Sample records for bacterial growth rates

  1. Effect of bacterial growth rate on bacteriophage population growth rate.

    PubMed

    Nabergoj, Dominik; Modic, Petra; Podgornik, Aleš

    2018-04-01

    It is important to understand how physiological state of the host influence propagation of bacteriophages (phages), due to the potential higher phage production needs in the future. In our study, we tried to elucidate the effect of bacterial growth rate on adsorption constant (δ), latent period (L), burst size (b), and bacteriophage population growth rate (λ). As a model system, a well-studied phage T4 and Escherichia coli K-12 as a host was used. Bacteria were grown in a continuous culture operating at dilution rates in the range between 0.06 and 0.98 hr -1 . It was found that the burst size increases linearly from 8 PFU·cell -1 to 89 PFU·cell -1 with increase in bacteria growth rate. On the other hand, adsorption constant and latent period were both decreasing from 2.6∙10 -9  ml·min -1 and 80 min to reach limiting values of 0.5 × 10 -9  ml·min -1 and 27 min at higher growth rates, respectively. Both trends were mathematically described with Michaelis-Menten based type of equation and reasons for such form are discussed. By applying selected equations, a mathematical equation for prediction of bacteriophage population growth rate as a function of dilution rate was derived, reaching values around 8 hr -1 at highest dilution rate. Interestingly, almost identical description can be obtained using much simpler Monod type equation and possible reasons for this finding are discussed. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  2. Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient

    PubMed Central

    Campbell, Barbara J; Kirchman, David L

    2013-01-01

    Very little is known about growth rates of individual bacterial taxa and how they respond to environmental flux. Here, we characterized bacterial community diversity, structure and the relative abundance of 16S rRNA and 16S rRNA genes (rDNA) using pyrosequencing along the salinity gradient in the Delaware Bay. Indices of diversity, evenness, structure and growth rates of the surface bacterial community significantly varied along the transect, reflecting active mixing between the freshwater and marine ends of the estuary. There was no positive correlation between relative abundances of 16S rRNA and rDNA for the entire bacterial community, suggesting that abundance of bacteria does not necessarily reflect potential growth rate or activity. However, for almost half of the individual taxa, 16S rRNA positively correlated with rDNA, suggesting that activity did follow abundance in these cases. The positive relationship between 16S rRNA and rDNA was less in the whole water community than for free-living taxa, indicating that the two communities differed in activity. The 16S rRNA:rDNA ratios of some typically marine taxa reflected differences in light, nutrient concentrations and other environmental factors along the estuarine gradient. The ratios of individual freshwater taxa declined as salinity increased, whereas the 16S rRNA:rDNA ratios of only some typical marine bacteria increased as salinity increased. These data suggest that physical and other bottom-up factors differentially affect growth rates, but not necessarily abundance of individual taxa in this highly variable environment. PMID:22895159

  3. Effects of storage temperature on bacterial growth rates and community structure in fresh retail sushi.

    PubMed

    Hoel, S; Jakobsen, A N; Vadstein, O

    2017-09-01

    This study was conducted to assess the effects of different storage temperatures (4-20°C), on bacterial concentrations, growth rates and community structure in fresh retail sushi, a popular retail product with a claimed shelf life of 2-3 days. The maximum specific growth rate based on aerobic plate count (APC) at 4°C was 0·06 h -1 and displayed a sixfold increase (0·37 h -1 ) at 20°C. Refrigeration resulted in no growth of hydrogen sulphide (H 2 S)-producing bacteria, but this group had the strongest temperature response. The bacterial community structure was determined by PCR/DGGE (denaturing gradient gel electrophoresis). Multivariate analysis based on Bray-Curtis similarities demonstrated that temperature alone was not the major determinant for the bacterial community structure. The total concentration of aerobic bacteria was the variable that most successfully explained the differences between the communities. The dominating organisms, detected by sequencing of DNA bands excised from the DGGE gel, were Brochothrix thermosphacta and genera of lactic acid bacteria (LAB). The relationship between growth rates and storage temperatures clearly demonstrates that these products are sensitive to deviations from optimal storage temperature, possibly resulting in loss of quality during shelf life. Regardless of the storage temperature, the bacterial communities converged towards a similar structure and density, but the storage temperature determined how fast the community reached its carrying capacity. Little information is available on the microbial composition of ready-to-eat food that are prepared with raw fish, subjected to contamination during handling, and susceptible to microbial growth during cold storage. Moreover, the data are a good first possibility to simulate growth of APC, H 2 S-producing bacteria and LAB under different temperature scenarios that might occur during production, distribution or storage. © 2017 The Society for Applied Microbiology.

  4. Phenotypic Signatures Arising from Unbalanced Bacterial Growth

    PubMed Central

    Tan, Cheemeng; Smith, Robert Phillip; Tsai, Ming-Chi; Schwartz, Russell; You, Lingchong

    2014-01-01

    Fluctuations in the growth rate of a bacterial culture during unbalanced growth are generally considered undesirable in quantitative studies of bacterial physiology. Under well-controlled experimental conditions, however, these fluctuations are not random but instead reflect the interplay between intra-cellular networks underlying bacterial growth and the growth environment. Therefore, these fluctuations could be considered quantitative phenotypes of the bacteria under a specific growth condition. Here, we present a method to identify “phenotypic signatures” by time-frequency analysis of unbalanced growth curves measured with high temporal resolution. The signatures are then applied to differentiate amongst different bacterial strains or the same strain under different growth conditions, and to identify the essential architecture of the gene network underlying the observed growth dynamics. Our method has implications for both basic understanding of bacterial physiology and for the classification of bacterial strains. PMID:25101949

  5. Phenotypic signatures arising from unbalanced bacterial growth.

    PubMed

    Tan, Cheemeng; Smith, Robert Phillip; Tsai, Ming-Chi; Schwartz, Russell; You, Lingchong

    2014-08-01

    Fluctuations in the growth rate of a bacterial culture during unbalanced growth are generally considered undesirable in quantitative studies of bacterial physiology. Under well-controlled experimental conditions, however, these fluctuations are not random but instead reflect the interplay between intra-cellular networks underlying bacterial growth and the growth environment. Therefore, these fluctuations could be considered quantitative phenotypes of the bacteria under a specific growth condition. Here, we present a method to identify "phenotypic signatures" by time-frequency analysis of unbalanced growth curves measured with high temporal resolution. The signatures are then applied to differentiate amongst different bacterial strains or the same strain under different growth conditions, and to identify the essential architecture of the gene network underlying the observed growth dynamics. Our method has implications for both basic understanding of bacterial physiology and for the classification of bacterial strains.

  6. Bacterial growth rates are influenced by cellular characteristics of individual species when immersed in electromagnetic fields.

    PubMed

    Tessaro, Lucas W E; Murugan, Nirosha J; Persinger, Michael A

    2015-03-01

    Previous studies have shown that exposure to extremely low-frequency electromagnetic fields (ELF-EMFs) have negative effects on the rate of growth of bacteria. In the present study, two Gram-positive and two Gram-negative species were exposed to six magnetic field conditions in broth cultures. Three variations of the 'Thomas' pulsed frequency-modulated pattern; a strong-static "puck" magnet upwards of 5000G in intensity; a pair of these magnets rotating opposite one another at ∼30rpm; and finally a strong dynamic magnetic field generator termed the 'Resonator' with an average intensity of 250μT were used. Growth rate was discerned by optical density (OD) measurements every hour at 600nm. ELF-EMF conditions significantly affected the rates of growth of the bacterial cultures, while the two static magnetic field conditions were not statistically significant. Most interestingly, the 'Resonator' dynamic magnetic field increased the rates of growth of three species (Staphylococcus epidermidis, Staphylococcus aureus, and Escherichia coli), while slowing the growth of one (Serratia marcescens). We suggest that these effects are due to individual biophysical characteristics of the bacterial species. Copyright © 2015 Elsevier GmbH. All rights reserved.

  7. Precise, High-throughput Analysis of Bacterial Growth.

    PubMed

    Kurokawa, Masaomi; Ying, Bei-Wen

    2017-09-19

    Bacterial growth is a central concept in the development of modern microbial physiology, as well as in the investigation of cellular dynamics at the systems level. Recent studies have reported correlations between bacterial growth and genome-wide events, such as genome reduction and transcriptome reorganization. Correctly analyzing bacterial growth is crucial for understanding the growth-dependent coordination of gene functions and cellular components. Accordingly, the precise quantitative evaluation of bacterial growth in a high-throughput manner is required. Emerging technological developments offer new experimental tools that allow updates of the methods used for studying bacterial growth. The protocol introduced here employs a microplate reader with a highly optimized experimental procedure for the reproducible and precise evaluation of bacterial growth. This protocol was used to evaluate the growth of several previously described Escherichia coli strains. The main steps of the protocol are as follows: the preparation of a large number of cell stocks in small vials for repeated tests with reproducible results, the use of 96-well plates for high-throughput growth evaluation, and the manual calculation of two major parameters (i.e., maximal growth rate and population density) representing the growth dynamics. In comparison to the traditional colony-forming unit (CFU) assay, which counts the cells that are cultured in glass tubes over time on agar plates, the present method is more efficient and provides more detailed temporal records of growth changes, but has a stricter detection limit at low population densities. In summary, the described method is advantageous for the precise and reproducible high-throughput analysis of bacterial growth, which can be used to draw conceptual conclusions or to make theoretical observations.

  8. Effect of Weak Magnetic Field on Bacterial Growth

    NASA Astrophysics Data System (ADS)

    Masood, Samina

    Effects of weak magnetic fields are observed on the growth of various bacterial strains. Different sources of a constant magnetic field are used to demonstrate that ion transport in the nutrient broth and bacterial cellular dynamics is perturbed in the presence of weak magnetic field which affects the mobility and absorption of nutrients in cells and hence their doubling rate. The change is obvious after a few hours of exposure and keeps on increasing with time for all the observed species. The growth rate depends on the field strength and the nature of the magnetic field. The field effect varies with the shape and the structure of the bacterial cell wall as well as the concentration of nutrient broth. We closely study the growth of three species Escherichia coli, Pseudomonas aeruginosa and Staphylococcus epidermidis with the same initial concentrations at the same temperature in the same laboratory environment. Our results indicate that the weak static field of a few gauss after a few hours gives a measurable change in the growth rates of all bacterial species. This shows that the same magnetic field has different effects on different species in the same environment.

  9. Bacterial Associates Modify Growth Dynamics of the Dinoflagellate Gymnodinium catenatum

    PubMed Central

    Bolch, Christopher J. S.; Bejoy, Thaila A.; Green, David H.

    2017-01-01

    Marine phytoplankton cells grow in close association with a complex microbial associate community known to affect the growth, behavior, and physiology of the algal host. The relative scale and importance these effects compared to other major factors governing algal cell growth remain unclear. Using algal-bacteria co-culture models based on the toxic dinoflagellate Gymnodinium catenatum, we tested the hypothesis that associate bacteria exert an independent effect on host algal cell growth. Batch co-cultures of G. catenatum were grown under identical environmental conditions with simplified bacterial communities composed of one-, two-, or three-bacterial associates. Modification of the associate community membership and complexity induced up to four-fold changes in dinoflagellate growth rate, equivalent to the effect of a 5°C change in temperature or an almost six-fold change in light intensity (20–115 moles photons PAR m-2 s-1). Almost three-fold changes in both stationary phase cell concentration and death rate were also observed. Co-culture with Roseobacter sp. DG874 reduced dinoflagellate exponential growth rate and led to a more rapid death rate compared with mixed associate community controls or co-culture with either Marinobacter sp. DG879, Alcanivorax sp. DG881. In contrast, associate bacteria concentration was positively correlated with dinoflagellate cell concentration during the exponential growth phase, indicating growth was limited by supply of dinoflagellate-derived carbon. Bacterial growth increased rapidly at the onset of declining and stationary phases due to either increasing availability of algal-derived carbon induced by nutrient stress and autolysis, or at mid-log phase in Roseobacter co-cultures potentially due to the onset of bacterial-mediated cell lysis. Co-cultures with the three bacterial associates resulted in dinoflagellate and bacterial growth dynamics very similar to more complex mixed bacterial community controls, suggesting that

  10. On the intrinsic constraint of bacterial growth rate: M. tuberculosis's view of the protein translation capacity.

    PubMed

    Zhu, Manlu; Dai, Xiongfeng

    2018-01-15

    In nature, the maximal growth rates vary widely among different bacteria species. Fast-growing bacteria species such as Escherichia coli can have a shortest generation time of 20 min. Slow-growing bacteria species are perhaps best known for Mycobacterium tuberculosis, a human pathogen with a generation time being no less than 16 h. Despite of the significant progress made on understanding the pathogenesis of M. tuberculosis, we know little on the origin of its intriguingly slow growth. From a global view, the intrinsic constraint of the maximal growth rate of bacteria remains to be a fundamental question in microbiology. In this review, we analyze and discuss this issue from the angle of protein translation capacity, which is the major demand for cell growth. Based on quantitative analysis, we propose four parameters: rRNA chain elongation rate, abundance of RNA polymerase engaged in rRNA synthesis, polypeptide chain elongation rate, and active ribosome fraction, which potentially limit the maximal growth rate of bacteria. We further discuss the relation of these parameters with the growth rate for M. tuberculosis as well as other bacterial species. We highlight future comprehensive investigation of these parameters for different bacteria species to understand how bacteria set their own specific growth rates.

  11. Correlation between genome reduction and bacterial growth.

    PubMed

    Kurokawa, Masaomi; Seno, Shigeto; Matsuda, Hideo; Ying, Bei-Wen

    2016-12-01

    Genome reduction by removing dispensable genomic sequences in bacteria is commonly used in both fundamental and applied studies to determine the minimal genetic requirements for a living system or to develop highly efficient bioreactors. Nevertheless, whether and how the accumulative loss of dispensable genomic sequences disturbs bacterial growth remains unclear. To investigate the relationship between genome reduction and growth, a series of Escherichia coli strains carrying genomes reduced in a stepwise manner were used. Intensive growth analyses revealed that the accumulation of multiple genomic deletions caused decreases in the exponential growth rate and the saturated cell density in a deletion-length-dependent manner as well as gradual changes in the patterns of growth dynamics, regardless of the growth media. Accordingly, a perspective growth model linking genome evolution to genome engineering was proposed. This study provides the first demonstration of a quantitative connection between genomic sequence and bacterial growth, indicating that growth rate is potentially associated with dispensable genomic sequences. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  12. Growth of Bacterial Colonies

    NASA Astrophysics Data System (ADS)

    Warren, Mya; Hwa, Terence

    2013-03-01

    On hard agar gel, there is insufficient surface hydration for bacteria to swim or swarm. Instead, growth occurs in colonies of close-packed cells, which expand purely due to repulsive interactions: individual bacteria push each other out of the way through the force of their growth. In this way, bacterial colonies represent a new type of ``active'' granular matter. In this study, we investigate the physical, biochemical, and genetic elements that determine the static and dynamic aspects of this mode of bacterial growth for E. coli. We characterize the process of colony expansion empirically, and use discrete and continuum models to examine the extent to which our observations can be explained by the growth characteristics of non-communicating cells, coupled together by physical forces, nutrients, and waste products. Our results challenge the commonly accepted modes of bacterial colony growth and provide insight into sources of growth limitation in crowded bacterial communities.

  13. A size-structured model of bacterial growth and reproduction.

    PubMed

    Ellermeyer, S F; Pilyugin, S S

    2012-01-01

    We consider a size-structured bacterial population model in which the rate of cell growth is both size- and time-dependent and the average per capita reproduction rate is specified as a model parameter. It is shown that the model admits classical solutions. The population-level and distribution-level behaviours of these solutions are then determined in terms of the model parameters. The distribution-level behaviour is found to be different from that found in similar models of bacterial population dynamics. Rather than convergence to a stable size distribution, we find that size distributions repeat in cycles. This phenomenon is observed in similar models only under special assumptions on the functional form of the size-dependent growth rate factor. Our main results are illustrated with examples, and we also provide an introductory study of the bacterial growth in a chemostat within the framework of our model.

  14. Population Dynamics of a Salmonella Lytic Phage and Its Host: Implications of the Host Bacterial Growth Rate in Modelling

    PubMed Central

    Santos, Sílvio B.; Carvalho, Carla; Azeredo, Joana; Ferreira, Eugénio C.

    2014-01-01

    The prevalence and impact of bacteriophages in the ecology of bacterial communities coupled with their ability to control pathogens turn essential to understand and predict the dynamics between phage and bacteria populations. To achieve this knowledge it is essential to develop mathematical models able to explain and simulate the population dynamics of phage and bacteria. We have developed an unstructured mathematical model using delay-differential equations to predict the interactions between a broad-host-range Salmonella phage and its pathogenic host. The model takes into consideration the main biological parameters that rule phage-bacteria interactions likewise the adsorption rate, latent period, burst size, bacterial growth rate, and substrate uptake rate, among others. The experimental validation of the model was performed with data from phage-interaction studies in a 5 L bioreactor. The key and innovative aspect of the model was the introduction of variations in the latent period and adsorption rate values that are considered as constants in previous developed models. By modelling the latent period as a normal distribution of values and the adsorption rate as a function of the bacterial growth rate it was possible to accurately predict the behaviour of the phage-bacteria population. The model was shown to predict simulated data with a good agreement with the experimental observations and explains how a lytic phage and its host bacteria are able to coexist. PMID:25051248

  15. Plant growth-promoting bacterial endophytes.

    PubMed

    Santoyo, Gustavo; Moreno-Hagelsieb, Gabriel; Orozco-Mosqueda, Ma del Carmen; Glick, Bernard R

    2016-02-01

    Bacterial endophytes ubiquitously colonize the internal tissues of plants, being found in nearly every plant worldwide. Some endophytes are able to promote the growth of plants. For those strains the mechanisms of plant growth-promotion known to be employed by bacterial endophytes are similar to the mechanisms used by rhizospheric bacteria, e.g., the acquisition of resources needed for plant growth and modulation of plant growth and development. Similar to rhizospheric plant growth-promoting bacteria, endophytic plant growth-promoting bacteria can act to facilitate plant growth in agriculture, horticulture and silviculture as well as in strategies for environmental cleanup (i.e., phytoremediation). Genome comparisons between bacterial endophytes and the genomes of rhizospheric plant growth-promoting bacteria are starting to unveil potential genetic factors involved in an endophytic lifestyle, which should facilitate a better understanding of the functioning of bacterial endophytes. Copyright © 2015 Elsevier GmbH. All rights reserved.

  16. Limitation of Bacterial Growth by Dissolved Organic Matter and Iron in the Southern Ocean†

    PubMed Central

    Church, Matthew J.; Hutchins, David A.; Ducklow, Hugh W.

    2000-01-01

    The importance of resource limitation in controlling bacterial growth in the high-nutrient, low-chlorophyll (HNLC) region of the Southern Ocean was experimentally determined during February and March 1998. Organic- and inorganic-nutrient enrichment experiments were performed between 42°S and 55°S along 141°E. Bacterial abundance, mean cell volume, and [3H]thymidine and [3H]leucine incorporation were measured during 4- to 5-day incubations. Bacterial biomass, production, and rates of growth all responded to organic enrichments in three of the four experiments. These results indicate that bacterial growth was constrained primarily by the availability of dissolved organic matter. Bacterial growth in the subtropical front, subantarctic zone, and subantarctic front responded most favorably to additions of dissolved free amino acids or glucose plus ammonium. Bacterial growth in these regions may be limited by input of both organic matter and reduced nitrogen. Unlike similar experimental results in other HNLC regions (subarctic and equatorial Pacific), growth stimulation of bacteria in the Southern Ocean resulted in significant biomass accumulation, apparently by stimulating bacterial growth in excess of removal processes. Bacterial growth was relatively unchanged by additions of iron alone; however, additions of glucose plus iron resulted in substantial increases in rates of bacterial growth and biomass accumulation. These results imply that bacterial growth efficiency and nitrogen utilization may be partly constrained by iron availability in the HNLC Southern Ocean. PMID:10653704

  17. Aerobic biological treatment of low-strength synthetic wastewater in membrane-coupled bioreactors: the structure and function of bacterial enrichment cultures as the net growth rate approaches zero.

    PubMed

    Chen, Ruoyu; LaPara, Timothy M

    2006-01-01

    The goal of the current research was to determine if the stringent nutrient limitation imposed by membrane-coupled bioreactors (MBRs) could be used to force mixed bacterial communities to exhibit a zero net growth rate over an extended time period. Mechanistically, this zero net growth rate could be achieved when the amount of energy available for growth is balanced by the maintenance requirements of the bacterial community. Bench-scale MBRs were fed synthetic feed medium containing gelatin as the major organic substrate. Biomass concentrations initially increased rapidly, but subsequently declined until an asymptote was reached. Leucine aminopeptidase activities concomitantly increased by at least 10-fold, suggesting that bacterial catabolic activity remained high even while growth rates became negligible. In contrast, alpha-glucosidase and heptanoate esterase activities decreased, indicating that the bacterial community specifically adapted to the carbon source in the feed medium. Bacterial community analysis by denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments (PCR-DGGE) suggested that the bacterial community structure completely changed from the beginning to the end of each MBR. Excision and nucleotide sequence analysis of prominent PCR-DGGE bands suggested that many of the dominant populations were similar to novel bacterial strains that were previously uncultivated or recently cultivated during studies specifically targeting these novel populations. This research demonstrates that MBRs have substantial practical applications for biological wastewater treatment; in addition, MBRs are a useful tool to study the ecology of slow-growing bacteria.

  18. Growth-rate-dependent dynamics of a bacterial genetic oscillator

    NASA Astrophysics Data System (ADS)

    Osella, Matteo; Lagomarsino, Marco Cosentino

    2013-01-01

    Gene networks exhibiting oscillatory dynamics are widespread in biology. The minimal regulatory designs giving rise to oscillations have been implemented synthetically and studied by mathematical modeling. However, most of the available analyses generally neglect the coupling of regulatory circuits with the cellular “chassis” in which the circuits are embedded. For example, the intracellular macromolecular composition of fast-growing bacteria changes with growth rate. As a consequence, important parameters of gene expression, such as ribosome concentration or cell volume, are growth-rate dependent, ultimately coupling the dynamics of genetic circuits with cell physiology. This work addresses the effects of growth rate on the dynamics of a paradigmatic example of genetic oscillator, the repressilator. Making use of empirical growth-rate dependencies of parameters in bacteria, we show that the repressilator dynamics can switch between oscillations and convergence to a fixed point depending on the cellular state of growth, and thus on the nutrients it is fed. The physical support of the circuit (type of plasmid or gene positions on the chromosome) also plays an important role in determining the oscillation stability and the growth-rate dependence of period and amplitude. This analysis has potential application in the field of synthetic biology, and suggests that the coupling between endogenous genetic oscillators and cell physiology can have substantial consequences for their functionality.

  19. Bacterial Respiration and Growth Rates Affect the Feeding Preferences, Brood Size and Lifespan of Caenorhabditis elegans

    PubMed Central

    Yu, Li; Yan, Xiaomei; Ye, Chenglong; Zhao, Haiyan; Chen, Xiaoyun; Hu, Feng; Li, Huixin

    2015-01-01

    Bacteria serve as live food and nutrients for bacterial-feeding nematodes (BFNs) in soils, and influence nematodes behavior and physiology through their metabolism. Five bacterial taxa (Bacillus amyloliquefaciens JX1, Variovorax sp. JX14, Bacillus megaterium JX15, Pseudomonas fluorescens Y1 and Escherichia coli OP50) and the typical BFN Caenorhabditis elegans were selected to study the effects of bacterial respiration and growth rates on the feeding preferences, brood size and lifespan of nematodes. P. fluorescens Y1 and E. coli OP50 were found to be more active, with high respiration and rapid growth, whereas B. amyloliquefaciens JX1 and B. megaterium JX15 were inactive. The nematode C. elegans preferred active P. fluorescens Y1 and E. coli OP50 obviously. Furthermore, worms that fed on these two active bacteria produced more offspring but had shorter lifespan, while inactive and less preferred bacteria had increased nematodes lifespan and decreased the brood size. Based on these results, we propose that the bacterial activity may influence the behavior and life traits of C. elegans in the following ways: (1) active bacteria reproduce rapidly and emit high levels of CO2 attracting C. elegans; (2) these active bacteria use more resources in the nematodes’ gut to sustain their survival and reproduction, thereby reducing the worm's lifespan; (3) inactive bacteria may provide less food for worms than active bacteria, thus increasing nematodes lifespan but decreasing their fertility. Nematodes generally require a balance between their preferred foods and beneficial foods, only preferred food may not be beneficial for nematodes. PMID:26222828

  20. Rapid Method of Determining Factors Limiting Bacterial Growth in Soil

    PubMed Central

    Aldén, L.; Demoling, F.; Bååth, E.

    2001-01-01

    A technique to determine which nutrients limit bacterial growth in soil was developed. The method was based on measuring the thymidine incorporation rate of bacteria after the addition of C, N, and P in different combinations to soil samples. First, the thymidine incorporation method was tested in two different soils: an agricultural soil and a forest humus soil. Carbon (as glucose) was found to be the limiting substance for bacterial growth in both of these soils. The effect of adding different amounts of nutrients was studied, and tests were performed to determine whether the additions affected the soil pH and subsequent bacterial activity. The incubation time required to detect bacterial growth after adding substrate to the soil was also evaluated. Second, the method was used in experiments in which three different size fractions of straw (1 to 2, 0.25 to 1, and <0.25 mm) were mixed into the agricultural soil in order to induce N limitation for bacterial growth. When the straw fraction was small enough (<0.25 mm), N became the limiting nutrient for bacterial growth after about 3 weeks. After the addition of the larger straw fractions (1 to 2 and 0.25 to 1 mm), the soil bacteria were C limited throughout the incubation period (10 weeks), although an increase in the thymidine incorporation rate after the addition of C and N together compared with adding them separately was seen in the sample containing the size fraction from 0.25 to 1 mm. Third, soils from high-pH, limestone-rich areas were examined. P limitation was observed in one of these soils, while tendencies toward P limitation were seen in some of the other soils. PMID:11282640

  1. Bacterial growth laws and their applications.

    PubMed

    Scott, Matthew; Hwa, Terence

    2011-08-01

    Quantitative empirical relationships between cell composition and growth rate played an important role in the early days of microbiology. Gradually, the focus of the field began to shift from growth physiology to the ever more elaborate molecular mechanisms of regulation employed by the organisms. Advances in systems biology and biotechnology have renewed interest in the physiology of the cell as a whole. Furthermore, gene expression is known to be intimately coupled to the growth state of the cell. Here, we review recent efforts in characterizing such couplings, particularly the quantitative phenomenological approaches exploiting bacterial 'growth laws.' These approaches point toward underlying design principles that can guide the predictive manipulation of cell behavior in the absence of molecular details. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Bacterial growth laws and their applications

    PubMed Central

    SCOTT, Matthew; HWA, Terence

    2011-01-01

    Quantitative empirical relationships between cell composition and growth rate played an important role in the early days of microbiology. Gradually, the focus of the field began to shift from growth physiology to the ever more elaborate molecular mechanisms of regulation employed by the organisms. Advances in systems biology and biotechnology have renewed interest in the physiology of the cell as a whole. Furthermore, gene expression is known to be intimately coupled to the growth state of the cell. Here, we review recent efforts in characterizing such couplings, particularly the quantitative phenomenological approaches exploiting bacterial `growth laws.' These approaches point toward underlying design principles that can guide the predictive manipulation of cell behavior in the absence of molecular details. PMID:21592775

  3. Identical bacterial populations colonize premature infant gut, skin, and oral microbiomes and exhibit different in situ growth rates

    PubMed Central

    Olm, Matthew R.; Brown, Christopher T.; Brooks, Brandon; Firek, Brian; Baker, Robyn; Burstein, David; Soenjoyo, Karina; Thomas, Brian C.; Morowitz, Michael; Banfield, Jillian F.

    2017-01-01

    The initial microbiome impacts the health and future development of premature infants. Methodological limitations have led to gaps in our understanding of the habitat range and subpopulation complexity of founding strains, as well as how different body sites support microbial growth. Here, we used metagenomics to reconstruct genomes of strains that colonized the skin, mouth, and gut of two hospitalized premature infants during the first month of life. Seven bacterial populations, considered to be identical given whole-genome average nucleotide identity of >99.9%, colonized multiple body sites, yet none were shared between infants. Gut-associated Citrobacter koseri genomes harbored 47 polymorphic sites that we used to define 10 subpopulations, one of which appeared in the gut after 1 wk but did not spread to other body sites. Differential genome coverage was used to measure bacterial population replication rates in situ. In all cases where the same bacterial population was detected in multiple body sites, replication rates were faster in mouth and skin compared to the gut. The ability of identical strains to colonize multiple body sites underscores the habit flexibility of initial colonists, whereas differences in microbial replication rates between body sites suggest differences in host control and/or resource availability. Population genomic analyses revealed microdiversity within bacterial populations, implying initial inoculation by multiple individual cells with distinct genotypes. Overall, however, the overlap of strains across body sites implies that the premature infant microbiome can exhibit very low microbial diversity. PMID:28073918

  4. Growth-rate dependent global effects on gene expression in bacteria

    PubMed Central

    Klumpp, Stefan; Zhang, Zhongge; Hwa, Terence

    2010-01-01

    Summary Bacterial gene expression depends not only on specific regulations but also directly on bacterial growth, because important global parameters such as the abundance of RNA polymerases and ribosomes are all growth-rate dependent. Understanding these global effects is necessary for a quantitative understanding of gene regulation and for the robust design of synthetic genetic circuits. The observed growth-rate dependence of constitutive gene expression can be explained by a simple model using the measured growth-rate dependence of the relevant cellular parameters. More complex growth dependences for genetic circuits involving activators, repressors and feedback control were analyzed, and salient features were verified experimentally using synthetic circuits. The results suggest a novel feedback mechanism mediated by general growth-dependent effects and not requiring explicit gene regulation, if the expressed protein affects cell growth. This mechanism can lead to growth bistability and promote the acquisition of important physiological functions such as antibiotic resistance and tolerance (persistence). PMID:20064380

  5. A uniform bacterial growth potential assay for different water types.

    PubMed

    Farhat, Nadia; Hammes, Frederik; Prest, Emmanuelle; Vrouwenvelder, Johannes

    2018-06-06

    The bacterial growth potential is important to understand and manage bacterial regrowth-related water quality concerns. Bacterial growth potential depends on growth promoting/limiting compounds, therefore, nutrient availability is the key factor governing bacterial growth potential. Selecting proper tools for bacterial growth measurement is essential for routine implementation of the growth potential measurement. This study proposes a growth potential assay that is universal and can be used for different water types and soil extract without restrictions of pure culture or cultivability of the bacterial strain. The proposed assay measures the sample bacterial growth potential by using the indigenous community as inocula. Flow cytometry (FCM) and adenosine tri-phosphate (ATP) were used to evaluate the growth potential of six different microbial communities indigenous to the sample being analyzed, with increasing carbon concentrations. Bottled mineral water, non-chlorinated tap water, seawater, river water, wastewater effluent and a soil organic carbon extract were analyzed. Results showed that indigenous bacterial communities followed normal batch growth kinetics when grown on naturally present organic carbon. Indigenous bacterial growth could detect spiked organic carbon concentrations as low as 10 μg/L. The indigenous community in all samples responded proportionally to the increase in acetate-carbon and proportional growth could be measured with both FCM and ATP. Bacterial growth was proportional to the carbon concentration but not the same proportion factor for the different water samples tested. The effect of inoculating the same water with different indigenous microbial communities on the growth potential was also examined. The FCM results showed that the highest increase in total bacterial cell concentration was obtained with bacteria indigenous to the water sample. The growth potential assay using indigenous bacterial community revealed consistent results

  6. Diamagnetic levitation enhances growth of liquid bacterial cultures by increasing oxygen availability

    PubMed Central

    Dijkstra, Camelia E.; Larkin, Oliver J.; Anthony, Paul; Davey, Michael R.; Eaves, Laurence; Rees, Catherine E. D.; Hill, Richard J. A.

    2011-01-01

    Diamagnetic levitation is a technique that uses a strong, spatially varying magnetic field to reproduce aspects of weightlessness, on the Earth. We used a superconducting magnet to levitate growing bacterial cultures for up to 18 h, to determine the effect of diamagnetic levitation on all phases of the bacterial growth cycle. We find that diamagnetic levitation increases the rate of population growth in a liquid culture and reduces the sedimentation rate of the cells. Further experiments and microarray gene analysis show that the increase in growth rate is owing to enhanced oxygen availability. We also demonstrate that the magnetic field that levitates the cells also induces convective stirring in the liquid. We present a simple theoretical model, showing how the paramagnetic force on dissolved oxygen can cause convection during the aerobic phases of bacterial growth. We propose that this convection enhances oxygen availability by transporting oxygen around the liquid culture. Since this process results from the strong magnetic field, it is not present in other weightless environments, e.g. in Earth orbit. Hence, these results are of significance and timely to researchers considering the use of diamagnetic levitation to explore effects of weightlessness on living organisms and on physical phenomena. PMID:20667843

  7. Diamagnetic levitation enhances growth of liquid bacterial cultures by increasing oxygen availability.

    PubMed

    Dijkstra, Camelia E; Larkin, Oliver J; Anthony, Paul; Davey, Michael R; Eaves, Laurence; Rees, Catherine E D; Hill, Richard J A

    2011-03-06

    Diamagnetic levitation is a technique that uses a strong, spatially varying magnetic field to reproduce aspects of weightlessness, on the Earth. We used a superconducting magnet to levitate growing bacterial cultures for up to 18 h, to determine the effect of diamagnetic levitation on all phases of the bacterial growth cycle. We find that diamagnetic levitation increases the rate of population growth in a liquid culture and reduces the sedimentation rate of the cells. Further experiments and microarray gene analysis show that the increase in growth rate is owing to enhanced oxygen availability. We also demonstrate that the magnetic field that levitates the cells also induces convective stirring in the liquid. We present a simple theoretical model, showing how the paramagnetic force on dissolved oxygen can cause convection during the aerobic phases of bacterial growth. We propose that this convection enhances oxygen availability by transporting oxygen around the liquid culture. Since this process results from the strong magnetic field, it is not present in other weightless environments, e.g. in Earth orbit. Hence, these results are of significance and timely to researchers considering the use of diamagnetic levitation to explore effects of weightlessness on living organisms and on physical phenomena.

  8. A dynamic regression analysis tool for quantitative assessment of bacterial growth written in Python.

    PubMed

    Hoeflinger, Jennifer L; Hoeflinger, Daniel E; Miller, Michael J

    2017-01-01

    Herein, an open-source method to generate quantitative bacterial growth data from high-throughput microplate assays is described. The bacterial lag time, maximum specific growth rate, doubling time and delta OD are reported. Our method was validated by carbohydrate utilization of lactobacilli, and visual inspection revealed 94% of regressions were deemed excellent. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Response of Escherichia coli growth rate to osmotic shock.

    PubMed

    Rojas, Enrique; Theriot, Julie A; Huang, Kerwyn Casey

    2014-05-27

    It has long been proposed that turgor pressure plays an essential role during bacterial growth by driving mechanical expansion of the cell wall. This hypothesis is based on analogy to plant cells, for which this mechanism has been established, and on experiments in which the growth rate of bacterial cultures was observed to decrease as the osmolarity of the growth medium was increased. To distinguish the effect of turgor pressure from pressure-independent effects that osmolarity might have on cell growth, we monitored the elongation of single Escherichia coli cells while rapidly changing the osmolarity of their media. By plasmolyzing cells, we found that cell-wall elastic strain did not scale with growth rate, suggesting that pressure does not drive cell-wall expansion. Furthermore, in response to hyper- and hypoosmotic shock, E. coli cells resumed their preshock growth rate and relaxed to their steady-state rate after several minutes, demonstrating that osmolarity modulates growth rate slowly, independently of pressure. Oscillatory hyperosmotic shock revealed that although plasmolysis slowed cell elongation, the cells nevertheless "stored" growth such that once turgor was reestablished the cells elongated to the length that they would have attained had they never been plasmolyzed. Finally, MreB dynamics were unaffected by osmotic shock. These results reveal the simple nature of E. coli cell-wall expansion: that the rate of expansion is determined by the rate of peptidoglycan insertion and insertion is not directly dependent on turgor pressure, but that pressure does play a basic role whereby it enables full extension of recently inserted peptidoglycan.

  10. Response of Escherichia coli growth rate to osmotic shock

    PubMed Central

    Rojas, Enrique; Theriot, Julie A.; Huang, Kerwyn Casey

    2014-01-01

    It has long been proposed that turgor pressure plays an essential role during bacterial growth by driving mechanical expansion of the cell wall. This hypothesis is based on analogy to plant cells, for which this mechanism has been established, and on experiments in which the growth rate of bacterial cultures was observed to decrease as the osmolarity of the growth medium was increased. To distinguish the effect of turgor pressure from pressure-independent effects that osmolarity might have on cell growth, we monitored the elongation of single Escherichia coli cells while rapidly changing the osmolarity of their media. By plasmolyzing cells, we found that cell-wall elastic strain did not scale with growth rate, suggesting that pressure does not drive cell-wall expansion. Furthermore, in response to hyper- and hypoosmotic shock, E. coli cells resumed their preshock growth rate and relaxed to their steady-state rate after several minutes, demonstrating that osmolarity modulates growth rate slowly, independently of pressure. Oscillatory hyperosmotic shock revealed that although plasmolysis slowed cell elongation, the cells nevertheless “stored” growth such that once turgor was reestablished the cells elongated to the length that they would have attained had they never been plasmolyzed. Finally, MreB dynamics were unaffected by osmotic shock. These results reveal the simple nature of E. coli cell-wall expansion: that the rate of expansion is determined by the rate of peptidoglycan insertion and insertion is not directly dependent on turgor pressure, but that pressure does play a basic role whereby it enables full extension of recently inserted peptidoglycan. PMID:24821776

  11. Fungal and bacterial growth in floor dust at elevated relative humidity levels.

    PubMed

    Dannemiller, K C; Weschler, C J; Peccia, J

    2017-03-01

    Under sustained, elevated building moisture conditions, bacterial and fungal growth occurs. The goal of this study was to characterize microbial growth in floor dust at variable equilibrium relative humidity (ERH) levels. Floor dust from one home was embedded in coupons cut from a worn medium-pile nylon carpet and incubated at 50%, 80%, 85%, 90%, 95%, and 100% ERH levels. Quantitative PCR and DNA sequencing of ribosomal DNA for bacteria and fungi were used to quantify growth and community shifts. Over a 1-wk period, fungal growth occurred above 80% ERH. Growth rates at 85% and 100% ERH were 1.1 × 10 4 and 1.5 × 10 5 spore equivalents d -1 mg dust -1 , respectively. Bacterial growth occurred only at 100% ERH after 1 wk (9.0 × 10 4 genomes d -1 mg dust -1 ). Growth resulted in significant changes in fungal (P<.00001) and bacterial community structure (P<.00001) at varying ERH levels. Comparisons between fungal taxa incubated at different ERH levels revealed more than 100 fungal and bacterial species that were attributable to elevated ERH. Resuspension modeling indicated that more than 50% of airborne microbes could originate from the resuspension of fungi grown at ERH levels of 85% and above. © 2016 The Authors. Indoor Air published by John Wiley & Sons Ltd.

  12. Analysis of Factors Limiting Bacterial Growth in PDMS Mother Machine Devices.

    PubMed

    Yang, Da; Jennings, Anna D; Borrego, Evalynn; Retterer, Scott T; Männik, Jaan

    2018-01-01

    The microfluidic mother machine platform has attracted much interest for its potential in studies of bacterial physiology, cellular organization, and cell mechanics. Despite numerous experiments and development of dedicated analysis software, differences in bacterial growth and morphology in narrow mother machine channels compared to typical liquid media conditions have not been systematically characterized. Here we determine changes in E. coli growth rates and cell dimensions in different sized dead-end microfluidic channels using high resolution optical microscopy. We find that E. coli adapt to the confined channel environment by becoming narrower and longer compared to the same strain grown in liquid culture. Cell dimensions decrease as the channel length increases and width decreases. These changes are accompanied by increases in doubling times in agreement with the universal growth law. In channels 100 μm and longer, cell doublings can completely stop as a result of frictional forces that oppose cell elongation. Before complete cessation of elongation, mechanical stresses lead to substantial deformation of cells and changes in their morphology. Our work shows that mechanical forces rather than nutrient limitation are the main growth limiting factor for bacterial growth in long and narrow channels.

  13. Analysis of Factors Limiting Bacterial Growth in PDMS Mother Machine Devices

    DOE PAGES

    Yang, Da; Jennings, Anna D.; Borrego, Evalynn; ...

    2018-05-01

    The microfluidic mother machine platform has attracted much interest for its potential in studies of bacterial physiology, cellular organization, and cell mechanics. Despite numerous experiments and development of dedicated analysis software, differences in bacterial growth and morphology in narrow mother machine channels compared to typical liquid media conditions have not been systematically characterized. Here we determine changes in E. coli growth rates and cell dimensions in different sized dead-end microfluidic channels using high resolution optical microscopy. We find that E. coli adapt to the confined channel environment by becoming narrower and longer compared to the same strain grown in liquidmore » culture. Cell dimensions decrease as the channel length increases and width decreases. These changes are accompanied by increases in doubling times in agreement with the universal growth law. In channels 100 μm and longer, cell doublings can completely stop as a result of frictional forces that oppose cell elongation. Before complete cessation of elongation, mechanical stresses lead to substantial deformation of cells and changes in their morphology. Lastly, our work shows that mechanical forces rather than nutrient limitation are the main growth limiting factor for bacterial growth in long and narrow channels.« less

  14. Analysis of Factors Limiting Bacterial Growth in PDMS Mother Machine Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Da; Jennings, Anna D.; Borrego, Evalynn

    The microfluidic mother machine platform has attracted much interest for its potential in studies of bacterial physiology, cellular organization, and cell mechanics. Despite numerous experiments and development of dedicated analysis software, differences in bacterial growth and morphology in narrow mother machine channels compared to typical liquid media conditions have not been systematically characterized. Here we determine changes in E. coli growth rates and cell dimensions in different sized dead-end microfluidic channels using high resolution optical microscopy. We find that E. coli adapt to the confined channel environment by becoming narrower and longer compared to the same strain grown in liquidmore » culture. Cell dimensions decrease as the channel length increases and width decreases. These changes are accompanied by increases in doubling times in agreement with the universal growth law. In channels 100 μm and longer, cell doublings can completely stop as a result of frictional forces that oppose cell elongation. Before complete cessation of elongation, mechanical stresses lead to substantial deformation of cells and changes in their morphology. Lastly, our work shows that mechanical forces rather than nutrient limitation are the main growth limiting factor for bacterial growth in long and narrow channels.« less

  15. Coupled effects of chemotaxis and growth on traveling bacterial waves.

    PubMed

    Yan, Zhifeng; Bouwer, Edward J; Hilpert, Markus

    2014-08-01

    Traveling bacterial waves are capable of improving contaminant remediation in the subsurface. It is fairly well understood how bacterial chemotaxis and growth separately affect the formation and propagation of such waves. However, their interaction is not well understood. We therefore perform a modeling study to investigate the coupled effects of chemotaxis and growth on bacterial migration, and examine their effects on contaminant remediation. We study the waves by using different initial electron acceptor concentrations for different bacteria and substrate systems. Three types of traveling waves can occur: a chemotactic wave due to the biased movement of chemotactic bacteria resulting from metabolism-generated substrate concentration gradients; a growth/decay/motility wave due to a dynamic equilibrium between bacterial growth, decay and random motility; and an integrated wave due to the interaction between bacterial chemotaxis and growth. Chemotaxis hardly enhances the bacterial propagation if it is too weak to form a chemotactic wave or its wave speed is less than half of the growth/decay/motility wave speed. However, chemotaxis significantly accelerates bacterial propagation once its wave speed exceeds the growth/decay/motility wave speed. When convection occurs, it speeds up the growth/decay/motility wave but slows down or even eliminates the chemotactic wave due to the dispersion. Bacterial survival proves particularly important for bacterial propagation. Therefore we develop a conceptual model to estimate the speed of growth/decay/motility waves. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. A Computer Simulation of Bacterial Growth During Food-Processing

    DTIC Science & Technology

    1974-11-01

    1 AD A TECHNICAL REPORT A COMPUTER SIMULATION OF BACTERIAL GROWTH DURING FOOD PROCESSING =r= by Edward W. Ross, Jr. Approved for public...COMPUTER SIMULATION OF BACTERIAL GROWTH DURING FOOD - PROCESSING Edward W. Ross, Jr. Army Natick Laboratories Natick, Massachusetts Novembe...CATALOG NUMBER 4. TITLE fand SubtKUJ "A Computer Sinulatlon of Bacterial Growth During Food - Processing " 5. TYPE OF REPORT A PERIOD COVERED 6

  17. Measuring bacterial growth by refractive index tapered fiber optic biosensor.

    PubMed

    Zibaii, Mohammad Ismail; Kazemi, Alireza; Latifi, Hamid; Azar, Mahmoud Karimi; Hosseini, Seyed Masoud; Ghezelaiagh, Mohammad Hossein

    2010-12-02

    A single-mode tapered fiber optic biosensor was utilized for real-time monitoring of the Escherichia coli (E. coli K-12) growth in an aqueous medium. The applied fiber tapers were fabricated using heat-pulling method with waist diameter and length of 6-7μm and 3mm, respectively. The bacteria were immobilized on the tapered surface using Poly-l-Lysine. By providing the proper condition, bacterial population growth on the tapered surface increases the average surface density of the cells and consequently the refractive index (RI) of the tapered region would increase. The adsorption of the cells on the tapered fiber leads to changes in the optical characteristics of the taper. This affects the evanescent field leading to changes in optical throughput. The bacterial growth rate was monitored at room temperature by transmission of a 1558.17nm distributed feedback (DFB) laser through the tapered fiber. At the same condition, after determining the growth rate of E. coli by means of colony counting method, we compared the results with that obtained from the fiber sensor measurements. This novel sensing method, promises new application such as rapid analysis of the presence of bacteria. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates.

    PubMed

    Vandeputte, Doris; Falony, Gwen; Vieira-Silva, Sara; Tito, Raul Y; Joossens, Marie; Raes, Jeroen

    2016-01-01

    The assessment of potentially confounding factors affecting colon microbiota composition is essential to the identification of robust microbiome based disease markers. Here, we investigate the link between gut microbiota variation and stool consistency using Bristol Stool Scale classification, which reflects faecal water content and activity, and is considered a proxy for intestinal colon transit time. Through 16S rDNA Illumina profiling of faecal samples of 53 healthy women, we evaluated associations between microbiome richness, Bacteroidetes:Firmicutes ratio, enterotypes, and genus abundance with self-reported, Bristol Stool Scale-based stool consistency. Each sample's microbiota growth potential was calculated to test whether transit time acts as a selective force on gut bacterial growth rates. Stool consistency strongly correlates with all known major microbiome markers. It is negatively correlated with species richness, positively associated to the Bacteroidetes:Firmicutes ratio, and linked to Akkermansia and Methanobrevibacter abundance. Enterotypes are distinctly distributed over the BSS-scores. Based on the correlations between microbiota growth potential and stool consistency scores within both enterotypes, we hypothesise that accelerated transit contributes to colon ecosystem differentiation. While shorter transit times can be linked to increased abundance of fast growing species in Ruminococcaceae-Bacteroides samples, hinting to a washout avoidance strategy of faster replication, this trend is absent in Prevotella-enterotyped individuals. Within this enterotype adherence to host tissue therefore appears to be a more likely bacterial strategy to cope with washout. The strength of the associations between stool consistency and species richness, enterotypes and community composition emphasises the crucial importance of stool consistency assessment in gut metagenome-wide association studies. Published by the BMJ Publishing Group Limited. For permission to

  19. Effect of DSS on Bacterial Growth in Gastrointestinal Tract.

    PubMed

    Hlinková, J; Svobodová, H; Brachtlová, T; Gardlík, R

    2016-01-01

    Inflammatory bowel disease is an idiopathic autoimmune disorder that is mainly divided into ulcerative colitis and Crohn's disease. Probiotics are known for their beneficial effect and used as a treatment option in different gastrointestinal problems. The aim of our study was to find suitable bacterial vectors for gene therapy of inflammatory bowel disease. Salmonella enterica serovar Typhimurium SL7207 and Escherichia coli Nissle 1917 were investigated as potential vectors. Our results show that the growth of Escherichia coli Nissle 1917 was inhibited in the majority of samples collected from dextran sodium sulphate-treated animals compared with control growth in phosphate-buffered saline. The growth of Salmonella enterica serovar Typhimurium SL7207 in all investigated samples was enhanced or unaffected in comparison with phosphate-buffered saline; however, it did not reach the growth rates of Escherichia coli Nissle 1917. Dextran sodium sulphate treatment had a stimulating effect on the growth of both strains in homogenates of distant small intestine and proximal colon samples. The gastrointestinal tract contents and tissue homogenates did not inhibit growth of Salmonella enterica serovar Typhimurium SL7207 in comparison with the negative control, and provided more suitable environment for growth compared to Escherichia coli Nissle 1917. We therefore conclude that Salmonella enterica serovar Typhimurium SL7207 is a more suitable candidate for a potential bacterial vector, even though it has no known probiotic properties.

  20. Bacterial growth and the decomposition of particulate organic carbon collected in sediment traps

    NASA Astrophysics Data System (ADS)

    Ducklow, Hugh W.; Hill, Suzanne M.; Gardner, Wilford D.

    We have studied bacterial abundance and production in samples from sediment traps deployed for 1 and 100 days in several areas of the shelf and slope regions of the Middle Atlantic Bight, U.S.A. By making a series of assumptions about bacterial growth at the expense of POC in traps, we have estimated that the turnover time of organic particles collected in traps during long deployments is slow (mean 1500 ± 300 days), if only bacterial activity is considered. However the abundance and biomass of bacteria in traps is very high, ranging from 3 to 30 × 10 11 cells gC -1, i.e., 0.3 to 3% of the POC is bacterial carbon. Fifteen to 88% of the particles in traps were colonized by bacteria, but usually about half the particles had only 0 to 1 cell attached. Growth of bacteria was observed at all scales relevant to these trap deployments; over periods ranging from hours to weeks, at rates of 0.01 to 0.3 d -1. In spite of slow growth, bacteria appeared to be physiologically active in that [ 3H]adenine and [ 3H]thymidine were incorporated more rapidly into RNA and protein than into DNA. Total incorporation rates were high. We conclude that even relatively old (ca. 1 y) POC in sediment traps supports high levels of active bacterial biomass, but that POC decomposition is slow, so that bacteria may not be the principal agents of POC turnover following collection.

  1. Spatial Patterning of Newly-Inserted Material during Bacterial Cell Growth

    NASA Astrophysics Data System (ADS)

    Ursell, Tristan

    2012-02-01

    In the life cycle of a bacterium, rudimentary microscopy demonstrates that cell growth and elongation are essential characteristics of cellular reproduction. The peptidoglycan cell wall is the main load-bearing structure that determines both cell shape and overall size. However, simple imaging of cellular growth gives no indication of the spatial patterning nor mechanism by which material is being incorporated into the pre-existing cell wall. We employ a combination of high-resolution pulse-chase fluorescence microscopy, 3D computational microscopy, and detailed mechanistic simulations to explore how spatial patterning results in uniform growth and maintenance of cell shape. We show that growth is happening in discrete bursts randomly distributed over the cell surface, with a well-defined mean size and average rate. We further use these techniques to explore the effects of division and cell wall disrupting antibiotics, like cephalexin and A22, respectively, on the patterning of cell wall growth in E. coli. Finally, we explore the spatial correlation between presence of the bacterial actin-like cytoskeletal protein, MreB, and local cell wall growth. Together these techniques form a powerful method for exploring the detailed dynamics and involvement of antibiotics and cell wall-associated proteins in bacterial cell growth.[4pt] In collaboration with Kerwyn Huang, Stanford University.

  2. The Bacterial Growth Curve.

    ERIC Educational Resources Information Center

    Paulton, Richard J. L.

    1991-01-01

    A procedure that allows students to view an entire bacterial growth curve during a two- to three-hour student laboratory period is described. Observations of the lag phase, logarithmic phase, maximum stationary phase, and phase of decline are possible. A nonpathogenic, marine bacterium is used in the investigation. (KR)

  3. Dynamics and estimates of growth and loss rates of bacterioplankton in a temperate freshwater system.

    PubMed

    Jugnia, Louis-B; Sime-Ngando, Télesphore; Gilbert, Daniel

    2006-10-01

    The growth rate and losses of bacterioplankton in the epilimnion of an oligo-mesotrophic reservoir were simultaneously estimated using three different methods for each process. Bacterial production was determined by means of the tritiated thymidine incorporation method, the dialysis bag method and the dilution method, while bacterial mortality was assessed with the dilution method, the disappearance of thymidine-labeled natural cells and ingestion of fluorescent bacterial tracers by heterotrophic flagellates. The different methods used to estimate bacterial growth rates yielded similar results. On the other hand, the mortality rates obtained with the dilution method were significantly lower than those obtained with the use of thymidine-labeled natural cells. The bacterial ingestion rate by flagellates accounted on average for 39% of total bacterial mortality estimated by the dilution method, but this value fell to 5% when the total mortality was measured by the thymidine-labeling method. Bacterial abundance and production varied in opposite phase to flagellate abundance and the various bacterial mortality rates. All this points to the critical importance of methodological aspects in the elaboration of quantitative models of matter and energy flows over the time through microbial trophic networks in aquatic systems, and highlights the role of bacterioplankton as a source of carbon for higher trophic levels in the studied system.

  4. Modeling of scale-dependent bacterial growth by chemical kinetics approach.

    PubMed

    Martínez, Haydee; Sánchez, Joaquín; Cruz, José-Manuel; Ayala, Guadalupe; Rivera, Marco; Buhse, Thomas

    2014-01-01

    We applied the so-called chemical kinetics approach to complex bacterial growth patterns that were dependent on the liquid-surface-area-to-volume ratio (SA/V) of the bacterial cultures. The kinetic modeling was based on current experimental knowledge in terms of autocatalytic bacterial growth, its inhibition by the metabolite CO2, and the relief of inhibition through the physical escape of the inhibitor. The model quantitatively reproduces kinetic data of SA/V-dependent bacterial growth and can discriminate between differences in the growth dynamics of enteropathogenic E. coli, E. coli JM83, and Salmonella typhimurium on one hand and Vibrio cholerae on the other hand. Furthermore, the data fitting procedures allowed predictions about the velocities of the involved key processes and the potential behavior in an open-flow bacterial chemostat, revealing an oscillatory approach to the stationary states.

  5. Effect of Oxygen-Supply Rates on Growth of Escherichia coli

    PubMed Central

    McDaniel, L. E.; Bailey, E. G.; Zimmerli, A.

    1965-01-01

    The effect of oxygen-supply rates on bacterial growth was studied in commercially available unbaffled and baffled flasks with the use of Escherichia coli in a synthetic medium as a test system. The amount of growth obtained depended on the oxygen-supply rate. Based on oxygen-absorption rates (OAR) measured by the rate of sulfite oxidation, equal OAR values in different types of flasks did not give equal amounts of growth. However, growth was essentially equal at the equal sulfite-oxidation rates when these were determined in the presence of killed whole cultures. Specific growth rates were reduced only at oxygen-supply rates much lower than those at which the total amount of growth was reduced. For the physical set-up used in this work and with the biological system employed, Bellco 598 flasks and flasks fitted with Biotech stainless-steel baffles gave satisfactory results at workable broth volumes; unbaffled and Bellco 600 flasks did not. PMID:14264837

  6. Catecholamines and in vitro growth of pathogenic bacteria: enhancement of growth varies greatly among bacterial species

    NASA Technical Reports Server (NTRS)

    Belay, Tesfaye; Aviles, Hernan; Vance, Monique; Fountain, Kimberly; Sonnenfeld, Gerald

    2003-01-01

    The purpose of this study was to examine the effects of catecholamines on in vitro growth of a range of bacterial species, including anaerobes. Bacteria tested included: Porphyromonas gingivalis, Bacteriodes fragilis, Shigella boydii, Shigella sonnie, Enterobacter Sp, and Salmonella choleraesuis. The results of the current study indicated that supplementation of bacterial cultures in minimal medium with norepinephrine or epinephrine did not result in increased growth of bacteria. Positive controls involving treatment of Escherichia coli with catecholamines did result in increased growth of that bacterial species. The results of the present study extend previous observations that showed differential capability of catecholamines to enhance bacterial growth in vitro.

  7. Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth.

    PubMed

    Molina-Romero, Dalia; Baez, Antonino; Quintero-Hernández, Verónica; Castañeda-Lucio, Miguel; Fuentes-Ramírez, Luis Ernesto; Bustillos-Cristales, María Del Rocío; Rodríguez-Andrade, Osvaldo; Morales-García, Yolanda Elizabeth; Munive, Antonio; Muñoz-Rojas, Jesús

    2017-01-01

    Plant growth-promoting rhizobacteria (PGPR) increase plant growth and crop productivity. The inoculation of plants with a bacterial mixture (consortium) apparently provides greater benefits to plant growth than inoculation with a single bacterial strain. In the present work, a bacterial consortium was formulated containing four compatible and desiccation-tolerant strains with potential as PGPR. The formulation had one moderately (Pseudomonas putida KT2440) and three highly desiccation-tolerant (Sphingomonas sp. OF178, Azospirillum brasilense Sp7 and Acinetobacter sp. EMM02) strains. The four bacterial strains were able to adhere to seeds and colonize the rhizosphere of plants when applied in both mono-inoculation and multi-inoculation treatments, showing that they can also coexist without antagonistic effects in association with plants. The effects of the bacterial consortium on the growth of blue maize were evaluated. Seeds inoculated with either individual bacterial strains or the bacterial consortium were subjected to two experimental conditions before sowing: normal hydration or desiccation. In general, inoculation with the bacterial consortium increased the shoot and root dry weight, plant height and plant diameter compared to the non-inoculated control or mono-inoculation treatments. The bacterial consortium formulated in this work had greater benefits for blue maize plants even when the inoculated seeds underwent desiccation stress before germination, making this formulation attractive for future field applications.

  8. Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth

    PubMed Central

    Molina-Romero, Dalia; Baez, Antonino; Quintero-Hernández, Verónica; Castañeda-Lucio, Miguel; Fuentes-Ramírez, Luis Ernesto; Bustillos-Cristales, María del Rocío; Rodríguez-Andrade, Osvaldo; Morales-García, Yolanda Elizabeth; Munive, Antonio

    2017-01-01

    Plant growth-promoting rhizobacteria (PGPR) increase plant growth and crop productivity. The inoculation of plants with a bacterial mixture (consortium) apparently provides greater benefits to plant growth than inoculation with a single bacterial strain. In the present work, a bacterial consortium was formulated containing four compatible and desiccation-tolerant strains with potential as PGPR. The formulation had one moderately (Pseudomonas putida KT2440) and three highly desiccation-tolerant (Sphingomonas sp. OF178, Azospirillum brasilense Sp7 and Acinetobacter sp. EMM02) strains. The four bacterial strains were able to adhere to seeds and colonize the rhizosphere of plants when applied in both mono-inoculation and multi-inoculation treatments, showing that they can also coexist without antagonistic effects in association with plants. The effects of the bacterial consortium on the growth of blue maize were evaluated. Seeds inoculated with either individual bacterial strains or the bacterial consortium were subjected to two experimental conditions before sowing: normal hydration or desiccation. In general, inoculation with the bacterial consortium increased the shoot and root dry weight, plant height and plant diameter compared to the non-inoculated control or mono-inoculation treatments. The bacterial consortium formulated in this work had greater benefits for blue maize plants even when the inoculated seeds underwent desiccation stress before germination, making this formulation attractive for future field applications. PMID:29117218

  9. Adaptive self-organization during growth of bacterial colonies

    NASA Astrophysics Data System (ADS)

    Ben-Jacob, Eshel; Shmueli, Haim; Shochet, Ofer; Tenenbaum, Adam

    1992-09-01

    We present a study of interfacial pattern formation during diffusion-limited growth of Bacillus subtilis. It is demonstrated that bacterial colonies can develop patterns similar to morphologies observed during diffusion-limited growth in non-living (azoic) systems such as solidification and electro-chemical deposition. The various growth morphologies, that is the global structure of the colony, are observed as we vary the growth conditions. These include fractal growth, dense-branching growth, compact growth, dendritic growth and chiral growth. The results demonstrate the action of a singular interplay between the micro-level (individual bacterium) and macro-level (the colony) in selecting the observed morphologies as is understood for non-living systems. Furthermore, the observed morphologies can be organized within a morphology diagram indicating the existence of a morphology selection principle similar to the one proposed for azoic systems. We propose a phase-field-like model (the phase being the bacterial concentration and the field being the nutrient concentration) to describe the growth. The bacteria-bacteria interaction is manifested as a phase dependent diffusion constant. Growth of a bacterial colony presents an inherent additional level of complexity compared to azoic systems, since the building blocks themselves are living systems. Thus, our studies also focus on the transition between morphologies. We have observed extended morphology transitions due to phenotypic changes of the bacteria, as well as bursts of new morphologies resulting from genotypic changes. In addition, we have observed extended and heritable transitions (mainly between dense branching growth and chiral growth) as well as phenotypic transitions that turn genotypic over time. We discuss the implications of our results in the context of the evolving picture of genome cybernetics. Diffusion limited growth of bacterial colonies combined with new understanding of pattern formation in azoic

  10. Factors affecting the rate of breakdown of bacterial protein in rumen fluid.

    PubMed

    Wallace, R J; McPherson, C A

    1987-09-01

    1. The cellular proteins of Butyrivibrio fibrisolvens, Lactobacillus casei, Megasphaera elsdenii, Selenomonas ruminantium and Streptococcus bovis were labelled by growth in the presence of L-[14C]leucine, and the breakdown of labelled protein was measured in incubations of these bacteria with rumen fluid to which unlabelled 5 mM-L-leucine was added. The rate of protein breakdown was estimated from the rate of release of radioactivity into acid-soluble material. 2. Protein breakdown occurred at different rates in different species. The mean rates for B. fibrisolvens, L. casei, M. elsdenii, Sel. ruminantium and Str. bovis were 28.6, 18.1, 17.7, 10.5 and 5.3%/h respectively in samples of strained rumen fluid (SRF) with different protozoal populations. Rates of 3%/h or less were found in SRF from ciliate-free sheep or in faunated SRF from which protozoa had been removed by centrifugation. Further removal of mixed rumen bacteria had little effect. Suspensions of washed protozoa degraded bacterial protein at rates which were of the same order as those found in SRF. 3. The rate of breakdown of bacterial protein in different samples of SRF tended to increase as the numbers of small entodiniomorphid protozoa increased. The numbers of larger entodiniomorphs and holotrichs had no obvious influence on this rate. 4. Autoclaved and u.v.-treated bacteria were generally no different from live bacteria in their susceptibility to breakdown in SRF from faunated sheep, indicating that endogenous protein turnover was not a significant cause of bacterial protein catabolism. 5. The rate of bacterial protein breakdown was unrelated to the proteolytic activity of SRF. 6. It was concluded that predation by small protozoa is by far the most important cause of bacterial protein turnover in the rumen, with autolysis, other lytic factors and endogenous proteolysis being of minor importance.

