Sample records for bacterial gill endosymbiont

  1. Detection of the Free-Living Forms of Sulfide-Oxidizing Gill Endosymbionts in the Lucinid Habitat (Thalassia testudinum Environment)

    PubMed Central

    Gros, Olivier; Liberge, Martine; Heddi, Abdelaziz; Khatchadourian, Chaqué; Felbeck, Horst

    2003-01-01

    Target DNA from the uncultivable Codakia orbicularis endosymbiont was PCR amplified from sea-grass sediment. To confirm that such amplifications originated from intact bacterial cells rather than free DNA, whole-cell hybridization (fluorescence in situ hybridization technique) with the specific probe Symco2 was performed along with experimental infection of aposymbiotic juveniles placed in contact with the same sediment. Taken together, the data demonstrate that the sulfide-oxidizing gill endosymbiont of Codakia orbicularis is present in the environment as a free-living uncultivable form. PMID:14532089

  2. Detection of the free-living forms of sulfide-oxidizing gill endosymbionts in the lucinid habitat (Thalassia testudinum environment).

    PubMed

    Gros, Olivier; Liberge, Martine; Heddi, Abdelaziz; Khatchadourian, Chaqué; Felbeck, Horst

    2003-10-01

    Target DNA from the uncultivable Codakia orbicularis endosymbiont was PCR amplified from sea-grass sediment. To confirm that such amplifications originated from intact bacterial cells rather than free DNA, whole-cell hybridization (fluorescence in situ hybridization technique) with the specific probe Symco2 was performed along with experimental infection of aposymbiotic juveniles placed in contact with the same sediment. Taken together, the data demonstrate that the sulfide-oxidizing gill endosymbiont of Codakia orbicularis is present in the environment as a free-living uncultivable form.

  3. Endosymbiont Dominated Bacterial Communities in a Dwarf Spider

    PubMed Central

    Vanthournout, Bram; Hendrickx, Frederik

    2015-01-01

    The microbial community of spiders is little known, with previous studies focussing primarily on the medical importance of spiders as vectors of pathogenic bacteria and on the screening of known cytoplasmic endosymbiont bacteria. These screening studies have been performed by means of specific primers that only amplify a selective set of endosymbionts, hampering the detection of unreported species in spiders. In order to have a more complete overview of the bacterial species that can be present in spiders, we applied a combination of a cloning assay, DGGE profiling and high-throughput sequencing on multiple individuals of the dwarf spider Oedothorax gibbosus. This revealed a co-infection of at least three known (Wolbachia, Rickettsia and Cardinium) and the detection of a previously unreported endosymbiont bacterium (Rhabdochlamydia) in spiders. 16S rRNA gene sequences of Rhabdochlamydia matched closely with those of Candidatus R. porcellionis, which is currently only reported as a pathogen from a woodlouse and with Candidatus R. crassificans reported from a cockroach. Remarkably, this bacterium appears to present in very high proportions in one of the two populations only, with all investigated females being infected. We also recovered Acinetobacter in high abundance in one individual. In total, more than 99% of approximately 4.5M high-throughput sequencing reads were restricted to these five bacterial species. In contrast to previously reported screening studies of terrestrial arthropods, our results suggest that the bacterial communities in this spider species are dominated by, or even restricted to endosymbiont bacteria. Given the high prevalence of endosymbiont species in spiders, this bacterial community pattern could be widespread in the Araneae order. PMID:25706947

  4. Endosymbiont-dependent host reproduction maintains bacterial-fungal mutualism.

    PubMed

    Partida-Martinez, Laila P; Monajembashi, Shamci; Greulich, Karl-Otto; Hertweck, Christian

    2007-05-01

    Bacterial endosymbionts play essential roles for many organisms, and thus specialized mechanisms have evolved during evolution that guarantee the persistence of the symbiosis during or after host reproduction. The rice seedling blight fungus Rhizopus microsporus represents a unique example of a mutualistic life form in which a fungus harbors endobacteria (Burkholderia sp.) for the production of a phytotoxin. Here we report the unexpected observation that in the absence of endosymbionts, the host is not capable of vegetative reproduction. Formation of sporangia and spores is restored only upon reintroduction of endobacteria. To monitor this process, we succeeded in GFP labeling cultured endosymbionts. We also established a laserbeam transformation technique for the first controlled introduction of bacteria into fungi to observe their migration to the tips of the aseptate hyphae. The persistence of this fungal-bacterial mutualism through symbiont-dependent sporulation is intriguing from an evolutionary point of view and implies that the symbiont produces factors that are essential for the fungal life cycle. Reproduction of the host has become totally dependent on endofungal bacteria, which in return provide a highly potent toxin for defending the habitat and accessing nutrients from decaying plants. This scenario clearly highlights the significance for a controlled maintenance of this fungal-bacterial symbiotic relationship.

  5. The transcriptome of Bathymodiolus azoricus gill reveals expression of genes from endosymbionts and free-living deep-sea bacteria.

    PubMed

    Egas, Conceição; Pinheiro, Miguel; Gomes, Paula; Barroso, Cristina; Bettencourt, Raul

    2012-08-01

    Deep-sea environments are largely unexplored habitats where a surprising number of species may be found in large communities, thriving regardless of the darkness, extreme cold, and high pressure. Their unique geochemical features result in reducing environments rich in methane and sulfides, sustaining complex chemosynthetic ecosystems that represent one of the most surprising findings in oceans in the last 40 years. The deep-sea Lucky Strike hydrothermal vent field, located in the Mid Atlantic Ridge, is home to large vent mussel communities where Bathymodiolus azoricus represents the dominant faunal biomass, owing its survival to symbiotic associations with methylotrophic or methanotrophic and thiotrophic bacteria. The recent transcriptome sequencing and analysis of gill tissues from B. azoricus revealed a number of genes of bacterial origin, hereby analyzed to provide a functional insight into the gill microbial community. The transcripts supported a metabolically active microbiome and a variety of mechanisms and pathways, evidencing also the sulfur and methane metabolisms. Taxonomic affiliation of transcripts and 16S rRNA community profiling revealed a microbial community dominated by thiotrophic and methanotrophic endosymbionts of B. azoricus and the presence of a Sulfurovum-like epsilonbacterium.

  6. Two ancient bacterial endosymbionts have coevolved with the planthoppers (Insecta: Hemiptera: Fulgoroidea).

    PubMed

    Urban, Julie M; Cryan, Jason R

    2012-06-14

    Members of the hemipteran suborder Auchenorrhyncha (commonly known as planthoppers, tree- and leafhoppers, spittlebugs, and cicadas) are unusual among insects known to harbor endosymbiotic bacteria in that they are associated with diverse assemblages of bacterial endosymbionts. Early light microscopic surveys of species representing the two major lineages of Auchenorrhyncha (the planthopper superfamily Fulgoroidea; and Cicadomorpha, comprising Membracoidea [tree- and leafhoppers], Cercopoidea [spittlebugs], and Cicadoidea [cicadas]), found that most examined species harbored at least two morphologically distinct bacterial endosymbionts, and some harbored as many as six. Recent investigations using molecular techniques have identified multiple obligate bacterial endosymbionts in Cicadomorpha; however, much less is known about endosymbionts of Fulgoroidea. In this study, we present the initial findings of an ongoing PCR-based survey (sequencing 16S rDNA) of planthopper-associated bacteria to document endosymbionts with a long-term history of codiversification with their fulgoroid hosts. Results of PCR surveys and phylogenetic analyses of 16S rDNA recovered a monophyletic clade of Betaproteobacteria associated with planthoppers; this clade included Vidania fulgoroideae, a recently described bacterium identified in exemplars of the planthopper family Cixiidae. We surveyed 77 planthopper species representing 18 fulgoroid families, and detected Vidania in 40 species (representing 13 families). Further, we detected the Sulcia endosymbiont (identified as an obligate endosymbiont of Auchenorrhyncha in previous studies) in 30 of the 40 species harboring Vidania. Concordance of the Vidania phylogeny with the phylogeny of the planthopper hosts (reconstructed based on sequence data from five genes generated from the same insect specimens from which the bacterial sequences were obtained) was supported by statistical tests of codiversification. Codiversification tests also

  7. Two ancient bacterial endosymbionts have coevolved with the planthoppers (Insecta: Hemiptera: Fulgoroidea)

    PubMed Central

    2012-01-01

    Background Members of the hemipteran suborder Auchenorrhyncha (commonly known as planthoppers, tree- and leafhoppers, spittlebugs, and cicadas) are unusual among insects known to harbor endosymbiotic bacteria in that they are associated with diverse assemblages of bacterial endosymbionts. Early light microscopic surveys of species representing the two major lineages of Auchenorrhyncha (the planthopper superfamily Fulgoroidea; and Cicadomorpha, comprising Membracoidea [tree- and leafhoppers], Cercopoidea [spittlebugs], and Cicadoidea [cicadas]), found that most examined species harbored at least two morphologically distinct bacterial endosymbionts, and some harbored as many as six. Recent investigations using molecular techniques have identified multiple obligate bacterial endosymbionts in Cicadomorpha; however, much less is known about endosymbionts of Fulgoroidea. In this study, we present the initial findings of an ongoing PCR-based survey (sequencing 16S rDNA) of planthopper-associated bacteria to document endosymbionts with a long-term history of codiversification with their fulgoroid hosts. Results Results of PCR surveys and phylogenetic analyses of 16S rDNA recovered a monophyletic clade of Betaproteobacteria associated with planthoppers; this clade included Vidania fulgoroideae, a recently described bacterium identified in exemplars of the planthopper family Cixiidae. We surveyed 77 planthopper species representing 18 fulgoroid families, and detected Vidania in 40 species (representing 13 families). Further, we detected the Sulcia endosymbiont (identified as an obligate endosymbiont of Auchenorrhyncha in previous studies) in 30 of the 40 species harboring Vidania. Concordance of the Vidania phylogeny with the phylogeny of the planthopper hosts (reconstructed based on sequence data from five genes generated from the same insect specimens from which the bacterial sequences were obtained) was supported by statistical tests of codiversification

  8. Genomic Evidence that Methanotrophic Endosymbionts Likely Provide Deep-Sea Bathymodiolus Mussels with a Sterol Intermediate in Cholesterol Biosynthesis

    PubMed Central

    Takaki, Yoshihiro; Chikaraishi, Yoshito; Ikuta, Tetsuro; Ozawa, Genki; Yoshida, Takao; Ohkouchi, Naohiko; Fujikura, Katsunori

    2017-01-01

    Sterols are key cyclic triterpenoid lipid components of eukaryotic cellular membranes, which are synthesized through complex multi-enzyme pathways. Similar to most animals, Bathymodiolus mussels, which inhabit deep-sea chemosynthetic ecosystems and harbor methanotrophic and/or thiotrophic bacterial endosymbionts, possess cholesterol as their main sterol. Based on the stable carbon isotope analyses, it has been suggested that host Bathymodiolus mussels synthesize cholesterol using a sterol intermediate derived from the methanotrophic endosymbionts. To test this hypothesis, we sequenced the genome of the methanotrophic endosymbiont in Bathymodiolus platifrons. The genome sequence data demonstrated that the endosymbiont potentially generates up to 4,4-dimethyl-cholesta-8,14,24-trienol, a sterol intermediate in cholesterol biosynthesis, from methane. In addition, transcripts for a subset of the enzymes of the biosynthetic pathway to cholesterol downstream from a sterol intermediate derived from methanotroph endosymbionts were detected in our transcriptome data for B. platifrons. These findings suggest that this mussel can de novo synthesize cholesterol from methane in cooperation with the symbionts. By in situ hybridization analyses, we showed that genes associated with cholesterol biosynthesis from both host and endosymbionts were expressed exclusively in the gill epithelial bacteriocytes containing endosymbionts. Thus, cholesterol production is probably localized within these specialized cells of the gill. Considering that the host mussel cannot de novo synthesize cholesterol and depends largely on endosymbionts for nutrition, the capacity of endosymbionts to synthesize sterols may be important in establishing symbiont–host relationships in these chemosynthetic mussels. PMID:28453654

  9. Molecular diversity of bacterial endosymbionts associated with dagger nematodes of the genus Xiphinema (Nematoda: Longidoridae) reveals a high degree of phylogenetic congruence with their host.

    PubMed

    Palomares-Rius, Juan E; Archidona-Yuste, Antonio; Cantalapiedra-Navarrete, Carolina; Prieto, Pilar; Castillo, Pablo

    2016-12-01

    Bacterial endosymbionts have been detected in some groups of plant-parasitic nematodes, but few cases have been reported compared to other groups in the phylum Nematoda, such as animal-parasitic or free-living nematodes. This study was performed on a wide variety of plant-parasitic nematode families and species from different host plants and nematode populations. A total of 124 nematode populations (previously identified morphologically and molecularly) were screened for the presence of potential bacterial endosymbionts using the partial 16S rRNA gene and fluorescence in situ hybridization (FISH) and confocal microscopy. Potential bacterial endosymbionts were only detected in nematode species belonging to the genus Xiphinema and specifically in the X. americanum group. Fifty-seven partial 16S rRNA sequences were obtained from bacterial endosymbionts in this study. One group of sequences was closely related to the genus 'Candidatus Xiphinematobacter' (19 bacterial endosymbiont sequences were associated with seven nematode host species, including two that have already been described and three unknown bacterial endosymbionts). The second bacterial endosymbiont group (38 bacterial endosymbiont sequences associated with six nematode species) was related to the family Burkholderiaceae, which includes fungal and soil-plant bacterial endosymbionts. These endosymbionts were reported for the first time in the phylum Nematoda. Our findings suggest that there is a highly specific symbiotic relationship between nematode host and bacterial endosymbionts. Overall, these results were corroborated by a phylogeny of nematode host and bacterial endosymbionts that suggested that there was a high degree of phylogenetic congruence and long-term evolutionary persistence between hosts and endosymbionts. © 2016 John Wiley & Sons Ltd.

  10. Specialization of bacterial endosymbionts that protect aphids from parasitoids

    USDA-ARS?s Scientific Manuscript database

    Infection by the bacterial endosymbiont HAMILTONELLA DEFENSA is capable of protecting the pea aphid from parasitism by APHIDIUS ERVI and the black bean aphid from parasitism by LYSIPHLEBUS FABARUM. Here we investigate protection of a third aphid species, the cowpea aphid, APHIS CRACCIVORA, from 4 p...

  11. A western type of bacterial gill disease

    USGS Publications Warehouse

    Fish, F.F.

    1935-01-01

    The first reference to a pathological condition of the gill tissues of salmonid fishes was made by Osburn in 1910. This author in describing a progressive infolding of the opercula of trout, commonly known to hatcherymen as "short gill covers," mentioned a marked proliferation on the gill epithelium as accompanying this condition. Osburn assumed that the club-like appearance of the gill filaments due to the proliferated epithelium was the result of continual irritation of the delicate gill tissue in the absence of the usual protection offered by the normal opercula. Although such a conclusion seems quite logical, it is also possible that Osburn was dealing with "short gill covers" complicated by the unknown bacterial gill disease which was subsequently described by Davis.

  12. Experimental Infection of Plants with an Herbivore-Associated Bacterial Endosymbiont Influences Herbivore Host Selection Behavior

    PubMed Central

    Davis, Thomas Seth; Horton, David R.; Munyaneza, Joseph E.; Landolt, Peter J.

    2012-01-01

    Although bacterial endosymbioses are common among phloeophagous herbivores, little is known regarding the effects of symbionts on herbivore host selection and population dynamics. We tested the hypothesis that plant selection and reproductive performance by a phloem-feeding herbivore (potato psyllid, Bactericera cockerelli) is mediated by infection of plants with a bacterial endosymbiont. We controlled for the effects of herbivory and endosymbiont infection by exposing potato plants (Solanum tuberosum) to psyllids infected with “Candidatus Liberibacter solanacearum” or to uninfected psyllids. We used these treatments as a basis to experimentally test plant volatile emissions, herbivore settling and oviposition preferences, and herbivore population growth. Three important findings emerged: (1) plant volatile profiles differed with respect to both herbivory and herbivory plus endosymbiont infection when compared to undamaged control plants; (2) herbivores initially settled on plants exposed to endosymbiont-infected psyllids but later defected and oviposited primarily on plants exposed only to uninfected psyllids; and (3) plant infection status had little effect on herbivore reproduction, though plant flowering was associated with a 39% reduction in herbivore density on average. Our experiments support the hypothesis that plant infection with endosymbionts alters plant volatile profiles, and infected plants initially recruited herbivores but later repelled them. Also, our findings suggest that the endosymbiont may not place negative selection pressure on its host herbivore in this system, but plant flowering phenology appears correlated with psyllid population performance. PMID:23166641

  13. Bacterial Endosymbionts of the Psyllid Cacopsylla pyricola (Hemiptera: Psyllidae) in the Pacific Northwestern United States.

    PubMed

    Cooper, W Rodney; Garczynski, Stephen F; Horton, David R; Unruh, Thomas R; Beers, Elizabeth H; Peter, W Shearer; Hilton, Richard J

    2017-04-01

    Insects often have facultative associations with bacterial endosymbionts, which can alter the insects' susceptibility to parasitism, pathogens, plant defenses, and certain classes of insecticides. We collected pear psylla, Cacopsylla pyricola (Förster) (Hemiptera: Psyllidae), from pear orchards in Washington and Oregon, and surveyed them for the presence of bacterial endosymbionts. Adult psyllids were collected on multiple dates to allow us to assay specimens of both the summer ("summerform") and the overwintering ("winterform") morphotypes. Two endosymbionts, Arsenophonus and Phytoplasma pyri, were detected in psyllids of both morphotypes in both states. A separate survey revealed similar associations present in psyllids collected in 1987. Arsenophonus was present in 80-100% of psyllids in all growing regions. A slightly lower proportion of summerform than winterform psyllids harbored the bacterium. Arsenophonus was present in the bacteriomes and developing oocytes of most psyllids, indicating that this endosymbiont is transovarially transmitted. This bacterium was also observed in the salivary glands and midguts of some psyllids. Phytoplasma pyri was present in a greater proportion of pear psylla from orchards near Yakima, WA, than from other regions, and was present in a higher proportion of winterforms than summerforms. We did not detect Wolbachia, Profftella, or Liberibacter europaeus, which are associated with other psyllid pests, including other species of Cacopsylla. Our study is the first to survey North American populations of C. pyricola for endosymbionts, and provides a foundation for further research on how bacterial associations may influence the ecology and management of this pest. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  14. Temporal variation and lack of host specificity among bacterial endosymbionts of Osedax bone worms (Polychaeta: Siboglinidae)

    PubMed Central

    2012-01-01

    Background Osedax worms use a proliferative root system to extract nutrients from the bones of sunken vertebrate carcasses. The roots contain bacterial endosymbionts that contribute to the nutrition of these mouthless and gutless worms. The worms acquire these essential endosymbionts locally from the environment in which their larvae settle. Here we report on the temporal dynamics of endosymbiont diversity hosted by nine Osedax species sampled during a three-year investigation of an experimental whale fall at 1820-m depth in the Monterey Bay, California. The host species were identified by their unique mitochondrial COI haplotypes. The endosymbionts were identified by ribotyping with PCR primers specifically designed to target Oceanospirillales. Results Thirty-two endosymbiont ribotypes associated with these worms clustered into two distinct bacterial ribospecies that together comprise a monophyletic group, mostly restricted to deep waters (>1000 m). Statistical analyses confirmed significant changes in the relative abundances of host species and the two dominant endosymbiont ribospecies during the three-year sampling period. Bone type (whale vs. cow) also had a significant effect on host species, but not on the two dominant symbiont ribospecies. No statistically significant association existed between the host species and endosymbiont ribospecies. Conclusions Standard PCR and direct sequencing proved to be an efficient method for ribotyping the numerically dominant endosymbiont strains infecting a large sample of host individuals; however, this method did not adequately represent the frequency of mixed infections, which appears to be the rule rather than an exception for Osedax individuals. Through cloning and the use of experimental dilution series, we determined that minority ribotypes constituting less than 30% of a mixture would not likely be detected, leading to underestimates of the frequency of multiple infections in host individuals. PMID:23006795

  15. Variation in bacterial endosymbionts associated with the date palm hopper, Ommatissus lybicus populations.

    PubMed

    Karimi, S; Izadi, H; Askari Seyahooei, M; Bagheri, A; Khodaygan, P

    2018-04-01

    The date palm hopper, Ommatissus lybicus, is a key pest of the date palm, which is expected to be comprised of many allopatric populations. The current study was carried out to determine bacterial endosymbiont diversity in the different populations of this pest. Ten date palm hopper populations were collected from the main date palm growing regions in Iran and an additional four samples from Pakistan, Oman, Egypt and Tunisia for detection of primary and secondary endosymbionts using polymerase chain reaction (PCR) assay with their specific primers. The PCR products were directly sequenced and edited using SeqMan software. The consensus sequences were subjected to a BLAST similarity search. The results revealed the presence of 'Candidatus Sulcia muelleri' (primary endosymbiont) and Wolbachia, Arsenophonus and Enterobacter (secondary endosymbionts) in all populations. This assay failed to detect 'Candidatus Nasuia deltocephalinicola' and Serratia in these populations. 'Ca. S. muelleri' exhibited a 100% infection frequency in populations and Wolbachia, Arsenophonus and Enterobacter demonstrated 100, 93.04 and 97.39% infection frequencies, respectively. The infection rate of Arsenophonus and Enterobacter ranged from 75 to 100% and 62.5 to 100%, respectively, in different populations of the insect. The results demonstrated multiple infections by 'Ca. Sulcia muelleri', Wolbachia, Arsenophonus and Enterobacter in the populations and may suggest significant roles for these endosymbionts on date palm hopper population fitness. This study provides an insight to endosymbiont variation in the date palm hopper populations; however, further investigation is needed to examine how these endosymbionts may affect host fitness.

  16. Nondegenerative Evolution in Ancient Heritable Bacterial Endosymbionts of Fungi.

    PubMed

    Mondo, Stephen J; Salvioli, Alessandra; Bonfante, Paola; Morton, Joseph B; Pawlowska, Teresa E

    2016-09-01

    Bacterial endosymbionts are critical to the existence of many eukaryotes. Among them, vertically transmitted endobacteria are uniquely typified by reduced genomes and molecular evolution rate acceleration relative to free-living taxa. These patterns are attributable to genetic drift-dominated degenerative processes associated with reproductive dependence on the host. The degenerative evolution scenario is well supported in endobacteria with strict vertical transmission, such as essential mutualists of insects. In contrast, heritable endosymbionts that are nonessential to their hosts and engage occasionally in horizontal transmission are expected to display deviations from the degenerative evolution model. To explore evolution patterns in such nonessential endobacteria, we focused on Candidatus Glomeribacter gigasporarum ancient heritable mutualists of fungi. Using a collection of genomes, we estimated in Glomeribacter mutation rate at 2.03 × 10(-9) substitutions per site per year and effective population size at 1.44 × 10(8) Both fall within the range of values observed in free-living bacteria. To assess the ability of Glomeribacter to purge slightly deleterious mutations, we examined genome-wide dN/dS values and distribution patterns. We found that these dN/dS profiles cluster Glomeribacter with free-living bacteria as well as with other nonessential endosymbionts, while distinguishing it from essential heritable mutualists of insects. Finally, our evolutionary simulations revealed that the molecular evolution rate acceleration in Glomeribacter is caused by limited recombination in a largely clonal population rather than by increased fixation of slightly deleterious mutations. Based on these patterns, we propose that genome evolution in Glomeribacter is nondegenerative and exemplifies a departure from the model of degenerative evolution in heritable endosymbionts. © The Author 2016. Published by Oxford University Press on behalf of the Society for

  17. Gill bacteria enable a novel digestive strategy in a wood-feeding mollusk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Connor, Roberta M.; Fung, Jennifer M.; Sharp, Koty H.

    In animals, gut microbes are essential for digestion. Here in this paper, we show that bacteria outside the gut can also play a critical role in digestion. In shipworms, wood-eating marine bivalves, endosymbiotic bacteria are found within specialized cells in the gills. We show that these endosymbionts produce wood-degrading enzymes that are selectively transported to the shipworm’s bacteria-free gut, where wood digestion occurs. Because only selected wood-degrading enzymes are transported, the shipworm system naturally identifies those endosymbiont enzymes most relevant to lignocellulose deconstruction without interference from other microbial proteins. Furthermore, this work expands the known biological repertoire of bacterial endosymbiontsmore » to include digestion of food and identifies previously undescribed enzymes and enzyme combinations of potential value to biomass-based industries, such as cellulosic biofuel production.« less

  18. Gill bacteria enable a novel digestive strategy in a wood-feeding mollusk

    DOE PAGES

    O’Connor, Roberta M.; Fung, Jennifer M.; Sharp, Koty H.; ...

    2014-11-10

    In animals, gut microbes are essential for digestion. Here in this paper, we show that bacteria outside the gut can also play a critical role in digestion. In shipworms, wood-eating marine bivalves, endosymbiotic bacteria are found within specialized cells in the gills. We show that these endosymbionts produce wood-degrading enzymes that are selectively transported to the shipworm’s bacteria-free gut, where wood digestion occurs. Because only selected wood-degrading enzymes are transported, the shipworm system naturally identifies those endosymbiont enzymes most relevant to lignocellulose deconstruction without interference from other microbial proteins. Furthermore, this work expands the known biological repertoire of bacterial endosymbiontsmore » to include digestion of food and identifies previously undescribed enzymes and enzyme combinations of potential value to biomass-based industries, such as cellulosic biofuel production.« less

  19. Ancient bacterial endosymbionts of insects: Genomes as sources of insight and springboards for inquiry.

    PubMed

    Wernegreen, Jennifer J

    2017-09-15

    Ancient associations between insects and bacteria provide models to study intimate host-microbe interactions. Currently, a wealth of genome sequence data for long-term, obligately intracellular (primary) endosymbionts of insects reveals profound genomic consequences of this specialized bacterial lifestyle. Those consequences include severe genome reduction and extreme base compositions. This minireview highlights the utility of genome sequence data to understand how, and why, endosymbionts have been pushed to such extremes, and to illuminate the functional consequences of such extensive genome change. While the static snapshots provided by individual endosymbiont genomes are valuable, comparative analyses of multiple genomes have shed light on evolutionary mechanisms. Namely, genome comparisons have told us that selection is important in fine-tuning gene content, but at the same time, mutational pressure and genetic drift contribute to genome degradation. Examples from Blochmannia, the primary endosymbiont of the ant tribe Camponotini, illustrate the value and constraints of genome sequence data, and exemplify how genomes can serve as a springboard for further comparative and experimental inquiry. Copyright © 2017. Published by Elsevier Inc.

  20. Bacterial endosymbionts of the psyllid Cacopsylla pyricola in the Pacific Northwestern United States (Hemiptera: Psyllidae)

    USDA-ARS?s Scientific Manuscript database

    Insects often have facultative associations with bacterial endosymbionts, which can alter the insects' susceptibility to parasitism, pathogens, plant defenses, and certain classes of insecticides. We collected pear psylla, Cacopsylla pyricola (Förster) (Hemiptera: Psyllidae), from pear orchards in W...

  1. Cell proliferation and apoptosis in gill filaments of the lucinid Codakia orbiculata (Montagu, 1808) (Mollusca: Bivalvia) during bacterial decolonization and recolonization.

    PubMed

    Elisabeth, Nathalie H; Gustave, Sylvie D D; Gros, Olivier

    2012-08-01

    The shallow-water bivalve Codakia orbiculata which harbors gill-endosymbiotic sulfur-oxidizing γ-proteobacteria can lose and acquire its endosymbionts throughout its life. Long-term starvation and recolonization experiments led to changes in the organization of cells in the lateral zone of gill filaments. This plasticity is linked to the presence or absence of gill-endosymbionts. Herein, we propose that this reorganization can be explained by three hypotheses: (a) a variation in the number of bacteriocytes and granule cells due to proliferation or apoptosis processes, (b) a variation of the volume of these two cell types without modification in the number, and (c) a combination of both number and cell volume variation. To test these hypotheses, we analyzed cell reorganization in terms of proliferation and apoptosis in adults submitted to starvation and returned to the field using catalyzed reporter deposition fluorescence in situ hybridization, immunohistochemistry, and structural analyses. We observed that cell and tissue reorganization in gills filaments is due to a variation in cell relative abundance that maybe associated with a variation in cell apparent volume and depends on the environment. In fact, bacteriocytes mostly multiply in freshly collected and newly recolonized individuals, and excess bacteriocytes are eliminated in later recolonization stages. We highlight that host tissue regeneration in gill filaments of this symbiotic bivalve can occur by both replication of existing cells and division of undifferentiated cells localized in tissular bridges, which might be a tissue-specific multipotent stem cell zone. Copyright © 2012 Wiley Periodicals, Inc.

  2. Characterisation of the gill mucosal bacterial communities of four butterflyfish species: a reservoir of bacterial diversity in coral reef ecosystems.

    PubMed

    Reverter, Miriam; Sasal, Pierre; Tapissier-Bontemps, N; Lecchini, D; Suzuki, M

    2017-06-01

    While recent studies have suggested that fish mucus microbiota play an important role in homeostasis and prevention of infections, very few studies have investigated the bacterial communities of gill mucus. We characterised the gill mucus bacterial communities of four butterflyfish species and although the bacterial diversity of gill mucus varied significantly between species, Shannon diversities were high (H = 3.7-5.7) in all species. Microbiota composition differed between butterflyfishes, with Chaetodon lunulatus and C. ornatissimus having the most similar bacterial communities, which differed significantly from C. vagabundus and C. reticulatus. The core bacterial community of all species consisted of mainly Proteobacteria followed by Actinobacteria and Firmicutes. Chaetodonlunulatus and C. ornatissimus bacterial communities were mostly dominated by Gammaproteobacteria with Vibrio as the most abundant genus. Chaetodonvagabundus and C. reticulatus presented similar abundances of Gammaproteobacteria and Alphaproteobacteria, which were well represented by Acinetobacter and Paracoccus, respectively. In conclusion, our results indicate that different fish species present specific bacterial assemblages. Finally, as mucus layers are nutrient hotspots for heterotrophic bacteria living in oligotrophic environments, such as coral reef waters, the high bacterial diversity found in butterflyfish gill mucus might indicate external fish mucus surfaces act as a reservoir of coral reef bacterial diversity. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Bacterial microbiota profile in gills of modified atmosphere-packaged oysters stored at 4 °C.

    PubMed

    Chen, Huibin; Wang, Meiying; Lin, Xiangzhi; Shi, Caihua; Liu, Zhiyu

    2017-02-01

    As filter-feeding bivalves, oysters can accumulate microorganisms into their gills, causing spoilage and potential safety issues. This study aims to investigate the changes in the gill microbiota of oysters packed under air and modified atmospheres (MAs, 50% CO 2 : 50% N 2 , 70% CO 2 : 30% O 2 , and 50% CO 2 : 50% O 2 ) during storage at 4 °C. The diversity of bacterial microbiota in oyster gills was profiled through polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis on the 16S rRNA gene V3 region to describe the variation during the entire storage period. The DGGE profile revealed high bacterial diversity in the air- and MA-packaged oyster gills, and the spoilage bacterial microbiota varied in the MA-packaged oyster gills. Results indicated that CO 2 :O 2 (70%:30%) was suitable for oyster MA packaging and that high bacterial loads in oyster gills need to be considered during storage. In addition, Lactobacillus and Lactococcus species were found to grow dominantly in fresh oyster gills under MA packaging, which supports the potential application of MA packaging for oyster storage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Characterisation of the spoilage bacterial microbiota in oyster gills during storage at different temperatures.

    PubMed

    Chen, Huibin; Liu, Zhiyu; Wang, Meiying; Chen, Shaojun; Chen, Tuanwei

    2013-12-01

    The spoilage bacterial community in oyster gill was investigated during storage at 4, 10 and 20 °C. Aerobic plate counts and pH values were determined. Total bacterial DNA was extracted from oyster gill and bulk cells of plate count media. The major bacterial species during fresh or different temperatures storage were determined by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The initial aerobic plate count in oyster gill reached 6.70 log CFU g(-1). PCR-DGGE fingerprinting analysis of the 16S rRNA gene V3 region revealed that most of the strains in fresh oyster gill belonged to the genera Lactococcus and Enterobacter. The major spoilage bacteria at a storage temperature of 20 °C were Leuconostoc pseudomesenteroides, an uncultured bacterium, Cytophaga fermentans, Lactococcus lactis, Pseudoalteromonas sp., Enterococcus mundtii, Clostridium difficile and an uncultured Fusobacteria; those at 10 °C were Lactococcus spp., Lactobacillus curvatus, Weissella confusa and C. difficile; those at 4 °C were Lactococcus, Weissella, Enterobacter and Aeromonas. The other minor species were L. curvatus, Pseudomonas sp. and E. mundtii. Lactococcus spp. was the most common main spoilage bacteria in oyster gill during chilled storage. PCR-DGGE revealed the complexity of the bacterial microbiota and the major bacteria species in oyster gill for fresh and storage. © 2013 Society of Chemical Industry.

  5. Evolution of symbiotic organs and endosymbionts in lygaeid stinkbugs

    PubMed Central

    Matsuura, Yu; Kikuchi, Yoshitomo; Hosokawa, Takahiro; Koga, Ryuichi; Meng, Xian-Ying; Kamagata, Yoichi; Nikoh, Naruo; Fukatsu, Takema

    2012-01-01

    We investigated seed bugs of the genus Nysius (Insecta: Hemiptera: Lygaeidae) for their symbiotic bacteria. From all the samples representing 4 species, 18 populations and 281 individuals, specific bacterial 16S rRNA gene sequences were consistently identified, which formed a distinct clade in the Gammaproteobacteria. In situ hybridization showed that the bacterium was endocellularly localized in a pair of large bacteriomes that were amorphous in shape, deep red in color, and in association with gonads. In the ovary of adult females, the endosymbiont was also localized in the ‘infection zone' in the middle of each germarium and in the ‘symbiont ball' at the anterior pole of each oocyte, indicating vertical transmission of the endosymbiont through the ovarial passage. Phylogenetic analyses based on bacterial 16S rRNA, groEL and gyrB genes consistently supported a coherent monophyly of the Nysius endosymbionts. The possibility of a sister relationship to ‘Candidatus Kleidoceria schneideri', the bacteriome-associated endosymbiont of a lygaeid bug Kleidocerys resedae, was statistically rejected, indicating independent evolutionary origins of the endosymbionts in the Lygaeidae. The endosymbiont genes consistently exhibited AT-biased nucleotide compositions and accelerated rates of molecular evolution, and the endosymbiont genome was only 0.6 Mb in size. The endosymbiont phylogeny was congruent with the host insect phylogeny, suggesting strict vertical transmission and host–symbiont co-speciation over evolutionary time. Based on these results, we discuss the evolution of bacteriomes and endosymbionts in the Heteroptera, most members of which are associated with gut symbiotic bacteria. The designation ‘Candidatus Schneideria nysicola' is proposed for the endosymbiont clade. PMID:21814289

  6. Phylogenetic congruence of armored scale insects (Hemiptera: Diaspididae) and their primary endosymbionts from the phylum Bacteroidetes.

    PubMed

    Gruwell, Matthew E; Morse, Geoffrey E; Normark, Benjamin B

    2007-07-01

    Insects in the sap-sucking hemipteran suborder Sternorrhyncha typically harbor maternally transmitted bacteria housed in a specialized organ, the bacteriome. In three of the four superfamilies of Sternorrhyncha (Aphidoidea, Aleyrodoidea, Psylloidea), the bacteriome-associated (primary) bacterial lineage is from the class Gammaproteobacteria (phylum Proteobacteria). The fourth superfamily, Coccoidea (scale insects), has a diverse array of bacterial endosymbionts whose affinities are largely unexplored. We have amplified fragments of two bacterial ribosomal genes from each of 68 species of armored scale insects (Diaspididae). In spite of initially using primers designed for Gammaproteobacteria, we consistently amplified sequences from a different bacterial phylum: Bacteroidetes. We use these sequences (16S and 23S, 2105 total base pairs), along with previously published sequences from the armored scale hosts (elongation factor 1alpha and 28S rDNA) to investigate phylogenetic congruence between the two clades. The Bayesian tree for the bacteria is roughly congruent with that of the hosts, with 67% of nodes identical. Partition homogeneity tests found no significant difference between the host and bacterial data sets. Of thirteen Shimodaira-Hasegawa tests, comparing the original Bayesian bacterial tree to bacterial trees with incongruent clades forced to match the host tree, 12 found no significant difference. A significant difference in topology was found only when the entire host tree was compared with the entire bacterial tree. For the bacterial data set, the treelengths of the most parsimonious host trees are only 1.8-2.4% longer than that of the most parsimonious bacterial trees. The high level of congruence between the topologies indicates that these Bacteroidetes are the primary endosymbionts of armored scale insects. To investigate the phylogenetic affinities of these endosymbionts, we aligned some of their 16S rDNA sequences with other known Bacteroidetes

  7. Gill bacteria enable a novel digestive strategy in a wood-feeding mollusk.

    PubMed

    O'Connor, Roberta M; Fung, Jennifer M; Sharp, Koty H; Benner, Jack S; McClung, Colleen; Cushing, Shelley; Lamkin, Elizabeth R; Fomenkov, Alexey I; Henrissat, Bernard; Londer, Yuri Y; Scholz, Matthew B; Posfai, Janos; Malfatti, Stephanie; Tringe, Susannah G; Woyke, Tanja; Malmstrom, Rex R; Coleman-Derr, Devin; Altamia, Marvin A; Dedrick, Sandra; Kaluziak, Stefan T; Haygood, Margo G; Distel, Daniel L

    2014-11-25

    Bacteria play many important roles in animal digestive systems, including the provision of enzymes critical to digestion. Typically, complex communities of bacteria reside in the gut lumen in direct contact with the ingested materials they help to digest. Here, we demonstrate a previously undescribed digestive strategy in the wood-eating marine bivalve Bankia setacea, wherein digestive bacteria are housed in a location remote from the gut. These bivalves, commonly known as shipworms, lack a resident microbiota in the gut compartment where wood is digested but harbor endosymbiotic bacteria within specialized cells in their gills. We show that this comparatively simple bacterial community produces wood-degrading enzymes that are selectively translocated from gill to gut. These enzymes, which include just a small subset of the predicted wood-degrading enzymes encoded in the endosymbiont genomes, accumulate in the gut to the near exclusion of other endosymbiont-made proteins. This strategy of remote enzyme production provides the shipworm with a mechanism to capture liberated sugars from wood without competition from an endogenous gut microbiota. Because only those proteins required for wood digestion are translocated to the gut, this newly described system reveals which of many possible enzymes and enzyme combinations are minimally required for wood degradation. Thus, although it has historically had negative impacts on human welfare, the shipworm digestive process now has the potential to have a positive impact on industries that convert wood and other plant biomass to renewable fuels, fine chemicals, food, feeds, textiles, and paper products.

  8. Implication of the Bacterial Endosymbiont Rickettsia spp. in Interactions of the Whitefly Bemisia tabaci with Tomato yellow leaf curl virus

    PubMed Central

    Kliot, Adi; Cilia, Michelle; Czosnek, Henryk

    2014-01-01

    ABSTRACT Numerous animal and plant viruses are transmitted by arthropod vectors in a persistent, circulative manner. Tomato yellow leaf curl virus (TYLCV) is transmitted by the sweet potato whitefly Bemisia tabaci. We report here that infection with Rickettsia spp., a facultative endosymbiont of whiteflies, altered TYLCV-B. tabaci interactions. A B. tabaci strain infected with Rickettsia acquired more TYLCV from infected plants, retained the virus longer, and exhibited nearly double the transmission efficiency compared to an uninfected B. tabaci strain with the same genetic background. Temporal and spatial antagonistic relationships were discovered between Rickettsia and TYLCV within the whitefly. In different time course experiments, the levels of virus and Rickettsia within the insect were inversely correlated. Fluorescence in situ hybridization analysis of Rickettsia-infected midguts provided evidence for niche exclusion between Rickettsia and TYLCV. In particular, high levels of the bacterium in the midgut resulted in higher virus concentrations in the filter chamber, a favored site for virus translocation along the transmission pathway, whereas low levels of Rickettsia in the midgut resulted in an even distribution of the virus. Taken together, these results indicate that Rickettsia, by infecting the midgut, increases TYLCV transmission efficacy, adding further insights into the complex association between persistent plant viruses, their insect vectors, and microorganism tenants that reside within these insects. IMPORTANCE Interest in bacterial endosymbionts in arthropods and many aspects of their host biology in agricultural and human health systems has been increasing. A recent and relevant studied example is the influence of Wolbachia on dengue virus transmission by mosquitoes. In parallel with our recently studied whitefly-Rickettsia-TYLCV system, other studies have shown that dengue virus levels in the mosquito vector are inversely correlated with

  9. Identification of the bacterial endosymbionts of the marine ciliate Euplotes magnicirratus (Ciliophora, Hypotrichia) and proposal of 'Candidatus Devosia euplotis'.

    PubMed

    Vannini, Claudia; Rosati, Giovanna; Verni, Franco; Petroni, Giulio

    2004-07-01

    This paper reports the identification of bacterial endosymbionts that inhabit the cytoplasm of the marine ciliated protozoon Euplotes magnicirratus. Ultrastructural and full-cycle rRNA approaches were used to reveal the identity of these bacteria. Based on analysis of 16S rRNA gene sequences, evolutionary trees were constructed; these placed the endosymbiont in the genus Devosia in the alpha-Proteobacteria. The validity of this finding was also shown by fluorescence in situ hybridization with a Devosia-specific oligonucleotide probe. Differences at the 16S rRNA gene level (which allowed the construction of a species-specific oligonucleotide probe) and the peculiar habitat indicate that the endosymbiont represents a novel species. As its cultivation has not been successful to date, the provisional name 'Candidatus Devosia euplotis' is proposed. The species- and group-specific probes designed in this study could represent convenient tools for the detection of 'Candidatus Devosia euplotis' and Devosia-like bacteria in the environment.

  10. More than the “Killer Trait”: Infection with the Bacterial Endosymbiont Caedibacter taeniospiralis Causes Transcriptomic Modulation in Paramecium Host

    PubMed Central

    Grosser, Katrin; Ramasamy, Pathmanaban; Amirabad, Azim Dehghani; Schulz, Marcel H; Gasparoni, Gilles; Simon, Martin

    2018-01-01

    Abstract Endosymbiosis is a widespread phenomenon and hosts of bacterial endosymbionts can be found all-over the eukaryotic tree of life. Likely, this evolutionary success is connected to the altered phenotype arising from a symbiotic association. The potential variety of symbiont’s contributions to new characteristics or abilities of host organisms are largely unstudied. Addressing this aspect, we focused on an obligate bacterial endosymbiont that confers an intraspecific killer phenotype to its host. The symbiosis between Paramecium tetraurelia and Caedibacter taeniospiralis, living in the host’s cytoplasm, enables the infected paramecia to release Caedibacter symbionts, which can simultaneously produce a peculiar protein structure and a toxin. The ingestion of bacteria that harbor both components leads to the death of symbiont-free congeners. Thus, the symbiosis provides Caedibacter-infected cells a competitive advantage, the “killer trait.” We characterized the adaptive gene expression patterns in symbiont-harboring Paramecium as a second symbiosis-derived aspect next to the killer phenotype. Comparative transcriptomics of infected P. tetraurelia and genetically identical symbiont-free cells confirmed altered gene expression in the symbiont-bearing line. Our results show up-regulation of specific metabolic and heat shock genes whereas down-regulated genes were involved in signaling pathways and cell cycle regulation. Functional analyses to validate the transcriptomics results demonstrated that the symbiont increases host density hence providing a fitness advantage. Comparative transcriptomics shows gene expression modulation of a ciliate caused by its bacterial endosymbiont thus revealing new adaptive advantages of the symbiosis. Caedibacter taeniospiralis apparently increases its host fitness via manipulation of metabolic pathways and cell cycle control. PMID:29390087

  11. Comparative genomics of Mortierella elongata and its bacterial endosymbiont Mycoavidus cysteinexigens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uehling, J.; Gryganskyi, A.; Hameed, K.

    Endosymbiosis of bacteria by eukaryotes is a defining feature of cellular evolution. In addition to well-known bacterial origins for mitochondria and chloroplasts, multiple origins of bacterial endosymbiosis are known within the cells of diverse animals, plants and fungi. Early-diverging lineages of terrestrial fungi harbor endosymbiotic bacteria belonging to the Burkholderiaceae. Furthermore, we sequenced the metagenome of the soil-inhabiting fungus Mortierella elongata and assembled the complete circular chromosome of its endosymbiont, Mycoavidus cysteinexigens, which we place within a lineage of endofungal symbionts that are sister clade to Burkholderia. The genome of M. elongata strain AG77 features a core set of primarymore » metabolic pathways for degradation of simple carbohydrates and lipid biosynthesis, while the M. cysteinexigens (AG77) genome is reduced in size and function. Experiments using antibiotics to cure the endobacterium from the host demonstrate that the fungal host metabolism is highly modulated by presence/ absence of M. cysteinexigens. In independent comparative phylogenomic analyses of fungal and bacterial genomes we find that they are consistent with an ancient origin for M. elongata M. cysteinexigens symbiosis, most likely over 350 million years ago and concomitant with the terrestrialization of Earth and diversification of land fungi and plants.« less

  12. Comparative genomics of Mortierella elongata and its bacterial endosymbiont Mycoavidus cysteinexigens

    DOE PAGES

    Uehling, J.; Gryganskyi, A.; Hameed, K.; ...

    2017-01-11

    Endosymbiosis of bacteria by eukaryotes is a defining feature of cellular evolution. In addition to well-known bacterial origins for mitochondria and chloroplasts, multiple origins of bacterial endosymbiosis are known within the cells of diverse animals, plants and fungi. Early-diverging lineages of terrestrial fungi harbor endosymbiotic bacteria belonging to the Burkholderiaceae. Furthermore, we sequenced the metagenome of the soil-inhabiting fungus Mortierella elongata and assembled the complete circular chromosome of its endosymbiont, Mycoavidus cysteinexigens, which we place within a lineage of endofungal symbionts that are sister clade to Burkholderia. The genome of M. elongata strain AG77 features a core set of primarymore » metabolic pathways for degradation of simple carbohydrates and lipid biosynthesis, while the M. cysteinexigens (AG77) genome is reduced in size and function. Experiments using antibiotics to cure the endobacterium from the host demonstrate that the fungal host metabolism is highly modulated by presence/ absence of M. cysteinexigens. In independent comparative phylogenomic analyses of fungal and bacterial genomes we find that they are consistent with an ancient origin for M. elongata M. cysteinexigens symbiosis, most likely over 350 million years ago and concomitant with the terrestrialization of Earth and diversification of land fungi and plants.« less

  13. Biotransformation of explosives by Reticulitermes flavipes--associated termite Endosymbionts.

    PubMed

    Indest, Karl J; Eaton, Hillary L; Jung, Carina M; Lounds, Caly B

    2014-01-01

    Termites have an important role in the carbon and nitrogen cycles despite their reputation as destructive pests. With the assistance of microbial endosymbionts, termites are responsible for the conversion of complex biopolymers into simple carbon substrates. Termites also rely on endosymbionts for fixing and recycling nitrogen. As a result, we hypothesize that termite bacterial endosymbionts are a novel source of metabolic pathways for the transformation of nitrogen-rich compounds like explosives. Explosives transformation capability of termite (Reticulitermes flavipes)-derived endosymbionts was determined in media containing the chemical constituents nitrotriazolone (NTO) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) that comprise new insensitive explosive formulations. Media dosed with 40 µg/ml of explosive was inoculated with surface-sterilized, macerated termites. Bacterial isolates capable of explosives transformation were characterized by 16S rRNA sequencing. Termite-derived enrichment cultures demonstrated degradation activity towards the explosives NTO, RDX, as well as the legacy explosive 2,4,6-trinitrotoluene (TNT). Three isolates with high similarity to the Enterobacteriaceae(Enterobacter, Klebsiella) were able to transform TNT and NTO within 2 days, while isolates with high similarity to Serratia marcescens and Lactococcus lactis were able to transform RDX. Termite endosymbionts harbor a range of metabolic activities and possess unique abilities to transform nitrogen-rich explosives. © 2014 S. Karger AG, Basel.

  14. Incidence of Facultative Bacterial Endosymbionts in Spider Mites Associated with Local Environments and Host Plants.

    PubMed

    Zhu, Yu-Xi; Song, Yue-Ling; Zhang, Yan-Kai; Hoffmann, Ary A; Zhou, Jin-Cheng; Sun, Jing-Tao; Hong, Xiao-Yue

    2018-03-15

    Spider mites are frequently associated with multiple endosymbionts whose infection patterns often exhibit spatial and temporal variation. However, the association between endosymbiont prevalence and environmental factors remains unclear. Here, we surveyed endosymbionts in natural populations of the spider mite, Tetranychus truncatus , in China, screening 935 spider mites from 21 localities and 12 host plant species. Three facultative endosymbiont lineages, Wolbachia , Cardinium , and Spiroplasma , were detected at different infection frequencies (52.5%, 26.3%, and 8.6%, respectively). Multiple endosymbiont infections were observed in most local populations, and the incidence of individuals with the Wolbachia - Spiroplasma coinfection was higher than expected from the frequency of each infection within a population. Endosymbiont infection frequencies exhibited associations with environmental factors: Wolbachia infection rates increased at localities with higher annual mean temperatures, while Cardinium and Spiroplasma infection rates increased at localities from higher altitudes. Wolbachia was more common in mites from Lycopersicon esculentum and Glycine max compared to those from Zea mays This study highlights that host-endosymbiont interactions may be associated with environmental factors, including climate and other geographically linked factors, as well as the host's food plant. IMPORTANCE The aim of this study was to examine the incidence of endosymbiont distribution and the infection patterns in spider mites. The main findings are that multiple endosymbiont infections were more common than expected and that endosymbiont infection frequencies were associated with environmental factors. This work highlights that host-endosymbiont interactions need to be studied within an environmental and geographic context. Copyright © 2018 American Society for Microbiology.

  15. Unique clade of alphaproteobacterial endosymbionts induces complete cytoplasmic incompatibility in the coconut beetle

    PubMed Central

    Takano, Shun-ichiro; Tuda, Midori; Takasu, Keiji; Furuya, Naruto; Imamura, Yuya; Kim, Sangwan; Tashiro, Kosuke; Iiyama, Kazuhiro; Tavares, Matias; Amaral, Acacio Cardoso

    2017-01-01

    Maternally inherited bacterial endosymbionts in arthropods manipulate host reproduction to increase the fitness of infected females. Cytoplasmic incompatibility (CI) is one such manipulation, in which uninfected females produce few or no offspring when they mate with infected males. To date, two bacterial endosymbionts, Wolbachia and Cardinium, have been reported as CI inducers. Only Wolbachia induces complete CI, which causes 100% offspring mortality in incompatible crosses. Here we report a third CI inducer that belongs to a unique clade of Alphaproteobacteria detected within the coconut beetle, Brontispa longissima. This beetle comprises two cryptic species, the Asian clade and the Pacific clade, which show incompatibility in hybrid crosses. Different bacterial endosymbionts, a unique clade of Alphaproteobacteria in the Pacific clade and Wolbachia in the Asian clade, induced bidirectional CI between hosts. The former induced complete CI (100% mortality), whereas the latter induced partial CI (70% mortality). Illumina MiSeq sequencing and denaturing gradient gel electrophoresis patterns showed that the predominant bacterium detected in the Pacific clade of B. longissima was this unique clade of Alphaproteobacteria alone, indicating that this endosymbiont was responsible for the complete CI. Sex distortion did not occur in any of the tested crosses. The 1,160 bp of 16S rRNA gene sequence obtained for this endosymbiont had only 89.3% identity with that of Wolbachia, indicating that it can be recognized as a distinct species. We discuss the potential use of this bacterium as a biological control agent. PMID:28533374

  16. Genome sequence of Candidatus Riesia pediculischaeffi, endosymbiont of chimpanzee lice, and genomic comparison of recently acquired endosymbionts from human and chimpanzee lice.

    PubMed

    Boyd, Bret M; Allen, Julie M; de Crécy-Lagard, Valérie; Reed, David L

    2014-09-11

    The obligate-heritable endosymbionts of insects possess some of the smallest known bacterial genomes. This is likely due to loss of genomic material during symbiosis. The mode and rate of this erosion may change over evolutionary time: faster in newly formed associations and slower in long-established ones. The endosymbionts of human and anthropoid primate lice present a unique opportunity to study genome erosion in newly established (or young) symbionts. This is because we have a detailed phylogenetic history of these endosymbionts with divergence dates for closely related species. This allows for genome evolution to be studied in detail and rates of change to be estimated in a phylogenetic framework. Here, we sequenced the genome of the chimpanzee louse endosymbiont (Candidatus Riesia pediculischaeffi) and compared it with the closely related genome of the human body louse endosymbiont. From this comparison, we found evidence for recent genome erosion leading to gene loss in these endosymbionts. Although gene loss was detected, it was not significantly greater than in older endosymbionts from aphids and ants. Additionally, we searched for genes associated with B-vitamin synthesis in the two louse endosymbiont genomes because these endosymbionts are believed to synthesize essential B vitamins absent in the louse's diet. All of the expected genes were present, except those involved in thiamin synthesis. We failed to find genes encoding for proteins involved in the biosynthesis of thiamin or any complete exogenous means of salvaging thiamin, suggesting there is an undescribed mechanism for the salvage of thiamin. Finally, genes encoding for the pantothenate de novo biosynthesis pathway were located on a plasmid in both taxa along with a heat shock protein. Movement of these genes onto a plasmid may be functionally and evolutionarily significant, potentially increasing production and guarding against the deleterious effects of mutation. These data add to a growing

  17. Spiroplasma and host immunity: activation of humoral immune responses increases endosymbiont load and susceptibility to certain Gram-negative bacterial pathogens in Drosophila melanogaster.

    PubMed

    Herren, Jeremy K; Lemaitre, Bruno

    2011-09-01

    Spiroplasma poulsonii and its relatives are facultative, vertically transmitted endosymbionts harboured by several Drosophila species. Their long-term survival requires not only evasion of host immunity, but also that Spiroplasma does not have a net detrimental effect on host fitness. These requirements provide the central framework for interactions between host and endosymbiont. We use Drosophila melaogaster as a model to unravel aspects of the mechanistic basis of endosymbiont-host immune interactions. Here we show that Spiroplasma does not activate an immune response in Drosophila and is not susceptible to either the cellular or humoral arms of the Drosophila immune system. We gain unexpected insight into host factors that can promote Spiroplasma growth by showing that activation of Toll and Imd immune pathways actually increases Sprioplasma titre. Spiroplasma-mediated protection is not observed for variety of fungal and bacterial pathogens and Spiroplasma actually increases susceptibility of Drosophila to certain Gram-negative pathogens. Finally, we show that the growth of endosymbiotic Spiroplasma is apparently self-regulated, as suggested by the unhindered proliferation of non-endosymbiotic Spiroplasma citri in fly haemolymph. © 2011 Blackwell Publishing Ltd.

  18. Effects of 16S rDNA sampling on estimates of the number of endosymbiont lineages in sucking lice

    PubMed Central

    Burleigh, J. Gordon; Light, Jessica E.; Reed, David L.

    2016-01-01

    Phylogenetic trees can reveal the origins of endosymbiotic lineages of bacteria and detect patterns of co-evolution with their hosts. Although taxon sampling can greatly affect phylogenetic and co-evolutionary inference, most hypotheses of endosymbiont relationships are based on few available bacterial sequences. Here we examined how different sampling strategies of Gammaproteobacteria sequences affect estimates of the number of endosymbiont lineages in parasitic sucking lice (Insecta: Phthirapatera: Anoplura). We estimated the number of louse endosymbiont lineages using both newly obtained and previously sequenced 16S rDNA bacterial sequences and more than 42,000 16S rDNA sequences from other Gammaproteobacteria. We also performed parametric and nonparametric bootstrapping experiments to examine the effects of phylogenetic error and uncertainty on these estimates. Sampling of 16S rDNA sequences affects the estimates of endosymbiont diversity in sucking lice until we reach a threshold of genetic diversity, the size of which depends on the sampling strategy. Sampling by maximizing the diversity of 16S rDNA sequences is more efficient than randomly sampling available 16S rDNA sequences. Although simulation results validate estimates of multiple endosymbiont lineages in sucking lice, the bootstrap results suggest that the precise number of endosymbiont origins is still uncertain. PMID:27547523

  19. A new cytogenetic mechanism for bacterial endosymbiont-induced parthenogenesis in Hymenoptera

    PubMed Central

    Adachi-Hagimori, Tetsuya; Miura, Kazuki; Stouthamer, Richard

    2008-01-01

    Vertically transmitted endosymbiotic bacteria, such as Wolbachia, Cardinium and Rickettsia, modify host reproduction in several ways to facilitate their own spread. One such modification results in parthenogenesis induction, where males, which are unable to transmit the bacteria, are not produced. In Hymenoptera, the mechanism of diploidization due to Wolbachia infection, known as gamete duplication, is a post-meiotic modification. During gamete duplication, the meiotic mechanism is normal, but in the first mitosis the anaphase is aborted. The two haploid sets of chromosomes do not separate and thus result in a single nucleus containing two identical sets of haploid chromosomes. Here, we outline an alternative cytogenetic mechanism for bacterial endosymbiont-induced parthenogenesis in Hymenoptera. During female gamete formation in Rickettsia-infected Neochrysocharis formosa (Westwood) parasitoids, meiotic cells undergo only a single equational division followed by the expulsion of a single polar body. This absence of meiotic recombination and reduction corresponds well with a non-segregation pattern in the offspring of heterozygous females. We conclude that diploidy in N. formosa is maintained through a functionally apomictic cloning mechanism that differs entirely from the mechanism induced by Wolbachia. PMID:18713719

  20. Diversity of Symbiotic Organs and Bacterial Endosymbionts of Lygaeoid Bugs of the Families Blissidae and Lygaeidae (Hemiptera: Heteroptera: Lygaeoidea)

    PubMed Central

    Renz, Patricia; Dettner, Konrad; Kehl, Siegfried

    2012-01-01

    Here we present comparative data on the localization and identity of intracellular symbionts among the superfamily Lygaeoidea (Insecta: Hemiptera: Heteroptera: Pentatomomorpha). Five different lygaeoid species from the families Blissidae and Lygaeidae (sensu stricto; including the subfamilies Lygaeinae and Orsillinae) were analyzed. Fluorescence in situ hybridization (FISH) revealed that all the bugs studied possess paired bacteriomes that are differently shaped in the abdomen and harbor specific endosymbionts therein. The endosymbionts were also detected in female gonads and at the anterior poles of developing eggs, indicating vertical transmission of the endosymbionts via ovarial passage, in contrast to the posthatch symbiont transmission commonly found among pentatomoid bugs (Pentatomomorpha: Pentatomoidea). Phylogenetic analysis based on 16S rRNA and groEL genes showed that the endosymbionts of Ischnodemus sabuleti, Arocatus longiceps, Belonochilus numenius, Orsillus depressus, and Ortholomus punctipennis constitute at least four distinct clades in the Gammaproteobacteria. The endosymbiont phylogeny did not agree with the host phylogeny based on the mitochondrial cytochrome oxidase I (COI) gene, but there was a local cospeciating pattern within the subfamily Orsillinae. Meanwhile, the endosymbiont of Belonochilus numenius (Lygaeidae: Orsillinae), although harbored in paired bacteriomes as in other lygaeoid bugs of the related genera Nysius, Ortholomus, and Orsillus, was phylogenetically close to “Candidatus Rohrkolberia cinguli,” the endosymbiont of Chilacis typhae (Lygaeoidea: Artheneidae), suggesting an endosymbiont replacement in this lineage. The diverse endosymbionts and the differently shaped bacteriomes may reflect independent evolutionary origins of the endosymbiotic systems among lygaeoid bugs. PMID:22307293

  1. Host specificity and coevolution of Flavobacteriaceae endosymbionts within the siphonous green seaweed Bryopsis.

    PubMed

    Hollants, Joke; Leliaert, Frederik; Verbruggen, Heroen; De Clerck, Olivier; Willems, Anne

    2013-06-01

    The siphonous green seaweed Bryopsis harbors complex intracellular bacterial communities. Previous studies demonstrated that certain species form close, obligate associations with Flavobacteriaceae. A predominant imprint of host evolutionary history on the presence of these bacteria suggests a highly specialized association. In this study we elaborate on previous results by expanding the taxon sampling and testing for host-symbiont coevolution Therefore, we optimized a PCR protocol to directly and specifically amplify Flavobacteriaceae endosymbiont 16S rRNA gene sequences, which allowed us to screen a large number of algal samples without the need for cultivation or surface sterilization. We analyzed 146 Bryopsis samples, and 92 additional samples belonging to the Bryopsidales and other orders within the class Ulvophyceae. Results indicate that the Flavobacteriaceae endosymbionts are restricted to Bryopsis, and only occur within specific, warm-temperate and tropical clades of the genus. Statistical analyses (AMOVA) demonstrate a significant non-random host-symbiont association. Comparison of bacterial 16S rRNA and Bryopsis rbcL phylogenies, however, reveal complex host-symbiont evolutionary associations, whereby closely related hosts predominantly harbor genetically similar endosymbionts. Bacterial genotypes are rarely confined to a single Bryopsis species and most Bryopsis species harbored several Flavobacteriaceae, obscuring a clear pattern of coevolution. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Parallel Histories of Horizontal Gene Transfer Facilitated Extreme Reduction of Endosymbiont Genomes in Sap-Feeding Insects

    PubMed Central

    Sloan, Daniel B.; Nakabachi, Atsushi; Richards, Stephen; Qu, Jiaxin; Murali, Shwetha Canchi; Gibbs, Richard A.; Moran, Nancy A.

    2014-01-01

    Bacteria confined to intracellular environments experience extensive genome reduction. In extreme cases, insect endosymbionts have evolved genomes that are so gene-poor that they blur the distinction between bacteria and endosymbiotically derived organelles such as mitochondria and plastids. To understand the host’s role in this extreme gene loss, we analyzed gene content and expression in the nuclear genome of the psyllid Pachypsylla venusta, a sap-feeding insect that harbors an ancient endosymbiont (Carsonella) with one of the most reduced bacterial genomes ever identified. Carsonella retains many genes required for synthesis of essential amino acids that are scarce in plant sap, but most of these biosynthetic pathways have been disrupted by gene loss. Host genes that are upregulated in psyllid cells housing Carsonella appear to compensate for endosymbiont gene losses, resulting in highly integrated metabolic pathways that mirror those observed in other sap-feeding insects. The host contribution to these pathways is mediated by a combination of native eukaryotic genes and bacterial genes that were horizontally transferred from multiple donor lineages early in the evolution of psyllids, including one gene that appears to have been directly acquired from Carsonella. By comparing the psyllid genome to a recent analysis of mealybugs, we found that a remarkably similar set of functional pathways have been shaped by independent transfers of bacterial genes to the two hosts. These results show that horizontal gene transfer is an important and recurring mechanism driving coevolution between insects and their bacterial endosymbionts and highlight interesting similarities and contrasts with the evolutionary history of mitochondria and plastids. PMID:24398322

  3. Solving a Bloody Mess: B-Vitamin Independent Metabolic Convergence among Gammaproteobacterial Obligate Endosymbionts from Blood-Feeding Arthropods and the Leech Haementeria officinalis

    PubMed Central

    Manzano-Marín, Alejandro; Oceguera-Figueroa, Alejandro; Latorre, Amparo; Jiménez-García, Luis F.; Moya, Andres

    2015-01-01

    Endosymbiosis is a common phenomenon in nature, especially between bacteria and insects, whose typically unbalanced diets are usually complemented by their obligate endosymbionts. While much interest and focus has been directed toward phloem-feeders like aphids and mealybugs, blood-feeders such as the Lone star tick (Amblyomma americanum), Glossina flies, and the human body louse (Pediculus humanus corporis) depend on obligate endosymbionts which complement their B-vitamin-deficient diets, and thus are required for growth and survival. Glossiphoniid leeches have also been found to harbor distinct endosymbionts housed in specialized organs. Here, we present the genome of the bacterial endosymbiont from Haementeria officinalis, first of a glossiphoniid leech. This as-yet-unnamed endosymbiont belongs to the Gammaproteobacteria, has a pleomorphic shape and is restricted to bacteriocytes. For this bacterial endosymbiont, we propose the name Candidatus Providencia siddallii. This symbiont possesses a highly reduced genome with high A+T content and a reduced set of metabolic capabilities, all of which are common characteristics of ancient obligate endosymbionts of arthropods. Its genome has retained many pathways related to the biosynthesis of B-vitamins, pointing toward a role in supplementing the blood-restricted diet of its host. Through comparative genomics against the endosymbionts of A. americanum, Glossina flies, and P. humanus corporis, we were able to detect a high degree of metabolic convergence among these four very distantly related endosymbiotic bacteria. PMID:26454017

  4. Genome Evolution and Phylogenomic Analysis of Candidatus Kinetoplastibacterium, the Betaproteobacterial Endosymbionts of Strigomonas and Angomonas

    PubMed Central

    Alves, João M.P.; Serrano, Myrna G.; Maia da Silva, Flávia; Voegtly, Logan J.; Matveyev, Andrey V.; Teixeira, Marta M.G.; Camargo, Erney P.; Buck, Gregory A.

    2013-01-01

    It has been long known that insect-infecting trypanosomatid flagellates from the genera Angomonas and Strigomonas harbor bacterial endosymbionts (Candidatus Kinetoplastibacterium or TPE [trypanosomatid proteobacterial endosymbiont]) that supplement the host metabolism. Based on previous analyses of other bacterial endosymbiont genomes from other lineages, a stereotypical path of genome evolution in such bacteria over the duration of their association with the eukaryotic host has been characterized. In this work, we sequence and analyze the genomes of five TPEs, perform their metabolic reconstruction, do an extensive phylogenomic analyses with all available Betaproteobacteria, and compare the TPEs with their nearest betaproteobacterial relatives. We also identify a number of housekeeping and central metabolism genes that seem to have undergone positive selection. Our genome structure analyses show total synteny among the five TPEs despite millions of years of divergence, and that this lineage follows the common path of genome evolution observed in other endosymbionts of diverse ancestries. As previously suggested by cell biology and biochemistry experiments, Ca. Kinetoplastibacterium spp. preferentially maintain those genes necessary for the biosynthesis of compounds needed by their hosts. We have also shown that metabolic and informational genes related to the cooperation with the host are overrepresented amongst genes shown to be under positive selection. Finally, our phylogenomic analysis shows that, while being in the Alcaligenaceae family of Betaproteobacteria, the closest relatives of these endosymbionts are not in the genus Bordetella as previously reported, but more likely in the Taylorella genus. PMID:23345457

  5. The Role of Lipid Competition for Endosymbiont-Mediated Protection against Parasitoid Wasps in Drosophila.

    PubMed

    Paredes, Juan C; Herren, Jeremy K; Schüpfer, Fanny; Lemaitre, Bruno

    2016-07-12

    Insects commonly harbor facultative bacterial endosymbionts, such as Wolbachia and Spiroplasma species, that are vertically transmitted from mothers to their offspring. These endosymbiontic bacteria increase their propagation by manipulating host reproduction or by protecting their hosts against natural enemies. While an increasing number of studies have reported endosymbiont-mediated protection, little is known about the mechanisms underlying this protection. Here, we analyze the mechanisms underlying protection from parasitoid wasps in Drosophila melanogaster mediated by its facultative endosymbiont Spiroplasma poulsonii Our results indicate that S. poulsonii exerts protection against two distantly related wasp species, Leptopilina boulardi and Asobara tabida S. poulsonii-mediated protection against parasitoid wasps takes place at the pupal stage and is not associated with an increased cellular immune response. In this work, we provide three important observations that support the notion that S. poulsonii bacteria and wasp larvae compete for host lipids and that this competition underlies symbiont-mediated protection. First, lipid quantification shows that both S. poulsonii and parasitoid wasps deplete D. melanogaster hemolymph lipids. Second, the depletion of hemolymphatic lipids using the Lpp RNA interference (Lpp RNAi) construct reduces wasp success in larvae that are not infected with S. poulsonii and blocks S. poulsonii growth. Third, we show that the growth of S. poulsonii bacteria is not affected by the presence of the wasps, indicating that when S. poulsonii is present, larval wasps will develop in a lipid-depleted environment. We propose that competition for host lipids may be relevant to endosymbiont-mediated protection in other systems and could explain the broad spectrum of protection provided. Virtually all insects, including crop pests and disease vectors, harbor facultative bacterial endosymbionts. They are vertically transmitted from mothers to

  6. Population dynamics and growth rates of endosymbionts during Diaphorina citri (Hemiptera, Liviidae) ontogeny.

    PubMed

    Dossi, Fabio Cleisto Alda; da Silva, Edney Pereira; Cônsoli, Fernando Luis

    2014-11-01

    The infection density of symbionts is among the major parameters to understand their biological effects in host-endosymbionts interactions. Diaphorina citri harbors two bacteriome-associated bacterial endosymbionts (Candidatus Carsonella ruddii and Candidatus Profftella armatura), besides the intracellular reproductive parasite Wolbachia. In this study, the density dynamics of the three endosymbionts associated with the psyllid D. citri was investigated by real-time quantitative PCR (qPCR) at different developmental stages. Bacterial density was estimated by assessing the copy number of the 16S rRNA gene for Carsonella and Profftella, and of the ftsZ gene for Wolbachia. Analysis revealed a continuous growth of the symbionts during host development. Symbiont growth and rate curves were estimated by the Gompertz equation, which indicated a negative correlation between the degree of symbiont-host specialization and the time to achieve the maximum growth rate (t*). Carsonella densities were significantly lower than those of Profftella at all host developmental stages analyzed, even though they both displayed a similar trend. The growth rates of Wolbachia were similar to those of Carsonella, but Wolbachia was not as abundant. Adult males displayed higher symbiont densities than females. However, females showed a much more pronounced increase in symbiont density as they aged if compared to males, regardless of the incorporation of symbionts into female oocytes and egg laying. The increased density of endosymbionts in aged adults differs from the usual decrease observed during host aging in other insect-symbiont systems.

  7. Heritable Endosymbionts of Drosophila

    PubMed Central

    Mateos, Mariana; Castrezana, Sergio J.; Nankivell, Becky J.; Estes, Anne M.; Markow, Therese A.; Moran, Nancy A.

    2006-01-01

    Although heritable microorganisms are increasingly recognized as widespread in insects, no systematic screens for such symbionts have been conducted in Drosophila species (the primary insect genetic models for studies of evolution, development, and innate immunity). Previous efforts screened relatively few Drosophila lineages, mainly for Wolbachia. We conducted an extensive survey of potentially heritable endosymbionts from any bacterial lineage via PCR screens of mature ovaries in 181 recently collected fly strains representing 35 species from 11 species groups. Due to our fly sampling methods, however, we are likely to have missed fly strains infected with sex ratio-distorting endosymbionts. Only Wolbachia and Spiroplasma, both widespread in insects, were confirmed as symbionts. These findings indicate that in contrast to some other insect groups, other heritable symbionts are uncommon in Drosophila species, possibly reflecting a robust innate immune response that eliminates many bacteria. A more extensive survey targeted these two symbiont types through diagnostic PCR in 1225 strains representing 225 species from 32 species groups. Of these, 19 species were infected by Wolbachia while only 3 species had Spiroplasma. Several new strains of Wolbachia and Spiroplasma were discovered, including ones divergent from any reported to date. The phylogenetic distribution of Wolbachia and Spiroplasma in Drosophila is discussed. PMID:16783009

  8. Histopathological and bacterial study of skin and gill of grass carp, Ceteopharyngodon idella, (Valenciennes 1844) exposed to copper sulfate and potassium permanganate.

    PubMed

    Jooyandeh, Fatemeh; Sadeghpour, Ali; Khara, Hossein; Pajand, Zabihollah

    2016-09-01

    The gill histology and bacterial load of skin of the grass carp juveniles were investigated in relation to various concentrations of copper sulfate and potassium permanganate. For this purpose, the sublethal doses were determined after a pre-test and then the experiment was done in five treatments (for copper sulfate: 1, 1.94, 3.71, 7.07 and 15 mg/l and for potassium permanganate: 0.25, 0.52, 1.91, 2.27 and 5 mg/l) with three replicates inside the glass aquaria. Also, one group without disinfecting product was considered as control for each experiment. The microbial and histopathological investigations were done after 96 h exposure. According to results, the lowest bacterial load (CFU/g) of skin was observed in 15 mg/l copper sulfate treatment and 0.25 mg/l potassium permanganate treatment (P < 0.05). Also, the histological investigation showed a range of histopathological alternations in gills tissue including lamellar necrosis, hyperplasia, lamellar adhesion, haemorrhage, clubbing of gill lamellae. The severity of these alternations increased with increasing of the doses of the copper sulfate and potassium permanganate. In this regard, the highest histological damages were observed in 15 mg/l copper sulfate and 5 mg/l potassium permanganate respectively. Our results showed that low dosage of potassium permanganate has best effect on reducing of bacterial load of skin with lowest adverse effects on gill tissue.

  9. Solving a Bloody Mess: B-Vitamin Independent Metabolic Convergence among Gammaproteobacterial Obligate Endosymbionts from Blood-Feeding Arthropods and the Leech Haementeria officinalis.

    PubMed

    Manzano-Marín, Alejandro; Oceguera-Figueroa, Alejandro; Latorre, Amparo; Jiménez-García, Luis F; Moya, Andres

    2015-10-09

    Endosymbiosis is a common phenomenon in nature, especially between bacteria and insects, whose typically unbalanced diets are usually complemented by their obligate endosymbionts. While much interest and focus has been directed toward phloem-feeders like aphids and mealybugs, blood-feeders such as the Lone star tick (Amblyomma americanum), Glossina flies, and the human body louse (Pediculus humanus corporis) depend on obligate endosymbionts which complement their B-vitamin-deficient diets, and thus are required for growth and survival. Glossiphoniid leeches have also been found to harbor distinct endosymbionts housed in specialized organs. Here, we present the genome of the bacterial endosymbiont from Haementeria officinalis, first of a glossiphoniid leech. This as-yet-unnamed endosymbiont belongs to the Gammaproteobacteria, has a pleomorphic shape and is restricted to bacteriocytes. For this bacterial endosymbiont, we propose the name Candidatus Providencia siddallii. This symbiont possesses a highly reduced genome with high A+T content and a reduced set of metabolic capabilities, all of which are common characteristics of ancient obligate endosymbionts of arthropods. Its genome has retained many pathways related to the biosynthesis of B-vitamins, pointing toward a role in supplementing the blood-restricted diet of its host. Through comparative genomics against the endosymbionts of A. americanum, Glossina flies, and P. humanus corporis, we were able to detect a high degree of metabolic convergence among these four very distantly related endosymbiotic bacteria. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Comparative Genomic Analysis of Acanthamoeba Endosymbionts Highlights the Role of Amoebae as a “Melting Pot” Shaping the Rickettsiales Evolution

    PubMed Central

    Wang, Zhang

    2017-01-01

    Abstract Amoebae have been considered as a genetic “melting pot” for its symbionts, facilitating genetic exchanges of the bacteria that co-inhabit the same host. To test the “melting pot” hypothesis, we analyzed six genomes of amoeba endosymbionts within Rickettsiales, four of which belong to Holosporaceae family and two to Candidatus Midichloriaceae. For the first time, we identified plasmids in obligate amoeba endosymbionts, which suggests conjugation as a potential mechanism for lateral gene transfers (LGTs) that underpin the “melting pot” hypothesis. We found strong evidence of recent LGTs between the Rickettsiales amoeba endosymbionts, suggesting that the LGTs are continuous and ongoing. In addition, comparative genomic and phylogenomic analyses revealed pervasive and recurrent LGTs between Rickettsiales and distantly related amoeba-associated bacteria throughout the Rickettsiales evolution. Many of these exchanged genes are important for amoeba–symbiont interactions, including genes in transport system, antibiotic resistance, stress response, and bacterial virulence, suggesting that LGTs have played important roles in the adaptation of endosymbionts to their intracellular habitats. Surprisingly, we found little evidence of LGTs between amoebae and their bacterial endosymbionts. Our study strongly supports the “melting pot” hypothesis and highlights the role of amoebae in shaping the Rickettsiales evolution. PMID:29177480

  11. Inter-Population Variability of Endosymbiont Densities in the Asian Citrus Psyllid (Diaphorina citri Kuwayama).

    PubMed

    Chu, Chia-Ching; Gill, Torrence A; Hoffmann, Mark; Pelz-Stelinski, Kirsten S

    2016-05-01

    The Asian citrus psyllid (Diaphorina citri Kuwayama) is an insect pest capable of transmitting Candidatus Liberibacter asiaticus (CLas), the causal agent of citrus greening in North America. D. citri also harbors three endosymbionts, Wolbachia, Candidatus Carsonella ruddii, and Candidatus Profftella armatura, which may influence D. citri physiology and fitness. Although genomic researches on these bacteria have been conducted, much remains unclear regarding their ecology and inter-population variability in D. citri. The present work examined the densities of each endosymbiont in adult D. citri sampled from different populations using quantitative PCR. Under field conditions, the densities of all three endosymbionts positively correlated with each other, and they are associated with D. citri gender and locality. In addition, the infection density of CLas also varied across populations. Although an analysis pooling D. citri from different populations showed that CLas-infected individuals tended to have lower endosymbiont densities compared to uninfected individuals, the difference was not significant when the population was included as a factor in the analysis, suggesting that other population-specific factors may have stronger effects on endosymbiont densities. To determine whether there is a genetic basis to the density differences, endosymbiont densities between aged CLas-negative females of two D. citri populations reared under standardized laboratory conditions were compared. Results suggested that inter-population variability in Wolbachia infection density is associated with the genotypes of the endosymbiont or the host. Findings from this work could facilitate understanding of D. citri-bacterial associations that may benefit the development of approaches for managing citrus greening, such as prevention of CLas transmission.

  12. An interim report on gill disease

    USGS Publications Warehouse

    Rucker, R.R.; Johnson, H.E.; Kaydas, G.M.

    1952-01-01

    GILL DISEASE among fish, a disease which is characterized by a proliferation of the gill epithelium, has been attributed to a number of different causes. Generally, there are two recognized types: the eastern or bacterial type, in which long filamentous bacteria can always be demonstrated; and the western type, in which, by definition, bacteria cannot be demonstrated.

  13. Vertically transmitted viral endosymbionts of insects: do sigma viruses walk alone?

    PubMed

    Longdon, Ben; Jiggins, Francis M

    2012-10-07

    Insects are host to a wide range of vertically transmitted bacterial endosymbionts, but we know relatively little about their viral counterparts. Here, we discuss the vertically transmitted viral endosymbionts of insects, firstly examining the diversity of this group, and then focusing on the well-studied sigma viruses that infect dipterans. Despite limited sampling, evidence suggests that vertically transmitted viruses may be common in insects. Unlike bacteria, viruses can be transmitted through sperm and eggs, a trait that allows them to rapidly spread through host populations even when infection is costly to the host. Work on Drosophila melanogaster has shown that sigma viruses and their hosts are engaged in a coevolutionary arms race, in which the spread of resistance genes in the host population is followed by the spread of viral genotypes that can overcome host resistance. In the long-term, associations between sigma viruses and their hosts are unstable, and the viruses persist by occasionally switching to new host species. It therefore seems likely that viral endosymbionts have major impacts on the evolution and ecology of insects.

  14. Vertically transmitted viral endosymbionts of insects: do sigma viruses walk alone?

    PubMed Central

    Longdon, Ben; Jiggins, Francis M.

    2012-01-01

    Insects are host to a wide range of vertically transmitted bacterial endosymbionts, but we know relatively little about their viral counterparts. Here, we discuss the vertically transmitted viral endosymbionts of insects, firstly examining the diversity of this group, and then focusing on the well-studied sigma viruses that infect dipterans. Despite limited sampling, evidence suggests that vertically transmitted viruses may be common in insects. Unlike bacteria, viruses can be transmitted through sperm and eggs, a trait that allows them to rapidly spread through host populations even when infection is costly to the host. Work on Drosophila melanogaster has shown that sigma viruses and their hosts are engaged in a coevolutionary arms race, in which the spread of resistance genes in the host population is followed by the spread of viral genotypes that can overcome host resistance. In the long-term, associations between sigma viruses and their hosts are unstable, and the viruses persist by occasionally switching to new host species. It therefore seems likely that viral endosymbionts have major impacts on the evolution and ecology of insects. PMID:22859592

  15. Comparative genomics of a plant-parasitic nematode endosymbiont suggest a role in nutritional symbiosis

    USDA-ARS?s Scientific Manuscript database

    Bacterial mutualists can increase the biochemical capacity of animals. Highly co-evolved nutritional mutualists do this by synthesizing nutrients missing from the host's diet. Genomics tools have recently advanced the study of these partnerships. Here we examined the endosymbiont Xiphinematobacter (...

  16. Evolution, multiple acquisition, and localization of endosymbionts in bat flies (Diptera: Hippoboscoidea: Streblidae and Nycteribiidae).

    PubMed

    Morse, Solon F; Bush, Sarah E; Patterson, Bruce D; Dick, Carl W; Gruwell, Matthew E; Dittmar, Katharina

    2013-05-01

    Bat flies are a diverse clade of obligate ectoparasites on bats. Like most blood-feeding insects, they harbor endosymbiotic prokaryotes, but the origins and nature of these symbioses are still poorly understood. To expand the knowledge of bacterial associates in bat flies, the diversity and evolution of the dominant endosymbionts in six of eight nominal subfamilies of bat flies (Streblidae and Nycteribiidae) were studied. Furthermore, the localization of endosymbionts and their transmission across developmental stages within the family Streblidae were explored. The results show diverse microbial associates in bat flies, with at least four ancestral invasions of distantly related microbial lineages throughout bat fly evolution. Phylogenetic relationships support the presence of at least two novel symbiont lineages (here clades B and D), and extend the geographic and taxonomic range of a previously documented lineage ("Candidatus Aschnera chinzeii"; here clade A). Although these lineages show reciprocally monophyletic clusters with several bat fly host clades, their phylogenetic relationships generally do not reflect current bat fly taxonomy or phylogeny. However, within some endosymbiont clades, congruent patterns of symbiont-host divergence are apparent. Other sequences identified in this study fall into the widely distributed, highly invasive, insect-associated Arsenophonus lineage and may be the result of symbiont replacements and/or transient infections (here clade C). Vertical transmission of endosymbionts of clades B and D is supported by fluorescent signal (fluorescent in situ hybridization [FISH]) and microbial DNA detection across developmental stages. The fluorescent bacterial signal is consistently localized within structures resembling bacteriomes, although their anatomical position differs by host fly clade. In summary, the results suggest an obligate host-endosymbiont relationship for three of the four known symbiont clades associated with bat flies

  17. Evolution, Multiple Acquisition, and Localization of Endosymbionts in Bat Flies (Diptera: Hippoboscoidea: Streblidae and Nycteribiidae)

    PubMed Central

    Morse, Solon F.; Bush, Sarah E.; Patterson, Bruce D.; Dick, Carl W.; Gruwell, Matthew E.

    2013-01-01

    Bat flies are a diverse clade of obligate ectoparasites on bats. Like most blood-feeding insects, they harbor endosymbiotic prokaryotes, but the origins and nature of these symbioses are still poorly understood. To expand the knowledge of bacterial associates in bat flies, the diversity and evolution of the dominant endosymbionts in six of eight nominal subfamilies of bat flies (Streblidae and Nycteribiidae) were studied. Furthermore, the localization of endosymbionts and their transmission across developmental stages within the family Streblidae were explored. The results show diverse microbial associates in bat flies, with at least four ancestral invasions of distantly related microbial lineages throughout bat fly evolution. Phylogenetic relationships support the presence of at least two novel symbiont lineages (here clades B and D), and extend the geographic and taxonomic range of a previously documented lineage (“Candidatus Aschnera chinzeii”; here clade A). Although these lineages show reciprocally monophyletic clusters with several bat fly host clades, their phylogenetic relationships generally do not reflect current bat fly taxonomy or phylogeny. However, within some endosymbiont clades, congruent patterns of symbiont-host divergence are apparent. Other sequences identified in this study fall into the widely distributed, highly invasive, insect-associated Arsenophonus lineage and may be the result of symbiont replacements and/or transient infections (here clade C). Vertical transmission of endosymbionts of clades B and D is supported by fluorescent signal (fluorescent in situ hybridization [FISH]) and microbial DNA detection across developmental stages. The fluorescent bacterial signal is consistently localized within structures resembling bacteriomes, although their anatomical position differs by host fly clade. In summary, the results suggest an obligate host-endosymbiont relationship for three of the four known symbiont clades associated with bat

  18. Transmission rates of the bacterial endosymbiont, Neorickettsia risticii, during the asexual reproduction phase of its digenean host, Plagiorchis elegans, within naturally infected lymnaeid snails.

    PubMed

    Greiman, Stephen E; Tkach, Vasyl V; Vaughan, Jefferson A

    2013-10-22

    Neorickettsia are obligate intracellular bacterial endosymbionts of digenean parasites present in all lifestages of digeneans. Quantitative information on the transmission of neorickettsial endosymbionts throughout the complex life cycles of digeneans is lacking. This study quantified the transmission of Neorickettsia during the asexual reproductive phase of a digenean parasite, Plagiorchis elegans, developing within naturally parasitized lymnaeid pond snails. Lymnaea stagnalis snails were collected from 3 ponds in Nelson County, North Dakota and screened for the presence of digenean cercariae. Cercariae were identified to species by PCR and sequencing of the 28S rRNA gene. Neorickettsia infections were initially detected using nested PCR and sequencing of a partial 16S rRNA gene of pooled cercariae shed from each parasitized snail. Fifty to 100 single cercariae or sporocysts were isolated from each of six parasitized snails and tested for the presence of Neorickettsia using nested PCR to estimate the efficiency at which Neorickettsia were transmitted to cercariae during asexual development of the digenean. A total of 616 L. stagnalis were collected and 240 (39%) shed digenean cercariae. Of these, 18 (8%) were Neorickettsia-positive. Six Neorickettsia infections were selected to determine the transmission efficiency of Neorickettsia from mother to daughter sporocyst and from daughter sporocyst to cercaria. The prevalence of neorickettsiae in cercariae varied from 11 to 91%. The prevalence of neorickettsiae in sporocysts from one snail was 100%. Prevalence of Neorickettsia infection in cercariae of Plagiorchis elegans was variable and never reached 100%. Reasons for this are speculative, however, the low prevalence of Neorickettsia observed in some of our samples (11 to 52%) differs from the high prevalence of other, related bacterial endosymbionts, e.g. Wolbachia in Wolbachia-dependent filariid nematodes, where the prevalence among progeny is universally 100

  19. Are sex ratio distorting endosymbionts responsible for mating system variation among dance flies (Diptera: Empidinae)?

    PubMed

    Murray, Rosalind L; Herridge, Elizabeth J; Ness, Rob W; Bussière, Luc F

    2017-01-01

    Maternally inherited bacterial endosymbionts are common in many arthropod species. Some endosymbionts cause female-biased sex ratio distortion in their hosts that can result in profound changes to a host's mating behaviour and reproductive biology. Dance flies (Diptera: Empidinae) are well known for their unusual reproductive biology, including species with female-specific ornamentation and female-biased lek-like swarming behaviour. The cause of the repeated evolution of female ornaments in these flies remains unknown, but is probably associated with female-biased sex ratios in individual species. In this study we assessed whether dance flies harbour sex ratio distorting endosymbionts that might have driven these mating system evolutionary changes. We measured the incidence and prevalence of infection by three endosymbionts that are known to cause female-biased sex ratios in other insect hosts (Wolbachia, Rickettsia and Spiroplasma) across 20 species of dance flies. We found evidence of widespread infection by all three symbionts and variation in sex-specific prevalence across the taxa sampled. However, there was no relationship between infection prevalence and adult sex ratio measures and no evidence that female ornaments are associated with high prevalences of sex-biased symbiont infections. We conclude that the current distribution of endosymbiont infections is unlikely to explain the diversity in mating systems among dance fly species.

  20. Two Bacterial Genera, Sodalis and Rickettsia, Associated with the Seal Louse Proechinophthirus fluctus (Phthiraptera: Anoplura)

    PubMed Central

    Allen, Julie M.; Koga, Ryuichi; Fukatsu, Takema; Sweet, Andrew D.; Johnson, Kevin P.; Reed, David L.

    2016-01-01

    ABSTRACT Roughly 10% to 15% of insect species host heritable symbiotic bacteria known as endosymbionts. The lice parasitizing mammals rely on endosymbionts to provide essential vitamins absent in their blood meals. Here, we describe two bacterial associates from a louse, Proechinophthirus fluctus, which is an obligate ectoparasite of a marine mammal. One of these is a heritable endosymbiont that is not closely related to endosymbionts of other mammalian lice. Rather, it is more closely related to endosymbionts of the genus Sodalis associated with spittlebugs and feather-chewing bird lice. Localization and vertical transmission of this endosymbiont are also more similar to those of bird lice than to those of other mammalian lice. The endosymbiont genome appears to be degrading in symbiosis; however, it is considerably larger than the genomes of other mammalian louse endosymbionts. These patterns suggest the possibility that this Sodalis endosymbiont might be recently acquired, replacing a now-extinct, ancient endosymbiont. From the same lice, we also identified an abundant bacterium belonging to the genus Rickettsia that is closely related to Rickettsia ricketsii, a human pathogen vectored by ticks. No obvious masses of the Rickettsia bacterium were observed in louse tissues, nor did we find any evidence of vertical transmission, so the nature of its association remains unclear. IMPORTANCE Many insects are host to heritable symbiotic bacteria. These heritable bacteria have been identified from numerous species of parasitic lice. It appears that novel symbioses have formed between lice and bacteria many times, with new bacterial symbionts potentially replacing existing ones. However, little was known about the symbionts of lice parasitizing marine mammals. Here, we identified a heritable bacterial symbiont in lice parasitizing northern fur seals. This bacterial symbiont appears to have been recently acquired by the lice. The findings reported here provide insights

  1. Turnerbactin, a Novel Triscatecholate Siderophore from the Shipworm Endosymbiont Teredinibacter turnerae T7901

    PubMed Central

    Han, Andrew W.; Sandy, Moriah; Fishman, Brian; Trindade-Silva, Amaro E.; Soares, Carlos A. G.; Distel, Daniel L.; Butler, Alison; Haygood, Margo G.

