicted from genomic ortholog comparisons among 17 environmental and pathogenic bacteria. More exclusive relationships were observed among the expressed protein content of phenotypically related bacteria, which is indicative of the specific lifestyles associated with these organisms. Although genomic studies can establish relative orthologous relationships among a set of bacteria and propose a set of ancestral genes, our proteomics study establishes expressed lifestyle differences among conserved genes and proposes a set of expressed ancestral traits. PMID:18253490

  7. The genomic basis of adaptive evolution in threespine sticklebacks

    PubMed Central

    Jones, Felicity C; Grabherr, Manfred G; Chan, Yingguang Frank; Russell, Pamela; Mauceli, Evan; Johnson, Jeremy; Swofford, Ross; Pirun, Mono; Zody, Michael C; White, Simon; Birney, Ewan; Searle, Stephen; Schmutz, Jeremy; Grimwood, Jane; Dickson, Mark C; Myers, Richard M; Miller, Craig T; Summers, Brian R; Knecht, Anne K; Brady, Shannon D; Zhang, Haili; Pollen, Alex A; Howes, Timothy; Amemiya, Chris; Lander, Eric S; Di Palma, Federica

    2012-01-01

    Summary Marine stickleback fish have colonized and adapted to innumerable streams and lakes formed since the last ice age, providing an exceptional opportunity to characterize genomic mechanisms underlying repeated ecological adaptation in nature. Here we develop a high quality reference genome assembly for threespine sticklebacks. By sequencing the genomes of 20 additional individuals from a global set of marine and freshwater populations, we identify a genome-wide set of loci that are consistently associated with marine-freshwater divergence. Our results suggest that reuse of globally-shared standing genetic variation, including chromosomal inversions, plays an important role in repeated evolution of distinct marine and freshwater sticklebacks, and in the maintenance of divergent ecotypes during early stages of reproductive isolation. Both coding and regulatory changes occur in the set of loci underlying marine-freshwater evolution, with regulatory changes likely predominating in this classic example of repeated adaptive evolution in nature. PMID:22481358

  8. The genomic basis of adaptive evolution in threespine sticklebacks.

    PubMed

    Jones, Felicity C; Grabherr, Manfred G; Chan, Yingguang Frank; Russell, Pamela; Mauceli, Evan; Johnson, Jeremy; Swofford, Ross; Pirun, Mono; Zody, Michael C; White, Simon; Birney, Ewan; Searle, Stephen; Schmutz, Jeremy; Grimwood, Jane; Dickson, Mark C; Myers, Richard M; Miller, Craig T; Summers, Brian R; Knecht, Anne K; Brady, Shannon D; Zhang, Haili; Pollen, Alex A; Howes, Timothy; Amemiya, Chris; Baldwin, Jen; Bloom, Toby; Jaffe, David B; Nicol, Robert; Wilkinson, Jane; Lander, Eric S; Di Palma, Federica; Lindblad-Toh, Kerstin; Kingsley, David M

    2012-04-04

    Marine stickleback fish have colonized and adapted to thousands of streams and lakes formed since the last ice age, providing an exceptional opportunity to characterize genomic mechanisms underlying repeated ecological adaptation in nature. Here we develop a high-quality reference genome assembly for threespine sticklebacks. By sequencing the genomes of twenty additional individuals from a global set of marine and freshwater populations, we identify a genome-wide set of loci that are consistently associated with marine-freshwater divergence. Our results indicate that reuse of globally shared standing genetic variation, including chromosomal inversions, has an important role in repeated evolution of distinct marine and freshwater sticklebacks, and in the maintenance of divergent ecotypes during early stages of reproductive isolation. Both coding and regulatory changes occur in the set of loci underlying marine-freshwater evolution, but regulatory changes appear to predominate in this well known example of repeated adaptive evolution in nature.

  9. Genome-Wide Identification of Regulatory Sequences Undergoing Accelerated Evolution in the Human Genome.

    PubMed

    Dong, Xinran; Wang, Xiao; Zhang, Feng; Tian, Weidong

    2016-10-01

    Accelerated evolution of regulatory sequence can alter the expression pattern of target genes, and cause phenotypic changes. In this study, we used DNase I hypersensitive sites (DHSs) to annotate putative regulatory sequences in the human genome, and conducted a genome-wide analysis of the effects of accelerated evolution on regulatory sequences. Working under the assumption that local ancient repeat elements of DHSs are under neutral evolution, we discovered that ∼0.44% of DHSs are under accelerated evolution (ace-DHSs). We found that ace-DHSs tend to be more active than background DHSs, and are strongly associated with epigenetic marks of active transcription. The target genes of ace-DHSs are significantly enriched in neuron-related functions, and their expression levels are positively selected in the human brain. Thus, these lines of evidences strongly suggest that accelerated evolution on regulatory sequences plays important role in the evolution of human-specific phenotypes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Evolution of Genome Size and Complexity in Pinus

    PubMed Central

    Morse, Alison M.; Peterson, Daniel G.; Islam-Faridi, M. Nurul; Smith, Katherine E.; Magbanua, Zenaida; Garcia, Saul A.; Kubisiak, Thomas L.; Amerson, Henry V.; Carlson, John E.; Nelson, C. Dana; Davis, John M.

    2009-01-01

    Background Genome evolution in the gymnosperm lineage of seed plants has given rise to many of the most complex and largest plant genomes, however the elements involved are poorly understood. Methodology/Principal Findings Gymny is a previously undescribed retrotransposon family in Pinus that is related to Athila elements in Arabidopsis. Gymny elements are dispersed throughout the modern Pinus genome and occupy a physical space at least the size of the Arabidopsis thaliana genome. In contrast to previously described retroelements in Pinus, the Gymny family was amplified or introduced after the divergence of pine and spruce (Picea). If retrotransposon expansions are responsible for genome size differences within the Pinaceae, as they are in angiosperms, then they have yet to be identified. In contrast, molecular divergence of Gymny retrotransposons together with other families of retrotransposons can account for the large genome complexity of pines along with protein-coding genic DNA, as revealed by massively parallel DNA sequence analysis of Cot fractionated genomic DNA. Conclusions/Significance Most of the enormous genome complexity of pines can be explained by divergence of retrotransposons, however the elements responsible for genome size variation are yet to be identified. Genomic resources for Pinus including those reported here should assist in further defining whether and how the roles of retrotransposons differ in the evolution of angiosperm and gymnosperm genomes. PMID:19194510

  11. Modeling the integration of bacterial rRNA fragments into the human cancer genome.

    PubMed

    Sieber, Karsten B; Gajer, Pawel; Dunning Hotopp, Julie C

    2016-03-21

    Cancer is a disease driven by the accumulation of genomic alterations, including the integration of exogenous DNA into the human somatic genome. We previously identified in silico evidence of DNA fragments from a Pseudomonas-like bacteria integrating into the 5'-UTR of four proto-oncogenes in stomach cancer sequencing data. The functional and biological consequences of these bacterial DNA integrations remain unknown. Modeling of these integrations suggests that the previously identified sequences cover most of the sequence flanking the junction between the bacterial and human DNA. Further examination of these reads reveals that these integrations are rich in guanine nucleotides and the integrated bacterial DNA may have complex transcript secondary structures. The models presented here lay the foundation for future experiments to test if bacterial DNA integrations alter the transcription of the human genes.

  12. Function-selective domain architecture plasticity potentials in eukaryotic genome evolution

    PubMed Central

    Linkeviciute, Viktorija; Rackham, Owen J.L.; Gough, Julian; Oates, Matt E.; Fang, Hai

    2015-01-01

    To help evaluate how protein function impacts on genome evolution, we introduce a new concept of ‘architecture plasticity potential’ – the capacity to form distinct domain architectures – both for an individual domain, or more generally for a set of domains grouped by shared function. We devise a scoring metric to measure the plasticity potential for these domain sets, and evaluate how function has changed over time for different species. Applying this metric to a phylogenetic tree of eukaryotic genomes, we find that the involvement of each function is not random but highly selective. For certain lineages there is strong bias for evolution to involve domains related to certain functions. In general eukaryotic genomes, particularly animals, expand complex functional activities such as signalling and regulation, but at the cost of reducing metabolic processes. We also observe differential evolution of transcriptional regulation and a unique evolutionary role of channel regulators; crucially this is only observable in terms of the architecture plasticity potential. Our findings provide a new layer of information to understand the significance of function in eukaryotic genome evolution. A web search tool, available at http://supfam.org/Pevo, offers a wide spectrum of options for exploring functional importance in eukaryotic genome evolution. PMID:25980317

  13. Reductive genome evolution, host–symbiont co-speciation and uterine transmission of endosymbiotic bacteria in bat flies

    PubMed Central

    Hosokawa, Takahiro; Nikoh, Naruo; Koga, Ryuichi; Satô, Masahiko; Tanahashi, Masahiko; Meng, Xian-Ying; Fukatsu, Takema

    2012-01-01

    Bat flies of the family Nycteribiidae are known for their extreme morphological and physiological traits specialized for ectoparasitic blood-feeding lifestyle on bats, including lack of wings, reduced head and eyes, adenotrophic viviparity with a highly developed uterus and milk glands, as well as association with endosymbiotic bacteria. We investigated Japanese nycteribiid bat flies representing 4 genera, 8 species and 27 populations for their bacterial endosymbionts. From all the nycteribiid species examined, a distinct clade of gammaproteobacteria was consistently detected, which was allied to endosymbionts of other insects such as Riesia spp. of primate lice and Arsenophonus spp. of diverse insects. In adult insects, the endosymbiont was localized in specific bacteriocytes in the abdomen, suggesting an intimate host–symbiont association. In adult females, the endosymbiont was also found in the cavity of milk gland tubules, which suggests uterine vertical transmission of the endosymbiont to larvae through milk gland secretion. In adult females of Penicillidia jenynsii, we discovered a previously unknown type of symbiotic organ in the Nycteribiidae: a pair of large bacteriomes located inside the swellings on the fifth abdominal ventral plate. The endosymbiont genes consistently exhibited adenine/thymine biased nucleotide compositions and accelerated rates of molecular evolution. The endosymbiont genome was estimated to be highly reduced, ∼0.76 Mb in size. The endosymbiont phylogeny perfectly mirrored the host insect phylogeny, indicating strict vertical transmission and host–symbiont co-speciation in the evolutionary course of the Nycteribiidae. The designation ‘Candidatus Aschnera chinzeii' is proposed for the endosymbiont clade. PMID:21938025

  14. Genomic diversity and evolution of the fish pathogen Flavobacterium psychrophilum

    USDA-ARS?s Scientific Manuscript database

    Flavobacterium psychrophilum, the etiological agent of rainbow trout fry syndrome and bacterial cold-water disease in salmonid fish, is currently one of the main bacterial pathogens hampering the productivity of salmonid farming worldwide. In this study, the genomic diversity of the F. psychrophilum...

  15. Genome Evolution Due to Allopolyploidization in Wheat

    PubMed Central

    Feldman, Moshe; Levy, Avraham A.

    2012-01-01

    The wheat group has evolved through allopolyploidization, namely, through hybridization among species from the plant genera Aegilops and Triticum followed by genome doubling. This speciation process has been associated with ecogeographical expansion and with domestication. In the past few decades, we have searched for explanations for this impressive success. Our studies attempted to probe the bases for the wide genetic variation characterizing these species, which accounts for their great adaptability and colonizing ability. Central to our work was the investigation of how allopolyploidization alters genome structure and expression. We found in wheat that allopolyploidy accelerated genome evolution in two ways: (1) it triggered rapid genome alterations through the instantaneous generation of a variety of cardinal genetic and epigenetic changes (which we termed “revolutionary” changes), and (2) it facilitated sporadic genomic changes throughout the species’ evolution (i.e., evolutionary changes), which are not attainable at the diploid level. Our major findings in natural and synthetic allopolyploid wheat indicate that these alterations have led to the cytological and genetic diploidization of the allopolyploids. These genetic and epigenetic changes reflect the dynamic structural and functional plasticity of the allopolyploid wheat genome. The significance of this plasticity for the successful establishment of wheat allopolyploids, in nature and under domestication, is discussed. PMID:23135324

  16. Finishing bacterial genome assemblies with Mix.

    PubMed

    Soueidan, Hayssam; Maurier, Florence; Groppi, Alexis; Sirand-Pugnet, Pascal; Tardy, Florence; Citti, Christine; Dupuy, Virginie; Nikolski, Macha

    2013-01-01

    Among challenges that hamper reaping the benefits of genome assembly are both unfinished assemblies and the ensuing experimental costs. First, numerous software solutions for genome de novo assembly are available, each having its advantages and drawbacks, without clear guidelines as to how to choose among them. Second, these solutions produce draft assemblies that often require a resource intensive finishing phase. In this paper we address these two aspects by developing Mix , a tool that mixes two or more draft assemblies, without relying on a reference genome and having the goal to reduce contig fragmentation and thus speed-up genome finishing. The proposed algorithm builds an extension graph where vertices represent extremities of contigs and edges represent existing alignments between these extremities. These alignment edges are used for contig extension. The resulting output assembly corresponds to a set of paths in the extension graph that maximizes the cumulative contig length. We evaluate the performance of Mix on bacterial NGS data from the GAGE-B study and apply it to newly sequenced Mycoplasma genomes. Resulting final assemblies demonstrate a significant improvement in the overall assembly quality. In particular, Mix is consistent by providing better overall quality results even when the choice is guided solely by standard assembly statistics, as is the case for de novo projects. Mix is implemented in Python and is available at https://github.com/cbib/MIX, novel data for our Mycoplasma study is available at http://services.cbib.u-bordeaux2.fr/mix/.

  17. Evolution of Sphingomonad Gene Clusters Related to Pesticide Catabolism Revealed by Genome Sequence and Mobilomics of Sphingobium herbicidovorans MH

    PubMed Central

    Nielsen, Tue Kjærgaard; Rasmussen, Morten; Demanèche, Sandrine; Cecillon, Sébastien; Vogel, Timothy M.

    2017-01-01

    Abstract Bacterial degraders of chlorophenoxy herbicides have been isolated from various ecosystems, including pristine environments. Among these degraders, the sphingomonads constitute a prominent group that displays versatile xenobiotic-degradation capabilities. Four separate sequencing strategies were required to provide the complete sequence of the complex and plastic genome of the canonical chlorophenoxy herbicide-degrading Sphingobium herbicidovorans MH. The genome has an intricate organization of the chlorophenoxy-herbicide catabolic genes sdpA, rdpA, and cadABCD that encode the (R)- and (S)-enantiomer-specific 2,4-dichlorophenoxypropionate dioxygenases and four subunits of a Rieske non-heme iron oxygenase involved in 2-methyl-chlorophenoxyacetic acid degradation, respectively. Several major genomic rearrangements are proposed to help understand the evolution and mobility of these important genes and their genetic context. Single-strain mobilomic sequence analysis uncovered plasmids and insertion sequence-associated circular intermediates in this environmentally important bacterium and enabled the description of evolutionary models for pesticide degradation in strain MH and related organisms. The mobilome presented a complex mosaic of mobile genetic elements including four plasmids and several circular intermediate DNA molecules of insertion-sequence elements and transposons that are central to the evolution of xenobiotics degradation. Furthermore, two individual chromosomally integrated prophages were shown to excise and form free circular DNA molecules. This approach holds great potential for improving the understanding of genome plasticity, evolution, and microbial ecology. PMID:28961970

  18. DNA and RNA editing of retrotransposons accelerate mammalian genome evolution.

    PubMed

    Knisbacher, Binyamin A; Levanon, Erez Y

    2015-04-01

    Genome evolution is commonly viewed as a gradual process that is driven by random mutations that accumulate over time. However, DNA- and RNA-editing enzymes have been identified that can accelerate evolution by actively modifying the genomically encoded information. The apolipoprotein B mRNA editing enzymes, catalytic polypeptide-like (APOBECs) are potent restriction factors that can inhibit retroelements by cytosine-to-uridine editing of retroelement DNA after reverse transcription. In some cases, a retroelement may successfully integrate into the genome despite being hypermutated. Such events introduce unique sequences into the genome and are thus a source of genomic innovation. adenosine deaminases that act on RNA (ADARs) catalyze adenosine-to-inosine editing in double-stranded RNA, commonly formed by oppositely oriented retroelements. The RNA editing confers plasticity to the transcriptome by generating many transcript variants from a single genomic locus. If the editing produces a beneficial variant, the genome may maintain the locus that produces the RNA-edited transcript for its novel function. Here, we discuss how these two powerful editing mechanisms, which both target inserted retroelements, facilitate expedited genome evolution. © 2015 New York Academy of Sciences.

  19. A comparative physical map reveals the pattern of chromosomal evolution between the turkey (Meleagris gallopavo) and chicken (Gallus gallus) genomes

    PubMed Central

    2011-01-01

    Background A robust bacterial artificial chromosome (BAC)-based physical map is essential for many aspects of genomics research, including an understanding of chromosome evolution, high-resolution genome mapping, marker-assisted breeding, positional cloning of genes, and quantitative trait analysis. To facilitate turkey genetics research and better understand avian genome evolution, a BAC-based integrated physical, genetic, and comparative map was developed for this important agricultural species. Results The turkey genome physical map was constructed based on 74,013 BAC fingerprints (11.9 × coverage) from two independent libraries, and it was integrated with the turkey genetic map and chicken genome sequence using over 41,400 BAC assignments identified by 3,499 overgo hybridization probes along with > 43,000 BAC end sequences. The physical-comparative map consists of 74 BAC contigs, with an average contig size of 13.6 Mb. All but four of the turkey chromosomes were spanned on this map by three or fewer contigs, with 14 chromosomes spanned by a single contig and nine chromosomes spanned by two contigs. This map predicts 20 to 27 major rearrangements distinguishing turkey and chicken chromosomes, despite up to 40 million years of separate evolution between the two species. These data elucidate the chromosomal evolutionary pattern within the Phasianidae that led to the modern turkey and chicken karyotypes. The predominant rearrangement mode involves intra-chromosomal inversions, and there is a clear bias for these to result in centromere locations at or near telomeres in turkey chromosomes, in comparison to interstitial centromeres in the orthologous chicken chromosomes. Conclusion The BAC-based turkey-chicken comparative map provides novel insights into the evolution of avian genomes, a framework for assembly of turkey whole genome shotgun sequencing data, and tools for enhanced genetic improvement of these important agricultural and model species. PMID:21906286

  20. Comparative and functional genomics of the Lactococcus lactis taxon; insights into evolution and niche adaptation.

    PubMed

    Kelleher, Philip; Bottacini, Francesca; Mahony, Jennifer; Kilcawley, Kieran N; van Sinderen, Douwe

    2017-03-29

    Lactococcus lactis is among the most widely studied lactic acid bacterial species due to its long history of safe use and economic importance to the dairy industry, where it is exploited as a starter culture in cheese production. In the current study, we report on the complete sequencing of 16 L. lactis subsp. lactis and L. lactis subsp. cremoris genomes. The chromosomal features of these 16 L. lactis strains in conjunction with 14 completely sequenced, publicly available lactococcal chromosomes were assessed with particular emphasis on discerning the L. lactis subspecies division, evolution and niche adaptation. The deduced pan-genome of L. lactis was found to be closed, indicating that the representative data sets employed for this analysis are sufficient to fully describe the genetic diversity of the taxon. Niche adaptation appears to play a significant role in governing the genetic content of each L. lactis subspecies, while (differential) genome decay and redundancy in the dairy niche is also highlighted.

  1. Genomics reveals historic and contemporary transmission dynamics of a bacterial disease among wildlife and livestock

    USGS Publications Warehouse

    Kamath, Pauline L.; Foster, Jeffrey T.; Drees, Kevin P.; Luikart, Gordon; Quance, Christine; Anderson, Neil J.; Clarke, P. Ryan; Cole, Eric K.; Drew, Mark L.; Edwards, William H.; Rhyan, Jack C.; Treanor, John J.; Wallen, Rick L.; White, Patrick J.; Robbe-Austerman, Suelee; Cross, Paul C.

    2016-01-01

    Whole-genome sequencing has provided fundamental insights into infectious disease epidemiology, but has rarely been used for examining transmission dynamics of a bacterial pathogen in wildlife. In the Greater Yellowstone Ecosystem (GYE), outbreaks of brucellosis have increased in cattle along with rising seroprevalence in elk. Here we use a genomic approach to examine Brucella abortus evolution, cross-species transmission and spatial spread in the GYE. We find that brucellosis was introduced into wildlife in this region at least five times. The diffusion rate varies among Brucella lineages (B3 to 8 km per year) and over time. We also estimate 12 host transitions from bison to elk, and 5 from elk to bison. Our results support the notion that free-ranging elk are currently a self-sustaining brucellosis reservoir and the source of livestock infections, and that control measures in bison are unlikely to affect the dynamics of unrelated strains circulating in nearby elk populations.

  2. Insights into bilaterian evolution from three spiralian genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simakov, Oleg; Marletaz, Ferdinand; Cho, Sung-Jin

    2012-01-07

    Current genomic perspectives on animal diversity neglect two prominent phyla, the molluscs and annelids, that together account for nearly one-third of known marine species and are important both ecologically and as experimental systems in classical embryology1, 2, 3. Here we describe the draft genomes of the owl limpet (Lottia gigantea), a marine polychaete (Capitella teleta) and a freshwater leech (Helobdella robusta), and compare them with other animal genomes to investigate the origin and diversification of bilaterians from a genomic perspective. We find that the genome organization, gene structure and functional content of these species are more similar to those ofmore » some invertebrate deuterostome genomes (for example, amphioxus and sea urchin) than those of other protostomes that have been sequenced to date (flies, nematodes and flatworms). The conservation of these genomic features enables us to expand the inventory of genes present in the last common bilaterian ancestor, establish the tripartite diversification of bilaterians using multiple genomic characteristics and identify ancient conserved long- and short-range genetic linkages across metazoans. Superimposed on this broadly conserved pan-bilaterian background we find examples of lineage-specific genome evolution, including varying rates of rearrangement, intron gain and loss, expansions and contractions of gene families, and the evolution of clade-specific genes that produce the unique content of each genome.« less

  3. 3D genomics imposes evolution of the domain model of eukaryotic genome organization.

    PubMed

    Razin, Sergey V; Vassetzky, Yegor S

    2017-02-01

    The hypothesis that the genome is composed of a patchwork of structural and functional domains (units) that may be either active or repressed was proposed almost 30 years ago. Here, we examine the evolution of the domain model of eukaryotic genome organization in view of the expansion of genome-scale techniques in the twenty-first century that have provided us with a wealth of information on genome organization, folding, and functioning.

  4. Comparative genomics reveals insights into avian genome evolution and adaptation

    PubMed Central

    Zhang, Guojie; Li, Cai; Li, Qiye; Li, Bo; Larkin, Denis M.; Lee, Chul; Storz, Jay F.; Antunes, Agostinho; Greenwold, Matthew J.; Meredith, Robert W.; Ödeen, Anders; Cui, Jie; Zhou, Qi; Xu, Luohao; Pan, Hailin; Wang, Zongji; Jin, Lijun; Zhang, Pei; Hu, Haofu; Yang, Wei; Hu, Jiang; Xiao, Jin; Yang, Zhikai; Liu, Yang; Xie, Qiaolin; Yu, Hao; Lian, Jinmin; Wen, Ping; Zhang, Fang; Li, Hui; Zeng, Yongli; Xiong, Zijun; Liu, Shiping; Zhou, Long; Huang, Zhiyong; An, Na; Wang, Jie; Zheng, Qiumei; Xiong, Yingqi; Wang, Guangbiao; Wang, Bo; Wang, Jingjing; Fan, Yu; da Fonseca, Rute R.; Alfaro-Núñez, Alonzo; Schubert, Mikkel; Orlando, Ludovic; Mourier, Tobias; Howard, Jason T.; Ganapathy, Ganeshkumar; Pfenning, Andreas; Whitney, Osceola; Rivas, Miriam V.; Hara, Erina; Smith, Julia; Farré, Marta; Narayan, Jitendra; Slavov, Gancho; Romanov, Michael N; Borges, Rui; Machado, João Paulo; Khan, Imran; Springer, Mark S.; Gatesy, John; Hoffmann, Federico G.; Opazo, Juan C.; Håstad, Olle; Sawyer, Roger H.; Kim, Heebal; Kim, Kyu-Won; Kim, Hyeon Jeong; Cho, Seoae; Li, Ning; Huang, Yinhua; Bruford, Michael W.; Zhan, Xiangjiang; Dixon, Andrew; Bertelsen, Mads F.; Derryberry, Elizabeth; Warren, Wesley; Wilson, Richard K; Li, Shengbin; Ray, David A.; Green, Richard E.; O’Brien, Stephen J.; Griffin, Darren; Johnson, Warren E.; Haussler, David; Ryder, Oliver A.; Willerslev, Eske; Graves, Gary R.; Alström, Per; Fjeldså, Jon; Mindell, David P.; Edwards, Scott V.; Braun, Edward L.; Rahbek, Carsten; Burt, David W.; Houde, Peter; Zhang, Yong; Yang, Huanming; Wang, Jian; Jarvis, Erich D.; Gilbert, M. Thomas P.; Wang, Jun

    2015-01-01

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits. PMID:25504712

  5. Genomics and Evolution in Traditional Medicinal Plants: Road to a Healthier Life.

    PubMed

    Hao, Da-Cheng; Xiao, Pei-Gen

    2015-01-01

    Medicinal plants have long been utilized in traditional medicine and ethnomedicine worldwide. This review presents a glimpse of the current status of and future trends in medicinal plant genomics, evolution, and phylogeny. These dynamic fields are at the intersection of phytochemistry and plant biology and are concerned with the evolution mechanisms and systematics of medicinal plant genomes, origin and evolution of the plant genotype and metabolic phenotype, interaction between medicinal plant genomes and their environment, the correlation between genomic diversity and metabolite diversity, and so on. Use of the emerging high-end genomic technologies can be expanded from crop plants to traditional medicinal plants, in order to expedite medicinal plant breeding and transform them into living factories of medicinal compounds. The utility of molecular phylogeny and phylogenomics in predicting chemodiversity and bioprospecting is also highlighted within the context of natural-product-based drug discovery and development. Representative case studies of medicinal plant genome, phylogeny, and evolution are summarized to exemplify the expansion of knowledge pedigree and the paradigm shift to the omics-based approaches, which update our awareness about plant genome evolution and enable the molecular breeding of medicinal plants and the sustainable utilization of plant pharmaceutical resources.

  6. Evolution of substrate specificity in a retained enzyme driven by gene loss

    DOE PAGES

    Juárez-Vázquez, Ana Lilia; Edirisinghe, Janaka N.; Verduzco-Castro, Ernesto A.; ...

    2017-03-31

    The connection between gene loss and the functional adaptation of retained proteins is still poorly understood. We apply phylogenomics and metabolic modeling to detect bacterial species that are evolving by gene loss, with the finding that Actinomycetaceae genomes from human cavities are undergoing sizable reductions, including loss of L-histidine and L-tryptophan biosynthesis. We observe that the dual-substrate phosphoribosyl isomerase A or priA gene, at which these pathways converge, appears to coevolve with the occurrence oftrpandhisgenes. Characterization of a dozen PriA homologs shows that these enzymes adapt from bifunctionality in the largest genomes, to a monofunctional, yet not necessarily specialized, inefficientmore » form in genomes undergoing reduction. These functional changes are accomplished via mutations, which result from relaxation of purifying selection, in residues structurally mapped after sequence and X-ray structural analyses. Finally, our results show how gene loss can drive the evolution of substrate specificity from retained enzymes.« less

  7. Evolution of Substrate Specificity in A Retained Enzyme Driven by Gene Loss

    DOE PAGES

    Juarez-Vazquez, Ana L.; Edirisinghe, Janaka N.; Verduzco-Castro, Ernesto A.; ...

    2017-03-31

    The connection between gene loss and the functional adaptation of retained proteins is still poorly understood. Here, we apply phylogenomics and metabolic modeling to detect bacterial species that are evolving by gene loss, with the finding that Actinomycetaceae genomes from human cavities are undergoing sizable reductions, including loss of L-histidine and L-tryptophan biosynthesis. We also observe that the dual-substrate phosphoribosyl isomerase A or priA gene, at which these pathways converge, appears to coevolve with the occurrence of trp and his genes. Characterization of a dozen PriA homologs shows that these enzymes adapt from bifunctionality in the largest genomes, to amore » monofunctional, yet not necessarily specialized, inefficient form in genomes undergoing reduction. These functional changes are accomplished via mutations, which result from relaxation of purifying selection, in residues structurally mapped after sequence and X-ray structural analyses. These results show how gene loss can drive the evolution of substrate specificity from retained enzymes.« less

  8. Evolution of substrate specificity in a retained enzyme driven by gene loss

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juárez-Vázquez, Ana Lilia; Edirisinghe, Janaka N.; Verduzco-Castro, Ernesto A.

    The connection between gene loss and the functional adaptation of retained proteins is still poorly understood. We apply phylogenomics and metabolic modeling to detect bacterial species that are evolving by gene loss, with the finding that Actinomycetaceae genomes from human cavities are undergoing sizable reductions, including loss of L-histidine and L-tryptophan biosynthesis. We observe that the dual-substrate phosphoribosyl isomerase A or priA gene, at which these pathways converge, appears to coevolve with the occurrence oftrpandhisgenes. Characterization of a dozen PriA homologs shows that these enzymes adapt from bifunctionality in the largest genomes, to a monofunctional, yet not necessarily specialized, inefficientmore » form in genomes undergoing reduction. These functional changes are accomplished via mutations, which result from relaxation of purifying selection, in residues structurally mapped after sequence and X-ray structural analyses. Finally, our results show how gene loss can drive the evolution of substrate specificity from retained enzymes.« less

  9. Evolution of Substrate Specificity in A Retained Enzyme Driven by Gene Loss

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juarez-Vazquez, Ana L.; Edirisinghe, Janaka N.; Verduzco-Castro, Ernesto A.

    The connection between gene loss and the functional adaptation of retained proteins is still poorly understood. Here, we apply phylogenomics and metabolic modeling to detect bacterial species that are evolving by gene loss, with the finding that Actinomycetaceae genomes from human cavities are undergoing sizable reductions, including loss of L-histidine and L-tryptophan biosynthesis. We also observe that the dual-substrate phosphoribosyl isomerase A or priA gene, at which these pathways converge, appears to coevolve with the occurrence of trp and his genes. Characterization of a dozen PriA homologs shows that these enzymes adapt from bifunctionality in the largest genomes, to amore » monofunctional, yet not necessarily specialized, inefficient form in genomes undergoing reduction. These functional changes are accomplished via mutations, which result from relaxation of purifying selection, in residues structurally mapped after sequence and X-ray structural analyses. These results show how gene loss can drive the evolution of substrate specificity from retained enzymes.« less

  10. Decelerated genome evolution in modern vertebrates revealed by analysis of multiple lancelet genomes.

    PubMed

    Huang, Shengfeng; Chen, Zelin; Yan, Xinyu; Yu, Ting; Huang, Guangrui; Yan, Qingyu; Pontarotti, Pierre Antoine; Zhao, Hongchen; Li, Jie; Yang, Ping; Wang, Ruihua; Li, Rui; Tao, Xin; Deng, Ting; Wang, Yiquan; Li, Guang; Zhang, Qiujin; Zhou, Sisi; You, Leiming; Yuan, Shaochun; Fu, Yonggui; Wu, Fenfang; Dong, Meiling; Chen, Shangwu; Xu, Anlong

    2014-12-19

    Vertebrates diverged from other chordates ~500 Myr ago and experienced successful innovations and adaptations, but the genomic basis underlying vertebrate origins are not fully understood. Here we suggest, through comparison with multiple lancelet (amphioxus) genomes, that ancient vertebrates experienced high rates of protein evolution, genome rearrangement and domain shuffling and that these rates greatly slowed down after the divergence of jawed and jawless vertebrates. Compared with lancelets, modern vertebrates retain, at least relatively, less protein diversity, fewer nucleotide polymorphisms, domain combinations and conserved non-coding elements (CNE). Modern vertebrates also lost substantial transposable element (TE) diversity, whereas lancelets preserve high TE diversity that includes even the long-sought RAG transposon. Lancelets also exhibit rapid gene turnover, pervasive transcription, fastest exon shuffling in metazoans and substantial TE methylation not observed in other invertebrates. These new lancelet genome sequences provide new insights into the chordate ancestral state and the vertebrate evolution.

  11. Bacterial RecA Protein Promotes Adenoviral Recombination during In Vitro Infection

    PubMed Central

    Lee, Jeong Yoon; Lee, Ji Sun; Materne, Emma C.; Rajala, Rahul; Ismail, Ashrafali M.; Seto, Donald; Dyer, David W.

    2018-01-01

    ABSTRACT Adenovirus infections in humans are common and sometimes lethal. Adenovirus-derived vectors are also commonly chosen for gene therapy in human clinical trials. We have shown in previous work that homologous recombination between adenoviral genomes of human adenovirus species D (HAdV-D), the largest and fastest growing HAdV species, is responsible for the rapid evolution of this species. Because adenovirus infection initiates in mucosal epithelia, particularly at the gastrointestinal, respiratory, genitourinary, and ocular surfaces, we sought to determine a possible role for mucosal microbiota in adenovirus genome diversity. By analysis of known recombination hot spots across 38 human adenovirus genomes in species D (HAdV-D), we identified nucleotide sequence motifs similar to bacterial Chi sequences, which facilitate homologous recombination in the presence of bacterial Rec enzymes. These motifs, referred to here as ChiAD, were identified immediately 5′ to the sequence encoding penton base hypervariable loop 2, which expresses the arginine-glycine-aspartate moiety critical to adenoviral cellular entry. Coinfection with two HAdV-Ds in the presence of an Escherichia coli lysate increased recombination; this was blocked in a RecA mutant strain, E. coli DH5α, or upon RecA depletion. Recombination increased in the presence of E. coli lysate despite a general reduction in viral replication. RecA colocalized with viral DNA in HAdV-D-infected cell nuclei and was shown to bind specifically to ChiAD sequences. These results indicate that adenoviruses may repurpose bacterial recombination machinery, a sharing of evolutionary mechanisms across a diverse microbiota, and unique example of viral commensalism. IMPORTANCE Adenoviruses are common human mucosal pathogens of the gastrointestinal, respiratory, and genitourinary tracts and ocular surface. Here, we report finding Chi-like sequences in adenovirus recombination hot spots. Adenovirus coinfection in the

  12. A Bacterial Analysis Platform: An Integrated System for Analysing Bacterial Whole Genome Sequencing Data for Clinical Diagnostics and Surveillance.

    PubMed

    Thomsen, Martin Christen Frølund; Ahrenfeldt, Johanne; Cisneros, Jose Luis Bellod; Jurtz, Vanessa; Larsen, Mette Voldby; Hasman, Henrik; Aarestrup, Frank Møller; Lund, Ole

    2016-01-01

    Recent advances in whole genome sequencing have made the technology available for routine use in microbiological laboratories. However, a major obstacle for using this technology is the availability of simple and automatic bioinformatics tools. Based on previously published and already available web-based tools we developed a single pipeline for batch uploading of whole genome sequencing data from multiple bacterial isolates. The pipeline will automatically identify the bacterial species and, if applicable, assemble the genome, identify the multilocus sequence type, plasmids, virulence genes and antimicrobial resistance genes. A short printable report for each sample will be provided and an Excel spreadsheet containing all the metadata and a summary of the results for all submitted samples can be downloaded. The pipeline was benchmarked using datasets previously used to test the individual services. The reported results enable a rapid overview of the major results, and comparing that to the previously found results showed that the platform is reliable and able to correctly predict the species and find most of the expected genes automatically. In conclusion, a combined bioinformatics platform was developed and made publicly available, providing easy-to-use automated analysis of bacterial whole genome sequencing data. The platform may be of immediate relevance as a guide for investigators using whole genome sequencing for clinical diagnostics and surveillance. The platform is freely available at: https://cge.cbs.dtu.dk/services/CGEpipeline-1.1 and it is the intention that it will continue to be expanded with new features as these become available.

  13. Whole-Genome Sequencing and Concordance Between Antimicrobial Susceptibility Genotypes and Phenotypes of Bacterial Isolates Associated with Bovine Respiratory Disease

    PubMed Central

    Owen, Joseph R.; Noyes, Noelle; Young, Amy E.; Prince, Daniel J.; Blanchard, Patricia C.; Lehenbauer, Terry W.; Aly, Sharif S.; Davis, Jessica H.; O’Rourke, Sean M.; Abdo, Zaid; Belk, Keith; Miller, Michael R.; Morley, Paul; Van Eenennaam, Alison L.

    2017-01-01

    Extended laboratory culture and antimicrobial susceptibility testing timelines hinder rapid species identification and susceptibility profiling of bacterial pathogens associated with bovine respiratory disease, the most prevalent cause of cattle mortality in the United States. Whole-genome sequencing offers a culture-independent alternative to current bacterial identification methods, but requires a library of bacterial reference genomes for comparison. To contribute new bacterial genome assemblies and evaluate genetic diversity and variation in antimicrobial resistance genotypes, whole-genome sequencing was performed on bovine respiratory disease–associated bacterial isolates (Histophilus somni, Mycoplasma bovis, Mannheimia haemolytica, and Pasteurella multocida) from dairy and beef cattle. One hundred genomically distinct assemblies were added to the NCBI database, doubling the available genomic sequences for these four species. Computer-based methods identified 11 predicted antimicrobial resistance genes in three species, with none being detected in M. bovis. While computer-based analysis can identify antibiotic resistance genes within whole-genome sequences (genotype), it may not predict the actual antimicrobial resistance observed in a living organism (phenotype). Antimicrobial susceptibility testing on 64 H. somni, M. haemolytica, and P. multocida isolates had an overall concordance rate between genotype and phenotypic resistance to the associated class of antimicrobials of 72.7% (P < 0.001), showing substantial discordance. Concordance rates varied greatly among different antimicrobial, antibiotic resistance gene, and bacterial species combinations. This suggests that antimicrobial susceptibility phenotypes are needed to complement genomically predicted antibiotic resistance gene genotypes to better understand how the presence of antibiotic resistance genes within a given bacterial species could potentially impact optimal bovine respiratory disease

  14. Consequences of reductive evolution for gene expression in an obligate endosymbiont.

    PubMed

    Wilcox, Jennifer L; Dunbar, Helen E; Wolfinger, Russell D; Moran, Nancy A

    2003-06-01

    The smallest cellular genomes are found in obligate symbiotic and pathogenic bacteria living within eukaryotic hosts. In comparison with large genomes of free-living relatives, these reduced genomes are rearranged and have lost most regulatory elements. To test whether reduced bacterial genomes incur reduced regulatory capacities, we used full-genome microarrays to evaluate transcriptional response to environmental stress in Buchnera aphidicola, the obligate endosymbiont of aphids. The 580 genes of the B. aphidicola genome represent a subset of the 4500 genes known from the related organism, Escherichia coli. Although over 20 orthologues of E. coli heat stress (HS) genes are retained by B. aphidicola, only five were differentially expressed after near-lethal heat stress treatments, and only modest shifts were observed. Analyses of upstream regulatory regions revealed loss or degradation of most HS (sigma32) promoters. Genomic rearrangements downstream of an intact HS promoter yielded upregulation of a functionally unrelated and an inactivated gene. Reanalyses of comparable experimental array data for E. coli and Bacillus subtilis revealed that genome-wide differential expression was significantly lower in B. aphidicola. Our demonstration of a diminished stress response validates reports of temperature sensitivity in B. aphidicola and suggests that this reduced bacterial genome exhibits transcriptional inflexibility.

  15. Comparative genomics reveals insights into avian genome evolution and adaptation.

    PubMed

    Zhang, Guojie; Li, Cai; Li, Qiye; Li, Bo; Larkin, Denis M; Lee, Chul; Storz, Jay F; Antunes, Agostinho; Greenwold, Matthew J; Meredith, Robert W; Ödeen, Anders; Cui, Jie; Zhou, Qi; Xu, Luohao; Pan, Hailin; Wang, Zongji; Jin, Lijun; Zhang, Pei; Hu, Haofu; Yang, Wei; Hu, Jiang; Xiao, Jin; Yang, Zhikai; Liu, Yang; Xie, Qiaolin; Yu, Hao; Lian, Jinmin; Wen, Ping; Zhang, Fang; Li, Hui; Zeng, Yongli; Xiong, Zijun; Liu, Shiping; Zhou, Long; Huang, Zhiyong; An, Na; Wang, Jie; Zheng, Qiumei; Xiong, Yingqi; Wang, Guangbiao; Wang, Bo; Wang, Jingjing; Fan, Yu; da Fonseca, Rute R; Alfaro-Núñez, Alonzo; Schubert, Mikkel; Orlando, Ludovic; Mourier, Tobias; Howard, Jason T; Ganapathy, Ganeshkumar; Pfenning, Andreas; Whitney, Osceola; Rivas, Miriam V; Hara, Erina; Smith, Julia; Farré, Marta; Narayan, Jitendra; Slavov, Gancho; Romanov, Michael N; Borges, Rui; Machado, João Paulo; Khan, Imran; Springer, Mark S; Gatesy, John; Hoffmann, Federico G; Opazo, Juan C; Håstad, Olle; Sawyer, Roger H; Kim, Heebal; Kim, Kyu-Won; Kim, Hyeon Jeong; Cho, Seoae; Li, Ning; Huang, Yinhua; Bruford, Michael W; Zhan, Xiangjiang; Dixon, Andrew; Bertelsen, Mads F; Derryberry, Elizabeth; Warren, Wesley; Wilson, Richard K; Li, Shengbin; Ray, David A; Green, Richard E; O'Brien, Stephen J; Griffin, Darren; Johnson, Warren E; Haussler, David; Ryder, Oliver A; Willerslev, Eske; Graves, Gary R; Alström, Per; Fjeldså, Jon; Mindell, David P; Edwards, Scott V; Braun, Edward L; Rahbek, Carsten; Burt, David W; Houde, Peter; Zhang, Yong; Yang, Huanming; Wang, Jian; Jarvis, Erich D; Gilbert, M Thomas P; Wang, Jun

    2014-12-12

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits. Copyright © 2014, American Association for the Advancement of Science.

  16. Genome Evolution of Plant-Parasitic Nematodes.

    PubMed

    Kikuchi, Taisei; Eves-van den Akker, Sebastian; Jones, John T

    2017-08-04

    Plant parasitism has evolved independently on at least four separate occasions in the phylum Nematoda. The application of next-generation sequencing (NGS) to plant-parasitic nematodes has allowed a wide range of genome- or transcriptome-level comparisons, and these have identified genome adaptations that enable parasitism of plants. Current genome data suggest that horizontal gene transfer, gene family expansions, evolution of new genes that mediate interactions with the host, and parasitism-specific gene regulation are important adaptations that allow nematodes to parasitize plants. Sequencing of a larger number of nematode genomes, including plant parasites that show different modes of parasitism or that have evolved in currently unsampled clades, and using free-living taxa as comparators would allow more detailed analysis and a better understanding of the organization of key genes within the genomes. This would facilitate a more complete understanding of the way in which parasitism has shaped the genomes of plant-parasitic nematodes.

  17. Genome sequence analysis of the model grass Brachypodium distachyon: insights into grass genome evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulman, Al

    2009-08-09

    Three subfamilies of grasses, the Erhardtoideae (rice), the Panicoideae (maize, sorghum, sugar cane and millet), and the Pooideae (wheat, barley and cool season forage grasses) provide the basis of human nutrition and are poised to become major sources of renewable energy. Here we describe the complete genome sequence of the wild grass Brachypodium distachyon (Brachypodium), the first member of the Pooideae subfamily to be completely sequenced. Comparison of the Brachypodium, rice and sorghum genomes reveals a precise sequence- based history of genome evolution across a broad diversity of the grass family and identifies nested insertions of whole chromosomes into centromericmore » regions as a predominant mechanism driving chromosome evolution in the grasses. The relatively compact genome of Brachypodium is maintained by a balance of retroelement replication and loss. The complete genome sequence of Brachypodium, coupled to its exceptional promise as a model system for grass research, will support the development of new energy and food crops« less

  18. Theory of prokaryotic genome evolution.

    PubMed

    Sela, Itamar; Wolf, Yuri I; Koonin, Eugene V

    2016-10-11

    Bacteria and archaea typically possess small genomes that are tightly packed with protein-coding genes. The compactness of prokaryotic genomes is commonly perceived as evidence of adaptive genome streamlining caused by strong purifying selection in large microbial populations. In such populations, even the small cost incurred by nonfunctional DNA because of extra energy and time expenditure is thought to be sufficient for this extra genetic material to be eliminated by selection. However, contrary to the predictions of this model, there exists a consistent, positive correlation between the strength of selection at the protein sequence level, measured as the ratio of nonsynonymous to synonymous substitution rates, and microbial genome size. Here, by fitting the genome size distributions in multiple groups of prokaryotes to predictions of mathematical models of population evolution, we show that only models in which acquisition of additional genes is, on average, slightly beneficial yield a good fit to genomic data. These results suggest that the number of genes in prokaryotic genomes reflects the equilibrium between the benefit of additional genes that diminishes as the genome grows and deletion bias (i.e., the rate of deletion of genetic material being slightly greater than the rate of acquisition). Thus, new genes acquired by microbial genomes, on average, appear to be adaptive. The tight spacing of protein-coding genes likely results from a combination of the deletion bias and purifying selection that efficiently eliminates nonfunctional, noncoding sequences.

  19. The Complete Chloroplast and Mitochondrial Genome Sequences of Boea hygrometrica: Insights into the Evolution of Plant Organellar Genomes

    PubMed Central

    Wang, Xumin; Deng, Xin; Zhang, Xiaowei; Hu, Songnian; Yu, Jun

    2012-01-01

    The complete nucleotide sequences of the chloroplast (cp) and mitochondrial (mt) genomes of resurrection plant Boea hygrometrica (Bh, Gesneriaceae) have been determined with the lengths of 153,493 bp and 510,519 bp, respectively. The smaller chloroplast genome contains more genes (147) with a 72% coding sequence, and the larger mitochondrial genome have less genes (65) with a coding faction of 12%. Similar to other seed plants, the Bh cp genome has a typical quadripartite organization with a conserved gene in each region. The Bh mt genome has three recombinant sequence repeats of 222 bp, 843 bp, and 1474 bp in length, which divide the genome into a single master circle (MC) and four isomeric molecules. Compared to other angiosperms, one remarkable feature of the Bh mt genome is the frequent transfer of genetic material from the cp genome during recent Bh evolution. We also analyzed organellar genome evolution in general regarding genome features as well as compositional dynamics of sequence and gene structure/organization, providing clues for the understanding of the evolution of organellar genomes in plants. The cp-derived sequences including tRNAs found in angiosperm mt genomes support the conclusion that frequent gene transfer events may have begun early in the land plant lineage. PMID:22291979

  20. Genomics and Evolution in Traditional Medicinal Plants: Road to a Healthier Life

    PubMed Central

    Hao, Da-Cheng; Xiao, Pei-Gen

    2015-01-01

    Medicinal plants have long been utilized in traditional medicine and ethnomedicine worldwide. This review presents a glimpse of the current status of and future trends in medicinal plant genomics, evolution, and phylogeny. These dynamic fields are at the intersection of phytochemistry and plant biology and are concerned with the evolution mechanisms and systematics of medicinal plant genomes, origin and evolution of the plant genotype and metabolic phenotype, interaction between medicinal plant genomes and their environment, the correlation between genomic diversity and metabolite diversity, and so on. Use of the emerging high-end genomic technologies can be expanded from crop plants to traditional medicinal plants, in order to expedite medicinal plant breeding and transform them into living factories of medicinal compounds. The utility of molecular phylogeny and phylogenomics in predicting chemodiversity and bioprospecting is also highlighted within the context of natural-product-based drug discovery and development. Representative case studies of medicinal plant genome, phylogeny, and evolution are summarized to exemplify the expansion of knowledge pedigree and the paradigm shift to the omics-based approaches, which update our awareness about plant genome evolution and enable the molecular breeding of medicinal plants and the sustainable utilization of plant pharmaceutical resources. PMID:26461812

  1. Insights into hominid evolution from the gorilla genome sequence

    PubMed Central

    Scally, Aylwyn; Dutheil, Julien Y.; Hillier, LaDeana W.; Jordan, Greg E.; Goodhead, Ian; Herrero, Javier; Hobolth, Asger; Lappalainen, Tuuli; Mailund, Thomas; Marques-Bonet, Tomas; McCarthy, Shane; Montgomery, Stephen H.; Schwalie, Petra C.; Tang, Y. Amy; Ward, Michelle C.; Xue, Yali; Yngvadottir, Bryndis; Alkan, Can; Andersen, Lars N.; Ayub, Qasim; Ball, Edward V.; Beal, Kathryn; Bradley, Brenda J.; Chen, Yuan; Clee, Chris M.; Fitzgerald, Stephen; Graves, Tina A.; Gu, Yong; Heath, Paul; Heger, Andreas; Karakoc, Emre; Kolb-Kokocinski, Anja; Laird, Gavin K.; Lunter, Gerton; Meader, Stephen; Mort, Matthew; Mullikin, James C.; Munch, Kasper; O’Connor, Timothy D.; Phillips, Andrew D.; Prado-Martinez, Javier; Rogers, Anthony S.; Sajjadian, Saba; Schmidt, Dominic; Shaw, Katy; Simpson, Jared T.; Stenson, Peter D.; Turner, Daniel J.; Vigilant, Linda; Vilella, Albert J.; Whitener, Weldon; Zhu, Baoli; Cooper, David N.; de Jong, Pieter; Dermitzakis, Emmanouil T.; Eichler, Evan E.; Flicek, Paul; Goldman, Nick; Mundy, Nicholas I.; Ning, Zemin; Odom, Duncan T.; Ponting, Chris P.; Quail, Michael A.; Ryder, Oliver A.; Searle, Stephen M.; Warren, Wesley C.; Wilson, Richard K.; Schierup, Mikkel H.; Rogers, Jane; Tyler-Smith, Chris; Durbin, Richard

    2012-01-01

    Summary Gorillas are humans’ closest living relatives after chimpanzees, and are of comparable importance for the study of human origins and evolution. Here we present the assembly and analysis of a genome sequence for the western lowland gorilla, and compare the whole genomes of all extant great ape genera. We propose a synthesis of genetic and fossil evidence consistent with placing the human-chimpanzee and human-chimpanzee-gorilla speciation events at approximately 6 and 10 million years ago (Mya). In 30% of the genome, gorilla is closer to human or chimpanzee than the latter are to each other; this is rarer around coding genes, indicating pervasive selection throughout great ape evolution, and has functional consequences in gene expression. A comparison of protein coding genes reveals approximately 500 genes showing accelerated evolution on each of the gorilla, human and chimpanzee lineages, and evidence for parallel acceleration, particularly of genes involved in hearing. We also compare the western and eastern gorilla species, estimating an average sequence divergence time 1.75 million years ago, but with evidence for more recent genetic exchange and a population bottleneck in the eastern species. The use of the genome sequence in these and future analyses will promote a deeper understanding of great ape biology and evolution. PMID:22398555

  2. GI-SVM: A sensitive method for predicting genomic islands based on unannotated sequence of a single genome.

    PubMed

    Lu, Bingxin; Leong, Hon Wai

    2016-02-01

    Genomic islands (GIs) are clusters of functionally related genes acquired by lateral genetic transfer (LGT), and they are present in many bacterial genomes. GIs are extremely important for bacterial research, because they not only promote genome evolution but also contain genes that enhance adaption and enable antibiotic resistance. Many methods have been proposed to predict GI. But most of them rely on either annotations or comparisons with other closely related genomes. Hence these methods cannot be easily applied to new genomes. As the number of newly sequenced bacterial genomes rapidly increases, there is a need for methods to detect GI based solely on sequences of a single genome. In this paper, we propose a novel method, GI-SVM, to predict GIs given only the unannotated genome sequence. GI-SVM is based on one-class support vector machine (SVM), utilizing composition bias in terms of k-mer content. From our evaluations on three real genomes, GI-SVM can achieve higher recall compared with current methods, without much loss of precision. Besides, GI-SVM allows flexible parameter tuning to get optimal results for each genome. In short, GI-SVM provides a more sensitive method for researchers interested in a first-pass detection of GI in newly sequenced genomes.

  3. Decelerated genome evolution in modern vertebrates revealed by analysis of multiple lancelet genomes

    PubMed Central

    Huang, Shengfeng; Chen, Zelin; Yan, Xinyu; Yu, Ting; Huang, Guangrui; Yan, Qingyu; Pontarotti, Pierre Antoine; Zhao, Hongchen; Li, Jie; Yang, Ping; Wang, Ruihua; Li, Rui; Tao, Xin; Deng, Ting; Wang, Yiquan; Li, Guang; Zhang, Qiujin; Zhou, Sisi; You, Leiming; Yuan, Shaochun; Fu, Yonggui; Wu, Fenfang; Dong, Meiling; Chen, Shangwu; Xu, Anlong

    2014-01-01

    Vertebrates diverged from other chordates ~500 Myr ago and experienced successful innovations and adaptations, but the genomic basis underlying vertebrate origins are not fully understood. Here we suggest, through comparison with multiple lancelet (amphioxus) genomes, that ancient vertebrates experienced high rates of protein evolution, genome rearrangement and domain shuffling and that these rates greatly slowed down after the divergence of jawed and jawless vertebrates. Compared with lancelets, modern vertebrates retain, at least relatively, less protein diversity, fewer nucleotide polymorphisms, domain combinations and conserved non-coding elements (CNE). Modern vertebrates also lost substantial transposable element (TE) diversity, whereas lancelets preserve high TE diversity that includes even the long-sought RAG transposon. Lancelets also exhibit rapid gene turnover, pervasive transcription, fastest exon shuffling in metazoans and substantial TE methylation not observed in other invertebrates. These new lancelet genome sequences provide new insights into the chordate ancestral state and the vertebrate evolution. PMID:25523484

  4. The amphioxus genome and the evolution of the chordate karyotype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putnam, Nicholas H.; Butts, Thomas; Ferrier, David E.K.

    2008-04-01

    Lancelets ('amphioxus') are the modern survivors of an ancient chordate lineage with a fossil record dating back to the Cambrian. We describe the structure and gene content of the highly polymorphic {approx}520 million base pair genome of the Florida lancelet Branchiostoma floridae, and analyze it in the context of chordate evolution. Whole genome comparisons illuminate the murky relationships among the three chordate groups (tunicates, lancelets, and vertebrates), and allow reconstruction of not only the gene complement of the last common chordate ancestor, but also a partial reconstruction of its genomic organization, as well as a description of two genome-wide duplicationsmore » and subsequent reorganizations in the vertebrate lineage. These genome-scale events shaped the vertebrate genome and provided additional genetic variation for exploitation during vertebrate evolution.« less

  5. The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle

    PubMed Central

    Wang, W.; Haberer, G.; Gundlach, H.; Gläßer, C.; Nussbaumer, T.; Luo, M.C.; Lomsadze, A.; Borodovsky, M.; Kerstetter, R.A.; Shanklin, J.; Byrant, D.W.; Mockler, T.C.; Appenroth, K.J.; Grimwood, J.; Jenkins, J.; Chow, J.; Choi, C.; Adam, C.; Cao, X.-H.; Fuchs, J.; Schubert, I.; Rokhsar, D.; Schmutz, J.; Michael, T.P.; Mayer, K.F.X.; Messing, J

    2014-01-01

    The subfamily of the Lemnoideae belongs to a different order than other monocotyledonous species that have been sequenced and comprises aquatic plants that grow rapidly on the water surface. Here we select Spirodela polyrhiza for whole-genome sequencing. We show that Spirodela has a genome with no signs of recent retrotranspositions but signatures of two ancient whole-genome duplications, possibly 95 million years ago (mya), older than those in Arabidopsis and rice. Its genome has only 19,623 predicted protein-coding genes, which is 28% less than the dicotyledonous Arabidopsis thaliana and 50% less than monocotyledonous rice. We propose that at least in part, the neotenous reduction of these aquatic plants is based on readjusted copy numbers of promoters and repressors of the juvenile-to-adult transition. The Spirodela genome, along with its unique biology and physiology, will stimulate new insights into environmental adaptation, ecology, evolution and plant development, and will be instrumental for future bioenergy applications. PMID:24548928

  6. Genomic Analysis of Caldithrix abyssi, the Thermophilic Anaerobic Bacterium of the Novel Bacterial Phylum Calditrichaeota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kublanov, Ilya V.; Sigalova, Olga M.; Gavrilov, Sergey N.