  11. The Leucine Incorporation Method Estimates Bacterial Growth Equally Well in Both Oxic and Anoxic Lake Waters

    PubMed Central

    Bastviken, David; Tranvik, Lars

    2001-01-01

    Bacterial biomass production is often estimated from incorporation of radioactively labeled leucine into protein, in both oxic and anoxic waters and sediments. However, the validity of the method in anoxic environments has so far not been tested. We compared the leucine incorporation of bacterial assemblages growing in oxic and anoxic waters from three lakes differing in nutrient and humic contents. The method was modified to avoid O2 contamination by performing the incubation in syringes. Isotope saturation levels in oxic and anoxic waters were determined, and leucine incorporation rates were compared to microscopically observed bacterial growth. Finally, we evaluated the effects of O2 contamination during incubation with leucine, as well as the potential effects of a headspace in the incubation vessel. Isotope saturation occurred at a leucine concentration of above about 50 nM in both oxic and anoxic waters from all three lakes. Leucine incorporation rates were linearly correlated to observed growth, and there was no significant difference between oxic and anoxic conditions. O2 contamination of anoxic water during 1-h incubations with leucine had no detectable impact on the incorporation rate, while a headspace in the incubation vessel caused leucine incorporation to increase in both anoxic and O2-contaminated samples. The results indicate that the leucine incorporation method relates equally to bacterial growth rates under oxic and anoxic conditions and that incubation should be performed without a headspace. PMID:11425702

  12. Microcoupon Assay Of Adhesion And Growth Of Bacterial Films

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Koenig, David W.

    1994-01-01

    Microbiological assay technique facilitates determination of some characteristics of sessile bacteria like those that attach to and coat interior walls of water-purification systems. Biofilms cause sickness and interfere with purification process. Technique enables direct measurement of rate of attachment of bacterial cells, their metabolism, and effects of chemicals on them. Used to quantify effects of both bactericides and growth-stimulating agents and in place of older standard plate-count and tube-dilution techniques.

  13. Influence of macrophyte decomposition on growth rate and community structure of okefenokee swamp bacterioplankton.

    PubMed

    Murray, R E; Hodson, R E

    1986-02-01

    Dissolved substances released during decomposition of the white water lily (Nymphaea odorata) can alter the growth rate of Okefenokee Swamp bacterioplankton. In microcosm experiments dissolved compounds released from senescent Nymphaea leaves caused a transient reduction in the abundance and activity of water column bacterioplankton, followed by a period of intense bacterial growth. Rates of [H]thymidine incorporation and turnover of dissolved d-glucose were depressed by over 85%, 3 h after the addition of Nymphaea leachates to microcosms containing Okefenokee Swamp water. Bacterial activity subsequently recovered; after 20 h [H]thymidine incorporation in leachate-treated microcosms was 10-fold greater than that in control microcosms. The recovery of activity was due to a shift in the composition of the bacterial population toward resistance to the inhibitory compounds present in Nymphaea leachates. Inhibitory compounds released during the decomposition of aquatic macrophytes thus act as selective agents which alter the community structure of the bacterial population with respect to leachate resistance. Soluble compounds derived from macrophyte decomposition influence the rate of bacterial secondary production and the availability of microbial biomass to microconsumers.

  14. Influence of macrophyte decomposition on growth rate and community structure of Okefenokee Swamp bacterioplankton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, R.E.; Hodson, R.E.

    1986-02-01

    Dissolved substances released during decomposition of the white water lily (Nymphaea odorata) can alter the growth rate of Okefenokee Swamp bacterioplankton. In microcosm experiments dissolved compounds released bacterioplankton, followed by a period of intense bacterial growth. Rates of (/sup 3/H)thymidine incorporation and turnover of dissolved D-glucose were depressed by over 85%, 3 h after the addition of Nymphaea leachates to microcosms containing Okefenokee Swamp water. Bacterial activity subsequently recovered; after 20 h (/sup 3/H)thymidine incorporation in leachate-treated microcosms was 10-fold greater than that in control microcosms. The recovery of activity was due to a shift in the composition of themore » bacterial population toward resistance to the inhibitory compounds present in Nymphaea leachates. Inhibitory compounds released during the decomposition of aquatic macrophytes thus act as selective agents which alter the community structure of the bacterial population with respect to leachate resistance. Soluble compounds derived from macrophyte decomposition influence the rate of bacterial secondary production and the availability of microbial biomass to microconsumers.« less

  15. Effects of Fe nanoparticles on bacterial growth and biosurfactant production

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Vipulanandan, Cumaraswamy; Cooper, Tim F.; Vipulanandan, Geethanjali

    2013-01-01

    Environmental conditions can have a major impact on bacterial growth and production of secondary products. In this study, the effect of different concentrations of Fe nanoparticles on the growth of Serratia sp. and on its production of a specific biosurfactant was investigated. The Fe nanoparticles were produced using the foam method, and the needle-shaped nanoparticles were about 30 nm in diameter. It was found that Fe nanoparticles can have either a positive or a negative impact on the bacterial growth and biosurfactant production, depending on their concentration. At 1 mg/L of Fe nanoparticle concentration the bacterial growth increased by 57 % and biosurfactant production increased by 63 %. When the Fe nanoparticle concentration was increased to 1 g/L, the bacterial growth decreased by 77 % and biosurfactant activity was undetectable. The biosurfactant itself was not directly affected by Fe nanoparticles over the range of concentrations studied, indicating that the observed changes in biosurfactant activity resulted indirectly from the effect of nanoparticles on the bacteria. These negative effects with nanoparticle exposures were temporary, demonstrated by the restoration of biosurfactant activity when the bacteria initially exposed to Fe nanoparticles were allowed to regrow in the absence of nanoparticles. Finally, the kinetics of bacterial growth and biosurfactant production were modeled. The model's predictions agreed with the experimental results.

  16. [Effects of bamboo charcoal on the growth of Trifolium repens and soil bacterial community structure].

    PubMed

    Li, Song-Hao; He, Dong-Hua; Shen, Qiu-Lan; Xu, Qiu-Fang

    2014-08-01

    The effects of addition rates (0, 3% and 9%) and particle sizes (0.05, 0.05-1.0 and 1.0-2.0 mm) of bamboo charcoal on the growth of Trifolium repens and soil microbial community structure were investigated. The results showed that bamboo charcoal addition greatly promoted the early growth of T. repens, with the 9% charcoal addition rate being slightly better than the 3% charcoal addition rate. The effects of different particle sizes of bamboo charcoal on the growth of T. repens were not different significantly. Growth promotion declined with time during 120 days after sowing, and disappeared completely after 5 months. DGGE analysis of the bacterial 16S rDNA V3 fragment indicated that bamboo charcoal altered the soil bacterial community structure. The amount and Shannon diversity index of bacteria in the bamboo charcoal addition treatments increased compared with CK. The quantitative analysis showed that the amount of bacteria in the treatment with bamboo charcoal of fine particle (D < 0.05 mm) at the 9% addition rate was significantly higher than in the other treatments. The fine bamboo charcoal had a great effect on soil bacteria amount compared with the charcoal of other sizes at the same addition rate.

  17. Biological consequences and advantages of asymmetric bacterial growth.

    PubMed

    Kysela, David T; Brown, Pamela J B; Huang, Kerwyn Casey; Brun, Yves V

    2013-01-01

    Asymmetries in cell growth and division occur in eukaryotes and prokaryotes alike. Even seemingly simple and morphologically symmetric cell division processes belie inherent underlying asymmetries in the composition of the resulting daughter cells. We consider the types of asymmetry that arise in various bacterial cell growth and division processes, which include both conditionally activated mechanisms and constitutive, hardwired aspects of bacterial life histories. Although asymmetry disposes some cells to the deleterious effects of aging, it may also benefit populations by efficiently purging accumulated damage and rejuvenating newborn cells. Asymmetries may also generate phenotypic variation required for successful exploitation of variable environments, even when extrinsic changes outpace the capacity of cells to sense and respond to challenges. We propose specific experimental approaches to further develop our understanding of the prevalence and the ultimate importance of asymmetric bacterial growth.

  18. Translation elicits a growth rate-dependent, genome-wide, differential protein production in Bacillus subtilis.

    PubMed

    Borkowski, Olivier; Goelzer, Anne; Schaffer, Marc; Calabre, Magali; Mäder, Ulrike; Aymerich, Stéphane; Jules, Matthieu; Fromion, Vincent

    2016-05-17

    Complex regulatory programs control cell adaptation to environmental changes by setting condition-specific proteomes. In balanced growth, bacterial protein abundances depend on the dilution rate, transcript abundances and transcript-specific translation efficiencies. We revisited the current theory claiming the invariance of bacterial translation efficiency. By integrating genome-wide transcriptome datasets and datasets from a library of synthetic gfp-reporter fusions, we demonstrated that translation efficiencies in Bacillus subtilis decreased up to fourfold from slow to fast growth. The translation initiation regions elicited a growth rate-dependent, differential production of proteins without regulators, hence revealing a unique, hard-coded, growth rate-dependent mode of regulation. We combined model-based data analyses of transcript and protein abundances genome-wide and revealed that this global regulation is extensively used in B. subtilis We eventually developed a knowledge-based, three-step translation initiation model, experimentally challenged the model predictions and proposed that a growth rate-dependent drop in free ribosome abundance accounted for the differential protein production. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  19. Effect of extremely low frequency electromagnetic fields on growth rate and morphology of bacteria.

    PubMed

    Inhan-Garip, Ayse; Aksu, Burak; Akan, Zafer; Akakin, Dilek; Ozaydin, A Nilufer; San, Tangul

    2011-12-01

    To determine the effect of extremely low frequency (<300 Hz) electromagnetic fields (ELF-EMF) on the growth rate of Gram-positive and Gram-negative bacteria and to determine any morphological changes that might have been caused by ELF-EMF. Six bacterial strains, three Gram-negative and three Gram-positive were subjected to 50 Hz, 0.5 mT ELF-EMF for 6 h. To determine growth rate after ELF-EMF application, bacteria exposed to ELF-EMF for 3 h were collected, transferred to fresh medium and cultured without field application for another 4 h. Growth-rate was determined by optical density (OD) measurements made every hour. Morphological changes were determined with Transmission electron microscopy (TEM) for two gram-negative and two gram-positive strains collected after 3 h of field application. A decrease in growth rate with respect to control samples was observed for all strains during ELF-EMF application. The decrease in growth-rate continued when exposed bacteria were cultured without field application. Significant ultrastructural changes were observed in all bacterial strains, which were seen to resemble the alterations caused by cationic peptides. This study shows that ELF-EMF induces a decrease in growth rate and morphological changes for both Gram-negative and Gram-positive bacteria.

  20. Growth of bacterial phytopathogens in animal manures.

    PubMed

    Sledz, Wojciech; Zoledowska, Sabina; Motyka, Agata; Kadziński, Leszek; Banecki, Bogdan

    2017-01-01

    Animal manures are routinely applied to agricultural lands to improve crop yield, but the possibility to spread bacterial phytopathogens through field fertilization has not been considered yet. We monitored 49 cattle, horse, swine, sheep or chicken manure samples collected in 14 Polish voivodeships for the most important plant pathogenic bacteria - Ralstonia solanacearum (Rsol), Xanthomonas campestris pv. campestris (Xcc), Pectobacterium carotovorum subsp. carotovorum (Pcc), Pectobacterium atrosepticum (Pba), Erwinia amylovora (Eam), Clavibacter michiganensis subsp. sepedonicus (Cms) and Dickeya sp. (Dsp). All of the tested animal fertilizers were free of these pathogens. Subsequently, the growth dynamics of Pba, Pcc, Rsol, and Xcc in cattle, horse, swine, sheep and chicken manures sterilized either by autoclaving or filtration was evaluated. The investigated phytopathogens did not exhibit any growth in the poultry manure. However, the manure filtrates originating from other animals were suitable for microbial growth, which resulted in the optical density change of 0.03-0.22 reached within 26 h (48 h Rsol, 120 h Xcc), depending on bacterial species and the manure source. Pcc and Pba multiplied most efficiently in the cattle manure filtrate. These bacteria grew faster than Rsol and Xcc in all the tested manure samples, both the filtrates and the autoclaved semi-solid ones. Though the growth dynamics of investigated strains in different animal fertilizers was unequal, all of the tested bacterial plant pathogens were proven to use cattle, horse, swine and sheep manures as the sources of nutrients. These findings may contribute to further research on the alternative routes of spread of bacterial phytopathogens, especially because of the fact that the control of pectionolytic bacteria is only based on preventive methods.

  1. Oral iron acutely elevates bacterial growth in human serum.

    PubMed

    Cross, James H; Bradbury, Richard S; Fulford, Anthony J; Jallow, Amadou T; Wegmüller, Rita; Prentice, Andrew M; Cerami, Carla

    2015-11-23

    Iron deficiency is the most common nutrient deficiency worldwide and routine supplementation is standard policy for pregnant mothers and children in most low-income countries. However, iron lies at the center of host-pathogen competition for nutritional resources and recent trials of iron administration in African and Asian children have resulted in significant excesses of serious adverse events including hospitalizations and deaths. Increased rates of malaria, respiratory infections, severe diarrhea and febrile illnesses of unknown origin have all been reported, but the mechanisms are unclear. We here investigated the ex vivo growth characteristics of exemplar sentinel bacteria in adult sera collected before and 4 h after oral supplementation with 2 mg/kg iron as ferrous sulfate. Escherichia coli, Yersinia enterocolitica and Salmonella enterica serovar Typhimurium (all gram-negative bacteria) and Staphylococcus epidermidis (gram-positive) showed markedly elevated growth in serum collected after iron supplementation. Growth rates were very strongly correlated with transferrin saturation (p < 0.0001 in all cases). Growth of Staphylococcus aureus, which preferentially scavenges heme iron, was unaffected. These data suggest that even modest oral supplements with highly soluble (non-physiological) iron, as typically used in low-income settings, could promote bacteremia by accelerating early phase bacterial growth prior to the induction of immune defenses.

  2. Thermal design and turbidity sensor for autonomous bacterial growth measurements in spaceflight.

    PubMed

    van Benthem, Roel; Krooneman, Janneke; de Grave, Wubbo; Hammenga-Dorenbos, Hilma

    2009-04-01

    For application of biological air filters in manned spacecraft, research on bacterial growth is carried out under microgravity conditions. For the BIOFILTER experiment, flown in 2005 on FOTON M2, eight turbidity sensors to measure the growth rate of the bacterium Xanthobacter autotrophicus GJ10 were used. Also thermal management provisions were implemented to control the internal temperature. The design and performance of the BIOFILTER equipment as well as results of the biological ground reference experiments performed in 2006 are discussed. High-performance thermal (vacuum) insulation (lambda= 0.7 mW/mK) and phase change material were implemented, keeping the BIOFILTER internal temperature below 16 degrees C during the 4-day integration period between transport and launch. After launch, in microgravity, the growth of X. autotrophicus GJ10 was successfully triggered by a temperature increase by using an internal heater to 26 degrees C. Although the operation of the sensor electronics was not fully satisfying, the bacterial growth was measured with the sensors, revealing growth rates between 0.046 and 0.077 h(-1) in microgravity, that is, approximately 1.5-2.5 times slower than routinely measured on Earth under optimal laboratory conditions. For the ground-reference experiments the equipment box, containing the eight sensors, was placed on a random positioning machine performing random rotations at 0.5 degrees /min (settling compensation) and 90 degrees /min (microgravity simulation) while the environment was controlled, accurately repeating the BIOFILTER internal temperature profile. Despite the rotation speed differences, growth rates of 0.115 h(-1) were confirmed by both the ground reference experiments. Biological interpretation of the measurements is, however, compromised owing to poor mixing and other unknown physical and biological phenomena that need to be addressed for further space experiments using these kinds of systems.

  3. Spatial and temporal features of the growth of a bacterial species colonizing the zebrafish gut.

    PubMed

    Jemielita, Matthew; Taormina, Michael J; Burns, Adam R; Hampton, Jennifer S; Rolig, Annah S; Guillemin, Karen; Parthasarathy, Raghuveer

    2014-12-16

    The vertebrate intestine is home to microbial ecosystems that play key roles in host development and health. Little is known about the spatial and temporal dynamics of these microbial communities, limiting our understanding of fundamental properties, such as their mechanisms of growth, propagation, and persistence. To address this, we inoculated initially germ-free zebrafish larvae with fluorescently labeled strains of an Aeromonas species, representing an abundant genus in the zebrafish gut. Using light sheet fluorescence microscopy to obtain three-dimensional images spanning the gut, we quantified the entire bacterial load, as founding populations grew from tens to tens of thousands of cells over several hours. The data yield the first ever measurements of the growth kinetics of a microbial species inside a live vertebrate intestine and show dynamics that robustly fit a logistic growth model. Intriguingly, bacteria were nonuniformly distributed throughout the gut, and bacterial aggregates showed considerably higher growth rates than did discrete individuals. The form of aggregate growth indicates intrinsically higher division rates for clustered bacteria, rather than surface-mediated agglomeration onto clusters. Thus, the spatial organization of gut bacteria both relative to the host and to each other impacts overall growth kinetics, suggesting that spatial characterizations will be an important input to predictive models of host-associated microbial community assembly. Our intestines are home to vast numbers of microbes that influence many aspects of health and disease. Though we now know a great deal about the constituents of the gut microbiota, we understand very little about their spatial structure and temporal dynamics in humans or in any animal: how microbial populations establish themselves, grow, fluctuate, and persist. To address this, we made use of a model organism, the zebrafish, and a new optical imaging technique, light sheet fluorescence microscopy

  4. PEROXOTITANATE- AND MONOSODIUM METAL-TITANATE COMPOUNDS AS INHIBITORS OF BACTERIAL GROWTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobbs, D.

    2011-01-19

    Sodium titanates are ion-exchange materials that effectively bind a variety of metal ions over a wide pH range. Sodium titanates alone have no known adverse biological effects but metal-exchanged titanates (or metal titanates) can deliver metal ions to mammalian cells to alter cell processes in vitro. In this work, we test a hypothesis that metal-titanate compounds inhibit bacterial growth; demonstration of this principle is one prerequisite to developing metal-based, titanate-delivered antibacterial agents. Focusing initially on oral diseases, we exposed five species of oral bacteria to titanates for 24 h, with or without loading of Au(III), Pd(II), Pt(II), and Pt(IV), andmore » measuring bacterial growth in planktonic assays through increases in optical density. In each experiment, bacterial growth was compared with control cultures of titanates or bacteria alone. We observed no suppression of bacterial growth by the sodium titanates alone, but significant (p < 0.05, two-sided t-tests) suppression was observed with metal-titanate compounds, particularly Au(III)-titanates, but with other metal titanates as well. Growth inhibition ranged from 15 to 100% depending on the metal ion and bacterial species involved. Furthermore, in specific cases, the titanates inhibited bacterial growth 5- to 375-fold versus metal ions alone, suggesting that titanates enhanced metal-bacteria interactions. This work supports further development of metal titanates as a novel class of antibacterials.« less

  5. Effect of flow and peristaltic mixing on bacterial growth in a gut-like channel

    PubMed Central

    Cremer, Jonas; Segota, Igor; Yang, Chih-yu; Arnoldini, Markus; Sauls, John T.; Zhang, Zhongge; Gutierrez, Edgar; Groisman, Alex; Hwa, Terence

    2016-01-01

    The ecology of microbes in the gut has been shown to play important roles in the health of the host. To better understand microbial growth and population dynamics in the proximal colon, the primary region of bacterial growth in the gut, we built and applied a fluidic channel that we call the “minigut.” This is a channel with an array of membrane valves along its length, which allows mimicking active contractions of the colonic wall. Repeated contraction is shown to be crucial in maintaining a steady-state bacterial population in the device despite strong flow along the channel that would otherwise cause bacterial washout. Depending on the flow rate and the frequency of contractions, the bacterial density profile exhibits varying spatial dependencies. For a synthetic cross-feeding community, the species abundance ratio is also strongly affected by mixing and flow along the length of the device. Complex mixing dynamics due to contractions is described well by an effective diffusion term. Bacterial dynamics is captured by a simple reaction–diffusion model without adjustable parameters. Our results suggest that flow and mixing play a major role in shaping the microbiota of the colon. PMID:27681630

  6. Influence of Macrophyte Decomposition on Growth Rate and Community Structure of Okefenokee Swamp Bacterioplankton †

    PubMed Central

    Murray, Robert E.; Hodson, Robert E.

    1986-01-01

    Dissolved substances released during decomposition of the white water lily (Nymphaea odorata) can alter the growth rate of Okefenokee Swamp bacterioplankton. In microcosm experiments dissolved compounds released from senescent Nymphaea leaves caused a transient reduction in the abundance and activity of water column bacterioplankton, followed by a period of intense bacterial growth. Rates of [3H]thymidine incorporation and turnover of dissolved d-glucose were depressed by over 85%, 3 h after the addition of Nymphaea leachates to microcosms containing Okefenokee Swamp water. Bacterial activity subsequently recovered; after 20 h [3H]thymidine incorporation in leachate-treated microcosms was 10-fold greater than that in control microcosms. The recovery of activity was due to a shift in the composition of the bacterial population toward resistance to the inhibitory compounds present in Nymphaea leachates. Inhibitory compounds released during the decomposition of aquatic macrophytes thus act as selective agents which alter the community structure of the bacterial population with respect to leachate resistance. Soluble compounds derived from macrophyte decomposition influence the rate of bacterial secondary production and the availability of microbial biomass to microconsumers. Images PMID:16346986

  7. Bacterial Standing Stock, Activity, and Carbon Production during Formation and Growth of Sea Ice in the Weddell Sea, Antarctica.

    PubMed

    Grossmann, S; Dieckmann, G S

    1994-08-01

    Bacterial response to formation and growth of sea ice was investigated during autumn in the northeastern Weddell Sea. Changes in standing stock, activity, and carbon production of bacteria were determined in successive stages of ice development. During initial ice formation, concentrations of bacterial cells, in the order of 1 x 10 to 3 x 10 liter, were not enhanced within the ice matrix. This suggests that physical enrichment of bacteria by ice crystals is not effective. Due to low concentrations of phytoplankton in the water column during freezing, incorporation of bacteria into newly formed ice via attachment to algal cells or aggregates was not recorded in this study. As soon as the ice had formed, the general metabolic activity of bacterial populations was strongly suppressed. Furthermore, the ratio of [H]leucine incorporation into proteins to [H]thymidine incorporation into DNA changed during ice growth. In thick pack ice, bacterial activity recovered and growth rates up to 0.6 day indicated actively dividing populations. However, biomass-specific utilization of organic compounds remained lower than in open water. Bacterial concentrations of up to 2.8 x 10 cells liter along with considerably enlarged cell volumes accumulated within thick pack ice, suggesting reduced mortality rates of bacteria within the small brine pores. In the course of ice development, bacterial carbon production increased from about 0.01 to 0.4 mug of C liter h. In thick ice, bacterial secondary production exceeded primary production of microalgae.

  8. Impact of ZnO and Ag Nanoparticles on Bacterial Growth and Viability

    NASA Astrophysics Data System (ADS)

    Olson, M. S.; Digiovanni, K. A.

    2007-12-01

    Hundreds of consumer products containing nanomaterials are currently available in the U.S., including computers, clothing, cosmetics, sports equipment, medical devices and product packaging. Metallic nanoparticles can be embedded in or coated on product surfaces to provide antimicrobial, deodorizing, and stain- resistant properties. Although these products have the potential to provide significant benefit to the user, the impact of these products on the environment remains largely unknown. The purpose of this project is to study the effect of metallic nanoparticles released to the environment on bacterial growth and viability. Inhibition of bacterial growth was tested by adding doses of suspended ZnO and Ag nanoparticles into luria broth prior to inoculation of Escherichia coli cells. ZnO particles (approximately 40 nm) were obtained commercially and Ag particles (12-14 nm) were fabricated by reduction of silver nitrate with sodium borohydride. Toxicity assays were performed to test the viability of E. coli cells exposed to both ZnO and Ag nanoparticles using the LIVE/DEAD BacLight bacterial viability kit (Invitrogen). Live cells stain green whereas cells with compromised membranes that are considered dead or dying stain red. Cells were first grown, stained, and exposed to varying doses of metallic nanoparticles, and then bacterial viability was measured hourly using fluorescence microscopy. Results indicate that both ZnO and Ag nanoparticles inhibit the growth of E. coli in liquid media. Preliminary results from toxicity assays confirm the toxic effect of ZnO and Ag nanoparticles on active cell cultures. Calculated death rates resulting from analyses of toxicity studies will be presented.

  9. Influence of Thawing Methods and Storage Temperatures on Bacterial Diversity, Growth Kinetics, and Biogenic Amine Development in Atlantic Mackerel.

    PubMed

    Onyango, S; Palmadottir, H; Tómason, T; Marteinsson, V T; Njage, P M K; Reynisson, E

    2016-11-01

    Limited knowledge is currently available on the influence of fish thawing and subsequent storage conditions on bacterial growth kinetics, succession, and diversity alongside the production of biogenic amines. This study aimed to address these factors during the thawing and subsequent storage of mackerel. Thawing was either done fast in 18°C water for 2 h or slowly at 30°C overnight. Subsequent storage was at 30°C (ambient) for 36 h and 2 to 5°C (refrigerated) for 12 days. The cultivation methods used were total viable counts, hydrogen sulfide-producing bacteria, and Pseudomonas . Maximum growth rate, population density, and lag time were fitted on the counts using the Baranyi model. The bacterial diversity and succession were based on sequencing of 16S rRNA amplicons, and biogenic amines were quantified on high-pressure liquid chromatography-UV. The results show that lag time of hydrogen sulfide-producing bacteria was significantly affected by both thawing methods, and further, the interaction between thawing and storage significantly affected the maximum growth rate of these bacteria. However, the maximum growth rate of Pseudomonas was higher during refrigerated storage compared with storage at ambient temperature. Total viable counts showed longer lag time and reduced growth rate under refrigerated storage. Higher bacterial diversity was correlated to slow thawing and storage at ambient temperature compared with slow thawing and refrigerated storage. Overall, Acinetobacter and Psychrobacter genera were the dominant bacterial populations. The amine levels were low and could not be differentiated along the thawing and storage approaches, despite a clear increase in bacterial load, succession, and diversity. This corresponded well with the low abundance of biogenic amine-producing bacteria, with the exception of the genus Proteus , which was 8.6% in fast-thawed mackerel during storage at ambient temperature. This suggests that the decarboxylation potential is

  10. Changes in the bacterial community of soybean rhizospheres during growth in the field.

    PubMed

    Sugiyama, Akifumi; Ueda, Yoshikatsu; Zushi, Takahiro; Takase, Hisabumi; Yazaki, Kazufumi

    2014-01-01

    Highly diverse communities of bacteria inhabiting soybean rhizospheres play pivotal roles in plant growth and crop production; however, little is known about the changes that occur in these communities during growth. We used both culture-dependent physiological profiling and culture independent DNA-based approaches to characterize the bacterial communities of the soybean rhizosphere during growth in the field. The physiological properties of the bacterial communities were analyzed by a community-level substrate utilization assay with BioLog Eco plates, and the composition of the communities was assessed by gene pyrosequencing. Higher metabolic capabilities were found in rhizosphere soil than in bulk soil during all stages of the BioLog assay. Pyrosequencing analysis revealed that differences between the bacterial communities of rhizosphere and bulk soils at the phylum level; i.e., Proteobacteria were increased, while Acidobacteria and Firmicutes were decreased in rhizosphere soil during growth. Analysis of operational taxonomic units showed that the bacterial communities of the rhizosphere changed significantly during growth, with a higher abundance of potential plant growth promoting rhizobacteria, including Bacillus, Bradyrhizobium, and Rhizobium, in a stage-specific manner. These findings demonstrated that rhizosphere bacterial communities were changed during soybean growth in the field.

  11. Effect of human milk fortifiers on bacterial growth in human milk.

    PubMed

    Santiago, Myla S; Codipilly, Champa N; Potak, Debra C; Schanler, Richard J

    2005-10-01

    As a component in human milk fortifiers (HMF), iron may equilibrate with human milk for as long as 24 hours, bind important bacteriostatic proteins, and potentially affect the host defense properties of human milk. We compared bacterial growth in human milk prepared with each of two HMF differing in their content of iron. Samples of human milk obtained from mothers of premature infants were divided and mixed with one of two HMF and maintained at refrigerator temperature. Refrigerated milk samples were removed at 0, 24, and 72 hours for determination of total bacterial colony counts (TBCC). TBCC did not differ between groups but declined from 0 to 72 hours, p<0.001. These data suggest that differences in iron content, or other nutrients in HMF, do not affect bacterial growth in human milk. Storage of fortified human milk at refrigerator temperature for 72 hours results in decreased bacterial growth. As a component in human milk fortifiers (HMF), iron may equilibrate with human milk for as long as 24 hours, bind important bacteriostatic proteins, and potentially affect the host defense properties of human milk. We compared bacterial growth in human milk prepared with each of two HMF differing in their content of iron. Samples of human milk obtained from mothers of premature infants were divided and mixed with one of two HMF and maintained at refrigerator temperature. Refrigerated milk samples were removed at 0, 24, and 72 hours for determination of total bacterial colony counts (TBCC).

  12. Antibacterial effect of silver nanoparticles and the modeling of bacterial growth kinetics using a modified Gompertz model.

    PubMed

    Chatterjee, Tanaya; Chatterjee, Barun K; Majumdar, Dipanwita; Chakrabarti, Pinak

    2015-02-01

    An alternative to conventional antibiotics is needed to fight against emerging multiple drug resistant pathogenic bacteria. In this endeavor, the effect of silver nanoparticle (Ag-NP) has been studied quantitatively on two common pathogenic bacteria Escherichia coli and Staphylococcus aureus, and the growth curves were modeled. The effect of Ag-NP on bacterial growth kinetics was studied by measuring the optical density, and was fitted by non-linear regression using the Logistic and modified Gompertz models. Scanning Electron Microscopy and fluorescence microscopy were used to study the morphological changes of the bacterial cells. Generation of reactive oxygen species for Ag-NP treated cells were measured by fluorescence emission spectra. The modified Gompertz model, incorporating cell death, fits the observed data better than the Logistic model. With increasing concentration of Ag-NP, the growth kinetics of both bacteria shows a decline in growth rate with simultaneous enhancement of death rate constants. The duration of the lag phase was found to increase with Ag-NP concentration. SEM showed morphological changes, while fluorescence microscopy using DAPI showed compaction of DNA for Ag-NP-treated bacterial cells. E. coli was found to be more susceptible to Ag-NP as compared to S. aureus. The modified Gompertz model, using a death term, was found to be useful in explaining the non-monotonic nature of the growth curve. The modified Gompertz model derived here is of general nature and can be used to study any microbial growth kinetics under the influence of antimicrobial agents. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Effect of flow and active mixing on bacterial growth in a colon-like geometry

    NASA Astrophysics Data System (ADS)

    Cremer, Jonas; Segota, Igor; Arnoldini, Markus; Groisman, Alex; Hwa, Terence

    The large intestine harbors bacteria from hundreds of species, with bacterial densities reaching up to 1012 cells per gram. Many different factors influence bacterial growth dynamics and thus bacterial density and microbiota composition. One dominant force is flow which can in principle lead to a washout of bacteria from the proximal colon. Active mixing by Contractions of the colonic wall together with bacterial growth might counteract such flow-forces and allow high bacterial densities to occur. As a step towards understanding bacterial growth in the presence of mixing and flow, we constructed an in-vitro setup where controlled wall-deformations of a channel emulate Contractions. We investigate growth along the channel under a steady nutrient inflow. In the limits of no or very frequent Contractions, the device behaves like a plug-flow reactor and a chemostat respectively. Depending on mixing and flow, we observe varying spatial gradients in bacterial density along the channel. Active mixing by deformations of the channel wall is shown to be crucial in maintaining a steady-state bacterial population in the presence of flow. The growth-dynamics is quantitatively captured by a simple mathematical model, with the effect of mixing described by an effective diffusion term.

  14. Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldfarb, K.C.; Karaoz, U.; Hanson, C.A.

    2011-04-18

    Soils are immensely diverse microbial habitats with thousands of co-existing bacterial, archaeal, and fungal species. Across broad spatial scales, factors such as pH and soil moisture appear to determine the diversity and structure of soil bacterial communities. Within any one site however, bacterial taxon diversity is high and factors maintaining this diversity are poorly resolved. Candidate factors include organic substrate availability and chemical recalcitrance, and given that they appear to structure bacterial communities at the phylum level, we examine whether these factors might structure bacterial communities at finer levels of taxonomic resolution. Analyzing 16S rRNA gene composition of nucleotide analog-labeledmore » DNA by PhyloChip microarrays, we compare relative growth rates on organic substrates of increasing chemical recalcitrance of >2,200 bacterial taxa across 43 divisions/phyla. Taxa that increase in relative abundance with labile organic substrates (i.e., glycine, sucrose) are numerous (>500), phylogenetically clustered, and occur predominantly in two phyla (Proteobacteria and Actinobacteria) including orders Actinomycetales, Enterobacteriales, Burkholderiales, Rhodocyclales, Alteromonadales, and Pseudomonadales. Taxa increasing in relative abundance with more chemically recalcitrant substrates (i.e., cellulose, lignin, or tannin-protein) are fewer (168) but more phylogenetically dispersed, occurring across eight phyla and including Clostridiales, Sphingomonadalaes, Desulfovibrionales. Just over 6% of detected taxa, including many Burkholderiales increase in relative abundance with both labile and chemically recalcitrant substrates. Estimates of median rRNA copy number per genome of responding taxa demonstrate that these patterns are broadly consistent with bacterial growth strategies. Taken together, these data suggest that changes in availability of intrinsically labile substrates may result in predictable shifts in soil bacterial

  15. Impact of electro-stimulation on denitrifying bacterial growth and analysis of bacterial growth kinetics using a modified Gompertz model in a bio-electrochemical denitrification reactor.

    PubMed

    Liu, Hengyuan; Chen, Nan; Feng, Chuanping; Tong, Shuang; Li, Rui

    2017-05-01

    This study aimed to investigate the effect of electro-stimulation on denitrifying bacterial growth in a bio-electrochemical reactor, and the growth were modeled using modified Gompertz model under different current densities at three C/Ns. It was found that the similar optimum current density of 250mA/m 2 was obtained at C/N=0.75, 1.00 and 1.25, correspondingly the maximum nitrate removal efficiencies were 98.0%, 99.2% and 99.9%. Moreover, ATP content and cell membrane permeability of denitrifying bacteria were significantly increased at optimum current density. Furthermore, modified Gompertz model fitted well with the microbial growth curves, and the highest maximum growth rates (µ max ) and shorter lag time were obtained at the optimum current density for all C/Ns. This study demonstrated that the modified Gompertz model could be used for describing microbial growth under different current densities and C/Ns in a bio-electrochemical denitrification reactor, and it provided an alternative for improving the performance of denitrification process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Analytic derivation of bacterial growth laws from a simple model of intracellular chemical dynamics.

    PubMed

    Pandey, Parth Pratim; Jain, Sanjay

    2016-09-01

    Experiments have found that the growth rate and certain other macroscopic properties of bacterial cells in steady-state cultures depend upon the medium in a surprisingly simple manner; these dependencies are referred to as 'growth laws'. Here we construct a dynamical model of interacting intracellular populations to understand some of the growth laws. The model has only three population variables: an amino acid pool, a pool of enzymes that transport an external nutrient and produce the amino acids, and ribosomes that catalyze their own and the enzymes' production from the amino acids. We assume that the cell allocates its resources between the enzyme sector and the ribosomal sector to maximize its growth rate. We show that the empirical growth laws follow from this assumption and derive analytic expressions for the phenomenological parameters in terms of the more basic model parameters. Interestingly, the maximization of the growth rate of the cell as a whole implies that the cell allocates resources to the enzyme and ribosomal sectors in inverse proportion to their respective 'efficiencies'. The work introduces a mathematical scheme in which the cellular growth rate can be explicitly determined and shows that two large parameters, the number of amino acid residues per enzyme and per ribosome, are useful for making approximations.

  17. No bacterial growth found in spiked intravenous fluids over an 8-hour period.

    PubMed

    Haas, Richard E; Beitz, Edwin; Reed, Amy; Burtnett, Howard; Lowe, Jason; Crist, Arthur E; Stierer, Kevin A; Birenberg, Allan M

    2017-04-01

    Protocol changes prompted by the Joint Commission mandating intravenous (IV) fluid bags to be used within 1 hour of spiking because of possible bacterial contamination have sparked clinical and economic concerns. This study investigated the degree of bacterial growth in which samples were obtained from spiked IV fluid bags at the time of spiking and 1, 2, 4, and 8 hours after spiking. No bacterial growth occurred in any of the 80 bags of Lactated Ringer's (LR) IV solutions sampled. This study demonstrated that LR IV bags do not support any bacterial growth for up to 8 hours after spiking. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  18. Vision Marker-Based In Situ Examination of Bacterial Growth in Liquid Culture Media.

    PubMed

    Kim, Kyukwang; Choi, Duckyu; Lim, Hwijoon; Kim, Hyeongkeun; Jeon, Jessie S

    2016-12-18

    The detection of bacterial growth in liquid media is an essential process in determining antibiotic susceptibility or the level of bacterial presence for clinical or research purposes. We have developed a system, which enables simplified and automated detection using a camera and a striped pattern marker. The quantification of bacterial growth is possible as the bacterial growth in the culturing vessel blurs the marker image, which is placed on the back of the vessel, and the blurring results in a decrease in the high-frequency spectrum region of the marker image. The experiment results show that the FFT (fast Fourier transform)-based growth detection method is robust to the variations in the type of bacterial carrier and vessels ranging from the culture tubes to the microfluidic devices. Moreover, the automated incubator and image acquisition system are developed to be used as a comprehensive in situ detection system. We expect that this result can be applied in the automation of biological experiments, such as the Antibiotics Susceptibility Test or toxicity measurement. Furthermore, the simple framework of the proposed growth measurement method may be further utilized as an effective and convenient method for building point-of-care devices for developing countries.

  19. Predicting the dynamics of bacterial growth inhibition by ribosome-targeting antibiotics

    NASA Astrophysics Data System (ADS)

    Greulich, Philip; Doležal, Jakub; Scott, Matthew; Evans, Martin R.; Allen, Rosalind J.

    2017-12-01

    Understanding how antibiotics inhibit bacteria can help to reduce antibiotic use and hence avoid antimicrobial resistance—yet few theoretical models exist for bacterial growth inhibition by a clinically relevant antibiotic treatment regimen. In particular, in the clinic, antibiotic treatment is time-dependent. Here, we use a theoretical model, previously applied to steady-state bacterial growth, to predict the dynamical response of a bacterial cell to a time-dependent dose of ribosome-targeting antibiotic. Our results depend strongly on whether the antibiotic shows reversible transport and/or low-affinity ribosome binding (‘low-affinity antibiotic’) or, in contrast, irreversible transport and/or high affinity ribosome binding (‘high-affinity antibiotic’). For low-affinity antibiotics, our model predicts that growth inhibition depends on the duration of the antibiotic pulse, and can show a transient period of very fast growth following removal of the antibiotic. For high-affinity antibiotics, growth inhibition depends on peak dosage rather than dose duration, and the model predicts a pronounced post-antibiotic effect, due to hysteresis, in which growth can be suppressed for long times after the antibiotic dose has ended. These predictions are experimentally testable and may be of clinical significance.

  20. Predicting the dynamics of bacterial growth inhibition by ribosome-targeting antibiotics

    PubMed Central

    Greulich, Philip; Doležal, Jakub; Scott, Matthew; Evans, Martin R; Allen, Rosalind J

    2017-01-01

    Understanding how antibiotics inhibit bacteria can help to reduce antibiotic use and hence avoid antimicrobial resistance—yet few theoretical models exist for bacterial growth inhibition by a clinically relevant antibiotic treatment regimen. In particular, in the clinic, antibiotic treatment is time-dependent. Here, we use a theoretical model, previously applied to steady-state bacterial growth, to predict the dynamical response of a bacterial cell to a time-dependent dose of ribosome-targeting antibiotic. Our results depend strongly on whether the antibiotic shows reversible transport and/or low-affinity ribosome binding (‘low-affinity antibiotic’) or, in contrast, irreversible transport and/or high affinity ribosome binding (‘high-affinity antibiotic’). For low-affinity antibiotics, our model predicts that growth inhibition depends on the duration of the antibiotic pulse, and can show a transient period of very fast growth following removal of the antibiotic. For high-affinity antibiotics, growth inhibition depends on peak dosage rather than dose duration, and the model predicts a pronounced post-antibiotic effect, due to hysteresis, in which growth can be suppressed for long times after the antibiotic dose has ended. These predictions are experimentally testable and may be of clinical significance. PMID:28714461

  1. Microbial dynamics during harmful dinoflagellate Ostreopsis cf. ovata growth: Bacterial succession and viral abundance pattern.

    PubMed

    Guidi, Flavio; Pezzolesi, Laura; Vanucci, Silvana

    2018-02-27

    Algal-bacterial interactions play a major role in shaping diversity of algal associated bacterial communities. Temporal variation in bacterial phylogenetic composition reflects changes of these complex interactions which occur during the algal growth cycle as well as throughout the lifetime of algal blooms. Viruses are also known to cause shifts in bacterial community diversity which could affect algal bloom phases. This study investigated on changes of bacterial and viral abundances, bacterial physiological status, and on bacterial successional pattern associated with the harmful benthic dinoflagellate Ostreopsis cf. ovata in batch cultures over the algal growth cycle. Bacterial community phylogenetic structure was assessed by 16S rRNA gene ION torrent sequencing. A comparison between bacterial community retrieved in cultures and that one co-occurring in situ during the development of the O. cf. ovata bloom from where the algal strain was isolated was also reported. Bacterial community growth was characterized by a biphasic pattern with the highest contributions (~60%) of highly active bacteria found at the two bacterial exponential growth steps. An alphaproteobacterial consortium composed by the Rhodobacteraceae Dinoroseobacter (22.2%-35.4%) and Roseovarius (5.7%-18.3%), together with Oceanicaulis (14.2-40.3%), was strongly associated with O. cf. ovata over the algal growth. The Rhodobacteraceae members encompassed phylotypes with an assessed mutualistic-pathogenic bimodal behavior. Fabibacter (0.7%-25.2%), Labrenzia (5.6%-24.3%), and Dietzia (0.04%-1.7%) were relevant at the stationary phase. Overall, the successional pattern and the metabolic and functional traits of the bacterial community retrieved in culture mirror those ones underpinning O. cf. ovata bloom dynamics in field. Viral abundances increased synoptically with bacterial abundances during the first bacterial exponential growth step while being stationary during the second step. Microbial trends

  2. Morphomechanics of bacterial biofilms undergoing anisotropic differential growth

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Li, Bo; Huang, Xiao; Ni, Yong; Feng, Xi-Qiao

    2016-10-01

    Growing bacterial biofilms exhibit a number of surface morphologies, e.g., concentric wrinkles, radial ridges, and labyrinthine networks, depending on their physiological status and nutrient access. We explore the mechanisms underlying the emergence of these greatly different morphologies. Ginzburg-Landau kinetic method and Fourier spectral method are integrated to simulate the morphological evolution of bacterial biofilms. It is shown that the morphological instability of biofilms is triggered by the stresses induced by anisotropic and heterogeneous bacterial expansion, and involves the competition between membrane energy and bending energy. Local interfacial delamination further enriches the morphologies of biofilms. Phase diagrams are established to reveal how the anisotropy and spatial heterogeneity of growth modulate the surface patterns. The mechanics of three-dimensional microbial morphogenesis may also underpin self-organization in other development systems and provide a potential strategy for engineering microscopic structures from bacterial aggregates.

  3. Dynamic succession of substrate-associated bacterial composition and function during Ganoderma lucidum growth

    PubMed Central

    Li, Qiang; Zou, Jie; Tan, Hao; Tan, Wei; Peng, Weihong

    2018-01-01

    Background Ganoderma lucidum, a valuable medicinal fungus, is widely distributed in China. It grows alongside with a complex microbial ecosystem in the substrate. As sequencing technology advances, it is possible to reveal the composition and functions of substrate-associated bacterial communities. Methods We analyzed the bacterial community dynamics in the substrate during the four typical growth stages of G. lucidum using next-generation sequencing. Results The physicochemical properties of the substrate (e.g. acidity, moisture, total nitrogen, total phosphorus and total potassium) changed between different growth stages. A total of 598,771 sequences from 12 samples were obtained and assigned to 22 bacterial phyla. Proteobacteria and Firmicutes were the dominant phyla. Bacterial community composition and diversity significantly differed between the elongation stage and the other three growth stages. LEfSe analysis revealed a large number of bacterial taxa (e.g. Bacteroidetes, Acidobacteria and Nitrospirae) with significantly higher abundance at the elongation stage. Functional pathway prediction uncovered significant abundance changes of a number of bacterial functional pathways between the elongation stage and other growth stages. At the elongation stage, the abundance of the environmental information processing pathway (mainly membrane transport) decreased, whereas that of the metabolism-related pathways increased. Discussion The changes in bacterial community composition, diversity and predicted functions were most likely related to the changes in the moisture and nutrient conditions in the substrate with the growth of G. lucidum, particularly at the elongation stage. Our findings shed light on the G. lucidum-bacteria-substrate relationships, which should facilitate the industrial cultivation of G. lucidum. PMID:29915697

  4. Individual based simulations of bacterial growth on agar plates

    NASA Astrophysics Data System (ADS)

    Ginovart, M.; López, D.; Valls, J.; Silbert, M.

    2002-03-01

    The individual based simulator, INDividual DIScrete SIMulations (INDISIM) has been used to study the behaviour of the growth of bacterial colonies on a finite dish. The simulations reproduce the qualitative trends of pattern formation that appear during the growth of Bacillus subtilis on an agar plate under different initial conditions of nutrient peptone concentration, the amount of agar on the plate, and the temperature. The simulations are carried out by imposing closed boundary conditions on a square lattice divided into square spatial cells. The simulator studies the temporal evolution of the bacterial population possible by setting rules of behaviour for each bacterium, such as its uptake, metabolism and reproduction, as well as rules for the medium in which the bacterial cells grow, such as concentration of nutrient particles and their diffusion. The determining factors that characterize the structure of the bacterial colony patterns in the presents simulations, are the initial concentrations of nutrient particles, that mimic the amount of peptone in the experiments, and the set of values for the microscopic diffusion parameter related, in the experiments, to the amount of the agar medium.

  5. Aptamer-functionalized capacitance sensors for real-time monitoring of bacterial growth and antibiotic susceptibility.

    PubMed

    Jo, Namgyeong; Kim, Bongjun; Lee, Sun-Mi; Oh, Jeseung; Park, In Ho; Jin Lim, Kook; Shin, Jeon-Soo; Yoo, Kyung-Hwa

    2018-04-15

    To prevent spread of infection and antibiotic resistance, fast and accurate diagnosis of bacterial infection and subsequent administration of antimicrobial agents are important. However, conventional methods for bacterial detection and antibiotic susceptibility testing (AST) require more than two days, leading to delays that have contributed to an increase in antibiotic-resistant bacteria. Here, we report an aptamer-functionalized capacitance sensor array that can monitor bacterial growth and antibiotic susceptibility in real-time. While E. coli and S. aureus were cultured, the capacitance increased over time, and apparent bacterial growth curves were observed even when 10 CFU/mL bacteria was inoculated. Furthermore, because of the selectivity of aptamers, bacteria could be identified within 1h using the capacitance sensor array functionalized with aptamers. In addition to bacterial growth, antibiotic susceptibility could be monitored in real-time. When bacteria were treated with antibiotics above the minimum inhibitory concentration (MIC), the capacitance decreased because the bacterial growth was inhibited. These results demonstrate that the aptamer-functionalized capacitance sensor array might be applied for rapid ASTs. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Bacterial growth and substrate degradation by BTX-oxidizing culture in response to salt stress.

    PubMed

    Lee, Chi-Yuan; Lin, Ching-Hsing

    2006-01-01

    Interactions between microbial growth and substrate degradation are important in determining the performance of trickle-bed bioreactors (TBB), especially when salt is added to reduce biomass formation in order to alleviate media clogging. This study was aimed at quantifying salinity effects on bacterial growth and substrate degradation, and at acquiring kinetic information in order to improve the design and operation of TBB. Experiment works began by cultivating a mixed culture in a chemostat reactor receiving artificial influent containing a mixture of benzene, toluene, and xylene (BTX), followed by using the enrichment culture to degrade the individual BTX substrates under a particular salinity, which ranged 0-50 g l(-1) in batch mode. Then, the measured concentrations of biomass and residual substrate versus time were analyzed with the microbial kinetics; moreover, the obtained microbial kinetic constants under various salinities were modeled using noncompetitive inhibition kinetics. For the three substrates the observed bacterial yields appeared to be decreased from 0.51-0.74 to 0.20-0.22 mg mg(-1) and the maximum specific rate of substrate utilization, q, declined from 0.25-0.42 to 0.07-0.11 h(-1), as the salinity increased from 0 to 50 NaCl g l(-1). The NaCl acted as noncompetitive inhibitor, where the modeling inhibitions of the coefficients, K ( T(S)), were 22.7-29.7 g l(-1) for substrate degradation and K ( T(mu)), 13.0-19.0 g l(-1), for biomass formation. The calculated ratios for the bacterial maintenance rate, m (S), to q, further indicated that the percentage energy spent on maintenance increased from 19-24 to 86-91% as salinity level increased from 0 to 50 g l(-1). These results revealed that the bacterial growth was more inhibited than substrate degradation by the BTX oxidizers under the tested salinity levels. The findings from this study demonstrate the potential of applying NaCl salt to control excessive biomass formation in biotrickling filters.

  7. Phenotypic indications of FtsZ inhibition in hok/sok-induced bacterial growth changes and stress response.

    PubMed

    Chukwudi, Chinwe Uzoma; Good, Liam

    2018-01-01

    The hok/sok locus has been shown to enhance the growth of bacteria in adverse growth conditions such as high temperature, low starting-culture densities and antibiotic treatment. This is in addition to their well-established plasmid-stabilization effect via post-segregational killing of plasmid-free daughter cells. It delays the onset of growth by prolonging the lag phase of bacterial culture, and increases the rate of exponential growth when growth eventually begins. This enables the cells adapt to the prevailing growth conditions and enhance their survival in stressful conditions. These effects functionally complement defective SOS response mechanism, and appear analogous to the growth effects of FtsZ in the SOS pathway. In this study, the role of FtsZ in the hok/sok-induced changes in bacterial growth and cell division was investigated. Morphologic studies of early growth-phase cultures and cells growing under temperature stress showed elongated cells typical of FtsZ inhibition/deficiency. Both ftsZ silencing and over-expression produced comparable growth effects in control cells, and altered the growth changes observed otherwise in the hok/sok + cells. These changes were diminished in SOS-deficient strain containing mutant FtsZ. The involvement of FtsZ in the hok/sok-induced growth changes may be exploited as drug target in host bacteria, which often propagate antibiotic resistance elements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Theoretical and Experimental Study of Bacterial Colony Growth in 3D

    NASA Astrophysics Data System (ADS)

    Shao, Xinxian; Mugler, Andrew; Nemenman, Ilya

    2014-03-01

    Bacterial cells growing in liquid culture have been well studied and modeled. However, in nature, bacteria often grow as biofilms or colonies in physically structured habitats. A comprehensive model for population growth in such conditions has not yet been developed. Based on the well-established theory for bacterial growth in liquid culture, we develop a model for colony growth in 3D in which a homogeneous colony of cells locally consume a diffusing nutrient. We predict that colony growth is initially exponential, as in liquid culture, but quickly slows to sub-exponential after nutrient is locally depleted. This prediction is consistent with our experiments performed with E. coli in soft agar. Our model provides a baseline to which studies of complex growth process, such as such as spatially and phenotypically heterogeneous colonies, must be compared.

  9. Control of bacterial adhesion and growth on honeycomb-like patterned surfaces.

    PubMed

    Yang, Meng; Ding, Yonghui; Ge, Xiang; Leng, Yang

    2015-11-01

    It is a great challenge to construct a persistent bacteria-resistant surface even though it has been demonstrated that several surface features might be used to control bacterial behavior, including surface topography. In this study, we develop micro-scale honeycomb-like patterns of different sizes (0.5-10 μm) as well as a flat area as the control on a single platform to evaluate the bacterial adhesion and growth. Bacteria strains, Escherichia coli and Staphylococcus aureus with two distinct shapes (rod and sphere) are cultured on the platforms, with the patterned surface-up and surface-down in the culture medium. The results demonstrate that the 1 μm patterns remarkably reduce bacterial adhesion and growth while suppressing bacterial colonization when compared to the flat surface. The selective adhesion of the bacterial cells on the patterns reveals that the bacterial adhesion is cooperatively mediated by maximizing the cell-substrate contact area and minimizing the cell deformation, from a thermodynamic point of view. Moreover, study of bacterial behaviors on the surface-up vs. surface-down samples shows that gravity does not apparently affect the spatial distribution of the adherent cells although it indeed facilitates bacterial adhesion. Furthermore, the experimental results suggest that two major factors, i.e. the availability of energetically favorable adhesion sites and the physical confinements, contribute to the anti-bacterial nature of the honeycomb-like patterns. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Kinetics of Bacterial Growth on Chlorinated Aliphatic Compounds

    PubMed Central

    van den Wijngaard, Arjan J.; Wind, Richèle D.; Janssen, Dick B.

    1993-01-01

    With the pure bacterial cultures Ancylobacter aquaticus AD20 and AD25, Xanthobacter autotrophicus GJ10, and Pseudomonas sp. strain AD1, Monod kinetics was observed during growth in chemostat cultures on 1,2-dichloroethane (AD20, AD25, and GJ10), 2-chloroethanol (AD20 and GJ10), and 1,3-dichloro-2-propanol (AD1). Both the Michaelis-Menten constants (Km) of the first catabolic (dehalogenating) enzyme and the Monod half-saturation constants (Ks) followed the order 2-chloroethanol, 1,3-dichloro-2-propanol, epichlorohydrin, and 1,2-dichloroethane. The Ks values of strains GJ10, AD20, and AD25 for 1,2-dichloroethane were 260, 222, and 24 μM, respectively. The low Ks value of strain AD25 was correlated with a higher haloalkane dehalogenase content of this bacterium. The growth rates of strains AD20 and GJ10 in continuous cultures on 1,2-dichloroethane were higher than the rates predicted from the kinetics of the haloalkane dehalogenase and the concentration of the enzyme in the cells. The results indicate that the efficiency of chlorinated compound removal is indeed influenced by the kinetic properties and cellular content of the first catabolic enzyme. The cell envelope did not seem to act as a barrier for permeation of 1,2-dichloroethane. PMID:16348981

  11. PMAnalyzer: a new web interface for bacterial growth curve analysis.

    PubMed

    Cuevas, Daniel A; Edwards, Robert A

    2017-06-15

    Bacterial growth curves are essential representations for characterizing bacteria metabolism within a variety of media compositions. Using high-throughput, spectrophotometers capable of processing tens of 96-well plates, quantitative phenotypic information can be easily integrated into the current data structures that describe a bacterial organism. The PMAnalyzer pipeline performs a growth curve analysis to parameterize the unique features occurring within microtiter wells containing specific growth media sources. We have expanded the pipeline capabilities and provide a user-friendly, online implementation of this automated pipeline. PMAnalyzer version 2.0 provides fast automatic growth curve parameter analysis, growth identification and high resolution figures of sample-replicate growth curves and several statistical analyses. PMAnalyzer v2.0 can be found at https://edwards.sdsu.edu/pmanalyzer/ . Source code for the pipeline can be found on GitHub at https://github.com/dacuevas/PMAnalyzer . Source code for the online implementation can be found on GitHub at https://github.com/dacuevas/PMAnalyzerWeb . dcuevas08@gmail.com. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  12. Effect of surgical hand scrub time on subsequent bacterial growth.

    PubMed

    Wheelock, S M; Lookinland, S

    1997-06-01

    In this experimental study, the researchers evaluated the effect of surgical hand scrub time on subsequent bacterial growth and assessed the effectiveness of the glove juice technique in a clinical setting. In a randomized crossover design, 25 perioperative staff members scrubbed for two or three minutes in the first trial and vice versa in the second trial, after which the wore sterile surgical gloves for one hour under clinical conditions. The researchers then sampled the subjects' nondominant hands for bacterial growth, cultured aliquots from the sampling solution, and counted microorganisms. Scrubbing for three minutes produced lower mean log bacterial counts than scrubbing for two minutes. Although the mean bacterial count differed significantly (P = .02) between the two-minute and three-minute surgical hand scrub times, it fell below 0.5 log, which is the threshold for practical and clinical significance. This finding suggests that a two-minute surgical hand scrub is clinically as effective as a three-minute surgical had scrub. The glove juice technique demonstrated sensitivity and reliability in enumerating bacteria on the hands of perioperative staff members in a clinical setting.

  13. Evolution of Cell Size Homeostasis and Growth Rate Diversity during Initial Surface Colonization of Shewanella oneidensis.

    PubMed

    Lee, Calvin K; Kim, Alexander J; Santos, Giancarlo S; Lai, Peter Y; Lee, Stella Y; Qiao, David F; Anda, Jaime De; Young, Thomas D; Chen, Yujie; Rowe, Annette R; Nealson, Kenneth H; Weiss, Paul S; Wong, Gerard C L

    2016-09-06

    Cell size control and homeostasis are fundamental features of bacterial metabolism. Recent work suggests that cells add a constant size between birth and division ("adder" model). However, it is not known how cell size homeostasis is influenced by the existence of heterogeneous microenvironments, such as those during biofilm formation. Shewanella oneidensis MR-1 can use diverse energy sources on a range of surfaces via extracellular electron transport (EET), which can impact growth, metabolism, and size diversity. Here, we track bacterial surface communities at single-cell resolution to show that not only do bacterial motility appendages influence the transition from two- to three-dimensional biofilm growth and control postdivisional cell fates, they strongly impact cell size homeostasis. For every generation, we find that the average growth rate for cells that stay on the surface and continue to divide (nondetaching population) and that for cells that detach before their next division (detaching population) are roughly constant. However, the growth rate distribution is narrow for the nondetaching population, but broad for the detaching population in each generation. Interestingly, the appendage deletion mutants (ΔpilA, ΔmshA-D, Δflg) have significantly broader growth rate distributions than that of the wild type for both detaching and nondetaching populations, which suggests that Shewanella appendages are important for sensing and integrating environmental inputs that contribute to size homeostasis. Moreover, our results suggest multiplexing of appendages for sensing and motility functions contributes to cell size dysregulation. These results can potentially provide a framework for generating metabolic diversity in S. oneidensis populations to optimize EET in heterogeneous environments.

  14. Evaluation of data transformations used with the square root and schoolfield models for predicting bacterial growth rate.

    PubMed Central

    Alber, S A; Schaffner, D W

    1992-01-01

    A comparison was made between mathematical variations of the square root and Schoolfield models for predicting growth rate as a function of temperature. The statistical consequences of square root and natural logarithm transformations of growth rate use in several variations of the Schoolfield and square root models were examined. Growth rate variances of Yersinia enterocolitica in brain heart infusion broth increased as a function of temperature. The ability of the two data transformations to correct for the heterogeneity of variance was evaluated. A natural logarithm transformation of growth rate was more effective than a square root transformation at correcting for the heterogeneity of variance. The square root model was more accurate than the Schoolfield model when both models used natural logarithm transformation. PMID:1444367

  15. Modeling the effects of free-living marine bacterial community composition on heterotrophic remineralization rates and biogeochemical carbon cycling

    NASA Astrophysics Data System (ADS)

    Teel, E.; Liu, X.; Cram, J. A.; Sachdeva, R.; Fuhrman, J. A.; Levine, N. M.

    2016-12-01

    Global oceanic ecosystem models either disregard fluctuations in heterotrophic bacterial remineralization or vary remineralization as a simple function of temperature, available carbon, and nutrient limitation. Most of these models were developed before molecular techniques allowed for the description of microbial community composition and functional diversity. Here we investigate the impact of a dynamic heterotrophic community and variable remineralization rates on biogeochemical cycling. Specifically, we integrated variable microbial remineralization into an ecosystem model by utilizing molecular community composition data, association network analysis, and biogeochemical rate data from the San Pedro Ocean Time-series (SPOT) station. Fluctuations in free-living bacterial community function and composition were examined using monthly environmental and biological data collected at SPOT between 2000 and 2011. On average, the bacterial community showed predictable seasonal changes in community composition and peaked in abundance in the spring with a one-month lag from peak chlorophyll concentrations. Bacterial growth efficiency (BGE), estimated from bacterial production, was found to vary widely at the site (5% to 40%). In a multivariate analysis, 47.6% of BGE variability was predicted using primary production, bacterial community composition, and temperature. A classic Nutrient-Phytoplankton-Zooplankton-Detritus model was expanded to include a heterotroph module that captured the observed relationships at the SPOT site. Results show that the inclusion of dynamic bacterial remineralization into larger oceanic ecosystem models can significantly impact microzooplankton grazing, the duration of surface phytoplankton blooms, and picophytoplankton primary production rates.

  16. [Effect of the development phase and growth rate of a Shigella sonnei population on the reproduction of homologous bacteriophage].

    PubMed

    Voroshilova, N N; Kazakova, T B

    1983-04-01

    This study showed that the minimum latent period (20 minutes) of the intracellular multiplication of dysentery bacteriophage S-9 in the population of S. sonnei substrate strain under the conditions of static heterogeneous surface batch cultivation was observed at the end of the lag phase and at the growth acceleration phase, in the first and second thirds of the exponential curve, while the maximum latent period (35-40 minutes) was observed at the stationary phase. The maximum yield of phage S-9 from one infected bacterial cell (628.3 +/- 116.8) was registered during the first third of the phase of the exponential growth of the bacterial population and the minimum yield (18.66 +/- 6.6), at the beginning of the lag phase. The significant direct correlation between the specific growth rate of the bacterial population and the yield of the phage from one infected bacterial cell at the end of the lag phase, at the growth acceleration and deceleration phases, as well as the significant inverse correlation between the yield of the phage and the time of the generation of the bacterial population at the growth acceleration phase were established.