    2013-01-01

    Shipworms are marine bivalve mollusks (Family Teredinidae) that use wood for shelter and food. They harbor a group of closely related, yet phylogenetically distinct, bacterial endosymbionts in bacteriocytes located in the gills. This endosymbiotic community is believed to support the host's nutrition in multiple ways, through the production of cellulolytic enzymes and the fixation of nitrogen. The genome of the shipworm endosymbiont Teredinibacter turnerae T7901 was recently sequenced and in addition to the potential for cellulolytic enzymes and diazotrophy, the genome also revealed a rich potential for secondary metabolites. With nine distinct biosynthetic gene clusters, nearly 7% of the genome is dedicated to secondary metabolites. Bioinformatic analyses predict that one of the gene clusters is responsible for the production of a catecholate siderophore. Here we describe this gene cluster in detail and present the siderophore product from this cluster. Genes similar to the entCEBA genes of enterobactin biosynthesis involved in the production and activation of dihydroxybenzoic acid (DHB) are present in this cluster, as well as a two-module non-ribosomal peptide synthetase (NRPS). A novel triscatecholate siderophore, turnerbactin, was isolated from the supernatant of iron-limited T. turnerae T7901 cultures. Turnerbactin is a trimer of N-(2,3-DHB)-L-Orn-L-Ser with the three monomeric units linked by Ser ester linkages. A monomer, dimer, dehydrated dimer, and dehydrated trimer of 2,3-DHB-L-Orn-L-Ser were also found in the supernatant. A link between the gene cluster and siderophore product was made by constructing a NRPS mutant, TtAH03. Siderophores could not be detected in cultures of TtAH03 by HPLC analysis and Fe-binding activity of culture supernatant was significantly reduced. Regulation of the pathway by iron is supported by identification of putative Fur box sequences and observation of increased Fe-binding activity under iron restriction. Evidence of a

  2. Idiosyncratic Genome Degradation in a Bacterial Endosymbiont of Periodical Cicadas.

    PubMed

    Campbell, Matthew A; Łukasik, Piotr; Simon, Chris; McCutcheon, John P

    2017-11-20

    When a free-living bacterium transitions to a host-beneficial endosymbiotic lifestyle, it almost invariably loses a large fraction of its genome [1, 2]. The resulting small genomes often become stable in size, structure, and coding capacity [3-5], as exemplified by Sulcia muelleri, a nutritional endosymbiont of cicadas. Sulcia's partner endosymbiont, Hodgkinia cicadicola, similarly remains co-linear in some cicadas diverged by millions of years [6, 7]. But in the long-lived periodical cicada Magicicada tredecim, the Hodgkinia genome has split into dozens of tiny, gene-sparse circles that sometimes reside in distinct Hodgkinia cells [8]. Previous data suggested that all other Magicicada species harbor complex Hodgkinia populations, but the timing, number of origins, and outcomes of the splitting process were unknown. Here, by sequencing Hodgkinia metagenomes from the remaining six Magicicada and two sister species, we show that each Magicicada species harbors Hodgkinia populations of at least 20 genomic circles. We find little synteny among the 256 Hodgkinia circles analyzed except between the most closely related cicada species. Gene phylogenies show multiple Hodgkinia lineages in the common ancestor of Magicicada and its closest known relatives but that most splitting has occurred within Magicicada and has given rise to highly variable Hodgkinia gene dosages among species. These data show that Hodgkinia genome degradation has proceeded down different paths in different Magicicada species and support a model of genomic degradation that is stochastic in outcome and nonadaptive for the host. These patterns mirror the genomic instability seen in some mitochondria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Origin, acquisition and diversification of heritable bacterial endosymbionts in louse flies and bat flies.

    PubMed

    Duron, Olivier; Schneppat, Ulrich E; Berthomieu, Arnaud; Goodman, Steven M; Droz, Boris; Paupy, Christophe; Nkoghe, Judicaël Obame; Rahola, Nil; Tortosa, Pablo

    2014-04-01

    The γ-proteobacterium Arsenophonus and its close relatives (Arsenophonus and like organisms, ALOs) are emerging as a novel clade of endosymbionts, which are exceptionally widespread in insects. The biology of ALOs is, however, in most cases entirely unknown, and it is unclear how these endosymbionts spread across insect populations. Here, we investigate this aspect through the examination of the presence, the diversity and the evolutionary history of ALOs in 25 related species of blood-feeding flies: tsetse flies (Glossinidae), louse flies (Hippoboscidae) and bat flies (Nycteribiidae and Streblidae). While these endosymbionts were not found in tsetse flies, we identify louse flies and bat flies as harbouring the highest diversity of ALO strains reported to date, including a novel ALO clade, as well as Arsenophonus and the recently described Candidatus Aschnera chinzeii. We further show that the origin of ALO endosymbioses extends deep into the evolutionary past of louse flies and bat flies, and that it probably played a major role in the ecological specialization of their hosts. The evolutionary history of ALOs is notably complex and was shaped by both vertical transmission and horizontal transfers with frequent host turnover and apparent symbiont replacement in host lineages. In particular, ALOs have evolved repeatedly and independently close relationships with diverse groups of louse flies and bat flies, as well as phylogenetically more distant insect families, suggesting that ALO endosymbioses are exceptionally dynamic systems. © 2014 John Wiley & Sons Ltd.

  4. Are sex ratio distorting endosymbionts responsible for mating system variation among dance flies (Diptera: Empidinae)?

    PubMed Central

    Herridge, Elizabeth J.; Ness, Rob W.; Bussière, Luc F.

    2017-01-01

    Maternally inherited bacterial endosymbionts are common in many arthropod species. Some endosymbionts cause female-biased sex ratio distortion in their hosts that can result in profound changes to a host’s mating behaviour and reproductive biology. Dance flies (Diptera: Empidinae) are well known for their unusual reproductive biology, including species with female-specific ornamentation and female-biased lek-like swarming behaviour. The cause of the repeated evolution of female ornaments in these flies remains unknown, but is probably associated with female-biased sex ratios in individual species. In this study we assessed whether dance flies harbour sex ratio distorting endosymbionts that might have driven these mating system evolutionary changes. We measured the incidence and prevalence of infection by three endosymbionts that are known to cause female-biased sex ratios in other insect hosts (Wolbachia, Rickettsia and Spiroplasma) across 20 species of dance flies. We found evidence of widespread infection by all three symbionts and variation in sex-specific prevalence across the taxa sampled. However, there was no relationship between infection prevalence and adult sex ratio measures and no evidence that female ornaments are associated with high prevalences of sex-biased symbiont infections. We conclude that the current distribution of endosymbiont infections is unlikely to explain the diversity in mating systems among dance fly species. PMID:28609446

  5. Vertical Transmission of a Drosophila Endosymbiont Via Cooption of the Yolk Transport and Internalization Machinery

    PubMed Central

    Herren, Jeremy K.; Paredes, Juan C.; Schüpfer, Fanny; Lemaitre, Bruno

    2013-01-01

    ABSTRACT Spiroplasma is a diverse bacterial clade that includes many vertically transmitted insect endosymbionts, including Spiroplasma poulsonii, a natural endosymbiont of Drosophila melanogaster. These bacteria persist in the hemolymph of their adult host and exhibit efficient vertical transmission from mother to offspring. In this study, we analyzed the mechanism that underlies their vertical transmission, and here we provide strong evidence that these bacteria use the yolk uptake machinery to colonize the germ line. We show that Spiroplasma reaches the oocyte by passing through the intercellular space surrounding the ovarian follicle cells and is then endocytosed into oocytes within yolk granules during the vitellogenic stages of oogenesis. Mutations that disrupt yolk uptake by oocytes inhibit vertical Spiroplasma transmission and lead to an accumulation of these bacteria outside the oocyte. Impairment of yolk secretion by the fat body results in Spiroplasma not reaching the oocyte and a severe reduction of vertical transmission. We propose a model in which Spiroplasma first interacts with yolk in the hemolymph to gain access to the oocyte and then uses the yolk receptor, Yolkless, to be endocytosed into the oocyte. Cooption of the yolk uptake machinery is a powerful strategy for endosymbionts to target the germ line and achieve vertical transmission. This mechanism may apply to other endosymbionts and provides a possible explanation for endosymbiont host specificity. PMID:23462112

  6. Genome Evolution in the Primary Endosymbiont of Whiteflies Sheds Light on Their Divergence

    PubMed Central

    Santos-Garcia, Diego; Vargas-Chavez, Carlos; Moya, Andrés; Latorre, Amparo; Silva, Francisco J.

    2015-01-01

    Whiteflies are important agricultural insect pests, whose evolutionary success is related to a long-term association with a bacterial endosymbiont, Candidatus Portiera aleyrodidarum. To completely characterize this endosymbiont clade, we sequenced the genomes of three new Portiera strains covering the two extant whitefly subfamilies. Using endosymbiont and mitochondrial sequences we estimated the divergence dates in the clade and used these values to understand the molecular evolution of the endosymbiont coding sequences. Portiera genomes were maintained almost completely stable in gene order and gene content during more than 125 Myr of evolution, except in the Bemisia tabaci lineage. The ancestor had already lost the genetic information transfer autonomy but was able to participate in the synthesis of all essential amino acids and carotenoids. The time of divergence of the B. tabaci complex was much more recent than previous estimations. The recent divergence of biotypes B (MEAM1 species) and Q (MED species) suggests that they still could be considered strains of the same species. We have estimated the rates of evolution of Portiera genes, synonymous and nonsynonymous, and have detected significant differences among-lineages, with most Portiera lineages evolving very slowly. Although the nonsynonymous rates were much smaller than the synonymous, the genomic dN/dS ratios were similar, discarding selection as the driver of among-lineage variation. We suggest variation in mutation rate and generation time as the responsible factors. In conclusion, the slow evolutionary rates of Portiera may have contributed to its long-term association with whiteflies, avoiding its replacement by a novel and more efficient endosymbiont. PMID:25716826

  7. Low bacterial community diversity in two introduced aphid pests revealed with 16S rRNA amplicon sequencing

    PubMed Central

    Ortiz-Martínez, Sebastían; Silva, Andrea X.; Lavandero, Blas

    2018-01-01

    Bacterial endosymbionts that produce important phenotypic effects on their hosts are common among plant sap-sucking insects. Aphids have become a model system of insect-symbiont interactions. However, endosymbiont research has focused on a few aphid species, making it necessary to make greater efforts to other aphid species through different regions, in order to have a better understanding of the role of endosymbionts in aphids as a group. Aphid endosymbionts have frequently been studied by PCR-based techniques, using species-specific primers, nevertheless this approach may omit other non-target bacteria cohabiting a particular host species. Advances in high-throughput sequencing technologies are complementing our knowledge of microbial communities by allowing us the study of whole microbiome of different organisms. We used a 16S rRNA amplicon sequencing approach to study the microbiome of aphids in order to describe the bacterial community diversity in introduced populations of the cereal aphids, Sitobion avenae and Rhopalosiphum padi in Chile (South America). An absence of secondary endosymbionts and two common secondary endosymbionts of aphids were found in the aphids R. padi and S. avenae, respectively. Of those endosymbionts, Regiella insecticola was the dominant secondary endosymbiont among the aphid samples. In addition, the presence of a previously unidentified bacterial species closely related to a phytopathogenic Pseudomonad species was detected. We discuss these results in relation to the bacterial endosymbiont diversity found in other regions of the native and introduced range of S. avenae and R. padi. A similar endosymbiont diversity has been reported for both aphid species in their native range. However, variation in the secondary endosymbiont infection could be observed among the introduced and native populations of the aphid S. avenae, indicating that aphid-endosymbiont associations can vary across the geographic range of an aphid species. In

  8. Phylogeography of Diaphorina citri (Hemiptera: Liviidae) and its primary endosymbiont, 'Candidatus Carsonella ruddii': an evolutionary approach to host-endosymbiont interaction.

    PubMed

    Wang, Yanjing; Lu, Jinming; Beattie, George Ac; Islam, Mohammad R; Om, Namgay; Dao, Hang T; Van Nguyen, Liem; Zaka, Syed M; Guo, Jun; Tian, Mingyi; Deng, Xiaoling; Tan, Shunyun; Holford, Paul; He, Yurong; Cen, Yijing

    2018-03-25

    In insects, little is known about the co-evolution between their primary endosymbionts and hosts at the intraspecific level. This study examined co-diversification between the notorious agricultural pest Diaphorina citri and its primary endosymbionts (P-endosymbiont), 'Candidatus Carsonella ruddii' at the population level. Maximum likelihood, haplotype network, principal components and Bayesian clustering identified three lineages for D. citri and its P-endosymbiont: a Western clade containing individuals from Pakistan, Bhutan (Phuentsholing), Vietnam (Son La), USA, Myanmar and China (Ruili, Yunnan); a Central clade, with accessions originating from Southwest China, Bhutan (Tsirang) and Bangladesh; and an Eastern clade containing individuals from Southeast Asia, and East and South China. A more diverse genetic structure was apparent in the host mitochondrial DNA than their P-endosymbionts; however, the two sets of data were strongly congruent. This study provides evidence for the co-diversification of D. citri and its P-endosymbiont during the migration from South Asia to East and Southeast Asia. We also suggest that the P-endosymbiont may facilitate investigations into the genealogy and migration history of the host. The biogeography of D. citri and its P-endosymbiont indicated that D. citri colonized and underwent a secondary dispersal from South Asia to East and Southeast Asia. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  9. Mobile genetic element proliferation and gene inactivation impact over the genome structure and metabolic capabilities of Sodalis glossinidius, the secondary endosymbiont of tsetse flies

    PubMed Central

    2010-01-01

    Background Genome reduction is a common evolutionary process in symbiotic and pathogenic bacteria. This process has been extensively characterized in bacterial endosymbionts of insects, where primary mutualistic bacteria represent the most extreme cases of genome reduction consequence of a massive process of gene inactivation and loss during their evolution from free-living ancestors. Sodalis glossinidius, the secondary endosymbiont of tsetse flies, contains one of the few complete genomes of bacteria at the very beginning of the symbiotic association, allowing to evaluate the relative impact of mobile genetic element proliferation and gene inactivation over the structure and functional capabilities of this bacterial endosymbiont during the transition to a host dependent lifestyle. Results A detailed characterization of mobile genetic elements and pseudogenes reveals a massive presence of different types of prophage elements together with five different families of IS elements that have proliferated across the genome of Sodalis glossinidius at different levels. In addition, a detailed survey of intergenic regions allowed the characterization of 1501 pseudogenes, a much higher number than the 972 pseudogenes described in the original annotation. Pseudogene structure reveals a minor impact of mobile genetic element proliferation in the process of gene inactivation, with most of pseudogenes originated by multiple frameshift mutations and premature stop codons. The comparison of metabolic profiles of Sodalis glossinidius and tsetse fly primary endosymbiont Wiglesworthia glossinidia based on their whole gene and pseudogene repertoires revealed a novel case of pathway inactivation, the arginine biosynthesis, in Sodalis glossinidius together with a possible case of metabolic complementation with Wigglesworthia glossinidia for thiamine biosynthesis. Conclusions The complete re-analysis of the genome sequence of Sodalis glossinidius reveals novel insights in the

  10. Patterns and mechanisms in instances of endosymbiont-induced parthenogenesis.

    PubMed

    Ma, W-J; Schwander, T

    2017-05-01

    Female-producing parthenogenesis can be induced by endosymbionts that increase their transmission by manipulating host reproduction. Our literature survey indicates that such endosymbiont-induced parthenogenesis is known or suspected in 124 host species from seven different arthropod taxa, with Wolbachia as the most frequent endosymbiont (in 56-75% of host species). Most host species (81%, 100 out of 124) are characterized by haplo-diploid sex determination, but a strong ascertainment bias likely underestimates the frequency of endosymbiont-induced parthenogenesis in hosts with other sex determination systems. In at least one taxon, hymenopterans, endosymbionts are a significant driver of transitions from sexual to parthenogenetic reproduction, with one-third of lineages being parthenogenetic as a consequence of endosymbiont infection. Endosymbiont-induced parthenogenesis appears to facilitate the maintenance of reproductive polymorphism: at least 50% of species comprise both sexual (uninfected) and parthenogenetic (infected) strains. These strains feature distribution differences similar to the ones documented for lineages with genetically determined parthenogenesis, with endosymbiont-induced parthenogens occurring at higher latitudes than their sexual relatives. Finally, although gamete duplication is often considered as the main mechanism for endosymbiont-induced parthenogenesis, it underlies parthenogenesis in only half of the host species studied thus far. We point out caveats in the methods used to test for endosymbiont-induced parthenogenesis and suggest specific approaches that allow for firm conclusions about the involvement of endosymbionts in the origin of parthenogenesis. © 2017 The Authors. Journal of Evolutionary Biology published by John Wiley & Sons Ltd on behalf of European Society for Evolutionary Biology.

  11. Cospeciation of Psyllids and Their Primary Prokaryotic Endosymbionts

    PubMed Central

    Thao, MyLo L.; Moran, Nancy A.; Abbot, Patrick; Brennan, Eric B.; Burckhardt, Daniel H.; Baumann, Paul

    2000-01-01

    Psyllids are plant sap-feeding insects that harbor prokaryotic endosymbionts in specialized cells within the body cavity. Four-kilobase DNA fragments containing 16S and 23S ribosomal DNA (rDNA) were amplified from the primary (P) endosymbiont of 32 species of psyllids representing three psyllid families and eight subfamilies. In addition, 0.54-kb fragments of the psyllid nuclear gene wingless were also amplified from 26 species. Phylogenetic trees derived from 16S-23S rDNA and from the host wingless gene are very similar, and tests of compatibility of the data sets show no significant conflict between host and endosymbiont phylogenies. This result is consistent with a single infection of a shared psyllid ancestor and subsequent cospeciation of the host and the endosymbiont. In addition, the phylogenies based on DNA sequences generally agreed with psyllid taxonomy based on morphology. The 3′ end of the 16S rDNA of the P endosymbionts differs from that of other members of the domain Bacteria in the lack of a sequence complementary to the mRNA ribosome binding site. The rate of sequence change in the 16S-23S rDNA of the psyllid P endosymbiont was considerably higher than that of other bacteria, including other fast-evolving insect endosymbionts. The lineage consisting of the P endosymbionts of psyllids was given the designation Candidatus Carsonella (gen. nov.) with a single species, Candidatus Carsonella ruddii (sp. nov.). PMID:10877784

  12. Endosymbiont diversity and prevalence in herbivorous spider mite populations in South-Western Europe.

    PubMed

    Zélé, Flore; Santos, Inês; Olivieri, Isabelle; Weill, Mylène; Duron, Olivier; Magalhães, Sara

    2018-04-01

    Bacterial endosymbionts are known as important players of the evolutionary ecology of their hosts. However, their distribution, prevalence and diversity are still largely unexplored. To this aim, we investigated infections by the most common bacterial reproductive manipulators in herbivorous spider mites of South-Western Europe. Across 16 populations belonging to three Tetranychus species, Wolbachia was the most prevalent (ca. 61%), followed by Cardinium (12%-15%), while only few individuals were infected by Rickettsia (0.9%-3%), and none carried Arsenophonus or Spiroplasma. These endosymbionts are here reported for the first time in Tetranychus evansi and Tetranychus ludeni, and showed variable infection frequencies between and within species, with several cases of coinfections. Moreover, Cardinium was more prevalent in Wolbachia-infected individuals, which suggests facilitation between these symbionts. Finally, sequence comparisons revealed no variation of the Wolbachia wsp and Rickettsia gtlA genes, but some diversity of the Cardinium 16S rRNA, both between and within populations of the three mite species. Some of the Cardinium sequences identified belonged to distantly-related clades, and the lack of association between these sequences and spider mite mitotypes suggests repeated host switching of Cardinium. Overall, our results reveal a complex community of symbionts in this system, opening the path for future studies.

  13. Comparative Genomics of a Plant-Parasitic Nematode Endosymbiont Suggest a Role in Nutritional Symbiosis

    PubMed Central

    Brown, Amanda M.V.; Howe, Dana K.; Wasala, Sulochana K.; Peetz, Amy B.; Zasada, Inga A.; Denver, Dee R.

    2015-01-01

    Bacterial mutualists can modulate the biochemical capacity of animals. Highly coevolved nutritional mutualists do this by synthesizing nutrients missing from the host’s diet. Genomics tools have advanced the study of these partnerships. Here we examined the endosymbiont Xiphinematobacter (phylum Verrucomicrobia) from the dagger nematode Xiphinema americanum, a migratory ectoparasite of numerous crops that also vectors nepovirus. Previously, this endosymbiont was identified in the gut, ovaries, and eggs, but its role was unknown. We explored the potential role of this symbiont using fluorescence in situ hybridization, genome sequencing, and comparative functional genomics. We report the first genome of an intracellular Verrucomicrobium and the first exclusively intracellular non-Wolbachia nematode symbiont. Results revealed that Xiphinematobacter had a small 0.916-Mb genome with only 817 predicted proteins, resembling genomes of other mutualist endosymbionts. Compared with free-living relatives, conserved proteins were shorter on average, and there was large-scale loss of regulatory pathways. Despite massive gene loss, more genes were retained for biosynthesis of amino acids predicted to be essential to the host. Gene ontology enrichment tests showed enrichment for biosynthesis of arginine, histidine, and aromatic amino acids, as well as thiamine and coenzyme A, diverging from the profiles of relatives Akkermansia muciniphilia (in the human colon), Methylacidiphilum infernorum, and the mutualist Wolbachia from filarial nematodes. Together, these features and the location in the gut suggest that Xiphinematobacter functions as a nutritional mutualist, supplementing essential nutrients that are depleted in the nematode diet. This pattern points to evolutionary convergence with endosymbionts found in sap-feeding insects. PMID:26362082

  14. Living together: the marine amoeba Thecamoeba hilla Schaeffer, 1926 and its endosymbiont Labyrinthula sp.

    PubMed

    Dyková, Iva; Fiala, Ivan; Dvoráková, Helena; Pecková, Hana

    2008-11-01

    Two protists isolated simultaneously from the same sample of gill tissue of Psetta maxima (L.) were identified as Thecamoeba hilla Schaeffer, 1926 and Labyrinthula sp. A Labyrinthula strain (LTH) derived from a mixed culture of both organisms was well established in a short time, while subcultures of T. hilla continued to be associated with Labyrinthula cells despite all efforts to eliminate them. Ultrastructural examination, repeated several times in the course of long-lasting subculturing of amoebae, revealed that trophozoites of T. hilla host in their cytoplasm multiplying labyrinthulid cells. Comparison of SSU rDNA sequences of the Labyrinthula strain LTH and those from labyrinthulid endosymbionts from T. hilla verified the assumption that the extra- and intra-cellularly multiplying Labyrinthula cells are identical organisms. The association of the marine amoeba T. hilla and Labyrinthula sp. displayed signs of mutualistic symbiosis.

  15. Comparative Genomics of a Plant-Parasitic Nematode Endosymbiont Suggest a Role in Nutritional Symbiosis.

    PubMed

    Brown, Amanda M V; Howe, Dana K; Wasala, Sulochana K; Peetz, Amy B; Zasada, Inga A; Denver, Dee R

    2015-09-10

    Bacterial mutualists can modulate the biochemical capacity of animals. Highly coevolved nutritional mutualists do this by synthesizing nutrients missing from the host's diet. Genomics tools have advanced the study of these partnerships. Here we examined the endosymbiont Xiphinematobacter (phylum Verrucomicrobia) from the dagger nematode Xiphinema americanum, a migratory ectoparasite of numerous crops that also vectors nepovirus. Previously, this endosymbiont was identified in the gut, ovaries, and eggs, but its role was unknown. We explored the potential role of this symbiont using fluorescence in situ hybridization, genome sequencing, and comparative functional genomics. We report the first genome of an intracellular Verrucomicrobium and the first exclusively intracellular non-Wolbachia nematode symbiont. Results revealed that Xiphinematobacter had a small 0.916-Mb genome with only 817 predicted proteins, resembling genomes of other mutualist endosymbionts. Compared with free-living relatives, conserved proteins were shorter on average, and there was large-scale loss of regulatory pathways. Despite massive gene loss, more genes were retained for biosynthesis of amino acids predicted to be essential to the host. Gene ontology enrichment tests showed enrichment for biosynthesis of arginine, histidine, and aromatic amino acids, as well as thiamine and coenzyme A, diverging from the profiles of relatives Akkermansia muciniphilia (in the human colon), Methylacidiphilum infernorum, and the mutualist Wolbachia from filarial nematodes. Together, these features and the location in the gut suggest that Xiphinematobacter functions as a nutritional mutualist, supplementing essential nutrients that are depleted in the nematode diet. This pattern points to evolutionary convergence with endosymbionts found in sap-feeding insects. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. Uncovering the hidden players in Lepidoptera biology: the heritable microbial endosymbionts.

    PubMed

    Duplouy, Anne; Hornett, Emily A

    2018-01-01

    The Lepidoptera is one of the most widespread and recognisable insect orders. Due to their remarkable diversity, economic and ecological importance, moths and butterflies have been studied extensively over the last 200 years. More recently, the relationship between Lepidoptera and their heritable microbial endosymbionts has received increasing attention. Heritable endosymbionts reside within the host's body and are often, but not exclusively, inherited through the female line. Advancements in molecular genetics have revealed that host-associated microbes are both extremely prevalent among arthropods and highly diverse. Furthermore, heritable endosymbionts have been repeatedly demonstrated to play an integral role in many aspects of host biology, particularly host reproduction. Here, we review the major findings of research of heritable microbial endosymbionts of butterflies and moths. We promote the Lepidoptera as important models in the study of reproductive manipulations employed by heritable endosymbionts, with the mechanisms underlying male-killing and feminisation currently being elucidated in moths and butterflies. We also reveal that the vast majority of research undertaken of Lepidopteran endosymbionts concerns Wolbachia . While this highly prevalent bacterium is undoubtedly important, studies should move towards investigating the presence of other, and interacting endosymbionts, and we discuss the merits of examining the microbiome of Lepidoptera to this end. We finally consider the importance of understanding the influence of endosymbionts under global environmental change and when planning conservation management of endangered Lepidoptera species.

  17. Uncovering the hidden players in Lepidoptera biology: the heritable microbial endosymbionts

    PubMed Central

    2018-01-01

    The Lepidoptera is one of the most widespread and recognisable insect orders. Due to their remarkable diversity, economic and ecological importance, moths and butterflies have been studied extensively over the last 200 years. More recently, the relationship between Lepidoptera and their heritable microbial endosymbionts has received increasing attention. Heritable endosymbionts reside within the host’s body and are often, but not exclusively, inherited through the female line. Advancements in molecular genetics have revealed that host-associated microbes are both extremely prevalent among arthropods and highly diverse. Furthermore, heritable endosymbionts have been repeatedly demonstrated to play an integral role in many aspects of host biology, particularly host reproduction. Here, we review the major findings of research of heritable microbial endosymbionts of butterflies and moths. We promote the Lepidoptera as important models in the study of reproductive manipulations employed by heritable endosymbionts, with the mechanisms underlying male-killing and feminisation currently being elucidated in moths and butterflies. We also reveal that the vast majority of research undertaken of Lepidopteran endosymbionts concerns Wolbachia. While this highly prevalent bacterium is undoubtedly important, studies should move towards investigating the presence of other, and interacting endosymbionts, and we discuss the merits of examining the microbiome of Lepidoptera to this end. We finally consider the importance of understanding the influence of endosymbionts under global environmental change and when planning conservation management of endangered Lepidoptera species. PMID:29761037

  18. Antimicrobial peptides keep insect endosymbionts under control.

    PubMed

    Login, Frédéric H; Balmand, Séverine; Vallier, Agnès; Vincent-Monégat, Carole; Vigneron, Aurélien; Weiss-Gayet, Michèle; Rochat, Didier; Heddi, Abdelaziz

    2011-10-21

    Vertically transmitted endosymbionts persist for millions of years in invertebrates and play an important role in animal evolution. However, the functional basis underlying the maintenance of these long-term resident bacteria is unknown. We report that the weevil coleoptericin-A (ColA) antimicrobial peptide selectively targets endosymbionts within the bacteriocytes and regulates their growth through the inhibition of cell division. Silencing the colA gene with RNA interference resulted in a decrease in size of the giant filamentous endosymbionts, which escaped from the bacteriocytes and spread into insect tissues. Although this family of peptides is commonly linked with microbe clearance, this work shows that endosymbiosis benefits from ColA, suggesting that long-term host-symbiont coevolution might have shaped immune effectors for symbiont maintenance.

  19. Genomic context drives transcription of insertion sequences in the bacterial endosymbiont Wolbachia wVulC.

    PubMed

    Cerveau, Nicolas; Gilbert, Clément; Liu, Chao; Garrett, Roger A; Grève, Pierre; Bouchon, Didier; Cordaux, Richard

    2015-06-10

    Transposable elements (TEs) are DNA pieces that are present in almost all the living world at variable genomic density. Due to their mobility and density, TEs are involved in a large array of genomic modifications. In eukaryotes, TE expression has been studied in detail in several species. In prokaryotes, studies of IS expression are generally linked to particular copies that induce a modification of neighboring gene expression. Here we investigated global patterns of IS transcription in the Alphaproteobacterial endosymbiont Wolbachia wVulC, using both RT-PCR and bioinformatic analyses. We detected several transcriptional promoters in all IS groups. Nevertheless, only one of the potentially functional IS groups possesses a promoter located upstream of the transposase gene, that could lead up to the production of a functional protein. We found that the majority of IS groups are expressed whatever their functional status. RT-PCR analyses indicate that the transcription of two IS groups lacking internal promoters upstream of the transposase start codon may be driven by the genomic environment. We confirmed this observation with the transcription analysis of individual copies of one IS group. These results suggest that the genomic environment is important for IS expression and it could explain, at least partly, copy number variability of the various IS groups present in the wVulC genome and, more generally, in bacterial genomes. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Allying with armored snails: the complete genome of gammaproteobacterial endosymbiont.

    PubMed

    Nakagawa, Satoshi; Shimamura, Shigeru; Takaki, Yoshihiro; Suzuki, Yohey; Murakami, Shun-ichi; Watanabe, Tamaki; Fujiyoshi, So; Mino, Sayaka; Sawabe, Tomoo; Maeda, Takahiro; Makita, Hiroko; Nemoto, Suguru; Nishimura, Shin-Ichiro; Watanabe, Hiromi; Watsuji, Tomo-o; Takai, Ken

    2014-01-01

    Deep-sea vents harbor dense populations of various animals that have their specific symbiotic bacteria. Scaly-foot gastropods, which are snails with mineralized scales covering the sides of its foot, have a gammaproteobacterial endosymbiont in their enlarged esophageal glands and diverse epibionts on the surface of their scales. In this study, we report the complete genome sequencing of gammaproteobacterial endosymbiont. The endosymbiont genome displays features consistent with ongoing genome reduction such as large proportions of pseudogenes and insertion elements. The genome encodes functions commonly found in deep-sea vent chemoautotrophs such as sulfur oxidation and carbon fixation. Stable carbon isotope ((13)C)-labeling experiments confirmed the endosymbiont chemoautotrophy. The genome also includes an intact hydrogenase gene cluster that potentially has been horizontally transferred from phylogenetically distant bacteria. Notable findings include the presence and transcription of genes for flagellar assembly, through which proteins are potentially exported from bacterium to the host. Symbionts of snail individuals exhibited extreme genetic homogeneity, showing only two synonymous changes in 19 different genes (13 810 positions in total) determined for 32 individual gastropods collected from a single colony at one time. The extremely low genetic individuality in endosymbionts probably reflects that the stringent symbiont selection by host prevents the random genetic drift in the small population of horizontally transmitted symbiont. This study is the first complete genome analysis of gastropod endosymbiont and offers an opportunity to study genome evolution in a recently evolved endosymbiont.

  1. Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle.

    PubMed

    Kirkness, Ewen F; Haas, Brian J; Sun, Weilin; Braig, Henk R; Perotti, M Alejandra; Clark, John M; Lee, Si Hyeock; Robertson, Hugh M; Kennedy, Ryan C; Elhaik, Eran; Gerlach, Daniel; Kriventseva, Evgenia V; Elsik, Christine G; Graur, Dan; Hill, Catherine A; Veenstra, Jan A; Walenz, Brian; Tubío, José Manuel C; Ribeiro, José M C; Rozas, Julio; Johnston, J Spencer; Reese, Justin T; Popadic, Aleksandar; Tojo, Marta; Raoult, Didier; Reed, David L; Tomoyasu, Yoshinori; Kraus, Emily; Krause, Emily; Mittapalli, Omprakash; Margam, Venu M; Li, Hong-Mei; Meyer, Jason M; Johnson, Reed M; Romero-Severson, Jeanne; Vanzee, Janice Pagel; Alvarez-Ponce, David; Vieira, Filipe G; Aguadé, Montserrat; Guirao-Rico, Sara; Anzola, Juan M; Yoon, Kyong S; Strycharz, Joseph P; Unger, Maria F; Christley, Scott; Lobo, Neil F; Seufferheld, Manfredo J; Wang, Naikuan; Dasch, Gregory A; Struchiner, Claudio J; Madey, Greg; Hannick, Linda I; Bidwell, Shelby; Joardar, Vinita; Caler, Elisabet; Shao, Renfu; Barker, Stephen C; Cameron, Stephen; Bruggner, Robert V; Regier, Allison; Johnson, Justin; Viswanathan, Lakshmi; Utterback, Terry R; Sutton, Granger G; Lawson, Daniel; Waterhouse, Robert M; Venter, J Craig; Strausberg, Robert L; Berenbaum, May R; Collins, Frank H; Zdobnov, Evgeny M; Pittendrigh, Barry R

    2010-07-06

    As an obligatory parasite of humans, the body louse (Pediculus humanus humanus) is an important vector for human diseases, including epidemic typhus, relapsing fever, and trench fever. Here, we present genome sequences of the body louse and its primary bacterial endosymbiont Candidatus Riesia pediculicola. The body louse has the smallest known insect genome, spanning 108 Mb. Despite its status as an obligate parasite, it retains a remarkably complete basal insect repertoire of 10,773 protein-coding genes and 57 microRNAs. Representing hemimetabolous insects, the genome of the body louse thus provides a reference for studies of holometabolous insects. Compared with other insect genomes, the body louse genome contains significantly fewer genes associated with environmental sensing and response, including odorant and gustatory receptors and detoxifying enzymes. The unique architecture of the 18 minicircular mitochondrial chromosomes of the body louse may be linked to the loss of the gene encoding the mitochondrial single-stranded DNA binding protein. The genome of the obligatory louse endosymbiont Candidatus Riesia pediculicola encodes less than 600 genes on a short, linear chromosome and a circular plasmid. The plasmid harbors a unique arrangement of genes required for the synthesis of pantothenate, an essential vitamin deficient in the louse diet. The human body louse, its primary endosymbiont, and the bacterial pathogens that it vectors all possess genomes reduced in size compared with their free-living close relatives. Thus, the body louse genome project offers unique information and tools to use in advancing understanding of coevolution among vectors, symbionts, and pathogens.

  2. Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle

    PubMed Central

    Kirkness, Ewen F.; Haas, Brian J.; Sun, Weilin; Braig, Henk R.; Perotti, M. Alejandra; Clark, John M.; Lee, Si Hyeock; Robertson, Hugh M.; Kennedy, Ryan C.; Elhaik, Eran; Gerlach, Daniel; Kriventseva, Evgenia V.; Elsik, Christine G.; Graur, Dan; Hill, Catherine A.; Veenstra, Jan A.; Walenz, Brian; Tubío, José Manuel C.; Ribeiro, José M. C.; Rozas, Julio; Johnston, J. Spencer; Reese, Justin T.; Popadic, Aleksandar; Tojo, Marta; Raoult, Didier; Reed, David L.; Tomoyasu, Yoshinori; Kraus, Emily; Mittapalli, Omprakash; Margam, Venu M.; Li, Hong-Mei; Meyer, Jason M.; Johnson, Reed M.; Romero-Severson, Jeanne; VanZee, Janice Pagel; Alvarez-Ponce, David; Vieira, Filipe G.; Aguadé, Montserrat; Guirao-Rico, Sara; Anzola, Juan M.; Yoon, Kyong S.; Strycharz, Joseph P.; Unger, Maria F.; Christley, Scott; Lobo, Neil F.; Seufferheld, Manfredo J.; Wang, NaiKuan; Dasch, Gregory A.; Struchiner, Claudio J.; Madey, Greg; Hannick, Linda I.; Bidwell, Shelby; Joardar, Vinita; Caler, Elisabet; Shao, Renfu; Barker, Stephen C.; Cameron, Stephen; Bruggner, Robert V.; Regier, Allison; Johnson, Justin; Viswanathan, Lakshmi; Utterback, Terry R.; Sutton, Granger G.; Lawson, Daniel; Waterhouse, Robert M.; Venter, J. Craig; Strausberg, Robert L.; Collins, Frank H.; Zdobnov, Evgeny M.; Pittendrigh, Barry R.

    2010-01-01

    As an obligatory parasite of humans, the body louse (Pediculus humanus humanus) is an important vector for human diseases, including epidemic typhus, relapsing fever, and trench fever. Here, we present genome sequences of the body louse and its primary bacterial endosymbiont Candidatus Riesia pediculicola. The body louse has the smallest known insect genome, spanning 108 Mb. Despite its status as an obligate parasite, it retains a remarkably complete basal insect repertoire of 10,773 protein-coding genes and 57 microRNAs. Representing hemimetabolous insects, the genome of the body louse thus provides a reference for studies of holometabolous insects. Compared with other insect genomes, the body louse genome contains significantly fewer genes associated with environmental sensing and response, including odorant and gustatory receptors and detoxifying enzymes. The unique architecture of the 18 minicircular mitochondrial chromosomes of the body louse may be linked to the loss of the gene encoding the mitochondrial single-stranded DNA binding protein. The genome of the obligatory louse endosymbiont Candidatus Riesia pediculicola encodes less than 600 genes on a short, linear chromosome and a circular plasmid. The plasmid harbors a unique arrangement of genes required for the synthesis of pantothenate, an essential vitamin deficient in the louse diet. The human body louse, its primary endosymbiont, and the bacterial pathogens that it vectors all possess genomes reduced in size compared with their free-living close relatives. Thus, the body louse genome project offers unique information and tools to use in advancing understanding of coevolution among vectors, symbionts, and pathogens. PMID:20566863

  3. A phylogenetic analysis of armored scale insects (Hemiptera: Diaspididae), based upon nuclear, mitochondrial, and endosymbiont gene sequences.

    PubMed

    Andersen, Jeremy C; Wu, Jin; Gruwell, Matthew E; Gwiazdowski, Rodger; Santana, Sharlene E; Feliciano, Natalie M; Morse, Geoffrey E; Normark, Benjamin B

    2010-12-01

    Armored scale insects (Hemiptera: Diaspididae) are among the most invasive insects in the world. They have unusual genetic systems, including diverse types of paternal genome elimination (PGE) and parthenogenesis. Intimate relationships with their host plants and bacterial endosymbionts make them potentially important subjects for the study of co-evolution. Here, we expand upon recent phylogenetic work (Morse and Normark, 2006) by analyzing armored scale and endosymbiont DNA sequences from 125 species of armored scale insect, represented by 253 samples and eight outgroup species. We used fragments of four different gene regions: the nuclear protein-coding gene Elongation Factor 1α (EF1α), the large ribosomal subunit (28S) rDNA, a mitochondrial region spanning parts of cytochrome oxidase I (COI) and cytochrome oxidase II (COII), and the small ribosomal subunit (16S) rDNA from the primary bacterial endosymbiont Uzinura diaspidicola. Maximum likelihood, and Bayesian analyses were performed producing highly congruent topological results. A comparison of two datasets, one with and one without missing data, found that missing data had little effect on topology. Our results broadly corroborate several major features of the existing classification, although we do not find any of the subfamilies, tribes or subtribes to be monophyletic as currently constituted. Using ancestral state reconstruction we estimate that the ancestral armored scale had the late PGE sex system, and it may as well have been pupillarial, though results differed between reconstruction methods. These results highlight the need for a complete revision of this family, and provide the groundwork for future taxonomic work in armored scale insects. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Distribution of the Primary Endosymbiont (Candidatus Uzinura Diaspidicola) Within Host Insects from the Scale Insect Family Diaspididae

    PubMed Central

    Gruwell, Matthew E.; Flarhety, Meghan; Dittmar, Katharina

    2012-01-01

    It has long been known that armored scale insects harbor endosymbiotic bacteria inside specialized cells called bacteriocytes. Originally, these endosymbionts were thought to be fungal symbionts but they are now known to be bacterial and have been named Uzinura diaspidicola. Bacteriocyte and endosymbiont distribution patterns within host insects were visualized using in situ hybridization via 16S rRNA specific probes. Images of scale insect embryos, eggs and adult scale insects show patterns of localized bacteriocytes in embryos and randomly distributed bacteriocytes in adults. The symbiont pocket was not found in the armored scale insect eggs that were tested. The pattern of dispersed bacteriocytes in adult scale insects suggest that Uzinura and Blattabacteria may share some homologous traits that coincide with similar life style requirements, such as dispersal in fat bodies and uric acid recycling. PMID:26467959

  5. Identification of Methanotrophic Lipid Biomarkers in Cold-Seep Mussel Gills: Chemical and Isotopic Analysis

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda L.; Summons, Roger E.; Dowling, Lesley M.; Zahiralis, Karen D.

    1995-01-01

    A lipid analysis of the tissues of a cold-seep mytilid mussel collected from the Louisiana slope of the Gulf of Mexico was used in conjunction with a compound-specific isotope analysis to demonstrate the presence of methanotrophic symbionts in the mussel gill tissue and to demonstrate the host's dependence on bacterially synthesized metabolic intermediates. The gill tissue contained large amounts of group-specific methanotrophic biomarkers, bacteriohopanoids, 4-methylsterols, lipopolysaccharide-associated hydroxy fatty acids, and type I-specific 16:1 fatty acid isomers with bond positions at delta-8, delta-10, and delta-ll. Only small amounts of these compounds were detected in the mantle or other tissues of the host animal. A variety of cholesterol and 4-methylsterol isomers were identified as both free and steryl esters, and the sterol double bond positions suggested that the major bacterially derived gill sterol(11.0% 4(alpha)-methyl-cholesta-8(14), 24-dien-3(beta)-ol) was converted to host cholesterol (64.2% of the gill sterol was cholest-5-en-3(beta)-ol). The stable carbon isotope values for gill and mantle preparations were, respectively, -59.0 and -60.4 per thousand for total tissue, -60.6 and -62.4 per thousand for total lipids, -60.2 and -63.9 per thousand for phospholipid fatty acids, and -71.8 and -73.8 per thousand for sterols. These stable carbon isotope values revealed that the relative fractionation pattern was similar to the patterns obtained in pure culture experiments with methanotrophic bacteria further supporting the conversion of the bacterial methyl-sterol pool.

  6. Cospeciation in the triplex symbiosis of termite gut protists (Pseudotrichonympha spp.), their hosts, and their bacterial endosymbionts.

    PubMed

    Noda, S; Kitade, O; Inoue, T; Kawai, M; Kanuka, M; Hiroshima, K; Hongoh, Y; Constantino, R; Uys, V; Zhong, J; Kudo, T; Ohkuma, M

    2007-03-01

    A number of cophylogenetic relationships between two organisms namely a host and a symbiont or parasite have been studied to date; however, organismal interactions in nature usually involve multiple members. Here, we investigated the cospeciation of a triplex symbiotic system comprising a hierarchy of three organisms -- termites of the family Rhinotermitidae, cellulolytic protists of the genus Pseudotrichonympha in the guts of these termites, and intracellular bacterial symbionts of the protists. The molecular phylogeny was inferred based on two mitochondrial genes for the termites and nuclear small-subunit rRNA genes for the protists and their endosymbionts, and these were compared. Although intestinal microorganisms are generally considered to have looser associations with the host than intracellular symbionts, the Pseudotrichonympha protists showed almost complete codivergence with the host termites, probably due to strict transmissions by proctodeal trophallaxis or coprophagy based on the social behaviour of the termites. Except for one case, the endosymbiotic bacteria of the protists formed a monophyletic lineage in the order Bacteroidales, and the branching pattern was almost identical to those of the protists and the termites. However, some non-codivergent evolutionary events were evident. The members of this triplex symbiotic system appear to have cospeciated during their evolution with minor exceptions; the evolutionary relationships were probably established by termite sociality and the complex microbial community in the gut.

  7. Mutation exposed: a neutral explanation for extreme base composition of an endosymbiont genome.

    PubMed

    Wernegreen, Jennifer J; Funk, Daniel J

    2004-12-01

    The influence of neutral mutation pressure versus selection on base composition evolution is a subject of considerable controversy. Yet the present study represents the first explicit population genetic analysis of this issue in prokaryotes, the group in which base composition variation is most dramatic. Here, we explore the impact of mutation and selection on the dynamics of synonymous changes in Buchnera aphidicola, the AT-rich bacterial endosymbiont of aphids. Specifically, we evaluated three forms of evidence. (i) We compared the frequencies of directional base changes (AT-->GC vs. GC-->AT) at synonymous sites within and between Buchnera species, to test for selective preference versus effective neutrality of these mutational categories. Reconstructed mutational changes across a robust intraspecific phylogeny showed a nearly 1:1 AT-->GC:GC-->AT ratio. Likewise, stationarity of base composition among Buchnera species indicated equal rates of AT-->GC and GC-->AT substitutions. The similarity of these patterns within and between species supported the neutral model. (ii) We observed an equivalence of relative per-site AT mutation rate and current AT content at synonymous sites, indicating that base composition is at mutational equilibrium. (iii) We demonstrated statistically greater equality in the frequency of mutational categories in Buchnera than in parallel mammalian studies that documented selection on synonymous sites. Our results indicate that effectively neutral mutational pressure, rather than selection, represents the major force driving base composition evolution in Buchnera. Thus they further corroborate recent evidence for the critical role of reduced N(e) in the molecular evolution of bacterial endosymbionts.

  8. Maintenance of algal endosymbionts in Paramecium bursaria: a simple model based on population dynamics.

    PubMed

    Iwai, Sosuke; Fujiwara, Kenji; Tamura, Takuro

    2016-09-01

    Algal endosymbiosis is widely distributed in eukaryotes including many protists and metazoans, and plays important roles in aquatic ecosystems, combining phagotrophy and phototrophy. To maintain a stable symbiotic relationship, endosymbiont population size in the host must be properly regulated and maintained at a constant level; however, the mechanisms underlying the maintenance of algal endosymbionts are still largely unknown. Here we investigate the population dynamics of the unicellular ciliate Paramecium bursaria and its Chlorella-like algal endosymbiont under various experimental conditions in a simple culture system. Our results suggest that endosymbiont population size in P. bursaria was not regulated by active processes such as cell division coupling between the two organisms, or partitioning of the endosymbionts at host cell division. Regardless, endosymbiont population size was eventually adjusted to a nearly constant level once cells were grown with light and nutrients. To explain this apparent regulation of population size, we propose a simple mechanism based on the different growth properties (specifically the nutrient requirements) of the two organisms, and based from this develop a mathematical model to describe the population dynamics of host and endosymbiont. The proposed mechanism and model may provide a basis for understanding the maintenance of algal endosymbionts. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Co-evolution between an Endosymbiont and Its Nematode Host: Wolbachia Asymmetric Posterior Localization and AP Polarity Establishment

    PubMed Central

    Landmann, Frederic; Foster, Jeremy M.; Michalski, Michelle L.; Slatko, Barton E.; Sullivan, William

    2014-01-01

    While bacterial symbionts influence a variety of host cellular responses throughout development, there are no documented instances in which symbionts influence early embryogenesis. Here we demonstrate that Wolbachia, an obligate endosymbiont of the parasitic filarial nematodes, is required for proper anterior-posterior polarity establishment in the filarial nematode B. malayi. Characterization of pre- and post-fertilization events in B. malayi reveals that, unlike C. elegans, the centrosomes are maternally derived and produce a cortical-based microtubule organizing center prior to fertilization. We establish that Wolbachia rely on these cortical microtubules and dynein to concentrate at the posterior cortex. Wolbachia also rely on PAR-1 and PAR-3 polarity cues for normal concentration at the posterior cortex. Finally, we demonstrate that Wolbachia depletion results in distinct anterior-posterior polarity defects. These results provide a striking example of endosymbiont-host co-evolution operating on the core initial developmental event of axis determination. PMID:25165813

  10. Antibiotic treatment leads to the elimination of Wolbachia endosymbionts and sterility in the diplodiploid collembolan Folsomia candida

    PubMed Central

    Pike, Nathan; Kingcombe, Rachel

    2009-01-01

    Background Wolbachia is an extremely widespread bacterial endosymbiont of arthropods and nematodes that causes a variety of reproductive peculiarities. Parthenogenesis is one such peculiarity but it has been hypothesised that this phenomenon may be functionally restricted to organisms that employ haplodiploid sex determination. Using two antibiotics, tetracycline and rifampicin, we attempted to eliminate Wolbachia from the diplodiploid host Folsomia candida, a species of springtail which is a widely used study organism. Results Molecular assays confirmed that elimination of Wolbachia was successfully achieved through continuous exposure of populations (over two generations and several weeks) to rifampicin administered as 2.7% dry weight of their yeast food source. The consequence of this elimination was total sterility of all individuals, despite the continuation of normal egg production. Conclusion Microbial endosymbionts play an obligatory role in the reproduction of their diplodiploid host, most likely one in which the parthenogenetic process is facilitated by Wolbachia. A hitherto unknown level of host-parasite interdependence is thus recorded. PMID:19698188

  11. Bacterial diversity of bacteriomes and organs of reproductive, digestive and excretory systems in two cicada species (Hemiptera: Cicadidae)

    PubMed Central

    Zheng, Zhou; Wang, Dandan; He, Hong

    2017-01-01

    Cicadas form intimate symbioses with bacteria to obtain nutrients that are scarce in the xylem fluid they feed on. The obligate symbionts in cicadas are purportedly confined to specialized bacteriomes, but knowledge of bacterial communities associated with cicadas is limited. Bacterial communities in the bacteriomes and organs of reproductive, digestive and excretory systems of two cicada species (Platypleura kaempferi and Meimuna mongolica) were investigated using different methods, and the bacterial diversity and distribution patterns of dominant bacteria in different tissues were compared. Within each species, the bacterial communities of testes are significantly different from those of bacteriomes and ovaries. The dominant endosymbiont Candidatus Sulcia muelleri is found not only in the bacteriomes and reproductive organs, but also in the “filter chamber + conical segment” of both species. The transmission mode of this endosymbiont in the alimentary canal and its effect on physiological processes merits further study. A novel bacterium of Rhizobiales, showing ~80% similarity to Candidatus Hodgkinia cicadicola, is dominant in the bacteriomes and ovaries of P. kaempferi. Given that the genome of H. cicadicola exhibits rapid sequence evolution, it is possible that this novel bacterium is a related endosymbiont with beneficial trophic functions similar to that of H. cicadicola in some other cicadas. Failure to detect H. cicadicola in M. mongolica suggests that it has been subsequently replaced by another bacterium, a yeast or gut microbiota which compensates for the loss of H. cicadicola. The distribution of this novel Rhizobiales species in other cicadas and its identification require further investigation to help establish the definition of the bacterial genus Candidatus Hodgkinia and to provide more information on sequence divergence of related endosymbionts of cicadas. Our results highlight the complex bacterial communities of cicadas, and are informative

  12. Bacterial diversity of bacteriomes and organs of reproductive, digestive and excretory systems in two cicada species (Hemiptera: Cicadidae).

    PubMed

    Zheng, Zhou; Wang, Dandan; He, Hong; Wei, Cong

    2017-01-01

    Cicadas form intimate symbioses with bacteria to obtain nutrients that are scarce in the xylem fluid they feed on. The obligate symbionts in cicadas are purportedly confined to specialized bacteriomes, but knowledge of bacterial communities associated with cicadas is limited. Bacterial communities in the bacteriomes and organs of reproductive, digestive and excretory systems of two cicada species (Platypleura kaempferi and Meimuna mongolica) were investigated using different methods, and the bacterial diversity and distribution patterns of dominant bacteria in different tissues were compared. Within each species, the bacterial communities of testes are significantly different from those of bacteriomes and ovaries. The dominant endosymbiont Candidatus Sulcia muelleri is found not only in the bacteriomes and reproductive organs, but also in the "filter chamber + conical segment" of both species. The transmission mode of this endosymbiont in the alimentary canal and its effect on physiological processes merits further study. A novel bacterium of Rhizobiales, showing ~80% similarity to Candidatus Hodgkinia cicadicola, is dominant in the bacteriomes and ovaries of P. kaempferi. Given that the genome of H. cicadicola exhibits rapid sequence evolution, it is possible that this novel bacterium is a related endosymbiont with beneficial trophic functions similar to that of H. cicadicola in some other cicadas. Failure to detect H. cicadicola in M. mongolica suggests that it has been subsequently replaced by another bacterium, a yeast or gut microbiota which compensates for the loss of H. cicadicola. The distribution of this novel Rhizobiales species in other cicadas and its identification require further investigation to help establish the definition of the bacterial genus Candidatus Hodgkinia and to provide more information on sequence divergence of related endosymbionts of cicadas. Our results highlight the complex bacterial communities of cicadas, and are informative for

  13. Genetic diversity of Diaphorina citri and its endosymbionts across east and south-east Asia.

    PubMed

    Wang, Yanjing; Xu, Changbao; Tian, Mingyi; Deng, Xiaoling; Cen, Yijing; He, Yurong

    2017-10-01

    Diaphorina citri is the vector of 'Candidatus Liberibacter asiaticus', the most widespread pathogen associated huanglongbing, the most serious disease of citrus. To enhance our understanding of the distribution and origin of the psyllid, we investigated the genetic diversity and population structures of 24 populations in Asia and one from Florida based on the mtCOI gene. Simultaneously, genetic diversity and population structures of the primary endosymbiont (P-endosymbiont) 'Candidatus Carsonella ruddii' and secondary endosymbiont (S-endosymbiont) 'Candidatus Profftella armatura' of D. citri were determined with the housekeeping genes. AMOVA analysis indicated that populations of D. citri and its endosymbionts in east and south-east Asia were genetically distinct from populations in Pakistan and Florida. Furthermore, P-endosymbiont populations displayed a strong geographical structure across east and south-east Asia, while low genetic diversity indicated the absence of genetic structure among the populations of D. citri and its S-endosymbiont across these regions. The 'Ca. C. ruddii' is more diverse and structured than the D. citri and the 'Ca. P. armatura' across east and south-east Asia. Multiple introductions of the psyllid have occurred in China. Management application for controlling the pest is proposed based on the genetic information of D. citri and its endosymbionts. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Endosymbiont-based immunity in Drosophila melanogaster against parasitic nematode infection.

    PubMed

    Yadav, Shruti; Frazer, Joanna; Banga, Ashima; Pruitt, Katherine; Harsh, Sneh; Jaenike, John; Eleftherianos, Ioannis

    2018-01-01

    Associations between endosymbiotic bacteria and their hosts represent a complex ecosystem within organisms ranging from humans to protozoa. Drosophila species are known to naturally harbor Wolbachia and Spiroplasma endosymbionts, which play a protective role against certain microbial infections. Here, we investigated whether the presence or absence of endosymbionts affects the immune response of Drosophila melanogaster larvae to infection by Steinernema carpocapsae nematodes carrying or lacking their mutualistic Gram-negative bacteria Xenorhabdus nematophila (symbiotic or axenic nematodes, respectively). We find that the presence of Wolbachia alone or together with Spiroplasma promotes the survival of larvae in response to infection with S. carpocapsae symbiotic nematodes, but not against axenic nematodes. We also find that Wolbachia numbers are reduced in Spiroplasma-free larvae infected with axenic compared to symbiotic nematodes, and they are also reduced in Spiroplasma-containing compared to Spiroplasma-free larvae infected with axenic nematodes. We further show that S. carpocapsae axenic nematode infection induces the Toll pathway in the absence of Wolbachia, and that symbiotic nematode infection leads to increased phenoloxidase activity in D. melanogaster larvae devoid of endosymbionts. Finally, infection with either type of nematode alters the metabolic status and the fat body lipid droplet size in D. melanogaster larvae containing only Wolbachia or both endosymbionts. Our results suggest an interaction between Wolbachia endosymbionts with the immune response of D. melanogaster against infection with the entomopathogenic nematodes S. carpocapsae. Results from this study indicate a complex interplay between insect hosts, endosymbiotic microbes and pathogenic organisms.

  15. Male-killing endosymbionts: influence of environmental conditions on persistence of host metapopulation

    PubMed Central

    2008-01-01

    Background Male killing endosymbionts manipulate their arthropod host reproduction by only allowing female embryos to develop into infected females and killing all male offspring. Because of the reproductive manipulation, we expect them to have an effect on the evolution of host dispersal rates. In addition, male killing endosymbionts are expected to approach fixation when fitness of infected individuals is larger than that of uninfected ones and when transmission from mother to offspring is nearly perfect. They then vanish as the host population crashes. High observed infection rates and among-population variation in natural systems can consequently not be explained if defense mechanisms are absent and when transmission efficiency is perfect. Results By simulating the host-endosymbiont dynamics in an individual-based metapopulation model we show that male killing endosymbionts increase host dispersal rates. No fitness compensations were built into the model for male killing endosymbionts, but they spread as a group beneficial trait. Host and parasite populations face extinction under panmictic conditions, i.e. conditions that favor the evolution of high dispersal in hosts. On the other hand, deterministic 'curing' (only parasite goes extinct) can occur under conditions of low dispersal, e.g. under low environmental stochasticity and high dispersal mortality. However, high and stable infection rates can be maintained in metapopulations over a considerable spectrum of conditions favoring intermediate levels of dispersal in the host. Conclusion Male killing endosymbionts without explicit fitness compensation spread as a group selected trait into a metapopulation. Emergent feedbacks through increased evolutionary stable dispersal rates provide an alternative explanation for both, the high male-killing endosymbiont infection rates and the high among-population variation in local infection rates reported for some natural systems. PMID:18764948

  16. Endosymbiont-based immunity in Drosophila melanogaster against parasitic nematode infection

    PubMed Central

    Yadav, Shruti; Frazer, Joanna; Banga, Ashima; Pruitt, Katherine; Harsh, Sneh; Jaenike, John

    2018-01-01

    Associations between endosymbiotic bacteria and their hosts represent a complex ecosystem within organisms ranging from humans to protozoa. Drosophila species are known to naturally harbor Wolbachia and Spiroplasma endosymbionts, which play a protective role against certain microbial infections. Here, we investigated whether the presence or absence of endosymbionts affects the immune response of Drosophila melanogaster larvae to infection by Steinernema carpocapsae nematodes carrying or lacking their mutualistic Gram-negative bacteria Xenorhabdus nematophila (symbiotic or axenic nematodes, respectively). We find that the presence of Wolbachia alone or together with Spiroplasma promotes the survival of larvae in response to infection with S. carpocapsae symbiotic nematodes, but not against axenic nematodes. We also find that Wolbachia numbers are reduced in Spiroplasma-free larvae infected with axenic compared to symbiotic nematodes, and they are also reduced in Spiroplasma-containing compared to Spiroplasma-free larvae infected with axenic nematodes. We further show that S. carpocapsae axenic nematode infection induces the Toll pathway in the absence of Wolbachia, and that symbiotic nematode infection leads to increased phenoloxidase activity in D. melanogaster larvae devoid of endosymbionts. Finally, infection with either type of nematode alters the metabolic status and the fat body lipid droplet size in D. melanogaster larvae containing only Wolbachia or both endosymbionts. Our results suggest an interaction between Wolbachia endosymbionts with the immune response of D. melanogaster against infection with the entomopathogenic nematodes S. carpocapsae. Results from this study indicate a complex interplay between insect hosts, endosymbiotic microbes and pathogenic organisms. PMID:29466376

  17. Armored scale insect endosymbiont diversity at the species level: genealogical patterns of Uzinura diasipipdicola in the Chionaspis pinifoliae-Chionaspis heterophyllae species complex (Hemiptera: Coccoidea: Diaspididae).

    PubMed

    Andersen, J C; Gwiazdowski, R A; Gdanetz, K; Gruwell, M E

    2015-02-01

    Armored scale insects and their primary bacterial endosymbionts show nearly identical patterns of co-diversification when viewed at the family level, though the persistence of these patterns at the species level has not been explored in this group. Therefore we investigated genealogical patterns of co-diversification near the species level between the primary endosymbiont Uzinura diaspidicola and its hosts in the Chionaspis pinifoliae-Chionaspis heterophyllae species complex. To do this we generated DNA sequence data from three endosymbiont loci (rspB, GroEL, and 16S) and analyzed each locus independently using statistical parsimony network analyses and as a concatenated dataset using Bayesian phylogenetic reconstructions. We found that for two endosymbiont loci, 16S and GroEL, sequences from U. diaspidicola were broadly associated with host species designations, while for rspB this pattern was less clear as C. heterophyllae (species S1) shared haplotypes with several other Chionaspis species. We then compared the topological congruence of the phylogenetic reconstructions generated from a concatenated dataset of endosymbiont loci (including all three loci, above) to that from a concatenated dataset of armored scale hosts, using published data from two nuclear loci (28S and EF1α) and one mitochondrial locus (COI-COII) from the armored scale hosts. We calculated whether the two topologies were congruent using the Shimodaira-Hasegawa test. We found no significant differences (P = 0.4892) between the topologies suggesting that, at least at this level of resolution, co-diversification of U. diaspidicola with its armored scale hosts also occurs near the species level. This is the first such study of co-speciation at the species level between U. diaspidicola and a group of armored scale insects.

  18. Analysis of Inter-Individual Bacterial Variation in Gut of Cicada Meimuna mongolica (Hemiptera: Cicadidae)

    PubMed Central

    Zhou, Wenting; Nan, Xiaoning; Zheng, Zhou; Wei, Cong; He, Hong

    2015-01-01

    Intestinal bacterial community plays a crucial role in the nutrition, development, survival, and reproduction of insects. When compared with other insects with piercing-sucking mouthparts, the habitats of cicada nymphs and adults are totally different. However, little is known about the differences in the gut bacterial communities in the nymphs and adults within any cicada species. The diversity of bacteria in the gut of nymphs and adults of both genders of Meimuna mongolica (Distant) was studied using the denaturing gradient gel electrophoresis (DGGE) method. Few inter-individual variations among gut microbiota were observed, suggesting that M. mongolica typically harbors a limited and consistent suite of bacterial species. Bacteria in the genera Pseudomonas and Enterobacter were the predominant components of the gut microflora of M. mongolica at all life stages. Bacteria of Pantoea, Streptococcus, and Uruburuella were also widespread in the cicada samples but at relatively lower concentrations. The relative stability and similarity of the PCR-DGGE patterns indicate that all individuals of this cicada species harbor a characteristic bacterial community which is independent from developmental stages and genders. Related endosymbionts that could be harbored in bacteromes of cicadas were not detected in any gut samples, which could be related to the cicada species and the distribution of these endosymbionts in the cicada cavity, or due to some of the possible limitations of PCR-DGGE community profiling. It is worthwhile to further address if related cicada endosymbiont clades distribute in the alimentary canals and other internal organs through diagnostic PCR using group-specific primer sets. PMID:26411784

  19. Distribution of bacteria and associated minerals in the gill chamber of the vent shrimp Rimicaris exoculata and related biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Zbinden, M.; Le Bris, N.; Compere, P.; Gaill, F.

    2004-12-01

    The shrimp Rimicaris exoculata dominates the megafauna of some mid-Atlantic Ridge hydrothermal vent fields. This species harbors a rich bacterial epibiosis inside its gill chamber. At the Rainbow vent field, the epibionts are associated with iron oxide deposits. Investigation of both bacteria and minerals by scanning electron microscopy (SEM) and X-ray microanalysis (EDX) shows the occurrence of three distinct compartments in the gill chamber: (1) the lower pre-branchial chamber, housing bacteria, but devoid of minerals, (2) the "true" branchial chamber that contains the gills and remains free of both bacteria and minerals, and (3) the upper pre-branchial chamber housing the main ectosymbiotic bacterial community and associated iron oxides. According to our chemical and temperature data, abiotic iron oxidation appears to be kinetically inhibited in the environment of the shrimps and this would explain the lack of iron oxide deposits in the first two areas. We propose that, in the third area, iron oxidation is microbially promoted. The discrepancy between the spatial distribution of bacteria and minerals suggests that different bacterial metabolisms are involved in the two compartments. A possible explanation lies in the modification of physico-chemical conditions downstream of the gills, that would reduce the oxygen content and favor the development of bacterial iron-oxidizers in this Fe II-rich environment. A potential role of such iron-oxidizing symbionts in the shrimp diet is suggested. This would be unusual for hydrothermal ecosystems, where most previously described symbioses rely on sulphide or methane as an energy source.

  20. Simultaneous Evaluation of Life Cycle Dynamics between a Host Paramecium and the Endosymbionts of Paramecium bursaria Using Capillary Flow Cytometry.

    PubMed

    Takahashi, Toshiyuki

    2016-08-17

    Endosymbioses are driving forces underlying cell evolution. The endosymbiosis exhibited by Paramecium bursaria is an excellent model with which to study symbiosis. A single-cell microscopic analysis of P. bursaria reveals that endosymbiont numbers double when the host is in the division phase. Consequently, endosymbionts must arrange their cell cycle schedule if the culture-condition-dependent change delays the generation time of P. bursaria. However, it remains poorly understood whether endosymbionts keep pace with the culture-condition-dependent behaviors of P. bursaria, or not. Using microscopy and flow cytometry, this study investigated the life cycle behaviors occurring between endosymbionts and the host. To establish a connection between the host cell cycle and endosymbionts comprehensively, multivariate analysis was applied. The multivariate analysis revealed important information related to regulation between the host and endosymbionts. Results show that dividing endosymbionts underwent transition smoothly from the division phase to interphase, when the host was in the logarithmic phase. In contrast, endosymbiont division stagnated when the host was in the stationary phase. This paper explains that endosymbionts fine-tune their cell cycle pace with their host and that a synchronous life cycle between the endosymbionts and the host is guaranteed in the symbiosis of P. bursaria.

  1. Simultaneous Evaluation of Life Cycle Dynamics between a Host Paramecium and the Endosymbionts of Paramecium bursaria Using Capillary Flow Cytometry

    PubMed Central

    Takahashi, Toshiyuki

    2016-01-01

    Endosymbioses are driving forces underlying cell evolution. The endosymbiosis exhibited by Paramecium bursaria is an excellent model with which to study symbiosis. A single-cell microscopic analysis of P. bursaria reveals that endosymbiont numbers double when the host is in the division phase. Consequently, endosymbionts must arrange their cell cycle schedule if the culture-condition-dependent change delays the generation time of P. bursaria. However, it remains poorly understood whether endosymbionts keep pace with the culture-condition-dependent behaviors of P. bursaria, or not. Using microscopy and flow cytometry, this study investigated the life cycle behaviors occurring between endosymbionts and the host. To establish a connection between the host cell cycle and endosymbionts comprehensively, multivariate analysis was applied. The multivariate analysis revealed important information related to regulation between the host and endosymbionts. Results show that dividing endosymbionts underwent transition smoothly from the division phase to interphase, when the host was in the logarithmic phase. In contrast, endosymbiont division stagnated when the host was in the stationary phase. This paper explains that endosymbionts fine-tune their cell cycle pace with their host and that a synchronous life cycle between the endosymbionts and the host is guaranteed in the symbiosis of P. bursaria. PMID:27531180

  2. Microbial proliferation on gill structures of juvenile European lobster ( Homarus gammarus) during a moult cycle

    NASA Astrophysics Data System (ADS)

    Middlemiss, Karen L.; Urbina, Mauricio A.; Wilson, Rod W.

    2015-12-01

    The morphology of gill-cleaning structures is not well described in European lobster ( Homarus gammarus). Furthermore, the magnitude and time scale of microbial proliferation on gill structures is unknown to date. Scanning electron microscopy was used to investigate development of setae in zoea, megalopa and juvenile stages (I-V). Microbes were classified and quantified on gill structures throughout a moult cycle from megalopa (stage IV) to juvenile (stage V). Epipodial serrulate setae, consisting of a naked proximal setal shaft with the distal portion possessing scale-like outgrowths (setules), occur only after zoea stage III. After moulting to megalopa (stage IV), gill structures were completely clean and no microbes were visible on days 1 or 5 postmoult. Microbial proliferation was first evident on day 10 postmoult, with a significant 16-fold increase from day 10 to 15. Rod-shaped bacteria were initially predominant (by day 10); however, by day 15 the microbial community was dominated by cocci-shaped bacteria. This research provides new insights into the morphology of gill-grooming structures, the timing of their development, and the magnitude, timescale and characteristics of gill microbial proliferation during a moult cycle. To some degree, the exponential growth of epibionts on gills found during a moult cycle will likely impair respiratory (gas exchange) and ion regulatory function, yet further research is needed to evaluate the physiological effects of the exponential bacterial proliferation documented here.

  3. Analysis of Inter-Individual Bacterial Variation in Gut of Cicada Meimuna mongolica (Hemiptera: Cicadidae).

    PubMed

    Zhou, Wenting; Nan, Xiaoning; Zheng, Zhou; Wei, Cong; He, Hong

    2015-01-01

    Intestinal bacterial community plays a crucial role in the nutrition, development, survival, and reproduction of insects. When compared with other insects with piercing-sucking mouthparts, the habitats of cicada nymphs and adults are totally different. However, little is known about the differences in the gut bacterial communities in the nymphs and adults within any cicada species. The diversity of bacteria in the gut of nymphs and adults of both genders of Meimuna mongolica (Distant) was studied using the denaturing gradient gel electrophoresis (DGGE) method. Few inter-individual variations among gut microbiota were observed, suggesting that M. mongolica typically harbors a limited and consistent suite of bacterial species. Bacteria in the genera Pseudomonas and Enterobacter were the predominant components of the gut microflora of M. mongolica at all life stages. Bacteria of Pantoea, Streptococcus, and Uruburuella were also widespread in the cicada samples but at relatively lower concentrations. The relative stability and similarity of the PCR-DGGE patterns indicate that all individuals of this cicada species harbor a characteristic bacterial community which is independent from developmental stages and genders. Related endosymbionts that could be harbored in bacteromes of cicadas were not detected in any gut samples, which could be related to the cicada species and the distribution of these endosymbionts in the cicada cavity, or due to some of the possible limitations of PCR-DGGE community profiling. It is worthwhile to further address if related cicada endosymbiont clades distribute in the alimentary canals and other internal organs through diagnostic PCR using group-specific primer sets. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  4. Hamiltonella defensa, genome evolution of protective bacterial endosymbiont from pathogenic ancestors.

    PubMed

    Degnan, Patrick H; Yu, Yeisoo; Sisneros, Nicholas; Wing, Rod A; Moran, Nancy A

    2009-06-02

    Eukaryotes engage in a multitude of beneficial and deleterious interactions with bacteria. Hamiltonella defensa, an endosymbiont of aphids and other sap-feeding insects, protects its aphid host from attack by parasitoid wasps. Thus H. defensa is only conditionally beneficial to hosts, unlike ancient nutritional symbionts, such as Buchnera, that are obligate. Similar to pathogenic bacteria, H. defensa is able to invade naive hosts and circumvent host immune responses. We have sequenced the genome of H. defensa to identify possible mechanisms that underlie its persistence in healthy aphids and protection from parasitoids. The 2.1-Mb genome has undergone significant reduction in size relative to its closest free-living relatives, which include Yersinia and Serratia species (4.6-5.4 Mb). Auxotrophic for 8 of the 10 essential amino acids, H. defensa is reliant upon the essential amino acids produced by Buchnera. Despite these losses, the H. defensa genome retains more genes and pathways for a variety of cell structures and processes than do obligate symbionts, such as Buchnera. Furthermore, putative pathogenicity loci, encoding type-3 secretion systems, and toxin homologs, which are absent in obligate symbionts, are abundant in the H. defensa genome, as are regulatory genes that likely control the timing of their expression. The genome is also littered with mobile DNA, including phage-derived genes, plasmids, and insertion-sequence elements, highlighting its dynamic nature and the continued role horizontal gene transfer plays in shaping it.

  5. The price of protection: a defensive endosymbiont impairs nymph growth in the bird cherry-oat aphid, Rhopalosiphum padi.

    PubMed

    Leybourne, Daniel J; Bos, Jorunn I B; Valentine, Tracy A; Karley, Alison J

    2018-05-24

    Bacterial endosymbionts have enabled aphids to adapt to a range of stressors, but their effects in many aphid species remain to be established. The bird cherry-oat aphid, Rhopalosiphum padi (Linnaeus), is an important pest of cereals worldwide and has been reported to form symbiotic associations with Serratia symbiotica and Sitobion miscanthi L-type Symbiont endobacteria, although the resulting aphid phenotype has not been described. This study presents the first report of R. padi infection with the facultative bacterial endosymbiont Hamiltonella defensa. Individuals of R. padi were sampled from populations in Eastern Scotland, UK, and shown to represent seven R. padi genotypes based on the size of polymorphic microsatellite markers; two of these genotypes harboured H. defensa. In parasitism assays, survival of H. defensa-infected nymphs following attack by the parasitoid wasp Aphidius colemani (Viereck) was five-fold higher than for uninfected nymphs. Aphid genotype was a major determinant of aphid performance on two Hordeum species, a modern cultivar of barley H. vulgaris and a wild relative H. spontaneum, although aphids infected with H. defensa showed 16% lower nymph mass gain on the partially-resistant wild relative compared with uninfected individuals. These findings suggest that deploying resistance traits in barley will favour the fittest R. padi genotypes, but symbiont-infected individuals will be favoured when parasitoids are abundant, although these aphids will not achieve optimal performance on a poor quality host plant. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Isotopic fingerprints of bacterial chemosymbiosis in the bivalve Loripes lacteus

    NASA Astrophysics Data System (ADS)

    Dreier, A.; Stannek, L.; Blumenberg, M.; Taviani, M.; Sigovini, M.; Wrede, C.; Thiel, V.; Hoppert, M.

    2012-04-01

    Metazoans with chemosynthetic bacterial endosymbionts are widespread in marine habitats and respective endosymbioses are known from seven recent animal phyla. However, little is known about endosymbioses in fossil settings and, hence, ecological significance in earth history. In the presented project, we investigate the ancient and recent bivalve fauna living at marine sedimentary oxic/anoxic interfaces. Two bivalve species collected from the same benthic environment - a Mediterranean lagoon - were studied in detail. The diet of Loripes lacteus is based on thiotrophic gill symbionts whereas Venerupis aureus is a filter feeding bivalve without symbionts. The presence of three key enzymes from sulfur oxidation (APS-reductase), carbon fixation (RubisCO) and assimilation of nitrogen (glutamine synthetase [GS]) were detected by immunofluorescence in symbionts of Loripes and/or by activity tests in living specimens. In search of biosignatures associated with thiotrophic chemosymbionts that might be suitable for detection of chemosymbiotic diets in recent and fossil bivalve shells, we analyzed the isotopic composition of shell lipids (δ13C) and the bulk organic matrix of the shell (δ13C, δ15N, δ34S). We could show that the combined δ15N and δ13C values from shell extracts are stable in subfossil (Pleistocene) bivalve specimens, as long as the isotopic data is "calibrated" with respective signatures from a filter feeding bivalve sampled from the same site or lithostratigraphic bed.

  7. The Complete Genome of Teredinibacter turnerae T7901: An Intracellular Endosymbiont of Marine Wood-Boring Bivalves (Shipworms)

    PubMed Central

    Yang, Joyce C.; Madupu, Ramana; Durkin, A. Scott; Ekborg, Nathan A.; Pedamallu, Chandra S.; Hostetler, Jessica B.; Radune, Diana; Toms, Bradley S.; Henrissat, Bernard; Coutinho, Pedro M.; Schwarz, Sandra; Field, Lauren; Trindade-Silva, Amaro E.; Soares, Carlos A. G.; Elshahawi, Sherif; Hanora, Amro; Schmidt, Eric W.; Haygood, Margo G.; Posfai, Janos; Benner, Jack; Madinger, Catherine; Nove, John; Anton, Brian; Chaudhary, Kshitiz; Foster, Jeremy; Holman, Alex; Kumar, Sanjay; Lessard, Philip A.; Luyten, Yvette A.; Slatko, Barton; Wood, Nicole; Wu, Bo; Teplitski, Max; Mougous, Joseph D.; Ward, Naomi; Eisen, Jonathan A.; Badger, Jonathan H.; Distel, Daniel L.

    2009-01-01

    Here we report the complete genome sequence of Teredinibacter turnerae T7901. T. turnerae is a marine gamma proteobacterium that occurs as an intracellular endosymbiont in the gills of wood-boring marine bivalves of the family Teredinidae (shipworms). This species is the sole cultivated member of an endosymbiotic consortium thought to provide the host with enzymes, including cellulases and nitrogenase, critical for digestion of wood and supplementation of the host's nitrogen-deficient diet. T. turnerae is closely related to the free-living marine polysaccharide degrading bacterium Saccharophagus degradans str. 2–40 and to as yet uncultivated endosymbionts with which it coexists in shipworm cells. Like S. degradans, the T. turnerae genome encodes a large number of enzymes predicted to be involved in complex polysaccharide degradation (>100). However, unlike S. degradans, which degrades a broad spectrum (>10 classes) of complex plant, fungal and algal polysaccharides, T. turnerae primarily encodes enzymes associated with deconstruction of terrestrial woody plant material. Also unlike S. degradans and many other eubacteria, T. turnerae dedicates a large proportion of its genome to genes predicted to function in secondary metabolism. Despite its intracellular niche, the T. turnerae genome lacks many features associated with obligate intracellular existence (e.g. reduced genome size, reduced %G+C, loss of genes of core metabolism) and displays evidence of adaptations common to free-living bacteria (e.g. defense against bacteriophage infection). These results suggest that T. turnerae is likely a facultative intracellular ensosymbiont whose niche presently includes, or recently included, free-living existence. As such, the T. turnerae genome provides insights into the range of genomic adaptations associated with intracellular endosymbiosis as well as enzymatic mechanisms relevant to the recycling of plant materials in marine environments and the production of cellulose

  8. Consequences of reductive evolution for gene expression in an obligate endosymbiont.

    PubMed

    Wilcox, Jennifer L; Dunbar, Helen E; Wolfinger, Russell D; Moran, Nancy A

    2003-06-01

    The smallest cellular genomes are found in obligate symbiotic and pathogenic bacteria living within eukaryotic hosts. In comparison with large genomes of free-living relatives, these reduced genomes are rearranged and have lost most regulatory elements. To test whether reduced bacterial genomes incur reduced regulatory capacities, we used full-genome microarrays to evaluate transcriptional response to environmental stress in Buchnera aphidicola, the obligate endosymbiont of aphids. The 580 genes of the B. aphidicola genome represent a subset of the 4500 genes known from the related organism, Escherichia coli. Although over 20 orthologues of E. coli heat stress (HS) genes are retained by B. aphidicola, only five were differentially expressed after near-lethal heat stress treatments, and only modest shifts were observed. Analyses of upstream regulatory regions revealed loss or degradation of most HS (sigma32) promoters. Genomic rearrangements downstream of an intact HS promoter yielded upregulation of a functionally unrelated and an inactivated gene. Reanalyses of comparable experimental array data for E. coli and Bacillus subtilis revealed that genome-wide differential expression was significantly lower in B. aphidicola. Our demonstration of a diminished stress response validates reports of temperature sensitivity in B. aphidicola and suggests that this reduced bacterial genome exhibits transcriptional inflexibility.

  9. Genome Sequence of “Candidatus Walczuchella monophlebidarum” the Flavobacterial Endosymbiont of Llaveia axin axin (Hemiptera: Coccoidea: Monophlebidae)

    PubMed Central

    Rosas-Pérez, Tania; Rosenblueth, Mónica; Rincón-Rosales, Reiner; Mora, Jaime; Martínez-Romero, Esperanza

    2014-01-01

    Scale insects (Hemiptera: Coccoidae) constitute a very diverse group of sap-feeding insects with a large diversity of symbiotic associations with bacteria. Here, we present the complete genome sequence, metabolic reconstruction, and comparative genomics of the flavobacterial endosymbiont of the giant scale insect Llaveia axin axin. The gene repertoire of its 309,299 bp genome was similar to that of other flavobacterial insect endosymbionts though not syntenic. According to its genetic content, essential amino acid biosynthesis is likely to be the flavobacterial endosymbiont's principal contribution to the symbiotic association with its insect host. We also report the presence of a γ-proteobacterial symbiont that may be involved in waste nitrogen recycling and also has amino acid biosynthetic capabilities that may provide metabolic precursors to the flavobacterial endosymbiont. We propose “Candidatus Walczuchella monophlebidarum” as the name of the flavobacterial endosymbiont of insects from the Monophlebidae family. PMID:24610838

  10. Survey of endosymbionts in the Diaphorina citri metagenome and assembly of a Wolbachia wDi draft genome.

    PubMed

    Saha, Surya; Hunter, Wayne B; Reese, Justin; Morgan, J Kent; Marutani-Hert, Mizuri; Huang, Hong; Lindeberg, Magdalen

    2012-01-01

    Diaphorina citri (Hemiptera: Psyllidae), the Asian citrus psyllid, is the insect vector of Ca. Liberibacter asiaticus, the causal agent of citrus greening disease. Sequencing of the D. citri metagenome has been initiated to gain better understanding of the biology of this organism and the potential roles of its bacterial endosymbionts. To corroborate candidate endosymbionts previously identified by rDNA amplification, raw reads from the D. citri metagenome sequence were mapped to reference genome sequences. Results of the read mapping provided the most support for Wolbachia and an enteric bacterium most similar to Salmonella. Wolbachia-derived reads were extracted using the complete genome sequences for four Wolbachia strains. Reads were assembled into a draft genome sequence, and the annotation assessed for the presence of features potentially involved in host interaction. Genome alignment with the complete sequences reveals membership of Wolbachia wDi in supergroup B, further supported by phylogenetic analysis of FtsZ. FtsZ and Wsp phylogenies additionally indicate that the Wolbachia strain in the Florida D. citri isolate falls into a sub-clade of supergroup B, distinct from Wolbachia present in Chinese D. citri isolates, supporting the hypothesis that the D. citri introduced into Florida did not originate from China.

  11. Survey of Endosymbionts in the Diaphorina citri Metagenome and Assembly of a Wolbachia wDi Draft Genome

    PubMed Central

    Saha, Surya; Hunter, Wayne B.; Reese, Justin; Morgan, J. Kent; Marutani-Hert, Mizuri; Huang, Hong; Lindeberg, Magdalen

    2012-01-01

    Diaphorina citri (Hemiptera: Psyllidae), the Asian citrus psyllid, is the insect vector of Ca. Liberibacter asiaticus, the causal agent of citrus greening disease. Sequencing of the D. citri metagenome has been initiated to gain better understanding of the biology of this organism and the potential roles of its bacterial endosymbionts. To corroborate candidate endosymbionts previously identified by rDNA amplification, raw reads from the D. citri metagenome sequence were mapped to reference genome sequences. Results of the read mapping provided the most support for Wolbachia and an enteric bacterium most similar to Salmonella. Wolbachia-derived reads were extracted using the complete genome sequences for four Wolbachia strains. Reads were assembled into a draft genome sequence, and the annotation assessed for the presence of features potentially involved in host interaction. Genome alignment with the complete sequences reveals membership of Wolbachia wDi in supergroup B, further supported by phylogenetic analysis of FtsZ. FtsZ and Wsp phylogenies additionally indicate that the Wolbachia strain in the Florida D. citri isolate falls into a sub-clade of supergroup B, distinct from Wolbachia present in Chinese D. citri isolates, supporting the hypothesis that the D. citri introduced into Florida did not originate from China. PMID:23166822

  12. Direct and indirect plant defenses are not suppressed by endosymbionts of a specialist root herbivore

    USDA-ARS?s Scientific Manuscript database

    Insect endosymbionts influence many important metabolic and developmental processes of their host. It has been speculated that they may also help to manipulate and suppress plant defenses to the benefit of herbivores. Recently, endosymbionts of the root herbivore Diabrotica virgifera virgifera have ...

  13. Phylogenomics of Reichenowia parasitica, an Alphaproteobacterial Endosymbiont of the Freshwater Leech Placobdella parasitica

    PubMed Central

    Kvist, Sebastian; Narechania, Apurva; Oceguera-Figueroa, Alejandro; Fuks, Bella; Siddall, Mark E.

    2011-01-01

    Although several commensal alphaproteobacteria form close relationships with plant hosts where they aid in (e.g.,) nitrogen fixation and nodulation, only a few inhabit animal hosts. Among these, Reichenowia picta, R. ornata and R. parasitica, are currently the only known mutualistic, alphaproteobacterial endosymbionts to inhabit leeches. These bacteria are harbored in the epithelial cells of the mycetomal structures of their freshwater leech hosts, Placobdella spp., and these structures have no other obvious function than housing bacterial symbionts. However, the function of the bacterial symbionts has remained unclear. Here, we focused both on exploring the genomic makeup of R. parasitica and on performing a robust phylogenetic analysis, based on more data than previous hypotheses, to test its position among related bacteria. We sequenced a combined pool of host and symbiont DNA from 36 pairs of mycetomes and performed an in silico separation of the different DNA pools through subtractive scaffolding. The bacterial contigs were compared to 50 annotated bacterial genomes and the genome of the freshwater leech Helobdella robusta using a BLASTn protocol. Further, amino acid sequences inferred from the contigs were used as queries against the 50 bacterial genomes to establish orthology. A total of 358 orthologous genes were used for the phylogenetic analyses. In part, results suggest that R. parasitica possesses genes coding for proteins related to nitrogen fixation, iron/vitamin B translocation and plasmid survival. Our results also indicate that R. parasitica interacts with its host in part by transmembrane signaling and that several of its genes show orthology across Rhizobiaceae. The phylogenetic analyses support the nesting of R. parasitica within the Rhizobiaceae, as sister to a group containing Agrobacterium and Rhizobium species. PMID:22132238

  14. Serratia symbiotica from the aphid Cinara cedri: a missing link from facultative to obligate insect endosymbiont.

    PubMed

    Lamelas, Araceli; Gosalbes, María José; Manzano-Marín, Alejandro; Peretó, Juli; Moya, Andrés; Latorre, Amparo

    2011-11-01

    The genome sequencing of Buchnera aphidicola BCc from the aphid Cinara cedri, which is the smallest known Buchnera genome, revealed that this bacterium had lost its symbiotic role, as it was not able to synthesize tryptophan and riboflavin. Moreover, the biosynthesis of tryptophan is shared with the endosymbiont Serratia symbiotica SCc, which coexists with B. aphidicola in this aphid. The whole-genome sequencing of S. symbiotica SCc reveals an endosymbiont in a stage of genome reduction that is closer to an obligate endosymbiont, such as B. aphidicola from Acyrthosiphon pisum, than to another S. symbiotica, which is a facultative endosymbiont in this aphid, and presents much less gene decay. The comparison between both S. symbiotica enables us to propose an evolutionary scenario of the transition from facultative to obligate endosymbiont. Metabolic inferences of B. aphidicola BCc and S. symbiotica SCc reveal that most of the functions carried out by B. aphidicola in A. pisum are now either conserved in B. aphidicola BCc or taken over by S. symbiotica. In addition, there are several cases of metabolic complementation giving functional stability to the whole consortium and evolutionary preservation of the actors involved.

  15. Impact of ocean acidification on antimicrobial activity in gills of the blue mussel (Mytilus edulis).

    PubMed

    Hernroth, B; Baden, S; Tassidis, H; Hörnaeus, K; Guillemant, J; Bergström Lind, S; Bergquist, J

    2016-08-01

    Here, we aimed to investigate potential effects of ocean acidification on antimicrobial peptide (AMP) activity in the gills of Mytilus edulis, as gills are directly facing seawater and the changing pH (predicted to be reduced from ∼8.1 to ∼7.7 by 2100). The AMP activity of gill and haemocyte extracts was compared at pH 6.0, 7.7 and 8.1, with a radial diffusion assay against Escherichia coli. The activity of the gill extracts was not affected by pH, while it was significantly reduced with increasing pH in the haemocyte extracts. Gill extracts were also tested against different species of Vibrio (V. parahaemolyticus, V. tubiashii, V. splendidus, V. alginolyticus) at pH 7.7 and 8.1. The metabolic activity of the bacteria decreased by ∼65-90%, depending on species of bacteria, but was, as in the radial diffusion assay, not affected by pH. The results indicated that AMPs from gills are efficient in a broad pH-range. However, when mussels were pre-exposed for pH 7.7 for four month the gill extracts presented significantly lower inhibit of bacterial growth. A full in-depth proteome investigation of gill extracts, using LC-Orbitrap MS/MS technique, showed that among previously described AMPs from haemocytes of Mytilus, myticin A was found up-regulated in response to lipopolysaccharide, 3 h post injection. Sporadic occurrence of other immune related peptides/proteins also pointed to a rapid response (0.5-3 h p.i.). Altogether, our results indicate that the gills of blue mussels constitute an important first line defence adapted to act at the pH of seawater. The antimicrobial activity of the gills is however modulated when mussels are under the pressure of ocean acidification, which may give future advantages for invading pathogens. Copyright © 2016. Published by Elsevier Ltd.

  16. Insect Sex Determination Manipulated by Their Endosymbionts: Incidences, Mechanisms and Implications.

    PubMed

    Kageyama, Daisuke; Narita, Satoko; Watanabe, Masaya

    2012-02-10

    The sex-determining systems of arthropods are surprisingly diverse. Some species have male or female heterogametic sex chromosomes while other species do not have sex chromosomes. Most species are diploids but some species, including wasps, ants, thrips and mites, are haplodiploids (n in males; 2n in females). Many of the sexual aberrations, such as sexual mosaics, sex-specific lethality and conversion of sexuality, can be explained by developmental defects including double fertilization of a binucleate egg, loss of a sex chromosome or perturbation of sex-determining gene expression, which occur accidentally or are induced by certain environmental conditions. However, recent studies have revealed that such sexual aberrations can be caused by various groups of vertically-transmitted endosymbiotic microbes such as bacteria of the genera Wolbachia, Rickettsia, Arsenophonus, Spiroplasma and Cardinium, as well as microsporidian protists. In this review, we first summarize the accumulated data on endosymbiont-induced sexual aberrations, and then discuss how such endosymbionts affect the developmental system of their hosts and what kinds of ecological and evolutionary effects these endosymbionts have on their host populations.

  17. Insect Sex Determination Manipulated by Their Endosymbionts: Incidences, Mechanisms and Implications

    PubMed Central

    Kageyama, Daisuke; Narita, Satoko; Watanabe, Masaya

    2012-01-01

    The sex-determining systems of arthropods are surprisingly diverse. Some species have male or female heterogametic sex chromosomes while other species do not have sex chromosomes. Most species are diploids but some species, including wasps, ants, thrips and mites, are haplodiploids (n in males; 2n in females). Many of the sexual aberrations, such as sexual mosaics, sex-specific lethality and conversion of sexuality, can be explained by developmental defects including double fertilization of a binucleate egg, loss of a sex chromosome or perturbation of sex-determining gene expression, which occur accidentally or are induced by certain environmental conditions. However, recent studies have revealed that such sexual aberrations can be caused by various groups of vertically-transmitted endosymbiotic microbes such as bacteria of the genera Wolbachia, Rickettsia, Arsenophonus, Spiroplasma and Cardinium, as well as microsporidian protists. In this review, we first summarize the accumulated data on endosymbiont-induced sexual aberrations, and then discuss how such endosymbionts affect the developmental system of their hosts and what kinds of ecological and evolutionary effects these endosymbionts have on their host populations. PMID:26467955

  18. Host-Symbiont Cospeciation of Termite-Gut Cellulolytic Protists of the Genera Teranympha and Eucomonympha and their Treponema Endosymbionts

    PubMed Central

    Noda, Satoko; Shimizu, Daichi; Yuki, Masahiro; Kitade, Osamu; Ohkuma, Moriya

    2018-01-01

    Cellulolytic flagellated protists inhabit the hindgut of termites. They are unique and essential to termites and related wood-feeding cockroaches, enabling host feeding on cellulosic matter. Protists of two genera in the family Teranymphidae (phylum Parabasalia), Eucomonympha and Teranympha, are phylogenetically closely related and harbor intracellular endosymbiotic bacteria from the genus Treponema. In order to obtain a clearer understanding of the evolutionary history of this triplex symbiotic relationship, the molecular phylogenies of the three symbiotic partners, the Teranymphidae protists, their Treponema endosymbionts, and their host termites, were inferred and compared. Strong congruence was observed in the tree topologies of all interacting partners, implying their cospeciating relationships. In contrast, the coevolutionary relationship between the Eucomonympha protists and their endosymbionts was more complex, and evidence of incongruence against cospeciating relationships suggested frequent host switches of the endosymbionts, possibly because multiple Eucomonympha species are present in the same gut community. Similarities in the 16S rRNA and gyrB gene sequences of the endosymbionts were higher among Teranympha spp. (>99.25% and >97.2%, respectively), whereas those between Teranympha and Eucomonympha were lower (<97.1% and <91.9%, respectively). In addition, the endosymbionts of Teranympha spp. formed a phylogenetic clade distinct from those of Eucomonympha spp. Therefore, the endosymbiont species of Teranympha spp., designated here as “Candidatus Treponema teratonymphae”, needs to be classified as a species distinct from the endosymbiont species of Eucomonympha spp. PMID:29367472

  19. Host-Symbiont Cospeciation of Termite-Gut Cellulolytic Protists of the Genera Teranympha and Eucomonympha and their Treponema Endosymbionts.