    The genome of Caldithrix abyssi, the first cultivated representative of a phylum-level bacterial lineage, was sequenced within the framework of Genomic Encyclopedia of Bacteria and Archaea (GEBA) project. The genomic analysis revealed mechanisms allowing this anaerobic bacterium to ferment peptides or to implement nitrate reduction with acetate or molecular hydrogen as electron donors. The genome encoded five different [NiFe]- and [FeFe]-hydrogenases, one of which, group 1 [NiFe]-hydrogenase, is presumably involved in lithoheterotrophic growth, three other produce H 2 during fermentation, and one is apparently bidirectional. The ability to reduce nitrate is determined by a nitrate reductase of the Nap family,more » while nitrite reduction to ammonia is presumably catalyzed by an octaheme cytochrome c nitrite reductase εHao. The genome contained genes of respiratory polysulfide/thiosulfate reductase, however, elemental sulfur and thiosulfate were not used as the electron acceptors for anaerobic respiration with acetate or H 2, probably due to the lack of the gene of the maturation protein. Nevertheless, elemental sulfur and thiosulfate stimulated growth on fermentable substrates (peptides), being reduced to sulfide, most probably through the action of the cytoplasmic sulfide dehydrogenase and/or NAD(P)-dependent [NiFe]-hydrogenase (sulfhydrogenase) encoded by the genome. Surprisingly, the genome of this anaerobic microorganism encoded all genes for cytochrome c oxidase, however, its maturation machinery seems to be non-operational due to genomic rearrangements of supplementary genes. Despite the fact that sugars were not among the substrates reported when C. abyssi was first described, our genomic analysis revealed multiple genes of glycoside hydrolases, and some of them were predicted to be secreted. This finding aided in bringing out four carbohydrates that supported the growth of C. abyssi: starch, cellobiose, glucomannan and xyloglucan. The genomic analysis

  7. Genomic Analysis of Caldithrix abyssi, the Thermophilic Anaerobic Bacterium of the Novel Bacterial Phylum Calditrichaeota

    DOE PAGES

    Kublanov, Ilya V.; Sigalova, Olga M.; Gavrilov, Sergey N.; ...

    2017-02-20

    The genome of Caldithrix abyssi, the first cultivated representative of a phylum-level bacterial lineage, was sequenced within the framework of Genomic Encyclopedia of Bacteria and Archaea (GEBA) project. The genomic analysis revealed mechanisms allowing this anaerobic bacterium to ferment peptides or to implement nitrate reduction with acetate or molecular hydrogen as electron donors. The genome encoded five different [NiFe]- and [FeFe]-hydrogenases, one of which, group 1 [NiFe]-hydrogenase, is presumably involved in lithoheterotrophic growth, three other produce H 2 during fermentation, and one is apparently bidirectional. The ability to reduce nitrate is determined by a nitrate reductase of the Nap family,more » while nitrite reduction to ammonia is presumably catalyzed by an octaheme cytochrome c nitrite reductase εHao. The genome contained genes of respiratory polysulfide/thiosulfate reductase, however, elemental sulfur and thiosulfate were not used as the electron acceptors for anaerobic respiration with acetate or H 2, probably due to the lack of the gene of the maturation protein. Nevertheless, elemental sulfur and thiosulfate stimulated growth on fermentable substrates (peptides), being reduced to sulfide, most probably through the action of the cytoplasmic sulfide dehydrogenase and/or NAD(P)-dependent [NiFe]-hydrogenase (sulfhydrogenase) encoded by the genome. Surprisingly, the genome of this anaerobic microorganism encoded all genes for cytochrome c oxidase, however, its maturation machinery seems to be non-operational due to genomic rearrangements of supplementary genes. Despite the fact that sugars were not among the substrates reported when C. abyssi was first described, our genomic analysis revealed multiple genes of glycoside hydrolases, and some of them were predicted to be secreted. This finding aided in bringing out four carbohydrates that supported the growth of C. abyssi: starch, cellobiose, glucomannan and xyloglucan. The genomic analysis

  8. Comparative Genomic Analysis of Acanthamoeba Endosymbionts Highlights the Role of Amoebae as a “Melting Pot” Shaping the Rickettsiales Evolution

    PubMed Central

    Wang, Zhang

    2017-01-01

    Abstract Amoebae have been considered as a genetic “melting pot” for its symbionts, facilitating genetic exchanges of the bacteria that co-inhabit the same host. To test the “melting pot” hypothesis, we analyzed six genomes of amoeba endosymbionts within Rickettsiales, four of which belong to Holosporaceae family and two to Candidatus Midichloriaceae. For the first time, we identified plasmids in obligate amoeba endosymbionts, which suggests conjugation as a potential mechanism for lateral gene transfers (LGTs) that underpin the “melting pot” hypothesis. We found strong evidence of recent LGTs between the Rickettsiales amoeba endosymbionts, suggesting that the LGTs are continuous and ongoing. In addition, comparative genomic and phylogenomic analyses revealed pervasive and recurrent LGTs between Rickettsiales and distantly related amoeba-associated bacteria throughout the Rickettsiales evolution. Many of these exchanged genes are important for amoeba–symbiont interactions, including genes in transport system, antibiotic resistance, stress response, and bacterial virulence, suggesting that LGTs have played important roles in the adaptation of endosymbionts to their intracellular habitats. Surprisingly, we found little evidence of LGTs between amoebae and their bacterial endosymbionts. Our study strongly supports the “melting pot” hypothesis and highlights the role of amoebae in shaping the Rickettsiales evolution. PMID:29177480

  9. Whole-Genome Sequencing and Concordance Between Antimicrobial Susceptibility Genotypes and Phenotypes of Bacterial Isolates Associated with Bovine Respiratory Disease.

    PubMed

    Owen, Joseph R; Noyes, Noelle; Young, Amy E; Prince, Daniel J; Blanchard, Patricia C; Lehenbauer, Terry W; Aly, Sharif S; Davis, Jessica H; O'Rourke, Sean M; Abdo, Zaid; Belk, Keith; Miller, Michael R; Morley, Paul; Van Eenennaam, Alison L

    2017-09-07

    Extended laboratory culture and antimicrobial susceptibility testing timelines hinder rapid species identification and susceptibility profiling of bacterial pathogens associated with bovine respiratory disease, the most prevalent cause of cattle mortality in the United States. Whole-genome sequencing offers a culture-independent alternative to current bacterial identification methods, but requires a library of bacterial reference genomes for comparison. To contribute new bacterial genome assemblies and evaluate genetic diversity and variation in antimicrobial resistance genotypes, whole-genome sequencing was performed on bovine respiratory disease-associated bacterial isolates ( Histophilus somni , Mycoplasma bovis , Mannheimia haemolytica , and Pasteurella multocida ) from dairy and beef cattle. One hundred genomically distinct assemblies were added to the NCBI database, doubling the available genomic sequences for these four species. Computer-based methods identified 11 predicted antimicrobial resistance genes in three species, with none being detected in M. bovis While computer-based analysis can identify antibiotic resistance genes within whole-genome sequences (genotype), it may not predict the actual antimicrobial resistance observed in a living organism (phenotype). Antimicrobial susceptibility testing on 64 H. somni , M. haemolytica , and P. multocida isolates had an overall concordance rate between genotype and phenotypic resistance to the associated class of antimicrobials of 72.7% ( P < 0.001), showing substantial discordance. Concordance rates varied greatly among different antimicrobial, antibiotic resistance gene, and bacterial species combinations. This suggests that antimicrobial susceptibility phenotypes are needed to complement genomically predicted antibiotic resistance gene genotypes to better understand how the presence of antibiotic resistance genes within a given bacterial species could potentially impact optimal bovine respiratory disease

  10. Conserved noncoding sequences conserve biological networks and influence genome evolution.

    PubMed

    Xie, Jianbo; Qian, Kecheng; Si, Jingna; Xiao, Liang; Ci, Dong; Zhang, Deqiang

    2018-05-01

    Comparative genomics approaches have identified numerous conserved cis-regulatory sequences near genes in plant genomes. Despite the identification of these conserved noncoding sequences (CNSs), our knowledge of their functional importance and selection remains limited. Here, we used a combination of DNA methylome analysis, microarray expression analyses, and functional annotation to study these sequences in the model tree Populus trichocarpa. Methylation in CG contexts and non-CG contexts was lower in CNSs, particularly CNSs in the 5'-upstream regions of genes, compared with other sites in the genome. We observed that CNSs are enriched in genes with transcription and binding functions, and this also associated with syntenic genes and those from whole-genome duplications, suggesting that cis-regulatory sequences play a key role in genome evolution. We detected a significant positive correlation between CNS number and protein interactions, suggesting that CNSs may have roles in the evolution and maintenance of biological networks. The divergence of CNSs indicates that duplication-degeneration-complementation drives the subfunctionalization of a proportion of duplicated genes from whole-genome duplication. Furthermore, population genomics confirmed that most CNSs are under strong purifying selection and only a small subset of CNSs shows evidence of adaptive evolution. These findings provide a foundation for future studies exploring these key genomic features in the maintenance of biological networks, local adaptation, and transcription.

  11. A Gene Gravity Model for the Evolution of Cancer Genomes: A Study of 3,000 Cancer Genomes across 9 Cancer Types

    PubMed Central

    Lin, Chen-Ching; Zhao, Junfei; Jia, Peilin; Li, Wen-Hsiung; Zhao, Zhongming

    2015-01-01

    Cancer development and progression result from somatic evolution by an accumulation of genomic alterations. The effects of those alterations on the fitness of somatic cells lead to evolutionary adaptations such as increased cell proliferation, angiogenesis, and altered anticancer drug responses. However, there are few general mathematical models to quantitatively examine how perturbations of a single gene shape subsequent evolution of the cancer genome. In this study, we proposed the gene gravity model to study the evolution of cancer genomes by incorporating the genome-wide transcription and somatic mutation profiles of ~3,000 tumors across 9 cancer types from The Cancer Genome Atlas into a broad gene network. We found that somatic mutations of a cancer driver gene may drive cancer genome evolution by inducing mutations in other genes. This functional consequence is often generated by the combined effect of genetic and epigenetic (e.g., chromatin regulation) alterations. By quantifying cancer genome evolution using the gene gravity model, we identified six putative cancer genes (AHNAK, COL11A1, DDX3X, FAT4, STAG2, and SYNE1). The tumor genomes harboring the nonsynonymous somatic mutations in these genes had a higher mutation density at the genome level compared to the wild-type groups. Furthermore, we provided statistical evidence that hypermutation of cancer driver genes on inactive X chromosomes is a general feature in female cancer genomes. In summary, this study sheds light on the functional consequences and evolutionary characteristics of somatic mutations during tumorigenesis by propelling adaptive cancer genome evolution, which would provide new perspectives for cancer research and therapeutics. PMID:26352260

  12. A Gene Gravity Model for the Evolution of Cancer Genomes: A Study of 3,000 Cancer Genomes across 9 Cancer Types.

    PubMed

    Cheng, Feixiong; Liu, Chuang; Lin, Chen-Ching; Zhao, Junfei; Jia, Peilin; Li, Wen-Hsiung; Zhao, Zhongming

    2015-09-01

    Cancer development and progression result from somatic evolution by an accumulation of genomic alterations. The effects of those alterations on the fitness of somatic cells lead to evolutionary adaptations such as increased cell proliferation, angiogenesis, and altered anticancer drug responses. However, there are few general mathematical models to quantitatively examine how perturbations of a single gene shape subsequent evolution of the cancer genome. In this study, we proposed the gene gravity model to study the evolution of cancer genomes by incorporating the genome-wide transcription and somatic mutation profiles of ~3,000 tumors across 9 cancer types from The Cancer Genome Atlas into a broad gene network. We found that somatic mutations of a cancer driver gene may drive cancer genome evolution by inducing mutations in other genes. This functional consequence is often generated by the combined effect of genetic and epigenetic (e.g., chromatin regulation) alterations. By quantifying cancer genome evolution using the gene gravity model, we identified six putative cancer genes (AHNAK, COL11A1, DDX3X, FAT4, STAG2, and SYNE1). The tumor genomes harboring the nonsynonymous somatic mutations in these genes had a higher mutation density at the genome level compared to the wild-type groups. Furthermore, we provided statistical evidence that hypermutation of cancer driver genes on inactive X chromosomes is a general feature in female cancer genomes. In summary, this study sheds light on the functional consequences and evolutionary characteristics of somatic mutations during tumorigenesis by propelling adaptive cancer genome evolution, which would provide new perspectives for cancer research and therapeutics.

  13. Genomic evolution of Saccharomyces cerevisiae under Chinese rice wine fermentation.

    PubMed

    Li, Yudong; Zhang, Weiping; Zheng, Daoqiong; Zhou, Zhan; Yu, Wenwen; Zhang, Lei; Feng, Lifang; Liang, Xinle; Guan, Wenjun; Zhou, Jingwen; Chen, Jian; Lin, Zhenguo

    2014-09-10

    Rice wine fermentation represents a unique environment for the evolution of the budding yeast, Saccharomyces cerevisiae. To understand how the selection pressure shaped the yeast genome and gene regulation, we determined the genome sequence and transcriptome of a S. cerevisiae strain YHJ7 isolated from Chinese rice wine (Huangjiu), a popular traditional alcoholic beverage in China. By comparing the genome of YHJ7 to the lab strain S288c, a Japanese sake strain K7, and a Chinese industrial bioethanol strain YJSH1, we identified many genomic sequence and structural variations in YHJ7, which are mainly located in subtelomeric regions, suggesting that these regions play an important role in genomic evolution between strains. In addition, our comparative transcriptome analysis between YHJ7 and S288c revealed a set of differentially expressed genes, including those involved in glucose transport (e.g., HXT2, HXT7) and oxidoredutase activity (e.g., AAD10, ADH7). Interestingly, many of these genomic and transcriptional variations are directly or indirectly associated with the adaptation of YHJ7 strain to its specific niches. Our molecular evolution analysis suggested that Japanese sake strains (K7/UC5) were derived from Chinese rice wine strains (YHJ7) at least approximately 2,300 years ago, providing the first molecular evidence elucidating the origin of Japanese sake strains. Our results depict interesting insights regarding the evolution of yeast during rice wine fermentation, and provided a valuable resource for genetic engineering to improve industrial wine-making strains. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  14. Lateral Gene Transfer Dynamics in the Ancient Bacterial Genus Streptomyces

    PubMed Central

    McDonald, Bradon R.

    2017-01-01

    ABSTRACT Lateral gene transfer (LGT) profoundly shapes the evolution of bacterial lineages. LGT across disparate phylogenetic groups and genome content diversity between related organisms suggest a model of bacterial evolution that views LGT as rampant and promiscuous. It has even driven the argument that species concepts and tree-based phylogenetics cannot be applied to bacteria. Here, we show that acquisition and retention of genes through LGT are surprisingly rare in the ubiquitous and biomedically important bacterial genus Streptomyces. Using a molecular clock, we estimate that the Streptomyces bacteria are ~380 million years old, indicating that this bacterial genus is as ancient as land vertebrates. Calibrating LGT rate to this geologic time span, we find that on average only 10 genes per million years were acquired and subsequently maintained. Over that same time span, Streptomyces accumulated thousands of point mutations. By explicitly incorporating evolutionary timescale into our analyses, we provide a dramatically different view on the dynamics of LGT and its impact on bacterial evolution. PMID:28588130

  15. Bacterial recombination promotes the evolution of multi-drug-resistance in functionally diverse populations

    PubMed Central

    Perron, Gabriel G.; Lee, Alexander E. G.; Wang, Yun; Huang, Wei E.; Barraclough, Timothy G.

    2012-01-01

    Bacterial recombination is believed to be a major factor explaining the prevalence of multi-drug-resistance (MDR) among pathogenic bacteria. Despite extensive evidence for exchange of resistance genes from retrospective sequence analyses, experimental evidence for the evolutionary benefits of bacterial recombination is scarce. We compared the evolution of MDR between populations of Acinetobacter baylyi in which we manipulated both the recombination rate and the initial diversity of strains with resistance to single drugs. In populations lacking recombination, the initial presence of multiple strains resistant to different antibiotics inhibits the evolution of MDR. However, in populations with recombination, the inhibitory effect of standing diversity is alleviated and MDR evolves rapidly. Moreover, only the presence of DNA harbouring resistance genes promotes the evolution of resistance, ruling out other proposed benefits for recombination. Together, these results provide direct evidence for the fitness benefits of bacterial recombination and show that this occurs by mitigation of functional interference between genotypes resistant to single antibiotics. Although analogous to previously described mechanisms of clonal interference among alternative beneficial mutations, our results actually highlight a different mechanism by which interactions among co-occurring strains determine the benefits of recombination for bacterial evolution. PMID:22048956

  16. Genome Sequences of Marine Shrimp Exopalaemon carinicauda Holthuis Provide Insights into Genome Size Evolution of Caridea.

    PubMed

    Yuan, Jianbo; Gao, Yi; Zhang, Xiaojun; Wei, Jiankai; Liu, Chengzhang; Li, Fuhua; Xiang, Jianhai

    2017-07-05

    Crustacea, particularly Decapoda, contains many economically important species, such as shrimps and crabs. Crustaceans exhibit enormous (nearly 500-fold) variability in genome size. However, limited genome resources are available for investigating these species. Exopalaemon carinicauda Holthuis, an economical caridean shrimp, is a potential ideal experimental animal for research on crustaceans. In this study, we performed low-coverage sequencing and de novo assembly of the E. carinicauda genome. The assembly covers more than 95% of coding regions. E. carinicauda possesses a large complex genome (5.73 Gb), with size twice higher than those of many decapod shrimps. As such, comparative genomic analyses were implied to investigate factors affecting genome size evolution of decapods. However, clues associated with genome duplication were not identified, and few horizontally transferred sequences were detected. Ultimately, the burst of transposable elements, especially retrotransposons, was determined as the major factor influencing genome expansion. A total of 2 Gb repeats were identified, and RTE-BovB, Jockey, Gypsy, and DIRS were the four major retrotransposons that significantly expanded. Both recent (Jockey and Gypsy) and ancestral (DIRS) originated retrotransposons responsible for the genome evolution. The E. carinicauda genome also exhibited potential for the genomic and experimental research of shrimps.

  17. Encyclopedia of bacterial gene circuits whose presence or absence correlate with pathogenicity--a large-scale system analysis of decoded bacterial genomes.

    PubMed

    Shestov, Maksim; Ontañón, Santiago; Tozeren, Aydin

    2015-10-13

    Bacterial infections comprise a global health challenge as the incidences of antibiotic resistance increase. Pathogenic potential of bacteria has been shown to be context dependent, varying in response to environment and even within the strains of the same genus. We used the KEGG repository and extensive literature searches to identify among the 2527 bacterial genomes in the literature those implicated as pathogenic to the host, including those which show pathogenicity in a context dependent manner. Using data on the gene contents of these genomes, we identified sets of genes highly abundant in pathogenic but relatively absent in commensal strains and vice versa. In addition, we carried out genome comparison within a genus for the seventeen largest genera in our genome collection. We projected the resultant lists of ortholog genes onto KEGG bacterial pathways to identify clusters and circuits, which can be linked to either pathogenicity or synergy. Gene circuits relatively abundant in nonpathogenic bacteria often mediated biosynthesis of antibiotics. Other synergy-linked circuits reduced drug-induced toxicity. Pathogen-abundant gene circuits included modules in one-carbon folate, two-component system, type-3 secretion system, and peptidoglycan biosynthesis. Antibiotics-resistant bacterial strains possessed genes modulating phagocytosis, vesicle trafficking, cytoskeletal reorganization, and regulation of the inflammatory response. Our study also identified bacterial genera containing a circuit, elements of which were previously linked to Alzheimer's disease. Present study produces for the first time, a signature, in the form of a robust list of gene circuitry whose presence or absence could potentially define the pathogenicity of a microbiome. Extensive literature search substantiated a bulk majority of the commensal and pathogenic circuitry in our predicted list. Scanning microbiome libraries for these circuitry motifs will provide further insights into the complex

  18. Peltaster fructicola genome reveals evolution from an invasive phytopathogen to an ectophytic parasite

    PubMed Central

    Xu, Chao; Chen, Huan; Gleason, Mark L.; Xu, Jin-Rong; Liu, Huiquan; Zhang, Rong; Sun, Guangyu

    2016-01-01

    Sooty blotch and flyspeck (SBFS) fungi are unconventional plant pathogens that cause economic losses by blemishing the surface appearance of infected fruit. Here, we introduce the 18.14-Mb genome of Peltaster fructicola, one of the most prevalent SBFS species on apple. This undersized assembly contains only 8,334 predicted protein-coding genes and a very small repertoire of repetitive elements. Phylogenomics and comparative genomics revealed that P. fructicola had undergone a reductive evolution, during which the numbers of orphan genes and genes involved in plant cell wall degradation, secondary metabolism, and secreted peptidases and effectors were drastically reduced. In contrast, the genes controlling 1,8-dihydroxynaphthalene (DHN)-melanin biosynthesis and appressorium-mediated penetration were retained substantially. Additionally, microscopic examination of the surfaces of infected apple indicated for the first time that P. fructicola can not only dissolve epicuticular waxes but also partially penetrate the cuticle proper. Our findings indicate that genome contraction, characterized mainly by the massive loss of pathogenicity-related genes, has played an important role in the evolution of P. fructicola (and by implication other SBFS species) from a plant-penetrating ancestor to a non-invasive ectophyte, displaying a novel form of trophic interaction between plants and fungi. PMID:26964666

  19. Punctuated Evolution of Prostate Cancer Genomes

    PubMed Central

    Baca, Sylvan C.; Prandi, Davide; Lawrence, Michael S.; Mosquera, Juan Miguel; Romanel, Alessandro; Drier, Yotam; Park, Kyung; Kitabayashi, Naoki; MacDonald, Theresa Y.; Ghandi, Mahmoud; Van Allen, Eliezer; Kryukov, Gregory V.; Sboner, Andrea; Theurillat, Jean-Philippe; Soong, T. David; Nickerson, Elizabeth; Auclair, Daniel; Tewari, Ashutosh; Beltran, Himisha; Onofrio, Robert C.; Boysen, Gunther; Guiducci, Candace; Barbieri, Christopher E.; Cibulskis, Kristian; Sivachenko, Andrey; Carter, Scott L.; Saksena, Gordon; Voet, Douglas; Ramos, Alex H; Winckler, Wendy; Cipicchio, Michelle; Ardlie, Kristin; Kantoff, Philip W.; Berger, Michael F.; Gabriel, Stacey B.; Golub, Todd R.; Meyerson, Matthew; Lander, Eric S.; Elemento, Olivier; Getz, Gad; Demichelis, Francesca; Rubin, Mark A.; Garraway, Levi A.

    2013-01-01

    SUMMARY The analysis of exonic DNA from prostate cancers has identified recurrently mutated genes, but the spectrum of genome-wide alterations has not been profiled extensively in this disease. We sequenced the genomes of 57 prostate tumors and matched normal tissues to characterize somatic alterations and to study how they accumulate during oncogenesis and progression. By modeling the genesis of genomic rearrangements, we identified abundant DNA translocations and deletions that arise in a highly interdependent manner. This phenomenon, which we term “chromoplexy”, frequently accounts for the dysregulation of prostate cancer genes and appears to disrupt multiple cancer genes coordinately. Our modeling suggests that chromoplexy may induce considerable genomic derangement over relatively few events in prostate cancer and other neoplasms, supporting a model of punctuated cancer evolution. By characterizing the clonal hierarchy of genomic lesions in prostate tumors, we charted a path of oncogenic events along which chromoplexy may drive prostate carcinogenesis. PMID:23622249

  20. Punctuated evolution of prostate cancer genomes.

    PubMed

    Baca, Sylvan C; Prandi, Davide; Lawrence, Michael S; Mosquera, Juan Miguel; Romanel, Alessandro; Drier, Yotam; Park, Kyung; Kitabayashi, Naoki; MacDonald, Theresa Y; Ghandi, Mahmoud; Van Allen, Eliezer; Kryukov, Gregory V; Sboner, Andrea; Theurillat, Jean-Philippe; Soong, T David; Nickerson, Elizabeth; Auclair, Daniel; Tewari, Ashutosh; Beltran, Himisha; Onofrio, Robert C; Boysen, Gunther; Guiducci, Candace; Barbieri, Christopher E; Cibulskis, Kristian; Sivachenko, Andrey; Carter, Scott L; Saksena, Gordon; Voet, Douglas; Ramos, Alex H; Winckler, Wendy; Cipicchio, Michelle; Ardlie, Kristin; Kantoff, Philip W; Berger, Michael F; Gabriel, Stacey B; Golub, Todd R; Meyerson, Matthew; Lander, Eric S; Elemento, Olivier; Getz, Gad; Demichelis, Francesca; Rubin, Mark A; Garraway, Levi A

    2013-04-25

    The analysis of exonic DNA from prostate cancers has identified recurrently mutated genes, but the spectrum of genome-wide alterations has not been profiled extensively in this disease. We sequenced the genomes of 57 prostate tumors and matched normal tissues to characterize somatic alterations and to study how they accumulate during oncogenesis and progression. By modeling the genesis of genomic rearrangements, we identified abundant DNA translocations and deletions that arise in a highly interdependent manner. This phenomenon, which we term "chromoplexy," frequently accounts for the dysregulation of prostate cancer genes and appears to disrupt multiple cancer genes coordinately. Our modeling suggests that chromoplexy may induce considerable genomic derangement over relatively few events in prostate cancer and other neoplasms, supporting a model of punctuated cancer evolution. By characterizing the clonal hierarchy of genomic lesions in prostate tumors, we charted a path of oncogenic events along which chromoplexy may drive prostate carcinogenesis. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Phenotypic Heterogeneity and the Evolution of Bacterial Life Cycles.

    PubMed

    van Gestel, Jordi; Nowak, Martin A

    2016-02-01

    Most bacteria live in colonies, where they often express different cell types. The ecological significance of these cell types and their evolutionary origin are often unknown. Here, we study the evolution of cell differentiation in the context of surface colonization. We particularly focus on the evolution of a 'sticky' cell type that is required for surface attachment, but is costly to express. The sticky cells not only facilitate their own attachment, but also that of non-sticky cells. Using individual-based simulations, we show that surface colonization rapidly evolves and in most cases leads to phenotypic heterogeneity, in which sticky and non-sticky cells occur side by side on the surface. In the presence of regulation, cell differentiation leads to a remarkable set of bacterial life cycles, in which cells alternate between living in the liquid and living on the surface. The dominant life stage is formed by the surface-attached colony that shows many complex features: colonies reproduce via fission and by producing migratory propagules; cells inside the colony divide labour; and colonies can produce filaments to facilitate expansion. Overall, our model illustrates how the evolution of an adhesive cell type goes hand in hand with the evolution of complex bacterial life cycles.

  2. Phenotypic Heterogeneity and the Evolution of Bacterial Life Cycles

    PubMed Central

    van Gestel, Jordi; Nowak, Martin A.

    2016-01-01

    Most bacteria live in colonies, where they often express different cell types. The ecological significance of these cell types and their evolutionary origin are often unknown. Here, we study the evolution of cell differentiation in the context of surface colonization. We particularly focus on the evolution of a ‘sticky’ cell type that is required for surface attachment, but is costly to express. The sticky cells not only facilitate their own attachment, but also that of non-sticky cells. Using individual-based simulations, we show that surface colonization rapidly evolves and in most cases leads to phenotypic heterogeneity, in which sticky and non-sticky cells occur side by side on the surface. In the presence of regulation, cell differentiation leads to a remarkable set of bacterial life cycles, in which cells alternate between living in the liquid and living on the surface. The dominant life stage is formed by the surface-attached colony that shows many complex features: colonies reproduce via fission and by producing migratory propagules; cells inside the colony divide labour; and colonies can produce filaments to facilitate expansion. Overall, our model illustrates how the evolution of an adhesive cell type goes hand in hand with the evolution of complex bacterial life cycles. PMID:26894881

  3. Thermodynamic Basis for the Emergence of Genomes during Prebiotic Evolution

    DTIC Science & Technology

    2012-05-01

    Thermodynamic Basis for the Emergence of Genomes during Prebiotic Evolution Hyung-June Woo, Ravi Vijaya Satya, Jaques Reifman* DoD Biotechnology High...polymerases are above, near, and below a critical point, respectively. The prebiotic evolution therefore must have crossed this critical region. Over...among many potential oligomers capable of templated replication, RNAs may have evolved to form prebiotic genomes due to the value of their nonenzymatic

  4. Comparative genomics of Fructobacillus spp. and Leuconostoc spp. reveals niche-specific evolution of Fructobacillus spp.

    DOE PAGES

    Endo, Akihito; Tanizawa, Yasuhiro; Tanaka, Naoto; ...

    2015-12-29

    In this study, Fructobacillus spp. in fructose-rich niches belong to the family Leuconostocaceae. They were originally classified as Leuconostoc spp., but were later grouped into a novel genus, Fructobacillus , based on their phylogenetic position, morphology and specific biochemical characteristics. The unique characters, so called fructophilic characteristics, had not been reported in the group of lactic acid bacteria, suggesting unique evolution at the genome level. Here we studied four draft genome sequences of Fructobacillus spp. and compared their metabolic properties against those of Leuconostoc spp. As a result, Fructobacillus species possess significantly less protein coding sequences in their small genomes.more » The number of genes was significantly smaller in carbohydrate transport and metabolism. Several other metabolic pathways, including TCA cycle, ubiquinone and other terpenoid-quinone biosynthesis and phosphotransferase systems, were characterized as discriminative pathways between the two genera. The adhE gene for bifunctional acetaldehyde/alcohol dehydrogenase, and genes for subunits of the pyruvate dehydrogenase complex were absent in Fructobacillus spp. The two genera also show different levels of GC contents, which are mainly due to the different GC contents at the third codon position. In conclusion, the present genome characteristics in Fructobacillus spp. suggest reductive evolution that took place to adapt to specific niches.« less

  5. Comparative genomics of Fructobacillus spp. and Leuconostoc spp. reveals niche-specific evolution of Fructobacillus spp.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Endo, Akihito; Tanizawa, Yasuhiro; Tanaka, Naoto

    In this study, Fructobacillus spp. in fructose-rich niches belong to the family Leuconostocaceae. They were originally classified as Leuconostoc spp., but were later grouped into a novel genus, Fructobacillus , based on their phylogenetic position, morphology and specific biochemical characteristics. The unique characters, so called fructophilic characteristics, had not been reported in the group of lactic acid bacteria, suggesting unique evolution at the genome level. Here we studied four draft genome sequences of Fructobacillus spp. and compared their metabolic properties against those of Leuconostoc spp. As a result, Fructobacillus species possess significantly less protein coding sequences in their small genomes.more » The number of genes was significantly smaller in carbohydrate transport and metabolism. Several other metabolic pathways, including TCA cycle, ubiquinone and other terpenoid-quinone biosynthesis and phosphotransferase systems, were characterized as discriminative pathways between the two genera. The adhE gene for bifunctional acetaldehyde/alcohol dehydrogenase, and genes for subunits of the pyruvate dehydrogenase complex were absent in Fructobacillus spp. The two genera also show different levels of GC contents, which are mainly due to the different GC contents at the third codon position. In conclusion, the present genome characteristics in Fructobacillus spp. suggest reductive evolution that took place to adapt to specific niches.« less

  6. Genome-wide signatures of convergent evolution in echolocating mammals

    PubMed Central

    Parker, Joe; Tsagkogeorga, Georgia; Cotton, James A.; Liu, Yuan; Provero, Paolo; Stupka, Elia; Rossiter, Stephen J.

    2013-01-01

    Evolution is typically thought to proceed through divergence of genes, proteins, and ultimately phenotypes1-3. However, similar traits might also evolve convergently in unrelated taxa due to similar selection pressures4,5. Adaptive phenotypic convergence is widespread in nature, and recent results from a handful of genes have suggested that this phenomenon is powerful enough to also drive recurrent evolution at the sequence level6-9. Where homoplasious substitutions do occur these have long been considered the result of neutral processes. However, recent studies have demonstrated that adaptive convergent sequence evolution can be detected in vertebrates using statistical methods that model parallel evolution9,10 although the extent to which sequence convergence between genera occurs across genomes is unknown. Here we analyse genomic sequence data in mammals that have independently evolved echolocation and show for the first time that convergence is not a rare process restricted to a handful of loci but is instead widespread, continuously distributed and commonly driven by natural selection acting on a small number of sites per locus. Systematic analyses of convergent sequence evolution in 805,053 amino acids within 2,326 orthologous coding gene sequences compared across 22 mammals (including four new bat genomes) revealed signatures consistent with convergence in nearly 200 loci. Strong and significant support for convergence among bats and the dolphin was seen in numerous genes linked to hearing or deafness, consistent with an involvement in echolocation. Surprisingly we also found convergence in many genes linked to vision: the convergent signal of many sensory genes was robustly correlated with the strength of natural selection. This first attempt to detect genome-wide convergent sequence evolution across divergent taxa reveals the phenomenon to be much more pervasive than previously recognised. PMID:24005325

  7. Identification and analysis of integrons and cassette arrays in bacterial genomes

    PubMed Central

    Touchon, Marie; Néron, Bertrand; Rocha, Eduardo PC

    2016-01-01

    Abstract Integrons recombine gene arrays and favor the spread of antibiotic resistance. Their broader roles in bacterial adaptation remain mysterious, partly due to lack of computational tools. We made a program – IntegronFinder – to identify integrons with high accuracy and sensitivity. IntegronFinder is available as a standalone program and as a web application. It searches for attC sites using covariance models, for integron-integrases using HMM profiles, and for other features (promoters, attI site) using pattern matching. We searched for integrons, integron-integrases lacking attC sites, and clusters of attC sites lacking a neighboring integron-integrase in bacterial genomes. All these elements are especially frequent in genomes of intermediate size. They are missing in some key phyla, such as α-Proteobacteria, which might reflect selection against cell lineages that acquire integrons. The similarity between attC sites is proportional to the number of cassettes in the integron, and is particularly low in clusters of attC sites lacking integron-integrases. The latter are unexpectedly abundant in genomes lacking integron-integrases or their remains, and have a large novel pool of cassettes lacking homologs in the databases. They might represent an evolutionary step between the acquisition of genes within integrons and their stabilization in the new genome. PMID:27130947

  8. Genomic Diversity and Evolution of the Lyssaviruses

    PubMed Central

    Delmas, Olivier; Holmes, Edward C.; Talbi, Chiraz; Larrous, Florence; Dacheux, Laurent; Bouchier, Christiane; Bourhy, Hervé

    2008-01-01

    Lyssaviruses are RNA viruses with single-strand, negative-sense genomes responsible for rabies-like diseases in mammals. To date, genomic and evolutionary studies have most often utilized partial genome sequences, particularly of the nucleoprotein and glycoprotein genes, with little consideration of genome-scale evolution. Herein, we report the first genomic and evolutionary analysis using complete genome sequences of all recognised lyssavirus genotypes, including 14 new complete genomes of field isolates from 6 genotypes and one genotype that is completely sequenced for the first time. In doing so we significantly increase the extent of genome sequence data available for these important viruses. Our analysis of these genome sequence data reveals that all lyssaviruses have the same genomic organization. A phylogenetic analysis reveals strong geographical structuring, with the greatest genetic diversity in Africa, and an independent origin for the two known genotypes that infect European bats. We also suggest that multiple genotypes may exist within the diversity of viruses currently classified as ‘Lagos Bat’. In sum, we show that rigorous phylogenetic techniques based on full length genome sequence provide the best discriminatory power for genotype classification within the lyssaviruses. PMID:18446239

  9. Genomic Evolution of Saccharomyces cerevisiae under Chinese Rice Wine Fermentation

    PubMed Central

    Li, Yudong; Zhang, Weiping; Zheng, Daoqiong; Zhou, Zhan; Yu, Wenwen; Zhang, Lei; Feng, Lifang; Liang, Xinle; Guan, Wenjun; Zhou, Jingwen; Chen, Jian; Lin, Zhenguo

    2014-01-01

    Rice wine fermentation represents a unique environment for the evolution of the budding yeast, Saccharomyces cerevisiae. To understand how the selection pressure shaped the yeast genome and gene regulation, we determined the genome sequence and transcriptome of a S. cerevisiae strain YHJ7 isolated from Chinese rice wine (Huangjiu), a popular traditional alcoholic beverage in China. By comparing the genome of YHJ7 to the lab strain S288c, a Japanese sake strain K7, and a Chinese industrial bioethanol strain YJSH1, we identified many genomic sequence and structural variations in YHJ7, which are mainly located in subtelomeric regions, suggesting that these regions play an important role in genomic evolution between strains. In addition, our comparative transcriptome analysis between YHJ7 and S288c revealed a set of differentially expressed genes, including those involved in glucose transport (e.g., HXT2, HXT7) and oxidoredutase activity (e.g., AAD10, ADH7). Interestingly, many of these genomic and transcriptional variations are directly or indirectly associated with the adaptation of YHJ7 strain to its specific niches. Our molecular evolution analysis suggested that Japanese sake strains (K7/UC5) were derived from Chinese rice wine strains (YHJ7) at least approximately 2,300 years ago, providing the first molecular evidence elucidating the origin of Japanese sake strains. Our results depict interesting insights regarding the evolution of yeast during rice wine fermentation, and provided a valuable resource for genetic engineering to improve industrial wine-making strains. PMID:25212861

  10. SSPACE-LongRead: scaffolding bacterial draft genomes using long read sequence information

    PubMed Central

    2014-01-01

    Background The recent introduction of the Pacific Biosciences RS single molecule sequencing technology has opened new doors to scaffolding genome assemblies in a cost-effective manner. The long read sequence information is promised to enhance the quality of incomplete and inaccurate draft assemblies constructed from Next Generation Sequencing (NGS) data. Results Here we propose a novel hybrid assembly methodology that aims to scaffold pre-assembled contigs in an iterative manner using PacBio RS long read information as a backbone. On a test set comprising six bacterial draft genomes, assembled using either a single Illumina MiSeq or Roche 454 library, we show that even a 50× coverage of uncorrected PacBio RS long reads is sufficient to drastically reduce the number of contigs. Comparisons to the AHA scaffolder indicate our strategy is better capable of producing (nearly) complete bacterial genomes. Conclusions The current work describes our SSPACE-LongRead software which is designed to upgrade incomplete draft genomes using single molecule sequences. We conclude that the recent advances of the PacBio sequencing technology and chemistry, in combination with the limited computational resources required to run our program, allow to scaffold genomes in a fast and reliable manner. PMID:24950923

  11. Techniques for Large-Scale Bacterial Genome Manipulation and Characterization of the Mutants with Respect to In Silico Metabolic Reconstructions.

    PubMed

    diCenzo, George C; Finan, Turlough M

    2018-01-01

    The rate at which all genes within a bacterial genome can be identified far exceeds the ability to characterize these genes. To assist in associating genes with cellular functions, a large-scale bacterial genome deletion approach can be employed to rapidly screen tens to thousands of genes for desired phenotypes. Here, we provide a detailed protocol for the generation of deletions of large segments of bacterial genomes that relies on the activity of a site-specific recombinase. In this procedure, two recombinase recognition target sequences are introduced into known positions of a bacterial genome through single cross-over plasmid integration. Subsequent expression of the site-specific recombinase mediates recombination between the two target sequences, resulting in the excision of the intervening region and its loss from the genome. We further illustrate how this deletion system can be readily adapted to function as a large-scale in vivo cloning procedure, in which the region excised from the genome is captured as a replicative plasmid. We next provide a procedure for the metabolic analysis of bacterial large-scale genome deletion mutants using the Biolog Phenotype MicroArray™ system. Finally, a pipeline is described, and a sample Matlab script is provided, for the integration of the obtained data with a draft metabolic reconstruction for the refinement of the reactions and gene-protein-reaction relationships in a metabolic reconstruction.

  12. Correcting Inconsistencies and Errors in Bacterial Genome Metadata Using an Automated Curation Tool in Excel (AutoCurE).

    PubMed

    Schmedes, Sarah E; King, Jonathan L; Budowle, Bruce

    2015-01-01

    Whole-genome data are invaluable for large-scale comparative genomic studies. Current sequencing technologies have made it feasible to sequence entire bacterial genomes with relative ease and time with a substantially reduced cost per nucleotide, hence cost per genome. More than 3,000 bacterial genomes have been sequenced and are available at the finished status. Publically available genomes can be readily downloaded; however, there are challenges to verify the specific supporting data contained within the download and to identify errors and inconsistencies that may be present within the organizational data content and metadata. AutoCurE, an automated tool for bacterial genome database curation in Excel, was developed to facilitate local database curation of supporting data that accompany downloaded genomes from the National Center for Biotechnology Information. AutoCurE provides an automated approach to curate local genomic databases by flagging inconsistencies or errors by comparing the downloaded supporting data to the genome reports to verify genome name, RefSeq accession numbers, the presence of archaea, BioProject/UIDs, and sequence file descriptions. Flags are generated for nine metadata fields if there are inconsistencies between the downloaded genomes and genomes reports and if erroneous or missing data are evident. AutoCurE is an easy-to-use tool for local database curation for large-scale genome data prior to downstream analyses.

  13. Construction of a nurse shark (Ginglymostoma cirratum) bacterial artificial chromosome (BAC) library and a preliminary genome survey.

    PubMed

    Luo, Meizhong; Kim, Hyeran; Kudrna, Dave; Sisneros, Nicholas B; Lee, So-Jeong; Mueller, Christopher; Collura, Kristi; Zuccolo, Andrea; Buckingham, E Bryan; Grim, Suzanne M; Yanagiya, Kazuyo; Inoko, Hidetoshi; Shiina, Takashi; Flajnik, Martin F; Wing, Rod A; Ohta, Yuko

    2006-05-03

    Sharks are members of the taxonomic class Chondrichthyes, the oldest living jawed vertebrates. Genomic studies of this group, in comparison to representative species in other vertebrate taxa, will allow us to theorize about the fundamental genetic, developmental, and functional characteristics in the common ancestor of all jawed vertebrates. In order to obtain mapping and sequencing data for comparative genomics, we constructed a bacterial artificial chromosome (BAC) library for the nurse shark, Ginglymostoma cirratum. The BAC library consists of 313,344 clones with an average insert size of 144 kb, covering ~4.5 x 1010 bp and thus providing an 11-fold coverage of the haploid genome. BAC end sequence analyses revealed, in addition to LINEs and SINEs commonly found in other animal and plant genomes, two new groups of nurse shark-specific repetitive elements, NSRE1 and NSRE2 that seem to be major components of the nurse shark genome. Screening the library with single-copy or multi-copy gene probes showed 6-28 primary positive clones per probe of which 50-90% were true positives, demonstrating that the BAC library is representative of the different regions of the nurse shark genome. Furthermore, some BAC clones contained multiple genes, making physical mapping feasible. We have constructed a deep-coverage, high-quality, large insert, and publicly available BAC library for a cartilaginous fish. It will be very useful to the scientific community interested in shark genomic structure, comparative genomics, and functional studies. We found two new groups of repetitive elements specific to the nurse shark genome, which may contribute to the architecture and evolution of the nurse shark genome.

  14. The bacterial species definition in the genomic era

    PubMed Central

    Konstantinidis, Konstantinos T; Ramette, Alban; Tiedje, James M

    2006-01-01

    The bacterial species definition, despite its eminent practical significance for identification, diagnosis, quarantine and diversity surveys, remains a very difficult issue to advance. Genomics now offers novel insights into intra-species diversity and the potential for emergence of a more soundly based system. Although we share the excitement, we argue that it is premature for a universal change to the definition because current knowledge is based on too few phylogenetic groups and too few samples of natural populations. Our analysis of five important bacterial groups suggests, however, that more stringent standards for species may be justifiable when a solid understanding of gene content and ecological distinctiveness becomes available. Our analysis also reveals what is actually encompassed in a species according to the current standards, in terms of whole-genome sequence and gene-content diversity, and shows that this does not correspond to coherent clusters for the environmental Burkholderia and Shewanella genera examined. In contrast, the obligatory pathogens, which have a very restricted ecological niche, do exhibit clusters. Therefore, the idea of biologically meaningful clusters of diversity that applies to most eukaryotes may not be universally applicable in the microbial world, or if such clusters exist, they may be found at different levels of distinction. PMID:17062412

  15. Genome-wide identification of bacterial plant colonization genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Benjamin J.; Feltcher, Meghan E.; Waters, Robert J.

    Diverse soil-resident bacteria can contribute to plant growth and health, but the molecular mechanisms enabling them to effectively colonize their plant hosts remain poorly understood. We used randomly barcoded transposon mutagenesis sequencing (RB-TnSeq) in Pseudomonas simiae, a model root-colonizing bacterium, to establish a genome-wide map of bacterial genes required for colonization of the Arabidopsis thaliana root system. We identified 115 genes (2% of all P. simiae genes) with functions that are required for maximal competitive colonization of the root system. Among the genes we identified were some with obvious colonization-related roles in motility and carbon metabolism, as well as 44more » other genes that had no or vague functional predictions. Independent validation assays of individual genes confirmed colonization functions for 20 of 22 (91%) cases tested. To further characterize genes identified by our screen, we compared the functional contributions of P. simiae genes to growth in 90 distinct in vitro conditions by RB-TnSeq, highlighting specific metabolic functions associated with root colonization genes. Here, our analysis of bacterial genes by sequence-driven saturation mutagenesis revealed a genome-wide map of the genetic determinants of plant root colonization and offers a starting point for targeted improvement of the colonization capabilities of plant-beneficial microbes.« less

  16. Genome-wide identification of bacterial plant colonization genes

    DOE PAGES

    Cole, Benjamin J.; Feltcher, Meghan E.; Waters, Robert J.; ...

    2017-09-22

    Diverse soil-resident bacteria can contribute to plant growth and health, but the molecular mechanisms enabling them to effectively colonize their plant hosts remain poorly understood. We used randomly barcoded transposon mutagenesis sequencing (RB-TnSeq) in Pseudomonas simiae, a model root-colonizing bacterium, to establish a genome-wide map of bacterial genes required for colonization of the Arabidopsis thaliana root system. We identified 115 genes (2% of all P. simiae genes) with functions that are required for maximal competitive colonization of the root system. Among the genes we identified were some with obvious colonization-related roles in motility and carbon metabolism, as well as 44more » other genes that had no or vague functional predictions. Independent validation assays of individual genes confirmed colonization functions for 20 of 22 (91%) cases tested. To further characterize genes identified by our screen, we compared the functional contributions of P. simiae genes to growth in 90 distinct in vitro conditions by RB-TnSeq, highlighting specific metabolic functions associated with root colonization genes. Here, our analysis of bacterial genes by sequence-driven saturation mutagenesis revealed a genome-wide map of the genetic determinants of plant root colonization and offers a starting point for targeted improvement of the colonization capabilities of plant-beneficial microbes.« less

  17. Structure and evolution of cereal genomes.

    PubMed

    Paterson, Andrew H; Bowers, John E; Peterson, Daniel G; Estill, James C; Chapman, Brad A

    2003-12-01

    The cereal species, of central importance to our diet, began to diverge 50-70 million years ago. For the past few thousand years, these species have undergone largely parallel selection regimes associated with domestication and improvement. The rice genome sequence provides a platform for organizing information about diverse cereals, and together with genetic maps and sequence samples from other cereals is yielding new insights into both the shared and the independent dimensions of cereal evolution. New data and population-based approaches are identifying genes that have been involved in cereal improvement. Reduced-representation sequencing promises to accelerate gene discovery in many large-genome cereals, and to better link the under-explored genomes of 'orphan' cereals with state-of-the-art knowledge.

  18. Exploring the limits for reduction of plastid genomes: a case study of the mycoheterotrophic orchids Epipogium aphyllum and Epipogium roseum.

    PubMed

    Schelkunov, Mikhail I; Shtratnikova, Viktoria Yu; Nuraliev, Maxim S; Selosse, Marc-Andre; Penin, Aleksey A; Logacheva, Maria D

    2015-01-28

    The question on the patterns and limits of reduction of plastid genomes in nonphotosynthetic plants and the reasons of their conservation is one of the intriguing topics in plant genome evolution. Here, we report sequencing and analysis of plastid genome in nonphotosynthetic orchids Epipogium aphyllum and Epipogium roseum, which, with sizes of 31 and 19 kbp, respectively, represent the smallest plastid genomes characterized by now. Besides drastic reduction, which is expected, we found several unusual features of these "minimal" plastomes: Multiple rearrangements, highly biased nucleotide composition, and unprecedentedly high substitution rate. Only 27 and 29 genes remained intact in the plastomes of E. aphyllum and E. roseum-those encoding ribosomal components, transfer RNAs, and three additional housekeeping genes (infA, clpP, and accD). We found no signs of relaxed selection acting on these genes. We hypothesize that the main reason for retention of plastid genomes in Epipogium is the necessity to translate messenger RNAs (mRNAs) of accD and/or clpP proteins which are essential for cell metabolism. However, these genes are absent in plastomes of several plant species; their absence is compensated by the presence of a functional copy arisen by gene transfer from plastid to the nuclear genome. This suggests that there is no single set of plastid-encoded essential genes, but rather different sets for different species and that the retention of a gene in the plastome depends on the interaction between the nucleus and plastids. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. Evolution of the core and pan-genome of Streptococcus: positive selection, recombination, and genome composition

    PubMed Central

    Lefébure, Tristan; Stanhope, Michael J

    2007-01-01

    Background The genus Streptococcus is one of the most diverse and important human and agricultural pathogens. This study employs comparative evolutionary analyses of 26 Streptococcus genomes to yield an improved understanding of the relative roles of recombination and positive selection in pathogen adaptation to their hosts. Results Streptococcus genomes exhibit extreme levels of evolutionary plasticity, with high levels of gene gain and loss during species and strain evolution. S. agalactiae has a large pan-genome, with little recombination in its core-genome, while S. pyogenes has a smaller pan-genome and much more recombination of its core-genome, perhaps reflecting the greater habitat, and gene pool, diversity for S. agalactiae compared to S. pyogenes. Core-genome recombination was evident in all lineages (18% to 37% of the core-genome judged to be recombinant), while positive selection was mainly observed during species differentiation (from 11% to 34% of the core-genome). Positive selection pressure was unevenly distributed across lineages and biochemical main role categories. S. suis was the lineage with the greatest level of positive selection pressure, the largest number of unique loci selected, and the largest amount of gene gain and loss. Conclusion Recombination is an important evolutionary force in shaping Streptococcus genomes, not only in the acquisition of significant portions of the genome as lineage specific loci, but also in facilitating rapid evolution of the core-genome. Positive selection, although undoubtedly a slower process, has nonetheless played an important role in adaptation of the core-genome of different Streptococcus species to different hosts. PMID:17475002

  20. Unique core genomes of the bacterial family vibrionaceae: insights into niche adaptation and speciation.

    PubMed

    Kahlke, Tim; Goesmann, Alexander; Hjerde, Erik; Willassen, Nils Peder; Haugen, Peik

    2012-05-10

    The criteria for defining bacterial species and even the concept of bacterial species itself are under debate, and the discussion is apparently intensifying as more genome sequence data is becoming available. However, it is still unclear how the new advances in genomics should be used most efficiently to address this question. In this study we identify genes that are common to any group of genomes in our dataset, to determine whether genes specific to a particular taxon exist and to investigate their potential role in adaptation of bacteria to their specific niche. These genes were named unique core genes. Additionally, we investigate the existence and importance of unique core genes that are found in isolates of phylogenetically non-coherent groups. These groups of isolates, that share a genetic feature without sharing a closest common ancestor, are termed genophyletic groups. The bacterial family Vibrionaceae was used as the model, and we compiled and compared genome sequences of 64 different isolates. Using the software orthoMCL we determined clusters of homologous genes among the investigated genome sequences. We used multilocus sequence analysis to build a host phylogeny and mapped the numbers of unique core genes of all distinct groups of isolates onto the tree. The results show that unique core genes are more likely to be found in monophyletic groups of isolates. Genophyletic groups of isolates, in contrast, are less common especially for large groups of isolate. The subsequent annotation of unique core genes that are present in genophyletic groups indicate a high degree of horizontally transferred genes. Finally, the annotation of the unique core genes of Vibrio cholerae revealed genes involved in aerotaxis and biosynthesis of the iron-chelator vibriobactin. The presented work indicates that genes specific for any taxon inside the bacterial family Vibrionaceae exist. These unique core genes encode conserved metabolic functions that can shed light on the

  1. Comparative genomics of the bacterial genus Streptococcus illuminates evolutionary implications of species groups.

    PubMed

    Gao, Xiao-Yang; Zhi, Xiao-Yang; Li, Hong-Wei; Klenk, Hans-Peter; Li, Wen-Jun

    2014-01-01

    Members of the genus Streptococcus within the phylum Firmicutes are among the most diverse and significant zoonotic pathogens. This genus has gone through considerable taxonomic revision due to increasing improvements of chemotaxonomic approaches, DNA hybridization and 16S rRNA gene sequencing. It is proposed to place the majority of streptococci into "species groups". However, the evolutionary implications of species groups are not clear presently. We use comparative genomic approaches to yield a better understanding of the evolution of Streptococcus through genome dynamics, population structure, phylogenies and virulence factor distribution of species groups. Genome dynamics analyses indicate that the pan-genome size increases with the addition of newly sequenced strains, while the core genome size decreases with sequential addition at the genus level and species group level. Population structure analysis reveals two distinct lineages, one including Pyogenic, Bovis, Mutans and Salivarius groups, and the other including Mitis, Anginosus and Unknown groups. Phylogenetic dendrograms show that species within the same species group cluster together, and infer two main clades in accordance with population structure analysis. Distribution of streptococcal virulence factors has no obvious patterns among the species groups; however, the evolution of some common virulence factors is congruous with the evolution of species groups, according to phylogenetic inference. We suggest that the proposed streptococcal species groups are reasonable from the viewpoints of comparative genomics; evolution of the genus is congruent with the individual evolutionary trajectories of different species groups.

  2. Comparative Genomics of the Bacterial Genus Streptococcus Illuminates Evolutionary Implications of Species Groups

    PubMed Central

    Gao, Xiao-Yang; Zhi, Xiao-Yang; Li, Hong-Wei; Klenk, Hans-Peter; Li, Wen-Jun

    2014-01-01

    Members of the genus Streptococcus within the phylum Firmicutes are among the most diverse and significant zoonotic pathogens. This genus has gone through considerable taxonomic revision due to increasing improvements of chemotaxonomic approaches, DNA hybridization and 16S rRNA gene sequencing. It is proposed to place the majority of streptococci into “species groups”. However, the evolutionary implications of species groups are not clear presently. We use comparative genomic approaches to yield a better understanding of the evolution of Streptococcus through genome dynamics, population structure, phylogenies and virulence factor distribution of species groups. Genome dynamics analyses indicate that the pan-genome size increases with the addition of newly sequenced strains, while the core genome size decreases with sequential addition at the genus level and species group level. Population structure analysis reveals two distinct lineages, one including Pyogenic, Bovis, Mutans and Salivarius groups, and the other including Mitis, Anginosus and Unknown groups. Phylogenetic dendrograms show that species within the same species group cluster together, and infer two main clades in accordance with population structure analysis. Distribution of streptococcal virulence factors has no obvious patterns among the species groups; however, the evolution of some common virulence factors is congruous with the evolution of species groups, according to phylogenetic inference. We suggest that the proposed streptococcal species groups are reasonable from the viewpoints of comparative genomics; evolution of the genus is congruent with the individual evolutionary trajectories of different species groups. PMID:24977706

  3. Within-host evolution decreases virulence in an opportunistic bacterial pathogen.

    PubMed

    Mikonranta, Lauri; Mappes, Johanna; Laakso, Jouni; Ketola, Tarmo

    2015-08-19

    Pathogens evolve in a close antagonistic relationship with their hosts. The conventional theory proposes that evolution of virulence is highly dependent on the efficiency of direct host-to-host transmission. Many opportunistic pathogens, however, are not strictly dependent on the hosts due to their ability to reproduce in the free-living environment. Therefore it is likely that conflicting selection pressures for growth and survival outside versus within the host, rather than transmission potential, shape the evolution of virulence in opportunists. We tested the role of within-host selection in evolution of virulence by letting a pathogen Serratia marcescens db11 sequentially infect Drosophila melanogaster hosts and then compared the virulence to strains that evolved only in the outside-host environment. We found that the pathogen adapted to both Drosophila melanogaster host and novel outside-host environment, leading to rapid evolutionary changes in the bacterial life-history traits including motility, in vitro growth rate, biomass yield, and secretion of extracellular proteases. Most significantly, selection within the host led to decreased virulence without decreased bacterial load while the selection lines in the outside-host environment maintained the same level of virulence with ancestral bacteria. This experimental evidence supports the idea that increased virulence is not an inevitable consequence of within-host adaptation even when the epidemiological restrictions are removed. Evolution of attenuated virulence could occur because of immune evasion within the host. Alternatively, rapid fluctuation between outside-host and within-host environments, which is typical for the life cycle of opportunistic bacterial pathogens, could lead to trade-offs that lower pathogen virulence.