  17. Archaeal Abundance across a pH Gradient in an Arable Soil and Its Relationship to Bacterial and Fungal Growth Rates

    PubMed Central

    Sterngren, Anna E.; Rousk, Johannes

    2012-01-01

    Soil pH is one of the most influential factors for the composition of bacterial and fungal communities, but the influence of soil pH on the distribution and composition of soil archaeal communities has yet to be systematically addressed. The primary aim of this study was to determine how total archaeal abundance (quantitative PCR [qPCR]-based estimates of 16S rRNA gene copy numbers) is related to soil pH across a pH gradient (pH 4.0 to 8.3). Secondarily, we wanted to assess how archaeal abundance related to bacterial and fungal growth rates across the same pH gradient. We identified two distinct and opposite effects of pH on the archaeal abundance. In the lowest pH range (pH 4.0 to 4.7), the abundance of archaea did not seem to correspond to pH. Above this pH range, there was a sharp, almost 4-fold decrease in archaeal abundance, reaching a minimum at pH 5.1 to 5.2. The low abundance of archaeal 16S rRNA gene copy numbers at this pH range then sharply increased almost 150-fold with pH, resulting in an increase in the ratio between archaeal and bacterial copy numbers from a minimum of 0.002 to more than 0.07 at pH 8. The nonuniform archaeal response to pH could reflect variation in the archaeal community composition along the gradient, with some archaea adapted to acidic conditions and others to neutral to slightly alkaline conditions. This suggestion is reinforced by observations of contrasting outcomes of the (competitive) interactions between archaea, bacteria, and fungi toward the lower and higher ends of the examined pH gradient. PMID:22706045

  18. Archaeal abundance across a pH gradient in an arable soil and its relationship to bacterial and fungal growth rates.

    PubMed

    Bengtson, Per; Sterngren, Anna E; Rousk, Johannes

    2012-08-01

    Soil pH is one of the most influential factors for the composition of bacterial and fungal communities, but the influence of soil pH on the distribution and composition of soil archaeal communities has yet to be systematically addressed. The primary aim of this study was to determine how total archaeal abundance (quantitative PCR [qPCR]-based estimates of 16S rRNA gene copy numbers) is related to soil pH across a pH gradient (pH 4.0 to 8.3). Secondarily, we wanted to assess how archaeal abundance related to bacterial and fungal growth rates across the same pH gradient. We identified two distinct and opposite effects of pH on the archaeal abundance. In the lowest pH range (pH 4.0 to 4.7), the abundance of archaea did not seem to correspond to pH. Above this pH range, there was a sharp, almost 4-fold decrease in archaeal abundance, reaching a minimum at pH 5.1 to 5.2. The low abundance of archaeal 16S rRNA gene copy numbers at this pH range then sharply increased almost 150-fold with pH, resulting in an increase in the ratio between archaeal and bacterial copy numbers from a minimum of 0.002 to more than 0.07 at pH 8. The nonuniform archaeal response to pH could reflect variation in the archaeal community composition along the gradient, with some archaea adapted to acidic conditions and others to neutral to slightly alkaline conditions. This suggestion is reinforced by observations of contrasting outcomes of the (competitive) interactions between archaea, bacteria, and fungi toward the lower and higher ends of the examined pH gradient.

  19. Population dynamics and growth rates of endosymbionts during Diaphorina citri (Hemiptera, Liviidae) ontogeny.

    PubMed

    Dossi, Fabio Cleisto Alda; da Silva, Edney Pereira; Cônsoli, Fernando Luis

    2014-11-01

    The infection density of symbionts is among the major parameters to understand their biological effects in host-endosymbionts interactions. Diaphorina citri harbors two bacteriome-associated bacterial endosymbionts (Candidatus Carsonella ruddii and Candidatus Profftella armatura), besides the intracellular reproductive parasite Wolbachia. In this study, the density dynamics of the three endosymbionts associated with the psyllid D. citri was investigated by real-time quantitative PCR (qPCR) at different developmental stages. Bacterial density was estimated by assessing the copy number of the 16S rRNA gene for Carsonella and Profftella, and of the ftsZ gene for Wolbachia. Analysis revealed a continuous growth of the symbionts during host development. Symbiont growth and rate curves were estimated by the Gompertz equation, which indicated a negative correlation between the degree of symbiont-host specialization and the time to achieve the maximum growth rate (t*). Carsonella densities were significantly lower than those of Profftella at all host developmental stages analyzed, even though they both displayed a similar trend. The growth rates of Wolbachia were similar to those of Carsonella, but Wolbachia was not as abundant. Adult males displayed higher symbiont densities than females. However, females showed a much more pronounced increase in symbiont density as they aged if compared to males, regardless of the incorporation of symbionts into female oocytes and egg laying. The increased density of endosymbionts in aged adults differs from the usual decrease observed during host aging in other insect-symbiont systems.

  20. Assessment of bacterial growth and total organic carbon removal on granular activated carbon contactors.

    PubMed Central

    Bancroft, K; Maloney, S W; McElhaney, J; Suffet, I H; Pipes, W O

    1983-01-01

    The overall growth rate of bacteria on granular activated carbon (GAC) contactors at the Philadelphia Torresdale Water Treatment Pilot Plant facility was found to decrease until steady state was reached. The growth rate was found to fluctuate between 6.94 X 10(-3) and 8.68 X 10(-4) doublings per h. The microbiological removal of total organic carbon (TOC) was calculated by considering the GAC contactors as semiclosed continuous culture systems and using growth yield factors determined in laboratory experiments. After ozonation, the average TOC entering the contactors was 1,488 micrograms/liter, and the average effluent TOC was 497 micrograms/liter. Microbiological TOC removal was found to average 240 micrograms/liter on GAC contactors, which was not significantly different from microbiological TOC (220 micrograms/liter) removal across a parallel sand contactor where no adsorption took place. Thus, GAC did not appear to enhance biological TOC removal. Bacterial growth and maintenance was responsible for approximately 24% of the TOC removal on GAC under the conditions of this study. PMID:6639023

  1. Assessment of bacterial growth and total organic carbon removal on granular activated carbon contactors.

    PubMed

    Bancroft, K; Maloney, S W; McElhaney, J; Suffet, I H; Pipes, W O

    1983-09-01

    The overall growth rate of bacteria on granular activated carbon (GAC) contactors at the Philadelphia Torresdale Water Treatment Pilot Plant facility was found to decrease until steady state was reached. The growth rate was found to fluctuate between 6.94 X 10(-3) and 8.68 X 10(-4) doublings per h. The microbiological removal of total organic carbon (TOC) was calculated by considering the GAC contactors as semiclosed continuous culture systems and using growth yield factors determined in laboratory experiments. After ozonation, the average TOC entering the contactors was 1,488 micrograms/liter, and the average effluent TOC was 497 micrograms/liter. Microbiological TOC removal was found to average 240 micrograms/liter on GAC contactors, which was not significantly different from microbiological TOC (220 micrograms/liter) removal across a parallel sand contactor where no adsorption took place. Thus, GAC did not appear to enhance biological TOC removal. Bacterial growth and maintenance was responsible for approximately 24% of the TOC removal on GAC under the conditions of this study.

  2. Accelerating bacterial growth detection and antimicrobial susceptibility assessment in integrated picoliter droplet platform.

    PubMed

    Kaushik, Aniruddha M; Hsieh, Kuangwen; Chen, Liben; Shin, Dong Jin; Liao, Joseph C; Wang, Tza-Huei

    2017-11-15

    There remains an urgent need for rapid diagnostic methods that can evaluate antibiotic resistance for pathogenic bacteria in order to deliver targeted antibiotic treatments. Toward this end, we present a rapid and integrated single-cell biosensing platform, termed dropFAST, for bacterial growth detection and antimicrobial susceptibility assessment. DropFAST utilizes a rapid resazurin-based fluorescent growth assay coupled with stochastic confinement of bacteria in 20 pL droplets to detect signal from growing bacteria after 1h incubation, equivalent to 2-3 bacterial replications. Full integration of droplet generation, incubation, and detection into a single, uninterrupted stream also renders this platform uniquely suitable for in-line bacterial phenotypic growth assessment. To illustrate the concept of rapid digital antimicrobial susceptibility assessment, we employ the dropFAST platform to evaluate the antibacterial effect of gentamicin on E. coli growth. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Temperature adaptation of bacterial communities in experimentally warmed forest soils.

    PubMed

    Rousk, Johannes; Frey, Serita D; Bååth, Erland

    2012-10-01

    A detailed understanding of the influence of temperature on soil microbial activity is critical to predict future atmospheric CO 2 concentrations and feedbacks to anthropogenic warming. We investigated soils exposed to 3-4 years of continuous 5 °C-warming in a field experiment in a temperate forest. We found that an index for the temperature adaptation of the microbial community, T min for bacterial growth, increased by 0.19 °C per 1 °C rise in temperature, showing a community shift towards one adapted to higher temperature with a higher temperature sensitivity (Q 10(5-15 °C) increased by 0.08 units per 1 °C). Using continuously measured temperature data from the field experiment we modelled in situ bacterial growth. Assuming that warming did not affect resource availability, bacterial growth was modelled to become 60% higher in warmed compared to the control plots, with the effect of temperature adaptation of the community only having a small effect on overall bacterial growth (<5%). However, 3 years of warming decreased bacterial growth, most likely due to substrate depletion because of the initially higher growth in warmed plots. When this was factored in, the result was similar rates of modelled in situ bacterial growth in warmed and control plots after 3 years, despite the temperature difference. We conclude that although temperature adaptation for bacterial growth to higher temperatures was detectable, its influence on annual bacterial growth was minor, and overshadowed by the direct temperature effect on growth rates. © 2012 Blackwell Publishing Ltd.

  4. Bacterial growth on stream insects: potential for use in bioassessment

    Treesearch

    A. Dennis Lemly

    1998-01-01

    Growth of filamentous bacteria (Sphaerotilus sp., Leptothrix sp.) on aquatic insects was evaluated for its usefulness as a bioindicator of detrimental nutrient levels in streams. Field measurements of insect abundance, nutrient concentrations, and incidence/ degree of bacterial growth on insects upstream and downstream of livestock pastures were made in 2 Virginia, USA...

  5. Electrical response of culture media during bacterial growth on a paper-based device

    NASA Astrophysics Data System (ADS)

    Srimongkon, Tithimanan; Buerkle, Marius; Nakamura, Akira; Enomae, Toshiharu; Ushijima, Hirobumi; Fukuda, Nobuko

    2017-05-01

    In this work, we evaluated the feasibility of a paper-based bacterial detection system. The paper served as a substrate for the measurement electrodes and the culture medium. Using a printing technique, we patterned gold electrodes onto the paper substrate and applied Luria broth (LB) agar gel as a culture medium on top of the electrodes. As the first step towards the development of a bacterial detection system, we determined changes in the surface potential during bacterial growth and monitored these changes over 24 h. This allowed us to correlate changes in the surface potential with the different growth phases of the bacteria.

  6. Effects of nutrients on specific growth rate of bacterioplankton in oligotrophic lake water cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coveney, M.F.; Wetzel, R.G.

    The effects of organic and inorganic nutrient additions on the specific growth rates of bacterioplankton in oligotrophic lake water cultures were investigated. Lake water was first passed through 0.8-{mu}m-pore-size filters (prescreening) to remove bacterivores and to minimize confounding effects of algae. Specific growth rates were calculated from changes in both bacterial cell numbers and biovolumes over 36 h. Gross specific growth rates in unmanipulated control samples were estimated through separate measurements of grazing losses by use of penicillin. The addition of mixed organic substrates alone to prescreened water did not significantly increase bacterioplankton specific growth rates. The addition of inorganicmore » phosphorus alone significantly increased one or both specific growth rates in three of four experiments, and one experiment showed a secondary stimulation by organic substrates. The stimulatory effects of phosphorus addition were greatest concurrently with the highest alkaline phosphatase activity in the lake water. Because bacteria have been shown to dominate inorganic phosphorus uptake in other P-deficient systems, the demonstration that phosphorus, rather than organic carbon, can limit bacterioplankton growth suggests direct competition between phytoplankton and bacterioplankton for inorganic phosphorus.« less

  7. Flow and active mixing have a strong impact on bacterial growth dynamics in the proximal large intestine

    NASA Astrophysics Data System (ADS)

    Cremer, Jonas; Segota, Igor; Yang, Chih-Yu; Arnoldini, Markus; Groisman, Alex; Hwa, Terence

    2016-11-01

    More than half of fecal dry weight is bacterial mass with bacterial densities reaching up to 1012 cells per gram. Mostly, these bacteria grow in the proximal large intestine where lateral flow along the intestine is strong: flow can in principal lead to a washout of bacteria from the proximal large intestine. Active mixing by contractions of the intestinal wall together with bacterial growth might counteract such a washout and allow high bacterial densities to occur. As a step towards understanding bacterial growth in the presence of mixing and flow, we constructed an in-vitro setup where controlled wall-deformations of a channel emulate contractions. We investigate growth along the channel under a steady nutrient inflow. Depending on mixing and flow, we observe varying spatial gradients in bacterial density along the channel. Active mixing by deformations of the channel wall is shown to be crucial in maintaining a steady-state bacterial population in the presence of flow. The growth-dynamics is quantitatively captured by a simple mathematical model, with the effect of mixing described by an effective diffusion term. Based on this model, we discuss bacterial growth dynamics in the human large intestine using flow- and mixing-behavior having been observed for humans.

  8. Cooperative Bacterial Growth Dynamics Predict the Evolution of Antibiotic Resistance

    NASA Astrophysics Data System (ADS)

    Artemova, Tatiana; Gerardin, Ylaine; Hsin-Jung Li, Sophia; Gore, Jeff

    2011-03-01

    Since the discovery of penicillin, antibiotics have been our primary weapon against bacterial infections. Unfortunately, bacteria can gain resistance to penicillin by acquiring the gene that encodes beta-lactamase, which inactivates the antibiotic. However, mutations in this gene are necessary to degrade the modern antibiotic cefotaxime. Understanding the conditions that favor the spread of these mutations is a challenge. Here we show that bacterial growth in beta-lactam antibiotics is cooperative and that the nature of this growth determines the conditions in which resistance evolves. Quantitative analysis of the growth dynamics predicts a peak in selection at very low antibiotic concentrations; competition between strains confirms this prediction. We also find significant selection at higher antibiotic concentrations, close to the minimum inhibitory concentrations of the strains. Our results argue that an understanding of the evolutionary forces that lead to antibiotic resistance requires a quantitative understanding of the evolution of cooperation in bacteria.

  9. Evaluation of environmental bacterial communities as a factor affecting the growth of duckweed Lemna minor.

    PubMed

    Ishizawa, Hidehiro; Kuroda, Masashi; Morikawa, Masaaki; Ike, Michihiko

    2017-01-01

    Duckweed (family Lemnaceae ) has recently been recognized as an ideal biomass feedstock for biofuel production due to its rapid growth and high starch content, which inspired interest in improving their productivity. Since microbes that co-exist with plants are known to have significant effects on their growth according to the previous studies for terrestrial plants, this study has attempted to understand the plant-microbial interactions of a duckweed, Lemna minor , focusing on the growth promotion/inhibition effects so as to assess the possibility of accelerated duckweed production by modifying co-existing bacterial community. Co-cultivation of aseptic L. minor and bacterial communities collected from various aquatic environments resulted in changes in duckweed growth ranging from -24 to +14% compared to aseptic control. A number of bacterial strains were isolated from both growth-promoting and growth-inhibitory communities, and examined for their co-existing effects on duckweed growth. Irrespective of the source, each strain showed promotive, inhibitory, or neutral effects when individually co-cultured with L. minor . To further analyze the interactions among these bacterial strains in a community, binary combinations of promotive and inhibitory strains were co-cultured with aseptic L. minor , resulting in that combinations of promotive-promotive or inhibitory-inhibitory strains generally showed effects similar to those of individual strains. However, combinations of promotive-inhibitory strains tended to show inhibitory effects while only Aquitalea magnusonii H3 exerted its plant growth-promoting effect in all combinations tested. Significant change in biomass production was observed when duckweed was co-cultivated with environmental bacterial communities. Promotive, neutral, and inhibitory bacteria in the community would synergistically determine the effects. The results indicate the possibility of improving duckweed biomass production via regulation of co

  10. Insight into the effects of different cropping systems on soil bacterial community and tobacco bacterial wilt rate.

    PubMed

    Niu, Jiaojiao; Chao, Jin; Xiao, Yunhua; Chen, Wu; Zhang, Chao; Liu, Xueduan; Rang, Zhongwen; Yin, Huaqun; Dai, Linjian

    2017-01-01

    Rotation is an effective strategy to control crop disease and improve plant health. However, the effects of crop rotation on soil bacterial community composition and structure, and crop health remain unclear. In this study, using 16S rRNA gene sequencing, we explored the soil bacterial communities under four different cropping systems, continuous tobacco cropping (control group), tobacco-maize rotation, tobacco-lily rotation, and tobacco-turnip rotation. Results of detrended correspondence analysis and dissimilarity tests showed that soil bacterial community composition and structure changed significantly among the four groups, such that Acidobacteria and Actinobacteria were more abundant in the maize rotation group (16.6 and 11.5%, respectively) than in the control (8.5 and 7.1%, respectively). Compared with the control group (57.78%), maize and lily were effective rotation crops in controlling tobacco bacterial wilt (about 23.54 and 48.67%). On the other hand, tobacco bacterial wilt rate was increased in the turnip rotation (59.62%) relative to the control. Further study revealed that the abundances of several bacterial populations were directly correlated with tobacco bacterial wilt. For example, Acidobacteria and Actinobacteria were significantly negatively correlated to the tobacco bacterial wilt rate, so they may be probiotic bacteria. Canonical correspondence analysis showed that soil pH and calcium content were key factors in determining soil bacterial communities. In conclusion, our study revealed the composition and structure of bacterial communities under four different cropping systems and may unveil molecular mechanisms for the interactions between soil microorganisms and crop health. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Supplemental oxygen attenuates the increase in wound bacterial growth during simulated aeromedical evacuation in goats.

    PubMed

    Earnest, Ryan E; Sonnier, Dennis I; Makley, Amy T; Campion, Eric M; Wenke, Joseph C; Bailey, Stephanie R; Dorlac, Warren C; Lentsch, Alex B; Pritts, Timothy A

    2012-07-01

    Bacterial growth in soft tissue and open fractures is a known risk factor for tissue loss and complications in contaminated musculoskeletal wounds. Current care for battlefield casualties with soft tissue and musculoskeletal wounds includes tactical and strategic aeromedical evacuation (AE). This exposes patients to a hypobaric, hypoxic environment. In this study, we sought to determine whether exposure to AE alters bacterial growth in contaminated complex musculoskeletal wounds and whether supplemental oxygen had any effect on wound infections during simulated AE. A caprine model of a contaminated complex musculoskeletal wound was used. Complex musculoskeletal wounds were created and inoculated with bioluminescent Pseudomonas aeruginosa. Goats were divided into three experimental groups: ground control, simulated AE, and simulated AE with supplemental oxygen. Simulated AE was induced in a hypobaric chamber pressurized to 8,800 feet for 7 hours. Bacterial luminescence was measured using a photon counting camera at three time points: preflight (20 hours postsurgery), postflight (7 hours from preflight and 27 hours postsurgery), and necropsy (24 hours from preflight and 44 hours postsurgery). There was a significant increase in bacterial growth in the AE group compared with the ground control group measured postflight and at necropsy. Simulated AE induced hypoxia with oxygen saturation less than 93%. Supplemental oxygen corrected the hypoxia and significantly reduced bacterial growth in wounds at necropsy. Hypoxia induced during simulated AE enhances bacterial growth in complex musculoskeletal wounds which can be prevented with the application of supplemental oxygen to the host.

  12. Induction of gram-negative bacterial growth by neurochemical containing banana (Musa x paradisiaca) extracts.

    PubMed

    Lyte, M

    1997-09-15

    Bananas contain large quantities of neurochemicals. Extracts from the peel and pulp of bananas in increasing stages of ripening were prepared and evaluated for their ability to modulate the growth of non-pathogenic and pathogenic bacteria. Extracts from the peel, and to a much lesser degree the pulp, increased the growth of Gram-negative bacterial strains Escherichia coli O157:H7, Shigella flexneri, Enterobacter cloacae and Salmonella typhimurium, as well as two non-pathogenic E. coli strains, in direct relation to the content of norepinephrine and dopamine, but not serotonin. The growth of Gram-positive bacteria was not altered by any of the extracts. Supplementation of vehicle and pulp cultures with norepinephrine or dopamine yielded growth equivalent to peel cultures. Total organic analysis of extracts further demonstrated that the differential effects of peel and pulp on bacterial growth was not nutritionally based, but due to norepinephrine and dopamine. These results suggest that neurochemicals contained within foodstuffs may influence the growth of pathogenic and indigenous bacteria through direct neurochemical-bacterial interactions.

  13. Bacterial aerosol emission rates from municipal wastewater aeration tanks.

    PubMed Central

    Sawyer, B; Elenbogen, G; Rao, K C; O'Brien, P; Zenz, D R; Lue-Hing, C

    1993-01-01

    In this report we describe the results of a study conducted to determine the rates of bacterial aerosol emission from the surfaces of the aeration tanks of the Metropolitan Water Reclamation District of Greater Chicago John E. Egan Water Reclamation Plant. This study was accomplished by conducting test runs in which Andersen six-stage viable samplers were used to collect bacterial aerosol samples inside a walled tower positioned above an aeration tank liquid surface at the John E. Egan Water Reclamation Plant. The samples were analyzed for standard plate counts (SPC), total coliforms (TC), fecal coliforms, and fecal streptococci. Two methods of calculation were used to estimate the bacterial emission rate. The first method was a conventional stack emission rate calculation method in which the measured air concentration of bacteria was multiplied by the air flow rate emanating from the aeration tanks. The second method was a more empirical method in which an attempt was made to measure all of the bacteria emanating from an isolated area (0.37 m2) of the aeration tank surface over time. The data from six test runs were used to determine bacterial emission rates by both calculation methods. As determined by the conventional calculation method, the average SPC emission rate was 1.61 SPC/m2/s (range, 0.66 to 2.65 SPC/m2/s). As determined by the empirical calculation method, the average SPC emission rate was 2.18 SPC/m2/s (range, 1.25 to 2.66 SPC/m2/s). For TC, the average emission rate was 0.20 TC/m2/s (range, 0.02 to 0.40 TC/m2/s) when the conventional calculation method was used and 0.27 TC/m2/s (range, 0.04 to 0.53 TC/m2/s) when the empirical calculation method was used.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8250547

  14. Bacterial growth kinetics in ACD-A apheresis platelets: comparison of plasma and PAS III storage.

    PubMed

    Dumont, Larry J; Wood, Tammara A; Housman, Molly; Herschel, Louise; Brantigan, Barbara; Heber, Cheryl; Houghton, Jaime

    2011-05-01

    Our objective was to determine the growth kinetics of bacteria in leukoreduced apheresis platelets (LR-AP) in a platelet (PLT) additive solution (PAS; InterSol, Fenwal, Inc.) compared to LR-AP stored in plasma. Hyperconcentrated, double-dose LR-AP were collected from healthy donors with a separator (AMICUS, Fenwal, Inc.). LR-AP were evenly divided, InterSol was added to half (65% InterSol:35% plasma [PAS]), and PLTs in autologous plasma were used for a paired control (PL). Bacteria were inoculated into each LR-AP PAS/PL pair (0.5-1.6 colony-forming units [CFUs]/mL), and bacterial growth was followed for up to 7 days. Time to the end of the lag phase, doubling times, maximum concentration (conc-max), and time to maximum concentration (time-max) were estimated. Streptococcus viridans did not grow to detectable levels in either PAS or PL units. The other bacteria had no significant overall difference in the conc-max (p = 0.47) or time-max (p = 0.7) between PL and PAS LR-AP; PL had a 0.14 hours faster doubling rate (p = 0.023); and PAS had a 4.7 hours shorter lag time (p = 0.016). We observed that five index organisms will grow in LR-AP stored in a 35%:65% ratio of plasma to InterSol where initial bacterial concentrations are 0.5 to 1.6 CFUs/mL. The more rapid initiation of log-phase growth for bacteria within a PAS storage environment resulted in a bacterial concentration up to 4 logs higher in the PAS units compared to the plasma units at 24 hours, but with no difference in the conc-max. This may present an early bacterial detection advantage for PAS-stored PLTs. © 2010 American Association of Blood Banks.

  15. Root bacterial endophytes alter plant phenotype, but not physiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henning, Jeremiah A.; Weston, David J.; Pelletier, Dale A.

    Plant traits, such as root and leaf area, influence how plants interact with their environment and the diverse microbiota living within plants can influence plant morphology and physiology. Here, we explored how three bacterial strains isolated from the Populus root microbiome, influenced plant phenotype. Here, we chose three bacterial strains that differed in predicted metabolic capabilities, plant hormone production and metabolism, and secondary metabolite synthesis. We inoculated each bacterial strain on a single genotype of Populus trichocarpa and measured the response of plant growth related traits (root:shoot, biomass production, root and leaf growth rates) and physiological traits (chlorophyll content, netmore » photosynthesis, net photosynthesis at saturating light–A sat, and saturating CO 2–A max). Overall, we found that bacterial root endophyte infection increased root growth rate up to 184% and leaf growth rate up to 137% relative to non-inoculated control plants, evidence that plants respond to bacteria by modifying morphology. However, endophyte inoculation had no influence on total plant biomass and photosynthetic traits (net photosynthesis, chlorophyll content). In sum, bacterial inoculation did not significantly increase plant carbon fixation and biomass, but their presence altered where and how carbon was being allocated in the plant host.« less

  16. Root bacterial endophytes alter plant phenotype, but not physiology

    DOE PAGES

    Henning, Jeremiah A.; Weston, David J.; Pelletier, Dale A.; ...

    2016-11-01

    Plant traits, such as root and leaf area, influence how plants interact with their environment and the diverse microbiota living within plants can influence plant morphology and physiology. Here, we explored how three bacterial strains isolated from the Populus root microbiome, influenced plant phenotype. Here, we chose three bacterial strains that differed in predicted metabolic capabilities, plant hormone production and metabolism, and secondary metabolite synthesis. We inoculated each bacterial strain on a single genotype of Populus trichocarpa and measured the response of plant growth related traits (root:shoot, biomass production, root and leaf growth rates) and physiological traits (chlorophyll content, netmore » photosynthesis, net photosynthesis at saturating light–A sat, and saturating CO 2–A max). Overall, we found that bacterial root endophyte infection increased root growth rate up to 184% and leaf growth rate up to 137% relative to non-inoculated control plants, evidence that plants respond to bacteria by modifying morphology. However, endophyte inoculation had no influence on total plant biomass and photosynthetic traits (net photosynthesis, chlorophyll content). In sum, bacterial inoculation did not significantly increase plant carbon fixation and biomass, but their presence altered where and how carbon was being allocated in the plant host.« less

  17. The effect of temperature and bacterial growth phase on protein extraction by means of electroporation.

    PubMed

    Haberl-Meglič, Saša; Levičnik, Eva; Luengo, Elisa; Raso, Javier; Miklavčič, Damijan

    2016-12-01

    Different chemical and physical methods are used for extraction of proteins from bacteria, which are used in variety of fields. But on a large scale, many methods have severe drawbacks. Recently, extraction by means of electroporation showed a great potential to quickly obtain proteins from bacteria. Since many parameters are affecting the yield of extracted proteins, our aim was to investigate the effect of temperature and bacterial growth phase on the yield of extracted proteins. At the same time bacterial viability was tested. Our results showed that the temperature has a great effect on protein extraction, the best temperature post treatment being 4°C. No effect on bacterial viability was observed for all temperatures tested. Also bacterial growth phase did not affect the yield of extracted proteins or bacterial viability. Nevertheless, further experiments may need to be performed to confirm this observation, since only one incubation temperature (4°C) and one incubation time before and after electroporation (0.5 and 1h) were tested for bacterial growth phase. Based on our results we conclude that temperature is a key element for bacterial membrane to stay in a permeabilized state, so more proteins flow out of bacteria into surrounding media. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Consequences of packaging on bacterial growth. Meat is an ecological niche.

    PubMed

    Labadie, J

    1999-07-01

    Meat is a good support for bacterial growth and particularly for bacteria which are specific of meat and meat products. Little is known about the physiological and biochemical factors which could explain why some bacterial species are only isolated from meat. This review tentatively points out, from an ecological point of view, some of these factors in Gram negative and Gram positive micro-organisms influencing storage life.

  19. Gradient microfluidics enables rapid bacterial growth inhibition testing.

    PubMed

    Li, Bing; Qiu, Yong; Glidle, Andrew; McIlvenna, David; Luo, Qian; Cooper, Jon; Shi, Han-Chang; Yin, Huabing

    2014-03-18

    Bacterial growth inhibition tests have become a standard measure of the adverse effects of inhibitors for a wide range of applications, such as toxicity testing in the medical and environmental sciences. However, conventional well-plate formats for these tests are laborious and provide limited information (often being restricted to an end-point assay). In this study, we have developed a microfluidic system that enables fast quantification of the effect of an inhibitor on bacteria growth and survival, within a single experiment. This format offers a unique combination of advantages, including long-term continuous flow culture, generation of concentration gradients, and single cell morphology tracking. Using Escherichia coli and the inhibitor amoxicillin as one model system, we show excellent agreement between an on-chip single cell-based assay and conventional methods to obtain quantitative measures of antibiotic inhibition (for example, minimum inhibition concentration). Furthermore, we show that our methods can provide additional information, over and above that of the standard well-plate assay, including kinetic information on growth inhibition and measurements of bacterial morphological dynamics over a wide range of inhibitor concentrations. Finally, using a second model system, we show that this chip-based systems does not require the bacteria to be labeled and is well suited for the study of naturally occurring species. We illustrate this using Nitrosomonas europaea, an environmentally important bacteria, and show that the chip system can lead to a significant reduction in the period required for growth and inhibition measurements (<4 days, compared to weeks in a culture flask).

  20. Using Bacterial Growth on Insects to Assess Nutrient Impacts in Streams

    Treesearch

    A. Dennis Lemly

    2000-01-01

    A combination field and laboratory study was conducted to evaluate the ability of a recently developed bioindicator to detect detrimental nutrient conditions in streams. The method utilizes bacterial growth on aquatic insects to determine nutrient impacts. Field investigations indicated that elevated concentrations of nitrate and phosphate were associated with growth...

  1. Growth mechanics of bacterial cell wall and morphology of bacteria

    NASA Astrophysics Data System (ADS)

    Jiang, Hongyuan; Sun, Sean

    2010-03-01

    The peptidoglycan cell wall of bacteria is responsible for maintaining the cell shape and integrity. During the bacterial life cycle, the growth of the cell wall is affected by mechanical stress and osmotic pressure internal to the cell. We develop a theory to describe cell shape changes under the influence of mechanical forces. We find that the theory predicts a steady state size and shape for bacterial cells ranging from cocci to spirillum. Moreover, the theory suggest a mechanism by which bacterial cytoskeletal proteins such as MreB and crescentin can maintain the shape of the cell. The theory can also explain the several recent experiments on growing bacteria in micro-environments.

  2. Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro-ecosystems across the globe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Zhongmin; Su, Weiqin; Chen, Huaihai

    Long-term Elevated nitrogen (N) input from anthropogenic sources may cause soil acidification and decrease crop yield, yet the response of the belowground microbial community to long-term N input and the input of N combined with phosphorus (P) and potassium (K) is still poorly understood. Here, we explored the effect of long-term N and NPK fertilization on soil bacterial diversity and community composition using meta-analysis of a global dataset. Nitrogen fertilization decreased soil pH, and increased soil organic carbon (C) and available N contents. Bacterial taxonomic diversity was decreased by N fertilization alone, but was increased by NPK fertilization. The effectmore » of N fertilization on bacterial diversity depends on soil texture and water management, but independent of crop type or N application rate. Both soil pH and organic C content were positively related to changes in bacterial diversity under N fertilization, while soil organic C was the dominant factor determining changes in bacterial diversity under NPK fertilization. Microbial biomass C decreased with decreasing bacterial diversity under long-term N fertilization. Nitrogen fertilization increased the relative abundance of copiotrophic bacteria (i.e. Proteobacteria and Actinobacteria), but reduced the abundance of oligotrophic taxa (i.e. Acidobacteria), consistent with the general life history strategy theory for bacteria. The relative abundance of Proteobacteria was also increased by NPK fertilization. The positive correlation between N application rate and the relative abundance of Actinobacteria indicates that increased N availability favored the growth of Actinobacteria. This first global analysis of long-term N and NPK fertilization effect on bacterial diversity and community composition suggests that N input decreases bacterial diversity but favors the growth of copiotrophic bacteria, providing a reference for nutrient management strategies for maintaining belowground microbial diversity

  3. Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro-ecosystems across the globe

    DOE PAGES

    Dai, Zhongmin; Su, Weiqin; Chen, Huaihai; ...

    2018-04-25

    Long-term Elevated nitrogen (N) input from anthropogenic sources may cause soil acidification and decrease crop yield, yet the response of the belowground microbial community to long-term N input and the input of N combined with phosphorus (P) and potassium (K) is still poorly understood. Here, we explored the effect of long-term N and NPK fertilization on soil bacterial diversity and community composition using meta-analysis of a global dataset. Nitrogen fertilization decreased soil pH, and increased soil organic carbon (C) and available N contents. Bacterial taxonomic diversity was decreased by N fertilization alone, but was increased by NPK fertilization. The effectmore » of N fertilization on bacterial diversity depends on soil texture and water management, but independent of crop type or N application rate. Both soil pH and organic C content were positively related to changes in bacterial diversity under N fertilization, while soil organic C was the dominant factor determining changes in bacterial diversity under NPK fertilization. Microbial biomass C decreased with decreasing bacterial diversity under long-term N fertilization. Nitrogen fertilization increased the relative abundance of copiotrophic bacteria (i.e. Proteobacteria and Actinobacteria), but reduced the abundance of oligotrophic taxa (i.e. Acidobacteria), consistent with the general life history strategy theory for bacteria. The relative abundance of Proteobacteria was also increased by NPK fertilization. The positive correlation between N application rate and the relative abundance of Actinobacteria indicates that increased N availability favored the growth of Actinobacteria. This first global analysis of long-term N and NPK fertilization effect on bacterial diversity and community composition suggests that N input decreases bacterial diversity but favors the growth of copiotrophic bacteria, providing a reference for nutrient management strategies for maintaining belowground microbial diversity

  4. [Risk factors associated with bacterial growth in derivative systems from cerebrospinal liquid in pediatric patients].

    PubMed

    de Jesús Vargas-Lares, José; Andrade-Aguilera, Angélica Rocío; Díaz-Peña, Rafael; Barrera de León, Juan Carlos

    2015-01-01

    To determine risk factors associated with bacterial growth in systems derived from cerebrospinal fluid in pediatric patients. Case and controls study from January to December 2012, in patients aged <16 years who were carriers of hydrocephalus and who required placement or replacement of derivative system. Cases were considered as children with cultures with bacterial growth and controls with negative bacterial growth. Inferential statistics with Chi-squared and Mann-Whitney U tests. Association of risk with odds ratio. We reviewed 746 registries, cases n=99 (13%) and controls n=647 (87%). Masculine gender 58 (57%) vs. feminine gender 297 (46%) (p=0.530). Age of cases: median, five months and controls, one year (p=0.02). Median weight, 7 vs. 10 kg (p=0.634). Surgical interventions: median n=2 (range, 1-8) vs. n=1 (range, 1-7). Infection rate, 13.2%. Main etiology ductal stenosis, n=29 (29%) vs. n=50 (23%) (p=0.530). Non-communicating, n=50 (51%) vs. 396 (61%) (p=0.456). Predominant microorganisms: enterobacteria, pseudomonas, and enterococcus. Non-use of iodized dressing OR=2.6 (range, 1.8-4.3), use of connector OR=6.8 (range, 1.9-24.0), System replacement OR=2.0 (range, 1.3-3.1), assistant without surgical facemask OR=9.7 (range, 2.3-42.0). Being a breastfeeding infant, of low weight, non-application of iodized dressing, use of connector, previous derivation, and lack of adherence to aseptic technique were all factors associated with ependymitis.

  5. Chlorhexidine digluconate effects on planktonic growth and biofilm formation in some field isolates of animal bacterial pathogens.

    PubMed

    Ebrahimi, Azizollah; Hemati, Majid; Habibian Dehkordi, Saeed; Bahadoran, Shahab; Khoshnood, Sheida; Khubani, Shahin; Dokht Faraj, Mahdi; Hakimi Alni, Reza

    2014-05-01

    To study chlorhexidine digluconate disinfectant effects on planktonic growth and biofilm formation in some bacterial field isolates from animals. The current study investigated chlorhexidine digluconate effects on planktonic growth and biofilm formation in some field isolates of veterinary bacterial pathogens. Forty clinical isolates of Escherichia coli, Salmonella serotypes, Staphylococcus. aureus and Streptococcus agalactiae (10 isolates for each) were examined for chlorhexidine digluconate effects on biofilm formation and planktonic growth using microtiter plates. In all of the examined strains in the presence of chlorhexidine digluconate, biofilm development and planktonic growth were affected at the same concentrations of the disinfectant. Chlorhexidine digluconate inhibited the planktonic growth of different bacterial species at sub-MICs. But they were able to induce biofilm development of the E. coli, Salmonella spp., S. aureus and Str. agalactiae strains. Bacterial resistance against chlorhexidine is increasing. Sub-MIC doses of chlorhexidine digluconate can stimulate the formation of biofilm strains.

  6. Chemical interference with iron transport systems to suppress bacterial growth of Streptococcus pneumoniae.

    PubMed

    Yang, Xiao-Yan; Sun, Bin; Zhang, Liang; Li, Nan; Han, Junlong; Zhang, Jing; Sun, Xuesong; He, Qing-Yu

    2014-01-01

    Iron is an essential nutrient for the growth of most bacteria. To obtain iron, bacteria have developed specific iron-transport systems located on the membrane surface to uptake iron and iron complexes such as ferrichrome. Interference with the iron-acquisition systems should be therefore an efficient strategy to suppress bacterial growth and infection. Based on the chemical similarity of iron and ruthenium, we used a Ru(II) complex R-825 to compete with ferrichrome for the ferrichrome-transport pathway in Streptococcus pneumoniae. R-825 inhibited the bacterial growth of S. pneumoniae and stimulated the expression of PiuA, the iron-binding protein in the ferrichrome-uptake system on the cell surface. R-825 treatment decreased the cellular content of iron, accompanying with the increase of Ru(II) level in the bacterium. When the piuA gene (SPD_0915) was deleted in the bacterium, the mutant strain became resistant to R-825 treatment, with decreased content of Ru(II). Addition of ferrichrome can rescue the bacterial growth that was suppressed by R-825. Fluorescence spectral quenching showed that R-825 can bind with PiuA in a similar pattern to the ferrichrome-PiuA interaction in vitro. These observations demonstrated that Ru(II) complex R-825 can compete with ferrichrome for the ferrichrome-transport system to enter S. pneumoniae, reduce the cellular iron supply, and thus suppress the bacterial growth. This finding suggests a novel antimicrobial approach by interfering with iron-uptake pathways, which is different from the mechanisms used by current antibiotics.

  7. Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity.

    PubMed

    Pallavi; Mehta, C M; Srivastava, Rashmi; Arora, Sandeep; Sharma, A K

    2016-12-01

    The present study was carried out to investigate the impact of silver nanoparticles (AgNPs) on the growth of three different crop species, wheat (Triticum aestivum, var. UP2338), cowpea (Vigna sinensis, var. Pusa Komal), and Brassica (Brassica juncea, var. Pusa Jai Kisan), along with their impact on the rhizospheric bacterial diversity. Three different concentrations (0, 50 and 75 ppm) of AgNPs were applied through foliar spray. After harvesting, shoot and root parameters were compared, and it was observed that wheat was relatively unaffected by all AgNP treatments. The optimum growth promotion and increased root nodulation were observed at 50 ppm treatment in cowpea, while improved shoot parameters were recorded at 75 ppm in Brassica. To observe the impact of AgNPs on soil bacterial community, sampling was carried out from the rhizosphere of these crops at 20 and 40 days after the spraying of AgNPS. The bacterial diversity of these samples was analyzed by both cultural and molecular techniques (denaturing gradient gel electrophoresis). It is clearly evident from the results that application of AgNPs changes the soil bacterial diversity and this is further influenced by the plant species grown in that soil. Also, the functional bacterial diversity differed with different concentrations of AgNPs.

  8. Fiber optic biosensor fabricated for measuring the growth rate of Escherichia coli K-12 in the aqueous

    NASA Astrophysics Data System (ADS)

    Zibaii, M. I.; Kazemi, A.; Latifi, H.; Karimi Azar, M.; Hosseini, S. M.; Ghezelaiagh, M. H.

    2010-09-01

    A single-mode tapered fiber optic biosensor was utilized for real-time monitoring of the Escherichia coli (E. coli K-12) growth in an aqueous medium. The applied fiber tapers were fabricated using heat-pulling method with waist diameter and length of 6-7μm and 3mm, respectively. The bacteria were immobilized on the tapered surface using Poly-L-Lysine. By providing the proper condition, bacterial population growth on the tapered surface increases the average surface density of the cells and consequently the refractive index (RI) of the tapered region would increase. The adsorption of the cells on the tapered fiber leads to changes in the optical characteristics of the taper. This affects the evanescent field leading to changes in optical throughput. The bacterial growth rate was monitored at room temperature by transmission of a 1558.17nm distributed feedback (DFB) laser through the tapered fiber. At the same condition, after determining the growth rate of E. coli by means of colony counting method, we compared the results with that obtained from the fiber sensor measurements. This novel sensing method, promises new application such as rapid analysis of the presence of bacteria.

  9. Chlorhexidine Digluconate Effects on Planktonic Growth and Biofilm Formation in Some Field Isolates of Animal Bacterial Pathogens

    PubMed Central

    Ebrahimi, Azizollah; Hemati, Majid; Habibian Dehkordi, Saeed; Bahadoran, Shahab; Khoshnood, Sheida; Khubani, Shahin; Dokht Faraj, Mahdi; Hakimi Alni, Reza

    2014-01-01

    Background: To study chlorhexidine digluconate disinfectant effects on planktonic growth and biofilm formation in some bacterial field isolates from animals. Objectives: The current study investigated chlorhexidine digluconate effects on planktonic growth and biofilm formation in some field isolates of veterinary bacterial pathogens. Materials and Methods: Forty clinical isolates of Escherichia coli, Salmonella serotypes, Staphylococcus. aureus and Streptococcus agalactiae (10 isolates for each) were examined for chlorhexidine digluconate effects on biofilm formation and planktonic growth using microtiter plates. In all of the examined strains in the presence of chlorhexidine digluconate, biofilm development and planktonic growth were affected at the same concentrations of the disinfectant. Results: Chlorhexidine digluconate inhibited the planktonic growth of different bacterial species at sub-MICs. But they were able to induce biofilm development of the E. coli, Salmonella spp., S. aureus and Str. agalactiae strains. Conclusions: Bacterial resistance against chlorhexidine is increasing. Sub-MIC doses of chlorhexidine digluconate can stimulate the formation of biofilm strains. PMID:24872940

  10. Stochastic Individual-Based Modeling of Bacterial Growth and Division Using Flow Cytometry.

    PubMed

    García, Míriam R; Vázquez, José A; Teixeira, Isabel G; Alonso, Antonio A

    2017-01-01

    A realistic description of the variability in bacterial growth and division is critical to produce reliable predictions of safety risks along the food chain. Individual-based modeling of bacteria provides the theoretical framework to deal with this variability, but it requires information about the individual behavior of bacteria inside populations. In this work, we overcome this problem by estimating the individual behavior of bacteria from population statistics obtained with flow cytometry. For this objective, a stochastic individual-based modeling framework is defined based on standard assumptions during division and exponential growth. The unknown single-cell parameters required for running the individual-based modeling simulations, such as cell size growth rate, are estimated from the flow cytometry data. Instead of using directly the individual-based model, we make use of a modified Fokker-Plank equation. This only equation simulates the population statistics in function of the unknown single-cell parameters. We test the validity of the approach by modeling the growth and division of Pediococcus acidilactici within the exponential phase. Estimations reveal the statistics of cell growth and division using only data from flow cytometry at a given time. From the relationship between the mother and daughter volumes, we also predict that P. acidilactici divide into two successive parallel planes.

  11. Bacterial Cell Growth Inhibitors Targeting Undecaprenyl Diphosphate Synthase and Undecaprenyl Diphosphate Phosphatase.

    PubMed

    Wang, Yang; Desai, Janish; Zhang, Yonghui; Malwal, Satish R; Shin, Christopher J; Feng, Xinxin; Sun, Hong; Liu, Guizhi; Guo, Rey-Ting; Oldfield, Eric

    2016-10-19

    We synthesized a series of benzoic acids and phenylphosphonic acids and investigated their effects on the growth of Staphylococcus aureus and Bacillus subtilis. One of the most active compounds, 5-fluoro-2-(3-(octyloxy)benzamido)benzoic acid (7, ED 50 ∼0.15 μg mL -1 ) acted synergistically with seven antibiotics known to target bacterial cell-wall biosynthesis (a fractional inhibitory concentration index (FICI) of ∼0.35, on average) but had indifferent effects in combinations with six non-cell-wall biosynthesis inhibitors (average FICI∼1.45). The most active compounds were found to inhibit two enzymes involved in isoprenoid/bacterial cell-wall biosynthesis: undecaprenyl diphosphate synthase (UPPS) and undecaprenyl diphosphate phosphatase (UPPP), but not farnesyl diphosphate synthase, and there were good correlations between bacterial cell growth inhibition, UPPS inhibition, and UPPP inhibition. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Growth of saprotrophic fungi and bacteria in soil.

    PubMed

    Rousk, Johannes; Bååth, Erland

    2011-10-01

    Bacterial and fungal growth rate measurements are sensitive variables to detect changes in environmental conditions. However, while considerable progress has been made in methods to assess the species composition and biomass of fungi and bacteria, information about growth rates remains surprisingly rudimentary. We review the recent history of approaches to assess bacterial and fungal growth rates, leading up to current methods, especially focusing on leucine/thymidine incorporation to estimate bacterial growth and acetate incorporation into ergosterol to estimate fungal growth. We present the underlying assumptions for these methods, compare estimates of turnover times for fungi and bacteria based on them, and discuss issues, including for example elusive conversion factors. We review what the application of fungal and bacterial growth rate methods has revealed regarding the influence of the environmental factors of temperature, moisture (including drying/rewetting), pH, as well as the influence of substrate additions, the presence of plants and toxins. We highlight experiments exploring the competitive and facilitative interaction between bacteria and fungi enabled using growth rate methods. Finally, we predict that growth methods will be an important complement to molecular approaches to elucidate fungal and bacterial ecology, and we identify methodological concerns and how they should be addressed. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  13. Bacterial endophytes enhance competition by invasive plants.

    PubMed

    Rout, Marnie E; Chrzanowski, Thomas H; Westlie, Tara K; DeLuca, Thomas H; Callaway, Ragan M; Holben, William E

    2013-09-01

    Invasive plants can alter soil microbial communities and profoundly alter ecosystem processes. In the invasive grass Sorghum halepense, these disruptions are consequences of rhizome-associated bacterial endophytes. We describe the effects of N2-fixing bacterial strains from S. halepense (Rout and Chrzanowski, 2009) on plant growth and show that bacteria interact with the plant to alter soil nutrient cycles, enabling persistence of the invasive. • We assessed fluxes in soil nutrients for ∼4 yr across a site invaded by S. halepense. We assayed the N2-fixing bacteria in vitro for phosphate solubilization, iron chelation, and production of the plant-growth hormone indole-3-acetic acid (IAA). We assessed the plant's ability to recruit bacterial partners from substrates and vertically transmit endophytes to seeds and used an antibiotic approach to inhibit bacterial activity in planta and assess microbial contributions to plant growth. • We found persistent alterations to eight biogeochemical cycles (including nitrogen, phosphorus, and iron) in soils invaded by S. halepense. In this context, three bacterial isolates solubilized phosphate, and all produced iron siderophores and IAA in vitro. In growth chamber experiments, bacteria were transmitted vertically, and molecular analysis of bacterial community fingerprints from rhizomes indicated that endophytes are also horizontally recruited. Inhibiting bacterial activity with antibiotics resulted in significant declines in plant growth rate and biomass, with pronounced rhizome reductions. • This work suggests a major role of endophytes on growth and resource allocation of an invasive plant. Indeed, bacterial isolate physiology is correlated with invader effects on biogeochemical cycles of nitrogen, phosphate, and iron.

  14. A new mechanistic growth model for simultaneous determination of lag phase duration and exponential growth rate and a new Belehdradek-type model for evaluating the effect of temperature on growth rate

    USDA-ARS?s Scientific Manuscript database

    A new mechanistic growth model was developed to describe microbial growth under isothermal conditions. The new mathematical model was derived from the basic observation of bacterial growth that may include lag, exponential, and stationary phases. With this model, the lag phase duration and exponen...

  15. Differentiation of bacterial colonies and temporal growth patterns using hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Mehrübeoglu, Mehrube; Buck, Gregory W.; Livingston, Daniel W.

    2014-09-01

    Detection and identification of bacteria are important for health and safety. Hyperspectral imaging offers the potential to capture unique spectral patterns and spatial information from bacteria which can then be used to detect and differentiate bacterial species. Here, hyperspectral imaging has been used to characterize different bacterial colonies and investigate their growth over time. Six bacterial species (Pseudomonas fluorescens, Escherichia coli, Serratia marcescens, Salmonella enterica, Staphylococcus aureus, Enterobacter aerogenes) were grown on tryptic soy agar plates. Hyperspectral data were acquired immediately after, 24 hours after, and 96 hours after incubation. Spectral signatures from bacterial colonies demonstrated repeatable measurements for five out of six species. Spatial variations as well as changes in spectral signatures were observed across temporal measurements within and among species at multiple wavelengths due to strengthening or weakening reflectance signals from growing bacterial colonies based on their pigmentation. Between-class differences and within-class similarities were the most prominent in hyperspectral data collected 96 hours after incubation.

  16. Development of a restricted state space stochastic differential equation model for bacterial growth in rich media.

    PubMed

    Møller, Jan Kloppenborg; Bergmann, Kirsten Riber; Christiansen, Lasse Engbo; Madsen, Henrik

    2012-07-21

    In the present study, bacterial growth in a rich media is analysed in a Stochastic Differential Equation (SDE) framework. It is demonstrated that the SDE formulation and smoothened state estimates provide a systematic framework for data driven model improvements, using random walk hidden states. Bacterial growth is limited by the available substrate and the inclusion of diffusion must obey this natural restriction. By inclusion of a modified logistic diffusion term it is possible to introduce a diffusion term flexible enough to capture both the growth phase and the stationary phase, while concentration is restricted to the natural state space (substrate and bacteria non-negative). The case considered is the growth of Salmonella and Enterococcus in a rich media. It is found that a hidden state is necessary to capture the lag phase of growth, and that a flexible logistic diffusion term is needed to capture the random behaviour of the growth model. Further, it is concluded that the Monod effect is not needed to capture the dynamics of bacterial growth in the data presented. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Primordial soup was edible: abiotically produced Miller-Urey mixture supports bacterial growth.

    PubMed

    Xie, Xueshu; Backman, Daniel; Lebedev, Albert T; Artaev, Viatcheslav B; Jiang, Liying; Ilag, Leopold L; Zubarev, Roman A

    2015-09-28

    Sixty years after the seminal Miller-Urey experiment that abiotically produced a mixture of racemized amino acids, we provide a definite proof that this primordial soup, when properly cooked, was edible for primitive organisms. Direct admixture of even small amounts of Miller-Urey mixture strongly inhibits E. coli bacteria growth due to the toxicity of abundant components, such as cyanides. However, these toxic compounds are both volatile and extremely reactive, while bacteria are highly capable of adaptation. Consequently, after bacterial adaptation to a mixture of the two most abundant abiotic amino acids, glycine and racemized alanine, dried and reconstituted MU soup was found to support bacterial growth and even accelerate it compared to a simple mixture of the two amino acids. Therefore, primordial Miller-Urey soup was perfectly suitable as a growth media for early life forms.

  18. Isoprenoid Biosynthesis Inhibitors Targeting Bacterial Cell Growth.

    PubMed

    Desai, Janish; Wang, Yang; Wang, Ke; Malwal, Satish R; Oldfield, Eric

    2016-10-06

    We synthesized potential inhibitors of farnesyl diphosphate synthase (FPPS), undecaprenyl diphosphate synthase (UPPS), or undecaprenyl diphosphate phosphatase (UPPP), and tested them in bacterial cell growth and enzyme inhibition assays. The most active compounds were found to be bisphosphonates with electron-withdrawing aryl-alkyl side chains which inhibited the growth of Gram-negative bacteria (Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa) at ∼1-4 μg mL -1 levels. They were found to be potent inhibitors of FPPS; cell growth was partially "rescued" by the addition of farnesol or overexpression of FPPS, and there was synergistic activity with known isoprenoid biosynthesis pathway inhibitors. Lipophilic hydroxyalkyl phosphonic acids inhibited UPPS and UPPP at micromolar levels; they were active (∼2-6 μg mL -1 ) against Gram-positive but not Gram-negative organisms, and again exhibited synergistic activity with cell wall biosynthesis inhibitors, but only indifferent effects with other inhibitors. The results are of interest because they describe novel inhibitors of FPPS, UPPS, and UPPP with cell growth inhibitory activities as low as ∼1-2 μg mL -1 . © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Menaquinone analogs inhibit growth of bacterial pathogens.

    PubMed

    Schlievert, Patrick M; Merriman, Joseph A; Salgado-Pabón, Wilmara; Mueller, Elizabeth A; Spaulding, Adam R; Vu, Bao G; Chuang-Smith, Olivia N; Kohler, Petra L; Kirby, John R

    2013-11-01

    Gram-positive bacteria cause serious human illnesses through combinations of cell surface and secreted virulence factors. We initiated studies with four of these organisms to develop novel topical antibacterial agents that interfere with growth and exotoxin production, focusing on menaquinone analogs. Menadione, 1,4-naphthoquinone, and coenzymes Q1 to Q3 but not menaquinone, phylloquinone, or coenzyme Q10 inhibited the growth and to a greater extent exotoxin production of Staphylococcus aureus, Bacillus anthracis, Streptococcus pyogenes, and Streptococcus agalactiae at concentrations of 10 to 200 μg/ml. Coenzyme Q1 reduced the ability of S. aureus to cause toxic shock syndrome in a rabbit model, inhibited the growth of four Gram-negative bacteria, and synergized with another antimicrobial agent, glycerol monolaurate, to inhibit S. aureus growth. The staphylococcal two-component system SrrA/B was shown to be an antibacterial target of coenzyme Q1. We hypothesize that menaquinone analogs both induce toxic reactive oxygen species and affect bacterial plasma membranes and biosynthetic machinery to interfere with two-component systems, respiration, and macromolecular synthesis. These compounds represent a novel class of potential topical therapeutic agents.

  20. Growth performance and carcase quality in broiler chickens fed on bacterial protein grown on natural gas.

    PubMed

    Øverland, M; Schøyen, H F; Skrede, A

    2010-10-01

    1. The effects of increasing concentrations (0, 40, 80 or 120 g/kg) of bacterial protein meal (BPM) and bacterial protein autolysate (BPA) grown on natural gas on growth performance and carcase quality in broiler chickens were examined. 2. Adding BPM to diets reduced feed intake and improved gain: feed from 0 to 21 d and overall to 35 d, but did not significantly affect weight gain compared to the soybean meal based control diet. 3. Increasing concentrations of BPA significantly reduced growth rate, feed intake, gain: feed, carcase weight and dressing percentage, but significantly increased carcase dry matter, fat and energy content. 4. Adding BPM to diets had no effect on viscosity of diets and jejunal digesta, and minor effects on litter quality, whereas BPA increased the viscosity of diets and jejunal digesta, improved litter quality at 21 d, but decreased litter quality at 32 d. 5. To conclude, broiler chickens performed better on a BPM product with intact proteins than on an autolysate with ruptured cell walls and a high content of free amino acids and low molecular-weight peptides.

  1. Ammonia produced by bacterial colonies promotes growth of ampicillin-sensitive Serratia sp. by means of antibiotic inactivation.

    PubMed

    Cepl, Jaroslav; Blahůšková, Anna; Cvrčková, Fatima; Markoš, Anton

    2014-05-01

    Volatiles produced by bacterial cultures are known to induce regulatory and metabolic alterations in nearby con-specific or heterospecific bacteria, resulting in phenotypic changes including acquisition of antibiotic resistance. We observed unhindered growth of ampicillin-sensitive Serratia rubidaea and S. marcescens on ampicillin-containing media, when exposed to volatiles produced by dense bacterial growth. However, this phenomenon appeared to result from pH increase in the medium caused by bacterial volatiles rather than alterations in the properties of the bacterial cultures, as alkalization of ampicillin-containing culture media to pH 8.5 by ammonia or Tris exhibited the same effects, while pretreatment of bacterial cultures under the same conditions prior to antibiotic exposure did not increase ampicillin resistance. Ampicillin was readily inactivated at pH 8.5, suggesting that observed bacterial growth results from metabolic alteration of the medium, rather than an active change in the target bacterial population (i.e. induction of resistance or tolerance). However, even such seemingly simple mechanism may provide a biologically meaningful basis for protection against antibiotics in microbial communities growing on semi-solid media. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  2. The papain inhibitor (SPI) of Streptomyces mobaraensis inhibits bacterial cysteine proteases and is an antagonist of bacterial growth.

    PubMed

    Zindel, Stephan; Kaman, Wendy E; Fröls, Sabrina; Pfeifer, Felicitas; Peters, Anna; Hays, John P; Fuchsbauer, Hans-Lothar

    2013-07-01

    A novel papain inhibitory protein (SPI) from Streptomyces mobaraensis was studied to measure its inhibitory effect on bacterial cysteine protease activity (Staphylococcus aureus SspB) and culture supernatants (Porphyromonas gingivalis, Bacillus anthracis). Further, growth of Bacillus anthracis, Staphylococcus aureus, Pseudomonas aeruginosa, and Vibrio cholerae was completely inhibited by 10 μM SPI. At this concentration of SPI, no cytotoxicity was observed. We conclude that SPI inhibits bacterial virulence factors and has the potential to become a novel therapeutic treatment against a range of unrelated pathogenic bacteria.

  3. Seasonal Bacterial Production in a Dimictic Lake as Measured by Increases in Cell Numbers and Thymidine Incorporation

    PubMed Central

    Lovell, Charles R.; Konopka, Allan

    1985-01-01

    Rates of primary and bacterial production in Little Crooked Lake were calculated from the rates of incorporation of H14CO3− and [methyl-3H]thymidine, respectively. Growth rates of bacteria in diluted natural samples were determined for epilimnetic and metalimnetic bacterial populations during the summers of 1982 and 1983. Exponential growth was observed in these diluted samples, with increases in cell numbers of 30 to 250%. No lag was observed in bacterial growth in 14 of 16 experiments. Correlation of bacterial growth rates to corresponding rates of thymidine incorporation by natural samples produced a conversion factor of 2.2 × 1018 cells produced per mole of thymidine incorporated. The mass of the average bacterial cell in the lake was 1.40 × 10−14 ± 0.05 × 10−14 g of C cell−1. Doubling times of natural bacteria calculated from thymidine incorporation rates and in situ cell numbers ranged from 0.35 to 12.00 days (median, 1.50 days). Bacterial production amounted to 66.7 g of C m−2 from April through September, accounting for 29.4% of total (primary plus bacterial) production during this period. The vertical and seasonal distribution of bacterial production in Little Crooked Lake was strongly influenced by the distribution of primary production. From April through September 1983, the depth of maximum bacterial production rates in the water column was related to the depth of high rates of primary production. On a seasonal basis, primary production increased steadily from May through September, and bacterial production increased from May through August and then decreased in September. PMID:16346743

  4. Survivial Strategies in Bacterial Range Expansions

    NASA Astrophysics Data System (ADS)

    Frey, Erwin

    2014-03-01

    Bacterial communities represent complex and dynamic ecological systems. Different environmental conditions as well as bacterial interactions determine the establishment and sustainability of bacterial diversity. In this talk we discuss the competition of three Escherichia coli strains during range expansions on agar plates. In this bacterial model system, a colicin E2 producing strain C competes with a colicin resistant strain R and with a colicin sensitive strain S for new territory. Genetic engineering allows us to tune the growth rates of the strains and to study distinct ecological scenarios. These scenarios may lead to either single-strain dominance, pairwise coexistence, or to the coexistence of all three strains. In order to elucidate the survival mechanisms of the individual strains, we also developed a stochastic agent-based model to capture the ecological scenarios in silico. In a combined theoretical and experimental approach we are able to show that the level of biodiversity depends crucially on the composition of the inoculum, on the relative growth rates of the three strains, and on the effective reach of colicin toxicity.

  5. Comparison of bacterial growth in response to photodegraded terrestrial chromophoric dissolved organic matter in two lakes.

    PubMed

    Su, Yaling; Hu, En; Feng, Muhua; Zhang, Yongdong; Chen, Feizhou; Liu, Zhengwen

    2017-02-01

    Terrestrial chromophoric dissolved organic matter (CDOM) could subsidize lake food webs. Trophic state and altitude have a pronounced influence on the CDOM concentration and composition of a lake. The impact of future changes in solar radiation on high-altitude lakes is particularly alarming because these aquatic ecosystems experience the most pronounced radiation variation worldwide. Photodegradation experiments were conducted on terrestrial CDOM samples from oligotrophic alpine Lake Tiancai and low-altitude eutrophic Lake Xiaohu to investigate the response of bacterial growth to photodegraded CDOM. During the photo-irradiation process, the fluorescent CDOM intensity evidently decreased in an inflowing stream of Lake Tiancai, with the predominance of humic-like fluorescence. By contrast, minimal changes were observed in the riverine CDOM of Lake Xiaohu, with the predominance of protein-like fluorescence. The kinetic constants of photodegradation indicated that the degradation rate of terrestrial (soil) humic acid in Lake Tiancai was significantly higher than that in Lake Xiaohu (p<0.001). Soil humic and fulvic acids irradiated in the simulated experiment were applied to incubated bacteria. The specific growth rate of bacteria incubated with soil humic substances was significantly higher in Lake Tiancai than in Lake Xiaohu (p<0.05). Furthermore, the utilizing rate of dissolved oxygen (DO) confirmed that the DO consumption by bacteria incubated with terrestrial CDOM in Lake Tiancai was significantly greater than that in Lake Xiaohu (p<0.05). In summary, the exposure of terrestrial CDOM to light significantly enhances its availability to heterotrophic bacteria in Lake Tiancai, an oligotrophic alpine lake, which is of importance in understanding bacterial growth in response to photodegraded terrestrial CDOM for different types of lakes. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Quantifying in situ growth rate of a filamentous bacterial species in activated sludge using rRNA:rDNA ratio.

    PubMed

    Nguyen, Vivi L; He, Xia; de Los Reyes, Francis L

    2016-11-01

    If the in situ growth rate of filamentous bacteria in activated sludge can be quantified, researchers can more accurately assess the effect of operating conditions on the growth of filaments and improve the mathematical modeling of filamentous bulking. We developed a method to quantify the in situ specific growth rate of Sphaerotilus natans (a model filament) in activated sludge using the species-specific 16S rRNA:rDNA ratio. Primers targeting the 16S rRNA of S. natans were designed, and real-time PCR and RT-PCR were used to quantify DNA and RNA levels of S. natans, respectively. A positive linear relationship was found between the rRNA:rDNA ratio (from 440 to 4500) and the specific growth rate of S. natans (from 0.036 to 0.172 h -1 ) using chemostat experiments. The in situ growth rates of S. natans in activated sludge samples from three water reclamation facilities were quantified, illustrating how the approach can be applied in a complex environment such as activated sludge. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour.