    PubMed

    Noda, Satoko; Shimizu, Daichi; Yuki, Masahiro; Kitade, Osamu; Ohkuma, Moriya

    2018-03-29

    Cellulolytic flagellated protists inhabit the hindgut of termites. They are unique and essential to termites and related wood-feeding cockroaches, enabling host feeding on cellulosic matter. Protists of two genera in the family Teranymphidae (phylum Parabasalia), Eucomonympha and Teranympha, are phylogenetically closely related and harbor intracellular endosymbiotic bacteria from the genus Treponema. In order to obtain a clearer understanding of the evolutionary history of this triplex symbiotic relationship, the molecular phylogenies of the three symbiotic partners, the Teranymphidae protists, their Treponema endosymbionts, and their host termites, were inferred and compared. Strong congruence was observed in the tree topologies of all interacting partners, implying their cospeciating relationships. In contrast, the coevolutionary relationship between the Eucomonympha protists and their endosymbionts was more complex, and evidence of incongruence against cospeciating relationships suggested frequent host switches of the endosymbionts, possibly because multiple Eucomonympha species are present in the same gut community. Similarities in the 16S rRNA and gyrB gene sequences of the endosymbionts were higher among Teranympha spp. (>99.25% and >97.2%, respectively), whereas those between Teranympha and Eucomonympha were lower (<97.1% and <91.9%, respectively). In addition, the endosymbionts of Teranympha spp. formed a phylogenetic clade distinct from those of Eucomonympha spp. Therefore, the endosymbiont species of Teranympha spp., designated here as "Candidatus Treponema teratonymphae", needs to be classified as a species distinct from the endosymbiont species of Eucomonympha spp.

  20. Amoebal Endosymbiont Protochlamydia Induces Apoptosis to Human Immortal HEp-2 Cells

    PubMed Central

    Ito, Atsushi; Matsuo, Junji; Nakamura, Shinji; Yoshida, Asahi; Okude, Miho; Hayashi, Yasuhiro; Sakai, Haruna; Yoshida, Mitsutaka; Takahashi, Kaori; Yamaguchi, Hiroyuki

    2012-01-01

    Protochlamydia, an environmental chlamydia and obligate amoebal endosymbiotic bacterium, evolved to survive within protist hosts, such as Acanthamobae, 700 million years ago. However, these bacteria do not live in vertebrates, including humans. This raises the possibility that interactions between Protochlamydia and human cells could induce a novel cytopathic effect, leading to new insights into host-parasite relationships. Therefore, we studied the effect of Protochlamydia on the survival of human immortal cell line, HEp-2 cells and primary peripheral blood mononuclear cells (PBMC). Using mainly 4′,6-diamidino-2-phenylindole staining, fluorescent in situ hybridization, transmission electron microscopy, and also TUNEL and Transwell assays, we demonstrated that the Protochlamydia induced apoptosis in HEp-2 cells. The attachment of viable bacterial cells, but not an increase of bacterial infectious progenies within the cells, was required for the apoptosis. Other chlamydiae [Parachlamydia acanthamoebae and Chlamydia trachomatis (serovars D and L2)] did not induce the same phenomena, indicating that the observed apoptosis may be specific to the Protochlamydia. Furthermore, the bacteria had no effect on the survival of primary PBMCs collected from five volunteers, regardless of activation. We concluded that Protochlamydia induces apoptosis in human-immortal HEp-2 cells and that this endosymbiont could potentially be used as a biological tool for the elucidation of novel host-parasite relationships. PMID:22276171

  1. Amoebal endosymbiont Protochlamydia induces apoptosis to human immortal HEp-2 cells.

    PubMed

    Ito, Atsushi; Matsuo, Junji; Nakamura, Shinji; Yoshida, Asahi; Okude, Miho; Hayashi, Yasuhiro; Sakai, Haruna; Yoshida, Mitsutaka; Takahashi, Kaori; Yamaguchi, Hiroyuki

    2012-01-01

    Protochlamydia, an environmental chlamydia and obligate amoebal endosymbiotic bacterium, evolved to survive within protist hosts, such as Acanthamobae, 700 million years ago. However, these bacteria do not live in vertebrates, including humans. This raises the possibility that interactions between Protochlamydia and human cells could induce a novel cytopathic effect, leading to new insights into host-parasite relationships. Therefore, we studied the effect of Protochlamydia on the survival of human immortal cell line, HEp-2 cells and primary peripheral blood mononuclear cells (PBMC). Using mainly 4',6-diamidino-2-phenylindole staining, fluorescent in situ hybridization, transmission electron microscopy, and also TUNEL and Transwell assays, we demonstrated that the Protochlamydia induced apoptosis in HEp-2 cells. The attachment of viable bacterial cells, but not an increase of bacterial infectious progenies within the cells, was required for the apoptosis. Other chlamydiae [Parachlamydia acanthamoebae and Chlamydia trachomatis (serovars D and L2)] did not induce the same phenomena, indicating that the observed apoptosis may be specific to the Protochlamydia. Furthermore, the bacteria had no effect on the survival of primary PBMCs collected from five volunteers, regardless of activation. We concluded that Protochlamydia induces apoptosis in human-immortal HEp-2 cells and that this endosymbiont could potentially be used as a biological tool for the elucidation of novel host-parasite relationships.

  2. Degenerative minimalism in the genome of a psyllid endosymbiont.

    PubMed

    Clark, M A; Baumann, L; Thao, M L; Moran, N A; Baumann, P

    2001-03-01

    Psyllids, like aphids, feed on plant phloem sap and are obligately associated with prokaryotic endosymbionts acquired through vertical transmission from an ancestral infection. We have sequenced 37 kb of DNA of the genome of Carsonella ruddii, the endosymbiont of psyllids, and found that it has a number of unusual properties revealing a more extreme case of degeneration than was previously reported from studies of eubacterial genomes, including that of the aphid endosymbiont Buchnera aphidicola. Among the unusual properties are an exceptionally low guanine-plus-cytosine content (19.9%), almost complete absence of intergenic spaces, operon fusion, and lack of the usual promoter sequences upstream of 16S rDNA. These features suggest the synthesis of long mRNAs and translational coupling. The most extreme instances of base compositional bias occur in the genes encoding proteins that have less highly conserved amino acid sequences; the guanine-plus-cytosine content of some protein-coding sequences is as low as 10%. The shift in base composition has a large effect on proteins: in polypeptides of C. ruddii, half of the residues consist of five amino acids with codons low in guanine plus cytosine. Furthermore, the proteins of C. ruddii are reduced in size, with an average of about 9% fewer amino acids than in homologous proteins of related bacteria. These observations suggest that the C. ruddii genome is not subject to constraints that limit the evolution of other known eubacteria.

  3. Degenerative Minimalism in the Genome of a Psyllid Endosymbiont

    PubMed Central

    Clark, Marta A.; Baumann, Linda; Thao, MyLo Ly; Moran, Nancy A.; Baumann, Paul

    2001-01-01

    Psyllids, like aphids, feed on plant phloem sap and are obligately associated with prokaryotic endosymbionts acquired through vertical transmission from an ancestral infection. We have sequenced 37 kb of DNA of the genome of Carsonella ruddii, the endosymbiont of psyllids, and found that it has a number of unusual properties revealing a more extreme case of degeneration than was previously reported from studies of eubacterial genomes, including that of the aphid endosymbiont Buchnera aphidicola. Among the unusual properties are an exceptionally low guanine-plus-cytosine content (19.9%), almost complete absence of intergenic spaces, operon fusion, and lack of the usual promoter sequences upstream of 16S rDNA. These features suggest the synthesis of long mRNAs and translational coupling. The most extreme instances of base compositional bias occur in the genes encoding proteins that have less highly conserved amino acid sequences; the guanine-plus-cytosine content of some protein-coding sequences is as low as 10%. The shift in base composition has a large effect on proteins: in polypeptides of C. ruddii, half of the residues consist of five amino acids with codons low in guanine plus cytosine. Furthermore, the proteins of C. ruddii are reduced in size, with an average of about 9% fewer amino acids than in homologous proteins of related bacteria. These observations suggest that the C. ruddii genome is not subject to constraints that limit the evolution of other known eubacteria. PMID:11222582

  4. Predicting the Proteins of Angomonas deanei, Strigomonas culicis and Their Respective Endosymbionts Reveals New Aspects of the Trypanosomatidae Family

    PubMed Central

    Motta, Maria Cristina Machado; Martins, Allan Cezar de Azevedo; de Souza, Silvana Sant’Anna; Catta-Preta, Carolina Moura Costa; Silva, Rosane; Klein, Cecilia Coimbra; de Almeida, Luiz Gonzaga Paula; de Lima Cunha, Oberdan; Ciapina, Luciane Prioli; Brocchi, Marcelo; Colabardini, Ana Cristina; de Araujo Lima, Bruna; Machado, Carlos Renato; de Almeida Soares, Célia Maria; Probst, Christian Macagnan; de Menezes, Claudia Beatriz Afonso; Thompson, Claudia Elizabeth; Bartholomeu, Daniella Castanheira; Gradia, Daniela Fiori; Pavoni, Daniela Parada; Grisard, Edmundo C.; Fantinatti-Garboggini, Fabiana; Marchini, Fabricio Klerynton; Rodrigues-Luiz, Gabriela Flávia; Wagner, Glauber; Goldman, Gustavo Henrique; Fietto, Juliana Lopes Rangel; Elias, Maria Carolina; Goldman, Maria Helena S.; Sagot, Marie-France; Pereira, Maristela; Stoco, Patrícia H.; de Mendonça-Neto, Rondon Pessoa; Teixeira, Santuza Maria Ribeiro; Maciel, Talles Eduardo Ferreira; de Oliveira Mendes, Tiago Antônio; Ürményi, Turán P.; de Souza, Wanderley; Schenkman, Sergio; de Vasconcelos, Ana Tereza Ribeiro

    2013-01-01

    Endosymbiont-bearing trypanosomatids have been considered excellent models for the study of cell evolution because the host protozoan co-evolves with an intracellular bacterium in a mutualistic relationship. Such protozoa inhabit a single invertebrate host during their entire life cycle and exhibit special characteristics that group them in a particular phylogenetic cluster of the Trypanosomatidae family, thus classified as monoxenics. In an effort to better understand such symbiotic association, we used DNA pyrosequencing and a reference-guided assembly to generate reads that predicted 16,960 and 12,162 open reading frames (ORFs) in two symbiont-bearing trypanosomatids, Angomonas deanei (previously named as Crithidia deanei) and Strigomonas culicis (first known as Blastocrithidia culicis), respectively. Identification of each ORF was based primarily on TriTrypDB using tblastn, and each ORF was confirmed by employing getorf from EMBOSS and Newbler 2.6 when necessary. The monoxenic organisms revealed conserved housekeeping functions when compared to other trypanosomatids, especially compared with Leishmania major. However, major differences were found in ORFs corresponding to the cytoskeleton, the kinetoplast, and the paraflagellar structure. The monoxenic organisms also contain a large number of genes for cytosolic calpain-like and surface gp63 metalloproteases and a reduced number of compartmentalized cysteine proteases in comparison to other TriTryp organisms, reflecting adaptations to the presence of the symbiont. The assembled bacterial endosymbiont sequences exhibit a high A+T content with a total of 787 and 769 ORFs for the Angomonas deanei and Strigomonas culicis endosymbionts, respectively, and indicate that these organisms hold a common ancestor related to the Alcaligenaceae family. Importantly, both symbionts contain enzymes that complement essential host cell biosynthetic pathways, such as those for amino acid, lipid and purine/pyrimidine metabolism

  5. Exposure of clownfish larvae to suspended sediment levels found on the Great Barrier Reef: Impacts on gill structure and microbiome

    PubMed Central

    Hess, Sybille; Wenger, Amelia S.; Ainsworth, Tracy D.; Rummer, Jodie L.

    2015-01-01

    Worldwide, increasing coastal development has played a major role in shaping coral reef species assemblages, but the mechanisms underpinning distribution patterns remain poorly understood. Recent research demonstrated delayed development in larval fishes exposed to suspended sediment, highlighting the need to further understand the interaction between suspended sediment as a stressor and energetically costly activities such as growth and development that are essential to support biological fitness. We examined the gill morphology and the gill microbiome in clownfish larvae (Amphiprion percula) exposed to suspended sediment concentrations (using Australian bentonite) commonly found on the inshore Great Barrier Reef. The gills of larvae exposed to 45 mg L−1 of suspended sediment had excessive mucous discharge and growth of protective cell layers, resulting in a 56% thicker gill epithelium compared to fish from the control group. Further, we found a shift from ‘healthy’ to pathogenic bacterial communities on the gills, which could increase the disease susceptibility of larvae. The impact of suspended sediments on larval gills may represent an underlying mechanism behind the distribution patterns of fish assemblages. Our findings underscore the necessity for future coastal development to consider adverse effects of suspended sediments on fish recruitment, and consequently fish populations and ecosystem health. PMID:26094624

  6. Exposure of clownfish larvae to suspended sediment levels found on the Great Barrier Reef: Impacts on gill structure and microbiome.

    PubMed

    Hess, Sybille; Wenger, Amelia S; Ainsworth, Tracy D; Rummer, Jodie L

    2015-06-22

    Worldwide, increasing coastal development has played a major role in shaping coral reef species assemblages, but the mechanisms underpinning distribution patterns remain poorly understood. Recent research demonstrated delayed development in larval fishes exposed to suspended sediment, highlighting the need to further understand the interaction between suspended sediment as a stressor and energetically costly activities such as growth and development that are essential to support biological fitness. We examined the gill morphology and the gill microbiome in clownfish larvae (Amphiprion percula) exposed to suspended sediment concentrations (using Australian bentonite) commonly found on the inshore Great Barrier Reef. The gills of larvae exposed to 45 mg L(-1) of suspended sediment had excessive mucous discharge and growth of protective cell layers, resulting in a 56% thicker gill epithelium compared to fish from the control group. Further, we found a shift from 'healthy' to pathogenic bacterial communities on the gills, which could increase the disease susceptibility of larvae. The impact of suspended sediments on larval gills may represent an underlying mechanism behind the distribution patterns of fish assemblages. Our findings underscore the necessity for future coastal development to consider adverse effects of suspended sediments on fish recruitment, and consequently fish populations and ecosystem health.

  7. Why mushrooms form gills: efficiency of the lamellate morphology

    PubMed Central

    FISCHER, Mark W. F.; MONEY, Nicholas P.

    2009-01-01

    Gilled mushrooms are produced by multiple orders within the Agaricomycetes. Some species form a single array of unbranched radial gills beneath their caps, many others produce multiple files of lamellulae between the primary gills, and branched gills are also common. In this largely theoretical study we modeled the effects of different gill arrangements on the total surface area for spore production. Relative to spore production over a flat surface, gills achieve a maximum 20-fold increase in surface area. The branching of gills produces the same increase in surface area as the formation of freestanding lamellulae (short gills). The addition of lamellulae between every second gill would offer a slightly greater increase in surface area in comparison to the addition of lamellulae between every pair of opposing gills, but this morphology does not appear in nature. Analysis of photographs of mushrooms demonstrates an excellent match between natural gill arrangements and configurations predicted by our model. PMID:20965062

  8. Unrelated facultative endosymbionts protect aphids against a fungal pathogen.

    PubMed

    Łukasik, Piotr; van Asch, Margriet; Guo, Huifang; Ferrari, Julia; Godfray, H Charles J

    2013-02-01

    The importance of microbial facultative endosymbionts to insects is increasingly being recognized, but our understanding of how the fitness effects of infection are distributed across symbiont taxa is limited. In the pea aphid, some of the seven known species of facultative symbionts influence their host's resistance to natural enemies, including parasitoid wasps and a pathogenic fungus. Here we show that protection against this entomopathogen, Pandora neoaphidis, can be conferred by strains of four distantly related symbionts (in the genera Regiella, Rickettsia, Rickettsiella and Spiroplasma). They reduce mortality and also decrease fungal sporulation on dead aphids which may help protect nearby genetically identical insects. Pea aphids thus obtain protection from natural enemies through association with a wider range of microbial associates than has previously been thought. Providing resistance against natural enemies appears to be a particularly common way for facultative endosymbionts to increase in frequency within host populations. © 2012 Blackwell Publishing Ltd/CNRS.

  9. Why mushrooms form gills: efficiency of the lamellate morphology.

    PubMed

    Fischer, Mark W F; Money, Nicholas P

    2010-01-01

    Gilled mushrooms are produced by multiple orders within the Agaricomycetes. Some species form a single array of unbranched radial gills beneath their caps, many others produce multiple files of lamellulae between the primary gills, and branched gills are also common. In this largely theoretical study we modeled the effects of different gill arrangements on the total surface area for spore production. Relative to spore production over a flat surface, gills achieve a maximum 20-fold increase in surface area. The branching of gills produces the same increase in surface area as the formation of free-standing lamellulae (short gills). The addition of lamellulae between every second gill would offer a slightly greater increase in surface area in comparison to the addition of lamellulae between every pair of opposing gills, but this morphology does not appear in nature. Analysis of photographs of mushrooms demonstrates an excellent match between natural gill arrangements and configurations predicted by our model. Copyright © 2009 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  10. Algal endosymbionts in European Hydra strains reflect multiple origins of the zoochlorella symbiosis.

    PubMed

    Rajević, Nives; Kovačević, Goran; Kalafatić, Mirjana; Gould, Sven B; Martin, William F; Franjević, Damjan

    2015-12-01

    Symbiotic associations are of broad significance in evolution and biodiversity. Green Hydra is a classic example of endosymbiosis. In its gastrodermal myoepithelial cells it harbors endosymbiotic unicellular green algae, most commonly from the genus Chlorella. We reconstructed the phylogeny of cultured algal endosymbionts isolated and maintained in laboratory conditions for years from green Hydra strains collected from four different geographical sites within Croatia, one from Germany and one from Israel. Nuclear (18S rDNA, ITS region) and chloroplast markers (16S, rbcL) for maximum likelihood phylogenetic analyses were used. We focused on investigating the positions of these algal endosymbiotic strains within the chlorophyte lineage. Molecular analyses established that different genera and species of unicellular green algae are present as endosymbionts in green Hydra, showing that endosymbiotic algae growing within green Hydra sampled from four Croatian localities are not monophyletic. Our results indicate that the intracellular algal endosymbionts of green Hydra have become established several times independently in evolution. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts

    PubMed Central

    D Ainsworth, Tracy; Krause, Lutz; Bridge, Thomas; Torda, Gergely; Raina, Jean-Baptise; Zakrzewski, Martha; Gates, Ruth D; Padilla-Gamiño, Jacqueline L; Spalding, Heather L; Smith, Celia; Woolsey, Erika S; Bourne, David G; Bongaerts, Pim; Hoegh-Guldberg, Ove; Leggat, William

    2015-01-01

    Despite being one of the simplest metazoans, corals harbor some of the most highly diverse and abundant microbial communities. Differentiating core, symbiotic bacteria from this diverse host-associated consortium is essential for characterizing the functional contributions of bacteria but has not been possible yet. Here we characterize the coral core microbiome and demonstrate clear phylogenetic and functional divisions between the micro-scale, niche habitats within the coral host. In doing so, we discover seven distinct bacterial phylotypes that are universal to the core microbiome of coral species, separated by thousands of kilometres of oceans. The two most abundant phylotypes are co-localized specifically with the corals' endosymbiotic algae and symbiont-containing host cells. These bacterial symbioses likely facilitate the success of the dinoflagellate endosymbiosis with corals in diverse environmental regimes. PMID:25885563

  12. Endozoicomonas dominates the gill and intestinal content microbiomes of Mytilus edulis from Barnegat Bay, New Jersey

    USGS Publications Warehouse

    Schill, William B.; Iwanowicz, Deborah; Adams, Cynthia

    2017-01-01

    Blue mussels, Mytilus edulis, Linnaeus 1758 from southern Barnegat Bay, New Jersey were examined to determine the make-up of the normal blue mussel microbiome. Sequencing of 16S ribosomal DNA amplicons from gill and intestinal content microbiomes using the Illumina® MiSeq platform yielded 1,276,161 paired end sequence reads from the gill libraries and 1,092,333 paired end sequence reads from the intestinal content libraries. General bioinformatic analyses were conducted with the open-source packages Qiime and Mothur. Phylotype assignments to the genus level were made using the commercial One Codex platform. This resulted in 1,697,852 gill and 988,436 intestinal content sequences being classified to genus. A majority of these (67.6% and 37.2% respectively) were assigned to a single operational taxonomic unit (Mytilus edulis Symbiont, MeS) that has homologies with other recently described Endozoicomonas pathogens and symbionts of marine invertebrates. MeS shares 98% identity with an uncultured bacterium from the gill tissue of an invasive indo-Pacific oyster and with HQE1 and HQE2 isolated from the sea squirt, Styela clava. Other than MeS, most of the detected bacterial species are known from marine sediments and seawater.

  13. When insect endosymbionts and plant endophytes mediate biological control outcomes

    USDA-ARS?s Scientific Manuscript database

    The identification of endosymbionts and endophytes within insect and plant tissues, respectively, has increased exponentially over the past 10-15 years, enabled largely by the proliferation of sensitive molecular techniques and publicly accessible databases of nucleotide sequences. However, the rate...

  14. How conserved are the bacterial communities associated with aphids? A detailed assessment of the Brevicoryne brassicae (Hemiptera: Aphididae) using 16S rDNA.

    PubMed

    Clark, E L; Daniell, T J; Wishart, J; Hubbard, S F; Karley, A J

    2012-12-01

    Aphids harbor a community of bacteria that include obligate and facultative endosymbionts belonging to the Enterobacteriaceae along with opportunistic, commensal, or pathogenic bacteria. This study represents the first detailed analysis of the identity and diversity of the bacterial community associated with the cabbage aphid, Brevicoryne brassicae (L.). 16S rDNA sequence analysis revealed that the community of bacteria associated with B. brassicae was diverse, with at least four different bacterial community types detected among aphid lines, collected from widely dispersed sites in Northern Britain. The bacterial sequence types isolated from B. brassicae showed little similarity to any bacterial endosymbionts characterized in insects; instead, they were closely related to free-living extracellular bacterial species that have been isolated from the aphid gut or that are known to be present in the environment, suggesting that they are opportunistic bacteria transmitted between the aphid gut and the environment. To quantify variation in bacterial community between aphid lines, which was driven largely by differences in the proportions of two dominant bacterial orders, the Pseudomonales and the Enterobacteriales, we developed a novel real-time (Taqman) qPCR assay. By improving our knowledge of aphid microbial ecology, and providing novel molecular tools to examine the presence and function of the microbial community, this study forms the basis of further research to explore the influence of the extracellular bacterial community on aphid fitness, pest status, and susceptibility to control by natural enemies.

  15. Small but Powerful, the Primary Endosymbiont of Moss Bugs, Candidatus Evansia muelleri, Holds a Reduced Genome with Large Biosynthetic Capabilities

    PubMed Central

    Santos-Garcia, Diego; Latorre, Amparo; Moya, Andrés; Gibbs, George; Hartung, Viktor; Dettner, Konrad; Kuechler, Stefan Martin; Silva, Francisco J.

    2014-01-01

    Moss bugs (Coleorrhyncha: Peloridiidae) are members of the order Hemiptera, and like many hemipterans, they have symbiotic associations with intracellular bacteria to fulfill nutritional requirements resulting from their unbalanced diet. The primary endosymbiont of the moss bugs, Candidatus Evansia muelleri, is phylogenetically related to Candidatus Carsonella ruddii and Candidatus Portiera aleyrodidarum, primary endosymbionts of psyllids and whiteflies, respectively. In this work, we report the genome of Candidatus Evansia muelleri Xc1 from Xenophyes cascus, which is the only obligate endosymbiont present in the association. This endosymbiont possesses an extremely reduced genome similar to Carsonella and Portiera. It has crossed the borderline to be considered as an autonomous cell, requiring the support of the insect host for some housekeeping cell functions. Interestingly, in spite of its small genome size, Evansia maintains enriched amino acid (complete or partial pathways for ten essential and six nonessential amino acids) and sulfur metabolisms, probably related to the poor diet of the insect, based on bryophytes, which contains very low levels of nitrogenous and sulfur compounds. Several facts, including the congruence of host (moss bugs, whiteflies, and psyllids) and endosymbiont phylogenies and the retention of the same ribosomal RNA operon during genome reduction in Evansia, Portiera, and Carsonella, suggest the existence of an ancient endosymbiotic Halomonadaceae clade associated with Hemiptera. Three possible scenarios for the origin of these three primary endosymbiont genera are proposed and discussed. PMID:25115011

  16. Artificial selection on ant female caste ratio uncovers a link between female-biased sex ratios and infection by Wolbachia endosymbionts.

    PubMed

    Pontieri, L; Schmidt, A M; Singh, R; Pedersen, J S; Linksvayer, T A

    2017-02-01

    Social insect sex and caste ratios are well-studied targets of evolutionary conflicts, but the heritable factors affecting these traits remain unknown. To elucidate these factors, we carried out a short-term artificial selection study on female caste ratio in the ant Monomorium pharaonis. Across three generations of bidirectional selection, we observed no response for caste ratio, but sex ratios rapidly became more female-biased in the two replicate high selection lines and less female-biased in the two replicate low selection lines. We hypothesized that this rapid divergence for sex ratio was caused by changes in the frequency of infection by the heritable bacterial endosymbiont Wolbachia, because the initial breeding stock varied for Wolbachia infection, and Wolbachia is known to cause female-biased sex ratios in other insects. Consistent with this hypothesis, the proportions of Wolbachia-infected colonies in the selection lines changed rapidly, mirroring the sex ratio changes. Moreover, the estimated effect of Wolbachia on sex ratio (~13% female bias) was similar in colonies before and during artificial selection, indicating that this Wolbachia effect is likely independent of the effects of artificial selection on other heritable factors. Our study provides evidence for the first case of endosymbiont sex ratio manipulation in a social insect. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  17. Redox-Stratified Bacterial Communities in Sediments Associated with Multiple Lucinid Bivalve Species: Implications for Symbiosis in Changing Coastal Habitats

    NASA Astrophysics Data System (ADS)

    Paterson, A. T.; Fortier, C. M.; Long, B.; Kokesh, B. S.; Lim, S. J.; Campbell, B. J.; Anderson, L. C.; Engel, A. S.

    2017-12-01

    Lucinids, chemosymbiotic marine bivalves, occupy strong redox gradient habitats, including the rhizosphere of coastal seagrass beds and mangrove forests in subtropical to tropical ecosystems. Lucinids and their sulfide-oxidizing gammaproteobacterial endosymbionts, which are acquired from the environment, provide a critical ecosystem service by removing toxic reduced sulfur compounds from the surrounding environment, and lucinids may be an important food source to economically valuable fisheries. The habitats of Phacoides pectinatus, Stewartia floridana, Codakia orbicularis, Ctena orbiculata, and Lucina pensylvanica lucinids in Florida and San Salvador in The Bahamas were evaluated in comprehensive malacological, microbiological, and geochemical surveys. Vegetation cover included different seagrass species or calcareous green macroalgae. All sites were variably affected by anthropogenic activities, as evidenced by visible prop scars in seagrass beds, grain size distributions atypical of low energy environments (i.e., artificial fill or dredge material from nearby channels), and high levels of pyrogenic hydrocarbon compounds in sediment indicative of urbanization impact. Where present, lucinid population densities frequently exceeded 2000 individuals per cubic meter, and were typically more abundant underlying seagrass compared to unvegetated, bare sand. Dissolved oxygen and sulfide levels varied from where lucinids were recovered. The sediment bacterial communities from classified 16S rRNA gene sequences indicated that the diversity of putative anaerobic groups increased with sediment depth, but putative aerobes, including of Gammaproteobacteria related to the lucinid endosymbionts, decreased with depth. Where multiple seagrass species co-occurred, retrieved bacterial community compositions correlated to overlying seagrass species, but diversity differed from bare sand patches, including among putative free-living endosymbiont groups. As such, continued sea

  18. Boronated tartrolon antibiotic produced by symbiotic cellulose-degrading bacteria in shipworm gills.

    PubMed

    Elshahawi, Sherif I; Trindade-Silva, Amaro E; Hanora, Amro; Han, Andrew W; Flores, Malem S; Vizzoni, Vinicius; Schrago, Carlos G; Soares, Carlos A; Concepcion, Gisela P; Distel, Dan L; Schmidt, Eric W; Haygood, Margo G

    2013-01-22

    Shipworms are marine wood-boring bivalve mollusks (family Teredinidae) that harbor a community of closely related Gammaproteobacteria as intracellular endosymbionts in their gills. These symbionts have been proposed to assist the shipworm host in cellulose digestion and have been shown to play a role in nitrogen fixation. The genome of one strain of Teredinibacter turnerae, the first shipworm symbiont to be cultivated, was sequenced, revealing potential as a rich source of polyketides and nonribosomal peptides. Bioassay-guided fractionation led to the isolation and identification of two macrodioloide polyketides belonging to the tartrolon class. Both compounds were found to possess antibacterial properties, and the major compound was found to inhibit other shipworm symbiont strains and various pathogenic bacteria. The gene cluster responsible for the synthesis of these compounds was identified and characterized, and the ketosynthase domains were analyzed phylogenetically. Reverse-transcription PCR in addition to liquid chromatography and high-resolution mass spectrometry and tandem mass spectrometry revealed the transcription of these genes and the presence of the compounds in the shipworm, suggesting that the gene cluster is expressed in vivo and that the compounds may fulfill a specific function for the shipworm host. This study reports tartrolon polyketides from a shipworm symbiont and unveils the biosynthetic gene cluster of a member of this class of compounds, which might reveal the mechanism by which these bioactive metabolites are biosynthesized.

  19. Ca. Branchiomonas cysticola, Ca. Piscichlamydia salmonis and Salmon Gill Pox Virus transmit horizontally in Atlantic salmon held in fresh water.

    PubMed

    Wiik-Nielsen, J; Gjessing, M; Solheim, H T; Litlabø, A; Gjevre, A-G; Kristoffersen, A B; Powell, M D; Colquhoun, D J

    2017-10-01

    Elucidation of the role of infectious agents putatively involved in gill disease is commonly hampered by the lack of culture systems for these organisms. In this study, a farmed population of Atlantic salmon pre-smolts, displaying proliferative gill disease with associated Candidatus Branchiomonas cysticola, Ca. Piscichlamydia salmonis and Atlantic salmon gill pox virus (SGPV) infections, was identified. A subpopulation of the diseased fish was used as a source of waterborne infection towards a population of naïve Atlantic salmon pre-smolts. Ca. B. cysticola infection became established in exposed naïve fish at high prevalence within the first month of exposure and the bacterial load increased over the study period. Ca. P. salmonis and SGPV infections were identified only at low prevalence in exposed fish during the trial. Although clinically healthy, at termination of the trial the exposed, naïve fish displayed histologically visible pathological changes typified by epithelial hyperplasia and subepithelial inflammation with associated bacterial inclusions, confirmed by fluorescent in situ hybridization to contain Ca. B. cysticola. The results strongly suggest that Ca. B. cysticola infections transmit directly from fish to fish and that the bacterium is directly associated with the pathological changes observed in the exposed, previously naïve fish. © 2017 John Wiley & Sons Ltd.

  20. Bacterial community in Haemaphysalis ticks of domesticated animals from the Orang Asli communities in Malaysia.

    PubMed

    Khoo, Jing-Jing; Chen, Fezshin; Kho, Kai Ling; Ahmad Shanizza, Azzy Iyzati; Lim, Fang-Shiang; Tan, Kim-Kee; Chang, Li-Yen; AbuBakar, Sazaly

    2016-07-01

    Ticks are vectors in the transmission of many important infectious diseases in human and animals. Ticks can be readily found in the semi-forested areas such as the settlements of the indigenous people in Malaysia, the Orang Asli. There is still minimal information available on the bacterial agents associated with ticks found in Malaysia. We performed a survey of the bacterial communities associated with ticks collected from domestic animals found in two Orang Asli villages in Malaysia. We collected 62 ticks, microscopically and molecularly identified as related to Haemaphysalis wellingtoni, Haemaphysalis hystricis and Haemaphysalis bispinosa. Bacterial 16s rRNA hypervariable region (V6) amplicon libraries prepared from the tick samples were sequenced on the Ion Torrent PGM platform. We detected a total of 392 possible bacterial genera after pooling and sequencing 20 samples, indicating a diverse bacterial community profile. Dominant taxa include the potential tick endosymbiont, Coxiella. Other dominant taxa include the tick-associated pathogen, Rickettsia, and environmental bacteria such as Bacillus, Mycobacterium, Sphingomonas and Pseudomonas. Other known tick-associated bacteria were also detected, including Anaplasma, Ehrlichia, Rickettsiella and Wolbachia, albeit at very low abundance. Specific PCR was performed on selected samples to identify Rickettsia and Coxiella. Sequence of Rickettsia felis, which causes spotted fever in human and cats, was identified in one sample. Coxiella endosymbionts were detected in three samples. This study provides the baseline knowledge of the microbiome of ticks in Malaysia, focusing on tick-associated bacteria affecting the Orang Asli communities. The role of the herein found Coxiella and Rickettsia in tick physiology or disease transmission merits further investigation. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  1. Parasitism enhances susceptibility to bacterial infection in tilapia

    USDA-ARS?s Scientific Manuscript database

    Gyrodactylus is a small elongate monogenetic parasite that mainly lives on the skin and gills of freshwater fish. Gyrodactylus causes mechanical injuries on fish epithelium that can lead to fish mortality under crowded conditions. Streptococcus iniae is a severe bacterial pathogen and the economic l...

  2. Physiological Control of Molluscan Gill Cilia by 5-Hydroxytryptamine

    PubMed Central

    Gosselin, R. E.; Moore, K. E.; Milton, A. S.

    1962-01-01

    An examination is made of the hypothesis that endogenous 5-hydroxytryptamine (5-HT) serves as a local hormone regulating ciliary activity in the lamellibranch gill. These cilia are sensitive to exogenous 5-HT and respond to it by a prompt, sustained, and reversible rise in beat frequency; at the same time the carbohydrate metabolism is stimulated, as described elsewhere. Control gill contains small but definite amounts of endogenous 5-HT according to bioassay, fluorometry, and chromatography. The amount can be increased markedly by exposing the isolated gill to the precursor substance 5-hydroxytryptophan but not l-tryptophan. As the tissue level of 5-HT rises, the spontaneous beat frequency also rises. Both remain elevated for hours and perhaps for days. The gill of Mytilus edulis is richer than the gill of Modiolus demissus in both endogenous 5-HT and effective 5-hydroxytryptophan decarboxylase activity. Modiolus gill lacks the 5-hydroxyindole oxidase by which Mytilus gill destroys 5-HT. What if any mechanism exists in Modiolus for degrading 5-HT is not known, but monoamine oxidase is not present. The 5-HT content of Mytilus and Modiolus gill cannot be modified by treatment with reserpine or α-methyl-dopa. Which cells of the gill synthesize and destroy 5-HT has not been established, but these observations support the concept that the physiological activity of lamellibranch gill cilia is controlled by a serotonergic mechanism. PMID:13949402

  3. The Rickettsia Endosymbiont of Ixodes pacificus Contains All the Genes of De Novo Folate Biosynthesis

    PubMed Central

    Bodnar, James; Mortazavi, Bobak; Laurent, Timothy; Deason, Jeff; Thephavongsa, Khanhkeo; Zhong, Jianmin

    2015-01-01

    Ticks and other arthropods often are hosts to nutrient providing bacterial endosymbionts, which contribute to their host’s fitness by supplying nutrients such as vitamins and amino acids. It has been detected, in our lab, that Ixodes pacificus is host to Rickettsia species phylotype G021. This endosymbiont is predominantly present, and 100% maternally transmitted in I. pacificus. To study roles of phylotype G021 in I. pacificus, bioinformatic and molecular approaches were carried out. MUMmer genome alignments of whole genome sequence of I. scapularis, a close relative to I. pacificus, against completely sequenced genomes of R. bellii OSU85-389, R. conorii, and R. felis, identified 8,190 unique sequences that are homologous to Rickettsia sequences in the NCBI Trace Archive. MetaCyc metabolic reconstructions revealed that all folate gene orthologues (folA, folC, folE, folKP, ptpS) required for de novo folate biosynthesis are present in the genome of Rickettsia buchneri in I. scapularis. To examine the metabolic capability of phylotype G021 in I. pacificus, genes of the folate biosynthesis pathway of the bacterium were PCR amplified using degenerate primers. BLAST searches identified that nucleotide sequences of the folA, folC, folE, folKP, and ptpS genes possess 98.6%, 98.8%, 98.9%, 98.5% and 99.0% identity respectively to the corresponding genes of Rickettsia buchneri. Phylogenetic tree constructions show that the folate genes of phylotype G021 and homologous genes from various Rickettsia species are monophyletic. This study has shown that all folate genes exist in the genome of Rickettsia species phylotype G021 and that this bacterium has the genetic capability for de novo folate synthesis. PMID:26650541

  4. EDITORIAL: Award for Patrick Gill

    NASA Astrophysics Data System (ADS)

    Hauptmann, Peter

    2007-12-01

    On behalf of the journal I would like to congratulate Professor Patrick Gill, a long-serving member of the Editorial Board for Measurement Science and Technology, who has been awarded the prestigious Institute of Physics Young medal and prize for world-leading contributions to optical frequency metrology. He is recognized as the UK leader in the quest for very accurate optical clocks. Professor Gill's work is concerned with the development of cold trapped ion systems as optical frequency standards with potential for future redefinition of the SI second, and the frequency metrology needed to relate optical and microwave standards to high accuracy. Interested readers may wish to read a short review of the wider state-of-the-art development of single cold trapped ion frequency standards, coupled with a more detailed account of results achieved at the National Physical Laboratory, written by Professor Gill and co-workers from NPL: ''Trapped ion optical frequency standards'' by P Gill, G P Barwood, H A Klein, G Huang, S A Webster, P J Blythe, K Hosaka, S N Lea and H S Margolis 2003 Meas. Sci. Technol. 14 (8) 1174-86 He was one of the very early developers of the frequency comb idea, and in 2004 he led an experiment where the femtosecond laser frequency comb measured the prototype optical clock frequency, based on a strontium-ion optical transition, with accuracy close to the capability of the best caesium microwave clocks. Once again I congratulate Professor Gill and wish him every success for his future work.

  5. Histopathological and bacterial study of Persian sturgeon fry, Acipenser persicus (Borodin, 1897) exposed to copper sulfate and potassium permanganate.

    PubMed

    Moshtaghi, Batol; Khara, Hossein; Pazhan, Zabiyollah; Shenavar, Alireza

    2016-09-01

    Persian sturgeon frys were exposed to different concentrations of copper sulfate and potassium permanganate in order to the evaluation of their impacts on bacterial load of skin, gill and surrounding water and also the histopathological alternations of gill tissue. For this purpose, the sublethal doses were determined after a pre-test and then the experiment was done in 4 (for copper sulfate: 0.07, 0.14, 026 and 0.5 mg/l) and 5 (for potassium permanganate: 0.07, 0.14, 026, 0.5 and 1 mg/l) treatments with three replicates inside the glass aquaria. Also, one group without disinfecting drug was considered as control for each experiment. The microbial and histopathological investigations were done after 96 h exposure. According to our results, a range of histopathological alternations were observed in gills tissue including mucus coagulation and secretion, hyperplasia, lamellar necrosis, hyperplasia, lamellar adhesion, haemorrhage, thickening of secondary lamellae, hypertrophy of supporter cartilage, clubbing of gill lamellae and sliming of primary lamellae. The severity of these alternations increased with increasing of the doses of the copper sulfate and potassium permanganate. The bacterial load (CFU/g) of gill, skin and surrounding water was lower in 0.07 mg/l copper sulfate treatment and 1 mg/l potassium permanganate treatment (P < 0.05) than in other treatments. In conclusion, our results showed that the certain doses of the copper sulfate and potassium permanganate have disinfecting effects on bacterial load of gill, skin and surrounding water, although this is along with some histopathological alternations. Also, it seems that the copper sulfate has higher disinfecting power than potassium permanganate.

  6. Evidence for the retention of two evolutionary distinct plastids in dinoflagellates with diatom endosymbionts.

    PubMed

    Hehenberger, Elisabeth; Imanian, Behzad; Burki, Fabien; Keeling, Patrick J

    2014-09-01

    Dinoflagellates harboring diatom endosymbionts (termed "dinotoms") have undergone a process often referred to as "tertiary endosymbiosis"--the uptake of algae containing secondary plastids and integration of those plastids into the new host. In contrast to other tertiary plastids, and most secondary plastids, the endosymbiont of dinotoms is distinctly less reduced, retaining a number of cellular features, such as their nucleus and mitochondria and others, in addition to their plastid. This has resulted in redundancy between host and endosymbiont, at least between some mitochondrial and cytosolic metabolism, where this has been investigated. The question of plastidial redundancy is particularly interesting as the fate of the host dinoflagellate plastid is unclear. The host cytosol possesses an eyespot that has been postulated to be a remnant of the ancestral peridinin plastid, but this has not been tested, nor has its possible retention of plastid functions. To investigate this possibility, we searched for plastid-associated pathways and functions in transcriptomic data sets from three dinotom species. We show that the dinoflagellate host has indeed retained genes for plastid-associated pathways and that these genes encode targeting peptides similar to those of other dinoflagellate plastid-targeted proteins. Moreover, we also identified one gene encoding an essential component of the dinoflagellate plastid protein import machinery, altogether suggesting the presence of a functioning plastid import system in the host, and by extension a relict plastid. The presence of the same plastid-associated pathways in the endosymbiont also extends the known functional redundancy in dinotoms, further confirming the unusual state of plastid integration in this group of dinoflagellates. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. The arthropod, but not the vertebrate host or its environment, dictates bacterial community composition of fleas and ticks

    PubMed Central

    Hawlena, Hadas; Rynkiewicz, Evelyn; Toh, Evelyn; Alfred, Andrew; Durden, Lance A; Hastriter, Michael W; Nelson, David E; Rong, Ruichen; Munro, Daniel; Dong, Qunfeng; Fuqua, Clay; Clay, Keith

    2013-01-01

    Bacterial community composition in blood-sucking arthropods can shift dramatically across time and space. We used 16S rRNA gene amplification and pyrosequencing to investigate the relative impact of vertebrate host-related, arthropod-related and environmental factors on bacterial community composition in fleas and ticks collected from rodents in southern Indiana (USA). Bacterial community composition was largely affected by arthropod identity, but not by the rodent host or environmental conditions. Specifically, the arthropod group (fleas vs ticks) determined the community composition of bacteria, where bacterial communities of ticks were less diverse and more dependent on arthropod traits—especially tick species and life stage—than bacterial communities of fleas. Our data suggest that both arthropod life histories and the presence of arthropod-specific endosymbionts may mask the effects of the vertebrate host and its environment. PMID:22739493

  8. Effects of Hydrogen Sulfide on Bacterial Communities on the Surface of Galatheid Crab, Shinkaia crosnieri, and in a Bacterial Mat Cultured in Rearing Tanks

    PubMed Central

    Konishi, Masaaki; Watsuji, Tomo-o; Nakagawa, Satoshi; Hatada, Yuji; Takai, Ken; Toyofuku, Takashi

    2013-01-01

    To investigate the effects of H2S on the bacterial consortia on the galatheid crab, Shinkaia crosnieri, crabs of this species were cultivated in the laboratory under two different conditions, with and without hydrogen sulfide feeding. We developed a novel rearing tank system equipped with a feedback controller using a semiconductor sensor for hydrogen sulfide feeding. H2S aqueous concentration was successfully maintained between 5 to 40 μM for 80 d with the exception of brief periods of mechanical issues. According to real-time PCR analysis, the numbers of copies of partial 16S rRNA gene of an episymbiont of the crabs with H2S feeding was three orders of magnitude larger than that without feeding. By phylogenetic analysis of partial 16S rRNA gene, we detected several clones related to symbionts of deep sea organisms in Alphaproteobacteria, Gammaproteobacteria, Epsilonproteobacteria, and Flavobacteria, from a crab with H2S feeding. The symbiont-related clones were grouped into four different groups: Gammaproteobacteria in marine epibiont group I, Sulfurovum-affiliated Epsilonproteobacteria, Osedax mucofloris endosymbiont-affiliated Epsilonproteobacteria, and Flavobacteria closely related to CFB group bacterial epibiont of Rimicaris exoculata. The other phylotypes were related to Roseobacter, and some Flavobacteria, seemed to be free-living psychrophiles. Furthermore, white biofilm occurred on the surface of the rearing tank with H2S feeding. The biofilms contained various phylotypes of Gammaproteobacteria, Epsilonproteobacteria, and Flavobacteria, as determined by phylogenetic analysis. Interestingly, major clones were related to symbionts of Alviniconcha sp. type 2 and to endosymbionts of Osedax mucofloris, in Epsilonproteobacteria. PMID:23080406

  9. Manila clams from Hg polluted sediments of Marano and Grado lagoons (Italy) harbor detoxifying Hg resistant bacteria in soft tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldi, Franco, E-mail: baldi@unive.it; Gallo, Michele; Marchetto, Davide

    2013-08-15

    A mechanism of mercury detoxification has been suggested by a previous study on Hg bioaccumulation in Manila clams (Ruditapes philippinarum) in the polluted Marano and Grado lagoons and in this study we demonstrate that this event could be partly related to the detoxifying activities of Hg-resistant bacteria (MRB) harbored in clam soft tissues. Therefore, natural clams were collected in six stations during two different periods (winter and spring) from Marano and Grado Lagoons. Siphons, gills and hepatopancreas from acclimatized clams were sterile dissected to isolate MRB. These anatomical parts were glass homogenized or used for whole, and they were lyingmore » on a solid medium containing 5 mg l{sup −1} HgCl{sub 2} and incubated at 30 °C. A total of fourteen bacterial strains were isolated and were identified by 16S rDNA sequencing and analysis, revealing that strains were representative of eight bacterial genera, four of which were Gram-positive (Enterococcus, Bacillus, Jeotgalicoccus and Staphylococcus) and other four were Gram-negative (Stenotrophomonas, Vibrio, Raoultella and Enterobacter). Plasmids and merA genes were found and their sequences determined. Fluorescence in situ hybridization (FISH) technique shows the presence of Firmicutes, Actinobacteria and Gammaproteobacteria by using different molecular probes in siphon and gills. Bacterial clumps inside clam flesh were observed and even a Gram-negative endosymbiont was disclosed by transmission electronic microscope inside clam cells. Bacteria harbored in cavities of soft tissue have mercury detoxifying activity. This feature was confirmed by the determination of mercuric reductase in glass-homogenized siphons and gills. -- Highlights: ► We isolated Gram-positive and Gram-negative Hg resistant strains from soft tissues of Ruditapes philippinarum. ► We identify 14 mercury resistant strains by 16S rRNA gene sequences. ► Bacteria in siphon and gill tissues of clams were observed by TEM and

  10. Jellyfish as vectors of bacterial disease for farmed salmon (Salmo salar).

    PubMed

    Ferguson, Hugh W; Delannoy, Christian M J; Hay, Stephen; Nicolson, James; Sutherland, David; Crumlish, Margaret

    2010-05-01

    Swarms or blooms of jellyfish are increasingly problematic and can result in high mortality rates of farmed fish. Small species of jellyfish, such as Phialella quadrata (13 mm in diameter), are capable of passing through the mesh of sea cages and being sucked into the mouth of fish during respiration. Results of the current study show that the initial damage to gills of farmed Atlantic salmon, likely produced by nematocyst-derived toxins from the jellyfish, was compounded by secondary bacterial infection with Tenacibaculum maritimum. Results also demonstrate that these filamentous bacteria were present on the mouth of the jellyfish and that their DNA sequences were almost identical to those of bacteria present on the salmon gills. This suggests that the bacterial lesions were not the result of an opportunistic infection of damaged tissue, as previously thought. Instead, P. quadrata is probably acting as a vector for this particular bacterial pathogen, and it is the first time that evidence to support such a link has been presented. No prior literature describing the presence of bacteria associated with jellyfish, except studies about their decay, could be found. It is not known if all jellyfish of this and other species carry similar bacteria or the relationship to each other. Their source, the role they play under other circumstances, and indeed whether the jellyfish were themselves diseased are also not known. The high proteolytic capabilities of T. maritimum mean that partially digested gill tissues were readily available to the jellyfish, which rely heavily on intracellular digestion for their nutrition.

  11. Detection of human bacterial pathogens in ticks collected from Louisiana black bears (Ursus americanus luteolus)

    PubMed Central

    Leydet, Brian F.; Liang, Fang-Ting

    2013-01-01

    There are 4 major human-biting tick species in the northeastern United States, which include: Amblyomma americanum, Amblyomma maculatum, Dermacentor variabilis, and Ixodes scapularis. The black bear is a large mammal that has been shown to be parasitized by all the aforementioned ticks. We investigated the bacterial infections in ticks collected from Louisiana black bears (Ursus americanus subspecies luteolus). Eighty-six ticks were collected from 17 black bears in Louisiana from June 2010 to March 2011. All 4 common human-biting tick species were represented. Each tick was subjected to polymerase chain reaction (PCR) targeting select bacterial pathogens and symbionts. Bacterial DNA was detected in 62% of ticks (n=53). Rickettsia parkeri, the causative agent of an emerging spotted fever group rickettsiosis, was identified in 66% of A. maculatum, 28% of D. variabilis, and 11% of I. scapularis. The Lyme disease bacterium, Borrelia burgdorferi, was detected in 2 I. scapularis, while one Am. americanum was positive for Borrelia bissettii, a putative human pathogen. The rickettsial endosymbionts Candidatus Rickettsia andeanae, rickettsial endosymbiont of I. scapularis, and Rickettsia amblyommii were detected in their common tick hosts at 21%, 39%, and 60%, respectively. All ticks were PCR-negative for Anaplasma phagocytophilum, Ehrlichia spp., and Babesia microti. This is the first reported detection of R. parkeri in vector ticks in Louisiana; we also report the novel association of R. parkeri with I. scapularis. Detection of both R. parkeri and Bo. burgdorferi in their respective vectors in Louisiana demands further investigation to determine potential for human exposure to these pathogens. PMID:23415850

  12. Effects of co-occurring Wolbachia and Spiroplasma endosymbionts on the Drosophila immune response against insect pathogenic and non-pathogenic bacteria.

    PubMed

    Shokal, Upasana; Yadav, Shruti; Atri, Jaishri; Accetta, Julia; Kenney, Eric; Banks, Katherine; Katakam, Akash; Jaenike, John; Eleftherianos, Ioannis

    2016-02-09

    Symbiotic interactions between microbes and animals are common in nature. Symbiotic organisms are particularly common in insects and, in some cases, they may protect their hosts from pathogenic infections. Wolbachia and Spiroplasma endosymbionts naturally inhabit various insects including Drosophila melanogaster fruit flies. Therefore, this symbiotic association is considered an excellent model to investigate whether endosymbiotic bacteria participate in host immune processes against certain pathogens. Here we have investigated whether the presence of Wolbachia alone or together with Spiroplasma endosymbionts in D. melanogaster adult flies affects the immune response against the virulent insect pathogen Photorhabdus luminescens and against non-pathogenic Escherichia coli bacteria. We found that D. melanogaster flies carrying no endosymbionts, those carrying both Wolbachia and Spiroplasma, and those containing Wolbachia only had similar survival rates after infection with P. luminescens or Escherichia coli bacteria. However, flies carrying both endosymbionts or Wolbachia only contained higher numbers of E. coli cells at early time-points post infection than flies without endosymbiotic bacteria. Interestingly, flies containing Wolbachia only had lower titers of this endosymbiont upon infection with the pathogen P. luminescens than uninfected flies of the same strain. We further found that the presence of Wolbachia and Spiroplasma in D. melanogaster up-regulated certain immune-related genes upon infection with P. luminescens or E. coli bacteria, but it failed to alter the phagocytic ability of the flies toward E. coli inactive bioparticles. Our results suggest that the presence of Wolbachia and Spiroplasma in D. melanogaster can modulate immune signaling against infection by certain insect pathogenic and non-pathogenic bacteria. Results from such studies are important for understanding the molecular basis of the interactions between endosymbiotic bacteria of insects

  13. Post-capture immune gene expression studies in the deep-sea hydrothermal vent mussel Bathymodiolus azoricus acclimatized to atmospheric pressure.

    PubMed

    Barros, Inês; Divya, Baby; Martins, Inês; Vandeperre, Frederic; Santos, Ricardo Serrão; Bettencourt, Raul

    2015-01-01

    Deep-sea hydrothermal vents are extreme habitats that are distributed worldwide in association with volcanic and tectonic events, resulting thus in the establishment of particular environmental conditions, in which high pressure, steep temperature gradients, and potentially toxic concentrations of sulfur, methane and heavy metals constitute driving factors for the foundation of chemosynthetic-based ecosystems. Of all the different macroorganisms found at deep-sea hydrothermal vents, the mussel Bathymodiolus azoricus is the most abundant species inhabiting the vent ecosystems from the Mid-Atlantic Ridge (MAR). In the present study, the effect of long term acclimatization at atmospheric pressure on host-symbiotic associations were studied in light of the ensuing physiological adaptations from which the immune and endosymbiont gene expressions were concomitantly quantified by means of real-time PCR. The expression of immune genes at 0 h, 12 h, 24 h, 36 h, 48 h, 72 h, 1 week and 3 weeks post-capture acclimatization was investigated and their profiles compared across the samples tested. The gene signal distribution for host immune and bacterial genes followed phasic changes in gene expression at 24 h, 1 week and 3 weeks acclimatization when compared to other time points tested during this temporal expression study. Analyses of the bacterial gene expression also suggested that both bacterial density and activity could contribute to shaping the intricate association between endosymbionts and host immune genes whose expression patterns seem to be concomitant at 1 week acclimatization. Fluorescence in situ hybridization was used to assess the distribution and prevalence of endosymbiont bacteria within gill tissues confirming the gradual loss of sulfur-oxidizing (SOX) and methane-oxidizing (MOX) bacteria during acclimatization. The present study addresses the deep-sea vent mussel B. azoricus as a model organism to study how acclimatization in aquaria and the

  14. Oxidative stress responses in gills of tilapia (Oreochromis niloticus) at different salinities

    NASA Astrophysics Data System (ADS)

    Handayani, Kiki Syaputri; Novianty, Zahra; Saputri, Miftahul Rohmah; Irawan, Bambang; Soegianto, Agoes

    2017-08-01

    The objective of present study is to evaluate the impact of different salinities on the levels of CAT, GSH and MDA of the gills of Nile tilapia (Oreochromis niloticus). Nile tilapia was treated by exposure to salinities concentration 0 ‰, 5 ‰ and 10 ‰. Research models were weakened and sacrificed, then took the left and right sides of the gills. The result of gills homogenity was centrifuged for supernatan, then supernatan was proceed with testing levels of CAT, GSH and MDA by ELISA assay methods. The levels of CAT in gills were significantly higher at 10 ‰ than at 5 ‰ and 0 ‰. The levels of GSH in gills were significantly higher at 0 ‰ than 5 ‰. The levels of GSH in gills at 5 ‰ and 10 ‰ salinities were not significantly different. The levels of MDA in gills at salinity 10 ‰ and 5 ‰ were higher than in control gills at 0 ‰ salinities. This occurs because the salinity of 10 ‰ salinity was optimal for live of fish tilapia. In conclusion, salinity impact the increasing of CAT, GSH, and MDA levels in gills of Nile tilapia.

  15. Microbial Distribution and Abundance in the Digestive System of Five Shipworm Species (Bivalvia: Teredinidae)

    PubMed Central

    Betcher, Meghan A.; Fung, Jennifer M.; Han, Andrew W.; O’Connor, Roberta; Seronay, Romell; Concepcion, Gisela P.; Distel, Daniel L.; Haygood, Margo G.

    2012-01-01

    Marine bivalves of the family Teredinidae (shipworms) are voracious consumers of wood in marine environments. In several shipworm species, dense communities of intracellular bacterial endosymbionts have been observed within specialized cells (bacteriocytes) of the gills (ctenidia). These bacteria are proposed to contribute to digestion of wood by the host. While the microbes of shipworm gills have been studied extensively in several species, the abundance and distribution of microbes in the digestive system have not been adequately addressed. Here we use Fluorescence In-Situ Hybridization (FISH) and laser scanning confocal microscopy with 16S rRNA directed oligonucleotide probes targeting all domains, domains Bacteria and Archaea, and other taxonomic groups to examine the digestive microbiota of 17 specimens from 5 shipworm species (Bankia setacea, Lyrodus pedicellatus, Lyrodus massa, Lyrodus sp. and Teredo aff. triangularis). These data reveal that the caecum, a large sac-like appendage of the stomach that typically contains large quantities of wood particles and is considered the primary site of wood digestion, harbors only very sparse microbial populations. However, a significant number of bacterial cells were observed in fecal pellets within the intestines. These results suggest that due to low abundance, bacteria in the caecum may contribute little to lignocellulose degradation. In contrast, the comparatively high population density of bacteria in the intestine suggests a possible role for intestinal bacteria in the degradation of lignocellulose. PMID:23028923

  16. Microbial distribution and abundance in the digestive system of five shipworm species (Bivalvia: Teredinidae).

    PubMed

    Betcher, Meghan A; Fung, Jennifer M; Han, Andrew W; O'Connor, Roberta; Seronay, Romell; Concepcion, Gisela P; Distel, Daniel L; Haygood, Margo G

    2012-01-01

    Marine bivalves of the family Teredinidae (shipworms) are voracious consumers of wood in marine environments. In several shipworm species, dense communities of intracellular bacterial endosymbionts have been observed within specialized cells (bacteriocytes) of the gills (ctenidia). These bacteria are proposed to contribute to digestion of wood by the host. While the microbes of shipworm gills have been studied extensively in several species, the abundance and distribution of microbes in the digestive system have not been adequately addressed. Here we use Fluorescence In-Situ Hybridization (FISH) and laser scanning confocal microscopy with 16S rRNA directed oligonucleotide probes targeting all domains, domains Bacteria and Archaea, and other taxonomic groups to examine the digestive microbiota of 17 specimens from 5 shipworm species (Bankia setacea, Lyrodus pedicellatus, Lyrodus massa, Lyrodus sp. and Teredo aff. triangularis). These data reveal that the caecum, a large sac-like appendage of the stomach that typically contains large quantities of wood particles and is considered the primary site of wood digestion, harbors only very sparse microbial populations. However, a significant number of bacterial cells were observed in fecal pellets within the intestines. These results suggest that due to low abundance, bacteria in the caecum may contribute little to lignocellulose degradation. In contrast, the comparatively high population density of bacteria in the intestine suggests a possible role for intestinal bacteria in the degradation of lignocellulose.

  17. Aluminum bioconcentration at the gill surface of juvenile Atlantic salmon in acidic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkinson, K.J.; Campbell, P.G.C.

    1993-11-01

    Aluminum uptake by Atlantic salmon was examined in the laboratory at pH 4.5, under conditions similar to those found in running waters on the Canadian Precambrian Shield during spring snowmelt. Gill uptake of Al was slow, approaching steady state only after 3 d of exposure. The greatest fraction of gill-associated Al was sorbed not to the gill surface itself, but to the gill mucus. Mucus appears to retard Al transport from solution to the membrane surface, thus delaying the acute biological response of the fish. Strongly associated gill [Al] was never greater than 10% of total gill Al in themore » early stages of the experiment indicated that this Al fraction could eventually exceed 50% of the total gill Al. In contrast to uptake, depuration of Al was extremely rapid; total gill [Al] of fish exposed to Al (pH 4.5) for 2 d decreased by 60% after only 2 h in an Al-free medium. The effect of fluoride complexation on Al bioconcentration was also examined. For equivalent Al[sup 3]+ concentrations, sorption of Al to the gill surface was higher in the presence of fluoride than in its absence, which suggests the formation of mixed ligand [F-Al-L-gill] complexes at the gill surface.« less

  18. Physical gills in diving insects and spiders: theory and experiment.

    PubMed

    Seymour, Roger S; Matthews, Philip G D

    2013-01-15

    Insects and spiders rely on gas-filled airways for respiration in air. However, some diving species take a tiny air-store bubble from the surface that acts as a primary O(2) source and also as a physical gill to obtain dissolved O(2) from the water. After a long history of modelling, recent work with O(2)-sensitive optodes has tested the models and extended our understanding of physical gill function. Models predict that compressible gas gills can extend dives up to more than eightfold, but this is never reached, because the animals surface long before the bubble is exhausted. Incompressible gas gills are theoretically permanent. However, neither compressible nor incompressible gas gills can support even resting metabolic rate unless the animal is very small, has a low metabolic rate or ventilates the bubble's surface, because the volume of gas required to produce an adequate surface area is too large to permit diving. Diving-bell spiders appear to be the only large aquatic arthropods that can have gas gill surface areas large enough to supply resting metabolic demands in stagnant, oxygenated water, because they suspend a large bubble in a submerged web.

  19. Genome sequence of the Drosophila melanogaster male-killing Spiroplasma strain MSRO endosymbiont.

    PubMed

    Paredes, Juan C; Herren, Jeremy K; Schüpfer, Fanny; Marin, Ray; Claverol, Stéphane; Kuo, Chih-Horng; Lemaitre, Bruno; Béven, Laure

    2015-03-31

    Spiroplasmas are helical and motile members of a cell wall-less eubacterial group called Mollicutes. Although all spiroplasmas are associated with arthropods, they exhibit great diversity with respect to both their modes of transmission and their effects on their hosts; ranging from horizontally transmitted pathogens and commensals to endosymbionts that are transmitted transovarially (i.e., from mother to offspring). Here we provide the first genome sequence, along with proteomic validation, of an endosymbiotic inherited Spiroplasma bacterium, the Spiroplasma poulsonii MSRO strain harbored by Drosophila melanogaster. Comparison of the genome content of S. poulsonii with that of horizontally transmitted spiroplasmas indicates that S. poulsonii has lost many metabolic pathways and transporters, demonstrating a high level of interdependence with its insect host. Consistent with genome analysis, experimental studies showed that S. poulsonii metabolizes glucose but not trehalose. Notably, trehalose is more abundant than glucose in Drosophila hemolymph, and the inability to metabolize trehalose may prevent S. poulsonii from overproliferating. Our study identifies putative virulence genes, notably, those for a chitinase, the H2O2-producing glycerol-3-phosphate oxidase, and enzymes involved in the synthesis of the eukaryote-toxic lipid cardiolipin. S. poulsonii also expresses on the cell membrane one functional adhesion-related protein and two divergent spiralin proteins that have been implicated in insect cell invasion in other spiroplasmas. These lipoproteins may be involved in the colonization of the Drosophila germ line, ensuring S. poulsonii vertical transmission. The S. poulsonii genome is a valuable resource to explore the mechanisms of male killing and symbiont-mediated protection, two cardinal features of many facultative endosymbionts. Most insect species, including important disease vectors and crop pests, harbor vertically transmitted endosymbiotic bacteria

  20. Comparison of different methods for isolation of bacterial DNA from retail oyster tissues

    USDA-ARS?s Scientific Manuscript database

    Oysters are filter-feeders that bio-accumulate bacteria in water while feeding. To evaluate the bacterial genomic DNA extracted from retail oyster tissues, including the gills and digestive glands, four isolation methods were used. Genomic DNA extraction was performed using the Allmag™ Blood Genomic...

  1. Molecular genetics of the Wolbachia endosymbionts that infect the parasitoids of tephritid fruit flies.

    USDA-ARS?s Scientific Manuscript database

    Limited information exists on the molecular genetics of the Wolbachia endosymbionts that infect the parasitoids of tephritid fruit flies. A better understanding of the bacteria could allow sex ratio manipulations that would improve the mass-rearing of natural enemies. Scientists at the Center for Me...

  2. Pederin-type pathways of uncultivated bacterial symbionts: analysis of o-methyltransferases and generation of a biosynthetic hybrid.

    PubMed

    Zimmermann, Katrin; Engeser, Marianne; Blunt, John W; Munro, Murray H G; Piel, Jörn

    2009-03-04

    The complex polyketide pederin is a potent antitumor agent isolated from Paederus spp. rove beetles. We have previously isolated a set of genes from a bacterial endosymbiont that are good candidates for pederin biosynthesis. To biochemically study this pathway, we expressed three methyltransferases from the putative pederin pathway and used the partially unmethylated analogue mycalamide A from the marine sponge Mycale hentscheli as test substrate. Analysis by high-resolution MS/MS and NMR revealed that PedO regiospecifically methylates the marine compound to generate the nonnatural hybrid compound 18-O-methylmycalamide A with increased cytotoxicity. To our knowledge, this is the first biochemical evidence that invertebrates can obtain defensive complex polyketides from bacterial symbionts.

  3. Identification of spider-mite species and their endosymbionts using multiplex PCR.

    PubMed

    Zélé, Flore; Weill, Mylène; Magalhães, Sara

    2018-02-01

    Spider mites of the genus Tetranychidae are severe crop pests. In the Mediterranean a few species coexist, but they are difficult to identify based on morphological characters. Additionally, spider mites often harbour several species of endosymbiotic bacteria, which may affect the biology of their hosts. Here, we propose novel, cost-effective, multiplex diagnostic methods allowing a quick identification of spider-mite species as well as of the endosymbionts they carry. First, we developed, and successfully multiplexed in a single PCR, primers to identify Tetranychus urticae, T. evansi and T. ludeni, some of the most common tetranychids found in southwest Europe. Moreover, we demonstrated that this method allows detecting multiple species in a single pool, even at low frequencies (up to 1/100), and can be used on entire mites without DNA extraction. Second, we developed another set of primers to detect spider-mite endosymbionts, namely Wolbachia, Cardinium and Rickettsia in a multiplex PCR, along with a generalist spider-mite primer to control for potential failure of DNA amplification in each PCR. Overall, our method represents a simple, cost-effective and reliable method to identify spider-mite species and their symbionts in natural field populations, as well as to detect contaminations in laboratory rearings. This method may easily be extended to other species.

  4. Kullback Leibler divergence in complete bacterial and phage genomes

    PubMed Central

    Akhter, Sajia; Kashef, Mona T.; Ibrahim, Eslam S.; Bailey, Barbara

    2017-01-01

    The amino acid content of the proteins encoded by a genome may predict the coding potential of that genome and may reflect lifestyle restrictions of the organism. Here, we calculated the Kullback–Leibler divergence from the mean amino acid content as a metric to compare the amino acid composition for a large set of bacterial and phage genome sequences. Using these data, we demonstrate that (i) there is a significant difference between amino acid utilization in different phylogenetic groups of bacteria and phages; (ii) many of the bacteria with the most skewed amino acid utilization profiles, or the bacteria that host phages with the most skewed profiles, are endosymbionts or parasites; (iii) the skews in the distribution are not restricted to certain metabolic processes but are common across all bacterial genomic subsystems; (iv) amino acid utilization profiles strongly correlate with GC content in bacterial genomes but very weakly correlate with the G+C percent in phage genomes. These findings might be exploited to distinguish coding from non-coding sequences in large data sets, such as metagenomic sequence libraries, to help in prioritizing subsequent analyses. PMID:29204318

  5. Kullback Leibler divergence in complete bacterial and phage genomes.

    PubMed

    Akhter, Sajia; Aziz, Ramy K; Kashef, Mona T; Ibrahim, Eslam S; Bailey, Barbara; Edwards, Robert A

    2017-01-01

    The amino acid content of the proteins encoded by a genome may predict the coding potential of that genome and may reflect lifestyle restrictions of the organism. Here, we calculated the Kullback-Leibler divergence from the mean amino acid content as a metric to compare the amino acid composition for a large set of bacterial and phage genome sequences. Using these data, we demonstrate that (i) there is a significant difference between amino acid utilization in different phylogenetic groups of bacteria and phages; (ii) many of the bacteria with the most skewed amino acid utilization profiles, or the bacteria that host phages with the most skewed profiles, are endosymbionts or parasites; (iii) the skews in the distribution are not restricted to certain metabolic processes but are common across all bacterial genomic subsystems; (iv) amino acid utilization profiles strongly correlate with GC content in bacterial genomes but very weakly correlate with the G+C percent in phage genomes. These findings might be exploited to distinguish coding from non-coding sequences in large data sets, such as metagenomic sequence libraries, to help in prioritizing subsequent analyses.

  6. The nephridial hypothesis of the gill slit origin.

    PubMed

    Ezhova, Olga V; Malakhov, Vladimir V

    2015-12-01

    Metameric gill slits are mysterious structures, unique for Chordata and Hemichordata, and also, perhaps, for the extinct Cambrian Calcichordata. There is a discussed hypothesis of the gill slits origin from the metameric nephridia. According to the hypothesis, the hypothetical metameric deuterostome ancestor had in each segment a pair of coelomoducts and a pair of intestinal pockets. In the anterior segments, the coelomoducts have fused with the intestinal pockets. As a result, each nephridium opened both into the gut and into the environment. Then the dissepiments and funnels reduced in all segments except the collar one. Thus, in recent enteropneusts, only the first pair of gill slits keeps the ancestral arrangement communicating at the same time with the gut, with the environment, and with the coelom of the preceding (collar) segment. In the anterior part of the branchio-genital trunk region of enteropneusts, the metameric intestinal pockets remained, as well as the metameric coelomoducts functioning as the ducts of the metameric gonads, i.e., as the gonoducts. The consequence of the hypothesis is that the metameric gill pores originate from the metameric excreting pores, and the metameric branchial sacs originate from the metameric endodermal pockets of the gut fused with the coelomoducts. The metameric gill slits by themselves correspond with metameric openings connecting the gut with metameric intestinal pockets. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 647-652, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  7. Rapid activation of gill Na+,K+-ATPase in the euryhaline teleost Fundulus heteroclitus

    USGS Publications Warehouse

    Mancera, J.M.; McCormick, S.D.

    2000-01-01

    The rapid activation of gill Na+,K+-ATPase was analyzed in the mummichog (Fundulus heteroclitus) and Atlantic salmon (Salmo salar) transferred from low salinity (0.1 ppt) to high salinity (25-35 ppt). In parr and presmolt, Salmo salar gill Na+,K+-ATPase activity started to increase 3 days after transfer. Exposure of Fundulus heteroclitus to 35 ppt seawater (SW) induced a rise in gill Na+,K+-ATPase activity 3 hr after transfer. After 12 hr, the values dropped to initial levels but showed a second significant increase 3 days after transfer. The absence of detergent in the enzyme assay resulted in lower values of gill Na+,K+-ATPase, and the rapid increase after transfer to SW was not observed. Na+,K+-ATPase activity of gill filaments in vitro for 3 hr increased proportionally to the osmolality of the culture medium (600 mosm/kg > 500 mosm/kg > 300 mosm/kg). Osmolality of 800 mosm/kg resulted in lower gill Na+,K+-ATPase activity relative to 600 mosm/kg. Increasing medium osmolality to 600 mosm/kg with mannitol also increased gill Na+,K+-ATPase. Cycloheximide inhibited the increase in gill Na+,K+-ATPase activity observed in hyperosmotic medium in a dose-dependent manner (10-4 M > 10-5 M > 10-6 M). Actinomycin D or bumetanide in the culture (doses of 10-4 M, 10-5 M, and 10-6 M) did not affect gill Na+,K+-ATPase. Injection of fish with actinomycin D prior to gill organ culture, however, prevented the increase in gill Na+,K+-ATPase activity in hyperosmotic media. The results show a very rapid and transitory increase in gill Na+,K+-ATPase activity in the first hours after the transfer of Fundulus heteroclitus to SW that is dependent on translational and transcriptional processes. (C) 2000 Wiley-Liss, Inc.

  8. Evaluation of an in vitro cell assay to select attenuated bacterial mutants of Aeromonas hydrophila and Edwardsiella tarda to channel catfish

    USDA-ARS?s Scientific Manuscript database

    To evaluate the feasibility of using an in vitro cell assay to select attenuated bacterial mutants. Using catfish gill cells G1B, the feasibility of using an in vitro assay instead of in vivo virulence assay using live fish to select attenuated bacterial mutants was evaluated in this study. Pearson ...

  9. Short- and Long-term Evolutionary Dynamics of Bacterial Insertion Sequences: Insights from Wolbachia Endosymbionts

    PubMed Central

    Cerveau, Nicolas; Leclercq, Sébastien; Leroy, Elodie; Bouchon, Didier; Cordaux, Richard

    2011-01-01

    Transposable elements (TE) are one of the major driving forces of genome evolution, raising the question of the long-term dynamics underlying their evolutionary success. Long-term TE evolution can readily be reconstructed in eukaryotes, thanks to many degraded copies constituting genomic fossil records of past TE proliferations. By contrast, bacterial genomes usually experience high sequence turnover and short TE retention times, thereby obscuring ancient TE evolutionary patterns. We found that Wolbachia bacterial genomes contain 52–171 insertion sequence (IS) TEs. IS account for 11% of Wolbachia wRi, which is one of the highest IS genomic coverage reported in prokaryotes to date. We show that many IS groups are currently expanding in various Wolbachia genomes and that IS horizontal transfers are frequent among strains, which can explain the apparent synchronicity of these IS proliferations. Remarkably, >70% of Wolbachia IS are nonfunctional. They constitute an unusual bacterial IS genomic fossil record providing direct empirical evidence for a long-term IS evolutionary dynamics following successive periods of intense transpositional activity. Our results show that comprehensive IS annotations have the potential to provide new insights into prokaryote TE evolution and, more generally, prokaryote genome evolution. Indeed, the identification of an important IS genomic fossil record in Wolbachia demonstrates that IS elements are not always of recent origin, contrary to the conventional view of TE evolution in prokaryote genomes. Our results also raise the question whether the abundance of IS fossils is specific to Wolbachia or it may be a general, albeit overlooked, feature of prokaryote genomes. PMID:21940637

  10. Short- and long-term evolutionary dynamics of bacterial insertion sequences: insights from Wolbachia endosymbionts.

    PubMed

    Cerveau, Nicolas; Leclercq, Sébastien; Leroy, Elodie; Bouchon, Didier; Cordaux, Richard

    2011-01-01

    Transposable elements (TE) are one of the major driving forces of genome evolution, raising the question of the long-term dynamics underlying their evolutionary success. Long-term TE evolution can readily be reconstructed in eukaryotes, thanks to many degraded copies constituting genomic fossil records of past TE proliferations. By contrast, bacterial genomes usually experience high sequence turnover and short TE retention times, thereby obscuring ancient TE evolutionary patterns. We found that Wolbachia bacterial genomes contain 52-171 insertion sequence (IS) TEs. IS account for 11% of Wolbachia wRi, which is one of the highest IS genomic coverage reported in prokaryotes to date. We show that many IS groups are currently expanding in various Wolbachia genomes and that IS horizontal transfers are frequent among strains, which can explain the apparent synchronicity of these IS proliferations. Remarkably, >70% of Wolbachia IS are nonfunctional. They constitute an unusual bacterial IS genomic fossil record providing direct empirical evidence for a long-term IS evolutionary dynamics following successive periods of intense transpositional activity. Our results show that comprehensive IS annotations have the potential to provide new insights into prokaryote TE evolution and, more generally, prokaryote genome evolution. Indeed, the identification of an important IS genomic fossil record in Wolbachia demonstrates that IS elements are not always of recent origin, contrary to the conventional view of TE evolution in prokaryote genomes. Our results also raise the question whether the abundance of IS fossils is specific to Wolbachia or it may be a general, albeit overlooked, feature of prokaryote genomes.

  11. Salinity dependent Na+-K+ATPase activity in gills of the euryhaline crab Chasmagnathus granulata.

    PubMed

    Schleich, C E; Goldemberg, L A; López Mañanes, A A

    2001-09-01

    The occurrence and response of Na+-K+ATPase specific activity to environmental salinity changes were studied in gill extracts of all of the gills of the euryhaline crab Chasmagnathus granulata from Mar Chiquita coastal lagoon (Buenos Aires Province, Argentina). All of the gills exhibited a salinity dependent Na+-K+ATPase activity, although the pattern of response to environmental salinity was different among gills. As described in other euryhaline crabs highest Na+-K+ATPase specific activity was found in posterior gills (6 to 8), which, with exception of gill 6, increased upon acclimation to reduced salinity. However, a high increase of activity also occurred in anterior gills (1 to 5) in diluted media. Furthermore, both short and long term differential changes of Na+-K+ATPase activity occurred among the gills after the transfer of crabs to reduced salinity. The fact that variations of Na+-K+ATPase activity in the gills were concomitant with the transition from osmoconformity to ionoregulation suggests that this enzyme is a component of the branchial ionoregulatory mechanisms at the biochemical level in this crab.

  12. Household economic modelsof gill net fishermen at Madura strait

    NASA Astrophysics Data System (ADS)

    Primyastanto, M.

    2018-04-01

    The purposes of this research was to analyze household economic models of gill net fishermen at Madura strait. 30 families of gillnet fishermenwere used for purposive sampling. Data analysis used descriptive qualitative and quantitative (regression analysis). Quantitative descriptive analysis was used to analyze research and compare to factors that affecting household economic models of gill net fishermen family. Research results showed tha thousehold economic models of gill net fishermen at Madura strait was production value level or fishermen revenue at sea was strongly influenced byp roduction asset production, education level, fuel, and work flow. Work flow rate of fishermen families affected by asset production, non fisheries workflow and number of male workforce. Non fishing income level was strongly influenced by non-fishery business assets, number of family members owned andnon-fishing work flow. Spending levels of gill net fishermen at Madura strait was affected by fishing income, non-fishing income, fishermen wife education and fishermen family members.

  13. The All-Rounder Sodalis: A New Bacteriome-Associated Endosymbiont of the Lygaeoid Bug Henestaris halophilus (Heteroptera: Henestarinae) and a Critical Examination of Its Evolution

    PubMed Central

    Silva, Francisco J.; Morin, Shai; Dettner, Konrad; Kuechler, Stefan Martin

    2017-01-01

    Abstract Hemipteran insects are well-known in their ability to establish symbiotic relationships with bacteria. Among them, heteropteran insects present an array of symbiotic systems, ranging from the most common gut crypt symbiosis to the more restricted bacteriome-associated endosymbiosis, which have only been detected in members of the superfamily Lygaeoidea and the family Cimicidae so far. Genomic data of heteropteran endosymbionts are scarce and have merely been analyzed from the Wolbachia endosymbiont in bed bug and a few gut crypt-associated symbionts in pentatomoid bugs. In this study, we present the first detailed genomic analysis of a bacteriome-associated endosymbiont of a phytophagous heteropteran, present in the seed bug Henestaris halophilus (Hemiptera: Heteroptera: Lygaeoidea). Using phylogenomics and genomics approaches, we have assigned the newly characterized endosymbiont to the Sodalis genus, named as Candidatus Sodalis baculum sp. nov. strain kilmister. In addition, our findings support the reunification of the Sodalis genus, currently divided into six different genera. We have also conducted comparative analyses between 15 Sodalis species that present different genome sizes and symbiotic relationships. These analyses suggest that Ca. Sodalis baculum is a mutualistic endosymbiont capable of supplying the amino acids tyrosine, lysine, and some cofactors to its host. It has a small genome with pseudogenes but no mobile elements, which indicates middle-stage reductive evolution. Most of the genes in Ca. Sodalis baculum are likely to be evolving under purifying selection with several signals pointing to the retention of the lysine/tyrosine biosynthetic pathways compared with other Sodalis. PMID:29036401

  14. Morphology and ventilatory function of gills in the carpet shark family Parascylliidae (Elasmobranchii, Orectolobiformes).

    PubMed

    Goto, Tomoaki; Shiba, Yojiro; Shibagaki, Kazuhiro; Nakaya, Kazuhiro

    2013-06-01

    We examined gill morphology and ventilatory function in the carpet shark family Parascylliidae using 14 preserved specimens of Parascyllium ferrugineum, P. variolatum, P. collare and Cirrhoscyllium japonicum, and two live specimens of P. ferrugineum and P. variolatum. Morphological examinations revealed eight morphological characteristics related to the fifth gill, based on comparisons with other elasmobranchs, viz. large fifth gill slit without gill filaments, anatomical modifications in the fourth ceratobranchial cartilage and coraco-branchialis muscle, and the hypaxialis muscle associated with the fifth gill arch. Ventilation examinations using dyed seawater and prey items showed different water flows through the gill slits for respiration and prey-capture actions. For respiration, water sucked into the mouth was expelled equally through the first to fourth gill slits via a "double-pump" action, there being no involvement of the fifth gill slit. In prey-capture, however, water sucked into the mouth was discharged only via the widely opened fifth gill slit. This form of water flow is similar to that in other benthic suction-feeding sharks (e.g., Chiloscyllium plagiosum), except for the active water discharge by wide expansion and contraction of the fifth parabranchial cavity. The latter is dependent upon the morphological modifications of the fourth and fifth gill arches, derived phylogenetically as a mechanistic suction specialization in Parascylliidae.

  15. A Profile of an Endosymbiont-enriched Fraction of the Coral Stylophora pistillata Reveals Proteins Relevant to Microbial-Host Interactions*

    PubMed Central

    Weston, Andrew J.; Dunlap, Walter C.; Shick, J. Malcolm; Klueter, Anke; Iglic, Katrina; Vukelic, Ana; Starcevic, Antonio; Ward, Malcolm; Wells, Mark L.; Trick, Charles G.; Long, Paul F.

    2012-01-01

    This study examines the response of Symbiodinium sp. endosymbionts from the coral Stylophora pistillata to moderate levels of thermal “bleaching” stress, with and without trace metal limitation. Using quantitative high throughput proteomics, we identified 8098 MS/MS events relating to individual peptides from the endosymbiont-enriched fraction, including 109 peptides meeting stringent criteria for quantification, of which only 26 showed significant change in our experimental treatments; 12 of 26 increased expression in response to thermal stress with little difference affected by iron limitation. Surprisingly, there were no significant increases in antioxidant or heat stress proteins; those induced to higher expression were generally involved in protein biosynthesis. An outstanding exception was a massive 114-fold increase of a viral replication protein indicating that thermal stress may substantially increase viral load and thereby contribute to the etiology of coral bleaching and disease. In the absence of a sequenced genome for Symbiodinium or other photosymbiotic dinoflagellate, this proteome reveals a plethora of proteins potentially involved in microbial-host interactions. This includes photosystem proteins, DNA repair enzymes, antioxidant enzymes, metabolic redox enzymes, heat shock proteins, globin hemoproteins, proteins of nitrogen metabolism, and a wide range of viral proteins associated with these endosymbiont-enriched samples. Also present were 21 unusual peptide/protein toxins thought to originate from either microbial consorts or from contamination by coral nematocysts. Of particular interest are the proteins of apoptosis, vesicular transport, and endo/exocytosis, which are discussed in context of the cellular processes of coral bleaching. Notably, the protein complement provides evidence that, rather than being expelled by the host, stressed endosymbionts may mediate their own departure. PMID:22351649

  16. Variations in Endosymbiont Infection Between Buprofezin-Resistant and Susceptible Strains of Laodelphax striatellus (Fallén).

    PubMed

    Li, Yongteng; Liu, Xiangdong; Guo, Huifang

    2018-06-01

    The endosymbionts Wolbachia and Rickettsia have been shown to be correlated with the insecticide resistance of mosquito and whitefly. The small brown planthopper (SBPH), Laodelphax striatellus, harbours many species of endosymbionts, and has developed a high resistance to buprofezin in China. In this study, we examined the species and the infection incidences of endosymbionts in a buprofezin-resistant (BR) strain, a buprofezin-susceptible (BS) strain, and the BR strain after exposure to buprofezin, and we also investigated the change in buprofezin susceptibility after removal of Wolbachia from the BR strain. The results showed that Wolbachia infection incidences were 100% in both the BR and BS strains, but the Wolbachia density in the BR strain was significantly higher than that in the BS strain. There were no significant differences in Arsenophonus infection incidence between the two strains. However, the infection incidence of Serratia and double infection incidence of Serratia + Wolbachia in the BR strain were significantly higher than that in the BS strain. After the BR strain was exposed to 1200 mg/L buprofezin, the infection incidence of Arsenophonus in the surviving individuals increased, and the infection rate of Serratia did not differ, but the double infection incidence of Serratia + Wolbachia decreased. And when a Wolbachia-infected line originating from the BR strain was cleared of Wolbachia, its susceptibility to buprofezin increased. The results suggest that Serratia and Wolbachia infection might improve the buprofezin resistance of SBPH.

  17. Endosymbiont hunting in the metagenome of Asian citrus psyllid (Diaphorina citri) (7th Annual SFAF Meeting, 2012)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Surya

    Surya Saha on "Endosymbiont hunting in the metagenome of Asian citrus psyllid (Diaphorina citri)" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  18. Endosymbiont hunting in the metagenome of Asian citrus psyllid (Diaphorina citri) (7th Annual SFAF Meeting, 2012)

    ScienceCinema

    Saha, Surya [Cornell University

    2017-12-09

    Surya Saha on "Endosymbiont hunting in the metagenome of Asian citrus psyllid (Diaphorina citri)" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  19. Morphological and biochemical variations in the gills of 12 aquatic air-breathing anabantoid fish.

    PubMed

    Huang, Chun-Yen; Lin, Chung-Ping; Lin, Hui-Chen

    2011-01-01

    All fish species in the Anabantoidei suborder are aquatic air-breathing fish. These species have an accessory air-breathing organ, called the labyrinth organ, in the branchial cavity and can engulf air at the surface of the water to assist in gas exchange. It is therefore necessary to examine the extent of gill modification among anabantoid fish species and the potential trade-offs in their function. The experimental hypothesis that we aimed to test is whether anabantoid fishes have both morphological and functional variations in the gills among different species. We examined the gills of 12 species from three families and nine genera of Anabantoidei. Though the sizes of the fourth gill arch in three species of Trichogaster were reduced significantly, not all anabantoid species had morphological and functional variations in the gills. In these three species, the specific enzyme activity and relative protein abundance of Na(+)/K(+)-ATPase were significantly higher in the anterior gills as compared with the posterior gills and the labyrinth organ. The relative abundance of cytosolic carbonic anhydrase, an indicator of gas exchange, was found to be highest in the labyrinth organ. The phylogenetic distribution of the fourth gill's morphological differentiation suggests that these variations are lineage specific, which may imply a phylogenetic influence on gill morphology in anabantoid species.

  20. Genomic Insight into the Host–Endosymbiont Relationship of Endozoicomonas montiporae CL-33T with its Coral Host

    PubMed Central

    Ding, Jiun-Yan; Shiu, Jia-Ho; Chen, Wen-Ming; Chiang, Yin-Ru; Tang, Sen-Lin

    2016-01-01

    The bacterial genus Endozoicomonas was commonly detected in healthy corals in many coral-associated bacteria studies in the past decade. Although, it is likely to be a core member of coral microbiota, little is known about its ecological roles. To decipher potential interactions between bacteria and their coral hosts, we sequenced and investigated the first culturable endozoicomonal bacterium from coral, the E. montiporae CL-33T. Its genome had potential sign of ongoing genome erosion and gene exchange with its host. Testosterone degradation and type III secretion system are commonly present in Endozoicomonas and may have roles to recognize and deliver effectors to their hosts. Moreover, genes of eukaryotic ephrin ligand B2 are present in its genome; presumably, this bacterium could move into coral cells via endocytosis after binding to coral's Eph receptors. In addition, 7,8-dihydro-8-oxoguanine triphosphatase and isocitrate lyase are possible type III secretion effectors that might help coral to prevent mitochondrial dysfunction and promote gluconeogenesis, especially under stress conditions. Based on all these findings, we inferred that E. montiporae was a facultative endosymbiont that can recognize, translocate, communicate and modulate its coral host. PMID:27014194

  1. The Gills of Reef Fish Support a Distinct Microbiome Influenced by Host-Specific Factors.

    PubMed

    Pratte, Zoe A; Besson, Marc; Hollman, Rebecca D; Stewart, Frank J

    2018-05-01

    Teleost fish represent the most diverse of the vertebrate groups and play important roles in food webs, as ecosystem engineers, and as vectors for microorganisms. However, the microbial ecology of fishes remains underexplored for most host taxa and for certain niches on the fish body. This is particularly true for the gills, the key sites of respiration and waste exchange in fishes. Here we provide a comprehensive analysis of the gill microbiome. We focus on ecologically diverse taxa from coral reefs around Moorea, sampling the gills and intestines of adults and juveniles representing 15 families. The gill microbiome composition differed significantly from that of the gut for both adults and juveniles, with fish-associated niches having lower alpha diversity values and higher beta diversity values than those for seawater, sediment, and alga-associated microbiomes. Of ∼45,000 operational taxonomic units (OTUs) detected across all samples, 11% and 13% were detected only in the gill and the intestine, respectively. OTUs most enriched in the gill included members of the gammaproteobacterial genus Shewanella and the family Endozoicimonaceae In adult fish, both gill and intestinal microbiomes varied significantly among host species grouped by diet category. Gill and intestinal microbiomes from the same individual were more similar to one another than to gill and intestinal microbiomes from different individuals. These results demonstrate that distinct body sites are jointly influenced by host-specific organizing factors operating at the level of the host individual. The results also identify taxonomic signatures unique to the gill and the intestine, confirming fish-associated niches as distinct reservoirs of marine microbial diversity. IMPORTANCE Fish breathe and excrete waste through their gills. The gills are also potential sites of pathogen invasion and colonization by other microbes. However, we know little about the microbial communities that live on the gill and

  2. Validation of the GILLS score for tongue-lip adhesion in Robin sequence patients.

    PubMed

    Abramowicz, Shelly; Bacic, Janine D; Mulliken, John B; Rogers, Gary F

    2012-03-01

    The GILLS score consists of gastroesophageal reflux disease, preoperative intubation, late surgical intervention, low birth weight, and syndromic diagnosis. The purpose of this study was to test the validity of the GILLS score in predicting success of tongue-lip adhesion (TLA) in managing Robin sequence. Infants with Robin sequence were included in the study if they had a TLA for airway compromise subsequent to formulation of the GILLS scoring system, that is, they were not included in the original GILLS analysis. The patients were prospectively considered based on the presence of the 5 factors that constitute the GILLS score. A score of ≤ 2 predicts success of TLA. Twenty patients met the inclusion criteria. Tongue-lip adhesion managed the compromised airway in 18 (90%) of 20 patients. Overall, the GILLS score had a sensitivity of 83%, specificity of 50%, positive predictive value of 94%, and negative predictive value of 25%. The GILLS score accurately predicts a successful outcome for TLA in infants with Robin sequence. For infants with a score of 2 or less, TLA is the procedure of choice. Infants with a GILLS score of 3 or greater were 5 times more likely to fail TLA than those with a score of 2 or less. In these patients, other methods of managing the airway should be considered.

  3. Hematodinium sp. and its bacteria-like endosymbiont in European brown shrimp (Crangon crangon)

    PubMed Central

    2012-01-01

    Background Parasitic dinoflagellates of the genus Hematodinium are significant pathogens affecting the global decapod crustacean fishery. Despite this, considerable knowledge gaps exist regarding the life history of the pathogen in vivo, and the role of free living life stages in transmission to naïve hosts. Results In this study, we describe a novel disease in European brown shrimp (Crangon crangon) caused by infection with a parasitic dinoflagellate of the genus Hematodinium. This is the second example host within the Infraorder Caridea (shrimp) and significantly, the first description within the superfamily Crangonoidea. Based upon analysis of the rRNA gene (SSU) and spacers (ITS1), the parasite in C. crangon is the same as that previously described infecting Nephrops norvegicus and Cancer pagurus from European seas, and to the parasite infecting several other commercially important crab species in the Northern Hemisphere. The parasite is however distinct from the type species, H. perezi, found infecting type hosts (Carcinus maenas and Liocarcinus depurator) from nearby sites within Europe. Despite these similarities, the current study has also described for the first time, a bacteria-like endosymbiont within dinospore stages of the parasite infecting shrimp. The endosymbionts were either contained individually within electron lucent vacuoles within the parasite cell cytoplasm, or remained in direct contact with the parasite cytoplasm or in some cases, the nucleoplasm. In all of these cases, no apparent detrimental effects of colonization were observed within the parasite cell. Conclusions The presence of bacteria-like endosymbionts within dinospore life stages presumes that the relationship between the dinoflagellate and the bacteria is extended beyond the period of liberation of spores from the infected host shrimp. In this context, a potential role of endosymbiosis in the survival of free-living stages of the parasite is possible. The finding offers a

  4. Developmental evidence for serial homology of the vertebrate jaw and gill arch skeleton

    PubMed Central

    Gillis, J. Andrew; Modrell, Melinda S.; Baker, Clare V. H.