  4. Perspectives on the Transition From Bacterial Phytopathogen Genomics Studies to Applications Enhancing Disease Management: From Promise to Practice.

    PubMed

    Sundin, George W; Wang, Nian; Charkowski, Amy O; Castiblanco, Luisa F; Jia, Hongge; Zhao, Youfu

    2016-10-01

    The advent of genomics has advanced science into a new era, providing a plethora of "toys" for researchers in many related and disparate fields. Genomics has also spawned many new fields, including proteomics and metabolomics, furthering our ability to gain a more comprehensive view of individual organisms and of interacting organisms. Genomic information of both bacterial pathogens and their hosts has provided the critical starting point in understanding the molecular bases of how pathogens disrupt host cells to cause disease. In addition, knowledge of the complete genome sequence of the pathogen provides a potentially broad slate of targets for the development of novel virulence inhibitors that are desperately needed for disease management. Regarding plant bacterial pathogens and disease management, the potential for utilizing genomics resources in the development of durable resistance is enhanced because of developing technologies that enable targeted modification of the host. Here, we summarize the role of genomics studies in furthering efforts to manage bacterial plant diseases and highlight novel genomics-enabled strategies heading down this path.

  5. Evolution of epigenetic regulation in vertebrate genomes

    PubMed Central

    Lowdon, Rebecca F.; Jang, Hyo Sik; Wang, Ting

    2016-01-01

    Empirical models of sequence evolution have spurred progress in the field of evolutionary genetics for decades. We are now realizing the importance and complexity of the eukaryotic epigenome. While epigenome analysis has been applied to genomes from single cell eukaryotes to human, comparative analyses are still relatively few, and computational algorithms to quantify epigenome evolution remain scarce. Accordingly, a quantitative model of epigenome evolution remains to be established. Here we review the comparative epigenomics literature and synthesize its overarching themes. We also suggest one mechanism, transcription factor binding site turnover, which relates sequence evolution to epigenetic conservation or divergence. Lastly, we propose a framework for how the field can move forward to build a coherent quantitative model of epigenome evolution. PMID:27080453

  6. Genomic Location of the Major Ribosomal Protein Gene Locus Determines Vibrio cholerae Global Growth and Infectivity

    PubMed Central

    Soler-Bistué, Alfonso; Mondotte, Juan A.; Bland, Michael Jason; Val, Marie-Eve; Saleh, María-Carla; Mazel, Didier

    2015-01-01

    The effects on cell physiology of gene order within the bacterial chromosome are poorly understood. In silico approaches have shown that genes involved in transcription and translation processes, in particular ribosomal protein (RP) genes, localize near the replication origin (oriC) in fast-growing bacteria suggesting that such a positional bias is an evolutionarily conserved growth-optimization strategy. Such genomic localization could either provide a higher dosage of these genes during fast growth or facilitate the assembly of ribosomes and transcription foci by keeping physically close the many components of these macromolecular machines. To explore this, we used novel recombineering tools to create a set of Vibrio cholerae strains in which S10-spec-α (S10), a locus bearing half of the ribosomal protein genes, was systematically relocated to alternative genomic positions. We show that the relative distance of S10 to the origin of replication tightly correlated with a reduction of S10 dosage, mRNA abundance and growth rate within these otherwise isogenic strains. Furthermore, this was accompanied by a significant reduction in the host-invasion capacity in Drosophila melanogaster. Both phenotypes were rescued in strains bearing two S10 copies highly distal to oriC, demonstrating that replication-dependent gene dosage reduction is the main mechanism behind these alterations. Hence, S10 positioning connects genome structure to cell physiology in Vibrio cholerae. Our results show experimentally for the first time that genomic positioning of genes involved in the flux of genetic information conditions global growth control and hence bacterial physiology and potentially its evolution. PMID:25875621

  7. Evolution of substrate specificity in a retained enzyme driven by gene loss

    PubMed Central

    Juárez-Vázquez, Ana Lilia; Edirisinghe, Janaka N; Verduzco-Castro, Ernesto A; Michalska, Karolina; Wu, Chenggang; Noda-García, Lianet; Babnigg, Gyorgy; Endres, Michael; Medina-Ruíz, Sofía; Santoyo-Flores, Julián; Carrillo-Tripp, Mauricio; Ton-That, Hung; Joachimiak, Andrzej; Henry, Christopher S; Barona-Gómez, Francisco

    2017-01-01

    The connection between gene loss and the functional adaptation of retained proteins is still poorly understood. We apply phylogenomics and metabolic modeling to detect bacterial species that are evolving by gene loss, with the finding that Actinomycetaceae genomes from human cavities are undergoing sizable reductions, including loss of L-histidine and L-tryptophan biosynthesis. We observe that the dual-substrate phosphoribosyl isomerase A or priA gene, at which these pathways converge, appears to coevolve with the occurrence of trp and his genes. Characterization of a dozen PriA homologs shows that these enzymes adapt from bifunctionality in the largest genomes, to a monofunctional, yet not necessarily specialized, inefficient form in genomes undergoing reduction. These functional changes are accomplished via mutations, which result from relaxation of purifying selection, in residues structurally mapped after sequence and X-ray structural analyses. Our results show how gene loss can drive the evolution of substrate specificity from retained enzymes. DOI: http://dx.doi.org/10.7554/eLife.22679.001 PMID:28362260

  8. The Apostasia genome and the evolution of orchids.

    PubMed

    Zhang, Guo-Qiang; Liu, Ke-Wei; Li, Zhen; Lohaus, Rolf; Hsiao, Yu-Yun; Niu, Shan-Ce; Wang, Jie-Yu; Lin, Yao-Cheng; Xu, Qing; Chen, Li-Jun; Yoshida, Kouki; Fujiwara, Sumire; Wang, Zhi-Wen; Zhang, Yong-Qiang; Mitsuda, Nobutaka; Wang, Meina; Liu, Guo-Hui; Pecoraro, Lorenzo; Huang, Hui-Xia; Xiao, Xin-Ju; Lin, Min; Wu, Xin-Yi; Wu, Wan-Lin; Chen, You-Yi; Chang, Song-Bin; Sakamoto, Shingo; Ohme-Takagi, Masaru; Yagi, Masafumi; Zeng, Si-Jin; Shen, Ching-Yu; Yeh, Chuan-Ming; Luo, Yi-Bo; Tsai, Wen-Chieh; Van de Peer, Yves; Liu, Zhong-Jian

    2017-09-21

    Constituting approximately 10% of flowering plant species, orchids (Orchidaceae) display unique flower morphologies, possess an extraordinary diversity in lifestyle, and have successfully colonized almost every habitat on Earth. Here we report the draft genome sequence of Apostasia shenzhenica, a representative of one of two genera that form a sister lineage to the rest of the Orchidaceae, providing a reference for inferring the genome content and structure of the most recent common ancestor of all extant orchids and improving our understanding of their origins and evolution. In addition, we present transcriptome data for representatives of Vanilloideae, Cypripedioideae and Orchidoideae, and novel third-generation genome data for two species of Epidendroideae, covering all five orchid subfamilies. A. shenzhenica shows clear evidence of a whole-genome duplication, which is shared by all orchids and occurred shortly before their divergence. Comparisons between A. shenzhenica and other orchids and angiosperms also permitted the reconstruction of an ancestral orchid gene toolkit. We identify new gene families, gene family expansions and contractions, and changes within MADS-box gene classes, which control a diverse suite of developmental processes, during orchid evolution. This study sheds new light on the genetic mechanisms underpinning key orchid innovations, including the development of the labellum and gynostemium, pollinia, and seeds without endosperm, as well as the evolution of epiphytism; reveals relationships between the Orchidaceae subfamilies; and helps clarify the evolutionary history of orchids within the angiosperms.

  9. Orthopoxvirus Genome Evolution: The Role of Gene Loss

    PubMed Central

    Hendrickson, Robert Curtis; Wang, Chunlin; Hatcher, Eneida L.; Lefkowitz, Elliot J.

    2010-01-01

    Poxviruses are highly successful pathogens, known to infect a variety of hosts. The family Poxviridae includes Variola virus, the causative agent of smallpox, which has been eradicated as a public health threat but could potentially reemerge as a bioterrorist threat. The risk scenario includes other animal poxviruses and genetically engineered manipulations of poxviruses. Studies of orthologous gene sets have established the evolutionary relationships of members within the Poxviridae family. It is not clear, however, how variations between family members arose in the past, an important issue in understanding how these viruses may vary and possibly produce future threats. Using a newly developed poxvirus-specific tool, we predicted accurate gene sets for viruses with completely sequenced genomes in the genus Orthopoxvirus. Employing sensitive sequence comparison techniques together with comparison of syntenic gene maps, we established the relationships between all viral gene sets. These techniques allowed us to unambiguously identify the gene loss/gain events that have occurred over the course of orthopoxvirus evolution. It is clear that for all existing Orthopoxvirus species, no individual species has acquired protein-coding genes unique to that species. All existing species contain genes that are all present in members of the species Cowpox virus and that cowpox virus strains contain every gene present in any other orthopoxvirus strain. These results support a theory of reductive evolution in which the reduction in size of the core gene set of a putative ancestral virus played a critical role in speciation and confining any newly emerging virus species to a particular environmental (host or tissue) niche. PMID:21994715

  10. Vertebrate Genome Evolution in the Light of Fish Cytogenomics and rDNAomics

    PubMed Central

    Howell, W. Mike

    2018-01-01

    To understand the cytogenomic evolution of vertebrates, we must first unravel the complex genomes of fishes, which were the first vertebrates to evolve and were ancestors to all other vertebrates. We must not forget the immense time span during which the fish genomes had to evolve. Fish cytogenomics is endowed with unique features which offer irreplaceable insights into the evolution of the vertebrate genome. Due to the general DNA base compositional homogeneity of fish genomes, fish cytogenomics is largely based on mapping DNA repeats that still represent serious obstacles in genome sequencing and assembling, even in model species. Localization of repeats on chromosomes of hundreds of fish species and populations originating from diversified environments have revealed the biological importance of this genomic fraction. Ribosomal genes (rDNA) belong to the most informative repeats and in fish, they are subject to a more relaxed regulation than in higher vertebrates. This can result in formation of a literal ‘rDNAome’ consisting of more than 20,000 copies with their high proportion employed in extra-coding functions. Because rDNA has high rates of transcription and recombination, it contributes to genome diversification and can form reproductive barrier. Our overall knowledge of fish cytogenomics grows rapidly by a continuously increasing number of fish genomes sequenced and by use of novel sequencing methods improving genome assembly. The recently revealed exceptional compositional heterogeneity in an ancient fish lineage (gars) sheds new light on the compositional genome evolution in vertebrates generally. We highlight the power of synergy of cytogenetics and genomics in fish cytogenomics, its potential to understand the complexity of genome evolution in vertebrates, which is also linked to clinical applications and the chromosomal backgrounds of speciation. We also summarize the current knowledge on fish cytogenomics and outline its main future avenues. PMID

  11. Probing genomic diversity and evolution of Escherichia coli O157 by single nucleotide polymorphisms.

    PubMed

    Zhang, Wei; Qi, Weihong; Albert, Thomas J; Motiwala, Alifiya S; Alland, David; Hyytia-Trees, Eija K; Ribot, Efrain M; Fields, Patricia I; Whittam, Thomas S; Swaminathan, Bala

    2006-06-01

    Infections by Shiga toxin-producing Escherichia coli O157:H7 (STEC O157) are the predominant cause of bloody diarrhea and hemolytic uremic syndrome in the United States. In silico comparison of the two complete STEC O157 genomes (Sakai and EDL933) revealed a strikingly high level of sequence identity in orthologous protein-coding genes, limiting the use of nucleotide sequences to study the evolution and epidemiology of this bacterial pathogen. To systematically examine single nucleotide polymorphisms (SNPs) at a genome scale, we designed comparative genome sequencing microarrays and analyzed 1199 chromosomal genes (a total of 1,167,948 bp) and 92,721 bp of the large virulence plasmid (pO157) of eleven outbreak-associated STEC O157 strains. We discovered 906 SNPs in 523 chromosomal genes and observed a high level of DNA polymorphisms among the pO157 plasmids. Based on a uniform rate of synonymous substitution for Escherichia coli and Salmonella enterica (4.7x10(-9) per site per year), we estimate that the most recent common ancestor of the contemporary beta-glucuronidase-negative, non-sorbitolfermenting STEC O157 strains existed ca. 40 thousand years ago. The phylogeny of the STEC O157 strains based on the informative synonymous SNPs was compared to the maximum parsimony trees inferred from pulsed-field gel electrophoresis and multilocus variable numbers of tandem repeats analysis. The topological discrepancies indicate that, in contrast to the synonymous mutations, parts of STEC O157 genomes have evolved through different mechanisms with highly variable divergence rates. The SNP loci reported here will provide useful genetic markers for developing high-throughput methods for fine-resolution genotyping of STEC O157. Functional characterization of nucleotide polymorphisms should shed new insights on the evolution, epidemiology, and pathogenesis of STEC O157 and related pathogens.

  12. Probing genomic diversity and evolution of Escherichia coli O157 by single nucleotide polymorphisms

    PubMed Central

    Zhang, Wei; Qi, Weihong; Albert, Thomas J.; Motiwala, Alifiya S.; Alland, David; Hyytia-Trees, Eija K.; Ribot, Efrain M.; Fields, Patricia I.; Whittam, Thomas S.; Swaminathan, Bala

    2006-01-01

    Infections by Shiga toxin-producing Escherichia coli O157:H7 (STEC O157) are the predominant cause of bloody diarrhea and hemolytic uremic syndrome in the United States. In silico comparison of the two complete STEC O157 genomes (Sakai and EDL933) revealed a strikingly high level of sequence identity in orthologous protein-coding genes, limiting the use of nucleotide sequences to study the evolution and epidemiology of this bacterial pathogen. To systematically examine single nucleotide polymorphisms (SNPs) at a genome scale, we designed comparative genome sequencing microarrays and analyzed 1199 chromosomal genes (a total of 1,167,948 bp) and 92,721 bp of the large virulence plasmid (pO157) of eleven outbreak-associated STEC O157 strains. We discovered 906 SNPs in 523 chromosomal genes and observed a high level of DNA polymorphisms among the pO157 plasmids. Based on a uniform rate of synonymous substitution for Escherichia coli and Salmonella enterica (4.7 × 10−9 per site per year), we estimate that the most recent common ancestor of the contemporary β-glucuronidase-negative, non-sorbitolfermenting STEC O157 strains existed ca. 40 thousand years ago. The phylogeny of the STEC O157 strains based on the informative synonymous SNPs was compared to the maximum parsimony trees inferred from pulsed-field gel electrophoresis and multilocus variable numbers of tandem repeats analysis. The topological discrepancies indicate that, in contrast to the synonymous mutations, parts of STEC O157 genomes have evolved through different mechanisms with highly variable divergence rates. The SNP loci reported here will provide useful genetic markers for developing high-throughput methods for fine-resolution genotyping of STEC O157. Functional characterization of nucleotide polymorphisms should shed new insights on the evolution, epidemiology, and pathogenesis of STEC O157 and related pathogens. PMID:16606700

  13. Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chain, Patrick S. G.; Carniel, E.; Larimer, Frank W

    2004-09-01

    Yersinia pestis, the causative agent of plague, is a highly uniform clone that diverged recently from the enteric pathogen Yersinia pseudotuberculosis. Despite their close genetic relationship, they differ radically in their pathogenicity and transmission. Here, we report the complete genomic sequence of Y. pseudotuberculosis IP32953 and its use for detailed genome comparisons with available Y. pestis sequences. Analyses of identified differences across a panel of Yersinia isolates from around the world reveal 32 Y. pestis chromosomal genes that, together with the two Y. pestis-specific plasmids, to our knowledge, represent the only new genetic material in Y. pestis acquired since themore » the divergence from Y. pseudotuberculosis. In contrast, 149 other pseudogenes (doubling the previous estimate) and 317 genes absent from Y. pestis were detected, indicating that as many as 13% of Y. pseudotuberculosis genes no longer function in Y. pestis. Extensive insertion sequence-mediated genome rearrangements and reductive evolution through massive gene loss, resulting in elimination and modification of preexisting gene expression pathways, appear to be more important than acquisition of genes in the evolution of Y. pestis. These results provide a sobering example of how a highly virulent epidemic clone can suddenly emerge from a less virulent, closely related progenitor.« less

  14. An Integrative Breakage Model of genome architecture, reshuffling and evolution: The Integrative Breakage Model of genome evolution, a novel multidisciplinary hypothesis for the study of genome plasticity.

    PubMed

    Farré, Marta; Robinson, Terence J; Ruiz-Herrera, Aurora

    2015-05-01

    Our understanding of genomic reorganization, the mechanics of genomic transmission to offspring during germ line formation, and how these structural changes contribute to the speciation process, and genetic disease is far from complete. Earlier attempts to understand the mechanism(s) and constraints that govern genome remodeling suffered from being too narrowly focused, and failed to provide a unified and encompassing view of how genomes are organized and regulated inside cells. Here, we propose a new multidisciplinary Integrative Breakage Model for the study of genome evolution. The analysis of the high-level structural organization of genomes (nucleome), together with the functional constrains that accompany genome reshuffling, provide insights into the origin and plasticity of genome organization that may assist with the detection and isolation of therapeutic targets for the treatment of complex human disorders. © 2015 WILEY Periodicals, Inc.

  15. Analysis of long-term bacterial vs. chemical Fe(III) oxide reduction kinetics

    NASA Astrophysics Data System (ADS)

    Roden, Eric E.

    2004-08-01

    Data from studies of dissimilatory bacterial (10 8 cells mL -1 of Shewanella putrefaciens strain CN32, pH 6.8) and ascorbate (10 mM, pH 3.0) reduction of two synthetic Fe(III) oxide coated sands and three natural Fe(III) oxide-bearing subsurface materials (all at ca. 10 mmol Fe(III) L -1) were analyzed in relation to a generalized rate law for mineral dissolution (J t/m 0 = k'(m/m 0) γ, where J t is the rate of dissolution and/or reduction at time t, m 0 is the initial mass of oxide, and m/m 0 is the unreduced or undissolved mineral fraction) in order to evaluate changes in the apparent reactivity of Fe(III) oxides during long-term biological vs. chemical reduction. The natural Fe(III) oxide assemblages demonstrated larger changes in reactivity (higher γ values in the generalized rate law) compared to the synthetic oxides during long-term abiotic reductive dissolution. No such relationship was evident in the bacterial reduction experiments, in which temporal changes in the apparent reactivity of the natural and synthetic oxides were far greater (5-10 fold higher γ values) than in the abiotic reduction experiments. Kinetic and thermodynamic considerations indicated that neither the abundance of electron donor (lactate) nor the accumulation of aqueous end-products of oxide reduction (Fe(II), acetate, dissolved inorganic carbon) are likely to have posed significant limitations on the long-term kinetics of oxide reduction. Rather, accumulation of biogenic Fe(II) on residual oxide surfaces appeared to play a dominant role in governing the long-term kinetics of bacterial crystalline Fe(III) oxide reduction. The experimental findings together with numerical simulations support a conceptual model of bacterial Fe(III) oxide reduction kinetics that differs fundamentally from established models of abiotic Fe(III) oxide reductive dissolution, and indicate that information on Fe(III) oxide reactivity gained through abiotic reductive dissolution techniques cannot be used to

  16. Insights from genomic comparisons of genetically monomorphic bacterial pathogens

    PubMed Central

    Achtman, Mark

    2012-01-01

    Some of the most deadly bacterial diseases, including leprosy, anthrax and plague, are caused by bacterial lineages with extremely low levels of genetic diversity, the so-called ‘genetically monomorphic bacteria’. It has only become possible to analyse the population genetics of such bacteria since the recent advent of high-throughput comparative genomics. The genomes of genetically monomorphic lineages contain very few polymorphic sites, which often reflect unambiguous clonal genealogies. Some genetically monomorphic lineages have evolved in the last decades, e.g. antibiotic-resistant Staphylococcus aureus, whereas others have evolved over several millennia, e.g. the cause of plague, Yersinia pestis. Based on recent results, it is now possible to reconstruct the sources and the history of pandemic waves of plague by a combined analysis of phylogeographic signals in Y. pestis plus polymorphisms found in ancient DNA. Different from historical accounts based exclusively on human disease, Y. pestis evolved in China, or the vicinity, and has spread globally on multiple occasions. These routes of transmission can be reconstructed from the genealogy, most precisely for the most recent pandemic that was spread from Hong Kong in multiple independent waves in 1894. PMID:22312053

  17. Genomic Evolution of the Ascomycete Yeasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Robert; Haridas, Sajeet; Salamov, Asaf

    2015-03-16

    Yeasts are important for industrial and biotechnological processes and show remarkable metabolic and phylogenetic diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. Phylogenetic analysis of these and previously published yeast genomes helped resolve the placement of species including Saitoella complicata, Babjeviella inositovora, Hyphopichia burtonii, and Metschnikowia bicuspidata. Moreover, we find that alternative nuclear codon usage, where CUG encodes serine instead of leucine, are monophyletic within the Saccharomycotina. Most of the yeasts have compact genomes with a large fraction of single exon genes, and amore » tendency towards more introns in early-diverging species. Analysis of enzyme phylogeny gives insights into the evolution of metabolic capabilities such as methanol utilization and assimilation of alternative carbon sources.« less

  18. Identification and analysis of integrons and cassette arrays in bacterial genomes.

    PubMed

    Cury, Jean; Jové, Thomas; Touchon, Marie; Néron, Bertrand; Rocha, Eduardo Pc

    2016-06-02

    Integrons recombine gene arrays and favor the spread of antibiotic resistance. Their broader roles in bacterial adaptation remain mysterious, partly due to lack of computational tools. We made a program - IntegronFinder - to identify integrons with high accuracy and sensitivity. IntegronFinder is available as a standalone program and as a web application. It searches for attC sites using covariance models, for integron-integrases using HMM profiles, and for other features (promoters, attI site) using pattern matching. We searched for integrons, integron-integrases lacking attC sites, and clusters of attC sites lacking a neighboring integron-integrase in bacterial genomes. All these elements are especially frequent in genomes of intermediate size. They are missing in some key phyla, such as α-Proteobacteria, which might reflect selection against cell lineages that acquire integrons. The similarity between attC sites is proportional to the number of cassettes in the integron, and is particularly low in clusters of attC sites lacking integron-integrases. The latter are unexpectedly abundant in genomes lacking integron-integrases or their remains, and have a large novel pool of cassettes lacking homologs in the databases. They might represent an evolutionary step between the acquisition of genes within integrons and their stabilization in the new genome. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands.

    PubMed

    Vercoe, Reuben B; Chang, James T; Dy, Ron L; Taylor, Corinda; Gristwood, Tamzin; Clulow, James S; Richter, Corinna; Przybilski, Rita; Pitman, Andrew R; Fineran, Peter C

    2013-04-01

    In prokaryotes, clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated (Cas) proteins constitute a defence system against bacteriophages and plasmids. CRISPR/Cas systems acquire short spacer sequences from foreign genetic elements and incorporate these into their CRISPR arrays, generating a memory of past invaders. Defence is provided by short non-coding RNAs that guide Cas proteins to cleave complementary nucleic acids. While most spacers are acquired from phages and plasmids, there are examples of spacers that match genes elsewhere in the host bacterial chromosome. In Pectobacterium atrosepticum the type I-F CRISPR/Cas system has acquired a self-complementary spacer that perfectly matches a protospacer target in a horizontally acquired island (HAI2) involved in plant pathogenicity. Given the paucity of experimental data about CRISPR/Cas-mediated chromosomal targeting, we examined this process by developing a tightly controlled system. Chromosomal targeting was highly toxic via targeting of DNA and resulted in growth inhibition and cellular filamentation. The toxic phenotype was avoided by mutations in the cas operon, the CRISPR repeats, the protospacer target, and protospacer-adjacent motif (PAM) beside the target. Indeed, the natural self-targeting spacer was non-toxic due to a single nucleotide mutation adjacent to the target in the PAM sequence. Furthermore, we show that chromosomal targeting can result in large-scale genomic alterations, including the remodelling or deletion of entire pre-existing pathogenicity islands. These features can be engineered for the targeted deletion of large regions of bacterial chromosomes. In conclusion, in DNA-targeting CRISPR/Cas systems, chromosomal interference is deleterious by causing DNA damage and providing a strong selective pressure for genome alterations, which may have consequences for bacterial evolution and pathogenicity.

  20. Dynamics in genome evolution of Vibrio cholerae.

    PubMed

    Banerjee, Rachana; Das, Bhabatosh; Balakrish Nair, G; Basak, Surajit

    2014-04-01

    Vibrio cholerae, the etiological agent of the acute secretary diarrheal disease cholera, is still a major public health concern in developing countries. In former centuries cholera was a permanent threat even to the highly developed populations of Europe, North America, and the northern part of Asia. Extensive studies on the cholera bug over more than a century have made significant advances in our understanding of the disease and ways of treating patients. V. cholerae has more than 200 serogroups, but only few serogroups have caused disease on a worldwide scale. Until the present, the evolutionary relationship of these pandemic causing serogroups was not clear. In the last decades, we have witnessed a shift involving genetically and phenotypically varied pandemic clones of V. cholerae in Asia and Africa. The exponential knowledge on the genome of several representatives V. cholerae strains has been used to identify and analyze the key determinants for rapid evolution of cholera pathogen. Recent comparative genomic studies have identified the presence of various integrative mobile genetic elements (IMGEs) in V. cholerae genome, which can be used as a marker of differentiation of all seventh pandemic clones with very similar core genome. This review attempts to bring together some of the important researches in recent times that have contributed towards understanding the genetics, epidemiology and evolution of toxigenic V. cholerae strains. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Phylogenetic Invariants for Metazoan Mitochondrial Genome Evolution.

    PubMed

    Sankoff; Blanchette

    1998-01-01

    The method of phylogenetic invariants was developed to apply to aligned sequence data generated, according to a stochastic substitution model, for N species related through an unknown phylogenetic tree. The invariants are functions of the probabilities of the observable N-tuples, which are identically zero, over all choices of branch length, for some trees. Evaluating the invariants associated with all possible trees, using observed N-tuple frequencies over all sequence positions, enables us to rapidly infer the generating tree. An aspect of evolution at the genomic level much studied recently is the rearrangements of gene order along the chromosome from one species to another. Instead of the substitutions responsible for sequence evolution, we examine the non-local processes responsible for genome rearrangements such as inversion of arbitrarily long segments of chromosomes. By treating the potential adjacency of each possible pair of genes as a position", an appropriate substitution" model can be recognized as governing the rearrangement process, and a probabilistically principled phylogenetic inference can be set up. We calculate the invariants for this process for N=5, and apply them to mitochondrial genome data from coelomate metazoans, showing how they resolve key aspects of branching order.

  2. Family-specific scaling laws in bacterial genomes.

    PubMed

    De Lazzari, Eleonora; Grilli, Jacopo; Maslov, Sergei; Cosentino Lagomarsino, Marco

    2017-07-27

    Among several quantitative invariants found in evolutionary genomics, one of the most striking is the scaling of the overall abundance of proteins, or protein domains, sharing a specific functional annotation across genomes of given size. The size of these functional categories change, on average, as power-laws in the total number of protein-coding genes. Here, we show that such regularities are not restricted to the overall behavior of high-level functional categories, but also exist systematically at the level of single evolutionary families of protein domains. Specifically, the number of proteins within each family follows family-specific scaling laws with genome size. Functionally similar sets of families tend to follow similar scaling laws, but this is not always the case. To understand this systematically, we provide a comprehensive classification of families based on their scaling properties. Additionally, we develop a quantitative score for the heterogeneity of the scaling of families belonging to a given category or predefined group. Under the common reasonable assumption that selection is driven solely or mainly by biological function, these findings point to fine-tuned and interdependent functional roles of specific protein domains, beyond our current functional annotations. This analysis provides a deeper view on the links between evolutionary expansion of protein families and the functional constraints shaping the gene repertoire of bacterial genomes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Reductive evolution and the loss of PDC/PAS domains from the genus Staphylococcus

    PubMed Central

    2013-01-01

    Background The Per-Arnt-Sim (PAS) domain represents a ubiquitous structural fold that is involved in bacterial sensing and adaptation systems, including several virulence related functions. Although PAS domains and the subclass of PhoQ-DcuS-CitA (PDC) domains have a common structure, there is limited amino acid sequence similarity. To gain greater insight into the evolution of PDC/PAS domains present in the bacterial kingdom and staphylococci in specific, the PDC/PAS domains from the genomic sequences of 48 bacteria, representing 5 phyla, were identified using the sensitive search method based on HMM-to-HMM comparisons (HHblits). Results A total of 1,007 PAS domains and 686 PDC domains distributed over 1,174 proteins were identified. For 28 Gram-positive bacteria, the distribution, organization, and molecular evolution of PDC/PAS domains were analyzed in greater detail, with a special emphasis on the genus Staphylococcus. Compared to other bacteria the staphylococci have relatively fewer proteins (6–9) containing PDC/PAS domains. As a general rule, the staphylococcal genomes examined in this study contain a core group of seven PDC/PAS domain-containing proteins consisting of WalK, SrrB, PhoR, ArlS, HssS, NreB, and GdpP. The exceptions to this rule are: 1) S. saprophyticus lacks the core NreB protein; 2) S. carnosus has two additional PAS domain containing proteins; 3) S. epidermidis, S. aureus, and S. pseudintermedius have an additional protein with two PDC domains that is predicted to code for a sensor histidine kinase; 4) S. lugdunensis has an additional PDC containing protein predicted to be a sensor histidine kinase. Conclusions This comprehensive analysis demonstrates that variation in PDC/PAS domains among bacteria has limited correlations to the genome size or pathogenicity; however, our analysis established that bacteria having a motile phase in their life cycle have significantly more PDC/PAS-containing proteins. In addition, our analysis revealed a

  4. Reductive evolution and the loss of PDC/PAS domains from the genus Staphylococcus.

    PubMed

    Shah, Neethu; Gaupp, Rosmarie; Moriyama, Hideaki; Eskridge, Kent M; Moriyama, Etsuko N; Somerville, Greg A

    2013-07-31

    The Per-Arnt-Sim (PAS) domain represents a ubiquitous structural fold that is involved in bacterial sensing and adaptation systems, including several virulence related functions. Although PAS domains and the subclass of PhoQ-DcuS-CitA (PDC) domains have a common structure, there is limited amino acid sequence similarity. To gain greater insight into the evolution of PDC/PAS domains present in the bacterial kingdom and staphylococci in specific, the PDC/PAS domains from the genomic sequences of 48 bacteria, representing 5 phyla, were identified using the sensitive search method based on HMM-to-HMM comparisons (HHblits). A total of 1,007 PAS domains and 686 PDC domains distributed over 1,174 proteins were identified. For 28 Gram-positive bacteria, the distribution, organization, and molecular evolution of PDC/PAS domains were analyzed in greater detail, with a special emphasis on the genus Staphylococcus. Compared to other bacteria the staphylococci have relatively fewer proteins (6-9) containing PDC/PAS domains. As a general rule, the staphylococcal genomes examined in this study contain a core group of seven PDC/PAS domain-containing proteins consisting of WalK, SrrB, PhoR, ArlS, HssS, NreB, and GdpP. The exceptions to this rule are: 1) S. saprophyticus lacks the core NreB protein; 2) S. carnosus has two additional PAS domain containing proteins; 3) S. epidermidis, S. aureus, and S. pseudintermedius have an additional protein with two PDC domains that is predicted to code for a sensor histidine kinase; 4) S. lugdunensis has an additional PDC containing protein predicted to be a sensor histidine kinase. This comprehensive analysis demonstrates that variation in PDC/PAS domains among bacteria has limited correlations to the genome size or pathogenicity; however, our analysis established that bacteria having a motile phase in their life cycle have significantly more PDC/PAS-containing proteins. In addition, our analysis revealed a tremendous amount of variation in the

  5. Group-theoretic models of the inversion process in bacterial genomes.

    PubMed

    Egri-Nagy, Attila; Gebhardt, Volker; Tanaka, Mark M; Francis, Andrew R

    2014-07-01

    The variation in genome arrangements among bacterial taxa is largely due to the process of inversion. Recent studies indicate that not all inversions are equally probable, suggesting, for instance, that shorter inversions are more frequent than longer, and those that move the terminus of replication are less probable than those that do not. Current methods for establishing the inversion distance between two bacterial genomes are unable to incorporate such information. In this paper we suggest a group-theoretic framework that in principle can take these constraints into account. In particular, we show that by lifting the problem from circular permutations to the affine symmetric group, the inversion distance can be found in polynomial time for a model in which inversions are restricted to acting on two regions. This requires the proof of new results in group theory, and suggests a vein of new combinatorial problems concerning permutation groups on which group theorists will be needed to collaborate with biologists. We apply the new method to inferring distances and phylogenies for published Yersinia pestis data.

  6. BEACON: automated tool for Bacterial GEnome Annotation ComparisON.

    PubMed

    Kalkatawi, Manal; Alam, Intikhab; Bajic, Vladimir B

    2015-08-18

    Genome annotation is one way of summarizing the existing knowledge about genomic characteristics of an organism. There has been an increased interest during the last several decades in computer-based structural and functional genome annotation. Many methods for this purpose have been developed for eukaryotes and prokaryotes. Our study focuses on comparison of functional annotations of prokaryotic genomes. To the best of our knowledge there is no fully automated system for detailed comparison of functional genome annotations generated by different annotation methods (AMs). The presence of many AMs and development of new ones introduce needs to: a/ compare different annotations for a single genome, and b/ generate annotation by combining individual ones. To address these issues we developed an Automated Tool for Bacterial GEnome Annotation ComparisON (BEACON) that benefits both AM developers and annotation analysers. BEACON provides detailed comparison of gene function annotations of prokaryotic genomes obtained by different AMs and generates extended annotations through combination of individual ones. For the illustration of BEACON's utility, we provide a comparison analysis of multiple different annotations generated for four genomes and show on these examples that the extended annotation can increase the number of genes annotated by putative functions up to 27%, while the number of genes without any function assignment is reduced. We developed BEACON, a fast tool for an automated and a systematic comparison of different annotations of single genomes. The extended annotation assigns putative functions to many genes with unknown functions. BEACON is available under GNU General Public License version 3.0 and is accessible at: http://www.cbrc.kaust.edu.sa/BEACON/ .

  7. Determination of the Core of a Minimal Bacterial Gene Set†

    PubMed Central

    Gil, Rosario; Silva, Francisco J.; Peretó, Juli; Moya, Andrés

    2004-01-01

    The availability of a large number of complete genome sequences raises the question of how many genes are essential for cellular life. Trying to reconstruct the core of the protein-coding gene set for a hypothetical minimal bacterial cell, we have performed a computational comparative analysis of eight bacterial genomes. Six of the analyzed genomes are very small due to a dramatic genome size reduction process, while the other two, corresponding to free-living relatives, are larger. The available data from several systematic experimental approaches to define all the essential genes in some completely sequenced bacterial genomes were also considered, and a reconstruction of a minimal metabolic machinery necessary to sustain life was carried out. The proposed minimal genome contains 206 protein-coding genes with all the genetic information necessary for self-maintenance and reproduction in the presence of a full complement of essential nutrients and in the absence of environmental stress. The main features of such a minimal gene set, as well as the metabolic functions that must be present in the hypothetical minimal cell, are discussed. PMID:15353568

  8. Genome evolution in Reptilia, the sister group of mammals.

    PubMed

    Janes, Daniel E; Organ, Christopher L; Fujita, Matthew K; Shedlock, Andrew M; Edwards, Scott V

    2010-01-01

    The genomes of birds and nonavian reptiles (Reptilia) are critical for understanding genome evolution in mammals and amniotes generally. Despite decades of study at the chromosomal and single-gene levels, and the evidence for great diversity in genome size, karyotype, and sex chromosome diversity, reptile genomes are virtually unknown in the comparative genomics era. The recent sequencing of the chicken and zebra finch genomes, in conjunction with genome scans and the online publication of the Anolis lizard genome, has begun to clarify the events leading from an ancestral amniote genome--predicted to be large and to possess a diverse repeat landscape on par with mammals and a birdlike sex chromosome system--to the small and highly streamlined genomes of birds. Reptilia exhibit a wide range of evolutionary rates of different subgenomes and, from isochores to mitochondrial DNA, provide a critical contrast to the genomic paradigms established in mammals.

  9. The Tarenaya hassleriana Genome Provides Insight into Reproductive Trait and Genome Evolution of Crucifers[W][OPEN

    PubMed Central

    Cheng, Shifeng; van den Bergh, Erik; Zeng, Peng; Zhong, Xiao; Xu, Jiajia; Liu, Xin; Hofberger, Johannes; de Bruijn, Suzanne; Bhide, Amey S.; Kuelahoglu, Canan; Bian, Chao; Chen, Jing; Fan, Guangyi; Kaufmann, Kerstin; Hall, Jocelyn C.; Becker, Annette; Bräutigam, Andrea; Weber, Andreas P.M.; Shi, Chengcheng; Zheng, Zhijun; Li, Wujiao; Lv, Mingju; Tao, Yimin; Wang, Junyi; Zou, Hongfeng; Quan, Zhiwu; Hibberd, Julian M.; Zhang, Gengyun; Zhu, Xin-Guang; Xu, Xun; Schranz, M. Eric

    2013-01-01

    The Brassicaceae, including Arabidopsis thaliana and Brassica crops, is unmatched among plants in its wealth of genomic and functional molecular data and has long served as a model for understanding gene, genome, and trait evolution. However, genome information from a phylogenetic outgroup that is essential for inferring directionality of evolutionary change has been lacking. We therefore sequenced the genome of the spider flower (Tarenaya hassleriana) from the Brassicaceae sister family, the Cleomaceae. By comparative analysis of the two lineages, we show that genome evolution following ancient polyploidy and gene duplication events affect reproductively important traits. We found an ancient genome triplication in Tarenaya (Th-α) that is independent of the Brassicaceae-specific duplication (At-α) and nested Brassica (Br-α) triplication. To showcase the potential of sister lineage genome analysis, we investigated the state of floral developmental genes and show Brassica retains twice as many floral MADS (for MINICHROMOSOME MAINTENANCE1, AGAMOUS, DEFICIENS and SERUM RESPONSE FACTOR) genes as Tarenaya that likely contribute to morphological diversity in Brassica. We also performed synteny analysis of gene families that confer self-incompatibility in Brassicaceae and found that the critical SERINE RECEPTOR KINASE receptor gene is derived from a lineage-specific tandem duplication. The T. hassleriana genome will facilitate future research toward elucidating the evolutionary history of Brassicaceae genomes. PMID:23983221

  10. The Sunflower Genome and its Evolution (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema

    Rieseberg, Loren

    2018-02-06

    Loren Rieseberg from the University of British Columbia on "The Sunflower Genome and its Evolution" at the 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, California.

  11. The genome of the sea urchin Strongylocentrotus purpuratus.

    PubMed

    Sodergren, Erica; Weinstock, George M; Davidson, Eric H; Cameron, R Andrew; Gibbs, Richard A; Angerer, Robert C; Angerer, Lynne M; Arnone, Maria Ina; Burgess, David R; Burke, Robert D; Coffman, James A; Dean, Michael; Elphick, Maurice R; Ettensohn, Charles A; Foltz, Kathy R; Hamdoun, Amro; Hynes, Richard O; Klein, William H; Marzluff, William; McClay, David R; Morris, Robert L; Mushegian, Arcady; Rast, Jonathan P; Smith, L Courtney; Thorndyke, Michael C; Vacquier, Victor D; Wessel, Gary M; Wray, Greg; Zhang, Lan; Elsik, Christine G; Ermolaeva, Olga; Hlavina, Wratko; Hofmann, Gretchen; Kitts, Paul; Landrum, Melissa J; Mackey, Aaron J; Maglott, Donna; Panopoulou, Georgia; Poustka, Albert J; Pruitt, Kim; Sapojnikov, Victor; Song, Xingzhi; Souvorov, Alexandre; Solovyev, Victor; Wei, Zheng; Whittaker, Charles A; Worley, Kim; Durbin, K James; Shen, Yufeng; Fedrigo, Olivier; Garfield, David; Haygood, Ralph; Primus, Alexander; Satija, Rahul; Severson, Tonya; Gonzalez-Garay, Manuel L; Jackson, Andrew R; Milosavljevic, Aleksandar; Tong, Mark; Killian, Christopher E; Livingston, Brian T; Wilt, Fred H; Adams, Nikki; Bellé, Robert; Carbonneau, Seth; Cheung, Rocky; Cormier, Patrick; Cosson, Bertrand; Croce, Jenifer; Fernandez-Guerra, Antonio; Genevière, Anne-Marie; Goel, Manisha; Kelkar, Hemant; Morales, Julia; Mulner-Lorillon, Odile; Robertson, Anthony J; Goldstone, Jared V; Cole, Bryan; Epel, David; Gold, Bert; Hahn, Mark E; Howard-Ashby, Meredith; Scally, Mark; Stegeman, John J; Allgood, Erin L; Cool, Jonah; Judkins, Kyle M; McCafferty, Shawn S; Musante, Ashlan M; Obar, Robert A; Rawson, Amanda P; Rossetti, Blair J; Gibbons, Ian R; Hoffman, Matthew P; Leone, Andrew; Istrail, Sorin; Materna, Stefan C; Samanta, Manoj P; Stolc, Viktor; Tongprasit, Waraporn; Tu, Qiang; Bergeron, Karl-Frederik; Brandhorst, Bruce P; Whittle, James; Berney, Kevin; Bottjer, David J; Calestani, Cristina; Peterson, Kevin; Chow, Elly; Yuan, Qiu Autumn; Elhaik, Eran; Graur, Dan; Reese, Justin T; Bosdet, Ian; Heesun, Shin; Marra, Marco A; Schein, Jacqueline; Anderson, Michele K; Brockton, Virginia; Buckley, Katherine M; Cohen, Avis H; Fugmann, Sebastian D; Hibino, Taku; Loza-Coll, Mariano; Majeske, Audrey J; Messier, Cynthia; Nair, Sham V; Pancer, Zeev; Terwilliger, David P; Agca, Cavit; Arboleda, Enrique; Chen, Nansheng; Churcher, Allison M; Hallböök, F; Humphrey, Glen W; Idris, Mohammed M; Kiyama, Takae; Liang, Shuguang; Mellott, Dan; Mu, Xiuqian; Murray, Greg; Olinski, Robert P; Raible, Florian; Rowe, Matthew; Taylor, John S; Tessmar-Raible, Kristin; Wang, D; Wilson, Karen H; Yaguchi, Shunsuke; Gaasterland, Terry; Galindo, Blanca E; Gunaratne, Herath J; Juliano, Celina; Kinukawa, Masashi; Moy, Gary W; Neill, Anna T; Nomura, Mamoru; Raisch, Michael; Reade, Anna; Roux, Michelle M; Song, Jia L; Su, Yi-Hsien; Townley, Ian K; Voronina, Ekaterina; Wong, Julian L; Amore, Gabriele; Branno, Margherita; Brown, Euan R; Cavalieri, Vincenzo; Duboc, Véronique; Duloquin, Louise; Flytzanis, Constantin; Gache, Christian; Lapraz, François; Lepage, Thierry; Locascio, Annamaria; Martinez, Pedro; Matassi, Giorgio; Matranga, Valeria; Range, Ryan; Rizzo, Francesca; Röttinger, Eric; Beane, Wendy; Bradham, Cynthia; Byrum, Christine; Glenn, Tom; Hussain, Sofia; Manning, Gerard; Miranda, Esther; Thomason, Rebecca; Walton, Katherine; Wikramanayke, Athula; Wu, Shu-Yu; Xu, Ronghui; Brown, C Titus; Chen, Lili; Gray, Rachel F; Lee, Pei Yun; Nam, Jongmin; Oliveri, Paola; Smith, Joel; Muzny, Donna; Bell, Stephanie; Chacko, Joseph; Cree, Andrew; Curry, Stacey; Davis, Clay; Dinh, Huyen; Dugan-Rocha, Shannon; Fowler, Jerry; Gill, Rachel; Hamilton, Cerrissa; Hernandez, Judith; Hines, Sandra; Hume, Jennifer; Jackson, Laronda; Jolivet, Angela; Kovar, Christie; Lee, Sandra; Lewis, Lora; Miner, George; Morgan, Margaret; Nazareth, Lynne V; Okwuonu, Geoffrey; Parker, David; Pu, Ling-Ling; Thorn, Rachel; Wright, Rita

    2006-11-10

    We report the sequence and analysis of the 814-megabase genome of the sea urchin Strongylocentrotus purpuratus, a model for developmental and systems biology. The sequencing strategy combined whole-genome shotgun and bacterial artificial chromosome (BAC) sequences. This use of BAC clones, aided by a pooling strategy, overcame difficulties associated with high heterozygosity of the genome. The genome encodes about 23,300 genes, including many previously thought to be vertebrate innovations or known only outside the deuterostomes. This echinoderm genome provides an evolutionary outgroup for the chordates and yields insights into the evolution of deuterostomes.

  12. Bordetella pertussis evolution in the (functional) genomics era

    PubMed Central

    Belcher, Thomas; Preston, Andrew

    2015-01-01

    The incidence of whooping cough caused by Bordetella pertussis in many developed countries has risen dramatically in recent years. This has been linked to the use of an acellular pertussis vaccine. In addition, it is thought that B. pertussis is adapting under acellular vaccine mediated immune selection pressure, towards vaccine escape. Genomics-based approaches have revolutionized the ability to resolve the fine structure of the global B. pertussis population and its evolution during the era of vaccination. Here, we discuss the current picture of B. pertussis evolution and diversity in the light of the current resurgence, highlight import questions raised by recent studies in this area and discuss the role that functional genomics can play in addressing current knowledge gaps. PMID:26297914

  13. The genome diversity and karyotype evolution of mammals

    PubMed Central

    2011-01-01

    The past decade has witnessed an explosion of genome sequencing and mapping in evolutionary diverse species. While full genome sequencing of mammals is rapidly progressing, the ability to assemble and align orthologous whole chromosome regions from more than a few species is still not possible. The intense focus on building of comparative maps for companion (dog and cat), laboratory (mice and rat) and agricultural (cattle, pig, and horse) animals has traditionally been used as a means to understand the underlying basis of disease-related or economically important phenotypes. However, these maps also provide an unprecedented opportunity to use multispecies analysis as a tool for inferring karyotype evolution. Comparative chromosome painting and related techniques are now considered to be the most powerful approaches in comparative genome studies. Homologies can be identified with high accuracy using molecularly defined DNA probes for fluorescence in situ hybridization (FISH) on chromosomes of different species. Chromosome painting data are now available for members of nearly all mammalian orders. In most orders, there are species with rates of chromosome evolution that can be considered as 'default' rates. The number of rearrangements that have become fixed in evolutionary history seems comparatively low, bearing in mind the 180 million years of the mammalian radiation. Comparative chromosome maps record the history of karyotype changes that have occurred during evolution. The aim of this review is to provide an overview of these recent advances in our endeavor to decipher the karyotype evolution of mammals by integrating the published results together with some of our latest unpublished results. PMID:21992653

  14. Directed evolution of multiple genomic loci allows the prediction of antibiotic resistance.

    PubMed

    Nyerges, Ákos; Csörgő, Bálint; Draskovits, Gábor; Kintses, Bálint; Szili, Petra; Ferenc, Györgyi; Révész, Tamás; Ari, Eszter; Nagy, István; Bálint, Balázs; Vásárhelyi, Bálint Márk; Bihari, Péter; Számel, Mónika; Balogh, Dávid; Papp, Henrietta; Kalapis, Dorottya; Papp, Balázs; Pál, Csaba

    2018-06-19

    Antibiotic development is frequently plagued by the rapid emergence of drug resistance. However, assessing the risk of resistance development in the preclinical stage is difficult. Standard laboratory evolution approaches explore only a small fraction of the sequence space and fail to identify exceedingly rare resistance mutations and combinations thereof. Therefore, new rapid and exhaustive methods are needed to accurately assess the potential of resistance evolution and uncover the underlying mutational mechanisms. Here, we introduce directed evolution with random genomic mutations (DIvERGE), a method that allows an up to million-fold increase in mutation rate along the full lengths of multiple predefined loci in a range of bacterial species. In a single day, DIvERGE generated specific mutation combinations, yielding clinically significant resistance against trimethoprim and ciprofloxacin. Many of these mutations have remained previously undetected or provide resistance in a species-specific manner. These results indicate pathogen-specific resistance mechanisms and the necessity of future narrow-spectrum antibacterial treatments. In contrast to prior claims, we detected the rapid emergence of resistance against gepotidacin, a novel antibiotic currently in clinical trials. Based on these properties, DIvERGE could be applicable to identify less resistance-prone antibiotics at an early stage of drug development. Finally, we discuss potential future applications of DIvERGE in synthetic and evolutionary biology. Copyright © 2018 the Author(s). Published by PNAS.

  15. Rapid sequencing of the bamboo mitochondrial genome using Illumina technology and parallel episodic evolution of organelle genomes in grasses.

    PubMed

    Ma, Peng-Fei; Guo, Zhen-Hua; Li, De-Zhu

    2012-01-01

    Compared to their counterparts in animals, the mitochondrial (mt) genomes of angiosperms exhibit a number of unique features. However, unravelling their evolution is hindered by the few completed genomes, of which are essentially Sanger sequenced. While next-generation sequencing technologies have revolutionized chloroplast genome sequencing, they are just beginning to be applied to angiosperm mt genomes. Chloroplast genomes of grasses (Poaceae) have undergone episodic evolution and the evolutionary rate was suggested to be correlated between chloroplast and mt genomes in Poaceae. It is interesting to investigate whether correlated rate change also occurred in grass mt genomes as expected under lineage effects. A time-calibrated phylogenetic tree is needed to examine rate change. We determined a largely completed mt genome from a bamboo, Ferrocalamus rimosivaginus (Poaceae), through Illumina sequencing of total DNA. With combination of de novo and reference-guided assembly, 39.5-fold coverage Illumina reads were finally assembled into scaffolds totalling 432,839 bp. The assembled genome contains nearly the same genes as the completed mt genomes in Poaceae. For examining evolutionary rate in grass mt genomes, we reconstructed a phylogenetic tree including 22 taxa based on 31 mt genes. The topology of the well-resolved tree was almost identical to that inferred from chloroplast genome with only minor difference. The inconsistency possibly derived from long branch attraction in mtDNA tree. By calculating absolute substitution rates, we found significant rate change (∼4-fold) in mt genome before and after the diversification of Poaceae both in synonymous and nonsynonymous terms. Furthermore, the rate change was correlated with that of chloroplast genomes in grasses. Our result demonstrates that it is a rapid and efficient approach to obtain angiosperm mt genome sequences using Illumina sequencing technology. The parallel episodic evolution of mt and chloroplast

  16. Rapid Sequencing of the Bamboo Mitochondrial Genome Using Illumina Technology and Parallel Episodic Evolution of Organelle Genomes in Grasses

    PubMed Central

    Ma, Peng-Fei; Guo, Zhen-Hua; Li, De-Zhu

    2012-01-01

    Background Compared to their counterparts in animals, the mitochondrial (mt) genomes of angiosperms exhibit a number of unique features. However, unravelling their evolution is hindered by the few completed genomes, of which are essentially Sanger sequenced. While next-generation sequencing technologies have revolutionized chloroplast genome sequencing, they are just beginning to be applied to angiosperm mt genomes. Chloroplast genomes of grasses (Poaceae) have undergone episodic evolution and the evolutionary rate was suggested to be correlated between chloroplast and mt genomes in Poaceae. It is interesting to investigate whether correlated rate change also occurred in grass mt genomes as expected under lineage effects. A time-calibrated phylogenetic tree is needed to examine rate change. Methodology/Principal Findings We determined a largely completed mt genome from a bamboo, Ferrocalamus rimosivaginus (Poaceae), through Illumina sequencing of total DNA. With combination of de novo and reference-guided assembly, 39.5-fold coverage Illumina reads were finally assembled into scaffolds totalling 432,839 bp. The assembled genome contains nearly the same genes as the completed mt genomes in Poaceae. For examining evolutionary rate in grass mt genomes, we reconstructed a phylogenetic tree including 22 taxa based on 31 mt genes. The topology of the well-resolved tree was almost identical to that inferred from chloroplast genome with only minor difference. The inconsistency possibly derived from long branch attraction in mtDNA tree. By calculating absolute substitution rates, we found significant rate change (∼4-fold) in mt genome before and after the diversification of Poaceae both in synonymous and nonsynonymous terms. Furthermore, the rate change was correlated with that of chloroplast genomes in grasses. Conclusions/Significance Our result demonstrates that it is a rapid and efficient approach to obtain angiosperm mt genome sequences using Illumina sequencing

  17. Microbial Genomics: The Expanding Universe of Bacterial Defense Systems.

    PubMed

    Forsberg, Kevin J; Malik, Harmit S

    2018-04-23

    Bacteria protect themselves against infection using multiple defensive systems that move by horizontal gene transfer and accumulate in genomic 'defense islands'. A recent study exploited these features to uncover ten novel defense systems, substantially expanding the catalog of bacterial defense systems and predicting the discovery of many more. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Recent advances in understanding the role of nutrition in human genome evolution.

    PubMed

    Ye, Kaixiong; Gu, Zhenglong

    2011-11-01

    Dietary transitions in human history have been suggested to play important roles in the evolution of mankind. Genetic variations caused by adaptation to diet during human evolution could have important health consequences in current society. The advance of sequencing technologies and the rapid accumulation of genome information provide an unprecedented opportunity to comprehensively characterize genetic variations in human populations and unravel the genetic basis of human evolution. Series of selection detection methods, based on various theoretical models and exploiting different aspects of selection signatures, have been developed. Their applications at the species and population levels have respectively led to the identification of human specific selection events that distinguish human from nonhuman primates and local adaptation events that contribute to human diversity. Scrutiny of candidate genes has revealed paradigms of adaptations to specific nutritional components and genome-wide selection scans have verified the prevalence of diet-related selection events and provided many more candidates awaiting further investigation. Understanding the role of diet in human evolution is fundamental for the development of evidence-based, genome-informed nutritional practices in the era of personal genomics.

  19. Genomic comparison of closely related Giant Viruses supports an accordion-like model of evolution.

    PubMed

    Filée, Jonathan

    2015-01-01

    Genome gigantism occurs so far in Phycodnaviridae and Mimiviridae (order Megavirales). Origin and evolution of these Giant Viruses (GVs) remain open questions. Interestingly, availability of a collection of closely related GV genomes enabling genomic comparisons offer the opportunity to better understand the different evolutionary forces acting on these genomes. Whole genome alignment for five groups of viruses belonging to the Mimiviridae and Phycodnaviridae families show that there is no trend of genome expansion or general tendency of genome contraction. Instead, GV genomes accumulated genomic mutations over the time with gene gains compensating the different losses. In addition, each lineage displays specific patterns of genome evolution. Mimiviridae (megaviruses and mimiviruses) and Chlorella Phycodnaviruses evolved mainly by duplications and losses of genes belonging to large paralogous families (including movements of diverse mobiles genetic elements), whereas Micromonas and Ostreococcus Phycodnaviruses derive most of their genetic novelties thought lateral gene transfers. Taken together, these data support an accordion-like model of evolution in which GV genomes have undergone successive steps of gene gain and gene loss, accrediting the hypothesis that genome gigantism appears early, before the diversification of the different GV lineages.

  20. Ecology and genomics of Bacillus subtilis.

    PubMed

    Earl, Ashlee M; Losick, Richard; Kolter, Roberto

    2008-06-01

    Bacillus subtilis is a remarkably diverse bacterial species that is capable of growth within many environments. Recent microarray-based comparative genomic analyses have revealed that members of this species also exhibit considerable genomic diversity. The identification of strain-specific genes might explain how B. subtilis has become so broadly adapted. The goal of identifying ecologically adaptive genes could soon be realized with the imminent release of several new B. subtilis genome sequences. As we embark upon this exciting new era of B. subtilis comparative genomics we review what is currently known about the ecology and evolution of this species.

  1. GFinisher: a new strategy to refine and finish bacterial genome assemblies

    NASA Astrophysics Data System (ADS)

    Guizelini, Dieval; Raittz, Roberto T.; Cruz, Leonardo M.; Souza, Emanuel M.; Steffens, Maria B. R.; Pedrosa, Fabio O.