    PubMed

    Fetissov, Sergueï O

    2017-01-01

    The life of all animals is dominated by alternating feelings of hunger and satiety - the main involuntary motivations for feeding-related behaviour. Gut bacteria depend fully on their host for providing the nutrients necessary for their growth. The intrinsic ability of bacteria to regulate their growth and to maintain their population within the gut suggests that gut bacteria can interfere with molecular pathways controlling energy balance in the host. The current model of appetite control is based mainly on gut-brain signalling and the animal's own needs to maintain energy homeostasis; an alternative model might also involve bacteria-host communications. Several bacterial components and metabolites have been shown to stimulate intestinal satiety pathways; at the same time, their production depends on bacterial growth cycles. This short-term bacterial growth-linked modulation of intestinal satiety can be coupled with long-term regulation of appetite, controlled by the neuropeptidergic circuitry in the hypothalamus. Indeed, several bacterial products are detected in the systemic circulation, which might act directly on hypothalamic neurons. This Review analyses the data relevant to possible involvement of the gut bacteria in the regulation of host appetite and proposes an integrative homeostatic model of appetite control that includes energy needs of both the host and its gut bacteria.

  8. Atropine and glycopyrrolate do not support bacterial growth-safety and economic considerations.

    PubMed

    Ittzes, Balazs; Weiling, Zsolt; Batai, Istvan Zoard; Kerenyi, Monika; Batai, Istvan

    2016-12-01

    Evaluation of bacterial growth in atropine and glycopyrrolate. Laboratory investigation. Standard microbiological methods were used to evaluate the impact of atropine and glycopyrrolate on the growth of Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli. Bacterial count was checked at 0, 1, 2, 3, 4, 6, and 24 hours. Atropine or glycopyrrolate did not support the growth of the above bacteria at any examined time at room temperature. Glycopyrrolate killed all of the examined strains (P < .05), whereas in atropine, only the clinical isolates of Staphylococcus and Acinetobacter were killed (P < .05). Drawing up atropine or glycopyrrolate at the beginning of the operating list and use within 24 hours if needed are a safe practice and do not pose infection hazard. We can also reduce hospital costs if we do not throw away these unused syringes following each case. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Resource Availability and Competition Shape the Evolution of Survival and Growth Ability in a Bacterial Community

    PubMed Central

    Pekkonen, Minna; Ketola, Tarmo; Laakso, Jouni T.

    2013-01-01

    Resource availability is one of the main factors determining the ecological dynamics of populations or species. Fluctuations in resource availability can increase or decrease the intensity of resource competition. Resource availability and competition can also cause evolutionary changes in life-history traits. We studied how community structure and resource fluctuations affect the evolution of fitness related traits using a two-species bacterial model system. Replicated populations of Serratia marcescens (copiotroph) and Novosophingobium capsulatum (oligotroph) were reared alone or together in environments with intergenerational, pulsed resource renewal. The comparison of ancestral and evolved bacterial clones with 1 or 13 weeks history in pulsed resource environment revealed species-specific changes in life-history traits. Co-evolution with S. marcescens caused N. capsulatum clones to grow faster. The evolved S. marcescens clones had higher survival and slower growth rate then their ancestor. The survival increased in all treatments after one week, and thereafter continued to increase only in the S. marcescens monocultures that experienced large resource pulses. Though adaptive radiation is often reported in evolution studies with bacteria, clonal variation increased only in N. capsulatum growth rate. Our results suggest that S. marcescens adapted to the resource renewal cycle whereas N. capsulatum was more affected by the interspecific competition. Our results exemplify species-specific evolutionary response to both competition and environmental variation. PMID:24098791

  10. Resource availability and competition shape the evolution of survival and growth ability in a bacterial community.

    PubMed

    Pekkonen, Minna; Ketola, Tarmo; Laakso, Jouni T

    2013-01-01

    Resource availability is one of the main factors determining the ecological dynamics of populations or species. Fluctuations in resource availability can increase or decrease the intensity of resource competition. Resource availability and competition can also cause evolutionary changes in life-history traits. We studied how community structure and resource fluctuations affect the evolution of fitness related traits using a two-species bacterial model system. Replicated populations of Serratia marcescens (copiotroph) and Novosphingobium capsulatum (oligotroph) were reared alone or together in environments with intergenerational, pulsed resource renewal. The comparison of ancestral and evolved bacterial clones with 1 or 13 weeks history in pulsed resource environment revealed species-specific changes in life-history traits. Co-evolution with S. marcescens caused N. capsulatum clones to grow faster. The evolved S. marcescens clones had higher survival and slower growth rate then their ancestor. The survival increased in all treatments after one week, and thereafter continued to increase only in the S. marcescens monocultures that experienced large resource pulses. Though adaptive radiation is often reported in evolution studies with bacteria, clonal variation increased only in N. capsulatum growth rate. Our results suggest that S. marcescens adapted to the resource renewal cycle whereas N. capsulatum was more affected by the interspecific competition. Our results exemplify species-specific evolutionary response to both competition and environmental variation.

  11. The bacterial contamination rate of glucose meter test strips in the hospital setting

    PubMed Central

    Al-Rubeaan, Khalid A.; Saeb, Amr T. M.; AlNaqeb, Dhekra M.; AlQumaidi, Hamed M.; AlMogbel, Turki A.

    2016-01-01

    Objectives: To assess the rate of bacterial contamination of the multi-use vial and single-use packed glucose meter strips, and to identify the type and frequency of various bacterial contamination in different hospital wards. Methods: This prospective observational study was conducted by a team from the Strategic Center for Diabetes Research in 7 general hospitals in the Central region of Saudi Arabia during the period from August to September 2014 to assess the bacterial contamination rate of the unused strips. A total of 10,447 strips were cultured using proper agar media and incubated both aerobically and anaerobically. Results: The total bacterial contamination rate for the multi-use vials glucose strips was 31.7%, while single-use packed strips were not contaminated at all. Ministry of Health hospitals had the highest contamination rates compared with other hospitals. Critical, obstetric, and surgical wards had the highest bacterial isolates number, where most were in the risk group 3 according to the National Institute of Health guidelines. Staphylococcus species were the most common bacteria found. Conclusion: Glucose meter strips should be recognized as a source of bacterial contamination that could be behind serious hospital acquired infections. The hospital infection control team should adopt proper measures to implement protocols for glucose meter cleaning and glucose strips handling. PMID:27570855

  12. Effects of Benzalkonium Chloride on Planktonic Growth and Biofilm Formation by Animal Bacterial Pathogens

    PubMed Central

    Ebrahimi, Azizollah; Hemati, Majid; Shabanpour, Ziba; Habibian Dehkordi, Saeed; Bahadoran, Shahab; Lotfalian, Sharareh; Khubani, Shahin

    2015-01-01

    Background: Resistance toward quaternary ammonium compounds (QACs) is widespread among a diverse range of microorganisms and is facilitated by several mechanisms such as biofilm formation. Objectives: In this study, the effects of benzalkonium chloride on planktonic growth and biofilm formation by some field isolates of animal bacterial pathogens were investigated. Materials and Methods: Forty clinical isolates of Escherichia coli, Salmonella serotypes, Staphylococcus aureus and Streptococcus agalactiae (10 isolates of each) were examined for effects of benzalkonium chloride on biofilm formation and planktonic growth using microtiter plates. For all the examined strains in the presence of benzalkonium chloride, biofilm development and planktonic growth were affected at the same concentrations of disinfectant. Results: The means of strains growth increase after the minimal inhibitory concentration (MIC) were significant in all the bacteria (except for E. coli in 1/32 and S. agalactiae in of 1/8 MIC). Biofilm formation increased with decrease of antiseptics concentration; a significant increase was found in all the samples. The most turbidity related to S. aureus and the least to Salmonella. Conclusions: Bacterial resistance against quaternary ammonium compounds is increasing which can increase the bacterial biofilm formation. PMID:25793094

  13. Vaginal lactobacilli inhibiting growth of Gardnerella vaginalis, Mobiluncus and other bacterial species cultured from vaginal content of women with bacterial vaginosis.

    PubMed

    Skarin, A; Sylwan, J

    1986-12-01

    On a solid agar medium the growth-inhibitory effect of 9 Lactobacillus strains cultured from vaginal content was tested on bacteria cultured from vaginal content of women with bacterial vaginosis: Mobiluncus, Gardnerella vaginalis, Bacteroides and anaerobic cocci. Inhibition zones were observed in the growth of all of the strains isolated from women with bacterial vaginosis around all lactobacilli. The inhibitory effect of the lactobacilli was further tested on various anaerobic and facultatively anaerobic species, both type strains and fresh extragenitally cultured strains. Four Bacteroides fragilis strains as well as 2 out of 4 Staphylococcus aureus strains were clearly inhibited by the lactobacilli. The inhibition zones were generally wider at pH 5.5 than at 6.0. For all inhibited strains, (the S. aureus excepted) a low pH on the agar around the lactobacilli correlated to wider growth-inhibition zones.

  14. Inhibition of heparin precipitation, bacterial growth, and fungal growth with a combined isopropanol-ethanol locking solution for vascular access devices.

    PubMed

    Restrepo, Daniel; Laconi, Nicholas S; Alcantar, Norma A; West, Leigh A; Buttice, Audrey L; Patel, Saumil; Kayton, Mark L

    2015-03-01

    Clinical reports of ethanol-lock use for the prevention of catheter-related bloodstream infections have been marked by the occurrence of serious catheter occlusions, particularly among children with mediports. We hypothesized that precipitate forms when ethanol mixes with heparin at the concentrations relevant for vascular access devices, but that the use of a combination of two alcohols, ethanol and isopropanol, would diminish heparin-related precipitation, while retaining anti-bacterial and anti-fungal effects. Heparin (0-100units/mL) was incubated in ethanol-water solutions (30%-70% vol/vol) or in an aqueous solution containing equal parts (35% and 35% vol/vol) of isopropanol and ethanol. Precipitation at temperatures from 4 to 40°C was measured in nephelometric turbidity units using a benchtop turbidimeter. Growth of Escherichia coli, Staphylococcus aureus, and Candida albicans colonies were measured following exposure to solutions of ethanol or isopropanol-ethanol. Groupwise comparisons were performed using analysis of variance with Bonferroni-corrected, post-hoc T-testing. Seventy percent ethanol and heparin exhibit dose-dependent precipitation that is pronounced and significant at the concentrations typically used in mediports (p<0.05). Precipitate is significantly reduced by use of a combined 35% isopropanol-35% ethanol solution rather than 70% ethanol (p<0.05), while maintaining the solution's anti-bacterial and anti-fungal properties. On the other hand, although ethanol solutions under 70% form less precipitate with heparin, such concentrations are also less effective at bacterial colony inhibition than solutions of either 70% ethanol or 35% isopropanol-35% ethanol (p<0.05). A combined 35% isopropanol-35% ethanol locking solution inhibits bacterial and fungal growth similarly to 70% ethanol, but results in less precipitate than 70% ethanol when exposed to heparin. Further study of a combined isopropanol-ethanol locking solution for the prevention of

  15. High bacterial contamination rate of electrocautery tips during total hip and knee arthroplasty.

    PubMed

    Abdelaziz, Hussein; Zahar, Akos; Lausmann, Christian; Gehrke, Thorsten; Fickenscher, Helmut; Suero, Eduardo M; Gebauer, Matthias; Citak, Mustafa

    2018-04-01

    The aim of the study was to quantify the bacterial contamination rate of electrocautery tips during primary total joint replacement (TJR), as well as during aseptic and septic revision TJR. A total of 150 electrocautery tips were collected between April and July 2017. TJR surgeries were divided into three groups: (1) primary, (2) aseptic and (3) septic revisions. In each group, a total of 50 electrocautery tips were collected. A monopolar electrocautery with a reusable stainless-steel blade tip was used in all cases. The rate of bacterial contamination was determined for all groups. Correlation of exposure time and type of surgery was analyzed. The overall bacterial contamination rate was 14.7% (95% CI 9.4 to 21.4%). The highest contamination rate occurred in the septic revision group (30.0%; 95% CI 17.9 to 44.6%), followed by the primary cases group (10.0%; 95% CI 3.3 to 21.8%) and the aseptic revision group (4.0%; 95% CI 0.5 to 13.7%). Exposure time did not affect the bacterial contamination rate. In 12 out of 15 (80%) contaminations identified in the septic group, we found the same causative microorganism of the prosthetic joint infection on the electrocautery tip. The bacterial contamination of the electrocautery tips is relatively high, especially during septic hip revision arthroplasty. Electrocautery tips should be changed after debridement of infected tissue.

  16. BACTERIAL GROWTH AND MULTIPLICATION AS DISCLOSED BY MICRO MOTION PICTURES

    PubMed Central

    Wyckoff, Ralph W. G.

    1934-01-01

    Using a micro motion picture technique for making records, studies covering several thousand hours of observation have been made of the growth of a number of bacteria. On the basis of these experiments a discussion is offered of bacterial division and its influence on gross colony appearance, of different kinds of pleomorphism that have been observed, and of the nature of the internal structure that is seen in some bacteria. Several of the microorganisms chosen for examination are ones that have been thought to give evidence of life cycle phenomena. The present pictures, however, contain no evidence of a bacterial cycle in the commonly accepted meaning of the term. PMID:19870252

  17. Analysis of bacterial growth by UV/Vis spectroscopy and laser reflectometry

    NASA Astrophysics Data System (ADS)

    Peña-Gomar, Mary Carmen; Viramontes-Gamboa, Gonzalo; Peña-Gomar, Grethel; Ortiz Gutiérrez, Mauricio; Hernández Ramírez, Mariano

    2012-10-01

    This work presents a preliminary study on an experimental analysis of the lactobacillus bacterial growth in liquid medium with and without the presence of silver nanoparticles. The study aims to quantify the bactericidal effect of nanoparticles. Quantification of bacterial growth at different times was analyzed by spectroscopy UV/visible and laser reflectometry near the critical angle. From these two techniques the best results were obtained by spectroscopy, showing that as the concentration of silver nanoparticles increases, it inhibits the growth of bacteria, it only grows 63% of the population. Regarding Laser Reflectometry, the variation of reflectance near the critical angle is measured in real time. The observed results at short times are reasonable, since they indicate a gradual growth of the bacteria and the stabilization stage of the population. But at long time, the observed results show abrupt changes caused by temperature effects. The bacteria were isolated from samples taken from commercial yougurth, and cultured in MRS broth at pH 6.5, and controlled with citric acid and constant temperature of 32 °C. Separately, silver nanoparticles were synthesized at 3 °C from aqueous solutions of 1.0 mM silver nitrate and chemically reduced with sodium borohydride to 2.0 mM, with magnetic stirring.

  18. Dislocation-mediated growth of bacterial cell walls

    PubMed Central

    Amir, Ariel; Nelson, David R.

    2012-01-01

    Recent experiments have illuminated a remarkable growth mechanism of rod-shaped bacteria: proteins associated with cell wall extension move at constant velocity in circles oriented approximately along the cell circumference [Garner EC, et al., (2011) Science 333:222–225], [Domínguez-Escobar J, et al. (2011) Science 333:225–228], [van Teeffelen S, et al. (2011) PNAS 108:15822–15827]. We view these as dislocations in the partially ordered peptidoglycan structure, activated by glycan strand extension machinery, and study theoretically the dynamics of these interacting defects on the surface of a cylinder. Generation and motion of these interacting defects lead to surprising effects arising from the cylindrical geometry, with important implications for growth. We also discuss how long range elastic interactions and turgor pressure affect the dynamics of the fraction of actively moving dislocations in the bacterial cell wall. PMID:22660931

  19. Bacterial growth laws reflect the evolutionary importance of energy efficiency.

    PubMed

    Maitra, Arijit; Dill, Ken A

    2015-01-13

    We are interested in the balance of energy and protein synthesis in bacterial growth. How has evolution optimized this balance? We describe an analytical model that leverages extensive literature data on growth laws to infer the underlying fitness landscape and to draw inferences about what evolution has optimized in Escherichia coli. Is E. coli optimized for growth speed, energy efficiency, or some other property? Experimental data show that at its replication speed limit, E. coli produces about four mass equivalents of nonribosomal proteins for every mass equivalent of ribosomes. This ratio can be explained if the cell's fitness function is the the energy efficiency of cells under fast growth conditions, indicating a tradeoff between the high energy costs of ribosomes under fast growth and the high energy costs of turning over nonribosomal proteins under slow growth. This model gives insight into some of the complex nonlinear relationships between energy utilization and ribosomal and nonribosomal production as a function of cell growth conditions.

  20. Quantitative spectral light scattering polarimetry for monitoring fractal growth pattern of Bacillus thuringiensis bacterial colonies

    NASA Astrophysics Data System (ADS)

    Banerjee, Paromita; Soni, Jalpa; Ghosh, Nirmalya; Sengupta, Tapas K.

    2013-02-01

    It is of considerable current interest to develop various methods which help to understand and quantify the cellular association in growing bacterial colonies and is also important in terms of detection and identification of a bacterial species. A novel approach is used here to probe the morphological structural changes occurring during the growth of the bacterial colony of Bacillus thuringiensis under different environmental conditions (in normal nutrient agar, in presence of glucose - acting as additional nutrient and additional 3mM arsenate as additional toxic material). This approach combines the quantitative Mueller matrix polarimetry to extract intrinsic polarization properties and inverse analysis of the polarization preserving part of the light scattering spectra to determine the fractal parameter H (Hurst exponent) using Born approximation. Interesting differences are observed in the intrinsic polarization parameters and also in the Hurst exponent, which is a measurement of the fractality of a pattern formed by bacteria while growing as a colony. These findings are further confirmed with optical microscopic studies of the same sample and the results indicate a very strong and distinct dependence on the environmental conditions during growth, which can be exploited to quantify different bacterial species and their growth patterns.

  1. In vitro bacterial growth and in vivo ruminal microbiota populations associated with bloat in steers grazing wheat forage.

    PubMed

    Min, B R; Pinchak, W E; Anderson, R C; Hume, M E

    2006-10-01

    The role of ruminal bacteria in the frothy bloat complex common to cattle grazing winter wheat has not been previously determined. Two experiments, one in vitro and another in vivo, were designed to elucidate the effects of fresh wheat forage on bacterial growth, biofilm complexes, rumen fermentation end products, rumen bacterial diversity, and bloat potential. In Exp. 1, 6 strains of ruminal bacteria (Streptococcus bovis strain 26, Prevotella ruminicola strain 23, Eubacterium ruminantium B1C23, Ruminococcus albus SY3, Fibrobacter succinogenes ssp. S85, and Ruminococcus flavefaciens C94) were used in vitro to determine the effect of soluble plant protein from winter wheat forage on specific bacterial growth rate, biofilm complexes, VFA, and ruminal H2 and CH4 in mono or coculture with Methanobrevibacter smithii. The specific growth rate in plant protein medium containing soluble plant protein (3.27% nitrogen) was measured during a 24-h incubation at 39 degrees C in Hungate tubes under a CO2 gas phase. A monoculture of M. smithii was grown similarly, except under H2:CO2 (1:1), in a basal methanogen growth medium supplemented likewise with soluble plant protein. In Exp. 2, 6 ruminally cannulated steers grazing wheat forage were used to evaluate the influence of bloat on the production of biofilm complexes, ruminal microbial biodiversity patterns, and ruminal fluid protein fractions. In Exp. 1, cultures of R. albus (P < 0.01) and R. flavefaciens (P < 0.05) produced the most H2 among strains and resulted in greater (P < 0.01) CH4 production when cocultured with M. smithii than other coculture combinations. Cultures of S. bovis and E. ruminantium + M. smithii produced the most biofilm mass among strains. In Exp. 2, when diets changed from bermudagrass hay to wheat forage, biofilm production increased (P < 0.01). Biofilm production, concentrations of whole ruminal content (P < 0.01), and cheesecloth filtrate protein fractions (P < 0.05) in the ruminal fluid were greater

  2. An In vitro Model for Bacterial Growth on Human Stratum Corneum.

    PubMed

    van der Krieken, Danique A; Ederveen, Thomas H A; van Hijum, Sacha A F T; Jansen, Patrick A M; Melchers, Willem J G; Scheepers, Paul T J; Schalkwijk, Joost; Zeeuwen, Patrick L J M

    2016-11-02

    The diversity and dynamics of the skin microbiome in health and disease have been studied recently, but adequate model systems to study skin microbiotas in vitro are largely lacking. We developed an in vitro system that mimics human stratum corneum, using human callus as substrate and nutrient source for bacterial growth. The growth of several commensal and pathogenic bacterial strains was measured for up to one week by counting colony-forming units or by quantitative PCR with strain-specific primers. Human skin pathogens were found to survive amidst a minimal microbiome consisting of 2 major skin commensals: Staphylococcus epidermidis and Propionibacterium acnes. In addition, complete microbiomes, taken from the backs of healthy volunteers, were inoculated and maintained using this system. This model may enable the modulation of skin microbiomes in vitro and allow testing of pathogens, biological agents and antibiotics in a medium-throughput format.

  3. Bacterial and fungal growth for monitoring the impact of wildfire combined or not with different soil stabilization treatments

    NASA Astrophysics Data System (ADS)

    Barreiro, Ana; Baath, Erland; Díaz-Raviña, Montserrat

    2015-04-01

    Soil stabilization techniques are rapidly gaining acceptance as efficient tool for reducing post-fire erosion. However, despite its interest, information concerning their impact on soil biota is scarce. We examined, under field conditions, the bacterial and fungal medium-term responses in a hillslope area located in Laza (NW Spain) affected by a high severity wildfire with the following treatments established by triplicate (4 x 20 m plots): unburnt control soil, burnt control soil, burnt soil with rye seeding and burnt soil with straw mulch. The bacterial and fungal growth, as well as respiration, were measured 4 years after fire and application of treatments using leucine incorporation for bacterial growth and acetate-in-ergosterol incorporation for fungal growth. The results showed that soil respiration and fungal biomass were negatively affected by fire, in the top layer (0-5 cm), while bacterial and fungal growth was stimulated. These microbial changes induced by fire were associated with modifications in organic matter (50% reduction in C content) and soil pH (increase of 0.5-0.9 units). Thus, the results suggested that under acid environment (pH in water 3.5) post-fire conditions might have favoured both microbial groups, which is supported by the fact that estimated bacterial and fungal growth were positive and significant correlated with soil pH (range of 3.5-4.5). This contrast with the well-known reported investigations showing that bacteria rather than fungi proliferation occurred after prescribed fire or wildfire; it should be noticed, however, that soils with a higher pH than that in the present study were used. Our data also indicated that bacterial and fungal communities were not significantly affected by seeding and mulching treatments. The results highlighted the importance of pre-fire soil pH as key factor in determining the microbial response after fire. Acknowledgements. A. Barreiro is recipient of FPU grant from Spanish Ministry of Education

  4. Bacterial Community Associated with Healthy and Diseased Pacific White Shrimp (Litopenaeus vannamei) Larvae and Rearing Water across Different Growth Stages.

    PubMed

    Zheng, Yanfen; Yu, Min; Liu, Jiwen; Qiao, Yanlu; Wang, Long; Li, Zhitao; Zhang, Xiao-Hua; Yu, Mingchao

    2017-01-01

    Bacterial communities are called another "organ" for aquatic animals and their important influence on the health of host has drawn increasing attention. Thus, it is important to study the relationships between aquatic animals and bacterial communities. Here, bacterial communities associated with Litopenaeus vannamei larvae at different healthy statuses (diseased and healthy) and growth stages (i.e., zoea, mysis, and early postlarvae periods) were examined using 454-pyrosequencing of the 16S rRNA gene. Bacterial communities with significant difference were observed between healthy and diseased rearing water, and several bacterial groups, such as genera Nautella and Kordiimonas could also distinguish healthy and diseased shrimp. Rhodobacteraceae was widely distributed in rearing water at all growth stages but there were several stage-specific groups, indicating that bacterial members in rearing water assembled into distinct communities throughout the larval development. However, Gammaproteobacteria , mainly family Enterobacteriaceae , was the most abundant group (accounting for more than 85%) in shrimp larvae at all growth stages. This study compared bacterial communities associated with healthy and diseased L . vannamei larvae and rearing water, and identified several health- and growth stage-specific bacterial groups, which might be provided as indicators for monitoring the healthy status of shrimp larvae in hatchery.

  5. Bacterial Community Associated with Healthy and Diseased Pacific White Shrimp (Litopenaeus vannamei) Larvae and Rearing Water across Different Growth Stages

    PubMed Central

    Zheng, Yanfen; Yu, Min; Liu, Jiwen; Qiao, Yanlu; Wang, Long; Li, Zhitao; Zhang, Xiao-Hua; Yu, Mingchao

    2017-01-01

    Bacterial communities are called another “organ” for aquatic animals and their important influence on the health of host has drawn increasing attention. Thus, it is important to study the relationships between aquatic animals and bacterial communities. Here, bacterial communities associated with Litopenaeus vannamei larvae at different healthy statuses (diseased and healthy) and growth stages (i.e., zoea, mysis, and early postlarvae periods) were examined using 454-pyrosequencing of the 16S rRNA gene. Bacterial communities with significant difference were observed between healthy and diseased rearing water, and several bacterial groups, such as genera Nautella and Kordiimonas could also distinguish healthy and diseased shrimp. Rhodobacteraceae was widely distributed in rearing water at all growth stages but there were several stage-specific groups, indicating that bacterial members in rearing water assembled into distinct communities throughout the larval development. However, Gammaproteobacteria, mainly family Enterobacteriaceae, was the most abundant group (accounting for more than 85%) in shrimp larvae at all growth stages. This study compared bacterial communities associated with healthy and diseased L. vannamei larvae and rearing water, and identified several health- and growth stage-specific bacterial groups, which might be provided as indicators for monitoring the healthy status of shrimp larvae in hatchery. PMID:28769916

  6. Variability of rRNA Operon Copy Number and Growth Rate Dynamics of Bacillus Isolated from an Extremely Oligotrophic Aquatic Ecosystem

    PubMed Central

    Valdivia-Anistro, Jorge A.; Eguiarte-Fruns, Luis E.; Delgado-Sapién, Gabriela; Márquez-Zacarías, Pedro; Gasca-Pineda, Jaime; Learned, Jennifer; Elser, James J.; Olmedo-Alvarez, Gabriela; Souza, Valeria

    2016-01-01

    The ribosomal RNA (rrn) operon is a key suite of genes related to the production of protein synthesis machinery and thus to bacterial growth physiology. Experimental evidence has suggested an intrinsic relationship between the number of copies of this operon and environmental resource availability, especially the availability of phosphorus (P), because bacteria that live in oligotrophic ecosystems usually have few rrn operons and a slow growth rate. The Cuatro Ciénegas Basin (CCB) is a complex aquatic ecosystem that contains an unusually high microbial diversity that is able to persist under highly oligotrophic conditions. These environmental conditions impose a variety of strong selective pressures that shape the genome dynamics of their inhabitants. The genus Bacillus is one of the most abundant cultivable bacterial groups in the CCB and usually possesses a relatively large number of rrn operon copies (6–15 copies). The main goal of this study was to analyze the variation in the number of rrn operon copies of Bacillus in the CCB and to assess their growth-related properties as well as their stoichiometric balance (N and P content). We defined 18 phylogenetic groups within the Bacilli clade and documented a range of from six to 14 copies of the rrn operon. The growth dynamic of these Bacilli was heterogeneous and did not show a direct relation to the number of operon copies. Physiologically, our results were not consistent with the Growth Rate Hypothesis, since the copies of the rrn operon were decoupled from growth rate. However, we speculate that the diversity of the growth properties of these Bacilli as well as the low P content of their cells in an ample range of rrn copy number is an adaptive response to oligotrophy of the CCB and could represent an ecological mechanism that allows these taxa to coexist. These findings increase the knowledge of the variability in the number of copies of the rrn operon in the genus Bacillus and give insights about the

  7. Trophosome of the Deep-Sea Tubeworm Riftia pachyptila Inhibits Bacterial Growth.

    PubMed

    Klose, Julia; Aistleitner, Karin; Horn, Matthias; Krenn, Liselotte; Dirsch, Verena; Zehl, Martin; Bright, Monika

    2016-01-01

    The giant tubeworm Riftia pachyptila lives in symbiosis with the chemoautotrophic gammaproteobacterium Cand. Endoriftia persephone. Symbionts are released back into the environment upon host death in high-pressure experiments, while microbial fouling is not involved in trophosome degradation. Therefore, we examined the antimicrobial effect of the tubeworm's trophosome and skin. The growth of all four tested Gram-positive, but only of one of the tested Gram-negative bacterial strains was inhibited by freshly fixed and degrading trophosome (incubated up to ten days at either warm or cold temperature), while no effect on Saccharomyces cerevisiae was observed. The skin did not show antimicrobial effects. A liquid chromatography-mass spectrometric analysis of the ethanol supernatant of fixed trophosomes lead to the tentative identification of the phospholipids 1-palmitoleyl-2-lyso-phosphatidylethanolamine, 2-palmitoleyl-1-lyso-phosphatidylethanolamine and the free fatty acids palmitoleic, palmitic and oleic acid, which are known to have an antimicrobial effect. As a result of tissue autolysis, the abundance of the free fatty acids increased with longer incubation time of trophosome samples. This correlated with an increasing growth inhibition of Bacillus subtilis and Listeria welshimeri, but not of the other bacterial strains. Therefore, the free fatty acids produced upon host degradation could be the cause of inhibition of at least these two bacterial strains.

  8. Method for Bacterial Growth and Ammonia Production and Effect of Inhibitory Substances in Disposable Absorbent Hygiene Products.

    PubMed

    Forsgren-Brusk, Ulla; Yhlen, Birgitta; Blomqvist, Marie; Larsson, Peter

    The purpose of this study was to evaluate a pragmatic laboratory method to provide a technique for developing incontinence products better able to reduce malodor when used in the clinical setting. Bacterial growth and bacterially formed ammonia in disposable absorbent incontinence products was measured by adding synthetic urine inoculated with bacteria to test samples cut from the crotch area of the product. The inhibitory effect's of low pH (4.5 and 4.9) and 3 antimicrobial substances-chlorhexidine, polyhexamethylene biguanide (PHMB), and thymol-at 2 concentrations each, were studied. From the initial inocula of 3.3 log colony-forming units per milliliter (cfu/mL) at baseline, the bacterial growth of the references increased to 5.0 to 6.0 log cfu/mL at 6 hours for Escherichia coli, Proteus mirabilis, and Enterococcus faecalis. At 12 hours there was a further increase to 7.0 to 8.9 log cfu/mL. Adjusting the pH of the superabsorbent in the incontinence product from 6.0 to pH 4.5 and pH 4.9 significantly (P < .05) inhibited the bacterial growth rates, in most cases, both at 6 and 12 hours. The effect was most pronounced at pH 4.5. Chlorhexidine had significant (P < .05) inhibitory effect on E. coli and E. faecalis, and at 12 hours also on P. mirabilis. For PHMB and thymol the results varied. At 6 hours, the ammonia concentration in the references (pH 6.0) was 200 to 300 ppm and it was 1500 to 1600 ppm at 8 hours. At pH 4.5, no or little ammonia production was measured at 6 and 8 hours. At pH 4.9, there was a significant reduction (P < .01). Chlorhexidine and PHMB exerted a significant (P < .01 or P < .001) inhibitory effect on ammonia production at both concentrations and at 6 and 8 hours. Thymol 0.003% and 0.03% showed inhibitory effect at both 6 hours (P < .01 or P < .001) and at 8 hours (P < .05 or P < .001). The method described in this study can be used to compare the ability of various disposable absorbent products to inhibit bacterial growth and ammonia

  9. Periodic growth of bacterial colonies

    NASA Astrophysics Data System (ADS)

    Yamazaki, Yoshihiro; Ikeda, Takemasa; Shimada, Hirotoshi; Hiramatsu, Fumiko; Kobayashi, Naoki; Wakita, Jun-ichi; Itoh, Hiroto; Kurosu, Sayuri; Nakatsuchi, Michio; Matsuyama, Tohey; Matsushita, Mitsugu

    2005-06-01

    The formation of concentric ring colonies by bacterial species Bacillus subtilis and Proteus mirabilis has been investigated experimentally, focusing our attention on the dependence of local cell density upon the bacterial motility. It has been confirmed that these concentric ring colonies reflect the periodic change of the bacterial motility between motile cell state and immotile cell state. We conclude that this periodic change is macroscopically determined neither by biological factors (i.e., biological clock) nor by chemical factors (chemotaxis as inhibitor). And our experimental results strongly suggest that the essential factor for the change of the bacterial motility during concentric ring formation is the local cell density.

  10. Culturable bacterial endophytes isolated from Mangrove tree (Rhizophora apiculata Blume) enhance seedling growth in Rice.

    PubMed

    Deivanai, Subramanian; Bindusara, Amitraghata Santhanam; Prabhakaran, Guruswamy; Bhore, Subhash Janardhan

    2014-07-01

    Endophytic bacteria do have several potential applications in medicine and in other various sectors of biotechnology including agriculture. Bacterial endophytes need to be explored for their potential applications in agricultural biotechnology. One of the potential applications of bacterial endophytes in agricultural is to enhance the growth of the agricultural crops. Hence, this study was undertaken to explore the plant growth promoting potential application of bacterial endophytes. The objective of this study was to examine the effect of endophytic bacteria from mangrove tree (Rhizophora apiculata Blume) for their efficacy in promoting seedling growth in rice. Eight endophytic bacterial isolates (EBIs) isolated from twig and petiole tissues of the mangrove were identified based on their 16S ribosomal ribonucleic acid (rRNA) gene sequence homology. Separately, surface sterilized paddy seeds were treated with cell-free broth and cell suspension of the EBIs. Rice seedlings were analyzed by various bioassays and data was recorded. The gene sequences of the isolates were closely related to two genera namely, Bacillus and Pantoea. Inoculation of EBIs from R. apiculata with rice seeds resulted in accelerated root and shoot growth with significant increase in chlorophyll content. Among the isolates, Pantoea ananatis (1MSE1) and Bacillus amyloliquefaciens (3MPE1) had shown predominance of activity. Endophytic invasion was recognized by the non-host by rapid accumulation of reactive oxygen species (ROS) and was counteracted by the production of hydrogen peroxide (H2O2) and lipid peroxide. The results demonstrated that EBIs from mangrove tree can increase the fitness of the rice seedlings under controlled conditions. These research findings could be useful to enhance the seedling growth and could serve as foundation in further research on enhancing the growth of the rice crop using endophytic bacteria.

  11. Molecular Mechanisms of Enhanced Bacterial Growth on Hexadecane with Red Clay.

    PubMed

    Jung, Jaejoon; Jang, In-Ae; Ahn, Sungeun; Shin, Bora; Kim, Jisun; Park, Chulwoo; Jee, Seung Cheol; Sung, Jung-Suk; Park, Woojun

    2015-11-01

    Red clay was previously used to enhance bioremediation of diesel-contaminated soil. It was speculated that the enhanced degradation of diesel was due to increased bacterial growth. In this study, we selected Acinetobacter oleivorans DR1, a soil-borne degrader of diesel and alkanes, as a model bacterium and performed transcriptional analysis using RNA sequencing to investigate the cellular response during hexadecane utilization and the mechanism by which red clay promotes hexadecane degradation. We confirmed that red clay promotes the growth of A. oleivorans DR1 on hexadecane, a major component of diesel, as a sole carbon source. Addition of red clay to hexadecane-utilizing DR1 cells highly upregulated β-oxidation, while genes related to alkane oxidation were highly expressed with and without red clay. Red clay also upregulated genes related to oxidative stress defense, such as superoxide dismutase, catalase, and glutaredoxin genes, suggesting that red clay supports the response of DR1 cells to oxidative stress generated during hexadecane utilization. Increased membrane fluidity in the presence of red clay was confirmed by fatty acid methyl ester analysis at different growth phases, suggesting that enhanced growth on hexadecane could be due to increased uptake of hexadecane coupled with upregulation of downstream metabolism and oxidative stress defense. The monitoring of the bacterial community in soil with red clay for a year revealed that red clay stabilized the community structure.

  12. Allometries of maximum growth rate versus body mass at maximum growth indicate that non-avian dinosaurs had growth rates typical of fast growing ectothermic sauropsids.

    PubMed

    Werner, Jan; Griebeler, Eva Maria

    2014-01-01

    We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes) strongly differed from Case's study (1978), which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles) to 20 (fishes) times (in comparison to mammals) or even 45 (reptiles) to 100 (fishes) times (in comparison to birds) lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule out either of

  13. Allometries of Maximum Growth Rate versus Body Mass at Maximum Growth Indicate That Non-Avian Dinosaurs Had Growth Rates Typical of Fast Growing Ectothermic Sauropsids

    PubMed Central

    Werner, Jan; Griebeler, Eva Maria

    2014-01-01

    We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes) strongly differed from Case’s study (1978), which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles) to 20 (fishes) times (in comparison to mammals) or even 45 (reptiles) to 100 (fishes) times (in comparison to birds) lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule out either

  14. Production of peptone from boso fish (Oxyeleotris marmorata) for bacterial growth medium

    NASA Astrophysics Data System (ADS)

    Priatni, S.; Kosasih, W.; Budiwati, T. A.; Ratnaningrum, D.

    2017-03-01

    Underutilized Oxyeleotris marmorata fish is abundant and widespread in Indonesia. The study aimed to use O. marmorata fish for peptone production using papain from dried latex of papaya fruit. The peptone was applied as nitrogen sources for bacterial growth. The resulted peptone was optimized at 50-65°C for 5-8 hr, using 0.1% of papain at pH 6.0. Characterization of peptone was based on the soluble protein content, N-amino content, % degree hydrolysis (DH), SDS PAGE profile and growth of bacteria Escherichia coli and Staphylococcus aureus. The results indicated that the optimum condition for hydrolysis was at 50°C for 7 hr (p < 0.05). Fish peptone soluble protein content was of 8.6 mg/mL, α-amino was 0.59%, and AN/TN 5.47%. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS PAGE) profile of peptone showed a major band with molecular weight between 17-28 kDa. Fish peptone effectiveness for E. coli and S. aureus growth was similar with commercial bacterial peptone.

  15. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies.

    PubMed

    Roller, Benjamin R K; Stoddard, Steven F; Schmidt, Thomas M

    2016-09-12

    The potential for rapid reproduction is a hallmark of microbial life, but microbes in nature must also survive and compete when growth is constrained by resource availability. Successful reproduction requires different strategies when resources are scarce and when they are abundant 1,2 , but a systematic framework for predicting these reproductive strategies in bacteria has not been available. Here, we show that the number of ribosomal RNA operons (rrn) in bacterial genomes predicts two important components of reproduction-growth rate and growth efficiency-which are favoured under contrasting regimes of resource availability 3,4 . We find that the maximum reproductive rate of bacteria doubles with a doubling of rrn copy number, and the efficiency of carbon use is inversely related to maximal growth rate and rrn copy number. We also identify a feasible explanation for these patterns: the rate and yield of protein synthesis mirror the overall pattern in maximum growth rate and growth efficiency. Furthermore, comparative analysis of genomes from 1,167 bacterial species reveals that rrn copy number predicts traits associated with resource availability, including chemotaxis and genome streamlining. Genome-wide patterns of orthologous gene content covary with rrn copy number, suggesting convergent evolution in response to resource availability. Our findings imply that basic cellular processes adapt in contrasting ways to long-term differences in resource availability. They also establish a basis for predicting changes in bacterial community composition in response to resource perturbations using rrn copy number measurements 5 or inferences 6,7 .

  16. Visual Estimation of Bacterial Growth Level in Microfluidic Culture Systems.

    PubMed

    Kim, Kyukwang; Kim, Seunggyu; Jeon, Jessie S

    2018-02-03

    Microfluidic devices are an emerging platform for a variety of experiments involving bacterial cell culture, and has advantages including cost and convenience. One inevitable step during bacterial cell culture is the measurement of cell concentration in the channel. The optical density measurement technique is generally used for bacterial growth estimation, but it is not applicable to microfluidic devices due to the small sample volumes in microfluidics. Alternately, cell counting or colony-forming unit methods may be applied, but these do not work in situ; nor do these methods show measurement results immediately. To this end, we present a new vision-based method to estimate the growth level of the bacteria in microfluidic channels. We use Fast Fourier transform (FFT) to detect the frequency level change of the microscopic image, focusing on the fact that the microscopic image becomes rough as the number of cells in the field of view increases, adding high frequencies to the spectrum of the image. Two types of microfluidic devices are used to culture bacteria in liquid and agar gel medium, and time-lapsed images are captured. The images obtained are analyzed using FFT, resulting in an increase in high-frequency noise proportional to the time passed. Furthermore, we apply the developed method in the microfluidic antibiotics susceptibility test by recognizing the regional concentration change of the bacteria that are cultured in the antibiotics gradient. Finally, a deep learning-based data regression is performed on the data obtained by the proposed vision-based method for robust reporting of data.

  17. Indoleacetic acid production and plant growth promoting potential of bacterial endophytes isolated from rice (Oryza sativa L.) seeds.

    PubMed

    Shahzad, Raheem; Waqas, Muhammad; Khan, Abdul Latif; Al-Hosni, Khadija; Kang, Sang-Mo; Seo, Chang-Woo; Lee, In-Jung

    2017-06-01

    Bacterial endophytes from the phyllosphere and rhizosphere have been used to produce bioactive metabolites and to promote plant growth. However, little is known about the endophytes residing in seeds. This study aimed to isolate and identify seed-borne bacterial endophytes from rice and elucidate their potential for phytohormone production and growth enhancement. The isolated endophytes included Micrococcus yunnanensis RWL-2, Micrococcus luteus RWL-3, Enterobacter soli RWL-4, Leclercia adecarboxylata RWL-5, Pantoea dispersa RWL-6, and Staphylococcus epidermidis RWL-7, which were identified using 16S rRNA sequencing and phylogenetic analysis. These strains were analyzed for indoleacetic acid (IAA) production by using GC-MS and IAA was found in the range of 11.50 ± 0.77 μg ml -1 to 38.80 ± 1.35 μg ml -1 . We also assessed the strains for plant growth promoting potential because these isolates were able to produce IAA in pure culture. Most of the growth attributes of rice plants (shoot and root length, fresh and dry biomass, and chlorophyll content) were significantly increased by bacterial endophytes compared to the controls. These results show that IAA producing bacterial endophytes can improve hostplant growth traits and can be used as bio-fertilizers.

  18. Bacterial population in intestines of the black tiger shrimp (Penaeus monodon) under different growth stages.

    PubMed

    Rungrassamee, Wanilada; Klanchui, Amornpan; Chaiyapechara, Sage; Maibunkaew, Sawarot; Tangphatsornruang, Sithichoke; Jiravanichpaisal, Pikul; Karoonuthaisiri, Nitsara

    2013-01-01

    Intestinal bacterial communities in aquaculture have been drawn to attention due to potential benefit to their hosts. To identify core intestinal bacteria in the black tiger shrimp (Penaeus monodon), bacterial populations of disease-free shrimp were characterized from intestines of four developmental stages (15-day-old post larvae (PL15), 1- (J1), 2- (J2), and 3-month-old (J3) juveniles) using pyrosequencing, real-time PCR and denaturing gradient gel electrophoresis (DGGE) approaches. A total of 25,121 pyrosequencing reads (reading length = 442±24 bases) were obtained, which were categorized by barcode for PL15 (7,045 sequences), J1 (3,055 sequences), J2 (13,130 sequences) and J3 (1,890 sequences). Bacteria in the phyla Bacteroides, Firmicutes and Proteobacteria were found in intestines at all four growth stages. There were 88, 14, 27, and 20 bacterial genera associated with the intestinal tract of PL15, J1, J2 and J3, respectively. Pyrosequencing analysis revealed that Proteobacteria (class Gammaproteobacteria) was a dominant bacteria group with a relative abundance of 89% for PL15 and 99% for J1, J2 and J3. Real-time PCR assay also confirmed that Gammaproteobacteria had the highest relative abundance in intestines from all growth stages. Intestinal bacterial communities from the three juvenile stages were more similar to each other than that of the PL shrimp based on PCA analyses of pyrosequencing results and their DGGE profiles. This study provides descriptive bacterial communities associated to the black tiger shrimp intestines during these growth development stages in rearing facilities.

  19. The effects of a low-intensity red laser on bacterial growth, filamentation and plasmid DNA

    NASA Astrophysics Data System (ADS)

    Roos, C.; Santos, J. N.; Guimarães, O. R.; Geller, M.; Paoli, F.; Fonseca, A. S.

    2013-07-01

    Exposure of nonphotosynthesizing microorganisms to light could increase cell division in cultures, a phenomenon denominated as biostimulation. However, data concerning the importance of the genetic characteristics of cells on this effect are as yet scarce. The aim of this work was to evaluate the effects of a low-intensity red laser on the growth, filamentation and plasmids in Escherichia coli cells proficient and deficient in DNA repair. E. coli cultures were exposed to a laser (658 nm, 10 mW, 1 and 8 J cm-2) to study bacterial growth and filamentation. Also, bacterial cultures hosting pBSK plasmids were exposed to the laser to study DNA topological forms from the electrophoretic profile in agarose gels. Data indicate the low-intensity red laser: (i) had no effect on the growth of E. coli wild type and exonuclease III deficient cells; (ii) induced bacterial filamentation, (iii) led to no alteration in the electrophoretic profile of plasmids from exonuclease III deficient cells, but plasmids from wild type cells were altered. A low-intensity red laser at the low fluences used in phototherapy has no effect on growth, but induces filamentation and alters the topological forms of plasmid DNA in E. coli cultures depending on the DNA repair mechanisms.

  20. Platelet-rich plasma affects bacterial growth in vitro.

    PubMed

    Mariani, Erminia; Filardo, Giuseppe; Canella, Valentina; Berlingeri, Andrea; Bielli, Alessandra; Cattini, Luca; Landini, Maria Paola; Kon, Elizaveta; Marcacci, Maurilio; Facchini, Andrea

    2014-09-01

    Platelet-rich plasma (PRP), a blood derivative rich in platelets, is a relatively new technique used in tissue regeneration and engineering. The increased quantity of platelets makes this formulation of considerable value for their role in tissue healing and microbicidal activity. This activity was investigated against five of the most important strains involved in nosocomial infections (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae and Streptococcus faecalis) to understand the prophylactic role of pure (P)-PRP. Microbicidal proteins released from activated P-PRP platelets were also determined. The microbicidal activity of P-PRP and platelet-poor plasma (PPP) was evaluated on different concentrations of the five bacterial strains incubated for 1, 2, 4 and 18 h and plated on agar for 18-24 h. P-PRP and PPP-released microbicidal proteins were evaluated by means of multiplex bead-based immunoassays. P-PRP and PPP inhibited bacterial growth for up to 2 h of incubation. The effect of P-PRP was significantly higher than that of PPP, mainly at the low seeding concentrations and/or shorter incubation times, depending on the bacterial strain. Chemokine (C-C motif) ligand-3, chemokine (C-C motif) ligand-5 and chemokine (C-X-C motif) ligand-1 were the molecules mostly related to Pseudomonas aeruginosa, Staphylococcus aureus and Streptococcus faecalis inhibition. Escherichia coli and Klebsiella pneumoniae were less influenced. The present results show that P-PRP might supply an early protection against bacterial contaminations during surgical interventions because the inhibitory activity is already evident from the first hour of treatment, which suggests that physiological molecules supplied in loco might be important in the time frame needed for the activation of the innate immune response. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  1. Small regulatory RNA-induced growth rate heterogeneity of Bacillus subtilis.

    PubMed

    Mars, Ruben A T; Nicolas, Pierre; Ciccolini, Mariano; Reilman, Ewoud; Reder, Alexander; Schaffer, Marc; Mäder, Ulrike; Völker, Uwe; van Dijl, Jan Maarten; Denham, Emma L

    2015-03-01

    Isogenic bacterial populations can consist of cells displaying heterogeneous physiological traits. Small regulatory RNAs (sRNAs) could affect this heterogeneity since they act by fine-tuning mRNA or protein levels to coordinate the appropriate cellular behavior. Here we show that the sRNA RnaC/S1022 from the Gram-positive bacterium Bacillus subtilis can suppress exponential growth by modulation of the transcriptional regulator AbrB. Specifically, the post-transcriptional abrB-RnaC/S1022 interaction allows B. subtilis to increase the cell-to-cell variation in AbrB protein levels, despite strong negative autoregulation of the abrB promoter. This behavior is consistent with existing mathematical models of sRNA action, thus suggesting that induction of protein expression noise could be a new general aspect of sRNA regulation. Importantly, we show that the sRNA-induced diversity in AbrB levels generates heterogeneity in growth rates during the exponential growth phase. Based on these findings, we hypothesize that the resulting subpopulations of fast- and slow-growing B. subtilis cells reflect a bet-hedging strategy for enhanced survival of unfavorable conditions.

  2. Measurement of the incorporation rates of four amino acids into proteins for estimating bacterial production.

    PubMed

    Servais, P

    1995-03-01

    In aquatic ecosystems, [(3)H]thymidine incorporation into bacterial DNA and [(3)H]leucine incorporation into proteins are usually used to estimate bacterial production. The incorporation rates of four amino acids (leucine, tyrosine, lysine, alanine) into proteins of bacteria were measured in parallel on natural freshwater samples from the basin of the river Meuse (Belgium). Comparison of the incorporation into proteins and into the total macromolecular fraction showed that these different amino acids were incorporated at more than 90% into proteins. From incorporation measurements at four subsaturated concentrations (range, 2-77 nm), the maximum incorporation rates were determined. Strong correlations (r > 0.91 for all the calculated correlations) were found between the maximum incorporation rates of the different tested amino acids over a range of two orders of magnitude of bacterial activity. Bacterial production estimates were calculated using theoretical and experimental conversion factors. The productions calculated from the incorporation rates of the four amino acids were in good concordance, especially when the experimental conversion factors were used (slope range, 0.91-1.11, and r > 0.91). This study suggests that the incorporation of various amino acids into proteins can be used to estimate bacterial production.

  3. Effect of lag time distribution on the lag phase of bacterial growth - a Monte Carlo analysis

    USDA-ARS?s Scientific Manuscript database

    The objective of this study is to use Monte Carlo simulation to evaluate the effect of lag time distribution of individual bacterial cells incubated under isothermal conditions on the development of lag phase. The growth of bacterial cells of the same initial concentration and mean lag phase durati...

  4. Bacterial Modulation of Plant Ethylene Levels

    PubMed Central

    Gamalero, Elisa; Glick, Bernard R.

    2015-01-01

    A focus on the mechanisms by which ACC deaminase-containing bacteria facilitate plant growth.Bacteria that produce the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, when present either on the surface of plant roots (rhizospheric) or within plant tissues (endophytic), play an active role in modulating ethylene levels in plants. This enzyme activity facilitates plant growth especially in the presence of various environmental stresses. Thus, plant growth-promoting bacteria that express ACC deaminase activity protect plants from growth inhibition by flooding and anoxia, drought, high salt, the presence of fungal and bacterial pathogens, nematodes, and the presence of metals and organic contaminants. Bacteria that express ACC deaminase activity also decrease the rate of flower wilting, promote the rooting of cuttings, and facilitate the nodulation of legumes. Here, the mechanisms behind bacterial ACC deaminase facilitation of plant growth and development are discussed, and numerous examples of the use of bacteria with this activity are summarized. PMID:25897004

  5. Bulk water phase and biofilm growth in drinking water at low nutrient conditions.

    PubMed

    Boe-Hansen, Rasmus; Albrechtsen, Hans-Jørgen; Arvin, Erik; Jørgensen, Claus

    2002-11-01

    In this study, the bacterial growth dynamics of a drinking water distribution system at low nutrient conditions was studied in order to determine bacterial growth rates by a range of methods, and to compare growth rates in the bulk water phase and the biofilm. A model distribution system was used to quantify the effect of retention times at hydraulic conditions similar to those in drinking water distribution networks. Water and pipe wall samples were taken and examined during the experiment. The pipes had been exposed to drinking water at approximately 13 degrees C, for at least 385 days to allow the formation of a mature quasi-stationary biofilm. At retention times of 12 h, total bacterial counts increased equivalent to a net bacterial growth rate of 0.048 day(-1). The bulk water phase bacteria exhibited a higher activity than the biofilm bacteria in terms of culturability, cell-specific ATP content, and cell-specific leucine incorporation rate. Bacteria in the bulk water phase incubated without the presence of biofilm exhibited a bacterial growth rate of 0.30 day(-1). The biofilm was radioactively labelled by the addition of 14C-benzoic acid. Subsequently, a biofilm detachment rate of 0.013 day(-1) was determined by measuring the release of 14C-labelled bacteria of the biofilm. For the quasi-stationary phase biofilm, the detachment rate was equivalent to the net growth rate. The growth rates determined in this study by different independent experimental approaches were comparable and within the range of values reported in the literature.

  6. Bacterial Population in Intestines of the Black Tiger Shrimp (Penaeus monodon) under Different Growth Stages

    PubMed Central

    Rungrassamee, Wanilada; Klanchui, Amornpan; Chaiyapechara, Sage; Maibunkaew, Sawarot; Tangphatsornruang, Sithichoke; Jiravanichpaisal, Pikul; Karoonuthaisiri, Nitsara

    2013-01-01

    Intestinal bacterial communities in aquaculture have been drawn to attention due to potential benefit to their hosts. To identify core intestinal bacteria in the black tiger shrimp (Penaeus monodon), bacterial populations of disease-free shrimp were characterized from intestines of four developmental stages (15-day-old post larvae (PL15), 1- (J1), 2- (J2), and 3-month-old (J3) juveniles) using pyrosequencing, real-time PCR and denaturing gradient gel electrophoresis (DGGE) approaches. A total of 25,121 pyrosequencing reads (reading length = 442±24 bases) were obtained, which were categorized by barcode for PL15 (7,045 sequences), J1 (3,055 sequences), J2 (13,130 sequences) and J3 (1,890 sequences). Bacteria in the phyla Bacteroides, Firmicutes and Proteobacteria were found in intestines at all four growth stages. There were 88, 14, 27, and 20 bacterial genera associated with the intestinal tract of PL15, J1, J2 and J3, respectively. Pyrosequencing analysis revealed that Proteobacteria (class Gammaproteobacteria) was a dominant bacteria group with a relative abundance of 89% for PL15 and 99% for J1, J2 and J3. Real-time PCR assay also confirmed that Gammaproteobacteria had the highest relative abundance in intestines from all growth stages. Intestinal bacterial communities from the three juvenile stages were more similar to each other than that of the PL shrimp based on PCA analyses of pyrosequencing results and their DGGE profiles. This study provides descriptive bacterial communities associated to the black tiger shrimp intestines during these growth development stages in rearing facilities. PMID:23577162

  7. Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro-ecosystems across the globe.

    PubMed

    Dai, Zhongmin; Su, Weiqin; Chen, Huaihai; Barberán, Albert; Zhao, Haochun; Yu, Mengjie; Yu, Lu; Brookes, Philip C; Schadt, Christopher W; Chang, Scott X; Xu, Jianming

    2018-04-12

    Long-term elevated nitrogen (N) input from anthropogenic sources may cause soil acidification and decrease crop yield, yet the response of the belowground microbial community to long-term N input alone or in combination with phosphorus (P) and potassium (K) is poorly understood. We explored the effect of long-term N and NPK fertilization on soil bacterial diversity and community composition using meta-analysis of a global dataset. Nitrogen fertilization decreased soil pH, and increased soil organic carbon (C) and available N contents. Bacterial taxonomic diversity was decreased by N fertilization alone, but was increased by NPK fertilization. The effect of N fertilization on bacterial diversity varied with soil texture and water management, but was independent of crop type or N application rate. Changes in bacterial diversity were positively related to both soil pH and organic C content under N fertilization alone, but only to soil organic C under NPK fertilization. Microbial biomass C decreased with decreasing bacterial diversity under long-term N fertilization. Nitrogen fertilization increased the relative abundance of Proteobacteria and Actinobacteria, but reduced the abundance of Acidobacteria, consistent with the general life history strategy theory for bacteria. The positive correlation between N application rate and the relative abundance of Actinobacteria indicates that increased N availability favored the growth of Actinobacteria. This first global analysis of long-term N and NPK fertilization that differentially affects bacterial diversity and community composition provides a reference for nutrient management strategies for maintaining belowground microbial diversity in agro-ecosystems worldwide. © 2018 John Wiley & Sons Ltd.

  8. Bacterial growth, flow, and mixing shape human gut microbiota density and composition.

    PubMed

    Arnoldini, Markus; Cremer, Jonas; Hwa, Terence

    2018-03-13

    The human gut microbiota is highly dynamic, and host physiology and diet exert major influences on its composition. In our recent study, we integrated new quantitative measurements on bacterial growth physiology with a reanalysis of published data on human physiology to build a comprehensive modeling framework. This can generate predictions of how changes in different host factors influence microbiota composition. For instance, hydrodynamic forces in the colon, along with colonic water absorption that manifests as transit time, exert a major impact on microbiota density and composition. This can be mechanistically explained by their effect on colonic pH which directly affects microbiota competition for food. In this addendum, we describe the underlying analysis in more detail. In particular, we discuss the mixing dynamics of luminal content by wall contractions and its implications for bacterial growth and density, as well as the broader implications of our insights for the field of gut microbiota research.

  9. The relationship between rumen bacterial growth, intake of dry matter, digestible organic matter and volatile fatty acid production in buffalo (Bos bubalis) calves.

    PubMed

    Singh, U B; Verma, D N; Varma, A; Ranjhan, S K

    1977-11-01

    1. The production rates of bacteria in the rumen of buffalo (Bos bubalis) calves were estimated using an isotope-dilution technique. A series of fifteen experiments was done with animals given green maize and nine experiments with animals given cowpea (Vigna unguiculata). 2. The turnover time ranged from 205 to 567 min in the group given green maize and from 330 to 648 min in animals offered cowpea. The production rates of bacteria were (mean +/- SE; g/d) 145.77 +/- 7.240 and 237.09 +/- 11.847 in animals given green maize and cowpea respectively. 3. There was a significant correlation between bacterial production rates and dry matter intake, digestible organic matter and total volatile fatty acids formed in the rumen. 4. Regression equations obtained for the two foodstuffs were different suggesting that the bacterial growth rate may vary depending upon the quantity and quality of foodstuff digested and possibly the ratio nitrogen:energy of the foodstuff.

  10. Control of Growth Rate by Initial Substrate Concentration at Values Below Maximum Rate

    PubMed Central

    Gaudy, Anthony F.; Obayashi, Alan; Gaudy, Elizabeth T.

    1971-01-01

    The hyperbolic relationship between specific growth rate, μ, and substrate concentration, proposed by Monod and used since as the basis for the theory of steady-state growth in continuous-flow systems, was tested experimentally in batch cultures. Use of a Flavobacterium sp. exhibiting a high saturation constant for growth in glucose minimal medium allowed direct measurement of growth rate and substrate concentration throughout the growth cycle in medium containing a rate-limiting initial concentration of glucose. Specific growth rates were also measured for a wide range of initial glucose concentrations. A plot of specific growth rate versus initial substrate concentration was found to fit the hyperbolic equation. However, the instantaneous relationship between specific growth rate and substrate concentration during growth, which is stated by the equation, was not observed. Well defined exponential growth phases were developed at initial substrate concentrations below that required for support of the maximum exponential growth rate and a constant doubling time was maintained until 50% of the substrate had been used. It is suggested that the external substrate concentration initially present “sets” the specific growth rate by establishing a steady-state internal concentration of substrate, possibly through control of the number of permeation sites. PMID:5137579

  11. Lactic acid bacterial extract as a biogenic mineral growth modifier

    NASA Astrophysics Data System (ADS)

    Borah, Ballav M.; Singh, Atul K.; Ramesh, Aiyagari; Das, Gopal

    2009-04-01

    The formation of minerals and mechanisms by which bacteria could control their formation in natural habitats is now of current interest for material scientists to have an insight of the mechanism of in vivo mineralization, as well as to seek industrial and technological applications. Crystalline uniform structures of calcium and barium minerals formed micron-sized building blocks when synthesized in the presence of an organic matrix consisting of secreted protein extracts from three different lactic acid bacteria (LAB) viz.: Lactobacillus plantarum MTCC 1325, Lactobacillus acidophilus NRRL B4495 and Pediococcus acidilactici CFR K7. LABs are not known to form organic matrix in biological materialization processes. The influence of these bacterial extracts on the crystallization behavior was investigated in details to test the basic coordination behavior of the acidic protein. In this report, varied architecture of the mineral crystals obtained in presence of high molecular weight protein extracts of three different LAB strains has been discussed. The role of native form of high molecular weight bacterial protein extracts in the generation of nucleation centers for crystal growth was clearly established. A model for the formation of organic matrix-cation complex and the subsequent events leading to crystal growth is proposed.

  12. Effects of inoculation with organic-phosphorus-mineralizing bacteria on soybean (Glycine max) growth and indigenous bacterial community diversity.

    PubMed

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Li, Yang; Duan, Man-Li

    2017-05-01

    Three different organic-phosphorus-mineralizing bacteria (OPMB) strains were inoculated to soil planted with soybean (Glycine max), and their effects on soybean growth and indigenous bacterial community diversity were investigated. Inoculation with Pseudomonas fluorescens Z4-1 and Brevibacillus agri L7-1 increased organic phosphorus degradation by 22% and 30%, respectively, compared with the control at the mature stage. Strains P. fluorescens Z4-1 and B. agri L7-1 significantly improved the soil alkaline phosphatase activity, average well color development, and the soybean root activity. Terminal restriction fragment length polymorphism analysis demonstrated that P. fluorescens Z4-1 and B. agri L7-1 could persist in the soil at relative abundances of 2.0%-6.4% throughout soybean growth. Thus, P. fluorescens Z4-1 and B. agri L7-1 could potentially be used in organic-phosphorus-mineralizing biofertilizers. OPMB inoculation altered the genetic structure of the soil bacterial communities but had no apparent influence on the carbon source utilization profiles of the soil bacterial communities. Principal components analysis showed that the changes in the carbon source utilization profiles of bacterial community depended mainly on the plant growth stages rather than inoculation with OPMB. The results help to understand the evolution of the soil bacterial community after OPMB inoculation.