    2013-01-01

    Gegenbaur’s classical hypothesis of jaw-gill arch serial homology is widely cited, but remains unsupported by either paleontological evidence (e.g. a series of fossils reflecting the stepwise transformation of a gill arch into a jaw) or developmental genetic data (e.g. shared molecular mechanisms underlying segment identity in the mandibular, hyoid and gill arch endoskeletons). Here we show that nested expression of Dlx genes – the “Dlx code” that specifies upper and lower jaw identity in mammals and teleosts – is a primitive feature of the mandibular, hyoid and gill arches of jawed vertebrates. Using fate-mapping techniques, we demonstrate that the principal dorsal and ventral endoskeletal segments of the jaw, hyoid and gill arches of the skate Leucoraja erinacea derive from molecularly equivalent mesenchymal domains of combinatorial Dlx gene expression. Our data suggest that vertebrate jaw, hyoid and gill arch cartilages are serially homologous, and were primitively patterned dorsoventrally by a common Dlx blueprint. PMID:23385581

  5. A morphological study on gills of a crab acclimated to fresh water.

    PubMed

    Barra, J A; Pequeux, A; Humbert, W

    1983-01-01

    The gills of the fully euryhaline Chinese crab Eriocheir sinensis were studied by light and electron microscopy. In these Phyllobranchiates, the gills consist of a double row of lamellae extending laterally from a central shaft. Haemolymph flow pattern inside the gill is described and the existence of a complex secondary vascularization inside the platelets is reported. It is shown that important differences exist between the ultrastructure of the three anterior and the three posterior pairs of large gills. The epithelium of the posterior gills is much thicker and possesses an extensive elaboration of the plasma membranes in the form of infoldings, crypts and interdigitations, along which are packed numerous mitochondria. The presence of such a complex membrane system opening to the extracellular space and closely associated with mitochondria is common to all salt-transporting tissues. This study corroborates the idea that the posterior pairs of gills of Eriocheir sinensis are the only ones implicated in active Na+ uptake when the crab lives in dilute aquatic environment. The epithelium of anterior gills is much thinner and the cells poor in intracellular organelles. It seems to be involved essentially in respiration. Thus this work clearly corroborates the existence already suggested by physiological approach of a functional difference between the different pairs of E. sinensis branchiae with respect to their participation in the respiration and in the regulation of the blood ions content. Common to both types of gills is the presence of a lamellar septum separating the haemolymph space into two compartments. The part played by that structure in determining the pattern of haemolymph flow, together with periodic bridges forming pillars across the haemolymph space, is emphasized.

  6. Cloning, Expression and Characterization of UDP-N-Acetylglucosamine Enolpyruvyl Transferase (MurA) from Wolbachia Endosymbiont of Human Lymphatic Filarial Parasite Brugia malayi

    PubMed Central

    Shahab, Mohd; Verma, Meenakshi; Pathak, Manisha; Mitra, Kalyan; Misra-Bhattacharya, Shailja

    2014-01-01

    Wolbachia, an endosymbiont of filarial nematode, is considered a promising target for treatment of lymphatic filariasis. Although functional characterization of the Wolbachia peptidoglycan assembly has not been fully explored, the Wolbachia genome provides evidence for coding all of the genes involved in lipid II biosynthesis, a part of peptidoglycan biosynthesis pathway. UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) is one of the lipid II biosynthesis pathway enzymes and it has inevitably been recognized as an antibiotic target. In view of the vital role of MurA in bacterial viability and survival, MurA ortholog from Wolbachia endosymbiont of Brugia malayi (wBm-MurA) was cloned, expressed and purified for further molecular characterization. The enzyme kinetics and inhibition studies were undertaken using fosfomycin. wBm-MurA was found to be expressed in all the major life stages of B. malayi and was immunolocalized in Wolbachia within the microfilariae and female adults by the confocal microscopy. Sequence analysis suggests that the amino acids crucial for enzymatic activity are conserved. The purified wBm-MurA was shown to possess the EPSP synthase (3-phosphoshikimate 1-carboxyvinyltransferase) like activity at a broad pH range with optimal activity at pH 7.5 and 37°C temperature. The apparent affinity constant (K m) for the substrate UDP-N-acetylglucosamine was found to be 0.03149 mM and for phosphoenolpyruvate 0.009198 mM. The relative enzymatic activity was inhibited ∼2 fold in presence of fosfomycin. Superimposition of the wBm-MurA homology model with the structural model of Haemophilus influenzae (Hi-MurA) suggests binding of fosfomycin at the same active site. The findings suggest wBm-MurA to be a putative antifilarial drug target for screening of novel compounds. PMID:24941309

  7. Evolution of the branchiostegal membrane and restricted gill openings in Actinopterygian fishes.

    PubMed

    Farina, Stacy C; Near, Thomas J; Bemis, William E

    2015-06-01

    A phylogenetic survey is a powerful approach for investigating the evolutionary history of a morphological characteristic that has evolved numerous times without obvious functional implications. Restricted gill openings, an extreme modification of the branchiostegal membrane, are an example of such a characteristic. We examine the evolution of branchiostegal membrane morphology and highlight convergent evolution of restricted gill openings. We surveyed specimens from 433 families of actinopterygians for branchiostegal membrane morphology and measured head and body dimensions. We inferred a relaxed molecular clock phylogeny with branch length estimates based on nine nuclear genes sampled from 285 species that include all major lineages of Actinopterygii. We calculated marginal state reconstructions of four branchiostegal membrane conditions and found that restricted gill openings have evolved independently in at least 11 major actinopterygian clades, and the total number of independent origins of the trait is likely much higher. A principal component analysis revealed that fishes with restricted gill openings occupy a larger morphospace, as defined by our linear measurements, than do fishes with nonrestricted openings. We used a decision tree analysis of ecological data to determine if restricted gill openings are linked to certain environments. We found that fishes with restricted gill openings repeatedly occur under a variety of ecological conditions, although they are rare in open-ocean pelagic environments. We also tested seven ratios for their utility in distinguishing between fishes with and without restricted gill openings, and we propose a simple metric for quantifying restricted gill openings (RGO), defined as a ratio of the distance from the ventral midline to the gill opening relative to half the circumference of the head. Functional explanations for this specialized morphology likely differ within each clade, but its repeated evolution indicates a need

  8. The evolutionary development of plant-feeding insects and their nutritional endosymbionts.

    PubMed

    Skidmore, Isabel H; Hansen, Allison K

    2017-12-01

    Herbivorous insects have evolved diverse mechanisms enabling them to feed on plants with suboptimal nutrient availability. Low nutrient availability negatively impacts insect herbivore development and fitness. To overcome this obstacle numerous insect lineages have evolved intimate associations with nutritional endosymbionts. This is especially true for insects that specialize on nitrogen-poor substrates, as these insects are highly dependent on intracellular symbionts to provide nitrogen lacking in their insect host's diet. Emerging evidence in these systems suggest that the symbiont's and/or the insect's biosynthetic pathways are dynamically regulated throughout the insect's development to potentially cope with the insect's changing nutritional demands. In this review, we evaluate the evolutionary development of symbiotic insect cells (bacteriocytes) by comparing and contrasting genes and mechanisms involved in maintaining and regulating the nutritional symbiosis throughout insect development in a diversity of insect herbivore-endosymbiont associations. With new advances in genome sequencing and functional genomics, we evaluate to what extent nutritional symbioses are shaped by (i) the regulation of symbiont titer, (ii) the regulation of insect symbiosis genes, and (iii) the regulation of symbiont genes. We discuss how important these mechanisms are for the biosynthesis of essential amino acids and vitamins across insect life stages in divergent insect-symbiont systems. We conclude by suggesting future directions of research to further elucidate the evolutionary development of bacteriocytes and the impact of these nutritional symbioses on insect-plant interactions. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  9. The Role of Bacterial Chaperones in the Circulative Transmission of Plant Viruses by Insect Vectors

    PubMed Central

    Kliot, Adi; Ghanim, Murad

    2013-01-01

    Persistent circulative transmission of plant viruses involves complex interactions between the transmitted virus and its insect vector. Several studies have shown that insect vector proteins are involved in the passage and the transmission of the virus. Interestingly, proteins expressed by bacterial endosymbionts that reside in the insect vector, were also shown to influence the transmission of these viruses. Thus far, the transmission of two plant viruses that belong to different virus genera was shown to be facilitated by a bacterial chaperone protein called GroEL. This protein was shown to be implicated in the transmission of Potato leafroll virus (PLRV) by the green peach aphid Myzus persicae, and the transmission of Tomato yellow leaf curl virus (TYLCV) by the sweetpotato whitefly Bemisia tabaci. These tri-trophic levels of interactions and their possible evolutionary implications are reviewed. PMID:23783810

  10. Lagrangian approach to understanding the origin of the gill-kinematics switch in mayfly nymphs.

    PubMed

    Chabreyrie, R; Balaras, E; Abdelaziz, K; Kiger, K

    2014-12-01

    The mayfly nymph breathes under water through an oscillating array of plate-shaped tracheal gills. As the nymph grows, the kinematics of these gills change abruptly from rowing to flapping. The classical fluid dynamics approach to consider the mayfly nymph as a pumping device fails in giving clear reasons for this switch. In order to shed some light on this switch between the two distinct kinematics, we analyze the problem under a Lagrangian viewpoint. We consider that a good Lagrangian transport that effectively distributes and stirs water and dissolved oxygen between and around the gills is the main goal of the gill motion. Using this Lagrangian approach, we are able to provide possible reasons behind the observed switch from rowing to flapping. More precisely, we conduct a series of in silico mayfly nymph experiments, where body shape, as well as gill shapes, structures, and kinematics are matched to those from in vivo. In this paper, we show both qualitatively and quantitatively how the change of kinematics enables better attraction, confinement, and stirring of water charged of dissolved oxygen inside the gills area. We reveal the attracting barriers to transport, i.e., attracting Lagrangian coherent structures, that form the transport skeleton between and around the gills. In addition, we quantify how well the fluid particles are stirred inside the gills area, which by extension leads us to conclude that it will increase the proneness of molecules of dissolved oxygen to be close enough to the gills for extraction.

  11. The bacterial diversity associated with bacterial diseases on Mud Crab (Scylla serrata Fab.) from Pemalang Coast, Indonesia

    NASA Astrophysics Data System (ADS)

    Sarjito; Desrina; Haditomo, AHC; Budi Prayitno, S.

    2018-05-01

    Bacterial disease is a problem in mud crab culture in Pemalang, Indonesia. The purpose of this study was to find out the bacteria associated with bacterial diseases on mud crab based on the molecular approach. Exploratory methods were conducted in this reserach. Twenty two bacteria (SJP 01 – SJP 22) were isolated from carapace and gills and hepathopancreas of moribound mud crab with TCBS and TSA medium. Based on rep PCR, five isolates (SJP 01, SJP 02, SJP 04, SJP 10 and SJP 11) were choosen for further investigation. Result from 16S rDNA sequence analysis, SJP 01, SJP 02, SJP 04, SJP 10 and SJP 11 were closely related to Exiguobacterium sp. ZJ2505 (99%), V. harveyi strain NCIMB1280 (98%), V. alginolyticus strain ATCC 17749(98%.), B. marisflavi strain TF-11 (97%) and E. aestuarii strain TF-16 (99%) respectively.

  12. Effects of Long-Term Starvation on a Host Bivalve (Codakia orbicularis, Lucinidae) and Its Symbiont Population▿

    PubMed Central

    Caro, Audrey; Got, Patrice; Bouvy, Marc; Troussellier, Marc; Gros, Olivier

    2009-01-01

    The bivalve Codakia orbicularis, hosting sulfur-oxidizing gill endosymbionts, was starved (in artificial seawater filtered through a 0.22-μm-pore-size membrane) for a long-term experiment (4 months). The effects of starvation were observed using transmission electron microscopy, fluorescence in situ hybridization and catalyzed reporter deposition (CARD-FISH), and flow cytometry to monitor the anatomical and physiological modifications in the gill organization of the host and in the symbiotic population housed in bacteriocytes. The abundance of the symbiotic population decreased through starvation, with a loss of one-third of the bacterial population each month, as shown by CARD-FISH. At the same time, flow cytometry revealed significant changes in the physiology of symbiotic cells, with a decrease in cell size and modifications to the nucleic acid content, while most of the symbionts maintained a high respiratory activity (measured using the 5-cyano-2,3-ditolyl tetrazolium chloride method). Progressively, the number of symbiont subpopulations was reduced, and the subsequent multigenomic state, characteristic of this symbiont in freshly collected clams, turned into one and five equivalent genome copies for the two remaining subpopulations after 3 months. Concomitant structural modifications appeared in the gill organization. Lysosymes became visible in the bacteriocytes, while large symbionts disappeared, and bacteriocytes were gradually replaced by granule cells throughout the entire lateral zone. Those data suggested that host survival under these starvation conditions was linked to symbiont digestion as the main nutritional source. PMID:19346359

  13. Myxosporean hyperparasites of gill monogeneans are basal to the Multivalvulida

    PubMed Central

    2011-01-01

    Background Myxosporeans are known from aquatic annelids but parasitism of platyhelminths by myxosporeans has not been widely reported. Hyperparasitism of gill monogeneans by Myxidium giardi has been reported from the European eel and Myxidium-like hyperparasites have also been observed during studies of gill monogeneans from Malaysia and Japan. The present study aimed to collect new hyperparasite material from Malaysia for morphological and molecular descriptions. In addition, PCR screening of host fish was undertaken to determine whether they are also hosts for the myxosporean. Results Heavy myxosporean infections were observed in monogeneans from two out of 14 fish and were detected from a further five fish using specific PCRs and pooled monogenean DNA. Positive DNA isolates were sequenced and were from a single species of myxosporean. Myxospore morphology was consistent with Myxidium with histozoic development in the parenchymal tissues of the monogenean. Simultaneous infections in the fish could not be confirmed microscopically; however, identical myxosporean DNA could be amplified from kidney, spleen and intestinal tract tissues using the specific PCR. Small subunit (SSU) rDNA for the myxosporean was amplified and was found to be most similar (92%) to that of another hyperparasitic myxosporean from a gill monogenean from Japan and to numerous multivalvulidan myxosporeans from the genus Kudoa (89-91%). Phylogenetic analyses placed the hyperparasite sequence basally to clades containing Kudoa, Unicapsula and Sphaerospora. Conclusions The myxosporean infecting the gill monogenean, Diplectanocotyla gracilis, from the Indo-Pacific tarpon, Megalops cyprinoides, is described as a new species, Myxidium incomptavermi, based on a histozoic development in the monogenean host and its phylogenetic placement. We have demonstrated for the first time that a myxosporean hyperparasite of gill monogeneans is detectable in the fish host. However, myxospores could not be isolated

  14. Secondary bacterial symbiont community in aphids responds to plant diversity.

    PubMed

    Zytynska, Sharon E; Meyer, Sebastian T; Sturm, Sarah; Ullmann, Wiebke; Mehrparvar, Mohsen; Weisser, Wolfgang W

    2016-03-01

    Biodiversity is important for ecosystem functioning and biotic interactions. In experimental grasslands, increasing plant species richness is known to increase the diversity of associated herbivores and their predators. If these interactions can also involve endosymbionts that reside within a plant or animal host is currently unknown. In plant-feeding aphids, secondary bacterial symbionts can have strong fitness effects on the host, e.g. resistance to natural enemies or fungal pathogens. We examined the secondary symbiont community in three species of aphid, each feeding on a unique host plant across experimental plots that varied in plant species richness. Aphids were collected in May and June, and the symbiont community identified using species-specific PCR assays. Aphis fabae aphids were found to host six different symbiont species with individual aphids co-hosting up to four symbionts. Uroleucon jaceae and Macrosiphum rosae hosted two and three symbiont species, respectively. We found that, at the aphid population level, increasing plant species richness increased the diversity of the aphid symbiont community, whereas at the individual aphid level, the opposite was found. These effects are potentially driven by varying selective pressures across different plant communities of varying diversities, mediated by defensive protection responses and a changing cost-benefit trade-off to the aphid for hosting multiple secondary symbionts. Our work extends documented effects of plant diversity beyond visible biotic interactions to changes in endosymbiont communities, with potentially far-reaching consequences to related ecosystem processes.

  15. Three Cases of Palatal Tics and Gilles De La Tourette Syndrome.

    PubMed

    Rizzo, Renata; Cath, Danielle; Pavone, Piero; Tijssen, Marina; Robertson, Mary M

    2015-08-01

    Five patients with palatal tics and Gilles de la Tourette syndrome have been previously reported. Little is known about the characteristics of palatal tics given that there are so few reports. On one hand, palatal tics may be rare. Alternatively, they may be less well recognized than repetitive eye blinking or sniffing, which are both obvious and, therefore, more often reported. We describe 3 patients with palatal tics and Gilles de la Tourette syndrome. We also review the 5 patients reported in the literature and explore whether there are characteristic features among this group of 8 cases. The 8 patients had the following features: (1) Personal history of other multiple motor/vocal tics, (2) the presence of typical Gilles de la Tourette syndrome comorbidities, (3) positive family history of tics and/or Gilles de la Tourette syndrome comorbidities, (4) the presence of audible "ear clicks," (5) younger age at onset (2 years). We suggest that palatal tics are underreported. © The Author(s) 2014.

  16. Identification of differentially expressed small non-coding RNAs in the legume endosymbiont Sinorhizobium meliloti by comparative genomics

    PubMed Central

    del Val, Coral; Rivas, Elena; Torres-Quesada, Omar; Toro, Nicolás; Jiménez-Zurdo, José I

    2007-01-01

    Bacterial small non-coding RNAs (sRNAs) are being recognized as novel widespread regulators of gene expression in response to environmental signals. Here, we present the first search for sRNA-encoding genes in the nitrogen-fixing endosymbiont Sinorhizobium meliloti, performed by a genome-wide computational analysis of its intergenic regions. Comparative sequence data from eight related α-proteobacteria were obtained, and the interspecies pairwise alignments were scored with the programs eQRNA and RNAz as complementary predictive tools to identify conserved and stable secondary structures corresponding to putative non-coding RNAs. Northern experiments confirmed that eight of the predicted loci, selected among the original 32 candidates as most probable sRNA genes, expressed small transcripts. This result supports the combined use of eQRNA and RNAz as a robust strategy to identify novel sRNAs in bacteria. Furthermore, seven of the transcripts accumulated differentially in free-living and symbiotic conditions. Experimental mapping of the 5′-ends of the detected transcripts revealed that their encoding genes are organized in autonomous transcription units with recognizable promoter and, in most cases, termination signatures. These findings suggest novel regulatory functions for sRNAs related to the interactions of α-proteobacteria with their eukaryotic hosts. PMID:17971083

  17. When Organic-Rich Turbidites Reach 5000 m: "Cold-Seep Like" Life in the Congo Deep-Sea Fan

    NASA Astrophysics Data System (ADS)

    Pastor, L.; Toffin, L.; Cathalot, C.; Olu, K.; Brandily, C.; Bessette, S.; Lesongeur, F.; Godfroy, A.; Khripounoff, A.; Decker, C.; Taillefert, M.; Rabouille, C.

    2016-12-01

    The Congo canyon, located on the west coast of Africa, is a unique example of a canyon directly connected to a major river (The Congo River). Turbidites are responsible for a large input of terrestrial organic matter at depths up to 5000 m. These high inputs led to global high organic matter mineralization rates, with very localized hot spots that were visually observed and specifically sampled with a ROV. These hot spots, featuring substantial concentration of reduced compounds, mainly methane and sulfides, were recognizable in surface by the presence of reduced sediment patches, bacterial mats, and/or vesicomyid bivalves that host bacterial endosymbionts able to process H2S. In this paper we present geochemical sediment profiles of sulfate, methane, sulfide and dissolved iron together with phylogenetic diversity of 16S rRNA communities. This will give a first understanding of biogeochemical processes occurring in this peculiar ecosystem, mainly sulfate reduction, methanogenesis and subsequent anaerobic oxidation of methane with bacterial and archaeal assemblages similar to cold seeps environments. Iron also seems to play a major role in this system and iron/sulfur interactions as a sink for H2S can probably compete with H2S consumption by chemosynthetic bivalves, estimated at one site by vesicomyds gills incubations in a sulfide-rich solution.

  18. Trophic ecology and gill raker morphology of seven catostomid species in Iowa rivers

    USGS Publications Warehouse

    Spiegel, J.R.; Quist, M.C.; Morris, J.E.

    2011-01-01

    Understanding the trophic ecology of closely-related species is important for providing insight on inter-specific competition and resource partitioning. Although catostomids often dominate fish assemblages in lotic systems, little research has been conducted on their ecology. This study was developed to provide information on the trophic ecology of catostomids in several Iowa rivers. Food habits, diet overlap, and gill raker morphology were examined for highfin carpsucker Carpiodes velifer, quillback C.??cyprinus, river carpsucker C.??carpio, golden redhorse Moxostoma erythrurum, shorthead redhorse M.??macrolepidotum, silver redhorse M.??anisurum, and northern hogsucker Hypentelium nigricans sampled from four Iowa rivers (2009). Diet overlap among all species was calculated with Morista's index (C). Food habit niche width was quantified with Levin's index (B) and similarity in gill raker morphology was compared with analysis of covariance. Values from Morista's index suggested significant overlap in the diets of highfin carpsucker and river carpsucker (C=0.81), quillback and river carpsucker (C=0.66), and shorthead redhorse and silver redhorse (C=0.67). Levin's index indicated that golden redhorse (B=0.32), quillback (B=0.53), and river carpsucker (B=0.41) had the most generalized feeding strategies as their food niche widths were substantially wider than the other species. Gill raker length and spacing were positively correlated with the standard length of the fish for all species (gill raker length: r2=0.67-0.88, P???0.01; gill raker spacing: r2=0.63-0.73, P???0.01). Slopes of regression of gill raker length and spacing to standard lengths were significantly (P???0.05) different among species, indicating that rates of change in gill raker morphology with body length varied among species. Differences in gill raker morphology likely allow catostomids to partition resources and reduce competitive interactions. ?? 2011.

  19. Effect of 5-hydroxytryptamine on the respiration of excised lamellibranch gill.

    PubMed

    MOORE, K E; MILTON, A S; GOSSELIN, R E

    1961-10-01

    5-Hydroxytryptamine, but not acetylcholine or catecholamines, stimulated the endogenous respiration of the excised gills of Modiolus demissus and mytilus edulis. Respiratory stimulation by 5-hydroxytryptophan is presumed to have occurred only after it had been decarboxylated to 5-hydroxytryptamine. 2-Bromolysergic acid diethylamide inhibited the effect of 5-hydroxytryptamine, while lysergic acid diethylamide mimicked it. The glycogen that was degraded during incubation of the gill cannot account for all of the oxygen that was consumed, indicating that some other substrate within the gill was also oxidized. That the metabolic actions of 5-hydroxytryptamine may be related to its cilio-acceleratory activity is discussed.

  20. Development and characterization of two cell lines from gills of Atlantic salmon

    USGS Publications Warehouse

    Gjessing, Mona C.; Aamelfot, Maria; Batts, William N.; Benestad, Sylvie L.; Dale, Ole B.; Thoen, Even; Weli, Simon C.; Winton, James R.

    2018-01-01

    Gill disease in Atlantic salmon, Salmo salar L., causes big losses in the salmon farming industry. Until now, tools to cultivate microorganisms causing gill disease and models to study the gill responses have been lacking. Here we describe the establishment and characterization of two cell lines from the gills of Atlantic salmon. Atlantic salmon gill cell ASG-10 consisted of cells staining for cytokeratin and e-cadherin and with desmosomes as seen by transmission electron microscopy suggesting the cells to be of epithelial origin. These structures were not seen in ASG-13. The cell lines have been maintained for almost 30 passages and both cell lines are fully susceptible to infection by infectious hematopoietic necrosis virus (IHNV), viral hemorrhagic septicemia virus (VHSV), infectious pancreatic necrosis virus (IPNV), Atlantic salmon reovirus TS (TSRV) and Pacific salmon paramyxovirus (PSPV). While infectious salmon anemia virus (ISAV) did not cause visible CPE, immunofluorescent staining revealed a sub-fraction of cells in both the ASG-10 and ASG-13 lines may be permissive to infection. ASG-10 is able to proliferate and migrate to close scratches in the monolayer within seven days in vitro contrary to ASG-13, which does not appear to do have the same proliferative and migratory ability. These cell lines will be useful in studies of gill diseases in Atlantic salmon and may represent an important contribution for alternatives to experimental animals and studies of epithelial–mesenchymal cell biology.

  1. Learning to Teach--Gill's Story

    ERIC Educational Resources Information Center

    Hatch, Gill; Rowland, Tim

    2006-01-01

    Gill Hatch was a very fine mathematician. Indeed, following her undergraduate studies in Cambridge in the late 1950s, she was one of the elite who went on to the notoriously difficult Part III of the Mathematical Tripos. In this article, the author describes the autobiographical accounts of Hatch during her teaching career in teacher education, as…

  2. Intraspecific variation in gill morphology of juvenile Nile perch, Lates niloticus, in Lake Nabugabo, Uganda

    USGS Publications Warehouse

    Paterson, Jaclyn A.; Chapman, Lauren J.; Schofield, Pamela J.

    2010-01-01

    Several studies have demonstrated intraspecific variation in fish gill size that relates to variation in dissolved oxygen (DO) availability across habitats. In Lake Nabugabo, East Africa, ecological change over the past 12 years has coincided with a shift in the distribution of introduced Nile perch such that a larger proportion of the population now inhabits waters in or near wetland ecotones where DO is lower than in open waters of the lake. In this study, we compared gill size of juvenile Nile perch between wetland and exposed (open-water) habitats of Lake Nabugabo in 2007, as well as between Nile perch collected in 1996 and 2007. For Nile perch of Lake Nabugabo [<20 cm total length (TL)], there was a significant habitat effect on some gill traits. In general, fish from wetland habitats were characterized by a longer total gill filament length and average gill filament length than conspecifics from exposed habitats. Nile perch collected from wetland areas in 2007 had significantly larger gills (total gill filament length) than Nile perch collected in 1996, but there was no difference detected between Nile perch collected from exposed sites in 2007 and conspecifics collected in 1996.

  3. Famous people with Gilles de la Tourette syndrome?

    PubMed

    Monaco, Francesco; Servo, Serena; Cavanna, Andrea Eugenio

    2009-12-01

    Virtually no neurologist nor psychiatrist today can be unaware of the diagnosis of Gilles de la Tourette syndrome (GTS). Although the eponymous description by Dr. Georges Gilles de la Tourette was published in 1885, familiarity with this syndrome has been achieved only recently. In this article, the two most renown accounts of exceptional individuals retrospectively diagnosed with GTS are critically analyzed: British lexicographer Samuel Johnson and Austrian musician Wolfgang Amadeus Mozart. In both cases, clinical descriptions have been retrieved from written documents predating Gilles de la Tourette's original publication. The case for Samuel Johnson having GTS is strong, mainly based on Boswell's extensive biographical account. Johnson was reported to have a great range of tics and compulsions, including involuntary utterances, repetitive ejaculations, and echo-phenomena. On the other hand, there is circumstantial evidence that Mozart may have had hyperactivity, restlessness, sudden impulses, odd motor behaviors, echo/palilalia, love of nonsense words, and scatology, the latter being documented in autograph letters ("coprographia"). However, the evidence supporting the core features of GTS, i.e., motor and vocal tics, is rather inconsistent. Thus, GTS seems to be an implausible diagnosis in Mozart's medical history and completely unrelated to his undisputed musical genius.

  4. Hypercapnia induced shifts in gill energy budgets of Antarctic notothenioids.

    PubMed

    Deigweiher, Katrin; Hirse, Timo; Bock, Christian; Lucassen, Magnus; Pörtner, Hans O

    2010-03-01

    Mechanisms responsive to hypercapnia (elevated CO(2) concentrations) and shaping branchial energy turnover were investigated in isolated perfused gills of two Antarctic Notothenioids (Gobionotothen gibberifrons, Notothenia coriiceps). Branchial oxygen consumption was measured under normo- versus hypercapnic conditions (10,000 ppm CO(2)) at high extracellular pH values. The fractional costs of ion regulation, protein and RNA synthesis in the energy budgets were determined using specific inhibitors. Overall gill energy turnover was maintained under pH compensated hypercapnia in both Antarctic species as well as in a temperate zoarcid (Zoarces viviparus). However, fractional energy consumption by the examined processes rose drastically in G. gibberifrons (100-180%), and to a lesser extent in N. coriiceps gills (7-56%). In conclusion, high CO(2) concentrations under conditions of compensated acidosis induce cost increments in epithelial processes, however, at maintained overall rates of branchial energy turnover.

  5. ANALYTICAL METHOD FOR THE DETERMINATION OF PHENYLGLUCURONIDE IN RAINBOW TROUT GILL WATER

    EPA Science Inventory

    Phenylglucuronide (PG), a primary phase II metabolite of phenol, can be excreted by fish through urine and feces, similar to mammals. In addition, it may also be possible to eliminate it through a fish's gills. In order to assess the significance of gill water elimination, analyt...

  6. Ontogeny and paleophysiology of the gill: new insights from larval and air-breathing fish.

    PubMed

    Brauner, Colin J; Rombough, Peter J

    2012-12-01

    There are large changes in gill function during development associated with ionoregulation and gas exchange in both larval and air-breathing fish. Physiological studies of larvae indicate that, contrary to accepted dogma but consistent with morphology, the initial function of the gill is primarily ionoregulatory and only secondarily respiratory. In air-breathing fish, as the gill becomes progressively less important in terms of O(2) uptake with expansion of the air-breathing organ, it retains its roles in CO(2) excretion, ion exchange and acid-base balance. The observation that gill morphology and function is strongly influenced by ionoregulatory needs in both larval and air-breathing fish may have evolutionary implications. In particular, it suggests that the inability of the skin to maintain ion and acid-base balance as protovertebrates increased in size and became more active may have been more important in driving gill development than O(2) insufficiency. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Endosymbiotic Bacteria Associated with the Mealy Bug, Rhizoecus amorphophalli (Hemiptera: Pseudococcidae)

    PubMed Central

    Sreerag, Ravikumar Sreekala; Jayaprakas, C. A.; Ragesh, L.; Kumar, Sasidharan Nishanth

    2014-01-01

    The mealy bug, Rhizoecus amorphophalli, is a menace to the aroid farmers due to the intensive infestation on stored tubers. Spraying of pesticides was able to control this pest but it always left a chance for fungal growth. Bacterial endosymbionts associated with the insects provide several benefits to their host. Since such endosymbionts play a vital role even in the physiology of their host, revealing the types of bacteria associated with mealy bug will give basic information, which may throw light on the management of this noxious pest. The present study is the first to identify bacterial endosymbionts associated with R. amorphophalli employing phenotypic characterization and 16S rDNA sequencing. Three culturable bacteria, namely, Bacillus subtilis, Staphylococcus gallinarum, and Staphylococcus saprophyticus, were isolated from R. amorphophalli. Moreover, the antibiotic susceptibility tests against the isolated bacteria showed that all the isolates were susceptible to the three antibiotics tested, except cephalexin. Recently, endosymbionts are used as effective biocontrol agents (BCAs) and the present study will stand as a connecting link in identification and effective utilization of these endosymbionts as BCAs for management of R. amorphophalli. PMID:27355014

  8. Fine structure of Mytella falcata (Bivalvia) gill filaments.

    PubMed

    de Oliveira David, José Augusto; Salaroli, Renato B; Fontanetti, Carmem S

    2008-01-01

    Bivalve filter feeders are sessile animals that live in constant contact with water and its pollutants. Their gill is an organ highly exposed to these conditions due to its large surface and its involvement in gas exchanges and feeding. The bivalve Mytella falcata is found in estuaries of Latin America, on the Atlantic as well as the Pacific Coast. It is commonly consumed, and sometimes is the only source of protein of low-income communities. In this study, gill filaments of M. falcata were characterized using histology, histochemistry and transmission electron microscopy for future comparative studies among animals exposed to environmental pollutants. Gill filaments may be divided into abfrontal, intermediate and frontal zones. Filaments are interconnected by ciliary discs. In the center of filaments, haemocytes circulate through a haemolymph vessel internally lined by an endothelium and supported by an acellular connective tissue rich in polysaccharides and collagen. The abfrontal zone contains cuboidal cells, while the intermediate zone consists of a simple squamous epithelium. The frontal zone is composed of five columnar cell types: one absorptive, mainly characterized by the presence of pinocytic vesicles in the apical region of the cell; one secretory, rarely observed; and three ciliated with abundant mitochondria. All cells lining the filament exhibit numerous microvilli and seem to absorb substances from the environment. PAS staining was observed in mucous cells in the frontal and abfrontal zones. Bromophenol blue allowed the distinction of haemocytes and detection of a glycoprotein secretion in the secretory cells of the frontal region. The characteristics of M. falcata gill filaments observed in this study were very similar to those of other bivalves, especially other Mytilidae, and are suitable for histopathological studies on the effect of water-soluble pollutants.

  9. Life science experiments during parabolic flight: The McGill experience

    NASA Technical Reports Server (NTRS)

    Watt, D. G. D.

    1988-01-01

    Over the past twelve years, members of the Aerospace Medical Research Unit of McGill University have carried out a wide variety of tests and experiments in the weightless condition created by parabolic flight. This paper discusses the pros and cons of that environment for the life scientist, and uses examples from the McGill program of the types of activities which can be carried out in a transport aircraft such as the NASA KC-135.

  10. Identification of Methanotrophic Biomarker Lipids in the Symbiont-Containing Gills of Seep Mussels

    NASA Technical Reports Server (NTRS)

    Jahnke, L. L.; Zahiralis, K. D.; Klein, H. P.; Morrison, David (Technical Monitor)

    1994-01-01

    Mussels collected from hydrocarbon seeps in the Gulf of Mexico grow with methane as sole carbon and energy source due to a symbiotic association with methane-oxidizing bacteria. Transmission electron micrographs of mussel gills show cells with stacked intracytoplasmic membranes similar to type I methanotrophic bacteria. Methanotrophs are known to synthesize several types of cyclic triterpenes, hopanoids and methyl sterols, as well as unique monounsaturated fatty acid, double bond positional isomers that serve as biomarkers for this group. Lipid analysis of dissected mussels demonstrated the presence of these biomarkers predominantly in the gill tissue with much smaller amounts in mantle and remaining body tissues. Gill tissue contained 1150 micrograms/g dry wt. of hopanepolyol derivatives and diplopterol while the mantle tissue contained only 17 micrograms/g. The C16 monounsaturated fatty acids (16:1) characteristic of type I methanotrophic membranes dominated the gill tissue making up 53% of the total while only 5% 16:1 was present in the mantle tissue. The methyl sterol distribution was more dispersed. The predominant sterol in all tissues was cholesterol with lesser amounts of other desmethyl and 4-methyl sterols. The gill and mantle tissues contained 3461 micrograms (17% methyl) and 2750 micrograms (5% methyl) sterol per gm dry wt., respectively. Methyl sterol accounted for 44% of the sterol esters isolated from the gill, suggesting active demethylation of the methanotrophic sterols in this tissue. The use of lipid biomarkers could provide an effective means for identifying host-symbiont relationships.

  11. Medical Genetics at McGill: The History of a Pioneering Research Group.

    PubMed

    Canning, Christopher; Weisz, George; Tone, Andrea; Cambrosio, Alberto

    2013-01-01

    The McGill Group in Medical Genetics was formed in 1972, supported by the Medical Research Council and successor Canadian Institutes for Health Research until September 2009, making it the longest active biomedical research group in the history of Canada. We document the history of the McGill Group and situate its research within a broader history of medical genetics. Drawing on original oral histories with the Group's members, surviving documents, and archival materials, we explore how the Group's development was structured around epistemological trends in medical genetics, policy choices made by research agencies, and the development of genetics at McGill University and its hospitals.

  12. Training Researchers in Cultural Psychiatry: The McGill-CIHR Strategic Training Program

    ERIC Educational Resources Information Center

    Kirmayer, Laurence J.; Rousseau, Cecile; Corin, Ellen; Groleau, Danielle

    2008-01-01

    Objectives: The authors aim to summarize the pedagogical approaches and curriculum used in the training of researchers in cultural psychiatry at the Division of Social and Transcultural Psychiatry at McGill University. Method: We reviewed available published and unpublished reports on the history and development of the McGill cultural psychiatry…

  13. Histopathology of fish. V. Gill disease

    USGS Publications Warehouse

    1957-01-01

    Possibly no single disease accounts for greater annual mortality than gill disease. Apparently endemic in many hatcheries, the disease is characterized by periodic sharp upsurges which are sometimes correlated with rising water temperatures, excessive foreign matter in the water (Wales and Evins 1937), or borderline nutritional conditions.

  14. Reconciling catch differences from multiple fishery independent gill net surveys

    USGS Publications Warehouse

    Kraus, Richard T.; Vandergoot, Christopher; Kocovsky, Patrick M.; Rogers, Mark W.; Cook, H. Andrew; Brenden, Travis O.

    2017-01-01

    Fishery independent gill net surveys provide valuable demographic information for population assessment and resource management, but relative to net construction, the effects of ancillary species, and environmental variables on focal species catch rates are poorly understood. In response, we conducted comparative deployments with three unique, inter-agency, survey gill nets used to assess walleye Sander vitreus in Lake Erie. We used an information-theoretic approach with Akaike’s second-order information criterion (AICc) to evaluate linear mixed models of walleye catch as a function of net type (multifilament and two types of monofilament netting), mesh size (categorical), Secchi depth, temperature, water depth, catch of ancillary species, and interactions among selected variables. The model with the greatest weight of evidence showed that walleye catches were positively associated with potential prey and intra-guild predators and negatively associated with water depth and temperature. In addition, the multifilament net had higher average walleye catches than either of the two monofilament nets. Results from this study both help inform decisions about proposed gear changes to stock assessment surveys in Lake Erie, and advance our understanding of how multispecies associations explain variation in gill net catches. Of broader interest to fishery-independent gill net studies, effects of abiotic variables and ancillary species on focal specie’s catch rates were small in comparison with net characteristics of mesh size or twine type.

  15. Novel Detection of Coxiella spp., Theileria luwenshuni, and T. ovis Endosymbionts in Deer Keds (Lipoptena fortisetosa).

    PubMed

    Lee, Seung-Hun; Kim, Kyoo-Tae; Kwon, Oh-Deog; Ock, Younsung; Kim, Taeil; Choi, Donghag; Kwak, Dongmi

    2016-01-01

    We describe for the first time the detection of Coxiella-like bacteria (CLB), Theileria luwenshuni, and T. ovis endosymbionts in blood-sucking deer keds. Eight deer keds attached to a Korean water deer were identified as Lipoptena fortisetosa (Diptera: Hippoboscidae) by morphological and genetic analyses. Among the endosymbionts assessed, CLB, Theileria luwenshuni, and T. ovis were identified in L. fortisetosa by PCR and nucleotide sequencing. Based on phylogeny, CLB 16S rRNA sequences were classified into clade B, sharing 99.4% identity with CLB from Haemaphysalis longicornis in South Korea. Although the virulence of CLB to vertebrates is still controversial, several studies have reported clinical symptoms in birds due to CLB infections. The 18S rRNA sequences of T. luwenshuni and T. ovis in this study were 98.8-100% identical to those in GenBank, and all of the obtained sequences of T. ovis and T. luwenshuni in this study were 100% identical to each other, respectively. Although further studies are required to positively confirm L. fortisetosa as a biological vector of these pathogens, strong genetic relationships among sequences from this and previous studies suggest potential transmission among mammalian hosts by ticks and keds.

  16. The effect of acidity on gill variations in the aquatic air-breathing fish, Trichogaster lalius.

    PubMed

    Huang, Chun-Yen; Lin, Hui-Chen

    2011-01-01

    Climate change affects organisms that inhabit not only in aerial but also in aquatic environments by making water more hypoxic and acidic. In the past, we evaluated morphological and functional variations in the gills of 12 species of aquatic air-breathing fishes. The aim of the present study is to examine the degree of gill modification in the aquatic air-breathing fish, Trichogaster lalius, in response to acidic stress. This provides a link between the ecological and physiological studies. We evaluated the changes in morphology and function of the gills, labyrinth organ, and kidney when the fish were subjected to acidic water and deionized water (DW). In the first experiment, fish were sampled at 1, 2, 4, and 7 days after acidic treatment. Apparent morphological modification was observed on day 4 and recovery was noted on day 7. Protein expression and enzyme activity of vacuolar-type H+-ATPase (VHA) and the protein expression of the proliferating cell nuclear antigen (PCNA) of the 1st and 4th gill arches both increased in the 4-day and 7-day acidic groups while the enzyme activity of Na+/K+-ATPase (NKA) decreased. In the second experiment, fish were tested for changes in the 1st and 4th gill arches and kidney after exposure to DW and acidic water for 4days. The gill structure of the fish in the DW was not different from that of the control group (fresh water). The protein expression and enzyme activity of the VHA of the 1st and 4th gill arches increased in both the DW and acidic groups for 4 days. We found a decrease in the protein expression of NKA in the kidney and in the enzyme activity of NKA in the 1st and 4th gill arches in the DW and acidic groups. From these results, we suggest that T. lalius exhibited significantly different ionic regulation and acid-base regulatory abilities in the DW and acidic groups in the 1st and 4th gill arches and kidney. The responses of the gills in T. lalius were different from those fish that show apparent morphological

  17. Chapter 27: Mortality of Marbled Murrelets in Gill Nets in North America

    Treesearch

    Harry R. Carter; Michael L.C. McAllister; M.E. Pete Isleib

    1995-01-01

    Mortality of Marbled Murrelets (Brachyramphus marmoratus) due to accidental capture in gill nets is one of the major threats to murrelet populations. Gill-net mortality of murrelets throughout their range has been occurring for several decades and probably has contributed to declines in populations, in conjunction with loss of nesting habitat and...

  18. Deep down on a Caribbean reef: lower mesophotic depths harbor a specialized coral-endosymbiont community.

    PubMed

    Bongaerts, Pim; Frade, Pedro R; Hay, Kyra B; Englebert, Norbert; Latijnhouwers, Kelly R W; Bak, Rolf P M; Vermeij, Mark J A; Hoegh-Guldberg, Ove

    2015-01-07

    The composition, ecology and environmental conditions of mesophotic coral ecosystems near the lower limits of their bathymetric distributions remain poorly understood. Here we provide the first in-depth assessment of a lower mesophotic coral community (60-100 m) in the Southern Caribbean through visual submersible surveys, genotyping of coral host-endosymbiont assemblages, temperature monitoring and a growth experiment. The lower mesophotic zone harbored a specialized coral community consisting of predominantly Agaricia grahamae, Agaricia undata and a "deep-water" lineage of Madracis pharensis, with large colonies of these species observed close to their lower distribution limit of ~90 m depth. All three species associated with "deep-specialist" photosynthetic endosymbionts (Symbiodinium). Fragments of A. grahamae exhibited growth rates at 60 m similar to those observed for shallow Agaricia colonies (~2-3 cm yr(-1)), but showed bleaching and (partial) mortality when transplanted to 100 m. We propose that the strong reduction of temperature over depth (Δ5°C from 40 to 100 m depth) may play an important contributing role in determining lower depth limits of mesophotic coral communities in this region. Rather than a marginal extension of the reef slope, the lower mesophotic represents a specialized community, and as such warrants specific consideration from science and management.

  19. Salmon Gill Poxvirus, the Deepest Representative of the Chordopoxvirinae

    PubMed Central

    Yutin, Natalya; Tengs, Torstein; Senkevich, Tania; Koonin, Eugene; Rønning, Hans Petter; Alarcon, Marta; Ylving, Sonja; Lie, Kai-Inge; Saure, Britt; Tran, Linh; Dale, Ole Bendik

    2015-01-01

    ABSTRACT Poxviruses are large DNA viruses of vertebrates and insects causing disease in many animal species, including reptiles, birds, and mammals. Although poxvirus-like particles were detected in diseased farmed koi carp, ayu, and Atlantic salmon, their genetic relationships to poxviruses were not established. Here, we provide the first genome sequence of a fish poxvirus, which was isolated from farmed Atlantic salmon. In the present study, we used quantitative PCR and immunohistochemistry to determine aspects of salmon gill poxvirus disease, which are described here. The gill was the main target organ where immature and mature poxvirus particles were detected. The particles were detected in detaching, apoptotic respiratory epithelial cells preceding clinical disease in the form of lethargy, respiratory distress, and mortality. In moribund salmon, blocking of gas exchange would likely be caused by the adherence of respiratory lamellae and epithelial proliferation obstructing respiratory surfaces. The virus was not found in healthy salmon or in control fish with gill disease without apoptotic cells, although transmission remains to be demonstrated. PCR of archival tissue confirmed virus infection in 14 cases with gill apoptosis in Norway starting from 1995. Phylogenomic analyses showed that the fish poxvirus is the deepest available branch of chordopoxviruses. The virus genome encompasses most key chordopoxvirus genes that are required for genome replication and expression, although the gene order is substantially different from that in other chordopoxviruses. Nevertheless, many highly conserved chordopoxvirus genes involved in viral membrane biogenesis or virus-host interactions are missing. Instead, the salmon poxvirus carries numerous genes encoding unknown proteins, many of which have low sequence complexity and contain simple repeats suggestive of intrinsic disorder or distinct protein structures. IMPORTANCE Aquaculture is an increasingly important global

  20. The distribution of mitochondria-rich cells in the gills of air-breathing fishes.

    PubMed

    Lin, Hui-Chen; Sung, Wen-Ting

    2003-01-01

    Respiration and ion regulation are the two principal functions of teleostean gills. Mainly found in the gill filaments of fish, mitochondria-rich cells (MRCs) proliferate to increase the ionoregulatory capacity of the gill in response to osmotic challenges. Gill lamellae consist mostly of pavement cells, which are the major site of gas exchange. Although lamellar MRCs have been reported in some fish species, there has been little discussion of which fish species are likely to have lamellar MRCs. In this study, we first compared the number of filament and lamellar MRCs in air-breathing and non-air-breathing fish species acclimated to freshwater and 5 g NaCl L(-1) conditions. An increase in filament MRCs was found in both air-breathing and non-air-breathing fish acclimated to freshwater. Lamellar MRCs were found only in air-breathing species, but the number of lamellar MRCs did not change significantly with water conditions, except in Periophthalmus cantonensis. Next, we surveyed the distribution of MRCs in the gills of 66 fish species (including 29 species from the previous literature) from 12 orders, 28 families, and 56 genera. Our hypothesis that lamellar MRCs are more likely to be found in air-breathing fishes was supported by a significant association between the presence of lamellar MRCs and the mode of breathing at three levels of systematic categories (species, genus, and family). Based on this integrative view of the multiple functions of fish gills, we should reexamine the role of MRCs in freshwater fish.

  1. Alterations in gill structure in tropical reef fishes as a result of elevated temperatures

    PubMed Central

    Bowden, A.J.; Gardiner, N.M.; Couturier, C.S.; Stecyk, J.A.W.; Nilsson, G.E.; Munday, P.L.; Rummer, J.L.

    2015-01-01

    Tropical regions are expected to be some of the most affected by rising sea surface temperatures (SSTs) because seasonal temperature variations are minimal. As temperatures rise, less oxygen dissolves in water, but metabolic requirements of fish and thus, the demand for effective oxygen uptake, increases. Gill remodelling is an acclimation strategy well documented in freshwater cyprinids experiencing large seasonal variations in temperature and oxygen as well as an amphibious killifish upon air exposure. However, no study has investigated whether tropical reef fishes remodel their gills to allow for increased oxygen demands at elevated temperatures. We tested for gill remodelling in five coral reef species (Acanthochromis polyacanthus, Chromis atripectoralis, Pomacentrus moluccensis, Dascyllus melanurus and Cheilodipterus quinquelineatus) from populations in northern Papua New Guinea (2° 35.765′ S; 150° 46.193′ E). Fishes were acclimated for 12-14 days to 29 and 31 °C, encompassing their seasonal range (29-31 °C), and 33 and 34 °C to account for end-of-century predicted temperatures. We measured lamellar perimeter, cross-sectional area, base thickness, and length for five filaments on the 2nd gill arches and qualitatively assessed 3rd gill arches via scanning electron microscopy (SEM). All species exhibited significant differences in the quantitative measurements made on the lamellae, but no consistent trends with temperature were observed. SEM only revealed alterations in gill morphology in P. moluccensis. The overall lack of changes in gill morphology with increasing temperature suggests that these near-equatorial reef fishes may fail to maintain adequate O2 uptake under future climate scenarios unless other adaptive mechanisms are employed. PMID:24862962

  2. The gill microbiota of invasive and indigenous Spondylus oysters from the Mediterranean Sea and northern Red Sea.

    PubMed

    Roterman, Yahala Rina; Benayahu, Yehuda; Reshef, Lea; Gophna, Uri

    2015-12-01

    The gill tissue of bivalve mollusks hosts rich symbiotic microbial communities that may contribute to the animal's metabolism. Spondylus spinosus is an invasive oyster that has become highly abundant along the eastern Mediterranean Sea (EMS) coastline, but is scarce in the northern Red Sea (NRS), its indigenous region. The composition and seasonal dynamics of the gill microbial communities of S. spinosus were examined in both regions, using 16S rRNA gene amplicon sequencing. Additionally, two Red Sea Spondylus species, S. avramsingeri and S. pickeringae, were investigated using the same approach. Significant differences were found between microbial communities of the EMS S. spinosus and the three NRS species. Bacteria from the family Hahellaceae dominated the communities of the EMS S. spinosus and the NRS S. avramsingeri, oysters that are dominant in their habitat, yet were rare in the NRS S. spinosus and S. pickeringae, which are only seldom encountered. Bacterial communities of EMS S. spinosus were more similar to those of NRS S. spinosus than to those of other NRS Spondylus species, indicating that either part of the microbiota had co-invaded with their host into the Mediterranean Sea, or that there are species-specific selective constraints on microbial composition. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Pioneers of movement disorders: Georges Gilles de la Tourette.

    PubMed

    Krämer, H; Daniels, C

    2004-06-01

    Georges Albert Edouard Brutus Gilles de la Tourette (1857-1904), a French neurologist and pupil of Jean Martin Charcot at the Salpêtrière hospital in Paris, has gained common recognition through his description of the 'Maladie des Tics'. This complex neuropsychiatric disorder, later known as the 'Tourette's syndrome', nowadays is accepted as a specific entity of movement disorders. Gilles had started working under Charcot (1825-1893), the first physician to occupy a designated chair of neurology of neuropsychiatric history, in 1884. Then the Salpêtrière hospital was a centre of intensive research with an emphasis on hysteria and hypnosis. Tourette took an interest in hysteria, but also dedicated himself to various other neuropsychiatric disorders and to neuropathology. He published scientific works on epilepsia, neurasthenia and syphilitic myelitis. Although he devoted much time to his neuropsychiatric research and the publication of articles in medical journals, his career did not make significant progress, despite Charcot's unrestricted support. One reason was, that he disregarded questions, answers and problems, which were outside his interest fields. Hence, he was accused for having acquired an extremely filtered and one-sided knowledge. Also, his alienated and critical behaviour, which had not helped him to find many friends over the years, prevented him from professional promotion. In 1893 an assassination attempt on Gilles de la Tourette raised considerable public interest: Gilles was shot in his appartement in the Rue de l'Université 39 by a young woman, who had been his patient in the Salpêtrière and who claimed that she had been hypnotized without her agreement and thereby had lost her mental health. However, the patient was diagnosed with a disease nowadays called paranoid schizophrenia and therefore hypnosis was not attributed to any part of the disease. Due to episodes of melancholia and phases of delusions of grandeur and megalomania Gilles de

  4. [Morphological differentiations of the gills of two Gymnocypris przewa-lskii subspecies in different habitats and their functional adaptations].

    PubMed

    Zhang, Ren-Yi; Li, Guo-Gang; Zhang, Cun-Fang; Tang, Yong-Tao; Zhao, Kai

    2013-08-01

    Gill morphologies of two subspecies of Gymnocypris przewalskii (Gymnocypris przewalskii przewalskii and Gymnocypris przewalskii ganzihonensis) in different habitats were analyzed under scanning electron microscope. Results indicated that G. p. przewalskii had numerous long and dense-lined gill rakers while G. p. ganzihonensis had few short and scatter-lined gill rakers. There were no significant differences in distance between gill filaments (DBF) and distance gill lamella (DBL) between the two subspecies, but gill filaments of G. p. przewalskii were longer than in G. p. ganzihonensis. The electron microscopic study indicated that the pavement epithelium cells of G. p. przewalskii were well defined as irregular ovals, but were hexagonal in G. p. ganzihonensis. Moreover, G. p. przewalskii had more chloride cells than G. p. ganzihonensis, and mucous cells were only found on the surface of gill filaments of G. p. przewalskii. The morphological differences between the two subspecies of G. przewalskii are adaptations to their corresponding diets and habitats.

  5. Reproductive Manipulators in the Bark Beetle Pityogenes chalcographus (Coleoptera: Curculionidae)—The Role of Cardinium, Rickettsia, Spiroplasma, and Wolbachia

    PubMed Central

    Schebeck, Martin; Feldkirchner, Lukas; Marín, Belen; Krumböck, Susanne; Schuler, Hannes; Stauffer, Christian

    2018-01-01

    Abstract Heritable bacterial endosymbionts can alter the biology of numerous arthropods. They can influence the reproductive outcome of infected hosts, thus affecting the ecology and evolution of various arthropod species. The spruce bark beetle Pityogenes chalcographus (L.) (Coleoptera: Curculionidae: Scolytinae) was reported to express partial, unidirectional crossing incompatibilities among certain European populations. Knowledge on the background of these findings is lacking; however, bacterial endosymbionts have been assumed to manipulate the reproduction of this beetle. Previous work reported low-density and low-frequency Wolbachia infections of P. chalcographus but found it unlikely that this infection results in reproductive alterations. The aim of this study was to test the hypothesis of an endosymbiont-driven incompatibility, other than Wolbachia, reflected by an infection pattern on a wide geographic scale. We performed a polymerase chain reaction (PCR) screening of 226 individuals from 18 European populations for the presence of the endosymbionts Cardinium, Rickettsia, and Spiroplasma, and additionally screened these individuals for Wolbachia. Positive PCR products were sequenced to characterize these bacteria. Our study shows a low prevalence of these four endosymbionts in P. chalcographus. We detected a yet undescribed Spiroplasma strain in a single individual from Greece. This is the first time that this endosymbiont has been found in a bark beetle. Further, Wolbachia was detected in three beetles from two Scandinavian populations and two new Wolbachia strains were described. None of the individuals analyzed were infected with Cardinium and Rickettsia. The low prevalence of bacteria found here does not support the hypothesis of an endosymbiont-driven reproductive incompatibility in P. chalcographus. PMID:29771340

  6. ULTRASTRUCTURAL STUDY OF LESIONS IN GILLS OF A MARINE SHRIMP EXPOSED TO CADMIUM

    EPA Science Inventory

    Pathologic black gills of pink shrimp, Penaeus duorarum, exposed to 763 micrograms/l of cadmium chloride for 15 days were studied with transmission electron microscopy and were compared with normal gills of control pink shrimp. Local as well as extensive areas of cell death and n...

  7. Nonlethal gill biopsy does not affect juvenile chinook salmon implanted with radio transmitters

    USGS Publications Warehouse

    Martinelli-Liedtke, T. L.; Shively, R.S.; Holmberg, G.S.; Sheer, M.B.; Schrock, R.M.

    1999-01-01

    Using gastric and surgical transmitter implantation, we compared radio-tagged juvenile chinook salmon Oncorhynchus tshawytscha (T(O)) with tagged fish also having a gill biopsy (T(B)) to determine biopsy effects on fish implanted with radio transmitters. We found no evidence during the 21-d period to suggest that a gill biopsy reduced survival, growth, or gross condition of the tagged-biopsy group, regardless of transmitter implantation technique. We recorded 100% survival of all treatment groups. Relative growth rates of T(O) and T(B) fish did not differ significantly. Leukocrit and lysozyme levels were not significantly different among groups, suggesting that no signs of infection were present. Our findings suggest that small chinook salmon can tolerate the combination of transmitter implantation and gill biopsy without compromising condition relative to fish receiving only the transmitter. We believe a gill biopsy can be used in field telemetry studies, especially when physiological data are needed in addition to behavioral data.

  8. Bacterial taxa associated with the hematophagous mite Dermanyssus gallinae detected by 16S rRNA PCR amplification and TTGE fingerprinting.

    PubMed

    Valiente Moro, Claire; Thioulouse, Jean; Chauve, Claude; Normand, Philippe; Zenner, Lionel

    2009-01-01

    Dermanyssus gallinae (Arthropoda, Mesostigmata) is suspected to be involved in the transmission of a wide variety of pathogens, but nothing is known about its associated non-pathogenic bacterial community. To address this question, we examined the composition of bacterial communities in D. gallinae collected from standard poultry farms in Brittany, France. Genetic fingerprints of bacterial communities were generated by temporal temperature gradient gel electrophoresis (TTGE) separation of individual polymerase chain reaction (PCR)-amplified 16S rRNA gene fragments, followed by DNA sequence analysis. Most of the sequences belonged to the Proteobacteria and Firmicute phyla, with a majority of sequences corresponding to the Enterobacteriales order and the Staphylococcus genus. By using statistical analysis, we showed differences in biodiversity between poultry farms. We also determined the major phylotypes that compose the characteristic microbiota associated with D. gallinae. Saprophytes, opportunistic pathogens and pathogenic agents such as Pasteurella multocida, Erysipelothrix rhusiopathiae and sequences close to the genus Aerococcus were identified. Endosymbionts such as Schineria sp., Spiroplasma sp. Anistosticta, "Candidatus Cardinium hertigii" and Rickettsiella sp. were also present in the subdominant bacterial community. Identification of potential targets within the symbiont community may be considered in the future as a means of ectoparasite control.

  9. Is the community of fish gill parasites structured in a Neotropical floodplain?

    PubMed

    Bellay, Sybelle; Takemoto, Ricardo Massato; Oliveira, Edson Fontes

    2012-03-01

    Sixty-one specimens of the piranha Serrasalmus marginatus Valenciennes, 1837 were analyzed, aiming at assessing the community structure of their gill parasites. The samples were collected in lagoons of the Paraná, Ivinheima and Baia Subsystems within the Upper Paraná River Floodplain (Brazil). Host size and sex had little or no influence on the abundance and prevalence of parasites. The organization of the gill parasite infracommunities of S. marginatus was significantly non-random according to null models and ordination analyses. In general, parasite infrapopulations were not affected by interspecific associations or host characteristics (e.g. size, sex), what highlights the importance of local habitat characteristics to community organization of gill parasites of S. marginatus in the Upper Paraná River Floodplain.

  10. Quantitative Molecular Phenotyping of Gill Remodeling in a Cichlid Fish Responding to Salinity Stress*

    PubMed Central

    Kültz, Dietmar; Li, Johnathon; Gardell, Alison; Sacchi, Romina

    2013-01-01

    A two-tiered label-free quantitative (LFQ) proteomics workflow was used to elucidate how salinity affects the molecular phenotype, i.e. proteome, of gills from a cichlid fish, the euryhaline tilapia (Oreochromis mossambicus). The workflow consists of initial global profiling of relative tryptic peptide abundances in treated versus control samples followed by targeted identification (by MS/MS) and quantitation (by chromatographic peak area integration) of validated peptides for each protein of interest. Fresh water acclimated tilapia were independently exposed in separate experiments to acute short-term (34 ppt) and gradual long-term (70 ppt, 90 ppt) salinity stress followed by molecular phenotyping of the gill proteome. The severity of salinity stress can be deduced with high technical reproducibility from the initial global label-free quantitative profiling step alone at both peptide and protein levels. However, an accurate regulation ratio can only be determined by targeted label-free quantitative profiling because not all peptides used for protein identification are also valid for quantitation. Of the three salinity challenges, gradual acclimation to 90 ppt has the most pronounced effect on gill molecular phenotype. Known salinity effects on tilapia gills, including an increase in the size and number of mitochondria-rich ionocytes, activities of specific ion transporters, and induction of specific molecular chaperones are reflected in the regulation of abundances of the corresponding proteins. Moreover, specific protein isoforms that are responsive to environmental salinity change are resolved and it is revealed that salinity effects on the mitochondrial proteome are nonuniform. Furthermore, protein NDRG1 has been identified as a novel key component of molecular phenotype restructuring during salinity-induced gill remodeling. In conclusion, besides confirming known effects of salinity on gills of euryhaline fish, molecular phenotyping reveals novel insight into

  11. Detection of Spiroplasma and Wolbachia in the bacterial gonad community of Chorthippus parallelus.

    PubMed

    Martínez-Rodríguez, P; Hernández-Pérez, M; Bella, J L

    2013-07-01

    We have recently detected the endosymbiont Wolbachia in multiple individuals and populations of the grasshopper Chorthippus parallelus (Orthoptera: acrididae). This bacterium induces reproductive anomalies, including cytoplasmic incompatibility. Such incompatibilities may help explain the maintenance of two distinct subspecies of this grasshopper, C. parallelus parallelus and C. parallelus erythropus, which are involved in a Pyrenean hybrid zone that has been extensively studied for the past 20 years, becoming a model system for the study of genetic divergence and speciation. To evaluate whether Wolbachia is the sole bacterial infection that might induce reproductive anomalies, the gonadal bacterial community of individuals from 13 distinct populations of C. parallelus was determined by denaturing gradient gel electrophoresis analysis of bacterial 16S rRNA gene fragments and sequencing. The study revealed low bacterial diversity in the gonads: a persistent bacterial trio consistent with Spiroplasma sp. and the two previously described supergroups of Wolbachia (B and F) dominated the gonad microbiota. A further evaluation of the composition of the gonad bacterial communities was carried out by whole cell hybridization. Our results confirm previous studies of the cytological distribution of Wolbachia in C. parallelus gonads and show a homogeneous infection by Spiroplasma. Spiroplasma and Wolbachia cooccurred in some individuals, but there was no significant association of Spiroplasma with a grasshopper's sex or with Wolbachia infection, although subtle trends might be detected with a larger sample size. This information, together with previous experimental crosses of this grasshopper, suggests that Spiroplasma is unlikely to contribute to sex-specific reproductive anomalies; instead, they implicate Wolbachia as the agent of the observed anomalies in C. parallelus.

  12. Claudin-8d is a cortisol-responsive barrier protein in the gill epithelium of trout.

    PubMed

    Kolosov, Dennis; Kelly, Scott P

    2017-10-01

    The influence of claudin (Cldn) 8 tight junction (TJ) proteins on cortisol-mediated alterations in gill epithelium permeability was examined using a primary cultured trout gill epithelium model. Genes encoding three Cldn-8 proteins ( cldn-8b, -8c and -8d ) have been identified in trout and all are expressed in the model gill epithelium. Cortisol treatment 'tightened' the gill epithelium, as indicated by increased transepithelial resistance (TER) and reduced paracellular [ 3 H]polyethylene glycol (MW 400 Da; PEG-400) flux. This occurred in association with elevated cldn-8d mRNA abundance, but no alterations in cldn-8b and -8c mRNA abundance were observed. Transcriptional knockdown (KD) of cldn-8d inhibited a cortisol-induced increase in Cldn-8d abundance and reduced the 'epithelium tightening' effect of cortisol in association with increased paracellular PEG-400 flux. Under simulated in vivo conditions (i.e. apical freshwater), cldn-8d KD hindered a cortisol-mediated reduction in basolateral to apical Na + and Cl - flux (i.e. reduced the ability of cortisol to mitigate ion loss). However, cldn-8d KD did not abolish the tightening effect of cortisol on the gill epithelium. This is likely due, in part, to the effect of cortisol on genes encoding other TJ proteins, which in some cases appeared to exhibit a compensatory response. Data support the idea that Cldn-8d is a barrier protein of the gill epithelium TJ that contributes significantly to corticosteroid-mediated alterations in gill epithelium permeability. © 2017 Society for Endocrinology.

  13. The fish gill: site of action and model for toxic effects of environmental pollutants.

    PubMed Central

    Evans, D H

    1987-01-01

    The gill epithelium is the site of gas exchange, ionic regulation, acid-base balance, and nitrogenous waste excretion by fishes. The last three processes are controlled by passive and active transport of various solutes across the epithelium. Various environmental pollutants (e.g., heavy metals, acid rain, and organic xenobiotics) have been found to affect the morphology of the gill epithelium. Associated with these morphological pathologies, one finds alterations in blood ionic levels, as well as gill Na,K-activated ATPase activity and ionic fluxes. Such physiological disturbances may underly the toxicities of these pollutants. In addition, the epithelial transport steps which are affected in the fish gill model resemble those described in the human gut and kidney, sites of action of a variety of environmental toxins. Images FIGURE 1. a FIGURE 1. b FIGURE 3. PMID:3297663

  14. Pharyngeal cavity and the gills are the target organ for the repellent action of pardaxin in shark.

    PubMed

    Primor, N

    1985-05-15

    Pardaxin, an active principle of the repellent secretion of the Red Sea flatfish, Pardachirus marmoratus, elicited severe struggling, mouth paralysis, and transient increase in urea leakage from the gills only when administered to the medium bathing the shark's pharyngeal cavity and gills. An apparatus was constructed which prevents a mixing of the outflow from shark's gills with water bathing its surface skin. It is concluded that in sharks the gills and/or the pharyngeal cavity are the target organ for the repellent action of pardaxin.

  15. Paraneurons in the gills and airways of fishes.

    PubMed

    Zaccone, G; Fasulo, S; Ainis, L; Licata, A

    1997-04-01

    This chapter describes the distributional patterns of the neuroendocrine cells in the respiratory surfaces of fishes and their bioactive secretions which are compared with similar elements in higher vertebrates. The neuroendocrine cells in the airways of fishes differentiate as solitary and clustered cells, but the clusters are not converted into neuroepithelial bodies which are reported in terrestrial vertebrates. The dipnoan fish Protopterus has innervated neuroendocrine cells in the pneumatic duct region. In Polypterus and Amia the lungs have neuroendocrine cells that are apparently not innervated. Two types of neuroendocrine cells are found in the gill of teleost fishes. These cells are very different by their location, structure and immunohistochemistry. Advanced studies on functional morphology of neuroendocrine cells in fish airways are still necessary to increase our understanding of their multifunctional role in the gill area.

  16. Implications for osmorespiratory compromise by anatomical remodeling in the gills of Arapaima gigas.

    PubMed

    Ramos, Cleverson Agner; Fernandes, Marisa Narciso; da Costa, Oscar Tadeu Ferreira; Duncan, Wallice Paxiuba

    2013-10-01

    The gill structure of the Amazonian fish Arapaima gigas, an obligatory air breather, was investigated during its transition from water breathing to the obligatory air breathing modes of respiration. The gill structure of A. gigas larvae is similar to that of most teleost fish; however, the morphology of the gills changes as the fish grow. The main morphological changes in the gill structure of a growing fish include the following: (1) intense cell proliferation in the filaments and lamellae, resulting in increasing epithelial thickness and decreasing interlamellar distance; (2) pillar cell system atrophy, which reduces the blood circulation through the lamellae; (3) the generation of long cytoplasmic processes from the epithelial cells into the intercellular space, resulting in continuous and sinuous paracellular channels between the epithelial cells of the filament and lamella that may be involved in gas, ion, and nutrient transport to epithelial cells; and (4) intense mitochondria-rich cell (MRC) proliferation in the lamellar epithelium. All of these morphological changes in the gills contribute to a low increase of the respiratory surface area for gas exchange and an increase in the water-blood diffusion distance increasing their dependence on air-breathing as fish developed. The increased proliferation of MRCs may contribute to increased ion uptake, which favors the regulation of ion content and pH equilibrium. Copyright © 2013 Wiley Periodicals, Inc.

  17. Reynolds number effects on gill pumping mechanics in mayfly nymphs

    NASA Astrophysics Data System (ADS)

    Sensenig, Andrew; Shultz, Jeffrey; Kiger, Ken

    2006-11-01

    Mayfly nymphs have an entirely aquatic life stage in which they frequently inhabit stagnant water. Nymphs have the capability to generate a ventilation current to compensate for the low oxygen level of the water by beating two linear arrays of plate-like gills that typically line the lateral edge of the abdomen. The characteristic Reynolds number associated with the gill motion changes with animal size, varying over a span of Re = 5 to 100 depending on age and species. The assumption that the system maintains optimal energetic efficiency leads to the prediction that animals transition from rowing to flapping mechanisms with increasing Re, while possibly utilizing a squeeze mechanism to a greater extent at lower Re. To investigate this hypothesis, we capture the motion of the gills through 3D imaging to investigate the effect of Reynolds number on the stroke patterns. PIV is utilized to assess flow rates and viscous dissipation. The effectiveness of the ventilation mechanism at each size has important consequences for the range of oxygen levels, and hence the habitat range, that can be tolerated by that size.

  18. Deep down on a Caribbean reef: lower mesophotic depths harbor a specialized coral-endosymbiont community

    PubMed Central

    Bongaerts, Pim; Frade, Pedro R.; Hay, Kyra B.; Englebert, Norbert; Latijnhouwers, Kelly R. W.; Bak, Rolf P. M.; Vermeij, Mark J. A.; Hoegh-Guldberg, Ove

    2015-01-01

    The composition, ecology and environmental conditions of mesophotic coral ecosystems near the lower limits of their bathymetric distributions remain poorly understood. Here we provide the first in-depth assessment of a lower mesophotic coral community (60–100 m) in the Southern Caribbean through visual submersible surveys, genotyping of coral host-endosymbiont assemblages, temperature monitoring and a growth experiment. The lower mesophotic zone harbored a specialized coral community consisting of predominantly Agaricia grahamae, Agaricia undata and a “deep-water” lineage of Madracis pharensis, with large colonies of these species observed close to their lower distribution limit of ~90 m depth. All three species associated with “deep-specialist” photosynthetic endosymbionts (Symbiodinium). Fragments of A. grahamae exhibited growth rates at 60 m similar to those observed for shallow Agaricia colonies (~2–3 cm yr−1), but showed bleaching and (partial) mortality when transplanted to 100 m. We propose that the strong reduction of temperature over depth (Δ5°C from 40 to 100 m depth) may play an important contributing role in determining lower depth limits of mesophotic coral communities in this region. Rather than a marginal extension of the reef slope, the lower mesophotic represents a specialized community, and as such warrants specific consideration from science and management. PMID:25564461

  19. Evolution of gilled mushrooms and puffballs inferred from ribosomal DNA sequences

    PubMed Central

    Hibbett, David S.; Pine, Elizabeth M.; Langer, Ewald; Langer, Gitta; Donoghue, Michael J.

    1997-01-01

    Homobasidiomycete fungi display many complex fruiting body morphologies, including mushrooms and puffballs, but their anatomical simplicity has confounded efforts to understand the evolution of these forms. We performed a comprehensive phylogenetic analysis of homobasidiomycetes, using sequences from nuclear and mitochondrial ribosomal DNA, with an emphasis on understanding evolutionary relationships of gilled mushrooms and puffballs. Parsimony-based optimization of character states on our phylogenetic trees suggested that strikingly similar gilled mushrooms evolved at least six times, from morphologically diverse precursors. Approximately 87% of gilled mushrooms are in a single lineage, which we call the “euagarics.” Recently discovered 90 million-year-old fossil mushrooms are probably euagarics, suggesting that (i) the origin of this clade must have occurred no later than the mid-Cretaceous and (ii) the gilled mushroom morphology has been maintained in certain lineages for tens of millions of years. Puffballs and other forms with enclosed spore-bearing structures (Gasteromycetes) evolved at least four times. Derivation of Gasteromycetes from forms with exposed spore-bearing structures (Hymenomycetes) is correlated with repeated loss of forcible spore discharge (ballistospory). Diverse fruiting body forms and spore dispersal mechanisms have evolved among Gasteromycetes. Nevertheless, it appears that Hymenomycetes have never been secondarily derived from Gasteromycetes, which suggests that the loss of ballistospory has constrained evolution in these lineages. PMID:9342352

  20. Classification of endosymbiont Wolbachia (Rickettsiales: Anaplasmataceae) in opiine wasps (Hymenoptera: Braconidae)

    NASA Astrophysics Data System (ADS)

    Mohammed, Muhamad Azmi; Zuki, Ameyra Aman; Yusof, Suhana; Othman, Nurul Wahida; Zain, Badrul Munir Md; Yaakop, Salmah

    2018-04-01

    Endosymbiont Wolbachia has always been a hot topic of discussion among entomologists and microbiologists as it can manipulate the reproductive system of their arthropod hosts. In this study, a total of 10 sequences which consist of concatenate data from three genetic markers of Wolbachia (groEL, gltA, and wsp) were obtained from opiine wasps from five localities in Peninsular Malaysia. Among the 10 sequences, six were isolated from Fopius arisanus, one from F. vandenboschi, and three from Psyttalia sp. SY2013. Based on Neighbour-Joining (NJ) analysis of the concatenate data and genetic distances, four variants of Wolbachia have been successfully identified. Our data thus provide an insight on Wolbachia infections in oriental insects as Wolbachia research is still considered as in early stage in Malaysia.

  1. Gill remodelling during terrestrial acclimation reduces aquatic respiratory function of the amphibious fish Kryptolebias marmoratus.

    PubMed

    Turko, Andy J; Cooper, Chris A; Wright, Patricia A

    2012-11-15

    The skin-breathing amphibious fish Kryptolebias marmoratus experiences rapid environmental changes when moving between water- and air-breathing, but remodelling of respiratory morphology is slower (~1 week). We tested the hypotheses that (1) there is a trade-off in respiratory function of gills displaying aquatic versus terrestrial morphologies and (2) rapidly increased gill ventilation is a mechanism to compensate for reduced aquatic respiratory function. Gill surface area, which varied inversely to the height of the interlamellar cell mass, was increased by acclimating fish for 1 week to air or low ion water, or decreased by acclimating fish for 1 week to hypoxia (~20% dissolved oxygen saturation). Fish were subsequently challenged with acute hypoxia, and gill ventilation or oxygen uptake was measured. Fish with reduced gill surface area increased ventilation at higher dissolved oxygen levels, showed an increased critical partial pressure of oxygen and suffered impaired recovery compared with brackish water control fish. These results indicate that hyperventilation, a rapid compensatory mechanism, was only able to maintain oxygen uptake during moderate hypoxia in fish that had remodelled their gills for land. Thus, fish moving between aquatic and terrestrial habitats may benefit from cutaneously breathing oxygen-rich air, but upon return to water must compensate for a less efficient branchial morphology (mild hypoxia) or suffer impaired respiratory function (severe hypoxia).

  2. Histological alterations in gills of Macrobrachium amazonicum juveniles exposed to ammonia and nitrite.

    PubMed

    Dutra, Fabrício Martins; Rönnau, Milton; Sponchiado, Dircelei; Forneck, Sandra Carla; Freire, Carolina Arruda; Ballester, Eduardo Luis Cupertino

    2017-06-01

    Aquaculture has shown great growth in the last decades. Due to the restrictions on water use, production systems are becoming increasingly more intensive, raising concerns about the production water quality. Macrobrachium amazonicum is among the freshwater prawn species with favorable characteristics for production and possibility of intensification. Nitrogen compounds such as ammonia and nitrite affect the health of aquatic organisms since they quickly reach toxic concentrations. These compounds can also cause damage to the gill structure, leading to hypoxia in tissues, affecting acid-base balance, osmoregulation (salt absorption) and ammonia excretion, decreasing the immune capacity of the animal and, in extreme cases, cause death. The aim of this study was to assess histological changes in the gills of Macrobrachium amazonicum juveniles subjected to different concentrations of total ammonia and nitrite. The prawns were subjected to different concentrations of those compounds and their gills were removed and preserved for histological analysis. The gills were assessed for changes according to the Organ Index (I org ) and, for each change, an importance factor (w) was attributed according to the degree of reversibility and applied according to the degree of extension or frequency of the damage. The damage to the gills in the treatments with 100% mortality, both for ammonia and nitrite, corresponded to the high occurrence of progressive, regressive, circulatory, and inflammation damages. The other treatments (which caused less mortality) had mainly inflammation and regressive damages, whose occurrence increased according to the increase in ammonia and nitrite concentration. The histological analysis confirmed that the higher the total ammonia and nitrite concentrations, the larger the damages caused to the gill structure and that lower nitrite concentrations caused similar damages to those caused by higher total ammonia concentrations, which reflects the lower

  3. Electro shield system applications on set gill net as efforts to preserve shark resources

    NASA Astrophysics Data System (ADS)

    Fitri Aristi, DP; Boesono, H.; Prihantoko, K. E.; Gautama, D. Y.

    2018-05-01

    Sharks are kind of ETP biota (Endangered, Threatened, and Protected), and are generally caught as by catch during fishing operations. In addition, sharks are one of the biota that plays a role in the life cycle in coastal waters. The Electro Shield System (ESS) was a device with an electromagnetic wave source that the shark can detect and make it afraid. ESS can be applied to set gill net operation to prevent the shark from getting caught. The objective of the study was to analyze the ESS on shark catches during set gill net operations. The research method was experimental fishing, conducted in March-May 2017 in Bangka Belitung Islands, Indonesia. Design the study by comparing shark catches during set gill net operation between those without using ESS (control) and using ESS with frequency 55 Hz. The shark catch by using Electro Shield System was 5.26% lower than control (7.80%). T-student analysis (sign 0.05) indicates that there was a significant difference between the set gill net without ESS and using the ESS against shark biota as bycatch. This indicates that the application of ESS in set gill net can reduce the capture of shark as by catch.

  4. Pathological glutamatergic neurotransmission in Gilles de la Tourette syndrome.

    PubMed

    Kanaan, Ahmad Seif; Gerasch, Sarah; García-García, Isabel; Lampe, Leonie; Pampel, André; Anwander, Alfred; Near, Jamie; Möller, Harald E; Müller-Vahl, Kirsten

    2017-01-01

    Gilles de la Tourette syndrome is a hereditary, neuropsychiatric movement disorder with reported abnormalities in the neurotransmission of dopamine and γ-aminobutyric acid (GABA). Spatially focalized alterations in excitatory, inhibitory and modulatory neurochemical ratios within specific functional subdivisions of the basal ganglia, may lead to the expression of diverse motor and non-motor features as manifested in Gilles de la Tourette syndrome. Current treatment strategies are often unsatisfactory thus provoking the need for further elucidation of the underlying pathophysiology. In view of (i) the close spatio-temporal synergy exhibited between excitatory, inhibitory and modulatory neurotransmitter systems; (ii) the crucial role played by glutamate (Glu) in tonic/phasic dopaminergic signalling; and (iii) the interdependent metabolic relationship exhibited between Glu and GABA via glutamine (Gln); we postulated that glutamatergic signalling is related to the pathophysiology of Gilles de la Tourette syndrome. As such, we examined the neurochemical profile of three cortico-striato-thalamo-cortical regions in 37 well-characterized, drug-free adult patients and 36 age/gender-matched healthy control subjects via magnetic resonance spectroscopy at 3 T. To interrogate the influence of treatment on metabolite concentrations, spectral data were acquired from 15 patients undergoing a 4-week treatment with aripiprazole. Test-retest reliability measurements in 23 controls indicated high repeatability of voxel localization and metabolite quantitation. We report significant reductions in striatal concentrations of Gln, Glu + Gln (Glx) and the Gln:Glu ratio, and thalamic concentrations of Glx in Gilles de la Tourette syndrome in comparison to controls. ON-treatment patients exhibited no significant metabolite differences when compared to controls but significant increases in striatal Glu and Glx, and trends for increases in striatal Gln and thalamic Glx compared to baseline

  5. Gill and lung ventilation responses to steady-state aquatic hypoxia and hyperoxia in the bullfrog tadpole.

    PubMed

    West, N H; Burggren, W W

    1982-02-01

    Gill ventilation frequency (fG), the pressure amplitude (PBC) and stroke volume (VS) of buccal ventilation cycles, the frequency of air breaths (fL), water flow over the gills (VW), gill oxygen uptake (MGO2), oxygen utilization (U), and heart frequency (fH) have been measured in unanaesthetized, air breathing Rana catesbeiana tadpoles (stage XVI-XIX). The animals were unrestrained except for ECG leads or cannulae, and were able to surface voluntarily for air breathing. They were subjected to aquatic normoxia, hyperoxia and three levels of aquatic hypoxia, and their respiratory responses recorded in the steady state. The experiments were performed at 20 +/- 0.5 degrees C. In hyperoxia there was an absence of air breathing, and fG, PBC and VW fell from the normoxic values, while U increased, resulting in no significant change in MGO2. Animals in normoxia showed a very low fL which increased in progressively more hypoxic states. VW increased from the normoxic value in mild hypoxia (PO2 = 96 +/- 2 mm Hg), but fell, associated with a reduction in PBC, in moderate (PO2 = 41 +/- 1 mm Hg) and severe (PO2 = 21 +/- 3 mm Hg) hypoxia in the presence of lung ventilation. Gill MGO2 was not significantly different from the normoxic value in mild hypoxia but fell in moderate hypoxia, while in severe hypoxia oxygen was lost to the ventilating water from the blood perfusing the gills. There was no significant change in fH from the normoxic value in either hypoxia or hyperoxia. These data indicate, that in the bimodally breathing bullfrog tadpole, aquatic PO2 exerts a strong control over both gill and lung ventilation. Furthermore, there is an interaction between gill and lung ventilation such that the onset of a high frequency of lung ventilation in moderate and severe hypoxia promotes a suppression of gill ventilation cycles.

  6. Insect symbiosis: derivation of yeast-like endosymbionts within an entomopathogenic filamentous lineage.

    PubMed

    Suh, S O; Noda, H; Blackwell, M

    2001-06-01

    Yeast-like endosymbionts (YLSs) of insects often are restricted to specific hosts and are essential to the host's survival. For example, in planthoppers (Homoptera: Delphacidae), endosymbionts function in sterol utilization and nitrogen recycling for the hosts. Our study, designed to investigate evolutionary changes in the YLS lineage involved in the planthopper association, strongly suggests an origin of the YLSs from within the filamentous ascomycetes (Euascomycetes), not the true yeasts (Saccharomycetes), as their morphology might indicate. During divergence of the planthopper YLSs, dramatic changes would have occurred in the insect-fungus interaction and the fungal morphology that have previously been undescribed in filamentous ascomycetes. Phylogenetic trees were based on individual and combined data sets of 2.6 kb of the nuclear small- and large-subunit ribosomal RNA genes for YLSs from three rice planthoppers (Laodelphax striatellus, Nilaparvata lugens, and Sogatella furcifera) compared with 56 other fungi. Parsimony analysis placed the planthopper YLSs within Cordyceps (Euascomycetes: Hypocreales: Clavicipitaceae), a genus of filamentous insects and a few fungal pathogenic ascomycetes. Another YLS species restricted to the aphid Hamiltonaphis styraci (Homoptera: Aphididae) was a sister taxon to the planthopper YLSS: Filamentous insect pathogens (Metarhizium and Beauveria) specific to the same species of insect hosts as the YLSs also formed lineages within the Clavicipitaceae, but these were distinct from the clade comprising YLS species. Trees constrained to include the YLSs in families of the Hypocreales other than the Clavicipitaceae were rejected by the Kishino-Hasegawa test. In addition, the results of this study support a hypothesis of two independent origins of insect-associated YLSs from among filamentous ascomycetes: the planthopper YLSs in the Clavicipitaceae and the YLSs associated with anobiid beetles (Symbiotaphrina species). Several lineages of

  7. McGill's Integrated Civil and Common Law Program.

    ERIC Educational Resources Information Center

    Morissette, Yves-Marie

    2002-01-01

    Describes the bijural program of McGill University Faculty of Law. The program educates all first-degree law students in both the common law and civil law traditions, preparing them for the increasing globalization of legal practice. (EV)

  8. A structure-function analysis of ion transport in crustacean gills and excretory organs.

    PubMed

    Freire, Carolina A; Onken, Horst; McNamara, John C

    2008-11-01

    Osmotic and ionic regulation in the Crustacea is mostly accomplished by the multifunctional gills, together with the excretory organs. In addition to their role in gas exchange, the gills constitute organs of active, transepithelial, ion transport, an activity of major importance that underlies many essential physiological functions like osmoregulation, calcium homeostasis, ammonium excretion and extracellular pH regulation. This review focuses on structure-function relationships in crustacean gills and excretory effectors, from the organ to molecular levels of organization. We address the diversity of structural architectures encountered in different crustacean gill types, and in constituent cell types, before examining the physiological mechanisms of Na(+), Cl(-), Ca(2+) and NH(4)(+) transport, and of acid-base equivalents, based on findings obtained over the last two decades employing advanced techniques. The antennal and maxillary glands constitute the principal crustacean excretory organs, which have received less attention in functional studies. We examine the diversity present in antennal and maxillary gland architecture, highlighting the structural similarities between both organ types, and we analyze the functions ascribed to each glandular segment. Emphasis is given to volume and osmoregulatory functions, capacity to produce dilute urine in freshwater crustaceans, and the effect of acclimation salinity on urine volume and composition. The microanatomy and diversity of function ascribed to gills and excretory organs are appraised from an evolutionary perspective, and suggestions made as to future avenues of investigation that may elucidate evolutionary and adaptive trends underpinning the invasion and exploitation of novel habitats.

  9. Ultrastructure of the external gill epithelium of the axolotl, Ambystoma mexicanum with reference to ionic transport.

    PubMed

    Jarial, M S; Wilkins, J H

    2003-10-01

    The ultrastructure of the external gill epithelium of the axolotl, Ambystoma mexicanum, has been examined using conventional transmission electron microscopy to elucidate its role in ionic transport. Four cell types are identified in the gill filament and primary gill bar epithelium. These are granular, ciliated, Leydig and basal cells. A fifth cell type, the flat mitochondria-rich cell is only found in the gill bar epithelium. The predominant granular cells display microvilli at their surface and their cytoplasm contains abundant mitochondria, rough endoplasmic reticulum, Golgi complexes, vesicles and PAS+ secretory granules that are extruded at the surface, which along with secretions from the Leydig cells form a mucous coat. The granular cells are joined apically by junctional complexes consisting of zonulae occludens, zonulae adherens and desmosomes. The lateral membranes of granular cells enclose large intercellular spaces that are closed at the apical ends but remain open at the basal ends adjoining capillaries. In AgNO3-treated axolotl, the gills become darkly stained, the silver grains penetrate apical membranes and appear in the cytoplasm, accumulating near the lateral membranes and also enter the intercellular spaces. These findings are consistent with the dual role of the gill epithelium in mucus production and active ionic transport.

  10. Gill damage and neurotoxicity of ammonia nitrogen on the clam Ruditapes philippinarum.

    PubMed

    Cong, Ming; Wu, Huifeng; Yang, Haiping; Zhao, Jianmin; Lv, Jiasen

    2017-04-01

    Ammonia nitrogen has been a potential menace to aquatic animals along the coastline of China. Presently, the toxicological effects of ammonia nitrogen were mainly concentrated on fishes, while little attention has been paid to molluscs. In this study, the clam Ruditapes philippinarum was used as the target animal to investigate the toxic effects of ammonia nitrogen. Our results showed that ammonia exposure could significantly reduce the integrity of lysosomes in a dose-dependent manner. Metabolite analysis revealed that exposure doses and duration time of ammonia nitrogen could affect the variation profiles of gill metabolites. In detail, branched chain amino acids, glutamate, choline and phosphocholine were significantly decreased after a one-day exposure. Inosine and phenylalanine were found significantly increased and ATP was decreased after a three-day exposure. The changes of metabolites implied that metabolisms of muscle element, neurotransmission and cell apoptosis of gill tissues would be affected by ammonia exposure. Such inferences were supported by the diminished muscle element, decreased concentrations of catecholamines and increased apoptosis rates, respectively. Therefore, we take advantage of metabolomics integrated with conventional biological assays to find out that ammonia exposure could cause lysosome instability, metabolic disturbance, aberrant gill structures and changes to neurotransmitters, and would result in mollusk gill dysfunction in feeding, respiration and immunity.

  11. Morphofunctional Alterations in Zebrafish (Danio rerio) Gills after Exposure to Mercury Chloride

    PubMed Central

    Macirella, Rachele; Brunelli, Elvira

    2017-01-01

    Mercury (Hg) is a global pollutant that may exert its toxic effects on living organisms and is found in both aquatic and terrestrial ecosystems in three chemical forms; elemental, organic, and inorganic. The inorganic form (iHg) tends to predominantly accumulate in aquatic environments. The gill apparatus is a very dynamic organ that plays a fundamental role in gas exchange, osmoregulation, acid-base regulation, detoxification, and excretion, and the gills are the primary route of waterborne iHg entrance in fish. In the present work we investigated the morphofunctional and ultrastructural effects in Danio rerio gills after 96 h exposure to two low HgCl2 concentrations (7.7 and 38.5 µg/L). Our results clearly demonstrated that a short-term exposure to low concentrations of mercury chloride resulted in gill morphology alterations and in the modifications of both Na+/K+-ATPase and metallothioneins (MTs) expression pattern. The main morphological effects recorded in this work were represented by hyperplasia and ectopia of chloride cells (CCs), lamellar fusion, increased mucous secretion, alteration of pavement cells (PVCs), detachment of the secondary epithelium, pillar cell degeneration, degeneration, and apoptosis. Trough immunohistochemistry and real-time PCR analysis also showed a dose-related modulation of Na+/K+-ATPase and MTs. PMID:28406445

  12. Ammonia excretion and urea handling by fish gills: present understanding and future research challenges.

    PubMed

    Wilkie, Michael Patrick

    2002-08-01

    In fresh water fishes, ammonia is excreted across the branchial epithelium via passive NH(3) diffusion. This NH(3) is subsequently trapped as NH(4)(+) in an acidic unstirred boundary layer lying next to the gill, which maintains the blood-to-gill water NH(3) partial pressure gradient. Whole animal, in situ, ultrastructural and molecular approaches suggest that boundary layer acidification results from the hydration of CO(2) in the expired gill water, and to a lesser extent H(+) excretion mediated by apical H(+)-ATPases. Boundary layer acidification is insignificant in highly buffered sea water, where ammonia excretion proceeds via NH(3) diffusion, as well as passive NH(4)(+) diffusion due to the greater ionic permeability of marine fish gills. Although Na(+)/H(+) exchangers (NHE) have been isolated in marine fish gills, possible Na(+)/NH(4)(+) exchange via these proteins awaits evaluation using modern electrophysiological and molecular techniques. Although urea excretion (J(Urea)) was thought to be via passive diffusion, it is now clear that branchial urea handling requires specialized urea transporters. Four urea transporters have been cloned in fishes, including the shark kidney urea transporter (shUT), which is a facilitated urea transporter similar to the mammalian renal UT-A2 transporter. Another urea transporter, characterized but not yet cloned, is the basolateral, Na(+) dependent urea antiporter of the dogfish gill, which is essential for urea retention in ureosmotic elasmobranchs. In ureotelic teleosts such as the Lake Magadi tilapia and the gulf toadfish, the cloned mtUT and tUT are facilitated urea transporters involved in J(Urea). A basolateral urea transporter recently cloned from the gill of the Japanese eel (eUT) may actually be important for urea retention during salt water acclimation. A multi-faceted approach, incorporating whole animal, histological, biochemical, pharmacological, and molecular techniques is required to learn more about the

  13. Measuring the quality of life of people at the end of life: The McGill Quality of Life Questionnaire-Revised.

    PubMed

    Cohen, S Robin; Sawatzky, Richard; Russell, Lara B; Shahidi, Javad; Heyland, Daren K; Gadermann, Anne M

    2017-02-01

    The McGill Quality of Life Questionnaire has been widely used with people with life-threatening illnesses without modification since its publication in 1996. With use, areas for improvement have emerged; therefore, various minor modifications were tested over time. To revise the McGill Quality of Life Questionnaire (McGill Quality of Life Questionnaire-Revised) while maintaining or improving its psychometric properties and length, keeping it as close as possible to the McGill Quality of Life Questionnaire to enable reasonable comparison with existing McGill Quality of Life Questionnaire literature. Data sets from eight studies were used (four studies originally used to develop the McGill Quality of Life Questionnaire, two to develop new McGill Quality of Life Questionnaire versions, and two with unrelated purposes). The McGill Quality of Life Questionnaire-Revised was developed using analyses of measurement invariance, confirmatory factor analysis, and calculation of correlations with the McGill Quality of Life Questionnaire's global quality of life item. Data were from 1702 people with life-threatening illnesses recruited from acute and palliative care units, palliative home care services, and oncology and HIV/AIDS outpatient clinics. The McGill Quality of Life Questionnaire-Revised consists of 14 items (plus the global quality of life item). A new Physical subscale was created combining physical symptoms and physical well-being and a new item on physical functioning. The Existential subscale was reduced to four items. The revised Support subscale, renamed Social, focuses more on relationships. The Psychological subscale remains unchanged. Confirmatory factor analysis results provide support for the measurement structure of the McGill Quality of Life Questionnaire-Revised. The overall scale has good internal consistency reliability ( α = 0.94). The McGill Quality of Life Questionnaire-Revised improves on and can replace the McGill Quality of Life

  14. Psychological Aspects of Gilles De La Tourette Syndrome.

    ERIC Educational Resources Information Center

    Grossman, Hildreth Youkilis; And Others

    1986-01-01

    Evaluated the psychopathological features that may underlie or accompany Gilles de la Tourette Syndrome. Univariate analyses indicated that Tourette subjects scored higher on the following scales of the Minnesota Multiphasic Personality Inventory: Schizophrenia, Depression, Psychopathic Deviate, Psychasthenia and Hypochondriasis. The results…

  15. Holocephalan embryos provide evidence for gill arch appendage reduction and opercular evolution in cartilaginous fishes

    PubMed Central

    Gillis, J. Andrew; Rawlinson, Kate A.; Bell, Justin; Lyon, Warrick S.; Baker, Clare V. H.; Shubin, Neil H.