    2016-10-01

    Despite the development in DNA sequencing technology, improving the number and the length of reads, the process of reconstruction of complete genome sequences, the so called genome assembly, is still complex. Only 13% of the prokaryotic genome sequencing projects have been completed. Draft genome sequences deposited in public databases are fragmented in contigs and may lack the full gene complement. The aim of the present work is to identify assembly errors and improve the assembly process of bacterial genomes. The biological patterns observed in genomic sequences and the application of a priori information can allow the identification of misassembled regions, and the reorganization and improvement of the overall de novo genome assembly. GFinisher starts generating a Fuzzy GC skew graphs for each contig in an assembly and follows breaking down the contigs in critical points in order to reassemble and close them using jFGap. This has been successfully applied to dataset from 96 genome assemblies, decreasing the number of contigs by up to 86%. GFinisher can easily optimize assemblies of prokaryotic draft genomes and can be used to improve the assembly programs based on nucleotide sequence patterns in the genome. The software and source code are available at http://gfinisher.sourceforge.net/.

  2. GFinisher: a new strategy to refine and finish bacterial genome assemblies.

    PubMed

    Guizelini, Dieval; Raittz, Roberto T; Cruz, Leonardo M; Souza, Emanuel M; Steffens, Maria B R; Pedrosa, Fabio O

    2016-10-10

    Despite the development in DNA sequencing technology, improving the number and the length of reads, the process of reconstruction of complete genome sequences, the so called genome assembly, is still complex. Only 13% of the prokaryotic genome sequencing projects have been completed. Draft genome sequences deposited in public databases are fragmented in contigs and may lack the full gene complement. The aim of the present work is to identify assembly errors and improve the assembly process of bacterial genomes. The biological patterns observed in genomic sequences and the application of a priori information can allow the identification of misassembled regions, and the reorganization and improvement of the overall de novo genome assembly. GFinisher starts generating a Fuzzy GC skew graphs for each contig in an assembly and follows breaking down the contigs in critical points in order to reassemble and close them using jFGap. This has been successfully applied to dataset from 96 genome assemblies, decreasing the number of contigs by up to 86%. GFinisher can easily optimize assemblies of prokaryotic draft genomes and can be used to improve the assembly programs based on nucleotide sequence patterns in the genome. The software and source code are available at http://gfinisher.sourceforge.net/.

  3. Using experimental evolution to explore natural patterns between bacterial motility and resistance to bacteriophages

    PubMed Central

    Koskella, Britt; Taylor, Tiffany B; Bates, Jennifer; Buckling, Angus

    2011-01-01

    Resistance of bacteria to phages may be gained by alteration of surface proteins to which phages bind, a mechanism that is likely to be costly as these molecules typically have critical functions such as movement or nutrient uptake. To address this potential trade-off, we combine a systematic study of natural bacteria and phage populations with an experimental evolution approach. We compare motility, growth rate and susceptibility to local phages for 80 bacteria isolated from horse chestnut leaves and, contrary to expectation, find no negative association between resistance to phages and bacterial motility or growth rate. However, because correlational patterns (and their absence) are open to numerous interpretations, we test for any causal association between resistance to phages and bacterial motility using experimental evolution of a subset of bacteria in both the presence and absence of naturally associated phages. Again, we find no clear link between the acquisition of resistance and bacterial motility, suggesting that for these natural bacterial populations, phage-mediated selection is unlikely to shape bacterial motility, a key fitness trait for many bacteria in the phyllosphere. The agreement between the observed natural pattern and the experimental evolution results presented here demonstrates the power of this combined approach for testing evolutionary trade-offs. PMID:21509046

  4. Evidence of codon usage in the nearest neighbor spacing distribution of bases in bacterial genomes

    NASA Astrophysics Data System (ADS)

    Higareda, M. F.; Geiger, O.; Mendoza, L.; Méndez-Sánchez, R. A.

    2012-02-01

    Statistical analysis of whole genomic sequences usually assumes a homogeneous nucleotide density throughout the genome, an assumption that has been proved incorrect for several organisms since the nucleotide density is only locally homogeneous. To avoid giving a single numerical value to this variable property, we propose the use of spectral statistics, which characterizes the density of nucleotides as a function of its position in the genome. We show that the cumulative density of bases in bacterial genomes can be separated into an average (or secular) plus a fluctuating part. Bacterial genomes can be divided into two groups according to the qualitative description of their secular part: linear and piecewise linear. These two groups of genomes show different properties when their nucleotide spacing distribution is studied. In order to analyze genomes having a variable nucleotide density, statistically, the use of unfolding is necessary, i.e., to get a separation between the secular part and the fluctuations. The unfolding allows an adequate comparison with the statistical properties of other genomes. With this methodology, four genomes were analyzed Burkholderia, Bacillus, Clostridium and Corynebacterium. Interestingly, the nearest neighbor spacing distributions or detrended distance distributions are very similar for species within the same genus but they are very different for species from different genera. This difference can be attributed to the difference in the codon usage.

  5. Dynamics of genome size evolution in birds and mammals.

    PubMed

    Kapusta, Aurélie; Suh, Alexander; Feschotte, Cédric

    2017-02-21

    Genome size in mammals and birds shows remarkably little interspecific variation compared with other taxa. However, genome sequencing has revealed that many mammal and bird lineages have experienced differential rates of transposable element (TE) accumulation, which would be predicted to cause substantial variation in genome size between species. Thus, we hypothesize that there has been covariation between the amount of DNA gained by transposition and lost by deletion during mammal and avian evolution, resulting in genome size equilibrium. To test this model, we develop computational methods to quantify the amount of DNA gained by TE expansion and lost by deletion over the last 100 My in the lineages of 10 species of eutherian mammals and 24 species of birds. The results reveal extensive variation in the amount of DNA gained via lineage-specific transposition, but that DNA loss counteracted this expansion to various extents across lineages. Our analysis of the rate and size spectrum of deletion events implies that DNA removal in both mammals and birds has proceeded mostly through large segmental deletions (>10 kb). These findings support a unified "accordion" model of genome size evolution in eukaryotes whereby DNA loss counteracting TE expansion is a major determinant of genome size. Furthermore, we propose that extensive DNA loss, and not necessarily a dearth of TE activity, has been the primary force maintaining the greater genomic compaction of flying birds and bats relative to their flightless relatives.

  6. Dynamics of genome size evolution in birds and mammals

    PubMed Central

    Feschotte, Cédric

    2017-01-01

    Genome size in mammals and birds shows remarkably little interspecific variation compared with other taxa. However, genome sequencing has revealed that many mammal and bird lineages have experienced differential rates of transposable element (TE) accumulation, which would be predicted to cause substantial variation in genome size between species. Thus, we hypothesize that there has been covariation between the amount of DNA gained by transposition and lost by deletion during mammal and avian evolution, resulting in genome size equilibrium. To test this model, we develop computational methods to quantify the amount of DNA gained by TE expansion and lost by deletion over the last 100 My in the lineages of 10 species of eutherian mammals and 24 species of birds. The results reveal extensive variation in the amount of DNA gained via lineage-specific transposition, but that DNA loss counteracted this expansion to various extents across lineages. Our analysis of the rate and size spectrum of deletion events implies that DNA removal in both mammals and birds has proceeded mostly through large segmental deletions (>10 kb). These findings support a unified “accordion” model of genome size evolution in eukaryotes whereby DNA loss counteracting TE expansion is a major determinant of genome size. Furthermore, we propose that extensive DNA loss, and not necessarily a dearth of TE activity, has been the primary force maintaining the greater genomic compaction of flying birds and bats relative to their flightless relatives. PMID:28179571

  7. Comparative Genomics of Field Isolates of Mycobacterium bovis and M. caprae Provides Evidence for Possible Correlates with Bacterial Viability and Virulence.

    PubMed

    de la Fuente, José; Díez-Delgado, Iratxe; Contreras, Marinela; Vicente, Joaquín; Cabezas-Cruz, Alejandro; Tobes, Raquel; Manrique, Marina; López, Vladimir; Romero, Beatriz; Bezos, Javier; Dominguez, Lucas; Sevilla, Iker A; Garrido, Joseba M; Juste, Ramón; Madico, Guillermo; Jones-López, Edward; Gortazar, Christian

    2015-11-01

    Mycobacteria of the Mycobacterium tuberculosis complex (MTBC) greatly affect humans and animals worldwide. The life cycle of mycobacteria is complex and the mechanisms resulting in pathogen infection and survival in host cells are not fully understood. Recently, comparative genomics analyses have provided new insights into the evolution and adaptation of the MTBC to survive inside the host. However, most of this information has been obtained using M. tuberculosis but not other members of the MTBC such as M. bovis and M. caprae. In this study, the genome of three M. bovis (MB1, MB3, MB4) and one M. caprae (MB2) field isolates with different lesion score, prevalence and host distribution phenotypes were sequenced. Genome sequence information was used for whole-genome and protein-targeted comparative genomics analysis with the aim of finding correlates with phenotypic variation with potential implications for tuberculosis (TB) disease risk assessment and control. At the whole-genome level the results of the first comparative genomics study of field isolates of M. bovis including M. caprae showed that as previously reported for M. tuberculosis, sequential chromosomal nucleotide substitutions were the main driver of the M. bovis genome evolution. The phylogenetic analysis provided a strong support for the M. bovis/M. caprae clade, but supported M. caprae as a separate species. The comparison of the MB1 and MB4 isolates revealed differences in genome sequence, including gene families that are important for bacterial infection and transmission, thus highlighting differences with functional implications between isolates otherwise classified with the same spoligotype. Strategic protein-targeted analysis using the ESX or type VII secretion system, proteins linking stress response with lipid metabolism, host T cell epitopes of mycobacteria, antigens and peptidoglycan assembly protein identified new genetic markers and candidate vaccine antigens that warrant further study to

  8. Comparative Genomics of Field Isolates of Mycobacterium bovis and M. caprae Provides Evidence for Possible Correlates with Bacterial Viability and Virulence

    PubMed Central

    de la Fuente, José; Díez-Delgado, Iratxe; Contreras, Marinela; Vicente, Joaquín; Cabezas-Cruz, Alejandro; Tobes, Raquel; Manrique, Marina; López, Vladimir; Romero, Beatriz; Bezos, Javier; Dominguez, Lucas; Sevilla, Iker A.; Garrido, Joseba M.; Juste, Ramón; Madico, Guillermo; Jones-López, Edward; Gortazar, Christian

    2015-01-01

    Mycobacteria of the Mycobacterium tuberculosis complex (MTBC) greatly affect humans and animals worldwide. The life cycle of mycobacteria is complex and the mechanisms resulting in pathogen infection and survival in host cells are not fully understood. Recently, comparative genomics analyses have provided new insights into the evolution and adaptation of the MTBC to survive inside the host. However, most of this information has been obtained using M. tuberculosis but not other members of the MTBC such as M. bovis and M. caprae. In this study, the genome of three M. bovis (MB1, MB3, MB4) and one M. caprae (MB2) field isolates with different lesion score, prevalence and host distribution phenotypes were sequenced. Genome sequence information was used for whole-genome and protein-targeted comparative genomics analysis with the aim of finding correlates with phenotypic variation with potential implications for tuberculosis (TB) disease risk assessment and control. At the whole-genome level the results of the first comparative genomics study of field isolates of M. bovis including M. caprae showed that as previously reported for M. tuberculosis, sequential chromosomal nucleotide substitutions were the main driver of the M. bovis genome evolution. The phylogenetic analysis provided a strong support for the M. bovis/M. caprae clade, but supported M. caprae as a separate species. The comparison of the MB1 and MB4 isolates revealed differences in genome sequence, including gene families that are important for bacterial infection and transmission, thus highlighting differences with functional implications between isolates otherwise classified with the same spoligotype. Strategic protein-targeted analysis using the ESX or type VII secretion system, proteins linking stress response with lipid metabolism, host T cell epitopes of mycobacteria, antigens and peptidoglycan assembly protein identified new genetic markers and candidate vaccine antigens that warrant further study to

  9. Integrative modeling of gene and genome evolution roots the archaeal tree of life

    PubMed Central

    Szöllősi, Gergely J.; Spang, Anja; Foster, Peter G.; Heaps, Sarah E.; Boussau, Bastien; Ettema, Thijs J. G.; Embley, T. Martin

    2017-01-01

    A root for the archaeal tree is essential for reconstructing the metabolism and ecology of early cells and for testing hypotheses that propose that the eukaryotic nuclear lineage originated from within the Archaea; however, published studies based on outgroup rooting disagree regarding the position of the archaeal root. Here we constructed a consensus unrooted archaeal topology using protein concatenation and a multigene supertree method based on 3,242 single gene trees, and then rooted this tree using a recently developed model of genome evolution. This model uses evidence from gene duplications, horizontal transfers, and gene losses contained in 31,236 archaeal gene families to identify the most likely root for the tree. Our analyses support the monophyly of DPANN (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, Nanohaloarchaea), a recently discovered cosmopolitan and genetically diverse lineage, and, in contrast to previous work, place the tree root between DPANN and all other Archaea. The sister group to DPANN comprises the Euryarchaeota and the TACK Archaea, including Lokiarchaeum, which our analyses suggest are monophyletic sister lineages. Metabolic reconstructions on the rooted tree suggest that early Archaea were anaerobes that may have had the ability to reduce CO2 to acetate via the Wood–Ljungdahl pathway. In contrast to proposals suggesting that genome reduction has been the predominant mode of archaeal evolution, our analyses infer a relatively small-genomed archaeal ancestor that subsequently increased in complexity via gene duplication and horizontal gene transfer. PMID:28533395

  10. Integrative modeling of gene and genome evolution roots the archaeal tree of life.

    PubMed

    Williams, Tom A; Szöllősi, Gergely J; Spang, Anja; Foster, Peter G; Heaps, Sarah E; Boussau, Bastien; Ettema, Thijs J G; Embley, T Martin

    2017-06-06

    A root for the archaeal tree is essential for reconstructing the metabolism and ecology of early cells and for testing hypotheses that propose that the eukaryotic nuclear lineage originated from within the Archaea; however, published studies based on outgroup rooting disagree regarding the position of the archaeal root. Here we constructed a consensus unrooted archaeal topology using protein concatenation and a multigene supertree method based on 3,242 single gene trees, and then rooted this tree using a recently developed model of genome evolution. This model uses evidence from gene duplications, horizontal transfers, and gene losses contained in 31,236 archaeal gene families to identify the most likely root for the tree. Our analyses support the monophyly of DPANN (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, Nanohaloarchaea), a recently discovered cosmopolitan and genetically diverse lineage, and, in contrast to previous work, place the tree root between DPANN and all other Archaea. The sister group to DPANN comprises the Euryarchaeota and the TACK Archaea, including Lokiarchaeum , which our analyses suggest are monophyletic sister lineages. Metabolic reconstructions on the rooted tree suggest that early Archaea were anaerobes that may have had the ability to reduce CO 2 to acetate via the Wood-Ljungdahl pathway. In contrast to proposals suggesting that genome reduction has been the predominant mode of archaeal evolution, our analyses infer a relatively small-genomed archaeal ancestor that subsequently increased in complexity via gene duplication and horizontal gene transfer.

  11. Advances in Cryptococcus genomics: insights into the evolution of pathogenesis.

    PubMed

    Cuomo, Christina A; Rhodes, Johanna; Desjardins, Christopher A

    2018-01-01

    Cryptococcus species are the causative agents of cryptococcal meningitis, a significant source of mortality in immunocompromised individuals. Initial work on the molecular epidemiology of this fungal pathogen utilized genotyping approaches to describe the genetic diversity and biogeography of two species, Cryptococcus neoformans and Cryptococcus gattii. Whole genome sequencing of representatives of both species resulted in reference assemblies enabling a wide array of downstream studies and genomic resources. With the increasing availability of whole genome sequencing, both species have now had hundreds of individual isolates sequenced, providing fine-scale insight into the evolution and diversification of Cryptococcus and allowing for the first genome-wide association studies to identify genetic variants associated with human virulence. Sequencing has also begun to examine the microevolution of isolates during prolonged infection and to identify variants specific to outbreak lineages, highlighting the potential role of hyper-mutation in evolving within short time scales. We can anticipate that further advances in sequencing technology and sequencing microbial genomes at scale, including metagenomics approaches, will continue to refine our view of how the evolution of Cryptococcus drives its success as a pathogen.

  12. Development and validation of an rDNA operon based primer walking strategy applicable to de novo bacterial genome finishing

    PubMed Central

    Eastman, Alexander W.; Yuan, Ze-Chun

    2015-01-01

    Advances in sequencing technology have drastically increased the depth and feasibility of bacterial genome sequencing. However, little information is available that details the specific techniques and procedures employed during genome sequencing despite the large numbers of published genomes. Shotgun approaches employed by second-generation sequencing platforms has necessitated the development of robust bioinformatics tools for in silico assembly, and complete assembly is limited by the presence of repetitive DNA sequences and multi-copy operons. Typically, re-sequencing with multiple platforms and laborious, targeted Sanger sequencing are employed to finish a draft bacterial genome. Here we describe a novel strategy based on the identification and targeted sequencing of repetitive rDNA operons to expedite bacterial genome assembly and finishing. Our strategy was validated by finishing the genome of Paenibacillus polymyxa strain CR1, a bacterium with potential in sustainable agriculture and bio-based processes. An analysis of the 38 contigs contained in the P. polymyxa strain CR1 draft genome revealed 12 repetitive rDNA operons with varied intragenic and flanking regions of variable length, unanimously located at contig boundaries and within contig gaps. These highly similar but not identical rDNA operons were experimentally verified and sequenced simultaneously with multiple, specially designed primer sets. This approach also identified and corrected significant sequence rearrangement generated during the initial in silico assembly of sequencing reads. Our approach reduces the required effort associated with blind primer walking for contig assembly, increasing both the speed and feasibility of genome finishing. Our study further reinforces the notion that repetitive DNA elements are major limiting factors for genome finishing. Moreover, we provided a step-by-step workflow for genome finishing, which may guide future bacterial genome finishing projects. PMID

  13. An archaeal genomic signature

    NASA Technical Reports Server (NTRS)

    Graham, D. E.; Overbeek, R.; Olsen, G. J.; Woese, C. R.

    2000-01-01

    Comparisons of complete genome sequences allow the most objective and comprehensive descriptions possible of a lineage's evolution. This communication uses the completed genomes from four major euryarchaeal taxa to define a genomic signature for the Euryarchaeota and, by extension, the Archaea as a whole. The signature is defined in terms of the set of protein-encoding genes found in at least two diverse members of the euryarchaeal taxa that function uniquely within the Archaea; most signature proteins have no recognizable bacterial or eukaryal homologs. By this definition, 351 clusters of signature proteins have been identified. Functions of most proteins in this signature set are currently unknown. At least 70% of the clusters that contain proteins from all the euryarchaeal genomes also have crenarchaeal homologs. This conservative set, which appears refractory to horizontal gene transfer to the Bacteria or the Eukarya, would seem to reflect the significant innovations that were unique and fundamental to the archaeal "design fabric." Genomic protein signature analysis methods may be extended to characterize the evolution of any phylogenetically defined lineage. The complete set of protein clusters for the archaeal genomic signature is presented as supplementary material (see the PNAS web site, www.pnas.org).

  14. Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations.

    PubMed

    Lenski, Richard E

    2017-10-01

    Evolution is an on-going process, and it can be studied experimentally in organisms with rapid generations. My team has maintained 12 populations of Escherichia coli in a simple laboratory environment for >25 years and 60 000 generations. We have quantified the dynamics of adaptation by natural selection, seen some of the populations diverge into stably coexisting ecotypes, described changes in the bacteria's mutation rate, observed the new ability to exploit a previously untapped carbon source, characterized the dynamics of genome evolution and used parallel evolution to identify the genetic targets of selection. I discuss what the future might hold for this particular experiment, briefly highlight some other microbial evolution experiments and suggest how the fields of experimental evolution and microbial ecology might intersect going forward.

  15. Bordetella pertussis evolution in the (functional) genomics era.

    PubMed

    Belcher, Thomas; Preston, Andrew

    2015-11-01

    The incidence of whooping cough caused by Bordetella pertussis in many developed countries has risen dramatically in recent years. This has been linked to the use of an acellular pertussis vaccine. In addition, it is thought that B. pertussis is adapting under acellular vaccine mediated immune selection pressure, towards vaccine escape. Genomics-based approaches have revolutionized the ability to resolve the fine structure of the global B. pertussis population and its evolution during the era of vaccination. Here, we discuss the current picture of B. pertussis evolution and diversity in the light of the current resurgence, highlight import questions raised by recent studies in this area and discuss the role that functional genomics can play in addressing current knowledge gaps. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Cytotoxic Chromosomal Targeting by CRISPR/Cas Systems Can Reshape Bacterial Genomes and Expel or Remodel Pathogenicity Islands

    PubMed Central

    Vercoe, Reuben B.; Chang, James T.; Dy, Ron L.; Taylor, Corinda; Gristwood, Tamzin; Clulow, James S.; Richter, Corinna; Przybilski, Rita; Pitman, Andrew R.; Fineran, Peter C.

    2013-01-01

    In prokaryotes, clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated (Cas) proteins constitute a defence system against bacteriophages and plasmids. CRISPR/Cas systems acquire short spacer sequences from foreign genetic elements and incorporate these into their CRISPR arrays, generating a memory of past invaders. Defence is provided by short non-coding RNAs that guide Cas proteins to cleave complementary nucleic acids. While most spacers are acquired from phages and plasmids, there are examples of spacers that match genes elsewhere in the host bacterial chromosome. In Pectobacterium atrosepticum the type I-F CRISPR/Cas system has acquired a self-complementary spacer that perfectly matches a protospacer target in a horizontally acquired island (HAI2) involved in plant pathogenicity. Given the paucity of experimental data about CRISPR/Cas–mediated chromosomal targeting, we examined this process by developing a tightly controlled system. Chromosomal targeting was highly toxic via targeting of DNA and resulted in growth inhibition and cellular filamentation. The toxic phenotype was avoided by mutations in the cas operon, the CRISPR repeats, the protospacer target, and protospacer-adjacent motif (PAM) beside the target. Indeed, the natural self-targeting spacer was non-toxic due to a single nucleotide mutation adjacent to the target in the PAM sequence. Furthermore, we show that chromosomal targeting can result in large-scale genomic alterations, including the remodelling or deletion of entire pre-existing pathogenicity islands. These features can be engineered for the targeted deletion of large regions of bacterial chromosomes. In conclusion, in DNA–targeting CRISPR/Cas systems, chromosomal interference is deleterious by causing DNA damage and providing a strong selective pressure for genome alterations, which may have consequences for bacterial evolution and pathogenicity. PMID:23637624

  17. Phylogenomic Analysis and Dynamic Evolution of Chloroplast Genomes in Salicaceae

    PubMed Central

    Huang, Yuan; Wang, Jun; Yang, Yongping; Fan, Chuanzhu; Chen, Jiahui

    2017-01-01

    Chloroplast genomes of plants are highly conserved in both gene order and gene content. Analysis of the whole chloroplast genome is known to provide much more informative DNA sites and thus generates high resolution for plant phylogenies. Here, we report the complete chloroplast genomes of three Salix species in family Salicaceae. Phylogeny of Salicaceae inferred from complete chloroplast genomes is generally consistent with previous studies but resolved with higher statistical support. Incongruences of phylogeny, however, are observed in genus Populus, which most likely results from homoplasy. By comparing three Salix chloroplast genomes with the published chloroplast genomes of other Salicaceae species, we demonstrate that the synteny and length of chloroplast genomes in Salicaceae are highly conserved but experienced dynamic evolution among species. We identify seven positively selected chloroplast genes in Salicaceae, which might be related to the adaptive evolution of Salicaceae species. Comparative chloroplast genome analysis within the family also indicates that some chloroplast genes are lost or became pseudogenes, infer that the chloroplast genes horizontally transferred to the nucleus genome. Based on the complete nucleus genome sequences from two Salicaceae species, we remarkably identify that the entire chloroplast genome is indeed transferred and integrated to the nucleus genome in the individual of the reference genome of P. trichocarpa at least once. This observation, along with presence of the large nuclear plastid DNA (NUPTs) and NUPTs-containing multiple chloroplast genes in their original order in the chloroplast genome, favors the DNA-mediated hypothesis of organelle to nucleus DNA transfer. Overall, the phylogenomic analysis using chloroplast complete genomes clearly elucidates the phylogeny of Salicaceae. The identification of positively selected chloroplast genes and dynamic chloroplast-to-nucleus gene transfers in Salicaceae provide

  18. Holotransformations of bacterial colonies and genome cybernetics

    NASA Astrophysics Data System (ADS)

    Ben-Jacob, Eshel; Tenenbaum, Adam; Shochet, Ofer; Avidan, Orna

    1994-01-01

    We present a study of colony transformations during growth of Bacillus subtilis under adverse environmental conditions. It is a continuation of our pilot study of “Adaptive self-organization during growth of bacterial colonies” (Physica A 187 (1992) 378). First we identify and describe the transformations pathway, i.e. the excitation of the branching modes from Bacillus subtilis 168 (grown under diffusion limited conditions) and the phase transformations between the tip-splitting phase (phase T) and the chiral phase (phase C) which belong to the same mode. This pathway shows the evolution of complexity as the bacteria are exposed to adverse growth conditions. We present the morphology diagram of phases T and C as a function of agar concentration and pepton level. As expected, the growth of phase T is ramified (fractal-like or DLA-like) at low pepton level (about 1 g/1) and turns compact at high pepton level (about 10 g/1). The growth of phase C is also ramified at low pepton level and turns denser and finally compact as the pepton level increases. Generally speaking, the colonies develop more complex patterns and higher micro-level organization for more adverse environments. We use the growth velocity as a response function to describe the growth. At low agar concentration (and low pepton level) phase C grows faster than phase T, and for a high agar concentration (about 2%) phase T grows faster. We observe colony transformations between the two phases (phase transformations). They are found to be consistent with the “fastest growing morphology” selection principle adopted from azoic systems. The transformations are always from the slower phase to the faster one. Hence, we observe T→ C transformations at low agar concentrations and C→ T transformations at high agar concentrations. We have observed both localized and extended transformations. Usually, the transformations are localized for more adverse growth conditions, and extended for growth conditions

  19. Reconstruction of a Bacterial Genome from DNA Cassettes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher Dupont; John Glass; Laura Sheahan

    2011-12-31

    This basic research program comprised two major areas: (1) acquisition and analysis of marine microbial metagenomic data and development of genomic analysis tools for broad, external community use; (2) development of a minimal bacterial genome. Our Marine Metagenomic Diversity effort generated and analyzed shotgun sequencing data from microbial communities sampled from over 250 sites around the world. About 40% of the 26 Gbp of sequence data has been made publicly available to date with a complete release anticipated in six months. Our results and those mining the deposited data have revealed a vast diversity of genes coding for critical metabolicmore » processes whose phylogenetic and geographic distributions will enable a deeper understanding of carbon and nutrient cycling, microbial ecology, and rapid rate evolutionary processes such as horizontal gene transfer by viruses and plasmids. A global assembly of the generated dataset resulted in a massive set (5Gbp) of genome fragments that provide context to the majority of the generated data that originated from uncultivated organisms. Our Synthetic Biology team has made significant progress towards the goal of synthesizing a minimal mycoplasma genome that will have all of the machinery for independent life. This project, once completed, will provide fundamentally new knowledge about requirements for microbial life and help to lay a basic research foundation for developing microbiological approaches to bioenergy.« less

  20. Universal and idiosyncratic characteristic lengths in bacterial genomes

    NASA Astrophysics Data System (ADS)

    Junier, Ivan; Frémont, Paul; Rivoire, Olivier

    2018-05-01

    In condensed matter physics, simplified descriptions are obtained by coarse-graining the features of a system at a certain characteristic length, defined as the typical length beyond which some properties are no longer correlated. From a physics standpoint, in vitro DNA has thus a characteristic length of 300 base pairs (bp), the Kuhn length of the molecule beyond which correlations in its orientations are typically lost. From a biology standpoint, in vivo DNA has a characteristic length of 1000 bp, the typical length of genes. Since bacteria live in very different physico-chemical conditions and since their genomes lack translational invariance, whether larger, universal characteristic lengths exist is a non-trivial question. Here, we examine this problem by leveraging the large number of fully sequenced genomes available in public databases. By analyzing GC content correlations and the evolutionary conservation of gene contexts (synteny) in hundreds of bacterial chromosomes, we conclude that a fundamental characteristic length around 10–20 kb can be defined. This characteristic length reflects elementary structures involved in the coordination of gene expression, which are present all along the genome of nearly all bacteria. Technically, reaching this conclusion required us to implement methods that are insensitive to the presence of large idiosyncratic genomic features, which may co-exist along these fundamental universal structures.

  1. Genomic investigations of evolutionary dynamics and epistasis in microbial evolution experiments.

    PubMed

    Jerison, Elizabeth R; Desai, Michael M

    2015-12-01

    Microbial evolution experiments enable us to watch adaptation in real time, and to quantify the repeatability and predictability of evolution by comparing identical replicate populations. Further, we can resurrect ancestral types to examine changes over evolutionary time. Until recently, experimental evolution has been limited to measuring phenotypic changes, or to tracking a few genetic markers over time. However, recent advances in sequencing technology now make it possible to extensively sequence clones or whole-population samples from microbial evolution experiments. Here, we review recent work exploiting these techniques to understand the genomic basis of evolutionary change in experimental systems. We first focus on studies that analyze the dynamics of genome evolution in microbial systems. We then survey work that uses observations of sequence evolution to infer aspects of the underlying fitness landscape, concentrating on the epistatic interactions between mutations and the constraints these interactions impose on adaptation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons.

    PubMed

    Braasch, Ingo; Gehrke, Andrew R; Smith, Jeramiah J; Kawasaki, Kazuhiko; Manousaki, Tereza; Pasquier, Jeremy; Amores, Angel; Desvignes, Thomas; Batzel, Peter; Catchen, Julian; Berlin, Aaron M; Campbell, Michael S; Barrell, Daniel; Martin, Kyle J; Mulley, John F; Ravi, Vydianathan; Lee, Alison P; Nakamura, Tetsuya; Chalopin, Domitille; Fan, Shaohua; Wcisel, Dustin; Cañestro, Cristian; Sydes, Jason; Beaudry, Felix E G; Sun, Yi; Hertel, Jana; Beam, Michael J; Fasold, Mario; Ishiyama, Mikio; Johnson, Jeremy; Kehr, Steffi; Lara, Marcia; Letaw, John H; Litman, Gary W; Litman, Ronda T; Mikami, Masato; Ota, Tatsuya; Saha, Nil Ratan; Williams, Louise; Stadler, Peter F; Wang, Han; Taylor, John S; Fontenot, Quenton; Ferrara, Allyse; Searle, Stephen M J; Aken, Bronwen; Yandell, Mark; Schneider, Igor; Yoder, Jeffrey A; Volff, Jean-Nicolas; Meyer, Axel; Amemiya, Chris T; Venkatesh, Byrappa; Holland, Peter W H; Guiguen, Yann; Bobe, Julien; Shubin, Neil H; Di Palma, Federica; Alföldi, Jessica; Lindblad-Toh, Kerstin; Postlethwait, John H

    2016-04-01

    To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before teleost genome duplication (TGD). The slowly evolving gar genome has conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization and development (mediated, for example, by Hox, ParaHox and microRNA genes). Numerous conserved noncoding elements (CNEs; often cis regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles for such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses showed that the sums of expression domains and expression levels for duplicated teleost genes often approximate the patterns and levels of expression for gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes and the function of human regulatory sequences.

  3. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution.

    PubMed

    Janusz, Grzegorz; Pawlik, Anna; Sulej, Justyna; Swiderska-Burek, Urszula; Jarosz-Wilkolazka, Anna; Paszczynski, Andrzej

    2017-11-01

    Extensive research efforts have been dedicated to describing degradation of wood, which is a complex process; hence, microorganisms have evolved different enzymatic and non-enzymatic strategies to utilize this plentiful plant material. This review describes a number of fungal and bacterial organisms which have developed both competitive and mutualistic strategies for the decomposition of wood and to thrive in different ecological niches. Through the analysis of the enzymatic machinery engaged in wood degradation, it was possible to elucidate different strategies of wood decomposition which often depend on ecological niches inhabited by given organism. Moreover, a detailed description of low molecular weight compounds is presented, which gives these organisms not only an advantage in wood degradation processes, but seems rather to be a new evolutionatory alternative to enzymatic combustion. Through analysis of genomics and secretomic data, it was possible to underline the probable importance of certain wood-degrading enzymes produced by different fungal organisms, potentially giving them advantage in their ecological niches. The paper highlights different fungal strategies of wood degradation, which possibly correlates to the number of genes coding for secretory enzymes. Furthermore, investigation of the evolution of wood-degrading organisms has been described. © FEMS 2017.

  4. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution

    PubMed Central

    Pawlik, Anna; Sulej, Justyna; Świderska-Burek, Urszula; Jarosz-Wilkołazka, Anna; Paszczyński, Andrzej

    2017-01-01

    Abstract Extensive research efforts have been dedicated to describing degradation of wood, which is a complex process; hence, microorganisms have evolved different enzymatic and non-enzymatic strategies to utilize this plentiful plant material. This review describes a number of fungal and bacterial organisms which have developed both competitive and mutualistic strategies for the decomposition of wood and to thrive in different ecological niches. Through the analysis of the enzymatic machinery engaged in wood degradation, it was possible to elucidate different strategies of wood decomposition which often depend on ecological niches inhabited by given organism. Moreover, a detailed description of low molecular weight compounds is presented, which gives these organisms not only an advantage in wood degradation processes, but seems rather to be a new evolutionatory alternative to enzymatic combustion. Through analysis of genomics and secretomic data, it was possible to underline the probable importance of certain wood-degrading enzymes produced by different fungal organisms, potentially giving them advantage in their ecological niches. The paper highlights different fungal strategies of wood degradation, which possibly correlates to the number of genes coding for secretory enzymes. Furthermore, investigation of the evolution of wood-degrading organisms has been described. PMID:29088355

  5. Bacterial identification and subtyping using DNA microarray and DNA sequencing.

    PubMed

    Al-Khaldi, Sufian F; Mossoba, Magdi M; Allard, Marc M; Lienau, E Kurt; Brown, Eric D

    2012-01-01

    The era of fast and accurate discovery of biological sequence motifs in prokaryotic and eukaryotic cells is here. The co-evolution of direct genome sequencing and DNA microarray strategies not only will identify, isotype, and serotype pathogenic bacteria, but also it will aid in the discovery of new gene functions by detecting gene expressions in different diseases and environmental conditions. Microarray bacterial identification has made great advances in working with pure and mixed bacterial samples. The technological advances have moved beyond bacterial gene expression to include bacterial identification and isotyping. Application of new tools such as mid-infrared chemical imaging improves detection of hybridization in DNA microarrays. The research in this field is promising and future work will reveal the potential of infrared technology in bacterial identification. On the other hand, DNA sequencing by using 454 pyrosequencing is so cost effective that the promise of $1,000 per bacterial genome sequence is becoming a reality. Pyrosequencing technology is a simple to use technique that can produce accurate and quantitative analysis of DNA sequences with a great speed. The deposition of massive amounts of bacterial genomic information in databanks is creating fingerprint phylogenetic analysis that will ultimately replace several technologies such as Pulsed Field Gel Electrophoresis. In this chapter, we will review (1) the use of DNA microarray using fluorescence and infrared imaging detection for identification of pathogenic bacteria, and (2) use of pyrosequencing in DNA cluster analysis to fingerprint bacterial phylogenetic trees.

  6. The Genome of the Sea Urchin Strongylocentrotus purpuratus

    PubMed Central

    2011-01-01

    We report the sequence and analysis of the 814-megabase genome of the sea urchin Strongylocentrotus purpuratus, a model for developmental and systems biology. The sequencing strategy combined whole-genome shotgun and bacterial artificial chromosome (BAC) sequences. This use of BAC clones, aided by a pooling strategy, overcame difficulties associated with high heterozygosity of the genome. The genome encodes about 23,300 genes, including many previously thought to be vertebrate innovations or known only outside the deuterostomes. This echinoderm genome provides an evolutionary outgroup for the chordates and yields insights into the evolution of deuterostomes. PMID:17095691

  7. SINEs, evolution and genome structure in the opossum.

    PubMed

    Gu, Wanjun; Ray, David A; Walker, Jerilyn A; Barnes, Erin W; Gentles, Andrew J; Samollow, Paul B; Jurka, Jerzy; Batzer, Mark A; Pollock, David D

    2007-07-01

    Short INterspersed Elements (SINEs) are non-autonomous retrotransposons, usually between 100 and 500 base pairs (bp) in length, which are ubiquitous components of eukaryotic genomes. Their activity, distribution, and evolution can be highly informative on genomic structure and evolutionary processes. To determine recent activity, we amplified more than one hundred SINE1 loci in a panel of 43 M. domestica individuals derived from five diverse geographic locations. The SINE1 family has expanded recently enough that many loci were polymorphic, and the SINE1 insertion-based genetic distances among populations reflected geographic distance. Genome-wide comparisons of SINE1 densities and GC content revealed that high SINE1 density is associated with high GC content in a few long and many short spans. Young SINE1s, whether fixed or polymorphic, showed an unbiased GC content preference for insertion, indicating that the GC preference accumulates over long time periods, possibly in periodic bursts. SINE1 evolution is thus broadly similar to human Alu evolution, although it has an independent origin. High GC content adjacent to SINE1s is strongly correlated with bias towards higher AT to GC substitutions and lower GC to AT substitutions. This is consistent with biased gene conversion, and also indicates that like chickens, but unlike eutherian mammals, GC content heterogeneity (isochore structure) is reinforced by substitution processes in the M. domestica genome. Nevertheless, both high and low GC content regions are apparently headed towards lower GC content equilibria, possibly due to a relative shift to lower recombination rates in the recent Monodelphis ancestral lineage. Like eutherians, metatherian (marsupial) mammals have evolved high CpG substitution rates, but this is apparently a convergence in process rather than a shared ancestral state.

  8. Behavior of restriction–modification systems as selfish mobile elements and their impact on genome evolution

    PubMed Central

    Kobayashi, Ichizo

    2001-01-01

    Restriction–modification (RM) systems are composed of genes that encode a restriction enzyme and a modification methylase. RM systems sometimes behave as discrete units of life, like viruses and transposons. RM complexes attack invading DNA that has not been properly modified and thus may serve as a tool of defense for bacterial cells. However, any threat to their maintenance, such as a challenge by a competing genetic element (an incompatible plasmid or an allelic homologous stretch of DNA, for example) can lead to cell death through restriction breakage in the genome. This post-segregational or post-disturbance cell killing may provide the RM complexes (and any DNA linked with them) with a competitive advantage. There is evidence that they have undergone extensive horizontal transfer between genomes, as inferred from their sequence homology, codon usage bias and GC content difference. They are often linked with mobile genetic elements such as plasmids, viruses, transposons and integrons. The comparison of closely related bacterial genomes also suggests that, at times, RM genes themselves behave as mobile elements and cause genome rearrangements. Indeed some bacterial genomes that survived post-disturbance attack by an RM gene complex in the laboratory have experienced genome rearrangements. The avoidance of some restriction sites by bacterial genomes may result from selection by past restriction attacks. Both bacteriophages and bacteria also appear to use homologous recombination to cope with the selfish behavior of RM systems. RM systems compete with each other in several ways. One is competition for recognition sequences in post-segregational killing. Another is super-infection exclusion, that is, the killing of the cell carrying an RM system when it is infected with another RM system of the same regulatory specificity but of a different sequence specificity. The capacity of RM systems to act as selfish, mobile genetic elements may underlie the structure and

  9. Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution.

    PubMed

    Kobayashi, I

    2001-09-15

    Restriction-modification (RM) systems are composed of genes that encode a restriction enzyme and a modification methylase. RM systems sometimes behave as discrete units of life, like viruses and transposons. RM complexes attack invading DNA that has not been properly modified and thus may serve as a tool of defense for bacterial cells. However, any threat to their maintenance, such as a challenge by a competing genetic element (an incompatible plasmid or an allelic homologous stretch of DNA, for example) can lead to cell death through restriction breakage in the genome. This post-segregational or post-disturbance cell killing may provide the RM complexes (and any DNA linked with them) with a competitive advantage. There is evidence that they have undergone extensive horizontal transfer between genomes, as inferred from their sequence homology, codon usage bias and GC content difference. They are often linked with mobile genetic elements such as plasmids, viruses, transposons and integrons. The comparison of closely related bacterial genomes also suggests that, at times, RM genes themselves behave as mobile elements and cause genome rearrangements. Indeed some bacterial genomes that survived post-disturbance attack by an RM gene complex in the laboratory have experienced genome rearrangements. The avoidance of some restriction sites by bacterial genomes may result from selection by past restriction attacks. Both bacteriophages and bacteria also appear to use homologous recombination to cope with the selfish behavior of RM systems. RM systems compete with each other in several ways. One is competition for recognition sequences in post-segregational killing. Another is super-infection exclusion, that is, the killing of the cell carrying an RM system when it is infected with another RM system of the same regulatory specificity but of a different sequence specificity. The capacity of RM systems to act as selfish, mobile genetic elements may underlie the structure and

  10. Karyotype evolution in Phalaris (Poaceae): The role of reductional dysploidy, polyploidy and chromosome alteration in a wide-spread and diverse genus.

    PubMed

    Winterfeld, Grit; Becher, Hannes; Voshell, Stephanie; Hilu, Khidir; Röser, Martin

    2018-01-01

    Karyotype characteristics can provide valuable information on genome evolution and speciation, in particular in taxa with varying basic chromosome numbers and ploidy levels. Due to its worldwide distribution, remarkable variability in morphological traits and the fact that ploidy change plays a key role in its evolution, the canary grass genus Phalaris (Poaceae) is an excellent study system to investigate the role of chromosomal changes in species diversification and expansion. Phalaris comprises diploid species with two basic chromosome numbers of x = 6 and 7 as well as polyploids based on x = 7. To identify distinct karyotype structures and to trace chromosome evolution within the genus, we apply fluorescence in situ hybridisation (FISH) of 5S and 45S rDNA probes in four diploid and four tetraploid Phalaris species of both basic numbers. The data agree with a dysploid reduction from x = 7 to x = 6 as the result of reciprocal translocations between three chromosomes of an ancestor with a diploid chromosome complement of 2n = 14. We recognize three different genomes in the genus: (1) the exclusively Mediterranean genome A based on x = 6, (2) the cosmopolitan genome B based on x = 7 and (3) a genome C based on x = 7 and with a distribution in the Mediterranean and the Middle East. Both auto- and allopolyploidy of genomes B and C are suggested for the formation of tetraploids. The chromosomal divergence observed in Phalaris can be explained by the occurrence of dysploidy, the emergence of three different genomes, and the chromosome rearrangements accompanied by karyotype change and polyploidization. Mapping the recognized karyotypes on the existing phylogenetic tree suggests that genomes A and C are restricted to sections Phalaris and Bulbophalaris, respectively, while genome B occurs across all taxa with x = 7.

  11. Karyotype evolution in Phalaris (Poaceae): The role of reductional dysploidy, polyploidy and chromosome alteration in a wide-spread and diverse genus

    PubMed Central

    Hilu, Khidir; Röser, Martin

    2018-01-01

    Karyotype characteristics can provide valuable information on genome evolution and speciation, in particular in taxa with varying basic chromosome numbers and ploidy levels. Due to its worldwide distribution, remarkable variability in morphological traits and the fact that ploidy change plays a key role in its evolution, the canary grass genus Phalaris (Poaceae) is an excellent study system to investigate the role of chromosomal changes in species diversification and expansion. Phalaris comprises diploid species with two basic chromosome numbers of x = 6 and 7 as well as polyploids based on x = 7. To identify distinct karyotype structures and to trace chromosome evolution within the genus, we apply fluorescence in situ hybridisation (FISH) of 5S and 45S rDNA probes in four diploid and four tetraploid Phalaris species of both basic numbers. The data agree with a dysploid reduction from x = 7 to x = 6 as the result of reciprocal translocations between three chromosomes of an ancestor with a diploid chromosome complement of 2n = 14. We recognize three different genomes in the genus: (1) the exclusively Mediterranean genome A based on x = 6, (2) the cosmopolitan genome B based on x = 7 and (3) a genome C based on x = 7 and with a distribution in the Mediterranean and the Middle East. Both auto- and allopolyploidy of genomes B and C are suggested for the formation of tetraploids. The chromosomal divergence observed in Phalaris can be explained by the occurrence of dysploidy, the emergence of three different genomes, and the chromosome rearrangements accompanied by karyotype change and polyploidization. Mapping the recognized karyotypes on the existing phylogenetic tree suggests that genomes A and C are restricted to sections Phalaris and Bulbophalaris, respectively, while genome B occurs across all taxa with x = 7. PMID:29462207

  12. The Effects of Signal Erosion and Core Genome Reduction on the Identification of Diagnostic Markers

    DTIC Science & Technology

    2016-09-20

    31 diagnostics for the identification of bacterial pathogens. To do this effectively, 32 genomics databases must be comprehensive to identify the...diverse B. 118 pseudomallei/mallei strains were sequenced, assembled, and deposited in public 119 databases (Supplemental Table 1); these genomes were...combined with 160 B. 120 pseudomallei/mallei genome assemblies already in public databases . Most of the 121 genomes (n=779) in this study were

  13. Genome expansion via lineage splitting and genome reduction in the cicada endosymbiont Hodgkinia.

    PubMed

    Campbell, Matthew A; Van Leuven, James T; Meister, Russell C; Carey, Kaitlin M; Simon, Chris; McCutcheon, John P

    2015-08-18

    Comparative genomics from mitochondria, plastids, and mutualistic endosymbiotic bacteria has shown that the stable establishment of a bacterium in a host cell results in genome reduction. Although many highly reduced genomes from endosymbiotic bacteria are stable in gene content and genome structure, organelle genomes are sometimes characterized by dramatic structural diversity. Previous results from Candidatus Hodgkinia cicadicola, an endosymbiont of cicadas, revealed that some lineages of this bacterium had split into two new cytologically distinct yet genetically interdependent species. It was hypothesized that the long life cycle of cicadas in part enabled this unusual lineage-splitting event. Here we test this hypothesis by investigating the structure of the Ca. Hodgkinia genome in one of the longest-lived cicadas, Magicicada tredecim. We show that the Ca. Hodgkinia genome from M. tredecim has fragmented into multiple new chromosomes or genomes, with at least some remaining partitioned into discrete cells. We also show that this lineage-splitting process has resulted in a complex of Ca. Hodgkinia genomes that are 1.1-Mb pairs in length when considered together, an almost 10-fold increase in size from the hypothetical single-genome ancestor. These results parallel some examples of genome fragmentation and expansion in organelles, although the mechanisms that give rise to these extreme genome instabilities are likely different.

  14. Drivers of bacterial genomes plasticity and roles they play in pathogen virulence, persistence and drug resistance.

    PubMed

    Patel, Seema

    2016-11-01

    Despite the advent of next-generation sequencing (NGS) technologies, sophisticated data analysis and drug development efforts, bacterial drug resistance persists and is escalating in magnitude. To better control the pathogens, a thorough understanding of their genomic architecture and dynamics is vital. Bacterial genome is extremely complex, a mosaic of numerous co-operating and antagonizing components, altruistic and self-interested entities, behavior of which are predictable and conserved to some extent, yet largely dictated by an array of variables. In this regard, mobile genetic elements (MGE), DNA repair systems, post-segregation killing systems, toxin-antitoxin (TA) systems, restriction-modification (RM) systems etc. are dominant agents and horizontal gene transfer (HGT), gene redundancy, epigenetics, phase and antigenic variation etc. processes shape the genome. By illegitimate recombinations, deletions, insertions, duplications, amplifications, inversions, conversions, translocations, modification of intergenic regions and other alterations, bacterial genome is modified to tackle stressors like drugs, and host immune effectors. Over the years, thousands of studies have investigated this aspect and mammoth amount of insights have been accumulated. This review strives to distillate the existing information, formulate hypotheses and to suggest directions, that might contribute towards improved mitigation of the vicious pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Whole genome sequencing of the fish pathogen Francisella noatunensis subsp. orientalis Toba04 gives novel insights into Francisella evolution and pathogenecity

    PubMed Central

    2012-01-01

    Background Francisella is a genus of gram-negative bacterium highly virulent in fishes and human where F. tularensis is causing the serious disease tularaemia in human. Recently Francisella species have been reported to cause mortality in aquaculture species like Atlantic cod and tilapia. We have completed the sequencing and draft assembly of the Francisella noatunensis subsp. orientalisToba04 strain isolated from farmed Tilapia. Compared to other available Francisella genomes, it is most similar to the genome of Francisella philomiragia subsp. philomiragia, a free-living bacterium not virulent to human. Results The genome is rearranged compared to the available Francisella genomes even though we found no IS-elements in the genome. Nearly 16% percent of the predicted ORFs are pseudogenes. Computational pathway analysis indicates that a number of the metabolic pathways are disrupted due to pseudogenes. Comparing the novel genome with other available Francisella genomes, we found around 2.5% of unique genes present in Francisella noatunensis subsp. orientalis Toba04 and a list of genes uniquely present in the human-pathogenic Francisella subspecies. Most of these genes might have transferred from bacterial species through horizontal gene transfer. Comparative analysis between human and fish pathogen also provide insights into genes responsible for pathogenecity. Our analysis of pseudogenes indicates that the evolution of Francisella subspecies’s pseudogenes from Tilapia is old with large number of pseudogenes having more than one inactivating mutation. Conclusions The fish pathogen has lost non-essential genes some time ago. Evolutionary analysis of the Francisella genomes, strongly suggests that human and fish pathogenic Francisella species have evolved independently from free-living metabolically competent Francisella species. These findings will contribute to understanding the evolution of Francisella species and pathogenesis. PMID:23131096

  16. GenomicusPlants: a web resource to study genome evolution in flowering plants.

    PubMed

    Louis, Alexandra; Murat, Florent; Salse, Jérôme; Crollius, Hugues Roest

    2015-01-01

    Comparative genomics combined with phylogenetic reconstructions are powerful approaches to study the evolution of genes and genomes. However, the current rapid expansion of the volume of genomic information makes it increasingly difficult to interrogate, integrate and synthesize comparative genome data while taking into account the maximum breadth of information available. GenomicusPlants (http://www.genomicus.biologie.ens.fr/genomicus-plants) is an extension of the Genomicus webserver that addresses this issue by allowing users to explore flowering plant genomes in an intuitive way, across the broadest evolutionary scales. Extant genomes of 26 flowering plants can be analyzed, as well as 23 ancestral reconstructed genomes. Ancestral gene order provides a long-term chronological view of gene order evolution, greatly facilitating comparative genomics and evolutionary studies. Four main interfaces ('views') are available where: (i) PhyloView combines phylogenetic trees with comparisons of genomic loci across any number of genomes; (ii) AlignView projects loci of interest against all other genomes to visualize its topological conservation; (iii) MatrixView compares two genomes in a classical dotplot representation; and (iv) Karyoview visualizes chromosome karyotypes 'painted' with colours of another genome of interest. All four views are interconnected and benefit from many customizable features. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  17. Discovery of novel bacterial toxins by genomics and computational biology.

    PubMed

    Doxey, Andrew C; Mansfield, Michael J; Montecucco, Cesare

    2018-06-01

    Hundreds and hundreds of bacterial protein toxins are presently known. Traditionally, toxin identification begins with pathological studies of bacterial infectious disease. Following identification and cultivation of a bacterial pathogen, the protein toxin is purified from the culture medium and its pathogenic activity is studied using the methods of biochemistry and structural biology, cell biology, tissue and organ biology, and appropriate animal models, supplemented by bioimaging techniques. The ongoing and explosive development of high-throughput DNA sequencing and bioinformatic approaches have set in motion a revolution in many fields of biology, including microbiology. One consequence is that genes encoding novel bacterial toxins can be identified by bioinformatic and computational methods based on previous knowledge accumulated from studies of the biology and pathology of thousands of known bacterial protein toxins. Starting from the paradigmatic cases of diphtheria toxin, tetanus and botulinum neurotoxins, this review discusses traditional experimental approaches as well as bioinformatics and genomics-driven approaches that facilitate the discovery of novel bacterial toxins. We discuss recent work on the identification of novel botulinum-like toxins from genera such as Weissella, Chryseobacterium, and Enteroccocus, and the implications of these computationally identified toxins in the field. Finally, we discuss the promise of metagenomics in the discovery of novel toxins and their ecological niches, and present data suggesting the existence of uncharacterized, botulinum-like toxin genes in insect gut metagenomes. Copyright © 2018. Published by Elsevier Ltd.

  18. Genomic basis for the convergent evolution of electric organs

    PubMed Central

    Gallant, Jason R.; Traeger, Lindsay L.; Volkening, Jeremy D.; Moffett, Howell; Chen, Po-Hao; Novina, Carl D.; Phillips, George N.; Anand, Rene; Wells, Gregg B.; Pinch, Matthew; Güth, Robert; Unguez, Graciela A.; Albert, James S.; Zakon, Harold H.; Samanta, Manoj P.; Sussman, Michael R.

    2017-01-01

    Little is known about the genetic basis of convergent traits that originate repeatedly over broad taxonomic scales. The myogenic electric organ has evolved six times in fishes to produce electric fields used in communication, navigation, predation, or defense. We have examined the genomic basis of the convergent anatomical and physiological origins of these organs by assembling the genome of the electric eel (Electrophorus electricus) and sequencing electric organ and skeletal muscle transcriptomes from three lineages that have independently evolved electric organs. Our results indicate that, despite millions of years of evolution and large differences in the morphology of electric organ cells, independent lineages have leveraged similar transcription factors and developmental and cellular pathways in the evolution of electric organs. PMID:24970089

  19. Transforming clinical microbiology with bacterial genome sequencing.

    PubMed

    Didelot, Xavier; Bowden, Rory; Wilson, Daniel J; Peto, Tim E A; Crook, Derrick W

    2012-09-01

    Whole-genome sequencing of bacteria has recently emerged as a cost-effective and convenient approach for addressing many microbiological questions. Here, we review the current status of clinical microbiology and how it has already begun to be transformed by using next-generation sequencing. We focus on three essential tasks: identifying the species of an isolate, testing its properties, such as resistance to antibiotics and virulence, and monitoring the emergence and spread of bacterial pathogens. We predict that the application of next-generation sequencing will soon be sufficiently fast, accurate and cheap to be used in routine clinical microbiology practice, where it could replace many complex current techniques with a single, more efficient workflow.

  20. Transforming clinical microbiology with bacterial genome sequencing

    PubMed Central

    2016-01-01

    Whole genome sequencing of bacteria has recently emerged as a cost-effective and convenient approach for addressing many microbiological questions. Here we review the current status of clinical microbiology and how it has already begun to be transformed by the use of next-generation sequencing. We focus on three essential tasks: identifying the species of an isolate, testing its properties such as resistance to antibiotics and virulence, and monitoring the emergence and spread of bacterial pathogens. The application of next-generation sequencing will soon be sufficiently fast, accurate and cheap to be used in routine clinical microbiology practice, where it could replace many complex current techniques with a single, more efficient workflow. PMID:22868263

  1. Advances in computer simulation of genome evolution: toward more realistic evolutionary genomics analysis by approximate bayesian computation.

    PubMed

    Arenas, Miguel

    2015-04-01

    NGS technologies present a fast and cheap generation of genomic data. Nevertheless, ancestral genome inference is not so straightforward due to complex evolutionary processes acting on this material such as inversions, translocations, and other genome rearrangements that, in addition to their implicit complexity, can co-occur and confound ancestral inferences. Recently, models of genome evolution that accommodate such complex genomic events are emerging. This letter explores these novel evolutionary models and proposes their incorporation into robust statistical approaches based on computer simulations, such as approximate Bayesian computation, that may produce a more realistic evolutionary analysis of genomic data. Advantages and pitfalls in using these analytical methods are discussed. Potential applications of these ancestral genomic inferences are also pointed out.

  2. Genomic comparisons of a bacterial lineage that inhabits both marine and terrestrial deep subsurface systems

    DOE PAGES

    Jungbluth, Sean P.; Glavina del Rio, Tijana; Tringe, Susannah G.; ...