  13. Novel approach for the use of dairy industry wastes for bacterial growth media production.

    PubMed

    Kasmi, Mariam; Elleuch, Lobna; Dahmeni, Ameni; Hamdi, Moktar; Trabelsi, Ismail; Snoussi, Mejdi

    2018-04-15

    This work proposes a novel approach for the reuse and the recovery of dairy wastes valuable components. Thermal coagulation was performed for dairy effluents and the main responsible fraction for the organic matter content (protein and fat) was separated. Dairy curds were prepared for the formulation of bacterial growth media. Protein, sugar, fat and fatty acids contents have been assessed. Samples treated at 100 °C exhibited marked improvement in terms of protein (25-50%) recovery compared to those treated at 80 °C. Fatty acid analysis revealed the presence of unsaturated fatty acids (mainly oleic acid) that are essential to promote Lactobacillus growth. Previously isolated and identified bacterial strains from dairy wastes (Lactobacillus paracasei, Lactobacillus plantarum, Lactococcus lactis and Lactobacillus brevis) were investigated for their ability to grow on the formulated media. All the tested lactic acid bacteria exhibited greater bacterial growth on the formulated media supplemented with glucose only or with both glucose and yeast extract compared to the control media. By reference to the commercial growth medium, the productivity ratio of the supplemented bactofugate (B) and decreaming (D) formulated media exceeded 0.6 for L. paracasei culture. Whereas, the productivity ratio of the supplemented B medium was greater than 1 compared to the control medium for all the tested strains. As for the supplemented D medium, its productivity ratio was greater than 1 compared to the control medium for both L. paracasei and L. plantarum strains. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Correlation of Increased Metabolic Activity, Resistance to Infection, Enhanced Phagocytosis, and Inhibition of Bacterial Growth by Macrophages from Listeria- and BCG-Infected Mice

    PubMed Central

    Ratzan, Kenneth R.; Musher, Daniel M.; Keusch, Gerald T.; Weinstein, Louis

    1972-01-01

    Macrophages from mice infected with facultative intracellular organisms such as Listeria monocytogenes and BCG have been shown to resist infection by antigenically unrelated intracellular bacterial parasites. This study compares phagocytosis, bacterial growth inhibition, and oxidation of glucose by macrophages from normal mice, mice infected with listeria or BCG, or mice immunized with killed listeria in incomplete Freund's adjuvant. Macrophages from listeria- and BCG-infected mice ingested more listeria; 67 and 57%, respectively, had three or more cell-associated bacteria versus 22% of controls (P < 0.001). Peritoneal macrophages from listeria- and BCG-infected animals significantly (P < 0.001 covariance analysis) inhibited growth of listeria in suspension, whereas control macrophages had no such inhibitory effect. The rate of oxidation of glucose-1-14C was higher in macrophages from listeria- and BCG-infected mice than from either uninfected animals or those immunized with killed listeria. During phagocytosis of killed or live bacteria, or latex particles, the rate of glucose oxidation was increased (P < 0.01). These data suggest that the cellular immunity after infection by an intracellular organism is associated with an increase in metabolic activity of macrophages, namely, an increase in the rate of glucose oxidation resulting in enhancement of phagocytosis and killing. PMID:4629124

  15. Growth Kinetics and Morphology of Barite Crystals Derived from Face-Specific Growth Rates

    DOE PAGES

    Godinho, Jose R. A.; Stack, Andrew G.

    2015-03-30

    Here we investigate the growth kinetics and morphology of barite (BaSO 4) crystals by measuring the growth rates of the (001), (210), (010), and (100) surfaces using vertical scanning interferometry. Solutions with saturation indices 1.1, 2.1, and 3.0 without additional electrolyte, in 0.7 M NaCl, or in 1.3 mM SrCl2 are investigated. Face-specific growth rates are inhibited in the SrCl 2 solution relative to a solution without electrolyte, except for (100). Contrarily, growth of all faces is promoted in the NaCl solution. The variation of face-specific rates is solution-specific, which leads to a. change of the crystal morphology and overallmore » growth rate of crystals. The measured face-specific growth rates are used to model the growth of single crystals. Modeled crystals have a morphology and size similar to those grown from solution. Based on the model the time dependence of surface area and growth rates is analyzed. Growth rates change with time due to surface area normalization for small crystals and large growth intervals. By extrapolating rates to crystals with large surfaces areas, time-independent growth rates are 0.783, 2.96, and 0.513 mmol∙m -2∙h -1, for saturation index 2.1 solutions without additional electrolyte, NaCl, and SrCl 2, respectively.« less

  16. Growth Kinetics and Morphology of Barite Crystals Derived from Face-Specific Growth Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godinho, Jose R. A.; Stack, Andrew G.

    Here we investigate the growth kinetics and morphology of barite (BaSO 4) crystals by measuring the growth rates of the (001), (210), (010), and (100) surfaces using vertical scanning interferometry. Solutions with saturation indices 1.1, 2.1, and 3.0 without additional electrolyte, in 0.7 M NaCl, or in 1.3 mM SrCl2 are investigated. Face-specific growth rates are inhibited in the SrCl 2 solution relative to a solution without electrolyte, except for (100). Contrarily, growth of all faces is promoted in the NaCl solution. The variation of face-specific rates is solution-specific, which leads to a. change of the crystal morphology and overallmore » growth rate of crystals. The measured face-specific growth rates are used to model the growth of single crystals. Modeled crystals have a morphology and size similar to those grown from solution. Based on the model the time dependence of surface area and growth rates is analyzed. Growth rates change with time due to surface area normalization for small crystals and large growth intervals. By extrapolating rates to crystals with large surfaces areas, time-independent growth rates are 0.783, 2.96, and 0.513 mmol∙m -2∙h -1, for saturation index 2.1 solutions without additional electrolyte, NaCl, and SrCl 2, respectively.« less

  17. The bio-physics of condensation of divalent cations into the bacterial wall has implications for growth of Gram-positive bacteria.

    PubMed

    Rauch, Cyril; Cherkaoui, Mohammed; Egan, Sharon; Leigh, James

    2017-02-01

    The anionic-polyelectrolyte nature of the wall of Gram-positive bacteria has long been suspected to be involved in homeostasis of essential cations and bacterial growth. A better understanding of the coupling between the biophysics and the biology of the wall is essential to understand some key features at play in ion-homeostasis in this living system. We consider the wall as a polyelectrolyte gel and balance the long-range electrostatic repulsion within this structure against the penalty entropy required to condense cations around wall polyelectrolytes. The resulting equations define how cations interact physically with the wall and the characteristic time required for a cation to leave the wall and enter into the bacterium to enable its usage for bacterial metabolism and growth. The model was challenged against experimental data regarding growth of Gram-positive bacteria in the presence of varying concentration of divalent ions. The model explains qualitatively and quantitatively how divalent cations interact with the wall as well as how the biophysical properties of the wall impact on bacterial growth (in particular the initiation of bacterial growth). The interplay between polymer biophysics and the biology of Gram positive bacteria is defined for the first time as a new set of variables that contribute to the kinetics of bacterial growth. Providing an understanding of how bacteria capture essential metal cations in way that does not follow usual binding laws has implications when considering the control of such organisms and their ability to survive and grow in extreme environments. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  18. Bacterial secondary production on vascular plant detritus: relationships to detritus composition and degradation rate.

    PubMed Central

    Moran, M A; Hodson, R E

    1989-01-01

    Bacterial production at the expense of vascular plant detritus was measured for three emergent plant species (Juncus effusus, Panicum hemitomon, and Typha latifolia) degrading in the littoral zone of a thermally impacted lake. Bacterial secondary production, measured as tritiated thymidine incorporation into DNA, ranged from 0.01 to 0.81 microgram of bacterial C mg of detritus-1 day-1. The three plant species differed with respect to the amount of bacterial productivity they supported per milligram of detritus, in accordance with the predicted biodegradability of the plant material based on initial nitrogen content, lignin content, and C/N ratio. Bacterial production also varied throughout the 22 weeks of in situ decomposition and was positively related to the nitrogen content and lignin content of the remaining detritus, as well as to the temperature of the lake water. Over time, production was negatively related to the C/N ratio and cellulose content of the degrading plant material. Bacterial production on degrading plant material was also calculated on the basis of plant surface area and ranged from 0.17 to 1.98 micrograms of bacterial C cm-2 day-1. Surface area-based calculations did not correlate well with either initial plant composition or changing composition of the remaining detritus during decomposition. The rate of bacterial detritus degradation, calculated from measured production of surface-attached bacteria, was much lower than the actual rate of weight loss of plant material. This discrepancy may be attributable to the importance of nonbacterial organisms in the degradation and loss of plant material from litterbags or to the microbially mediated solubilization of particulate material prior to bacterial utilization, or both. PMID:2802603

  19. Calcite crystal growth rate inhibition by polycarboxylic acids

    USGS Publications Warehouse

    Reddy, M.M.; Hoch, A.R.

    2001-01-01

    Calcite crystal growth rates measured in the presence of several polycarboxyclic acids show that tetrahydrofurantetracarboxylic acid (THFTCA) and cyclopentanetetracarboxylic acid (CPTCA) are effective growth rate inhibitors at low solution concentrations (0.01 to 1 mg/L). In contrast, linear polycarbocylic acids (citric acid and tricarballylic acid) had no inhibiting effect on calcite growth rates at concentrations up to 10 mg/L. Calcite crystal growth rate inhibition by cyclic polycarboxyclic acids appears to involve blockage of crystal growth sites on the mineral surface by several carboxylate groups. Growth morphology varied for growth in the absence and in the presence of both THFTCA and CPTCA. More effective growth rate reduction by CPTCA relative to THFTCA suggests that inhibitor carboxylate stereochemical orientation controls calcite surface interaction with carboxylate inhibitors. ?? 20O1 Academic Press.

  20. Investment in secreted enzymes during nutrient-limited growth is utility dependent.

    PubMed

    Cezairliyan, Brent; Ausubel, Frederick M

    2017-09-12

    Pathogenic bacteria secrete toxins and degradative enzymes that facilitate their growth by liberating nutrients from the environment. To understand bacterial growth under nutrient-limited conditions, we studied resource allocation between cellular and secreted components by the pathogenic bacterium Pseudomonas aeruginosa during growth on a protein substrate that requires extracellular digestion by secreted proteases. We identified a quantitative relationship between the rate of increase of cellular biomass under nutrient-limiting growth conditions and the rate of increase in investment in secreted proteases. Production of secreted proteases is stimulated by secreted signals that convey information about the utility of secreted proteins during nutrient-limited growth. Growth modeling using this relationship recapitulated the observed kinetics of bacterial growth on a protein substrate. The proposed regulatory strategy suggests a rationale for quorum-sensing-dependent stimulation of the production of secreted enzymes whereby investment in secreted enzymes occurs in proportion to the utility they confer. Our model provides a framework that can be applied toward understanding bacterial growth in many environments where growth rate is limited by the availability of nutrients.

  1. Connection between the growth rate distribution and the size dependent crystal growth

    NASA Astrophysics Data System (ADS)

    Mitrović, M. M.; Žekić, A. A.; IIić, Z. Z.

    2002-07-01

    The results of investigations of the connection between the growth rate dispersions and the size dependent crystal growth of potassium dihydrogen phosphate (KDP), Rochelle salt (RS) and sodium chlorate (SC) are presented. A possible way out of the existing confusion in the size dependent crystal growth investigations is suggested. It is shown that the size independent growth exists if the crystals belonging to one growth rate distribution maximum are considered separately. The investigations suggest possible reason for the observed distribution maxima widths, and the high data scattering on the growth rate versus the crystal size dependence.

  2. A new predictive dynamic model describing the effect of the ambient temperature and the convective heat transfer coefficient on bacterial growth.

    PubMed

    Ben Yaghlene, H; Leguerinel, I; Hamdi, M; Mafart, P

    2009-07-31

    In this study, predictive microbiology and food engineering were combined in order to develop a new analytical model predicting the bacterial growth under dynamic temperature conditions. The proposed model associates a simplified primary bacterial growth model without lag, the secondary Ratkowsky "square root" model and a simplified two-parameter heat transfer model regarding an infinite slab. The model takes into consideration the product thickness, its thermal properties, the ambient air temperature, the convective heat transfer coefficient and the growth parameters of the micro organism of concern. For the validation of the overall model, five different combinations of ambient air temperature (ranging from 8 degrees C to 12 degrees C), product thickness (ranging from 1 cm to 6 cm) and convective heat transfer coefficient (ranging from 8 W/(m(2) K) to 60 W/(m(2) K)) were tested during a cooling procedure. Moreover, three different ambient air temperature scenarios assuming alternated cooling and heating stages, drawn from real refrigerated food processes, were tested. General agreement between predicted and observed bacterial growth was obtained and less than 5% of the experimental data fell outside the 95% confidence bands estimated by the bootstrap percentile method, at all the tested conditions. Accordingly, the overall model was successfully validated for isothermal and dynamic refrigeration cycles allowing for temperature dynamic changes at the centre and at the surface of the product. The major impact of the convective heat transfer coefficient and the product thickness on bacterial growth during the product cooling was demonstrated. For instance, the time needed for the same level of bacterial growth to be reached at the product's half thickness was estimated to be 5 and 16.5 h at low and high convection level, respectively. Moreover, simulation results demonstrated that the predicted bacterial growth at the air ambient temperature cannot be assumed to be

  3. Relationships between coastal bacterioplankton growth rates and biomass production: comparison of leucine and thymidine uptake with single-cell physiological characteristics.

    PubMed

    Franco-Vidal, Leticia; Morán, Xosé Anxelu G

    2011-02-01

    Specific growth rates of heterotrophic bacterioplankton have been frequently estimated from in situ bacterial production (BP) to biomass (BB) ratios, using a series of assumptions that may result in serious discrepancies with values obtained from predator-free cultures. Here, we used both types of approaches together with a comprehensive assessment of single-cell physiological characteristics (membrane integrity, nucleic acid content, and active respiration) of coastal bacterioplankton during a complete annual cycle (February 2007-January 2008) in the southern Bay of Biscay off Xixón, Spain. Both leucine and thymidine incorporation rates were used in conjunction with empirical tracer to carbon or cells conversion factors (eCFs) to accurately derive BP. Leu and TdR incorporation rates covaried year-round, as did the corresponding eCFs at 0 and 50 m depth. eCFs peaked in autumn, with mean annual values close to the theoretical ones (3.4 kg C mol Leu(-1) and 2.0 × 10(18) cells mol TdR(-1)). Bacterial abundance (0.2-1.5 × 10(6) cells L(-1)) showed a bimodal distribution with maxima in May and October and minima in March. Live (membrane-intact) cells dominated year-round (79-97%), with high nucleic acid cells (42-88%) and actively respiring bacteria (CTC+, 1-16%) showing distinct surface maxima in April and July, respectively. BB (557-1,558 mg C m(-2)) and BP (7-139 mg C m(-2) day(-1)) presented two distinct peaks in spring and autumn, both of similar size due to a strong upwelling event observed in September. Specific growth rates (0.35-3.8 day(-1)) were one order of magnitude higher in predator-free incubations than bacterial turnover rates derived from integrated BP:BB ratios (0.01-0.16 and 0.01-0.09 day(-1), for Leu and TdR, respectively) and were not correlated, probably due to a significant contribution of low activity cells to total standing stocks. The Leu:TdR molar ratio averaged for the water column (6.6-25.5) decreased significantly with higher integrated

  4. Effects of grazing, phosphorus and light on the growth rates of major bacterioplankton taxa in the coastal NW Mediterranean.

    PubMed

    Sánchez, Olga; Koblížek, Michal; Gasol, Josep M; Ferrera, Isabel

    2017-06-01

    Estimation of growth rates is crucial to understand the ecological role of prokaryotes and their contribution to marine biogeochemical cycling. However, there are only a few estimates for individual taxa. Two top-down (grazing) and bottom-up (phosphorus (P) availability) manipulation experiments were conducted under different light regimes in the NW Mediterranean Sea. Growth rate of different phylogenetic groups, including the Bacteroidetes, Rhodobacteraceae, SAR11, Gammaproteobacteria and its subgroups Alteromonadaceae and the NOR5/OM60 clade, were estimated from changes in cell numbers. Maximal growth rates were achieved in the P-amended treatments but when comparing values between treatments (response ratios), the response to predation removal was in general larger than to P-amendment. The Alteromonadaceae displayed the highest rates in both experiments followed by the Rhodobacteraceae, but all groups largely responded to filtration and P-amendment, even the SAR11 which presented low growth rates. Comparing light and dark treatments, growth rates were on average equal or higher in the dark than in the light for all groups, except for the Rhodobacteraceae and particularly the NOR5 clade, groups that contain photoheterotrophic species. These results are useful to evaluate the potential contributions of different bacterial types to biogeochemical processes under changing environmental conditions. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Using Reactive Transport Modeling to Understand Changes in Electrical Conductivity Associated with Bacterial Growth and Respiration

    NASA Astrophysics Data System (ADS)

    Regberg, A. B.; Singha, K.; Picardal, F.; Brantley, S. L.

    2011-12-01

    Previous research has linked measured changes in the bulk electrical conductivity (σb) of water-saturated sediments to the respiration and growth of anaerobic bacteria. If the mechanism causing this signal is understood and characterized it could be used to identify and monitor zones of bacterial activity in the subsurface. The 1-D reactive transport model PHREEQC was used to understand σb signals by modeling chemical gradients within two column reactors and corresponding changes in effluent chemistry. The flow-through column reactors were packed with Fe(III)-bearing sediment from Oyster, VA and inoculated with an environmental consortia of microorganisms. Influent in the first reactor was amended with 1mM Na-acetate to encourage the growth of iron-reducing bacteria. Influent in the second reactor was amended with 0.1mM Na-Acetate and 2mM NaNO3 to encourage the growth of nitrate-reducing bacteria. While effluent concentrations of acetate, Fe(II), NO3-, NO2-, and NH4+ remained at steady state, we measured a 3-fold increase (0.055 S/m - 0.2 S/m) in σb in the iron-reducing column and a 10-fold increase in σb (0.07 S/m - 0.8 S/m) in the nitrate-reducing column over 198 days. The ionic strength in both reactors remained constant through time indicating that the measured increases in σb were not caused by changing effluent concentrations. PHREEQC successfully matched the measured changes in effluent concentrations for both columns when the reaction database was modified in the following manner. For the iron-reducing column, kinetic expressions governing the rate of iron reduction, the rate of bacterial growth, and the production of methane were added to the reaction database. Additionally, surface adsorption and cation exchange reactions were added so that the model was consistent with measured effluent chemistry. For the nitrate-reducing column, kinetic expressions governing nitrate reduction and bacterial growth were added to the reaction database. Additionally

  6. Bacterial community changes in an industrial algae production system.

    PubMed

    Fulbright, Scott P; Robbins-Pianka, Adam; Berg-Lyons, Donna; Knight, Rob; Reardon, Kenneth F; Chisholm, Stephen T

    2018-04-01

    While microalgae are a promising feedstock for production of fuels and other chemicals, a challenge for the algal bioproducts industry is obtaining consistent, robust algae growth. Algal cultures include complex bacterial communities and can be difficult to manage because specific bacteria can promote or reduce algae growth. To overcome bacterial contamination, algae growers may use closed photobioreactors designed to reduce the number of contaminant organisms. Even with closed systems, bacteria are known to enter and cohabitate, but little is known about these communities. Therefore, the richness, structure, and composition of bacterial communities were characterized in closed photobioreactor cultivations of Nannochloropsis salina in F/2 medium at different scales, across nine months spanning late summer-early spring, and during a sequence of serially inoculated cultivations. Using 16S rRNA sequence data from 275 samples, bacterial communities in small, medium, and large cultures were shown to be significantly different. Larger systems contained richer bacterial communities compared to smaller systems. Relationships between bacterial communities and algae growth were complex. On one hand, blooms of a specific bacterial type were observed in three abnormal, poorly performing replicate cultivations, while on the other, notable changes in the bacterial community structures were observed in a series of serial large-scale batch cultivations that had similar growth rates. Bacteria common to the majority of samples were identified, including a single OTU within the class Saprospirae that was found in all samples. This study contributes important information for crop protection in algae systems, and demonstrates the complex ecosystems that need to be understood for consistent, successful industrial algae cultivation. This is the first study to profile bacterial communities during the scale-up process of industrial algae systems.

  7. Growth Rates of Microbes in the Oceans.

    PubMed

    Kirchman, David L

    2016-01-01

    A microbe's growth rate helps to set its ecological success and its contribution to food web dynamics and biogeochemical processes. Growth rates at the community level are constrained by biomass and trophic interactions among bacteria, phytoplankton, and their grazers. Phytoplankton growth rates are approximately 1 d(-1), whereas most heterotrophic bacteria grow slowly, close to 0.1 d(-1); only a few taxa can grow ten times as fast. Data from 16S rRNA and other approaches are used to speculate about the growth rate and the life history strategy of SAR11, the most abundant clade of heterotrophic bacteria in the oceans. These strategies are also explored using genomic data. Although the methods and data are imperfect, the available data can be used to set limits on growth rates and thus on the timescale for changes in the composition and structure of microbial communities.

  8. Alcohol, Intestinal Bacterial Growth, Intestinal Permeability to Endotoxin, and Medical Consequences

    PubMed Central

    Purohit, Vishnudutt; Bode, J. Christian; Bode, Christiane; Brenner, David A.; Choudhry, Mashkoor A.; Hamilton, Frank; Kang, Y. James; Keshavarzian, Ali; Rao, Radhakrishna; Sartor, R. Balfour; Swanson, Christine; Turner, Jerrold R.

    2008-01-01

    This report is a summary of the symposium on Alcohol, Intestinal Bacterial Growth, Intestinal Permeability to Endotoxin, and Medical Consequences, organized by National Institute on Alcohol Abuse and Alcoholism, Office of Dietary Supplements, and National Institute of Diabetes and Digestive and Kidney Diseases of National Institutes of Health in Rockville, Maryland, October 11, 2006. Alcohol exposure can promote the growth of Gram negative bacteria in the intestine which may result in accumulation of endotoxin. In addition, alcohol metabolism by Gram negative bacteria and intestinal epithelial cells can result in accumulation of acetaldehyde, which in turn can increase intestinal permeability to endotoxin by increasing tyrosine phosphorylation of tight junction and adherens junction proteins. Alcohol-induced generation of nitric oxide may also contribute to increased permeability to endotoxin by reacting with tubulin, which may cause damage to microtubule cytoskeleton and subsequent disruption of intestinal barrier function. Increased intestinal permeability can lead to increased transfer of endotoxin from the intestine to the liver and general circulation where endotoxin may trigger inflammatory changes in the liver and other organs. Alcohol may also increase intestinal permeability to peptidoglycan which can initiate inflammatory response in liver and other organs. In addition, acute alcohol exposure may potentiate the effect of burn injury on intestinal bacterial growth and permeability. Decreasing the number of Gram negative bacteria in the intestine can result in decreased production of endotoxin as well as acetaldehyde which is expected to decrease intestinal permeability to endotoxin. In addition, intestinal permeability may be preserved by administering epidermal growth factor, L-glutamine, oats supplementation, or zinc thereby preventing the transfer of endotoxin to the general circulation. Thus reducing the number of intestinal Gram negative bacteria and

  9. Bacterial Signaling Nucleotides Inhibit Yeast Cell Growth by Impacting Mitochondrial and Other Specifically Eukaryotic Functions

    PubMed Central

    Vergnano, Marta; Wan, Chris

    2017-01-01

    ABSTRACT We have engineered Saccharomyces cerevisiae to inducibly synthesize the prokaryotic signaling nucleotides cyclic di-GMP (cdiGMP), cdiAMP, and ppGpp in order to characterize the range of effects these nucleotides exert on eukaryotic cell function during bacterial pathogenesis. Synthetic genetic array (SGA) and transcriptome analyses indicated that, while these compounds elicit some common reactions in yeast, there are also complex and distinctive responses to each of the three nucleotides. All three are capable of inhibiting eukaryotic cell growth, with the guanine nucleotides exhibiting stronger effects than cdiAMP. Mutations compromising mitochondrial function and chromatin remodeling show negative epistatic interactions with all three nucleotides. In contrast, certain mutations that cause defects in chromatin modification and ribosomal protein function show positive epistasis, alleviating growth inhibition by at least two of the three nucleotides. Uniquely, cdiGMP is lethal both to cells growing by respiration on acetate and to obligately fermentative petite mutants. cdiGMP is also synthetically lethal with the ribonucleotide reductase (RNR) inhibitor hydroxyurea. Heterologous expression of the human ppGpp hydrolase Mesh1p prevented the accumulation of ppGpp in the engineered yeast and restored cell growth. Extensive in vivo interactions between bacterial signaling molecules and eukaryotic gene function occur, resulting in outcomes ranging from growth inhibition to death. cdiGMP functions through a mechanism that must be compensated by unhindered RNR activity or by functionally competent mitochondria. Mesh1p may be required for abrogating the damaging effects of ppGpp in human cells subjected to bacterial infection. PMID:28743817

  10. Characterizing endophytic competence and plant growth promotion of bacterial endophytes inhabiting the seed endosphere of Rice.

    PubMed

    Walitang, Denver I; Kim, Kiyoon; Madhaiyan, Munusamy; Kim, Young Kee; Kang, Yeongyeong; Sa, Tongmin

    2017-10-26

    Rice (Oryza sativa L. ssp. indica) seeds as plant microbiome present both an opportunity and a challenge to colonizing bacterial community living in close association with plants. Nevertheless, the roles and activities of bacterial endophytes remain largely unexplored and insights into plant-microbe interaction are compounded by its complexity. In this study, putative functions or physiological properties associated with bacterial endophytic nature were assessed. Also, endophytic roles in plant growth and germination that may allow them to be selectively chosen by plants were also studied. The cultivable seed endophytes were dominated by Proteobacteria particularly class Gammaproteobacteria. Highly identical type strains were isolated from the seed endosphere regardless of the rice host's physiological tolerance to salinity. Among the type strains, Flavobacterium sp., Microbacterium sp. and Xanthomonas sp. were isolated from the salt-sensitive and salt-tolerant cultivars. PCA-Biplot ordination also showed that specific type strains isolated from different rice cultivars have distinguishing similar characteristics. Flavobacterium sp. strains are phosphate solubilizers and indole-3-acetic acid producers with high tolerance to salinity and osmotic stress. Pseudomonas strains are characterized as high siderophore producers while Microbacterium sp. and Xanthomonas sp. strains have very high pectinase and cellulase activity. Among the physiological traits of the seed endophytes, bacterial pectinase and cellulase activity are positively correlated as well as salt and osmotic tolerance. Overall characterization shows that majority of the isolates could survive in 4-8% salt concentration as well as in 0.6 M and 1.2 M sucrose solution. The activities of catalase, pectinase and cellulase were also observed in almost all of the isolates indicating the importance of these characteristics for survival and colonization into the seed endosphere. Seed bacterial endophytes also

  11. Growth of 48 built environment bacterial isolates on board the International Space Station (ISS)

    PubMed Central

    Neches, Russell Y.; Lang, Jenna M.; Brown, Wendy E.; Severance, Mark; Cavalier, Darlene

    2016-01-01

    Background. While significant attention has been paid to the potential risk of pathogenic microbes aboard crewed spacecraft, the non-pathogenic microbes in these habitats have received less consideration. Preliminary work has demonstrated that the interior of the International Space Station (ISS) has a microbial community resembling those of built environments on Earth. Here we report the results of sending 48 bacterial strains, collected from built environments on Earth, for a growth experiment on the ISS. This project was a component of Project MERCCURI (Microbial Ecology Research Combining Citizen and University Researchers on ISS). Results. Of the 48 strains sent to the ISS, 45 of them showed similar growth in space and on Earth using a relative growth measurement adapted for microgravity. The vast majority of species tested in this experiment have also been found in culture-independent surveys of the ISS. Only one bacterial strain showed significantly different growth in space. Bacillus safensis JPL-MERTA-8-2 grew 60% better in space than on Earth. Conclusions. The majority of bacteria tested were not affected by conditions aboard the ISS in this experiment (e.g., microgravity, cosmic radiation). Further work on Bacillus safensis could lead to interesting insights on why this strain grew so much better in space. PMID:27019789

  12. Growth of 48 built environment bacterial isolates on board the International Space Station (ISS).

    PubMed

    Coil, David A; Neches, Russell Y; Lang, Jenna M; Brown, Wendy E; Severance, Mark; Cavalier, Darlene; Eisen, Jonathan A

    2016-01-01

    Background. While significant attention has been paid to the potential risk of pathogenic microbes aboard crewed spacecraft, the non-pathogenic microbes in these habitats have received less consideration. Preliminary work has demonstrated that the interior of the International Space Station (ISS) has a microbial community resembling those of built environments on Earth. Here we report the results of sending 48 bacterial strains, collected from built environments on Earth, for a growth experiment on the ISS. This project was a component of Project MERCCURI (Microbial Ecology Research Combining Citizen and University Researchers on ISS). Results. Of the 48 strains sent to the ISS, 45 of them showed similar growth in space and on Earth using a relative growth measurement adapted for microgravity. The vast majority of species tested in this experiment have also been found in culture-independent surveys of the ISS. Only one bacterial strain showed significantly different growth in space. Bacillus safensis JPL-MERTA-8-2 grew 60% better in space than on Earth. Conclusions. The majority of bacteria tested were not affected by conditions aboard the ISS in this experiment (e.g., microgravity, cosmic radiation). Further work on Bacillus safensis could lead to interesting insights on why this strain grew so much better in space.

  13. Evaluation of zinc oxide nanoparticles on lettuce (Lactuca sativa L.) growth and soil bacterial community.

    PubMed

    Xu, Jiangbing; Luo, Xiaosan; Wang, Yanling; Feng, Youzhi

    2018-02-01

    The wide spread of nanoparticles (NPs) has caused tremendous concerns on agricultural ecosystem. Some metallic NPs, such as zinc oxide (ZnO), can be utilized as a nano-fertilizer when used at optimal doses. However, little is known about the responses of plant development and concomitant soil bacteria community to ZnO NPs. The present pot experiment studied the impacts of different doses of ZnO NPs and bulk ZnO (0, 1, 10, 100 mg ZnO/kg), on the growth of lettuce (Lactuca sativa L.) and the associated rhizospheric soil bacterial community. Results showed that at a dose of 10 mg/kg, ZnO NPs and bulk ZnO, enhanced the lettuce biomass and the net photosynthetic rate; whereas, the Zn content in plant tissue was higher in NPs treatment than in their bulk counterpart at 10 mg/kg dose or higher. For the underground observations, 10 mg/kg treatment doses (NPs or bulk) significantly changed the soil bacterial community structure, despite the non-significant variations in alpha diversity. Taxonomic distribution revealed that some lineages within Cyanobacteria and other phyla individually demonstrated similar or different responses to ZnO NPs and bulk ZnO. Moreover, some lineages associated with plant growth promotion were also influenced to different extents by ZnO NPs and bulk ZnO, suggesting the distinct microbial processes occurring in soil. Collectively, this study expanded our understanding of the influence of ZnO NPs on plant performance and the associated soil microorganisms.

  14. Coupling Bacterial Activity Measurements with Cell Sorting by Flow Cytometry.

    PubMed

    Servais; Courties; Lebaron; Troussellier

    1999-08-01

    > Abstract A new procedure to investigate the relationship between bacterial cell size and activity at the cellular level has been developed; it is based on the coupling of radioactive labeling of bacterial cells and cell sorting by flow cytometry after SYTO 13 staining. Before sorting, bacterial cells were incubated in the presence of tritiated leucine using a procedure similar to that used for measuring bacterial production by leucine incorporation and then stained with SYTO 13. Subpopulations of bacterial cells were sorted according to their average right-angle light scatter (RALS) and fluorescence. Average RALS was shown to be significantly related to the average biovolume. Experiments were performed on samples collected at different times in a Mediterranean seawater mesocosm enriched with nitrogen and phosphorus. At four sampling times, bacteria were sorted in two subpopulations (cells smaller and larger than 0.25 µm(3)). The results indicate that, at each sampling time, the growth rate of larger cells was higher than that of smaller cells. In order to confirm this tendency, cell sorting was performed on six subpopulations differing in average biovolume during the mesocosm follow-up. A clear increase of the bacterial growth rates was observed with increasing cell size for the conditions met in this enriched mesocosm.http://link.springer-ny.com/link/service/journals/00248/bibs/38n2p180.html

  15. A new model for the spectral induced polarization signature of bacterial growth in porous media

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Revil, A.; Atekwana, E. A.; Jardani, A.; Smith, S.

    2012-12-01

    Recent biogeophysics studies demonstrated the sensitivity of complex conductivity to bacterial growth and microbial mediated mineral transformations in porous media. Frequency-domain induced polarization is a minimally invasive manner to measure the complex conductivity of a material over a broad range of frequencies. The real component of complex conductivity is associated with electromigration of the charge carriers, and the imaginary component represents reversible energy storage of charge carriers at polarization length scales. Quantitative relationship between frequency-domain induced polarization responses and bacterial growth and decay in porous media is analyzed in this study using a new developed model. We focus on the direct contribution of bacteria themselves to the complex conductivity in porous media in the absence of biomineralization. At low frequencies, the induced polarization of bacteria (α-polarization) is related to the properties of the electrical double layer surrounding the membrane surface of bacteria. Surface conductivity and α-polarization are due to the Stern layer of the counterions occurring in a brush of polymers coating the surface of the bacteria, and can be related to the cation exchange capacity of the bacteria. From the modeling results, at low frequencies (< 10 Hz), the mobility of the counterions (K+) in the Stern layer of bacteria is found to be extremely small (4.7×10-10 m2s-1 V-1 at 25°C), and is close to the mobility of the same counterions along the surface of clay minerals (Na+, 1.5×10-10 m2s-1 V-1 at 25°C). This result is in agreement with experimental observations and it indicates a very low relaxation frequency for the α-polarization of the bacteria cells (typically around 0.1 to 5 Hertz). By coupling this new model with reactive transport modeling in which the evolution of bacterial populations are usually described by Monod kinetics, we show that the changes in imaginary conductivity with time can be used to

  16. Bacterial Signaling Nucleotides Inhibit Yeast Cell Growth by Impacting Mitochondrial and Other Specifically Eukaryotic Functions.

    PubMed

    Hesketh, Andy; Vergnano, Marta; Wan, Chris; Oliver, Stephen G

    2017-07-25

    We have engineered Saccharomyces cerevisiae to inducibly synthesize the prokaryotic signaling nucleotides cyclic di-GMP (cdiGMP), cdiAMP, and ppGpp in order to characterize the range of effects these nucleotides exert on eukaryotic cell function during bacterial pathogenesis. Synthetic genetic array (SGA) and transcriptome analyses indicated that, while these compounds elicit some common reactions in yeast, there are also complex and distinctive responses to each of the three nucleotides. All three are capable of inhibiting eukaryotic cell growth, with the guanine nucleotides exhibiting stronger effects than cdiAMP. Mutations compromising mitochondrial function and chromatin remodeling show negative epistatic interactions with all three nucleotides. In contrast, certain mutations that cause defects in chromatin modification and ribosomal protein function show positive epistasis, alleviating growth inhibition by at least two of the three nucleotides. Uniquely, cdiGMP is lethal both to cells growing by respiration on acetate and to obligately fermentative petite mutants. cdiGMP is also synthetically lethal with the ribonucleotide reductase (RNR) inhibitor hydroxyurea. Heterologous expression of the human ppGpp hydrolase Mesh1p prevented the accumulation of ppGpp in the engineered yeast and restored cell growth. Extensive in vivo interactions between bacterial signaling molecules and eukaryotic gene function occur, resulting in outcomes ranging from growth inhibition to death. cdiGMP functions through a mechanism that must be compensated by unhindered RNR activity or by functionally competent mitochondria. Mesh1p may be required for abrogating the damaging effects of ppGpp in human cells subjected to bacterial infection. IMPORTANCE During infections, pathogenic bacteria can release nucleotides into the cells of their eukaryotic hosts. These nucleotides are recognized as signals that contribute to the initiation of defensive immune responses that help the infected

  17. Bacterial growth tolerance to concentrations of chlorate and perchlorate salts relevant to Mars

    NASA Astrophysics Data System (ADS)

    Al Soudi, Amer F.; Farhat, Omar; Chen, Fei; Clark, Benton C.; Schneegurt, Mark A.

    2017-07-01

    The Phoenix lander at Mars polar cap found appreciable levels of (per)chlorate salts, a mixture of perchlorate and chlorate salts of Ca, Fe, Mg and Na at levels of ~0.6% in regolith. These salts are highly hygroscopic and can form saturated brines through deliquescence, likely producing aqueous solutions with very low freezing points on Mars. To support planetary protection efforts, we have measured bacterial growth tolerance to (per)chlorate salts. Existing bacterial isolates from the Great Salt Plains of Oklahoma (NaCl-rich) and Hot Lake in Washington (MgSO4-rich) were tested in high concentrations of Mg, K and Na salts of chlorate and perchlorate. Strong growth was observed with nearly all of these salinotolerant isolates at 1% (~0.1 M) (per)chlorate salts, similar to concentrations observed in bulk soils on Mars. Growth in perchlorate salts was observed at concentrations of at least 10% (~1.0 M). Greater tolerance was observed for chlorate salts, where growth was observed to 2.75 M (>25%). Tolerance to K salts was greatest, followed by Mg salts and then Na salts. Tolerances varied among isolates, even among those within the same phylogenetic clade. Tolerant bacteria included genera that also are found in spacecraft assembly facilities. Substantial microbial tolerance to (per)chlorate salts is a concern for planetary protection since tolerant microbes contaminating spacecraft would have a greater chance for survival and proliferation, despite the harsh chemical conditions found near the surface of Mars.

  18. Dinosaur Metabolism and the Allometry of Maximum Growth Rate

    PubMed Central

    Myhrvold, Nathan P.

    2016-01-01

    The allometry of maximum somatic growth rate has been used in prior studies to classify the metabolic state of both extant vertebrates and dinosaurs. The most recent such studies are reviewed, and their data is reanalyzed. The results of allometric regressions on growth rate are shown to depend on the choice of independent variable; the typical choice used in prior studies introduces a geometric shear transformation that exaggerates the statistical power of the regressions. The maximum growth rates of extant groups are found to have a great deal of overlap, including between groups with endothermic and ectothermic metabolism. Dinosaur growth rates show similar overlap, matching the rates found for mammals, reptiles and fish. The allometric scaling of growth rate with mass is found to have curvature (on a log-log scale) for many groups, contradicting the prevailing view that growth rate allometry follows a simple power law. Reanalysis shows that no correlation between growth rate and basal metabolic rate (BMR) has been demonstrated. These findings drive a conclusion that growth rate allometry studies to date cannot be used to determine dinosaur metabolism as has been previously argued. PMID:27828977

  19. Dinosaur Metabolism and the Allometry of Maximum Growth Rate.

    PubMed

    Myhrvold, Nathan P

    2016-01-01

    The allometry of maximum somatic growth rate has been used in prior studies to classify the metabolic state of both extant vertebrates and dinosaurs. The most recent such studies are reviewed, and their data is reanalyzed. The results of allometric regressions on growth rate are shown to depend on the choice of independent variable; the typical choice used in prior studies introduces a geometric shear transformation that exaggerates the statistical power of the regressions. The maximum growth rates of extant groups are found to have a great deal of overlap, including between groups with endothermic and ectothermic metabolism. Dinosaur growth rates show similar overlap, matching the rates found for mammals, reptiles and fish. The allometric scaling of growth rate with mass is found to have curvature (on a log-log scale) for many groups, contradicting the prevailing view that growth rate allometry follows a simple power law. Reanalysis shows that no correlation between growth rate and basal metabolic rate (BMR) has been demonstrated. These findings drive a conclusion that growth rate allometry studies to date cannot be used to determine dinosaur metabolism as has been previously argued.

  20. Growth axis maturation is linked to nutrition, growth and developmental rate.

    PubMed

    Hetz, Jennifer A; Menzies, Brandon R; Shaw, Geoffrey; Rao, Alexandra; Clarke, Iain J; Renfree, Marilyn B

    2015-08-15

    Maturation of the mammalian growth axis is thought to be linked to the transition from fetal to post-natal life at birth. However, in an altricial marsupial, the tammar wallaby (Macropus eugenii), this process occurs many months after birth but at a time when the young is at a similar developmental stage to that of neonatal eutherian mammals. Here we manipulate growth rates and demonstrate in slow, normal and fast growing tammar young that nutrition and growth rate affect the time of maturation of the growth axis. Maturation of GH/IGF-I axis components occurred earlier in fast growing young, which had significantly increased hepatic GHR, IGF1 and IGFALS expression, plasma IGF-I concentrations, and significantly decreased plasma GH concentrations compared to age-matched normal young. These data support the hypothesis that the time of maturation of the growth axis depends on the growth rate and maturity of the young, which can be accelerated by changing their nutritional status. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Aerobic Growth on Nitroglycerin as the Sole Carbon, Nitrogen, and Energy Source by a Mixed Bacterial Culture

    PubMed Central

    Accashian, John V.; Vinopal, Robert T.; Kim, Byung-Joon; Smets, Barth F.

    1998-01-01

    Nitroglycerin (glycerol trinitrate [GTN]), an explosive and vasodilatory compound, was metabolized by mixed microbial cultures from aeration tank sludge previously exposed to GTN. Aerobic enrichment cultures removed GTN rapidly in the absence of a supplemental carbon source. Complete denitration of GTN, provided as the sole C and N source, was observed in aerobic batch cultures and proceeded stepwise via the dinitrate and mononitrate isomers, with successive steps occurring at lower rates. The denitration of all glycerol nitrate esters was found to be concomitant, and 1,2-glycerol dinitrate (1,2-GDN) and 2-glycerol mononitrate (2-GMN) were the primary GDN and GMN isomers observed. Denitration of GTN resulted in release of primarily nitrite-N, indicating a reductive denitration mechanism. Biomass growth at the expense of GTN was verified by optical density and plate count measurements. The kinetics of GTN biotransformation were 10-fold faster than reported for complete GTN denitration under anaerobic conditions. A maximum specific growth rate of 0.048 ± 0.005 h−1 (mean ± standard deviation) was estimated for the mixed culture at 25°C. Evidence of GTN toxicity was observed at GTN concentrations above 0.3 mM. To our knowledge, this is the first report of complete denitration of GTN used as a primary growth substrate by a bacterial culture under aerobic conditions. PMID:9726874

  2. The maximum growth rate of life on Earth

    NASA Astrophysics Data System (ADS)

    Corkrey, Ross; McMeekin, Tom A.; Bowman, John P.; Olley, June; Ratkowsky, David

    2018-01-01

    Life on Earth spans a range of temperatures and exhibits biological growth rates that are temperature dependent. While the observation that growth rates are temperature dependent is well known, we have recently shown that the statistical distribution of specific growth rates for life on Earth is a function of temperature (Corkrey et al., 2016). The maximum rates of growth of all life have a distinct limit, even when grown under optimal conditions, and which vary predictably with temperature. We term this distribution of growth rates the biokinetic spectrum for temperature (BKST). The BKST possibly arises from a trade-off between catalytic activity and stability of enzymes involved in a rate-limiting Master Reaction System (MRS) within the cell. We develop a method to extrapolate quantile curves for the BKST to obtain the posterior probability of the maximum rate of growth of any form of life on Earth. The maximum rate curve conforms to the observed data except below 0°C and above 100°C where the predicted value may be positively biased. The deviation below 0°C may arise from the bulk properties of water, while the degradation of biomolecules may be important above 100°C. The BKST has potential application in astrobiology by providing an estimate of the maximum possible growth rate attainable by terrestrial life and perhaps life elsewhere. We suggest that the area under the maximum growth rate curve and the peak rate may be useful characteristics in considerations of habitability. The BKST can serve as a diagnostic for unusual life, such as second biogenesis or non-terrestrial life. Since the MRS must have been heavily conserved the BKST may contain evolutionary relics. The BKST can serve as a signature summarizing the nature of life in environments beyond Earth, or to characterize species arising from a second biogenesis on Earth.

  3. Studies on Batch Production of Bacterial Concentrates from Mixed Species Lactic Starters

    PubMed Central

    Pettersson, H. E.

    1975-01-01

    Optimum growth conditions for mixed species starter FDs 0172 at constant pH in skim milk, whey, and tryptone medium were investigated. Growth rate and maximum population were optimal at 30 C. pH values between 5.5 and 7.0 did not influence the growth rate and maximum population obtainable. Lactic acid-producing activity declined rapidly after reaching the end of the exponential growth phase. The bacterial balance was found to be influenced by the growth parameters: media, pH, temperature, and neutralizer. Skim milk or whey medium at 25 C, pH 6.5, and neutralized with 20% (vol/vol) NH4OH kept the bacterial balance almost constant throughout the cultivation. Grown in tryptone medium at constant pH, the changes in bacterial balance and other metabolic activities were striking compared to the other two media tested. The effect of lactate as an inhibitor was found to be complex, changing with the growth conditions. Concentrates made from mixed species starters FDs 0172, FD 0570, CH 0170, CHs 0170, and T 27 were comparable to controls when cultivated at the optimum conditions found and thereafter centrifuged. Aroma production, proteolytic activity, and CO2 production did not change significantly compared to controls when cultivated at optimum conditions in skim milk or whey medium. PMID:16350009

  4. Transition metal ions mediated tyrosine based short peptide amphiphile nanostructures inhibit bacterial growth.

    PubMed

    Joshi, Khashti Ballabh; Singh, Ramesh; Mishra, Narendra Kumar; Kumar, Vikas; Vinayak, Vandana

    2018-05-17

    We report the design and synthesis of biocompatible small peptide based molecule for the controlled and targeted delivery of the encapsulated bioactive metal ions via transforming their internal nanostructures. Tyrosine based short peptide amphiphile (sPA) was synthesized which self-assembled into β-sheet like secondary structures. The self assembly of the designed sPA was modulated by using different bioactive transition metal ions which is confirmed by spectroscopic and microscopic techniques. These bioactive metal ions conjugated sPA hybrid structures are further used to develop antibacterial materials. It is due to the excellent antibacterial activity of zinc ions that the growth of clinically relevant bacteria such as E. Coli was inhibited in the presence of zinc-sPA conjugate. The bacterial test demonstrated that owing to high biocompatibility with bacterial cell, the designed sPA worked as metal ions delivery agent and therefore it can show great potential in locally addressing bacterial infections. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Density, ages, and growth rates in old-growth and young-growth forests in coastal Oregon

    USGS Publications Warehouse

    Tappeiner, J. C.; Huffman, D.; Spies, T.; Bailey, John D.

    1997-01-01

    We studied the ages and diameter growth rates of trees in former Douglas-fir (Pseudotsuga menziesii (Mirb.)Franco) old-growth stands on 10 sites and compared them with young-growth stands (50-70 years old, regenerated after timber harvest) in the Coast Range of western Oregon. The diameters and diameter growth rates for the first 100 years of trees in the old-growth stands were significantly greater than those in the young-growth stands. Growth rates in the old stands were comparable with those from long-term studies of young stands in which density is about 100-120 trees/ha; often young-growth stand density is well over 500 trees/ha. Ages of large trees in the old stands ranged from 100 to 420 years; ages in young stands varied by only about 5 to 10 years. Apparently, regeneration of old-growth stands on these sites occurred over a prolonged period, and trees grew at low density with little self-thinning; in contrast, after timber harvest, young stands may develop with high density of trees with similar ages and considerable self-thinning. The results suggest that thinning may be needed in dense young stands where the management objective is to speed development of old-growth characteristics.

  6. Division-Based, Growth Rate Diversity in Bacteria

    PubMed Central

    Gangwe Nana, Ghislain Y.; Ripoll, Camille; Cabin-Flaman, Armelle; Gibouin, David; Delaune, Anthony; Janniere, Laurent; Grancher, Gerard; Chagny, Gaelle; Loutelier-Bourhis, Corinne; Lentzen, Esther; Grysan, Patrick; Audinot, Jean-Nicolas; Norris, Vic

    2018-01-01

    To investigate the nature and origins of growth rate diversity in bacteria, we grew Escherichia coli and Bacillus subtilis in liquid minimal media and, after different periods of 15N-labeling, analyzed and imaged isotope distributions in individual cells with Secondary Ion Mass Spectrometry. We find a striking inter- and intra-cellular diversity, even in steady state growth. This is consistent with the strand-dependent, hyperstructure-based hypothesis that a major function of the cell cycle is to generate coherent, growth rate diversity via the semi-conservative pattern of inheritance of strands of DNA and associated macromolecular assemblies. We also propose quantitative, general, measures of growth rate diversity for studies of cell physiology that include antibiotic resistance. PMID:29867792

  7. Illumination of growth, division and secretion by metabolic labeling of the bacterial cell surface

    PubMed Central

    Siegrist, M. Sloan; Swarts, Benjamin M.; Fox, Douglas M.; Lim, Shion An; Bertozzi, Carolyn R.

    2015-01-01

    The cell surface is the essential interface between a bacterium and its surroundings. Composed primarily of molecules that are not directly genetically encoded, this highly dynamic structure accommodates the basic cellular processes of growth and division as well as the transport of molecules between the cytoplasm and the extracellular milieu. In this review, we describe aspects of bacterial growth, division and secretion that have recently been uncovered by metabolic labeling of the cell envelope. Metabolite derivatives can be used to label a variety of macromolecules, from proteins to non-genetically-encoded glycans and lipids. The embedded metabolite enables precise tracking in time and space, and the versatility of newer chemoselective detection methods offers the ability to execute multiple experiments concurrently. In addition to reviewing the discoveries enabled by metabolic labeling of the bacterial cell envelope, we also discuss the potential of these techniques for translational applications. Finally, we offer some guidelines for implementing this emerging technology. PMID:25725012

  8. Distribution and life strategies of two bacterial populations in a eutrophic lake

    PubMed

    Weinbauer; Hofle

    1998-10-01

    Monoclonal antibodies and epifluorescence microscopy were used to determine the depth distribution of two indigenous bacterial populations in the stratified Lake Plusssee and characterize their life strategies. Populations of Comamonas acidovorans PX54 showed a depth distribution with maximum abundances in the oxic epilimnion, whereas Aeromonas hydrophila PU7718 showed a depth distribution with maximum abundances in the anoxic thermocline layer (metalimnion), i. e., in the water layer with the highest microbial activity. Resistance of PX54 to protist grazing and high metabolic versatility and growth rate of PU7718 were the most important life strategy traits for explaining the depth distribution of the two bacterial populations. Maximum abundance of PX54 was 16,000 cells per ml, and maximum abundance of PU7718 was 20,000 cells per ml. Determination of bacterial productivity in dilution cultures with different-size fractions of dissolved organic matter (DOM) from lake water indicates that low-molecular-weight (LMW) DOM is less bioreactive than total DOM (TDOM). The abundance and growth rate of PU7718 were highest in the TDOM fractions, whereas those of PX54 were highest in the LMW DOM fraction, demonstrating that PX54 can grow well on the less bioreactive DOM fraction. We estimated that 13 to 24% of the entire bacterial community and 14% of PU7718 were removed by viral lysis, whereas no significant effect of viral lysis on PX54 could be detected. Growth rates of PX54 (0.11 to 0.13 h-1) were higher than those of the entire bacterial community (0.04 to 0.08 h-1) but lower than those of PU7718 (0.26 to 0.31 h-1). In undiluted cultures, the growth rates were significantly lower, pointing to density effects such as resource limitation or antibiosis, and the effects were stronger for PU7718 and the entire bacterial community than for PX54. Life strategy characterizations based on data from literature and this study revealed that the fast-growing and metabolically

  9. Vizantin inhibits bacterial adhesion without affecting bacterial growth and causes Streptococcus mutans biofilm to detach by altering its internal architecture.

    PubMed

    Takenaka, Shoji; Oda, Masataka; Domon, Hisanori; Ohsumi, Tatsuya; Suzuki, Yuki; Ohshima, Hayato; Yamamoto, Hirofumi; Terao, Yutaka; Noiri, Yuichiro

    2016-11-11

    An ideal antibiofilm strategy is to control both in the quality and quantity of biofilm while maintaining the benefits derived from resident microflora. Vizantin, a recently developed immunostimulating compound, has also been found to have antibiofilm property. This study evaluated the influence on biofilm formation of Streptococcus mutans in the presence of sulfated vizantin and biofilm development following bacterial adhesion on a hydroxyapatite disc coated with sulfated vizantin. Supplementation with sulfated vizantin up to 50 μM did not affect either bacterial growth or biofilm formation, whereas 50 μM sulfated vizantin caused the biofilm to readily detach from the surface. Sulfated vizantin at the concentration of 50 μM upregulated the expression of the gtfB and gtfC genes, but downregulated the expression of the gtfD gene, suggesting altered architecture in the biofilm. Biofilm development on the surface coated with sulfated vizantin was inhibited depending on the concentration, suggesting prevention from bacterial adhesion. Among eight genes related to bacterial adherence in S. mutans, expression of gtfB and gtfC was significantly upregulated, whereas the expression of gtfD, GbpA and GbpC was downregulated according to the concentration of vizantin, especially with 50 μM vizantin by 0.8-, 0.4-, and 0.4-fold, respectively. These findings suggest that sulfated vizantin may cause structural degradation as a result of changing gene regulation related to bacterial adhesion and glucan production of S. mutans. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Changes in urine composition after trauma facilitate bacterial growth

    PubMed Central

    2012-01-01

    Background Critically ill patients including trauma patients are at high risk of urinary tract infection (UTI). The composition of urine in trauma patients may be modified due to inflammation, systemic stress, rhabdomyolysis, life support treatment and/or urinary catheter insertion. Methods Prospective, single-centre, observational study conducted in patients with severe trauma and without a history of UTIs or recent antibiotic treatment. The 24-hour urine samples were collected on the first and the fifth days and the growth of Escherichia coli in urine from patients and healthy volunteers was compared. Biochemical and hormonal modifications in urine that could potentially influence bacterial growth were explored. Results Growth of E. coli in urine from trauma patients was significantly higher on days 1 and 5 than in urine of healthy volunteers. Several significant modifications of urine composition could explain these findings. On days 1 and 5, trauma patients had an increase in glycosuria, in urine iron concentration, and in the concentrations of several amino acids compared to healthy volunteers. On day 1, the urinary osmotic pressure was significantly lower than for healthy volunteers. Conclusion We showed that urine of trauma patients facilitated growth of E. coli when compared to urine from healthy volunteers. This effect was present in the first 24 hours and until at least the fifth day after trauma. This phenomenon may be involved in the pathophysiology of UTIs in trauma patients. Further studies are required to define the exact causes of such modifications. PMID:23194649

  11. Growth and development rates have different thermal responses.

    PubMed

    Forster, Jack; Hirst, Andrew G; Woodward, Guy

    2011-11-01

    Growth and development rates are fundamental to all living organisms. In a warming world, it is important to determine how these rates will respond to increasing temperatures. It is often assumed that the thermal responses of physiological rates are coupled to metabolic rate and thus have the same temperature dependence. However, the existence of the temperature-size rule suggests that intraspecific growth and development are decoupled. Decoupling of these rates would have important consequences for individual species and ecosystems, yet this has not been tested systematically across a range of species. We conducted an analysis on growth and development rate data compiled from the literature for a well-studied group, marine pelagic copepods, and use an information-theoretic approach to test which equations best describe these rates. Growth and development rates were best characterized by models with significantly different parameters: development has stronger temperature dependence than does growth across all life stages. As such, it is incorrect to assume that these rates have the same temperature dependence. We used the best-fit models for these rates to predict changes in organism mass in response to temperature. These predictions follow a concave relationship, which complicates attempts to model the impacts of increasing global temperatures on species body size.

  12. Population growth rates: issues and an application.

    PubMed Central

    Godfray, H Charles J; Rees, Mark

    2002-01-01

    Current issues in population dynamics are discussed in the context of The Royal Society Discussion Meeting 'Population growth rate: determining factors and role in population regulation'. In particular, different views on the centrality of population growth rates to the study of population dynamics and the role of experiments and theory are explored. Major themes emerging include the role of modern statistical techniques in bringing together experimental and theoretical studies, the importance of long-term experimentation and the need for ecology to have model systems, and the value of population growth rate as a means of understanding and predicting population change. The last point is illustrated by the application of a recently introduced technique, integral projection modelling, to study the population growth rate of a monocarpic perennial plant, its elasticities to different life-history components and the evolution of an evolutionarily stable strategy size at flowering. PMID:12396521

  13. Measurements of Protein Crystal Face Growth Rates

    NASA Technical Reports Server (NTRS)

    Gorti, S.

    2014-01-01

    Protein crystal growth rates will be determined for several hyperthermophile proteins.; The growth rates will be assessed using available theoretical models, including kinetic roughening.; If/when kinetic roughening supersaturations are established, determinations of protein crystal quality over a range of supersaturations will also be assessed.; The results of our ground based effort may well address the existence of a correlation between fundamental growth mechanisms and protein crystal quality.

  14. A Model to Explain Plant Growth Promotion Traits: A Multivariate Analysis of 2,211 Bacterial Isolates

    PubMed Central

    da Costa, Pedro Beschoren; Granada, Camille E.; Ambrosini, Adriana; Moreira, Fernanda; de Souza, Rocheli; dos Passos, João Frederico M.; Arruda, Letícia; Passaglia, Luciane M. P.

    2014-01-01

    Plant growth-promoting bacteria can greatly assist sustainable farming by improving plant health and biomass while reducing fertilizer use. The plant-microorganism-environment interaction is an open and complex system, and despite the active research in the area, patterns in root ecology are elusive. Here, we simultaneously analyzed the plant growth-promoting bacteria datasets from seven independent studies that shared a methodology for bioprospection and phenotype screening. The soil richness of the isolate's origin was classified by a Principal Component Analysis. A Categorical Principal Component Analysis was used to classify the soil richness according to isolate's indolic compound production, siderophores production and phosphate solubilization abilities, and bacterial genera composition. Multiple patterns and relationships were found and verified with nonparametric hypothesis testing. Including niche colonization in the analysis, we proposed a model to explain the expression of bacterial plant growth-promoting traits according to the soil nutritional status. Our model shows that plants favor interaction with growth hormone producers under rich nutrient conditions but favor nutrient solubilizers under poor conditions. We also performed several comparisons among the different genera, highlighting interesting ecological interactions and limitations. Our model could be used to direct plant growth-promoting bacteria bioprospection and metagenomic sampling. PMID:25542031

  15. Preventing bacterial growth on implanted device with an interfacial metallic film and penetrating X-rays.

    PubMed

    An, Jincui; Sun, An; Qiao, Yong; Zhang, Peipei; Su, Ming

    2015-02-01

    Device-related infections have been a big problem for a long time. This paper describes a new method to inhibit bacterial growth on implanted device with tissue-penetrating X-ray radiation, where a thin metallic film deposited on the device is used as a radio-sensitizing film for bacterial inhibition. At a given dose of X-ray, the bacterial viability decreases as the thickness of metal film (bismuth) increases. The bacterial viability decreases with X-ray dose increases. At X-ray dose of 2.5 Gy, 98% of bacteria on 10 nm thick bismuth film are killed; while it is only 25% of bacteria are killed on the bare petri dish. The same dose of X-ray kills 8% fibroblast cells that are within a short distance from bismuth film (4 mm). These results suggest that penetrating X-rays can kill bacteria on bismuth thin film deposited on surface of implant device efficiently.

  16. Custom fabrication of biomass containment devices using 3-D printing enables bacterial growth analyses with complex insoluble substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Cassandra E.; Beri, Nina R.; Gardner, Jeffrey G.

    Physiological studies of recalcitrant polysaccharide degradation are challenging for several reasons, one of which is the difficulty in obtaining a reproducibly accurate real-time measurement of bacterial growth using insoluble substrates. Current methods suffer from several problems including (i) high background noise due to the insoluble material interspersed with cells, (ii) high consumable and reagent cost and (iii) significant time delay between sampling and data acquisition. A customizable substrate and cell separation device would provide an option to study bacterial growth using optical density measurements. To test this hypothesis we used 3-D printing to create biomass containment devices that allow interactionmore » between insoluble substrates and microbial cells but do not interfere with spectrophotometer measurements. Evaluation of materials available for 3-D printing indicated that UV-cured acrylic plastic was the best material, being superior to nylon or stainless steel when examined for heat tolerance, reactivity, and ability to be sterilized. Cost analysis of the 3-D printed devices indicated they are a competitive way to quantitate bacterial growth compared to viable cell counting or protein measurements, and experimental conditions were scalable over a 100-fold range. The presence of the devices did not alter growth phenotypes when using either soluble substrates or insoluble substrates. Furthermore, we applied biomass containment to characterize growth of Cellvibrio japonicus on authentic lignocellulose (non-pretreated corn stover), and found physiological evidence that xylan is a significant nutritional source despite an abundance of cellulose present.« less

  17. Custom fabrication of biomass containment devices using 3-D printing enables bacterial growth analyses with complex insoluble substrates

    DOE PAGES

    Nelson, Cassandra E.; Beri, Nina R.; Gardner, Jeffrey G.

    2016-09-21

    Physiological studies of recalcitrant polysaccharide degradation are challenging for several reasons, one of which is the difficulty in obtaining a reproducibly accurate real-time measurement of bacterial growth using insoluble substrates. Current methods suffer from several problems including (i) high background noise due to the insoluble material interspersed with cells, (ii) high consumable and reagent cost and (iii) significant time delay between sampling and data acquisition. A customizable substrate and cell separation device would provide an option to study bacterial growth using optical density measurements. To test this hypothesis we used 3-D printing to create biomass containment devices that allow interactionmore » between insoluble substrates and microbial cells but do not interfere with spectrophotometer measurements. Evaluation of materials available for 3-D printing indicated that UV-cured acrylic plastic was the best material, being superior to nylon or stainless steel when examined for heat tolerance, reactivity, and ability to be sterilized. Cost analysis of the 3-D printed devices indicated they are a competitive way to quantitate bacterial growth compared to viable cell counting or protein measurements, and experimental conditions were scalable over a 100-fold range. The presence of the devices did not alter growth phenotypes when using either soluble substrates or insoluble substrates. Furthermore, we applied biomass containment to characterize growth of Cellvibrio japonicus on authentic lignocellulose (non-pretreated corn stover), and found physiological evidence that xylan is a significant nutritional source despite an abundance of cellulose present.« less

  18. A brief history of bacterial growth physiology.

    PubMed

    Schaechter, Moselio

    2015-01-01

    Arguably, microbial physiology started when Leeuwenhoek became fascinated by observing a Vorticella beating its cilia, my point being that almost any observation of microbes has a physiological component. With the advent of modern microbiology in the mid-19th century, the field became recognizably distinctive with such discoveries as anaerobiosis, fermentation as a biological phenomenon, and the nutritional requirements of microbes. Soon came the discoveries of Winogradsky and his followers of the chemical changes in the environment that result from microbial activities. Later, during the first half of the 20th century, microbial physiology became the basis for much of the elucidation of central metabolism. Bacterial physiology then became a handmaiden of molecular biology and was greatly influenced by the discovery of cellular regulatory mechanisms. Microbial growth, which had come of age with the early work of Hershey, Monod, and others, was later pursued by studies on a whole cell level by what became known as the "Copenhagen School." During this time, the exploration of physiological activities became coupled to modern inquiries into the structure of the bacterial cell. Recent years have seen the development of a further phase in microbial physiology, one seeking a deeper quantitative understanding of phenomena on a whole cell level. This pursuit is exemplified by the emergence of systems biology, which is made possible by the development of technologies that permit the gathering of information in huge amounts. As has been true through history, the research into microbial physiology continues to be guided by the development of new methods of analysis. Some of these developments may well afford the possibility of making stunning breakthroughs.