    2011-01-01

    Chondrichthyans possess endoskeletal appendages called branchial rays that extend laterally from their hyoid and gill-bearing (branchial) arches. Branchial ray outgrowth, like tetrapod limb outgrowth, is maintained by Sonic hedgehog (Shh) signaling. In limbs, distal endoskeletal elements fail to form in the absence of normal Shh signaling, whereas shortened duration of Shh expression correlates with distal endoskeletal reduction in naturally variable populations. Chondrichthyans also exhibit natural variation with respect to branchial ray distribution—elasmobranchs (sharks and batoids) possess a series of ray-supported septa on their hyoid and gill arches, whereas holocephalans (chimaeras) possess a single hyoid arch ray-supported operculum. Here we show that the elongate hyoid rays of the holocephalan Callorhinchus milii grow in association with sustained Shh expression within an opercular epithelial fold, whereas Shh is only transiently expressed in the gill arches. Coincident with this transient Shh expression, branchial ray outgrowth is initiated in C. milii but is not maintained, yielding previously unrecognized vestigial gill arch branchial rays. This is in contrast to the condition seen in sharks, where sustained Shh expression corresponds to the presence of fully formed branchial rays on the hyoid and gill arches. Considered in light of current hypotheses of chondrichthyan phylogeny, our data suggest that the holocephalan operculum evolved in concert with gill arch appendage reduction by attenuation of Shh-mediated branchial ray outgrowth, and that chondrichthyan branchial rays and tetrapod limbs exhibit parallel developmental mechanisms of evolutionary reduction. PMID:21220324

  16. Prolactin regulates transcription of the ion uptake Na+/Cl- cotransporter (ncc) gene in zebrafish gill

    USGS Publications Warehouse

    Breves, Jason P.; Serizier, Sandy B.; Goffin, Vincent; McCormick, Stephen D.; Karlstrom, Rolf O.

    2013-01-01

    Prolactin (PRL) is a well-known regulator of ion and water transport within osmoregulatory tissues across vertebrate species, yet how PRL acts on some of its target tissues remains poorly understood. Using zebrafish as a model, we show that ionocytes in the gill directly respond to systemic PRL to regulate mechanisms of ion uptake. Ion-poor conditions led to increases in the expression of PRL receptor (prlra), Na+/Cl− cotransporter (ncc; slc12a10.2), Na+/H+ exchanger (nhe3b; slc9a3.2), and epithelial Ca2+ channel (ecac; trpv6) transcripts within the gill. Intraperitoneal injection of ovine PRL (oPRL) increased ncc and prlra transcripts, but did not affect nhe3b or ecac. Consistent with direct PRL action in the gill, addition of oPRL to cultured gill filaments stimulated ncc in a concentration-dependent manner, an effect blocked by a pure human PRL receptor antagonist (Δ1-9-G129R-hPRL). These results suggest that PRL signaling through PRL receptors in the gill regulates the expression of ncc, thereby linking this pituitary hormone with an effector of Cl− uptake in zebrafish for the first time.

  17. Deanol in Gilles de la Tourette Syndrome: a preliminary investigation.

    PubMed

    Pinta, E R

    1977-03-01

    On the basis of its pharmacologic action Deanol (dimethyl aminoethanol) was hypothesized to be of benefit in the Gilles de la Tourette Syndrome. In one case report the addition of Deanol to perphenazine did not result in an improvement of uncontrollable movements or involuntary speech utterances. Gilles de la Tourette Syndrome is a condition combining organic and psychogenic features existing in the interface between two etiologies. Classically the disease begins in childhood and is characterized by the appearance of sudden involuntary movements, involuntary speech utterances frequently consisting of curse words (coprolalia), and imitative phenomena such as echolalia and echopraxia. Neurotic symptomatology such as anxiety and obsessive thinking have also been reported. This condition is regarded neuropharmacologically as a dopaminergic state that responds to drugs with antidopaminergic activity e.g. the phenothiazines and butyrophenones. Deanol (dimethyl aminoethanol) is a putative cholinergic agonist and has reported effectiveness in conditions where there is a predominance of dopaminergic versus cholinergic activity, e.g. levodopa-induced dyskinesias, neuroleptic induced tardive dyskinesia, and Huntington's chorea. Because of its effectiveness in dopaminergic states it was hypothesized that Deanol could also be of benefit in the Gilles de la Tourette Syndrome.

  18. Some like it hot: evolution and ecology of novel endosymbionts in bat flies of cave-roosting bats (hippoboscoidea, nycterophiliinae).

    PubMed

    Morse, Solon F; Dick, Carl W; Patterson, Bruce D; Dittmar, Katharina

    2012-12-01

    We investigated previously unknown associations between bacterial endosymbionts and bat flies of the subfamily Nycterophiliinae (Diptera, Streblidae). Molecular analyses revealed a novel clade of Gammaproteobacteria in Nycterophilia bat flies. This clade was not closely related to Arsenophonus-like microbes found in its sister genus Phalconomus and other bat flies. High population infection rates in Nycterophilia across a wide geographic area, the presence of the symbionts in pupae, the general codivergence between hosts and symbionts, and high AT composition bias in symbiont genes together suggest that this host-symbiont association is obligate in nature and ancient in origin. Some Nycterophilia samples (14.8%) also contained Wolbachia supergroup F (Alphaproteobacteria), suggesting a facultative symbiosis. Likelihood-based ancestral character mapping revealed that, initially, obligate symbionts exhibited association with host-specific Nycterophilia bat flies that use a broad temperature range of cave environments for pupal development. As this mutualism evolved, the temperature range of bat flies narrowed to an exclusive use of hot caves, which was followed by a secondary broadening of the bat flies' host associations. These results suggest that the symbiosis has influenced the environmental tolerance of parasite life history stages. Furthermore, the contingent change to an expanded host range of Nycterophilia bat flies upon narrowing the ecological niche of their developmental stages suggests that altered environmental tolerance across life history stages may be a crucial factor in shaping parasite-host relationships.

  19. Ultrastructural effects on gill tissues induced in red tilapia Oreochromis sp. by a waterborne lead exposure.

    PubMed

    Aldoghachi, Mohammed A; Azirun, Mohd Sofian; Yusoff, Ismail; Ashraf, Muhammad Aqeel

    2016-09-01

    Experiments on hybrid red tilapia Oreochromis sp. were conducted to assess histopathological effects induced in gill tissues of 96 h exposure to waterborne lead (5.5 mg/L). These tissues were investigated by light and scanning electron microscopy. Results showed that structural design of gill tissues was noticeably disrupted. Major symptoms were changes of epithelial cells, fusion in adjacent secondary lamellae, hypertrophy and hyperplasia of chloride cells and coagulate necrosis in pavement cells with disappearance of its microridges. Electron microscopic X-ray microanalysis of fish gills exposed to sublethal lead revealed that lead accumulated on the surface of the gill lamella. This study confirmed that lead exposure incited a difference of histological impairment in fish, supporting environmental watch over aquatic systems when polluted by lead.

  20. GillesPy: A Python Package for Stochastic Model Building and Simulation.

    PubMed

    Abel, John H; Drawert, Brian; Hellander, Andreas; Petzold, Linda R

    2016-09-01

    GillesPy is an open-source Python package for model construction and simulation of stochastic biochemical systems. GillesPy consists of a Python framework for model building and an interface to the StochKit2 suite of efficient simulation algorithms based on the Gillespie stochastic simulation algorithms (SSA). To enable intuitive model construction and seamless integration into the scientific Python stack, we present an easy to understand, action-oriented programming interface. Here, we describe the components of this package and provide a detailed example relevant to the computational biology community.

  1. GillesPy: A Python Package for Stochastic Model Building and Simulation

    PubMed Central

    Abel, John H.; Drawert, Brian; Hellander, Andreas; Petzold, Linda R.

    2017-01-01

    GillesPy is an open-source Python package for model construction and simulation of stochastic biochemical systems. GillesPy consists of a Python framework for model building and an interface to the StochKit2 suite of efficient simulation algorithms based on the Gillespie stochastic simulation algorithms (SSA). To enable intuitive model construction and seamless integration into the scientific Python stack, we present an easy to understand, action-oriented programming interface. Here, we describe the components of this package and provide a detailed example relevant to the computational biology community. PMID:28630888

  2. Effects of different temperature regimes on survival of Diaphorina citri and its endosymbiotic bacterial communities.

    PubMed

    Hussain, Mubasher; Akutse, Komivi Senyo; Ravindran, Keppanan; Lin, Yongwen; Bamisile, Bamisope Steve; Qasim, Muhammad; Dash, Chandra Kanta; Wang, Liande

    2017-09-01

    The Asian citrus psyllid, Diaphorina citri, is a major pest of citrus and vector of citrus greening (huanglongbing) in Asian. In our field-collected psyllid samples, we discovered that Fuzhou (China) and Faisalabad (Pakistan), populations harbored an obligate primary endosymbiont Candidatus Carsonella (gen. nov.) with a single species, Candidatus Carsonella ruddii (sp. nov.) and a secondary endosymbiont, Wolbachia surface proteins (WSP) which are intracellular endosymbionts residing in the bacteriomes. Responses of these symbionts to different temperatures were examined and their host survival assessed. Diagnostic PCR assays showed that the endosymbionts infection rates were not significantly reduced in both D. citri populations after 24 h exposure to cold or heat treatments. Although quantitative PCR assays showed significant reduction of WSP relative densities at 40°C for 24 h, a substantial decrease occurred as the exposure duration increased beyond 3 days. Under the same temperature regimes, Ca. C. ruddii density was initially less affected during the first exposure day, but rapidly reduced at 3-5 days compared to WSP. However, the mortality of the psyllids increased rapidly as exposure time to heat treatment increased. The responses of the two symbionts to unfavorable temperature regimes highlight the complex host-symbionts interactions between D. citri and its associated endosymbionts. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Expression of genes involved in the uptake of inorganic carbon in the gill of a deep-sea vesicomyid clam harboring intracellular thioautotrophic bacteria.

    PubMed

    Hongo, Yuki; Ikuta, Tetsuro; Takaki, Yoshihiro; Shimamura, Shigeru; Shigenobu, Shuji; Maruyama, Tadashi; Yoshida, Takao

    2016-07-10

    Deep-sea vesicomyid clams, including the genus Phreagena (formerly Calyptogena), harbor thioautotrophic bacterial symbionts in the host symbiosome, which consists of cytoplasmic vacuoles in gill epithelial cells called bacteriocytes. The symbiont requires inorganic carbon (Ci), such as CO2, HCO3(-), and CO3(2-), to synthesize organic compounds, which are utilized by the host clam. The dominant Ci in seawater is HCO3(-), which is impermeable to cell membranes. Within the bacteriocyte, cytoplasmic carbonic anhydrase (CA) from the host, which catalyzes the inter-conversion between CO2 and HCO3(-), has been shown to be abundant and is thought to supply intracellular CO2 to symbionts in the symbiosome. However, the mechanism of Ci uptake by the host gill from seawater is poorly understood. To elucidate the influx pathway of Ci into the bacteriocyte, we isolated the genes related to Ci uptake via the pyrosequencing of cDNA from the gill of Phreagena okutanii, and investigated their expression patterns. Using phylogenetic and amino acid sequence analyses, three solute carrier family 4 (SLC4) bicarbonate transporters (slc4co1, slc4co2, and slc4co4) and two membrane-associated CAs (mcaco1 and mcaco2) were identified as candidate genes for Ci uptake. In an in situ hybridization analysis of gill sections, the expression of mcaco1 and mcaco2 was detected in the bacteriocytes and asymbiotic non-ciliated cells, respectively, and the expression of slc4co1 and slc4co2 was detected in the asymbiotic cells, including the intermediate cells of the inner area and the non-ciliated cells of the external area. Although subcellular localizations of the products of these genes have not been fully elucidated, they may play an important role in the uptake of Ci into the bacteriocytes. These findings will improve our understanding of the Ci transport system in the symbiotic relationships of chemosynthetic bivalves. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Chemosynthetic bacteria found in bivalve species from mud volcanoes of the Gulf of Cadiz.

    PubMed

    Rodrigues, Clara F; Webster, Gordon; Cunha, Marina R; Duperron, Sébastien; Weightman, Andrew J

    2010-09-01

    As in other cold seeps, the dominant bivalves in mud volcanoes (MV) from the Gulf of Cadiz are macrofauna belonging to the families Solemyidae (Acharax sp., Petrasma sp.), Lucinidae (Lucinoma sp.), Thyasiridae (Thyasira vulcolutre) and Mytilidae (Bathymodiolus mauritanicus). The delta(13)C values measured in solemyid, lucinid and thyasirid specimens support the hypothesis of thiotrophic nutrition, whereas isotopic signatures of B. mauritanicus suggest methanotrophic nutrition. The indication by stable isotope analysis that chemosynthetic bacteria make a substantial contribution to the nutrition of the bivalves led us to investigate their associated bacteria and their phylogenetic relationships based on comparative 16S rRNA gene sequence analysis. PCR-denaturing gradient gel electrophoresis analysis and cloning of bacterial 16S rRNA-encoding genes confirmed the presence of sulfide-oxidizing symbionts within gill tissues of many of the studied specimens. Phylogenetic analysis of bacterial 16S rRNA gene sequences demonstrated that most bacteria were related to known sulfide-oxidizing endosymbionts found in other deep-sea chemosynthetic environments, with the co-occurrence of methane-oxidizing symbionts in Bathymodiolus specimens. This study confirms the presence of several chemosynthetic bivalves in the Gulf of Cadiz and further highlights the importance of sulfide- and methane-oxidizing symbionts in the trophic ecology of macrobenthic communities in MV.

  5. Identification of the Causal Agent of Shrimp Black Gill in the Coastal Southeast USA

    NASA Astrophysics Data System (ADS)

    Bassette, M. A.; Verdiyev, R.; Price, A. R.; Walters, T. L.; Landers, S. C.; Walker, A. N.; Geer, P. J.; Frischer, M. E.

    2016-02-01

    Penaeid shrimp including Litopenaeus setiferus (white shrimp), Farfantepenaeus aztecus (brown shrimp), and Farfantepenaeus duorarum (pink shrimp) support the most valuable commercial fisheries in the US Southeast Atlantic. However, since the mid 1990's the fishery has experienced a significant decline in reported harvest, due in part to declines in fishing effort (both fishing trips and licensed vessels). Another primary cause for this decline, particularly for the fall white shrimp, has been hypothesized to be due to severe outbreaks of a gill infection causing tissue melanization (Black Gill), but the agent of Black Gill has not been identified. Histological and molecular studies indicate the presence of a large ciliate with evidence of gill tissue necrosis and the formation of melanized nodules. Sequencing of nearly the complete 18S rRNA gene of the shrimp Black Gill (sBG) ciliate indicates that it is closely related to the apostomate ciliate Hyalophysa chattoni (99.6% nucleotide similarity). However, electron microscopy studies suggest that the sBG ciliate is not H. chattoni and may not even be an apostome ciliate because it lacks many of the definitive ultra-structural characteristics of this group of ciliates including well-stacked kinetodesmal fibers anchoring their basal bodies (kinetosomes), food plaquettes, trichocysts or an epiplasm. Investigations are continuing to identify definitively the sBG ciliate but these results point to the possible discovery of a new species of ciliate.

  6. Interactome of E. piscicida and grouper liver proteins reveals strategies of bacterial infection and host immune response.

    PubMed

    Li, Hui; Zhu, Qing-Feng; Peng, Xuan-Xian; Peng, Bo

    2017-01-03

    The occurrence of infectious diseases is related to heterogeneous protein interactions between a host and a microbe. Therefore, elucidating the host-pathogen interplay is essential. We previously revealed the protein interactome between Edwardsiella piscicida and fish gill cells, and the present study identified the protein interactome between E. piscicida and E. drummondhayi liver cells. E. drummondhayi liver cells and bacterial pull-down approaches were used to identify E. piscicida outer membrane proteins that bind to liver cells and fish liver cell proteins that interact with bacterial cells, respectively. Eight bacterial proteins and 11 fish proteins were characterized. Heterogeneous protein-protein interactions between these bacterial cells and fish liver cells were investigated through far-Western blotting and co-immunoprecipitation. A network was constructed based on 42 heterogeneous protein-protein interactions between seven bacterial proteins and 10 fish proteins. A comparison of the new interactome with the previously reported interactome showed that four bacterial proteins overlapped, whereas all of the identified fish proteins were new, suggesting a difference between bacterial tricks for evading host immunity and the host strategy for combating bacterial infection. Furthermore, these bacterial proteins were found to regulate the expression of host innate immune-related proteins. These findings indicate that the interactome contributes to bacterial infection and host immunity.

  7. Evolutionary genomics: transdomain gene transfers.

    PubMed

    Bordenstein, Seth R

    2007-11-06

    Biologists have until now conceded that bacterial gene transfer to multicellular animals is relatively uncommon in Nature. A new study showing promiscuous insertions of bacterial endosymbiont genes into invertebrate genomes ushers in a shift in this paradigm.

  8. The characterization and manipulation of the bacterial microbiome of the Rocky Mountain wood tick, Dermacentor andersoni.

    PubMed

    Clayton, Katie A; Gall, Cory A; Mason, Katheen L; Scoles, Glen A; Brayton, Kelly A

    2015-12-10

    In North America, ticks are the most economically impactful vectors of human and animal pathogens. The Rocky Mountain wood tick, Dermacentor andersoni (Acari: Ixodidae), transmits Rickettsia rickettsii and Anaplasma marginale to humans and cattle, respectively. In recent years, studies have shown that symbiotic organisms are involved in a number of biochemical and physiological functions. Characterizing the bacterial microbiome of D. andersoni is a pivotal step towards understanding symbiont-host interactions. In this study, we have shown by high-throughput sequence analysis that the composition of endosymbionts in the midgut and salivary glands in adult ticks is dynamic over three generations. Four Proteobacteria genera, Rickettsia, Francisella, Arsenophonus, and Acinetobacter, were identified as predominant symbionts in these two tissues. Exposure to therapeutic doses of the broad-spectrum antibiotic, oxytetracycline, affected both proportions of predominant genera and significantly reduced reproductive fitness. Additionally, Acinetobacter, a free-living ubiquitous microbe, invaded the bacterial microbiome at different proportions based on antibiotic treatment status suggesting that microbiome composition may have a role in susceptibility to environmental contaminants. This study characterized the bacterial microbiome in D. andersoni and determined the generational variability within this tick. Furthermore, this study confirmed that microbiome manipulation is associated with tick fitness and may be a potential method for biocontrol.

  9. Isolation and characterization of bioactive fungi from shark Carcharodon carcharias' gill with biopharmaceutical prospects

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Han, Jinyuan; Feng, Yan; Mu, Jun; Bao, Haiyan; Kulik, Andreas; Grond, Stephanie

    2016-01-01

    Until recently, little was known about the fungi found in shark gills and their biomedicinal potential. In this article, we described the isolation, bioactivity, diversity, and secondary metabolites of bioactive fungi from the gill of a shark ( Carcharodon carcharias). A total of 115 isolates were obtained and grown in 12 culture media. Fifty-eight of these isolates demonstrated significant activity in four antimicrobial, pesticidal, and cytotoxic bioassay models. Four randomly selected bioactive isolates inhibited human cancer cell proliferation during re-screening. These active isolates were segregated into 6 genera using the internal transcribed spacer-large subunit (ITS-LSU) rDNA-sequence BLAST comparison. Four genera, Penicillium, Aspergillus, Mucor, and Chaetomium were the dominant taxa. A phylogenic tree illustrated their intergenera and intragenera genetic diversity. HPLC-DAD-HRMS analysis and subsequent database searching revealed that nine representative strains produced diverse bioactive compound profiles. These results detail the broad range of bioactive fungi found in a shark's gills, revealing their biopharmaceutical potential. To the best of our knowledge, this is the first study characterizing shark gill fungi and their bioactivity.

  10. Prolactin regulates transcription of the ion uptake Na+/Cl- cotransporter (ncc) gene in zebrafish gill.

    PubMed

    Breves, Jason P; Serizier, Sandy B; Goffin, Vincent; McCormick, Stephen D; Karlstrom, Rolf O

    2013-04-30

    Prolactin (PRL) is a well-known regulator of ion and water transport within osmoregulatory tissues across vertebrate species, yet how PRL acts on some of its target tissues remains poorly understood. Using zebrafish as a model, we show that ionocytes in the gill directly respond to systemic PRL to regulate mechanisms of ion uptake. Ion-poor conditions led to increases in the expression of PRL receptor (prlra), Na(+)/Cl(-) cotransporter (ncc; slc12a10.2), Na(+)/H(+) exchanger (nhe3b; slc9a3.2), and epithelial Ca(2+) channel (ecac; trpv6) transcripts within the gill. Intraperitoneal injection of ovine PRL (oPRL) increased ncc and prlra transcripts, but did not affect nhe3b or ecac. Consistent with direct PRL action in the gill, addition of oPRL to cultured gill filaments stimulated ncc in a concentration-dependent manner, an effect blocked by a pure human PRL receptor antagonist (Δ1-9-G129R-hPRL). These results suggest that PRL signaling through PRL receptors in the gill regulates the expression of ncc, thereby linking this pituitary hormone with an effector of Cl(-) uptake in zebrafish for the first time. Copyright © 2013. Published by Elsevier Ireland Ltd.

  11. Species-specific impacts of suspended sediments on gill structure and function in coral reef fishes.

    PubMed

    Hess, Sybille; Prescott, Leteisha J; Hoey, Andrew S; McMahon, Shannon A; Wenger, Amelia S; Rummer, Jodie L

    2017-11-15

    Reduced water quality, in particular increases in suspended sediments, has been linked to declines in fish abundance on coral reefs. Changes in gill structure induced by suspended sediments have been hypothesized to impair gill function and may provide a mechanistic basis for the observed declines; yet, evidence for this is lacking. We exposed juveniles of three reef fish species ( Amphiprion melanopus , Amphiprion percula and Acanthochromis polyacanthus ) to suspended sediments (0-180 mg l -1 ) for 7 days and examined changes in gill structure and metabolic performance (i.e. oxygen consumption). Exposure to suspended sediments led to shorter gill lamellae in A. melanopus and A. polyacanthus and reduced oxygen diffusion distances in all three species. While A. melanopus exhibited impaired oxygen uptake after suspended sediment exposure, i.e. decreased maximum and increased resting oxygen consumption rates resulting in decreased aerobic scope, the oxygen consumption rates of the other two species remained unaffected. These findings imply that species sensitive to changes in gill structure such as A. melanopus may decline in abundance as reefs become more turbid, whereas species that are able to maintain metabolic performance despite suspended sediment exposure, such as A. polyacanthus or A. percula , may be able to persist or gain a competitive advantage. © 2017 The Author(s).

  12. Altered structural connectivity of cortico-striato-pallido-thalamic networks in Gilles de la Tourette syndrome.

    PubMed

    Worbe, Yulia; Marrakchi-Kacem, Linda; Lecomte, Sophie; Valabregue, Romain; Poupon, Fabrice; Guevara, Pamela; Tucholka, Alan; Mangin, Jean-François; Vidailhet, Marie; Lehericy, Stephane; Hartmann, Andreas; Poupon, Cyril

    2015-02-01

    Gilles de la Tourette syndrome is a childhood-onset syndrome characterized by the presence and persistence of motor and vocal tics. A dysfunction of cortico-striato-pallido-thalamo-cortical networks in this syndrome has been supported by convergent data from neuro-pathological, electrophysiological as well as structural and functional neuroimaging studies. Here, we addressed the question of structural integration of cortico-striato-pallido-thalamo-cortical networks in Gilles de la Tourette syndrome. We specifically tested the hypothesis that deviant brain development in Gilles de la Tourette syndrome could affect structural connectivity within the input and output basal ganglia structures and thalamus. To this aim, we acquired data on 49 adult patients and 28 gender and age-matched control subjects on a 3 T magnetic resonance imaging scanner. We used and further implemented streamline probabilistic tractography algorithms that allowed us to quantify the structural integration of cortico-striato-pallido-thalamo-cortical networks. To further investigate the microstructure of white matter in patients with Gilles de la Tourette syndrome, we also evaluated fractional anisotropy and radial diffusivity in these pathways, which are both sensitive to axonal package and to myelin ensheathment. In patients with Gilles de la Tourette syndrome compared to control subjects, we found white matter abnormalities in neuronal pathways connecting the cerebral cortex, the basal ganglia and the thalamus. Specifically, striatum and thalamus had abnormally enhanced structural connectivity with primary motor and sensory cortices, as well as paracentral lobule, supplementary motor area and parietal cortices. This enhanced connectivity of motor cortex positively correlated with severity of tics measured by the Yale Global Tics Severity Scale and was not influenced by current medication status, age or gender of patients. Independently of the severity of tics, lateral and medial orbito

  13. Gill area, permeability and Na+ ,K+ -ATPase activity as a function of size and salinity in the blue crab, Callinectes sapidus.

    PubMed

    Li, Tiandao; Roer, Robert; Vana, Matthew; Pate, Susan; Check, Jennifer

    2006-03-01

    Juvenile blue crabs, Callinectes sapidus, extensively utilize oligohaline and freshwater regions of the estuary. With a presumptively larger surface-area-to-body weight ratio, juvenile crabs could experience osmo- and ionoregulatory costs well in excess of that of adults. To test this hypothesis, crabs ranging over three orders of magnitude in body weight were acclimated to either sea water (1,000 mOsm) or dilute sea water (150 mOsm), and gill surface area, water and sodium permeabilities (calculated from the passive efflux of 3H2O and 22Na+), gill Na+, K+ -ATPase activity and expression were measured. Juveniles had a relatively larger gill surface area; weight-specific gill surface area decreased with body weight. Weight-specific water and sodium fluxes also decreased with weight, but not to the same extent as gill surface area; thus juveniles were able to decrease gill permeability slightly more than adults upon acclimation to dilute media. Crabs < 5 g in body weight had markedly higher activities of gill Na+ ,K+ -ATPase than crabs > 5 g in both posterior and anterior gills. Acclimation to dilute medium induced increased expression of Na+, K+ -ATPase and enzyme activity, but the increase was not as great in juveniles as in larger crabs. The increased weight-specific surface area for water gain and salt loss for small crabs in dilute media presents a challenge that is incompletely compensated by reduced permeability and increased affinity of gill Na+, K+ -ATPase for Na+. Juveniles maintain osmotic and ionic homeostasis by the expression and utilization of extremely high levels of gill Na+, K+ -ATPase, in posterior, as well as in anterior, gills. Copyright 2006 Wiley-Liss, Inc.

  14. Cytokine Responses in Gills of Capoeta umbla as Biomarkers of Environmental Pollution.

    PubMed

    Danabas, Durali; Yildirim, Nuran Cikcikoglu; Yildirim, Numan; Onal, Ayten Oztufekci; Uslu, Gulsad; Unlu, Erhan; Danabas, Seval; Ergin, Cemil; Tayhan, Nilgun

    2016-03-01

    Immunological biomarkers reflect the effects of exposure to environmental contaminants. In this study, the suitability and sensitivity of cytokine responses, interleukin1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) in gill tissues of Capoeta umbla (Heckel, 1843), collected from different regions, as early warning indices of environmental pollution and ecosystem health was evaluated. Fish and water samples were taken from ten stations in March and September 2011 and 2012. Tumor necrosis factor-α, IL-1β and IL-6 levels were determined in samples of the gill tissues by using an ELISA kit. Significant variations of TNF-α, IL-1β and IL-6 levels observed between stations and seasons. The results of this study show that seasonal variations of cytokine responses in gills of Capoeta umbla are sensitive to the contaminants present in Uzuncayir Dam Lake (Tunceli, Turkey) water and are valuable biomarkers for environmental pollution and ecosystem health.

  15. Copper speciation in the gill microenvironment of carp (Cyprinus carpio) at various levels of pH.

    PubMed

    Tao, Shu; Long, Aimin; Xu, Fuliu; Dawson, R W

    2002-07-01

    The fish gill microenvironment of Cyprinus carpio under stress of copper exposure was investigated. pH and other parameters including free copper activity, alkalinity, and inorganic and organic carbons in the surrounding water (inspired water) and in the gill microenvironment (expired water) were measured or calculated at various levels of pH and varying total copper concentrations. The chemical equilibrium calculation (from MINEQA2) and complexation modeling (mucus-copper) were coupled to calculate both species distribution. The results indicate that the pH in the fish gill microenvironment was different from that in the surrounding water with a balance point around 6.9. The secretion of both CO(2) and mucus was affected in both linear and nonlinear ways when the fish were exposed to elevated concentrations of copper. The complexation capacity of the gill mucus was characterized by a conditional stability constant (logk(Cu-mucus)) of 5.37 along with a complexation equivalent concentration (L(Cu-mucus)) of 0.96 mmol Cu/mg C. For both the fish microenvironment and the surrounding water, the dominant copper species shifted from Cu(2+) to CuCO(3)(0) and to Cu(OH)(2)(0) when the pH of the surrounding water changed from 6.12 to 8.11. The change in copper speciation in the gill microenvironment is smaller than that in the surrounding water due to the pH buffering capacity of the fish gills.

  16. Diversity, Bacterial Symbionts and Antibacterial Potential of Gut-Associated Fungi Isolated from the Pantala flavescens Larvae in China

    PubMed Central

    Shao, Ming-Wei; Lu, Yi-Hui; Miao, Shuang; Zhang, Yun; Chen, Ting-Ting; Zhang, Ying-Lao

    2015-01-01

    The diversity of fungi associated with the gut of Pantala flavescens larvae was investigated using a culture-dependent method and molecular identification based on an analysis of the internally transcribed spacer sequence. In total, 48 fungal isolates were obtained from P. flavescens larvae. Based on phylogenetic analyses, the fungal isolates were grouped in 5 classes and 12 different genera. Fourteen bacterial 16S rDNA sequences derived from total genomic DNA extractions of fungal mycelia were obtained. The majority of the sequences were associated with Proteobacteria (13/14), and one Bacillaceae (1/14) was included. Leclercia sp., Oceanobacillus oncorhynchi and Methylobacterium extorquens, were reported for the first time as bacterial endosymbionts in fungi. High-performance liquid chromatography (HPLC) analysis indicated that bacterial symbionts produced specific metabolites and also exerted an inhibitory effect on fungal metabolites. The biological activity of the fungal culture extracts against the pathogenic bacteria Staphylococcus aureus (ATCC 6538), Bacillus subtilis (ATCC 6633) and Escherichia coli (ATCC 8739) was investigated, and 20 extracts (42%) exhibited antibacterial activity against at least one of the tested bacterial strains. This study is the first report on the diversity and antibacterial activity of symbiotic fungi residing in the gut of P. flavescens larvae, and the results show that these fungi are highly diverse and could be exploited as a potential source of bioactive compounds. PMID:26221957

  17. Diversity, Bacterial Symbionts and Antibacterial Potential of Gut-Associated Fungi Isolated from the Pantala flavescens Larvae in China.

    PubMed

    Shao, Ming-Wei; Lu, Yi-Hui; Miao, Shuang; Zhang, Yun; Chen, Ting-Ting; Zhang, Ying-Lao

    2015-01-01

    The diversity of fungi associated with the gut of Pantala flavescens larvae was investigated using a culture-dependent method and molecular identification based on an analysis of the internally transcribed spacer sequence. In total, 48 fungal isolates were obtained from P. flavescens larvae. Based on phylogenetic analyses, the fungal isolates were grouped in 5 classes and 12 different genera. Fourteen bacterial 16S rDNA sequences derived from total genomic DNA extractions of fungal mycelia were obtained. The majority of the sequences were associated with Proteobacteria (13/14), and one Bacillaceae (1/14) was included. Leclercia sp., Oceanobacillus oncorhynchi and Methylobacterium extorquens, were reported for the first time as bacterial endosymbionts in fungi. High-performance liquid chromatography (HPLC) analysis indicated that bacterial symbionts produced specific metabolites and also exerted an inhibitory effect on fungal metabolites. The biological activity of the fungal culture extracts against the pathogenic bacteria Staphylococcus aureus (ATCC 6538), Bacillus subtilis (ATCC 6633) and Escherichia coli (ATCC 8739) was investigated, and 20 extracts (42%) exhibited antibacterial activity against at least one of the tested bacterial strains. This study is the first report on the diversity and antibacterial activity of symbiotic fungi residing in the gut of P. flavescens larvae, and the results show that these fungi are highly diverse and could be exploited as a potential source of bioactive compounds.

  18. Molecular detection and immunological localization of gill Na+/H+ exchanger in the dogfish (Squalus acanthias).

    PubMed

    Claiborne, James B; Choe, Keith P; Morrison-Shetlar, Alison I; Weakley, Jill C; Havird, Justin; Freiji, Abe; Evans, David H; Edwards, Susan L

    2008-03-01

    The dogfish (Squalus acanthias) can make rapid adjustments to gill acid-base transfers to compensate for internal acidosis/alkalosis. Branchial Na+/H+ exchange (NHE) has been postulated as one mechanism driving the excretion of H+ following acidosis. We have cloned gill cDNA that includes an open reading frame coding for a 770-residue protein most homologous (approximately 71%) to mammalian NHE2. RT-PCR revealed NHE2 transcripts predominantly in gill, stomach, rectal gland, intestine, and kidney. In situ hybridization with an antisense probe against NHE2 in gill sections revealed a strong mRNA signal from a subset of interlamellar and lamellae cells. We developed dogfish-specific polyclonal antibodies against NHE2 that detected a approximately 70-kDa protein in Western blots and immunologically recognized branchial cells having two patterns of protein expression. Cytoplasmic and apical NHE2 immunoreactivity were observed in cells coexpressing basolateral Na+-K+-ATPase. Other large ovoid cells more generally staining for NHE2 also were strongly positive for basolateral H+-ATPase. Gill mRNA levels for NHE2 and H+-ATPase did not change following systemic acidosis (as measured by quantitative PCR 2 h after a 1- or 2-meq/kg acid infusion). These data indicate that posttranslational adjustments of NHE2 and other transport systems (e.g., NHE3) following acidosis may be of importance in the short-term pH adjustment and net branchial H+ efflux observed in vivo. NHE2 may play multiple roles in the gills, involved with H+ efflux from acid-secreting cells, basolateral H+ reabsorption for pHi regulation, and in parallel with H+-ATPase for the generation of HCO3(-) in base-secreting cells.

  19. Transfer of a parthenogenesis-inducing Wolbachia endosymbiont derived from Trichogramma dendrolimi into Trichogramma evanescens.

    PubMed

    Watanabe, Masaya; Kageyama, Daisuke; Miura, Kazuki

    2013-01-01

    Wolbachia, which are maternally transmitted endosymbionts, are considered to have moved horizontally between invertebrate hosts multiple times. However, it is not well understood how easily Wolbachia are transmitted horizontally between different hosts and how frequently horizontally-transmitted Wolbachia become established in their new hosts. We transferred a parthenogenesis-inducing Wolbachia endosymbiont derived from the parasitic wasp Trichogramma dendrolimi to Trichogramma evanescens. Specifically, Wolbachia was cultivated in a mosquito cell line and the Wolbachia-infected cells were microinjected into uninfected T. evanescens. Among 276 pupae inoculated with Wolbachia-infected cells, 65 adults emerged (G0). Diagnostic PCR demonstrated that 25 of 37 G0 females (68%) were Wolbachia-positive. Among isofemale lines established from G0 females, the proportions of infected lines were 80% (20 of 25) in G1 and 100% (18 of 18) in G2. In an isofemale line, infection was stably maintained for more than 10 generations. These results indicate invasion of Wolbachia into the germline of the recipient insect. Quantitative PCR demonstrated that the Wolbachia titer in the recipient host was significantly lower than that in the native host. The absence or very low number, if any, of parthenogenetically-reproducing individuals in the recipient host may be caused by the low Wolbachia titer. The Wolbachia titer in the recipients was lower in G11 than in G5, suggesting a decline in the density. Together with a previous report, our study may imply that Wolbachia in Trichogramma species are highly adapted to their hosts, which hinders robust expression of the Wolbachia phenotype in non-native host species. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Aquatic gilled mushrooms: Psathyrella fruiting in the Rogue River in southern Oregon.

    PubMed

    Frank, Jonathan L; Coffan, Robert A; Southworth, Darlene

    2010-01-01

    A species of Psathyrella (Basidiomycota) with true gills has been observed fruiting underwater in the clear, cold, flowing waters of the upper Rogue River in Oregon. Fruiting bodies develop and mature in the main channel, where they are constantly submerged, and were observed fruiting over 11 wk. These mushrooms develop underwater, not on wood recently washed into the river. Substrates include water-logged wood, gravel and the silty riverbed. DNA sequences of the ITS region and a portion of the ribosomal large subunit gene place this fungus in Psathyrella sensu stricto near P. atomata, P. fontinalis and P. superiorensis. Morphological characters distinguish the underwater mushroom from previously described species. Fruiting bodies have long fibrillose stipes with small diameter caps. Immature stages have a thin veil that is soon lost. Gills lack reddish edges. Cystidia are ventricose with subacute apices. Spores were observed as wedge-shape rafts released into gas pockets below the caps. Underwater gills and ballistospores indicate a recent adaptation to the stream environment. This particular river habitat combines the characteristics of spring-fed flows and cold, aerated water with woody debris in shallow depths on a fine volcanic substrate. Based on molecular and morphological evidence we conclude that the underwater mushrooms are a new species, Psathyrella aquatica. This report adds to the biodiversity of stream fungi that degrade woody substrates. The underwater environment is a new habitat for gilled mushrooms.

  1. Hydrodynamic pumping by serial gill arrays in the mayfly nymph Centroptilum triangulifer.

    PubMed

    Sensenig, Andrew T; Kiger, Ken T; Shultz, Jeffrey W

    2010-10-01

    Aquatic nymphs of the mayfly Centroptilum triangulifer produce ventilatory flow using a serial array of seven abdominal gill pairs that operates across a Reynolds numbers (Re) range from 2 to 22 during ontogeny. Net flow in small animals is directed ventrally and essentially parallel to the stroke plane (i.e. rowing), but net flow in large animals is directed dorsally and essentially transverse to the stroke plane (i.e. flapping). Detailed flow measurements based on Particle Image Velocimetry (PIV) ensemble-correlation analysis revealed that the phasing of the gills produces a time-dependent array of vortices associated with a net ventilatory current, a fluid kinematic pattern, here termed a 'phased vortex pump'. Absolute size of vortices does not change with increasing animal size or Re, and thus the vortex radius (R(v)) decreases relative to inter-gill distance (L(is)) during mayfly growth. Given that effective flapping in appendage-array animals requires organized flow between adjacent appendages, we hypothesize that rowing should be favored when L(is)/R(v)<1 and flapping should be favored when L(is)/R(v)>1. Significantly, the rowing-to-flapping transition in Centroptilum occurs at Re∼5, when the mean dynamic inter-gill distance equals the vortex radius. This result suggests that the Re-based rowing-flapping demarcation observed in appendage-array aquatic organisms may be determined by the relative size of the propulsive mechanism and its self-generated vortices.

  2. Gill histopathology of Maria-da-toca Hypleurochilus fissicornis by metacercariae of Bucephalus margaritae (Digenea: Bucephalidae).

    PubMed

    Silva, Renato Z; da Costa Marchiori, Natalia; Magalhães, Aimê Rachel M; Cousin, João Carlos B; Romano, Luis Alberto; Pereira, Joaber

    2016-06-01

    Gills of Maria-da-toca Hypleurochilus fissicornis collected at Ponta do Sambaqui-Florianópolis island-Brazil, were analyzed to describe the histopathology caused by metacercaria of Bucephalus margaritae. Gills were submitted to the routine histological techniques for embedding in paraffin and permanent mounting in Balsam and stereoscopic analysis. Metacercariae showed a branchial infection site pattern for encystations. The branchial infection site pattern is half-basalward in the primary branchial filament with amplitude of the infection of 1-3 metacercaria. Cysts occurred within branchial abductor muscle and cartilaginous and osseous tissues of the gills. Each metacercariae had a contentional hyaline parasitic capsule and melanin-like pigmentation. The half-apicalward region of the primary branchial filaments showed several dysplasia degrees, cartilage and osseous degeneration (pyknosis), thrombosis and immune exudated cells (mainly lymphocytes). Cytopathologies as thickening of the epithelium lining of the secondary branchial filaments were a response of the branchial infection site pattern of the metacercaria. Interlamellar obliteration and fusion of the lamellae due to the hypertrophy and hyperplasia of the epithelial lining as well as chloride cells occurred. Pyknosis of pillar cells and epithelial lining cells from the secondary branchial filaments were also present. Bucephalosis in H. fissicornis gills is no-hemorrhagic and no-fatal branchitis, but could compromises the gill functions and could permits the secondary opportunistic infections.

  3. Ocean warming and acidification modulate energy budget and gill ion regulatory mechanisms in Atlantic cod (Gadus morhua).

    PubMed

    Kreiss, C M; Michael, K; Lucassen, M; Jutfelt, F; Motyka, R; Dupont, S; Pörtner, H-O

    2015-10-01

    Ocean warming and acidification are threatening marine ecosystems. In marine animals, acidification is thought to enhance ion regulatory costs and thereby baseline energy demand, while elevated temperature also increases baseline metabolic rate. Here we investigated standard metabolic rates (SMR) and plasma parameters of Atlantic cod (Gadus morhua) after 3-4 weeks of exposure to ambient and future PCO2 levels (550, 1200 and 2200 µatm) and at two temperatures (10, 18 °C). In vivo branchial ion regulatory costs were studied in isolated, perfused gill preparations. Animals reared at 18 °C responded to increasing CO2 by elevating SMR, in contrast to specimens at 10 °C. Isolated gills at 10 °C and elevated PCO2 (≥1200 µatm) displayed increased soft tissue mass, in parallel to increased gill oxygen demand, indicating an increased fraction of gill in whole animal energy budget. Altered gill size was not found at 18 °C, where a shift in the use of ion regulation mechanisms occurred towards enhanced Na(+)/H(+)-exchange and HCO3 (-) transport at high PCO2 (2200 µatm), paralleled by higher Na(+)/K(+)-ATPase activities. This shift did not affect total gill energy consumption leaving whole animal energy budget unaffected. Higher Na(+)/K(+)-ATPase activities in the warmth might have compensated for enhanced branchial permeability and led to reduced plasma Na(+) and/or Cl(-) concentrations and slightly lowered osmolalities seen at 18 °C and 550 or 2200 µatm PCO2 in vivo. Overall, the gill as a key ion regulation organ seems to be highly effective in supporting the resilience of cod to effects of ocean warming and acidification.

  4. Identification and disruption of bacteria associated with sheep scab mites-novel means of control?

    PubMed

    Hall, S A; Mack, K; Blackwell, A; Evans, K A

    2015-10-01

    Psoroptes ovis mites, which cause psoroptic mange (sheep scab), were investigated to identify potential bacterial targets for endosymbiont control of sheep scab. In addition, transmission of bacteria to the sheep skin was investigated through the characterisation of bacteria present in P. ovis faecal trails and on the fleece environment by internal transcribed spacer (ITS) sequencing. A diverse range of bacteria was identified in addition to a potential endosymbiont candidate, Comamonas sp, which was detected in P. ovis by both ITS PCR and endosymbiont-specific PCR. Disruption of these bacteria within P. ovis, through the use of antibiotics, was explored; with significant reduction in mean mite survival when administered antibiotic diets compared with controls (LR4 = 23.12, P < 0.001). The antibiotic treatments also significantly affected the bacterial density (CFU/mite) within P. ovis, indicating that mite survival may be linked to the bacterial communities that they harbour. Although antibiotics are not suitable for practical application, these results suggest disrupting bacteria associated with P. ovis should be further investigated for novel control. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Spatial and temporal variation of the gill rakers of gizzard shad and silver carp in three Midwestern rivers

    USGS Publications Warehouse

    Walleser, Liza R.; Sandheinrich, Mark B.; Howard, David R.; Gaikowski, Mark P.; Amberg, Jon J.

    2014-01-01

    Improved management of invasive Silver Carp Hypophthalmichthys molitrix in the upper Mississippi River basin may be possible by better understanding the feeding abilities of this population. Food collection for filter-feeding fishes, such as Silver Carp, is influenced by the species-specific structure of their gill rakers. To investigate structural variation in gill rakers of Silver Carp, the morphology of gill rakers was quantified and compared with that of a native filter-feeding fish species which may compete with Silver Carp for food resources, Gizzard Shad Dorosoma cepedianum. Intra- and interspecies variation of gill rakers was examined in both species collected from three locations among four months. Interspecies analysis indicated the size of pores in gill rakers of Silver Carp were much larger than the interraker spacings of Gizzard Shad (95% CI ranged from 80.69 to 185.75 μm versus 16.72 to 47.36 μm, respectively). Intraspecies variation of gill rakers from Silver Carp was related to the overall size of fish and occurred only among sites where dissimilar sizes of fish were collected. This suggested the size of particles filtered by Silver Carp may be dependent upon ontogenic development rather than phenotypic plasticity in response to spatial or temporal factors. Intraspecies variation of gill rakers from Gizzard Shad occurred among site and monthly sampling data; however, variation was only attributable to overall size of fish for monthly sampling data. This suggested ontogeny may influence the filter-feeding ability of this species within a habitat. However, variation noted among sites, which was not attributable to size of fish, may indicate gill rakers are phenotypically plastic among Gizzard Shad populations of various river systems of the upper Mississippi River basin.

  6. Bacterial communities associated with Shinkaia crosnieri from the Iheya North, Okinawa Trough: Microbial diversity and metabolic potentials

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Zeng, Zhi-gang; Chen, Shuai; Sun, Li

    2018-04-01

    Shinkaia crosnieri is a galatheid crab endemic to the deep-sea hydrothermal systems in the Okinawa Trough. In this study, we systematically analyzed and compared the diversity and metabolic potentials of the microbial communities in different tissues (setae, gill, and intestine) of S. crosnieri by high-throughput sequencing technology and quantitative real-time polymerase chain reaction. Sequence analysis based on the V3-V4 regions of the 16S rRNA gene obtained 408,079 taxon tags, which covered 15 phyla, 22 classes, 32 orders, 42 families, and 25 genera. Overall, the microbial communities in all tissues were dominated by Epsilonproteobacteria and Gammaproteobacteria, of which Epsilonproteobacteria was the largest class and accounted for 85.24% of the taxon tags. In addition, 20 classes of bacteria were discovered for the first time to be associated with S. crosnieri and no archaea were detected. Comparative analysis showed that (i) bacteria from different tissues fell into different groups by β-diversity analysis, (ii) bacterial communities in intestine were similar to that in gill and much more diverse than that in setae, and the sulfur-oxidizing genus Sulfurovum was markedly enriched in intestine and gill. Furthermore, bacteria potentially involved in methane, nitrogen, and metal metabolisms were detected in all samples. The key genes of aprA/dsrA and pmoA involved in sulfate reducing and methane oxidization, respectively, were detected in the gill and gut communities for the first time, and pmoA was significantly more abundant in gill and setae than in intestine. These results provide the first comparative and relatively complete picture of the diversity and metabolic potentials of the bacteria in different tissues of S. crosnieri. These results also indicate that the composition of the microbial communities in hydrothermal fauna changes with time, suggesting the importance of environmental influence.

  7. Tissue distributions of fluoride and its toxicity in the gills of a freshwater teleost, Cyprinus carpio.

    PubMed

    Cao, Jinling; Chen, Jianjie; Wang, Jundong; Wu, Xiangtian; Li, Yundong; Xie, Lingtian

    2013-04-15

    Fish take up fluoride directly from water and are susceptible to fluoride contamination of their environment. In this study, we examined the tissue distributions of fluoride and its toxicity in the gills of the common carp (Cyprinus carpio) chronically exposed to fluoride. Carp were exposed to a range of aqueous fluoride (35-124 mg/L) and sampled at 30, 60 and 90 days. The accumulation of fluoride in the tissues increased with the level and duration of exposure. Steady state was not achieved under the experimental conditions. The gills accumulated the highest levels of fluoride followed by the liver>brain>kidney>muscle>intestine. A dose-dependent inhibition was observed for the enzyme activities of Na(+)-K(+)-ATPase and Ca(2+)-ATPase in the gills after the fish were exposed for 90 days. Also, accumulation of fluoride was associated with the inhibition of superoxide dismutase (SOD) activities and a dose-dependent stimulation of malondialdehyde (MDA) levels in the gill tissues, suggesting that fluoride promoted oxidative stress in the fish. Microscopic examinations revealed injuries to gill tissues and chloride cells, with the severity of injury increasing with exposure concentration. These results suggest that chronic exposure to elevated concentrations of fluoride may induce toxicity in the common carp. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Metabolic Complementation in Bacterial Communities: Necessary Conditions and Optimality

    PubMed Central

    Mori, Matteo; Ponce-de-León, Miguel; Peretó, Juli; Montero, Francisco

    2016-01-01

    Bacterial communities may display metabolic complementation, in which different members of the association partially contribute to the same biosynthetic pathway. In this way, the end product of the pathway is synthesized by the community as a whole. However, the emergence and the benefits of such complementation are poorly understood. Herein, we present a simple model to analyze the metabolic interactions among bacteria, including the host in the case of endosymbiotic bacteria. The model considers two cell populations, with both cell types encoding for the same linear biosynthetic pathway. We have found that, for metabolic complementation to emerge as an optimal strategy, both product inhibition and large permeabilities are needed. In the light of these results, we then consider the patterns found in the case of tryptophan biosynthesis in the endosymbiont consortium hosted by the aphid Cinara cedri. Using in-silico computed physicochemical properties of metabolites of this and other biosynthetic pathways, we verified that the splitting point of the pathway corresponds to the most permeable intermediate. PMID:27774085

  9. Surface ultrastructure of the gill filaments and the secondary lamellae of the catfish, Rita rita, and the carp, Cirrhinus mrigala.

    PubMed

    Kumari, Usha; Mittal, Swati; Mittal, Ajay Kumar

    2012-04-01

    Surface ultrastructures of gill filaments and secondary lamellae of Rita rita and Cirrhinus mrigala, inhabiting different ecological habitat, were investigated to unravel adaptive modifications. R. rita is a sluggish, bottom dwelling carnivorous catfish, which inhabits regions of river with accumulations of dirty water. It retains its viability for long time if taken out of water. C. mrigala is an active bottom dwelling Indian major carp, which lives in relatively clean water and dies shortly after taken out of water. In R. rita, gill septa between gill filaments are reduced. Microridges on epithelial cells covering gill filaments are often continuous and arranged concentrically. Secondary lamellae are extensive. The epithelium appears corrugated, show irregular elevations and shallow depressions, and microridges on epithelial cells appear fragmented. In C. mrigala, in contrast, the gill septa are extensive. Microridges on epithelial cells covering gill filaments are fragmented. Secondary lamellae are less extensive. The epithelium appears smooth and microridges on epithelial cells are relatively inconspicuous. These differences have been considered adaptive modification in relation to habit and ecological niches inhabited by two fish species. Presence of mucous goblet cells on gill filaments is discussed in relation to their functions including precipitation of the sediments and preventing clogging of gill filaments. Infrequent mucous goblet cells in the epithelium of secondary lamellae in two fish species are considered an adaptation, minimizing thickness of the epithelium to reduce barrier between blood and water for favoring gasses exchange with increased efficiency. Copyright © 2011 Wiley-Liss, Inc.

  10. Local and systemic humoral immune response in farmed Atlantic salmon (Salmo salar L.) under a natural amoebic gill disease outbreak.

    PubMed

    Marcos-López, Mar; Espinosa Ruiz, Cristóbal; Rodger, Hamish D; O'Connor, Ian; MacCarthy, Eugene; Esteban, M Ángeles

    2017-07-01

    Amoebic gill disease (AGD), caused by the protozoan parasite Neoparamoeba perurans, is one of the most significant infectious diseases for Atlantic salmon (Salmo salar L.) mariculture. The present study investigated the humoral immune response (both local in gill mucus and systemic in serum) of farmed Atlantic salmon naturally infected with N. perurans in commercial sea pens, at two different stages of the disease and after freshwater treatment. Parameters analysed included activity of immune related enzymes (i.e. lysozyme, peroxidase, protease, anti-protease, esterase, alkaline phosphatase), IgM levels, and the terminal carbohydrate profile in the gill mucus. Overall, greater variations between groups were noted in the immune parameters determined in gill mucus than the equivalent in the serum. In gill mucus, IgM levels and peroxidase, lysozyme, esterase and protease activities were decreased in fish showing longer exposure time to the infection and higher disease severity, then showed a sequential increase after treatment. Results obtained highlight the capacity of gills to elicit a local response to the infection, indicate an impaired immune response at the later stages of the disease, and show partial reestablishment of the host immune status after freshwater treatment. In addition to providing data on the humoral response to AGD, this study increases knowledge on gill mucosal humoral immunity, since some of the parameters were analysed for the first time in gill mucus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Some Like It Hot: Evolution and Ecology of Novel Endosymbionts in Bat Flies of Cave-Roosting Bats (Hippoboscoidea, Nycterophiliinae)

    PubMed Central

    Morse, Solon F.; Dick, Carl W.; Patterson, Bruce D.

    2012-01-01

    We investigated previously unknown associations between bacterial endosymbionts and bat flies of the subfamily Nycterophiliinae (Diptera, Streblidae). Molecular analyses revealed a novel clade of Gammaproteobacteria in Nycterophilia bat flies. This clade was not closely related to Arsenophonus-like microbes found in its sister genus Phalconomus and other bat flies. High population infection rates in Nycterophilia across a wide geographic area, the presence of the symbionts in pupae, the general codivergence between hosts and symbionts, and high AT composition bias in symbiont genes together suggest that this host-symbiont association is obligate in nature and ancient in origin. Some Nycterophilia samples (14.8%) also contained Wolbachia supergroup F (Alphaproteobacteria), suggesting a facultative symbiosis. Likelihood-based ancestral character mapping revealed that, initially, obligate symbionts exhibited association with host-specific Nycterophilia bat flies that use a broad temperature range of cave environments for pupal development. As this mutualism evolved, the temperature range of bat flies narrowed to an exclusive use of hot caves, which was followed by a secondary broadening of the bat flies' host associations. These results suggest that the symbiosis has influenced the environmental tolerance of parasite life history stages. Furthermore, the contingent change to an expanded host range of Nycterophilia bat flies upon narrowing the ecological niche of their developmental stages suggests that altered environmental tolerance across life history stages may be a crucial factor in shaping parasite-host relationships. PMID:23042170

  12. Is gill cortisol concentration a good acute stress indicator in fish? A study in rainbow trout and zebrafish.

    PubMed

    Gesto, Manuel; Hernández, Juan; López-Patiño, Marcos A; Soengas, José L; Míguez, Jesús M

    2015-10-01

    Cortisol is the main biomarker of physiological stress in fish. It is usually measured in plasma, which requires blood collection. Though cortisol is produced in the anterior kidney, it can diffuse easily through cell membranes due to its lipophilic nature. Taking advantage of that, some non-invasive techniques have been developed to measure cortisol directly in the water from fish-holding tanks, in skin mucus or in scales. In this study, we explored the possibility to analyze fish cortisol from gill filaments as a reliable acute stress marker. Our results show that gill cortisol levels correlate well with plasma cortisol levels in both rainbow trout and zebrafish exposed or not to an acute stress protocol. Measuring cortisol in gill filaments increases the available possibilities for stress assessment in fish. Although this approach should yet be tested for its use with other stressors, it has several advantages: In relatively large fish (i.e. above 30 g) gill cortisol levels could be measured in vivo. Sampling of gill biopsies is very fast and easy, and the procedure does not induce stress if properly performed, making it an ideal option for in vivo stress assessment. In small fish, the use of gill tissue to measure cortisol has important technical advantages with respect to the current methods using whole-body homogenates. Gill homogenates could be used directly for ELISA cortisol analysis, avoiding the need of tedious and expensive cortisol extraction protocols, and, since no organic solvent is required, contributing for a more environmentally friendly analysis. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Gill Na+-K+-2Cl- cotransporter abundance and location in Atlantic salmon: Effects of seawater and smolting

    USGS Publications Warehouse

    Pelis, Ryan M.; Zydlewski, Joseph D.; McCormick, Stephen D.

    2001-01-01

    Na+-K+-2Cl−cotransporter abundance and location was examined in the gills of Atlantic salmon (Salmo salar) during seawater acclimation and smolting. Western blots revealed three bands centered at 285, 160, and 120 kDa. The Na+-K+-2Cl−cotransporter was colocalized with Na+-K+-ATPase to chloride cells on both the primary filament and secondary lamellae. Parr acclimated to 30 parts per thousand seawater had increased gill Na+-K+-2Cl− cotransporter abundance, large and numerous Na+-K+-2Cl− cotransporter immunoreactive chloride cells on the primary filament, and reduced numbers on the secondary lamellae. Gill Na+-K+-2Cl− cotransporter levels were low in presmolts (February) and increased 3.3-fold in smolts (May), coincident with elevated seawater tolerance. Cotransporter levels decreased below presmolt values in postsmolts in freshwater (June). The size and number of immunoreactive chloride cells on the primary filament increased threefold during smolting and decreased in postsmolts. Gill Na+-K+-ATPase activity and Na+-K+-2Cl− cotransporter abundance increased in parallel during both seawater acclimation and smolting. These data indicate a direct role of the Na+-K+-2Cl− cotransporter in salt secretion by gill chloride cells of teleost fish.

  14. Gilles de la Tourette and the discovery of Tourette syndrome. Includes a translation of his 1884 article.

    PubMed

    Lajonchere, C; Nortz, M; Finger, S

    1996-06-01

    In 1885, Gilles de la Tourette described 9 patients who suffered from a disorder characterized by involuntary movements, echolalia, echopraxia, coprolalia, and strange, uncontrollable sounds. In his article, Gilles de la Tourette presented some earlier descriptions of this disorder. To appreciate what first led Gilles de la Tourette to Tourette syndrome, however, it is necessary to turn to an article that he published a year earlier. In his 1884 article, Gilles de la Tourette cited several movement disorders that he thought were similar to each other, yet different from true chorea. After describing these disorders, namely, "jumping" of Maine, latah of Malaysia, and miryachit of Siberia, he briefly mentioned a boy in Charcot's ward in Paris, France, who seemed to exhibit the same condition. In an addendum, he then said that other cases were now surfacing in Paris and that he would write an additional article describing these individuals. To achieve a more thorough understanding of the events that led Gilles de la Tourette to his 1885 description of the disorder that now bears his name, we herein present an English-language translation of his 1884 article along with a commentary.

  15. Effects of gill-net trauma, barotrauma, and deep release on postrelease mortality of Lake Trout

    USGS Publications Warehouse

    Ng, Elizabeth L.; Fredericks, Jim P.; Quist, Michael C.

    2015-01-01

    Unaccounted postrelease mortality violates assumptions of many fisheries studies, thereby biasing parameter estimates and reducing efficiency. We evaluated effects of gill-net trauma, barotrauma, and deep-release treatment on postrelease mortality of lake trout Salvelinus namaycush. Lake trout were captured at depths up to 65 m with gill nets in Priest Lake, Idaho, and held in a large enclosure for 10–12 d. Postrelease mortality was the same for surface-release–and deep-release–treated fish (41%). Mixed-effects logistic regression models were used to evaluate effects of intrinsic and environmental factors on the probability of mortality. Presence of gill-net trauma and degree of barotrauma were associated with increased probability of postrelease mortality. Smaller fish were also more likely to suffer postrelease mortality. On average, deep-release treatment did not reduce postrelease mortality, but effectiveness of treatment increased with fish length. Of the environmental factors evaluated, only elapsed time between lifting the first and last anchors of a gill-net gang (i.e., lift time) was significantly related to postrelease mortality. Longer lift times, which may allow ascending lake trout to acclimate to depressurization, were associated with lower postrelease mortality rates. Our study suggests that postrelease mortality may be higher than previously assumed for lake trout because mortality continues after 48 h. In future studies, postrelease mortality could be reduced by increasing gill-net lift times and increasing mesh size used to increase length of fish captured.

  16. Dietary choline regulates antibacterial activity, inflammatory response and barrier function in the gills of grass carp (Ctenopharyngodon idella).

    PubMed

    Zhao, Hua-Fu; Jiang, Wei-Dan; Liu, Yang; Jiang, Jun; Wu, Pei; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu; Feng, Lin

    2016-05-01

    An 8-week feeding trial was conducted to determine the effects of graded levels of choline (197-1795 mg/kg) on antibacterial properties, inflammatory status and barrier function in the gills of grass carp. The results showed that optimal dietary choline supplementation significantly improved lysozyme and acid phosphatase activities, complement component 3 (C3) content, and the liver expressed antimicrobial peptide 2 and Hepcidin mRNA levels in the gills of fish (P < 0.05). In addition, appropriate dietary choline significantly decreased the oxidative damage, which might be partly due to increase copper, zinc superoxide dismutase (Cu/Zn-SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and glutathione reductase (GR) activities and increased glutathione content in the gills of fish (P < 0.05). Moreover, appropriate dietary choline significantly up-regulated the mRNA levels of interleukin 10 and transforming growth factor β1, Zonula occludens 1, Occludin, Claudin-b, c, 3 and 12, inhibitor of κBα, target of rapamycin, Cu/Zn-SOD, CAT, GR, GPx, GST and NF-E2-related factor 2 in the gills of fish (P < 0.05). Conversely, appropriate dietary choline significantly down-regulated the mRNA levels of pro-inflammatory cytokines, tumor necrosis factor α, interleukin 8, interferon γ, interleukin 1β, and related signaling factors, nuclear factor kappa B p65, IκB kinase β, IκB kinase γ, myosin light chain kinase and Kelch-like-ECH-associated protein 1a (Keap1a) in the gills of fish (P < 0.05). However, choline did not have a significant effect on the mRNA levels of IκB kinase α, Claudin-15 and Keap1b in the gills of fish. Collectively, appropriate dietary choline levels improved gill antibacterial properties and relative gene expression levels of tight junction proteins, and decreased inflammatory status, as well as up-regulated the mRNA levels of related signaling molecules in the gills of fish. Based on gill C3 content and AHR activity

  17. Distribution of Hatschekia pagellibogneravei (Copepoda: Hatschekiidae) on the gills of Pagellus bogaraveo (Teleostei: Sparidae) from Madeira, Portugal.

    PubMed

    Hermida, Margarida; Cruz, Cristina; Saraiva, Aurélia

    2012-06-01

    A population of the gill parasite Hatschekia pagellibogneravei (Hesse, 1878) was studied on one of its sparid fish hosts, the blackspot seabream, Pagellus bogaraveo (Brünnich), off the coast of Madeira Island, Portugal, northeast Atlantic. Very high infection levels of this copepod were detected, with no significant seasonal differences. Abundance was negatively correlated with fish size. There were significant differences in the distribution of this copepod among the gill arches of the host, which seem to be best explained by differences in water flow within the gill habitat.

  18. Identifying the Child with Gilles de la Tourette Syndrome.

    ERIC Educational Resources Information Center

    Anderson, Donna J.

    1993-01-01

    This article presents a brief introduction to Gilles de la Tourette Syndrome (a neuropsychiatric disorder characterized by motor and vocal tics and obsessive-compulsive behaviors). It describes the nature of the disorder, treatment, and service provision (evaluation and assessment and the Individual Education Plan). (DB)

  19. Type IV carbonic anhydrase is present in the gills of spiny dogfish (Squalus acanthias).

    PubMed

    Gilmour, K M; Bayaa, M; Kenney, L; McNeill, B; Perry, S F

    2007-01-01

    Physiological and biochemical studies have provided indirect evidence for a membrane-associated carbonic anhydrase (CA) isoform, similar to mammalian type IV CA, in the gills of dogfish (Squalus acanthias). This CA isoform is linked to the plasma membrane of gill epithelial cells by a glycosylphosphatidylinositol anchor and oriented toward the plasma, such that it can catalyze the dehydration of plasma HCO(3)(-) ions. The present study directly tested the hypothesis that CA IV is present in dogfish gills in a location amenable to catalyzing plasma HCO(3)(-) dehydration. Homology cloning techniques were used to assemble a 1,127 base pair cDNA that coded for a deduced protein of 306 amino acids. Phylogenetic analysis suggested that this protein was a type IV CA. For purposes of comparison, a second cDNA (1,107 base pairs) was cloned from dogfish blood; it encoded a deduced protein of 260 amino acids that was identified as a cytosolic CA through phylogenetic analysis. Using real-time PCR and in situ hybridization, mRNA expression for the dogfish type IV CA was detected in gill tissue and specifically localized to pillar cells and branchial epithelial cells that flanked the pillar cells. Immunohistochemistry using a polyclonal antibody raised against rainbow trout type IV CA revealed a similar pattern of CA IV immunoreactivity and demonstrated a limited degree of colocalization with Na(+)-K(+)-ATPase immunoreactivity. The presence and localization of a type IV CA isoform in the gills of dogfish is consistent with the hypothesis that branchial membrane-bound CA with an extracellular orientation contributes to CO(2) excretion in dogfish by catalyzing the dehydration of plasma HCO(3)(-) ions.

  20. NHE3 in an ancestral vertebrate: primary sequence, distribution, localization, and function in gills.

    PubMed

    Choe, Keith P; Kato, Akira; Hirose, Shigehisa; Plata, Consuelo; Sindic, Aleksandra; Romero, Michael F; Claiborne, J B; Evans, David H

    2005-11-01

    In mammals, the Na+/H+ exchanger 3 (NHE3) is expressed with Na+/K+-ATPase in renal proximal tubules, where it secretes H+ and absorbs Na+ to maintain blood pH and volume. In elasmobranchs (sharks, skates, and stingrays), the gills are the dominant site of pH and osmoregulation. This study was conducted to determine whether epithelial NHE homologs exist in elasmobranchs and, if so, to localize their expression in gills and determine whether their expression is altered by environmental salinity or hypercapnia. Degenerate primers and RT-PCR were used to deduce partial sequences of mammalian NHE2 and NHE3 homologs from the gills of the euryhaline Atlantic stingray (Dasyatis sabina). Real-time PCR was then used to demonstrate that mRNA expression of the NHE3 homolog increased when stingrays were transferred to low salinities but not during hypercapnia. Expression of the NHE2 homolog did not change with either treatment. Rapid amplification of cDNA was then used to deduce the complete sequence of a putative NHE3. The 2,744-base pair cDNA includes a coding region for a 2,511-amino acid protein that is 70% identical to human NHE3 (SLC9A3). Antisera generated against the carboxyl tail of the putative stingray NHE3 labeled the apical membranes of Na+/K+-ATPase-rich epithelial cells, and acclimation to freshwater caused a redistribution of labeling in the gills. This study provides the first NHE3 cloned from an elasmobranch and is the first to demonstrate an increase in gill NHE3 expression during acclimation to low salinities, suggesting that NHE3 can absorb Na+ from ion-poor environments.

  1. Multiple functions of the crustacean gill: osmotic/ionic regulation, acid-base balance, ammonia excretion, and bioaccumulation of toxic metals

    PubMed Central

    Henry, Raymond P.; Lucu, Čedomil; Onken, Horst; Weihrauch, Dirk

    2012-01-01

    The crustacean gill is a multi-functional organ, and it is the site of a number of physiological processes, including ion transport, which is the basis for hemolymph osmoregulation; acid-base balance; and ammonia excretion. The gill is also the site by which many toxic metals are taken up by aquatic crustaceans, and thus it plays an important role in the toxicology of these species. This review provides a comprehensive overview of the ecology, physiology, biochemistry, and molecular biology of the mechanisms of osmotic and ionic regulation performed by the gill. The current concepts of the mechanisms of ion transport, the structural, biochemical, and molecular bases of systemic physiology, and the history of their development are discussed. The relationship between branchial ion transport and hemolymph acid-base regulation is also treated. In addition, the mechanisms of ammonia transport and excretion across the gill are discussed. And finally, the toxicology of heavy metal accumulation via the gill is reviewed in detail. PMID:23162474

  2. Bacterial Communities Associated with Host-Adapted Populations of Pea Aphids Revealed by Deep Sequencing of 16S Ribosomal DNA

    PubMed Central

    Gauthier, Jean-Pierre; Outreman, Yannick; Mieuzet, Lucie; Simon, Jean-Christophe

    2015-01-01

    Associations between microbes and animals are ubiquitous and hosts may benefit from harbouring microbial communities through improved resource exploitation or resistance to environmental stress. The pea aphid, Acyrthosiphon pisum, is the host of heritable bacterial symbionts, including the obligate endosymbiont Buchnera aphidicola and several facultative symbionts. While obligate symbionts supply aphids with key nutrients, facultative symbionts influence their hosts in many ways such as protection against natural enemies, heat tolerance, color change and reproduction alteration. The pea aphid also encompasses multiple plant-specialized biotypes, each adapted to one or a few legume species. Facultative symbiont communities differ strongly between biotypes, although bacterial involvement in plant specialization is uncertain. Here, we analyse the diversity of bacterial communities associated with nine biotypes of the pea aphid complex using amplicon pyrosequencing of 16S rRNA genes. Combined clustering and phylogenetic analyses of 16S sequences allowed identifying 21 bacterial OTUs (Operational Taxonomic Unit). More than 98% of the sequencing reads were assigned to known pea aphid symbionts. The presence of Wolbachia was confirmed in A. pisum while Erwinia and Pantoea, two gut associates, were detected in multiple samples. The diversity of bacterial communities harboured by pea aphid biotypes was very low, ranging from 3 to 11 OTUs across samples. Bacterial communities differed more between than within biotypes but this difference did not correlate with the genetic divergence between biotypes. Altogether, these results confirm that the aphid microbiota is dominated by a few heritable symbionts and that plant specialization is an important structuring factor of bacterial communities associated with the pea aphid complex. However, since we examined the microbiota of aphid samples kept a few generations in controlled conditions, it may be that bacterial diversity was

  3. Immunolocalization of chloride transporters to gill epithelia of euryhaline teleosts with opposite salinity-induced Na+/K+-ATPase responses.

    PubMed

    Tang, Cheng-Hao; Hwang, Lie-Yueh; Shen, I-Da; Chiu, Yu-Hui; Lee, Tsung-Han

    2011-12-01

    Opposite patterns of branchial Na(+)/K(+)-ATPase (NKA) responses were found in euryhaline milkfish (Chanos chanos) and pufferfish (Tetraodon nigroviridis) upon salinity challenge. Because the electrochemical gradient established by NKA is thought to be the driving force for transcellular Cl(-) transport in fish gills, the aim of this study was to explore whether the differential patterns of NKA responses found in milkfish and pufferfish would lead to distinct distribution of Cl(-) transporters in their gill epithelial cells indicating different Cl(-) transport mechanisms. In this study, immunolocalization of various Cl(-) transport proteins, including Na(+)/K(+)/2Cl(-) cotransporter (NKCC), cystic fibrosis transmembrane conductance regulator (CFTR), anion exchanger 1 (AE1), and chloride channel 3 (ClC-3), were double stained with NKA, the basolateral marker of branchial mitochondrion-rich cells (MRCs), to reveal the localization of these transporter proteins in gill MRC of FW- or SW-acclimated milkfish and pufferfish. Confocal microscopic observations showed that the localization of these transport proteins in the gill MRCs of the two studied species were similar. However, the number of gill NKA-immunoreactive (IR) cells in milkfish and pufferfish exhibited to vary with environmental salinities. An increase in the number of NKA-IR cells should lead to the elevation of NKA activity in FW milkfish and SW pufferfish. Taken together, the opposite branchial NKA responses observed in milkfish and pufferfish upon salinity challenge could be attributed to alterations in the number of NKA-IR cells. Furthermore, the localization of these Cl(-) transporters in gill MRCs of the two studied species was identical. It depicted the two studied euryhaline species possess the similar Cl(-) transport mechanisms in gills.

  4. Claudin-31 contributes to corticosteroid-induced alterations in the barrier properties of the gill epithelium.

    PubMed

    Kolosov, Dennis; Donini, Andrew; Kelly, Scott P

    2017-01-05

    The contribution of Claudin-31 (Cldn-31) to corticosteroid-induced tightening of the trout gill epithelium was examined using a primary cultured model preparation. Cldn-31 is a ∼23 kDa protein that localizes to the periphery of gill epithelial cells and diffusely in select gill cells that are Na + -K + -ATPase-immunoreactive. Transcriptional knockdown (KD) of cldn-31 reduced Cldn-31 abundance and increased epithelium permeability. Under simulated in vivo conditions (apical freshwater), cldn-31 KD increased net ion flux rates (≡ efflux). Cortisol treatment increased Cldn-31 abundance and decreased epithelium permeability. This tightening effect was diminished, but not eliminated, by cldn-31 KD, most likely due to other cortisol-sensitive TJ proteins that were transcriptionally unperturbed or enhanced in cortisol-treated cldn-31 KD preparations. However, cldn-31 KD abolished a cortisol-induced increase in Cldn-8d abundance, which may contribute to compromised cldn-31 KD epithelium permeability. Data suggest an important barrier function for Cldn-31 and an integral role for Cldn-31 in corticosteroid-induced gill epithelium tightening. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Vibrio Zinc-Metalloprotease Causes Photoinactivation of Coral Endosymbionts and Coral Tissue Lesions

    PubMed Central

    Sussman, Meir; Mieog, Jos C.; Doyle, Jason; Victor, Steven; Willis, Bette L.; Bourne, David G.

    2009-01-01

    Background Coral diseases are emerging as a serious threat to coral reefs worldwide. Of nine coral infectious diseases, whose pathogens have been characterized, six are caused by agents from the family Vibrionacae, raising questions as to their origin and role in coral disease aetiology. Methodology/Principal Findings Here we report on a Vibrio zinc-metalloprotease causing rapid photoinactivation of susceptible Symbiodinium endosymbionts followed by lesions in coral tissue. Symbiodinium photosystem II inactivation was diagnosed by an imaging pulse amplitude modulation fluorometer in two bioassays, performed by exposing Symbiodinium cells and coral juveniles to non-inhibited and EDTA-inhibited supernatants derived from coral white syndrome pathogens. Conclusion/Significance These findings demonstrate a common virulence factor from four phylogenetically related coral pathogens, suggesting that zinc-metalloproteases may play an important role in Vibrio pathogenicity in scleractinian corals. PMID:19225559

  6. Infestation of gill copepod Lernanthropus latis (Copepoda: Lernanthropidae) and its effect on cage-cultured Asian sea bass Lates calcarifer.

    PubMed

    Kua, B C; Noraziah, M R; Nik Rahimah, A R

    2012-09-01

    Twenty Asian sea bass Lates calcarifer from a floating cage in Bt. Tambun, Penang were examined for the presence of parasitic gill copepod, Lernanthropus latis. The prevalence of L. latis was 100% with the intensity of infection ranging from 1 to 18 parasites per host or 3.75 of mean intensity. Female parasites having oblong cephalothorax and egg-strings were seen mainly on the entire gill of examined Asian sea bass. The infected gill of Asian sea bass was pale and had eccessive mucus production. Under light and scanning electron microscopies (SEM), L. latis was seen grasping or holding tightly to the gill filament using their antenna, maxilla and maxilliped. These structures are characteristically prehensile and uncinate for the parasite to attach onto the host tissue. The damage was clearly seen under SEM as the hooked end of the antenna was embedded into the gill filament. The parasite also has the mandible which is styliform with eight teeth on the inner margin. The pathological effects such as erosion, haemorrhages, hyperplasia and necrosis along the secondary lamellae of gill filaments were seen and more severe at the attachment site. The combined actions of the antenna, maxilla and maxilliped together with the mandible resulted in extensive damage as L. latis attached and fed on the host tissues.

  7. Amoebal Endosymbiont Parachlamydia acanthamoebae Bn9 Can Grow in Immortal Human Epithelial HEp-2 Cells at Low Temperature; An In Vitro Model System to Study Chlamydial Evolution

    PubMed Central

    Nakamura, Shinji; Matsuo, Junji; Ishida, Kasumi; Yamazaki, Sumire; Oguri, Satoshi; Shouji, Natsumi; Hayashi, Yasuhiro; Yoshida, Mitsutaka; Yimin; Yamaguchi, Hiroyuki

    2015-01-01

    Ancient chlamydiae diverged into pathogenic and environmental chlamydiae 0.7–1.4 billion years ago. However, how pathogenic chlamydiae adapted to mammalian cells that provide a stable niche at approximately 37°C, remains unknown, although environmental chlamydiae have evolved as endosymbionts of lower eukaryotes in harsh niches of relatively low temperatures. Hence, we assessed whether an environmental chlamydia, Parachlamydia Bn9, could grow in human HEp-2 cells at a low culture temperature of 30°C. The assessment of inclusion formation by quantitative RT-PCR revealed that the numbers of bacterial inclusion bodies and the transcription level of 16SrRNA significantly increased after culture at 30°C compared to at 37°C. Confocal microscopy showed that the bacteria were located close to HEp-2 nuclei and were actively replicative. Transmission electron microscopy also revealed replicating bacteria consisting of reticular bodies, but with a few elementary bodies. Cytochalasin D and rifampicin inhibited inclusion formation. Lactacystin slightly inhibited bacterial inclusion formation. KEGG analysis using a draft genome sequence of the bacteria revealed that it possesses metabolic pathways almost identical to those of pathogenic chlamydia. Interestingly, comparative genomic analysis with pathogenic chlamydia revealed that the Parachlamydia similarly possess the genes encoding Type III secretion system, but lacking genes encoding inclusion membrane proteins (IncA to G) required for inclusion maturation. Taken together, we conclude that ancient chlamydiae had the potential to grow in human cells, but overcoming the thermal gap was a critical event for chlamydial adaptation to human cells. PMID:25643359

  8. Amoebal endosymbiont Parachlamydia acanthamoebae Bn9 can grow in immortal human epithelial HEp-2 cells at low temperature; an in vitro model system to study chlamydial evolution.

    PubMed

    Yamane, Chikayo; Yamazaki, Tomohiro; Nakamura, Shinji; Matsuo, Junji; Ishida, Kasumi; Yamazaki, Sumire; Oguri, Satoshi; Shouji, Natsumi; Hayashi, Yasuhiro; Yoshida, Mitsutaka; Yimin; Yamaguchi, Hiroyuki

    2015-01-01

    Ancient chlamydiae diverged into pathogenic and environmental chlamydiae 0.7-1.4 billion years ago. However, how pathogenic chlamydiae adapted to mammalian cells that provide a stable niche at approximately 37 °C, remains unknown, although environmental chlamydiae have evolved as endosymbionts of lower eukaryotes in harsh niches of relatively low temperatures. Hence, we assessed whether an environmental chlamydia, Parachlamydia Bn9, could grow in human HEp-2 cells at a low culture temperature of 30 °C. The assessment of inclusion formation by quantitative RT-PCR revealed that the numbers of bacterial inclusion bodies and the transcription level of 16SrRNA significantly increased after culture at 30 °C compared to at 37 °C. Confocal microscopy showed that the bacteria were located close to HEp-2 nuclei and were actively replicative. Transmission electron microscopy also revealed replicating bacteria consisting of reticular bodies, but with a few elementary bodies. Cytochalasin D and rifampicin inhibited inclusion formation. Lactacystin slightly inhibited bacterial inclusion formation. KEGG analysis using a draft genome sequence of the bacteria revealed that it possesses metabolic pathways almost identical to those of pathogenic chlamydia. Interestingly, comparative genomic analysis with pathogenic chlamydia revealed that the Parachlamydia similarly possess the genes encoding Type III secretion system, but lacking genes encoding inclusion membrane proteins (IncA to G) required for inclusion maturation. Taken together, we conclude that ancient chlamydiae had the potential to grow in human cells, but overcoming the thermal gap was a critical event for chlamydial adaptation to human cells.

  9. Role of antimicrobial peptides in controlling symbiotic bacterial populations.

    PubMed

    Mergaert, P

    2018-04-25

    Covering: up to 2018 Antimicrobial peptides (AMPs) have been known for well over three decades as crucial mediators of the innate immune response in animals and plants, where they are involved in the killing of infecting microbes. However, AMPs have now also been found to be produced by eukaryotic hosts during symbiotic interactions with bacteria. These symbiotic AMPs target the symbionts and therefore have a more subtle biological role: not eliminating the microbial symbiont population but rather keeping it in check. The arsenal of AMPs and the symbionts' adaptations to resist them are in a careful balance, which contributes to the establishment of the host-microbe homeostasis. Although in many cases the biological roles of symbiotic AMPs remain elusive, for a number of symbiotic interactions, precise functions have been assigned or proposed to the AMPs, which are discussed here. The microbiota living on epithelia in animals, from the most primitive ones to the mammals, are challenged by a cocktail of AMPs that determine the specific composition of the bacterial community as well as its spatial organization. In the symbiosis of legume plants with nitrogen-fixing rhizobium bacteria, the host deploys an extremely large panel of AMPs - called nodule-specific cysteine-rich (NCR) peptides - that drive the bacteria into a terminally differentiated state and manipulate the symbiont physiology to maximize the benefit for the host. The NCR peptides are used as tools to enslave the bacterial symbionts, limiting their reproduction but keeping them metabolically active for nitrogen fixation. In the nutritional symbiotic interactions of insects and protists that have vertically transmitted bacterial symbionts with reduced genomes, symbiotic AMPs could facilitate the integration of the endosymbiont and host metabolism by favouring the flow of metabolites across the symbiont membrane through membrane permeabilization.

  10. Killing Effects of an Isolated Serratia marcescens KH-001 on Diaphorina citri via Lowering the Endosymbiont Numbers

    PubMed Central

    Hu, Wei; Kuang, Fan; Lu, Zhanjun; Zhang, Ning; Chen, Tingtao

    2018-01-01

    Huanglongbing (HLB) is the most devastating citrus disease worldwide, and suppression of the Asian citrus psyllid (Diaphorina citri) is regarded as an effective method to inhibit the spread of HLB. In this study, we isolated a strain named as Serratia marcescens KH-001 from D. citri nymphs suffering from disease, and evaluated its killing effect on D. citri via toxicity test and effect on microbial community in D. citri using high-throughput sequencing. Our results indicated that S. marcescens KH-001 could effectively kill 83% of D. citri nymphs, while the fermentation products of S. marcescens KH-001 only killed 40% of the D. citrinymphs. High-throughput sequencing results indicated that the S. marcescens KH-001 increased the OTU numbers from 62.5 (PBS buffer) to 81.5, while significantly lowered the Shannon index compared with Escherichia coli DH5α (group E) (p < 0.05). OTU analysis showed that the S. marcescens KH-001 had significantly reduced the relative abundance of endosymbionts Wolbachia, Profftella, and Carsonella in group S compared with that in other groups (p < 0.05). Therefore, the direct killing effect of the fermentation products of S. marcescens KH-001 and the indirect effect via reducing the numbers of endosymbionts (Wolbachia, Profftella, and Carsonella) of D. citri endow S. marcescens KH-001 a sound killing effect on D. citri. Further work need to do before this strain is used as a sound biological control agents. PMID:29765368

  11. Killing Effects of an Isolated Serratia marcescens KH-001 on Diaphorina citri via Lowering the Endosymbiont Numbers.

    PubMed

    Hu, Wei; Kuang, Fan; Lu, Zhanjun; Zhang, Ning; Chen, Tingtao

    2018-01-01

    Huanglongbing (HLB) is the most devastating citrus disease worldwide, and suppression of the Asian citrus psyllid ( Diaphorina citri ) is regarded as an effective method to inhibit the spread of HLB. In this study, we isolated a strain named as Serratia marcescens KH-001 from D. citri nymphs suffering from disease, and evaluated its killing effect on D. citri via toxicity test and effect on microbial community in D. citri using high-throughput sequencing. Our results indicated that S. marcescens KH-001 could effectively kill 83% of D. citri nymphs, while the fermentation products of S. marcescens KH-001 only killed 40% of the D. citri nymphs. High-throughput sequencing results indicated that the S. marcescens KH-001 increased the OTU numbers from 62.5 (PBS buffer) to 81.5, while significantly lowered the Shannon index compared with Escherichia coli DH5α (group E) ( p < 0.05). OTU analysis showed that the S. marcescens KH-001 had significantly reduced the relative abundance of endosymbionts Wolbachia , Profftella , and Carsonella in group S compared with that in other groups ( p < 0.05). Therefore, the direct killing effect of the fermentation products of S. marcescens KH-001 and the indirect effect via reducing the numbers of endosymbionts ( Wolbachia , Profftella , and Carsonella ) of D. citri endow S. marcescens KH-001 a sound killing effect on D. citri . Further work need to do before this strain is used as a sound biological control agents.

  12. Comparative analysis of microbial communities associated with bacteriomes, reproductive organs and eggs of the cicada Subpsaltria yangi.

    PubMed

    Wang, Dandan; Huang, Zhi; He, Hong; Wei, Cong

    2018-03-01

    Plant sap-feeding insects of Hemiptera often form intimate symbioses with microbes to obtain nutrients. The cicada Subpsaltria yangi is the only species of the subfamily Tettigadinae known from China. Using high-throughput sequencing combined with fluorescence in situ hybridization analysis, we characterize the bacterial composition of the bacteriomes, testes, ovaries and eggs of two representative populations of this species which occur in different habitats and feed on different plant hosts. In both populations, the bacterial community diversity in the testes was significantly higher than that in other tissues. The obligate endosymbiont Candidatus Sulcia muelleri was observed in all samples and was dominant in the bacteriomes, ovaries and eggs. The usual co-resident endosymbiont Candidatus Hodgkinia cicadicola found in some other cicadas was not detected. Instead, a novel Rhizobiales bacterium which shows a ~ 81% 16S rDNA similarity to Ca. Hodgkinia cicadicola was detected. Given that the genome of Ca. Hodgkinia cicadicola exhibits rapid evolution, it is possible that this novel Rhizobiales bacterium is a related endosymbiont with beneficial trophic functions similar to that of Ca. Hodgkinia cicadicola hosted by several certain other cicadas. The presence of the novel Rhizobiales species in other cicadas and its involvement with the adaptive evolution of related cicada hosts require further investigation. Discrepancy of bacterial communities associated with testes between the two populations may be closely related to the geographic isolation and divergence of habitats and host plants. Our results are informative for further studies of evolutionary divergence of related endosymbionts hosted in cicadas.

  13. Determinism and Contingency Shape Metabolic Complementation in an Endosymbiotic Consortium

    PubMed Central

    Ponce-de-Leon, Miguel; Tamarit, Daniel; Calle-Espinosa, Jorge; Mori, Matteo; Latorre, Amparo; Montero, Francisco; Pereto, Juli

    2017-01-01

    Bacterial endosymbionts and their insect hosts establish an intimate metabolic relationship. Bacteria offer a variety of essential nutrients to their hosts, whereas insect cells provide the necessary sources of matter and energy to their tiny metabolic allies. These nutritional complementations sustain themselves on a diversity of metabolite exchanges between the cell host and the reduced yet highly specialized bacterial metabolism—which, for instance, overproduces a small set of essential amino acids and vitamins. A well-known case of metabolic complementation is provided by the cedar aphid Cinara cedri that harbors two co-primary endosymbionts, Buchnera aphidicola BCc and Ca. Serratia symbiotica SCc, and in which some metabolic pathways are partitioned between different partners. Here we present a genome-scale metabolic network (GEM) for the bacterial consortium from the cedar aphid iBSCc. The analysis of this GEM allows us the confirmation of cases of metabolic complementation previously described by genome analysis (i.e., tryptophan and biotin biosynthesis) and the redefinition of an event of metabolic pathway sharing between the two endosymbionts, namely the biosynthesis of tetrahydrofolate. In silico knock-out experiments with iBSCc showed that the consortium metabolism is a highly integrated yet fragile network. We also have explored the evolutionary pathways leading to the emergence of metabolic complementation between reduced metabolisms starting from individual, complete networks. Our results suggest that, during the establishment of metabolic complementation in endosymbionts, adaptive evolution is significant in the case of tryptophan biosynthesis, whereas vitamin production pathways seem to adopt suboptimal solutions. PMID:29213256

  14. Determinism and Contingency Shape Metabolic Complementation in an Endosymbiotic Consortium.

    PubMed

    Ponce-de-Leon, Miguel; Tamarit, Daniel; Calle-Espinosa, Jorge; Mori, Matteo; Latorre, Amparo; Montero, Francisco; Pereto, Juli

    2017-01-01

    Bacterial endosymbionts and their insect hosts establish an intimate metabolic relationship. Bacteria offer a variety of essential nutrients to their hosts, whereas insect cells provide the necessary sources of matter and energy to their tiny metabolic allies. These nutritional complementations sustain themselves on a diversity of metabolite exchanges between the cell host and the reduced yet highly specialized bacterial metabolism-which, for instance, overproduces a small set of essential amino acids and vitamins. A well-known case of metabolic complementation is provided by the cedar aphid Cinara cedri that harbors two co-primary endosymbionts, Buchnera aphidicola BCc and Ca . Serratia symbiotica SCc, and in which some metabolic pathways are partitioned between different partners. Here we present a genome-scale metabolic network (GEM) for the bacterial consortium from the cedar aphid i BSCc. The analysis of this GEM allows us the confirmation of cases of metabolic complementation previously described by genome analysis (i.e., tryptophan and biotin biosynthesis) and the redefinition of an event of metabolic pathway sharing between the two endosymbionts, namely the biosynthesis of tetrahydrofolate. In silico knock-out experiments with i BSCc showed that the consortium metabolism is a highly integrated yet fragile network. We also have explored the evolutionary pathways leading to the emergence of metabolic complementation between reduced metabolisms starting from individual, complete networks. Our results suggest that, during the establishment of metabolic complementation in endosymbionts, adaptive evolution is significant in the case of tryptophan biosynthesis, whereas vitamin production pathways seem to adopt suboptimal solutions.