    2017-04-06

    It is generally accepted that diverse, poorly characterized microorganisms reside deep within Earth’s crust. One such lineage of deep subsurface-dwelling bacteria is an uncultivated member of the Firmicutes phylum that can dominate molecular surveys from both marine and continental rock fracture fluids, sometimes forming the sole member of a single-species microbiome. Here, we reconstructed a genome from basalt-hosted fluids of the deep subseafloor along the eastern Juan de Fuca Ridge flank and used a phylogenomic analysis to show that, despite vast differences in geographic origin and habitat, it forms a monophyletic clade with the terrestrial deep subsurface genome of “more » Candidatus Desulforudis audaxviator” MP104C. While a limited number of differences were observed between the marine genome of “ Candidatus Desulfopertinax cowenii” modA32 and its terrestrial relative that may be of potential adaptive importance, here it is revealed that the two are remarkably similar thermophiles possessing the genetic capacity for motility, sporulation, hydrogenotrophy, chemoorganotrophy, dissimilatory sulfate reduction, and the ability to fix inorganic carbon via the Wood-Ljungdahl pathway for chemoautotrophic growth. Finally, our results provide insights into the genetic repertoire within marine and terrestrial members of a bacterial lineage that is widespread in the global deep subsurface biosphere, and provides a natural means to investigate adaptations specific to these two environments.« less

  3. Genomic comparisons of a bacterial lineage that inhabits both marine and terrestrial deep subsurface systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jungbluth, Sean P.; Glavina del Rio, Tijana; Tringe, Susannah G.

    It is generally accepted that diverse, poorly characterized microorganisms reside deep within Earth’s crust. One such lineage of deep subsurface-dwelling bacteria is an uncultivated member of the Firmicutes phylum that can dominate molecular surveys from both marine and continental rock fracture fluids, sometimes forming the sole member of a single-species microbiome. Here, we reconstructed a genome from basalt-hosted fluids of the deep subseafloor along the eastern Juan de Fuca Ridge flank and used a phylogenomic analysis to show that, despite vast differences in geographic origin and habitat, it forms a monophyletic clade with the terrestrial deep subsurface genome of “more » Candidatus Desulforudis audaxviator” MP104C. While a limited number of differences were observed between the marine genome of “ Candidatus Desulfopertinax cowenii” modA32 and its terrestrial relative that may be of potential adaptive importance, here it is revealed that the two are remarkably similar thermophiles possessing the genetic capacity for motility, sporulation, hydrogenotrophy, chemoorganotrophy, dissimilatory sulfate reduction, and the ability to fix inorganic carbon via the Wood-Ljungdahl pathway for chemoautotrophic growth. Finally, our results provide insights into the genetic repertoire within marine and terrestrial members of a bacterial lineage that is widespread in the global deep subsurface biosphere, and provides a natural means to investigate adaptations specific to these two environments.« less

  4. Genomic comparisons of a bacterial lineage that inhabits both marine and terrestrial deep subsurface systems

    PubMed Central

    Glavina del Rio, Tijana; Tringe, Susannah G.; Stepanauskas, Ramunas

    2017-01-01

    It is generally accepted that diverse, poorly characterized microorganisms reside deep within Earth’s crust. One such lineage of deep subsurface-dwelling bacteria is an uncultivated member of the Firmicutes phylum that can dominate molecular surveys from both marine and continental rock fracture fluids, sometimes forming the sole member of a single-species microbiome. Here, we reconstructed a genome from basalt-hosted fluids of the deep subseafloor along the eastern Juan de Fuca Ridge flank and used a phylogenomic analysis to show that, despite vast differences in geographic origin and habitat, it forms a monophyletic clade with the terrestrial deep subsurface genome of “Candidatus Desulforudis audaxviator” MP104C. While a limited number of differences were observed between the marine genome of “Candidatus Desulfopertinax cowenii” modA32 and its terrestrial relative that may be of potential adaptive importance, here it is revealed that the two are remarkably similar thermophiles possessing the genetic capacity for motility, sporulation, hydrogenotrophy, chemoorganotrophy, dissimilatory sulfate reduction, and the ability to fix inorganic carbon via the Wood-Ljungdahl pathway for chemoautotrophic growth. Our results provide insights into the genetic repertoire within marine and terrestrial members of a bacterial lineage that is widespread in the global deep subsurface biosphere, and provides a natural means to investigate adaptations specific to these two environments. PMID:28396823

  5. MAGNAMWAR: an R package for genome-wide association studies of bacterial orthologs.

    PubMed

    Sexton, Corinne E; Smith, Hayden Z; Newell, Peter D; Douglas, Angela E; Chaston, John M

    2018-06-01

    Here we report on an R package for genome-wide association studies of orthologous genes in bacteria. Before using the software, orthologs from bacterial genomes or metagenomes are defined using local or online implementations of OrthoMCL. These presence-absence patterns are statistically associated with variation in user-collected phenotypes using the Mono-Associated GNotobiotic Animals Metagenome-Wide Association R package (MAGNAMWAR). Genotype-phenotype associations can be performed with several different statistical tests based on the type and distribution of the data. MAGNAMWAR is available on CRAN. john_chaston@byu.edu.

  6. Genome Diversity and Evolution in the Budding Yeasts (Saccharomycotina)

    PubMed Central

    Dujon, Bernard A.; Louis, Edward J.

    2017-01-01

    Considerable progress in our understanding of yeast genomes and their evolution has been made over the last decade with the sequencing, analysis, and comparisons of numerous species, strains, or isolates of diverse origins. The role played by yeasts in natural environments as well as in artificial manufactures, combined with the importance of some species as model experimental systems sustained this effort. At the same time, their enormous evolutionary diversity (there are yeast species in every subphylum of Dikarya) sparked curiosity but necessitated further efforts to obtain appropriate reference genomes. Today, yeast genomes have been very informative about basic mechanisms of evolution, speciation, hybridization, domestication, as well as about the molecular machineries underlying them. They are also irreplaceable to investigate in detail the complex relationship between genotypes and phenotypes with both theoretical and practical implications. This review examines these questions at two distinct levels offered by the broad evolutionary range of yeasts: inside the best-studied Saccharomyces species complex, and across the entire and diversified subphylum of Saccharomycotina. While obviously revealing evolutionary histories at different scales, data converge to a remarkably coherent picture in which one can estimate the relative importance of intrinsic genome dynamics, including gene birth and loss, vs. horizontal genetic accidents in the making of populations. The facility with which novel yeast genomes can now be studied, combined with the already numerous available reference genomes, offer privileged perspectives to further examine these fundamental biological questions using yeasts both as eukaryotic models and as fungi of practical importance. PMID:28592505

  7. Universal features in the genome-level evolution of protein domains.

    PubMed

    Cosentino Lagomarsino, Marco; Sellerio, Alessandro L; Heijning, Philip D; Bassetti, Bruno

    2009-01-01

    Protein domains can be used to study proteome evolution at a coarse scale. In particular, they are found on genomes with notable statistical distributions. It is known that the distribution of domains with a given topology follows a power law. We focus on a further aspect: these distributions, and the number of distinct topologies, follow collective trends, or scaling laws, depending on the total number of domains only, and not on genome-specific features. We present a stochastic duplication/innovation model, in the class of the so-called 'Chinese restaurant processes', that explains this observation with two universal parameters, representing a minimal number of domains and the relative weight of innovation to duplication. Furthermore, we study a model variant where new topologies are related to occurrence in genomic data, accounting for fold specificity. Both models have general quantitative agreement with data from hundreds of genomes, which indicates that the domains of a genome are built with a combination of specificity and robust self-organizing phenomena. The latter are related to the basic evolutionary 'moves' of duplication and innovation, and give rise to the observed scaling laws, a priori of the specific evolutionary history of a genome. We interpret this as the concurrent effect of neutral and selective drives, which increase duplication and decrease innovation in larger and more complex genomes. The validity of our model would imply that the empirical observation of a small number of folds in nature may be a consequence of their evolution.

  8. Nitrogen gas plasma treatment of bacterial spores induces oxidative stress that damages the genomic DNA.

    PubMed

    Sakudo, Akikazu; Toyokawa, Yoichi; Nakamura, Tetsuji; Yagyu, Yoshihito; Imanishi, Yuichiro

    2017-01-01

    Gas plasma, produced by a short high‑voltage pulse generated from a static induction thyristor power supply [1.5 kilo pulse/sec (kpps)], was demonstrated to inactivate Geobacillus stearothermophilus spores (decimal reduction time at 15 min, 2.48 min). Quantitative polymerase chain reaction and enzyme‑linked immunosorbent assays further indicated that nitrogen gas plasma treatment for 15 min decreased the level of intact genomic DNA and increased the level of 8-hydroxy-2'-deoxyguanosine, a major product of DNA oxidation. Three potential inactivation factors were generated during operation of the gas plasma instrument: Heat, longwave ultraviolet-A and oxidative stress (production of hydrogen peroxide, nitrite and nitrate). Treatment of the spores with hydrogen peroxide (3x2‑4%) effectively inactivated the bacteria, whereas heat treatment (100˚C), exposure to UV-A (75‑142 mJ/cm2) and 4.92 mM peroxynitrite (•ONOO‑), which is decomposed into nitrite and nitrate, did not. The results of the present study suggest the gas plasma treatment inactivates bacterial spores primarily by generating hydrogen peroxide, which contributes to the oxidation of the host genomic DNA.

  9. The Effects of Signal Erosion and Core Genome Reduction on the Identification of Diagnostic Markers

    PubMed Central

    Sahl, Jason W.; Vazquez, Adam J.; Hall, Carina M.; Busch, Joseph D.; Tuanyok, Apichai; Mayo, Mark; Schupp, James M.; Lummis, Madeline; Pearson, Talima; Shippy, Kenzie; Allender, Christopher J.; Theobald, Vanessa; Hutcheson, Alex; Korlach, Jonas; LiPuma, John J.; Ladner, Jason; Lovett, Sean; Koroleva, Galina; Palacios, Gustavo; Limmathurotsakul, Direk; Wuthiekanun, Vanaporn; Wongsuwan, Gumphol; Currie, Bart J.

    2016-01-01

    ABSTRACT Whole-genome sequence (WGS) data are commonly used to design diagnostic targets for the identification of bacterial pathogens. To do this effectively, genomics databases must be comprehensive to identify the strict core genome that is specific to the target pathogen. As additional genomes are analyzed, the core genome size is reduced and there is erosion of the target-specific regions due to commonality with related species, potentially resulting in the identification of false positives and/or false negatives. PMID:27651357

  10. The spotted gar genome illuminates vertebrate evolution and facilitates human-to-teleost comparisons

    PubMed Central

    Braasch, Ingo; Gehrke, Andrew R.; Smith, Jeramiah J.; Kawasaki, Kazuhiko; Manousaki, Tereza; Pasquier, Jeremy; Amores, Angel; Desvignes, Thomas; Batzel, Peter; Catchen, Julian; Berlin, Aaron M.; Campbell, Michael S.; Barrell, Daniel; Martin, Kyle J.; Mulley, John F.; Ravi, Vydianathan; Lee, Alison P.; Nakamura, Tetsuya; Chalopin, Domitille; Fan, Shaohua; Wcisel, Dustin; Cañestro, Cristian; Sydes, Jason; Beaudry, Felix E. G.; Sun, Yi; Hertel, Jana; Beam, Michael J.; Fasold, Mario; Ishiyama, Mikio; Johnson, Jeremy; Kehr, Steffi; Lara, Marcia; Letaw, John H.; Litman, Gary W.; Litman, Ronda T.; Mikami, Masato; Ota, Tatsuya; Saha, Nil Ratan; Williams, Louise; Stadler, Peter F.; Wang, Han; Taylor, John S.; Fontenot, Quenton; Ferrara, Allyse; Searle, Stephen M. J.; Aken, Bronwen; Yandell, Mark; Schneider, Igor; Yoder, Jeffrey A.; Volff, Jean-Nicolas; Meyer, Axel; Amemiya, Chris T.; Venkatesh, Byrappa; Holland, Peter W. H.; Guiguen, Yann; Bobe, Julien; Shubin, Neil H.; Di Palma, Federica; Alföldi, Jessica; Lindblad-Toh, Kerstin; Postlethwait, John H.

    2016-01-01

    To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before the teleost genome duplication (TGD). The slowly evolving gar genome conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization, and development (e.g., Hox, ParaHox, and miRNA genes). Numerous conserved non-coding elements (CNEs, often cis-regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles of such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses revealed that the sum of expression domains and levels from duplicated teleost genes often approximate patterns and levels of gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes, and the function of human regulatory sequences. PMID:26950095

  11. The CRISPR-Cas system - from bacterial immunity to genome engineering.

    PubMed

    Czarnek, Maria; Bereta, Joanna

    2016-09-01

    Precise and efficient genome modifications present a great value in attempts to comprehend the roles of particular genes and other genetic elements in biological processes as well as in various pathologies. In recent years novel methods of genome modification known as genome editing, which utilize so called "programmable" nucleases, came into use. A true revolution in genome editing has been brought about by the introduction of the CRISP-Cas (clustered regularly interspaced short palindromic repeats-CRISPR associated) system, in which one of such nucleases, i.e. Cas9, plays a major role. This system is based on the elements of the bacterial and archaeal mechanism responsible for acquired immunity against phage infections and transfer of foreign genetic material. Microorganisms incorporate fragments of foreign DNA into CRISPR loci present in their genomes, which enables fast recognition and elimination of future infections. There are several types of CRISPR-Cas systems among prokaryotes but only elements of CRISPR type II are employed in genome engineering. CRISPR-Cas type II utilizes small RNA molecules (crRNA and tracrRNA) to precisely direct the effector nuclease - Cas9 - to a specific site in the genome, i.e. to the sequence complementary to crRNA. Cas9 may be used to: (i) introduce stable changes into genomes e.g. in the process of generation of knock-out and knock-in animals and cell lines, (ii) activate or silence the expression of a gene of interest, and (iii) visualize specific sites in genomes of living cells. The CRISPR-Cas-based tools have been successfully employed for generation of animal and cell models of a number of diseases, e.g. specific types of cancer. In the future, the genome editing by programmable nucleases may find wide application in medicine e.g. in the therapies of certain diseases of genetic origin and in the therapy of HIV-infected patients.

  12. The human genome and the human control of natural evolution.

    PubMed

    Sakamoto, H

    2001-10-01

    Recent advances in research on the Human Genome are provoking many critical problems in the global policy regarding the future status of human beings as well as in that of the whole life system on the earth, and consequently, these advances provoke the serious bioethical and philosophical questions. Firstly, how can we comprehend that we are going to have the complete technology to manipulate the system of the human genome and other non-human genomes? Though no science and technology can be complete, we will, I believe, take possession of an almost complete gene technology in the early stage of the next Century. Gene technology will soon fall into the hands of human beings instead of rendering in the province of God. Secondly, which gene technologies will we actually realize and utilize in the early stages of the 21st Century? Most probably, we will adopt these technologies to health care to treat some apparent bodily diseases, for instance, cancer, hemophilia, ADA deficiency, and so forth, and sooner or later we will adopt gene therapy to germ lines, which, in the long run, suggests the possibility of a future "artificial evolution" instead of the "natural evolution" of the past. Thirdly, how is the new concept of "artificial evolution" justified ethically? I believe this kind of manmade evolution is the only way for human beings to survive into the future global environment. There cannot be any serious ethical objection against the idea of artificial evolution. Fourthly, what is the background philosophy for the concept of "artificial evolution"? I will discuss the nature of modern European humanism with individual dignity and fundamental human rights which has led the philosophy of modern culture and modern society, and I will conclude by suggesting that we should abolish an essential part of modern humanism and newly devise some alternative philosophy to fit the new Millennium.

  13. Pan-Genomic Analysis Provides Insights into the Genomic Variation and Evolution of Salmonella Paratyphi A

    PubMed Central

    Chen, Chunxia; Cui, Xiaoying; Yu, Jun; Xiao, Jingfa; Kan, Biao

    2012-01-01

    Salmonella Paratyphi A (S. Paratyphi A) is a highly adapted, human-specific pathogen that causes paratyphoid fever. Cases of paratyphoid fever have recently been increasing, and the disease is becoming a major public health concern, especially in Eastern and Southern Asia. To investigate the genomic variation and evolution of S. Paratyphi A, a pan-genomic analysis was performed on five newly sequenced S. Paratyphi A strains and two other reference strains. A whole genome comparison revealed that the seven genomes are collinear and that their organization is highly conserved. The high rate of substitutions in part of the core genome indicates that there are frequent homologous recombination events. Based on the changes in the pan-genome size and cluster number (both in the core functional genes and core pseudogenes), it can be inferred that the sharply increasing number of pseudogene clusters may have strong correlation with the inactivation of functional genes, and indicates that the S. Paratyphi A genome is being degraded. PMID:23028950

  14. Pre_GI: a global map of ontological links between horizontally transferred genomic islands in bacterial and archaeal genomes

    PubMed Central

    Pierneef, Rian; Cronje, Louis; Bezuidt, Oliver; Reva, Oleg N.

    2015-01-01

    Abstract The Predicted Genomic Islands database (Pre_GI) is a comprehensive repository of prokaryotic genomic islands (islands, GIs) freely accessible at http://pregi.bi.up.ac.za/index.php . Pre_GI, Version 2015, catalogues 26 744 islands identified in 2407 bacterial/archaeal chromosomes and plasmids. It provides an easy-to-use interface which allows users the ability to query against the database with a variety of fields, parameters and associations. Pre_GI is constructed to be a web-resource for the analysis of ontological roads between islands and cartographic analysis of the global fluxes of mobile genetic elements through bacterial and archaeal taxonomic borders. Comparison of newly identified islands against Pre_GI presents an alternative avenue to identify their ontology, origin and relative time of acquisition. Pre_GI aims to aid research on horizontal transfer events and materials through providing data and tools for holistic investigation of migration of genes through ecological niches and taxonomic boundaries. Database URL: http://pregi.bi.up.ac.za/index.php , Version 2015 PMID:26200753

  15. Essentiality, conservation, evolutionary pressure and codon bias in bacterial genomes.

    PubMed

    Dilucca, Maddalena; Cimini, Giulio; Giansanti, Andrea

    2018-07-15

    Essential genes constitute the core of genes which cannot be mutated too much nor lost along the evolutionary history of a species. Natural selection is expected to be stricter on essential genes and on conserved (highly shared) genes, than on genes that are either nonessential or peculiar to a single or a few species. In order to further assess this expectation, we study here how essentiality of a gene is connected with its degree of conservation among several unrelated bacterial species, each one characterised by its own codon usage bias. Confirming previous results on E. coli, we show the existence of a universal exponential relation between gene essentiality and conservation in bacteria. Moreover, we show that, within each bacterial genome, there are at least two groups of functionally distinct genes, characterised by different levels of conservation and codon bias: i) a core of essential genes, mainly related to cellular information processing; ii) a set of less conserved nonessential genes with prevalent functions related to metabolism. In particular, the genes in the first group are more retained among species, are subject to a stronger purifying conservative selection and display a more limited repertoire of synonymous codons. The core of essential genes is close to the minimal bacterial genome, which is in the focus of recent studies in synthetic biology, though we confirm that orthologs of genes that are essential in one species are not necessarily essential in other species. We also list a set of highly shared genes which, reasonably, could constitute a reservoir of targets for new anti-microbial drugs. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Insights from the complete chloroplast genome into the evolution of Sesamum indicum L.

    PubMed

    Zhang, Haiyang; Li, Chun; Miao, Hongmei; Xiong, Songjin

    2013-01-01

    Sesame (Sesamum indicum L.) is one of the oldest oilseed crops. In order to investigate the evolutionary characters according to the Sesame Genome Project, apart from sequencing its nuclear genome, we sequenced the complete chloroplast genome of S. indicum cv. Yuzhi 11 (white seeded) using Illumina and 454 sequencing. Comparisons of chloroplast genomes between S. indicum and the 18 other higher plants were then analyzed. The chloroplast genome of cv. Yuzhi 11 contains 153,338 bp and a total of 114 unique genes (KC569603). The number of chloroplast genes in sesame is the same as that in Nicotiana tabacum, Vitis vinifera and Platanus occidentalis. The variation in the length of the large single-copy (LSC) regions and inverted repeats (IR) in sesame compared to 18 other higher plant species was the main contributor to size variation in the cp genome in these species. The 77 functional chloroplast genes, except for ycf1 and ycf2, were highly conserved. The deletion of the cp ycf1 gene sequence in cp genomes may be due either to its transfer to the nuclear genome, as has occurred in sesame, or direct deletion, as has occurred in Panax ginseng and Cucumis sativus. The sesame ycf2 gene is only 5,721 bp in length and has lost about 1,179 bp. Nucleotides 1-585 of ycf2 when queried in BLAST had hits in the sesame draft genome. Five repeats (R10, R12, R13, R14 and R17) were unique to the sesame chloroplast genome. We also found that IR contraction/expansion in the cp genome alters its rate of evolution. Chloroplast genes and repeats display the signature of convergent evolution in sesame and other species. These findings provide a foundation for further investigation of cp genome evolution in Sesamum and other higher plants.

  17. A systems approach defining constraints of the genome architecture on lineage selection and evolvability during somatic cancer evolution

    PubMed Central

    Rübben, Albert; Nordhoff, Ole

    2013-01-01

    Summary Most clinically distinguishable malignant tumors are characterized by specific mutations, specific patterns of chromosomal rearrangements and a predominant mechanism of genetic instability but it remains unsolved whether modifications of cancer genomes can be explained solely by mutations and selection through the cancer microenvironment. It has been suggested that internal dynamics of genomic modifications as opposed to the external evolutionary forces have a significant and complex impact on Darwinian species evolution. A similar situation can be expected for somatic cancer evolution as molecular key mechanisms encountered in species evolution also constitute prevalent mutation mechanisms in human cancers. This assumption is developed into a systems approach of carcinogenesis which focuses on possible inner constraints of the genome architecture on lineage selection during somatic cancer evolution. The proposed systems approach can be considered an analogy to the concept of evolvability in species evolution. The principal hypothesis is that permissive or restrictive effects of the genome architecture on lineage selection during somatic cancer evolution exist and have a measurable impact. The systems approach postulates three classes of lineage selection effects of the genome architecture on somatic cancer evolution: i) effects mediated by changes of fitness of cells of cancer lineage, ii) effects mediated by changes of mutation probabilities and iii) effects mediated by changes of gene designation and physical and functional genome redundancy. Physical genome redundancy is the copy number of identical genetic sequences. Functional genome redundancy of a gene or a regulatory element is defined as the number of different genetic elements, regardless of copy number, coding for the same specific biological function within a cancer cell. Complex interactions of the genome architecture on lineage selection may be expected when modifications of the genome

  18. Social evolution. Genomic signatures of evolutionary transitions from solitary to group living.

    PubMed

    Kapheim, Karen M; Pan, Hailin; Li, Cai; Salzberg, Steven L; Puiu, Daniela; Magoc, Tanja; Robertson, Hugh M; Hudson, Matthew E; Venkat, Aarti; Fischman, Brielle J; Hernandez, Alvaro; Yandell, Mark; Ence, Daniel; Holt, Carson; Yocum, George D; Kemp, William P; Bosch, Jordi; Waterhouse, Robert M; Zdobnov, Evgeny M; Stolle, Eckart; Kraus, F Bernhard; Helbing, Sophie; Moritz, Robin F A; Glastad, Karl M; Hunt, Brendan G; Goodisman, Michael A D; Hauser, Frank; Grimmelikhuijzen, Cornelis J P; Pinheiro, Daniel Guariz; Nunes, Francis Morais Franco; Soares, Michelle Prioli Miranda; Tanaka, Érica Donato; Simões, Zilá Luz Paulino; Hartfelder, Klaus; Evans, Jay D; Barribeau, Seth M; Johnson, Reed M; Massey, Jonathan H; Southey, Bruce R; Hasselmann, Martin; Hamacher, Daniel; Biewer, Matthias; Kent, Clement F; Zayed, Amro; Blatti, Charles; Sinha, Saurabh; Johnston, J Spencer; Hanrahan, Shawn J; Kocher, Sarah D; Wang, Jun; Robinson, Gene E; Zhang, Guojie

    2015-06-05

    The evolution of eusociality is one of the major transitions in evolution, but the underlying genomic changes are unknown. We compared the genomes of 10 bee species that vary in social complexity, representing multiple independent transitions in social evolution, and report three major findings. First, many important genes show evidence of neutral evolution as a consequence of relaxed selection with increasing social complexity. Second, there is no single road map to eusociality; independent evolutionary transitions in sociality have independent genetic underpinnings. Third, though clearly independent in detail, these transitions do have similar general features, including an increase in constrained protein evolution accompanied by increases in the potential for gene regulation and decreases in diversity and abundance of transposable elements. Eusociality may arise through different mechanisms each time, but would likely always involve an increase in the complexity of gene networks. Copyright © 2015, American Association for the Advancement of Science.

  19. Programmable Removal of Bacterial Strains by Use of Genome-Targeting CRISPR-Cas Systems

    PubMed Central

    Gomaa, Ahmed A.; Klumpe, Heidi E.; Luo, Michelle L.; Selle, Kurt; Barrangou, Rodolphe; Beisel, Chase L.

    2014-01-01

    ABSTRACT CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems in bacteria and archaea employ CRISPR RNAs to specifically recognize the complementary DNA of foreign invaders, leading to sequence-specific cleavage or degradation of the target DNA. Recent work has shown that the accidental or intentional targeting of the bacterial genome is cytotoxic and can lead to cell death. Here, we have demonstrated that genome targeting with CRISPR-Cas systems can be employed for the sequence-specific and titratable removal of individual bacterial strains and species. Using the type I-E CRISPR-Cas system in Escherichia coli as a model, we found that this effect could be elicited using native or imported systems and was similarly potent regardless of the genomic location, strand, or transcriptional activity of the target sequence. Furthermore, the specificity of targeting with CRISPR RNAs could readily distinguish between even highly similar strains in pure or mixed cultures. Finally, varying the collection of delivered CRISPR RNAs could quantitatively control the relative number of individual strains within a mixed culture. Critically, the observed selectivity and programmability of bacterial removal would be virtually impossible with traditional antibiotics, bacteriophages, selectable markers, or tailored growth conditions. Once delivery challenges are addressed, we envision that this approach could offer a novel means to quantitatively control the composition of environmental and industrial microbial consortia and may open new avenues for the development of “smart” antibiotics that circumvent multidrug resistance and differentiate between pathogenic and beneficial microorganisms. PMID:24473129

  20. Bacterial Influences on Animal Origins

    PubMed Central

    Alegado, Rosanna A.; King, Nicole

    2014-01-01

    Animals evolved in seas teeming with bacteria, yet the influences of bacteria on animal origins are poorly understood. Comparisons among modern animals and their closest living relatives, the choanoflagellates, suggest that the first animals used flagellated collar cells to capture bacterial prey. The cell biology of prey capture, such as cell adhesion between predator and prey, involves mechanisms that may have been co-opted to mediate intercellular interactions during the evolution of animal multicellularity. Moreover, a history of bacterivory may have influenced the evolution of animal genomes by driving the evolution of genetic pathways for immunity and facilitating lateral gene transfer. Understanding the interactions between bacteria and the progenitors of animals may help to explain the myriad ways in which bacteria shape the biology of modern animals, including ourselves. PMID:25280764

  1. Genome plasticity and systems evolution in Streptomyces

    PubMed Central

    2012-01-01

    Background Streptomycetes are filamentous soil-dwelling bacteria. They are best known as the producers of a great variety of natural products such as antibiotics, antifungals, antiparasitics, and anticancer agents and the decomposers of organic substances for carbon recycling. They are also model organisms for the studies of gene regulatory networks, morphological differentiation, and stress response. The availability of sets of genomes from closely related Streptomyces strains makes it possible to assess the mechanisms underlying genome plasticity and systems adaptation. Results We present the results of a comprehensive analysis of the genomes of five Streptomyces species with distinct phenotypes. These streptomycetes have a pan-genome comprised of 17,362 orthologous families which includes 3,096 components in the core genome, 5,066 components in the dispensable genome, and 9,200 components that are uniquely present in only one species. The core genome makes up about 33%-45% of each genome repertoire. It contains important genes for Streptomyces biology including those involved in gene regulation, secretion, secondary metabolism and morphological differentiation. Abundant duplicate genes have been identified, with 4%-11% of the whole genomes composed of lineage-specific expansions (LSEs), suggesting that frequent gene duplication or lateral gene transfer events play a role in shaping the genome diversification within this genus. Two patterns of expansion, single gene expansion and chromosome block expansion are observed, representing different scales of duplication. Conclusions Our results provide a catalog of genome components and their potential functional roles in gene regulatory networks and metabolic networks. The core genome components reveal the minimum requirement for streptomycetes to sustain a successful lifecycle in the soil environment, reflecting the effects of both genome evolution and environmental stress acting upon the expressed phenotypes. A

  2. Long-term phenotypic evolution of bacteria.

    PubMed

    Plata, Germán; Henry, Christopher S; Vitkup, Dennis

    2015-01-15

    For many decades comparative analyses of protein sequences and structures have been used to investigate fundamental principles of molecular evolution. In contrast, relatively little is known about the long-term evolution of species' phenotypic and genetic properties. This represents an important gap in our understanding of evolution, as exactly these proprieties play key roles in natural selection and adaptation to diverse environments. Here we perform a comparative analysis of bacterial growth and gene deletion phenotypes using hundreds of genome-scale metabolic models. Overall, bacterial phenotypic evolution can be described by a two-stage process with a rapid initial phenotypic diversification followed by a slow long-term exponential divergence. The observed average divergence trend, with approximately similar fractions of phenotypic properties changing per unit time, continues for billions of years. We experimentally confirm the predicted divergence trend using the phenotypic profiles of 40 diverse bacterial species across more than 60 growth conditions. Our analysis suggests that, at long evolutionary distances, gene essentiality is significantly more conserved than the ability to utilize different nutrients, while synthetic lethality is significantly less conserved. We also find that although a rapid phenotypic evolution is sometimes observed within the same species, a transition from high to low phenotypic similarity occurs primarily at the genus level.

  3. Evaluation of genome-enabled selection for bacterial cold water disease resistance using progeny performance data in Rainbow Trout: Insights on genotyping methods and genomic prediction models

    USDA-ARS?s Scientific Manuscript database

    Bacterial cold water disease (BCWD) causes significant economic losses in salmonid aquaculture, and traditional family-based breeding programs aimed at improving BCWD resistance have been limited to exploiting only between-family variation. We used genomic selection (GS) models to predict genomic br...

  4. The Importance of Bacterial Culture to Food Microbiology in the Age of Genomics.

    PubMed

    Gill, Alexander

    2017-01-01

    Culture-based and genomics methods provide different insights into the nature and behavior of bacteria. Maximizing the usefulness of both approaches requires recognizing their limitations and employing them appropriately. Genomic analysis excels at identifying bacteria and establishing the relatedness of isolates. Culture-based methods remain necessary for detection and enumeration, to determine viability, and to validate phenotype predictions made on the bias of genomic analysis. The purpose of this short paper is to discuss the application of culture-based analysis and genomics to the questions food microbiologists routinely need to ask regarding bacteria to ensure the safety of food and its economic production and distribution. To address these issues appropriate tools are required for the detection and enumeration of specific bacterial populations and the characterization of isolates for, identification, phylogenetics, and phenotype prediction.

  5. Expansion by whole genome duplication and evolution of the sox gene family in teleost fish

    PubMed Central

    Naville, Magali; Volff, Jean-Nicolas

    2017-01-01

    It is now recognized that several rounds of whole genome duplication (WGD) have occurred during the evolution of vertebrates, but the link between WGDs and phenotypic diversification remains unsolved. We have investigated in this study the impact of the teleost-specific WGD on the evolution of the sox gene family in teleostean fishes. The sox gene family, which encodes for transcription factors, has essential role in morphology, physiology and behavior of vertebrates and teleosts, the current largest group of vertebrates. We have first redrawn the evolution of all sox genes identified in eleven teleost genomes using a comparative genomic approach including phylogenetic and synteny analyses. We noticed, compared to tetrapods, an important expansion of the sox family: 58% (11/19) of sox genes are duplicated in teleost genomes. Furthermore, all duplicated sox genes, except sox17 paralogs, are derived from the teleost-specific WGD. Then, focusing on five sox genes, analyzing the evolution of coding and non-coding sequences, as well as the expression patterns in fish embryos and adult tissues, we demonstrated that these paralogs followed lineage-specific evolutionary trajectories in teleost genomes. This work, based on whole genome data from multiple teleostean species, supports the contribution of WGDs to the expansion of gene families, as well as to the emergence of genomic differences between lineages that might promote genetic and phenotypic diversity in teleosts. PMID:28738066

  6. The genome sequence of taurine cattle: a window to ruminant biology and evolution.

    PubMed

    Elsik, Christine G; Tellam, Ross L; Worley, Kim C; Gibbs, Richard A; Muzny, Donna M; Weinstock, George M; Adelson, David L; Eichler, Evan E; Elnitski, Laura; Guigó, Roderic; Hamernik, Debora L; Kappes, Steve M; Lewin, Harris A; Lynn, David J; Nicholas, Frank W; Reymond, Alexandre; Rijnkels, Monique; Skow, Loren C; Zdobnov, Evgeny M; Schook, Lawrence; Womack, James; Alioto, Tyler; Antonarakis, Stylianos E; Astashyn, Alex; Chapple, Charles E; Chen, Hsiu-Chuan; Chrast, Jacqueline; Câmara, Francisco; Ermolaeva, Olga; Henrichsen, Charlotte N; Hlavina, Wratko; Kapustin, Yuri; Kiryutin, Boris; Kitts, Paul; Kokocinski, Felix; Landrum, Melissa; Maglott, Donna; Pruitt, Kim; Sapojnikov, Victor; Searle, Stephen M; Solovyev, Victor; Souvorov, Alexandre; Ucla, Catherine; Wyss, Carine; Anzola, Juan M; Gerlach, Daniel; Elhaik, Eran; Graur, Dan; Reese, Justin T; Edgar, Robert C; McEwan, John C; Payne, Gemma M; Raison, Joy M; Junier, Thomas; Kriventseva, Evgenia V; Eyras, Eduardo; Plass, Mireya; Donthu, Ravikiran; Larkin, Denis M; Reecy, James; Yang, Mary Q; Chen, Lin; Cheng, Ze; Chitko-McKown, Carol G; Liu, George E; Matukumalli, Lakshmi K; Song, Jiuzhou; Zhu, Bin; Bradley, Daniel G; Brinkman, Fiona S L; Lau, Lilian P L; Whiteside, Matthew D; Walker, Angela; Wheeler, Thomas T; Casey, Theresa; German, J Bruce; Lemay, Danielle G; Maqbool, Nauman J; Molenaar, Adrian J; Seo, Seongwon; Stothard, Paul; Baldwin, Cynthia L; Baxter, Rebecca; Brinkmeyer-Langford, Candice L; Brown, Wendy C; Childers, Christopher P; Connelley, Timothy; Ellis, Shirley A; Fritz, Krista; Glass, Elizabeth J; Herzig, Carolyn T A; Iivanainen, Antti; Lahmers, Kevin K; Bennett, Anna K; Dickens, C Michael; Gilbert, James G R; Hagen, Darren E; Salih, Hanni; Aerts, Jan; Caetano, Alexandre R; Dalrymple, Brian; Garcia, Jose Fernando; Gill, Clare A; Hiendleder, Stefan G; Memili, Erdogan; Spurlock, Diane; Williams, John L; Alexander, Lee; Brownstein, Michael J; Guan, Leluo; Holt, Robert A; Jones, Steven J M; Marra, Marco A; Moore, Richard; Moore, Stephen S; Roberts, Andy; Taniguchi, Masaaki; Waterman, Richard C; Chacko, Joseph; Chandrabose, Mimi M; Cree, Andy; Dao, Marvin Diep; Dinh, Huyen H; Gabisi, Ramatu Ayiesha; Hines, Sandra; Hume, Jennifer; Jhangiani, Shalini N; Joshi, Vandita; Kovar, Christie L; Lewis, Lora R; Liu, Yih-Shin; Lopez, John; Morgan, Margaret B; Nguyen, Ngoc Bich; Okwuonu, Geoffrey O; Ruiz, San Juana; Santibanez, Jireh; Wright, Rita A; Buhay, Christian; Ding, Yan; Dugan-Rocha, Shannon; Herdandez, Judith; Holder, Michael; Sabo, Aniko; Egan, Amy; Goodell, Jason; Wilczek-Boney, Katarzyna; Fowler, Gerald R; Hitchens, Matthew Edward; Lozado, Ryan J; Moen, Charles; Steffen, David; Warren, James T; Zhang, Jingkun; Chiu, Readman; Schein, Jacqueline E; Durbin, K James; Havlak, Paul; Jiang, Huaiyang; Liu, Yue; Qin, Xiang; Ren, Yanru; Shen, Yufeng; Song, Henry; Bell, Stephanie Nicole; Davis, Clay; Johnson, Angela Jolivet; Lee, Sandra; Nazareth, Lynne V; Patel, Bella Mayurkumar; Pu, Ling-Ling; Vattathil, Selina; Williams, Rex Lee; Curry, Stacey; Hamilton, Cerissa; Sodergren, Erica; Wheeler, David A; Barris, Wes; Bennett, Gary L; Eggen, André; Green, Ronnie D; Harhay, Gregory P; Hobbs, Matthew; Jann, Oliver; Keele, John W; Kent, Matthew P; Lien, Sigbjørn; McKay, Stephanie D; McWilliam, Sean; Ratnakumar, Abhirami; Schnabel, Robert D; Smith, Timothy; Snelling, Warren M; Sonstegard, Tad S; Stone, Roger T; Sugimoto, Yoshikazu; Takasuga, Akiko; Taylor, Jeremy F; Van Tassell, Curtis P; Macneil, Michael D; Abatepaulo, Antonio R R; Abbey, Colette A; Ahola, Virpi; Almeida, Iassudara G; Amadio, Ariel F; Anatriello, Elen; Bahadue, Suria M; Biase, Fernando H; Boldt, Clayton R; Carroll, Jeffery A; Carvalho, Wanessa A; Cervelatti, Eliane P; Chacko, Elsa; Chapin, Jennifer E; Cheng, Ye; Choi, Jungwoo; Colley, Adam J; de Campos, Tatiana A; De Donato, Marcos; Santos, Isabel K F de Miranda; de Oliveira, Carlo J F; Deobald, Heather; Devinoy, Eve; Donohue, Kaitlin E; Dovc, Peter; Eberlein, Annett; Fitzsimmons, Carolyn J; Franzin, Alessandra M; Garcia, Gustavo R; Genini, Sem; Gladney, Cody J; Grant, Jason R; Greaser, Marion L; Green, Jonathan A; Hadsell, Darryl L; Hakimov, Hatam A; Halgren, Rob; Harrow, Jennifer L; Hart, Elizabeth A; Hastings, Nicola; Hernandez, Marta; Hu, Zhi-Liang; Ingham, Aaron; Iso-Touru, Terhi; Jamis, Catherine; Jensen, Kirsty; Kapetis, Dimos; Kerr, Tovah; Khalil, Sari S; Khatib, Hasan; Kolbehdari, Davood; Kumar, Charu G; Kumar, Dinesh; Leach, Richard; Lee, Justin C-M; Li, Changxi; Logan, Krystin M; Malinverni, Roberto; Marques, Elisa; Martin, William F; Martins, Natalia F; Maruyama, Sandra R; Mazza, Raffaele; McLean, Kim L; Medrano, Juan F; Moreno, Barbara T; Moré, Daniela D; Muntean, Carl T; Nandakumar, Hari P; Nogueira, Marcelo F G; Olsaker, Ingrid; Pant, Sameer D; Panzitta, Francesca; Pastor, Rosemeire C P; Poli, Mario A; Poslusny, Nathan; Rachagani, Satyanarayana; Ranganathan, Shoba; Razpet, Andrej; Riggs, Penny K; Rincon, Gonzalo; Rodriguez-Osorio, Nelida; Rodriguez-Zas, Sandra L; Romero, Natasha E; Rosenwald, Anne; Sando, Lillian; Schmutz, Sheila M; Shen, Libing; Sherman, Laura; Southey, Bruce R; Lutzow, Ylva Strandberg; Sweedler, Jonathan V; Tammen, Imke; Telugu, Bhanu Prakash V L; Urbanski, Jennifer M; Utsunomiya, Yuri T; Verschoor, Chris P; Waardenberg, Ashley J; Wang, Zhiquan; Ward, Robert; Weikard, Rosemarie; Welsh, Thomas H; White, Stephen N; Wilming, Laurens G; Wunderlich, Kris R; Yang, Jianqi; Zhao, Feng-Qi

    2009-04-24

    To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production.

  7. Segmental duplications: evolution and impact among the current Lepidoptera genomes.

    PubMed

    Zhao, Qian; Ma, Dongna; Vasseur, Liette; You, Minsheng

    2017-07-06

    Structural variation among genomes is now viewed to be as important as single nucleoid polymorphisms in influencing the phenotype and evolution of a species. Segmental duplication (SD) is defined as segments of DNA with homologous sequence. Here, we performed a systematic analysis of segmental duplications (SDs) among five lepidopteran reference genomes (Plutella xylostella, Danaus plexippus, Bombyx mori, Manduca sexta and Heliconius melpomene) to understand their potential impact on the evolution of these species. We find that the SDs content differed substantially among species, ranging from 1.2% of the genome in B. mori to 15.2% in H. melpomene. Most SDs formed very high identity (similarity higher than 90%) blocks but had very few large blocks. Comparative analysis showed that most of the SDs arose after the divergence of each linage and we found that P. xylostella and H. melpomene showed more duplications than other species, suggesting they might be able to tolerate extensive levels of variation in their genomes. Conserved ancestral and species specific SD events were assessed, revealing multiple examples of the gain, loss or maintenance of SDs over time. SDs content analysis showed that most of the genes embedded in SDs regions belonged to species-specific SDs ("Unique" SDs). Functional analysis of these genes suggested their potential roles in the lineage-specific evolution. SDs and flanking regions often contained transposable elements (TEs) and this association suggested some involvement in SDs formation. Further studies on comparison of gene expression level between SDs and non-SDs showed that the expression level of genes embedded in SDs was significantly lower, suggesting that structure changes in the genomes are involved in gene expression differences in species. The results showed that most of the SDs were "unique SDs", which originated after species formation. Functional analysis suggested that SDs might play different roles in different species. Our

  8. Merging chemical ecology with bacterial genome mining for secondary metabolite discovery.

    PubMed

    Vizcaino, Maria I; Guo, Xun; Crawford, Jason M

    2014-02-01

    The integration of chemical ecology and bacterial genome mining can enhance the discovery of structurally diverse natural products in functional contexts. By examining bacterial secondary metabolism in the framework of its ecological niche, insights into the upregulation of orphan biosynthetic pathways and the enhancement of the enzyme substrate supply can be obtained, leading to the discovery of new secondary metabolic pathways that would otherwise be silent or undetected under typical laboratory cultivation conditions. Access to these new natural products (i.e., the chemotypes) facilitates experimental genotype-to-phenotype linkages. Here, we describe certain functional natural products produced by Xenorhabdus and Photorhabdus bacteria with experimentally linked biosynthetic gene clusters as illustrative examples of the synergy between chemical ecology and bacterial genome mining in connecting genotypes to phenotypes through chemotype characterization. These Gammaproteobacteria share a mutualistic relationship with nematodes and a pathogenic relationship with insects and, in select cases, humans. The natural products encoded by these bacteria distinguish their interactions with their animal hosts and other microorganisms in their multipartite symbiotic lifestyles. Though both genera have similar lifestyles, their genetic, chemical, and physiological attributes are distinct. Both undergo phenotypic variation and produce a profuse number of bioactive secondary metabolites. We provide further detail in the context of regulation, production, processing, and function for these genetically encoded small molecules with respect to their roles in mutualism and pathogenicity. These collective insights more widely promote the discovery of atypical orphan biosynthetic pathways encoding novel small molecules in symbiotic systems, which could open up new avenues for investigating and exploiting microbial chemical signaling in host-bacteria interactions.

  9. Exploring the Limits for Reduction of Plastid Genomes: A Case Study of the Mycoheterotrophic Orchids Epipogium aphyllum and Epipogium roseum

    PubMed Central

    Schelkunov, Mikhail I.; Shtratnikova, Viktoria Yu; Nuraliev, Maxim S.; Selosse, Marc-Andre; Penin, Aleksey A.; Logacheva, Maria D.

    2015-01-01

    The question on the patterns and limits of reduction of plastid genomes in nonphotosynthetic plants and the reasons of their conservation is one of the intriguing topics in plant genome evolution. Here, we report sequencing and analysis of plastid genome in nonphotosynthetic orchids Epipogium aphyllum and Epipogium roseum, which, with sizes of 31 and 19 kbp, respectively, represent the smallest plastid genomes characterized by now. Besides drastic reduction, which is expected, we found several unusual features of these “minimal” plastomes: Multiple rearrangements, highly biased nucleotide composition, and unprecedentedly high substitution rate. Only 27 and 29 genes remained intact in the plastomes of E. aphyllum and E. roseum—those encoding ribosomal components, transfer RNAs, and three additional housekeeping genes (infA, clpP, and accD). We found no signs of relaxed selection acting on these genes. We hypothesize that the main reason for retention of plastid genomes in Epipogium is the necessity to translate messenger RNAs (mRNAs) of accD and/or clpP proteins which are essential for cell metabolism. However, these genes are absent in plastomes of several plant species; their absence is compensated by the presence of a functional copy arisen by gene transfer from plastid to the nuclear genome. This suggests that there is no single set of plastid-encoded essential genes, but rather different sets for different species and that the retention of a gene in the plastome depends on the interaction between the nucleus and plastids. PMID:25635040

  10. Molecular hyperdiversity and evolution in very large populations.

    PubMed

    Cutter, Asher D; Jovelin, Richard; Dey, Alivia

    2013-04-01

    The genomic density of sequence polymorphisms critically affects the sensitivity of inferences about ongoing sequence evolution, function and demographic history. Most animal and plant genomes have relatively low densities of polymorphisms, but some species are hyperdiverse with neutral nucleotide heterozygosity exceeding 5%. Eukaryotes with extremely large populations, mimicking bacterial and viral populations, present novel opportunities for studying molecular evolution in sexually reproducing taxa with complex development. In particular, hyperdiverse species can help answer controversial questions about the evolution of genome complexity, the limits of natural selection, modes of adaptation and subtleties of the mutation process. However, such systems have some inherent complications and here we identify topics in need of theoretical developments. Close relatives of the model organisms Caenorhabditis elegans and Drosophila melanogaster provide known examples of hyperdiverse eukaryotes, encouraging functional dissection of resulting molecular evolutionary patterns. We recommend how best to exploit hyperdiverse populations for analysis, for example, in quantifying the impact of noncrossover recombination in genomes and for determining the identity and micro-evolutionary selective pressures on noncoding regulatory elements. © 2013 Blackwell Publishing Ltd.

  11. Clinical management of resistance evolution in a bacterial infection: A case study.

    PubMed

    Woods, Robert J; Read, Andrew F

    2015-10-10

    We report the case of a patient with a chronic bacterial infection that could not be cured. Drug treatment became progressively less effective due to antibiotic resistance, and the patient died, in effect from overwhelming evolution. Even though the evolution of drug resistance was recognized as a major threat, and the fundamentals of drug resistance evolution are well understood, it was impossible to make evidence-based decisions about the evolutionary risks associated with the various treatment options. We present this case to illustrate the urgent need for translational research in the evolutionary medicine of antibiotic resistance. © The Author(s) 2015. Published by Oxford University Press on behalf of the Foundation for Evolution, Medicine, and Public Health.

  12. Non-Random Inversion Landscapes in Prokaryotic Genomes Are Shaped by Heterogeneous Selection Pressures.

    PubMed

    Repar, Jelena; Warnecke, Tobias

    2017-08-01

    Inversions are a major contributor to structural genome evolution in prokaryotes. Here, using a novel alignment-based method, we systematically compare 1,651 bacterial and 98 archaeal genomes to show that inversion landscapes are frequently biased toward (symmetric) inversions around the origin-terminus axis. However, symmetric inversion bias is not a universal feature of prokaryotic genome evolution but varies considerably across clades. At the extremes, inversion landscapes in Bacillus-Clostridium and Actinobacteria are dominated by symmetric inversions, while there is little or no systematic bias favoring symmetric rearrangements in archaea with a single origin of replication. Within clades, we find strong but clade-specific relationships between symmetric inversion bias and different features of adaptive genome architecture, including the distance of essential genes to the origin of replication and the preferential localization of genes on the leading strand. We suggest that heterogeneous selection pressures have converged to produce similar patterns of structural genome evolution across prokaryotes. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Bacterial cheating limits the evolution of antibiotic resistance

    NASA Astrophysics Data System (ADS)

    Chao, Hui Xiao; Datta, Manoshi; Yurtsev, Eugene; Gore, Jeff

    2011-03-01

    The widespread use of antibiotics has led to the evolution of resistance in bacteria. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removing the antibiotic. The cooperative nature of this growth suggests that a cheater strain--which does not contribute to breaking down the antibiotic--may be able to take advantage of cells cooperatively inactivating the antibiotic. Here we experimentally find that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We observe stable coexistence between the two strains and find that a simple model successfully explains the behavior as a function of antibiotic concentration and cell density. We anticipate that our results will provide insight into the evolutionary origin of phenotypic diversity and cooperative behaviors found in nature.

  14. Comparative Genomic Analyses of the Human NPHP1 Locus Reveal Complex Genomic Architecture and Its Regional Evolution in Primates

    PubMed Central

    Yuan, Bo; Liu, Pengfei; Gupta, Aditya; Beck, Christine R.; Tejomurtula, Anusha; Campbell, Ian M.; Gambin, Tomasz; Simmons, Alexandra D.; Withers, Marjorie A.; Harris, R. Alan; Rogers, Jeffrey; Schwartz, David C.; Lupski, James R.

    2015-01-01

    Many loci in the human genome harbor complex genomic structures that can result in susceptibility to genomic rearrangements leading to various genomic disorders. Nephronophthisis 1 (NPHP1, MIM# 256100) is an autosomal recessive disorder that can be caused by defects of NPHP1; the gene maps within the human 2q13 region where low copy repeats (LCRs) are abundant. Loss of function of NPHP1 is responsible for approximately 85% of the NPHP1 cases—about 80% of such individuals carry a large recurrent homozygous NPHP1 deletion that occurs via nonallelic homologous recombination (NAHR) between two flanking directly oriented ~45 kb LCRs. Published data revealed a non-pathogenic inversion polymorphism involving the NPHP1 gene flanked by two inverted ~358 kb LCRs. Using optical mapping and array-comparative genomic hybridization, we identified three potential novel structural variant (SV) haplotypes at the NPHP1 locus that may protect a haploid genome from the NPHP1 deletion. Inter-species comparative genomic analyses among primate genomes revealed massive genomic changes during evolution. The aggregated data suggest that dynamic genomic rearrangements occurred historically within the NPHP1 locus and generated SV haplotypes observed in the human population today, which may confer differential susceptibility to genomic instability and the NPHP1 deletion within a personal genome. Our study documents diverse SV haplotypes at a complex LCR-laden human genomic region. Comparative analyses provide a model for how this complex region arose during primate evolution, and studies among humans suggest that intra-species polymorphism may potentially modulate an individual’s susceptibility to acquiring disease-associated alleles. PMID:26641089

  15. The Genome Sequence of Taurine Cattle: A window to ruminant biology and evolution

    PubMed Central

    Elsik, Christine G.; Tellam, Ross L.; Worley, Kim C.

    2010-01-01

    To understand the biology and evolution of ruminants, the cattle genome was sequenced to ∼7× coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1,217 are absent or undetected in non-eutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides an enabling resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production. PMID:19390049

  16. Complete Genome Sequence and Immunoproteomic Analyses of the Bacterial Fish Pathogen Streptococcus parauberis▿†

    PubMed Central

    Nho, Seong Won; Hikima, Jun-ichi; Cha, In Seok; Park, Seong Bin; Jang, Ho Bin; del Castillo, Carmelo S.; Kondo, Hidehiro; Hirono, Ikuo; Aoki, Takashi; Jung, Tae Sung

    2011-01-01

    Although Streptococcus parauberis is known as a bacterial pathogen associated with bovine udder mastitis, it has recently become one of the major causative agents of olive flounder (Paralichthys olivaceus) streptococcosis in northeast Asia, causing massive mortality resulting in severe economic losses. S. parauberis contains two serotypes, and it is likely that capsular polysaccharide antigens serve to differentiate the serotypes. In the present study, the complete genome sequence of S. parauberis (serotype I) was determined using the GS-FLX system to investigate its phylogeny, virulence factors, and antigenic proteins. S. parauberis possesses a single chromosome of 2,143,887 bp containing 1,868 predicted coding sequences (CDSs), with an average GC content of 35.6%. Whole-genome dot plot analysis and phylogenetic analysis of a 60-kDa chaperonin-encoding gene and the glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-encoding gene showed that the strain was evolutionarily closely related to Streptococcus uberis. S. parauberis antigenic proteins were analyzed using an immunoproteomic technique. Twenty-one antigenic protein spots were identified in S. parauberis, by reaction with an antiserum obtained from S. parauberis-challenged olive flounder. This work provides the foundation needed to understand more clearly the relationship between pathogen and host and develops new approaches toward prophylactic and therapeutic strategies to deal with streptococcosis in fish. The work also provides a better understanding of the physiology and evolution of a significant representative of the Streptococcaceae. PMID:21531805

  17. The Genome Sequence of Taurine Cattle: A Window to Ruminant Biology and Evolution

    USDA-ARS?s Scientific Manuscript database

    As a major step toward understanding the biology and evolution of ruminants, the cattle genome was sequenced to ~7x coverage using a combined whole genome shotgun and BAC skim approach. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs found in seven mammalian...

  18. Non-Random Inversion Landscapes in Prokaryotic Genomes Are Shaped by Heterogeneous Selection Pressures

    PubMed Central

    Repar, Jelena; Warnecke, Tobias

    2017-01-01

    Abstract Inversions are a major contributor to structural genome evolution in prokaryotes. Here, using a novel alignment-based method, we systematically compare 1,651 bacterial and 98 archaeal genomes to show that inversion landscapes are frequently biased toward (symmetric) inversions around the origin–terminus axis. However, symmetric inversion bias is not a universal feature of prokaryotic genome evolution but varies considerably across clades. At the extremes, inversion landscapes in Bacillus–Clostridium and Actinobacteria are dominated by symmetric inversions, while there is little or no systematic bias favoring symmetric rearrangements in archaea with a single origin of replication. Within clades, we find strong but clade-specific relationships between symmetric inversion bias and different features of adaptive genome architecture, including the distance of essential genes to the origin of replication and the preferential localization of genes on the leading strand. We suggest that heterogeneous selection pressures have converged to produce similar patterns of structural genome evolution across prokaryotes. PMID:28407093

  19. Reduction in bacterial load using hypochlorous acid hygiene solution on ocular skin

    PubMed Central

    Stroman, David W; Mintun, Keri; Epstein, Arthur B; Brimer, Crystal M; Patel, Chirag R; Branch, James D; Najafi-Tagol, Kathryn

    2017-01-01

    Purpose To examine the magnitude of bacterial load reduction on the surface of the periocular skin 20 minutes after application of a saline hygiene solution containing 0.01% pure hypochlorous acid (HOCl). Methods Microbiological specimens were collected immediately prior to applying the hygiene solution and again 20 minutes later. Total microbial colonies were counted and each unique colony morphology was processed to identify the bacterial species and to determine the susceptibility profile to 15 selected antibiotics. Results Specimens were analyzed from the skin samples of 71 eyes from 36 patients. Prior to treatment, 194 unique bacterial isolates belonging to 33 different species were recovered. Twenty minutes after treatment, 138 unique bacterial isolates belonging to 26 different species were identified. Staphylococci accounted for 61% of all strains recovered and Staphylococcus epidermidis strains comprised 60% of the staphylococcal strains. No substantial differences in the distribution of Gram-positive, Gram-negative, or anaerobic species were noted before and after treatment. The quantitative data demonstrated a >99% reduction in the staphylococcal load on the surface of the skin 20 minutes following application of the hygiene solution. The total S. epidermidis colony-forming units were reduced by 99.5%. The HOCl hygiene solution removed staphylococcal isolates that were resistant to multiple antibiotics equally well as those isolates that were susceptible to antibiotics. Conclusion The application of a saline hygiene solution preserved with pure HOCl acid reduced the bacterial load significantly without altering the diversity of bacterial species remaining on the skin under the lower eyelid. PMID:28458509

  20. Coexistence and Within-Host Evolution of Diversified Lineages of Hypermutable Pseudomonas aeruginosa in Long-term Cystic Fibrosis Infections

    PubMed Central

    Feliziani, Sofía; Moyano, Alejandro J.; Di Rienzo, Julio A.; Krogh Johansen, Helle; Molin, Søren; Smania, Andrea M.