  19. Effects of an EPSPS-transgenic soybean line ZUTS31 on root-associated bacterial communities during field growth

    PubMed Central

    Cheng, Jing; Wang, Gu-Hao; Zhu, Yin-Ling; Zhang, Li-Ya; Shou, Hui-Xia; Qi, Jin-Liang

    2018-01-01

    The increased worldwide commercial cultivation of transgenic crops during the past 20 years is accompanied with potential effects on the soil microbial communities, because many rhizosphere and endosphere bacteria play important roles in promoting plant health and growth. Previous studies reported that transgenic plants exert differential effects on soil microbial communities, especially rhizobacteria. Thus, this study compared the soybean root-associated bacterial communities between a 5-enolpyruvylshikimate-3-phosphate synthase -transgenic soybean line (ZUTS31 or simply Z31) and its recipient cultivar (Huachun3 or simply HC3) at the vegetative, flowering, and seed-filling stages. High-throughput sequencing of 16S rRNA gene (16S rDNA) V4 hypervariable region amplicons via Illumina MiSeq and real-time quantitative PCR (qPCR) were performed. Our results revealed no significant differences in the overall alpha diversity of root-associated bacterial communities at the three developmental stages and in the beta diversity of root-associated bacterial communities at the flowering stage between Z31 and HC3 under field growth. However, significant differences in the beta diversity of rhizosphere bacterial communities were found at the vegetative and seed-filling stages between the two groups. Furthermore, the results of next generation sequencing and qPCR showed that the relative abundances of root-associated main nitrogen-fixing bacterial genera, especially Bradyrhizobium in the roots, evidently changed from the flowering stage to the seed-filling stage. In conclusion, Z31 exerts transitory effects on the taxonomic diversity of rhizosphere bacterial communities at the vegetative and seed-filling stages compared to the control under field conditions. In addition, soybean developmental change evidently influences the main symbiotic nitrogen-fixing bacterial genera in the roots from the flowering stage to the seed-filling stage. PMID:29408918

  20. Modeling Tetragonal Lysozyme Crystal Growth Rates

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Forsythe, Elizabeth L.; Pusey, Marc L.

    2003-01-01

    Tetragonal lysozyme 110 face crystal growth rates, measured over 5 orders of magnitude in range, can be described using a model where growth occurs by 2D nucleation on the crystal surface for solution supersaturations of c/c(sub eq) less than or equal to 7 +/- 2. Based upon the model, the step energy per unit length, beta was estimated to be approx. 5.3 +/- 0.4 x 10(exp -7) erg/mol-cm, which for a step height of 56 A corresponds to barrier of approx. 7 +/- 1 k(sub B)T at 300 K. For supersaturations of c/c(sub eq) > 8, the model emphasizing crystal growth by 2D nucleation not only could not predict, but also consistently overestimated, the highest observable crystal growth rates. Kinetic roughening is hypothesized to occur at a cross-over supersaturation of c/c(sub eq) > 8, where crystal growth is postulated to occur by a different process such as adsorption. Under this assumption, all growth rate data indicated that a kinetic roughening transition and subsequent crystal growth by adsorption for all solution conditions, varying in buffer pH, temperature and precipitant concentration, occurs for c/c(sub eq)(T, pH, NaCl) in the range between 5 and 10, with an energy barrier for adsorption estimated to be approx. 20 k(sub B)T at 300 K. Based upon these and other estimates, we determined the size of the critical surface nucleate, at the crossover supersaturation and higher concentrations, to range from 4 to 10 molecules.

  1. Bacterial flagella grow through an injection-diffusion mechanism

    PubMed Central

    Renault, Thibaud T; Abraham, Anthony O; Bergmiller, Tobias; Paradis, Guillaume; Rainville, Simon; Charpentier, Emmanuelle; Guet, Călin C; Tu, Yuhai; Namba, Keiichi; Keener, James P; Minamino, Tohru; Erhardt, Marc

    2017-01-01

    The bacterial flagellum is a self-assembling nanomachine. The external flagellar filament, several times longer than a bacterial cell body, is made of a few tens of thousands subunits of a single protein: flagellin. A fundamental problem concerns the molecular mechanism of how the flagellum grows outside the cell, where no discernible energy source is available. Here, we monitored the dynamic assembly of individual flagella using in situ labelling and real-time immunostaining of elongating flagellar filaments. We report that the rate of flagellum growth, initially ∼1,700 amino acids per second, decreases with length and that the previously proposed chain mechanism does not contribute to the filament elongation dynamics. Inhibition of the proton motive force-dependent export apparatus revealed a major contribution of substrate injection in driving filament elongation. The combination of experimental and mathematical evidence demonstrates that a simple, injection-diffusion mechanism controls bacterial flagella growth outside the cell. DOI: http://dx.doi.org/10.7554/eLife.23136.001 PMID:28262091

  2. Bacterial flagella grow through an injection-diffusion mechanism.

    PubMed

    Renault, Thibaud T; Abraham, Anthony O; Bergmiller, Tobias; Paradis, Guillaume; Rainville, Simon; Charpentier, Emmanuelle; Guet, Călin C; Tu, Yuhai; Namba, Keiichi; Keener, James P; Minamino, Tohru; Erhardt, Marc

    2017-03-06

    The bacterial flagellum is a self-assembling nanomachine. The external flagellar filament, several times longer than a bacterial cell body, is made of a few tens of thousands subunits of a single protein: flagellin. A fundamental problem concerns the molecular mechanism of how the flagellum grows outside the cell, where no discernible energy source is available. Here, we monitored the dynamic assembly of individual flagella using in situ labelling and real-time immunostaining of elongating flagellar filaments. We report that the rate of flagellum growth, initially ∼1,700 amino acids per second, decreases with length and that the previously proposed chain mechanism does not contribute to the filament elongation dynamics. Inhibition of the proton motive force-dependent export apparatus revealed a major contribution of substrate injection in driving filament elongation. The combination of experimental and mathematical evidence demonstrates that a simple, injection-diffusion mechanism controls bacterial flagella growth outside the cell.

  3. Genome-wide analysis of bacterial determinants of plant growth promotion and induced systemic resistance by Pseudomonas fluorescens.

    PubMed

    Cheng, Xu; Etalo, Desalegn W; van de Mortel, Judith E; Dekkers, Ester; Nguyen, Linh; Medema, Marnix H; Raaijmakers, Jos M

    2017-11-01

    Pseudomonas fluorescens strain SS101 (Pf.SS101) promotes growth of Arabidopsis thaliana, enhances greening and lateral root formation, and induces systemic resistance (ISR) against the bacterial pathogen Pseudomonas syringae pv. tomato (Pst). Here, targeted and untargeted approaches were adopted to identify bacterial determinants and underlying mechanisms involved in plant growth promotion and ISR by Pf.SS101. Based on targeted analyses, no evidence was found for volatiles, lipopeptides and siderophores in plant growth promotion by Pf.SS101. Untargeted, genome-wide analyses of 7488 random transposon mutants of Pf.SS101 led to the identification of 21 mutants defective in both plant growth promotion and ISR. Many of these mutants, however, were auxotrophic and impaired in root colonization. Genetic analysis of three mutants followed by site-directed mutagenesis, genetic complementation and plant bioassays revealed the involvement of the phosphogluconate dehydratase gene edd, the response regulator gene colR and the adenylsulfate reductase gene cysH in both plant growth promotion and ISR. Subsequent comparative plant transcriptomics analyses strongly suggest that modulation of sulfur assimilation, auxin biosynthesis and transport, steroid biosynthesis and carbohydrate metabolism in Arabidopsis are key mechanisms linked to growth promotion and ISR by Pf.SS101. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Growth rate of YBCO-Ag superconducting single grains

    NASA Astrophysics Data System (ADS)

    Congreve, J. V. J.; Shi, Y. H.; Dennis, A. R.; Durrell, J. H.; Cardwell, D. A.

    2017-12-01

    The large scale use of (RE)Ba2Cu3O7 bulk superconductors, where RE=Y, Gd, Sm, is, in part, limited by the relatively poor mechanical properties of these inherently brittle ceramic materials. It is reported that alloying of (RE)Ba2Cu3O7 with silver enables a significant improvement in the mechanical strength of bulk, single grain samples without any detrimental effect on their superconducting properties. However, due to the complexity and number of inter-related variables involved in the top seeded melt growth (TSMG) process, the growth of large single grains is difficult and the addition of silver makes it even more difficult to achieve successful growth reliably. The key processing variables in the TSMG process include the times and temperatures of the stages within the heating profile, which can be derived from the growth rate during the growth process. To date, the growth rate of the YBa2Cu3O7-Ag system has not been reported in detail and it is this lacuna that we have sought to address. In this work we measure the growth rate of the YBCO-Ag system using a method based on continuous cooling and isothermal holding (CCIH). We have determined the growth rate by measuring the side length of the crystallised region for a number of samples for specified isothermal hold temperatures and periods. This has enabled the growth rate to be modelled and from this an optimized heating profile for the successful growth of YBCO-Ag single grains to be derived.

  5. Allochthonous carbon is a major regulator to bacterial growth and community composition in subarctic freshwaters

    PubMed Central

    Roiha, Toni; Peura, Sari; Cusson, Mathieu; Rautio, Milla

    2016-01-01

    In the subarctic region, climate warming and permafrost thaw are leading to emergence of ponds and to an increase in mobility of catchment carbon. As carbon of terrestrial origin is increasing in subarctic freshwaters the resource pool supporting their microbial communities and metabolism is changing, with consequences to overall aquatic productivity. By sampling different subarctic water bodies for a one complete year we show how terrestrial and algal carbon compounds vary in a range of freshwaters and how differential organic carbon quality is linked to bacterial metabolism and community composition. We show that terrestrial drainage and associated nutrients supported higher bacterial growth in ponds and river mouths that were influenced by fresh terrestrial carbon than in large lakes with carbon from algal production. Bacterial diversity, however, was lower at sites influenced by terrestrial carbon inputs. Bacterial community composition was highly variable among different water bodies and especially influenced by concentrations of dissolved organic carbon (DOC), fulvic acids, proteins and nutrients. Furthermore, a distinct preference was found for terrestrial vs. algal carbon among certain bacterial tribes. The results highlight the contribution of the numerous ponds to cycling of terrestrial carbon in the changing subarctic and arctic regions. PMID:27686416

  6. Allochthonous carbon is a major regulator to bacterial growth and community composition in subarctic freshwaters.

    PubMed

    Roiha, Toni; Peura, Sari; Cusson, Mathieu; Rautio, Milla

    2016-09-30

    In the subarctic region, climate warming and permafrost thaw are leading to emergence of ponds and to an increase in mobility of catchment carbon. As carbon of terrestrial origin is increasing in subarctic freshwaters the resource pool supporting their microbial communities and metabolism is changing, with consequences to overall aquatic productivity. By sampling different subarctic water bodies for a one complete year we show how terrestrial and algal carbon compounds vary in a range of freshwaters and how differential organic carbon quality is linked to bacterial metabolism and community composition. We show that terrestrial drainage and associated nutrients supported higher bacterial growth in ponds and river mouths that were influenced by fresh terrestrial carbon than in large lakes with carbon from algal production. Bacterial diversity, however, was lower at sites influenced by terrestrial carbon inputs. Bacterial community composition was highly variable among different water bodies and especially influenced by concentrations of dissolved organic carbon (DOC), fulvic acids, proteins and nutrients. Furthermore, a distinct preference was found for terrestrial vs. algal carbon among certain bacterial tribes. The results highlight the contribution of the numerous ponds to cycling of terrestrial carbon in the changing subarctic and arctic regions.

  7. Effect of humic substance photodegradation on bacterial growth and respiration in lake water

    USGS Publications Warehouse

    Anesio, A.M.; Graneli, W.; Aiken, G.R.; Kieber, D.J.; Mopper, K.

    2005-01-01

    This study addresses how humic substance (HS) chemical composition and photoreactivity affect bacterial growth, respiration, and growth efficiency (BGE) in lake water. Aqueous solutions of HSs from diverse aquatic environments representing different dissolved organic matter sources (autochthonous and allochthonous) were exposed to artificial solar UV radiation. These solutions were added to lake water passed through a 0.7-??m-pore-size filter (containing grazer-free lake bacteria) followed by dark incubation for 5, 43, and 65 h. For the 5-h incubation, several irradiated HSs inhibited bacterial carbon production (BCP) and this inhibition was highly correlated with H 2O2 photoproduction. The H2O2 decayed in the dark, and after 43 h, nearly all irradiated HSs enhanced BCP (average 39% increase relative to nonirradiated controls, standard error = 7.5%, n = 16). UV exposure of HSs also increased bacterial respiration (by ???18%, standard error = 5%, n = 4), but less than BCP, resulting in an average increase in BGE of 32% (standard error = 10%, n = 4). Photoenhancement of BCP did not correlate to HS bulk properties (i.e., elemental and chemical composition). However, when the photoenhancement of BCP was normalized to absorbance, several trends with HS origin and extraction method emerged. Absorbance-normalized hydrophilic acid and humic acid samples showed greater enhancement of BCP than hydrophobic acid and fulvic acid samples. Furthermore, absorbance-normalized autochthonous samples showed ???10-fold greater enhancement of BCP than allochthonous-dominated samples, indicating that the former are more efficient photoproducers of biological substrates. Copyright ?? 2005, American Society for Microbiology. All Rights Reserved.

  8. Combination of therapeutic ultrasound with antibiotics interfere with the growth of bacterial culture that colonizes skin ulcers: An in-vitro study.

    PubMed

    Guirro, Elaine Caldeira de Oliveira; Angelis, Dejanira de Franceschi de; Sousa, Natanael Teixeira Alves de; Guirro, Rinaldo Roberto de Jesus

    2016-09-01

    Staphylococcus aureus and Escherichia coli are among the major bacterial species that colonize skin ulcers. Therapeutic ultrasound (TUS) produces biophysical effects that are relevant to wound healing; however, its application over a contaminated injury is not evidence-based. The objective of this research was to analyze the effect of TUS on in vitro-isolated S. aureus and E. coli, including the combination of ultrasound and antibiotics, in order to assess their antibiotic action on bacterial susceptibility. For the experiments, the bacterial strains were suspended in saline, then diluted (10(4)CFU/mL) for irradiation (at 1 and 3MHz, 0.5 and 0.8W/cm(2) for 0 and 15min) and the combination treatment of ultrasonication and antibiotics was administered by adding nalidixic acid (S. aureus) and tetracycline (E. coli) at concentrations equivalent to 50% of the minimum inhibitory concentration (MIC). The experiments were carried out in duplicate with six repetitions. The suspensions were inoculated on to Petri plates and incubated at 37°C and the colony forming units (CFUs) were counted after 24h. The results were subjected to the Shapiro-Wilk normality test, followed by parametric ANOVA and Tukey's post hoc test at a significance level of 1%. The results demonstrated that the action of TUS at 1MHz inhibited bacterial growth while at 3MHz, bacterial growth was observed in both species. However, the synergistic combination of ultrasound and antibiotics was able to inhibit the growth of both bacteria completely after 15min of ultrasonication. The results suggest that the action of ultrasound on S. aureus and E. coli are dependent on the oscillation frequency as well as the intensity and time of application. The combination of ultrasound with antibiotics was able to inhibit bacterial growth fully at all frequencies and doses in both species. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Importance of inoculum properties on the structure and growth of bacterial communities during Recolonisation of humus soil with different pH.

    PubMed

    Pettersson, Marie; Bååth, Erland

    2013-08-01

    The relationship between community structure and growth and pH tolerance of a soil bacterial community was studied after liming in a reciprocal inoculum study. An unlimed (UL) humus soil with a pH of 4.0 was fumigated with chloroform for 4 h, after which < 1 % of the initial bacterial activity remained. Half of the fumigated soil was experimentally limed (EL) to a pH of 7.6. Both the UL and the EL soil were then reciprocally inoculated with UL soil or field limed (FL) soil with a pH of 6.2. The FL soil was from a 15-year-old experiment. The structural changes were measured on both bacteria in soil and on bacteria able to grow on agar plates using phospholipids fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analysis. The developing community pH tolerance and bacterial growth were also monitored over time using thymidine incorporation. The inoculum source had a significant impact on both growth and pH tolerance of the bacterial community in the EL soil. These differences between the EL soil inoculated with UL soil and FL soil were correlated to structural changes, as evidenced by both PLFA and DGGE analyses on the soil. Similar correlations were seen to the fraction of the community growing on agar plates. There were, however, no differences between the soil bacterial communities in the unlimed soils with different inocula. This study showed the connection between the development of function (growth), community properties (pH tolerance) and the structure of the bacterial community. It also highlighted the importance of both the initial properties of the community and the selection pressure after environmental changes in shaping the resulting microbial community.

  10. The instantaneous radial growth rate of stellar discs

    NASA Astrophysics Data System (ADS)

    Pezzulli, G.; Fraternali, F.; Boissier, S.; Muñoz-Mateos, J. C.

    2015-08-01

    We present a new and simple method to measure the instantaneous mass and radial growth rates of the stellar discs of spiral galaxies, based on their star formation rate surface density (SFRD) profiles. Under the hypothesis that discs are exponential with time-varying scalelengths, we derive a universal theoretical profile for the SFRD, with a linear dependence on two parameters: the specific mass growth rate ν _ M ≡ dot{M}_⋆ /M_⋆ and the specific radial growth rate ν _ R ≡ dot{R}_⋆ /R_⋆ of the disc. We test our theory on a sample of 35 nearby spiral galaxies, for which we derive a measurement of νM and νR. 32/35 galaxies show the signature of ongoing inside-out growth (νR > 0). The typical derived e-folding time-scales for mass and radial growth in our sample are ˜10 and ˜30 Gyr, respectively, with some systematic uncertainties. More massive discs have a larger scatter in νM and νR, biased towards a slower growth, both in mass and size. We find a linear relation between the two growth rates, indicating that our galaxy discs grow in size at ˜0.35 times the rate at which they grow in mass; this ratio is largely unaffected by systematics. Our results are in very good agreement with theoretical expectations if known scaling relations of disc galaxies are not evolving with time.

  11. Putative bacterial volatile-mediated growth in soybean (Glycine max L. Merrill) and expression of induced proteins under salt stress.

    PubMed

    Vaishnav, A; Kumari, S; Jain, S; Varma, A; Choudhary, D K

    2015-08-01

    Plant root-associated rhizobacteria elicit plant immunity referred to as induced systemic tolerance (IST) against multiple abiotic stresses. Among multibacterial determinants involved in IST, the induction of IST and promotion of growth by putative bacterial volatile compounds (VOCs) is reported in the present study. To characterize plant proteins induced by putative bacterial VOCs, proteomic analysis was performed by MALDI-MS/MS after exposure of soybean seedlings to a new strain of plant growth promoting rhizobacteria (PGPR) Pseudomonas simiae strain AU. Furthermore, expression analysis by Western blotting confirmed that the vegetative storage protein (VSP), gamma-glutamyl hydrolase (GGH) and RuBisCo large chain proteins were significantly up-regulated by the exposure to AU strain and played a major role in IST. VSP has preponderant roles in N accumulation and mobilization, acid phosphatase activity and Na(+) homeostasis to sustain plant growth under stress condition. More interestingly, plant exposure to the bacterial strain significantly reduced Na(+) and enhanced K(+) and P content in root of soybean seedlings under salt stress. In addition, high accumulation of proline and chlorophyll content also provided evidence of protection against osmotic stress during the elicitation of IST by bacterial exposure. The present study reported for the first time that Ps. simiae produces a putative volatile blend that can enhance soybean seedling growth and elicit IST against 100 mmol l(-1) NaCl stress condition. The identification of such differentially expressed proteins provide new targets for future studies that will allow assessment of their physiological roles and significance in the response of glycophytes to stresses. Further work should uncover more about the chemical side of VOC compounds and a detailed study about their molecular mechanism responsible for plant growth. © 2015 The Society for Applied Microbiology.

  12. Kinetics of substrate utilization and bacterial growth of crude oil degraded by Pseudomonas aeruginosa.

    PubMed

    Talaiekhozani, Amirreza; Jafarzadeh, Nematollah; Fulazzaky, Mohamad Ali; Talaie, Mohammad Reza; Beheshti, Masoud

    2015-01-01

    Pollution associated with crude oil (CO) extraction degrades the quality of waters, threatens drinking water sources and may ham air quality. The systems biology approach aims at learning the kinetics of substrate utilization and bacterial growth for a biological process for which very limited knowledge is available. This study uses the Pseudomonas aeruginosa to degrade CO and determines the kinetic parameters of substrate utilization and bacterial growth modeled from a completely mixed batch reactor. The ability of Pseudomonas aeruginosa can remove 91 % of the total petroleum hydrocarbons and 83 % of the aromatic compounds from oily environment. The value k of 9.31 g of substrate g(-1) of microorganism d(-1) could be far higher than the value k obtained for petrochemical wastewater treatment and that for municipal wastewater treatment. The production of new cells of using CO as the sole carbon and energy source can exceed 2(3) of the existing cells per day. The kinetic parameters are verified to contribute to improving the biological removal of CO from oily environment.

  13. Modeling the Growth Rates of Tetragonal Lysozyme Crystal Faces

    NASA Technical Reports Server (NTRS)

    Li, Meirong; Nadarajah, Arunan; Pusey, Marc L.

    1998-01-01

    The measured macroscopic growth rates of the (110) and (101) faces of tetragonal lysozyme show an unexpectedly complex dependence on the supersaturation. The growth rates decay asymptotically to zero when the supersaturation is lowered to zero and increase rapidly when the supersaturation is increased. When supersaturations are increased still further the growth rates attain a maximum before starting to decrease. However, growth of these crystals is known to proceed by the classical dislocation and 2D nucleation growth mechanisms. This anomaly can be explained if growth is assumed to occur not by monomer units but by lysozyme aggregates. Analysis of the molecular packing of these crystals revealed that they were constructed of strongly bonded 4(sub 3) helices, while weaker bonds were responsible for binding the helices to each other. It follows that during crystal growth the stronger bonds are formed before the weaker ones. Thus, the growth of these crystals could be viewed as a two step process: aggregate growth units corresponding to the 4(sub 3) helix are first formed in the bulk solution by stronger intermolecular bonds and then attached to the crystal face by weaker bonds on dislocation hillocks or 2D islands. This will lead to a distribution of aggregates in the solution with monomers and lower order aggregates being predominant at low supersaturations and higher order aggregates being predominant at high supersaturations. If the crystal grows mostly by higher order aggregates, such as tetramers and octamers, it would explain the anomalous dependence of the growth rates on the supersaturation. Besides the analysis of molecular packing, a comprehensive analysis of the measured (110) and (101) growth rates was also undertaken in this study. The distribution of aggregates in lysozyme nutrient solutions at various solution conditions were determined from reversible aggregation reactions at equilibrium. The supersaturation was defined for each aggregate species

  14. Custom fabrication of biomass containment devices using 3-D printing enables bacterial growth analyses with complex insoluble substrates.

    PubMed

    Nelson, Cassandra E; Beri, Nina R; Gardner, Jeffrey G

    2016-11-01

    Physiological studies of recalcitrant polysaccharide degradation are challenging for several reasons, one of which is the difficulty in obtaining a reproducibly accurate real-time measurement of bacterial growth using insoluble substrates. Current methods suffer from several problems including (i) high background noise due to the insoluble material interspersed with cells, (ii) high consumable and reagent cost and (iii) significant time delay between sampling and data acquisition. A customizable substrate and cell separation device would provide an option to study bacterial growth using optical density measurements. To test this hypothesis we used 3-D printing to create biomass containment devices that allow interaction between insoluble substrates and microbial cells but do not interfere with spectrophotometer measurements. Evaluation of materials available for 3-D printing indicated that UV-cured acrylic plastic was the best material, being superior to nylon or stainless steel when examined for heat tolerance, reactivity, and ability to be sterilized. Cost analysis of the 3-D printed devices indicated they are a competitive way to quantitate bacterial growth compared to viable cell counting or protein measurements, and experimental conditions were scalable over a 100-fold range. The presence of the devices did not alter growth phenotypes when using either soluble substrates or insoluble substrates. We applied biomass containment to characterize growth of Cellvibrio japonicus on authentic lignocellulose (non-pretreated corn stover), and found physiological evidence that xylan is a significant nutritional source despite an abundance of cellulose present. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The Salmonella enterica serovar Typhimurium QseB Response Regulator Negatively Regulates Bacterial Motility and Swine Colonization in the Absence of the QseC Sensor Kinase

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica serovar Typhimurium (S. Typhimurium) responds to the catecholamine, norepinephrine by increasing bacterial growth and enhancing motility. In this study, iron with or without the siderophore, ferrioxamine E also enhanced bacterial motility. Iron-enhanced motility was growth-rate ...

  16. Growth status and estimated growth rate of youth football players: a community-based study.

    PubMed

    Malina, Robert M; Morano, Peter J; Barron, Mary; Miller, Susan J; Cumming, Sean P

    2005-05-01

    To characterize the growth status of participants in community-sponsored youth football programs and to estimate rates of growth in height and weight. Mixed-longitudinal over 2 seasons. Two communities in central Michigan. Members of 33 youth football teams in 2 central Michigan communities in the 2000 and 2001 seasons (Mid-Michigan PONY Football League). Height and weight of all participants were measured prior to each season, 327 in 2000 and 326 in 2001 (n = 653). The body mass index (kg/m) was calculated. Heights and weights did not differ from season to season and between the communities; the data were pooled and treated cross-sectionally. Increments of growth in height and weight were estimated for 166 boys with 2 measurements approximately 1 year apart to provide an estimate of growth rate. Growth status (size-attained) of youth football players relative to reference data (CDC) for American boys and estimated growth rate relative to reference values from 2 longitudinal studies of American boys. Median heights of youth football players approximate the 75th percentiles, while median weights approximate the 75th percentiles through 11 years and then drift toward the 90th percentiles of the reference. Median body mass indexes of youth football players fluctuate about the 85th percentiles of the reference. Estimated growth rates in height approximate the reference and may suggest earlier maturation, while estimated growth rates in weight exceed the reference. Youth football players are taller and especially heavier than reference values for American boys. Estimated rates of growth in height approximate medians for American boys and suggest earlier maturation. Estimated rates of growth in weight exceed those of the reference and may place many youth football players at risk for overweight/obesity, which in turn may be a risk factor for injury.

  17. Bacterial responses to antibiotics and their combinations.

    PubMed

    Mitosch, Karin; Bollenbach, Tobias

    2014-12-01

    Antibiotics affect bacterial cell physiology at many levels. Rather than just compensating for the direct cellular defects caused by the drug, bacteria respond to antibiotics by changing their morphology, macromolecular composition, metabolism, gene expression and possibly even their mutation rate. Inevitably, these processes affect each other, resulting in a complex response with changes in the expression of numerous genes. Genome-wide approaches can thus help in gaining a comprehensive understanding of bacterial responses to antibiotics. In addition, a combination of experimental and theoretical approaches is needed for identifying general principles that underlie these responses. Here, we review recent progress in our understanding of bacterial responses to antibiotics and their combinations, focusing on effects at the levels of growth rate and gene expression. We concentrate on studies performed in controlled laboratory conditions, which combine promising experimental techniques with quantitative data analysis and mathematical modeling. While these basic research approaches are not immediately applicable in the clinic, uncovering the principles and mechanisms underlying bacterial responses to antibiotics may, in the long term, contribute to the development of new treatment strategies to cope with and prevent the rise of resistant pathogenic bacteria.

  18. The effect of size and competition on tree growth rate in old-growth coniferous forests

    USGS Publications Warehouse

    Das, Adrian

    2012-01-01

    Tree growth and competition play central roles in forest dynamics. Yet models of competition often neglect important variation in species-specific responses. Furthermore, functions used to model changes in growth rate with size do not always allow for potential complexity. Using a large data set from old-growth forests in California, models were parameterized relating growth rate to tree size and competition for four common species. Several functions relating growth rate to size were tested. Competition models included parameters for tree size, competitor size, and competitor distance. Competitive strength was allowed to vary by species. The best ranked models (using Akaike’s information criterion) explained between 18% and 40% of the variance in growth rate, with each species showing a strong response to competition. Models indicated that relationships between competition and growth varied substantially among species. The results also suggested that the relationship between growth rate and tree size can be complex and that how we model it can affect not only our ability to detect that complexity but also whether we obtain misleading results. In this case, for three of four species, the best model captured an apparent and unexpected decline in potential growth rate for the smallest trees in the data set.

  19. Bacterial Growth on Chitosan-Coated Polypropylene Textile

    PubMed Central

    Erben, D.; Hola, V.; Jaros, J.; Rahel, J.

    2012-01-01

    Biofouling is a problem common in all systems where microorganisms and aqueous environment meet. Prevention of biofouling is therefore important in many industrial processes. The aim of this study was to develop a method to evaluate the ability of material coating to inhibit biofilm formation. Chitosan-coated polypropylene nonwoven textile was prepared using dielectric barrier discharge plasma activation. Resistance of the textile to biofouling was then tested. First, the textile was submerged into a growth medium inoculated with green fluorescein protein labelled Pseudomonas aeruginosa. After overnight incubation at 33°C, the textile was observed using confocal laser scanning microscopy for bacterial enumeration and biofilm structure characterisation. In the second stage, the textile was used as a filter medium for prefiltered river water, and the pressure development on the in-flow side was measured to quantify the overall level of biofouling. In both cases, nontreated textile samples were used as a control. The results indicate that the chitosan coating exhibits antibacterial properties. The developed method is applicable for the evaluation of the ability to inhibit biofilm formation. PMID:23724330

  20. [Abnormal bacterial colonisation of the vagina and implantation during assisted reproduction].

    PubMed

    Wittemer, C; Bettahar-Lebugle, K; Ohl, J; Rongières, C; Viville, S; Nisand, I

    2004-02-01

    To evaluate the efficiency of our treatment of vaginal infection for couples included in an IVF program. Microbiologic screening of vaginal flora and semen has been performed one month prior to in vitro fertilization for 951 couples in 2000. Antibiotic treatment was prescribed in case of positive culture. Positive microbial growths were observed from endocervical and vaginal cultures in 218 women (22.9%). The clinical pregnancy rate was 30.29% in the group of patients without growth and 30.27% in the group with positive microbial growth. The implantation rate was significantly diminished in case of bacterial growth: 14.6 compared to 19.3% (P <0.02) for sterile endocervical culture. Five main bacterial species were found at the cervical level: Candida albicans (69 cases), Ureaplasma urealyticum (49 cases), Gardnerella vaginalis (43 cases), Streptococcus B or D (24 cases) and Escherichia coli (22 cases). Positive cultures from both vagina and semen were observed for 77 couples whose clinical pregnancy rate was 19.5 vs 36.2% in case of vaginal infection alone (P <0.01) with a spontaneous miscarriage rate of 46.7 compared to 17.6% (P <0.01). Endocervical microorganisms, even treated with adapted antibiotics, may affect embryonic implantation. Positive culture from both female and male partner may enhance this negative effect. In this case, the best strategy would be to cancel the IVF treatment.

  1. Bacterial Compatibility in Combined Inoculations Enhances the Growth of Potato Seedlings.

    PubMed

    Santiago, Christine D; Yagi, Shogo; Ijima, Motoaki; Nashimoto, Tomoya; Sawada, Maki; Ikeda, Seishi; Asano, Kenji; Orikasa, Yoshitake; Ohwada, Takuji

    2017-03-31

    The compatibility of strains is crucial for formulating bioinoculants that promote plant growth. We herein assessed the compatibility of four potential bioinoculants isolated from potato roots and tubers (Sphingomonas sp. T168, Streptomyces sp. R170, Streptomyces sp. R181, and Methylibium sp. R182) that were co-inoculated in order to improve plant growth. We screened these strains using biochemical tests, and the results obtained showed that R170 had the highest potential as a bioinoculant, as indicated by its significant ability to produce plant growth-promoting substances, its higher tolerance against NaCl (2%) and AlCl 3 (0.01%), and growth in a wider range of pH values (5.0-10.0) than the other three strains. Therefore, the compatibility of R170 with other strains was tested in combined inoculations, and the results showed that the co-inoculation of R170 with T168 or R182 synergistically increased plant weight over un-inoculated controls, indicating the compatibility of strains based on the increased production of plant growth promoters such as indole-3-acetic acid (IAA) and siderophores as well as co-localization on roots. However, a parallel test using strain R181, which is the same Streptomyces genus as R170, showed incompatibility with T168 and R182, as revealed by weaker plant growth promotion and a lack of co-localization. Collectively, our results suggest that compatibility among bacterial inoculants is important for efficient plant growth promotion, and that R170 has potential as a useful bioinoculant, particularly in combined inoculations that contain compatible bacteria.

  2. Continuous monitoring of bacterial biofilm growth using uncoated Thickness-Shear Mode resonators

    NASA Astrophysics Data System (ADS)

    Castro, P.; Resa, P.; Durán, C.; Maestre, J. R.; Mateo, M.; Elvira, L.

    2012-12-01

    Quartz Crystal Microbalances (QCM) were used to nondestructively monitor in real time the microbial growth of the bacteria Staphylococcus epidermidis (S. epidermidis) in a liquid broth. QCM, sometimes referred to as Thickness-Shear Mode (TSM) resonators, are highly sensitive sensors not only able to measure very small mass, but also non-gravimetric contributions of viscoelastic media. These devices can be used as biosensors for bacterial detection and are employed in many applications including their use in the food industry, water and environment monitoring, pharmaceutical sciences and clinical diagnosis. In this work, three strains of S. epidermidis (which differ in the ability to produce biofilm) have been continuously monitored using an array of piezoelectric TSM resonators, at 37 °C in a selective culturing media. Microbial growth was followed by measuring the changes in the crystal resonant frequency and bandwidth at several harmonics. It was shown that microbial growth can be monitored in real time using multichannel and multiparametric QCM sensors.

  3. Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest

    PubMed Central

    Kembel, Steven W.; O’Connor, Timothy K.; Arnold, Holly K.; Hubbell, Stephen P.; Wright, S. Joseph; Green, Jessica L.

    2014-01-01

    The phyllosphere—the aerial surfaces of plants, including leaves—is a ubiquitous global habitat that harbors diverse bacterial communities. Phyllosphere bacterial communities have the potential to influence plant biogeography and ecosystem function through their influence on the fitness and function of their hosts, but the host attributes that drive community assembly in the phyllosphere are poorly understood. In this study we used high-throughput sequencing to quantify bacterial community structure on the leaves of 57 tree species in a neotropical forest in Panama. We tested for relationships between bacterial communities on tree leaves and the functional traits, taxonomy, and phylogeny of their plant hosts. Bacterial communities on tropical tree leaves were diverse; leaves from individual trees were host to more than 400 bacterial taxa. Bacterial communities in the phyllosphere were dominated by a core microbiome of taxa including Actinobacteria, Alpha-, Beta-, and Gammaproteobacteria, and Sphingobacteria. Host attributes including plant taxonomic identity, phylogeny, growth and mortality rates, wood density, leaf mass per area, and leaf nitrogen and phosphorous concentrations were correlated with bacterial community structure on leaves. The relative abundances of several bacterial taxa were correlated with suites of host plant traits related to major axes of plant trait variation, including the leaf economics spectrum and the wood density–growth/mortality tradeoff. These correlations between phyllosphere bacterial diversity and host growth, mortality, and function suggest that incorporating information on plant–microbe associations will improve our ability to understand plant functional biogeography and the drivers of variation in plant and ecosystem function. PMID:25225376

  4. Bacterial meningitis in children under 15 years of age in Nepal.

    PubMed

    Shrestha, Rajani Ghaju; Tandukar, Sarmila; Ansari, Shamshul; Subedi, Akriti; Shrestha, Anisha; Poudel, Rekha; Adhikari, Nabaraj; Basnyat, Shital Raj; Sherchand, Jeevan Bahadur

    2015-08-19

    Bacterial meningitis in children is a life-threatening problem resulting in severe morbidity and mortality. For the prompt initiation of antibacterial therapy, rapid and reliable diagnostic methods are of utmost importance. Therefore, this study was designed to find out the rate of bacterial pathogens of meningitis from suspected cases by performing conventional methods and latex agglutination. A descriptive type of study was carried out from May 2012 to April 2013. Cerebrospinal fluid (CSF) specimens from 252 suspected cases of meningitis were subjected for Gram staining, bacterial culture and latex agglutination test. The identification of growth of bacteria was done following standard microbiological methods recommended by American Society for Microbiology. Antibiotic sensitivity testing was done by modified Kirby-Bauer disk diffusion method. From the total 252 suspected cases, 7.2 % bacterial meningitis was revealed by Gram staining and culture methods whereas latex agglutination method detected 5.6 %. Gram-negative organisms contributed the majority of the cases (72.2 %) with Haemophilus influenzae as the leading pathogen for meningitis. Overall, 33.3 % mortality rate was found. In conclusion, a significant rate of bacterial meningitis was found in this study prompting concern for national wide surveillance.

  5. Community respiration/production and bacterial activity in the upper water column of the central Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Sherr, Barry F.; Sherr, Evelyn B.

    2003-04-01

    Community metabolism (respiration and production) and bacterial activity were assessed in the upper water column of the central Arctic Ocean during the SHEBA/JOIS ice camp experiment, October 1997-September 1998. In the upper 50 m, decrease in integrated dissolved oxygen (DO) stocks over a period of 124 d in mid-winter suggested a respiration rate of ˜3.3 nM O 2 h -1 and a carbon demand of ˜4.5 gC m -2. Increase in 0-50 m integrated stocks of DO during summer implied a net community production of ˜20 gC m -2. Community respiration rates were directly measured via rate of decrease in DO in whole seawater during 72-h dark incubation experiments. Incubation-based respiration rates were on average 3-fold lower during winter (11.0±10.6 nM O 2 h -1) compared to summer (35.3±24.8 nM O 2 h -1). Bacterial heterotrophic activity responded strongly, without noticeable lag, to phytoplankton growth. Rate of leucine incorporation by bacteria (a proxy for protein synthesis and cell growth) increased ˜10-fold, and the cell-specific rate of leucine incorporation ˜5-fold, from winter to summer. Rates of production of bacterial biomass in the upper 50 m were, however, low compared to other oceanic regions, averaging 0.52±0.47 ngC l -1 h -1 during winter and 5.1±3.1 ngC l -1 h -1 during summer. Total carbon demand based on respiration experiments averaged 2.4±2.3 mgC m -3 d -1 in winter and 7.8±5.5 mgC m -3 d -1 in summer. Estimated bacterial carbon demand based on bacterial productivity and an assumed 10% gross growth efficiency was much lower, averaging about 0.12±0.12 mgC m -3 d -1 in winter and 1.3±0.7 mgC m -3 d -1 in summer. Our estimates of bacterial activity during summer were an order of magnitude less than rates reported from a summer 1994 study in the central Arctic Ocean, implying significant inter-annual variability of microbial processes in this region.

  6. Effect of selection for growth rate on relative growth in rabbits.

    PubMed

    Pascual, M; Pla, M; Blasco, A

    2008-12-01

    The effect of selection for growth rate on relative growth of the rabbit body components was studied. Animals from the 18th generation of a line selected for growth rate were compared with a contemporary control group formed with offspring of embryos that were frozen at the seventh generation of selection of the same line. A total of 313 animals were slaughtered at 4, 9, 13, 20, and 40 wk old. The offal, organs, tissues, and retail cuts were weighed, and several carcass linear measurements were recorded. Huxley's allometric equations relating the weights of the components with respect to BW were fitted. Butterfield's quadratic equations relating the degree of maturity of the components and the degree of maturity of BW were also fitted. In most of the components studied, both models lead to similar patterns of growth. Blood was isometric or early maturing and skin was late maturing or isometric depending on the use of Huxley's or Butterfield's model. Full gastrointestinal tract, liver, kidneys, thoracic viscera, and head were early maturing, and the chilled carcass and reference carcass were late maturing. The retail cuts of the reference carcass showed isometry (forelegs) or late maturing growth (breast and ribs, loin, hind legs, and abdominal walls). Dissectible fat of the carcass and meat of the hind leg had a late development, whereas bone of the hind leg was early maturing. Lumbar circumference length was later maturing than the carcass length and thigh length. Sex did not affect the relative growth of most of the components. Butterfield's model showed that males had an earlier development of full gastrointestinal tract and later growth of kidneys than females. No effect of selection on the relative growth of any of the components studied was found, leading to similar patterns of growth and similar carcass composition at a given degree of maturity after 11 generations of selection for growth rate.

  7. Analysis of private health insurance premium growth rates: 1985-1992.

    PubMed

    Feldstein, P J; Wickizer, T M

    1995-10-01

    The rate of increase in health care expenditures has been a central policy concern for well over a decade, yet little empirical research has been conducted to examine expenditure growth rates. This study analyzed health insurance premium growth rates for a selected sample of 95 insured groups over the period 1985 to 1992. During this time, premiums increased by approximately 150% in nominal terms and by 45% in real terms. The observed rate of growth was not constant over time, however. The most rapid growth occurred during the years 1986 to 1989; thereafter, the rate of increase in premiums declined. Multivariate analysis was conducted to assess the effects on premium growth rates of selected variables representing insurance benefit design features, market competitive factors, insurance system factors, and group-specific factors. In addition to the percentage increase in benefit payments, other factors found to affect premium growth rates were health maintenance organization market penetration, deductible level, the coinsurance rate, and state insurance mandates. Further, this analysis suggests that the insurance underwriting cycle may play an important role in influencing insurance premium growth rates. These results support the belief that health maintenance organization induced competition has potential to control the rate of increase in health care costs.

  8. Resistive Wall Growth Rate Measurements in the Fermilab Recycler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ainsworth, R.; Adamson, P.; Burov, A.

    2016-10-05

    Impedance could represent a limitation of running high intensity beams in the Fermilab recycler. With high intensity upgrades foreseen, it is important to quantify the impedance. To do this,studies have been performed measuring the growth rate of presumably the resistive wall instability. The growth rates at varying intensities and chromaticities are shown. The measured growth rates are compared to ones calculated with the resistive wall impedance.

  9. The plant pathogenic fungus Gaeumannomyces graminis var. tritici improves bacterial growth and triggers early gene regulations in the biocontrol strain Pseudomonas fluorescens Pf29Arp.

    PubMed

    Barret, M; Frey-Klett, P; Boutin, M; Guillerm-Erckelboudt, A-Y; Martin, F; Guillot, L; Sarniguet, A

    2009-01-01

    In soil, some antagonistic rhizobacteria contribute to reduce root diseases caused by phytopathogenic fungi. Direct modes of action of these bacteria have been largely explored; however, commensal interaction also takes place between these microorganisms and little is known about the influence of filamentous fungi on bacteria. An in vitro confrontation bioassay between the pathogenic fungus Gaeumannomyces graminis var. tritici (Ggt) and the biocontrol bacterial strain Pseudomonas fluorescens Pf29Arp was set up to analyse bacterial transcriptional changes induced by the fungal mycelium at three time-points of the interaction before cell contact and up until contact. For this, a Pf29Arp shotgun DNA microarray was constructed. Specifity of Ggt effect was assessed in comparison with one of two other filamentous fungi, Laccaria bicolor and Magnaporthe grisea. During a commensal interaction, Ggt increased the growth rate of Pf29Arp. Before contact, Ggt induced bacterial genes involved in mycelium colonization. At contact, genes encoding protein of stress response and a patatin-like protein were up-regulated. Among all the bacterial genes identified, xseB was specifically up-regulated at contact by Ggt but down-regulated by the other fungi. Data showed that the bacterium sensed the presence of the fungus early, but the main gene alteration occurred during bacterial-fungal cell contact.

  10. Effect of Enteral Nutrition and Synbiotics on Bacterial Infection Rates After Pylorus-preserving Pancreatoduodenectomy

    PubMed Central

    Rayes, Nada; Seehofer, Daniel; Theruvath, Tom; Mogl, Martina; Langrehr, Jan M.; Nüssler, Natascha C.; Bengmark, Stig; Neuhaus, Peter

    2007-01-01

    Objective: Patients undergoing pancreas resection carry several risk factors for nosocomial bacterial infections. Pre- and probiotics (synbiotics) are potentially useful for prevention of these infections. Summary Background Data: First trials in patients following major abdominal surgery including liver transplantation using one Lactobacillus (LAB) and one fiber showed significant reduction of infection rates and reduced length of antibiotic therapy compared with a control group. The present study was designed to analyze whether a combination of different LAB and fibers would further improve outcome. Methods: A prospective randomized monocentric double-blind trial was undertaken in 80 patients following pylorus-preserving pancreatoduodenectomy (PPPD). All patients received enteral nutrition immediately postoperatively. One group (A) received a composition of 4 LAB and 4 fibers, and another group (B) received placebo (fibers only) starting the day before surgery and continuing for 8 days. Thirty-day infection rate, length of hospital stay, duration of antibiotic therapy, noninfectious complications, and side effects were recorded. Results: The incidence of postoperative bacterial infections was significantly lower with LAB and fibers (12.5%) than with fibers only (40%). In addition, the duration of antibiotic therapy was significantly shorter in the latter group. Fibers and LAB were well tolerated. Conclusion: Early enteral nutrition supplemented with a mixture of LAB and fibers reduces bacterial infection rates and antibiotic therapy following PPPD. PMID:17592288

  11. Mycelium-Like Networks Increase Bacterial Dispersal, Growth, and Biodegradation in a Model Ecosystem at Various Water Potentials.

    PubMed

    Worrich, Anja; König, Sara; Miltner, Anja; Banitz, Thomas; Centler, Florian; Frank, Karin; Thullner, Martin; Harms, Hauke; Kästner, Matthias; Wick, Lukas Y

    2016-05-15

    Fungal mycelia serve as effective dispersal networks for bacteria in water-unsaturated environments, thereby allowing bacteria to maintain important functions, such as biodegradation. However, poor knowledge exists on the effects of dispersal networks at various osmotic (Ψo) and matric (Ψm) potentials, which contribute to the water potential mainly in terrestrial soil environments. Here we studied the effects of artificial mycelium-like dispersal networks on bacterial dispersal dynamics and subsequent effects on growth and benzoate biodegradation at ΔΨo and ΔΨm values between 0 and -1.5 MPa. In a multiple-microcosm approach, we used a green fluorescent protein (GFP)-tagged derivative of the soil bacterium Pseudomonas putida KT2440 as a model organism and sodium benzoate as a representative of polar aromatic contaminants. We found that decreasing ΔΨo and ΔΨm values slowed bacterial dispersal in the system, leading to decelerated growth and benzoate degradation. In contrast, dispersal networks facilitated bacterial movement at ΔΨo and ΔΨm values between 0 and -0.5 MPa and thus improved the absolute biodegradation performance by up to 52 and 119% for ΔΨo and ΔΨm, respectively. This strong functional interrelationship was further emphasized by a high positive correlation between population dispersal, population growth, and degradation. We propose that dispersal networks may sustain the functionality of microbial ecosystems at low osmotic and matric potentials. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Two-colour fluorescence fluorimetric analysis for direct quantification of bacteria and its application in monitoring bacterial growth in cellulose degradation systems.

    PubMed

    Duedu, Kwabena O; French, Christopher E

    2017-04-01

    Monitoring bacterial growth is an important technique required for many applications such as testing bacteria against compounds (e.g. drugs), evaluating bacterial composition in the environment (e.g. sewage and wastewater or food suspensions) and testing engineered bacteria for various functions (e.g. cellulose degradation). T?=1,^FigItem(1) ^ReloadFigure=Yesraditionally, rapid estimation of bacterial growth is performed using spectrophotometric measurement at 600nm (OD600) but this estimation does not differentiate live and dead cells or other debris. Colony counting enumerates live cells but the process is laborious and not suitable for large numbers of samples. Enumeration of live bacteria by flow cytometry is a more suitable rapid method with the use of dual staining with SYBR I Green nucleic acid gel stain and Propidium Iodide (SYBR-I/PI). Flow cytometry equipment and maintenance costs however are relatively high and this technique is unavailable in many laboratories that may require a rapid method for evaluating bacteria growth. We therefore sought to adapt and evaluate the SYBR-I/PI technique of enumerating live bacterial cells for a cheaper platform, a fluorimeter. The fluorimetry adapted SYBR-I/PI enumeration of bacteria in turbid growth media had direct correlations with OD600 (p>0.001). To enable comparison of fluorescence results across labs and instruments, a fluorescence intensity standard unit, the equivalent fluorescent DNA (EFD) was proposed, evaluated and found useful. The technique was further evaluated for its usefulness in enumerating bacteria in turbid media containing insoluble particles. Reproducible results were obtained which OD600 could not give. An alternative method based on the assessment of total protein using the Pierce Coomassie Plus (Bradford) Assay was also evaluated and compared. In all, the SYBR-I/PI method was found to be the quickest and most reliable. The protocol is potentially useful for high-throughput applications such as

  13. Simultaneous measurement of bacterial flagellar rotation rate and swimming speed.

    PubMed Central

    Magariyama, Y; Sugiyama, S; Muramoto, K; Kawagishi, I; Imae, Y; Kudo, S

    1995-01-01

    Swimming speeds and flagellar rotation rates of individual free-swimming Vibrio alginolyticus cells were measured simultaneously by laser dark-field microscopy at 25, 30, and 35 degrees C. A roughly linear relation between swimming speed and flagellar rotation rate was observed. The ratio of swimming speed to flagellar rotation rate was 0.113 microns, which indicated that a cell progressed by 7% of pitch of flagellar helix during one flagellar rotation. At each temperature, however, swimming speed had a tendency to saturate at high flagellar rotation rate. That is, the cell with a faster-rotating flagellum did not always swim faster. To analyze the bacterial motion, we proposed a model in which the torque characteristics of the flagellar motor were considered. The model could be analytically solved, and it qualitatively explained the experimental results. The discrepancy between the experimental and the calculated ratios of swimming speed to flagellar rotation rate was about 20%. The apparent saturation in swimming speed was considered to be caused by shorter flagella that rotated faster but produced less propelling force. Images FIGURE 1 FIGURE 4 PMID:8580359

  14. Transcriptome landscape of a bacterial pathogen under plant immunity.

    PubMed

    Nobori, Tatsuya; Velásquez, André C; Wu, Jingni; Kvitko, Brian H; Kremer, James M; Wang, Yiming; He, Sheng Yang; Tsuda, Kenichi

    2018-03-27

    Plant pathogens can cause serious diseases that impact global agriculture. The plant innate immunity, when fully activated, can halt pathogen growth in plants. Despite extensive studies into the molecular and genetic bases of plant immunity against pathogens, the influence of plant immunity in global pathogen metabolism to restrict pathogen growth is poorly understood. Here, we developed RNA sequencing pipelines for analyzing bacterial transcriptomes in planta and determined high-resolution transcriptome patterns of the foliar bacterial pathogen Pseudomonas syringae in Arabidopsis thaliana with a total of 27 combinations of plant immunity mutants and bacterial strains. Bacterial transcriptomes were analyzed at 6 h post infection to capture early effects of plant immunity on bacterial processes and to avoid secondary effects caused by different bacterial population densities in planta We identified specific "immune-responsive" bacterial genes and processes, including those that are activated in susceptible plants and suppressed by plant immune activation. Expression patterns of immune-responsive bacterial genes at the early time point were tightly linked to later bacterial growth levels in different host genotypes. Moreover, we found that a bacterial iron acquisition pathway is commonly suppressed by multiple plant immune-signaling pathways. Overexpression of a P. syringae sigma factor gene involved in iron regulation and other processes partially countered bacterial growth restriction during the plant immune response triggered by AvrRpt2. Collectively, this study defines the effects of plant immunity on the transcriptome of a bacterial pathogen and sheds light on the enigmatic mechanisms of bacterial growth inhibition during the plant immune response.

  15. Using experimental evolution to explore natural patterns between bacterial motility and resistance to bacteriophages

    PubMed Central

    Koskella, Britt; Taylor, Tiffany B; Bates, Jennifer; Buckling, Angus

    2011-01-01

    Resistance of bacteria to phages may be gained by alteration of surface proteins to which phages bind, a mechanism that is likely to be costly as these molecules typically have critical functions such as movement or nutrient uptake. To address this potential trade-off, we combine a systematic study of natural bacteria and phage populations with an experimental evolution approach. We compare motility, growth rate and susceptibility to local phages for 80 bacteria isolated from horse chestnut leaves and, contrary to expectation, find no negative association between resistance to phages and bacterial motility or growth rate. However, because correlational patterns (and their absence) are open to numerous interpretations, we test for any causal association between resistance to phages and bacterial motility using experimental evolution of a subset of bacteria in both the presence and absence of naturally associated phages. Again, we find no clear link between the acquisition of resistance and bacterial motility, suggesting that for these natural bacterial populations, phage-mediated selection is unlikely to shape bacterial motility, a key fitness trait for many bacteria in the phyllosphere. The agreement between the observed natural pattern and the experimental evolution results presented here demonstrates the power of this combined approach for testing evolutionary trade-offs. PMID:21509046

  16. Analysis of traffic growth rates

    DOT National Transportation Integrated Search

    2001-08-01

    The primary objectives of this study were to determine patterns of traffic flow and develop traffic growth rates by traffic composition and highway type for Kentucky's system of highways. Additional subtasks included the following: 1) a literature se...

  17. Targeting of a chlamydial protease impedes intracellular bacterial growth.

    PubMed

    Christian, Jan G; Heymann, Julia; Paschen, Stefan A; Vier, Juliane; Schauenburg, Linda; Rupp, Jan; Meyer, Thomas F; Häcker, Georg; Heuer, Dagmar

    2011-09-01

    Chlamydiae are obligate intracellular bacteria that propagate in a cytosolic vacuole. Recent work has shown that growth of Chlamydia induces the fragmentation of the Golgi apparatus (GA) into ministacks, which facilitates the acquisition of host lipids into the growing inclusion. GA fragmentation results from infection-associated cleavage of the integral GA protein, golgin-84. Golgin-84-cleavage, GA fragmentation and growth of Chlamydia trachomatis can be blocked by the peptide inhibitor WEHD-fmk. Here we identify the bacterial protease chlamydial protease-like activity factor (CPAF) as the factor mediating cleavage of golgin-84 and as the target of WEHD-fmk-inhibition. WEHD-fmk blocked cleavage of golgin-84 as well as cleavage of known CPAF targets during infection with C. trachomatis and C. pneumoniae. The same effect was seen when active CPAF was expressed in non-infected cells and in a cell-free system. Ectopic expression of active CPAF in non-infected cells was sufficient for GA fragmentation. GA fragmentation required the small GTPases Rab6 and Rab11 downstream of CPAF-activity. These results define CPAF as the first protein that is essential for replication of Chlamydia. We suggest that this role makes CPAF a potential anti-infective therapeutic target.

  18. Divergent biparietal diameter growth rates in twin pregnancies.

    PubMed

    Houlton, M C

    1977-05-01

    Twenty-eight twin pregnancies were monitored by serial ultrasonic cephalometry from 30 or 31 weeks' gestation. The rates of growth of the individual twins as determined by biparietal diameters were similar in 11 cases (39%) and divergent in 17 (61%). When the rates of growth were divergent, the lesser rate was always below the mean for singleton pregnancies, and the incidence of small-for-gestational-age babies was 18 of 34 (53%). It was apparent that the greater the difference in biparietal diameters within the 2 weeks preceding delivery, the higher the risk of a small-for-gestation-age baby being delivered. No comment could be made on the growth rate prior to 28 weeks except that at diagnosis there was little or no difference in biparietal diameters.

  19. Heterologous Expression of Secreted Bacterial BPP and HAP Phytases in Plants Stimulates Arabidopsis thaliana Growth on Phytate.

    PubMed

    Valeeva, Lia R; Nyamsuren, Chuluuntsetseg; Sharipova, Margarita R; Shakirov, Eugene V

    2018-01-01

    Phytases are specialized phosphatases capable of releasing inorganic phosphate from myo -inositol hexakisphosphate (phytate), which is highly abundant in many soils. As inorganic phosphorus reserves decrease over time in many agricultural soils, genetic manipulation of plants to enable secretion of potent phytases into the rhizosphere has been proposed as a promising approach to improve plant phosphorus nutrition. Several families of biotechnologically important phytases have been discovered and characterized, but little data are available on which phytase families can offer the most benefits toward improving plant phosphorus intake. We have developed transgenic Arabidopsis thaliana plants expressing bacterial phytases PaPhyC (HAP family of phytases) and 168phyA (BPP family) under the control of root-specific inducible promoter Pht1;2 . The effects of each phytase expression on growth, morphology and inorganic phosphorus accumulation in plants grown on phytate hydroponically or in perlite as the only source of phosphorus were investigated. The most enzymatic activity for both phytases was detected in cell wall-bound fractions of roots, indicating that these enzymes were efficiently secreted. Expression of both bacterial phytases in roots improved plant growth on phytate and resulted in larger rosette leaf area and diameter, higher phosphorus content and increased shoot dry weight, implying that these plants were indeed capable of utilizing phytate as the source of phosphorus for growth and development. When grown on phytate the HAP-type phytase outperformed its BPP-type counterpart for plant biomass production, though this effect was only observed in hydroponic conditions and not in perlite. Furthermore, we found no evidence of adverse side effects of microbial phytase expression in A. thaliana on plant physiology and seed germination. Our data highlight important functional differences between these members of bacterial phytase families and indicate that future

  20. Heterologous Expression of Secreted Bacterial BPP and HAP Phytases in Plants Stimulates Arabidopsis thaliana Growth on Phytate

    PubMed Central

    Valeeva, Lia R.; Nyamsuren, Chuluuntsetseg; Sharipova, Margarita R.; Shakirov, Eugene V.

    2018-01-01

    Phytases are specialized phosphatases capable of releasing inorganic phosphate from myo-inositol hexakisphosphate (phytate), which is highly abundant in many soils. As inorganic phosphorus reserves decrease over time in many agricultural soils, genetic manipulation of plants to enable secretion of potent phytases into the rhizosphere has been proposed as a promising approach to improve plant phosphorus nutrition. Several families of biotechnologically important phytases have been discovered and characterized, but little data are available on which phytase families can offer the most benefits toward improving plant phosphorus intake. We have developed transgenic Arabidopsis thaliana plants expressing bacterial phytases PaPhyC (HAP family of phytases) and 168phyA (BPP family) under the control of root-specific inducible promoter Pht1;2. The effects of each phytase expression on growth, morphology and inorganic phosphorus accumulation in plants grown on phytate hydroponically or in perlite as the only source of phosphorus were investigated. The most enzymatic activity for both phytases was detected in cell wall-bound fractions of roots, indicating that these enzymes were efficiently secreted. Expression of both bacterial phytases in roots improved plant growth on phytate and resulted in larger rosette leaf area and diameter, higher phosphorus content and increased shoot dry weight, implying that these plants were indeed capable of utilizing phytate as the source of phosphorus for growth and development. When grown on phytate the HAP-type phytase outperformed its BPP-type counterpart for plant biomass production, though this effect was only observed in hydroponic conditions and not in perlite. Furthermore, we found no evidence of adverse side effects of microbial phytase expression in A. thaliana on plant physiology and seed germination. Our data highlight important functional differences between these members of bacterial phytase families and indicate that future crop

  1. Bacterial Growth as a Practical Indicator of Extensive Biodegradability of Organic Compounds

    PubMed Central

    Prochazka, G. J.; Payne, W. J.

    1965-01-01

    The proportionality of growth, as indicated by turbidity of cultures of Pseudomonas C12B, to the initial concentration of sodium dodecyl sulfate, dodecanol, or a mixture of C10-C20 secondary alcohol sulfates, each provided as sole carbon source in basal mineral salts medium, was demonstrated. Subsequently, the direct correlation of culture turbidity as a growth indicator and degradation of sodium dodecyl sulfate and the C10-C20 compounds was established. Degradation of these detergents was measured by the rise in surface tension and the decrease in methylene blue values, respectively. Turbidimetry was found to be a poor indicator of degradation of dodecanol in the early hours of culture, however, and did not correlate over a significant range with degradation of substrate. Viable cell counts did parallel dodecanol degradation as measured by gas-liquid chromatography. The use of bacterial growth as a reliable, quantitative, and easily measured parameter indicating biodegradability was suggested for those organic compounds which can be shown to serve as a carbon source for a bacterium. PMID:5867651

  2. Seasonal variations in ectotherm growth rates: Quantifying growth as an intermittent non steady state compensatory process

    USGS Publications Warehouse

    Guarini, J.-M.; Chauvaud, Laurent; Cloern, J.E.; Clavier, J.; Coston-Guarini, J.; Patry, Y.

    2011-01-01

    Generally, growth rates of living organisms are considered to be at steady state, varying only under environmental forcing factors. For example, these rates may be described as a function of light for plants or organic food resources for animals and these could be regulated (or not) by temperature or other conditions. But, what are the consequences for an individual's growth (and also for the population growth) if growth rate variations are themselves dynamic and not steady state? For organisms presenting phases of dormancy or long periods of stress, this is a crucial question. A dynamic perspective for quantifying short-term growth was explored using the daily growth record of the scallop Pecten maximus (L.). This species is a good biological model for ectotherm growth because the shell records growth striae daily. Independently, a generic mathematical function representing the dynamics of mean daily growth rate (MDGR) was implemented to simulate a diverse set of growth patterns. Once the function was calibrated with the striae patterns, the growth rate dynamics appeared as a forced damped oscillation during the growth period having a basic periodicity during two transitory phases (mean duration 43. days) and appearing at both growth start and growth end. This phase is most likely due to the internal dynamics of energy transfer within the organism rather than to external forcing factors. After growth restart, the transitory regime represents successive phases of over-growth and regulation. This pattern corresponds to a typical representation of compensatory growth, which from an evolutionary perspective can be interpreted as an adaptive strategy to coping with a fluctuating environment. ?? 2011 Elsevier B.V.

  3. Growth behavior and growth rate dependency in LEDs performance for Mg-doped a-plane GaN

    NASA Astrophysics Data System (ADS)

    Song, Keun-Man; Kim, Jong-Min; Lee, Dong-Hun; Shin, Chan-Soo; Ko, Chul-Gi; Kong, Bo-Hyun; Cho, Hyung-Koun; Yoon, Dae-Ho

    2011-07-01

    We investigated the influence of growth rate of Mg-doped a-plane GaN on the surface morphological and electrical properties, and the characteristics of InGaN-based nonpolar LEDs. Mg-doped a-plane GaN layers were grown on r-plane sapphire substrate by metalorganic chemical vapor deposition (MOCVD). Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and cathode luminescence (CL) analysis exhibited that the surface morphology changed from stripe features with large triangular pits to rough and rugged surface with small asymmetric V-shape pits, as the growth rate increased. The Mg incorporation into a-plane GaN layers increased with increasing growth rate of Mg-doped a-plane GaN, while the activation efficiency of Mg dopants decreased in a-plane GaN. Additionally, it was found that operation voltage at 20 mA decreased in characteristics of LEDs, as the growth rate of Mg-doped a-plane GaN decreased. Meanwhile, the EL intensity of LEDs with p-GaN layers grown at higher growth rate was improved compared to that of LEDs with p-GaN layers grown at lower growth rate. Such an increase of EL intensity is attributed to the rougher surface morphology with increasing growth rate of Mg-doped a-plane GaN.