  15. The Symptomatology and Diagnosis of Gilles de la Tourette's Syndrome

    ERIC Educational Resources Information Center

    Shapiro, Arthur; And Others

    1973-01-01

    The symptomatology of 34 patients with Gilles de la Tourette's syndrome was described in detail. The purpose was to clarify the diagnostic criteria for Tourette's syndrome by describing the type, variety, and frequency of symptoms in this illness. (Author)

  16. Cultured branchial epithelia from freshwater fish gills

    PubMed

    Wood; PÄRt

    1997-01-01

    We have developed a method for the primary culture of gill epithelial cells from freshwater rainbow trout on permeable supports, polyethylene terephthalate membranes ('filter inserts'). Primary cultures of gill cells (6-9 days in Leibowitz L-15 culture medium plus foetal bovine serum and glutamine) are trypsinized and the cells seeded onto the inserts. After 6 days of growth with L-15 medium on both surfaces (approximately isotonic to trout plasma), the cells form a tight epithelium as judged from a progressive rise in transepithelial resistance which reaches a stable plateau for a further 6 days, as long as L-15 exposure is continued on both surfaces. The cultured epithelium (approximately 8 µm thick) typically consists of 2-4 overlapping cell layers organized as in the lamellae in vivo, with large intercellular spaces, multiple desmosomes and putative tight junctions. The cells appear to be exclusively pavement-type cells with an apical surface glycocalyx, an abundance of rough endoplasmic reticulum, no selective DASPEI staining and relatively few mitochondria. Transepithelial resistance (approximately 3.5 k cm2), permeability to a paracellular marker (polyethylene glycol-4000; 0.17x10(-6) cm s-1) and unidirectional flux of Na+ and Cl- (approximately 300 nmol cm-2 h-1) all appear realistic because they compare well with in vivo values; net fluxes of Na+ and Cl- are zero. The preparation acidifies the apical medium, which accumulates a greater concentration of ammonia. Upon exposure to apical freshwater, resistance increases six- to elevenfold and a basolateral-negative transepithelial potential (TEP) develops as in vivo. These responses occur even when mannitol is used to prevent changes in apical osmotic pressure. Net Na+ and Cl- loss rates are low over the first 12 h (-125 nmol cm-2 h-1) but increase substantially by 48 h. The elevated resistance and negative TEP gradually attenuate but remain significantly higher than pre-exposure values after 48 h of

  17. Matter in Motion: The Educational Materialism of Gilles Deleuze

    ERIC Educational Resources Information Center

    Cole, David R.

    2012-01-01

    This paper critically examines the materialism that Gilles Deleuze espouses in his oeuvre to the benefit of educational theory. In "Difference and Repetition", he presented transcendental empiricism by underwriting Kant with realism (Deleuze, 1994). Later, in "Capitalism & Schizophrenia I & II" that were co-written with Felix Guattari (1984, 1988)…

  18. Mitochondrial Evolution

    PubMed Central

    Gray, Michael W.

    2012-01-01

    Viewed through the lens of the genome it contains, the mitochondrion is of unquestioned bacterial ancestry, originating from within the bacterial phylum α-Proteobacteria (Alphaproteobacteria). Accordingly, the endosymbiont hypothesis—the idea that the mitochondrion evolved from a bacterial progenitor via symbiosis within an essentially eukaryotic host cell—has assumed the status of a theory. Yet mitochondrial genome evolution has taken radically different pathways in diverse eukaryotic lineages, and the organelle itself is increasingly viewed as a genetic and functional mosaic, with the bulk of the mitochondrial proteome having an evolutionary origin outside Alphaproteobacteria. New data continue to reshape our views regarding mitochondrial evolution, particularly raising the question of whether the mitochondrion originated after the eukaryotic cell arose, as assumed in the classical endosymbiont hypothesis, or whether this organelle had its beginning at the same time as the cell containing it. PMID:22952398

  19. Reductive genome evolution, host–symbiont co-speciation and uterine transmission of endosymbiotic bacteria in bat flies

    PubMed Central

    Hosokawa, Takahiro; Nikoh, Naruo; Koga, Ryuichi; Satô, Masahiko; Tanahashi, Masahiko; Meng, Xian-Ying; Fukatsu, Takema

    2012-01-01

    Bat flies of the family Nycteribiidae are known for their extreme morphological and physiological traits specialized for ectoparasitic blood-feeding lifestyle on bats, including lack of wings, reduced head and eyes, adenotrophic viviparity with a highly developed uterus and milk glands, as well as association with endosymbiotic bacteria. We investigated Japanese nycteribiid bat flies representing 4 genera, 8 species and 27 populations for their bacterial endosymbionts. From all the nycteribiid species examined, a distinct clade of gammaproteobacteria was consistently detected, which was allied to endosymbionts of other insects such as Riesia spp. of primate lice and Arsenophonus spp. of diverse insects. In adult insects, the endosymbiont was localized in specific bacteriocytes in the abdomen, suggesting an intimate host–symbiont association. In adult females, the endosymbiont was also found in the cavity of milk gland tubules, which suggests uterine vertical transmission of the endosymbiont to larvae through milk gland secretion. In adult females of Penicillidia jenynsii, we discovered a previously unknown type of symbiotic organ in the Nycteribiidae: a pair of large bacteriomes located inside the swellings on the fifth abdominal ventral plate. The endosymbiont genes consistently exhibited adenine/thymine biased nucleotide compositions and accelerated rates of molecular evolution. The endosymbiont genome was estimated to be highly reduced, ∼0.76 Mb in size. The endosymbiont phylogeny perfectly mirrored the host insect phylogeny, indicating strict vertical transmission and host–symbiont co-speciation in the evolutionary course of the Nycteribiidae. The designation ‘Candidatus Aschnera chinzeii' is proposed for the endosymbiont clade. PMID:21938025

  20. Morphology and vascular anatomy of the gills of a primitive air-breathing fish, the bowfin (Amia calva).

    PubMed

    Olson, K R

    1981-01-01

    The morphology of the gills of a primitive air breather (Amia calva) was examined by light microscopy of semithin sections of gill filaments, and gill perfusion pathways were identified by scanning-electron microscopic analysis of corrosion replicas prepared by intravascular injection of methyl methacrylate. The arrangement of gill filaments and respiratory lamellae is similar to that ot teleosts with the exception of an interfilamental support bar that is fused to the outer margins of lamellae on adjacent filaments. The prebranchial vasculature is also similar to that of teleosts, whereas the postbranchial circulation of arches III and IV is modified to permit selective perfusion of the air bladder. Gill filaments contain three distinct vascular systems: (1) the respiratory circulation which receives the entire cardiac output and perfuses the secondary lamellae; (2) a nutrient system that arises from the postlammelar circulation and perfuses filamental tissues; (3) a network of unknown function consisting of subepithelial sinusoids surrounding afferent and efferent margins of the filament and traversing the filament beneath the interlamellar epithelium. Prelamellar arteriovenous anastomoses (AVAs) are rare, postlammelar AVAs are common especially at the base of the filament where they form a dense network of small tortuous vessels before coalescing into a large filamental nutrient artery. Unlike in most teleosts, the outer vascular margins of the lamellae are embedded in the interfilamental support bar and become the sole vasculature of this tissue. Arterial-arterial lamellar bypass vessels were not observed. Previously observed decreases in oxygen transfer across the gills during air breathing can be explained only by redistribution of blood flow between or within the respiratory lamellae.

  1. Regulation of gill claudin paralogs by salinity, cortisol and prolactin in Mozambique tilapia (Oreochromis mossambicus).

    PubMed

    Tipsmark, Christian K; Breves, Jason P; Rabeneck, D Brett; Trubitt, Rebecca T; Lerner, Darren T; Grau, E Gordon

    2016-09-01

    In euryhaline teleosts, reorganization of gill tight junctions during salinity acclimation involves dynamic expression of specific claudin (Cldn) paralogs. We identified four transcripts encoding Cldn tight junction proteins in the tilapia gill transcriptome: cldn10c, cldn10e, cldn28a and cldn30. A tissue distribution experiment found cldn10c and cldn10e expression levels in the gill to be 100-fold higher than any other tissues examined. cldn28a and cldn30 levels in the gill were 10-fold greater than levels in other tissues. Expression of these genes in Mozambique tilapia was examined during acclimation to fresh water (FW), seawater (SW), and in response to hormone treatments. Transfer of tilapia from FW to SW elevated cldn10c and cldn10e, while cldn28a and cldn30 were stimulated following transfer from SW to FW. In hypophysectomized tilapia transferred to FW, pituitary extirpation induced reduced expression of cldn10c, cldn10e and cldn28a; these effects were mitigated equally by either prolactin or cortisol replacement. In vitro experiments with gill filaments showed that cortisol stimulated expression of all four cldns examined, suggesting a direct action of cortisol in situ. Our data indicate that elevated cldn10c and cldn10e expression is important during acclimation of tilapia to SW possibly by conferring ion specific paracellular permeability. On the other hand, expression of cldn28a and cldn30 appears to contribute to reorganization of branchial epithelium during FW acclimation. Hormone treatment experiments showed that particular FW- and SW-induced cldns are controlled by cortisol and prolactin. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. ‘ Candidatus Adiutrix intracellularis’, an endosymbiont of termite gut flagellates, is the first representative of a deep-branching clade of Deltaproteobacteria and a putative homoacetogen

    DOE PAGES

    Ikeda-Ohtsubo, Wakako; Strassert, Jürgen F. H.; Köhler, Tim; ...

    2016-02-23

    Termite gut flagellates are typically colonized by specific bacterial symbionts. Here we describe the phylogeny, ultrastructure and subcellular location of 'Candidatus Adiutrix intracellularis', an intracellular symbiont of Trichonympha collaris in the termite Zootermopsis nevadensis. It represents a novel, deep-branching clade of uncultured Deltaproteobacteria widely distributed in intestinal tracts of termites and cockroaches. Fluorescence in situ hybridization and transmission electron microscopy localized the endosymbiont near hydrogenosomes in the posterior part and near the ectosymbiont 'Candidatus Desulfovibrio trichonymphae' in the anterior part of the host cell. The draft genome of 'Ca. Adiutrix intracellularis' obtained from a metagenomic library revealed the presence ofmore » a complete gene set encoding the Wood-Ljungdahl pathway, including two homologs of fdhF encoding hydrogenase-linked formate dehydrogenases (FDHH ) and all other components of the recently described hydrogen-dependent carbon dioxide reductase (HDCR) complex, which substantiates previous claims that the symbiont is capable of reductive acetogenesis from CO2 and H2 . The close phylogenetic relationship between the HDCR components and their homologs in homoacetogenic Firmicutes and Spirochaetes suggests that the deltaproteobacterium acquired the capacity for homoacetogenesis via lateral gene transfer. The presence of genes for nitrogen fixation and the biosynthesis of amino acids and cofactors indicate the nutritional nature of the symbiosis.« less

  3. ‘ Candidatus Adiutrix intracellularis’, an endosymbiont of termite gut flagellates, is the first representative of a deep-branching clade of Deltaproteobacteria and a putative homoacetogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikeda-Ohtsubo, Wakako; Strassert, Jürgen F. H.; Köhler, Tim

    Termite gut flagellates are typically colonized by specific bacterial symbionts. Here we describe the phylogeny, ultrastructure and subcellular location of 'Candidatus Adiutrix intracellularis', an intracellular symbiont of Trichonympha collaris in the termite Zootermopsis nevadensis. It represents a novel, deep-branching clade of uncultured Deltaproteobacteria widely distributed in intestinal tracts of termites and cockroaches. Fluorescence in situ hybridization and transmission electron microscopy localized the endosymbiont near hydrogenosomes in the posterior part and near the ectosymbiont 'Candidatus Desulfovibrio trichonymphae' in the anterior part of the host cell. The draft genome of 'Ca. Adiutrix intracellularis' obtained from a metagenomic library revealed the presence ofmore » a complete gene set encoding the Wood-Ljungdahl pathway, including two homologs of fdhF encoding hydrogenase-linked formate dehydrogenases (FDHH ) and all other components of the recently described hydrogen-dependent carbon dioxide reductase (HDCR) complex, which substantiates previous claims that the symbiont is capable of reductive acetogenesis from CO2 and H2 . The close phylogenetic relationship between the HDCR components and their homologs in homoacetogenic Firmicutes and Spirochaetes suggests that the deltaproteobacterium acquired the capacity for homoacetogenesis via lateral gene transfer. The presence of genes for nitrogen fixation and the biosynthesis of amino acids and cofactors indicate the nutritional nature of the symbiosis.« less

  4. Evidence for the presence of a bacterial endosymbiont in the pecan scab pathogen Venturia effusa (basyonym: Fusicladium effusum).

    PubMed

    Medrano, E G; Grauke, L J; Stanford, R L; Thompson, T E

    2017-08-01

    To determine whether Venturia effusa, the causative fungal agent of pecan scab, harbours a bacterial symbiont. Venturia effusa isolates were maintained on potato dextrose agar amended with antibiotics (chloramphenicol (100 μg ml -1 ) and tetracycline 100 (μg ml -1 )). Genomic DNA extracted from mycelia was used to target eubacterial 16S rDNA. A 1·4-kbp PCR amplified product using 16S rDNA degenerate primers was cloned, sequenced and found to have 99% identities with Actinobacteria representatives. Attempts to culture the detected bacteria apart from the fungus following agitation and fungal cell lysis were unsuccessful using standard bacteriological media under either aerobic or anaerobic conditions. Fungal structures were visualized using scanning electron microscopy and putative bacterial formations associated with the fungal mycelia were observed. Fluorescence in situ hybridization using 16S rDNA oligonucleotides illuminated spores and portions of the hyphae. This is the first report to provide both molecular microbiological and microscopic evidence in support of the hypothesis that V. effusa harbours endosymbiotic bacteria. Findings from this research contribute fundamental information regarding the biology of the fungus that may ultimately lead to identifying a target of the pathogen for use in management and/or avoidance strategies. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  5. Insect immune system maintains long-term resident bacteria through a local response.

    PubMed

    Login, Frédéric H; Heddi, Abdelaziz

    2013-02-01

    Long-term associations between bacteria and animals are widely represented in nature and play an important role in animal adaptation and evolution. In insects thriving on nutritionally unbalanced diets, intracellular symbiotic bacteria (endosymbionts) complement the host nutrients with amino acids and vitamins and interfere with host physiology and reproduction. Endosymbionts permanently infect host cells, called bacteriocytes, which express an adapted local immune response that permits symbiont maintenance and control. Among the immune players in bacteriocytes, the coleoptericin A (ColA) antimicrobial peptide of the cereal weevil, Sitophilus zeamais, was recently found to specifically trigger endosymbionts and to inhibit their cytokinesis, thereby limiting bacterial cell division and dispersion throughout the insect tissues. This review focuses on the biological and evolutionary features of Sitophilus symbiosis, and discusses the possible interactions of ColA with weevil endosymbiont proteins and pathways. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. A Review of Bacteria-Animal Lateral Gene Transfer May Inform Our Understanding of Diseases like Cancer

    PubMed Central

    Robinson, Kelly M.; Sieber, Karsten B.; Dunning Hotopp, Julie C.

    2013-01-01

    Lateral gene transfer (LGT) from bacteria to animals occurs more frequently than was appreciated prior to the advent of genome sequencing. In 2007, LGT from bacterial Wolbachia endosymbionts was detected in ∼33% of the sequenced arthropod genomes using a bioinformatic approach. Today, Wolbachia/host LGT is thought to be widespread and many other cases of bacteria-animal LGT have been described. In insects, LGT may be more frequently associated with endosymbionts that colonize germ cells and germ stem cells, like Wolbachia endosymbionts. We speculate that LGT may occur from bacteria to a wide variety of eukaryotes, but only becomes vertically inherited when it occurs in germ cells. As such, LGT may happen routinely in somatic cells but never become inherited or fixed in the population. Lack of inheritance of such mutations greatly decreases our ability to detect them. In this review, we propose that such noninherited bacterial DNA integration into chromosomes in human somatic cells could induce mutations leading to cancer or autoimmune diseases in a manner analogous to mobile elements and viral integrations. PMID:24146634

  7. Neuropeptides and nitric oxide synthase in the gill and the air-breathing organs of fishes.

    PubMed

    Zaccone, Giacomo; Mauceri, Angela; Fasulo, Salvatore

    2006-05-01

    Anatomical and histochemical studies have demonstrated that the bulk of autonomic neurotransmission in fish gill is attributed to cholinergic and adrenergic mechanisms (Nilsson. 1984. In: Hoar WS, Randall DJ, editors. Fish physiology, Vol. XA. Orlando: Academic Press. p 185-227; Donald. 1998. In: Evans DH, editor. The physiology of fishes, 2nd edition. Boca Raton: CRC Press. p 407-439). In many tissues, blockade of adrenergic and cholinergic transmission results in residual responses to nerve stimulation, which are termed NonAdrenergic, NonCholinergic (NANC). The discovery of nitric oxide (NO) has provided a basis for explaining many examples of NANC transmissions with accumulated physiological and pharmacological data indicating its function as a primary NANC transmitter. Little is known about the NANC neurotransmission, and studies on neuropeptides and NOS (Nitric Oxide Synthase) are very fragmentary in the gill and the air-breathing organs of fishes. Knowledge of the distribution of nerves and effects of perfusing agonists may help to understand the mechanisms of perfusion regulation in the gill (Olson. 2002. J Exp Zool 293:214-231). Air breathing as a mechanism for acquiring oxygen has evolved independently in several groups of fishes, necessitating modifications of the organs responsible for the exchange of gases. Aquatic hypoxia in freshwaters has been probably the more important selective force in the evolution of air breathing in vertebrates. Fishes respire with gills that are complex structures with many different effectors and potential control systems. Autonomic innervation of the gill has received considerable attention. An excellent review on branchial innervation includes Sundin and Nilsson's (2002. J Exp Zool 293:232-248) with an emphasis on the anatomy and basic functioning of afferent and efferent fibers of the branchial nerves. The chapters by Evans (2002. J Exp Zool 293:336-347) and Olson (2002) provide new challenges about a variety of

  8. Onset and establishment of diazotrophs and other bacterial associates in the early life history stages of the coral Acropora millepora.

    PubMed

    Lema, Kimberley A; Bourne, David G; Willis, Bette L

    2014-10-01

    Early establishment of coral-microbial symbioses is fundamental to the fitness of corals, but comparatively little is known about the onset and succession of bacterial communities in their early life history stages. In this study, bacterial associates of the coral Acropora millepora were characterized throughout the first year of life, from larvae and 1-week-old juveniles reared in laboratory conditions in the absence of the dinoflagellate endosymbiont Symbiodinium to field-outplanted juveniles with established Symbiodinium symbioses, and sampled at 2 weeks and at 3, 6 and 12 months. Using an amplicon pyrosequencing approach, the diversity of both nitrogen-fixing bacteria and of bacterial communities overall was assessed through analysis of nifH and 16S rRNA genes, respectively. The consistent presence of sequences affiliated with diazotrophs of the order Rhizobiales (23-58% of retrieved nifH sequences; 2-12% of 16S rRNA sequences), across all samples from larvae to 12-month-old coral juveniles, highlights the likely functional importance of this nitrogen-fixing order to the coral holobiont. Dominance of Roseobacter-affiliated sequences (>55% of retrieved 16S rRNA sequences) in larvae and 1-week-old juveniles, and the consistent presence of sequences related to Oceanospirillales and Altermonadales throughout all early life history stages, signifies their potential importance as coral associates. Increased diversity of bacterial communities once juveniles were transferred to the field, particularly of Cyanobacteria and Deltaproteobacteria, demonstrates horizontal (environmental) uptake of coral-associated bacterial communities. Although overall bacterial communities were dynamic, bacteria with likely important functional roles remain stable throughout early life stages of Acropora millepora. © 2014 John Wiley & Sons Ltd.

  9. Spatial distribution of Dactylogyrus wunderi Bychowsky on gills of Abramis brama orientalis Berg (Leuciscinae) in Irtysh River, China

    NASA Astrophysics Data System (ADS)

    Hao, Cuilan; Yue, Cheng; Yao, Weijian; Yin, Jianguo; Jiao, Li; Zhu, Mengying; Jia, Shu'an; Wang, Na; Wang, Xin

    2013-09-01

    The spatial distribution of the monogenean Dactylogyrus wunderi Bychowsky, 1931 on the gill filaments of the bream Abramis brama orientalis Berg (Leuciscinae) inhabiting the Irtysh River of Xinjiang, China was investigated from June to July 2012. D. wunderi was identified by sequencing a fragment of its ITS rDNA region. Sixty-five fish were examined, with 55% testing positive for monogenean infection. The prevalence of the parasite in the left and right gill arches was 46% and 48%, respectively. In fish with a large body length, the prevalence of the parasite and the infection intensity did not significantly differ between the right and left gill arches but both were slightly higher in the former. Among the three size groups of fish (small, medium and large) the prevalence and the intensity of infection were lowest in fish with small body lengths. The distribution of the monogenean population in the host gills showed an aggregate distribution, with little change in the degree of aggregation, suggesting that most hosts were either not or only slightly infected by D. wunderi and that the parasite infected only a few hosts. In addition, differences in D. wunderi infections between gill arches of A. brama orientalis were not significant ( P>0.05).

  10. The Bacteriome of Bat Flies (Nycteribiidae) from the Malagasy Region: a Community Shaped by Host Ecology, Bacterial Transmission Mode, and Host-Vector Specificity

    PubMed Central

    Duron, Olivier; Cordonin, Colette; Gomard, Yann; Ramasindrazana, Beza; Mavingui, Patrick; Goodman, Steven M.; Tortosa, Pablo

    2016-01-01

    The Nycteribiidae are obligate blood-sucking Diptera (Hippoboscoidea) flies that parasitize bats. Depending on species, these wingless flies exhibit either high specialism or generalism toward their hosts, which may in turn have important consequences in terms of their associated microbial community structure. Bats have been hypothesized to be reservoirs of numerous infectious agents, some of which have recently emerged in human populations. Thus, bat flies may be important in the epidemiology and transmission of some of these bat-borne infectious diseases, acting either directly as arthropod vectors or indirectly by shaping pathogen communities among bat populations. In addition, bat flies commonly have associations with heritable bacterial endosymbionts that inhabit insect cells and depend on maternal transmission through egg cytoplasm to ensure their transmission. Some of these heritable bacteria are likely obligate mutualists required to support bat fly development, but others are facultative symbionts with unknown effects. Here, we present bacterial community profiles that were obtained from seven bat fly species, representing five genera, parasitizing bats from the Malagasy region. The observed bacterial diversity includes Rickettsia, Wolbachia, and several Arsenophonus-like organisms, as well as other members of the Enterobacteriales and a widespread association of Bartonella bacteria from bat flies of all five genera. Using the well-described host specificity of these flies and data on community structure from selected bacterial taxa with either vertical or horizontal transmission, we show that host/vector specificity and transmission mode are important drivers of bacterial community structure. PMID:26746715

  11. Histologic structure of red nile tilapia fish (Oreochromis nilloticus Var.) gill which is exposed to lead acetate

    NASA Astrophysics Data System (ADS)

    Utami, N. R.; Widiyaningrum, P.; Iswari, R. S.

    2018-03-01

    Fish is a water biota commonly used as the bioindicator of water pollution level. One of the animals which are recommended by EPA as the test species is red Nile Tilapia fish (Oreochromis niloticus var). The purpose of this research is to get the value of LC50-96 hours in the toxicity test toward the fishes which are exposed to lead acetate with some details identification of the gills damage by gill histologic structure examination together with the determination of the lead concentration which caused the destruction. Sixty fish were used in the preliminary test to detect the threshold concentration (LC0-48 h); whereas 120 fish were used in the toxicity test to get the mortality level of fish up to 50% in 96 h. Finally, for treatment test, there were 80 fish which were exposed to lead acetate in the concentration of 0 ppm, 259.51 ppm, 291.94 ppm and 324.38 ppm. All the treatment tests were given for four weeks. The data were collected at the end of the 4th week, and then, the description of the fish gill histology structure was done. The histology observation of the fishes gill detected some damages in the form of edema (0% -25%), lamellar fusion (1% -75%), hyperplasia (0% -50%), epithelial lifting (0% -50%), and necrosis (0% -50%). The results indicate that administration of lead acetate accelerates moderate damage to the red Nile tilapia fish gill structure. The greatest level of damage is lamellar fusion, while the other decline damages are edema, hyperplasia, epithelial lifting, and necrosis. Furthermore, it can be concluded that LC50-96 hours value in the lead acetate toxicity test of red Nile tilapia fish is 324,38 ppm with some histologic structure damage in the gill the fishes.

  12. Nature and time course of acclimation to aluminum in juvenile brook trout (Salvelinus fontinalis): II. Gill histology

    USGS Publications Warehouse

    Mueller, M.E.; Sanchez, D.A.; Bergman, H.L.; McDonald, D.G.; Rhem, R.G.; Wood, C.M.

    1991-01-01

    Gill samples from juvenile brook trout (Salvelinus fontinalis) acclimated to low-level aluminum at pH 5.2 showed severe damage by day 4, with necrosis and fusion of secondary lamellae and hyperplasia and hypertrophy of mucous cells. Over the following 20 d, there was a continual process of repair with proliferation and hypertrophy of mucous cells. Qualitative analysis of gill samples plus physiology and mortality data collected in a companion study indicated progressive development (by day 10 onward) of increasing acclimation to Al. Quantitative analysis of gill samples on day 13 showed that mucous cell volume density had tripled and mucous cell area had doubled in Al-exposed fish compared with control fish. A lamellar fusion index showed evidence of fusion in Al-exposed fish by day 4 with recovery to nearly control levels by day 13. Physiological disturbances appear to be directly related to the histological changes observed in the gill epithelium. At the cellular level, changes in either mucous cell production and secretion or changes in mucus chemistry contribute, in part, to acclimation to Al.

  13. Copper effects on key metabolic enzymes and mitochondrial membrane potential in gills of the estuarine crab Neohelice granulata at different salinities.

    PubMed

    Lauer, Mariana Machado; de Oliveira, Camila Bento; Yano, Natalia Lie Inocencio; Bianchini, Adalto

    2012-11-01

    The estuarine crab Neohelice granulata was exposed (96 h) to a sublethal copper concentration under two different physiological conditions (hyperosmoregulating crabs: 2 ppt salinity, 1 mg Cu/L; isosmotic crabs: 30 ppt salinity, 5 mg Cu/L). After exposure, gills (anterior and posterior) were dissected and activities of enzymes involved in glycolysis (hexokinase, phosphofructokinase, pyruvate kinase, lactate dehydrogenase), Krebs cycle (citrate synthase), and mitochondrial electron transport chain (cytochrome c oxidase) were analyzed. Membrane potential of mitochondria isolated from anterior and posterior gill cells was also evaluated. In anterior gills of crabs acclimated to 2 ppt salinity, copper exposure inhibited hexokinase, phosphofructokinase, pyruvate kinase, and citrate synthase activity, increased lactate dehydrogenase activity, and reduced the mitochondrial membrane potential. In posterior gills, copper inhibited hexokinase and pyruvate kinase activity, and increased citrate synthase activity. In anterior gills of crabs acclimated to 30 ppt salinity, copper exposure inhibited phosphofructokinase and citrate synthase activity, and increased hexokinase activity. In posterior gills, copper inhibited phosphofructokinase and pyruvate kinase activity, and increased hexokinase and lactate dehydrogenase activity. Copper did not affect cytochrome c oxidase activity in either anterior or posterior gills of crabs acclimated to 2 and 30 ppt salinity. These findings indicate that exposure to a sublethal copper concentration affects the activity of enzymes involved in glycolysis and Krebs cycle, especially in anterior (respiratory) gills of hyperosmoregulating crabs. Changes observed indicate a switch from aerobic to anaerobic metabolism, characterizing a situation of functional hypoxia. In this case, reduced mitochondrial membrane potential would suggest a decrease in ATP production. Although gills of isosmotic crabs were also affected by copper exposure, changes

  14. Book gill development in embryos and first and second instars of the horseshoe crab Limulus polyphemus L. (Chelicerata, Xiphosura).

    PubMed

    Farley, Roger D

    2010-09-01

    The scanning electron microscope (SEM) was used to study the development of the opisthosomal appendages and book gills of the horseshoe crab, Limulus polyphemus. Later embryonic stages were examined as well as the first and second instars. The observations are compared with a much earlier light microscopic description of book gill development in the horseshoe crab and with book lung development in scorpion embryos and first and second instars in a recent study with SEM. After the third embryonic molt in the horseshoe crab, the opisthosomal appendages are of sufficient size so they could be fractured or dissected open so internal cells and other structures could be examined. The opisthosomal appendages and book gill lamellae of first and second instars were also opened. The observations support the earlier histological report that the gill lamellae are a hypodermal outgrowth from the posterior surface of the preceding branchial appendages. The genital operculum, branchial appendages and gill lamellae are very thin and consist of external cuticle, hypodermis and space holders. The latter help hold the cuticle walls in place so hemolymph can flow through the narrow channels. The space holders are formed from cell processes that extend into the lumen from the hypodermis just inside the external cuticle. In the recent SEM study in scorpion embryos and in some histological investigations in spider embryos, the book lung lamellae are formed by alignment of cells from an invaginated sac or mass of cells. This clearly differs from the mode of formation of gill lamellae as observed in this and earlier investigations. These reports of differences in embryology refine but do not preclude hypotheses about book gill/book lung homology since addition, deletion or modification of ancestral features often occur for the benefit of the embryos and larvae. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Gilles de la Tourette Syndrome: A Review and Implications for Educators.

    ERIC Educational Resources Information Center

    Lemons, Laurie A.; Barber, William H.

    1991-01-01

    Gilles de la Tourette syndrome is a disorder characterized by multiple involuntary motor and verbal tics. This review covers the history, symptoms, diagnostic criteria, past and present treatments, associated disorders, and various educational techniques. (Author/DB)

  16. Salinity-induced changes in gene expression from anterior and posterior gills of Callinectes sapidus (Crustacea: Portunidae) with implications for crustacean ecological genomics

    PubMed Central

    Havird, Justin C.; Mitchell, Reed T.; Henry, Raymond P.; Santos, Scott R.

    2016-01-01

    Decapods represent one of the most ecologically diverse taxonomic groups within crustaceans, making them ideal to study physiological processes like osmoregulation. However, prior studies have failed to consider the entire transcriptomic response of the gill – the primary organ responsible for ion transport – to changing salinity. Moreover, the molecular genetic differences between non-osmoregulatory and osmoregulatory gill types, as well as the hormonal basis of osmoregulation, remain underexplored. Here, we identified and characterized differentially expressed genes (DEGs) via RNA-Seq in anterior (non-osmoregulatory) and posterior (osmoregulatory) gills during high to low salinity transfer in the blue crab Callinectes sapidus, a well-studied model for crustacean osmoregulation. Overall, we confirmed previous expression patterns for individual ion transport genes and identified novel ones with salinity-mediated expression. Notable, novel DEGs among salinities and gill types for C. sapidus included anterior gills having higher expression of structural genes such as actin and cuticle proteins while posterior gills exhibit elevated expression of ion transport and energy-related genes, with the latter likely linked to ion transport. Potential targets among recovered DEGs for hormonal regulation of ion transport between salinities and gill types included neuropeptide Y and a KCTD16-like protein. Using publically available sequence data, constituents for a “core” gill transcriptome among decapods are presented, comprising genes involved in ion transport and energy conversion and consistent with salinity transfer experiments. Lastly, rarefication analyses lead us to recommend a modest number of sequence reads (~10–15 M), but with increased biological replication, be utilized in future DEG analyses of crustaceans. PMID:27337176

  17. [Histology of gill, liver and kidney in juvenile fish Colossoma macropomum exposed to three temperatures].

    PubMed

    Rojas, Luz-Marina; Mata, Claunis; Oliveros, Aridays; Salazar-Lugo, Raquel

    2013-06-01

    Abstract: Histology of gill, liver and kidney in juvenile fish Colossoma macropomum exposed to three temperatures. Water temperature is an important factor that affects growth and antioxidant enzyme activities in fish, and when adverse, it may trigger diseases in fish populations. C. macropomum is a freshwater neotropical fish widely distributed in South America and abundant in river basins as the Amazon and Orinoco. It is highly used for intensive aquaculture development and is a very important product for the local riverside economy in Venezuela. The purpose of our study was to examine the water temperature effect on gills, liver and kidneys of juvenile fishes of C macropomum. Eighteen juveniles with biometrical index of 17.87 +/- 7.88 cm and 87.69 +/- 34.23 g were respectively exposed to three culture temperatures (T18, T29 and T35 degrees C) during a period of 21 days. Histological analyses on gills, liver and kidney were made according to standard methodologies. Our results showed that these tissues exhibited normal citoarchitecture at T29. On the contrary, T18-gills displayed brachiallipid droplets inside brachial epithelium; and disorganization in the brachial tissue was observed at T35. Furthermore, we observed two kinds of hepatocytes (dark and light) on T180 degrees C-liver. The T35-liver samples showed cytoplasmatic granulation and damages in cytoplasmatic membrane. Kidney samples from T18 observed alterations in the cellular distribution of the hematopoietic tissue; while, at T35, the most important feature observed was the disorganization of the glomerular structure. We concluded that T18 and T35 are respectively critical and severe temperatures to C. macropomum; besides, the most sensible tissues to changes induced by temperature in this species were the liver and gills.

  18. Effects of sodium fluoride on MAPKs signaling pathway in the gills of a freshwater teleost, Cyprinus carpio.

    PubMed

    Cao, Jinling; Chen, Jianjie; Wang, Jundong; Klerks, Paul; Xie, Lingtian

    2014-07-01

    Exposure to elevated levels of fluoride can cause a variety of adverse effects in fish. Previously we showed that fluoride causes injuries and apoptosis in the gills of Cyprinus carpio. In this study, the effects of fluoride on caspase-3 activity and on accumulation of proteins in the MAPKs pathways were evaluated using Western blotting and immunohistochemistry methods in vivo and in vitro. In vivo experiments showed that the caspase-3 activity increased with fluoride exposure level in a dose-dependent pattern Western blotting and immunohistochemistry results indicated that ERK relative activation tended to decrease as a function of fluoride exposure concentration. In contrast, relative activation of JNK increased with fluoride exposure level. Fluoride exposure did not appear to affect p38 activation. Furthermore, pretreatment of branchial cells with MAPK-specific inhibitors effectively prevented JNK induction and ERK inhibition, respectively, as well as reversed caspase-3 activity in fluoride-treated branchial cells. Our results indicate that activation of JNK and inactivation of ERK were caused by increased ROS and decreased antioxidant capacity in the gills of chronically exposed C. carpio described previously, which eventually caused the observed apoptosis in the fluoride-exposed gills and cells in C. carpio. JNK activation and ERK inactivation mechanism play a crucial role in gill impairment induced by chronic fluorosis. These findings contribute to a better understanding of the initial molecular and cellular events in the gill of fish chronically exposed to fluoride. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Impact of long-term moderate hypercapnia and elevated temperature on the energy budget of isolated gills of Atlantic cod (Gadus morhua).

    PubMed

    Kreiss, Cornelia M; Michael, Katharina; Bock, Christian; Lucassen, Magnus; Pörtner, Hans-O

    2015-04-01

    Effects of severe hypercapnia have been extensively studied in marine fishes, while knowledge on the impacts of moderately elevated CO2 levels and their combination with warming is scarce. Here we investigate ion regulation mechanisms and energy budget in gills from Atlantic cod acclimated long-term to elevated PCO2 levels (2500 μatm) and temperature (18°C). Isolated perfused gill preparations were established to determine gill thermal plasticity during acute exposures (10-22°C) and in vivo costs of Na(+)/K(+)-ATPase activity, protein and RNA synthesis. Maximum enzyme capacities of F1Fo-ATPase, H(+)-ATPase and Na(+)/K(+)-ATPase were measured in vitro in crude gill homogenates. After whole animal acclimation to elevated PCO2 and/or warming, branchial oxygen consumption responded more strongly to acute temperature change. The fractions of gill respiration allocated to protein and RNA synthesis remained unchanged. In gills of fish CO2-exposed at both temperatures, energy turnover associated with Na(+)/K(+)-ATPase activity was reduced by 30% below rates of control fish. This contrasted in vitro capacities of Na(+)/K(+)-ATPase, which remained unchanged under elevated CO2 at 10°C, and earlier studies which had found a strong upregulation under severe hypercapnia. F1Fo-ATPase capacities increased in hypercapnic gills at both temperatures, whereas Na(+)/K(+)ATPase and H(+)-ATPase capacities only increased in response to elevated CO2 and warming indicating the absence of thermal compensation under CO2. We conclude that in vivo ion regulatory energy demand is lowered under moderately elevated CO2 levels despite the stronger thermal response of total gill respiration and the upregulation of F1Fo-ATPase. This effect is maintained at elevated temperature. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. In vivo effects of Aphanizomenon flos-aquae DC-1 aphantoxins on gas exchange and ion equilibrium in the zebrafish gill.

    PubMed

    Zhang, Delu; Liu, Siyi; Zhang, Jing; Zhang, Jian Kong; Hu, Chunxiang; Liu, Yongding

    2016-08-01

    Aphantoxins, neurotoxins or paralytic shellfish poisons (PSPs) generated by Aphanizomenon flos-aquae, are a threat to environmental safety and human health in eutrophic waters worldwide. The molecular mechanisms of neurotoxin function have been studied; however, the effects of these neurotoxins on oxidative stress, ion transport, gas exchange, and branchial ultrastructure in fish gills are not fully understood. Aphantoxins extracted from A. flos-aquae DC-1 were detected by high-performance liquid chromatography. The major ingredients were gonyautoxins 1 and 5 and neosaxitoxin, which comprised 34.04%, 21.28%, and 12.77% of the total, respectively. Zebrafish (Danio rerio) were administered A. flos-aquae DC-1 aphantoxins at 5.3 or 7.61μg saxitoxin equivalents (eq)/kg (low and high doses, respectively) by intraperitoneal injection. The activities of Na(+)-K(+)-ATPase (NKA), carbonic anhydrase (CA), and lactate dehydrogenase (LDH), ultrastructural alterations in chloride and epithelial cells, and reactive oxygen species (ROS) and total antioxidative capacity (T-AOC) were investigated in the gills during the first 24h after exposure. Aphantoxins significantly increased the level of ROS and decreased the T-AOC in zebrafish gills from 3 to 12h post-exposure, suggesting an induction of oxidative stress and inhibition of antioxidant capacity. Reduced activities of NKA and CA demonstrated abnormal ion transport and gas exchange in the gills of aphantoxin-treated fish. Toxin administration also resulted in increased LDH activity and ultrastructural alterations in chloride and epithelial cells, suggesting a disruption of function and structure in zebrafish gills. The observed abnormalities in zebrafish gills occurred in a time- and dose-dependent manner. These findings demonstrate that aphantoxins or PSPs may inhibit ion transport and gas exchange, increase LDH activity, and result in ultrastructural damage to the gills through elevations in oxidative stress and reduced

  1. Seasonal dynamics and diversity of bacteria in retail oyster tissues.

    PubMed

    Wang, Dapeng; Zhang, Qian; Cui, Yan; Shi, Xianming

    2014-03-03

    Oysters are one of the important vehicles for the transfer of foodborne pathogens. It was reported that bacteria could be bio-accumulated mainly in the gills and digestive glands. In artificially treated oysters, bacterial communities have been investigated by culture-independent methods after harvest. However, little information is available on the seasonal dynamics of bacterial accumulation in retail oyster tissues. In this study, retail oysters were collected from local market in different seasons. The seasonal dynamics and diversity of bacteria in oyster tissues, including the gills, digestive glands and residual tissues, were analyzed by denaturing gradient gel electrophoresis (DGGE). It was interesting that the highest bacterial diversity appeared in the Fall season, not in summer. Our results indicated that Proteobacteria was the predominant member (23/46) in oyster tissues. Our results also suggested that bacterial diversity in gills was higher than that in digestive glands and other tissues. In addition, not all the bacteria collected from surrounding water by gills were transferred to digestive glands. On the other hand, few bacteria were found in oyster tissues except in the gills. Therefore, the gills could be the best candidate target tissue for monitoring of pathogenic bacteria either to human or to oyster. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. “Candidatus Gortzia shahrazadis”, a Novel Endosymbiont of Paramecium multimicronucleatum and a Revision of the Biogeographical Distribution of Holospora-Like Bacteria

    PubMed Central

    Serra, Valentina; Fokin, Sergei I.; Castelli, Michele; Basuri, Charan K.; Nitla, Venkatamahesh; Verni, Franco; Sandeep, Bhagavatula V.; Kalavati, Chaganti; Petroni, Giulio

    2016-01-01

    Holospora spp. and “Candidatus Gortzia infectiva”, known as Holospora-like bacteria (HLB), are commonly found as nuclear endosymbionts of ciliates, especially the Paramecium genus. HLB are related by phylogenetic relationships, morphological features, and life-cycles, which involve two alternating morphotypes: reproductive and infectious forms (RF, IF). In this paper we describe a novel species belonging to the “Ca. Gortzia” genus, detected in P. multimicronucleatum, a ciliate for which infection by an HLB has not been reported, discovered in India. This novel endosymbiont shows unusual and surprising features with respect to other HLB, such as large variations in IF morphology and the occasional ability to reproduce in the host cytoplasm. We propose the name of “Candidatus Gortzia shahrazadis” for this novel HLB. Moreover, we report two additional species of HLB from Indian Paramecium populations: “Ca. Gortzia infectiva” (from P. jenningsi), and H. obtusa (from P. caudatum); the latter is the first record of Holospora from a tropical country. Although tropical, we retrieved H. obtusa at an elevation of 706 m corresponding to a moderate climate not unlike conditions where Holospora are normally found, suggesting the genus Holospora does exist in tropical countries, but restricted to higher elevations. PMID:27867371

  3. Functional analysis of the musculo-skeletal system of the gill apparatus in Heptranchias perlo (Chondrichthyes: Hexanchidae).

    PubMed

    Kryukova, Nadezhda V

    2017-08-01

    Musculo-skeletal morphology is an indispensable source for understanding functional adaptations. Analysis of morphology of the branchial apparatus of Hexanchiform sharks can provide insight into aspects of their respiration that are difficult to observe directly. In this study, I compare the structure of the musculo-skeletal system of the gill apparatus of Heptranchias perlo and Squalus acanthias in respect to their adaptation for one of two respiratory mechanisms known in sharks, namely, the active two-pump (oropharyngeal and parabranchial) ventilation and the ram-jet ventilation. In both species, the oropharyngeal pump possesses two sets of muscles, one for compression and the other for expansion. The parabranchial pump only has constrictors. Expansion of this pump occurs only due to passive elastic recoil of the extrabranchial cartilages. In Squalus acanthias the parabranchial chambers are large and equipped by powerful superficial constrictors. These muscles and the outer walls of the parabranchial chambers are much reduced in Heptranchias perlo, and thus it likely cannot use this pump. However, this reduction allows for vertical elongation of outer gill slits which, along with greater number of gill pouches, likely decreases branchial resistance and, at the same time, increases the gill surface area, and can be regarded as an adaptation for ram ventilation at lower speeds. © 2017 Wiley Periodicals, Inc.

  4. What is the most efficient respiratory organ for the loricariid air-breathing fish Pterygoplichthys anisitsi, gills or stomach? A quantitative morphological study.

    PubMed

    da Cruz, André Luis; Fernandes, Marisa Narciso

    2016-12-01

    The purpose of the present study was to evaluate the morphometric respiratory potential of gills compared to the stomach in obtaining oxygen for aerobic metabolism in Pterygoplichthys anisitsi, a facultative air-breathing fish. The measurements were done using stereological methods. The gills showed greater total volume, volume-to-body mass ratio, potential surface area, and surface-to-volume ratio than the stomach. The water-blood diffusion barrier of the gills is thicker than the air-blood diffusion barrier of the stomach. Taken together, the surface area, the surface-to-volume ratio and the diffusion distance for O 2 transfer from the respiratory medium to blood yield a greater diffusing capacity for gills than for the stomach, suggesting greater importance of aquatic respiration in this species. On the other hand, water breathing is energetically more expensive than breathing air. Under severe hypoxic conditions, O 2 uptake by the stomach is more efficient than by the gills, although the stomach has a much lower diffusing capacity. Thus, P. anisitsi uses gills under normoxic conditions but the stomach may also support aerobic metabolism depending on environmental conditions. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Influence of water chemistry and natural organic matter on active and passive uptake of inorganic mercury by gills of rainbow trout (Oncorhynchus mykiss).

    PubMed

    Klinck, Joel; Dunbar, Michael; Brown, Stephanie; Nichols, Joel; Winter, Anna; Hughes, Christopher; Playle, Richard C

    2005-03-25

    To distinguish physiologically regulated uptake from passive uptake of inorganic Hg in fish, rainbow trout (Oncorhynchus mykiss) were exposed to inorganic Hg (0.5, 1, or 2 microM total Hg) in ion-poor water with various treatments. Addition of ions to the water (mM concentrations of Ca, K, Cl) did not consistently alter Hg accumulation by trout gills, although there was a trend to higher Hg accumulation at higher ion concentrations. The apical Ca channel blockers Verapamil and lanthanum also did not consistently affect Hg accumulation by trout gills. Pre-treatment of trout with the Na channel blocker Phenamil decreased Hg uptake by about half. These results suggest a combination of physiologically regulated and passive uptake of Hg by trout gills. Strong complexing agents of Hg (EDTA, NTA, ethylenediamine, cysteine) decreased Hg-binding by trout gills in a dose-dependent manner. From these data, a conditional equilibrium binding constant for Hg to the gills was estimated as logK(Hg-gill) = 18.0, representing very strong binding of Hg to the gills. This value is a first step in creating a biotic ligand model (BLM) for inorganic Hg and fish. Natural organic matter (2-10 mg C/L) also decreased Hg-binding by trout gills, although mM concentrations of Na, K, and Cl interfered with this effect. At low concentrations of these ions, natural organic matter samples isolated from various sources bound Hg to similar degrees, as judged by Hg accumulation by trout gills. A conditional binding constant to natural organic matter (NOM) was estimated as logK(Hg-NOM) = 18.0 with about 0.5 micromol binding sites per mg C, representing strong binding of Hg to NOM.

  6. Electronic Thesis Initiative: Pilot Project of McGill University, Montreal

    ERIC Educational Resources Information Center

    Park, Eun G.; Zou, Qing; McKnight, David

    2007-01-01

    Purpose: To set up a protocol for electronic thesis and dissertation (ETD) submission for the electronic thesis initiative pilot project at McGill University in Montreal, Canada. Design/methodology/approach: An electronic thesis and dissertation submission protocol was implemented and tested. To test authoring tools, we had 50 students submit…

  7. Evaluation of Fish Health Status and Histopathology in Gills and Liver Due to Metal Contaminated Sediments Exposure.

    PubMed

    Jabeen, Ghazala; Manzoor, Farkhanda; Javid, Arshad; Azmat, Hamda; Arshad, Mateen; Fatima, Shafaq

    2018-04-01

    Health status of freshwater fish, Cirrhina mrigala was studied by qualitative and quantitative histopathological analysis, alterations in frequency/prevalence percentages (%) and histological alteration indices (HAI) in response to metal contaminated sediments of the River Ravi aquatic ecosystem. Histo-structures of gill and liver samples of fish were analyzed and comparison between the degree of damage of the alterations in fish organs was performed after exposure to metal contaminated sediments for 7, 14 and 28 days under semi-static water renewal bioassays. Histopathological studies revealed marked histological alterations in the gills and liver of exposed fish as compared to normal tissue structure observed in control fish. The frequency and prevalence percentages observed in 28-day exposed fish were significantly higher as compared to 7- and 14-day exposed fish. The order of frequency and prevalence percentage for gills and liver of exposed fish was as: 28-day > 14-day > 7-day. The highest prevalence percentages recorded were 83 and 80% as focal area of necrosis in gill and liver, respectively, after 28-day exposure. The lowest prevalence percentage observed in 7-day exposed Cirrhina mrigala was dilation of sinusoids (17%).

  8. Synthesis of calcium carbonate using extract components of croaker gill as morphology and polymorph adjust control agent.

    PubMed

    Chen, Hao; Qing, Chengsong; Zheng, Jiaoling; Liu, Yuxi; Wu, Gang

    2016-06-01

    Biomimetic synthesis of calcium carbonate with various polymorphs, sizes and morphologies by using organic substrates has become an interesting topic for the last years. Calcium carbonate has been synthesized by the reaction of Na2CO3 and CaCl2 in the presence of extract components of croaker gill. The products were characterized by powder X-ray diffraction (PXRD) and Fourier transform infrared (FT-IR) spectrum, and particle morphologies were observed by scanning electron microscope (SEM). The results show that at lower concentration yellow croaker gill extract has no effect on calcium carbonate crystal polymorph. Calcite was obtained only. But the morphologies of calcite particle change with the increase of the concentration. The corners of the particle change from angular to curved. However, with the further increase of the concentration of yellow croaker gill extract, the calcium carbonate obtained is a mixture of calcite and vaterite. The vaterite component in the mixture rises with increasing concentration of extract solution, indicating that the proteins from the yellow croaker gill during growth play a crucial role in stabilizing and directing the crystal growth. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Ultrastructure and Transport-Related Enzymes of the Gills and Coxal Gland of the Horseshoe Crab Limulus polyphemus.

    PubMed

    Henry, R P; Jackson, S A; Mangum, C P

    1996-10-01

    The horseshoe crab, Limulus polyphemus, may be unique among marine arthropods in that both its book gills and its coxal gland may serve as sites of ion transport. We have therefore examined the ultrastructure of these organs, as well as the distribution and relative levels of two major transport-related enzymes: the Na+ + K+ ATPase and carbonic anhydrase (CA). The ventral surface of the central region of each lamella shows the typical ultrastructural specializations for ion transport: 10 μm cell thickness, an extensive network of tubules originating from infoldings of the basal membrane, and a high density of mitochondria. This region also contains high levels of activity of the Na+ + K+ ATPase and CA. The distribution of ion transporting epithelium and transport enzymes is identical in each of the five gill books. The peripheral region of the lamellae of each gill book is specialized for passive gas exchange. The ultrastructural and biochemical profile of the coxal gland is similar to that of the central-ventral region of the gill. Limulus possesses the same general mechanism of ion regulation seen in euryhaline decapod crustaceans, but the structural and functional components are uniquely distributed.

  10. The Genome of Cardinium cBtQ1 Provides Insights into Genome Reduction, Symbiont Motility, and Its Settlement in Bemisia tabaci

    PubMed Central

    Santos-Garcia, Diego; Rollat-Farnier, Pierre-Antoine; Beitia, Francisco; Zchori-Fein, Einat; Vavre, Fabrice; Mouton, Laurence; Moya, Andrés; Latorre, Amparo; Silva, Francisco J.

    2014-01-01

    Many insects harbor inherited bacterial endosymbionts. Although some of them are not strictly essential and are considered facultative, they can be a key to host survival under specific environmental conditions, such as parasitoid attacks, climate changes, or insecticide pressures. The whitefly Bemisia tabaci is at the top of the list of organisms inflicting agricultural damage and outbreaks, and changes in its distribution may be associated to global warming. In this work, we have sequenced and analyzed the genome of Cardinium cBtQ1, a facultative bacterial endosymbiont of B. tabaci and propose that it belongs to a new taxonomic family, which also includes Candidatus Amoebophilus asiaticus and Cardinium cEper1, endosymbionts of amoeba and wasps, respectively. Reconstruction of their last common ancestors’ gene contents revealed an initial massive gene loss from the free-living ancestor. This was followed in Cardinium by smaller losses, associated with settlement in arthropods. Some of these losses, affecting cofactor and amino acid biosynthetic encoding genes, took place in Cardinium cBtQ1 after its divergence from the Cardinium cEper1 lineage and were related to its settlement in the whitefly and its endosymbionts. Furthermore, the Cardinium cBtQ1 genome displays a large proportion of transposable elements, which have recently inactivated genes and produced chromosomal rearrangements. The genome also contains a chromosomal duplication and a multicopy plasmid, which harbors several genes putatively associated with gliding motility, as well as two other genes encoding proteins with potential insecticidal activity. As gene amplification is very rare in endosymbionts, an important function of these genes cannot be ruled out. PMID:24723729

  11. Gill pathology in Scottish farmed Atlantic salmon, Salmo salar L., associated with the microsporidian Desmozoon lepeophtherii Freeman et Sommerville, 2009.

    PubMed

    Matthews, C G G; Richards, R H; Shinn, A P; Cox, D I

    2013-10-01

    Gill disorders have emerged in recent years as a significant problem in the production of marine-stage Atlantic salmon Salmo salar L. The multi-aetiological condition 'proliferative gill inflammation' (PGI) has been reported to cause heavy losses in western Norway, yet reports of Scottish cases of the disease have remained anecdotal. In the present study, histopathological material from a marine production site in the Scottish Highlands experiencing mortalities due to a seasonal gill disease with proliferative-type pathology was examined using light microscopy, special staining techniques and transmission electron microscopy (TEM). The microsporidian Desmozoon lepeophtherii Freeman et Sommerville, 2009 (syn. Paranucleospora theridion) was identified by staining using a Gram Twort method and TEM associated with distinctive proliferative and necrotic pathology confined to the interlamellar Malpighian cell areas of the primary filaments. Epitheliocystis was not a feature of the gill pathology observed. It is believed this is the first report of D. lepeophtherii being identified associated with pathology in a Scottish gill disease case, and supports anecdotal reports that a disease at least partly synonymous with PGI as described by Norwegian researchers is present in Scottish aquaculture. © 2013 John Wiley & Sons Ltd.

  12. Channels, pumps, and exchangers in the gill and kidney of freshwater fishes: their role in ionic and acid-base regulation.

    PubMed

    Perry, S F; Shahsavarani, A; Georgalis, T; Bayaa, M; Furimsky, M; Thomas, S L Y

    2003-11-01

    In freshwater fishes, the gill and kidney are intricately involved in ionic and acid-base regulation owing to the presence of numerous ion channels, pumps, or exchangers. This review summarizes recent developments in branchial and renal ion transport physiology and presents several models that integrate epithelial ion and acid-base movements in freshwater fishes. At the gill, three cell types are potentially involved in ionic uptake: pavement cells, mitochondria-rich (MR) PNA(+) cells, and MR PNA(-) cells. The transfer of acidic or basic equivalents between the fish and its environment is accomplished largely by the gill and is appropriately regulated to correct acid-base imbalances. The kidney, while less important than the gill in overall acid or base excretion, has an essential role in regulating systemic acid-base balance by controlling HCO(3) (-) reabsorption from the filtrate. Copyright 2003 Wiley-Liss, Inc.

  13. Description of two new gill myxozoans from smallmouth (Micropterus dolomieu) and largemouth bass (Micropterus salmoides)

    USGS Publications Warehouse

    Walsh, Heather L.; Iwanowicz, Luke R.; Glenney, Gavin W.; Iwanowicz, Deborah D.; Blazer, Vicki

    2012-01-01

    Two previously undescribed species of myxozoan parasites were observed in the gills of bass inhabiting the Potomac and James River basins. They are described using morphological characteristics and small-subunit (SSU) rDNA gene sequences. Both were taxonomically identified as new species of Myxobolus; Myxobolus branchiarum n. sp. was found exclusively in smallmouth bass, and Myxobolus micropterii n. sp. was found in largemouth and smallmouth bass. Small, spherical, white plasmodia of M. branchiarum from smallmouth bass were observed grossly in the gills; these plasmodia had an average length of 320.3 µm and width of 246.1 µm. The development of the plasmodia is intralamellar in the secondary lamellae of the gills. Mature spores were pyriform in shape with a length of 12.8 ± 1.4 (8.1–15.1) µm and width of 6.9 ± 1.1 (4.0–9.0) µm. Analysis of SSU rDNA identified M. branchiarum in a sister-group to 3 species of Henneguya, although morphologically caudal appendages were absent. Myxobolus micropterii observed in the gills of largemouth and smallmouth bass had larger, ovoid, cream-colored plasmodia with an average length of 568.1 µm and width of 148.1 µm. The cysts developed at the distal end of the gill filament within the primary lamellae. The mature spores were ovoid in shape with a length of 10.8 ± 0.7 (9.2–12.2) µm and width of 10.6 ± 0.6 (9.0–11.8) µm. SSU rDNA analysis placed M. micropterii in a sister group with Henneguya lobosa and Myxobolus oliveirai. The highest prevalence of M. branchiarum was observed in the gills of bass collected from the Cowpasture River (50.9%). Prevalence was 44.6% in bass from the Potomac River and only 4.3% in bass collected from the Shenandoah River. A seasonal study of M. branchiarum, which included both infected and uninfected smallmouth bass, determined that a significantly higher intensity was observed in the spring than in the summer (P < 0.001) or fall (P  =  0.004). In an analysis excluding uninfected

  14. Description of two new gill myxozoans from smallmouth (Micropterus dolomieu) and largemouth (Micropterus salmoides) bass.

    PubMed

    Walsh, Heather L; Iwanowicz, Luke R; Glenney, Gavin W; Iwanowicz, Deborah D; Blazer, Vicki S

    2012-04-01

    Two previously undescribed species of myxozoan parasites were observed in the gills of bass inhabiting the Potomac and James River basins. They are described using morphological characteristics and small-subunit (SSU) rDNA gene sequences. Both were taxonomically identified as new species of Myxobolus; Myxobolus branchiarum n. sp. was found exclusively in smallmouth bass, and Myxobolus micropterii n. sp. was found in largemouth and smallmouth bass. Small, spherical, white plasmodia of M. branchiarum from smallmouth bass were observed grossly in the gills; these plasmodia had an average length of 320.3 µm and width of 246.1 µm. The development of the plasmodia is intralamellar in the secondary lamellae of the gills. Mature spores were pyriform in shape with a length of 12.8 ± 1.4 (8.1-15.1) µm and width of 6.9 ± 1.1 (4.0-9.0) µm. Analysis of SSU rDNA identified M. branchiarum in a sister-group to 3 species of Henneguya , although morphologically caudal appendages were absent. Myxobolus micropterii observed in the gills of largemouth and smallmouth bass had larger, ovoid, cream-colored plasmodia with an average length of 568.1 µm and width of 148.1 µm. The cysts developed at the distal end of the gill filament within the primary lamellae. The mature spores were ovoid in shape with a length of 10.8 ± 0.7 (9.2-12.2) µm and width of 10.6 ± 0.6 (9.0-11.8) µm. SSU rDNA analysis placed M. micropterii in a sister group with Henneguya lobosa and Myxobolus oliveirai . The highest prevalence of M. branchiarum was observed in the gills of bass collected from the Cowpasture River (50.9%). Prevalence was 44.6% in bass from the Potomac River and only 4.3% in bass collected from the Shenandoah River. A seasonal study of M. branchiarum , which included both infected and uninfected smallmouth bass, determined that a significantly higher intensity was observed in the spring than in the summer (P < 0.001) or fall (P  =  0.004). In an analysis excluding uninfected bass, a

  15. Francisella-Like Endosymbionts and Rickettsia Species in Local and Imported Hyalomma Ticks.

    PubMed

    Azagi, Tal; Klement, Eyal; Perlman, Gidon; Lustig, Yaniv; Mumcuoglu, Kosta Y; Apanaskevich, Dmitry A; Gottlieb, Yuval

    2017-09-15

    Hyalomma ticks (Acari: Ixodidae) are hosts for Francisella -like endosymbionts (FLE) and may serve as vectors of zoonotic disease agents. This study aimed to provide an initial characterization of the interaction between Hyalomma and FLE and to determine the prevalence of pathogenic Rickettsia in these ticks. Hyalomma marginatum , Hyalomma rufipes , Hyalomma dromedarii , Hyalomma aegyptium , and Hyalomma excavatum ticks, identified morphologically and molecularly, were collected from different hosts and locations representing the distribution of the genus Hyalomma in Israel, as well as from migratory birds. A high prevalence of FLE was found in all Hyalomma species (90.6%), as well as efficient maternal transmission of FLE (91.8%), and the localization of FLE in Malpighian tubules, ovaries, and salivary glands in H. marginatum Furthermore, we demonstrated strong cophylogeny between FLE and their host species. Contrary to FLE, the prevalence of Rickettsia ranged from 2.4% to 81.3% and was significantly different between Hyalomma species, with a higher prevalence in ticks collected from migratory birds. Using ompA gene sequences, most of the Rickettsia spp. were similar to Rickettsia aeschlimannii , while a few were similar to Rickettsia africae of the spotted fever group (SFG). Given their zoonotic importance, 249 ticks were tested for Crimean Congo hemorrhagic fever virus infection, and all were negative. The results imply that Hyalomma and FLE have obligatory symbiotic interactions, indicating a potential SFG Rickettsia zoonosis risk. A further understanding of the possible influence of FLE on Hyalomma development, as well as on its infection with Rickettsia pathogens, may lead to novel ways to control tick-borne zoonoses. IMPORTANCE This study shows that Francisella -like endosymbionts were ubiquitous in Hyalomma , were maternally transmitted, and cospeciated with their hosts. These findings imply that the interaction between FLE and Hyalomma is of an obligatory

  16. Response to McGill and Busse, "When Theory Trumps Science: A Critique of the PSW Model for SLD Identification"

    ERIC Educational Resources Information Center

    Christo, Catherine; D'Incau, Barbara J.; Ponzuric, Jenny

    2017-01-01

    The California Association of School Psychologists (CASP) responds to a critique of the Association's Position Paper: "Specific Learning Disabilities and Patterns of Strengths and Weaknesses" (2014, March. Available: http://casponline.org/about-casp/publications/) by McGill and Busse. The CASP offers corrections to McGill and Busse's…

  17. Gill lesions and death of bluegill in an acid mine drainage mixing zone

    USGS Publications Warehouse

    Henry, T.B.; Irwin, E.R.; Grizzle, J.M.; Brumbaugh, W.G.; Wildhaber, M.L.

    2001-01-01

    The toxicity of an acid mine drainage (AMD) mixing zone was investigated by placing bluegill (Lepomis macrochirus) at the confluence of a stream contaminated by AMD and a stream having neutral pH. A mixing channel receiving water from both streams was assembled in the field, during July and October 1996, to determine the toxicity of freshly mixed and aged water (2.9–7.5 min). The AMD stream had elevated concentrations of Al and Fe, which precipitated upon mixing, and of Mn, which did not precipitate in the mixing zone. Fish exposed to freshly mixed water had higher mortality than fish exposed to water after aging. Precipitating Al, but not Fe, accumulated on the gills of bluegill, and accumulation was more rapid early during the mixing process than after aging. Fish exposed for 3.5 h to freshly mixed water had hypertrophy and hyperplasia of gill filament and lamellar epithelial cells. Similar lesions were observed after 6.0 h in fish exposed to water aged after mixing. Results demonstrated that Al was the predominant metal accumulating on the gills of fish in this AMD mixing zone, and that mixing zones can be more toxic than AMD streams in equilibrium.

  18. Differential Gene Expression in Liver, Gill, and Olfactory Rosettes of Coho Salmon (Oncorhynchus kisutch) After Acclimation to Salinity.

    PubMed

    Maryoung, Lindley A; Lavado, Ramon; Bammler, Theo K; Gallagher, Evan P; Stapleton, Patricia L; Beyer, Richard P; Farin, Federico M; Hardiman, Gary; Schlenk, Daniel

    2015-12-01

    Most Pacific salmonids undergo smoltification and transition from freshwater to saltwater, making various adjustments in metabolism, catabolism, osmotic, and ion regulation. The molecular mechanisms underlying this transition are largely unknown. In the present study, we acclimated coho salmon (Oncorhynchus kisutch) to four different salinities and assessed gene expression through microarray analysis of gills, liver, and olfactory rosettes. Gills are involved in osmotic regulation, liver plays a role in energetics, and olfactory rosettes are involved in behavior. Between all salinity treatments, liver had the highest number of differentially expressed genes at 1616, gills had 1074, and olfactory rosettes had 924, using a 1.5-fold cutoff and a false discovery rate of 0.5. Higher responsiveness of liver to metabolic changes after salinity acclimation to provide energy for other osmoregulatory tissues such as the gills may explain the differences in number of differentially expressed genes. Differentially expressed genes were tissue- and salinity-dependent. There were no known genes differentially expressed that were common to all salinity treatments and all tissues. Gene ontology term analysis revealed biological processes, molecular functions, and cellular components that were significantly affected by salinity, a majority of which were tissue-dependent. For liver, oxygen binding and transport terms were highlighted. For gills, muscle, and cytoskeleton-related terms predominated and for olfactory rosettes, immune response-related genes were accentuated. Interaction networks were examined in combination with GO terms and determined similarities between tissues for potential osmosensors, signal transduction cascades, and transcription factors.

  19. Differential Gene Expression in Liver, Gill, and Olfactory Rosettes of Coho Salmon (Oncorhynchus kisutch) After Acclimation to Salinity

    PubMed Central

    Lavado, Ramon; Bammler, Theo K.; Gallagher, Evan P.; Stapleton, Patricia L.; Beyer, Richard P.; Farin, Federico M.; Hardiman, Gary; Schlenk, Daniel

    2015-01-01

    Most Pacific salmonids undergo smoltification and transition from freshwater to saltwater, making various adjustments in metabolism, catabolism, osmotic, and ion regulation. The molecular mechanisms underlying this transition are largely unknown. In the present study, we acclimated coho salmon (Oncorhynchus kisutch) to four different salinities and assessed gene expression through microarray analysis of gills, liver, and olfactory rosettes. Gills are involved in osmotic regulation, liver plays a role in energetics, and olfactory rosettes are involved in behavior. Between all salinity treatments, liver had the highest number of differentially expressed genes at 1616, gills had 1074, and olfactory rosettes had 924, using a 1.5-fold cutoff and a false discovery rate of 0.5. Higher responsiveness of liver to metabolic changes after salinity acclimation to provide energy for other osmoregulatory tissues such as the gills may explain the differences in number of differentially expressed genes. Differentially expressed genes were tissue- and salinity-dependent. There were no known genes differentially expressed that were common to all salinity treatments and all tissues. Gene ontology term analysis revealed biological processes, molecular functions, and cellular components that were significantly affected by salinity, a majority of which were tissue-dependent. For liver, oxygen binding and transport terms were highlighted. For gills, muscle, and cytoskeleton-related terms predominated and for olfactory rosettes, immune response-related genes were accentuated. Interaction networks were examined in combination with GO terms and determined similarities between tissues for potential osmosensors, signal transduction cascades, and transcription factors. PMID:26260986

  20. Gilles de la Tourette syndrome as a paradigmatic neuropsychiatric disorder.

    PubMed

    Cavanna, Andrea E

    2018-05-21

    Gilles de la Tourette syndrome is a chronic and complex tic disorder accompanied by specific behavioral problems in the majority of patients. With its multifaceted interplay between motion and emotion, this condition is a paradigmatic example of the science and art of clinical neuropsychiatry. This review article encompasses the clinical phenomenology of motor and vocal tics and associated sensory experiences (premonitory urges), as well as the behavioral spectrum of the most common comorbidities, including obsessive-compulsive disorder, attention-deficit and hyperactivity disorder, affective symptoms, and impulsivity. Knowledge of the contributions of both tics and behavioral problems to patients' health-related quality of life across the lifespan should assist treating clinicians in formulating a targeted management plan. Although the exact pathophysiology of Gilles de la Tourette syndrome remains elusive, research into therapeutic interventions has expanded the range of available interventions across multiple domains. A thorough understanding of the neurology and psychiatry of this condition is of key importance to meet the needs of this patient population, from the formulation of an accurate diagnosis to the implementation of effective treatment strategies.

  1. The Bacteriome of Bat Flies (Nycteribiidae) from the Malagasy Region: a Community Shaped by Host Ecology, Bacterial Transmission Mode, and Host-Vector Specificity.

    PubMed

    Wilkinson, David A; Duron, Olivier; Cordonin, Colette; Gomard, Yann; Ramasindrazana, Beza; Mavingui, Patrick; Goodman, Steven M; Tortosa, Pablo

    2016-01-08

    The Nycteribiidae are obligate blood-sucking Diptera (Hippoboscoidea) flies that parasitize bats. Depending on species, these wingless flies exhibit either high specialism or generalism toward their hosts, which may in turn have important consequences in terms of their associated microbial community structure. Bats have been hypothesized to be reservoirs of numerous infectious agents, some of which have recently emerged in human populations. Thus, bat flies may be important in the epidemiology and transmission of some of these bat-borne infectious diseases, acting either directly as arthropod vectors or indirectly by shaping pathogen communities among bat populations. In addition, bat flies commonly have associations with heritable bacterial endosymbionts that inhabit insect cells and depend on maternal transmission through egg cytoplasm to ensure their transmission. Some of these heritable bacteria are likely obligate mutualists required to support bat fly development, but others are facultative symbionts with unknown effects. Here, we present bacterial community profiles that were obtained from seven bat fly species, representing five genera, parasitizing bats from the Malagasy region. The observed bacterial diversity includes Rickettsia, Wolbachia, and several Arsenophonus-like organisms, as well as other members of the Enterobacteriales and a widespread association of Bartonella bacteria from bat flies of all five genera. Using the well-described host specificity of these flies and data on community structure from selected bacterial taxa with either vertical or horizontal transmission, we show that host/vector specificity and transmission mode are important drivers of bacterial community structure. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. [Joint effects of water temperature and salinity on the expression of gill Hsp70 gene in Pinctada martensii (Dunker)].

    PubMed

    Wang, Ya-Nan; Wang, Hui; Zhu, Xiao-Wen; Luo, Ming-Ming; Liu, Zhi-Gang; Du, Xiao-Dong

    2012-12-01

    By using central composite experimental design and response surface method, the joint effects of water temperature (16-40 degrees C) and salinity (10-50) on the expression of gill Hsp70 gene in Pinctada martensii (Dunker) were studied under laboratory conditions. The results showed that the linear and quadratic effects of temperature on the expression of gill Hsp70 gene were significant, the linear effect of salinity was not significant, while the quadratic effect of salinity was significant. The interactive effect of temperature and salinity was not significant, and the effect of temperature was greater than that of salinity. The model equation of the gill Hsp70 gene expression was established, with the R2, Adj. R2, and Pred. R2 as high as 98.7%, 97.4%, and 89.2%, respectively, suggesting that the overarching predictive capability of the model was very satisfactory, and could be practicably applied for prediction. Through the optimization of the model, the expression of the gill Hsp70 gene reached its minimum (0.5276) when the temperature was 26.78 degrees C and the salinity was 29.33, with the desirability value being 98%. These experimental results could offer theoretical reference for the high expression of gill Hsp70 gene in P. martensii, the maintenance of cell internal environment stability, and the enhancement of P. martensii stress resistance.

  3. Identification of immune-related genes in gill cells of Japanese eels (Anguilla japonica) in adaptation to water salinity changes.

    PubMed

    Gu, Jie; Dai, Shuya; Liu, Haitao; Cao, Quanquan; Yin, Shaowu; Lai, Keng Po; Tse, William Ka Fai; Wong, Chris Kong Chu; Shi, Haifeng

    2018-02-01

    The changes in ambient salinity influence ion and water homeostasis, hormones secretion, and immune response in fish gills. The physiological functions of hormones and ion transporters in the regulation of gill-osmoregulation have been widely studied, however the modulation of immune response under salinity changes is not determined. Using transcriptome sequencing, we obtained a comprehensive profile of osmo-responsive genes in gill cells of Japanese eel (Anguilla japonica). Herein, we applied bioinformatics analysis to identify the immune-related genes that were significantly higher expressed in gill pavement cells (PVCs) and mitochondrial-rich cells (MRCs) in freshwater (FW) than seawater (SW) adapted fish. We validated the data using the real-time qPCR, which showed a high correlation between the RNA-seq and real-time qPCR data. In addition, the immunohistochemistry results confirmed the changes of the expression of selected immune-related genes, including C-reactive protein (CRP) in PVCs, toll-like receptor 2 (TLR2) in MRCs and interleukin-1 receptor type 2 (IL-1R2) in both PVCs and MRCs. Collectively our results demonstrated that those immune-related genes respond to salinity changes, and might trigger related special signaling pathways and network. This study provides new insights into the impacts of ambient salinity changes on adaptive immune response in fish gill cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Carbonic anhydrase, a respiratory enzyme in the gills of the shore crab Carcinus maenas

    NASA Astrophysics Data System (ADS)

    Böttcher, K.; Siebers, D.; Sender, S.

    1995-03-01

    This paper summarizes investigations on the enzyme carbonic anhydrase (CA) in the gills of the osmoregulating shore crab Carcinus maenas. Carbonic anhydrase, an enzyme catalyzing the reversible hydration of CO2 to HCO3 - and H+, is localized with highest activities in the posterior salt-transporting gills of the shore crab- and here CA activity is strongly dependent on salinity. Contrary to the earlier hypothesis established for the blue crab Callinectes sapidus that cytoplasmic branchial CA provides the counter ions HCO3 - and H+ for apical exchange against Na+ and Cl-, the involvement of CA in NaCl uptake mechanisms can be excluded in Carcinus. Differential and density gradient centrifugations indicate that branchial CA is a predominantly membrane-associated protein. Branchial CA was greatly inhibited by the sulfonamide acetazolamide (AZ) Ki=2.4·10-8 mol/l). Using the preparation of the isolated perfused gill, application of 10-4 mol/l AZ resulted in an 80% decrease of CO2/HCO3 - excretion. Thus we conclude that CA is localized in plasma membranes, maintaining the CO2 gradient by accelerating adjustment of the pH-dependent CO2/HCO3 - equilibrium.

  5. Acidification of the gill cells of the shore crab Carcinus mediterraneus: Its physiological significance

    NASA Astrophysics Data System (ADS)

    Lucu, Č.; Siebers, D.

    1995-03-01

    In a preparation of isolated gills of the shore crab Carcinus mediterraneus perfused with dilute sea water (pH 8.1, 200 mM Na+) which was identical to the bathing solution of the gill, acidification of the collected perfusate was observed. Acidification was not affected by 10-4 M EIPA (5-[N-ethyl-N-isopropyl]amiloride), a strong inhibitor of Na+/H+ exchange. However, in the presence of 10-4 M acetazolamide, acidification was greatly blocked. The significant decrease of the acid load of the perfusate is considered to be a result of inhibition of the branchial intracellular carbonic anhydrase catalyzing the formation of H+ ions.

  6. Genetic lineage labeling in zebrafish uncovers novel neural crest contributions to the head, including gill pillar cells.

    PubMed

    Mongera, Alessandro; Singh, Ajeet P; Levesque, Mitchell P; Chen, Yi-Yen; Konstantinidis, Peter; Nüsslein-Volhard, Christiane

    2013-02-01

    At the protochordate-vertebrate transition, a new predatory lifestyle and increased body size coincided with the appearance of a true head. Characteristic innovations of this head are a skull protecting and accommodating a centralized nervous system, a jaw for prey capture and gills as respiratory organs. The neural crest (NC) is a major ontogenetic source for the 'new head' of vertebrates and its contribution to the cranial skeleton has been intensively studied in different model organisms. However, the role of NC in the expansion of the respiratory surface of the gills has been neglected. Here, we use genetic lineage labeling to address the contribution of NC to specific head structures, in particular to the gills of adult zebrafish. We generated a sox10:ER(T2)-Cre line and labeled NC cells by inducing Cre/loxP recombination with tamoxifen at embryonic stages. In juvenile and adult fish, we identified numerous established NC derivatives and, in the cranium, we precisely defined the crest/mesoderm interface of the skull roof. We show the NC origin of the opercular bones and of multiple cell types contributing to the barbels, chemosensory organs located in the mouth region. In the gills, we observed labeled primary and secondary lamellae. Clonal analysis reveals that pillar cells, a craniate innovation that mechanically supports the filaments and forms gill-specific capillaries, have a NC origin. Our data point to a crucial role for the NC in enabling more efficient gas exchange, thus uncovering a novel, direct involvement of this embryonic tissue in the evolution of respiratory systems at the protochordate-vertebrate transition.

  7. Emersion behaviour underlies variation in gill morphology and aquatic respiratory function in the amphibious fish Kryptolebias marmoratus.

    PubMed

    Turko, A J; Tatarenkov, A; Currie, S; Earley, R L; Platek, A; Taylor, D S; Wright, P A

    2018-04-13

    Fishes acclimated to hypoxic environments often increase gill surface area to improve O 2 uptake. In some species, surface area is increased via reduction of an interlamellar cell mass (ILCM) that fills water channels between gill lamellae. Amphibious fishes, however, may not increase gill surface area in hypoxic water because these species can, instead, leave water and breathe air. To differentiate between these possibilities, we compared wild amphibious mangrove rivulus Kryptolebias marmoratus from two habitats that varied in O 2 availability - a hypoxic freshwater pool versus nearly anoxic crab burrows. Fish captured from crab burrows had less gill surface area (as ILCMs were enlarged by ∼32%), increased rates of normoxic O 2 consumption and increased critical O 2 tension compared with fish from the freshwater pool. Thus, wild mangrove rivulus do not respond to near-anoxic water by decreasing metabolism or increasing O 2 extraction. Instead, fish from the crab burrow habitat spent three times longer out of water, which probably caused the observed changes in gill morphology and respiratory phenotype. We also tested whether critical O 2 tension is influenced by genetic heterozygosity, as K. marmoratus is one of only two hermaphroditic vertebrate species that can produce both self-fertilized (inbred) or out-crossed (more heterozygous) offspring. We found no evidence for inbreeding depression, suggesting that self-fertilization does not impair respiratory function. Overall, our results demonstrate that amphibious fishes that inhabit hypoxic aquatic habitats can use a fundamentally different strategy from that used by fully aquatic water-breathing fishes, relying on escape behaviour rather than metabolic depression or increased O 2 extraction ability. © 2018. Published by The Company of Biologists Ltd.

  8. An enriched stable-isotope approach to determine the gill-zinc binding properties of juvenile rainbow trout (Oncorhynchus mykiss) during acute zinc exposures in hard and soft waters

    USGS Publications Warehouse

    Todd, A.S.; Brinkman, S.; Wolf, R.E.; Lamothe, P.J.; Smith, K.S.; Ranville, J.F.

    2009-01-01

    The objective of the present study was to employ an enriched stable-isotope approach to characterize Zn uptake in the gills of rainbow trout (Oncorhynchus mykiss) during acute Zn exposures in hard water (???140 mg/L as CaCO 3) and soft water (???30 mg/L as CaCO3). Juvenile rainbow trout were acclimated to the test hardnesses and then exposed for up to 72 h in static exposures to a range of Zn concentrations in hard water (0-1,000 ??g/L) and soft water (0-250 ??g/L). To facilitate detection of new gill Zn from endogenous gill Zn, the exposure media was significantly enriched with 67Zn stable isotope (89.60% vs 4.1% natural abundance). Additionally, acute Zn toxicity thresholds (96-h median lethal concentration [LC50]) were determined experimentally through traditional, flow-through toxicity tests in hard water (580 ??g/L) and soft water (110 ??g/L). Following short-term (???3 h) exposures, significant differences in gill accumulation of Zn between hard and soft water treatments were observed at the three common concentrations (75, 150, and 250 ??g/L), with soft water gills accumulating more Zn than hard water gills. Short-term gill Zn accumulation at hard and soft water LC50s (45-min median lethal accumulation) was similar (0.27 and 0.20 ??g/g wet wt, respectively). Finally, comparison of experimental gill Zn accumulation, with accumulation predicted by the biotic ligand model, demonstrated that model output reflected short-term (<1 h) experimental gill Zn accumulation and predicted observed differences in accumulation between hard and soft water rainbow trout gills. Our results indicate that measurable differences exist in short-term gill Zn accumulation following acclimation and exposure in different water hardnesses and that short-term Zn accumulation appears to be predictive of Zn acute toxicity thresholds (96-h LC50s). ?? 2009 SETAC.

  9. Neuroendocrine cells in the gills of the bowfin Amia calva. An ultrastructural and immunocytochemical study.

    PubMed

    Goniakowska-Witalińska, L; Zaccone, G; Fasulo, S; Mauceri, A; Licata, A; Youson, J

    1995-01-01

    Neuroendocrine (NE) cells were localized by electron microscopy and immunocytochemistry in the gill epithelium of bowfin Amia calva. The NE cells are dispersed in whole epithelium of the gill as solitary cells without intraepithelial innervation. All the observed NE cells do not reach the surface of the epithelium. The NE cells are characterized by a large nucleus with patches of condensed chromatin, numerous mitochondria, a well developed Golgi apparatus and a few dense core vesicles of various size scattered in the cytoplasm. Dense core vesicles range from 100 to 560 nm in diameter, while a clear space between the electron dense core ant the limiting membrane ranges from 20 to 240 nm. Immunocytochemical observations reveal the presence of general neuroendocrine markers such as neuro-specific enolase and bioactive substances: serotonin, leu-enkephalin and met-enkephalin. we demonstrated the presence of endothelin - for the first time in fish - and suggested a local paracrine role for the NE cells. Some ultrastructural aspects and the immunocytochemical characteristics of NE cells of bowfin gills are common with those encountered in such cells of other lower vertebrate species.

  10. New insights into gill chemoreception: receptor distribution and roles in water and air breathing fish.

    PubMed

    Milsom, William K

    2012-12-01

    The location (gills, oro-branchial cavity or elsewhere) and orientation (external (water) or internal (blood) sensing) of the receptors involved in reflex changes in each of the different components of the cardiorespiratory response (breathing frequency, breath amplitude, heart rate, systemic vascular resistance) to hypoxia and hypercarbia are highly variable between species of water and air breathing fish. Although not universal, the receptors involved in eliciting changes in heart rate and breathing frequency in response to hypoxia and hypercarbia tend to be restricted exclusively to the gills while those producing increases in breath amplitude are more wide spread, frequently also being found at extrabranchial sites. The distribution of the chemoreceptors sensitive to CO(2) in the gills involved in producing ventilatory responses tend to be more restricted than that of the O(2)-sensitive chemoreceptors and the specific location of the receptors involved in the various components of the cardiorespiratory response can vary from those of the O(2)-sensitive chemoreceptors. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Gill structural change in response to turbidity has no effect on the oxygen uptake of a juvenile sparid fish.

    PubMed

    Cumming, H; Herbert, N A

    2016-01-01

    Turbidity as a result of increased suspended sediments in coastal waters is an environmental stress of worldwide concern. Recent research on fish suggests that detrimental changes to gill structure can occur in turbid waters, with speculation that these alterations diminish fitness variables, such as growth and development, by negatively impacting the O 2 uptake capacity (respiration) of fish. Specifically to address this unknown, the impact of turbid water on the gill structure, somatic growth rate and O 2 uptake rates of a juvenile sparid species ( Pagrus auratus ) was addressed following exposure to five different turbidity treatments (<10, 20, 40, 60 or 80 nephelometric turbidity units) for 30 days. Significant gill structural change was apparent with a progressive increase in turbidity and was quantified as a reduction in lamellar density, as well as an increase in basal hyperplasia, epithelial lifting and increased oxygen diffusion distance across the lamellae. The weight of control fish did not change throughout the experiment, but all fish exposed to turbid waters lost weight, and weight loss increased with nephelometric turbidity units, confirming that long-term turbidity exposure is detrimental to growth productivity. The growth of fish could be impacted in a variety of ways, but the specific hypothesis that structural alteration of the gills impairs O 2 uptake across the gills and limits growth fitness was not supported because there was no measurable difference in the standard metabolic rate, maximal metabolic rate, aerobic metabolic scope or critical oxygen saturation limit of fish measured in clear water after 30 days of exposure. Although impaired O 2 uptake as a result of structurally adjusted gills is unlikely to be the cause of poor fish growth, the exact mechanism by which growth productivity is affected in turbid conditions remains unclear and warrants further investigation.

  12. Gill structural change in response to turbidity has no effect on the oxygen uptake of a juvenile sparid fish

    PubMed Central

    Cumming, H.; Herbert, N. A.

    2016-01-01

    Turbidity as a result of increased suspended sediments in coastal waters is an environmental stress of worldwide concern. Recent research on fish suggests that detrimental changes to gill structure can occur in turbid waters, with speculation that these alterations diminish fitness variables, such as growth and development, by negatively impacting the O2 uptake capacity (respiration) of fish. Specifically to address this unknown, the impact of turbid water on the gill structure, somatic growth rate and O2 uptake rates of a juvenile sparid species (Pagrus auratus) was addressed following exposure to five different turbidity treatments (<10, 20, 40, 60 or 80 nephelometric turbidity units) for 30 days. Significant gill structural change was apparent with a progressive increase in turbidity and was quantified as a reduction in lamellar density, as well as an increase in basal hyperplasia, epithelial lifting and increased oxygen diffusion distance across the lamellae. The weight of control fish did not change throughout the experiment, but all fish exposed to turbid waters lost weight, and weight loss increased with nephelometric turbidity units, confirming that long-term turbidity exposure is detrimental to growth productivity. The growth of fish could be impacted in a variety of ways, but the specific hypothesis that structural alteration of the gills impairs O2 uptake across the gills and limits growth fitness was not supported because there was no measurable difference in the standard metabolic rate, maximal metabolic rate, aerobic metabolic scope or critical oxygen saturation limit of fish measured in clear water after 30 days of exposure. Although impaired O2 uptake as a result of structurally adjusted gills is unlikely to be the cause of poor fish growth, the exact mechanism by which growth productivity is affected in turbid conditions remains unclear and warrants further investigation. PMID:27766155

  13. Design and fabrication of thin microvascularised polymer matrices inspired from secondary lamellae of fish gills

    NASA Astrophysics Data System (ADS)

    Kumar, Prasoon; Gandhi, Prasanna S.; Majumder, Mainak

    2016-04-01

    Gills are one of the most primitive gas, solute exchange organs available in fishes. They facilitate exchange of gases, solutes and ions with a surrounding water medium through their functional unit called secondary lamella. These lamellae through their extraordinary morphometric features and peculiar arrangement in gills, achieve remarkable mass transport properties. Therefore, in the current study, modeling and simulation of convection-diffusion transport through a two dimensional model of secondary lamella and theoretical analysis of morphometric features of fish gills were carried out. Such study suggested an evolutionary conservation of parametric ratios across fishes of different weights. Further, we have also fabricated a thin microvascularised PDMS matrices mimicking secondary lamella by use of micro-technologies like electrospinning. In addition, we have also demonstrated the fluid flow by capillary action through these thin microvascularised PDMS matrices. Eventually, we also illustrated the application of these thin microvascularied PDMS matrices in solute exchange process under capillary flow conditions. Thus, our study suggested that fish gills have optimized parameteric ratios, at multiple length scale, throughout an evolution to achieve an organ with enhanced mass transport capabilities. Thus, these defined parametric ratios could be exploited to design and develop efficient, scaled-up gas/solute exchange microdevices. We also proposed an inexpensive and scalable method of fabrication of thin microvascularised polymer matrices and demonstrated its solute exchange capabilities under capillary flow conditions. Thus, mimicking the microstructures of secondary lamella will enable fabrication of microvascularised thin polymer systems through micro manufacturing technologies for potential applications in filtration, self-healing/cooling materials and bioengineering.

  14. Functional morphology of the gills of the bowfin, Amia calva L., with special reference to their significance during air exposure.

    PubMed

    Daxboeck, C; Barnard, D K; Randall, D J

    1981-03-01

    The bowfin, Amia calva is a facultative air breathing fish restricted to North America and is reported to estivate. The relative and functional gill surface areas of A. calva are not reduced, as in many amphibious fish, but have areas comparable to many completely aquatic species. The secondary lamellae are fused to form a lattice-work of rectangular pores, a gill arrangement unique among fresh-water fishes. This highly modified gill structure imparts considerable rigidity such that these do not collapse upon air exposure. In vivo blood gas measurements from air exposed Amia reveal that these gills must be free of water, since there is both O2 uptake and CO2 excretion across them. The observed ventilatory motions therefore pass air over the secondary lamellae for diffusive gas exchange during air exposure. In the artificial conditions of our experiments, however, air exposure was associated with a marked acidosis and the fish died within 2 hours of being returned to normoxic water.

  15. Co-expression of heat shock protein (HSP) 40 and HSP70 in Pinctada martensii response to thermal, low salinity and bacterial challenges.

    PubMed

    Li, Jun; Zhang, Yuehuan; Liu, Ying; Zhang, Yang; Xiao, Shu; Yu, Ziniu

    2016-01-01

    Heat shock protein (HSP) 40 proteins are a family of molecular chaperones that bind to HSP70 through their J-domain and regulate the function of HSP70 by stimulating its adenosine triphosphatase activity. In the present study, a HSP40 homolog named PmHSP40 was cloned from the hemocytes of pearl oyster Pinctada martensii using EST and rapid amplification of cDNA ends (RACE) techniques. The full-length cDNA of PmHSP40 was 1251 bp in length, which included a 5' untranslated region (UTR) of 75 bp, an open reading frame (ORF) of a 663 bp, and a 3' UTR of 513 bp. The deduced amino acid sequence of PmHSP40 contains a J domain in the N-terminus. In response to thermal and low salinity stress challenges, the expression of PmHSP40 in hemocytes and the gill were inducible in a time-dependent manner. After bacterial challenge, PmHSP40 transcripts in hemocytes increased and peaked at 6 h post injection. In the gill, PmHSP40 expression increased, similar to expression in hemocytes; however, transcript expression of PmHSP40 was significantly up-regulated at 12 h post injection. Furthermore, the transcripts of PmHSP70 showed similar kinetics as that of PmHSP40, with highest induction during thermal, low salinity stress and bacterial challenges. Altogether these results demonstrate that PmHSP40 is an inducible protein under thermal, low salinity and bacterial challenges, suggesting its involvement in both environmental and biological stresses, and in the innate immunity of the pearl oyster. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Jellyfish Stings Trigger Gill Disorders and Increased Mortality in Farmed Sparus aurata (Linnaeus, 1758) in the Mediterranean Sea.

    PubMed

    Bosch-Belmar, Mar; M'Rabet, Charaf; Dhaouadi, Raouf; Chalghaf, Mohamed; Daly Yahia, Mohamed Néjib; Fuentes, Verónica; Piraino, Stefano; Kéfi-Daly Yahia, Ons

    2016-01-01

    Jellyfish are of particular concern for marine finfish aquaculture. In recent years repeated mass mortality episodes of farmed fish were caused by blooms of gelatinous cnidarian stingers, as a consequence of a wide range of hemolytic, cytotoxic, and neurotoxic properties of associated cnidocytes venoms. The mauve stinger jellyfish Pelagia noctiluca (Scyphozoa) has been identified as direct causative agent for several documented fish mortality events both in Northern Europe and the Mediterranean Sea aquaculture farms. We investigated the effects of P. noctiluca envenomations on the gilthead sea bream Sparus aurata by in vivo laboratory assays. Fish were incubated for 8 hours with jellyfish at 3 different densities in 300 l experimental tanks. Gill disorders were assessed by histological analyses and histopathological scoring of samples collected at time intervals from 3 hours to 4 weeks after initial exposure. Fish gills showed different extent and severity of gill lesions according to jellyfish density and incubation time, and long after the removal of jellyfish from tanks. Jellyfish envenomation elicits local and systemic inflammation reactions, histopathology and gill cell toxicity, with severe impacts on fish health. Altogether, these results shows P. noctiluca swarms may represent a high risk for Mediterranean finfish aquaculture farms, generating significant gill damage after only a few hours of contact with farmed S. aurata. Due to the growth of the aquaculture sector and the increased frequency of jellyfish blooms in the coastal waters, negative interactions between stinging jellyfish and farmed fish are likely to increase with the potential for significant economic losses.