    2014-01-01

    The advent of high-throughput sequencing techniques has made it possible to follow the genomic evolution of pathogenic bacteria by comparing longitudinally collected bacteria sampled from human hosts. Such studies in the context of chronic airway infections by Pseudomonas aeruginosa in cystic fibrosis (CF) patients have indicated high bacterial population diversity. Such diversity may be driven by hypermutability resulting from DNA mismatch repair system (MRS) deficiency, a common trait evolved by P. aeruginosa strains in CF infections. No studies to date have utilized whole-genome sequencing to investigate within-host population diversity or long-term evolution of mutators in CF airways. We sequenced the genomes of 13 and 14 isolates of P. aeruginosa mutator populations from an Argentinian and a Danish CF patient, respectively. Our collection of isolates spanned 6 and 20 years of patient infection history, respectively. We sequenced 11 isolates from a single sample from each patient to allow in-depth analysis of population diversity. Each patient was infected by clonal populations of bacteria that were dominated by mutators. The in vivo mutation rate of the populations was ∼100 SNPs/year–∼40-fold higher than rates in normo-mutable populations. Comparison of the genomes of 11 isolates from the same sample showed extensive within-patient genomic diversification; the populations were composed of different sub-lineages that had coexisted for many years since the initial colonization of the patient. Analysis of the mutations identified genes that underwent convergent evolution across lineages and sub-lineages, suggesting that the genes were targeted by mutation to optimize pathogenic fitness. Parallel evolution was observed in reduction of overall catabolic capacity of the populations. These findings are useful for understanding the evolution of pathogen populations and identifying new targets for control of chronic infections. PMID:25330091

  1. Whole Genome Sequence Analysis of Pig Respiratory Bacterial Pathogens with Elevated Minimum Inhibitory Concentrations for Macrolides.

    PubMed

    Dayao, Denise Ann Estarez; Seddon, Jennifer M; Gibson, Justine S; Blackall, Patrick J; Turni, Conny

    2016-10-01

    Macrolides are often used to treat and control bacterial pathogens causing respiratory disease in pigs. This study analyzed the whole genome sequences of one clinical isolate of Actinobacillus pleuropneumoniae, Haemophilus parasuis, Pasteurella multocida, and Bordetella bronchiseptica, all isolated from Australian pigs to identify the mechanism underlying the elevated minimum inhibitory concentrations (MICs) for erythromycin, tilmicosin, or tulathromycin. The H. parasuis assembled genome had a nucleotide transition at position 2059 (A to G) in the six copies of the 23S rRNA gene. This mutation has previously been associated with macrolide resistance but this is the first reported mechanism associated with elevated macrolide MICs in H. parasuis. There was no known macrolide resistance mechanism identified in the other three bacterial genomes. However, strA and sul2, aminoglycoside and sulfonamide resistance genes, respectively, were detected in one contiguous sequence (contig 1) of A. pleuropneumoniae assembled genome. This contig was identical to plasmids previously identified in Pasteurellaceae. This study has provided one possible explanation of elevated MICs to macrolides in H. parasuis. Further studies are necessary to clarify the mechanism causing the unexplained macrolide resistance in other Australian pig respiratory pathogens including the role of efflux systems, which were detected in all analyzed genomes.

  2. Operon-mapper: A Web Server for Precise Operon Identification in Bacterial and Archaeal Genomes.

    PubMed

    Taboada, Blanca; Estrada, Karel; Ciria, Ricardo; Merino, Enrique

    2018-06-19

    Operon-mapper is a web server that accurately, easily, and directly predicts the operons of any bacterial or archaeal genome sequence. The operon predictions are based on the intergenic distance of neighboring genes as well as the functional relationships of their protein-coding products. To this end, Operon-mapper finds all the ORFs within a given nucleotide sequence, along with their genomic coordinates, orthology groups, and functional relationships. We believe that Operon-mapper, due to its accuracy, simplicity and speed, as well as the relevant information that it generates, will be a useful tool for annotating and characterizing genomic sequences. http://biocomputo.ibt.unam.mx/operon_mapper/.

  3. Bacterial genospecies that are not ecologically coherent: population genomics of Rhizobium leguminosarum

    PubMed Central

    Kumar, Nitin; Lad, Ganesh; Giuntini, Elisa; Kaye, Maria E.; Udomwong, Piyachat; Shamsani, N. Jannah; Young, J. Peter W.; Bailly, Xavier

    2015-01-01

    Biological species may remain distinct because of genetic isolation or ecological adaptation, but these two aspects do not always coincide. To establish the nature of the species boundary within a local bacterial population, we characterized a sympatric population of the bacterium Rhizobium leguminosarum by genomic sequencing of 72 isolates. Although all strains have 16S rRNA typical of R. leguminosarum, they fall into five genospecies by the criterion of average nucleotide identity (ANI). Many genes, on plasmids as well as the chromosome, support this division: recombination of core genes has been largely within genospecies. Nevertheless, variation in ecological properties, including symbiotic host range and carbon-source utilization, cuts across these genospecies, so that none of these phenotypes is diagnostic of genospecies. This phenotypic variation is conferred by mobile genes. The genospecies meet the Mayr criteria for biological species in respect of their core genes, but do not correspond to coherent ecological groups, so periodic selection may not be effective in purging variation within them. The population structure is incompatible with traditional ‘polyphasic taxonomy′ that requires bacterial species to have both phylogenetic coherence and distinctive phenotypes. More generally, genomics has revealed that many bacterial species share adaptive modules by horizontal gene transfer, and we envisage a more consistent taxonomic framework that explicitly recognizes this. Significant phenotypes should be recognized as ‘biovars' within species that are defined by core gene phylogeny. PMID:25589577

  4. Comparative genome sequencing of Drosophila pseudoobscura: Chromosomal, gene, and cis-element evolution

    PubMed Central

    Richards, Stephen; Liu, Yue; Bettencourt, Brian R.; Hradecky, Pavel; Letovsky, Stan; Nielsen, Rasmus; Thornton, Kevin; Hubisz, Melissa J.; Chen, Rui; Meisel, Richard P.; Couronne, Olivier; Hua, Sujun; Smith, Mark A.; Zhang, Peili; Liu, Jing; Bussemaker, Harmen J.; van Batenburg, Marinus F.; Howells, Sally L.; Scherer, Steven E.; Sodergren, Erica; Matthews, Beverly B.; Crosby, Madeline A.; Schroeder, Andrew J.; Ortiz-Barrientos, Daniel; Rives, Catharine M.; Metzker, Michael L.; Muzny, Donna M.; Scott, Graham; Steffen, David; Wheeler, David A.; Worley, Kim C.; Havlak, Paul; Durbin, K. James; Egan, Amy; Gill, Rachel; Hume, Jennifer; Morgan, Margaret B.; Miner, George; Hamilton, Cerissa; Huang, Yanmei; Waldron, Lenée; Verduzco, Daniel; Clerc-Blankenburg, Kerstin P.; Dubchak, Inna; Noor, Mohamed A.F.; Anderson, Wyatt; White, Kevin P.; Clark, Andrew G.; Schaeffer, Stephen W.; Gelbart, William; Weinstock, George M.; Gibbs, Richard A.

    2005-01-01

    We have sequenced the genome of a second Drosophila species, Drosophila pseudoobscura, and compared this to the genome sequence of Drosophila melanogaster, a primary model organism. Throughout evolution the vast majority of Drosophila genes have remained on the same chromosome arm, but within each arm gene order has been extensively reshuffled, leading to a minimum of 921 syntenic blocks shared between the species. A repetitive sequence is found in the D. pseudoobscura genome at many junctions between adjacent syntenic blocks. Analysis of this novel repetitive element family suggests that recombination between offset elements may have given rise to many paracentric inversions, thereby contributing to the shuffling of gene order in the D. pseudoobscura lineage. Based on sequence similarity and synteny, 10,516 putative orthologs have been identified as a core gene set conserved over 25–55 million years (Myr) since the pseudoobscura/melanogaster divergence. Genes expressed in the testes had higher amino acid sequence divergence than the genome-wide average, consistent with the rapid evolution of sex-specific proteins. Cis-regulatory sequences are more conserved than random and nearby sequences between the species—but the difference is slight, suggesting that the evolution of cis-regulatory elements is flexible. Overall, a pattern of repeat-mediated chromosomal rearrangement, and high coadaptation of both male genes and cis-regulatory sequences emerges as important themes of genome divergence between these species of Drosophila. PMID:15632085

  5. Wild tobacco genomes reveal the evolution of nicotine biosynthesis.

    PubMed

    Xu, Shuqing; Brockmöller, Thomas; Navarro-Quezada, Aura; Kuhl, Heiner; Gase, Klaus; Ling, Zhihao; Zhou, Wenwu; Kreitzer, Christoph; Stanke, Mario; Tang, Haibao; Lyons, Eric; Pandey, Priyanka; Pandey, Shree P; Timmermann, Bernd; Gaquerel, Emmanuel; Baldwin, Ian T

    2017-06-06

    Nicotine, the signature alkaloid of Nicotiana species responsible for the addictive properties of human tobacco smoking, functions as a defensive neurotoxin against attacking herbivores. However, the evolution of the genetic features that contributed to the assembly of the nicotine biosynthetic pathway remains unknown. We sequenced and assembled genomes of two wild tobaccos, Nicotiana attenuata (2.5 Gb) and Nicotiana obtusifolia (1.5 Gb), two ecological models for investigating adaptive traits in nature. We show that after the Solanaceae whole-genome triplication event, a repertoire of rapidly expanding transposable elements (TEs) bloated these Nicotiana genomes, promoted expression divergences among duplicated genes, and contributed to the evolution of herbivory-induced signaling and defenses, including nicotine biosynthesis. The biosynthetic machinery that allows for nicotine synthesis in the roots evolved from the stepwise duplications of two ancient primary metabolic pathways: the polyamine and nicotinamide adenine dinucleotide (NAD) pathways. In contrast to the duplication of the polyamine pathway that is shared among several solanaceous genera producing polyamine-derived tropane alkaloids, we found that lineage-specific duplications within the NAD pathway and the evolution of root-specific expression of the duplicated Solanaceae-specific ethylene response factor that activates the expression of all nicotine biosynthetic genes resulted in the innovative and efficient production of nicotine in the genus Nicotiana Transcription factor binding motifs derived from TEs may have contributed to the coexpression of nicotine biosynthetic pathway genes and coordinated the metabolic flux. Together, these results provide evidence that TEs and gene duplications facilitated the emergence of a key metabolic innovation relevant to plant fitness.

  6. Maintenance and expression of the S. cerevisiae mitochondrial genome--from genetics to evolution and systems biology.

    PubMed

    Lipinski, Kamil A; Kaniak-Golik, Aneta; Golik, Pawel

    2010-01-01

    As a legacy of their endosymbiotic eubacterial origin, mitochondria possess a residual genome, encoding only a few proteins and dependent on a variety of factors encoded by the nuclear genome for its maintenance and expression. As a facultative anaerobe with well understood genetics and molecular biology, Saccharomyces cerevisiae is the model system of choice for studying nucleo-mitochondrial genetic interactions. Maintenance of the mitochondrial genome is controlled by a set of nuclear-coded factors forming intricately interconnected circuits responsible for replication, recombination, repair and transmission to buds. Expression of the yeast mitochondrial genome is regulated mostly at the post-transcriptional level, and involves many general and gene-specific factors regulating splicing, RNA processing and stability and translation. A very interesting aspect of the yeast mitochondrial system is the relationship between genome maintenance and gene expression. Deletions of genes involved in many different aspects of mitochondrial gene expression, notably translation, result in an irreversible loss of functional mtDNA. The mitochondrial genetic system viewed from the systems biology perspective is therefore very fragile and lacks robustness compared to the remaining systems of the cell. This lack of robustness could be a legacy of the reductive evolution of the mitochondrial genome, but explanations involving selective advantages of increased evolvability have also been postulated. Copyright © 2009 Elsevier B.V. All rights reserved.

  7. Comparative scaffolding and gap filling of ancient bacterial genomes applied to two ancient Yersinia pestis genomes

    PubMed Central

    Doerr, Daniel; Chauve, Cedric

    2017-01-01

    Yersinia pestis is the causative agent of the bubonic plague, a disease responsible for several dramatic historical pandemics. Progress in ancient DNA (aDNA) sequencing rendered possible the sequencing of whole genomes of important human pathogens, including the ancient Y. pestis strains responsible for outbreaks of the bubonic plague in London in the 14th century and in Marseille in the 18th century, among others. However, aDNA sequencing data are still characterized by short reads and non-uniform coverage, so assembling ancient pathogen genomes remains challenging and often prevents a detailed study of genome rearrangements. It has recently been shown that comparative scaffolding approaches can improve the assembly of ancient Y. pestis genomes at a chromosome level. In the present work, we address the last step of genome assembly, the gap-filling stage. We describe an optimization-based method AGapEs (ancestral gap estimation) to fill in inter-contig gaps using a combination of a template obtained from related extant genomes and aDNA reads. We show how this approach can be used to refine comparative scaffolding by selecting contig adjacencies supported by a mix of unassembled aDNA reads and comparative signal. We applied our method to two Y. pestis data sets from the London and Marseilles outbreaks, for which we obtained highly improved genome assemblies for both genomes, comprised of, respectively, five and six scaffolds with 95 % of the assemblies supported by ancient reads. We analysed the genome evolution between both ancient genomes in terms of genome rearrangements, and observed a high level of synteny conservation between these strains. PMID:29114402

  8. Complete sequences of organelle genomes from the medicinal plant Rhazya stricta (Apocynaceae) and contrasting patterns of mitochondrial genome evolution across asterids.

    PubMed

    Park, Seongjun; Ruhlman, Tracey A; Sabir, Jamal S M; Mutwakil, Mohammed H Z; Baeshen, Mohammed N; Sabir, Meshaal J; Baeshen, Nabih A; Jansen, Robert K

    2014-05-28

    Rhazya stricta is native to arid regions in South Asia and the Middle East and is used extensively in folk medicine to treat a wide range of diseases. In addition to generating genomic resources for this medicinally important plant, analyses of the complete plastid and mitochondrial genomes and a nuclear transcriptome from Rhazya provide insights into inter-compartmental transfers between genomes and the patterns of evolution among eight asterid mitochondrial genomes. The 154,841 bp plastid genome is highly conserved with gene content and order identical to the ancestral organization of angiosperms. The 548,608 bp mitochondrial genome exhibits a number of phenomena including the presence of recombinogenic repeats that generate a multipartite organization, transferred DNA from the plastid and nuclear genomes, and bidirectional DNA transfers between the mitochondrion and the nucleus. The mitochondrial genes sdh3 and rps14 have been transferred to the nucleus and have acquired targeting presequences. In the case of rps14, two copies are present in the nucleus; only one has a mitochondrial targeting presequence and may be functional. Phylogenetic analyses of both nuclear and mitochondrial copies of rps14 across angiosperms suggests Rhazya has experienced a single transfer of this gene to the nucleus, followed by a duplication event. Furthermore, the phylogenetic distribution of gene losses and the high level of sequence divergence in targeting presequences suggest multiple, independent transfers of both sdh3 and rps14 across asterids. Comparative analyses of mitochondrial genomes of eight sequenced asterids indicates a complicated evolutionary history in this large angiosperm clade with considerable diversity in genome organization and size, repeat, gene and intron content, and amount of foreign DNA from the plastid and nuclear genomes. Organelle genomes of Rhazya stricta provide valuable information for improving the understanding of mitochondrial genome evolution

  9. Genomics-enabled analysis of the emergent disease cotton bacterial blight

    PubMed Central

    Phillips, Anne Z.; Burke, Jillian; Bunn, J. Imani; Allen, Tom W.; Wheeler, Terry

    2017-01-01

    Cotton bacterial blight (CBB), an important disease of (Gossypium hirsutum) in the early 20th century, had been controlled by resistant germplasm for over half a century. Recently, CBB re-emerged as an agronomic problem in the United States. Here, we report analysis of cotton variety planting statistics that indicate a steady increase in the percentage of susceptible cotton varieties grown each year since 2009. Phylogenetic analysis revealed that strains from the current outbreak cluster with race 18 Xanthomonas citri pv. malvacearum (Xcm) strains. Illumina based draft genomes were generated for thirteen Xcm isolates and analyzed along with 4 previously published Xcm genomes. These genomes encode 24 conserved and nine variable type three effectors. Strains in the race 18 clade contain 3 to 5 more effectors than other Xcm strains. SMRT sequencing of two geographically and temporally diverse strains of Xcm yielded circular chromosomes and accompanying plasmids. These genomes encode eight and thirteen distinct transcription activator-like effector genes. RNA-sequencing revealed 52 genes induced within two cotton cultivars by both tested Xcm strains. This gene list includes a homeologous pair of genes, with homology to the known susceptibility gene, MLO. In contrast, the two strains of Xcm induce different clade III SWEET sugar transporters. Subsequent genome wide analysis revealed patterns in the overall expression of homeologous gene pairs in cotton after inoculation by Xcm. These data reveal important insights into the Xcm-G. hirsutum disease complex and strategies for future development of resistant cultivars. PMID:28910288

  10. Repair-mediated duplication by capture of proximal chromosomal DNA has shaped vertebrate genome evolution.

    PubMed

    Pace, John K; Sen, Shurjo K; Batzer, Mark A; Feschotte, Cédric

    2009-05-01

    DNA double-strand breaks (DSBs) are a common form of cellular damage that can lead to cell death if not repaired promptly. Experimental systems have shown that DSB repair in eukaryotic cells is often imperfect and may result in the insertion of extra chromosomal DNA or the duplication of existing DNA at the breakpoint. These events are thought to be a source of genomic instability and human diseases, but it is unclear whether they have contributed significantly to genome evolution. Here we developed an innovative computational pipeline that takes advantage of the repetitive structure of genomes to detect repair-mediated duplication events (RDs) that occurred in the germline and created insertions of at least 50 bp of genomic DNA. Using this pipeline we identified over 1,000 probable RDs in the human genome. Of these, 824 were intra-chromosomal, closely linked duplications of up to 619 bp bearing the hallmarks of the synthesis-dependent strand-annealing repair pathway. This mechanism has duplicated hundreds of sequences predicted to be functional in the human genome, including exons, UTRs, intron splice sites and transcription factor binding sites. Dating of the duplication events using comparative genomics and experimental validation revealed that the mechanism has operated continuously but with decreasing intensity throughout primate evolution. The mechanism has produced species-specific duplications in all primate species surveyed and is contributing to genomic variation among humans. Finally, we show that RDs have also occurred, albeit at a lower frequency, in non-primate mammals and other vertebrates, indicating that this mechanism has been an important force shaping vertebrate genome evolution.

  11. Sequential evolution of bacterial morphology by co-option of a developmental regulator.

    PubMed

    Jiang, Chao; Brown, Pamela J B; Ducret, Adrien; Brun, Yves V

    2014-02-27

    What mechanisms underlie the transitions responsible for the diverse shapes observed in the living world? Although bacteria exhibit a myriad of morphologies, the mechanisms responsible for the evolution of bacterial cell shape are not understood. We investigated morphological diversity in a group of bacteria that synthesize an appendage-like extension of the cell envelope called the stalk. The location and number of stalks varies among species, as exemplified by three distinct subcellular positions of stalks within a rod-shaped cell body: polar in the genus Caulobacter and subpolar or bilateral in the genus Asticcacaulis. Here we show that a developmental regulator of Caulobacter crescentus, SpmX, is co-opted in the genus Asticcacaulis to specify stalk synthesis either at the subpolar or bilateral positions. We also show that stepwise evolution of a specific region of SpmX led to the gain of a new function and localization of this protein, which drove the sequential transition in stalk positioning. Our results indicate that changes in protein function, co-option and modularity are key elements in the evolution of bacterial morphology. Therefore, similar evolutionary principles of morphological transitions apply to both single-celled prokaryotes and multicellular eukaryotes.

  12. Organellar maturases: A window into the evolution of the spliceosome.

    PubMed

    Schmitz-Linneweber, Christian; Lampe, Marie-Kristin; Sultan, Laure D; Ostersetzer-Biran, Oren

    2015-09-01

    During the evolution of eukaryotic genomes, many genes have been interrupted by intervening sequences (introns) that must be removed post-transcriptionally from RNA precursors to form mRNAs ready for translation. The origin of nuclear introns is still under debate, but one hypothesis is that the spliceosome and the intron-exon structure of genes have evolved from bacterial-type group II introns that invaded the eukaryotic genomes. The group II introns were most likely introduced into the eukaryotic genome from an α-proteobacterial predecessor of mitochondria early during the endosymbiosis event. These self-splicing and mobile introns spread through the eukaryotic genome and later degenerated. Pieces of introns became part of the general splicing machinery we know today as the spliceosome. In addition, group II introns likely brought intron maturases with them to the nucleus. Maturases are found in most bacterial introns, where they act as highly specific splicing factors for group II introns. In the spliceosome, the core protein Prp8 shows homology to group II intron-encoded maturases. While maturases are entirely intron specific, their descendant of the spliceosomal machinery, the Prp8 protein, is an extremely versatile splicing factor with multiple interacting proteins and RNAs. How could such a general player in spliceosomal splicing evolve from the monospecific bacterial maturases? Analysis of the organellar splicing machinery in plants may give clues on the evolution of nuclear splicing. Plants encode various proteins which are closely related to bacterial maturases. The organellar genomes contain one maturase each, named MatK in chloroplasts and MatR in mitochondria. In addition, several maturase genes have been found in the nucleus as well, which are acting on mitochondrial pre-RNAs. All plant maturases show sequence deviation from their progenitor bacterial maturases, and interestingly are all acting on multiple organellar group II intron targets. Moreover

  13. BG7: A New Approach for Bacterial Genome Annotation Designed for Next Generation Sequencing Data

    PubMed Central

    Pareja-Tobes, Pablo; Manrique, Marina; Pareja-Tobes, Eduardo; Pareja, Eduardo; Tobes, Raquel

    2012-01-01

    BG7 is a new system for de novo bacterial, archaeal and viral genome annotation based on a new approach specifically designed for annotating genomes sequenced with next generation sequencing technologies. The system is versatile and able to annotate genes even in the step of preliminary assembly of the genome. It is especially efficient detecting unexpected genes horizontally acquired from bacterial or archaeal distant genomes, phages, plasmids, and mobile elements. From the initial phases of the gene annotation process, BG7 exploits the massive availability of annotated protein sequences in databases. BG7 predicts ORFs and infers their function based on protein similarity with a wide set of reference proteins, integrating ORF prediction and functional annotation phases in just one step. BG7 is especially tolerant to sequencing errors in start and stop codons, to frameshifts, and to assembly or scaffolding errors. The system is also tolerant to the high level of gene fragmentation which is frequently found in not fully assembled genomes. BG7 current version – which is developed in Java, takes advantage of Amazon Web Services (AWS) cloud computing features, but it can also be run locally in any operating system. BG7 is a fast, automated and scalable system that can cope with the challenge of analyzing the huge amount of genomes that are being sequenced with NGS technologies. Its capabilities and efficiency were demonstrated in the 2011 EHEC Germany outbreak in which BG7 was used to get the first annotations right the next day after the first entero-hemorrhagic E. coli genome sequences were made publicly available. The suitability of BG7 for genome annotation has been proved for Illumina, 454, Ion Torrent, and PacBio sequencing technologies. Besides, thanks to its plasticity, our system could be very easily adapted to work with new technologies in the future. PMID:23185310

  14. Weakly Deleterious Mutations and Low Rates of Recombination Limit the Impact of Natural Selection on Bacterial Genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Morgan N.; Arkin, Adam P.

    Free-living bacteria are usually thought to have large effective population sizes, and so tiny selective differences can drive their evolution. However, because recombination is infrequent, “background selection” against slightly deleterious alleles should reduce the effective population size (N e) by orders of magnitude. For example, for a well-mixed population with 10 12 individuals and a typical level of homologous recombination (r/m= 3, i.e., nucleotide changes due to recombination [r] occur at 3 times the mutation rate [m]), we predict that N e is<10 7. An argument for high N e values for bacteria has been the high genetic diversity withinmore » many bacterial “species,” but this diversity may be due to population structure: diversity across subpopulations can be far higher than diversity within a subpopulation, which makes it difficult to estimate N e correctly. Given an estimate ofN e, standard population genetics models imply that selection should be sufficient to drive evolution if N e ×s is >1, where s is the selection coefficient. We found that this remains approximately correct if background selection is occurring or when population structure is present. Overall, we predict that even for free-living bacteria with enormous populations, natural selection is only a significant force ifs is above 10 -7 or so. Because bacteria form huge populations with trillions of individuals, the simplest theoretical prediction is that the better allele at a site would predominate even if its advantage was just 10 -9 per generation. In other words, virtually every nucleotide would be at the local optimum in most individuals. A more sophisticated theory considers that bacterial genomes have millions of sites each and selection events on these many sites could interfere with each other, so that only larger effects would be important. However, bacteria can exchange genetic material, and in principle, this exchange could eliminate the interference between the

  15. Weakly Deleterious Mutations and Low Rates of Recombination Limit the Impact of Natural Selection on Bacterial Genomes

    DOE PAGES

    Price, Morgan N.; Arkin, Adam P.

    2015-12-15

    Free-living bacteria are usually thought to have large effective population sizes, and so tiny selective differences can drive their evolution. However, because recombination is infrequent, “background selection” against slightly deleterious alleles should reduce the effective population size (N e) by orders of magnitude. For example, for a well-mixed population with 10 12 individuals and a typical level of homologous recombination (r/m= 3, i.e., nucleotide changes due to recombination [r] occur at 3 times the mutation rate [m]), we predict that N e is<10 7. An argument for high N e values for bacteria has been the high genetic diversity withinmore » many bacterial “species,” but this diversity may be due to population structure: diversity across subpopulations can be far higher than diversity within a subpopulation, which makes it difficult to estimate N e correctly. Given an estimate ofN e, standard population genetics models imply that selection should be sufficient to drive evolution if N e ×s is >1, where s is the selection coefficient. We found that this remains approximately correct if background selection is occurring or when population structure is present. Overall, we predict that even for free-living bacteria with enormous populations, natural selection is only a significant force ifs is above 10 -7 or so. Because bacteria form huge populations with trillions of individuals, the simplest theoretical prediction is that the better allele at a site would predominate even if its advantage was just 10 -9 per generation. In other words, virtually every nucleotide would be at the local optimum in most individuals. A more sophisticated theory considers that bacterial genomes have millions of sites each and selection events on these many sites could interfere with each other, so that only larger effects would be important. However, bacteria can exchange genetic material, and in principle, this exchange could eliminate the interference between the

  16. The scope and strength of sex-specific selection in genome evolution

    PubMed Central

    Wright, A E; Mank, J E

    2013-01-01

    Males and females share the vast majority of their genomes and yet are often subject to different, even conflicting, selection. Genomic and transcriptomic developments have made it possible to assess sex-specific selection at the molecular level, and it is clear that sex-specific selection shapes the evolutionary properties of several genomic characteristics, including transcription, post-transcriptional regulation, imprinting, genome structure and gene sequence. Sex-specific selection is strongly influenced by mating system, which also causes neutral evolutionary changes that affect different regions of the genome in different ways. Here, we synthesize theoretical and molecular work in order to provide a cohesive view of the role of sex-specific selection and mating system in genome evolution. We also highlight the need for a combined approach, incorporating both genomic data and experimental phenotypic studies, in order to understand precisely how sex-specific selection drives evolutionary change across the genome. PMID:23848139

  17. Clonal evolution of acute myeloid leukemia highlighted by latest genome sequencing studies.

    PubMed

    Zhang, Xuehong; Lv, Dekang; Zhang, Yu; Liu, Quentin; Li, Zhiguang

    2016-09-06

    Decades of years might be required for an initiated cell to become a fully-pledged, metastasized tumor. DNA mutations are accumulated during this process including background mutations that emerge scholastically, as well as driver mutations that selectively occur in a handful of cancer genes and confer the cell a growth advantage over its neighbors. A clone of tumor cells could be superseded by another clone that acquires new mutations and grows more aggressively. Tumor evolutional patterns have been studied for years using conventional approaches that focus on the investigation of a single or a couple of genes. Latest deep sequencing technology enables a global view of tumor evolution by deciphering almost all genome aberrations in a tumor. Tumor clones and the fate of each clone during tumor evolution can be depicted with the help of the concept of variant allele frequency. Here, we summarize the new insights of cancer evolutional progression in acute myeloid leukemia. Cancer evolution is currently thought to start from a clone that has accumulated the requisite somatically-acquired genetic aberrations through a series of increasingly disordered clinical and pathological phases, eventually leading to malignant transformation [1-3]. The observations in invasive colorectal cancer that usually emerges from an antecedent benign adenomatous polyp and in cervical cancer that proceeds through intraepithelial neoplasia support the idea of stepwise or linear cancerous progression [3-5]. Genetically, such progression is achieved by successive waves of clonal expansion during which cells acquire novel genomic alterations including single nucleotide variants (SNVs), small insertions and deletions (indels), and/or copy number variations (CNVs) [6]. The latest improvement in sequencing technology has allowed the deciphering of the whole exome or genome in different types of tumor and normal tissue pairs, providing detailed catalogue about genome aberrations during tumor

  18. Effect of NO2(-) on stable isotope fractionation during bacterial sulfate reduction.

    PubMed

    Einsiedl, Florian

    2009-01-01

    The effects of low NO2(-) concentrations on stable isotope fractionation during dissimilatory sulfate reduction by strain Desulfovibrio desulfuricans were investigated. Nitrite, formed as an intermediate during nitrification and denitrification processes in marine and freshwater habitats, inhibits the reduction of the sulfuroxy intermediate SO3(2-) to H2S even at low concentrations. To gain an understanding of the inhibition effect of the reduction of the sulfuroxy intermediate on stable isotope fractionation in sulfur and oxygen during bacterial sulfate reduction, nitrite was added in the form of short pulses. In the batch experiments that contained 0.02, 0.05, and 0.1 mM nitrite, sulfur enrichment factors epsilon of -12 +/- 1.6, -15 +/- 1.1, and -26 +/- 1.3 per thousand, respectively were observed. In the control experiment (no addition of nitrite) a sulfur enrichment factor epsilon of around -11 per thousand was calculated. In the experiments that contained no 18O enriched water (delta18O: -10 per thousand) and nitrite concentrations of 0.02, 0.05, and 0.1 mM, delta18O values in the remaining sulfate were fairly constant during the experiments (delta18O sulfate: approximately equal to 10 per thousand) and were similar to those obtained from the control experiment (no nitrite and no enriched water). However, in the batch experiments that contained 18O enriched water (+700 per thousand) and nitrite concentrations of 0.05 and 0.1 mM increasing delta18O values in the remaining sulfate from around 15 per thousand to approximately 65 and 85 per thousand, respectively, were found. Our experiments that contained isotopic enriched water and nitrite show clear evidence that the ratio of forward and backward fluxes regulated by adenosine-5'-phosphosulfate reductase (APSR) controls the extent of sulfur isotope fractionation during bacterial sulfate reduction in strain Desulfovibrio desulfuricans. Since the metabolic sulfuroxy intermediate SO3(2-) exchanges with water

  19. Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A

    PubMed Central

    Salzberg, Steven L; Sommer, Daniel D; Schatz, Michael C; Phillippy, Adam M; Rabinowicz, Pablo D; Tsuge, Seiji; Furutani, Ayako; Ochiai, Hirokazu; Delcher, Arthur L; Kelley, David; Madupu, Ramana; Puiu, Daniela; Radune, Diana; Shumway, Martin; Trapnell, Cole; Aparna, Gudlur; Jha, Gopaljee; Pandey, Alok; Patil, Prabhu B; Ishihara, Hiromichi; Meyer, Damien F; Szurek, Boris; Verdier, Valerie; Koebnik, Ralf; Dow, J Maxwell; Ryan, Robert P; Hirata, Hisae; Tsuyumu, Shinji; Won Lee, Sang; Ronald, Pamela C; Sonti, Ramesh V; Van Sluys, Marie-Anne; Leach, Jan E; White, Frank F; Bogdanove, Adam J

    2008-01-01

    Background Xanthomonas oryzae pv. oryzae causes bacterial blight of rice (Oryza sativa L.), a major disease that constrains production of this staple crop in many parts of the world. We report here on the complete genome sequence of strain PXO99A and its comparison to two previously sequenced strains, KACC10331 and MAFF311018, which are highly similar to one another. Results The PXO99A genome is a single circular chromosome of 5,240,075 bp, considerably longer than the genomes of the other strains (4,941,439 bp and 4,940,217 bp, respectively), and it contains 5083 protein-coding genes, including 87 not found in KACC10331 or MAFF311018. PXO99A contains a greater number of virulence-associated transcription activator-like effector genes and has at least ten major chromosomal rearrangements relative to KACC10331 and MAFF311018. PXO99A contains numerous copies of diverse insertion sequence elements, members of which are associated with 7 out of 10 of the major rearrangements. A rapidly-evolving CRISPR (clustered regularly interspersed short palindromic repeats) region contains evidence of dozens of phage infections unique to the PXO99A lineage. PXO99A also contains a unique, near-perfect tandem repeat of 212 kilobases close to the replication terminus. Conclusion Our results provide striking evidence of genome plasticity and rapid evolution within Xanthomonas oryzae pv. oryzae. The comparisons point to sources of genomic variation and candidates for strain-specific adaptations of this pathogen that help to explain the extraordinary diversity of Xanthomonas oryzae pv. oryzae genotypes and races that have been isolated from around the world. PMID:18452608

  20. Evolution and Diversity of the Human Hepatitis D Virus Genome

    PubMed Central

    Huang, Chi-Ruei; Lo, Szecheng J.

    2010-01-01

    Human hepatitis delta virus (HDV) is the smallest RNA virus in genome. HDV genome is divided into a viroid-like sequence and a protein-coding sequence which could have originated from different resources and the HDV genome was eventually constituted through RNA recombination. The genome subsequently diversified through accumulation of mutations selected by interactions between the mutated RNA and proteins with host factors to successfully form the infectious virions. Therefore, we propose that the conservation of HDV nucleotide sequence is highly related with its functionality. Genome analysis of known HDV isolates shows that the C-terminal coding sequences of large delta antigen (LDAg) are the highest diversity than other regions of protein-coding sequences but they still retain biological functionality to interact with the heavy chain of clathrin can be selected and maintained. Since viruses interact with many host factors, including escaping the host immune response, how to design a program to predict RNA genome evolution is a great challenging work. PMID:20204073

  1. Weird Animals, Sex, and Genome Evolution.

    PubMed

    Graves, Jennifer A Marshall

    2018-02-15

    Making my career in Australia exposed me to the tyranny of distance, but it gave me opportunities to study our unique native fauna. Distantly related animal species present genetic variation that we can use to explore the most fundamental biological structures and processes. I have compared chromosomes and genomes of kangaroos and platypus, tiger snakes and emus, devils (Tasmanian) and dragons (lizards). I particularly love the challenges posed by sex chromosomes, which, apart from determining sex, provide stunning examples of epigenetic control and break all the evolutionary rules that we currently understand. Here I describe some of those amazing animals and the insights on genome structure, function, and evolution they have afforded us. I also describe my sometimes-random walk in science and the factors and people who influenced my direction. Being a woman in science is still not easy, and I hope others will find encouragement and empathy in my story.

  2. Parasitic plants have increased rates of molecular evolution across all three genomes

    PubMed Central

    2013-01-01

    Background Theoretical models and experimental evidence suggest that rates of molecular evolution could be raised in parasitic organisms compared to non-parasitic taxa. Parasitic plants provide an ideal test for these predictions, as there are at least a dozen independent origins of the parasitic lifestyle in angiosperms. Studies of a number of parasitic plant lineages have suggested faster rates of molecular evolution, but the results of some studies have been mixed. Comparative analysis of all parasitic plant lineages, including sequences from all three genomes, is needed to examine the generality of the relationship between rates of molecular evolution and parasitism in plants. Results We analysed DNA sequence data from the mitochondrial, nuclear and chloroplast genomes for 12 independent evolutionary origins of parasitism in angiosperms. We demonstrated that parasitic lineages have a faster rate of molecular evolution than their non-parasitic relatives in sequences for all three genomes, for both synonymous and nonsynonymous substitutions. Conclusions Our results prove that raised rates of molecular evolution are a general feature of parasitic plants, not confined to a few taxa or specific genes. We discuss possible causes for this relationship, including increased positive selection associated with host-parasite arms races, relaxed selection, reduced population size or repeated bottlenecks, increased mutation rates, and indirect causal links with generation time and body size. We find no evidence that faster rates are due to smaller effective populations sizes or changes in selection pressure. Instead, our results suggest that parasitic plants have a higher mutation rate than their close non-parasitic relatives. This may be due to a direct connection, where some aspect of the parasitic lifestyle drives the evolution of raised mutation rates. Alternatively, this pattern may be driven by an indirect connection between rates and parasitism: for example, parasitic

  3. Parasitic plants have increased rates of molecular evolution across all three genomes.

    PubMed

    Bromham, Lindell; Cowman, Peter F; Lanfear, Robert

    2013-06-19

    Theoretical models and experimental evidence suggest that rates of molecular evolution could be raised in parasitic organisms compared to non-parasitic taxa. Parasitic plants provide an ideal test for these predictions, as there are at least a dozen independent origins of the parasitic lifestyle in angiosperms. Studies of a number of parasitic plant lineages have suggested faster rates of molecular evolution, but the results of some studies have been mixed. Comparative analysis of all parasitic plant lineages, including sequences from all three genomes, is needed to examine the generality of the relationship between rates of molecular evolution and parasitism in plants. We analysed DNA sequence data from the mitochondrial, nuclear and chloroplast genomes for 12 independent evolutionary origins of parasitism in angiosperms. We demonstrated that parasitic lineages have a faster rate of molecular evolution than their non-parasitic relatives in sequences for all three genomes, for both synonymous and nonsynonymous substitutions. Our results prove that raised rates of molecular evolution are a general feature of parasitic plants, not confined to a few taxa or specific genes. We discuss possible causes for this relationship, including increased positive selection associated with host-parasite arms races, relaxed selection, reduced population size or repeated bottlenecks, increased mutation rates, and indirect causal links with generation time and body size. We find no evidence that faster rates are due to smaller effective populations sizes or changes in selection pressure. Instead, our results suggest that parasitic plants have a higher mutation rate than their close non-parasitic relatives. This may be due to a direct connection, where some aspect of the parasitic lifestyle drives the evolution of raised mutation rates. Alternatively, this pattern may be driven by an indirect connection between rates and parasitism: for example, parasitic plants tend to be smaller than

  4. Characterizing the walnut genome through analyses of BAC end sequences

    USDA-ARS?s Scientific Manuscript database

    Persian walnut (Juglans regia L.) is an economically important tree for its nut crop and timber. To gain insight into the structure and evolution of the walnut genome, we constructed two bacterial artificial chromosome (BAC) libraries, containing a total of 129,024 clones, from in vitro-grown shoots...

  5. Metabolic 'engines' of flight drive genome size reduction in birds.

    PubMed

    Wright, Natalie A; Gregory, T Ryan; Witt, Christopher C

    2014-03-22

    The tendency for flying organisms to possess small genomes has been interpreted as evidence of natural selection acting on the physical size of the genome. Nonetheless, the flight-genome link and its mechanistic basis have yet to be well established by comparative studies within a volant clade. Is there a particular functional aspect of flight such as brisk metabolism, lift production or maneuverability that impinges on the physical genome? We measured genome sizes, wing dimensions and heart, flight muscle and body masses from a phylogenetically diverse set of bird species. In phylogenetically controlled analyses, we found that genome size was negatively correlated with relative flight muscle size and heart index (i.e. ratio of heart to body mass), but positively correlated with body mass and wing loading. The proportional masses of the flight muscles and heart were the most important parameters explaining variation in genome size in multivariate models. Hence, the metabolic intensity of powered flight appears to have driven genome size reduction in birds.

  6. Absence of genome reduction in diverse, facultative endohyphal bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baltrus, David A.; Dougherty, Kevin; Arendt, Kayla R.

    Fungi interact closely with bacteria, both on the surfaces of the hyphae and within their living tissues (i.e. endohyphal bacteria, EHB). These EHB can be obligate or facultative symbionts and can mediate diverse phenotypic traits in their hosts. Although EHB have been observed in many lineages of fungi, it remains unclear how widespread and general these associations are, and whether there are unifying ecological and genomic features can be found across EHB strains as a whole. We cultured 11 bacterial strains after they emerged from the hyphae of diverse Ascomycota that were isolated as foliar endophytes of cupressaceous trees, andmore » generated nearly complete genome sequences for all. Unlike the genomes of largely obligate EHB, the genomes of these facultative EHB resembled those of closely related strains isolated from environmental sources. Although all analysed genomes encoded structures that could be used to interact with eukaryotic hosts, pathways previously implicated in maintenance and establishment of EHB symbiosis were not universally present across all strains. Independent isolation of two nearly identical pairs of strains from different classes of fungi, coupled with recent experimental evidence, suggests horizontal transfer of EHB across endophytic hosts. Given the potential for EHB to influence fungal phenotypes, these genomes could shed light on the mechanisms of plant growth promotion or stress mitigation by fungal endophytes during the symbiotic phase, as well as degradation of plant material during the saprotrophic phase. As such, these findings contribute to the illumination of a new dimension of functional biodiversity in fungi.« less

  7. Absence of genome reduction in diverse, facultative endohyphal bacteria

    DOE PAGES

    Baltrus, David A.; Dougherty, Kevin; Arendt, Kayla R.; ...

    2017-02-28

    Fungi interact closely with bacteria, both on the surfaces of the hyphae and within their living tissues (i.e. endohyphal bacteria, EHB). These EHB can be obligate or facultative symbionts and can mediate diverse phenotypic traits in their hosts. Although EHB have been observed in many lineages of fungi, it remains unclear how widespread and general these associations are, and whether there are unifying ecological and genomic features can be found across EHB strains as a whole. We cultured 11 bacterial strains after they emerged from the hyphae of diverse Ascomycota that were isolated as foliar endophytes of cupressaceous trees, andmore » generated nearly complete genome sequences for all. Unlike the genomes of largely obligate EHB, the genomes of these facultative EHB resembled those of closely related strains isolated from environmental sources. Although all analysed genomes encoded structures that could be used to interact with eukaryotic hosts, pathways previously implicated in maintenance and establishment of EHB symbiosis were not universally present across all strains. Independent isolation of two nearly identical pairs of strains from different classes of fungi, coupled with recent experimental evidence, suggests horizontal transfer of EHB across endophytic hosts. Given the potential for EHB to influence fungal phenotypes, these genomes could shed light on the mechanisms of plant growth promotion or stress mitigation by fungal endophytes during the symbiotic phase, as well as degradation of plant material during the saprotrophic phase. As such, these findings contribute to the illumination of a new dimension of functional biodiversity in fungi.« less

  8. Extreme Recombination Frequencies Shape Genome Variation and Evolution in the Honeybee, Apis mellifera

    PubMed Central

    Wallberg, Andreas; Glémin, Sylvain; Webster, Matthew T.

    2015-01-01

    Meiotic recombination is a fundamental cellular process, with important consequences for evolution and genome integrity. However, we know little about how recombination rates vary across the genomes of most species and the molecular and evolutionary determinants of this variation. The honeybee, Apis mellifera, has extremely high rates of meiotic recombination, although the evolutionary causes and consequences of this are unclear. Here we use patterns of linkage disequilibrium in whole genome resequencing data from 30 diploid honeybees to construct a fine-scale map of rates of crossing over in the genome. We find that, in contrast to vertebrate genomes, the recombination landscape is not strongly punctate. Crossover rates strongly correlate with levels of genetic variation, but not divergence, which indicates a pervasive impact of selection on the genome. Germ-line methylated genes have reduced crossover rate, which could indicate a role of methylation in suppressing recombination. Controlling for the effects of methylation, we do not infer a strong association between gene expression patterns and recombination. The site frequency spectrum is strongly skewed from neutral expectations in honeybees: rare variants are dominated by AT-biased mutations, whereas GC-biased mutations are found at higher frequencies, indicative of a major influence of GC-biased gene conversion (gBGC), which we infer to generate an allele fixation bias 5 – 50 times the genomic average estimated in humans. We uncover further evidence that this repair bias specifically affects transitions and favours fixation of CpG sites. Recombination, via gBGC, therefore appears to have profound consequences on genome evolution in honeybees and interferes with the process of natural selection. These findings have important implications for our understanding of the forces driving molecular evolution. PMID:25902173

  9. Mobile genetic element proliferation and gene inactivation impact over the genome structure and metabolic capabilities of Sodalis glossinidius, the secondary endosymbiont of tsetse flies

    PubMed Central

    2010-01-01

    Background Genome reduction is a common evolutionary process in symbiotic and pathogenic bacteria. This process has been extensively characterized in bacterial endosymbionts of insects, where primary mutualistic bacteria represent the most extreme cases of genome reduction consequence of a massive process of gene inactivation and loss during their evolution from free-living ancestors. Sodalis glossinidius, the secondary endosymbiont of tsetse flies, contains one of the few complete genomes of bacteria at the very beginning of the symbiotic association, allowing to evaluate the relative impact of mobile genetic element proliferation and gene inactivation over the structure and functional capabilities of this bacterial endosymbiont during the transition to a host dependent lifestyle. Results A detailed characterization of mobile genetic elements and pseudogenes reveals a massive presence of different types of prophage elements together with five different families of IS elements that have proliferated across the genome of Sodalis glossinidius at different levels. In addition, a detailed survey of intergenic regions allowed the characterization of 1501 pseudogenes, a much higher number than the 972 pseudogenes described in the original annotation. Pseudogene structure reveals a minor impact of mobile genetic element proliferation in the process of gene inactivation, with most of pseudogenes originated by multiple frameshift mutations and premature stop codons. The comparison of metabolic profiles of Sodalis glossinidius and tsetse fly primary endosymbiont Wiglesworthia glossinidia based on their whole gene and pseudogene repertoires revealed a novel case of pathway inactivation, the arginine biosynthesis, in Sodalis glossinidius together with a possible case of metabolic complementation with Wigglesworthia glossinidia for thiamine biosynthesis. Conclusions The complete re-analysis of the genome sequence of Sodalis glossinidius reveals novel insights in the

  10. Complete Genome Viral Phylogenies Suggests the Concerted Evolution of Regulatory Cores and Accessory Satellites

    PubMed Central

    Zanotto, Paolo Marinho de Andrade; Krakauer, David C.

    2008-01-01

    We consider the concerted evolution of viral genomes in four families of DNA viruses. Given the high rate of horizontal gene transfer among viruses and their hosts, it is an open question as to how representative particular genes are of the evolutionary history of the complete genome. To address the concerted evolution of viral genes, we compared genomic evolution across four distinct, extant viral families. For all four viral families we constructed DNA-dependent DNA polymerase-based (DdDp) phylogenies and in addition, whole genome sequence, as quantitative descriptions of inter-genome relationships. We found that the history of the polymerase gene was highly predictive of the history of the genome as a whole, which we explain in terms of repeated, co-divergence events of the core DdDp gene accompanied by a number of satellite, accessory genetic loci. We also found that the rate of gene gain in baculovirus and poxviruses proceeds significantly more quickly than the rate of gene loss and that there is convergent acquisition of satellite functions promoting contextual adaptation when distinct viral families infect related hosts. The congruence of the genome and polymerase trees suggests that a large set of viral genes, including polymerase, derive from a phylogenetically conserved core of genes of host origin, secondarily reinforced by gene acquisition from common hosts or co-infecting viruses within the host. A single viral genome can be thought of as a mutualistic network, with the core genes acting as an effective host and the satellite genes as effective symbionts. Larger virus genomes show a greater departure from linkage equilibrium between core and satellites functions. PMID:18941535

  11. Nomadic lifestyle of Lactobacillus plantarum revealed by comparative genomics of 54 strains isolated from different habitats.

    PubMed

    Martino, Maria Elena; Bayjanov, Jumamurat R; Caffrey, Brian E; Wels, Michiel; Joncour, Pauline; Hughes, Sandrine; Gillet, Benjamin; Kleerebezem, Michiel; van Hijum, Sacha A F T; Leulier, François

    2016-12-01

    The ability of bacteria to adapt to diverse environmental conditions is well-known. The process of bacterial adaptation to a niche has been linked to large changes in the genome content, showing that many bacterial genomes reflect the constraints imposed by their habitat. However, some highly versatile bacteria are found in diverse habitats that almost share nothing in common. Lactobacillus plantarum is a lactic acid bacterium that is found in a large variety of habitat. With the aim of unravelling the link between evolution and ecological versatility of L. plantarum, we analysed the genomes of 54 L. plantarum strains isolated from different environments. Comparative genome analysis identified a high level of genomic diversity and plasticity among the strains analysed. Phylogenomic and functional divergence studies coupled with gene-trait matching analyses revealed a mixed distribution of the strains, which was uncoupled from their environmental origin. Our findings revealed the absence of specific genomic signatures marking adaptations of L. plantarum towards the diverse habitats it is associated with. This suggests fundamentally similar trends of genome evolution in L. plantarum, which occur in a manner that is apparently uncoupled from ecological constraint and reflects the nomadic lifestyle of this species. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Azolla--a model organism for plant genomic studies.

    PubMed

    Qiu, Yin-Long; Yu, Jun

    2003-02-01

    The aquatic ferns of the genus Azolla are nitrogen-fixing plants that have great potentials in agricultural production and environmental conservation. Azolla in many aspects is qualified to serve as a model organism for genomic studies because of its importance in agriculture, its unique position in plant evolution, its symbiotic relationship with the N2-fixing cyanobacterium, Anabaena azollae, and its moderate-sized genome. The goals of this genome project are not only to understand the biology of the Azolla genome to promote its applications in biological research and agriculture practice but also to gain critical insights about evolution of plant genomes. Together with the strategic and technical improvement as well as cost reduction of DNA sequencing, the deciphering of their genetic code is imminent.

  13. Prokaryote genome fluidity: toward a system approach of the mobilome.

    PubMed

    Toussaint, Ariane; Chandler, Mick

    2012-01-01

    The importance of horizontal/lateral gene transfer (LGT) in shaping the genomes of prokaryotic organisms has been recognized in recent years as a result of analysis of the increasing number of available genome sequences. LGT is largely due to the transfer and recombination activities of mobile genetic elements (MGEs). Bacterial and archaeal genomes are mosaics of vertically and horizontally transmitted DNA segments. This generates reticulate relationships between members of the prokaryotic world that are better represented by networks than by "classical" phylogenetic trees. In this review we summarize the nature and activities of MGEs, and the problems that presently limit their analysis on a large scale. We propose routes to improve their annotation in the flow of genomic and metagenomic sequences that currently exist and those that become available. We describe network analysis of evolutionary relationships among some MGE categories and sketch out possible developments of this type of approach to get more insight into the role of the mobilome in bacterial adaptation and evolution.

  14. The scope and strength of sex-specific selection in genome evolution.

    PubMed

    Wright, A E; Mank, J E

    2013-09-01

    Males and females share the vast majority of their genomes and yet are often subject to different, even conflicting, selection. Genomic and transcriptomic developments have made it possible to assess sex-specific selection at the molecular level, and it is clear that sex-specific selection shapes the evolutionary properties of several genomic characteristics, including transcription, post-transcriptional regulation, imprinting, genome structure and gene sequence. Sex-specific selection is strongly influenced by mating system, which also causes neutral evolutionary changes that affect different regions of the genome in different ways. Here, we synthesize theoretical and molecular work in order to provide a cohesive view of the role of sex-specific selection and mating system in genome evolution. We also highlight the need for a combined approach, incorporating both genomic data and experimental phenotypic studies, in order to understand precisely how sex-specific selection drives evolutionary change across the genome. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  15. A sensitive, support-vector-machine method for the detection of horizontal gene transfers in viral, archaeal and bacterial genomes.

    PubMed

    Tsirigos, Aristotelis; Rigoutsos, Isidore

    2005-01-01

    In earlier work, we introduced and discussed a generalized computational framework for identifying horizontal transfers. This framework relied on a gene's nucleotide composition, obviated the need for knowledge of codon boundaries and database searches, and was shown to perform very well across a wide range of archaeal and bacterial genomes when compared with previously published approaches, such as Codon Adaptation Index and C + G content. Nonetheless, two considerations remained outstanding: we wanted to further increase the sensitivity of detecting horizontal transfers and also to be able to apply the method to increasingly smaller genomes. In the discussion that follows, we present such a method, Wn-SVM, and show that it exhibits a very significant improvement in sensitivity compared with earlier approaches. Wn-SVM uses a one-class support-vector machine and can learn using rather small training sets. This property makes Wn-SVM particularly suitable for studying small-size genomes, similar to those of viruses, as well as the typically larger archaeal and bacterial genomes. We show experimentally that the new method results in a superior performance across a wide range of organisms and that it improves even upon our own earlier method by an average of 10% across all examined genomes. As a small-genome case study, we analyze the genome of the human cytomegalovirus and demonstrate that Wn-SVM correctly identifies regions that are known to be conserved and prototypical of all beta-herpesvirinae, regions that are known to have been acquired horizontally from the human host and, finally, regions that had not up to now been suspected to be horizontally transferred. Atypical region predictions for many eukaryotic viruses, including the alpha-, beta- and gamma-herpesvirinae, and 123 archaeal and bacterial genomes, have been made available online at http://cbcsrv.watson.ibm.com/HGT_SVM/.

  16. Chloroplast Genome Evolution in Early Diverged Leptosporangiate Ferns

    PubMed Central

    Kim, Hyoung Tae; Chung, Myong Gi; Kim, Ki-Joong

    2014-01-01

    In this study, the chloroplast (cp) genome sequences from three early diverged leptosporangiate ferns were completed and analyzed in order to understand the evolution of the genome of the fern lineages. The complete cp genome sequence of Osmunda cinnamomea (Osmundales) was 142,812 base pairs (bp). The cp genome structure was similar to that of eusporangiate ferns. The gene/intron losses that frequently occurred in the cp genome of leptosporangiate ferns were not found in the cp genome of O. cinnamomea. In addition, putative RNA editing sites in the cp genome were rare in O. cinnamomea, even though the sites were frequently predicted to be present in leptosporangiate ferns. The complete cp genome sequence of Diplopterygium glaucum (Gleicheniales) was 151,007 bp and has a 9.7 kb inversion between the trnL-CAA and trnV-GCA genes when compared to O. cinnamomea. Several repeated sequences were detected around the inversion break points. The complete cp genome sequence of Lygodium japonicum (Schizaeales) was 157,142 bp and a deletion of the rpoC1 intron was detected. This intron loss was shared by all of the studied species of the genus Lygodium. The GC contents and the effective numbers of co-dons (ENCs) in ferns varied significantly when compared to seed plants. The ENC values of the early diverged leptosporangiate ferns showed intermediate levels between eusporangiate and core leptosporangiate ferns. However, our phylogenetic tree based on all of the cp gene sequences clearly indicated that the cp genome similarity between O. cinnamomea (Osmundales) and eusporangiate ferns are symplesiomorphies, rather than synapomorphies. Therefore, our data is in agreement with the view that Osmundales is a distinct early diverged lineage in the leptosporangiate ferns. PMID:24823358

  17. Chloroplast genome evolution in early diverged leptosporangiate ferns.

    PubMed

    Kim, Hyoung Tae; Chung, Myong Gi; Kim, Ki-Joong

    2014-05-01

    In this study, the chloroplast (cp) genome sequences from three early diverged leptosporangiate ferns were completed and analyzed in order to understand the evolution of the genome of the fern lineages. The complete cp genome sequence of Osmunda cinnamomea (Osmundales) was 142,812 base pairs (bp). The cp genome structure was similar to that of eusporangiate ferns. The gene/intron losses that frequently occurred in the cp genome of leptosporangiate ferns were not found in the cp genome of O. cinnamomea. In addition, putative RNA editing sites in the cp genome were rare in O. cinnamomea, even though the sites were frequently predicted to be present in leptosporangiate ferns. The complete cp genome sequence of Diplopterygium glaucum (Gleicheniales) was 151,007 bp and has a 9.7 kb inversion between the trnL-CAA and trnVGCA genes when compared to O. cinnamomea. Several repeated sequences were detected around the inversion break points. The complete cp genome sequence of Lygodium japonicum (Schizaeales) was 157,142 bp and a deletion of the rpoC1 intron was detected. This intron loss was shared by all of the studied species of the genus Lygodium. The GC contents and the effective numbers of codons (ENCs) in ferns varied significantly when compared to seed plants. The ENC values of the early diverged leptosporangiate ferns showed intermediate levels between eusporangiate and core leptosporangiate ferns. However, our phylogenetic tree based on all of the cp gene sequences clearly indicated that the cp genome similarity between O. cinnamomea (Osmundales) and eusporangiate ferns are symplesiomorphies, rather than synapomorphies. Therefore, our data is in agreement with the view that Osmundales is a distinct early diverged lineage in the leptosporangiate ferns.