  4. Resolving nanoparticle growth mechanisms from size- and time-dependent growth rate analysis

    NASA Astrophysics Data System (ADS)

    Pichelstorfer, Lukas; Stolzenburg, Dominik; Ortega, John; Karl, Thomas; Kokkola, Harri; Laakso, Anton; Lehtinen, Kari E. J.; Smith, James N.; McMurry, Peter H.; Winkler, Paul M.

    2018-01-01

    Atmospheric new particle formation occurs frequently in the global atmosphere and may play a crucial role in climate by affecting cloud properties. The relevance of newly formed nanoparticles depends largely on the dynamics governing their initial formation and growth to sizes where they become important for cloud microphysics. One key to the proper understanding of nanoparticle effects on climate is therefore hidden in the growth mechanisms. In this study we have developed and successfully tested two independent methods based on the aerosol general dynamics equation, allowing detailed retrieval of time- and size-dependent nanoparticle growth rates. Both methods were used to analyze particle formation from two different biogenic precursor vapors in controlled chamber experiments. Our results suggest that growth rates below 10 nm show much more variation than is currently thought and pin down the decisive size range of growth at around 5 nm where in-depth studies of physical and chemical particle properties are needed.

  5. Revisiting the Estimation of Dinosaur Growth Rates

    PubMed Central

    Myhrvold, Nathan P.

    2013-01-01

    Previous growth-rate studies covering 14 dinosaur taxa, as represented by 31 data sets, are critically examined and reanalyzed by using improved statistical techniques. The examination reveals that some previously reported results cannot be replicated by using the methods originally reported; results from new methods are in many cases different, in both the quantitative rates and the qualitative nature of the growth, from results in the prior literature. Asymptotic growth curves, which have been hypothesized to be ubiquitous, are shown to provide best fits for only four of the 14 taxa. Possible reasons for non-asymptotic growth patterns are discussed; they include systematic errors in the age-estimation process and, more likely, a bias toward younger ages among the specimens analyzed. Analysis of the data sets finds that only three taxa include specimens that could be considered skeletally mature (i.e., having attained 90% of maximum body size predicted by asymptotic curve fits), and eleven taxa are quite immature, with the largest specimen having attained less than 62% of predicted asymptotic size. The three taxa that include skeletally mature specimens are included in the four taxa that are best fit by asymptotic curves. The totality of results presented here suggests that previous estimates of both maximum dinosaur growth rates and maximum dinosaur sizes have little statistical support. Suggestions for future research are presented. PMID:24358133

  6. Noise in gene expression is coupled to growth rate

    PubMed Central

    Keren, Leeat; van Dijk, David; Weingarten-Gabbay, Shira; Davidi, Dan; Jona, Ghil; Weinberger, Adina; Milo, Ron; Segal, Eran

    2015-01-01

    Genetically identical cells exposed to the same environment display variability in gene expression (noise), with important consequences for the fidelity of cellular regulation and biological function. Although population average gene expression is tightly coupled to growth rate, the effects of changes in environmental conditions on expression variability are not known. Here, we measure the single-cell expression distributions of approximately 900 Saccharomyces cerevisiae promoters across four environmental conditions using flow cytometry, and find that gene expression noise is tightly coupled to the environment and is generally higher at lower growth rates. Nutrient-poor conditions, which support lower growth rates, display elevated levels of noise for most promoters, regardless of their specific expression values. We present a simple model of noise in expression that results from having an asynchronous population, with cells at different cell-cycle stages, and with different partitioning of the cells between the stages at different growth rates. This model predicts non-monotonic global changes in noise at different growth rates as well as overall higher variability in expression for cell-cycle–regulated genes in all conditions. The consistency between this model and our data, as well as with noise measurements of cells growing in a chemostat at well-defined growth rates, suggests that cell-cycle heterogeneity is a major contributor to gene expression noise. Finally, we identify gene and promoter features that play a role in gene expression noise across conditions. Our results show the existence of growth-related global changes in gene expression noise and suggest their potential phenotypic implications. PMID:26355006

  7. Calculating second derivatives of population growth rates for ecology and evolution

    PubMed Central

    Shyu, Esther; Caswell, Hal

    2014-01-01

    1. Second derivatives of the population growth rate measure the curvature of its response to demographic, physiological or environmental parameters. The second derivatives quantify the response of sensitivity results to perturbations, provide a classification of types of selection and provide one way to calculate sensitivities of the stochastic growth rate. 2. Using matrix calculus, we derive the second derivatives of three population growth rate measures: the discrete-time growth rate λ, the continuous-time growth rate r = log λ and the net reproductive rate R0, which measures per-generation growth. 3. We present a suite of formulae for the second derivatives of each growth rate and show how to compute these derivatives with respect to projection matrix entries and to lower-level parameters affecting those matrix entries. 4. We also illustrate several ecological and evolutionary applications for these second derivative calculations with a case study for the tropical herb Calathea ovandensis. PMID:25793101

  8. A model for predicting Xanthomonas arboricola pv. pruni growth as a function of temperature

    PubMed Central

    Llorente, Isidre; Montesinos, Emilio; Moragrega, Concepció

    2017-01-01

    A two-step modeling approach was used for predicting the effect of temperature on the growth of Xanthomonas arboricola pv. pruni, causal agent of bacterial spot disease of stone fruit. The in vitro growth of seven strains was monitored at temperatures from 5 to 35°C with a Bioscreen C system, and a calibrating equation was generated for converting optical densities to viable counts. In primary modeling, Baranyi, Buchanan, and modified Gompertz equations were fitted to viable count growth curves over the entire temperature range. The modified Gompertz model showed the best fit to the data, and it was selected to estimate the bacterial growth parameters at each temperature. Secondary modeling of maximum specific growth rate as a function of temperature was performed by using the Ratkowsky model and its variations. The modified Ratkowsky model showed the best goodness of fit to maximum specific growth rate estimates, and it was validated successfully for the seven strains at four additional temperatures. The model generated in this work will be used for predicting temperature-based Xanthomonas arboricola pv. pruni growth rate and derived potential daily doublings, and included as the inoculum potential component of a bacterial spot of stone fruit disease forecaster. PMID:28493954

  9. Features of the Functioning Bacterial Ecosystems in the Antarctic

    NASA Astrophysics Data System (ADS)

    Yakushev, A. V.; Churilin, N.; Soina, V. S.; Vorobyova, E. A.; Mergelov, N. S.

    2014-10-01

    Studies of bacterial communities in the samples of Antarctic soils by different methods showed that, both in liquid soil suspensions and in situ, microbial complexes are functioning presumably by forming biofilms -- the phenomenon that is more expressed in such habitat than in soils of temperate zones. Functional (trophic) diversity and physiological state of hydrolytic bacteria was studied in the samples at the upper layer (0-2 cm) of gravel pavement with algae, in the underlying peat horizon (2-4 cm) with inclusions of dead biomass and its underlying mineral horizon (4-10 cm) with signs of fungal mycelium. The investigated samples of Antarctic soils revealed different trophic diversity and the maximum specific growth rate on mineral medium with different biopolymers as the sole carbon source (starch, chitin, pectin, xylan, dextran-500, tween-20, casein); this can testify to differences in the physiological state of hydrolytic bacteria in various soil horizons and their readiness for growth. The most remarkable characteristics of the studied Antarctic soil as compared to the soils of temperate zone, was the unusual ability of hydrolytic community to consume chitin in the mineral horizon; this can be explained by the presence of fungal mycelium. Also, an almost complete lack in consumption of tween-20 (a water-soluble analogue of fat) by bacterial community of Arctic soil horizons are not explained and needs further verification. The higher functional diversity was detected in the upper horizon of the gravel pavement, which "protects" microorganisms from exposure to extreme temperatures, UV radiation, and desiccation, but the maximum specific growth rate was higher in the lower mineral horizon; this can be explained by the specificity of bacterial colonizing processes and unique formation of Antarctic soil microprofiles in the Larsemann oasis. The obtained data indicate a specific environmental strategy in the samples of Antarctic soils: development in lower

  10. Growth and element flux at fine taxonomic resolution in natural microbial communities

    NASA Astrophysics Data System (ADS)

    Hungate, Bruce; Mau, Rebecca; Schwartz, Egbert; Caporaso, J. Gregory; Dijkstra, Paul; van Gestel, Natasja; Koch, Benjamin J.; Liu, Cindy M.; McHugh, Theresa; Marks, Jane C.; Morrissey, Ember; Price, Lance B.

    2015-04-01

    Microorganisms are the engines of global biogeochemical cycles, driving half of all photosynthesis and nearly all decomposition. Yet, quantifying the rates at which uncultured microbial taxa grow and transform elements in intact and highly diverse natural communities in the environment remains among the most pressing challenges in microbial ecology today. Here, we show how shifts in the density of DNA caused by stable isotope incorporation can be used to estimate the growth rates of individual bacterial taxa in intact soil communities. We found that the distribution of growth rates followed the familiar lognormal distribution observed for the abundances, biomasses, and traits of many organisms. Growth rates of most bacterial taxa increased in response to glucose amendment, though the increase in growth observed for many taxa was larger than could be explained by direct utilization of the added glucose for growth, illustrating that glucose addition indirectly stimulated the utilization of other substrates. Variation in growth rates and phylogenetic distances were quantitatively related, connecting evolutionary history and biogeochemical function in intact soil microbial communities. Our approach has the potential to identify biogeochemically significant taxa in the microbial community and quantify their contributions to element transformations and ecosystem processes.

  11. Bacterial Growth Kinetics under a Novel Flexible Methacrylate Dressing Serving as a Drug Delivery Vehicle for Antiseptics

    PubMed Central

    Forstner, Christina; Leitgeb, Johannes; Schuster, Rupert; Dosch, Verena; Kramer, Axel; Cutting, Keith F.; Leaper, David J.; Assadian, Ojan

    2013-01-01

    A flexible methacrylate powder dressing (Altrazeal®) transforms into a wound contour conforming matrix once in contact with wound exudate. We hypothesised that it may also serve as a drug delivery vehicle for antiseptics. The antimicrobial efficacy and influence on bacterial growth kinetics in combination with three antiseptics was investigated in an in vitro porcine wound model. Standardized in vitro wounds were contaminated with Staphylococcus aureus (MRSA; ATCC 33591) and divided into six groups: no dressing (negative control), methacrylate dressing alone, and combinations with application of 0.02% Polyhexamethylene Biguanide (PHMB), 0.4% PHMB, 0.1% PHMB + 0.1% betaine, 7.7 mg/mL Povidone-iodine (PVP-iodine), and 0.1% Octenidine-dihydrochloride (OCT) + 2% phenoxyethanol. Bacterial load per gram tissue was measured over five days. The highest reduction was observed with PVP-iodine at 24 h to log10 1.43 cfu/g, followed by OCT at 48 h to log10 2.41 cfu/g. Whilst 0.02% PHMB resulted in a stable bacterial load over 120 h to log10 4.00 cfu/g over 120 h, 0.1% PHMB + 0.1% betaine inhibited growth during the first 48 h, with slightly increasing bacterial numbers up to log10 5.38 cfu/g at 120 h. These results indicate that this flexible methacrylate dressing can be loaded with various antiseptics serving as drug delivery system. Depending on the selected combination, an individually shaped and controlled antibacterial effect may be achieved using the same type of wound dressing. PMID:23698780

  12. Estimation of the growth curve and heritability of the growth rate for giant panda (Ailuropoda melanoleuca) cubs.

    PubMed

    Che, T D; Wang, C D; Jin, L; Wei, M; Wu, K; Zhang, Y H; Zhang, H M; Li, D S

    2015-03-27

    Giant panda cubs have a low survival rate during the newborn and early growth stages. However, the growth and developmental parameters of giant panda cubs during the early lactation stage (from birth to 6 months) are not well known. We examined the growth and development of giant panda cubs by the Chapman growth curve model and estimated the heritability of the maximum growth rate at the early lactation stage. We found that 83 giant panda cubs reached their maximum growth rate at approximately 75-120 days after birth. The body weight of cubs at 75 days was 4285.99 g. Furthermore, we estimated that the heritability of the maximum growth rate was moderate (h(2) = 0.38). Our study describes the growth and development of giant panda cubs at the early lactation stage and provides valuable growth benchmarks. We anticipate that our results will be a starting point for more detailed research on increasing the survival rate of giant panda cubs. Feeding programs for giant panda cubs need further improvement.

  13. The effects of light, primary production, and temperature on bacterial production at Station ALOHA

    NASA Astrophysics Data System (ADS)

    Viviani, D. A.; Church, M. J.

    2016-02-01

    In the open oceans, bacterial metabolism is responsible for a large fraction of the movement of reduced carbon through these ecosystems. While broad meta-analyses suggest that factors such as temperature or primary production control rates of bacterial production over large geographic scales, to date little is known about how these factors influence variability in bacterial production in the open sea. Here we present two years of measurements of 3H-leucine incorporation, a proxy for bacterial production, at the open ocean field site of the Hawaii Ocean Time-series, Station ALOHA (22° 45'N, 158° 00'W). By examining 3H-leucine incorporation over monthly, daily, and hourly scales, this work provides insight into processes controlling bacterial growth in this persistently oligotrophic habitat. Rates of 3H-leucine incorporation were consistently 60% greater when measured in the light than in the dark, highlighting the importance of sunlight in fueling bacterial metabolism in this ecosystem. Over diel time scales, rates of 3H-leucine incorporation were quasi-sinusoidal, with rates in the light higher near midday, while rates in the dark were greatest after sunset. Depth-integrated (0 -125 m) rates of 3H-leucine incorporation in both light and dark were more variable ( 5- and 4-fold, respectively) than coincident measurements of primary production ( 2-fold). On average, rates of bacterial production averaged 2 and 4% of primary production (in the dark and light, respectively). At near-monthly time scales, rates of 3H-leucine incorporation in both light and dark were significantly related to temperature. Our results suggest that in the subtropical oligotrophic Pacific, bacterial production appears decoupled from primary production as a result of seasonal-scale variations in temperature and light.

  14. The Population Biology of Bacterial Plasmids: A PRIORI Conditions for the Existence of Conjugationally Transmitted Factors

    PubMed Central

    Stewart, Frank M.; Levin, Bruce R.

    1977-01-01

    A mathematical model for the population dynamics of conjugationally transmitted plasmids in bacterial populations is presented and its properties analyzed. Consideration is given to nonbacteriocinogenic factors that are incapable of incorporation into the chromosome of their host cells, and to bacterial populations maintained in either continuous (chemostat) or discrete (serial transfer) culture. The conditions for the establishment and maintenance of these infectious extrachromosomal elements and equilibrium frequencies of cells carrying them are presented for different values of the biological parameters: population growth functions, conjugational transfer and segregation rate constants. With these parameters in a biologically realistic range, the theory predicts a broad set of physical conditions, resource concentrations and dilution rates, where conjugationally transmitted plasmids can become established and where cells carrying them will maintain high frequencies in bacterial populations. This can occur even when plasmid-bearing cells are much less fit (i.e., have substantially lower growth rates) than cells free of these factors. The implications of these results and the reality and limitations of the model are discussed and the values of its parameters in natural populations speculated upon. PMID:17248761

  15. Simple and Versatile Turbidimetric Monitoring of Bacterial Growth in Liquid Cultures Using a Customized 3D Printed Culture Tube Holder and a Miniaturized Spectrophotometer: Application to Facultative and Strictly Anaerobic Bacteria.

    PubMed

    Maia, Margarida R G; Marques, Sara; Cabrita, Ana R J; Wallace, R John; Thompson, Gertrude; Fonseca, António J M; Oliveira, Hugo M

    2016-01-01

    Here we introduce a novel strategy for turbidimetric monitoring of bacterial growth in liquid culture. The instrumentation comprises a light source, a customized 3D printed culture tube holder and a miniaturized spectrophotometer, connected through optical cables. Due to its small footprint and the possibility to operate with external light, bacterial growth was directly monitored from culture tubes in a simple and versatile fashion. This new portable measurement technique was used to monitor the growth of facultative (Escherichia coli ATCC/25922, and Staphylococcus aureus ATCC/29213) and strictly (Butyrivibrio fibrisolvens JW11, Butyrivibrio proteoclasticus P18, and Propionibacterium acnes DSMZ 1897) anaerobic bacteria. For E. coli and S. aureus, the growth rates calculated from normalized optical density values were compared with those ones obtained using a benchtop spectrophotometer without significant differences (P = 0.256). For the strictly anaerobic species, a high precision (relative standard deviation < 3.5%) was observed between replicates up to 48 h. Regarding its potential for customization, this manifold could accommodate further developments for customized turbidimetric monitoring, such as the use of light-emitting diodes as a light source or flow cells.

  16. Simple and Versatile Turbidimetric Monitoring of Bacterial Growth in Liquid Cultures Using a Customized 3D Printed Culture Tube Holder and a Miniaturized Spectrophotometer: Application to Facultative and Strictly Anaerobic Bacteria

    PubMed Central

    Maia, Margarida R. G.; Marques, Sara; Cabrita, Ana R. J.; Wallace, R. John; Thompson, Gertrude; Fonseca, António J. M.; Oliveira, Hugo M.

    2016-01-01

    Here we introduce a novel strategy for turbidimetric monitoring of bacterial growth in liquid culture. The instrumentation comprises a light source, a customized 3D printed culture tube holder and a miniaturized spectrophotometer, connected through optical cables. Due to its small footprint and the possibility to operate with external light, bacterial growth was directly monitored from culture tubes in a simple and versatile fashion. This new portable measurement technique was used to monitor the growth of facultative (Escherichia coli ATCC/25922, and Staphylococcus aureus ATCC/29213) and strictly (Butyrivibrio fibrisolvens JW11, Butyrivibrio proteoclasticus P18, and Propionibacterium acnes DSMZ 1897) anaerobic bacteria. For E. coli and S. aureus, the growth rates calculated from normalized optical density values were compared with those ones obtained using a benchtop spectrophotometer without significant differences (P = 0.256). For the strictly anaerobic species, a high precision (relative standard deviation < 3.5%) was observed between replicates up to 48 h. Regarding its potential for customization, this manifold could accommodate further developments for customized turbidimetric monitoring, such as the use of light-emitting diodes as a light source or flow cells. PMID:27630632

  17. Application of a microcomputer-based system to control and monitor bacterial growth.

    PubMed

    Titus, J A; Luli, G W; Dekleva, M L; Strohl, W R

    1984-02-01

    A modular microcomputer-based system was developed to control and monitor various modes of bacterial growth. The control system was composed of an Apple II Plus microcomputer with 64-kilobyte random-access memory; a Cyborg ISAAC model 91A multichannel analog-to-digital and digital-to-analog converter; paired MRR-1 pH, pO(2), and foam control units; and in-house-designed relay, servo control, and turbidimetry systems. To demonstrate the flexibility of the system, we grew bacteria under various computer-controlled and monitored modes of growth, including batch, turbidostat, and chemostat systems. The Apple-ISAAC system was programmed in Labsoft BASIC (extended Applesoft) with an average control program using ca. 6 to 8 kilobytes of memory and up to 30 kilobytes for datum arrays. This modular microcomputer-based control system was easily coupled to laboratory scale fermentors for a variety of fermentations.

  18. Application of a Microcomputer-Based System to Control and Monitor Bacterial Growth

    PubMed Central

    Titus, Jeffrey A.; Luli, Gregory W.; Dekleva, Michael L.; Strohl, William R.

    1984-01-01

    A modular microcomputer-based system was developed to control and monitor various modes of bacterial growth. The control system was composed of an Apple II Plus microcomputer with 64-kilobyte random-access memory; a Cyborg ISAAC model 91A multichannel analog-to-digital and digital-to-analog converter; paired MRR-1 pH, pO2, and foam control units; and in-house-designed relay, servo control, and turbidimetry systems. To demonstrate the flexibility of the system, we grew bacteria under various computer-controlled and monitored modes of growth, including batch, turbidostat, and chemostat systems. The Apple-ISAAC system was programmed in Labsoft BASIC (extended Applesoft) with an average control program using ca. 6 to 8 kilobytes of memory and up to 30 kilobytes for datum arrays. This modular microcomputer-based control system was easily coupled to laboratory scale fermentors for a variety of fermentations. PMID:16346462

  19. Noise in gene expression is coupled to growth rate.

    PubMed

    Keren, Leeat; van Dijk, David; Weingarten-Gabbay, Shira; Davidi, Dan; Jona, Ghil; Weinberger, Adina; Milo, Ron; Segal, Eran

    2015-12-01

    Genetically identical cells exposed to the same environment display variability in gene expression (noise), with important consequences for the fidelity of cellular regulation and biological function. Although population average gene expression is tightly coupled to growth rate, the effects of changes in environmental conditions on expression variability are not known. Here, we measure the single-cell expression distributions of approximately 900 Saccharomyces cerevisiae promoters across four environmental conditions using flow cytometry, and find that gene expression noise is tightly coupled to the environment and is generally higher at lower growth rates. Nutrient-poor conditions, which support lower growth rates, display elevated levels of noise for most promoters, regardless of their specific expression values. We present a simple model of noise in expression that results from having an asynchronous population, with cells at different cell-cycle stages, and with different partitioning of the cells between the stages at different growth rates. This model predicts non-monotonic global changes in noise at different growth rates as well as overall higher variability in expression for cell-cycle-regulated genes in all conditions. The consistency between this model and our data, as well as with noise measurements of cells growing in a chemostat at well-defined growth rates, suggests that cell-cycle heterogeneity is a major contributor to gene expression noise. Finally, we identify gene and promoter features that play a role in gene expression noise across conditions. Our results show the existence of growth-related global changes in gene expression noise and suggest their potential phenotypic implications. © 2015 Keren et al.; Published by Cold Spring Harbor Laboratory Press.

  20. The influence of impurities on the growth rate of calcite

    NASA Astrophysics Data System (ADS)

    Meyer, H. J.

    1984-05-01

    The effects of 34 different additives on the growth rate of calcite were investigated. An initial growth rate of about one crystal monolayer (3 × 10 -8 cm) per minute was adjusted at a constant supersaturation which was maintained by a control circuit. Then the impurity was added step by step and the reduction of the growth rate was measured. The impurity concentration necessary to reduce the initial growth rate by a certain percentage increased in the order Fe 2+, ATP, P 3O 5-10, P 2O 4-7, (PO 3) 6-6, Zn 2+, ADP, Ce 3+, Pb 2+, carbamyl phosphate, Fe 3+, PO 3-4, Co 2+, Mn 2+, Be 2+, β-glycerophosphate, Ni 2+, Cd 2+, "Tris", phenylphosphate, chondroitine sulphate, Ba 2+, citrate, AMP, Sr 2+, tricarballylate, taurine, SO 2-4, Mg 2+ by 4 orders of magnitude. The most effective additives halved the initial growth rate in concentrations of 2 × 10 -8 mol/1. For Fe 2+ the halving concentration was nearly proportional to the initial rate. The mechanism of inhibition by adsorption of the impurities at growth sites (kinks) is discussed.

  1. Sweet scents from good bacteria: Case studies on bacterial volatile compounds for plant growth and immunity.

    PubMed

    Chung, Joon-hui; Song, Geun Cheol; Ryu, Choong-Min

    2016-04-01

    Beneficial bacteria produce diverse chemical compounds that affect the behavior of other organisms including plants. Bacterial volatile compounds (BVCs) contribute to triggering plant immunity and promoting plant growth. Previous studies investigated changes in plant physiology caused by in vitro application of the identified volatile compounds or the BVC-emitting bacteria. This review collates new information on BVC-mediated plant-bacteria airborne interactions, addresses unresolved questions about the biological relevance of BVCs, and summarizes data on recently identified BVCs that improve plant growth or protection. Recent explorations of bacterial metabolic engineering to alter BVC production using heterologous or endogenous genes are introduced. Molecular genetic approaches can expand the BVC repertoire of beneficial bacteria to target additional beneficial effects, or simply boost the production level of naturally occurring BVCs. The effects of direct BVC application in soil are reviewed and evaluated for potential large-scale field and agricultural applications. Our review of recent BVC data indicates that BVCs have great potential to serve as effective biostimulants and bioprotectants even under open-field conditions.

  2. Model comparison for Escherichia coli growth in pouched food.

    PubMed

    Fujikawa, Hiroshi; Yano, Kazuyoshi; Morozumi, Satoshi

    2006-06-01

    We recently studied the growth characteristics of Escherichia coli cells in pouched mashed potatoes (Fujikawa et al., J. Food Hyg. Soc. Japan, 47, 95-98 (2006)). Using those experimental data, in the present study, we compared a logistic model newly developed by us with the modified Gompertz and the Baranyi models, which are used as growth models worldwide. Bacterial growth curves at constant temperatures in the range of 12 to 34 degrees C were successfully described with the new logistic model, as well as with the other models. The Baranyi gave the least error in cell number and our model gave the least error in the rate constant and the lag period. For dynamic temperature, our model successfully predicted the bacterial growth, whereas the Baranyi model considerably overestimated it. Also, there was a discrepancy between the growth curves described with the differential equations of the Baranyi model and those obtained with DMfit, a software program for Baranyi model fitting. These results indicate that the new logistic model can be used to predict bacterial growth in pouched food.

  3. Growth of methylaminotrophic, acetotrophic and hydrogenotrophic methanogenic bacteria on artificial supports.

    PubMed

    Urrutia, H; Vidal, R; Baeza, M; Reyes, J E; Aspe, E

    1997-06-01

    The efficiency of organic matter degradation in attached biomass reactors depends on the suitable selection of artificial support for the retention of bacterial communities. We have studied the growth on glass and clay beads of methylaminotrophic, acetotrophic and hydrogenotrophic methanogenic bacterial communities isolated from anaerobic reactors. Bacterial counts were performed by the standard MPN technique. Experiments were performed in 50 ml vials for 12 days at 35 degrees C. Increase in the counts of methylaminotrophic and hydrogenotrophic methanogens occurred on both glass and clay beads. The latter support material also stimulated the growth rate of methylaminotrophic methanogens.

  4. Effects of Interactions of Auxin-Producing Bacteria and Bacterial-Feeding Nematodes on Regulation of Peanut Growths

    PubMed Central

    Xu, Li; Xu, Wensi; Jiang, Ying; Hu, Feng; Li, Huixin

    2015-01-01

    The influences of an IAA (indole-3-acetic acid)-producing bacterium (Bacillus megaterium) and two bacterial-feeding nematodes (Cephalobus sp. or Mesorhabditis sp.) on the growth of peanut (Arachis hypogaea L. cv. Haihua 1) after various durations of time were investigated in natural soils. The addition of bacteria and nematodes and incubation time all significantly affected plant growth, plant root growth, plant nutrient concentrations, soil nutrient concentrations, soil microorganisms and soil auxin concentration. The addition of nematodes caused greater increases in these indices than those of bacteria, while the addition of the combination of bacteria and nematodes caused further increases. After 42-day growth, the increases in soil respiration differed between the additions of two kinds of nematodes because of differences in their life strategies. The effects of the bacteria and nematodes on the nutrient and hormone concentrations were responsible for the increases in plant growth. These results indicate the potential for promoting plant growth via the addition of nematodes and bacteria to soil. PMID:25867954

  5. Effects of interactions of auxin-producing bacteria and bacterial-feeding nematodes on regulation of peanut growths.

    PubMed

    Xu, Li; Xu, Wensi; Jiang, Ying; Hu, Feng; Li, Huixin

    2015-01-01

    The influences of an IAA (indole-3-acetic acid)-producing bacterium (Bacillus megaterium) and two bacterial-feeding nematodes (Cephalobus sp. or Mesorhabditis sp.) on the growth of peanut (Arachis hypogaea L. cv. Haihua 1) after various durations of time were investigated in natural soils. The addition of bacteria and nematodes and incubation time all significantly affected plant growth, plant root growth, plant nutrient concentrations, soil nutrient concentrations, soil microorganisms and soil auxin concentration. The addition of nematodes caused greater increases in these indices than those of bacteria, while the addition of the combination of bacteria and nematodes caused further increases. After 42-day growth, the increases in soil respiration differed between the additions of two kinds of nematodes because of differences in their life strategies. The effects of the bacteria and nematodes on the nutrient and hormone concentrations were responsible for the increases in plant growth. These results indicate the potential for promoting plant growth via the addition of nematodes and bacteria to soil.

  6. Bacterial growth on a superhydrophobic surface containing silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Heinonen, S.; Nikkanen, J.-P.; Laakso, J.; Raulio, M.; Priha, O.; Levänen, E.

    2013-12-01

    The antibacterial effect of silver can be exploited in the food and beverage industry and medicinal applications to reduce biofouling of surfaces. Very small amount of silver ions are enough to destructively affect the metabolism of bacteria. Moreover, superhydrophobic properties could reduce bacterial adhesion to the surface. In this study we fabricated superhydrophobic surfaces that contained nanosized silver particles. The superhydrophobic surfaces were manufactured onto stainless steel as combination of ceramic nanotopography and hydrophobication by fluorosilane. Silver nanoparticles were precipitated onto the surface by a chemical method. The dissolution of silver from the surface was tested in an aqueous environment under pH values of 1, 3, 5, 7, 9, 11 and 13. The pH value was adjusted with nitric acid and ammonia. It was found that dissolution rate of silver increased as the pH of the solution altered from the pH of de-ionized water to lower and higher pH values but dissolution occurred also in de-ionized water. The antimicrobial potential of this coating was investigated using bacterial strains isolated from the brewery equipment surfaces. The results showed that the number of bacteria adhering onto steel surface was significantly reduced (88%) on the superhydrophobic silver containing coating.

  7. A new model for the spectral induced polarization signature of bacterial growth in porous media

    NASA Astrophysics Data System (ADS)

    Revil, A.; Atekwana, E.; Zhang, C.; Jardani, A.; Smith, S.

    2012-09-01

    The complex conductivity of porous materials and colloidal suspensions comprises two components: an in-phase conductivity associated with electromigration of the charge carriers and a quadrature conductivity associated with the reversible storage of the charges at some polarization length scales. We developed a quantitative model to investigate the frequency domain induced polarization response of suspensions of bacteria and bacteria growth in porous media. Induced polarization of bacteria (α polarization) is related to the properties of the electrical double layer of the bacteria. Surface conductivity and α polarization are due to the Stern layer of counterions occurring in a brush of polymers coating the surface of the bacteria. These phenomena can be related to their cation exchange capacity. The mobility of the counterions in this Stern layer is found to be very small (4.7 × 10-10 m2 s-1 V-1 at 25°C). This implies a very low relaxation frequency for the αpolarization of the bacteria cells (typically around 0.1-5 Hz), in agreement with experimental observations. This new model can be coupled to reactive transport modeling codes in which the evolution of bacterial populations are usually described by Monod kinetics. We show that the growth rate and endogenous decay coefficients of bacteria in a porous sand can be inferred nonintrusively from time-lapse frequency domain induced polarization data.

  8. The effect of different growth regimes on the endophytic bacterial communities of the fern, Dicksonia sellowiana hook (Dicksoniaceae).

    PubMed

    de Araújo Barros, Irene; Luiz Araújo, Welington; Lúcio Azevedo, João

    2010-10-01

    Endophytic bacteria associated with the fern Dicksonia sellowiana were investigated. The bacterial communities from the surface-sterilized pinnae and rachis segments of the plants from the Brazilian Atlantic Rainforest that grew in native field conditions were compared with the bacterial communities from plants grown in greenhouses and plants that were initially grown in greenhouses and then transferred to the forest. From 540 pinnae and 540 rachis segments, 163 (30.2%) and 346 (64.2%) were colonized by bacteria, respectively. The main bacterial genera and species that were isolated included Bacillus spp. ( B. cereus, B. megaterium, B. pumilus and B. subtilis ) , Paenibacillus sp. , Amphibacillus sp. , Gracilibacillus sp. , Micrococcus sp. and Stenotrophomonas spp. ( S. maltophilia and S. nitroreducens ). B. pumilus was the most frequently isolated bacterial species . Amphibacillus and Gracilibacillus were reported as endophytes for the first time. Other commonly found bacterial genera were not observed in D. sellowiana , which may reflect preferences of specific bacterial communities inside this fern or detection limitations due to the isolation procedures. Plants that were grown in greenhouses and plants that were reintroduced into the forest displayed more bacterial genera and species diversity than native field plants, suggesting that reintroduction shifts the bacterial diversity. Endophytic bacteria that displayed antagonistic properties against different microorganisms were detected, but no obvious correlation was found between their frequencies with plant tissues or with plants from different growth regimes. This paper reports the first isolation of endophytic bacteria from a fern.

  9. The effect of different growth regimes on the endophytic bacterial communities of the fern, Dicksonia sellowiana hook (Dicksoniaceae)

    PubMed Central

    de Araújo Barros, Irene; Luiz Araújo, Welington; Lúcio Azevedo, João

    2010-01-01

    Endophytic bacteria associated with the fern Dicksonia sellowiana were investigated. The bacterial communities from the surface-sterilized pinnae and rachis segments of the plants from the Brazilian Atlantic Rainforest that grew in native field conditions were compared with the bacterial communities from plants grown in greenhouses and plants that were initially grown in greenhouses and then transferred to the forest. From 540 pinnae and 540 rachis segments, 163 (30.2%) and 346 (64.2%) were colonized by bacteria, respectively. The main bacterial genera and species that were isolated included Bacillus spp. ( B. cereus, B. megaterium, B. pumilus and B. subtilis ) , Paenibacillus sp. , Amphibacillus sp. , Gracilibacillus sp. , Micrococcus sp. and Stenotrophomonas spp. ( S. maltophilia and S. nitroreducens ). B. pumilus was the most frequently isolated bacterial species . Amphibacillus and Gracilibacillus were reported as endophytes for the first time. Other commonly found bacterial genera were not observed in D. sellowiana , which may reflect preferences of specific bacterial communities inside this fern or detection limitations due to the isolation procedures. Plants that were grown in greenhouses and plants that were reintroduced into the forest displayed more bacterial genera and species diversity than native field plants, suggesting that reintroduction shifts the bacterial diversity. Endophytic bacteria that displayed antagonistic properties against different microorganisms were detected, but no obvious correlation was found between their frequencies with plant tissues or with plants from different growth regimes. This paper reports the first isolation of endophytic bacteria from a fern. PMID:24031575

  10. Evaluation of effect of high frequency electromagnetic field on growth and antibiotic sensitivity of bacteria.

    PubMed

    Salmen, Saleh H; Alharbi, Sulaiman A; Faden, Asmaa A; Wainwright, M

    2018-01-01

    This study was aimed to evaluate the impact of high frequency electromagnetic fields (HF-EMF at 900 and 1800 MHz) on DNA, growth rate and antibiotic susceptibility of S. aureus , S. epidermidis , and P. aeruginosa . In this study, bacteria were exposed to 900 and 1800 MHz for 2 h and then inoculated to new medium when their growth rate and antibiotic susceptibility were evaluated. Results for the study of bacterial DNA unsuccessful to appearance any difference exposed and non-exposed S. aureus and S. epidermidis . Exposure of S. epidermidis and S. aureus to electromagnetic fields mostly produced no statistically significant decrease in bacterial growth, except for S. aureus when exposure to 900 MHz at 12 h. Exposure of P. aeruginosa to electromagnetic fields at 900 MHz however, lead to a significant reduction in growth rate, while 1800 MHz had insignificant effect. With the exception of S. aureus , treated with amoxicillin (30 µg) and exposed to electromagnetic fields, radiation treatment had no significant effect on bacterial sensitivity to antibiotics.

  11. Comparing Basal Area Growth Rates in Repeated Inventories: Simpson's Paradox in Forestry

    Treesearch

    Charles E. Thomas; Bernard R. Parresol

    1989-01-01

    Recent analyses of radial growth rates in southern commercial forests have shown that current rates are lower than past rates when compared diameter class by diameter class. These results have been interpreted as an indication that the growth rate of the forest is declining. In this paper, growth rates of forest populations in Alabama are studied. Basal area growth (a...

  12. Improving estimates of tree mortality probability using potential growth rate

    USGS Publications Warehouse

    Das, Adrian J.; Stephenson, Nathan L.

    2015-01-01

    Tree growth rate is frequently used to estimate mortality probability. Yet, growth metrics can vary in form, and the justification for using one over another is rarely clear. We tested whether a growth index (GI) that scales the realized diameter growth rate against the potential diameter growth rate (PDGR) would give better estimates of mortality probability than other measures. We also tested whether PDGR, being a function of tree size, might better correlate with the baseline mortality probability than direct measurements of size such as diameter or basal area. Using a long-term dataset from the Sierra Nevada, California, U.S.A., as well as existing species-specific estimates of PDGR, we developed growth–mortality models for four common species. For three of the four species, models that included GI, PDGR, or a combination of GI and PDGR were substantially better than models without them. For the fourth species, the models including GI and PDGR performed roughly as well as a model that included only the diameter growth rate. Our results suggest that using PDGR can improve our ability to estimate tree survival probability. However, in the absence of PDGR estimates, the diameter growth rate was the best empirical predictor of mortality, in contrast to assumptions often made in the literature.

  13. Effects of Eyjafjallajökull volcanic ash on innate immune system responses and bacterial growth in vitro.

    PubMed

    Monick, Martha M; Baltrusaitis, Jonas; Powers, Linda S; Borcherding, Jennifer A; Caraballo, Juan C; Mudunkotuwa, Imali; Peate, David W; Walters, Katherine; Thompson, Jay M; Grassian, Vicki H; Gudmundsson, Gunnar; Comellas, Alejandro P

    2013-06-01

    On 20 March 2010, the Icelandic volcano Eyjafjallajökull erupted for the first time in 190 years. Despite many epidemiological reports showing effects of volcanic ash on the respiratory system, there are limited data evaluating cellular mechanisms involved in the response to ash. Epidemiological studies have observed an increase in respiratory infections in subjects and populations exposed to volcanic eruptions. We physicochemically characterized volcanic ash, finding various sizes of particles, as well as the presence of several transition metals, including iron. We examined the effect of Eyjafjallajökull ash on primary rat alveolar epithelial cells and human airway epithelial cells (20-100 µg/cm(2)), primary rat and human alveolar macrophages (5-20 µg/cm(2)), and Pseudomonas aeruginosa (PAO1) growth (3 µg/104 bacteria). Volcanic ash had minimal effect on alveolar and airway epithelial cell integrity. In alveolar macrophages, volcanic ash disrupted pathogen-killing and inflammatory responses. In in vitro bacterial growth models, volcanic ash increased bacterial replication and decreased bacterial killing by antimicrobial peptides. These results provide potential biological plausibility for epidemiological data that show an association between air pollution exposure and the development of respiratory infections. These data suggest that volcanic ash exposure, while not seriously compromising lung cell function, may be able to impair innate immunity responses in exposed individuals.

  14. Effects of Eyjafjallajökull Volcanic Ash on Innate Immune System Responses and Bacterial Growth in Vitro

    PubMed Central

    Baltrusaitis, Jonas; Powers, Linda S.; Borcherding, Jennifer A.; Caraballo, Juan C.; Mudunkotuwa, Imali; Peate, David W.; Walters, Katherine; Thompson, Jay M.; Grassian, Vicki H.; Gudmundsson, Gunnar; Comellas, Alejandro P.

    2013-01-01

    Background: On 20 March 2010, the Icelandic volcano Eyjafjallajökull erupted for the first time in 190 years. Despite many epidemiological reports showing effects of volcanic ash on the respiratory system, there are limited data evaluating cellular mechanisms involved in the response to ash. Epidemiological studies have observed an increase in respiratory infections in subjects and populations exposed to volcanic eruptions. Methods: We physicochemically characterized volcanic ash, finding various sizes of particles, as well as the presence of several transition metals, including iron. We examined the effect of Eyjafjallajökull ash on primary rat alveolar epithelial cells and human airway epithelial cells (20–100 µg/cm2), primary rat and human alveolar macrophages (5–20 µg/cm2), and Pseudomonas aeruginosa (PAO1) growth (3 µg/104 bacteria). Results: Volcanic ash had minimal effect on alveolar and airway epithelial cell integrity. In alveolar macrophages, volcanic ash disrupted pathogen-killing and inflammatory responses. In in vitro bacterial growth models, volcanic ash increased bacterial replication and decreased bacterial killing by antimicrobial peptides. Conclusions: These results provide potential biological plausibility for epidemiological data that show an association between air pollution exposure and the development of respiratory infections. These data suggest that volcanic ash exposure, while not seriously compromising lung cell function, may be able to impair innate immunity responses in exposed individuals. PMID:23478268

  15. Study Of Functioning of Bacterial Complexes in East Antarctic Soils

    NASA Astrophysics Data System (ADS)

    Yakushev, A. V.; Churilin, N. A.

    2014-11-01

    Studies of bacterial communities in the samples of Antarctic soils by different methods showed that, both in liquid soil suspensions and in situ, microbial complexes are functioning presumably by forming biofilms - the phenomenon that is more expressed in such habitat than in soils of temperate zones. Functional (trophic) diversity and physiological state of hydrolytic bacteria was studied in the samples at the upper layer (0-2 cm) of gravel pavement with algae, in the underlying peat horizon (2-4 cm) with inclusions of dead biomass and its underlying mineral horizon (4-10 cm) with signs of fungal mycelium. The investigated samples of Antarctic soils revealed different trophic diversity and the maximum specific growth rate on mineral medium with different biopolymers as the sole carbon source (starch, chitin, pectin, xylan, dextran-500, tween-20, casein); this can testify to differences in the physiological state of hydrolytic bacteria in various soil horizons and their readiness for growth. The most remarkable characteristics of the studied Antarctic soil as compared to the soils of temperate zone, was the unusual ability of hydrolytic community to consume chitin in the mineral horizon; this can be explained by the presence of fungal mycelium. Also, an almost complete lack in consumption of tween-20 (a water-soluble analogue of fat) by bacterial community of Arctic soil horizons are not explained and needs further verification. The higher functional diversity was detected in the upper horizon of the gravel pavement, which "protects" microorganisms from exposure to extreme temperatures, UV radiation, and desiccation, but the maximum specific growth rate was higher in the lower mineral horizon; this can be explained by the specificity of bacterial colonizing processes and unique formation of Antarctic soil microprofiles in the Larsemann oasis. The obtained data indicate a specific environmental strategy in the samples of Antarctic soils: development in lower mineral

  16. Use of a dynamic in vitro attachment and invasion system (DIVAS) to determine influence of growth rate on invasion of respiratory epithelial cells by group B Streptococcus.

    PubMed

    Malin, G; Paoletti, L C

    2001-11-06

    Expression of capsular polysaccharide (CPS) and some surface proteins by group B Streptococcus (GBS) is regulated by growth rate. We hypothesized that precise control of GBS growth, and thus surface-expressed components, could modulate the ability of GBS to invade eukaryotic cells. To test this hypothesis, a dynamic in vitro attachment and invasion system (DIVAS) was developed that combines the advantages of bacterial growth in continuous culture with tissue culture. Tissue culture flasks were modified with inlet and outlet ports to permit perfusion of GBS. Encapsulated type III GBS strains M781 and COH1 and strains COH1-11 and COH1-13 (transposon mutants of COH1 that express an asialo CPS or are acapsular, respectively) were grown in continuous culture in a chemically defined medium at fast mass doubling time (t(d) = 1.8 h) and slow (t(d) = 11 h) growth rates, conditions previously shown to induce and repress, respectively, type III CPS expression. Encapsulated GBS strains invaded A549 respiratory epithelial cells 20- to 700-fold better at the fast than at the slow growth rate, suggesting a role for CPS. However, unencapsulated GBS were also invasive but only when cultured at the fast growth rate, which indicates that GBS invasion is independent of CPS expression and can be regulated by growth rate. Growth rate-dependent invasion occurred when GBS was grown in continuous culture under glucose-defined, thiamine-defined, and undefined nutrient limitations. These results suggest a growth rate-dependent regulation of GBS pathogenesis and demonstrate the usefulness of DIVAS as a tool in studies of host-microbe interactions.

  17. BIODEGRADATION DURING CONTAMINANT TRANSPORT IN POROUS MEDIA. 4. IMPACT OF MICROBIAL LAG AND BACTERIAL CELL GROWTH. (R825415)

    EPA Science Inventory

    Abstract

    Miscible-displacement experiments were conducted to examine the impact of microbial lag and bacterial cell growth on the transport of salicylate, a model hydrocarbon compound. The impacts of these processes were examined separately, as well as jointly, to dete...

  18. Estimating non-isothermal bacterial growth in foods from isothermal experimental data.

    PubMed

    Corradini, M G; Peleg, M

    2005-01-01

    To develop a mathematical method to estimate non-isothermal microbial growth curves in foods from experiments performed under isothermal conditions and demonstrate the method's applicability with published growth data. Published isothermal growth curves of Pseudomonas spp. in refrigerated fish at 0-8 degrees C and Escherichia coli 1952 in a nutritional broth at 27.6-36 degrees C were fitted with two different three-parameter 'primary models' and the temperature dependence of their parameters was fitted by ad hoc empirical 'secondary models'. These were used to generate non-isothermal growth curves by solving, numerically, a differential equation derived on the premise that the momentary non-isothermal growth rate is the isothermal rate at the momentary temperature, at a time that corresponds to the momentary growth level of the population. The predicted non-isothermal growth curves were in agreement with the reported experimental ones and, as expected, the quality of the predictions did not depend on the 'primary model' chosen for the calculation. A common type of sigmoid growth curve can be adequately described by three-parameter 'primary models'. At least in the two systems examined, these could be used to predict growth patterns under a variety of continuous and discontinuous non-isothermal temperature profiles. The described mathematical method whenever validated experimentally will enable the simulation of the microbial quality of stored and transported foods under a large variety of existing or contemplated commercial temperature histories.

  19. Antagonistic interactions are sufficient to explain self-assemblage of bacterial communities in a homogeneous environment: a computational modeling approach

    PubMed Central

    Zapién-Campos, Román; Olmedo-Álvarez, Gabriela; Santillán, Moisés

    2015-01-01

    Most of the studies in Ecology have been devoted to analyzing the effects the environment has on individuals, populations, and communities, thus neglecting the effects of biotic interactions on the system dynamics. In the present work we study the structure of bacterial communities in the oligotrophic shallow water system of Churince, Cuatro Cienegas, Mexico. Since the physicochemical conditions of this water system are homogeneous and quite stable in time, it is an excellent candidate to study how biotic factors influence the structure of bacterial communities. In a previous study, the binary antagonistic interactions of 78 bacterial strains, isolated from Churince, were experimentally determined. We employ these data to develop a computer algorithm to simulate growth experiments in a cellular grid representing the pond. Remarkably, in our model, the dynamics of all the simulated bacterial populations is determined solely by antagonistic interactions. Our results indicate that all bacterial strains (even those that are antagonized by many other bacteria) survive in the long term, and that the underlying mechanism is the formation of bacterial community patches. Patches corresponding to less antagonistic and highly susceptible strains are consistently isolated from the highly-antagonistic bacterial colonies by patches of neutral strains. These results concur with the observed features of the bacterial community structure previously reported. Finally, we study how our findings depend on factors like initial population size, differential population growth rates, homogeneous population death rates, and enhanced bacterial diffusion. PMID:26052318

  20. Phytoplankton growth rates in a light-limited environment, San Francisco Bay

    USGS Publications Warehouse

    Alpine, Andrea E.; Cloern, James E.

    1988-01-01

    This study was motivated by the need for quantitative measures of phytoplankton population growth rate in an estuarine environment, and was designed around the presumption that growth rates can be related empirically to light exposure. We conducted the study in San Francisco Bay (California, USA), which has large horizontal gradients in light availability (Zp:Zm) typical of many coastal plain estuaries, and nutrient concentrations that often exceed those presumed to limit phytoplankton growth (Cloern et al. 1985). We tested the hypothesis that light availability is the primary control of phytoplankton growth, and that previous estimates of growth rate based on the ratio of productivity to biomass (Cloern et al. 1985) are realistic. Specifically, we wanted to verify that growth rate varies spatially along horizontal gradients of light availability indexed as Zp:Zm, such that phytoplankton turnover rate is rapid in shallow clear areas (high Zp:Zm) and slow in deep turbid areas (low Zp:Zm). We used an in situ incubation technique which simulated vertical mixing, and measured both changes in cell number and carbon production as independent estimates of growth rate across a range of Zp:Zm ratios.

  1. Modelling the growth Rate of Algal in sediment-laden flow

    NASA Astrophysics Data System (ADS)

    Li, H.

    2017-12-01

    Phytoplankton plays an important role as a primary producer in aquatic ecosystems. Fluid dynamics can affect the growth of algae in a number of ways and can be divided into two categories. On the one hand the advection and diffusion processes may disrupt the vertical migration of phytoplankton. On the other hand hydrodynamic effects of sediment suspension which can affect algal growth, by releasing nutrients and reducing light intensity. Natural water generally contains sediment. Therefore, when the flow enters the lake, it will cause a change in the phytoplankton community at the junction. Few people have studied the effects of sediment-laden flows to algal growth rates. In this project, Baiyangdian was chosen as the key research area to study the effect of sediment-laden flow on the growth rate of algae. And we conducted a microcosmic experiment in the laboratory to simulate the effect of sediment-laden flow on the growth rate of algae, and constructed a numerical model for the growth rate of algae in sediment-laden flow.

  2. Growth promotion and colonization of switchgrass (Panicum virgatum) cv. Alamo by bacterial endophyte Burkholderia phytofirmans strain PsJN

    PubMed Central

    2012-01-01

    Background Switchgrass is one of the most promising bioenergy crop candidates for the US. It gives relatively high biomass yield and can grow on marginal lands. However, its yields vary from year to year and from location to location. Thus it is imperative to develop a low input and sustainable switchgrass feedstock production system. One of the most feasible ways to increase biomass yields is to harness benefits of microbial endophytes. Results We demonstrate that one of the most studied plant growth promoting bacterial endophytes, Burkholderia phytofirmans strain PsJN, is able to colonize and significantly promote growth of switchgrass cv. Alamo under in vitro, growth chamber, and greenhouse conditions. In several in vitro experiments, the average fresh weight of PsJN-inoculated plants was approximately 50% higher than non-inoculated plants. When one-month-old seedlings were grown in a growth chamber for 30 days, the PsJN-inoculated Alamo plants had significantly higher shoot and root biomass compared to controls. Biomass yield (dry weight) averaged from five experiments was 54.1% higher in the inoculated treatment compared to non-inoculated control. Similar results were obtained in greenhouse experiments with transplants grown in 4-gallon pots for two months. The inoculated plants exhibited more early tillers and persistent growth vigor with 48.6% higher biomass than controls. We also found that PsJN could significantly promote growth of switchgrass cv. Alamo under sub-optimal conditions. However, PsJN-mediated growth promotion in switchgrass is genotype specific. Conclusions Our results show B. phytofirmans strain PsJN significantly promotes growth of switchgrass cv. Alamo under different conditions, especially in the early growth stages leading to enhanced production of tillers. This phenomenon may benefit switchgrass establishment in the first year. Moreover, PsJN significantly stimulated growth of switchgrass cv. Alamo under sub-optimal conditions

  3. Glycerol as an additional carbon source for bacterial cellulose synthesis

    NASA Astrophysics Data System (ADS)

    Agustin, Y. E.; Padmawijaya, K. S.; Rixwari, H. F.; Yuniharto, V. A. S.

    2018-03-01

    Bacterial cellulose, the fermentation result of Acetobacter xylinus can be produced when glycerol was used as an additional carbon source. In this research, bacterial cellulose produced in two different fermentation medium, Hestrin and Scharmm (HS) medium and HS medium with additional MgSO4. Concentration of glycerol that used in this research were 0%; 5%; 10%; and 15% (v/v). The optimum conditions of bacterial cellulose production on each experiment variations determined by characterization of the mechanical properties, including thickness, tensile strength and elongation. Fourier Transform Infra Red Spectroscopy (FTIR) revealed the characterization of bacterial cellulose. Results showed that the growth rate of bacterial cellulose in HS-MgSO4-glycerol medium was faster than in HS-glycerol medium. Increasing concentrations of glycerol will lower the value of tensile strength and elongation. Elongation test showed that the elongation bacterial cellulose (BC) with the addition of 4.95% (v/v) glycerol in the HS-MgSO4 medium is the highest elongation value. The optimum bacterial cellulose production was achieved when 4.95% (v/v) of glycerol added into HS-MgSO4 medium with stress at break of 116.885 MPa and 4.214% elongation.

  4. Impact of warm winters on microbial growth

    NASA Astrophysics Data System (ADS)

    Birgander, Johanna; Rousk, Johannes; Axel Olsson, Pål

    2014-05-01

    Growth of soil bacteria has an asymmetrical response to higher temperature with a gradual increase with increasing temperatures until an optimum after which a steep decline occurs. In laboratory studies it has been shown that by exposing a soil bacterial community to a temperature above the community's optimum temperature for two months, the bacterial community grows warm-adapted, and the optimum temperature of bacterial growth shifts towards higher temperatures. This result suggests a change in the intrinsic temperature dependence of bacterial growth, as temperature influenced the bacterial growth even though all other factors were kept constant. An intrinsic temperature dependence could be explained by either a change in the bacterial community composition, exchanging less tolerant bacteria towards more tolerant ones, or it could be due to adaptation within the bacteria present. No matter what the shift in temperature tolerance is due to, the shift could have ecosystem scale implications, as winters in northern Europe are getting warmer. To address the question of how microbes and plants are affected by warmer winters, a winter-warming experiment was established in a South Swedish grassland. Results suggest a positive response in microbial growth rate in plots where winter soil temperatures were around 6 °C above ambient. Both bacterial and fungal growth (leucine incorporation, and acetate into ergosterol incorporation, respectively) appeared stimulated, and there are two candidate explanations for these results. Either (i) warming directly influence microbial communities by modulating their temperature adaptation, or (ii) warming indirectly affected the microbial communities via temperature induced changes in bacterial growth conditions. The first explanation is in accordance with what has been shown in laboratory conditions (explained above), where the differences in the intrinsic temperature relationships were examined. To test this explanation the

  5. Growth of Chlorella vulgaris and associated bacteria in photobioreactors

    PubMed Central

    Lakaniemi, Aino‐Maija; Intihar, Veera M.; Tuovinen, Olli H.; Puhakka, Jaakko A.

    2012-01-01

    Summary The aim of this study was to test three flat plate photobioreactor configurations for growth of Chlorella vulgaris under non‐axenic conditions and to characterize and quantify associated bacterial communities. The photobioreactor cultivations were conducted using tap water‐based media to introduce background bacterial population. Growth of algae was monitored over time with three independent methods. Additionally, the quantity and quality of eukaryotes and bacteria were analysed using culture‐independent molecular tools based on denaturing gradient gel electrophoresis (PCR‐DGGE) and quantitative polymerase chain reaction (QPCR). Static mixers used in the flat plate photobioreactors did not generally enhance the growth at the low light intensities used. The maximum biomass concentration and maximum specific growth rate were 1.0 g l−1 and 2.0 day−1 respectively. Bacterial growth as determined by QPCR was associated with the growth of C. vulgaris. Based on PCR‐DGGE, bacteria in the cultures mainly originated from the tap water. Bacterial community profiles were diverse but reproducible in all flat plate cultures. Most prominent bacteria in the C. vulgaris cultures belonged to the class Alphaproteobacteria and especially to the genus Sphingomonas. Analysis of the diversity of non‐photosynthetic microorganisms in algal mass cultures can provide useful information on the public health aspects and unravel community interactions. PMID:21936882

  6. Impact of short-term acidification on nitrification and nitrifying bacterial community dynamics in soilless cultivation media.

    PubMed

    Cytryn, Eddie; Levkovitch, Irit; Negreanu, Yael; Dowd, Scot; Frenk, Sammy; Silber, Avner

    2012-09-01

    Soilless medium-based horticulture systems are highly prevalent due to their capacity to optimize growth of high-cash crops. However, these systems are highly dynamic and more sensitive to physiochemical and pH perturbations than traditional soil-based systems, especially during nitrification associated with ammonia-based fertilization. The objective of this study was to assess the impact of nitrification-generated acidification on ammonia oxidation rates and nitrifying bacterial community dynamics in soilless growth media. To achieve this goal, perlite soilless growth medium from a commercial bell pepper greenhouse was incubated with ammonium in bench-scale microcosm experiments. Initial quantitative real-time PCR analysis indicated that betaproteobacterial ammonia oxidizers were significantly more abundant than ammonia-oxidizing archaea, and therefore, research focused on this group. Ammonia oxidation rates were highest between 0 and 9 days, when pH values dropped from 7.4 to 4.9. Pyrosequencing of betaproteobacterial ammonia-oxidizing amoA gene fragments indicated that r-strategist-like Nitrosomonas was the dominant ammonia-oxidizing bacterial genus during this period, seemingly due to the high ammonium concentration and optimal growth conditions in the soilless media. Reduction of pH to levels below 4.8 resulted in a significant decrease in both ammonia oxidation rates and the diversity of ammonia-oxidizing bacteria, with increased relative abundance of the r-strategist-like Nitrosospira. Nitrite oxidizers (Nitrospira and Nitrobacter) were on the whole more abundant and less sensitive to acidification than ammonia oxidizers. This study demonstrates that nitrification and nitrifying bacterial community dynamics in high-N-load intensive soilless growth media may be significantly different from those in in-terra agricultural systems.

  7. Impact of Short-Term Acidification on Nitrification and Nitrifying Bacterial Community Dynamics in Soilless Cultivation Media

    PubMed Central

    Levkovitch, Irit; Negreanu, Yael; Dowd, Scot; Frenk, Sammy; Silber, Avner

    2012-01-01

    Soilless medium-based horticulture systems are highly prevalent due to their capacity to optimize growth of high-cash crops. However, these systems are highly dynamic and more sensitive to physiochemical and pH perturbations than traditional soil-based systems, especially during nitrification associated with ammonia-based fertilization. The objective of this study was to assess the impact of nitrification-generated acidification on ammonia oxidation rates and nitrifying bacterial community dynamics in soilless growth media. To achieve this goal, perlite soilless growth medium from a commercial bell pepper greenhouse was incubated with ammonium in bench-scale microcosm experiments. Initial quantitative real-time PCR analysis indicated that betaproteobacterial ammonia oxidizers were significantly more abundant than ammonia-oxidizing archaea, and therefore, research focused on this group. Ammonia oxidation rates were highest between 0 and 9 days, when pH values dropped from 7.4 to 4.9. Pyrosequencing of betaproteobacterial ammonia-oxidizing amoA gene fragments indicated that r-strategist-like Nitrosomonas was the dominant ammonia-oxidizing bacterial genus during this period, seemingly due to the high ammonium concentration and optimal growth conditions in the soilless media. Reduction of pH to levels below 4.8 resulted in a significant decrease in both ammonia oxidation rates and the diversity of ammonia-oxidizing bacteria, with increased relative abundance of the r-strategist-like Nitrosospira. Nitrite oxidizers (Nitrospira and Nitrobacter) were on the whole more abundant and less sensitive to acidification than ammonia oxidizers. This study demonstrates that nitrification and nitrifying bacterial community dynamics in high-N-load intensive soilless growth media may be significantly different from those in in-terra agricultural systems. PMID:22773643

  8. Elevated guanosine 5'-diphosphate 3'-diphosphate level inhibits bacterial growth and interferes with FtsZ assembly.

    PubMed

    Yamaguchi, Takayoshi; Iida, Ken-Ichiro; Shiota, Susumu; Nakayama, Hiroaki; Yoshida, Shin-Ichi

    2015-12-01

    FtsZ, a protein essential for prokaryotic cell division, forms a ring structure known as the Z-ring at the division site. FtsZ has a GTP binding site and is assembled into linear structures in a GTP-dependent manner in vitro. We assessed whether guanosine 5'-diphosphate 3'-diphosphate (ppGpp), a global regulator of gene expression in starved bacteria, affects cell division in Salmonella Paratyphi A. Elevation of intracellular ppGpp levels by using the relA expression vector induced repression of bacterial growth and incorrect FtsZ assembly. We found that FtsZ forms helical structures in the presence of ppGpp by using the GTP binding site; however, ppGpp levels required to form helical structures were at least 20-fold higher than the required GTP levels in vitro. Furthermore, once formed, helical structures did not change to the straight form even after GTP addition. Our data indicate that elevation of the ppGpp level leads to inhibition of bacterial growth and interferes with FtsZ assembly. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Root ethylene signalling is involved in Miscanthus sinensis growth promotion by the bacterial endophyte Herbaspirillum frisingense GSF30T

    PubMed Central

    Ludewig, Uwe

    2013-01-01

    The bacterial endophyte Herbaspirillum frisingense GSF30T is a colonizer of several grasses grown in temperate climates, including the highly nitrogen-efficient perennial energy grass Miscanthus. Inoculation of Miscanthus sinensis seedlings with H. frisingense promoted root and shoot growth but had only a minor impact on nutrient concentrations. The bacterium affected the root architecture and increased fine-root structures. Although H. frisingense has the genetic requirements to fix nitrogen, only minor changes in nitrogen concentrations were observed. Herbaspirillum agglomerates were identified primarily in the root apoplast but also in the shoots. The short-term (3h) and long-term (3 weeks) transcriptomic responses of the plant to bacterial inoculation revealed that H. frisingense induced rapid changes in plant hormone signalling, most prominent in jasmonate signalling. Ethylene signalling pathways were also affected and persisted after 3 weeks in the root. Growth stimulation of the root by the ethylene precursor 1-aminocyclopropane 1-carboxylic acid was dose dependent and was affected by H. frisingense inoculation. Minor changes in the proteome were identified after 3 weeks. This study suggests that H. frisingense improves plant growth by modulating plant hormone signalling pathways and provides a framework to understand the beneficial effects of diazotrophic plant-growth-promoting bacteria, such as H. frisingense, on the biomass grass Miscanthus. PMID:24043849

  10. Timber value growth rates in New England

    Treesearch

    David A, Gansner; Stanford L. Arner; Thomas W. Birch; Thomas W. Birch

    1990-01-01

    Rates of growth in the value of standing timber can vary greatly from stand to stand and from tree to tree. In Maine, the compound annual rate of change in stand value between the two most recent forest inventories ranged from -12 to +43 percent. Faced with this kind of variation, forest managers can use help in determining financial rates of return for their woodland...

  11. Normal bacterial flora from vaginas of Criollo Limonero cows.

    PubMed

    Zambrano-Nava, Sunny; Boscán-Ocando, Julio; Nava, Jexenia

    2011-02-01

    In order to describe the normal bacterial flora in vaginas of Criollo Limonero cows, 51 healthy multiparous cows, at least 90-day postpartum, were selected. Duplicated swabs (N = 102) were taken from the vaginal fornix of cows to perform aerobic and anaerobic cultures as well as conventional biochemical tests. Out of 102 swabs, bacterial growth was obtained in 55 (53.9%) while the remaining 47 (46.1%) did not exhibited any bacterial growth. Of the 55 bacterial growths, 23 (41.8%) were aerobic whereas 32 (58.1%) were anaerobic. Likewise, 29 (52.72%) of bacterial growths were pure and 26 (47.27%) were mixed. Under both aerobic and anaerobic conditions, Gram positive bacteria were predominant (81.82% and 73.08%, respectively) over Gram negative bacteria (18.18% and 26.92%, respectively). Isolated bacteria were Arcanobacterium pyogenes (22.92%), Staphylococcus aureus (15.63%), Staphylococcus coagulase negative (17.71%), Erysipelothrix rhusiopathiae (6.25%), Bacteroides spp. (13.54%), and Peptostreptococcus spp. (7.29%). In conclusion, normal vaginal bacterial flora of Criollo Limonero cows was predominantly Gram positive and included A. pyogenes, S. aureus, coagulase negative Staphylococcus, E. rhusiopathiae, Bacteroides spp., and Peptostreptococcus spp. In Criollo Limonero cattle, adaptive aspects such as development of humoral and physical mechanisms for defense, and bacterial adaptation to host deserve research attention.