  17. Jellyfish Stings Trigger Gill Disorders and Increased Mortality in Farmed Sparus aurata (Linnaeus, 1758) in the Mediterranean Sea

    PubMed Central

    Dhaouadi, Raouf; Chalghaf, Mohamed; Daly Yahia, Mohamed Néjib; Fuentes, Verónica; Piraino, Stefano; Kéfi-Daly Yahia, Ons

    2016-01-01

    Jellyfish are of particular concern for marine finfish aquaculture. In recent years repeated mass mortality episodes of farmed fish were caused by blooms of gelatinous cnidarian stingers, as a consequence of a wide range of hemolytic, cytotoxic, and neurotoxic properties of associated cnidocytes venoms. The mauve stinger jellyfish Pelagia noctiluca (Scyphozoa) has been identified as direct causative agent for several documented fish mortality events both in Northern Europe and the Mediterranean Sea aquaculture farms. We investigated the effects of P. noctiluca envenomations on the gilthead sea bream Sparus aurata by in vivo laboratory assays. Fish were incubated for 8 hours with jellyfish at 3 different densities in 300 l experimental tanks. Gill disorders were assessed by histological analyses and histopathological scoring of samples collected at time intervals from 3 hours to 4 weeks after initial exposure. Fish gills showed different extent and severity of gill lesions according to jellyfish density and incubation time, and long after the removal of jellyfish from tanks. Jellyfish envenomation elicits local and systemic inflammation reactions, histopathology and gill cell toxicity, with severe impacts on fish health. Altogether, these results shows P. noctiluca swarms may represent a high risk for Mediterranean finfish aquaculture farms, generating significant gill damage after only a few hours of contact with farmed S. aurata. Due to the growth of the aquaculture sector and the increased frequency of jellyfish blooms in the coastal waters, negative interactions between stinging jellyfish and farmed fish are likely to increase with the potential for significant economic losses. PMID:27100175

  18. Gill Na+,K+-ATPase of Atlantic salmon smolts in freshwater is not a predictor of long-term growth in seawater

    USGS Publications Warehouse

    Zydlewski, Gayle B.; Zydlewski, Joseph D.

    2012-01-01

    Gill Na+,K+-ATPase activity is a widely used measure of osmoregulatory preparedness in salmonid smolts. The degree to which this measure may predict long term performance is uncertain. In order to assess the relationship of this enzyme to long term growth and ion homeostasis, a cohort of Atlantic salmon hatchery smolts was used in a controlled environment with no salinity perturbations. In May 2006, gill Na+,K+-ATPase activity from 940 individually PIT tagged, Penobscot River smolts (USFWS, Green Lake National Fish Hatchery, Maine, United States) was measured immediately prior to isothermal transfer from freshwater to 32 ppt seawater. From the observed range of activities, individuals were classified as having “low”, “middle”, or “high” enzyme activity levels. Individual size (fork length and mass) was recorded on days 0, 1, 3, and 14 and monthly for four months. Growth rates over four time periods were calculated for individual fish maintained until the end of the experiment. Gill Na+,K+-ATPase activities were also measured from a subset of sampled fish. All groups effectively osmoregulated as evidenced by minor perturbations in plasma osmolyte levels. Apart from initial weight loss on transfer, fish grew throughout the experiment, however, there were no differences (fish size, growth rate, and gill Na+,K+-ATPase activity in seawater) among groups with initially different gill Na+,K+-ATPase activities (prior to seawater entry). While gill Na+,K+-ATPase activity may be predictive of performance during the acute phase of acclimation (first few days), typical variation in this enzyme, expressed in freshwater at the peak of smolting, does not appear to be predictive of long-term growth in seawater.

  19. Analysis of Species, Subgroups, and Endosymbionts of Bemisia tabaci (Hemiptera: Aleyrodidae) From Southwestern Cotton Fields in Turkey.

    PubMed

    Karut, Kamil; Mete Karaca, M; Döker, Ismail; Kazak, Cengiz

    2017-08-01

    Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is one of the most important insect pests worldwide including Turkey. Although there are substantial data regarding species composition of Turkish B. tabaci populations, the situation is still not clear and further investigations are needed. Therefore, in this study, species and subgroups of B. tabaci collected from cotton fields in southwestern part of Turkey (Antalya, Aydın, Denizli, and Muğla) were determined using microsatellite analysis, AluI-based mtCOI polymerase chain reaction-random length polymorphism, and sequencing. Secondary endosymbionts were also determined using diagnostic species-specific PCR. Middle East Asia Minor 1 (MEAM1), Mediterranean (MED) Q1, and MED Q2 were the species and subgroups found in this study. The MED species (85.3%) were found to be more dominant than MEAM1. Species status of B. tabaci varied depending on the location. Although all samples collected from Aydın were found to be Q1, three species and subgroups were found in Muğla. Secondary endosymbionts varied according to species and subgroups. Arsenophonus was found only from Q2, while Hamiltonella was detected in MEAM1 and Q1. In addition, high Rickettsia and low Wolbachia infections were detected in MEAM1 and Q1 populations, respectively. In conclusion, for the first time, we report the presence and symbiotic communities of Q1 from Turkey. We also found that the symbiont complement of the Q1 is more congruent with Q1 from Greece than other regions of the world, which may have some interesting implications for movement of this invasive subgroup. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Thyroid status alters gill ionic metabolism and chloride cell morphology as evidenced by scanning electron microscopy in a teleost Anabas testudineus (Bloch): short and long term in vivo study.

    PubMed

    Sreejith, P; Beyo, R S; Prasad, G; Sunny, F; Oommen, O V

    2007-12-01

    Gill is the main organ of osmotic regulation in teleosts and chloride cells are the sites of ion transport across gill epithelium. Thyroid hormones are implicated in the regulation of osmotic balance in teleosts also. Treatment with 6-propyl thiouracil (6-PTU) inhibited the membrane bound enzyme Na+K+ ATPase in the gill while triiodothyronine (T3) injection stimulated it in a short-term in vivo study in the teleost Anabas testudineus. Na+, K+ and Ca2+ ions were also decreased in the 6-PTU treated fish and the T3 treatment increased their concentrations in the gill lamellae. The gill morphology also changed according to the thyroid status in the long term study. 6-PTU treatment altered the typical serrated morphology of the gill lamellae, while the T3 treatment reversed it. T3 injection increased the density of pavement and chloride cells as evidenced by scanning electron microscopy. The results demonstrate that physiological status of the thyroid influences gill Na+ pump activity and chloride cell morphological changes. Further, the study suggests a regulatory role of T3 on gill ions (Na+, K+ and Ca2+), Na+K+ and Ca2+ ATPase activity and the different gill cell types in A. testudineus.

  1. Influence of bacterial kidney disease on smoltification in salmonids: Is it a case of double jeopardy?

    USGS Publications Warehouse

    Mesa, M.G.; Maule, A.G.; Poe, T.P.; Schreck, C.B.

    1999-01-01

    We investigated the effects of a chronic, progressive infection with Renibacterium salmoninarum (Rs), the causative agent of bacterial kidney disease (BKD), on selected aspects of smoltification in yearling juvenile spring chinook salmon (Oncorhynchus tshawytscha). After experimentally infecting fish with Rs using an immersion challenge, we sampled them every two weeks to monitor changes in gill Na+, K+-ATPase (ATPase), cortisol, infection level, mortality, growth, and other stress-related physiological factors during the normal time of parr-smolt transformation in fresh water (i.e., from winter to spring). A progressively worsening infection with Rs did not alter the normal changes in gill ATPase and condition factor associated with smoltification in juvenile chinook salmon. The infection did, however, lead to elevated levels of plasma cortisol and lactate and depressed levels of plasma glucose, indicating that the disease is stressful during the later stages. A dramatic proliferation of BKD was associated with maximal responses of indicators of smoltification, suggesting that the process of smoltification itself can trigger outbreaks of disease. Our results suggest mechanisms that probably influence the reported inability of Rs-infected fish to successfully adapt to sea water.

  2. Older medical students' performances at McGill University.

    PubMed

    Feil, D; Kristian, M; Mitchell, N

    1998-01-01

    To compare admission data and academic performances of medical students younger and older than 25, and to qualify older students' experiences and perceptions in medical school. The authors reviewed 1988-1991 data for applications to the McGill University Faculty of Medicine. Data included GPAs and MCAT scores, as well as ratings for reference letters, autobiographical statements, and interviews. For those same years, the authors measured students' academic performances in the preclinical and clinical years. The authors compared the data by students' age: "younger" students, aged 17 to 24; and "older" students, aged 25 and above. All enrolled students took the Derogatis Stress Profile, and the older students participated in focus groups. The older applicants had lower GPAs and MCAT scores, but higher interview and reference letter ratings. For older accepted students, basic science course scores were lower than those of younger students, but clinical scores did not differ significantly between the groups. The two groups had similar stress levels, although older students tested lower in driven behavior, relaxation potential, attitude posture, and hostility. In focus groups, the older students spoke of learning style differences, loss of social support, and loss of professional identity. Different scores in admission criteria suggest that McGill uses different standards to select older medical students. Older students admitted under different criteria, however, do just as well as do younger students by their clinical years. A broad-based study of admission criteria and outcomes for the older student population is warranted.

  3. Jacqueline Baxter Talks to Gill Howland, Newly Appointed Chair of BELMAS

    ERIC Educational Resources Information Center

    Baxter, Jacqueline

    2017-01-01

    Gill is currently Chair of the British Educational Leadership, Management and Administration Society. Her personal experiences are central to her belief that education is the key to unlocking potential, both for individuals and for society as a whole. Throughout her career she has championed the right to good quality, inspirational education for…

  4. Effects of nicotine on zebrafish: A comparative response between a newly established gill cell line and whole gills.

    PubMed

    Nathiga Nambi, K S; Abdul Majeed, S; Taju, G; Sivasubbu, Sridhar; Sarath Babu, V; Sahul Hameed, A S

    2017-05-01

    A novel cell line, Danio rerio gill (DrG), derived from the gill tissue of zebrafish, was established and characterized. The cells were able to grow at a wide range of temperatures from 25°C to 32°C in Leibovitz's L-15 medium. The DrG cell line consists of epithelial-like cells with a diameter of 18-22μm. The cell line was characterized by mitochondrial 12S rRNA gene. Acute toxicity tests were conducted on D. rerio by exposing them to nicotine for 96h under static conditions. In vitro cytotoxicity of nicotine was assessed in DrG cell line using multiple endpoints such as 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), Neutral Red assay, Alamar Blue assay and Coomassie Blue protein assay. Linear correlations between each in vitro cytotoxicity assay and the in vivo mortality data were highly significant. Nicotine induced intracellular reactive oxygen species generation in DrG cell line in a concentration dependent manner. DrG cell line and zebrafish exposed to nicotine significantly increased the elevation of lipid peroxidation (LPO) while depletion of reduced glutathione (GSH), manganese superoxide dismutase (MnSOD), catalase (CAT), glutathione S-transferase (GST) and glutathione peroxidise(GPx1a) was observed. In nicotine treated fish and cells a negative correlation between reduced glutathione and LPO was observed. In addition, the production of ROS and the resulting oxidative stress resulted in increased expression of apoptosis related genes p53 and cas3.Collectively, our result suggests that nicotine has the potential to induce reactive oxygen species (ROS) production, oxidative stress and apoptosis in DrG cell line and zebrafish. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Influence of natural organic matter source on copper speciation as demonstrated by Cu binding to fish gills, by ion selective electrode, and by DGT gel sampler

    USGS Publications Warehouse

    Luider, C.D.; Crusius, John; Playle, R.C.; Curtis, P.J.

    2004-01-01

    Rainbow trout (Oncorhynchus mykiss, 2 g) were exposed to 0−5 μM total copper in ion-poor water for 3 h in the presence or absence of 10 mg C/L of qualitatively different natural organic matter (NOM) derived from water spanning a large gradient in hydrologic residence time. Accumulation of Cu by trout gills was compared to Cu speciation determined by ion selective electrode (ISE) and by diffusive gradients in thin films (DGT) gel sampler technology. The presence of NOM decreased Cu uptake by trout gills as well as Cu concentrations determined by ISE and DGT. Furthermore, the source of NOM influenced Cu binding by trout gills with high-color, allochthonous NOM decreasing Cu accumulation by the gills more than low-color autochthonous NOM. The pattern of Cu binding to the NOM measured by Cu ISE and by Cu accumulation by DGT samplers was similar to the fish gill results. A simple Cu−gill binding model required an NOM Cu-binding factor (F) that depended on NOM quality to account for observed Cu accumulation by trout gills; values of F varied by a factor of 2. Thus, NOM metal-binding quality, as well as NOM quantity, are both important when assessing the bioavailability of metals such as Cu to aquatic organisms.

  6. Involvement of Pacific oyster CgPGRP-S1S in bacterial recognition, agglutination and granulocyte degranulation.

    PubMed

    Iizuka, Masao; Nagasaki, Toshihiro; Takahashi, Keisuke G; Osada, Makoto; Itoh, Naoki

    2014-03-01

    Peptidoglycan recognition protein (PGRP) recognizes invading bacteria through their peptidoglycans (PGN), a component of the bacterial cell wall. Insect PGRPs contribute to effective immune systems as inducers of other host defense responses, while this function has not been reported from PGRP of bivalves. In this study, recombinant CgPGRP-S1S (rCgPGRP-S1S), produced in the mantle and the gill, was synthesized and used to elucidate the immunological function of CgPGRP-S1S. rCgPGRP-S1S bound specifically to DAP-type PGN and to Escherichia coli cells, but not to other DAP-type PGN-containing bacterial species, Vibrio anguillarum, or Bacillus subtilis. Antibacterial activity was not detected, but E. coli cells were agglutinated. Moreover, in addition to these direct interactions with bacterial cells, rCgPGRP-S1S induced secretion of granular contents by hemocyte degranulation. Taken together, these results suggest for the first time that a PGRP of bivalves is, just as in insects, involved in host defense, not only by direct interaction with bacteria, but also by triggering other defense pathways. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Relationship of lake herring (Coregonus artedi) gill raker characteristics to retention probabilities of zooplankton prey

    USGS Publications Warehouse

    Link, Jason; Hoff, Michael H.

    1998-01-01

    We measured morphometric and meristic parameters of gill rakers from the first gill arch of 36 adult lake herring (Coregonus artedi) from Lake Superior that ranged in length from 283–504 mm. These data, coupled with the mean of the smallest two body dimensions (length, width, or breadth) of various zooplankton prey, allowed us to calculate retention probabilities for zooplankton taxa that are common in Lake Superior. The mean of the smallest two body dimensions was positively correlated with body length for cladocerans and copepods. The large cladoceran, Daphnia g. mendotae, is estimated to be retained at a greater probability (74%) than smaller cladocerans (18%-38%). The same is true for the large copepod, Limnocalanus macrurus (60%), when compared to smaller copepods (6–38%). Copepods have a lower probability of being retained than cladocerans of similar length. Lake herring gill rakers and total filtering area are also positively correlated with fish total length. These data provide further evidence that lake herring are primarily planktivores in Lake Superior, and our data show that lake herring can retain a broad range of prey sizes.

  8. Bacterial Communities Differ among Drosophila melanogaster Populations and Affect Host Resistance against Parasitoids.

    PubMed

    Chaplinska, Mariia; Gerritsma, Sylvia; Dini-Andreote, Francisco; Falcao Salles, Joana; Wertheim, Bregje

    2016-01-01

    In Drosophila, diet is considered a prominent factor shaping the associated bacterial community. However, the host population background (e.g. genotype, geographical origin and founder effects) is a factor that may also exert a significant influence and is often overlooked. To test for population background effects, we characterized the bacterial communities in larvae of six genetically differentiated and geographically distant D. melanogaster lines collected from natural populations across Europe. The diet for these six lines had been identical for ca. 50 generations, thus any differences in the composition of the microbiome originates from the host populations. We also investigated whether induced shifts in the microbiome-in this case by controlled antibiotic administration-alters the hosts' resistance to parasitism. Our data revealed a clear signature of population background on the diversity and composition of D. melanogaster microbiome that differed across lines, even after hosts had been maintained at the same diet and laboratory conditions for over 4 years. In particular, the number of bacterial OTUs per line ranged from 8 to 39 OTUs. Each line harboured 2 to 28 unique OTUs, and OTUs that were highly abundant in some lines were entirely missing in others. Moreover, we found that the response to antibiotic treatment differed among the lines and significantly altered the host resistance to the parasitoid Asobara tabida in one of the six lines. Wolbachia, a widespread intracellular endosymbiont associated with parasitoid resistance, was lacking in this line, suggesting that other components of the Drosophila microbiome caused a change in host resistance. Collectively, our results revealed that lines that originate from different population backgrounds show significant differences in the established Drosophila microbiome, outpacing the long-term effect of diet. Perturbations on these naturally assembled microbiomes to some degree influenced the hosts' resistance

  9. High diversity and variability in the bacterial microbiota of the coffee berry borer (Coleoptera: Curculionidae), with emphasis on Wolbachia.

    PubMed

    Mariño, Yobana A; Ospina, Oscar E; Verle Rodrigues, José C; Bayman, Paul

    2018-03-30

    Variation in microbiota of the coffee berry borer (CBB) Hypothenemus hampei was studied. Diversity, structure and function of bacterial communities were compared between eggs vs. adults, CBBs from shade coffee vs. sun coffee, CBBs from the field vs. raised in the lab, and CBBs with and without the antibiotic tetracycline. We sequenced the region V4 of the gene 16 S rRNA. Pseudomonadaceae and Enterobacteriaceae, particularly Pseudomonas and Pantoea, dominated microbiota of the CBB. Comparative functional inferences with PICRUSt suggested that samples from the field were enriched for genes involved in carbohydrate and protein digestion and absorption, while lab-reared samples were higher in genes for melanization and caffeine metabolism. Microbiota of the CBB was diverse and dominated by the genus Pseudomonas, several species of which have been previously associated with caffeine degradation in this insect. Wolbachia was the only endosymbiont detected with known ability to manipulate host reproduction. This study demonstrates that stage of development and origin of samples affected the structure and function of the CBB's bacterial communities. This is the first attempt to predict functional significance of the CBB microbiota in nutrition, reproduction and defense. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Dietary salt loading and ion-poor water exposure provide insight into the molecular physiology of the rainbow trout gill epithelium tight junction complex.

    PubMed

    Kolosov, Dennis; Kelly, Scott P

    2016-08-01

    This study utilized dietary salt loading and ion-poor water (IPW) exposure of rainbow trout (Oncorhynchus mykiss) to further understand the role of fish gill epithelium tight junction (TJ) physiology in salt and water balance. Gill morphology, biochemistry and molecular physiology were examined, with an emphasis on genes encoding TJ proteins. Fish were either fed a control or salt-enriched diet (~10 % NaCl) for 4 weeks prior to IPW exposure for 24 h. Serum [Na(+)], [Cl(-)] and muscle moisture content were unaltered by salt feeding, but changed in response to IPW irrespective of diet. Dietary salt loading altered the morphology (reduced Na(+)-K(+)-ATPase-immunoreactive cell numbers and surface exposure of mitochondrion-rich cells), biochemistry (decreased vacuolar-type H(+)-ATPase activity) and molecular physiology (decreased nkaα1a and cftrII mRNA abundance) of the gill in a manner indicative of reduced active ion uptake activity. But in control fish and not salt-fed fish, gill mRNA abundance of nkaα1c increased and nbc decreased after IPW exposure. Genes encoding TJ proteins were typically either responsive to salt feeding or IPW, but select genes responded to combined experimental treatment (e.g. IPW responsive but only if fish were salt-fed). Therefore, using salt feeding and IPW exposure, new insights into what factors influence gill TJ proteins and the role that specific TJ proteins might play in regulating the barrier properties of the gill epithelium have been acquired. In particular, evidence suggests that TJ proteins in the gill epithelium, or the regulatory networks that control them, respond independently to external or internal stimuli.

  11. The expression of VILL protein is hypoosmotic-dependent in the lamellar gill ionocytes of Otocephala teleost fish, Chanos chanos.

    PubMed

    Kang, Chao-Kai; Lin, Chia-Shian; Hu, Yao-Chung; Tsai, Shu-Chuan; Lee, Tsung-Han

    2017-01-01

    Milkfish, a species within the primitive teleost lineage Otocephala, can survive in water conditions ranging from hypo- to hyper-saline. This study explored the effects of environmental salinity on apical morphologies of ionocytes and the expression of villin homologs in the gills of milkfish acclimated to either seawater (SW) or fresh water (FW). Scanning electron microscopy revealed that the ionocytes in the gill filaments of SW and FW milkfish, respectively, cellular apical morphologies were hole-type and squint-type. The flat-type ionocytes were observed in the gill lamellae of FW milkfish. Furthermore, apical surfaces of some lamellar ionocytes exhibited microvilli. Villin 1 is a microvilli marker expressed in the epithelial cells of various vertebrates. In the phylogenetic tree of villin 1 homologs, primitive teleosts exhibit villin 1-like (VILL) and villin 1 proteins. Two mRNA sequences, villin 1 and VILL, were identified from the milkfish transcriptome by next generation sequencing. Low but constant expression of villin 1 (gene and protein) was observed in the gills for both SW and FW fish. VILL gene and protein expression levels in the gills were higher in FW fish, compared to SW fish. Double immunofluorescence staining demonstrated that VILL protein was present in some lamellar ionocytes of FW milkfish, but not in the filament ionocytes of either FW or SW milkfish. Taken together, these findings indicated that the VILL expression of ionocytes is hypoosmotic-dependent. The VILL might be involved in the formation of microvilli in the lamellar ionocytes for hyperosmoregulation of the milkfish. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. First observations of histopathological effects of 2,4,6-trinitrotoluene (TNT) in gills of European eel Anguilla anguilla (Linnaeus, 1758): histopathological effects of 2,4,6-trinitrotoluene in gills of European eel.

    PubMed

    Sensini, Cristiana; Della Torre, Camilla; Corsi, Ilaria; Focardi, Silvano

    2008-12-01

    The aim of the present study was to investigate the effects on gill morphology of the explosive 2,4,6-trinitrotoluene (TNT) in a model fish, the European eel, Anguilla anguilla (Linnaeus, 1758) to assess potential detrimental effects in marine fish due to its presence in dumping areas. Juvenile specimens of A. anguilla were exposed in vivo for 6 and 24 h to 0.5, 1 and 2.5 mg/l nominal concentrations of TNT using dimethyl sulfoxide (0.1 per thousand) as solvent carrier. Histological analysis of gills indicated that TNT induced several structural lesions. After 6h of exposure at 0.5 and 1 mg/l TNT, oedema of some secondary lamellae was evident: this change at the highest dose of 2.5 mg/l led to epithelial lifting and detachment from the endothelium and rupture of the branchial membrane and vascular congestion. After 24 h at 0.5 mg/l, increased oedema in secondary lamellae, extensive epithelial detachment and vascular congestion and dilation of lamellar capillaries and pooling of blood at 1 mg/l were observed. At 2.5 mg/l, epithelial hyperplasia, fusion of adjacent lamellae, obliteration of interlamellar spaces by means of tight junctions were also observed. Moreover, chloride cells proliferated along secondary lamellae, and mucus hypersecretion was evident. The overall results clearly indicate that gills are sensitive targets of TNT.

  13. Effects of elevated seawater pCO2 on gene expression patterns in the gills of the green crab, Carcinus maenas

    PubMed Central

    2011-01-01

    Background The green crab Carcinus maenas is known for its high acclimation potential to varying environmental abiotic conditions. A high ability for ion and acid-base regulation is mainly based on an efficient regulation apparatus located in gill epithelia. However, at present it is neither known which ion transport proteins play a key role in the acid-base compensation response nor how gill epithelia respond to elevated seawater pCO2 as predicted for the future. In order to promote our understanding of the responses of green crab acid-base regulatory epithelia to high pCO2, Baltic Sea green crabs were exposed to a pCO2 of 400 Pa. Gills were screened for differentially expressed gene transcripts using a 4,462-feature microarray and quantitative real-time PCR. Results Crabs responded mainly through fine scale adjustment of gene expression to elevated pCO2. However, 2% of all investigated transcripts were significantly regulated 1.3 to 2.2-fold upon one-week exposure to CO2 stress. Most of the genes known to code for proteins involved in osmo- and acid-base regulation, as well as cellular stress response, were were not impacted by elevated pCO2. However, after one week of exposure, significant changes were detected in a calcium-activated chloride channel, a hyperpolarization activated nucleotide-gated potassium channel, a tetraspanin, and an integrin. Furthermore, a putative syntaxin-binding protein, a protein of the transmembrane 9 superfamily, and a Cl-/HCO3- exchanger of the SLC 4 family were differentially regulated. These genes were also affected in a previously published hypoosmotic acclimation response study. Conclusions The moderate, but specific response of C. maenas gill gene expression indicates that (1) seawater acidification does not act as a strong stressor on the cellular level in gill epithelia; (2) the response to hypercapnia is to some degree comparable to a hypoosmotic acclimation response; (3) the specialization of each of the posterior gill

  14. A clinical study of Gilles de la Tourette syndrome in the United Kingdom.

    PubMed Central

    Lees, A J; Robertson, M; Trimble, M R; Murray, N M

    1984-01-01

    The clinical features of 53 British-born patients with Gilles de la Tourette syndrome are described. The mean age at onset of body tics was seven years and for vocalisations 11 years. Coprolalia was present in 39%, copropraxia in 21%, echolalia in 46% and echopraxia in 21%. Complicated antics and mannerisms were also common, often involving the compulsive touching of objects or self-injurious behaviour. Forty-six per cent of cases had a family history of tics in a single close relative and in two individuals a further member of the family had Gilles de la Tourette syndrome. Focal dystonia was present in four patients who had never received neuroleptics drugs and chorea was seen in two other untreated patients. In three patients acoustic startle consistently induced brief eye blink followed by a whole body jerk or jump. Rapid repetitive movements of the hands increased the frequency and severity of tics in 13 patients, but the performance of mental arithmetic under time pressure had a much more unpredictable effect. Electroencephalographic abnormalities occurred in eight (13%) but no definite CT brain scan abnormalities were detected. The incidence of left handedness did not differ from that in the general population and no evidence to suggest organic impairment was found on neuropsychological testing. This study provides no support for the notion that Gilles de la Tourette syndrome is a degenerative disorder of the central nervous system but provides some evidence for heterogeneity. PMID:6582230

  15. A perfusion study of the handling of urea and urea analogues by the gills of the dogfish shark (Squalus acanthias).

    PubMed

    Wood, Chris M; Liew, Hon Jung; De Boeck, Gudrun; Walsh, Patrick J

    2013-01-01

    The branchial mechanism of urea retention in elasmobranchs was investigated using an in vitro isolated-perfused head preparation, as well as in vivo samples, in the spiny dogfish shark. Both in vivo and in control saline perfusions containing 350 mmol L(-1) urea, calculated intracellular urea concentrations in gill epithelial cells were close to extracellular concentrations. Urea efflux to the external water fell only non-significantly, and calculated gill intracellular urea concentration did not change when perfusate urea concentration was reduced from 350 to 175 mmol L(-1) with osmotic compensation by 175 mmol L(-1) mannitol. However, when the urea analogues thiourea or acetamide were present in the perfusate at concentrations equimolar (175 mmol L(-1)) to those of urea (175 mmol L(-1)), urea efflux rates were increased 4-fold and 6.5-fold respectively, and calculated gill intracellular urea concentrations were depressed by about 55%. Analogue efflux rates were similar to urea efflux rates. Previous studies have argued that either the basolateral or apical membranes provided the limiting permeability barrier, and/or that a back-transporter on the basolateral membranes of gill cells is responsible for urea retention. The present results provide new evidence that the apical membrane is the limiting factor in maintaining gill urea impermeability, and raise the prospect that a urea back-transporter, which can be competitively inhibited by thiourea and acetamide, operates at the apical membrane.

  16. A perfusion study of the handling of urea and urea analogues by the gills of the dogfish shark (Squalus acanthias)

    PubMed Central

    Liew, Hon Jung; De Boeck, Gudrun; Walsh, Patrick J.

    2013-01-01

    The branchial mechanism of urea retention in elasmobranchs was investigated using an in vitro isolated-perfused head preparation, as well as in vivo samples, in the spiny dogfish shark. Both in vivo and in control saline perfusions containing 350 mmol L−1 urea, calculated intracellular urea concentrations in gill epithelial cells were close to extracellular concentrations. Urea efflux to the external water fell only non-significantly, and calculated gill intracellular urea concentration did not change when perfusate urea concentration was reduced from 350 to 175 mmol L−1 with osmotic compensation by 175 mmol L−1 mannitol. However, when the urea analogues thiourea or acetamide were present in the perfusate at concentrations equimolar (175 mmol L−1) to those of urea (175 mmol L−1), urea efflux rates were increased 4-fold and 6.5-fold respectively, and calculated gill intracellular urea concentrations were depressed by about 55%. Analogue efflux rates were similar to urea efflux rates. Previous studies have argued that either the basolateral or apical membranes provided the limiting permeability barrier, and/or that a back-transporter on the basolateral membranes of gill cells is responsible for urea retention. The present results provide new evidence that the apical membrane is the limiting factor in maintaining gill urea impermeability, and raise the prospect that a urea back-transporter, which can be competitively inhibited by thiourea and acetamide, operates at the apical membrane. PMID:23638369

  17. Gilles de la Tourette's Syndrome in Childhood: A Guide for School Professionals.

    ERIC Educational Resources Information Center

    Walter, Abbe L.; Carter, Alice S.

    1997-01-01

    Gilles de la Tourette's Syndrome (GTS) is considered a neuropsychiatric condition characterized by multiple motor and vocal tics. With some cases, a variety of neurocognitive, social, and emotional difficulties are present. Describes core features of GTS and highlights how symptoms and their features may interfere with school functioning. School…

  18. Gill tissue reactions in walleye Stizostedion vitreum vitreum and common carp Cyprinus carpio to glochidia of the freshwater mussel Lampsilis radiata siliquoidea

    USGS Publications Warehouse

    Waller, D.L.; Mitchell, L.G.

    1989-01-01

    The glochidia of many freshwater mussels, which are obligate parasites on the gills, fins, and other body parts of specific fishes, attach to a suitable host, become encapsulated, and develop to the free-living juvenile stage. Using light and electron microscopy we compared gill tissue reactions in a suitable host (walleye Stizostedion vitreum vitreum) and unsuitable host (common carp Cyprinus carpio) infected with Lampsilis radiata siliquoidea. Encapsulation of glochidia on walleye gills was completed by 6 h post-infection at 20 to 22°C. Capsular formation and compaction were accompanied by a general increase in epithelioid cells. Fibrotic material appeared in capsules at about 48 h and virtually filled capsular cells from about Day 5 to Day 11 post-infection. Liberation of juvenile mussels was accompanied by thinning of the capsule from about Day 11 to Day l7. Although glochidia attached to the gills of common carp, few became encapsulated. By 48 h post-infection, preliminary capsular growth was evident and necrotic cells and cellular debris appeared at the edges of the growth. However, all glochidia were sloughed from carp gills by 60 h. Host specificity of L. radiata siliquoidea apparently depended on a combination of the attachment response of glochidia, differences in the encapsulation process, and tissue reactions in the fish.

  19. Morphometric partitioning of the respiratory surface area and diffusion capacity of the gills and swim bladder in juvenile Amazonian air-breathing fish, Arapaima gigas.

    PubMed

    Fernandes, Marisa Narciso; da Cruz, André Luis; da Costa, Oscar Tadeu Ferreira; Perry, Steven Franklin

    2012-09-01

    The gills and the respiratory swim bladders of juvenile specimens (mean body mass 100g) of the basal teleost Arapaima gigas (Cuvier 1829) were evaluated using stereological methods in vertical sections. The surface areas, harmonic mean barrier thicknesses and morphometric diffusing capacities for oxygen and carbon dioxide were estimated. The average respiratory surface area of the swim bladder (2173 cm² kg⁻¹) exceeded that of the gills (780 cm² kg⁻¹) by a factor of 2.79. Due to the extremely thin air-blood barrier in the swim bladder (harmonic mean 0.22 μm) and the much thicker water-blood barrier of the gills (9.61 μm), the morphometric diffusing capacity for oxygen and carbon dioxide was 88 times greater in the swim bladder than in the gills. These data clearly indicate the importance of the swim bladder, even in juvenile A. gigas that still engage in aquatic respiration. Because of the much greater diffusion constant of CO₂ than O₂ in water, the gills also remain important for CO₂ release. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Bacterial diversity of siliciclastic sediments in a Thalassia testudinum meadow and the implications for Lucinisca nassula chemosymbiosis

    NASA Astrophysics Data System (ADS)

    Green-García, Angela M.; Engel, Annette Summers

    2012-10-01

    Despite the ecological and economic importance of Thalassia testudinum (turtle grass) meadows along the Caribbean and Gulf of Mexico coasts, and recognition that microbial activities are critical to plant growth and health, the bacterial diversity of these habitats has been poorly studied. Based on comparative analyses of 16S rRNA gene sequences from sediments in a T. testudinum meadow, 25 major taxonomic groups (excluding candidate divisions) were retrieved, including Alpha- Delta-, and Gamma-proteobacteria, Chloroflexi, Bacteroidetes, Acidobacteria, Spirochaetes, and Firmicutes. The distribution of bacterial groups was linked to a strongly hypoxic and sulfidic redox gradient. The diversity is potentially novel because phylogenetic affinities of sediment sequences compared to contextually annotated environmental clones from different habitats or to cultured representatives indicated approximately 41% were more closely related to each other than to sequences retrieved from these other habitats. Of all the relationships, very few (2.4%) were to cultured organisms, but 27% were to environmental clones retrieved from shallow marine shelf and coastal sediments or from mangroves, estuarine, or wetland sediments. Rare sequences were closely related to endosymbiont groups of Lucinisca nassula (Lucinidea: Bivalvia) hosts collected from the same meadow, which may indicate that the sediment is a potential reservoir for free-living symbionts. This study provides insight into the ecological and evolutionary relationships of the Thalassia-lucinid-bacteria system in tropical to sub-tropical regions.

  1. Metabolic interplay between the Asian citrus psyllid and its Profftella symbiont: An Achilles’ heel of the citrus greening insect vector

    USDA-ARS?s Scientific Manuscript database

    ‘Candidatus Liberibacter asiaticus’ (CLas), the bacterial pathogen associated with citrus greening disease, is transmitted by Diaphorina citri, the Asian citrus psyllid. Interactions among D. citri and its microbial endosymbionts, including ‘Candidatus Profftella armatura’, are likely to impact tra...

  2. Genetics coupled to quantitative intact proteomics links heritable aphid and endosymbiont protein expression to circulative polerovirus transmission.

    PubMed

    Cilia, M; Tamborindeguy, C; Fish, T; Howe, K; Thannhauser, T W; Gray, S

    2011-03-01

    Yellow dwarf viruses in the family Luteoviridae, which are the causal agents of yellow dwarf disease in cereal crops, are each transmitted most efficiently by different species of aphids in a circulative manner that requires the virus to interact with a multitude of aphid proteins. Aphid proteins differentially expressed in F2 Schizaphis graminum genotypes segregating for the ability to transmit Cereal yellow dwarf virus-RPV (CYDV-RPV) were identified using two-dimensional difference gel electrophoresis (DIGE) coupled to either matrix-assisted laser desorption ionization-tandem mass spectrometry or online nanoscale liquid chromatography coupled to electrospray tandem mass spectrometry. A total of 50 protein spots, containing aphid proteins and proteins from the aphid's obligate and maternally inherited bacterial endosymbiont, Buchnera, were identified as differentially expressed between transmission-competent and refractive aphids. Surprisingly, in virus transmission-competent F2 genotypes, the isoelectric points of the Buchnera proteins did not match those in the maternal Buchnera proteome as expected, but instead they aligned with the Buchnera proteome of the transmission-competent paternal parent. Among the aphid proteins identified, many were involved in energy metabolism, membrane trafficking, lipid signaling, and the cytoskeleton. At least eight aphid proteins were expressed as heritable, isoelectric point isoform pairs, one derived from each parental lineage. In the F2 genotypes, the expression of aphid protein isoforms derived from the competent parental lineage aligned with the virus transmission phenotype with high precision. Thus, these isoforms are candidate biomarkers for CYDV-RPV transmission in S. graminum. Our combined genetic and DIGE approach also made it possible to predict where several of the proteins may be expressed in refractive aphids with different barriers to transmission. Twelve proteins were predicted to act in the hindgut of the aphid

  3. Wolbachia endosymbionts in haplodiploid and diploid scolytine beetles (Coleoptera: Curculionidae: Scolytinae).

    PubMed

    Kawasaki, Yuuki; Schuler, Hannes; Stauffer, Christian; Lakatos, Ferenc; Kajimura, Hisashi

    2016-05-19

    Haplodiploidy is a sex determination system in which fertilized diploid eggs develop into females and unfertilized haploid eggs develop into males. The evolutionary explanations for this phenomenon include the possibility that haplodiploidy can be reinforced by infection with endosymbiotic bacteria, such as Wolbachia. The subfamily Scolytinae contains species with haplodiploid and diploid sex determination systems. Thus, we studied the association with Wolbachia in 12 diploid and 11 haplodiploid scolytine beetles by analyzing wsp and multilocus sequence typing (MLST) of five loci in this endosymbiont. Wolbachia genotypes were compared with mitochondrial (COI) and nuclear (EF) genotypes in the scolytines. Eight of the 23 scolytine species were infected with Wolbachia, with haplodiploids at significantly higher rates than diploid species. Cloning and sequencing detected multiple infections with up to six Wolbachia strains in individual species. Phylogenetic analyses of wsp and five MLST genes revealed different Wolbachia strains in scolytines. Comparisons between the beetle and Wolbachia phylogenies revealed that closely related beetles were infected with genetically different Wolbachia strains. These results suggest the horizontal transmission of multiple Wolbachia strains between scolytines. We discuss these results in terms of the evolution of different sex determination systems in scolytine beetles. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. DNA analysis of traded shark fins and mobulid gill plates reveals a high proportion of species of conservation concern.

    PubMed

    Steinke, Dirk; Bernard, Andrea M; Horn, Rebekah L; Hilton, Paul; Hanner, Robert; Shivji, Mahmood S

    2017-08-25

    Continuously increasing demand for plant and animal products causes unsustainable depletion of biological resources. It is estimated that one-quarter of sharks and rays are threatened worldwide and although the global fin trade is widely recognized as a major driver, demand for meat, liver oil, and gill plates also represents a significant threat. This study used DNA barcoding and 16 S rRNA sequencing as a method to identify shark and ray species from dried fins and gill plates, obtained in Canada, China, and Sri Lanka. 129 fins and gill plates were analysed and searches on BOLD produced matches to 20 species of sharks and five species of rays or - in two cases - to a species pair. Twelve of the species found are listed or have been approved for listing in 2017 in the appendices of the Convention on International Trade in Endangered Species of Fauna and Flora (CITES), including the whale shark (Rhincodon typus), which was surprisingly found among both shark fin and gill plate samples. More than half of identified species fall under the IUCN Red List categories 'Endangered' and 'Vulnerable', raising further concerns about the impacts of this trade on the sustainability of these low productivity species.

  5. Gilles de la Tourette's syndrome in a patient with 47(XXX) syndrome: a case report.

    PubMed

    Chiappedi, Matteo; de Vincenzi, Silvia; Dolci, Roberta; De Luca, Sara; Bejor, Maurizio

    2011-11-05

    To the best of our knowledge, this is the first report of a comorbidity between Gilles de la Tourette's syndrome and 47 (XXX) syndrome. The clinical picture of Gilles de la Tourette's Syndrome is well described, while 47 (XXX) syndrome is much more rare and has a broader spectrum of possible phenotypic presentations. An Italian Caucasian girl was referred at the age of 11 to our Rehabilitation Center for anxiety and learning difficulties. The girl had already been diagnosed as having 47(XXX) syndrome; she had some rather typical features of the chromosomal abnormality, but she also showed a high level of anxiety and the presence of motor and vocal tics. When an accurate history was taken, a diagnosis of Gilles de la Tourette's Syndrome emerged. The possible interaction between peculiar features of these two syndromes in terms of neuropsychological and affective functioning is both interesting for the specific case and to hypothesize models of rehabilitation for patients with one or both syndromes. Executive functions are specifically reduced in both syndromes, therefore it might be hard to discriminate the contribution of each one to the general impairment; the same applies to anxiety. Moreover, mental retardation (with a significantly lower verbal cognitive functioning) poses relevant problems when suggesting cognitive behavioral or psychoeducational rehabilitative approaches.

  6. Filter feeding mechanics of Hypophthalmichthys molitrix regarding porous gill rakers

    NASA Astrophysics Data System (ADS)

    Palumbo, David; Bulusu, Kartik V.; Cohen, Karly; Hernandez, Particia; Leftwich, Megan C.; Plesniak, Michael W.

    2017-11-01

    The silver carp (Hypophthalmichthys molitrix) is a filter-feeding fish known to feed upon algal-growth in lakes, rivers, and aquacultures. The filter-feeding process centers on sponge-like membranes located in the carp's pharynx supported by fused gill rakers (GRs), which can efficiently strain suspended food particles as small as 4 µm without clogging. Guided by the anatomy of the silver carp, scanning electron microscope (SEM) images of GRs, and video of the silver carp feeding, we have hypothesized that the filtration mechanism involves a pump-based biological function to capture food particles within the GRs. Dye visualization experiments were performed on a silver carp cadaver head, an excised GR sample, and on a scaled GR in vitro model - the Artificial Gill Raker (AGR). Measurements are performed for the AGR using laser Doppler velocimetry (LDV) and penetration pressure monitoring with a biologically-inspired pumping mechanism. The role of mucus in the retention and capture of food particles has also been explored through rheological measurements, and further experimentation is planned. Our motivation stems from the potential to develop bioinspired industrial-scale filtration technologies ranging from wastewater treatment to filtration in the food industry. supported by GW Center for Biomimetics and Bioinspired Engineering.

  7. Preferences for body type and body characteristics associated with attractive and unattractive bodies: Jackson and McGill revisited.

    PubMed

    Rosenfeld, L B; Stewart, S C; Stinnett, H J; Jackson, L A

    1999-10-01

    The present investigation replicates Jackson and McGill's study (1996) and extends it by considering the effects of respondents' own height, weight, and body mass on perceptions of attractiveness. Results, although generally supportive of those found by Jackson and McGill, point to the influence of respondents' own physical characteristics in the process of perceptions of attractiveness: only 1 of Jackson and McGill's 3 (of a possible 19) differences between responses of African- and Euro-American women was corroborated (the importance of silky hair for Euro-American women), whereas a second difference (the importance of round buttocks for African-American women) disappeared when controlling for respondents' weight, height, and body mass. Although differences between the two investigations may be attributed to regional differences in the surveyed students (Michigan and North Carolina), the small effect of one's own weight, height, and body mass in assessing an other-sex person's attractiveness may reflect adherence to norms learned very early in life that are subject to regional variations.

  8. Effect of Ichthyophthirius multifiliis parasitism on the survival, hematology and bacterial load in channel catfish previously exposed to Edwardsiella ictaluri.

    PubMed

    Shoemaker, Craig A; Martins, Maurício L; Xu, De-Hai; Klesius, Phillip H

    2012-11-01

    The effect of Ichthyophthirius multifiliis (Ich) parasitism on survival, hematology and bacterial load in channel catfish, Ictalurus punctatus, previously exposed to Edwardsiella ictaluri was studied. Fish were exposed to E. ictaluri 1 day prior to Ich in the following treatments: (1) infected by E. ictaluri and Ich at 2,500 theronts/fish; (2) infected by E. ictaluri only; (3) infected by Ich at 2,500 theronts/fish only; and (4) non infected control. Mortality was significantly higher in fish previously exposed to E. ictaluri and then infected by Ich (71.1 %). Mortalities were 26.7 %, 28.9 % and 0 % for fish infected by E. ictaluri only, by Ich only and non-infected control, respectively. Quantitative polymerase chain reaction demonstrated the presence of E. ictaluri in the brain, gill, kidney and liver of fish infected with E. ictaluri regardless of Ich parasitism. At day 8, E. ictaluri parasitized fish had significantly more bacteria present in the brain, gill and liver, with no bacteria detected in these organs in the E. ictaluri-only treatment, suggesting that the bacteria persisted longer in parasitized fish. Decreased red blood cells count and hematocrit in fish at days 8 and 19 after co-infection suggests chronic anemia. Lymphocyte numbers significantly decreased in all infected treatments versus the non-infected controls at days 2, 8 and 19. Lymphopenia suggests that lymphocytes were actively involved in the immune response. Bacterial clearance was probably influenced by the stress of parasitism and/or the mucosal response induced by ectoparasitic Ich that resulted in the higher mortality seen in the co-infected treatment.

  9. The interbranchial lymphoid tissue likely contributes to immune tolerance and defense in the gills of Atlantic salmon.

    PubMed

    Aas, Ida Bergva; Austbø, Lars; Falk, Knut; Hordvik, Ivar; Koppang, Erling Olaf

    2017-11-01

    Central and peripheral immune tolerance is together with defense mechanisms a hallmark of all lymphoid tissues. In fish, such tolerance is especially important in the gills, where the intimate contact between gill tissue and the aqueous environment would otherwise lead to continual immune stimulation by innocuous antigens. In this paper, we focus on the expression of genes associated with immune regulation by the interbranchial lymphoid tissue (ILT) in an attempt to understand its role in maintaining immune homeostasis. Both healthy and virus-challenged fish were investigated, and transcript levels were examined from laser-dissected ILT, gills, head kidney and intestine. Lack of Aire expression in the ILT excluded its involvement in central tolerance and any possibility of its being an analogue to the thymus. On the other hand, the ILT appears to participate in peripheral immune tolerance due to its relatively high expression of forkhead box protein 3 (Foxp3) and other genes associated with regulatory T cells (Tregs) and immune suppression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Catch of channel catfish with tandem-set hoop nets and gill nets in lentic systems of Nebraska

    USGS Publications Warehouse

    Richters, Lindsey K.; Pope, Kevin L.

    2011-01-01

    Twenty-six Nebraska water bodies representing two ecosystem types (small standing waters and large standing waters) were surveyed during 2008 and 2009 with tandem-set hoop nets and experimental gill nets to determine if similar trends existed in catch rates and size structures of channel catfish Ictalurus punctatus captured with these gears. Gear efficiency was assessed as the number of sets (nets) that would be required to capture 100 channel catfish given observed catch per unit effort (CPUE). Efficiency of gill nets was not correlated with efficiency of hoop nets for capturing channel catfish. Small sample sizes prohibited estimation of proportional size distributions in most surveys; in the four surveys for which sample size was sufficient to quantify length-frequency distributions of captured channel catfish, distributions differed between gears. The CPUE of channel catfish did not differ between small and large water bodies for either gear. While catch rates of hoop nets were lower than rates recorded in previous studies, this gear was more efficient than gill nets at capturing channel catfish. However, comparisons of size structure between gears may be problematic.

  11. Two implant retained overdentures--a review of the literature supporting the McGill and York consensus statements.

    PubMed

    Thomason, J M; Kelly, S A M; Bendkowski, A; Ellis, J S

    2012-01-01

    The McGill consensus statement on overdentures (14) was published following a symposium held at McGill University in Montreal, Canada in 2002. A panel of relevant experts in the field stated that: The evidence currently available suggests that the restoration of the edentulous mandible with a conventional denture is no longer the most appropriate first choice prosthodontic treatment. There is now overwhelming evidence that a two-implant overdenture should become the first choice of treatment for the edentulous mandible (14). In 2009, a further consensus statement was released as a support and follow-up to the McGill consensus statement. This report was jointly created by members of the BSSPD (British Society for the Study of Prosthetic Dentistry) Council and the panel of presenters at the BSSPD conference in York, UK in April 2009 (15). This report also highlighted that since the McGill statement in 2002, uptake by dentists of implant technology for complete denture wearers has been slow. The York statement concluded that 'a substantial body of evidence is now available demonstrating that patients' satisfaction and quality of life with ISOD mandibular overdentures is significantly greater than for conventional dentures. Much of this data comes from randomised controlled trials (15). Whilst it is accepted that the two-implant overdenture is not the gold standard of implant therapy it is the minimum standard that should be sufficient for most people, taking into account performance, patient satisfaction, cost and clinical time. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Physical gills prevent drowning of many wetland insects, spiders and plants.

    PubMed

    Pedersen, Ole; Colmer, Timothy D

    2012-03-01

    Insects, spiders and plants risk drowning in their wetland habitats. The slow diffusion of O(2) can cause asphyxiation when underwater, as O(2) supply cannot meet respiratory demands. Some animals and plants have found a common solution to the major challenge: how to breathe underwater with respiratory systems evolved for use in air? Hydrophobic surfaces on their bodies possess gas films that act as a 'physical gill' to collect O(2) when underwater and thus sustain respiration. In aquatic insects, this feature/process has been termed 'plastron respiration'. Here, we demonstrate the similarities in function between underwater respiration of insect (Aphelocheirus aestivalis) plastrons and gas films on leaves of wetland plants (Phalaris arundinacea) and also show the importance of these physical gills by the resulting changes upon their removal. The gas films provide an enlarged gas-water interface to enhance O(2) uptake underwater that is above that if only spiracles (insects) or stomata (plants) provided the gas-phase contact with the water. Body-surface gas films contribute to the survival of many insects, spiders and plants in aquatic and flood-prone environments.

  13. Relative abundance of Carsonella ruddii (Gamma Proteobacterium) in females and males of Cacopsylla pyricola (Hemiptera: Psyllidae) and Bactericera cockerelli (Hemiptera: Triozidae)

    USDA-ARS?s Scientific Manuscript database

    Carsonella ruddii (Gamma Proteobacterium) is an obligate bacterial endosymbiont of psyllids that produces essential amino acids that are lacking in the insect’s diet. Accurate estimations of Carsonella populations are important to studies of Carsonella/psyllid interactions and to developing ways to ...

  14. Ultrastructure of book gill development in embryos and first instars of the horseshoe crab Limulus polyphemus L. (Chelicerata, Xiphosura)

    PubMed Central

    2012-01-01

    Background The transmission electron microscope (TEM) is used for the first time to study the development of book gills in the horseshoe crab. Near the end of the nineteenth century the hypothesis was presented for homology and a common ancestry for horseshoe crab book gills and arachnid book lungs. The present developmental study and the author's recent ones of book gills (SEM) and scorpion book lungs (TEM) are intended to clarify early histological work and provide new ultrastructural details for further research and for hypotheses about evolutionary history and relationships. Results The observations herein are in agreement with earlier reports that the book gill lamellae are formed by proliferation and evagination of epithelial cells posterior to opisthosomal branchial appendages. A cartilage-like endoskeleton is produced in the base of the opisthosomal appendages. The lamellar precursor cells in the appendage base proliferate, migrate outward and secrete the lamellar cuticle from their apical surface. A series of external, posteriorly-directed lamellae is formed, with each lamella having a central channel for hemolymph and pillar-type space holders formed from cells of the opposed walls. This repeated, page-like pattern results also in water channels (without space holders) between the sac-like hemolymph lamellae. Conclusions The developmental observations herein and in an earlier study (TEM) of scorpion book lungs show that the lamellae in book gills and book lungs result from some similar activities and features of the precursor epithelial cells: proliferation, migration, alignment and apical/basal polarity with secretion of cuticle from the apical surface and the basal surface in contact with hemolymph. These cellular similarities and the resulting book-like structure suggest a common ancestry, but there are also substantial developmental differences in producing these organs for gas exchange in the different environments, aqueous and terrestrial. For

  15. Thelytokous parthenogenesis in the damselfly Ischnura hastata (Odonata, Coenagrionidae): genetic mechanisms and lack of bacterial infection.

    PubMed

    Lorenzo-Carballa, M O; Cordero-Rivera, A

    2009-11-01

    Thelytokous parthenogenesis, the production of female-only offspring from unfertilized eggs, has been described in all the insect orders, but is a rare phenomenon in the Odonata (dragonflies and damselflies). The only-known case of parthenogenesis in this group is the North American damselfly species Ischnura hastata, which has parthenogenetic populations in the Azores Islands. Here, we present for the first time the results of laboratory rearing, which showed parthenogenetic reproduction in the Azorean I. hastata populations. In an attempt to understand how parthenogenesis could have evolved in this species, we first determined the genetic mode of parthenogenesis by analysing the genotype of parthenogenetic females and their offspring at three polymorphic microsatellite loci. In addition, we used polymerase chain reaction amplification to test whether parthenogenesis in I. hastata could be bacterially induced. Our data indicate that thelytoky is achieved through an (at least functionally) apomictic mechanism and that parthenogenesis is not caused by endosymbionts. Finally, we discuss possible routes to parthenogenetic reproduction, as well as the evolutionary implications of this type of parthenogenesis.

  16. [Linguistic adaptation of the Russian version of the Short-form McGill Pain Questionnaire-2].

    PubMed

    Bakhtadze, M A; Bolotov, D A; Kuzminov, K O; Padun, M P; Zakharova, O B

    Linguistic adaptation of the Russian version of the Short-form McGill Pain Questionnaire-2 (SF-MPQ-2), which is conceptually equivalent to the original questionnaire. The adaptation of the Russian version of SF-MPQ-2 was performed in accordance to established rules in several stages by two independent translators with the development of a consensus Russian version and its back translation by two independent translators and development of a consensus English version. The final Russian SF-MPQ-2 version was then created. The Russian version of the Short-form McGill Pain Questionnaire-2 (SF-MPQ-2-RU) was generated based on the established rules. This version was legally registered by the right holder - Mapi Research Trust and recommended for research in the Russian Federation.

  17. A snapshot of the microbiome of Amblyomma tuberculatum ticks infesting the gopher tortoise, an endangered species.

    PubMed

    Budachetri, Khemraj; Gaillard, Daniel; Williams, Jaclyn; Mukherjee, Nabanita; Karim, Shahid

    2016-10-01

    The gopher tortoise tick, Amblyomma tuberculatum, has a unique relationship with the gopher tortoise, Gopherus polyphemus, found in sandy habitats across the southeastern United States. We aimed to understand the overall bacterial community associated with A. tuberculatum while also focusing on spotted fever group Rickettsia. These tortoises in the Southern Mississippi region are a federally threatened species; therefore, we have carefully trapped the tortoises and removed the species-specific ticks attached to them. Genomic DNA was extracted from individual ticks and used to explore overall bacterial load using pyrosequencing of bacterial 16S rRNA on 454-sequencing platform. The spotted fever group of Rickettsia was explored by amplifying rickettsial outer membrane protein A (rompA) gene by nested PCR. Sequencing results revealed 330 bacterial operational taxonomic units (OTUs) after all the necessary curation of sequences. Four whole A. tuberculatum ticks showed Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes as the most dominant phyla with a total of 74 different bacterial genera detected. Together Rickettsiae and Francisella showed >85% abundance, thus dominating the bacterial community structure. Partial sequences obtained from ompA amplicons revealed the presence of an uncharacterized Rickettsia similar to the Rickettsial endosymbiont of A. tuberculatum. This is the first preliminary profile of a complete bacterial community from gopher tortoise ticks and warrants further investigation regarding the functional role of Rickettsial and Francisella-like endosymbionts in tick physiology. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Endosymbiont interference and microbial diversity of the Pacific coast tick, Dermacentor occidentalis, in San Diego County, California.

    PubMed

    Gurfield, Nikos; Grewal, Saran; Cua, Lynnie S; Torres, Pedro J; Kelley, Scott T

    2017-01-01

    The Pacific coast tick, Dermacentor occidentalis Marx, is found throughout California and can harbor agents that cause human diseases such as anaplasmosis, ehrlichiosis, tularemia, Rocky Mountain spotted fever and rickettsiosis 364D. Previous studies have demonstrated that nonpathogenic endosymbiotic bacteria can interfere with Rickettsia co-infections in other tick species. We hypothesized that within D. occidentalis ticks, interference may exist between different nonpathogenic endosymbiotic or nonendosymbiotic bacteria and Spotted Fever group Rickettsia (SFGR). Using PCR amplification and sequencing of the romp A gene and intergenic region we identified a cohort of SFGR-infected and non-infected D. occidentalis ticks collected from San Diego County. We then amplified a partial segment of the 16S rRNA gene and used next-generation sequencing to elucidate the microbiomes and levels of co-infection in the ticks. The SFGR R. philipii str. 364D and R. rhipicephali were detected in 2.3% and 8.2% of the ticks, respectively, via romp A sequencing. Interestingly, next generation sequencing revealed an inverse relationship between the number of Francisella- like endosymbiont (FLE) 16S rRNA sequences and Rickettsia 16S rRNA sequences within individual ticks that is consistent with partial interference between FLE and SFGR infecting ticks. After excluding the Rickettsia and FLE endosymbionts from the analysis, there was a small but significant difference in microbial community diversity and a pattern of geographic isolation by distance between collection locales. In addition, male ticks had a greater diversity of bacteria than female ticks and ticks that weren't infected with SFGR had similar microbiomes to canine skin microbiomes. Although experimental studies are required for confirmation, our findings are consistent with the hypothesis that FLEs and, to a lesser extent, other bacteria, interfere with the ability of D. occidentalis to be infected with certain SFGR. The

  19. Differential expression of gill Na+,K+-ATPaseα - and β-subunits, Na+,K+,2Cl- cotransporter and CFTR anion channel in juvenile anadromous and landlocked Atlantic salmon Salmo salar

    USGS Publications Warehouse

    Nilsen, Tom O.; Ebbesson, Lars O.E.; Madsen, Steffen S.; McCormick, Stephen D.; Andersson, Eva; Bjornsson, Bjorn Thrandur; Prunet, Patrick; Stefansson, Sigurd O.

    2007-01-01

    This study examines changes in gill Na+,K+-ATPase (NKA) α- and β-subunit isoforms, Na+,K+,2Cl- cotransporter (NKCC) and cystic fibrosis transmembrane conductance regulator (CFTR I and II) in anadromous and landlocked strains of Atlantic salmon during parr-smolt transformation, and after seawater (SW) transfer in May/June. Gill NKA activity increased from February through April, May and June among both strains in freshwater (FW), with peak enzyme activity in the landlocked salmon being 50% below that of the anadromous fish in May and June. Gill NKA-α1b, -α3, -β1 and NKCC mRNA levels in anadromous salmon increased transiently, reaching peak levels in smolts in April/May, whereas no similar smolt-related upregulation of these transcripts occurred in juvenile landlocked salmon. Gill NKA-α1a mRNA decreased significantly in anadromous salmon from February through June, whereas α1a levels in landlocked salmon, after an initial decrease in April, remained significantly higher than those of the anadromous smolts in May and June. Following SW transfer, gill NKA-α1b and NKCC mRNA increased in both strains, whereas NKA-α1a decreased. Both strains exhibited a transient increase in gill NKA α-protein abundance, with peak levels in May. Gill α-protein abundance was lower in SW than corresponding FW values in June. Gill NKCC protein abundance increased transiently in anadromous fish, with peak levels in May, whereas a slight increase was observed in landlocked salmon in May, increasing to peak levels in June. Gill CFTR I mRNA levels increased significantly from February to April in both strains, followed by a slight, though not significant increase in May and June. CFTR I mRNA levels were significantly lower in landlocked than anadromous salmon in April/June. Gill CFTR II mRNA levels did not change significantly in either strain. Our findings demonstrates that differential expression of gill NKA-α1a, -α1b and -α3 isoforms may be important for potential functional

  20. Phil Wallace and Theoretical Physics at McGill in the 1950's: A Personal Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, John David

    In 1946 Philip (Phil) Russell Wallace joined the Mathematics Department of McGill University as an Associate Professor of Applied Mathematics, apparently because A. H. S. Gillson, Dean of Arts and Science, wanted theoretical physicists to be in the Mathematics Department. He came with the dream of creating a theoretical physics group at McGill. By the spring of 1949, Phil was authorized to recruit two junior faculty in Mathematics. He hired Theodore (Ted) F. Morris from U. Toronto, who joined in September 1949, and me, who came in January 1950. The group had begun. Phil Wallace was born in Toronto inmore » 1915 and grew up there. He entered the University of Toronto in 1933, earned a B.A. in mathematics in 1937, a M.A. in 1938, and a Ph.D. in applied mathematics in 1940 under Leopold Infeld. His Ph.D. thesis in general relativity was entitled 'On the relativistic equations of motion in electromagnetic theory.' In 1940 World War II had engulfed Europe and was having its effect on Canada, but the US was still at peace. L. J. Synge, Head of the Applied Mathematics Department at Toronto, told Wallace that people such as he would be needed in war work, but things were not ready quite yet. Hold yourself ready. Phil took a two-year position as lecturer in mathematics at the University of Cincinnati (1940-42); in the fall of 1942 he became a lecturer in mathematics at M.I.T. It was from there that he was recruited by Synge to join the war effort from 1943 to 1946 at N.R.C.'s Montreal Laboratory, the genesis of the Canadian Atomic Energy Project. Phil has described those heady wartime years in these pages. Much of the effort of the theoretical physicists was on nuclear reactor theory and the properties of relevant materials, such as graphite, under long and intense neutron bombardment. In late 1945 Phil was sent for four months to Bristol to learn about the properties of graphite from the esteemed N. F. Mott. This exposure led Phil to a life-long interest in graphite and

  1. Recurrent amoebic gill infestation in rainbow trout cultured in a semiclosed water recirculation system

    USGS Publications Warehouse

    Noble, A.C.; Herman, R.L.; Noga, E.J.; Bullock, G.L.

    1997-01-01

    Five lots of commercially purchased juvenile rainbow trout Oncorhynchus mykiss (17-44 g) stocked in a continuous-production water recirculation system became infested with gilt amoebae. The amoebae were introduced into the recirculation system, as evidenced by their presence on gills of fish held in quarantine tanks. Based on their morphology, as seen in histological sections and by electron microscopy, the amoebae appeared to be more closely related to the family Cochliopodiidae than to other taxa of free living amoebae. Attempts to culture the amoebae in different media, at different temperatures of incubation, and in fish cell culture were not successful. Initial treatment of the recirculation system with formalin at 167 parts per million (ppm) for 1 h eliminated amoebae from the gills. Subsequent treatments of the entire system with formalin at 50-167 ppm reduced the intensity of further infestations.

  2. Bacterial endosymbioses of gutless tube-dwelling worms in nonhydrothermal vent habitats.

    PubMed

    Naganuma, Takeshi; Elsaied, Hosam E; Hoshii, Daiki; Kimura, Hiroyuki

    2005-01-01

    Gutless tube-dwelling worms of pogonophorans (also known as frenulates) and vestimentiferans depend on primary production of endosymbiotic bacteria. The endosymbionts include thiotrophs that oxidize sulfur for autotrophic production and methanotrophs that oxidize and assimilate methane. Although most of the pogonophoran and vestimentiferan tube worms possess single thiotrophic 16S rRNA genes (16S rDNA) related to gamma-proteobacteria, some pogonohorans are known to bear single methanotroph species or even dual symbionts of thiotrophs and methanotrophs. The vestimentiferan Lamellibrachia sp. L1 shows symbiotic 16S rDNA sequences of alpha-, beta-, gamma-, and epsilon-proteobacteria, varying among specimens, with RuBisCO form II gene (cbbM) sequences related to beta-proteobacteria. An unidentified pogonophoran from the world's deepest cold seep, 7326-m deep in the Japan Trench, hosts a symbiotic thiotroph based on 16S rDNA with the RuBisCO form I gene (cbbL). In contrast, a shallow-water pogonophoran (Oligobrachia mashikoi) in coastal Japan Sea has a methanotrophic 16S rDNA and thiotrophic cbbL, which may suggest the feature of type X methanotrophs. These observations demonstrate that pogonophoran and vestimentiferan worms have higher plasticity in bacterial symbioses than previously suspected.

  3. A primary fish gill cell culture model to assess pharmaceutical uptake and efflux: Evidence for passive and facilitated transport

    PubMed Central

    Stott, Lucy C.; Schnell, Sabine; Hogstrand, Christer; Owen, Stewart F.; Bury, Nic R.

    2015-01-01

    The gill is the principle site of xenobiotic transfer to and from the aqueous environment. To replace, refine or reduce (3Rs) the large numbers of fish used in in vivo uptake studies an effective in vitro screen is required that mimics the function of the teleost gill. This study uses a rainbow trout (Oncorhynchus mykiss) primary gill cell culture system grown on permeable inserts, which tolerates apical freshwater thus mimicking the intact organ, to assess the uptake and efflux of pharmaceuticals across the gill. Bidirectional transport studies in media of seven pharmaceuticals (propranolol, metoprolol, atenolol, formoterol, terbutaline, ranitidine and imipramine) showed they were transported transcellularly across the epithelium. However, studies conducted in water showed enhanced uptake of propranolol, ranitidine and imipramine. Concentration-equilibrated conditions without a concentration gradient suggested that a proportion of the uptake of propranolol and imipramine is via a carrier-mediated process. Further study using propranolol showed that its transport is pH-dependent and at very low environmentally relevant concentrations (ng L−1), transport deviated from linearity. At higher concentrations, passive uptake dominated. Known inhibitors of drug transport proteins; cimetidine, MK571, cyclosporine A and quinidine inhibited propranolol uptake, whilst amantadine and verapamil were without effect. Together this suggests the involvement of specific members of SLC and ABC drug transporter families in pharmaceutical transport. PMID:25544062

  4. Calcium transport in gill cells of Ucides cordatus, a mangrove crab living in variable salinity environments.

    PubMed

    Leite, V P; Zanotto, F P

    2013-10-01

    Crustaceans show discontinuous growth and have been used as a model system for studying cellular mechanisms of calcium transport, which is the main mineral found in their exoskeleton. Ucides cordatus, a mangrove crab, is naturally exposed to fluctuations in calcium and salinity. To study calcium transport in this species during isosmotic conditions, dissociated gill cells were marked with fluo-3 and intracellular Ca(2+) change was followed by adding extracellular Ca(2+) as CaCl2 (0, 0.1, 0.25, 0.50, 1.0 and 5mM), together with different inhibitors. For control gill cells, Ca(2+) transport followed Michaelis-Menten kinetics with Vmax=0.137±0.001 ∆Ca(2+)i (μM×22.10(4)cells(-1)×180s(-1); N=4; r(2)=0.99); Km=0.989±0.027mM. The use of different inhibitors for gill cells showed that amiloride (Na(+)/Ca(2+) exchange inhibitor) inhibited 80% of Ca(2+) transport in gill cells (Vmax). KB-R, an inhibitor of Ca influx in vertebrates, similarly caused a decrease in Ca(2+) transport and verapamil (Ca(2+) channel inhibitor) had no effect on Ca(2+) transport, while nifedipine (another Ca(2+) channel inhibitor) caused a 20% decrease in Ca(2+) affinity compared to control values. Ouabain, on the other hand, caused no change in Ca(2+) transport, while vanadate increased the concentration of intracellular calcium through inhibition of Ca(2+) efflux probably through the plasma membrane Ca(2+)-ATPase. Results show that transport kinetics for Ca(2+) in these crabs under isosmotic conditions is lower compared to a hyper-regulator freshwater crab Dilocarcinus pagei studied earlier using fluorescent Ca(2+) probes. These kinds of studies will help understanding the comparative mechanisms underlying the evolution of Ca transport in crabs living in different environments. © 2013.

  5. Evolution and functional diversification of fructose bisphosphate aldolase genes in photosynthetic marine diatoms.

    PubMed

    Allen, Andrew E; Moustafa, Ahmed; Montsant, Anton; Eckert, Angelika; Kroth, Peter G; Bowler, Chris

    2012-01-01

    Diatoms and other chlorophyll-c containing, or chromalveolate, algae are among the most productive and diverse phytoplankton in the ocean. Evolutionarily, chlorophyll-c algae are linked through common, although not necessarily monophyletic, acquisition of plastid endosymbionts of red as well as most likely green algal origin. There is also strong evidence for a relatively high level of lineage-specific bacterial gene acquisition within chromalveolates. Therefore, analyses of gene content and derivation in chromalveolate taxa have indicated particularly diverse origins of their overall gene repertoire. As a single group of functionally related enzymes spanning two distinct gene families, fructose 1,6-bisphosphate aldolases (FBAs) illustrate the influence on core biochemical pathways of specific evolutionary associations among diatoms and other chromalveolates with various plastid-bearing and bacterial endosymbionts. Protein localization and activity, gene expression, and phylogenetic analyses indicate that the pennate diatom Phaeodactylum tricornutum contains five FBA genes with very little overall functional overlap. Three P. tricornutum FBAs, one class I and two class II, are plastid localized, and each appears to have a distinct evolutionary origin as well as function. Class I plastid FBA appears to have been acquired by chromalveolates from a red algal endosymbiont, whereas one copy of class II plastid FBA is likely to have originated from an ancient green algal endosymbiont. The other copy appears to be the result of a chromalveolate-specific gene duplication. Plastid FBA I and chromalveolate-specific class II plastid FBA are localized in the pyrenoid region of the chloroplast where they are associated with β-carbonic anhydrase, which is known to play a significant role in regulation of the diatom carbon concentrating mechanism. The two pyrenoid-associated FBAs are distinguished by contrasting gene expression profiles under nutrient limiting compared with

  6. Evolution and Functional Diversification of Fructose Bisphosphate Aldolase Genes in Photosynthetic Marine Diatoms

    PubMed Central

    Allen, Andrew E.; Moustafa, Ahmed; Montsant, Anton; Eckert, Angelika; Kroth, Peter G.; Bowler, Chris

    2012-01-01

    Diatoms and other chlorophyll-c containing, or chromalveolate, algae are among the most productive and diverse phytoplankton in the ocean. Evolutionarily, chlorophyll-c algae are linked through common, although not necessarily monophyletic, acquisition of plastid endosymbionts of red as well as most likely green algal origin. There is also strong evidence for a relatively high level of lineage-specific bacterial gene acquisition within chromalveolates. Therefore, analyses of gene content and derivation in chromalveolate taxa have indicated particularly diverse origins of their overall gene repertoire. As a single group of functionally related enzymes spanning two distinct gene families, fructose 1,6-bisphosphate aldolases (FBAs) illustrate the influence on core biochemical pathways of specific evolutionary associations among diatoms and other chromalveolates with various plastid-bearing and bacterial endosymbionts. Protein localization and activity, gene expression, and phylogenetic analyses indicate that the pennate diatom Phaeodactylum tricornutum contains five FBA genes with very little overall functional overlap. Three P. tricornutum FBAs, one class I and two class II, are plastid localized, and each appears to have a distinct evolutionary origin as well as function. Class I plastid FBA appears to have been acquired by chromalveolates from a red algal endosymbiont, whereas one copy of class II plastid FBA is likely to have originated from an ancient green algal endosymbiont. The other copy appears to be the result of a chromalveolate-specific gene duplication. Plastid FBA I and chromalveolate-specific class II plastid FBA are localized in the pyrenoid region of the chloroplast where they are associated with β-carbonic anhydrase, which is known to play a significant role in regulation of the diatom carbon concentrating mechanism. The two pyrenoid-associated FBAs are distinguished by contrasting gene expression profiles under nutrient limiting compared with

  7. The putative mechanism of Na(+) absorption in euryhaline elasmobranchs exists in the gills of a stenohaline marine elasmobranch, Squalus acanthias.

    PubMed

    Choe, Keith P; Edwards, Susan L; Claiborne, James B; Evans, David H

    2007-02-01

    We recently cloned an NHE3 orthologue from the gills of the euryhaline Atlantic stingray (Dasyatis sabina), and generated a stingray NHE3 antibody to unequivocally localize the exchanger to the apical side of epithelial cells that are rich with Na(+)/K(+)-ATPase (A MRC). We also demonstrated an increase in NHE3 expression when stingrays are in fresh water, suggesting that NHE3 is responsible for active Na(+) absorption. However, the vast majority of elasmobranchs are only found in marine environments. In the current study, immunohistochemistry with the stingray NHE3 antibody was used to localize the exchanger in the gills of the stenohaline marine spiny dogfish shark (Squalus acanthias). NHE3 immunoreactivity was confined to the apical side of cells with basolateral Na(+)/K(+)-ATPase and was excluded from cells with high levels of vacuolar H(+)-ATPase. Western blots detected a single protein of 88 kDa in dogfish gills, the same size as NHE3 in stingrays and mammals. These immunological data demonstrate that the putative cell type responsible for active Na(+) absorption in euryhaline elasmobranchs is also present in stenohaline marine elasmobranchs, and suggest that the inability of most elasmobranchs to survive in fresh water is not due to a lack of the gill ion transporters for Na(+) absorption.

  8. Repeated sublethal freshwater exposures reduce the amoebic gill disease parasite, Neoparamoeba perurans, on Atlantic salmon.

    PubMed

    Wright, Daniel William; Nowak, Barbara; Oppedal, Frode; Crosbie, Phil; Stien, Lars Helge; Dempster, Tim

    2018-06-25

    Freshwater bathing is one of the main treatment options available against amoebic gill disease (AGD) affecting multiple fish hosts in mariculture systems. Prevailing freshwater treatments are designed to be long enough to kill Neoparamoeba perurans, the ectoparasite causing AGD, which may select for freshwater tolerance. Here, we tested whether using shorter, sublethal freshwater treatment durations are a viable alternative to lethal ones for N. perurans (2-4 hr). Under in vitro conditions, gill-isolated N. perurans attached to plastic substrate in sea water lifted off after ≥2 min in freshwater, but survival was not impacted until 60 min. In an in vivo experiment, AGD-affected Atlantic salmon Salmo salar subjected daily to 30 min (sublethal to N. perurans) and 120 min (lethal to N. perurans) freshwater treatments for 6 days consistently reduced N. perurans cell numbers on gills (based on qPCR analysis) compared to daily 3 min freshwater or seawater treatments for 6 days. Our results suggest that targeting cell detachment rather than cell death with repeated freshwater treatments of shorter duration than typical baths could be used in AGD management. However, the consequences of modifying the intensity of freshwater treatment regimes on freshwater tolerance evolution in N. perurans populations require careful consideration. © 2018 John Wiley & Sons Ltd.

  9. Gilles de la Tourette's syndrome in a patient with 47(XXX) syndrome: a case report

    PubMed Central

    2011-01-01

    Introduction To the best of our knowledge, this is the first report of a comorbidity between Gilles de la Tourette's syndrome and 47 (XXX) syndrome. The clinical picture of Gilles de la Tourette's Syndrome is well described, while 47 (XXX) syndrome is much more rare and has a broader spectrum of possible phenotypic presentations. Case presentation An Italian Caucasian girl was referred at the age of 11 to our Rehabilitation Center for anxiety and learning difficulties. The girl had already been diagnosed as having 47(XXX) syndrome; she had some rather typical features of the chromosomal abnormality, but she also showed a high level of anxiety and the presence of motor and vocal tics. When an accurate history was taken, a diagnosis of Gilles de la Tourette's Syndrome emerged. Conclusions The possible interaction between peculiar features of these two syndromes in terms of neuropsychological and affective functioning is both interesting for the specific case and to hypothesize models of rehabilitation for patients with one or both syndromes. Executive functions are specifically reduced in both syndromes, therefore it might be hard to discriminate the contribution of each one to the general impairment; the same applies to anxiety. Moreover, mental retardation (with a significantly lower verbal cognitive functioning) poses relevant problems when suggesting cognitive behavioral or psychoeducational rehabilitative approaches. PMID:22054059

  10. Genetics Coupled to Quantitative Intact Proteomics Links Heritable Aphid and Endosymbiont Protein Expression to Circulative Polerovirus Transmission▿ †

    PubMed Central

    Cilia, M.; Tamborindeguy, C.; Fish, T.; Howe, K.; Thannhauser, T. W.; Gray, S.

    2011-01-01

    Yellow dwarf viruses in the family Luteoviridae, which are the causal agents of yellow dwarf disease in cereal crops, are each transmitted most efficiently by different species of aphids in a circulative manner that requires the virus to interact with a multitude of aphid proteins. Aphid proteins differentially expressed in F2 Schizaphis graminum genotypes segregating for the ability to transmit Cereal yellow dwarf virus-RPV (CYDV-RPV) were identified using two-dimensional difference gel electrophoresis (DIGE) coupled to either matrix-assisted laser desorption ionization-tandem mass spectrometry or online nanoscale liquid chromatography coupled to electrospray tandem mass spectrometry. A total of 50 protein spots, containing aphid proteins and proteins from the aphid's obligate and maternally inherited bacterial endosymbiont, Buchnera, were identified as differentially expressed between transmission-competent and refractive aphids. Surprisingly, in virus transmission-competent F2 genotypes, the isoelectric points of the Buchnera proteins did not match those in the maternal Buchnera proteome as expected, but instead they aligned with the Buchnera proteome of the transmission-competent paternal parent. Among the aphid proteins identified, many were involved in energy metabolism, membrane trafficking, lipid signaling, and the cytoskeleton. At least eight aphid proteins were expressed as heritable, isoelectric point isoform pairs, one derived from each parental lineage. In the F2 genotypes, the expression of aphid protein isoforms derived from the competent parental lineage aligned with the virus transmission phenotype with high precision. Thus, these isoforms are candidate biomarkers for CYDV-RPV transmission in S. graminum. Our combined genetic and DIGE approach also made it possible to predict where several of the proteins may be expressed in refractive aphids with different barriers to transmission. Twelve proteins were predicted to act in the hindgut of the aphid

  11. Na⁺/K⁺-ATPase α1 mRNA expression in the gill and rectal gland of the Atlantic stingray, Dasyatis sabina, following acclimation to increased salinity.

    PubMed

    Evans, Andrew N; Lambert, Faith N

    2015-06-05

    The salt-secreting rectal gland plays a major role in elasmobranch osmoregulation, facilitating ion balance in hyperosmotic environments in a manner analogous to the teleost gill. Several studies have examined the central role of the sodium pump Na(+)/K(+)-ATPase in osmoregulatory tissues of euryhaline elasmobranch species, including regulation of Na(+)/K(+)-ATPase activity and abundance in response to salinity acclimation. However, while the transcriptional regulation of Na(+)/K(+)-ATPase in the teleost gill has been well documented the potential for mRNA regulation to facilitate rectal gland plasticity during salinity acclimation in elasmobranchs has not been examined. Therefore, in this study we acclimated Atlantic stingrays, Dasyatis sabina (Lesueur) from 11 to 34 ppt salinity over 3 days, and examined changes in plasma components as well as gill and rectal gland Na(+)/K(+)-ATPase α1 (atp1a1) mRNA expression. Acclimation to increased salinity did not affect hematocrit but resulted in significant increases in plasma osmolality, chloride and urea. Rectal gland atp1a1 mRNA expression was higher in 34 ppt-acclimated D. sabina vs. There was no significant change in gill atp1a1 mRNA expression, however mRNA expression of this gene in the gill and rectal gland were negatively correlated. This study demonstrates regulation of atp1a1 in the elasmobranch salt-secreting gland in response to salinity acclimation and a negative relationship between rectal gland and gill atp1a1 expression. These results support the hypothesis that the gill and rectal gland play opposing roles in ion balance with the gill potentially facilitating ion uptake in hypoosmotic environments. Future studies should further examine this possibility as well as potential differences in the regulation of Na(+)/K(+)-ATPase gene expression between euryhaline and stenohaline elasmobranch species.

  12. Evolutionary history of the European whitefish Coregonus lavaretus (L.) species complex as inferred from mtDNA phylogeography and gill-raker numbers.

    PubMed

    Østbye, K; Bernatchez, L; Naesje, T F; Himberg, K-J M; Hindar, K

    2005-12-01

    We compared mitochondrial DNA and gill-raker number variation in populations of the European whitefish Coregonus lavaretus (L.) species complex to illuminate their evolutionary history, and discuss mechanisms behind diversification. Using single-strand conformation polymorphism (SSCP) and sequencing 528 bp of combined parts of the cytochrome oxidase b (cyt b) and NADH dehydrogenase subunit 3 (ND3) mithochondrial DNA (mtDNA) regions, we documented phylogeographic relationships among populations and phylogeny of mtDNA haplotypes. Demographic events behind geographical distribution of haplotypes were inferred using nested clade analysis (NCA) and mismatch distribution. Concordance between operational taxonomical groups, based on gill-raker numbers, and mtDNA patterns was tested. Three major mtDNA clades were resolved in Europe: a North European clade from northwest Russia to Denmark, a Siberian clade from the Arctic Sea to southwest Norway, and a South European clade from Denmark to the European Alps, reflecting occupation in different glacial refugia. Demographic events inferred from NCA were isolation by distance, range expansion, and fragmentation. Mismatch analysis suggested that clades which colonized Fennoscandia and the Alps expanded in population size 24 500-5800 years before present, with minute female effective population sizes, implying small founder populations during colonization. Gill-raker counts did not commensurate with hierarchical mtDNA clades, and poorly with haplotypes, suggesting recent origin of gill-raker variation. Whitefish designations based on gill-raker numbers were not associated with ancient clades. Lack of congruence in morphology and evolutionary lineages implies that the taxonomy of this species complex should be reconsidered.

  13. Salinity-induced regulation of the myo-inositol biosynthesis pathway in tilapia gill epithelium

    PubMed Central

    Sacchi, Romina; Li, Johnathon; Villarreal, Fernando; Gardell, Alison M.; Kültz, Dietmar

    2013-01-01

    SUMMARY The myo-inositol biosynthesis (MIB) pathway converts glucose-6-phosphate to the compatible osmolyte myo-inositol that protects cells from osmotic stress. Using proteomics, the enzymes that constitute the MIB pathway, myo-inositol phosphate synthase (MIPS) and inositol monophosphatase 1 (IMPA1), are identified in tilapia (Oreochromis mossambicus) gill epithelium. Targeted, quantitative, label-free proteomics reveals that they are both upregulated during salinity stress. Upregulation is stronger when fish are exposed to severe (34 ppt acute and 90 ppt gradual) relative to moderate (70 ppt gradual) salinity stress. IMPA1 always responds more strongly than MIPS, suggesting that MIPS is more stable during salinity stress. MIPS is N-terminally acetylated and the corresponding peptide increases proportionally to MIPS protein, while non-acetylated N-terminal peptide is not detectable, indicating that MIPS acetylation is constitutive and may serve to stabilize the protein. Hyperosmotic induction of MIPS and IMPA1 is confirmed using western blot and real-time qPCR and is much higher at the mRNA than at the protein level. Two distinct MIPS mRNA variants are expressed in the gill, but one is more strongly regulated by salinity than the other. A single MIPS gene is encoded in the tilapia genome whereas the zebrafish genome lacks MIPS entirely. The genome of euryhaline tilapia contains four IMPA genes, two of which are expressed, but only one is salinity regulated in gill epithelium. The genome of stenohaline zebrafish contains a single IMPA gene. We conclude that the MIB pathway represents a major salinity stress coping mechanism that is regulated at multiple levels in euryhaline fish but absent in stenohaline zebrafish. PMID:24072791

  14. Developing a machine vision system for simultaneous prediction of freshness indicators based on tilapia (Oreochromis niloticus) pupil and gill color during storage at 4°C.

    PubMed

    Shi, Ce; Qian, Jianping; Han, Shuai; Fan, Beilei; Yang, Xinting; Wu, Xiaoming

    2018-03-15

    The study assessed the feasibility of developing a machine vision system based on pupil and gill color changes in tilapia for simultaneous prediction of total volatile basic nitrogen (TVB-N), thiobarbituric acid (TBA) and total viable counts (TVC) during storage at 4°C. The pupils and gills were chosen and color space conversion among RGB, HSI and L ∗ a ∗ b ∗ color spaces was performed automatically by an image processing algorithm. Multiple regression models were established by correlating pupil and gill color parameters with TVB-N, TVC and TBA (R 2 =0.989-0.999). However, assessment of freshness based on gill color is destructive and time-consuming because gill cover must be removed before images are captured. Finally, visualization maps of spoilage based on pupil color were achieved using image algorithms. The results show that assessment of tilapia pupil color parameters using machine vision can be used as a low-cost, on-line method for predicting freshness during 4°C storage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Rules that Need to Be Broken? Canada's McGill University Announces MBA Tuition Fee Increase in Breach of Provincial Ministry of Education Regulation

    ERIC Educational Resources Information Center

    Observatory on Borderless Higher Education, 2010

    2010-01-01

    The Ministry of Education in Canada's province of Quebec is threatening to significantly reduce McGill University (McGill)'s operating grant in response to a proposed Master's of Business Administration (MBA) tuition fee increase. From September 2010, the university's Desautels Faculty of Management is aiming to substantially raise the current…

  16. Malformations of the gill filaments of the ruffe Gymnocephalus cernuus (L.) (Pisces) caused by echinostomatid metacercariae.

    PubMed

    Molnár, K; Gibson, D I; Majoros, G; Székely, C; Sándor, D; Cech, G

    2016-11-01

    In parasite surveys of fishes from Lake Balaton and its tributaries in Hungary, infections with metacercariae of a species of the digenean genus Echinochasmus (Trematoda: Echinostomatidae) were found in seven species of fish. In ruffe, Gymnocephalus cernuus, malformations of the gill filaments apparently caused by these infections were observed. These malformations were in the form of bifurcations of the filaments at about their mid-length. At the point where the filaments bifurcate, an Echinochasmus metacercaria was always embedded in the cartilaginous ray of the gill filament. All specimens of the ruffe were found to be infected by these metacercariae, and each ruffe specimen was infected by 30-300 metacercariae. Such a bifurcation was found in all of the ruffe specimens, but, apart from these gill malformations, the metacercariae produced only local changes in the cartilage. In the other six infected fish species, only local signs were observed in the cartilage. Experimental infections of chicks with metacercariae resulted in the finding of the sexual adult (marita) of an unidentified species of Echinochasmus. ITS sequences of the adult and metacercaria corresponded with each other, and also with a cercaria isolated from a gravel snail (Lithoglyphus naticoides), with a 99.5-100% similarity. © 2016 John Wiley & Sons Ltd.

  17. Control of gill ventilation and air-breathing in the bowfin amia calva

    PubMed

    Hedrick; Jones

    1999-01-01

    The purpose of this study was to investigate the roles of branchial and gas bladder reflex pathways in the control of gill ventilation and air-breathing in the bowfin Amia calva. We have previously determined that bowfin use two distinct air-breathing mechanisms to ventilate the gas bladder: type I air breaths are characterized by exhalation followed by inhalation, are stimulated by aquatic or aerial hypoxia and appear to regulate O2 gas exchange; type II air breaths are characterized by inhalation alone and possibly regulate gas bladder volume and buoyancy. In the present study, we test the hypotheses (1) that gill ventilation and type I air breaths are controlled by O2-sensitive chemoreceptors located in the branchial region, and (2) that type II air breaths are controlled by gas bladder mechanosensitive stretch receptors. Hypothesis 1 was tested by examining the effects of partial or complete branchial denervation of cranial nerves IX and X to the gill arches on gill ventilation frequency (fg) and the proportion of type I air breaths during normoxia and hypoxia; hypothesis II was tested by gas bladder inflation and deflation. Following complete bilateral branchial denervation, fg did not differ from that of sham-operated control fish; in addition, fg was not significantly affected by aquatic hypoxia in sham-operated or denervated fish. In sham-operated fish, aquatic hypoxia significantly increased overall air-breathing frequency (fab) and the percentage of type I breaths. In fish with complete IX-X branchial denervation, fab was also significantly increased during aquatic hypoxia, but there were equal percentages of type I and type II air breaths. Branchial denervation did not affect the frequency of type I air breaths during aquatic hypoxia. Gas bladder deflation via an indwelling catheter resulted in type II breaths almost exclusively; furthermore, fab was significantly correlated with the volume removed from the gas bladder, suggesting a volume

  18. Plant-mediated horizontal transmission of Rickettsia endosymbiont between different whitefly species.

    PubMed

    Li, Yi-Han; Ahmed, Muhammad Z; Li, Shao-Jian; Lv, Ning; Shi, Pei-Qiong; Chen, Xiao-Sheng; Qiu, Bao-Li

    2017-12-01

    A growing number of studies have revealed the presence of closely related endosymbionts in phylogenetically distant arthropods, indicating horizontal transmission of these bacteria. Here we investigated the interspecific horizontal transmission of Rickettsia between two globally invasive whitefly species, Bemisia tabaci MEAM1 and B. tabaci MED, via cotton plants. We found both scattered and confined distribution patterns of Rickettsia in these whiteflies. After entering cotton leaves, Rickettsia was restricted to the leaf phloem vessels and could be taken up by both species of the Rickettsia-free whitefly adults, but only the scattered pattern was observed in the recipient whiteflies. Both the relative quantity of Rickettsia and the efficiency of transmitting Rickettsia into cotton leaves were significantly higher in MEAM1 females than in MED females. The retention time of Rickettsia transmitted from MEAM1 into cotton leaves was at least 5 days longer than that of MED. Phylogenetic analysis based on 16S rRNA and gltA genes confirmed that the Rickettsia extracted from the donor MEAM1, the cotton leaves, the recipient MEAM1 and the recipient MED were all identical. We conclude that cotton plants can mediate horizontal transmission of Rickettsia between different insect species, and that the transmission dynamics of Rickettsia vary with different host whitefly species. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Histopathological changes on the gills of asp (Aspius aspius) and European catfish (Silurus glanis) caused by Lamproglena pulchella and a Lamproglena sp. (Copepoda: Lernaeidae), respectively.

    PubMed

    Molnár, K; Avenant-Oldewage, A; Sellyei, B; Varga, Á; Székely, C

    2018-01-01

    In a parasitology survey of Hungarian fishes, heavy infections of parasitic copepods Lamproglena pulchella and a Lamproglena sp. were found in the gills of the asp and the European catfish, respectively. Individuals of both fish species were emaciated and infected with hundreds of Lamproglena. Copepods located close to the tip of gill filaments and formed a depression at the attachment sites. In histological sections, cell degenerations and local haemorrhages were present adjacent to the maxillipeds and where the maxillary claws pierced the gill tissue. Around maxillae and in the midgut of the Lamproglena, damaged piscine blood cells and remains of the gill tissue were observed. Host reaction was expressed by proliferation of epithelioid cells, increase in both number and size of goblet and mast cells and formation of giant cells. © 2017 John Wiley & Sons Ltd.

  20. Attenuation of UV-B exposure-induced inflammation by abalone hypobranchial gland and gill extracts

    PubMed Central

    Kuanpradit, Chitraporn; Jaisin, Yamaratee; Jungudomjaroen, Sumon; Mitu, Shahida Akter; Puttikamonkul, Srisombat; Sobhon, Prasert; Cummins, Scott F.