  18. Genomics, evolution and development of amphioxus and tunicates: The Goldilocks principle.

    PubMed

    Holland, Linda Z

    2015-06-01

    Morphological comparisons among extant animals have long been used to infer their long-extinct ancestors for which the fossil record is poor or non-existent. For evolution of the vertebrates, the comparison has typically involved amphioxus and vertebrates. Both groups are evolving relatively slowly, and their genomes share a high level of synteny. Both vertebrates and amphioxus have regulative development in which cell fates become fixed only gradually during embryogenesis. Thus, their development fits a modified hourglass model in which constraints are greatest at the phylotypic stage (i.e., the late neurula/early larva), but are somewhat greater on earlier development than on later development. In contrast, the third group of chordates, the tunicates, which are sister group to vertebrates, are evolving rapidly. Constraints on evolution of tunicate genomes are relaxed, and they have discarded key developmental genes and organized much of their coding sequences into operons, which are transcribed as a single mRNA that undergoes trans-splicing. This contrasts with vertebrates and amphioxus, whose genomes are not organized into operons. Concomitantly, tunicates have switched to determinant development with very early fixation of cell fates. Thus, tunicate development more closely fits a progressive divergence model (shaped more like a wine glass than an hourglass) in which the constraints on the zygote and very early development are greatest. This model can help explain why tunicate body plans are so very diverse. The relaxed constraints on development after early cleavage stages are correlated with relaxed constraints on genome evolution. The question remains: which came first? © 2014 Wiley Periodicals, Inc.

  19. Rapid Identification of Bacterial Virulence Factors

    DTIC Science & Technology

    2014-04-15

    protein sorting and transport. F/’/wyi-deletion mutants had decreased invasiveness of HeLa cells when compared to their parental strain, and it has...mileux. Bacteria with intracellular life styles and have reductive genomes often have many different ABC transporters. This is certainly the case in...34 Microbiology 151:2975-2986. Newman , R.M., P. Salunkhe, A. Godzik, J.C. Reed. 2006. Identification and Characterization of a Novel Bacterial

  20. Comparative Analyses of DNA Methylation and Sequence Evolution Using Nasonia Genomes

    PubMed Central

    Park, Jungsun; Peng, Zuogang; Zeng, Jia; Elango, Navin; Park, Taesung; Wheeler, Dave; Werren, John H.; Yi, Soojin V.

    2011-01-01

    The functional and evolutionary significance of DNA methylation in insect genomes remains to be resolved. Nasonia is well situated for comparative analyses of DNA methylation and genome evolution, since the genomes of a moderately distant outgroup species as well as closely related sibling species are available. Using direct sequencing of bisulfite-converted DNA, we uncovered a substantial level of DNA methylation in 17 of 18 Nasonia vitripennis genes and a strong correlation between methylation level and CpG depletion. Notably, in the sex-determining locus transformer, the exon that is alternatively spliced between the sexes is heavily methylated in both males and females, whereas other exons are only sparsely methylated. Orthologous genes of the honeybee and Nasonia show highly similar relative levels of CpG depletion, despite ∼190 My divergence. Densely and sparsely methylated genes in these species also exhibit similar functional enrichments. We found that the degree of CpG depletion is negatively correlated with substitution rates between closely related Nasonia species for synonymous, nonsynonymous, and intron sites. This suggests that mutation rates increase with decreasing levels of germ line methylation. Thus, DNA methylation is prevalent in the Nasonia genome, may participate in regulatory processes such as sex determination and alternative splicing, and is correlated with several aspects of genome and sequence evolution. PMID:21693438

  1. Animals in a bacterial world, a new imperative for the life sciences

    PubMed Central

    McFall-Ngai, Margaret; Hadfield, Michael G.; Bosch, Thomas C. G.; Carey, Hannah V.; Domazet-Lošo, Tomislav; Douglas, Angela E.; Dubilier, Nicole; Eberl, Gerard; Fukami, Tadashi; Gilbert, Scott F.; Hentschel, Ute; King, Nicole; Kjelleberg, Staffan; Knoll, Andrew H.; Kremer, Natacha; Mazmanian, Sarkis K.; Metcalf, Jessica L.; Nealson, Kenneth; Pierce, Naomi E.; Rawls, John F.; Reid, Ann; Ruby, Edward G.; Rumpho, Mary; Sanders, Jon G.; Tautz, Diethard; Wernegreen, Jennifer J.

    2013-01-01

    In the last two decades, the widespread application of genetic and genomic approaches has revealed a bacterial world astonishing in its ubiquity and diversity. This review examines how a growing knowledge of the vast range of animal–bacterial interactions, whether in shared ecosystems or intimate symbioses, is fundamentally altering our understanding of animal biology. Specifically, we highlight recent technological and intellectual advances that have changed our thinking about five questions: how have bacteria facilitated the origin and evolution of animals; how do animals and bacteria affect each other’s genomes; how does normal animal development depend on bacterial partners; how is homeostasis maintained between animals and their symbionts; and how can ecological approaches deepen our understanding of the multiple levels of animal–bacterial interaction. As answers to these fundamental questions emerge, all biologists will be challenged to broaden their appreciation of these interactions and to include investigations of the relationships between and among bacteria and their animal partners as we seek a better understanding of the natural world. PMID:23391737

  2. SigmoID: a user-friendly tool for improving bacterial genome annotation through analysis of transcription control signals

    PubMed Central

    Damienikan, Aliaksandr U.

    2016-01-01

    The majority of bacterial genome annotations are currently automated and based on a ‘gene by gene’ approach. Regulatory signals and operon structures are rarely taken into account which often results in incomplete and even incorrect gene function assignments. Here we present SigmoID, a cross-platform (OS X, Linux and Windows) open-source application aiming at simplifying the identification of transcription regulatory sites (promoters, transcription factor binding sites and terminators) in bacterial genomes and providing assistance in correcting annotations in accordance with regulatory information. SigmoID combines a user-friendly graphical interface to well known command line tools with a genome browser for visualising regulatory elements in genomic context. Integrated access to online databases with regulatory information (RegPrecise and RegulonDB) and web-based search engines speeds up genome analysis and simplifies correction of genome annotation. We demonstrate some features of SigmoID by constructing a series of regulatory protein binding site profiles for two groups of bacteria: Soft Rot Enterobacteriaceae (Pectobacterium and Dickeya spp.) and Pseudomonas spp. Furthermore, we inferred over 900 transcription factor binding sites and alternative sigma factor promoters in the annotated genome of Pectobacterium atrosepticum. These regulatory signals control putative transcription units covering about 40% of the P. atrosepticum chromosome. Reviewing the annotation in cases where it didn’t fit with regulatory information allowed us to correct product and gene names for over 300 loci. PMID:27257541

  3. Molecular evolution of the plastid genome during diversification of the cotton genus.

    PubMed

    Chen, Zhiwen; Grover, Corrinne E; Li, Pengbo; Wang, Yumei; Nie, Hushuai; Zhao, Yanpeng; Wang, Meiyan; Liu, Fang; Zhou, Zhongli; Wang, Xingxing; Cai, Xiaoyan; Wang, Kunbo; Wendel, Jonathan F; Hua, Jinping

    2017-07-01

    Cotton (Gossypium spp.) is commonly grouped into eight diploid genomic groups, designated A-G and K, and one tetraploid genomic group, namely AD. To gain insight into the phylogeny of Gossypium and molecular evolution of the chloroplast genome duringdiversification, chloroplast genomes (cpDNA) from 6 D-genome and 2 G-genome species of Gossypium (G. armourianum D 2-1 , G. harknessii D 2-2 , G. davidsonii D 3-d , G. klotzschianum D 3-k , G. aridum D 4 , G. trilobum D 8 , and G. australe G 2 , G. nelsonii G 3 ) were newly reported here. In combination with the 26 previously released cpDNA sequences, we performed comparative phylogenetic analyses of 34 Gossypium chloroplast genomes that collectively represent most of the diversity in the genus. Gossypium chloroplasts span a small range in size that is mostly attributable to indels that occur in the large single copy (LSC) region of the genome. Phylogenetic analysis using a concatenation of all genes provides robust support for six major Gossypium clades, largely supporting earlier inferences but also revealing new information on intrageneric relationships. Using Theobroma cacao as an outgroup, diversification of the genus was dated, yielding results that are in accord with previous estimates of divergence times, but also offering new perspectives on the basal, early radiation of all major clades within the genus as well as gaps in the record indicative of extinctions. Like most higher-plant chloroplast genomes, all cotton species exhibit a conserved quadripartite structure, i.e., two large inverted repeats (IR) containing most of the ribosomal RNA genes, and two unique regions, LSC (large single sequence) and SSC (small single sequence). Within Gossypium, the IR-single copy region junctions are both variable and homoplasious among species. Two genes, accD and psaJ, exhibited greater rates of synonymous and non-synonymous substitutions than did other genes. Most genes exhibited Ka/Ks ratios suggestive of neutral

  4. Evolution of genome size and chromosome number in the carnivorous plant genus Genlisea (Lentibulariaceae), with a new estimate of the minimum genome size in angiosperms

    PubMed Central

    Fleischmann, Andreas; Michael, Todd P.; Rivadavia, Fernando; Sousa, Aretuza; Wang, Wenqin; Temsch, Eva M.; Greilhuber, Johann; Müller, Kai F.; Heubl, Günther

    2014-01-01

    Background and Aims Some species of Genlisea possess ultrasmall nuclear genomes, the smallest known among angiosperms, and some have been found to have chromosomes of diminutive size, which may explain why chromosome numbers and karyotypes are not known for the majority of species of the genus. However, other members of the genus do not possess ultrasmall genomes, nor do most taxa studied in related genera of the family or order. This study therefore examined the evolution of genome sizes and chromosome numbers in Genlisea in a phylogenetic context. The correlations of genome size with chromosome number and size, with the phylogeny of the group and with growth forms and habitats were also examined. Methods Nuclear genome sizes were measured from cultivated plant material for a comprehensive sampling of taxa, including nearly half of all species of Genlisea and representing all major lineages. Flow cytometric measurements were conducted in parallel in two laboratories in order to compare the consistency of different methods and controls. Chromosome counts were performed for the majority of taxa, comparing different staining techniques for the ultrasmall chromosomes. Key Results Genome sizes of 15 taxa of Genlisea are presented and interpreted in a phylogenetic context. A high degree of congruence was found between genome size distribution and the major phylogenetic lineages. Ultrasmall genomes with 1C values of <100 Mbp were almost exclusively found in a derived lineage of South American species. The ancestral haploid chromosome number was inferred to be n = 8. Chromosome numbers in Genlisea ranged from 2n = 2x = 16 to 2n = 4x = 32. Ascendant dysploid series (2n = 36, 38) are documented for three derived taxa. The different ploidy levels corresponded to the two subgenera, but were not directly correlated to differences in genome size; the three different karyotype ranges mirrored the different sections of the genus. The smallest known plant genomes were not found in

  5. Mechanisms of bacterial morphogenesis: evolutionary cell biology approaches provide new insights.

    PubMed

    Jiang, Chao; Caccamo, Paul D; Brun, Yves V

    2015-04-01

    How Darwin's "endless forms most beautiful" have evolved remains one of the most exciting questions in biology. The significant variety of bacterial shapes is most likely due to the specific advantages they confer with respect to the diverse environments they occupy. While our understanding of the mechanisms generating relatively simple shapes has improved tremendously in the last few years, the molecular mechanisms underlying the generation of complex shapes and the evolution of shape diversity are largely unknown. The emerging field of bacterial evolutionary cell biology provides a novel strategy to answer this question in a comparative phylogenetic framework. This relatively novel approach provides hypotheses and insights into cell biological mechanisms, such as morphogenesis, and their evolution that would have been difficult to obtain by studying only model organisms. We discuss the necessary steps, challenges, and impact of integrating "evolutionary thinking" into bacterial cell biology in the genomic era. © 2015 WILEY Periodicals, Inc.

  6. Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems.

    PubMed

    Gomaa, Ahmed A; Klumpe, Heidi E; Luo, Michelle L; Selle, Kurt; Barrangou, Rodolphe; Beisel, Chase L

    2014-01-28

    CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems in bacteria and archaea employ CRISPR RNAs to specifically recognize the complementary DNA of foreign invaders, leading to sequence-specific cleavage or degradation of the target DNA. Recent work has shown that the accidental or intentional targeting of the bacterial genome is cytotoxic and can lead to cell death. Here, we have demonstrated that genome targeting with CRISPR-Cas systems can be employed for the sequence-specific and titratable removal of individual bacterial strains and species. Using the type I-E CRISPR-Cas system in Escherichia coli as a model, we found that this effect could be elicited using native or imported systems and was similarly potent regardless of the genomic location, strand, or transcriptional activity of the target sequence. Furthermore, the specificity of targeting with CRISPR RNAs could readily distinguish between even highly similar strains in pure or mixed cultures. Finally, varying the collection of delivered CRISPR RNAs could quantitatively control the relative number of individual strains within a mixed culture. Critically, the observed selectivity and programmability of bacterial removal would be virtually impossible with traditional antibiotics, bacteriophages, selectable markers, or tailored growth conditions. Once delivery challenges are addressed, we envision that this approach could offer a novel means to quantitatively control the composition of environmental and industrial microbial consortia and may open new avenues for the development of "smart" antibiotics that circumvent multidrug resistance and differentiate between pathogenic and beneficial microorganisms. Controlling the composition of microbial populations is a critical aspect in medicine, biotechnology, and environmental cycles. While different antimicrobial strategies, such as antibiotics, antimicrobial peptides, and lytic bacteriophages, offer partial solutions

  7. Genome profiling of sterol synthesis shows convergent evolution in parasites and guides chemotherapeutic attack.

    PubMed

    Fügi, Matthias A; Gunasekera, Kapila; Ochsenreiter, Torsten; Guan, Xueli; Wenk, Markus R; Mäser, Pascal

    2014-05-01

    Sterols are an essential class of lipids in eukaryotes, where they serve as structural components of membranes and play important roles as signaling molecules. Sterols are also of high pharmacological significance: cholesterol-lowering drugs are blockbusters in human health, and inhibitors of ergosterol biosynthesis are widely used as antifungals. Inhibitors of ergosterol synthesis are also being developed for Chagas's disease, caused by Trypanosoma cruzi. Here we develop an in silico pipeline to globally evaluate sterol metabolism and perform comparative genomics. We generate a library of hidden Markov model-based profiles for 42 sterol biosynthetic enzymes, which allows expressing the genomic makeup of a given species as a numerical vector. Hierarchical clustering of these vectors functionally groups eukaryote proteomes and reveals convergent evolution, in particular metabolic reduction in obligate endoparasites. We experimentally explore sterol metabolism by testing a set of sterol biosynthesis inhibitors against trypanosomatids, Plasmodium falciparum, Giardia, and mammalian cells, and by quantifying the expression levels of sterol biosynthetic genes during the different life stages of T. cruzi and Trypanosoma brucei. The phenotypic data correlate with genomic makeup for simvastatin, which showed activity against trypanosomatids. Other findings, such as the activity of terbinafine against Giardia, are not in agreement with the genotypic profile.

  8. Genome profiling of sterol synthesis shows convergent evolution in parasites and guides chemotherapeutic attack

    PubMed Central

    Fügi, Matthias A.; Gunasekera, Kapila; Ochsenreiter, Torsten; Guan, Xueli; Wenk, Markus R.; Mäser, Pascal

    2014-01-01

    Sterols are an essential class of lipids in eukaryotes, where they serve as structural components of membranes and play important roles as signaling molecules. Sterols are also of high pharmacological significance: cholesterol-lowering drugs are blockbusters in human health, and inhibitors of ergosterol biosynthesis are widely used as antifungals. Inhibitors of ergosterol synthesis are also being developed for Chagas’s disease, caused by Trypanosoma cruzi. Here we develop an in silico pipeline to globally evaluate sterol metabolism and perform comparative genomics. We generate a library of hidden Markov model-based profiles for 42 sterol biosynthetic enzymes, which allows expressing the genomic makeup of a given species as a numerical vector. Hierarchical clustering of these vectors functionally groups eukaryote proteomes and reveals convergent evolution, in particular metabolic reduction in obligate endoparasites. We experimentally explore sterol metabolism by testing a set of sterol biosynthesis inhibitors against trypanosomatids, Plasmodium falciparum, Giardia, and mammalian cells, and by quantifying the expression levels of sterol biosynthetic genes during the different life stages of T. cruzi and Trypanosoma brucei. The phenotypic data correlate with genomic makeup for simvastatin, which showed activity against trypanosomatids. Other findings, such as the activity of terbinafine against Giardia, are not in agreement with the genotypic profile. PMID:24627128

  9. Mini-review: Strategies for Variation and Evolution of Bacterial Antigens

    PubMed Central

    Foley, Janet

    2015-01-01

    Across the eubacteria, antigenic variation has emerged as a strategy to evade host immunity. However, phenotypic variation in some of these antigens also allows the bacteria to exploit variable host niches as well. The specific mechanisms are not shared-derived characters although there is considerable convergent evolution and numerous commonalities reflecting considerations of natural selection and biochemical restraints. Unlike in viruses, mechanisms of antigenic variation in most bacteria involve larger DNA movement such as gene conversion or DNA rearrangement, although some antigens vary due to point mutations or modified transcriptional regulation. The convergent evolution that promotes antigenic variation integrates various evolutionary forces: these include mutations underlying variant production; drift which could remove alleles especially early in infection or during life history phases in arthropod vectors (when the bacterial population size goes through a bottleneck); selection not only for any particular variant but also for the mechanism for the production of variants (i.e., selection for mutability); and overcoming negative selection against variant production. This review highlights the complexities of drivers of antigenic variation, in particular extending evaluation beyond the commonly cited theory of immune evasion. A deeper understanding of the diversity of purpose and mechanisms of antigenic variation in bacteria will contribute to greater insight into bacterial pathogenesis, ecology and coevolution with hosts. PMID:26288700

  10. Improvisation in evolution of genes and genomes: whose structure is it anyway?

    PubMed

    Shakhnovich, Boris E; Shakhnovich, Eugene I

    2008-06-01

    Significant progress has been made in recent years in a variety of seemingly unrelated fields such as sequencing, protein structure prediction, and high-throughput transcriptomics and metabolomics. At the same time, new microscopic models have been developed that made it possible to analyze the evolution of genes and genomes from first principles. The results from these efforts enable, for the first time, a comprehensive insight into the evolution of complex systems and organisms on all scales--from sequences to organisms and populations. Every newly sequenced genome uncovers new genes, families, and folds. Where do these new genes come from? How do gene duplication and subsequent divergence of sequence and structure affect the fitness of the organism? What role does regulation play in the evolution of proteins and folds? Emerging synergism between data and modeling provides first robust answers to these questions.

  11. Genomic Quantitative Genetics to Study Evolution in the Wild.

    PubMed

    Gienapp, Phillip; Fior, Simone; Guillaume, Frédéric; Lasky, Jesse R; Sork, Victoria L; Csilléry, Katalin

    2017-12-01

    Quantitative genetic theory provides a means of estimating the evolutionary potential of natural populations. However, this approach was previously only feasible in systems where the genetic relatedness between individuals could be inferred from pedigrees or experimental crosses. The genomic revolution opened up the possibility of obtaining the realized proportion of genome shared among individuals in natural populations of virtually any species, which could promise (more) accurate estimates of quantitative genetic parameters in virtually any species. Such a 'genomic' quantitative genetics approach relies on fewer assumptions, offers a greater methodological flexibility, and is thus expected to greatly enhance our understanding of evolution in natural populations, for example, in the context of adaptation to environmental change, eco-evolutionary dynamics, and biodiversity conservation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Genome Comparisons Reveal a Dominant Mechanism of Chromosome Number Reduction in Grasses and Accelerated Genome Evolution in Triticeae

    USDA-ARS?s Scientific Manuscript database

    Single nucleotide polymorphism was employed in the construction of a high-resolution, expressed sequence tag (EST) map of Aegilops tauschii, the diploid source of the wheat D genome. Comparison of the map with the rice and sorghum genome sequences revealed 50 inversions and translocations; 2, 8, and...

  13. CRISPR-based screening of genomic island excision events in bacteria.

    PubMed

    Selle, Kurt; Klaenhammer, Todd R; Barrangou, Rodolphe

    2015-06-30

    Genomic analysis of Streptococcus thermophilus revealed that mobile genetic elements (MGEs) likely contributed to gene acquisition and loss during evolutionary adaptation to milk. Clustered regularly interspaced short palindromic repeats-CRISPR-associated genes (CRISPR-Cas), the adaptive immune system in bacteria, limits genetic diversity by targeting MGEs including bacteriophages, transposons, and plasmids. CRISPR-Cas systems are widespread in streptococci, suggesting that the interplay between CRISPR-Cas systems and MGEs is one of the driving forces governing genome homeostasis in this genus. To investigate the genetic outcomes resulting from CRISPR-Cas targeting of integrated MGEs, in silico prediction revealed four genomic islands without essential genes in lengths from 8 to 102 kbp, totaling 7% of the genome. In this study, the endogenous CRISPR3 type II system was programmed to target the four islands independently through plasmid-based expression of engineered CRISPR arrays. Targeting lacZ within the largest 102-kbp genomic island was lethal to wild-type cells and resulted in a reduction of up to 2.5-log in the surviving population. Genotyping of Lac(-) survivors revealed variable deletion events between the flanking insertion-sequence elements, all resulting in elimination of the Lac-encoding island. Chimeric insertion sequence footprints were observed at the deletion junctions after targeting all of the four genomic islands, suggesting a common mechanism of deletion via recombination between flanking insertion sequences. These results established that self-targeting CRISPR-Cas systems may direct significant evolution of bacterial genomes on a population level, influencing genome homeostasis and remodeling.

  14. Genetics of Genome-Wide Recombination Rate Evolution in Mice from an Isolated Island.

    PubMed

    Wang, Richard J; Payseur, Bret A

    2017-08-01

    Recombination rate is a heritable quantitative trait that evolves despite the fundamentally conserved role that recombination plays in meiosis. Differences in recombination rate can alter the landscape of the genome and the genetic diversity of populations. Yet our understanding of the genetic basis of recombination rate evolution in nature remains limited. We used wild house mice ( Mus musculus domesticus ) from Gough Island (GI), which diverged recently from their mainland counterparts, to characterize the genetics of recombination rate evolution. We quantified genome-wide autosomal recombination rates by immunofluorescence cytology in spermatocytes from 240 F 2 males generated from intercrosses between GI-derived mice and the wild-derived inbred strain WSB/EiJ. We identified four quantitative trait loci (QTL) responsible for inter-F 2 variation in this trait, the strongest of which had effects that opposed the direction of the parental trait differences. Candidate genes and mutations for these QTL were identified by overlapping the detected intervals with whole-genome sequencing data and publicly available transcriptomic profiles from spermatocytes. Combined with existing studies, our findings suggest that genome-wide recombination rate divergence is not directional and its evolution within and between subspecies proceeds from distinct genetic loci. Copyright © 2017 by the Genetics Society of America.

  15. Tracing Monotreme Venom Evolution in the Genomics Era

    PubMed Central

    Whittington, Camilla M.; Belov, Katherine

    2014-01-01

    The monotremes (platypuses and echidnas) represent one of only four extant venomous mammalian lineages. Until recently, monotreme venom was poorly understood. However, the availability of the platypus genome and increasingly sophisticated genomic tools has allowed us to characterize platypus toxins, and provides a means of reconstructing the evolutionary history of monotreme venom. Here we review the physiology of platypus and echidna crural (venom) systems as well as pharmacological and genomic studies of monotreme toxins. Further, we synthesize current ideas about the evolution of the venom system, which in the platypus is likely to have been retained from a venomous ancestor, whilst being lost in the echidnas. We also outline several research directions and outstanding questions that would be productive to address in future research. An improved characterization of mammalian venoms will not only yield new toxins with potential therapeutic uses, but will also aid in our understanding of the way that this unusual trait evolves. PMID:24699339

  16. Tracing monotreme venom evolution in the genomics era.

    PubMed

    Whittington, Camilla M; Belov, Katherine

    2014-04-02

    The monotremes (platypuses and echidnas) represent one of only four extant venomous mammalian lineages. Until recently, monotreme venom was poorly understood. However, the availability of the platypus genome and increasingly sophisticated genomic tools has allowed us to characterize platypus toxins, and provides a means of reconstructing the evolutionary history of monotreme venom. Here we review the physiology of platypus and echidna crural (venom) systems as well as pharmacological and genomic studies of monotreme toxins. Further, we synthesize current ideas about the evolution of the venom system, which in the platypus is likely to have been retained from a venomous ancestor, whilst being lost in the echidnas. We also outline several research directions and outstanding questions that would be productive to address in future research. An improved characterization of mammalian venoms will not only yield new toxins with potential therapeutic uses, but will also aid in our understanding of the way that this unusual trait evolves.

  17. Evolution of language: Lessons from the genome.

    PubMed

    Fisher, Simon E

    2017-02-01

    The post-genomic era is an exciting time for researchers interested in the biology of speech and language. Substantive advances in molecular methodologies have opened up entire vistas of investigation that were not previously possible, or in some cases even imagined. Speculations concerning the origins of human cognitive traits are being transformed into empirically addressable questions, generating specific hypotheses that can be explicitly tested using data collected from both the natural world and experimental settings. In this article, I discuss a number of promising lines of research in this area. For example, the field has begun to identify genes implicated in speech and language skills, including not just disorders but also the normal range of abilities. Such genes provide powerful entry points for gaining insights into neural bases and evolutionary origins, using sophisticated experimental tools from molecular neuroscience and developmental neurobiology. At the same time, sequencing of ancient hominin genomes is giving us an unprecedented view of the molecular genetic changes that have occurred during the evolution of our species. Synthesis of data from these complementary sources offers an opportunity to robustly evaluate alternative accounts of language evolution. Of course, this endeavour remains challenging on many fronts, as I also highlight in the article. Nonetheless, such an integrated approach holds great potential for untangling the complexities of the capacities that make us human.

  18. Raw Cow Milk Bacterial Population Shifts Attributable to Refrigeration

    PubMed Central

    Lafarge, Véronique; Ogier, Jean-Claude; Girard, Victoria; Maladen, Véronique; Leveau, Jean-Yves; Gruss, Alexandra; Delacroix-Buchet, Agnès

    2004-01-01

    We monitored the dynamic changes in the bacterial population in milk associated with refrigeration. Direct analyses of DNA by using temporal temperature gel electrophoresis (TTGE) and denaturing gradient gel electrophoresis (DGGE) allowed us to make accurate species assignments for bacteria with low-GC-content (low-GC%) (<55%) and medium- or high-GC% (>55%) genomes, respectively. We examined raw milk samples before and after 24-h conservation at 4°C. Bacterial identification was facilitated by comparison with an extensive bacterial reference database (∼150 species) that we established with DNA fragments of pure bacterial strains. Cloning and sequencing of fragments missing from the database were used to achieve complete species identification. Considerable evolution of bacterial populations occurred during conservation at 4°C. TTGE and DGGE are shown to be a powerful tool for identifying the main bacterial species of the raw milk samples and for monitoring changes in bacterial populations during conservation at 4°C. The emergence of psychrotrophic bacteria such as Listeria spp. or Aeromonas hydrophila is demonstrated. PMID:15345453

  19. A genomic survey of the fish parasite Spironucleus salmonicida indicates genomic plasticity among diplomonads and significant lateral gene transfer in eukaryote genome evolution

    PubMed Central

    Andersson, Jan O; Sjögren, Åsa M; Horner, David S; Murphy, Colleen A; Dyal, Patricia L; Svärd, Staffan G; Logsdon, John M; Ragan, Mark A; Hirt, Robert P; Roger, Andrew J

    2007-01-01

    Background Comparative genomic studies of the mitochondrion-lacking protist group Diplomonadida (diplomonads) has been lacking, although Giardia lamblia has been intensively studied. We have performed a sequence survey project resulting in 2341 expressed sequence tags (EST) corresponding to 853 unique clones, 5275 genome survey sequences (GSS), and eleven finished contigs from the diplomonad fish parasite Spironucleus salmonicida (previously described as S. barkhanus). Results The analyses revealed a compact genome with few, if any, introns and very short 3' untranslated regions. Strikingly different patterns of codon usage were observed in genes corresponding to frequently sampled ESTs versus genes poorly sampled, indicating that translational selection is influencing the codon usage of highly expressed genes. Rigorous phylogenomic analyses identified 84 genes – mostly encoding metabolic proteins – that have been acquired by diplomonads or their relatively close ancestors via lateral gene transfer (LGT). Although most acquisitions were from prokaryotes, more than a dozen represent likely transfers of genes between eukaryotic lineages. Many genes that provide novel insights into the genetic basis of the biology and pathogenicity of this parasitic protist were identified including 149 that putatively encode variant-surface cysteine-rich proteins which are candidate virulence factors. A number of genomic properties that distinguish S. salmonicida from its human parasitic relative G. lamblia were identified such as nineteen putative lineage-specific gene acquisitions, distinct mutational biases and codon usage and distinct polyadenylation signals. Conclusion Our results highlight the power of comparative genomic studies to yield insights into the biology of parasitic protists and the evolution of their genomes, and suggest that genetic exchange between distantly-related protist lineages may be occurring at an appreciable rate in eukaryote genome evolution. PMID

  20. Insights into archaeal evolution and symbiosis from the genomes of a Nanoarchaeon and its crenarchaeal host from Yellowstone National Park

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podar, Mircea; Graham, David E; Reysenbach, Anna-Louise

    A hyperthemophilic member of the Nanoarchaeota from Obsidian Pool, a thermal feature in Yellowstone National Park was characterized using single cell isolation and sequencing, together with its putative host, a Sulfolobales archaeon. This first representative of a non-marine Nanoarchaeota (Nst1) resembles Nanoarchaeum equitans by lacking most biosynthetic capabilities, the two forming a deep-branching archaeal lineage. However, the Nst1 genome is over 20% larger, encodes a complete gluconeogenesis pathway and a full complement of archaeal flagellum proteins. Comparison of the two genomes suggests that the marine and terrestrial Nanoarchaeota lineages share a common ancestor that was already a symbiont of anothermore » archaeon. With a larger genome, a smaller repertoire of split protein encoding genes and no split non-contiguous tRNAs, Nst1 appears to have experienced less severe genome reduction than N. equitans. The inferred host of Nst1 is potentially autotrophic, with a streamlined genome and simplified central and energetic metabolism as compared to other Sulfolobales. The two distinct Nanoarchaeota-host genomic data sets offer insights into the evolution of archaeal symbiosis and parasitism and will further enable studies of the cellular and molecular mechanisms of these relationships.« less

  1. Genome duplication and the evolution of conspecific pollen precedence.

    PubMed

    Baldwin, Sarah J; Husband, Brian C

    2011-07-07

    Conspecific pollen precedence can be a strong reproductive barrier between polyploid and diploid species, but the role of genome multiplication in the evolution of this barrier has not been investigated. Here, we examine the direct effect of genome duplication on the evolution of pollen siring success in tetraploid Chamerion angustifolium. To separate the effects of genome duplication from selection after duplication, we compared pollen siring success of synthesized tetraploids (neotetraploids) with that of naturally occurring tetraploids by applying 2x, 4x (neo or established) or 2x + 4x pollen to diploid and tetraploid flowers. Seed set increased in diploids and decreased in both types of tetraploids as the proportion of pollen from diploid plants increased. Based on offspring ploidy from mixed-ploidy pollinations, pollen of the maternal ploidy always sired the majority of offspring but was strongest in established tetraploids and weakest in neotetraploids. Pollen from established tetraploids had significantly higher siring rates than neotetraploids when deposited on diploid (4x(est) = 47.2%, 4x(neo) = 27.1%) and on tetraploid recipients (4x(est) = 91.9%, 4x(neo) = 56.0%). Siring success of established tetraploids exceeded that of neotetraploids despite having similar pollen production per anther and pollen diameter. Our results suggest that, while pollen precedence can arise in association with the duplication event, the strength of polyploid siring success evolves after the duplication event.

  2. Dietary nitrogen alters codon bias and genome composition in parasitic microorganisms.

    PubMed

    Seward, Emily A; Kelly, Steven

    2016-11-15

    Genomes are composed of long strings of nucleotide monomers (A, C, G and T) that are either scavenged from the organism's environment or built from metabolic precursors. The biosynthesis of each nucleotide differs in atomic requirements with different nucleotides requiring different quantities of nitrogen atoms. However, the impact of the relative availability of dietary nitrogen on genome composition and codon bias is poorly understood. Here we show that differential nitrogen availability, due to differences in environment and dietary inputs, is a major determinant of genome nucleotide composition and synonymous codon use in both bacterial and eukaryotic microorganisms. Specifically, low nitrogen availability species use nucleotides that require fewer nitrogen atoms to encode the same genes compared to high nitrogen availability species. Furthermore, we provide a novel selection-mutation framework for the evaluation of the impact of metabolism on gene sequence evolution and show that it is possible to predict the metabolic inputs of related organisms from an analysis of the raw nucleotide sequence of their genes. Taken together, these results reveal a previously hidden relationship between cellular metabolism and genome evolution and provide new insight into how genome sequence evolution can be influenced by adaptation to different diets and environments.

  3. Fast Evolution from Precast Bricks: Genomics of Young Freshwater Populations of Threespine Stickleback Gasterosteus aculeatus

    PubMed Central

    Terekhanova, Nadezhda V.; Logacheva, Maria D.; Penin, Aleksey A.; Neretina, Tatiana V.; Barmintseva, Anna E.; Bazykin, Georgii A.; Kondrashov, Alexey S.; Mugue, Nikolai S.

    2014-01-01

    Adaptation is driven by natural selection; however, many adaptations are caused by weak selection acting over large timescales, complicating its study. Therefore, it is rarely possible to study selection comprehensively in natural environments. The threespine stickleback (Gasterosteus aculeatus) is a well-studied model organism with a short generation time, small genome size, and many genetic and genomic tools available. Within this originally marine species, populations have recurrently adapted to freshwater all over its range. This evolution involved extensive parallelism: pre-existing alleles that adapt sticklebacks to freshwater habitats, but are also present at low frequencies in marine populations, have been recruited repeatedly. While a number of genomic regions responsible for this adaptation have been identified, the details of selection remain poorly understood. Using whole-genome resequencing, we compare pooled genomic samples from marine and freshwater populations of the White Sea basin, and identify 19 short genomic regions that are highly divergent between them, including three known inversions. 17 of these regions overlap protein-coding genes, including a number of genes with predicted functions that are relevant for adaptation to the freshwater environment. We then analyze four additional independently derived young freshwater populations of known ages, two natural and two artificially established, and use the observed shifts of allelic frequencies to estimate the strength of positive selection. Adaptation turns out to be quite rapid, indicating strong selection acting simultaneously at multiple regions of the genome, with selection coefficients of up to 0.27. High divergence between marine and freshwater genotypes, lack of reduction in polymorphism in regions responsible for adaptation, and high frequencies of freshwater alleles observed even in young freshwater populations are all consistent with rapid assembly of G. aculeatus freshwater genotypes

  4. Fast evolution from precast bricks: genomics of young freshwater populations of threespine stickleback Gasterosteus aculeatus.

    PubMed

    Terekhanova, Nadezhda V; Logacheva, Maria D; Penin, Aleksey A; Neretina, Tatiana V; Barmintseva, Anna E; Bazykin, Georgii A; Kondrashov, Alexey S; Mugue, Nikolai S

    2014-10-01

    Adaptation is driven by natural selection; however, many adaptations are caused by weak selection acting over large timescales, complicating its study. Therefore, it is rarely possible to study selection comprehensively in natural environments. The threespine stickleback (Gasterosteus aculeatus) is a well-studied model organism with a short generation time, small genome size, and many genetic and genomic tools available. Within this originally marine species, populations have recurrently adapted to freshwater all over its range. This evolution involved extensive parallelism: pre-existing alleles that adapt sticklebacks to freshwater habitats, but are also present at low frequencies in marine populations, have been recruited repeatedly. While a number of genomic regions responsible for this adaptation have been identified, the details of selection remain poorly understood. Using whole-genome resequencing, we compare pooled genomic samples from marine and freshwater populations of the White Sea basin, and identify 19 short genomic regions that are highly divergent between them, including three known inversions. 17 of these regions overlap protein-coding genes, including a number of genes with predicted functions that are relevant for adaptation to the freshwater environment. We then analyze four additional independently derived young freshwater populations of known ages, two natural and two artificially established, and use the observed shifts of allelic frequencies to estimate the strength of positive selection. Adaptation turns out to be quite rapid, indicating strong selection acting simultaneously at multiple regions of the genome, with selection coefficients of up to 0.27. High divergence between marine and freshwater genotypes, lack of reduction in polymorphism in regions responsible for adaptation, and high frequencies of freshwater alleles observed even in young freshwater populations are all consistent with rapid assembly of G. aculeatus freshwater genotypes

  5. Adaptive Evolution of Extreme Acidophile Sulfobacillus thermosulfidooxidans Potentially Driven by Horizontal Gene Transfer and Gene Loss

    PubMed Central

    Zhang, Xian; Liu, Xueduan; Liang, Yili; Guo, Xue; Xiao, Yunhua; Ma, Liyuan; Miao, Bo; Liu, Hongwei; Peng, Deliang; Huang, Wenkun; Zhang, Yuguang

    2017-01-01

    ABSTRACT Recent phylogenomic analysis has suggested that three strains isolated from different copper mine tailings around the world were taxonomically affiliated with Sulfobacillus thermosulfidooxidans. Here, we present a detailed investigation of their genomic features, particularly with respect to metabolic potentials and stress tolerance mechanisms. Comprehensive analysis of the Sulfobacillus genomes identified a core set of essential genes with specialized biological functions in the survival of acidophiles in their habitats, despite differences in their metabolic pathways. The Sulfobacillus strains also showed evidence for stress management, thereby enabling them to efficiently respond to harsh environments. Further analysis of metabolic profiles provided novel insights into the presence of genomic streamlining, highlighting the importance of gene loss as a main mechanism that potentially contributes to cellular economization. Another important evolutionary force, especially in larger genomes, is gene acquisition via horizontal gene transfer (HGT), which might play a crucial role in the recruitment of novel functionalities. Also, a successful integration of genes acquired from archaeal donors appears to be an effective way of enhancing the adaptive capacity to cope with environmental changes. Taken together, the findings of this study significantly expand the spectrum of HGT and genome reduction in shaping the evolutionary history of Sulfobacillus strains. IMPORTANCE Horizontal gene transfer (HGT) and gene loss are recognized as major driving forces that contribute to the adaptive evolution of microbial genomes, although their relative importance remains elusive. The findings of this study suggest that highly frequent gene turnovers within microorganisms via HGT were necessary to incur additional novel functionalities to increase the capacity of acidophiles to adapt to changing environments. Evidence also reveals a fascinating phenomenon of potential cross

  6. Adaptive Evolution of Extreme Acidophile Sulfobacillus thermosulfidooxidans Potentially Driven by Horizontal Gene Transfer and Gene Loss.

    PubMed

    Zhang, Xian; Liu, Xueduan; Liang, Yili; Guo, Xue; Xiao, Yunhua; Ma, Liyuan; Miao, Bo; Liu, Hongwei; Peng, Deliang; Huang, Wenkun; Zhang, Yuguang; Yin, Huaqun

    2017-04-01

    Recent phylogenomic analysis has suggested that three strains isolated from different copper mine tailings around the world were taxonomically affiliated with Sulfobacillus thermosulfidooxidans Here, we present a detailed investigation of their genomic features, particularly with respect to metabolic potentials and stress tolerance mechanisms. Comprehensive analysis of the Sulfobacillus genomes identified a core set of essential genes with specialized biological functions in the survival of acidophiles in their habitats, despite differences in their metabolic pathways. The Sulfobacillus strains also showed evidence for stress management, thereby enabling them to efficiently respond to harsh environments. Further analysis of metabolic profiles provided novel insights into the presence of genomic streamlining, highlighting the importance of gene loss as a main mechanism that potentially contributes to cellular economization. Another important evolutionary force, especially in larger genomes, is gene acquisition via horizontal gene transfer (HGT), which might play a crucial role in the recruitment of novel functionalities. Also, a successful integration of genes acquired from archaeal donors appears to be an effective way of enhancing the adaptive capacity to cope with environmental changes. Taken together, the findings of this study significantly expand the spectrum of HGT and genome reduction in shaping the evolutionary history of Sulfobacillus strains. IMPORTANCE Horizontal gene transfer (HGT) and gene loss are recognized as major driving forces that contribute to the adaptive evolution of microbial genomes, although their relative importance remains elusive. The findings of this study suggest that highly frequent gene turnovers within microorganisms via HGT were necessary to incur additional novel functionalities to increase the capacity of acidophiles to adapt to changing environments. Evidence also reveals a fascinating phenomenon of potential cross-kingdom HGT

  7. Analysis of bacterial populations in the environment using two-dimensional gel electrophoresis of genomic DNA and complementary DNA.

    PubMed

    Liu, Guo-Hua; Nakamura, Tatsuo; Amemiya, Takashi; Rajendran, Narasimmalu; Itoh, Kiminori

    2011-01-01

    Two-dimensional gel electrophoresis (2-DGE) mapping of genomic DNA and complementary DNA (cDNA) amplicons was attempted to analyze total and active bacterial populations within soil and activated sludge samples. Distinct differences in the number and species of bacterial populations and those that were metabolically active at the time of sampling were visually observed especially for the soil community. Statistical analyses and sequencing based on the 2-DGE data further revealed the relationships between total and active bacterial populations within each community. This high-resolution technique would be useful for obtaining a better understanding of bacterial population structures in the environment.

  8. Construction of a Llama Bacterial Artificial Chromosome Library with Approximately 9-Fold Genome Equivalent Coverage

    PubMed Central

    Airmet, K. W.; Hinckley, J. D.; Tree, L. T.; Moss, M.; Blumell, S.; Ulicny, K.; Gustafson, A. K.; Weed, M.; Theodosis, R.; Lehnardt, M.; Genho, J.; Stevens, M. R.; Kooyman, D. L.

    2012-01-01

    The Ilama is an important agricultural livestock in much of South America. The llama is increasing in popularity in the United States as a companion animal. Little work has been done to improve llama production using modern technology. A paucity of information is available regarding the llama genome. We report the construction of a llama bacterial artificial chromosome (BAC) library of about 196,224 clones in the vector pECBAC1. Using flow cytometry and bovine, human, mouse, and chicken as controls, we determined the llama genome size to be 2.4 × 109 bp. The average insert size of the library is 137.8 kb corresponding to approximately 9-fold genome coverage. Further studies are needed to further characterize the library and llama genome. We anticipate that this new library will help facilitate future genomic studies in the llama. PMID:22811594

  9. The Sex Chromosomes of Frogs: Variability and Tolerance Offer Clues to Genome Evolution and Function

    PubMed Central

    Malcom, Jacob W.; Kudra, Randal S.; Malone, John H.

    2014-01-01

    Frog sex chromosomes offer an ideal system for advancing our understanding of genome evolution and function because of the variety of sex determination systems in the group, the diversity of sex chromosome maturation states, the ease of experimental manipulation during early development. After briefly reviewing sex chromosome biology generally, we focus on what is known about frog sex determination, sex chromosome evolution, and recent, genomics-facilitated advances in the field. In closing we highlight gaps in our current knowledge of frog sex chromosomes, and suggest priorities for future research that can advance broad knowledge of gene dose and sex chromosome evolution. PMID:25031658

  10. Nonhuman genetics. Genomic basis for the convergent evolution of electric organs.

    PubMed

    Gallant, Jason R; Traeger, Lindsay L; Volkening, Jeremy D; Moffett, Howell; Chen, Po-Hao; Novina, Carl D; Phillips, George N; Anand, Rene; Wells, Gregg B; Pinch, Matthew; Güth, Robert; Unguez, Graciela A; Albert, James S; Zakon, Harold H; Samanta, Manoj P; Sussman, Michael R

    2014-06-27

    Little is known about the genetic basis of convergent traits that originate repeatedly over broad taxonomic scales. The myogenic electric organ has evolved six times in fishes to produce electric fields used in communication, navigation, predation, or defense. We have examined the genomic basis of the convergent anatomical and physiological origins of these organs by assembling the genome of the electric eel (Electrophorus electricus) and sequencing electric organ and skeletal muscle transcriptomes from three lineages that have independently evolved electric organs. Our results indicate that, despite millions of years of evolution and large differences in the morphology of electric organ cells, independent lineages have leveraged similar transcription factors and developmental and cellular pathways in the evolution of electric organs. Copyright © 2014, American Association for the Advancement of Science.

  11. Chromosomal targeting by CRISPR-Cas systems can contribute to genome plasticity in bacteria

    PubMed Central

    Dy, Ron L; Pitman, Andrew R; Fineran, Peter C

    2013-01-01

    The clustered regularly interspaced short palindromic repeats (CRISPR) and their associated (Cas) proteins form adaptive immune systems in bacteria to combat phage and other foreign genetic elements. Typically, short spacer sequences are acquired from the invader DNA and incorporated into CRISPR arrays in the bacterial genome. Small RNAs are generated that contain these spacer sequences and enable sequence-specific destruction of the foreign nucleic acids. Occasionally, spacers are acquired from the chromosome, which instead leads to targeting of the host genome. Chromosomal targeting is highly toxic to the bacterium, providing a strong selective pressure for a variety of evolutionary routes that enable host cell survival. Mutations that inactivate the CRISPR-Cas functionality, such as within the cas genes, CRISPR repeat, protospacer adjacent motifs (PAM), and target sequence, mediate escape from toxicity. This self-targeting might provide some explanation for the incomplete distribution of CRISPR-Cas systems in less than half of sequenced bacterial genomes. More importantly, self-genome targeting can cause large-scale genomic alterations, including remodeling or deletion of pathogenicity islands and other non-mobile chromosomal regions. While control of horizontal gene transfer is perceived as their main function, our recent work illuminates an alternative role of CRISPR-Cas systems in causing host genomic changes and influencing bacterial evolution. PMID:24251073

  12. In Vivo Evolution of Bacterial Resistance in Two Cases of Enterobacter aerogenes Infections during Treatment with Imipenem

    PubMed Central

    Santini, Sébastien; Pinet, Elizabeth; Claverie, Jean-Michel; Davin-Régli, Anne-Véronique; Pagès, Jean-Marie; Masi, Muriel

    2015-01-01

    Infections caused by multidrug resistant (MDR) bacteria are a major concern worldwide. Changes in membrane permeability, including decreased influx and/or increased efflux of antibiotics, are known as key contributors of bacterial MDR. Therefore, it is of critical importance to understand molecular mechanisms that link membrane permeability to MDR in order to design new antimicrobial strategies. In this work, we describe genotype-phenotype correlations in Enterobacter aerogenes, a clinically problematic and antibiotic resistant bacterium. To do this, series of clinical isolates have been periodically collected from two patients during chemotherapy with imipenem. The isolates exhibited different levels of resistance towards multiple classes of antibiotics, consistently with the presence or the absence of porins and efflux pumps. Transport assays were used to characterize membrane permeability defects. Simultaneous genome-wide analysis allowed the identification of putative mutations responsible for MDR. The genome of the imipenem-susceptible isolate G7 was sequenced to closure and used as a reference for comparative genomics. This approach uncovered several loci that were specifically mutated in MDR isolates and whose products are known to control membrane permeability. These were omp35 and omp36, encoding the two major porins; rob, encoding a global AraC-type transcriptional activator; cpxA, phoQ and pmrB, encoding sensor kinases of the CpxRA, PhoPQ and PmrAB two-component regulatory systems, respectively. This report provides a comprehensive analysis of membrane alterations relative to mutational steps in the evolution of MDR of a recognized nosocomial pathogen. PMID:26398358

  13. In Vivo Evolution of Bacterial Resistance in Two Cases of Enterobacter aerogenes Infections during Treatment with Imipenem.

    PubMed

    Philippe, Nadège; Maigre, Laure; Santini, Sébastien; Pinet, Elizabeth; Claverie, Jean-Michel; Davin-Régli, Anne-Véronique; Pagès, Jean-Marie; Masi, Muriel

    2015-01-01

    Infections caused by multidrug resistant (MDR) bacteria are a major concern worldwide. Changes in membrane permeability, including decreased influx and/or increased efflux of antibiotics, are known as key contributors of bacterial MDR. Therefore, it is of critical importance to understand molecular mechanisms that link membrane permeability to MDR in order to design new antimicrobial strategies. In this work, we describe genotype-phenotype correlations in Enterobacter aerogenes, a clinically problematic and antibiotic resistant bacterium. To do this, series of clinical isolates have been periodically collected from two patients during chemotherapy with imipenem. The isolates exhibited different levels of resistance towards multiple classes of antibiotics, consistently with the presence or the absence of porins and efflux pumps. Transport assays were used to characterize membrane permeability defects. Simultaneous genome-wide analysis allowed the identification of putative mutations responsible for MDR. The genome of the imipenem-susceptible isolate G7 was sequenced to closure and used as a reference for comparative genomics. This approach uncovered several loci that were specifically mutated in MDR isolates and whose products are known to control membrane permeability. These were omp35 and omp36, encoding the two major porins; rob, encoding a global AraC-type transcriptional activator; cpxA, phoQ and pmrB, encoding sensor kinases of the CpxRA, PhoPQ and PmrAB two-component regulatory systems, respectively. This report provides a comprehensive analysis of membrane alterations relative to mutational steps in the evolution of MDR of a recognized nosocomial pathogen.

  14. Transposable element evolution in Heliconius suggests genome diversity within Lepidoptera

    PubMed Central

    2013-01-01

    Background Transposable elements (TEs) have the potential to impact genome structure, function and evolution in profound ways. In order to understand the contribution of transposable elements (TEs) to Heliconius melpomene, we queried the H. melpomene draft sequence to identify repetitive sequences. Results We determined that TEs comprise ~25% of the genome. The predominant class of TEs (~12% of the genome) was the non-long terminal repeat (non-LTR) retrotransposons, including a novel SINE family. However, this was only slightly higher than content derived from DNA transposons, which are diverse, with several families having mobilized in the recent past. Compared to the only other well-studied lepidopteran genome, Bombyx mori, H. melpomene exhibits a higher DNA transposon content and a distinct repertoire of retrotransposons. We also found that H. melpomene exhibits a high rate of TE turnover with few older elements accumulating in the genome. Conclusions Our analysis represents the first complete, de novo characterization of TE content in a butterfly genome and suggests that, while TEs are able to invade and multiply, TEs have an overall deleterious effect and/or that maintaining a small genome is advantageous. Our results also hint that analysis of additional lepidopteran genomes will reveal substantial TE diversity within the group. PMID:24088337

  15. Experimental evolution reveals genome-wide spectrum and dynamics of mutations in the rice blast fungus, Magnaporthe oryzae.

    PubMed

    Jeon, Junhyun; Choi, Jaeyoung; Lee, Gir-Won; Dean, Ralph A; Lee, Yong-Hwan

    2013-01-01

    Knowledge on mutation processes is central to interpreting genetic analysis data as well as understanding the underlying nature of almost all evolutionary phenomena. However, studies on genome-wide mutational spectrum and dynamics in fungal pathogens are scarce, hindering our understanding of their evolution and biology. Here, we explored changes in the phenotypes and genome sequences of the rice blast fungus Magnaporthe oryzae during the forced in vitro evolution by weekly transfer of cultures on artificial media. Through combination of experimental evolution with high throughput sequencing technology, we found that mutations accumulate rapidly prior to visible phenotypic changes and that both genetic drift and selection seem to contribute to shaping mutational landscape, suggesting the buffering capacity of fungal genome against mutations. Inference of mutational effects on phenotypes through the use of T-DNA insertion mutants suggested that at least some of the DNA sequence mutations are likely associated with the observed phenotypic changes. Furthermore, our data suggest oxidative damages and UV as major sources of mutation during subcultures. Taken together, our work revealed important properties of original source of variation in the genome of the rice blast fungus. We believe that these results provide not only insights into stability of pathogenicity and genome evolution in plant pathogenic fungi but also a model in which evolution of fungal pathogens in natura can be comparatively investigated.

  16. Large-Scale Bioinformatics Analysis of Bacillus Genomes Uncovers Conserved Roles of Natural Products in Bacterial Physiology.

    PubMed

    Grubbs, Kirk J; Bleich, Rachel M; Santa Maria, Kevin C; Allen, Scott E; Farag, Sherif; Shank, Elizabeth A; Bowers, Albert A

    2017-01-01

    Bacteria possess an amazing capacity to synthesize a diverse range of structurally complex, bioactive natural products known as specialized (or secondary) metabolites. Many of these specialized metabolites are used as clinical therapeutics, while others have important ecological roles in microbial communities. The biosynthetic gene clusters (BGCs) that generate these metabolites can be identified in bacterial genome sequences using their highly conserved genetic features. We analyzed an unprecedented 1,566 bacterial genomes from Bacillus species and identified nearly 20,000 BGCs. By comparing these BGCs to one another as well as a curated set of known specialized metabolite BGCs, we discovered that the majority of Bacillus natural products are comprised of a small set of highly conserved, well-distributed, known natural product compounds. Most of these metabolites have important roles influencing the physiology and development of Bacillus species. We identified, in addition to these characterized compounds, many unique, weakly conserved BGCs scattered across the genus that are predicted to encode unknown natural products. Many of these "singleton" BGCs appear to have been acquired via horizontal gene transfer. Based on this large-scale characterization of metabolite production in the Bacilli , we go on to connect the alkylpyrones, natural products that are highly conserved but previously biologically uncharacterized, to a role in Bacillus physiology: inhibiting spore development. IMPORTANCE Bacilli are capable of producing a diverse array of specialized metabolites, many of which have gained attention for their roles as signals that affect bacterial physiology and development. Up to this point, however, the Bacillus genus's metabolic capacity has been underexplored. We undertook a deep genomic analysis of 1,566 Bacillus genomes to understand the full spectrum of metabolites that this bacterial group can make. We discovered that the majority of the specialized

  17. CRISPR Genome Engineering for Human Pluripotent Stem Cell Research

    PubMed Central

    Chaterji, Somali; Ahn, Eun Hyun; Kim, Deok-Ho

    2017-01-01

    The emergence of targeted and efficient genome editing technologies, such as repurposed bacterial programmable nucleases (e.g., CRISPR-Cas systems), has abetted the development of cell engineering approaches. Lessons learned from the development of RNA-interference (RNA-i) therapies can spur the translation of genome editing, such as those enabling the translation of human pluripotent stem cell engineering. In this review, we discuss the opportunities and the challenges of repurposing bacterial nucleases for genome editing, while appreciating their roles, primarily at the epigenomic granularity. First, we discuss the evolution of high-precision, genome editing technologies, highlighting CRISPR-Cas9. They exist in the form of programmable nucleases, engineered with sequence-specific localizing domains, and with the ability to revolutionize human stem cell technologies through precision targeting with greater on-target activities. Next, we highlight the major challenges that need to be met prior to bench-to-bedside translation, often learning from the path-to-clinic of complementary technologies, such as RNA-i. Finally, we suggest potential bioinformatics developments and CRISPR delivery vehicles that can be deployed to circumvent some of the challenges confronting genome editing technologies en route to the clinic. PMID:29158838

  18. Evolution of bacterial communities in the Gironde Estuary (France) according to a salinity gradient

    NASA Astrophysics Data System (ADS)

    Prieur, D.; Troussellier, M.; Romana, A.; Chamroux, S.; Mevel, G.; Baleux, B.

    1987-01-01

    Three surveys were performed in the Gironde Estuary (France) in August 1981, March 1982 and July 1982. For each campaign, seventy samples were taken by helicopter, in order to follow the tide along the estuary. Of the parameters that were studied, salinity appeared to be the most important and which controls the bacterial communities along the estuary. This paper deals with the evolution of bacterial communities along a salinity gradient. The information obtained from various bacteriological parameters (total bacterial counts, viable counts on salted and unsalted media, functional evenness) were convergent. The bacterial community is dominated by an halotolerant microflora. In the estuary, a continental microflora is followed by a marine microflora. The succession zone between these two microflora is located between 5 and 10‰ areas of salinity.

  19. Quantifying the Number of Independent Organelle DNA Insertions in Genome Evolution and Human Health.

    PubMed

    Hazkani-Covo, Einat; Martin, William F

    2017-05-01

    Fragments of organelle genomes are often found as insertions in nuclear DNA. These fragments of mitochondrial DNA (numts) and plastid DNA (nupts) are ubiquitous components of eukaryotic genomes. They are, however, often edited out during the genome assembly process, leading to systematic underestimation of their frequency. Numts and nupts, once inserted, can become further fragmented through subsequent insertion of mobile elements or other recombinational events that disrupt the continuity of the inserted sequence relative to the genuine organelle DNA copy. Because numts and nupts are typically identified through sequence comparison tools such as BLAST, disruption of insertions into smaller fragments can lead to systematic overestimation of numt and nupt frequencies. Accurate identification of numts and nupts is important, however, both for better understanding of their role during evolution, and for monitoring their increasingly evident role in human disease. Human populations are polymorphic for 141 numt loci, five numts are causal to genetic disease, and cancer genomic studies are revealing an abundance of numts associated with tumor progression. Here, we report investigation of salient parameters involved in obtaining accurate estimates of numt and nupt numbers in genome sequence data. Numts and nupts from 44 sequenced eukaryotic genomes reveal lineage-specific differences in the number, relative age and frequency of insertional events as well as lineage-specific dynamics of their postinsertional fragmentation. Our findings outline the main technical parameters influencing accurate identification and frequency estimation of numts in genomic studies pertinent to both evolution and human health. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. The COG database: a tool for genome-scale analysis of protein functions and evolution

    PubMed Central

    Tatusov, Roman L.; Galperin, Michael Y.; Natale, Darren A.; Koonin, Eugene V.

    2000-01-01

    Rational classification of proteins encoded in sequenced genomes is critical for making the genome sequences maximally useful for functional and evolutionary studies. The database of Clusters of Orthologous Groups of proteins (COGs) is an attempt on a phylogenetic classification of the proteins encoded in 21 complete genomes of bacteria, archaea and eukaryotes (http://www.ncbi.nlm.nih.gov/COG ). The COGs were constructed by applying the criterion of consistency of genome-specific best hits to the results of an exhaustive comparison of all protein sequences from these genomes. The database comprises 2091 COGs that include 56–83% of the gene products from each of the complete bacterial and archaeal genomes and ~35% of those from the yeast Saccharomyces cerevisiae genome. The COG database is accompanied by the COGNITOR program that is used to fit new proteins into the COGs and can be applied to functional and phylogenetic annotation of newly sequenced genomes. PMID:10592175

  1. Whole genome comparative studies between chicken and turkey and their implications for avian genome evolution

    PubMed Central

    Griffin, Darren K; Robertson, Lindsay B; Tempest, Helen G; Vignal, Alain; Fillon, Valérie; Crooijmans, Richard PMA; Groenen, Martien AM; Deryusheva, Svetlana; Gaginskaya, Elena; Carré, Wilfrid; Waddington, David; Talbot, Richard; Völker, Martin; Masabanda, Julio S; Burt, Dave W

    2008-01-01

    Background Comparative genomics is a powerful means of establishing inter-specific relationships between gene function/location and allows insight into genomic rearrangements, conservation and evolutionary phylogeny. The availability of the complete sequence of the chicken genome has initiated the development of detailed genomic information in other birds including turkey, an agriculturally important species where mapping has hitherto focused on linkage with limited physical information. No molecular study has yet examined conservation of avian microchromosomes, nor differences in copy number variants (CNVs) between birds. Results We present a detailed comparative cytogenetic map between chicken and turkey based on reciprocal chromosome painting and mapping of 338 chicken BACs to turkey metaphases. Two inter-chromosomal changes (both involving centromeres) and three pericentric inversions have been identified between chicken and turkey; and array CGH identified 16 inter-specific CNVs. Conclusion This is the first study to combine the modalities of zoo-FISH and array CGH between different avian species. The first insight into the conservation of microchromosomes, the first comparative cytogenetic map of any bird and the first appraisal of CNVs between birds is provided. Results suggest that avian genomes have remained relatively stable during evolution compared to mammalian equivalents. PMID:18410676

  2. Genome-Wide Convergence during Evolution of Mangroves from Woody Plants.

    PubMed

    Xu, Shaohua; He, Ziwen; Guo, Zixiao; Zhang, Zhang; Wyckoff, Gerald J; Greenberg, Anthony; Wu, Chung-I; Shi, Suhua

    2017-04-01

    When living organisms independently invade a new environment, the evolution of similar phenotypic traits is often observed. An interesting but contentious issue is whether the underlying molecular biology also converges in the new habitat. Independent invasions of tropical intertidal zones by woody plants, collectively referred to as mangrove trees, represent some dramatic examples. The high salinity, hypoxia, and other stressors in the new habitat might have affected both genomic features and protein structures. Here, we developed a new method for detecting convergence at conservative Sites (CCS) and applied it to the genomic sequences of mangroves. In simulations, the CCS method drastically reduces random convergence at rapidly evolving sites as well as falsely inferred convergence caused by the misinferences of the ancestral character. In mangrove genomes, we estimated ∼400 genes that have experienced convergence over the background level of convergence in the nonmangrove relatives. The convergent genes are enriched in pathways related to stress response and embryo development, which could be important for mangroves' adaptation to the new habitat. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Genome sequence of the progenitor of wheat A subgenome Triticum urartu.

    PubMed

    Ling, Hong-Qing; Ma, Bin; Shi, Xiaoli; Liu, Hui; Dong, Lingli; Sun, Hua; Cao, Yinghao; Gao, Qiang; Zheng, Shusong; Li, Ye; Yu, Ying; Du, Huilong; Qi, Ming; Li, Yan; Lu, Hongwei; Yu, Hua; Cui, Yan; Wang, Ning; Chen, Chunlin; Wu, Huilan; Zhao, Yan; Zhang, Juncheng; Li, Yiwen; Zhou, Wenjuan; Zhang, Bairu; Hu, Weijuan; van Eijk, Michiel J T; Tang, Jifeng; Witsenboer, Hanneke M A; Zhao, Shancen; Li, Zhensheng; Zhang, Aimin; Wang, Daowen; Liang, Chengzhi

    2018-05-09

    Triticum urartu (diploid, AA) is the progenitor of the A subgenome of tetraploid (Triticum turgidum, AABB) and hexaploid (Triticum aestivum, AABBDD) wheat 1,2 . Genomic studies of T. urartu have been useful for investigating the structure, function and evolution of polyploid wheat genomes. Here we report the generation of a high-quality genome sequence of T. urartu by combining bacterial artificial chromosome (BAC)-by-BAC sequencing, single molecule real-time whole-genome shotgun sequencing 3 , linked reads and optical mapping 4,5 . We assembled seven chromosome-scale pseudomolecules and identified protein-coding genes, and we suggest a model for the evolution of T. urartu chromosomes. Comparative analyses with genomes of other grasses showed gene loss and amplification in the numbers of transposable elements in the T. urartu genome. Population genomics analysis of 147 T. urartu accessions from across the Fertile Crescent showed clustering of three groups, with differences in altitude and biostress, such as powdery mildew disease. The T. urartu genome assembly provides a valuable resource for studying genetic variation in wheat and related grasses, and promises to facilitate the discovery of genes that could be useful for wheat improvement.

  4. Lateral Gene Transfer Dynamics in the Ancient Bacterial Genus Streptomyces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, Bradon R.; Currie, Cameron R.

    Lateral gene transfer (LGT) profoundly shapes the evolution of bacterial lineages. LGT across disparate phylogenetic groups and genome content diversity between related organisms suggest a model of bacterial evolution that views LGT as rampant and promiscuous. It has even driven the argument that species concepts and tree-based phylogenetics cannot be applied to bacteria. For this paper, we show that acquisition and retention of genes through LGT are surprisingly rare in the ubiquitous and biomedically important bacterial genusStreptomyces. Using a molecular clock, we estimate that theStreptomycesbacteria are ~380 million years old, indicating that this bacterial genus is as ancient as landmore » vertebrates. Calibrating LGT rate to this geologic time span, we find that on average only 10 genes per million years were acquired and subsequently maintained. Over that same time span,Streptomycesaccumulated thousands of point mutations. By explicitly incorporating evolutionary timescale into our analyses, we provide a dramatically different view on the dynamics of LGT and its impact on bacterial evolution.Tree-based phylogenetics and the use of species as units of diversity lie at the foundation of modern biology. In bacteria, these pillars of evolutionary theory have been called into question due to the observation of thousands of lateral gene transfer (LGT) events within and between lineages. Here, we show that acquisition and retention of genes through LGT are exceedingly rare in the bacterial genusStreptomyces, with merely one gene acquired inStreptomyceslineages every 100,000 years. These findings stand in contrast to the current assumption of rampant genetic exchange, which has become the dominant hypothesis used to explain bacterial diversity. Our results support a more nuanced understanding of genetic exchange, with LGT impacting evolution over short timescales but playing a significant role over long timescales. Deeper understanding of LGT provides new

  5. Lateral Gene Transfer Dynamics in the Ancient Bacterial Genus Streptomyces

    DOE PAGES

    McDonald, Bradon R.; Currie, Cameron R.

    2017-06-06

    Lateral gene transfer (LGT) profoundly shapes the evolution of bacterial lineages. LGT across disparate phylogenetic groups and genome content diversity between related organisms suggest a model of bacterial evolution that views LGT as rampant and promiscuous. It has even driven the argument that species concepts and tree-based phylogenetics cannot be applied to bacteria. For this paper, we show that acquisition and retention of genes through LGT are surprisingly rare in the ubiquitous and biomedically important bacterial genusStreptomyces. Using a molecular clock, we estimate that theStreptomycesbacteria are ~380 million years old, indicating that this bacterial genus is as ancient as landmore » vertebrates. Calibrating LGT rate to this geologic time span, we find that on average only 10 genes per million years were acquired and subsequently maintained. Over that same time span,Streptomycesaccumulated thousands of point mutations. By explicitly incorporating evolutionary timescale into our analyses, we provide a dramatically different view on the dynamics of LGT and its impact on bacterial evolution.Tree-based phylogenetics and the use of species as units of diversity lie at the foundation of modern biology. In bacteria, these pillars of evolutionary theory have been called into question due to the observation of thousands of lateral gene transfer (LGT) events within and between lineages. Here, we show that acquisition and retention of genes through LGT are exceedingly rare in the bacterial genusStreptomyces, with merely one gene acquired inStreptomyceslineages every 100,000 years. These findings stand in contrast to the current assumption of rampant genetic exchange, which has become the dominant hypothesis used to explain bacterial diversity. Our results support a more nuanced understanding of genetic exchange, with LGT impacting evolution over short timescales but playing a significant role over long timescales. Deeper understanding of LGT provides new

  6. Lateral Gene Transfer Dynamics in the Ancient Bacterial Genus Streptomyces.

    PubMed

    McDonald, Bradon R; Currie, Cameron R

    2017-06-06

    Lateral gene transfer (LGT) profoundly shapes the evolution of bacterial lineages. LGT across disparate phylogenetic groups and genome content diversity between related organisms suggest a model of bacterial evolution that views LGT as rampant and promiscuous. It has even driven the argument that species concepts and tree-based phylogenetics cannot be applied to bacteria. Here, we show that acquisition and retention of genes through LGT are surprisingly rare in the ubiquitous and biomedically important bacterial genus Streptomyces Using a molecular clock, we estimate that the Streptomyces bacteria are ~380 million years old, indicating that this bacterial genus is as ancient as land vertebrates. Calibrating LGT rate to this geologic time span, we find that on average only 10 genes per million years were acquired and subsequently maintained. Over that same time span, Streptomyces accumulated thousands of point mutations. By explicitly incorporating evolutionary timescale into our analyses, we provide a dramatically different view on the dynamics of LGT and its impact on bacterial evolution. IMPORTANCE Tree-based phylogenetics and the use of species as units of diversity lie at the foundation of modern biology. In bacteria, these pillars of evolutionary theory have been called into question due to the observation of thousands of lateral gene transfer (LGT) events within and between lineages. Here, we show that acquisition and retention of genes through LGT are exceedingly rare in the bacterial genus Streptomyces , with merely one gene acquired in Streptomyces lineages every 100,000 years. These findings stand in contrast to the current assumption of rampant genetic exchange, which has become the dominant hypothesis used to explain bacterial diversity. Our results support a more nuanced understanding of genetic exchange, with LGT impacting evolution over short timescales but playing a significant role over long timescales. Deeper understanding of LGT provides new

  7. The mitochondrial genome of Frankliniella intonsa: insights into the evolution of mitochondrial genomes at lower taxonomic levels in Thysanoptera.

    PubMed

    Yan, Dankan; Tang, Yunxia; Hu, Min; Liu, Fengquan; Zhang, Dongfang; Fan, Jiaqin

    2014-10-01

    Thrips is an ideal group for studying the evolution of mitochondrial (mt) genomes in the genus and family due to independent rearrangements within this order. The complete sequence of the mitochondrial DNA (mtDNA) of the flower thrips Frankliniella intonsa has been completed and annotated in this study. The circular genome is 15,215bp in length with an A+T content of 75.9% and contains the typical 37 genes and it has triplicate putative control regions. Nucleotide composition is A+T biased, and the majority of the protein-coding genes present opposite CG skew which is reflected by the nucleotide composition, codon and amino acid usage. Although the known thrips have massive gene rearrangements, it showed no reversal of strand asymmetry. Gene rearrangements have been found in the lower taxonomic levels of thrips. Three tRNA genes were translocated in the genus Frankliniella and eight tRNA genes in the family Thripidae. Although the gene arrangements of mt genomes of all three thrips species differ massively from the ancestral insect, they are all very similar to each other, indicating that there was a large rearrangement somewhere before the most recent common ancestor of these three species and very little genomic evolution or rearrangements after then. The extremely similar sequences among the CRs suggest that they are ongoing concerted evolution. Analyses of the up and downstream sequence of CRs reveal that the CR2 is actually the ancestral CR. The three CRs are in the same spot in each of the three thrips mt genomes which have the identical inverted genes. These characteristics might be obtained from the most recent common ancestor of this three thrips. Above observations suggest that the mt genomes of the three thrips keep a single massive rearrangement from the common ancestor and have low evolutionary rates among them. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. ``Black Holes" and Bacterial Pathogenicity: A Large Genomic Deletion that Enhances the Virulence of Shigella spp. and Enteroinvasive Escherichia coli

    NASA Astrophysics Data System (ADS)

    Maurelli, Anthony T.; Fernandez, Reinaldo E.; Bloch, Craig A.; Rode, Christopher K.; Fasano, Alessio

    1998-03-01

    Plasmids, bacteriophages, and pathogenicity islands are genomic additions that contribute to the evolution of bacterial pathogens. For example, Shigella spp., the causative agents of bacillary dysentery, differ from the closely related commensal Escherichia coli in the presence of a plasmid in Shigella that encodes virulence functions. However, pathogenic bacteria also may lack properties that are characteristic of nonpathogens. Lysine decarboxylate (LDC) activity is present in ≈ 90% of E. coli strains but is uniformly absent in Shigella strains. When the gene for LDC, cadA, was introduced into Shigella flexneri 2a, virulence became attenuated, and enterotoxin activity was inhibited greatly. The enterotoxin inhibitor was identified as cadaverine, a product of the reaction catalyzed by LDC. Comparison of the S. flexneri 2a and laboratory E. coli K-12 genomes in the region of cadA revealed a large deletion in Shigella. Representative strains of Shigella spp. and enteroinvasive E. coli displayed similar deletions of cadA. Our results suggest that, as Shigella spp. evolved from E. coli to become pathogens, they not only acquired virulence genes on a plasmid but also shed genes via deletions. The formation of these ``black holes,'' deletions of genes that are detrimental to a pathogenic lifestyle, provides an evolutionary pathway that enables a pathogen to enhance virulence. Furthermore, the demonstration that cadaverine can inhibit enterotoxin activity may lead to more general models about toxin activity or entry into cells and suggests an avenue for antitoxin therapy. Thus, understanding the role of black holes in pathogen evolution may yield clues to new treatments of infectious diseases.

  9. CRISPR-Cas: From the Bacterial Adaptive Immune System to a Versatile Tool for Genome Engineering.

    PubMed

    Kirchner, Marion; Schneider, Sabine

    2015-11-09

    The field of biology has been revolutionized by the recent advancement of an adaptive bacterial immune system as a universal genome engineering tool. Bacteria and archaea use repetitive genomic elements termed clustered regularly interspaced short palindromic repeats (CRISPR) in combination with an RNA-guided nuclease (CRISPR-associated nuclease: Cas) to target and destroy invading DNA. By choosing the appropriate sequence of the guide RNA, this two-component system can be used to efficiently modify, target, and edit genomic loci of interest in plants, insects, fungi, mammalian cells, and whole organisms. This has opened up new frontiers in genome engineering, including the potential to treat or cure human genetic disorders. Now the potential risks as well as the ethical, social, and legal implications of this powerful new technique move into the limelight. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Genetic drift and mutational hazard in the evolution of salamander genomic gigantism.

    PubMed

    Mohlhenrich, Erik Roger; Mueller, Rachel Lockridge

    2016-12-01

    Salamanders have the largest nuclear genomes among tetrapods and, excepting lungfishes, among vertebrates as a whole. Lynch and Conery (2003) have proposed the mutational-hazard hypothesis to explain variation in genome size and complexity. Under this hypothesis, noncoding DNA imposes a selective cost by increasing the target for degenerative mutations (i.e., the mutational hazard). Expansion of noncoding DNA, and thus genome size, is driven by increased levels of genetic drift and/or decreased mutation rates; the former determines the efficiency with which purifying selection can remove excess DNA, whereas the latter determines the level of mutational hazard. Here, we test the hypothesis that salamanders have experienced stronger long-term, persistent genetic drift than frogs, a related clade with more typically sized vertebrate genomes. To test this hypothesis, we compared dN/dS and Kr/Kc values of protein-coding genes between these clades. Our results do not support this hypothesis; we find that salamanders have not experienced stronger genetic drift than frogs. Additionally, we find evidence consistent with a lower nucleotide substitution rate in salamanders. This result, along with previous work showing lower rates of small deletion and ectopic recombination in salamanders, suggests that a lower mutational hazard may contribute to genomic gigantism in this clade. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  11. Genomic Evolution of Breast Cancer Metastasis and Relapse

    DOE PAGES

    Yates, Lucy R.; Knappskog, Stian; Wedge, David; ...

    2017-08-14

    Patterns of genomic evolution between primary and metastatic breast cancer have not been studied in large numbers, despite patients with metastatic breast cancer having dismal survival. We sequenced whole genomes or a panel of 365 genes on 299 samples from 170 patients with locally relapsed or metastatic breast cancer. Several lines of analysis indicate that clones seeding metastasis or relapse disseminate late from primary tumors, but continue to acquire mutations, mostly accessing the same mutational processes active in the primary tumor. Most distant metastases acquired driver mutations not seen in the primary tumor, drawing from a wider repertoire of cancermore » genes than early drivers. Lastly, these include a number of clinically actionable alterations and mutations inactivating SWI-SNF and JAK2-STAT3 pathways.« less

  12. Genomic Evolution of Breast Cancer Metastasis and Relapse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yates, Lucy R.; Knappskog, Stian; Wedge, David

    Patterns of genomic evolution between primary and metastatic breast cancer have not been studied in large numbers, despite patients with metastatic breast cancer having dismal survival. We sequenced whole genomes or a panel of 365 genes on 299 samples from 170 patients with locally relapsed or metastatic breast cancer. Several lines of analysis indicate that clones seeding metastasis or relapse disseminate late from primary tumors, but continue to acquire mutations, mostly accessing the same mutational processes active in the primary tumor. Most distant metastases acquired driver mutations not seen in the primary tumor, drawing from a wider repertoire of cancermore » genes than early drivers. Lastly, these include a number of clinically actionable alterations and mutations inactivating SWI-SNF and JAK2-STAT3 pathways.« less

  13. Favorable genomic environments for cis-regulatory evolution: A novel theoretical framework.

    PubMed

    Maeso, Ignacio; Tena, Juan J

    2016-09-01

    Cis-regulatory changes are arguably the primary evolutionary source of animal morphological diversity. With the recent explosion of genome-wide comparisons of the cis-regulatory content in different animal species is now possible to infer general principles underlying enhancer evolution. However, these studies have also revealed numerous discrepancies and paradoxes, suggesting that the mechanistic causes and modes of cis-regulatory evolution are still not well understood and are probably much more complex than generally appreciated. Here, we argue that the mutational mechanisms and genomic regions generating new regulatory activities must comply with the constraints imposed by the molecular properties of cis-regulatory elements (CREs) and the organizational features of long-range chromatin interactions. Accordingly, we propose a new integrative evolutionary framework for cis-regulatory evolution based on two major premises for the origin of novel enhancer activity: (i) an accessible chromatin environment and (ii) compatibility with the 3D structure and interactions of pre-existing CREs. Mechanisms and DNA sequences not fulfilling these premises, will be less likely to have a measurable impact on gene expression and as such, will have a minor contribution to the evolution of gene regulation. Finally, we discuss current comparative cis-regulatory data under the light of this new evolutionary model, and propose that the two most prominent mechanisms for the evolution of cis-regulatory changes are the overprinting of ancestral CREs and the exaptation of transposable elements. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Is mammalian chromosomal evolution driven by regions of genome fragility?

    PubMed Central

    Ruiz-Herrera, Aurora; Castresana, Jose; Robinson, Terence J

    2006-01-01

    Background A fundamental question in comparative genomics concerns the identification of mechanisms that underpin chromosomal change. In an attempt to shed light on the dynamics of mammalian genome evolution, we analyzed the distribution of syntenic blocks, evolutionary breakpoint regions, and evolutionary breakpoints taken from public databases available for seven eutherian species (mouse, rat, cattle, dog, pig, cat, and horse) and the chicken, and examined these for correspondence with human fragile sites and tandem repeats. Results Our results confirm previous investigations that showed the presence of chromosomal regions in the human genome that have been repeatedly used as illustrated by a high breakpoint accumulation in certain chromosomes and chromosomal bands. We show, however, that there is a striking correspondence between fragile site location, the positions of evolutionary breakpoints, and the distribution of tandem repeats throughout the human genome, which similarly reflect a non-uniform pattern of occurrence. Conclusion These observations provide further evidence that certain chromosomal regions in the human genome have been repeatedly used in the evolutionary process. As a consequence, the genome is a composite of fragile regions prone to reorganization that have been conserved in different lineages, and genomic tracts that do not exhibit the same levels of evolutionary plasticity. PMID:17156441

  15. Cooperative Bacterial Growth Dynamics Predict the Evolution of Antibiotic Resistance

    NASA Astrophysics Data System (ADS)

    Artemova, Tatiana; Gerardin, Ylaine; Hsin-Jung Li, Sophia; Gore, Jeff

    2011-03-01

    Since the discovery of penicillin, antibiotics have been our primary weapon against bacterial infections. Unfortunately, bacteria can gain resistance to penicillin by acquiring the gene that encodes beta-lactamase, which inactivates the antibiotic. However, mutations in this gene are necessary to degrade the modern antibiotic cefotaxime. Understanding the conditions that favor the spread of these mutations is a challenge. Here we show that bacterial growth in beta-lactam antibiotics is cooperative and that the nature of this growth determines the conditions in which resistance evolves. Quantitative analysis of the growth dynamics predicts a peak in selection at very low antibiotic concentrations; competition between strains confirms this prediction. We also find significant selection at higher antibiotic concentrations, close to the minimum inhibitory concentrations of the strains. Our results argue that an understanding of the evolutionary forces that lead to antibiotic resistance requires a quantitative understanding of the evolution of cooperation in bacteria.

  16. Evaluation of phylogenetic footprint discovery for predicting bacterial cis-regulatory elements and revealing their evolution.

    PubMed

    Janky, Rekin's; van Helden, Jacques

    2008-01-23

    The detection of conserved motifs in promoters of orthologous genes (phylogenetic footprints) has become a common strategy to predict cis-acting regulatory elements. Several software tools are routinely used to raise hypotheses about regulation. However, these tools are generally used as black boxes, with default parameters. A systematic evaluation of optimal parameters for a footprint discovery strategy can bring a sizeable improvement to the predictions. We evaluate the performances of a footprint discovery approach based on the detection of over-represented spaced motifs. This method is particularly suitable for (but not restricted to) Bacteria, since such motifs are typically bound by factors containing a Helix-Turn-Helix domain. We evaluated footprint discovery in 368 Escherichia coli K12 genes with annotated sites, under 40 different combinations of parameters (taxonomical level, background model, organism-specific filtering, operon inference). Motifs are assessed both at the levels of correctness and significance. We further report a detailed analysis of 181 bacterial orthologs of the LexA repressor. Distinct motifs are detected at various taxonomical levels, including the 7 previously characterized taxon-specific motifs. In addition, we highlight a significantly stronger conservation of half-motifs in Actinobacteria, relative to Firmicutes, suggesting an intermediate state in specificity switching between the two Gram-positive phyla, and thereby revealing the on-going evolution of LexA auto-regulation. The footprint discovery method proposed here shows excellent results with E. coli and can readily be extended to predict cis-acting regulatory signals and propose testable hypotheses in bacterial genomes for which nothing is known about regulation.

  17. The Experimental Study of Bacterial Evolution and Its Implications for the Modern Synthesis of Evolutionary Biology.

    PubMed

    O'Malley, Maureen A

    2018-06-01

    Since the 1940s, microbiologists, biochemists and population geneticists have experimented with the genetic mechanisms of microorganisms in order to investigate evolutionary processes. These evolutionary studies of bacteria and other microorganisms gained some recognition from the standard-bearers of the modern synthesis of evolutionary biology, especially Theodosius Dobzhansky and Ledyard Stebbins. A further period of post-synthesis bacterial evolutionary research occurred between the 1950s and 1980s. These experimental analyses focused on the evolution of population and genetic structure, the adaptive gain of new functions, and the evolutionary consequences of competition dynamics. This large body of research aimed to make evolutionary theory testable and predictive, by giving it mechanistic underpinnings. Although evolutionary microbiologists promoted bacterial experiments as methodologically advantageous and a source of general insight into evolution, they also acknowledged the biological differences of bacteria. My historical overview concludes with reflections on what bacterial evolutionary research achieved in this period, and its implications for the still-developing modern synthesis.

  18. 1,003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life

    DOE PAGES

    Mukherjee, Supratim; Seshadri, Rekha; Varghese, Neha J.; ...

    2017-06-12

    We present 1,003 reference genomes that were sequenced as part of the Genomic Encyclopedia of Bacteria and Archaea (GEBA) initiative, selected to maximize sequence coverage of phylogenetic space. These genomes double the number of existing type strains and expand their overall phylogenetic diversity by 25%. Comparative analyses with previously available finished and draft genomes reveal a 10.5% increase in novel protein families as a function of phylogenetic diversity. The GEBA genomes recruit 25 million previously unassigned metagenomic proteins from 4,650 samples, improving their phylogenetic and functional interpretation. We identify numerous biosynthetic clusters and experimentally validate a divergent phenazine cluster withmore » potential new chemical structure and antimicrobial activity. This Resource is the largest single release of reference genomes to date. Bacterial and archaeal isolate sequence space is still far from saturated, and future endeavors in this direction will continue to be a valuable resource for scientific discovery.« less

  19. 1,003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, Supratim; Seshadri, Rekha; Varghese, Neha J.

    We present 1,003 reference genomes that were sequenced as part of the Genomic Encyclopedia of Bacteria and Archaea (GEBA) initiative, selected to maximize sequence coverage of phylogenetic space. These genomes double the number of existing type strains and expand their overall phylogenetic diversity by 25%. Comparative analyses with previously available finished and draft genomes reveal a 10.5% increase in novel protein families as a function of phylogenetic diversity. The GEBA genomes recruit 25 million previously unassigned metagenomic proteins from 4,650 samples, improving their phylogenetic and functional interpretation. We identify numerous biosynthetic clusters and experimentally validate a divergent phenazine cluster withmore » potential new chemical structure and antimicrobial activity. This Resource is the largest single release of reference genomes to date. Bacterial and archaeal isolate sequence space is still far from saturated, and future endeavors in this direction will continue to be a valuable resource for scientific discovery.« less

  20. Reconstruction of the evolution of microbial defense systems.

    PubMed

    Puigbò, Pere; Makarova, Kira S; Kristensen, David M; Wolf, Yuri I; Koonin, Eugene V

    2017-04-04

    Evolution of bacterial and archaeal genomes is a highly dynamic process that involves intensive loss of genes as well as gene gain via horizontal transfer, with a lesser contribution from gene duplication. The rates of these processes can be estimated by comparing genomes that are linked by an evolutionary tree. These estimated rates of genome dynamics events substantially differ for different functional classes of genes. The genes involved in defense against viruses and other invading DNA are among those that are gained and lost at the highest rates. We employed a stochastic birth-and-death model to obtain maximum likelihood estimates of the rates of gain and loss of defense genes in 35 groups of closely related bacterial genomes and one group of archaeal genomes. We find that on average, the defense genes experience 1.4 fold higher flux than the rest of microbial genes. This excessive flux of defense genes over the genomic mean is consistent across diverse microbial groups. The few exceptions include intracellular parasites with small, degraded genomes that possess few defense systems which are more stable than in other microbes. Generally, defense genes follow the previously established pattern of genome dynamics, with gene family loss being about 3 times more common than gain and an order of magnitude more common than expansion or contraction of gene families. Case by case analysis of the evolutionary dynamics of defense genes indicates frequent multiple events in the same locus and widespread involvement of mobile elements in the gain and loss of defense genes. Evolution of microbial defense systems is highly dynamic but, notwithstanding the host-parasite arms race, generally follows the same trends that have been established for the rest of the genes. Apart from the paucity and the low flux of defense genes in parasitic bacteria with deteriorating genomes, there is no clear connection between the evolutionary regime of defense systems and microbial life style.

  1. Overview of the creative genome: effects of genome structure and sequence on the generation of variation and evolution.

    PubMed

    Caporale, Lynn Helena

    2012-09-01

    This overview of a special issue of Annals of the New York Academy of Sciences discusses uneven distribution of distinct types of variation across the genome, the dependence of specific types of variation upon distinct classes of DNA sequences and/or the induction of specific proteins, the circumstances in which distinct variation-generating systems are activated, and the implications of this work for our understanding of evolution and of cancer. Also discussed is the value of non text-based computational methods for analyzing information carried by DNA, early insights into organizational frameworks that affect genome behavior, and implications of this work for comparative genomics. © 2012 New York Academy of Sciences.

  2. The Genome and Development-Dependent Transcriptomes of Pyronema confluens: A Window into Fungal Evolution

    PubMed Central

    Traeger, Stefanie; Altegoer, Florian; Freitag, Michael; Gabaldon, Toni; Kempken, Frank; Kumar, Abhishek; Marcet-Houben, Marina; Pöggeler, Stefanie; Stajich, Jason E.; Nowrousian, Minou

    2013-01-01

    Fungi are a large group of eukaryotes found in nearly all ecosystems. More than 250 fungal genomes have already been sequenced, greatly improving our understanding of fungal evolution, physiology, and development. However, for the Pezizomycetes, an early-diverging lineage of filamentous ascomycetes, there is so far only one genome available, namely that of the black truffle, Tuber melanosporum, a mycorrhizal species with unusual subterranean fruiting bodies. To help close the sequence gap among basal filamentous ascomycetes, and to allow conclusions about the evolution of fungal development, we sequenced the genome and assayed transcriptomes during development of Pyronema confluens, a saprobic Pezizomycete with a typical apothecium as fruiting body. With a size of 50 Mb and ∼13,400 protein-coding genes, the genome is more characteristic of higher filamentous ascomycetes than the large, repeat-rich truffle genome; however, some typical features are different in the P. confluens lineage, e.g. the genomic environment of the mating type genes that is conserved in higher filamentous ascomycetes, but only partly conserved in P. confluens. On the other hand, P. confluens has a full complement of fungal photoreceptors, and expression studies indicate that light perception might be similar to distantly related ascomycetes and, thus, represent a basic feature of filamentous ascomycetes. Analysis of spliced RNA-seq sequence reads allowed the detection of natural antisense transcripts for 281 genes. The P. confluens genome contains an unusually high number of predicted orphan genes, many of which are upregulated during sexual development, consistent with the idea of rapid evolution of sex-associated genes. Comparative transcriptomics identified the transcription factor gene pro44 that is upregulated during development in P. confluens and the Sordariomycete Sordaria macrospora. The P. confluens pro44 gene (PCON_06721) was used to complement the S. macrospora pro44 deletion

  3. Genomic Encyclopedia of Type Strains of the Genus Bifidobacterium

    PubMed Central

    Milani, Christian; Lugli, Gabriele Andrea; Duranti, Sabrina; Turroni, Francesca; Bottacini, Francesca; Mangifesta, Marta; Sanchez, Borja; Viappiani, Alice; Mancabelli, Leonardo; Taminiau, Bernard; Delcenserie, Véronique; Barrangou, Rodolphe; Margolles, Abelardo; van Sinderen, Douwe

    2014-01-01

    Bifidobacteria represent one of the dominant microbial groups that are present in the gut of various animals, being particularly prevalent during the suckling stage of life of humans and other mammals. However, the overall genome structure of this group of microorganisms remains largely unexplored. Here, we sequenced the genomes of 42 representative (sub)species across the Bifidobacterium genus and used this information to explore the overall genetic picture of this bacterial group. Furthermore, the genomic data described here were used to reconstruct the evolutionary development of the Bifidobacterium genus. This reconstruction suggests that its evolution was substantially influenced by genetic adaptations to obtain access to glycans, thereby representing a common and potent evolutionary force in shaping bifidobacterial genomes. PMID:25085493

  4. Evolving Ideas on the Origin and Evolution of Flowers: New Perspectives in the Genomic Era

    PubMed Central

    Chanderbali, Andre S.; Berger, Brent A.; Howarth, Dianella G.; Soltis, Pamela S.; Soltis, Douglas E.

    2016-01-01

    The origin of the flower was a key innovation in the history of complex organisms, dramatically altering Earth’s biota. Advances in phylogenetics, developmental genetics, and genomics during the past 25 years have substantially advanced our understanding of the evolution of flowers, yet crucial aspects of floral evolution remain, such as the series of genetic and morphological changes that gave rise to the first flowers; the factors enabling the origin of the pentamerous eudicot flower, which characterizes ∼70% of all extant angiosperm species; and the role of gene and genome duplications in facilitating floral innovations. A key early concept was the ABC model of floral organ specification, developed by Elliott Meyerowitz and Enrico Coen and based on two model systems, Arabidopsis thaliana and Antirrhinum majus. Yet it is now clear that these model systems are highly derived species, whose molecular genetic-developmental organization must be very different from that of ancestral, as well as early, angiosperms. In this article, we will discuss how new research approaches are illuminating the early events in floral evolution and the prospects for further progress. In particular, advancing the next generation of research in floral evolution will require the development of one or more functional model systems from among the basal angiosperms and basal eudicots. More broadly, we urge the development of “model clades” for genomic and evolutionary-developmental analyses, instead of the primary use of single “model organisms.” We predict that new evolutionary models will soon emerge as genetic/genomic models, providing unprecedented new insights into floral evolution. PMID:27053123

  5. Reduction of Large Dynamical Systems by Minimization of Evolution Rate

    NASA Technical Reports Server (NTRS)

    Girimaji, Sharath S.

    1999-01-01

    Reduction of a large system of equations to a lower-dimensional system of similar dynamics is investigated. For dynamical systems with disparate timescales, a criterion for determining redundant dimensions and a general reduction method based on the minimization of evolution rate are proposed.

  6. Trade-off between Transcriptome Plasticity and Genome Evolution in Cephalopods.

    PubMed

    Liscovitch-Brauer, Noa; Alon, Shahar; Porath, Hagit T; Elstein, Boaz; Unger, Ron; Ziv, Tamar; Admon, Arie; Levanon, Erez Y; Rosenthal, Joshua J C; Eisenberg, Eli

    2017-04-06

    RNA editing, a post-transcriptional process, allows the diversification of proteomes beyond the genomic blueprint; however it is infrequently used among animals for this purpose. Recent reports suggesting increased levels of RNA editing in squids thus raise the question of the nature and effects of these events. We here show that RNA editing is particularly common in behaviorally sophisticated coleoid cephalopods, with tens of thousands of evolutionarily conserved sites. Editing is enriched in the nervous system, affecting molecules pertinent for excitability and neuronal morphology. The genomic sequence flanking editing sites is highly conserved, suggesting that the process confers a selective advantage. Due to the large number of sites, the surrounding conservation greatly reduces the number of mutations and genomic polymorphisms in protein-coding regions. This trade-off between genome evolution and transcriptome plasticity highlights the importance of RNA recoding as a strategy for diversifying proteins, particularly those associated with neural function. PAPERCLIP. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Comparative analysis of syntenic genes in grass genomes reveals accelerated rates of gene structure and coding sequence evolution in polyploid wheat

    USDA-ARS?s Scientific Manuscript database

    Cycles of whole genome duplication (WGD) and diploidization are hallmarks of eukaryotic genome evolution and speciation. Polyploid wheat (Triticum aestivum) has had a massive increase in genome size largely due to recent WGDs. How these processes may impact the dynamics of gene evolution was studied...

  8. Draft Genome Sequence of Xanthomonas arboricola pv. pruni Strain Xap33, Causal Agent of Bacterial Spot Disease on Almond

    PubMed Central

    Garita-Cambronero, J.; Sena-Vélez, M.; Palacio-Bielsa, A.

    2014-01-01

    We report the annotated genome sequence of Xanthomonas arboricola pv. pruni strain Xap33, isolated from almond leaves showing bacterial spot disease symptoms in Spain. The availability of this genome sequence will aid our understanding of the infection mechanism of this bacterium as well as its relationship to other species of the same genus. PMID:24903863

  9. Precise, High-throughput Analysis of Bacterial Growth.

    PubMed

    Kurokawa, Masaomi; Ying, Bei-Wen

    2017-09-19

    Bacterial growth is a central concept in the development of modern microbial physiology, as well as in the investigation of cellular dynamics at the systems level. Recent studies have reported correlations between bacterial growth and genome-wide events, such as genome reduction and transcriptome reorganization. Correctly analyzing bacterial growth is crucial for understanding the growth-dependent coordination of gene functions and cellular components. Accordingly, the precise quantitative evaluation of bacterial growth in a high-throughput manner is required. Emerging technological developments offer new experimental tools that allow updates of the methods used for studying bacterial growth. The protocol introduced here employs a microplate reader with a highly optimized experimental procedure for the reproducible and precise evaluation of bacterial growth. This protocol was used to evaluate the growth of several previously described Escherichia coli strains. The main steps of the protocol are as follows: the preparation of a large number of cell stocks in small vials for repeated tests with reproducible results, the use of 96-well plates for high-throughput growth evaluation, and the manual calculation of two major parameters (i.e., maximal growth rate and population density) representing the growth dynamics. In comparison to the traditional colony-forming unit (CFU) assay, which counts the cells that are cultured in glass tubes over time on agar plates, the present method is more efficient and provides more detailed temporal records of growth changes, but has a stricter detection limit at low population densities. In summary, the described method is advantageous for the precise and reproducible high-throughput analysis of bacterial growth, which can be used to draw conceptual conclusions or to make theoretical observations.

  10. Genome size evolution at the speciation level: the cryptic species complex Brachionus plicatilis (Rotifera).

    PubMed

    Stelzer, Claus-Peter; Riss, Simone; Stadler, Peter

    2011-04-07

    Studies on genome size variation in animals are rarely done at lower taxonomic levels, e.g., slightly above/below the species level. Yet, such variation might provide important clues on the tempo and mode of genome size evolution. In this study we used the flow-cytometry method to study the evolution of genome size in the rotifer Brachionus plicatilis, a cryptic species complex consisting of at least 14 closely related species. We found an unexpectedly high variation in this species complex, with genome sizes ranging approximately seven-fold (haploid '1C' genome sizes: 0.056-0.416 pg). Most of this variation (67%) could be ascribed to the major clades of the species complex, i.e. clades that are well separated according to most species definitions. However, we also found substantial variation (32%) at lower taxonomic levels--within and among genealogical species--and, interestingly, among species pairs that are not completely reproductively isolated. In one genealogical species, called B. 'Austria', we found greatly enlarged genome sizes that could roughly be approximated as multiples of the genomes of its closest relatives, which suggests that whole-genome duplications have occurred early during separation of this lineage. Overall, genome size was significantly correlated to egg size and body size, even though the latter became non-significant after controlling for phylogenetic non-independence. Our study suggests that substantial genome size variation can build up early during speciation, potentially even among isolated populations. An alternative, but not mutually exclusive interpretation might be that reproductive isolation tends to build up unusually slow in this species complex.

  11. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies.

    PubMed

    Roller, Benjamin R K; Stoddard, Steven F; Schmidt, Thomas M

    2016-09-12

    The potential for rapid reproduction is a hallmark of microbial life, but microbes in nature must also survive and compete when growth is constrained by resource availability. Successful reproduction requires different strategies when resources are scarce and when they are abundant 1,2 , but a systematic framework for predicting these reproductive strategies in bacteria has not been available. Here, we show that the number of ribosomal RNA operons (rrn) in bacterial genomes predicts two important components of reproduction-growth rate and growth efficiency-which are favoured under contrasting regimes of resource availability 3,4 . We find that the maximum reproductive rate of bacteria doubles with a doubling of rrn copy number, and the efficiency of carbon use is inversely related to maximal growth rate and rrn copy number. We also identify a feasible explanation for these patterns: the rate and yield of protein synthesis mirror the overall pattern in maximum growth rate and growth efficiency. Furthermore, comparative analysis of genomes from 1,167 bacterial species reveals that rrn copy number predicts traits associated with resource availability, including chemotaxis and genome streamlining. Genome-wide patterns of orthologous gene content covary with rrn copy number, suggesting convergent evolution in response to resource availability. Our findings imply that basic cellular processes adapt in contrasting ways to long-term differences in resource availability. They also establish a basis for predicting changes in bacterial community composition in response to resource perturbations using rrn copy number measurements 5 or inferences 6,7 .

  12. Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia.

    PubMed

    Hou, Shaobin; Makarova, Kira S; Saw, Jimmy H W; Senin, Pavel; Ly, Benjamin V; Zhou, Zhemin; Ren, Yan; Wang, Jianmei; Galperin, Michael Y; Omelchenko, Marina V; Wolf, Yuri I; Yutin, Natalya; Koonin, Eugene V; Stott, Matthew B; Mountain, Bruce W; Crowe, Michelle A; Smirnova, Angela V; Dunfield, Peter F; Feng, Lu; Wang, Lei; Alam, Maqsudul

    2008-07-01

    The phylum Verrucomicrobia is a widespread but poorly characterized bacterial clade. Although cultivation-independent approaches detect representatives of this phylum in a wide range of environments, including soils, seawater, hot springs and human gastrointestinal tract, only few have been isolated in pure culture. We have recently reported cultivation and initial characterization of an extremely acidophilic methanotrophic member of the Verrucomicrobia, strain V4, isolated from the Hell's Gate geothermal area in New Zealand. Similar organisms were independently isolated from geothermal systems in Italy and Russia. We report the complete genome sequence of strain V4, the first one from a representative of the Verrucomicrobia. Isolate V4, initially named "Methylokorus infernorum" (and recently renamed Methylacidiphilum infernorum) is an autotrophic bacterium with a streamlined genome of ~2.3 Mbp that encodes simple signal transduction pathways and has a limited potential for regulation of gene expression. Central metabolism of M. infernorum was reconstructed almost completely and revealed highly interconnected pathways of autotrophic central metabolism and modifications of C1-utilization pathways compared to other known methylotrophs. The M. infernorum genome does not encode tubulin, which was previously discovered in bacteria of the genus Prosthecobacter, or close homologs of any other signature eukaryotic proteins. Phylogenetic analysis of ribosomal proteins and RNA polymerase subunits unequivocally supports grouping Planctomycetes, Verrucomicrobia and Chlamydiae into a single clade, the PVC superphylum, despite dramatically different gene content in members of these three groups. Comparative-genomic analysis suggests that evolution of the M. infernorum lineage involved extensive horizontal gene exchange with a variety of bacteria. The genome of M. infernorum shows apparent adaptations for existence under extremely acidic conditions including a major upward shift

  13. Bacterial reduction of Cr(VI) at technical scale--the Malaysian experience.

    PubMed

    Zakaria, Zainul Akmar; Ahmad, Wan Azlina; Zakaria, Zainoha; Razali, Firdausi; Karim, Norsuhada Abdul; Sum, Mohamad Md; Sidek, Mohd Saufi Mohd

    2012-07-01

    The bacterial reduction of Cr(VI) from industrial wastewater was evaluated using a 2.0-m(3) bioreactor. Liquid pineapple waste was used as a nutrient for the biofilm community formed inside the bioreactor. The use of rubber wood sawdust as packing material was able to immobilize more than 10(6) CFU mL(-1) of Acinetobacter haemolyticus cells after 3 days of contact time. Complete reduction of 15-240 mg L(-1) of Cr(VI) was achieved even after 3 months of bioreactor operation. Cr(VI) was not detected in the final effluent fraction indicating complete removal of Cr from solution from the flocculation/coagulation step and the unlikely re-oxidation of Cr(III) into Cr(VI). Impatiens balsamina L. and Gomphrena globosa L. showed better growth in the presence of soil-sludge mixture compared to Coleus scutellarioides (L.) Benth. Significant amounts of Cr accumulated at different sections of the plants indicate its potential application in Cr phytoremediation effort. The bacterial-based system was also determined not to be detrimental to human health based on the low levels of Cr detected in the hair and nail samples of the plant operators. Thus, it can be said that bacterial-based Cr(VI) treatment system is a feasible alternative to the conventional system especially for lower Cr(VI) concentrations, where sludge generated can be used as growth supplement for ornamental plant as well as not detrimental to the health of the workers.

  14. Complete chloroplast and ribosomal sequences for 30 accessions elucidate evolution of Oryza AA genome species

    PubMed Central

    Kim, Kyunghee; Lee, Sang-Choon; Lee, Junki; Yu, Yeisoo; Yang, Kiwoung; Choi, Beom-Soon; Koh, Hee-Jong; Waminal, Nomar Espinosa; Choi, Hong-Il; Kim, Nam-Hoon; Jang, Woojong; Park, Hyun-Seung; Lee, Jonghoon; Lee, Hyun Oh; Joh, Ho Jun; Lee, Hyeon Ju; Park, Jee Young; Perumal, Sampath; Jayakodi, Murukarthick; Lee, Yun Sun; Kim, Backki; Copetti, Dario; Kim, Soonok; Kim, Sunggil; Lim, Ki-Byung; Kim, Young-Dong; Lee, Jungho; Cho, Kwang-Su; Park, Beom-Seok; Wing, Rod A.; Yang, Tae-Jin

    2015-01-01

    Cytoplasmic chloroplast (cp) genomes and nuclear ribosomal DNA (nR) are the primary sequences used to understand plant diversity and evolution. We introduce a high-throughput method to simultaneously obtain complete cp and nR sequences using Illumina platform whole-genome sequence. We applied the method to 30 rice specimens belonging to nine Oryza species. Concurrent phylogenomic analysis using cp and nR of several of specimens of the same Oryza AA genome species provides insight into the evolution and domestication of cultivated rice, clarifying three ambiguous but important issues in the evolution of wild Oryza species. First, cp-based trees clearly classify each lineage but can be biased by inter-subspecies cross-hybridization events during speciation. Second, O. glumaepatula, a South American wild rice, includes two cytoplasm types, one of which is derived from a recent interspecies hybridization with O. longistminata. Third, the Australian O. rufipogan-type rice is a perennial form of O. meridionalis. PMID:26506948

  15. Dynamic Evolution of the Chloroplast Genome in the Green Algal Classes Pedinophyceae and Trebouxiophyceae.

    PubMed

    Turmel, Monique; Otis, Christian; Lemieux, Claude

    2015-07-01

    Previous studies of trebouxiophycean chloroplast genomes revealed little information regarding the evolutionary dynamics of this genome because taxon sampling was too sparse and the relationships between the sampled taxa were unknown. We recently sequenced the chloroplast genomes of 27 trebouxiophycean and 2 pedinophycean green algae to resolve the relationships among the main lineages recognized for the Trebouxiophyceae. These taxa and the previously sampled members of the Pedinophyceae and Trebouxiophyceae are included in the comparative chloroplast genome analysis we report here. The 38 genomes examined display considerable variability at all levels, except gene content. Our results highlight the high propensity of the rDNA-containing large inverted repeat (IR) to vary in size, gene content and gene order as well as the repeated losses it experienced during trebouxiophycean evolution. Of the seven predicted IR losses, one event demarcates a superclade of 11 taxa representing 5 late-diverging lineages. IR expansions/contractions account not only for changes in gene content in this region but also for changes in gene order and gene duplications. Inversions also led to gene rearrangements within the IR, including the reversal or disruption of the rDNA operon in some lineages. Most of the 20 IR-less genomes are more rearranged compared with their IR-containing homologs and tend to show an accelerated rate of sequence evolution. In the IR-less superclade, several ancestral operons were disrupted, a few genes were fragmented, and a subgroup of taxa features a G+C-biased nucleotide composition. Our analyses also unveiled putative cases of gene acquisitions through horizontal transfer. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. Inter- and intra-specific pan-genomes of Borrelia burgdorferi sensu lato: genome stability and adaptive radiation

    PubMed Central

    2013-01-01

    Background Lyme disease is caused by spirochete bacteria from the Borrelia burgdorferi sensu lato (B. burgdorferi s.l.) species complex. To reconstruct the evolution of B. burgdorferi s.l. and identify the genomic basis of its human virulence, we compared the genomes of 23 B. burgdorferi s.l. isolates from Europe and the United States, including B. burgdorferi sensu stricto (B. burgdorferi s.s., 14 isolates), B. afzelii (2), B. garinii (2), B. “bavariensis” (1), B. spielmanii (1), B. valaisiana (1), B. bissettii (1), and B. “finlandensis” (1). Results Robust B. burgdorferi s.s. and B. burgdorferi s.l. phylogenies were obtained using genome-wide single-nucleotide polymorphisms, despite recombination. Phylogeny-based pan-genome analysis showed that the rate of gene acquisition was higher between species than within species, suggesting adaptive speciation. Strong positive natural selection drives the sequence evolution of lipoproteins, including chromosomally-encoded genes 0102 and 0404, cp26-encoded ospC and b08, and lp54-encoded dbpA, a07, a22, a33, a53, a65. Computer simulations predicted rapid adaptive radiation of genomic groups as population size increases. Conclusions Intra- and inter-specific pan-genome sizes of B. burgdorferi s.l. expand linearly with phylogenetic diversity. Yet gene-acquisition rates in B. burgdorferi s.l. are among the lowest in bacterial pathogens, resulting in high genome stability and few lineage-specific genes. Genome adaptation of B. burgdorferi s.l. is driven predominantly by copy-number and sequence variations of lipoprotein genes. New genomic groups are likely to emerge if the current trend of B. burgdorferi s.l. population expansion continues. PMID:24112474

  17. The complete and fully assembled genome sequence of Aeromonas salmonicida subsp. pectinolytica and its comparative analysis with other Aeromonas species: investigation of the mobilome in environmental and pathogenic strains.

    PubMed

    Pfeiffer, Friedhelm; Zamora-Lagos, Maria-Antonia; Blettinger, Martin; Yeroslaviz, Assa; Dahl, Andreas; Gruber, Stephan; Habermann, Bianca H

    2018-01-05

    Due to the predominant usage of short-read sequencing to date, most bacterial genome sequences reported in the last years remain at the draft level. This precludes certain types of analyses, such as the in-depth analysis of genome plasticity. Here we report the finalized genome sequence of the environmental strain Aeromonas salmonicida subsp. pectinolytica 34mel, for which only a draft genome with 253 contigs is currently available. Successful completion of the transposon-rich genome critically depended on the PacBio long read sequencing technology. Using finalized genome sequences of A. salmonicida subsp. pectinolytica and other Aeromonads, we report the detailed analysis of the transposon composition of these bacterial species. Mobilome evolution is exemplified by a complex transposon, which has shifted from pathogenicity-related to environmental-related gene content in A. salmonicida subsp. pectinolytica 34mel. Obtaining the complete, circular genome of A. salmonicida subsp. pectinolytica allowed us to perform an in-depth analysis of its mobilome. We demonstrate the mobilome-dependent evolution of this strain's genetic profile from pathogenic to environmental.

  18. A Year of Infection in the Intensive Care Unit: Prospective Whole Genome Sequencing of Bacterial Clinical Isolates Reveals Cryptic Transmissions and Novel Microbiota

    PubMed Central

    Roach, David J.; Burton, Joshua N.; Lee, Choli; Stackhouse, Bethany; Butler-Wu, Susan M.; Cookson, Brad T.

    2015-01-01

    Bacterial whole genome sequencing holds promise as a disruptive technology in clinical microbiology, but it has not yet been applied systematically or comprehensively within a clinical context. Here, over the course of one year, we performed prospective collection and whole genome sequencing of nearly all bacterial isolates obtained from a tertiary care hospital’s intensive care units (ICUs). This unbiased collection of 1,229 bacterial genomes from 391 patients enables detailed exploration of several features of clinical pathogens. A sizable fraction of isolates identified as clinically relevant corresponded to previously undescribed species: 12% of isolates assigned a species-level classification by conventional methods actually qualified as distinct, novel genomospecies on the basis of genomic similarity. Pan-genome analysis of the most frequently encountered pathogens in the collection revealed substantial variation in pan-genome size (1,420 to 20,432 genes) and the rate of gene discovery (1 to 152 genes per isolate sequenced). Surprisingly, although potential nosocomial transmission of actively surveilled pathogens was rare, 8.7% of isolates belonged to genomically related clonal lineages that were present among multiple patients, usually with overlapping hospital admissions, and were associated with clinically significant infection in 62% of patients from which they were recovered. Multi-patient clonal lineages were particularly evident in the neonatal care unit, where seven separate Staphylococcus epidermidis clonal lineages were identified, including one lineage associated with bacteremia in 5/9 neonates. Our study highlights key differences in the information made available by conventional microbiological practices versus whole genome sequencing, and motivates the further integration of microbial genome sequencing into routine clinical care. PMID:26230489

  19. Conserved gene clusters in bacterial genomes provide further support for the primacy of RNA

    NASA Technical Reports Server (NTRS)

    Siefert, J. L.; Martin, K. A.; Abdi, F.; Widger, W. R.; Fox, G. E.

    1997-01-01

    Five complete bacterial genome sequences have been released to the scientific community. These include four (eu)Bacteria, Haemophilus influenzae, Mycoplasma genitalium, M. pneumoniae, and Synechocystis PCC 6803, as well as one Archaeon, Methanococcus jannaschii. Features of organization shared by these genomes are likely to have arisen very early in the history of the bacteria and thus can be expected to provide further insight into the nature of early ancestors. Results of a genome comparison of these five organisms confirm earlier observations that gene order is remarkably unpreserved. There are, nevertheless, at least 16 clusters of two or more genes whose order remains the same among the four (eu)Bacteria and these are presumed to reflect conserved elements of coordinated gene expression that require gene proximity. Eight of these gene orders are essentially conserved in the Archaea as well. Many of these clusters are known to be regulated by RNA-level mechanisms in Escherichia coli, which supports the earlier suggestion that this type of regulation of gene expression may have arisen very early. We conclude that although the last common ancestor may have had a DNA genome, it likely was preceded by progenotes with an RNA genome.

  20. Are there ergodic limits to evolution? Ergodic exploration of genome space and convergence.

    PubMed

    McLeish, Tom C B

    2015-12-06

    We examine the analogy between evolutionary dynamics and statistical mechanics to include the fundamental question of ergodicity-the representative exploration of the space of possible states (in the case of evolution this is genome space). Several properties of evolutionary dynamics are identified that allow a generalization of the ergodic dynamics, familiar in dynamical systems theory, to evolution. Two classes of evolved biological structure then arise, differentiated by the qualitative duration of their evolutionary time scales. The first class has an ergodicity time scale (the time required for representative genome exploration) longer than available evolutionary time, and has incompletely explored the genotypic and phenotypic space of its possibilities. This case generates no expectation of convergence to an optimal phenotype or possibility of its prediction. The second, more interesting, class exhibits an evolutionary form of ergodicity-essentially all of the structural space within the constraints of slower evolutionary variables have been sampled; the ergodicity time scale for the system evolution is less than the evolutionary time. In this case, some convergence towards similar optima may be expected for equivalent systems in different species where both possess ergodic evolutionary dynamics. When the fitness maximum is set by physical, rather than co-evolved, constraints, it is additionally possible to make predictions of some properties of the evolved structures and systems. We propose four structures that emerge from evolution within genotypes whose fitness is induced from their phenotypes. Together, these result in an exponential speeding up of evolution, when compared with complete exploration of genomic space. We illustrate a possible case of application and a prediction of convergence together with attaining a physical fitness optimum in the case of invertebrate compound eye resolution.