    2017-01-01

    Exposure to solar ultraviolet B (UV-B) is a known causative factor for many skin complications such as wrinkles, black spots, shedding and inflammation. Within the wavelengths 280–320 nm, UV-B can penetrate to the epidermal level. This investigation aimed to test whether extracts from the tropical abalone [Haliotis asinina (H. asinina)] mucus-secreting tissues, the hypobranchial gland (HBG) and gills, were able to attenuate the inflammatory process, using the human keratinocyte HaCaT cell line. Cytotoxicity of abalone tissue extracts was determined using an AlamarBlue viability assay. Results showed that HaCaT cells could survive when incubated in crude HBG and gill extracts at concentrations between <11.8 and <16.9 μg/ml, respectively. Subsequently, cell viability was compared between cultured HaCaT cells exposed to serial doses of UV-B from 1 to 11 (x10) mJ/cm2 and containing 4 different concentrations of abalone extract from both the HBG and gill (0, 0.1, 2.5, 5 μg/ml). A significant increase in cell viability was observed (P<0.001) following treatment with 2.5 and 5 μg/ml extract. Without extract, cell viability was significantly reduced upon exposure to UV-B at 4 mJ/cm2. Three morphological changes were observed in HaCaT cells following UV-B exposure, including i) condensation of cytoplasm; ii) shrunken cells and plasma membrane bubbling; and iii) condensation of chromatin material. A calcein AM-propidium iodide live-dead assay showed that cells could survive cytoplasmic condensation, yet cell death occurred when damage also included membrane bubbling and chromatin changes. Western blot analysis of HaCaT cell COX-2, p38, phospho-p38, SPK/JNK and phospho-SPK/JNK following exposure to >2.5 μg/ml extract showed a significant decrease in intensity for COX-2, phospho-p38 and phospho-SPK/JNK. The present study demonstrated that abalone extracts from the HGB and gill can attenuate inflammatory proteins triggered by UV-B. Hence, the contents of abalone extract

  1. Marine amoebae with cytoplasmic and perinuclear symbionts deeply branching in the Gammaproteobacteria

    PubMed Central

    Schulz, Frederik; Tyml, Tomáš; Pizzetti, Ilaria; Dyková, Iva; Fazi, Stefano; Kostka, Martin; Horn, Matthias

    2015-01-01

    Amoebae play an important ecological role as predators in microbial communities. They also serve as niche for bacterial replication, harbor endosymbiotic bacteria and have contributed to the evolution of major human pathogens. Despite their high diversity, marine amoebae and their association with bacteria are poorly understood. Here we describe the isolation and characterization of two novel marine amoebae together with their bacterial endosymbionts, tentatively named ‘Candidatus Occultobacter vannellae’ and ‘Candidatus Nucleophilum amoebae’. While one amoeba strain is related to Vannella, a genus common in marine habitats, the other represents a novel lineage in the Amoebozoa. The endosymbionts showed only low similarity to known bacteria (85–88% 16S rRNA sequence similarity) but together with other uncultured marine bacteria form a sister clade to the Coxiellaceae. Using fluorescence in situ hybridization and transmission electron microscopy, identity and intracellular location of both symbionts were confirmed; one was replicating in host-derived vacuoles, whereas the other was located in the perinuclear space of its amoeba host. This study sheds for the first time light on a so far neglected group of protists and their bacterial symbionts. The newly isolated strains represent easily maintainable model systems and pave the way for further studies on marine associations between amoebae and bacterial symbionts. PMID:26303516

  2. Structural characterization of the cell division cycle in Strigomonas culicis, an endosymbiont-bearing trypanosomatid.

    PubMed

    Brum, Felipe Lopes; Catta-Preta, Carolina Moura Costa; de Souza, Wanderley; Schenkman, Sergio; Elias, Maria Carolina; Motta, Maria Cristina Machado

    2014-02-01

    Strigomonas culicis (previously referred to as Blastocrithidia culicis) is a monoxenic trypanosomatid harboring a symbiotic bacterium, which maintains an obligatory relationship with the host protozoan. Investigations of the cell cycle in symbiont harboring trypanosomatids suggest that the bacterium divides in coordination with other host cell structures, particularly the nucleus. In this study we used light and electron microscopy followed by three-dimensional reconstruction to characterize the symbiont division during the cell cycle of S. culicis. We observed that during this process, the symbiotic bacterium presents different forms and is found at different positions in relationship to the host cell structures. At the G1/S phase of the protozoan cell cycle, the endosymbiont exhibits a constricted form that appears to elongate, resulting in the bacterium division, which occurs before kinetoplast and nucleus segregation. During cytokinesis, the symbionts are positioned close to each nucleus to ensure that each daughter cell will inherit a single copy of the bacterium. These observations indicated that the association of the bacterium with the protozoan nucleus coordinates the cell cycle in both organisms.

  3. The absence of ion-regulatory suppression in the gills of the aquatic air-breathing fish Trichogaster lalius during oxygen stress.

    PubMed

    Huang, Chun-Yen; Lin, Hsueh-Hsi; Lin, Cheng-Huang; Lin, Hui-Chen

    2015-01-01

    The strategy for most teleost to survive in hypoxic or anoxic conditions is to conserve energy expenditure, which can be achieved by suppressing energy-consuming activities such as ion regulation. However, an air-breathing fish can cope with hypoxic stress using a similar adjustment or by enhancing gas exchange ability, both behaviorally and physiologically. This study examined Trichogaster lalius, an air-breathing fish without apparent gill modification, for their gill ion-regulatory abilities and glycogen utilization under a hypoxic treatment. We recorded air-breathing frequency, branchial morphology, and the expression of ion-regulatory proteins (Na(+)/K(+)-ATPase and vacuolar-type H(+)-ATPase) in the 1(st) and 4(th) gills and labyrinth organ (LO), and the expression of glycogen utilization (GP, glycogen phosphorylase protein expression and glycogen content) and other protein responses (catalase, CAT; carbonic anhydrase II, CAII; heat shock protein 70, HSP70; hypoxia-inducible factor-1α, HIF-1α; proliferating cell nuclear antigen, PCNA; superoxidase dismutase, SOD) in the gills of T. lalius after 3 days in hypoxic and restricted conditions. No morphological modification of the 1(st) and 4(th) gills was observed. The air-breathing behavior of the fish and CAII protein expression both increased under hypoxia. Ion-regulatory abilities were not suppressed in the hypoxic or restricted groups, but glycogen utilization was enhanced within the groups. The expression of HIF-1α, HSP70 and PCNA did not vary among the treatments. Regarding the antioxidant system, decreased CAT enzyme activity was observed among the groups. In conclusion, during hypoxic stress, T. lalius did not significantly reduce energy consumption but enhanced gas exchange ability and glycogen expenditure. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Quality of life in adults with Gilles de la Tourette Syndrome.

    PubMed

    Jalenques, Isabelle; Galland, Fabienne; Malet, Laurent; Morand, Dominique; Legrand, Guillaume; Auclair, Candy; Hartmann, Andreas; Derost, Philippe; Durif, Franck

    2012-08-13

    Few studies have used standardized QOL instruments to assess the quality of life (QOL) in Gilles de la Tourette Syndrome (GTS) patients. This work investigates the QOL of adult GTS patients and examines the relationships between physical and psychological variables and QOL. Epidemiological investigation by anonymous national postal survey of QOL of patients of the French Association of Gilles de la Tourette Syndrome (AFGTS) aged 16 years or older. The clinical and QOL measures were collected by four questionnaires: a sociodemographic and GTS-related symptoms questionnaire, the World Health Organization Quality Of Life questionnaire (WHOQOL-26), the Functional Status Questionnaire (FSQ), and a self-rating questionnaire on psychiatric symptoms (SCL-90), all validated in French. We used stepwise regression analysis to explicitly investigate the relationships between physical and psychological variables and QOL domains in GTS. Questionnaires were posted to 303 patients, of whom 167 (55%) completed and returned them. Our results, adjusted for age and gender, show that patients with GTS have a worse QOL than the general healthy population. In particular, the "Depression" psychological variable was a significant predictor of impairment in all WHOQOL-26 domains, psychological but also physical and social. The present study demonstrates a strong relationship between QOL in GTS and psychiatric symptoms, in particular those of depression.

  5. An assay of optimal cytochrome c oxidase activity in fish gills.

    PubMed

    Hu, Yau-Chung; Chung, Meng-Han; Lee, Tsung-Han

    2018-07-15

    Cytochrome c oxidase (COX) catalyzes the terminal oxidation reaction in the electron transport chain (ETC) of aerobic respiratory systems. COX activity is an important indicator for the evaluation of energy production by aerobic respiration in various tissues. On the basis of the respiratory characteristics of muscle, we established an optimal method for the measurement of maximal COX activity. To validate the measurement of cytochrome c absorbance, different ionic buffer concentrations and tissue homogenate protein concentrations were used to investigate COX activity. The results showed that optimal COX activity is achieved when using 50-100 μg fish gill homogenate in conjunction with 75-100 mM potassium phosphate buffer. Furthermore, we compared branchial COX activities among three species of euryhaline teleost (Chanos chanos, Oreochromis mossambicus, and Oryzias dancena) to investigate differences in aerobic respiration of osmoregulatory organs. COX activities in the gills of these three euryhaline species were compared with COX subunit 4 (COX4) protein levels. COX4 protein abundance and COX activity patterns in the three species occurring in environments with various salinities increased when fish encountered salinity challenges. This COX activity assay therefore provides an effective and accurate means of assessing aerobic metabolism in fish. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Nickel affects gill and muscle development in oriental fire-bellied toad (Bombina orientalis) embryos.

    PubMed

    Park, Chan Jin; Song, Sang Ha; Kim, Dae Han; Gye, Myung Chan

    2017-01-01

    The developmental toxicity of nickel was examined in the embryos of Bombina orientalis, a common amphibian in Korea. Based on a standard frog embryo teratogenesis assay, the LC 50 and EC 50 for malformation of nickel after 168h of treatment were 33.8μM and 5.4μM, respectively. At a lethal concentration (100μM), nickel treatment decreased the space between gill filaments and caused epithelial swelling and abnormal fusion of gill filaments. These findings suggest that nickel affects the functional development of gills, leading to embryonic death. At sublethal concentrations (1-10μM), nickel produced multiple embryonic abnormalities, including bent tail and tail dysplasia. At 10μM, nickel significantly decreased tail length and tail muscle fiber density in tadpoles, indicating inhibition of myogenic differentiation. Before hatching, the pre-muscular response to muscular response stages (stages 26-31) were the most sensitive period to nickel with respect to tail muscle development. During these stages, MyoD mRNA was upregulated, whereas myogenic regulatory factor 4 mRNA was downregulated by 0.1μM nickel. Calcium-dependent kinase activities in muscular response stage embryos were significantly decreased by nickel, whereas these activities were restored by exogenous calcium. In tadpoles, 10μM nickel significantly decreased the expression of the myosin heavy chain and the 12/101 muscle marker protein in the tail. Expression was restored by exogenous calcium. Our results indicate that nickel affects muscle development by disrupting calcium-dependent myogenesis in developing B. orientalis embryos. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. A primary fish gill cell culture model to assess pharmaceutical uptake and efflux: evidence for passive and facilitated transport.

    PubMed

    Stott, Lucy C; Schnell, Sabine; Hogstrand, Christer; Owen, Stewart F; Bury, Nic R

    2015-02-01

    The gill is the principle site of xenobiotic transfer to and from the aqueous environment. To replace, refine or reduce (3Rs) the large numbers of fish used in in vivo uptake studies an effective in vitro screen is required that mimics the function of the teleost gill. This study uses a rainbow trout (Oncorhynchus mykiss) primary gill cell culture system grown on permeable inserts, which tolerates apical freshwater thus mimicking the intact organ, to assess the uptake and efflux of pharmaceuticals across the gill. Bidirectional transport studies in media of seven pharmaceuticals (propranolol, metoprolol, atenolol, formoterol, terbutaline, ranitidine and imipramine) showed they were transported transcellularly across the epithelium. However, studies conducted in water showed enhanced uptake of propranolol, ranitidine and imipramine. Concentration-equilibrated conditions without a concentration gradient suggested that a proportion of the uptake of propranolol and imipramine is via a carrier-mediated process. Further study using propranolol showed that its transport is pH-dependent and at very low environmentally relevant concentrations (ng L(-1)), transport deviated from linearity. At higher concentrations, passive uptake dominated. Known inhibitors of drug transport proteins; cimetidine, MK571, cyclosporine A and quinidine inhibited propranolol uptake, whilst amantadine and verapamil were without effect. Together this suggests the involvement of specific members of SLC and ABC drug transporter families in pharmaceutical transport. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Metal concentration in the gill, gastrointestinal tract, and carcass of white suckers (Catostomus commersoni) in relation to lake acidity

    USGS Publications Warehouse

    Haines, T.A.; Brumbaugh, W.G.

    1994-01-01

    Adult white suckers were collected from four lakes in Maine that ranged in pH from 7.0 to 5.4. The gastrointestinal tract and remainder of the carcass of fishes of similar age and size from each lake, and gills from additional fishes of similar size, were analyzed for Al, Cd, Pb, and Zn. Carcasses were also analyzed for Hg. Concentrations of Al, Cd, and Pb were highest in the gastrointestinal tract and lowest in the carcass; Zn concentration was highest in the gill. For carcass, all metals except Al differed significantly among lakes, for gill tissue Cd and Pb differed, and for gastrointestinal tract, only Cd differed among lakes. Where differences were significant, patterns among lakes were similar in each tissue analyzed. Concentrations of Cd, Hg, and Pb were negatively correlated with lake water pH, acid neutralizing capacity (ANC), Ca, and lake:watershed area, and positively correlated with lake water SO4, indicating that concentrations were higher in fish from more acidic lakes. Zinc concentrations in gills were unrelated to lake acidity, and carcass concentrations were higher in the less acidic lakes, which is the opposite of the pattern for the other metals studied. Zinc in gastrointestinal tract did not differ among lakes. Although the lakes we studied were located in undisturbed watersheds and did not receive any point source discharges, fish metal concentrations were comparable to or higher than those reported from waters receiving industrial discharges.

  9. Oxidative stress as a mechanism for toxicity of 2,4-dichlorophenoxyacetic acid (2,4-D): studies with goldfish gills.

    PubMed

    Atamaniuk, Tetiana M; Kubrak, Olga I; Storey, Kenneth B; Lushchak, Volodymyr I

    2013-12-01

    The effects of exposure to the widely used herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), at environmentally permitted (1 mg L(-1)), slightly toxic (10 mg L(-1)), and highly toxic (100 mg L(-1)) concentrations were analyzed in gills of goldfish, Carassius auratus, a popular fish model for ecotoxicological research. Fish were exposed to the pesticide in water for 96 h and an additional group of fish were treated by the highest 2,4-D concentration and then allowed to recover for further 96 h. Among markers of oxidative stress, goldfish exposure to 2,4-D did not affect carbonyl protein levels in the gills, but fish exposure to 100 mg L(-1) of 2,4-D enhanced lipid peroxide concentrations (by 58 %) and oxidized glutathione levels (by 49 %), the latter also significantly increasing (by 33 %) oxidized/total glutathione ratio. Activities of three enzymes of antioxidant defence also increased under 2,4-D exposure: superoxide dismutase (by 29-35 %), catalase (by 41 %), and glutathione peroxidase (by 19-33 %). Activities of other antioxidant associated enzymes as well as other potential markers of stress (e.g. aminotransferase enzymes, acetylcholinesterase, lactate metabolism) showed little or no response in gills to 2,4-D exposure. However, virtually all affected parameters returned to control values during recovery period. A combination of selected indices of oxidative stress and antioxidant defence, measured in fish gills, may provide to be effective biomarkers to assess environmental hazards of 2,4-D to freshwater ecosystems.

  10. Thelohanellus toyamai infecting the gills of koi Cyprinus carpio in the eastern United States

    USDA-ARS?s Scientific Manuscript database

    A myxozoan resembling species of Thelohanellus was isolated from the gills of koi (Cyprinus carpio) cultured in North Carolina. Plasmodia measuring ~ 200µm in diameter contained tear-shaped myxospores containing a singly pyriform polar capsule. The spore body was concave on one side, measuring, 1...

  11. Theohanellus toyamai infecting the gills of Koi cyprinus carpio in the Eastern United States

    USDA-ARS?s Scientific Manuscript database

    A myxozoan resembling species of Thelohanellus was isolated from the gills of koi (Cyprinus carpio) cultured in North Carolina. Plasmodia measuring ~ 200µm in diameter contained tear-shaped myxospores containing a single pyriform polar capsule. The spore body was concave on one side, measuring 16....

  12. Effect of Salinity and Alkalinity on Luciobarbus capito Gill Na+/K+-ATPase Enzyme Activity, Plasma Ion Concentration, and Osmotic Pressure

    PubMed Central

    2016-01-01

    We evaluated the individual and combined effects of salinity and alkalinity on gill Na+/K+-ATPase enzyme activity, plasma ion concentration, and osmotic pressure in Luciobarbus capito. Increasing salinity concentrations (5, 8, 11, and 14 g/L) were associated with an initial increase and then decrease in L. capito gill Na+/K+-ATPase activity. Activity was affected by the difference between internal and external Na+ ion concentrations and osmotic pressure (P < 0.05). Both plasma ion (Na+, K+, and Cl−) concentration and osmotic pressure increased significantly (P < 0.05). An increase in alkalinity (15, 30, 45, and 60 mM) caused a significant increase in plasma K+ and urea nitrogen concentrations (P < 0.05) but had no effect on either plasma osmotic pressure or gill filament ATPase activity. In the two-factor experiment, the saline-alkaline interaction caused a significant increase in plasma ion (Na+, Cl−, and urea nitrogen) and osmotic pressure (P < 0.05). Variance analysis revealed that salinity, alkalinity, and their interaction significantly affected osmotic pressure, with salinity being most affected, followed by alkalinity, and their interaction. Gill filament ATPase activity increased at first and then decreased; peak values were observed in the orthogonal experiment group at a salinity of 8 g/L and alkalinity of 30 mM. PMID:27981049

  13. Insect symbionts in food webs

    PubMed Central

    Henry, Lee M.

    2016-01-01

    Recent research has shown that the bacterial endosymbionts of insects are abundant and diverse, and that they have numerous different effects on their hosts' biology. Here we explore how insect endosymbionts might affect the structure and dynamics of insect communities. Using the obligate and facultative symbionts of aphids as an example, we find that there are multiple ways that symbiont presence might affect food web structure. Many symbionts are now known to help their hosts escape or resist natural enemy attack, and others can allow their hosts to withstand abiotic stress or affect host plant use. In addition to the direct effect of symbionts on aphid phenotypes there may be indirect effects mediated through trophic and non-trophic community interactions. We believe that by using data from barcoding studies to identify bacterial symbionts, this extra, microbial dimension to insect food webs can be better elucidated. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481779

  14. Host-switching by a vertically transmitted rhabdovirus in Drosophila.

    PubMed

    Longdon, Ben; Wilfert, Lena; Osei-Poku, Jewelna; Cagney, Heather; Obbard, Darren J; Jiggins, Francis M

    2011-10-23

    A diverse range of endosymbionts are found within the cells of animals. As these endosymbionts are normally vertically transmitted, we might expect their evolutionary history to be dominated by host-fidelity and cospeciation with the host. However, studies of bacterial endosymbionts have shown that while this is true for some mutualists, parasites often move horizontally between host lineages over evolutionary timescales. For the first time, to our knowledge, we have investigated whether this is also the case for vertically transmitted viruses. Here, we describe four new sigma viruses, a group of vertically transmitted rhabdoviruses previously known in Drosophila. Using sequence data from these new viruses, and the previously described sigma viruses, we show that they have switched between hosts during their evolutionary history. Our results suggest that sigma virus infections may be short-lived in a given host lineage, so that their long-term persistence relies on rare horizontal transmission events between hosts.

  15. Prospection and Evaluation of (Hemi) Cellulolytic Enzymes Using Untreated and Pretreated Biomasses in Two Argentinean Native Termites

    PubMed Central

    Ben Guerrero, Emiliano; Arneodo, Joel; Bombarda Campanha, Raquel; Abrão de Oliveira, Patrícia; Veneziano Labate, Mônica T.; Regiani Cataldi, Thaís; Campos, Eleonora; Cataldi, Angel; Labate, Carlos A.; Martins Rodrigues, Clenilson; Talia, Paola

    2015-01-01

    Saccharum officinarum bagasse (common name: sugarcane bagasse) and Pennisetum purpureum (also known as Napier grass) are among the most promising feedstocks for bioethanol production in Argentina and Brazil. In this study, both biomasses were assessed before and after acid pretreatment and following hydrolysis with Nasutitermes aquilinus and Cortaritermes fulviceps termite gut digestome. The chemical composition analysis of the biomasses after diluted acid pretreatment showed that the hemicellulose fraction was partially removed. The (hemi) cellulolytic activities were evaluated in bacterial culture supernatants of termite gut homogenates grown in treated and untreated biomasses. In all cases, we detected significantly higher endoglucanase and xylanase activities using pretreated biomasses compared to untreated biomasses, carboxymethylcellulose and xylan. Several protein bands with (hemi) cellulolytic activity were detected in zymograms and two-dimensional gel electrophoresis. Some proteins of these bands or spots were identified as xylanolytic peptides by mass spectrometry. Finally, the diversity of cultured cellulolytic bacterial endosymbionts associated to both Argentinean native termite species was analyzed. This study describes, for the first time, bacterial endosymbionts and endogenous (hemi) cellulases of two Argentinean native termites as well as their potential application in degradation of lignocellulosic biomass for bioethanol production. PMID:26313257

  16. Citrobacter freundii impairs the phosphoryl transfer network in the gills of Rhamdia quelen: Impairment of bioenergetics homeostasis.

    PubMed

    Baldissera, Matheus D; Souza, Carine F; Junior, Guerino B; Moreira, Karen Luise S; da Veiga, Marcelo L; da Rocha, Maria Izabel U M; Baldisserotto, Bernardo

    2018-04-01

    The precise coupling of spatially separated intracellular adenosine triphosphate (ATP)-producing and ATP-consuming, catalyzed by creatine kinase (CK), adenylate kinase (AK), and pyruvate kinase (PK), is a critical process in the bioenergetics of tissues with high energy demand, such as the branchial tissue. The effects of Citrobacter freundii infection on gills remain poorly understood, limited only to histopathological studies. Thus, the aim of this study was to evaluate whether experimental infection by C. freundii impairs the enzymes of the phosphoryl transfer network in gills of silver catfish (Rhamdia quelen). The CK (cytosolic and mitochondrial) and AK activities decreased in infected compared to uninfected animals, while the PK activity did not differ between groups. The gill histopathology of infected animals revealed extensive degeneration with fusion and necrosis of secondary lamellae, detachment of superficial epithelium, aneurysm, vessel congestion and inflammatory process. Based on these evidences, the inhibition and absence of an efficient communication between CK compartments caused the impairment of the branchial bioenergetics homeostasis, which was not compensated by the augmentation on branchial AK activity in an attempt to restore energy homeostasis. In summary, these alterations contribute to disease pathogenesis linked to branchial tissue in animals infected with C. freundii. Copyright © 2018. Published by Elsevier Ltd.

  17. Stimulation of Cl- uptake and morphological changes in gill mitochondria-rich cells in freshwater tilapia (Oreochromis mossambicus).

    PubMed

    Chang, Il-Chi; Wei, Yuan-Yaw; Chou, Fong-In; Hwang, Pung-Pung

    2003-01-01

    The purpose of the present article is to examine the relationships between ion uptakes and morphologies of gill mitochondria-rich (MR) cells in freshwater tilapia. Tilapia were acclimated to three different artificial freshwaters (high Na [10 mM], high Cl [7.5 mM]; high Na, low Cl [0.02-0.07 mM], and low Na [0.5 mM], low Cl) for 1 wk, and then morphological measurements of gill MR cells were made and ion influxes were determined. The number and the apical size of wavy-convex MR cells positively associated with the level of Cl(-) influx. Conversely, Na(+) influx showed no positive correlation with the morphologies of MR cells. The dominant MR cell type in tilapia gills changed from deep-hole to wavy-convex within 6 h after acute transfer from a high-Cl(-) to a low-Cl(-) environment. Deep-hole MR cells became dominant 24-96 h after acute transfer from a low-Cl(-) to a high-Cl(-) environment. We conclude that wavy-convex MR cells associate with Cl(-) uptake but not Na(+) uptake, and the rapid formation of wavy-convex MR cells reflects the timely stimulation of Cl(-) uptake to recover the homeostasis of internal Cl(-) levels on acute challenge with low environmental Cl(-).

  18. Integrated responses of Na+/HCO3- cotransporters and V-type H+-ATPases in the fish gill and kidney during respiratory acidosis.

    PubMed

    Perry, S F; Furimsky, M; Bayaa, M; Georgalis, T; Shahsavarani, A; Nickerson, J G; Moon, T W

    2003-12-30

    Using degenerate primers, followed by 3' and 5' RACE and "long" PCR, a continuous 4050-bp cDNA was obtained and sequenced from rainbow trout (Oncorhynchus mykiss) gill. The cDNA included an open reading frame encoding a deduced protein of 1088 amino acids. A BLAST search of the GenBank protein database demonstrated that the trout gene shared high sequence similarity with several vertebrate Na(+)/HCO(3)(-) cotransporters (NBCs) and in particular, NBC1. Protein alignment revealed that the trout NBC is >80% identical to vertebrate NBC1s and phylogenetic analysis provided additional evidence that the trout NBC is indeed a homolog of NBC1. Using the same degenerate primers, a partial cDNA (404 bp) for NBC was obtained from eel (Anguilla rostrata) kidney. Analysis of the tissue distribution of trout NBC, as determined by Northern blot analysis and real-time PCR, indicated high transcript levels in several absorptive/secretory epithelia including gill, kidney and intestine and significant levels in liver. NBC mRNA was undetectable in eel gill by real-time PCR. In trout, the levels of gill NBC1 mRNA were increased markedly during respiratory acidosis induced by exposure to hypercarbia; this response was accompanied by a transient increase in branchial V-type H(+)-ATPase mRNA levels. Assuming that the branchial NBC1 is localised to basolateral membranes of gill cells and operates in the influx mode (HCO(3)(-) and Na(+) entry into the cell), it would appear that in trout, the expression of branchial NBC1 is transcriptionally regulated to match the requirements of gill pHi regulation rather than to match trans-epithelial HCO(3)(-) efflux requirements for systemic acid-base balance. By analogy with mammalian systems, NBC1 in the kidney probably plays a role in the tubular reabsorption of both Na(+) and HCO(3)(-). During periods of respiratory acidosis, levels of renal NBC1 mRNA increased (after a transient reduction) in both trout and eel, presumably to increase HCO(3

  19. Differential expression and induction of two carbonic anhydrase isoforms in the gills of the euryhaline green crab, Carcinus maenas, in response to low salinity.

    PubMed

    Serrano, Laetitia; Henry, Raymond P

    2008-06-01

    Two isoforms of the enzyme carbonic anhydrase (CA) from the gills of the euryhaline green crab were sequenced and identified; these were found to match the cytoplasmic (CAc) and membrane-associated (CAg) isoforms known from other species. The mRNA of the membrane-associated isoform is present in significantly higher levels of abundance in gills of crabs acclimated to 32 ppt, at which the crab is an osmotic and ionic conformer. Upon transfer to low salinity (15 ppt), in which the crab is an osmoregulator, however, the cytoplasmic isoform undergoes a rapid 100-fold increase in abundance in the posterior gills, becoming the dominant isoform. CAg increases 3-fold initially and then remains elevated through 14 days of low salinity acclimation. The induction of CAc mRNA is believed to be the molecular basis for the 20 fold increase in CA protein-specific activity during low salinity acclimation. The initial increase in CAc mRNA takes place at 6 h, and maximal levels of expression are achieved by 24 h; this precedes the induction of CA activity and is within the time in which hemolymph osmotic and ionic concentrations stabilize at new acclimated levels. The increase in expression of the CAg isoform is believed to be more closely related to changes in the population of branchial chloride cells. Changes in the relative abundance of mRNA for the alpha-subunit of the Na(+)/K(+)-ATPase were smaller in magnitude than those for CAc, but the timing was similar. There were no changes in expression of a control gene, arginine kinase (AK) in posterior gills, and there were no significant changes in expression in anterior gills for any of the genes measured here. These results support the use of a control tissue (anterior gills) in addition to a control gene for expression studies.

  20. Involvement of β-carbonic anhydrase (β-CA) genes in bacterial genomic islands and horizontal transfer to protists.

    PubMed

    Zolfaghari Emameh, Reza; Barker, Harlan R; Hytönen, Vesa P; Parkkila, Seppo

    2018-05-25

    Genomic islands (GIs) are a type of mobile genetic element (MGE) that are present in bacterial chromosomes. They consist of a cluster of genes which produce proteins that contribute to a variety of functions, including, but not limited to, regulation of cell metabolism, anti-microbial resistance, pathogenicity, virulence, and resistance to heavy metals. The genes carried in MGEs can be used as a trait reservoir in times of adversity. Transfer of genes using MGEs, occurring outside of reproduction, is called horizontal gene transfer (HGT). Previous literature has shown that numerous HGT events have occurred through endosymbiosis between prokaryotes and eukaryotes.Beta carbonic anhydrase (β-CA) enzymes play a critical role in the biochemical pathways of many prokaryotes and eukaryotes. We have previously suggested horizontal transfer of β-CA genes from plasmids of some prokaryotic endosymbionts to their protozoan hosts. In this study, we set out to identify β-CA genes that might have transferred between prokaryotic and protist species through HGT in GIs. Therefore, we investigated prokaryotic chromosomes containing β-CA-encoding GIs and utilized multiple bioinformatics tools to reveal the distinct movements of β-CA genes among a wide variety of organisms. Our results identify the presence of β-CA genes in GIs of several medically and industrially relevant bacterial species, and phylogenetic analyses reveal multiple cases of likely horizontal transfer of β-CA genes from GIs of ancestral prokaryotes to protists. IMPORTANCE The evolutionary process is mediated by mobile genetic elements (MGEs), such as genomic islands (GIs). A gene or set of genes in the GIs are exchanged between and within various species through horizontal gene transfer (HGT). Based on the crucial role that GIs can play in bacterial survival and proliferation, they were introduced as the environmental- and pathogen-associated factors. Carbonic anhydrases (CAs) are involved in many critical

  1. Mortality and Morbidity Associated with a New Ciliate Infection of Shrimp that Causes Shrimp Black Gill in the Coastal Southeast USA

    NASA Astrophysics Data System (ADS)

    Price, A. R.; Fowler, A. E.; Frede, R. L.; Walker, A. N.; Lee, R. F.; Frischer, M. E.

    2016-02-01

    Penaeid shrimp including Litopenaeus setiferus (white shrimp), Farfantepenaeus aztecus (brown shrimp), and Farfantepenaeus duorarum (pink shrimp) support the most valuable commercial marine fishery in the US Southeast Atlantic. However, since the mid 1990's the fishery has experienced a significant decline in reported harvest. Although decreased fishing effort has contributed to this decline, the decline has been coincident with the emergence of a new ciliate infection causing gill tissue melanization with evidence of tissue necrosis (Black Gill). The identity of the shrimp Black Gill (sBG) ciliate is still uncertain but is uniquely identified molecularly and microscopically. sBG is widely believed by the shrimping industry to have contributed to the decline of shrimp populations in Georgia and South Carolina, USA where prevalence can reach near 100% in the fall white shrimp season and is associated with large catches of dead and deteriorating shrimp along with soft and recently molted shrimp. In this study we report the first observations of mortality and morbidity associated with sBG ciliate infections in L. setiferus. The sBG ciliate is present from approximately May through January with peak infection rates and visibly melanized gills occurring in the late summer through the fall. Molecular and histological studies indicate that the sBG ciliate is absent from shrimp populations during the winter and spring. In laboratory studies, significant direct mortality of shrimp associated with sBG is observed only for a short period of time during the late summer. However, later in the fall symptomatic shrimp exhibit decreased performance response (endurance and respiratory capacity) that likely leads to increased mortality associated with secondary infections and increased predation rates. These studies support the hypothesis that shrimp Black Gill is negatively impacting wild shrimp populations and the fishery.

  2. Absence of histophatological response to cadmium in gill and digestive diverticula of the mussel, Mytilus edulis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giraud, A.S.; Webster, L.K.; Fabris, J.G.

    1986-01-01

    The blue mussel (Mytilus edulis) has been proposed for use as a sentinel organism to monitor the effects of marine pollution (Goldberg et al., 1978). Recently, there has been interest in quantifying histopathological changes in mussel tissues, as one indicator of pollution-induced stress. Cadmium is a common and toxic aquatic pollutant. Gill and digestive diverticula have been shown to be major sites of cadmium detoxification. In these same tissues, histopathological changes have been demonstrated after exposure to crude oil and to an oil dispersant. However, whether similar morphological changes are induced by heavy metals, such as cadmium, is not known.more » In this study, the authors have assessed the cellular effects of sublethal concentrations of cadmium on the gill and digestive diverticula of Mytilus.« less

  3. Manganese concentration in lobster (Homarus americanus) gills as an index of exposure to reducing conditions in western Long Island Sound

    USGS Publications Warehouse

    Draxler, Andrew F.J.; Sherrell, Robert M.; Wieczorek, Dan; Lavigne, Michele G.; Paulson, A.J.

    2005-01-01

    We examined the accumulation of manganese (Mn) in gill tissues of chemically nai??ve lobsters held in situ at six sites in Long Island Sound (LIS) for up to six weeks to evaluate the possible contribution of eutrophication-driven habitat quality factors to the 1999 mass mortality of American lobsters (Homarus americanus). These western LIS lobster habitats experience seasonal hypoxia, which results in redox-mobilized Mn being transferred to and deposited on the tissues of the lobsters. Manganese accumulated in gill tissue of lobsters throughout the study, but rates were highest at western and southern LIS sites, ranging from 3.4-0.8 ??g/g/d (???16 ??g/g initial). The Baden-Eriksson observation that Mn accumulation in Norway lobsters (Nephrops norvegicus) is associated with ecosystem hypoxia is confirmed and extended to H. americanus. It seems likely that, after accounting for molting frequency, certain critical values may be applied to other lobster habitats of the NE US shelf. If a high proportion of lobsters in autumn have gill Mn concentrations exceeding 30 ??g/g, then the habitats are likely experiencing some reduced oxygen levels. Manganese concentrations above 100 ??g/g suggest exposure to conditions with the potential for lobster mortality should the temperatures of bottom waters become elevated, and gill concentrations above some higher level (perhaps 300 ??g/g) indicate the most severe habitat conditions with a strong potential for hypoxia stress.

  4. Manganese concentration in lobster (Homarus americansus) gills as an index of exposure to reducing conditions in Western Long Island Sound

    USGS Publications Warehouse

    Draxler, Andrew F.J.; Sherrell, Robert M.; Wieczorek, Daniel; Lavigne, Michele G.; Paulson, Anthony J.

    2005-01-01

    We examined the accumulation of manganese (Mn) in gill tissues of chemically naïve lobsters heldin situ at six sites in Long Island Sound (LIS) for up to six weeks to evaluate the possible contribution of eutrophication-driven habitat quality factors to the 1999 mass mortality of American lobsters (Homarus americanus). These western LIS lobster habitats experience seasonal hypoxia, which results in redox-mobilized Mn being transferred to and deposited on the tissues of the lobsters. Manganese accumulated in gill tissue of lobsters throughout the study, but rates were highest at western and southern LIS sites, ranging from 3.4–0.8 μ g/g/d (~16 μg/g initial). The Baden-Eriksson observation that Mn accumulation in Norway lobsters (Nephrops norvegicus) is associated with ecosystem hypoxia is confirmed and extended to H. americanus. It seems likely that, after accounting for molting frequency, certain critical values may be applied to other lobster habitats of the NE US shelf. If a high proportion of lobsters in autumn have gill Mn concentrations exceeding 30 μg/g, then the habitats are likely experiencing some reduced oxygen levels. Manganese concentrations above 100 μg/g suggest exposure to conditions with the potential for lobster mortality should the temperatures of bottom waters become elevated, and gill concentrations above some higher level (perhaps 300 μg/g) indicate the most severe habitat conditions with a strong potential for hypoxia stress.

  5. Na+/K+/2Cl- cotransporter and CFTR gill expression after seawater transfer in smolts (0+) of different Atlantic salmon (Salmo salar) families

    USGS Publications Warehouse

    Mackie, P.M.; Gharbi, K.; Ballantyne, J.S.; McCormick, S.D.; Wright, P.A.

    2007-01-01

    Smoltification involves morphological and physiological changes in the gills that prepare anadromous salmonids to osmoregulate efficiently in seawater. In a previous study, we found that different families of Atlantic salmon (Salmo salar) smolts vary in their ability to osmoregulate when abruptly transferred to cold seawater and that these differences are correlated with gill Na+/K+ ATPase activity. Here we extend these findings to test whether other key transport proteins, namely Na+/K+/2Cl- contransporter (NKCC) and the Cl- channel or cystic fibrosis transmembrane conductance regulator (CFTR), play a significant role in osmoregulatory differences between families. To facilitate molecular analysis of NKCC, we first isolated a gill cDNA containing the complete coding region (1147 aa) of an isoform previously reported as a partial sequence. Phylogenetic analysis showed that this isoform is most closely related to isoforms of the NKCC1a subfamily found in European eel and Mozambique tilapia. In a second step, we quantified NKCC protein abundance as well as mRNA expression levels for NKCC1a and two CFTR isoforms (CFTRI and CFTRII) in 0+ smolts from three families prior to and following seawater transfer. The family with the lowest salinity tolerance also showed significant increases in gill NKCC1a mRNA after seawater transfer. Taken together with our previous study, these data indicate that family differences in expression of transport proteins are in part related to salinity tolerance, although the best indicator of osmoregulatory performance between families may be gill Na+/K+ ATPase activity and CFTR I mRNA levels, rather than Na+/K+ ATPase and NKCC1a mRNA levels or NKCC protein abundance. ?? 2007 Elsevier B.V. All rights reserved.

  6. Attenuation of UV-B exposure-induced inflammation by abalone hypobranchial gland and gill extracts.

    PubMed

    Kuanpradit, Chitraporn; Jaisin, Yamaratee; Jungudomjaroen, Sumon; Akter Mitu, Shahida; Puttikamonkul, Srisombat; Sobhon, Prasert; Cummins, Scott F

    2017-05-01

    Exposure to solar ultraviolet B (UV-B) is a known causative factor for many skin complications such as wrinkles, black spots, shedding and inflammation. Within the wavelengths 280‑320 nm, UV-B can penetrate to the epidermal level. This investigation aimed to test whether extracts from the tropical abalone [Haliotis asinina (H. asinina)] mucus-secreting tissues, the hypobranchial gland (HBG) and gills, were able to attenuate the inflammatory process, using the human keratinocyte HaCaT cell line. Cytotoxicity of abalone tissue extracts was determined using an AlamarBlue viability assay. Results showed that HaCaT cells could survive when incubated in crude HBG and gill extracts at concentrations between <11.8 and <16.9 µg/ml, respectively. Subsequently, cell viability was compared between cultured HaCaT cells exposed to serial doses of UV-B from 1 to 11 (x10) mJ/cm2 and containing 4 different concentrations of abalone extract from both the HBG and gill (0, 0.1, 2.5, 5 µg/ml). A significant increase in cell viability was observed (P<0.001) following treatment with 2.5 and 5 µg/ml extract. Without extract, cell viability was significantly reduced upon exposure to UV-B at 4 mJ/cm2. Three morphological changes were observed in HaCaT cells following UV-B exposure, including i) condensation of cytoplasm; ii) shrunken cells and plasma membrane bubbling; and iii) condensation of chromatin material. A calcein AM‑propidium iodide live‑dead assay showed that cells could survive cytoplasmic condensation, yet cell death occurred when damage also included membrane bubbling and chromatin changes. Western blot analysis of HaCaT cell COX‑2, p38, phospho‑p38, SPK/JNK and phospho‑SPK/JNK following exposure to >2.5 µg/ml extract showed a significant decrease in intensity for COX‑2, phospho‑p38 and phospho‑SPK/JNK. The present study demonstrated that abalone extracts from the HGB and gill can attenuate inflammatory proteins triggered by UV-B. Hence

  7. Quality of life in adults with Gilles de la Tourette Syndrome

    PubMed Central

    2012-01-01

    Background Few studies have used standardized QOL instruments to assess the quality of life (QOL) in Gilles de la Tourette Syndrome (GTS) patients. This work investigates the QOL of adult GTS patients and examines the relationships between physical and psychological variables and QOL. Methods Epidemiological investigation by anonymous national postal survey of QOL of patients of the French Association of Gilles de la Tourette Syndrome (AFGTS) aged 16 years or older. The clinical and QOL measures were collected by four questionnaires: a sociodemographic and GTS-related symptoms questionnaire, the World Health Organization Quality Of Life questionnaire (WHOQOL-26), the Functional Status Questionnaire (FSQ), and a self-rating questionnaire on psychiatric symptoms (SCL-90), all validated in French. We used stepwise regression analysis to explicitly investigate the relationships between physical and psychological variables and QOL domains in GTS. Results Questionnaires were posted to 303 patients, of whom 167 (55%) completed and returned them. Our results, adjusted for age and gender, show that patients with GTS have a worse QOL than the general healthy population. In particular, the “Depression” psychological variable was a significant predictor of impairment in all WHOQOL-26 domains, psychological but also physical and social. Conclusions The present study demonstrates a strong relationship between QOL in GTS and psychiatric symptoms, in particular those of depression. PMID:22888766

  8. Confocal microscopy as a useful approach to describe gill rakers of Asian species of carp and native filter-feeding fishes of the upper Mississippi River system

    USGS Publications Warehouse

    Liza R. Walleser,; D.R. Howard,; Sandheinrich, Mark B.; Gaikowski, Mark P.; Amberg, Jon J.

    2014-01-01

    To better understand potential diet overlap among exotic Asian species of carp and native species of filter-feeding fishes of the upper Mississippi River system, microscopy was used to document morphological differences in the gill rakers. Analysing samples first with light microscopy and subsequently with confocal microscopy, the three-dimensional structure of gill rakers in Hypophthalmichthys molitrix,Hypophthalmichthys nobilis and Dorosoma cepedianum was more thoroughly described and illustrated than previous work with traditional microscopy techniques. The three-dimensional structure of gill rakers in Ictiobus cyprinellus was described and illustrated for the first time.

  9. Host and symbiont intraspecific variability: The case of Paramecium calkinsi and "Candidatus Trichorickettsia mobilis".

    PubMed

    Sabaneyeva, E; Castelli, M; Szokoli, F; Benken, K; Lebedeva, N; Salvetti, A; Schweikert, M; Fokin, S; Petroni, G

    2018-02-01

    Newly isolated strains of the ciliate Paramecium calkinsi and their cytoplasmic bacterial endosymbionts were characterized by a multidisciplinary approach, including live observation, ultrastructural investigation, and molecular analysis. Despite morphological resemblance, the characterized P. calkinsi strains showed a significant molecular divergence compared to conspecifics, possibly hinting for a cryptic speciation. The endosymbionts were clearly found to be affiliated to the species "Candidatus Trichorickettsia mobilis" (Rickettsiales, Rickettsiaceae), currently encompassing only bacteria retrieved in an obligate intracellular association with other ciliates. However, a relatively high degree of intraspecific divergence was observed as well, thus it was possible to split "Candidatus Trichorickettsia" into three subspecies, one of which represented so far only by the newly characterized endosymbionts of P. calkinsi. Other features distinguished the members of each different subspecies. In particular, the endosymbionts of P. calkinsi resided in the cytoplasm and possessed numerous peritrichous flagella, although no motility was evidenced, whereas their conspecifics in other hosts were either cytoplasmic and devoid of flagella, or macronuclear, displaying flagellar-driven motility. Moreover, contrarily to previously analyzed "Candidatus Trichorickettsia" hosts, infected P. calkinsi cells frequently became amicronucleate and demonstrated abnormal cell division, eventually leading to decline of the laboratory culture. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Genome of Ca. Pandoraea novymonadis, an Endosymbiotic Bacterium of the Trypanosomatid Novymonas esmeraldas

    PubMed Central

    Kostygov, Alexei Y.; Butenko, Anzhelika; Nenarokova, Anna; Tashyreva, Daria; Flegontov, Pavel; Lukeš, Julius; Yurchenko, Vyacheslav

    2017-01-01

    We have sequenced, annotated, and analyzed the genome of Ca. Pandoraea novymonadis, a recently described bacterial endosymbiont of the trypanosomatid Novymonas esmeraldas. When compared with genomes of its free-living relatives, it has all the hallmarks of the endosymbionts’ genomes, such as significantly reduced size, extensive gene loss, low GC content, numerous gene rearrangements, and low codon usage bias. In addition, Ca. P. novymonadis lacks mobile elements, has a strikingly low number of pseudogenes, and almost all genes are single copied. This suggests that it already passed the intensive period of host adaptation, which still can be observed in the genome of Polynucleobacter necessarius, a certainly recent endosymbiont. Phylogenetically, Ca. P. novymonadis is more related to P. necessarius, an intracytoplasmic bacterium of free-living ciliates, than to Ca. Kinetoplastibacterium spp., the only other known endosymbionts of trypanosomatid flagellates. As judged by the extent of the overall genome reduction and the loss of particular metabolic abilities correlating with the increasing dependence of the symbiont on its host, Ca. P. novymonadis occupies an intermediate position P. necessarius and Ca. Kinetoplastibacterium spp. We conclude that the relationships between Ca. P. novymonadis and N. esmeraldas are well-established, although not as fine-tuned as in the case of Strigomonadinae and their endosymbionts. PMID:29046673

  11. By more ways than one: Rapid convergence at hydrothermal vents shown by 3D anatomical reconstruction of Gigantopelta (Mollusca: Neomphalina).

    PubMed

    Chen, Chong; Uematsu, Katsuyuki; Linse, Katrin; Sigwart, Julia D

    2017-03-01

    Extreme environments prompt the evolution of characteristic adaptations. Yet questions remain about whether radiations in extreme environments originate from a single lineage that masters a key adaptive pathway, or if the same features can arise in parallel through convergence. Species endemic to deep-sea hydrothermal vents must accommodate high temperature and low pH. The most successful vent species share a constrained pathway to successful energy exploitation: hosting symbionts. The vent-endemic gastropod genus Gigantopelta, from the Southern and Indian Oceans, shares unusual features with a co-occurring peltospirid, the 'scaly-foot gastropod' Chrysomallon squamiferum. Both are unusually large for the clade and share other adaptive features such as a prominent enlarged trophosome-like oesophageal gland, not found in any other vent molluscs. Transmission electron microscopy confirmed endosymbiont bacteria in the oesophageal gland of Gigantopelta, as also seen in Chrysomallon. They are the only known members of their phylum in vent ecosystems hosting internal endosymbionts; other vent molluscs host endosymbionts in or on their gills, or in the mantle cavity. A five-gene phylogenetic reconstruction demonstrated that Gigantopelta and Chrysomallon are not phylogenetically sister-taxa, despite their superficial similarity. Both genera have specialist adaptations to accommodate internalised endosymbionts, but with anatomical differences that indicate separate evolutionary origins. Hosting endosymbionts in an internal organ within the host means that all resources required by the bacteria must be supplied by the animal, rather than directly by the vent fluid. Unlike Chrysomallon, which has an enlarged oesophageal gland throughout post-settlement life, the oesophageal gland in Gigantopelta is proportionally much smaller in juveniles and the animals likely undergo a trophic shift during ontogeny. The circulatory system is hypertrophied in both but the overall size is

  12. Crime, hysteria and belle époque hypnotism: the path traced by Jean-Martin Charcot and Georges Gilles de la Tourette.

    PubMed

    Bogousslavsky, Julien; Walusinski, Olivier; Veyrunes, Denis

    2009-01-01

    Hysteria and hypnotism became a favorite topic of studies in the fin de siècle neurology that emerged from the school organized at La Salpêtrière by Jean-Martin Charcot, where he had arrived in 1861. Georges Gilles de la Tourette started working with Charcot in 1884 and probably remained his most faithful student, even after his mentor's death in 1893. This collaboration was particularly intense on 'criminal hypnotism', an issue on which Hippolyte Bernheim and his colleagues from the Nancy School challenged the positions taken by the Salpêtrière School. Bernheim claimed that hypnotism was not a diagnostic feature of hysteria and that there were real-life examples of murders suggested under hypnosis, while hypnosis susceptibility was identified with hysteria by Charcot and Gilles de la Tourette, who saw rape as the only crime associated with hypnotism. The quarrel was particularly virulent during a series of famous criminal cases which took place between 1888 and 1890. At the time, it was considered that La Salpêtrière had succeeded over Nancy, since the role of hypnotism was discarded during these famous trials. However, the theories of Charcot and Gilles de la Tourette were also damaged by the fight, which probably triggered the conceptual evolution leading to Joseph Babinski's revision of hysteria in 1901. Gilles de la Tourette's strong and public interest in hypnotism nearly cost him his life, when a young woman who claimed to have been hypnotized against her will shot him in the head at his own home in 1893. It was subsequently shown that hypnotism had nothing to do with it. The delusional woman was interned at Sainte-Anne for mental disturbance, thus escaping trial. Ironically, Gilles de la Tourette may have been partly responsible, since he had been one of the strongest proponents of placing mentally-ill criminals in asylums instead of prisons. 2009 S. Karger AG, Basel

  13. Early Response of Protein Quality Control in Gills Is Associated with Survival of Hypertonic Shock in Mozambique tilapia

    PubMed Central

    Tang, Cheng-Hao; Lee, Tsung-Han

    2013-01-01

    The protein quality control (PQC) mechanism is essential for cell function and viability. PQC with proper biological function depends on molecular chaperones and proteases. The hypertonicity-induced protein damage and responses of PQC mechanism in aquatic organisms, however, are poorly understood. In this study, we examine the short-term effects of different hypertonic shocks on the levels of heat shock proteins (HSPs, e.g., HSP70 and HSP90), ubiquitin-conjugated proteins and protein aggregation in gills of the Mozambique tilapia (Oreochromis mossambicus). Following transfer from fresh water (FW) to 20‰ hypertonicity, all examined individuals survived to the end of experiment. Moreover, the levels of branchial HSPs and ubiquitin-conjugated proteins significantly increased at 3 and 24 h post-transfer, respectively. Up-regulation of HSPs and ubiquitin-conjugated proteins was sufficient to prevent the accumulation of aggregated proteins. However, the survival rate of tilapia dramatically declined at 5 h and all fish died within 7 h after direct transfer to 30‰ hypertonicity. We presumed that this result was due to the failed activation of gill PQC system, which resulted in elevating the levels of aggregated proteins at 3 and 4 h. Furthermore, in aggregated protein fractions, the amounts of gill Na+/K+-ATPase (NKA) remained relatively low when fish were transferred to 20‰ hypertonicity, whereas abundant NKA was found at 4 h post-transfer to 30‰ hypertonicity. This study demonstrated that the response of PQC in gills is earlier than observable changes in localization of ion-secreting transport proteins upon hypertonic challenge. To our knowledge, this is the first study to investigate the regulation of PQC mechanism in fish and characterize its important role in euryhaline teleost survival in response to hypertonic stress. PMID:23690986

  14. Effect of atrazine and chlorpyrifos exposure on cytochrome P450 contents and enzyme activities in common carp gills.

    PubMed

    Fu, Yao; Li, Ming; Liu, Ci; Qu, Jian-Ping; Zhu, Wen-Jun; Xing, Hou-Juan; Xu, Shi-Wen; Li, Shu

    2013-08-01

    Chlorpyrifos (CPF) and atrazine (ATR) are the most widely used organophosphate insecticides and triazine herbicides, respectively, worldwide. This study aimed at investigating the effects of ATR, CPF and mixture on common carp gills following 40-d exposure and 40-d recovery experiments. Cytochrome P450 content, activities of aminopyrine N-demethylase (APND) and erythromycin N-demethylase (ERND) and the mRNA levels of the CYP1 family (CYP1A, CYP1B, and CYP1C) were determined. In total, 220 common carps were divided into eleven groups, and each group was treated with a specific concentration of ATR (4.28, 42.8 and 428 μg/L), CPF (1.16, 11.6 and 116 μg/L) or ATR-CPF mixture (1.13, 11.3 and 113 μg/L). The results showed that P450 content and activities of APND and ERND in fish exposed to ATR and mixture were significantly higher than those in the control group. After the 40-d recovery treatment (i.e., depuration), the P450 content and the activities of APND and ERND in fish decreased to the background levels. A similar tendency was also found in the mRNA levels of the CYP1 family (CYP1A, CYP1B, and CYP1C) in common carp gills. The CPF-treated fish showed no significant difference from the control groups, except for a significant CYP1C induction. These results indicated that CYP enzyme levels are induced by ATR but were only slightly affected by CPF in common carp gills. In addition, the ATR and CPF exposure showed an antagonistic effect on P450 enzymes in common carp gills. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Histopathological changes induced by malathion in the gills of bluegill Lepomis macrochirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richmonds, C.; Dutta, H.M.

    1989-07-01

    Malathion is a widely used broad spectrum organophosphorus insecticide. Its wide use provides many occasions for its entry into aquatic environments. The presence of this chemical in the aquatic environment would adversely affect many non-target species like fish. About 50 to 90% of the absorbed malathion can be eliminated in one to three days by the fish. About 25% of malathion remained in river water after 2 wk, and 10% remained after 4 wk from the time of its entry. Respiratory distress is one of the early symptoms of pesticide poisoning. These toxicants appear to cause a loss of adhesionmore » between the epithelial cells and the underlying pillar cell system, accompanied by a collapse of the structural integrity of the secondary lamellae. Gills are important in respiration as well as osmoregulation of the fish. Therefore it was decided to study the effects of malathion on the gills of bluegill sunfish, Lepomis macrochirus. Bluegills were selected for this study due to the following reasons: (1) Bluegills are more sensitive to malathion when compared to fathead minnows and goldfish. (2) They are important both as edible and game fish. (3) They are easily available and easy to maintain in the laboratory.« less

  16. Genome expansion via lineage splitting and genome reduction in the cicada endosymbiont Hodgkinia.

    PubMed

    Campbell, Matthew A; Van Leuven, James T; Meister, Russell C; Carey, Kaitlin M; Simon, Chris; McCutcheon, John P

    2015-08-18

    Comparative genomics from mitochondria, plastids, and mutualistic endosymbiotic bacteria has shown that the stable establishment of a bacterium in a host cell results in genome reduction. Although many highly reduced genomes from endosymbiotic bacteria are stable in gene content and genome structure, organelle genomes are sometimes characterized by dramatic structural diversity. Previous results from Candidatus Hodgkinia cicadicola, an endosymbiont of cicadas, revealed that some lineages of this bacterium had split into two new cytologically distinct yet genetically interdependent species. It was hypothesized that the long life cycle of cicadas in part enabled this unusual lineage-splitting event. Here we test this hypothesis by investigating the structure of the Ca. Hodgkinia genome in one of the longest-lived cicadas, Magicicada tredecim. We show that the Ca. Hodgkinia genome from M. tredecim has fragmented into multiple new chromosomes or genomes, with at least some remaining partitioned into discrete cells. We also show that this lineage-splitting process has resulted in a complex of Ca. Hodgkinia genomes that are 1.1-Mb pairs in length when considered together, an almost 10-fold increase in size from the hypothetical single-genome ancestor. These results parallel some examples of genome fragmentation and expansion in organelles, although the mechanisms that give rise to these extreme genome instabilities are likely different.

  17. Comparison of catch and lake trout bycatch in commercial trap nets and gill nets targeting lake whitefish in northern Lake Huron

    USGS Publications Warehouse

    Johnson, James E.; Ebener, Mark P.; Gebhardt, Kenneth; Bergstedt, Roger

    2004-01-01

    We compared seasonal lake whitefish catch rates, lake trout bycatch, and gearinduced lake trout mortality between commercial trap nets and gill nets in north-central Lake Huron. Onboard monitors recorded catches from 260 gill net and 96 trap net lifts from October 1998 through December 1999. Catch rates for lake whitefish were highest in fall for both gear types, reflecting proximity of spawning sites to the study area. Lake whitefish catch rates were also relatively high in spring but low in both gear types in summer. Lake trout were the principal bycatch species in both gears. The lake trout bycatch was lowest in both gear types in fall, highest in gill nets in spring, and highest in trap nets in summer. The ratio of lake trout to legal whitefish (the target species) was highest in summer and lowest in fall in both gear types. The high lake trout ratio in summer was due principally to low catch rates of lake whitefish. All but 3 of 186 live lake trout removed from trap net pots survived for at least two days of observation in laboratory tanks. Therefore, we estimated that post-release survival of trap netted lake trout that had not been entangled in the mesh was 98.4%. In addition, we accounted for stress-induced mortality for lake trout that were live at capture but entangled in the mesh of either gear type. Resulting estimates of lake trout survival were higher in trap nets (87.8%) than in gill nets (39.6%). The number of lake trout killed per lift was highest during summer in trap nets and during spring in gill nets. In trap nets, 85% of dead lake trout were observed to be entangled in the mesh of the pot or tunnels. Survival rates of lake trout in gill nets were higher in our study than reported by others, probably because our nets were hand lifted in a small boat. Our trap net-induced mortality estimates on lake trout were higher than those reported by others because we adjusted our estimates to account for post-release mortality caused by handling and

  18. Lead hampers gill cell volume regulation in marine crabs: stronger effect in a weak osmoregulator than in an osmoconformer.

    PubMed

    Amado, Enelise M; Freire, Carolina A; Grassi, Marco T; Souza, Marta M

    2012-01-15

    Hepatus pudibundus is a strictly marine osmoconformer crab, while Callinectes ornatus inhabits estuarine areas, behaving as a weak hyper-osmoregulator in diluted seawater. Osmoconformers are expected to have higher capacity for cell volume regulation, but gill cells of a regulator are expected to display ion transporters to a higher degree. The influence of lead nitrate (10 μM) on the ability of isolated gill cells from both species to volume regulate under isosmotic and hyposmotic conditions were here evaluated. Without lead, under a 25% hyposmotic shock, the gill cells of both species were quite capable of cell volume maintenance. Cells of C. ornatus, however, had a little swelling (5%) during the hyposmotic shock of greater intensity (50%), while cells of H. pudibundus were still capable of volume regulation. In the presence of lead, even under isosmoticity, the gill cells of both species showed about 10% volume reduction, indicating that lead promotes the loss of water by the cells. When lead was associated with 25% and 50% hyposmotic shock, C. ornatus cells lost more volume (15%), when compared to isosmotic conditions, while H. pudibundus cells showed volume regulation. We then analyzed the possible ways of action of lead on the mechanisms of cell volume regulation in the two species. Verapamil (100 μM) was used to inhibit Ca²⁺ channels, ouabain (100 μM) to inhibit Na⁺/K⁺-ATPase, and HgCl₂ (100 μM) to inhibit aquaporins. Our results suggest that: (1) Ca²⁺ channels are candidates for lead entry into gill cells of H. pudibundus and C. ornatus, being the target of lead action in these cells; (2) aquaporins are much more relevant for water flux in H. pudibundus; and (3) the Na⁺/K⁺-ATPase is much more relevant for volume regulation in C. ornatus. Osmoregulators may be more susceptible to metal contamination than osmoconformers, especially in situations of reduced salinity, for two basic reasons: (1) lower capacity of volume regulation and (2

  19. Active uptake of sodium in the gills of the hyperregulating shore crab Carcinus maenas

    NASA Astrophysics Data System (ADS)

    Siebers, D.; Lucu, Č.; Winkler, A.; Dalla Venezia, L.; Wille, H.

    1986-03-01

    Isolated posterior gills of shore crabs, Carcinus maenas, previously acclimated for at least 1 month to brackish water of 10 ‰ S, were connected with an artificial hemolymph circulation by means of thin polyethylene tubings. Gills were symmetrically perfused and bathed with 50 % sea water. Transepithelial potential differences (PDs) and fluxes of sodium between medium and blood were measured under control conditions and following reductions of PDs by means of 5 mM internal (blood side) ouabain, 0.5 mM internal and external (bathing medium) NaCN or by exhaustion of energy reserves along with a prolonged perfusion period of more than 9 h. In these experiments22Na was used as tracer. Each of the three modes of reducing transepithelial potential differences resulted in a decrease in sodium influxes from 500 1000 µmoles g-1 h-1 to 250 400 µmoles g-1 h-1. The findings suggest that sodium influx, which normally greatly exceeds efflux, was diminished by its active component. The remaining non-inhibitable influx equals efflux values. Our findings thus indicate that efflux is completely passive, while influx has — beside a passive component of efflux magnitudes — an additional active portion which is much larger than the passive component. Since ouabain is a specific inhibitor of the Na-K-ATPase, our results confirm previous findings (Siebers et al., 1985) that the basolaterally located Na-K-ATPase generates the transepithelial potential difference in the gills, which is inside negative by about 6 12 mV. Inhibition of the active portion of sodium influx by internal ouabain along with reduced PDs suggests that transepithelial PDs generated by the branchial sodium pump are the driving force for active sodium uptake in hyperregulating brackish water crabs.

  20. Bacterial Community Associated with Organs of Shallow Hydrothermal Vent Crab Xenograpsus testudinatus near Kuishan Island, Taiwan.

    PubMed

    Yang, Shan-Hua; Chiang, Pei-Wen; Hsu, Tin-Chang; Kao, Shuh-Ji; Tang, Sen-Lin

    2016-01-01

    Shallow-water hydrothermal vents off Kueishan Island (northeastern Taiwan) provide a unique, sulfur-rich, highly acidic (pH 1.75-4.6) and variable-temperature environment. In this species-poor habitat, the crab Xenograpsus testudinatus is dominant, as it mainly feeds on zooplankton killed by sulfurous plumes. In this study, 16S ribosomal RNA gene amplicon pyrosequencing was used to investigate diversity and composition of bacteria residing in digestive gland, gill, stomach, heart, and mid-gut of X. testudinatus, as well as in surrounding seawater. Dominant bacteria were Gamma- and Epsilonproteobacteria that might be capable of autotrophic growth by oxidizing reduced sulfur compounds and are usually resident in deep-sea hydrothermal systems. Dominant bacterial OTUs in X. testudinatus had both host and potential organ specificities, consistent with a potential trophic symbiotic relationship (nutrient transfer between host and bacteria). We inferred that versatile ways to obtain nutrients may provide an adaptive advantage for X. testudinatus in this demanding environment. To our knowledge, this is the first study of bacterial communities in various organs/tissues of a crustacean in a shallow-water hydrothermal system, and as such, may be a convenient animal model for studying these systems.

  1. Protein synthesis is defended in the mitochondrial fraction of gill but not heart in cunner (Tautogolabrus adspersus) exposed to acute hypoxia and hypothermia.

    PubMed

    Lewis, Johanne M; Driedzic, William R

    2010-02-01

    The cunner, Tautogolabrus adspersus, is a north-temperate teleost which relies upon metabolic depression to survive the extreme low water temperatures of its habitat during the winter. Previous study has demonstrated a decrease in protein synthesis accompanies the metabolic depression observed at the whole animal level during seasonal low temperature exposure. As such, the objective of the current study was to determine: (i) if the response of decreased protein synthesis is conserved across environmental stressors and (ii) if the response of metabolic depression is conserved across levels of cellular organization. This was accomplished through the measurement of in vivo protein synthesis rates in the whole tissue, cytosolic and mitochondrial protein pools (reflective of nuclear encoded proteins imported into mitochondria) of heart and gill in cunner exposed to either acute low temperature (8-4 degrees C) or acute hypoxia (10% O(2) saturation). In both heart and gill, rates of protein synthesis in the whole tissue and cytosolic protein pools were substantially depressed by 80% in response to acute hypothermia. In hypoxic heart, protein synthesis was significantly decreased by 50-60% in the whole tissue, cytosolic and mitochondrial pools; however, in gill there was no significant difference in rates of protein synthesis in any cellular fraction between normoxic and hypoxic groups. Most strikingly the rate of new protein accumulation in the mitochondrial fraction of gill did not change in response to either a decrease in temperature or hypoxia. The defense of protein synthesis in the gill is most likely associated with the importance of maintaining ionic regulation and the oxidative capacity in this front line organ for gas and ion exchange.

  2. The effects of gill remodeling on transepithelial sodium fluxes and the distribution of presumptive sodium-transporting ionocytes in goldfish (Carassius auratus).

    PubMed

    Bradshaw, Julia C; Kumai, Yusuke; Perry, Steve F

    2012-04-01

    Goldfish, Carassius auratus, adaptively remodel their gills in response to changes in ambient oxygen and temperature, altering the functional lamellar surface area to balance the opposing requirements for respiration and osmoregulation. In this study, the effects of thermal- and hypoxia-mediated gill remodeling on branchial Na(+) fluxes and the distribution of putative Na(+)-transporting ionocytes in goldfish were assessed. When assessed either in vitro (isolated gill arches) or in vivo at a common water temperature, the presence of an interlamellar cell mass (ILCM) in fish acclimated to 7°C clearly decreased Na(+) efflux across the gill relative to fish maintained at 25°C and lacking an ILCM. However, loss of the ILCM in 7°C-acclimated fish exposed to hypoxia led to a decrease in Na(+) efflux (assessed under hypoxic conditions) despite the apparent large increases in functional lamellar surface area. Goldfish possessing an ILCM were able to sustain Na(+) uptake, albeit at a lower rate matched to efflux, owing to the re-distribution of ionocytes expressing genes thought to be involved in Na(+) uptake [Na(+)/H(+) exchanger isoform 3 (NHE3) and V- type H(+)-ATPase] to the edge of the ILCM where they can establish contact with the surrounding environment. NHE-expressing cells co-localized with Na(+)/K(+)-ATPase expression, suggesting a role for NHE in Na(+)-uptake in the goldfish. Implications of the ILCM on ion fluxes in the goldfish are discussed.

  3. The microbial community of Ophrydium versatile colonies: endosymbionts, residents, and tenants

    NASA Technical Reports Server (NTRS)

    Duval, B.; Margulis, L.

    1995-01-01

    Ophrydium versatile is a sessile peritrichous ciliate (Kingdom Protoctista, class Oligohymenophora, order Peritrichida, suborder Sessilina) that forms green, gelatinous colonies. Chlorophyll a and b impart a green color to Ophrydium masses due to 400-500 Chlorella-like endosymbionts in each peritrich. Ophrydium colonies, collected from two bog wetlands (Hawley and Leverett, Massachusetts) were analyzed for their gel inhabitants. Other protists include ciliates, mastigotes, euglenids, chlorophytes, and heliozoa. Routine constituents include from 50-100,000 Nitzschia per ml of gel and at least four other diatom genera (Navicula, Pinnularia, Gyrosigma, Cymbella) that may participate in synthesis of the gel matrix. Among the prokaryotes are filamentous and coccoid cyanobacteria, large rod-shaped bacteria, at least three types of spirochetes and one unidentified Saprospira-like organism. Endosymbiotic methanogenic bacteria, observed using fluorescence microscopy, were present in unidentified hypotrichous ciliates. Animals found inside the gel include rotifers, nematodes, and occasional copepods. The latter were observed in the water reservoir of larger Ophrydium masses. From 30-46% of incident visible radiation could be attenuated by Ophrydium green jelly masses in laboratory observations. Protargol staining was used to visualize the elongate macronuclei and small micronucleus of O. versatile zooids and symbiotic algal nuclei. Electron microscopic analysis of the wall of the Chlorella-like symbiont suggests that although the Ophrydium zooids from British Columbia harbor Chlorella vulgaris, those from Hawley Bog contain Graesiella sp. The growth habit in the photic zone and loose level of individuation of macroscopic Ophrydium masses are interpretable as extant analogs of certain Ediacaran biota: colonial protists in the Vendian fossil record.

  4. Epidemiology of asexuality induced by the endosymbiotic Wolbachia across phytophagous wasp species: host plant specialization matters.

    PubMed

    Boivin, T; Henri, H; Vavre, F; Gidoin, C; Veber, P; Candau, J-N; Magnoux, E; Roques, A; Auger-Rozenberg, M-A

    2014-05-01

    Among eukaryotes, sexual reproduction is by far the most predominant mode of reproduction. However, some systems maintaining sexuality appear particularly labile and raise intriguing questions on the evolutionary routes to asexuality. Thelytokous parthenogenesis is a form of spontaneous loss of sexuality leading to strong distortion of sex ratio towards females and resulting from mutation, hybridization or infection by bacterial endosymbionts. We investigated whether ecological specialization is a likely mechanism of spread of thelytoky within insect communities. Focusing on the highly specialized genus Megastigmus (Hymenoptera: Torymidae), we first performed a large literature survey to examine the distribution of thelytoky in these wasps across their respective obligate host plant families. Second, we tested for thelytoky caused by endosymbionts by screening in 15 arrhenotokous and 10 thelytokous species for Wolbachia, Cardinium, Arsenophonus and Rickettsia endosymbionts and by performing antibiotic treatments. Finally, we performed phylogenetic reconstructions using multilocus sequence typing (MLST) to examine the evolution of endosymbiont-mediated thelytoky in Megastigmus and its possible connections to host plant specialization. We demonstrate that thelytoky evolved from ancestral arrhenotoky through the horizontal transmission and the fixation of the parthenogenesis-inducing Wolbachia. We find that ecological specialization in Wolbachia's hosts was probably a critical driving force for Wolbachia infection and spread of thelytoky, but also a constraint. Our work further reinforces the hypothesis that community structure of insects is a major driver of the epidemiology of endosymbionts and that competitive interactions among closely related species may facilitate their horizontal transmission. © 2014 John Wiley & Sons Ltd.

  5. Gill metazoan parasites of the spotted goatfish Pseudupeneus maculatus (Ostheichthyes: Mullidae) from the Coast of Pernambuco, northeastern Brazil.

    PubMed

    Cardoso, L; Lacerda, A C F; Gonçalves, E L T; Cadorin, D I; Bonfim, C N C; Oliveira, R L M; Martins, M L

    2017-11-09

    This study evaluated the parasite fauna on the gills of spotted goatfish Pseudupeneus maculatus captured in the dry and rainy seasons in the coast of the State of Pernambuco, Brazil. Eight parasite species were identified belonging to the following taxa: Monogenea (Haliotrema caraïbensis, Haliotrema caballeroi and Haliotrema golvani); Crustacea (Rocinela signata, Hamaticolax scutigerulus and Caligidae gen. sp.) and Cestoda (Nybelinia indica and Pseudolacistorhynchus noodti). The most prevalent parasites were: Monogenea (100%), H. scutigerulus (35%), N. indica (11.7%), R. signata (8.3%), Caligidae gen. sp. (3.33%) and P. noodti (0.83%). Values of infestation are compared to other studies, and the uncommon occurrence of Trypanorhyncha on the gills suggests that the spotted goatfish could be an intermediate host for the parasite.

  6. Pathogenesis of acute viral disease induced in fish by carp interstitial nephritis and gill necrosis virus.

    PubMed

    Pikarsky, Eli; Ronen, Ariel; Abramowitz, Julia; Levavi-Sivan, Berta; Hutoran, Marina; Shapira, Yechiam; Steinitz, Michael; Perelberg, Ayana; Soffer, Dov; Kotler, Moshe

    2004-09-01

    A lethal disease of koi and common carp (species Cyprinus carpio) has afflicted many fish farms worldwide since 1998, causing severe financial losses. Morbidity and mortality are restricted to common carp and koi and appear in spring and autumn, when water temperatures are 18 to 28 degrees C. We have isolated the virus causing the disease from sick fish, propagated it in koi fin cell culture, and shown that virus from a single clone causes lethal disease in carp and koi upon infection. Intraperitoneal virus injection or bathing the fish in virus-containing water kills 85 to 100% of the fish within 7 to 21 days. This virus is similar to the previously reported koi herpesvirus; however, it has characteristics inconsistent with the herpesvirus family, and thus we have called it carp interstitial nephritis and gill necrosis virus. We examined the pathobiology of this disease in carp by using immunohistochemistry and PCR. We found large amounts of the virus in the kidneys of sick fish and smaller amounts in liver and brain. A rapid increase in the viral load in the kidneys was detected by using both immunofluorescence and semiquantitative PCR. Histological analyses of fish at various times after infection revealed signs of interstitial nephritis as early as 2 days postinfection, which increased in severity up to 10 days postinfection. There was severe gill disease evidenced by loss of villi with accompanying inflammation in the gill rakers. Minimal focal inflammation was noted in livers and brains. This report describes the etiology and pathology of a recently described viral agent in fish.

  7. Pathogenesis of Acute Viral Disease Induced in Fish by Carp Interstitial Nephritis and Gill Necrosis Virus

    PubMed Central

    Pikarsky, Eli; Ronen, Ariel; Abramowitz, Julia; Levavi-Sivan, Berta; Hutoran, Marina; Shapira, Yechiam; Steinitz, Michael; Perelberg, Ayana; Soffer, Dov; Kotler, Moshe

    2004-01-01

    A lethal disease of koi and common carp (species Cyprinus carpio) has afflicted many fish farms worldwide since 1998, causing severe financial losses. Morbidity and mortality are restricted to common carp and koi and appear in spring and autumn, when water temperatures are 18 to 28°C. We have isolated the virus causing the disease from sick fish, propagated it in koi fin cell culture, and shown that virus from a single clone causes lethal disease in carp and koi upon infection. Intraperitoneal virus injection or bathing the fish in virus-containing water kills 85 to 100% of the fish within 7 to 21 days. This virus is similar to the previously reported koi herpesvirus; however, it has characteristics inconsistent with the herpesvirus family, and thus we have called it carp interstitial nephritis and gill necrosis virus. We examined the pathobiology of this disease in carp by using immunohistochemistry and PCR. We found large amounts of the virus in the kidneys of sick fish and smaller amounts in liver and brain. A rapid increase in the viral load in the kidneys was detected by using both immunofluorescence and semiquantitative PCR. Histological analyses of fish at various times after infection revealed signs of interstitial nephritis as early as 2 days postinfection, which increased in severity up to 10 days postinfection. There was severe gill disease evidenced by loss of villi with accompanying inflammation in the gill rakers. Minimal focal inflammation was noted in livers and brains. This report describes the etiology and pathology of a recently described viral agent in fish. PMID:15308746

  8. Detailed surface morphology of the 'lobster louse' copepod, Nicothoë astaci, a haematophagous gill parasite of the European lobster, Homarus gammarus.

    PubMed

    Davies, Charlotte E; Thomas, Gethin R; Maffeis, Thierry G G; Wootton, Emma C; Penny, Mark W; Rowley, Andrew F

    2014-10-01

    The ectoparasitic copepod, Nicothoë astaci (the 'lobster louse'), infests the gills of the European lobster, Homarus gammarus. There have been limited studies on this haematophagous species; therefore knowledge of this parasite is rudimentary. The current study examines the surface morphology of this parasitic copepod, detached from the host, concentrating on adaptations of the suctorial mouthpart, the oral disc. Cryo-scanning electron microscopy revealed structural adaptations that facilitate attachment of these parasites to the gill filaments of their lobster host. The aperture of the feeding channel, through which host haemolymph is drawn, is only ca. 5μm in diameter. The edge of the oral disc is lined with numerous setae, whilst the surface of the disc is covered with large numbers of small (<1μm in diameter) teeth-like structures, which presumably pierce through, and grip, the cuticle lining of the host's gill. Overall, these structures are thought to provide a 'vacuum seal' to assist in pumping of blood, via peristalsis, into the alimentary canal of the copepod host. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Hemolymph and gill carbonic anhydrase are more sensitive to aquatic contamination than mantle carbonic anhydrase in the mangrove oyster Crassostrea rhizophorae.

    PubMed

    Dos Santos, Matheus Barbosa; Monteiro Neto, Ignácio Evaristo; de Souza Melo, Sarah Rachel Candido; Amado, Enelise Marcelle

    2017-10-01

    Carbonic anhydrase (CA) is a ubiquitous metalloenzyme of great importance in several physiological processes. Due to its physiological importance and sensitivity to various pollutants, CA activity has been used as biomarker of aquatic contamination. Considering that in bivalves the sensitivity of CA to pollutants seems to be tissue-specific, we proposed here to analyze CA activity of hemolymph, gill and mantle of Crassostrea rhizophorae collected in two tropical Brazilian estuaries with different levels of anthropogenic impact, in dry and rainy season. We found increased carbonic anhydrase activity in hemolymph, gill and mantle of oysters collected in the Paraíba Estuary (a site of high anthropogenic impact) when compared to oysters from Mamanguape Estuary (inserted in an area of environmental preservation), especially in the rainy season. CA of hemolymph and gill were more sensitive than mantle CA to aquatic contamination. This study enhances the suitability of carbonic anhydrase activity for field biomarker applications with bivalves and brings new and relevant information on hemolymph carbonic anhydrase activity as biomarker of aquatic contamination. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Fabrication of novel high surface area mushroom gilled fibers and their effects on human adipose derived stem cells under pulsatile fluid flow for tissue engineering applications.

    PubMed

    Tuin, Stephen A; Pourdeyhimi, Behnam; Loboa, Elizabeth G

    2016-05-01

    The fabrication and characterization of novel high surface area hollow gilled fiber tissue engineering scaffolds via industrially relevant, scalable, repeatable, high speed, and economical nonwoven carding technology is described. Scaffolds were validated as tissue engineering scaffolds using human adipose derived stem cells (hASC) exposed to pulsatile fluid flow (PFF). The effects of fiber morphology on the proliferation and viability of hASC, as well as effects of varied magnitudes of shear stress applied via PFF on the expression of the early osteogenic gene marker runt related transcription factor 2 (RUNX2) were evaluated. Gilled fiber scaffolds led to a significant increase in proliferation of hASC after seven days in static culture, and exhibited fewer dead cells compared to pure PLA round fiber controls. Further, hASC-seeded scaffolds exposed to 3 and 6dyn/cm(2) resulted in significantly increased mRNA expression of RUNX2 after one hour of PFF in the absence of soluble osteogenic induction factors. This is the first study to describe a method for the fabrication of high surface area gilled fibers and scaffolds. The scalable manufacturing process and potential fabrication across multiple nonwoven and woven platforms makes them promising candidates for a variety of applications that require high surface area fibrous materials. We report here for the first time the successful fabrication of novel high surface area gilled fiber scaffolds for tissue engineering applications. Gilled fibers led to a significant increase in proliferation of human adipose derived stem cells after one week in culture, and a greater number of viable cells compared to round fiber controls. Further, in the absence of osteogenic induction factors, gilled fibers led to significantly increased mRNA expression of an early marker for osteogenesis after exposure to pulsatile fluid flow. This is the first study to describe gilled fiber fabrication and their potential for tissue engineering

  11. Evaluation of gill nets, fyke nets, and mark-recapture methods to estimate the number of Hirudinea and Crustacea on fish.

    PubMed

    Szalai, A J; Dick, T A

    1991-12-01

    Twenty species of fishes (n = 20,759) were collected from Dauphin Lake, Manitoba, Canada, to determine the types and numbers of ectoparasites they harbored. Counts of ectoparasites on fishes collected with different gear were compared to evaluate different methods of collection and to estimate rates of recruitment of ectoparasites by fishes. Ectoparasites were found on 11 species of fishes and the majority of these were parasitic leeches (Myzobdella moorei, Cystobranchus verilli, and Placobdella montifera) and parasitic Crustacea (Argulus appendiculosus and Lernaea cyprinacea). Some fishes also were infested by neascus-type metacercariae (blackspot) or had tumors (lymphocystis). The prevalence of ectoparasites was correlated with the abundance, feeding habits, and spatial distribution of fish species. Argulus appendiculosus and blackspot were more prevalent on benthic fishes, whereas M. moorei and tumors were more prevalent on limnetic fishes. Mark-recapture records showed that fishes occupying shallow (less than or equal to 1.5 m) water had a higher prevalence of infestation and 28 of 29 infected fishes caught by gill nets were captured in shallow water. Placobdella montifera was the only ectoparasite found on fishes from deep (1.5-3.5 m) water and the only species that was acquired by fishes previously released with no ectoparasite (2 of 239 fishes). The littoral zone (less than or equal to 1.5 m) comprises only 14% of the surface area and 3% of the volume of Dauphin Lake, yet 72% of all gill-netted fishes harboring ectoparasites were collected there. Intensities of ectoparasites estimated from gill net and pound net samples were similar, but prevalence of ectoparasites estimated from samples obtained with gill nets was lower.

  12. Stage-Specific Transcriptome and Proteome Analyses of the Filarial Parasite Onchocerca volvulus and Its Wolbachia Endosymbiont

    PubMed Central

    Bennuru, Sasisekhar; Cotton, James A.; Ribeiro, Jose M. C.; Grote, Alexandra; Harsha, Bhavana; Holroyd, Nancy; Mhashilkar, Amruta; Molina, Douglas M.; Randall, Arlo Z.; Shandling, Adam D.; Unnasch, Thomas R.; Ghedin, Elodie; Berriman, Matthew

    2016-01-01

    ABSTRACT Onchocerciasis (river blindness) is a neglected tropical disease that has been successfully targeted by mass drug treatment programs in the Americas and small parts of Africa. Achieving the long-term goal of elimination of onchocerciasis, however, requires additional tools, including drugs, vaccines, and biomarkers of infection. Here, we describe the transcriptome and proteome profiles of the major vector and the human host stages (L1, L2, L3, molting L3, L4, adult male, and adult female) of Onchocerca volvulus along with the proteome of each parasitic stage and of its Wolbachia endosymbiont (wOv). In so doing, we have identified stage-specific pathways important to the parasite’s adaptation to its human host during its early development. Further, we generated a protein array that, when screened with well-characterized human samples, identified novel diagnostic biomarkers of O. volvulus infection and new potential vaccine candidates. This immunomic approach not only demonstrates the power of this postgenomic discovery platform but also provides additional tools for onchocerciasis control programs. PMID:27881553

  13. Health-related quality of life in patients with Gilles de la Tourette syndrome at the transition between adolescence and adulthood.

    PubMed

    Silvestri, Paola R; Chiarotti, Flavia; Baglioni, Valentina; Neri, Valeria; Cardona, Francesco; Cavanna, Andrea E

    2016-11-01

    Gilles de la Tourette syndrome (GTS) is a neurodevelopmental condition characterised by tics and co-morbid behavioural problems, affecting predominantly male patients. Tic severity typically fluctuates over time, with a consistent pattern showing improvement after adolescence in a considerable proportion of patients. Both tics and behavioural co-morbidities have been shown to have the potential to affect patients' health-related quality of life (HR-QoL) in children and adults with persisting symptoms. In this study, we present the results of the first investigation of HR-QoL in patients with Gilles de la Tourette syndrome at the transition between adolescence and adulthood using a disease-specific HR-QoL measure, the Gilles de la Tourette Syndrome-Quality of Life-Children and Adolescents scale. Our results showed that patients with GTS and more severe co-morbid anxiety symptoms reported lower HR-QoL across all domains, highlighting the impact of anxiety on patient's well-being at a critical stage of development. Routine screening for anxiety symptoms is recommended in all patients with GTS seen at transition clinics from paediatric to adult care, to implement effective behavioural and pharmacological interventions as appropriate.

  14. Active invasion of bacteria into living fungal cells

    PubMed Central

    Moebius, Nadine; Üzüm, Zerrin; Dijksterhuis, Jan; Lackner, Gerald; Hertweck, Christian

    2014-01-01

    The rice seedling blight fungus Rhizopus microsporus and its endosymbiont Burkholderia rhizoxinica form an unusual, highly specific alliance to produce the highly potent antimitotic phytotoxin rhizoxin. Yet, it has remained a riddle how bacteria invade the fungal cells. Genome mining for potential symbiosis factors and functional analyses revealed that a type 2 secretion system (T2SS) of the bacterial endosymbiont is required for the formation of the endosymbiosis. Comparative proteome analyses show that the T2SS releases chitinolytic enzymes (chitinase, chitosanase) and chitin-binding proteins. The genes responsible for chitinolytic proteins and T2SS components are highly expressed during infection. Through targeted gene knock-outs, sporulation assays and microscopic investigations we found that chitinase is essential for bacteria to enter hyphae. Unprecedented snapshots of the traceless bacterial intrusion were obtained using cryo-electron microscopy. Beyond unveiling the pivotal role of chitinolytic enzymes in the active invasion of a fungus by bacteria, these findings grant unprecedented insight into the fungal cell wall penetration and symbiosis formation. DOI: http://dx.doi.org/10.7554/eLife.03007.001 PMID:25182414

  15. Feminizing Wolbachia influence microbiota composition in the terrestrial isopod Armadillidium vulgare.

    PubMed

    Dittmer, Jessica; Bouchon, Didier

    2018-05-03

    Wolbachia are widespread heritable endosymbionts of arthropods notorious for their profound effects on host fitness as well as for providing protection against viruses and eukaryotic parasites, indicating that they can interact with other microorganisms sharing the same host environment. Using the terrestrial isopod crustacean Armadillidium vulgare, its highly diverse microbiota (>200 bacterial genera) and its three feminizing Wolbachia strains (wVulC, wVulM, wVulP) as a model system, the present study demonstrates that Wolbachia can even influence the composition of a diverse bacterial community under both laboratory and natural conditions. While host origin is the major determinant of the taxonomic composition of the microbiota in A. vulgare, Wolbachia infection affected both the presence and, more importantly, the abundance of many bacterial taxa within each host population, possibly due to competitive interactions. Moreover, different Wolbachia strains had different impacts on microbiota composition. As such, infection with wVulC affected a higher number of taxa than infection with wVulM, possibly due to intrinsic differences in virulence and titer between these two strains. In conclusion, this study shows that heritable endosymbionts such as Wolbachia can act as biotic factors shaping the microbiota of arthropods, with as yet unknown consequences on host fitness.

  16. Diversifying selection and host adaptation in two endosymbiont genomes

    PubMed Central

    Brownlie, Jeremy C; Adamski, Marcin; Slatko, Barton; McGraw, Elizabeth A

    2007-01-01

    Background The endosymbiont Wolbachia pipientis infects a broad range of arthropod and filarial nematode hosts. These diverse associations form an attractive model for understanding host:symbiont coevolution. Wolbachia's ubiquity and ability to dramatically alter host reproductive biology also form the foundation of research strategies aimed at controlling insect pests and vector-borne disease. The Wolbachia strains that infect nematodes are phylogenetically distinct, strictly vertically transmitted, and required by their hosts for growth and reproduction. Insects in contrast form more fluid associations with Wolbachia. In these taxa, host populations are most often polymorphic for infection, horizontal transmission occurs between distantly related hosts, and direct fitness effects on hosts are mild. Despite extensive interest in the Wolbachia system for many years, relatively little is known about the molecular mechanisms that mediate its varied interactions with different hosts. We have compared the genomes of the Wolbachia that infect Drosophila melanogaster, wMel and the nematode Brugia malayi, wBm to that of an outgroup Anaplasma marginale to identify genes that have experienced diversifying selection in the Wolbachia lineages. The goal of the study was to identify likely molecular mechanisms of the symbiosis and to understand the nature of the diverse association across different hosts. Results The prevalence of selection was far greater in wMel than wBm. Genes contributing to DNA metabolism, cofactor biosynthesis, and secretion were positively selected in both lineages. In wMel there was a greater emphasis on DNA repair, cell division, protein stability, and cell envelope synthesis. Conclusion Secretion pathways and outer surface protein encoding genes are highly affected by selection in keeping with host:parasite theory. If evidence of selection on various cofactor molecules reflects possible provisioning, then both insect as well as nematode Wolbachia may

  17. Multixenobiotic resistance in Mytilus edulis: Molecular and functional characterization of an ABCG2- type transporter in hemocytes and gills.

    PubMed

    Ben Cheikh, Yosra; Xuereb, Benoit; Boulangé-Lecomte, Céline; Le Foll, Frank

    2018-02-01

    Among the cellular protection arsenal, ABC transporters play an important role in xenobiotic efflux in marine organisms. Two pumps belonging to B and C subfamily has been identified in Mytilus edulis. In this study, we investigated the presence of the third major subtype ABCG2/BCRP protein in mussel tissues. Transcript was expressed in hemocytes and with higher level in gills. Molecular characterization revealed that mussel ABCG2 transporter shares the sequence and organizational structure with mammalian and molluscan orthologs. Overall identity of the predicted amino acid sequence with corresponding homologs from other organisms was between 49% and 98%. Moreover, protein efflux activity was demonstrated using a combination of fluorescent allocrites and specific inhibitors. The accumulation of bodipy prazosin and pheophorbide A was heterogeneous in gills and hemocytes. Most of the used blockers enhanced probe accumulation at different levels, most significantly for bodipy prazosin. Moreover, Mrp classical blocker MK571 showed a polyspecificity. In conclusion, our data demonstrate that several ABC transporters contribute to MXR phenotype in the blue mussel including ABCG2 that forms an active pump in hemocytes and gills. Efforts are needed to distinguish between the different members and to explore their single function and specificity towards allocrites and chemosensitizers. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Respiration Strategies Utilized by the Gill Endosymbiont from the Host Lucinid Codakia orbicularis (Bivalvia: Lucinidae)

    PubMed Central

    Duplessis, Melinda R.; Ziebis, Wiebke; Gros, Olivier; Caro, Audrey; Robidart, Julie; Felbeck, Horst

    2004-01-01

    The large tropical lucinid clam Codakia orbicularis has a symbiotic relationship with intracellular, sulfide-oxidizing chemoautotrophic bacteria. The respiration strategies utilized by the symbiont were explored using integrative techniques on mechanically purified symbionts and intact clam-symbiont associations along with habitat analysis. Previous work on a related symbiont species found in the host lucinid Lucinoma aequizonata showed that the symbionts obligately used nitrate as an electron acceptor, even under oxygenated conditions. In contrast, the symbionts of C. orbicularis use oxygen as the primary electron acceptor while evidence for nitrate respiration was lacking. Direct measurements obtained by using microelectrodes in purified symbiont suspensions showed that the symbionts consumed oxygen; this intracellular respiration was confirmed by using the redox dye CTC (5-cyano-2,3-ditolyl tetrazolium chloride). In the few intact chemosymbioses tested in previous studies, hydrogen sulfide production was shown to occur when the animal-symbiont association was exposed to anoxia and elemental sulfur stored in the thioautotrophic symbionts was proposed to serve as an electron sink in the absence of oxygen and nitrate. However, this is the first study to show by direct measurements using sulfide microelectrodes in enriched symbiont suspensions that the symbionts are the actual source of sulfide under anoxic conditions. PMID:15240294

  19. Culturable microbiota of ranched southern bluefin tuna (Thunnus maccoyii Castelnau).

    PubMed

    Valdenegro-Vega, V; Naeem, S; Carson, J; Bowman, J P; Tejedor del Real, J L; Nowak, B

    2013-10-01

    The Australian tuna industry is based on the ranching of wild southern bluefin tuna (SBT, Thunnus maccoyii). Within this industry, only opportunistic pathogens have been reported infecting external wounds of fish. This study aimed to identify different culturable bacteria present in three cohorts of SBT and to determine normal bacteria and potential pathogens in isolates from harvest fish and moribund/dead fish. Post-mortem changes in the microbiota were also studied. Moribund/dead showed a greater proportion of members from the family Vibrionaceae than harvested fish; the latter presented mainly non-Vibrio species. In harvested fish spleens, Vibrio splendidus I complex was the most commonly identified group among Vibrio isolates, while most groups from the family Vibrionaceae were isolated from gills. For moribund/dead, Vibrio chagasii and Photobacterium damselae subsp. damselae were common in gill, spleen and kidney samples. Non-Vibrio isolates from gills were characterized using 16S rRNA sequencing as Flavobacteriaceae and classes Gammaproteobacteria and Alphaproteobacteria, mainly from the genera Winogradskyella and Tenacibaculum. Post-mortem changes showed dynamic shifts in bacterial dominance in gills, with Vibrionaceae and non-Vibrio spp. found in similar proportions initially and types related to Pseudoalteromonas ruthenica prevailing after 27 h. Spleen samples showed little bacterial growth until 5 h post-mortem, while various Vibrio-associated species were isolated 27 h post-mortem. Bacterial isolates found include a range of potentially pathogenic bacteria that should be monitored though most of them have yet to be associated with disease in tuna. This study forms a foundation for future research into the bacterial population dynamics under different culture conditions of SBT. An understanding of the bacterial compositions in SBT is necessary to evaluate the effects of some bacterial species on their health. © 2013 The Society for Applied

  20. Structural Changes in the Somatosensory System Correlate with Tic Severity in Gilles de la Tourette Syndrome

    ERIC Educational Resources Information Center

    Thomalla, Gotz; Siebner, Hartwig R.; Jonas, Melanie; Baumer, Tobias; Biermann-Ruben, Katja; Hummel, Friedhelm; Gerloff, Christian; Muller-Vahl, Kirsten; Schnitzler, Alfons; Orth, Michael; Munchau, Alexander

    2009-01-01

    Gilles de la Tourette syndrome (GTS) is a neuropsychiatric disorder characterized by multiple motor and vocal tics. Previous structural MRI studies have identified regional abnormalities in grey matter, especially in the basal ganglia. These findings are consistent with the assumption of alterations in cortico-striato-thalamo-cortical circuits and…