  12. Evaluating the 4-hour and 30-minute rules: effects of room temperature exposure on red blood cell quality and bacterial growth.

    PubMed

    Ramirez-Arcos, Sandra; Mastronardi, Cherie; Perkins, Heather; Kou, Yuntong; Turner, Tracey; Mastronardi, Emily; Hansen, Adele; Yi, Qi-Long; McLaughlin, Natasha; Kahwash, Eiad; Lin, Yulia; Acker, Jason

    2013-04-01

    A 30-minute rule was established to limit red blood cell (RBC) exposure to uncontrolled temperatures during storage and transportation. Also, RBC units issued for transfusion should not remain at room temperature (RT) for more than 4 hours (4-hour rule). This study was aimed at determining if single or multiple RT exposures affect RBC quality and/or promote bacterial growth. Growth and RT exposure experiments were performed in RBCs inoculated with Serratia liquefaciens and Serratia marcescens. RBCs were exposed once to RT for 5 hours (S. liquefaciens) or five times to RT for 30 minutes (S. marcescens) with periodic sampling for bacterial counts. Noncontaminated units were exposed to RT once (5 hr) or five times (30 min each) and sampled to measure in vitro quality variables. RBC core temperature was monitored using mock units with temperature loggers. Growth and RT exposure experiments were repeated three and at least six times, respectively. Statistical analysis was done using mixed-model analysis. RBC core temperature ranged from 7.3 to 11.6°C during 30-minute RT exposures and the time to reach 10°C varied from 22 to 55 minutes during 5-hour RT exposures. RBC quality was preserved after single or multiple RT exposures. Increased growth of S. liquefaciens was only observed after 2 hours of continuous RT exposure. S. marcescens concentration increased significantly in multiple-exposed units compared to the controls but did not reach clinically important levels. Single or multiple RT exposures did not affect RBC quality but slightly promoted bacterial growth in contaminated units. The clinical significance of these results remains unclear and needs further investigation. © 2012 American Association of Blood Banks.

  13. Understanding the demographic drivers of realized population growth rates.

    PubMed

    Koons, David N; Arnold, Todd W; Schaub, Michael

    2017-10-01

    Identifying the demographic parameters (e.g., reproduction, survival, dispersal) that most influence population dynamics can increase conservation effectiveness and enhance ecological understanding. Life table response experiments (LTRE) aim to decompose the effects of change in parameters on past demographic outcomes (e.g., population growth rates). But the vast majority of LTREs and other retrospective population analyses have focused on decomposing asymptotic population growth rates, which do not account for the dynamic interplay between population structure and vital rates that shape realized population growth rates (λt=Nt+1/Nt) in time-varying environments. We provide an empirical means to overcome these shortcomings by merging recently developed "transient life-table response experiments" with integrated population models (IPMs). IPMs allow for the estimation of latent population structure and other demographic parameters that are required for transient LTRE analysis, and Bayesian versions additionally allow for complete error propagation from the estimation of demographic parameters to derivations of realized population growth rates and perturbation analyses of growth rates. By integrating available monitoring data for Lesser Scaup over 60 yr, and conducting transient LTREs on IPM estimates, we found that the contribution of juvenile female survival to long-term variation in realized population growth rates was 1.6 and 3.7 times larger than that of adult female survival and fecundity, respectively. But a persistent long-term decline in fecundity explained 92% of the decline in abundance between 1983 and 2006. In contrast, an improvement in adult female survival drove the modest recovery in Lesser Scaup abundance since 2006, indicating that the most important demographic drivers of Lesser Scaup population dynamics are temporally dynamic. In addition to resolving uncertainty about Lesser Scaup population dynamics, the merger of IPMs with transient LTREs will

  14. Contact-dependent growth inhibition induces high levels of antibiotic-tolerant persister cells in clonal bacterial populations.

    PubMed

    Ghosh, Anirban; Baltekin, Özden; Wäneskog, Marcus; Elkhalifa, Dina; Hammarlöf, Disa L; Elf, Johan; Koskiniemi, Sanna

    2018-05-02

    Bacterial populations can use bet-hedging strategies to cope with rapidly changing environments. One example is non-growing cells in clonal bacterial populations that are able to persist antibiotic treatment. Previous studies suggest that persisters arise in bacterial populations either stochastically through variation in levels of global signalling molecules between individual cells, or in response to various stresses. Here, we show that toxins used in contact-dependent growth inhibition (CDI) create persisters upon direct contact with cells lacking sufficient levels of CdiI immunity protein, which would otherwise bind to and neutralize toxin activity. CDI-mediated persisters form through a feedforward cycle where the toxic activity of the CdiA toxin increases cellular (p)ppGpp levels, which results in Lon-mediated degradation of the immunity protein and more free toxin. Thus, CDI systems mediate a population density-dependent bet-hedging strategy, where the fraction of non-growing cells is increased only when there are many cells of the same genotype. This may be one of the mechanisms of how CDI systems increase the fitness of their hosts. © 2018 The Authors.

  15. CRISPR-based herd immunity can limit phage epidemics in bacterial populations

    PubMed Central

    Geyrhofer, Lukas; Barton, Nicholas H

    2018-01-01

    Herd immunity, a process in which resistant individuals limit the spread of a pathogen among susceptible hosts has been extensively studied in eukaryotes. Even though bacteria have evolved multiple immune systems against their phage pathogens, herd immunity in bacteria remains unexplored. Here we experimentally demonstrate that herd immunity arises during phage epidemics in structured and unstructured Escherichia coli populations consisting of differing frequencies of susceptible and resistant cells harboring CRISPR immunity. In addition, we develop a mathematical model that quantifies how herd immunity is affected by spatial population structure, bacterial growth rate, and phage replication rate. Using our model we infer a general epidemiological rule describing the relative speed of an epidemic in partially resistant spatially structured populations. Our experimental and theoretical findings indicate that herd immunity may be important in bacterial communities, allowing for stable coexistence of bacteria and their phages and the maintenance of polymorphism in bacterial immunity. PMID:29521625

  16. A Simple Device to Measure Root Growth Rates

    ERIC Educational Resources Information Center

    Rauser, Wilfried E.; Horton, Roger F.

    1975-01-01

    Describes construction and use of a simple auxanometer which students can use to accurately measure root growth rates of intact seedlings. Typical time course data are presented for the effect of ethylene and indole acetic acid on pea root growth. (Author/BR)

  17. Anomalous Growth Rate of Ag Nanocrystals Revealed by in situ STEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Mingyuan; Lu, Ming; Chu, Yong

    In situ microscopy of colloidal nanocrystal growth offers a unique opportunity to acquire direct and straightforward data for assessing classical growth models. For this study, we observe the growth trajectories of individual Ag nanoparticles in solution using in situ scanning transmission electron microscopy. For the first time, we provide experimental evidence of growth rates of Ag nanoparticles in the presence of Pt in solution that are significantly faster than predicted by Lifshitz-Slyozov-Wagner theory. We attribute these observed anomalous growth rates to the synergistic effects of the catalytic properties of Pt and the electron beam itself. Transiently reduced Pt atoms servemore » as active sites for Ag ions to grow, thereby playing a key role in controlling the growth kinetics. Electron beam illumination greatly increases the local concentration of free radicals, thereby strongly influencing particle growth rate and the resulting particle morphology. Through a systematic investigation, we demonstrate the feasibility of utilizing these synergistic effects for controlling the growth rates and particle morphologies at the nanoscale. Our findings not only expand the current scope of crystal growth theory, but may also lead to a broader scientific application of nanocrystal synthesis.« less

  18. Anomalous Growth Rate of Ag Nanocrystals Revealed by in situ STEM

    DOE PAGES

    Ge, Mingyuan; Lu, Ming; Chu, Yong; ...

    2017-11-27

    In situ microscopy of colloidal nanocrystal growth offers a unique opportunity to acquire direct and straightforward data for assessing classical growth models. For this study, we observe the growth trajectories of individual Ag nanoparticles in solution using in situ scanning transmission electron microscopy. For the first time, we provide experimental evidence of growth rates of Ag nanoparticles in the presence of Pt in solution that are significantly faster than predicted by Lifshitz-Slyozov-Wagner theory. We attribute these observed anomalous growth rates to the synergistic effects of the catalytic properties of Pt and the electron beam itself. Transiently reduced Pt atoms servemore » as active sites for Ag ions to grow, thereby playing a key role in controlling the growth kinetics. Electron beam illumination greatly increases the local concentration of free radicals, thereby strongly influencing particle growth rate and the resulting particle morphology. Through a systematic investigation, we demonstrate the feasibility of utilizing these synergistic effects for controlling the growth rates and particle morphologies at the nanoscale. Our findings not only expand the current scope of crystal growth theory, but may also lead to a broader scientific application of nanocrystal synthesis.« less

  19. On Growth Rates of Subadditive Functions for Semiflows

    NASA Astrophysics Data System (ADS)

    Schreiber, Sebastian J.

    1998-09-01

    Letφ: X×T+→Xbe a semiflow on a compact metric spaceX. A functionF: X×T+→Xis subadditive with respect toφifF(x, t+s)⩽F(x, t)+F(φ(x, t),nbsp;s). We define the maximal growth rate ofFto be supx∈X lim supt→∞(1/t) F(x, t). This growth rate is shown to equal the maximal growth rate of the subadditive function restricted to the minimal center of attraction of the semiflow. Applications to Birkhoff sums, characteristic exponents of linear skew-product semiflows on Banach bundles, and average Lyapunov functions are developed. In particular, a relationship between the dynamical spectrum and the measurable spectrum of a linear skew-product flow established by R. A. Johnson, K. J. Palmer, and G. R. Sell (SIAM J. Math. Anal.18, 1987, 1-33) is extended to semiflows in an infinite dimensional setting.

  20. Spatial variation in deposition rate coefficients of an adhesion-deficient bacterial strain in quartz sand.

    PubMed

    Tong, Meiping; Camesano, Terri A; Johnson, William P

    2005-05-15

    The transport of bacterial strain DA001 was examined in packed quartz sand under a variety of environmentally relevant ionic strength and flow conditions. Under all conditions, the retained bacterial concentrations decreased with distance from the column inlet at a rate that was faster than loglinear, indicating that the deposition rate coefficient decreased with increasing transport distance. The hyperexponential retained profile contrasted againstthe nonmonotonic retained profiles that had been previously observed for this same bacterial strain in glass bead porous media, demonstrating that the form of deviation from log-linear behavior is highly sensitive to system conditions. The deposition rate constants in quartz sand were orders of magnitude below those expected from filtration theory, even in the absence of electrostatic energy barriers. The degree of hyperexponential deviation of the retained profiles from loglinear behavior did not decrease with increasing ionic strength in quartz sand. These observations demonstrate thatthe observed low adhesion and deviation from log-linear behavior was not driven by electrostatic repulsion. Measurements of the interaction forces between DA001 cells and the silicon nitride tip of an atomic force microscope (AFM) showed that the bacterium possesses surface polymers with an average equilibrium length of 59.8 nm. AFM adhesion force measurements revealed low adhesion affinities between silicon nitride and DA001 polymers with approximately 95% of adhesion forces having magnitudes < 0.8 nN. Steric repulsion due to surface polymers was apparently responsible for the low adhesion to silicon nitride, indicating that steric interactions from extracellular polymers controlled DA001 adhesion deficiency and deviation from log-linear behavior on quartz sand.

  1. Functional properties of peanut fractions on the growth of probiotics and foodborne bacterial pathogens.

    PubMed

    Peng, Mengfei; Bitsko, Elizabeth; Biswas, Debabrata

    2015-03-01

    Various compounds found in peanut (Arachis hypogaea) have been shown to provide multiple benefits to human health and may influence the growth of a broad range of gut bacteria. In this study, we investigated the effects of peanut white kernel and peanut skin on 3 strains of Lactobacillus and 3 major foodborne enteric bacterial pathogens. Significant (P < 0.05) growth stimulation of Lactobacillus casei and Lactobacillus rhamnosus was observed in the presence of 0.5% peanut flour (PF) made from peanut white kernel, whereas 0.5% peanut skin extract (PSE) exerted the inhibitory effect on the growth of these beneficial microbes. We also found that within 72 h, PF inhibited growth of enterohemorrhagic Escherichia coli O157:H7 (EHEC), while PSE significantly (P < 0.05) inhibited Listeria monocytogenes but promoted the growth of both EHEC and Salmonella Typhimurium. The cell adhesion and invasion abilities of 3 pathogens to the host cells were also significantly (P < 0.05) reduced by 0.5% PF and 0.5% PSE. These results suggest that peanut white kernel might assist in improving human gut flora as well as reducing EHEC, whereas the beneficial effects of peanut skins require further research and investigation. © 2015 Institute of Food Technologists®

  2. Calculation Of Clinopyroxene And Olivine Growth Rates Using Plagioclase Residence Time

    NASA Astrophysics Data System (ADS)

    Kilinc, A. I.; Borell, A.; Leu, A.

    2012-12-01

    According to the Crystal Size Distribution theory (CSD) in a plot of logarithm of number of crystals of a given size range per unit volume [ln(n)], against crystal size [L] shows a straight line. Slope of that line is given by where is the crystal residence time and G is the crystal growth rate. Therefore if is known then G can be calculated. We used thin sections of the Kilauea basalt from Hawaii where olivine, clinopyroxene and plagioclase crystallized within a small temperature range, and the crystal growth rate of plagioclase is known. Assuming that crystal residence times of these three minerals are the same, we plotted ln(n) against L and using the slope and the known crystal growth rate of plagioclase we calculated the crystal growth rates of clinopyroxene and olivine. For the clinopyroxene growth rate we report 10-10.9cm/sec, which is in good agreement with Congdon's data of 10-10 cm/sec. We also calculated the growth rate of olivine is a basaltic melt as 10-8.5 cm/sec which is comparable to < 10-10 to 10-7 cm/sec given by Donaldson and Jambon.

  3. Use of plant growth promoting bacterial strains to improve Cytisus striatus and Lupinus luteus development for potential application in phytoremediation.

    PubMed

    Balseiro-Romero, María; Gkorezis, Panagiotis; Kidd, Petra S; Van Hamme, Jonathan; Weyens, Nele; Monterroso, Carmen; Vangronsveld, Jaco

    2017-03-01

    Plant growth promoting (PGP) bacterial strains possess different mechanisms to improve plant development under common environmental stresses, and are therefore often used as inoculants in soil phytoremediation processes. The aims of the present work were to study the effects of a collection of plant growth promoting bacterial strains on plant development, antioxidant enzyme activities and nutritional status of Cytisus striatus and/or Lupinus luteus plants a) growing in perlite under non-stress conditions and b) growing in diesel-contaminated soil. For this, two greenhouse experiments were designed. Firstly, C. striatus and L. luteus plants were grown from seeds in perlite, and periodically inoculated with 6 PGP strains, either individually or in pairs. Secondly, L. luteus seedlings were grown in soil samples of the A and B horizons of a Cambisol contaminated with 1.25% (w/w) of diesel and inoculated with best PGP inoculant selected from the first experiment. The results indicated that the PGP strains tested in perlite significantly improved plant growth. Combination treatments provoked better growth of L. luteus than the respective individual strains, while individual inoculation treatments were more effective for C. striatus. L. luteus growth in diesel-contaminated soil was significantly improved in the presence of PGP strains, presenting a 2-fold or higher increase in plant biomass. Inoculants did not provoke significant changes in plant nutritional status, with the exception of a subset of siderophore-producing and P-solubilising bacterial strains that resulted in significantly modification of Fe or P concentrations in leaf tissues. Inoculants did not cause significant changes in enzyme activities in perlite experiments, however they significantly reduced oxidative stress in contaminated soils suggesting an improvement in plant tolerance to diesel. Some strains were applied to non-host plants, indicating a non-specific performance of their plant growth promotion

  4. Generalised Central Limit Theorems for Growth Rate Distribution of Complex Systems

    NASA Astrophysics Data System (ADS)

    Takayasu, Misako; Watanabe, Hayafumi; Takayasu, Hideki

    2014-04-01

    We introduce a solvable model of randomly growing systems consisting of many independent subunits. Scaling relations and growth rate distributions in the limit of infinite subunits are analysed theoretically. Various types of scaling properties and distributions reported for growth rates of complex systems in a variety of fields can be derived from this basic physical model. Statistical data of growth rates for about 1 million business firms are analysed as a real-world example of randomly growing systems. Not only are the scaling relations consistent with the theoretical solution, but the entire functional form of the growth rate distribution is fitted with a theoretical distribution that has a power-law tail.

  5. The Interrelationship between Promoter Strength, Gene Expression, and Growth Rate

    PubMed Central

    Klesmith, Justin R.; Detwiler, Emily E.; Tomek, Kyle J.; Whitehead, Timothy A.

    2014-01-01

    In exponentially growing bacteria, expression of heterologous protein impedes cellular growth rates. Quantitative understanding of the relationship between expression and growth rate will advance our ability to forward engineer bacteria, important for metabolic engineering and synthetic biology applications. Recently, a work described a scaling model based on optimal allocation of ribosomes for protein translation. This model quantitatively predicts a linear relationship between microbial growth rate and heterologous protein expression with no free parameters. With the aim of validating this model, we have rigorously quantified the fitness cost of gene expression by using a library of synthetic constitutive promoters to drive expression of two separate proteins (eGFP and amiE) in E. coli in different strains and growth media. In all cases, we demonstrate that the fitness cost is consistent with the previous findings. We expand upon the previous theory by introducing a simple promoter activity model to quantitatively predict how basal promoter strength relates to growth rate and protein expression. We then estimate the amount of protein expression needed to support high flux through a heterologous metabolic pathway and predict the sizable fitness cost associated with enzyme production. This work has broad implications across applied biological sciences because it allows for prediction of the interplay between promoter strength, protein expression, and the resulting cost to microbial growth rates. PMID:25286161

  6. Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum).

    PubMed

    Orhan, Furkan

    2016-01-01

    In the current study, 18 halotolerant and halophilic bacteria have been investigated for their plant growth promoting abilities in vitro and in a hydroponic culture. The bacterial strains have been investigated for ammonia, indole-3-acetic acid and 1-aminocyclopropane-1-carboxylate-deaminase production, phosphate solubilisation and nitrogen fixation activities. Of the tested bacteria, eight were inoculated with Triticum aestivum in a hydroponic culture. The investigated bacterial strains were found to have different plant-growth promoting activities in vitro. Under salt stress (200mM NaCl), the investigated bacterial strains significantly increased the root and shoot length and total fresh weight of the plants. The growth rates of the plants inoculated with bacterial strains ranged from 62.2% to 78.1%. Identifying of novel halophilic and halotolerant bacteria that promote plant growth can be used as alternatives for salt sensitive plants. Extensive research has been conducted on several halophilic and halotolerant bacterial strains to investigate their plant growth promoting activities. However, to the best of my knowledge, this is the first study to inoculate these bacterial strains with wheat. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  7. Questions about the behaviour of bacterial pathogens in vivo.

    PubMed Central

    Smith, H

    2000-01-01

    Bacterial pathogens cause disease in man and animals. They have unique biological properties, which enable them to colonize mucous surfaces, penetrate them, grow in the environment of the host, inhibit or avoid host defences and damage the host. The bacterial products responsible for these five biological requirements are the determinants of pathogenicity (virulence determinants). Current knowledge comes from studies in vitro, but now interest is increasing in how bacteria behave and produce virulence determinants within the infected host. There are three aspects to elucidate: bacterial activities, the host factors that affect them and the metabolic interactions between the two. The first is relatively easy to accomplish and, recently, new methods for doing this have been devised. The second is not easy because of the complexity of the environment in vivo and its ever-changing face. Nevertheless, some information can be gained from the literature and by new methodology. The third aspect is very difficult to study effectively unless some events in vivo can be simulated in vitro. The objectives of the Discussion Meeting were to describe the new methods and to show how they, and conventional studies, are revealing the activities of bacterial pathogens in vivo. This paper sets the scene by raising some questions and suggesting, with examples, how they might be answered. Bacterial growth in vivo is the primary requirement for pathogenicity. Without growth, determinants of the other four requirements are not formed. Results from the new methods are underlining this point. The important questions are as follows. What is the pattern of a developing infection and the growth rates and population sizes of the bacteria at different stages? What nutrients are present in vivo and how do they change as infection progresses and relate to growth rates and population sizes? How are these nutrients metabolized and by what bacterial mechanisms? Which bacterial processes handle

  8. Growth rate of plasma-synthesized vertically aligned carbon nanofibers

    NASA Astrophysics Data System (ADS)

    Merkulov, Vladimir I.; Melechko, A. V.; Guillorn, M. A.; Lowndes, D. H.; Simpson, M. L.

    2002-08-01

    Vertically aligned carbon nanofibers (VACNFs) were synthesized by direct-current plasma enhanced chemical vapor deposition using acetylene and ammonia as the gas source. The mechanisms responsible for changing the nanofiber growth rate were studied and phenomenological models are proposed. The feedstock for VACNF growth is suggested to consist mainly of radicals formed in the plasma and not the unexcited acetylene gas molecules. The growth rate is shown to increase dramatically by changing the radical transport mechanism from diffusive to forced flow, which was accomplished by increasing the gas flow in the direction perpendicular to the substrate.

  9. Growth rate degeneracies in kinematic dynamos

    NASA Astrophysics Data System (ADS)

    Favier, B.; Proctor, M. R. E.

    2013-09-01

    We consider the classical problem of kinematic dynamo action in simple steady flows. Due to the adjointness of the induction operator, we show that the growth rate of the dynamo will be exactly the same for two types of magnetic boundary conditions: the magnetic field can be normal (infinite magnetic permeability, also called pseudovacuum) or tangent (perfect electrical conductor) to the boundaries of the domain. These boundary conditions correspond to well-defined physical limits often used in numerical models and relevant to laboratory experiments. The only constraint is for the velocity field u to be reversible, meaning there exists a transformation changing u into -u. We illustrate this surprising property using S2T2 type of flows in spherical geometry inspired by [Dudley and James, Proc. R. Soc. London A1364-502110.1098/rspa.1989.0112 425, 407 (1989)]. Using both types of boundary conditions, it is shown that the growth rates of the dynamos are identical, although the corresponding magnetic eigenmodes are drastically different.

  10. Investigating calcite growth rates using a quartz crystal microbalance with dissipation (QCM-D)

    NASA Astrophysics Data System (ADS)

    Cao, Bo; Stack, Andrew G.; Steefel, Carl I.; DePaolo, Donald J.; Lammers, Laura N.; Hu, Yandi

    2018-02-01

    Calcite precipitation plays a significant role in processes such as geological carbon sequestration and toxic metal sequestration and, yet, the rates and mechanisms of calcite growth under close to equilibrium conditions are far from well understood. In this study, a quartz crystal microbalance with dissipation (QCM-D) was used for the first time to measure macroscopic calcite growth rates. Calcite seed crystals were first nucleated and grown on sensors, then growth rates of calcite seed crystals were measured in real-time under close to equilibrium conditions (saturation index, SI = log ({Ca2+}/{CO32-}/Ksp) = 0.01-0.7, where {i} represent ion activities and Ksp = 10-8.48 is the calcite thermodynamic solubility constant). At the end of the experiments, total masses of calcite crystals on sensors measured by QCM-D and inductively coupled plasma mass spectrometry (ICP-MS) were consistent, validating the QCM-D measurements. Calcite growth rates measured by QCM-D were compared with reported macroscopic growth rates measured with auto-titration, ICP-MS, and microbalance. Calcite growth rates measured by QCM-D were also compared with microscopic growth rates measured by atomic force microscopy (AFM) and with rates predicted by two process-based crystal growth models. The discrepancies in growth rates among AFM measurements and model predictions appear to mainly arise from differences in step densities, and the step velocities were consistent among the AFM measurements as well as with both model predictions. Using the predicted steady-state step velocity and the measured step densities, both models predict well the growth rates measured using QCM-D and AFM. This study provides valuable insights into the effects of reactive site densities on calcite growth rate, which may help design future growth models to predict transient-state step densities.

  11. Economy, efficiency, and the evolution of pollen tube growth rates.

    PubMed

    Williams, Joseph H; Edwards, Jacob A; Ramsey, Adam J

    2016-03-01

    Pollen tube growth rate (PTGR) is an important aspect of male gametophyte performance because of its central role in the fertilization process. Theory suggests that under intense competition, PTGRs should evolve to be faster, especially if PTGR accurately reflects gametophyte quality. Oddly, we know remarkably little about how effectively the work of tube construction is translated to elongation (growth and growth rate). Here we test the prediction that pollen tubes grow equally efficiently by comparing the scaling of wall production rate (WPR) to PTGR in three water lilies that flower concurrently: Nymphaea odorata, Nuphar advena and Brasenia schreberi. Single-donor pollinations on flower or carpel pairs were fixed just after pollen germination (time A) and 45 min later (time B). Mean PTGR was calculated as the average increase in tube length over that growth period. Tube circumferences (C) and wall thicknesses (W) were measured at time B. For each donor, WPR = mean (C × W) × mean PTGR. Within species, pollen tubes maintained a constant WPR to PTGR ratio, but species had significantly different ratios. N. odorata and N. advena had similar PTGRs, but for any given PTGR, they had the lowest and highest WPRs, respectively. We showed that growth rate efficiencies evolved by changes in the volume of wall material used for growth and in how that material was partitioned between lateral and length dimensions. The economics of pollen tube growth are determined by tube design, which is consequent on trade-offs between efficient growth and other pollen tube functions. © 2016 Botanical Society of America.

  12. Fatigue Crack Growth Rate and Stress-Intensity Factor Corrections for Out-of-Plane Crack Growth

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Herman, Dave J.; James, Mark A.

    2003-01-01

    Fatigue crack growth rate testing is performed by automated data collection systems that assume straight crack growth in the plane of symmetry and use standard polynomial solutions to compute crack length and stress-intensity factors from compliance or potential drop measurements. Visual measurements used to correct the collected data typically include only the horizontal crack length, which for cracks that propagate out-of-plane, under-estimates the crack growth rates and over-estimates the stress-intensity factors. The authors have devised an approach for correcting both the crack growth rates and stress-intensity factors based on two-dimensional mixed mode-I/II finite element analysis (FEA). The approach is used to correct out-of-plane data for 7050-T7451 and 2025-T6 aluminum alloys. Results indicate the correction process works well for high DeltaK levels but fails to capture the mixed-mode effects at DeltaK levels approaching threshold (da/dN approximately 10(exp -10) meter/cycle).

  13. Arginine Metabolism in Bacterial Pathogenesis and Cancer Therapy

    PubMed Central

    Xiong, Lifeng; Teng, Jade L. L.; Botelho, Michael G.; Lo, Regina C.; Lau, Susanna K. P.; Woo, Patrick C. Y.

    2016-01-01

    Antibacterial resistance to infectious diseases is a significant global concern for health care organizations; along with aging populations and increasing cancer rates, it represents a great burden for government healthcare systems. Therefore, the development of therapies against bacterial infection and cancer is an important strategy for healthcare research. Pathogenic bacteria and cancer have developed a broad range of sophisticated strategies to survive or propagate inside a host and cause infection or spread disease. Bacteria can employ their own metabolism pathways to obtain nutrients from the host cells in order to survive. Similarly, cancer cells can dysregulate normal human cell metabolic pathways so that they can grow and spread. One common feature of the adaption and disruption of metabolic pathways observed in bacterial and cancer cell growth is amino acid pathways; these have recently been targeted as a novel approach to manage bacterial infections and cancer therapy. In particular, arginine metabolism has been illustrated to be important not only for bacterial pathogenesis but also for cancer therapy. Therefore, greater insights into arginine metabolism of pathogenic bacteria and cancer cells would provide possible targets for controlling of bacterial infection and cancer treatment. This review will summarize the recent progress on the relationship of arginine metabolism with bacterial pathogenesis and cancer therapy, with a particular focus on arginase and arginine deiminase pathways of arginine catabolism. PMID:26978353

  14. Brain Growth Rate Abnormalities Visualized in Adolescents with Autism

    PubMed Central

    Hua, Xue; Thompson, Paul M.; Leow, Alex D.; Madsen, Sarah K.; Caplan, Rochelle; Alger, Jeffry R.; O’Neill, Joseph; Joshi, Kishori; Smalley, Susan L.; Toga, Arthur W.; Levitt, Jennifer G.

    2014-01-01

    Autism spectrum disorder (ASD) is a heterogeneous disorder of brain development with wide-ranging cognitive deficits. Typically diagnosed before age 3, ASD is behaviorally defined but patients are thought to have protracted alterations in brain maturation. With longitudinal magnetic resonance imaging (MRI), we mapped an anomalous developmental trajectory of the brains of autistic compared to those of typically developing children and adolescents. Using tensor-based morphometry (TBM), we created 3D maps visualizing regional tissue growth rates based on longitudinal brain MRI scans of 13 autistic and 7 typically developing boys (mean age/inter-scan interval: autism 12.0 ± 2.3 years/2.9 ± 0.9 years; control 12.3 ± 2.4/2.8 ± 0.8). The typically developing boys demonstrated strong whole-brain white matter growth during this period, but the autistic boys showed abnormally slowed white matter development (p = 0.03, corrected), especially in the parietal (p = 0.008), temporal (p = 0.03) and occipital lobes (p =0.02). We also visualized abnormal overgrowth in autism in some gray matter structures, such as the putamen and anterior cingulate cortex. Our findings reveal aberrant growth rates in brain regions implicated in social impairment, communication deficits and repetitive behaviors in autism, suggesting that growth rate abnormalities persist into adolescence. TBM revealed persisting growth rate anomalies long after diagnosis, which has implications for evaluation of therapeutic effects. PMID:22021093

  15. Brain growth rate abnormalities visualized in adolescents with autism.

    PubMed

    Hua, Xue; Thompson, Paul M; Leow, Alex D; Madsen, Sarah K; Caplan, Rochelle; Alger, Jeffry R; O'Neill, Joseph; Joshi, Kishori; Smalley, Susan L; Toga, Arthur W; Levitt, Jennifer G

    2013-02-01

    Autism spectrum disorder is a heterogeneous disorder of brain development with wide ranging cognitive deficits. Typically diagnosed before age 3, autism spectrum disorder is behaviorally defined but patients are thought to have protracted alterations in brain maturation. With longitudinal magnetic resonance imaging (MRI), we mapped an anomalous developmental trajectory of the brains of autistic compared with those of typically developing children and adolescents. Using tensor-based morphometry, we created 3D maps visualizing regional tissue growth rates based on longitudinal brain MRI scans of 13 autistic and seven typically developing boys (mean age/interscan interval: autism 12.0 ± 2.3 years/2.9 ± 0.9 years; control 12.3 ± 2.4/2.8 ± 0.8). The typically developing boys demonstrated strong whole brain white matter growth during this period, but the autistic boys showed abnormally slowed white matter development (P = 0.03, corrected), especially in the parietal (P = 0.008), temporal (P = 0.03), and occipital lobes (P = 0.02). We also visualized abnormal overgrowth in autism in gray matter structures such as the putamen and anterior cingulate cortex. Our findings reveal aberrant growth rates in brain regions implicated in social impairment, communication deficits and repetitive behaviors in autism, suggesting that growth rate abnormalities persist into adolescence. Tensor-based morphometry revealed persisting growth rate anomalies long after diagnosis, which has implications for evaluation of therapeutic effects. Copyright © 2011 Wiley Periodicals, Inc.

  16. Effect of cell size and shear stress on bacterium growth rate

    NASA Astrophysics Data System (ADS)

    Fadlallah, Hadi; Jarrahi, Mojtaba; Herbert, Éric; Peerhossaini, Hassan; PEF Team

    2015-11-01

    Effect of shear stress on the growth rate of Synechocystis and Chlamydomonas cells is studied. An experimental setup was prepared to monitor the growth rate of the microorganisms versus the shear rate inside a clean room, under atmospheric pressure and 20 °C temperature. Digital magnetic agitators are placed inside a closed chamber provided with airflow, under a continuous uniform light intensity over 4 weeks. In order to study the effect of shear stress on the growth rate, different frequencies of agitation are tested, 2 vessels filled with 150 ml of each specie were placed on different agitating system at the desired frequency. The growth rate is monitored daily by measuring the optical density and then correlate it to the cellular concentration. The PH was adjusted to 7 in order to maintain the photosynthetic activity. Furthermore, to measure the shear stress distribution, the flow velocity field was measured using PIV. Zones of high and low shear stress were identified. Results show that the growth rate is independent of the shear stress magnitude, mostly for Synechocystis, and with lower independency for Chlamydomonas depending on the cell size for each species.

  17. 3D fold growth rates in transpressional tectonic settings

    NASA Astrophysics Data System (ADS)

    Frehner, Marcel

    2015-04-01

    Geological folds are inherently three-dimensional (3D) structures; hence, they also grow in 3D. In this study, fold growth in all three dimensions is quantified numerically using a finite-element algorithm for simulating deformation of Newtonian media in 3D. The presented study is an extension and generalization of the work presented in Frehner (2014), which only considered unidirectional layer-parallel compression. In contrast, the full range from strike slip settings (i.e., simple shear) to unidirectional layer-parallel compression is considered here by varying the convergence angle of the boundary conditions; hence the results are applicable to general transpressional tectonic settings. Only upright symmetrical single-layer fold structures are considered. The horizontal higher-viscous layer exhibits an initial point-like perturbation. Due to the mixed pure- and simple shear boundary conditions a mechanical buckling instability grows from this perturbation in all three dimensions, described by: Fold amplification (vertical growth): Fold amplification describes the growth from a fold shape with low limb-dip angle to a shape with higher limb-dip angle. Fold elongation (growth parallel to fold axis): Fold elongation describes the growth from a dome-shaped (3D) structure to a more cylindrical fold (2D). Sequential fold growth (growth perpendicular to fold axial plane): Sequential fold growth describes the growth of secondary (and further) folds adjacent to the initial isolated fold. The term 'lateral fold growth' is used as an umbrella term for both fold elongation and sequential fold growth. In addition, the orientation of the fold axis is tracked as a function of the convergence angle. Even though the absolute values of all three growth rates are markedly reduced with increasing simple-shear component at the boundaries, the general pattern of the quantified fold growth under the studied general-shear boundary conditions is surprisingly similar to the end

  18. Can dead bacterial cells be defined and are genes expressed after cell death?

    PubMed

    Trevors, J T

    2012-07-01

    There is a paucity of knowledge on gene expression in dead bacterial cells. Why would this knowledge be useful? The cells are dead. However, the time duration of gene expression following cell death is often unknown, and possibly in the order of minutes. In addition, it is a challenge to determine if bacterial cells are dead, or viable but non-culturable (VBNC), and what is an agreed upon correct definition of dead bacteria. Cells in the bacterial population or community may die at different rates or times and this complicates both the viability and gene expression analysis. In this article, the definition of dead bacterial cells is discussed and its significance in continued gene expression in cells following death. The definition of living and dead has implications for possible, completely, synthetic bacterial cells that may be capable of growth and division. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. HU content and dynamics in Escherichia coli during the cell cycle and at different growth rates.

    PubMed

    Abebe, Anteneh Hailu; Aranovich, Alexander; Fishov, Itzhak

    2017-10-16

    DNA-binding proteins play an important role in maintaining bacterial chromosome structure and functions. Heat-unstable (HU) histone-like protein is one of the most abundant of these proteins and participates in all major chromosome-related activities. Owing to its low sequence specificity, HU fusions with fluorescent proteins were used for general staining of the nucleoid, aiming to reveal its morphology and dynamics. We have exploited a single chromosomal copy of hupA-egfp fusion under the native promoter and used quantitative microscopy imaging to investigate the amount and dynamics of HUα in Escherichia coli cells. We found that in steady-state growing populations the cellular HUα content is proportional to the cell size, whereas its concentration is size independent. Single-cell live microscopy imaging confirmed that the amount of HUα exponentially increases during the cell cycle, but its concentration is maintained constant. This supports the existence of an auto-regulatory mechanism underlying the HUα cellular level, in addition to reflecting the gene copy number. Both the HUα amount and concentration strongly increase with the cell growth rate in different culture media. Unexpectedly, the HU/DNA stoichiometry also remarkably increases with the growth rate. This last finding may be attributed to a higher requirement for maintaining the chromosome structure in nucleoids with higher complexity. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Bacterial Abundance and Activity across Sites within Two Northern Wisconsin Sphagnum Bogs.

    PubMed

    Fisher; Graham; Graham

    1998-11-01

    Abstract Bacterial abundance, temperature, pH, and dissolved organic carbon (DOC) concentration were compared across surface sites within and between two northern Wisconsin Sphagnum peatlands over the summer seasons in 1995 and 1996. Sites of interest were the Sphagnum mat surface, the water-filled moat (lagg) at the bog margin, and the bog lake littoral zone. Significant differences in both bacterial populations and water chemistry were observed between sites. pH was highest in the lake and lowest in the mat at both bogs; the opposite was true for DOC. Large populations of bacteria were present in surface interstitial water from the mat; abundance in this site was consistently higher than in the moat or lake. Bacterial abundance also increased across sites of increasing DOC concentration and declining pH. Bacterial activities (rates of [3H]leucine incorporation) and growth in dilution cultures (with grazers removed) were also assessed in lake, moat, and mat sites. Results using these measures generally supported the trends observed in abundance, although high rates of [3H]leucine incorporation were recorded in the moat at one of the bogs. Our results indicate that bacterial populations in Sphagnum peatlands are not adversely affected by acidity, and that DOC may be more important than pH in determining bacterial abundance in these environments.

  1. The Effect of the Laboratory Specimen on Fatigue Crack Growth Rate

    NASA Technical Reports Server (NTRS)

    Forth, S. C.; Johnston, W. M.; Seshadri, B. R.

    2006-01-01

    Over the past thirty years, laboratory experiments have been devised to develop fatigue crack growth rate data that is representative of the material response. The crack growth rate data generated in the laboratory is then used to predict the safe operating envelope of a structure. The ability to interrelate laboratory data and structural response is called similitude. In essence, a nondimensional term, called the stress intensity factor, was developed that includes the applied stresses, crack size and geometric configuration. The stress intensity factor is then directly related to the rate at which cracks propagate in a material, resulting in the material property of fatigue crack growth response. Standardized specimen configurations and experimental procedures have been developed for laboratory testing to generate crack growth rate data that supports similitude of the stress intensity factor solution. In this paper, the authors present laboratory fatigue crack growth rate test data and finite element analyses that show similitude between standard specimen configurations tested using the constant stress ratio test method is unobtainable.

  2. Do fish growth rates correlate with PCB body burdens?

    Treesearch

    Andrew L. Rypel; David R. Bayne

    2010-01-01

    We evaluated whether growth rates of six fish species correlated with PCB concentrations in a moderately-to-heavily polluted freshwater ecosystem. Using a large dataset (n ¼ 984 individuals), and after accounting for growth effects related to fish age, habitat, sex, and lipids, growth correlated significantly, but positively with lipid-corrected PCB concentrations for...

  3. Chlorine decay and bacterial inactivation kinetics in drinking water in the tropics.

    PubMed

    Thøgersen, J; Dahi, E

    1996-09-01

    The decay of free chlorine (Cl2) and combined chlorine (mostly monochloramine: NH2Cl) and the inactivation of bacteria was examined in Dar es Salaam, Tanzania. Batch experiments, pilot-scale pipe experiments and full-scale pipe experiments were carried out to establish the kinetics for both decay and inactivation, and to compare the two disinfectants for use under tropical conditions. The decay of both disinfectants closely followed first order kinetics, with respect to the concentration of both disinfectant and disinfectant-consuming substances. Bacterial densities exhibited a kinetic pattern consisting of first order inactivation with respect to the density of the bacteria and the concentration of the disinfectant, and first order growth with respect to the bacterial density. The disinfection kinetic model takes the decaying concentration of the disinfectant into account. The decay rate constant for free chlorine was 114 lg(-1)h(-1), while the decay rate constant for combined chlorine was 1.84 lg(-1)h(-1) (1.6% of the decay rate for free chlorine). The average concentration of disinfectant consuming substances in the water phase was 2.6 mg Cl2/l for free chlorine and 5.6 mg NH2Cl/l for combined chlorine. The decay rate constant and the concentration of disinfectant consuming substances when water was pumped through pipes, depended on whether or not chlorination was continuous. Combined chlorine especially could clean the pipes of disinfectant consuming substances. The inactivation rate constant λ, was estimated at 3.06×10(4) lg(-1)h(-1). Based on the inactivation rate constant, and a growth rate constant determined in a previous study, the critical concentration of free chlorine was found to be 0.08 mg Cl2/l. The critical concentration is a value below which growth rates dominate over inactivation.

  4. Ammonium supply rate influences archaeal and bacterial ammonia oxidizers in a wetland soil vertical profile.

    PubMed

    Höfferle, Špela; Nicol, Graeme W; Pal, Levin; Hacin, Janez; Prosser, James I; Mandić-Mulec, Ines

    2010-11-01

    Oxidation of ammonia, the first step in nitrification, is carried out in soil by bacterial and archaeal ammonia oxidizers and recent studies suggest possible selection for the latter in low-ammonium environments. In this study, we investigated the selection of ammonia-oxidizing archaea and bacteria in wetland soil vertical profiles at two sites differing in terms of the ammonium supply rate, but not significantly in terms of the groundwater level. One site received ammonium through decomposition of organic matter, while the second, polluted site received a greater supply, through constant leakage of an underground septic tank. Soil nitrification potential was significantly greater at the polluted site. Quantification of amoA genes demonstrated greater abundance of bacterial than archaeal amoA genes throughout the soil profile at the polluted site, whereas bacterial amoA genes at the unpolluted site were below the detection limit. At both sites, archaeal, but not the bacterial community structure was clearly stratified with depth, with regard to the soil redox potential imposed by groundwater level. However, depth-related changes in the archaeal community structure may also be associated with physiological functions other than ammonia oxidation. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  5. Pretreatment Growth Rate Predicts Radiation Response in Vestibular Schwannomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, Nina N.; Harvard Medical School, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts; Niemierko, Andrzej

    Purpose: Vestibular schwannomas (VS) are often followed without initial therapeutic intervention because many tumors do not grow and radiation therapy is associated with potential adverse effects. In an effort to determine whether maximizing initial surveillance predicts for later treatment response, the predictive value of preirradiation growth rate of VS on response to radiation therapy was assessed. Methods and Materials: Sixty-four patients with 65 VS were treated with single-fraction stereotactic radiation surgery or fractionated stereotactic radiation therapy. Pre- and postirradiation linear expansion rates were estimated using volumetric measurements on sequential magnetic resonance images (MRIs). In addition, postirradiation tumor volume change wasmore » classified as demonstrating shrinkage (ratio of volume on last follow-up MRI to MRI immediately preceding irradiation <80%), stability (ratio 80%-120%), or expansion (ratio >120%). The median pre- and postirradiation follow-up was 20.0 and 27.5 months, respectively. Seven tumors from neurofibromatosis type 2 (NF2) patients were excluded from statistical analyses. Results: In the 58 non-NF2 patients, there was a trend of correlation between pre- and postirradiation volume change rates (slope on linear regression, 0.29; P=.06). Tumors demonstrating postirradiation expansion had a median preirradiation growth rate of 89%/year, and those without postirradiation expansion had a median preirradiation growth rate of 41%/year (P=.02). As the preirradiation growth rate increased, the probability of postirradiation expansion also increased. Overall, 24.1% of tumors were stable, 53.4% experienced shrinkage, and 22.5% experienced expansion. Predictors of no postirradiation tumor expansion included no prior surgery (P=.01) and slower tumor growth rate (P=.02). The control of tumors in NF2 patients was only 43%. Conclusions: Radiation therapy is an effective treatment for VS, but tumors that grow quickly

  6. Plasma Instability Growth Rates in the F-Region Cusp Ionosphere

    NASA Astrophysics Data System (ADS)

    Moen, J. I.; Daabakk, Y.; Oksavik, K.; Clausen, L.; Bekkeng, T. A.; Abe, T.; Saito, Y.; Baddeley, L. J.; Lorentzen, D. A.; Sigernes, F.; Yeoman, T. K.

    2014-12-01

    There are at least two different micro-instability processes that applies to the F-region cusp/polar cap ionosphere. These are the Gradient Drift Instability (GDI) and the Kelvin Helmholtz Instability (KHI). Due to space weather effects on radio communication and satellite signals it is of practical interest to assess the relative importance of these two instability modes and to quantify their growth rates. The Investigation of Cusp Irregularities (ICI) rocket program has been developed to investigate these plasma instabilities and formation scintillation irregularities. High resolution measurements are critical to get realistic quantities on the growth rates. The results achieved so far demonstrates that cusp ionosphere precipitation can give rise to km scale plasma structures on which grow rates are down to a few tens of seconds compared to earlier measures of ten minutes based on ground observations. This has to do with the spatial resolution required for these measurements. Growth rates for the KHI instability is found to be of the same order, which is consistent with growth rates calculated from the EISCAT Svalbard Radar. I.e. both instability modes can be highly efficient in the cusp ionosphere.

  7. Indoor Heating Drives Water Bacterial Growth and Community Metabolic Profile Changes in Building Tap Pipes during the Winter Season

    PubMed Central

    Zhang, Hai-Han; Chen, Sheng-Nan; Huang, Ting-Lin; Shang, Pan-Lu; Yang, Xiao; Ma, Wei-Xing

    2015-01-01

    The growth of the bacterial community harbored in indoor drinking water taps is regulated by external environmental factors, such as indoor temperature. However, the effect of indoor heating on bacterial regrowth associated with indoor drinking water taps is poorly understood. In the present work, flow cytometry and community-level sole-carbon-source utilization techniques were combined to explore the effects of indoor heating on water bacterial cell concentrations and community carbon metabolic profiles in building tap pipes during the winter season. The results showed that the temperature of water stagnated overnight (“before”) in the indoor water pipes was 15–17 °C, and the water temperature decreased to 4–6 °C after flushing for 10 min (“flushed”). The highest bacterial cell number was observed in water stagnated overnight, and was 5–11 times higher than that of flushed water. Meanwhile, a significantly higher bacterial community metabolic activity (AWCD590nm) was also found in overnight stagnation water samples. The significant “flushed” and “taps” values indicated that the AWCD590nm, and bacterial cell number varied among the taps within the flushed group (p < 0.01). Heatmap fingerprints and principle component analyses (PCA) revealed a significant discrimination bacterial community functional metabolic profiles in the water stagnated overnight and flushed water. Serine, threonine, glucose-phosphate, ketobutyric acid, phenylethylamine, glycerol, putrescine were significantly used by “before” water samples. The results suggested that water stagnated at higher temperature should be treated before drinking because of bacterial regrowth. The data from this work provides useful information on reasonable utilization of drinking water after stagnation in indoor pipes during indoor heating periods. PMID:26516885

  8. Phytoplankton production and taxon-specific growth rates in the Costa Rica Dome

    PubMed Central

    Selph, Karen E.; Landry, Michael R.; Taylor, Andrew G.; Gutiérrez-Rodríguez, Andrés; Stukel, Michael R.; Wokuluk, John; Pasulka, Alexis

    2016-01-01

    During summer 2010, we investigated phytoplankton production and growth rates at 19 stations in the eastern tropical Pacific, where winds and strong opposing currents generate the Costa Rica Dome (CRD), an open-ocean upwelling feature. Primary production (14C-incorporation) and group-specific growth and net growth rates (two-treatment seawater dilution method) were estimated from samples incubated in situ at eight depths. Our cruise coincided with a mild El Niño event, and only weak upwelling was observed in the CRD. Nevertheless, the highest phytoplankton abundances were found near the dome center. However, mixed-layer growth rates were lowest in the dome center (∼0.5–0.9 day−1), but higher on the edge of the dome (∼0.9–1.0 day−1) and in adjacent coastal waters (0.9–1.3 day−1). We found good agreement between independent methods to estimate growth rates. Mixed-layer growth rates of Prochlorococcus and Synechococcus were largely balanced by mortality, whereas eukaryotic phytoplankton showed positive net growth (∼0.5–0.6 day−1), that is, growth available to support larger (mesozooplankton) consumer biomass. These are the first group-specific phytoplankton rate estimates in this region, and they demonstrate that integrated primary production is high, exceeding 1 g C m−2 day−1 on average, even during a period of reduced upwelling. PMID:27275025

  9. Phytoplankton production and taxon-specific growth rates in the Costa Rica Dome.

    PubMed

    Selph, Karen E; Landry, Michael R; Taylor, Andrew G; Gutiérrez-Rodríguez, Andrés; Stukel, Michael R; Wokuluk, John; Pasulka, Alexis

    2016-03-01

    During summer 2010, we investigated phytoplankton production and growth rates at 19 stations in the eastern tropical Pacific, where winds and strong opposing currents generate the Costa Rica Dome (CRD), an open-ocean upwelling feature. Primary production ( 14 C-incorporation) and group-specific growth and net growth rates (two-treatment seawater dilution method) were estimated from samples incubated in situ at eight depths. Our cruise coincided with a mild El Niño event, and only weak upwelling was observed in the CRD. Nevertheless, the highest phytoplankton abundances were found near the dome center. However, mixed-layer growth rates were lowest in the dome center (∼0.5-0.9 day -1 ), but higher on the edge of the dome (∼0.9-1.0 day -1 ) and in adjacent coastal waters (0.9-1.3 day -1 ). We found good agreement between independent methods to estimate growth rates. Mixed-layer growth rates of Prochlorococcus and Synechococcus were largely balanced by mortality, whereas eukaryotic phytoplankton showed positive net growth (∼0.5-0.6 day -1 ), that is, growth available to support larger (mesozooplankton) consumer biomass. These are the first group-specific phytoplankton rate estimates in this region, and they demonstrate that integrated primary production is high, exceeding 1 g C m -2 day -1 on average, even during a period of reduced upwelling.

  10. Radiocarbon Based Ages and Growth Rates: Hawaiian Deep Sea Corals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roark, E B; Guilderson, T P; Dunbar, R B

    2006-01-13

    The radial growth rates and ages of three different groups of Hawaiian deep-sea 'corals' were determined using radiocarbon measurements. Specimens of Corallium secundum, Gerardia sp., and Leiopathes glaberrima, were collected from 450 {+-} 40 m at the Makapuu deep-sea coral bed using a submersible (PISCES V). Specimens of Antipathes dichotoma were collected at 50 m off Lahaina, Maui. The primary source of carbon to the calcitic C. secundum skeleton is in situ dissolved inorganic carbon (DIC). Using bomb {sup 14}C time markers we calculate radial growth rates of {approx} 170 {micro}m y{sup -1} and ages of 68-75 years on specimensmore » as tall as 28 cm of C. secundum. Gerardia sp., A. dichotoma, and L. glaberrima have proteinaceous skeletons and labile particulate organic carbon (POC) is their primary source of architectural carbon. Using {sup 14}C we calculate a radial growth rate of 15 {micro}m y{sup -1} and an age of 807 {+-} 30 years for a live collected Gerardia sp., showing that these organisms are extremely long lived. Inner and outer {sup 14}C measurements on four sub-fossil Gerardia spp. samples produce similar growth rate estimates (range 14-45 {micro}m y{sup -1}) and ages (range 450-2742 years) as observed for the live collected sample. Similarly, with a growth rate of < 10 {micro}m y{sup -1} and an age of {approx}2377 years, L. glaberrima at the Makapuu coral bed, is also extremely long lived. In contrast, the shallow-collected A. dichotoma samples yield growth rates ranging from 130 to 1,140 {micro}m y{sup -1}. These results show that Hawaiian deep-sea corals grow more slowly and are older than previously thought.« less

  11. Spatio-temporal transitions in the dynamics of bacterial populations

    NASA Astrophysics Data System (ADS)

    Lin, Anna; Lincoln, Bryan; Mann, Bernward; Torres, Gelsy; Kas, Josef; Swinney, Harry

    2001-03-01

    We experimentally investigate the population dynamics of a strain of E. coli bacteria living under spatially inhomogeneous growth conditions. A localized perturbation that moves with a well-defined drift velocity is imposed on the system. A reaction-diffusion model of this situation^1 predicts that an abrupt transition between spatial localization and extinction of the colony occurs for a fixed average growth rate when the drift velocity exceeds a critical value. Also, a transition between localized and delocalized populations is predicted to occur at a fixed drift velocity when the spatially averaged growth rate is varied. We create a spatially localized perturbation with UV light and vary the strength and drift velocity of the perturbation to investigate the existence of the different bacterial population distributions and the transitions between them. Numerical simulations of a 250 mm by 20 mm system guide our experiments. ^1K. A. Dahmen, D. R. Nelson, N. M. Shnerb, Jour. Math. Bio., 41 1 (2000).

  12. Quantitative Trait Loci Controlling Vegetative Growth Rate in the Edible Basidiomycete Pleurotus ostreatus

    PubMed Central

    Larraya, Luis M.; Idareta, Eneko; Arana, Dani; Ritter, Enrique; Pisabarro, Antonio G.; Ramírez, Lucia

    2002-01-01

    Mycelium growth rate is a quantitative characteristic that exhibits continuous variation. This trait has applied interest, as growth rate is correlated with production yield and increased advantage against competitors. In this work, we studied growth rate variation in the edible basidiomycete Pleurotus ostreatus growing as monokaryotic or dikaryotic mycelium on Eger medium or on wheat straw. Our analysis resulted in identification of several genomic regions (quantitative trait loci [QTLs]) involved in the control of growth rate that can be mapped on the genetic linkage map of this fungus. In some cases monokaryotic and dikaryotic QTLs clustered at the same map position, indicating that there are principal genomic areas responsible for growth rate control. The availability of this linkage map of growth rate QTLs can help in the design of rational strain breeding programs based on genomic information. PMID:11872457

  13. Metabolic enzyme cost explains variable trade-offs between microbial growth rate and yield

    PubMed Central

    Ferris, Michael; Bruggeman, Frank J.

    2018-01-01

    Microbes may maximize the number of daughter cells per time or per amount of nutrients consumed. These two strategies correspond, respectively, to the use of enzyme-efficient or substrate-efficient metabolic pathways. In reality, fast growth is often associated with wasteful, yield-inefficient metabolism, and a general thermodynamic trade-off between growth rate and biomass yield has been proposed to explain this. We studied growth rate/yield trade-offs by using a novel modeling framework, Enzyme-Flux Cost Minimization (EFCM) and by assuming that the growth rate depends directly on the enzyme investment per rate of biomass production. In a comprehensive mathematical model of core metabolism in E. coli, we screened all elementary flux modes leading to cell synthesis, characterized them by the growth rates and yields they provide, and studied the shape of the resulting rate/yield Pareto front. By varying the model parameters, we found that the rate/yield trade-off is not universal, but depends on metabolic kinetics and environmental conditions. A prominent trade-off emerges under oxygen-limited growth, where yield-inefficient pathways support a 2-to-3 times higher growth rate than yield-efficient pathways. EFCM can be widely used to predict optimal metabolic states and growth rates under varying nutrient levels, perturbations of enzyme parameters, and single or multiple gene knockouts. PMID:29451895

  14. A Critical, Nonlinear Threshold Dictates Bacterial Invasion and Initial Kinetics During Influenza

    NASA Astrophysics Data System (ADS)

    Smith, Amber M.; Smith, Amanda P.

    2016-12-01

    Secondary bacterial infections increase morbidity and mortality of influenza A virus (IAV) infections. Bacteria are able to invade due to virus-induced depletion of alveolar macrophages (AMs), but this is not the only contributing factor. By analyzing a kinetic model, we uncovered a nonlinear initial dose threshold that is dependent on the amount of virus-induced AM depletion. The threshold separates the growth and clearance phenotypes such that bacteria decline for dose-AM depletion combinations below the threshold, stay constant near the threshold, and increase above the threshold. In addition, the distance from the threshold correlates to the growth rate. Because AM depletion changes throughout an IAV infection, the dose requirement for bacterial invasion also changes accordingly. Using the threshold, we found that the dose requirement drops dramatically during the first 7d of IAV infection. We then validated these analytical predictions by infecting mice with doses below or above the predicted threshold over the course of IAV infection. These results identify the nonlinear way in which two independent factors work together to support successful post-influenza bacterial invasion. They provide insight into coinfection timing, the heterogeneity in outcome, the probability of acquiring a coinfection, and the use of new therapeutic strategies to combat viral-bacterial coinfections.

  15. A Critical, Nonlinear Threshold Dictates Bacterial Invasion and Initial Kinetics During Influenza.

    PubMed

    Smith, Amber M; Smith, Amanda P

    2016-12-15

    Secondary bacterial infections increase morbidity and mortality of influenza A virus (IAV) infections. Bacteria are able to invade due to virus-induced depletion of alveolar macrophages (AMs), but this is not the only contributing factor. By analyzing a kinetic model, we uncovered a nonlinear initial dose threshold that is dependent on the amount of virus-induced AM depletion. The threshold separates the growth and clearance phenotypes such that bacteria decline for dose-AM depletion combinations below the threshold, stay constant near the threshold, and increase above the threshold. In addition, the distance from the threshold correlates to the growth rate. Because AM depletion changes throughout an IAV infection, the dose requirement for bacterial invasion also changes accordingly. Using the threshold, we found that the dose requirement drops dramatically during the first 7d of IAV infection. We then validated these analytical predictions by infecting mice with doses below or above the predicted threshold over the course of IAV infection. These results identify the nonlinear way in which two independent factors work together to support successful post-influenza bacterial invasion. They provide insight into coinfection timing, the heterogeneity in outcome, the probability of acquiring a coinfection, and the use of new therapeutic strategies to combat viral-bacterial coinfections.

  16. Reduced bacterial growth and increased osteoblast proliferation on titanium with a nanophase TiO2 surface treatment.

    PubMed

    Bhardwaj, Garima; Webster, Thomas J

    2017-01-01

    The attachment and initial growth of bacteria on an implant surface dictates the progression of infection. Treatment often requires aggressive antibiotic use, which does not always work. To overcome the difficulties faced in systemic and local antibiotic delivery, scientists have forayed into using alternative techniques, which includes implant surface modifications that prevent initial bacterial adhesion, foreign body formation, and may offer a controlled inflammatory response. The current study focused on using electrophoretic deposition to treat titanium with a nanophase titanium dioxide surface texture to reduce bacterial adhesion and growth. Two distinct nanotopographies were analyzed, Ti-160, an antimicrobial surface designed to greatly reduce bacterial colonization, and Ti-120, an antimicrobial surface with a topography that upregulates osteoblast activity while reducing bacterial colonization; the number following Ti in the nomenclature represents the atomic force microscopy root-mean-square roughness value in nanometers. There was a 95.6% reduction in Staphylococcus aureus (gram-positive bacteria) for the Ti-160-treated surfaces compared to the untreated titanium alloy controls. There was a 90.2% reduction in Pseudomonas aeruginosa (gram-negative bacteria) on Ti-160-treated surfaces compared to controls. For ampicillin-resistant Escherichia coli , there was an 81.1% reduction on the Ti-160-treated surfaces compared to controls. Similarly for surfaces treated with Ti-120, there was an 86.8% reduction in S. aureus , an 82.1% reduction in P. aeruginosa , and a 48.6% reduction in ampicillin-resistant E. coli . The Ti-120 also displayed a 120.7% increase at day 3 and a 168.7% increase at day 5 of osteoblast proliferation over standard titanium alloy control surfaces. Compared to untreated surfaces, Ti-160-treated titanium surfaces demonstrated a statistically significant 1 log reduction in S. aureus and P. aeruginosa , whereas Ti-120 provided an additional

  17. Bacterial Acclimation Inside an Aqueous Battery.

    PubMed

    Dong, Dexian; Chen, Baoling; Chen, P

    2015-01-01

    Specific environmental stresses may lead to induced genomic instability in bacteria, generating beneficial mutants and potentially accelerating the breeding of industrial microorganisms. The environmental stresses inside the aqueous battery may be derived from such conditions as ion shuttle, pH gradient, free radical reaction and electric field. In most industrial and medical applications, electric fields and direct currents are used to kill bacteria and yeast. However, the present study focused on increasing bacterial survival inside an operating battery. Using a bacterial acclimation strategy, both Escherichia coli and Bacillus subtilis were acclimated for 10 battery operation cycles and survived in the battery for over 3 days. The acclimated bacteria changed in cell shape, growth rate and colony color. Further analysis indicated that electrolyte concentration could be one of the major factors determining bacterial survival inside an aqueous battery. The acclimation process significantly improved the viability of both bacteria E. coli and B. subtilis. The viability of acclimated strains was not affected under battery cycle conditions of 0.18-0.80 mA cm(-2) and 1.4-2.1 V. Bacterial addition within 1.0×10(10) cells mL(-1) did not significantly affect battery performance. Because the environmental stress inside the aqueous battery is specific, the use of this battery acclimation strategy may be of great potential for the breeding of industrial microorganisms.

  18. Bacterial Acclimation Inside an Aqueous Battery

    PubMed Central

    Dong, Dexian; Chen, Baoling; Chen, P.

    2015-01-01

    Specific environmental stresses may lead to induced genomic instability in bacteria, generating beneficial mutants and potentially accelerating the breeding of industrial microorganisms. The environmental stresses inside the aqueous battery may be derived from such conditions as ion shuttle, pH gradient, free radical reaction and electric field. In most industrial and medical applications, electric fields and direct currents are used to kill bacteria and yeast. However, the present study focused on increasing bacterial survival inside an operating battery. Using a bacterial acclimation strategy, both Escherichia coli and Bacillus subtilis were acclimated for 10 battery operation cycles and survived in the battery for over 3 days. The acclimated bacteria changed in cell shape, growth rate and colony color. Further analysis indicated that electrolyte concentration could be one of the major factors determining bacterial survival inside an aqueous battery. The acclimation process significantly improved the viability of both bacteria E. coli and B. subtilis. The viability of acclimated strains was not affected under battery cycle conditions of 0.18-0.80 mA cm-2 and 1.4-2.1 V. Bacterial addition within 1.0×1010 cells mL-1 did not significantly affect battery performance. Because the environmental stress inside the aqueous battery is specific, the use of this battery acclimation strategy may be of great potential for the breeding of industrial microorganisms. PMID:26070088

  19. Adaptation to Low Temperature Exposure Increases Metabolic Rates Independently of Growth Rates

    PubMed Central

    Williams, Caroline M.; Szejner-Sigal, Andre; Morgan, Theodore J.; Edison, Arthur S.; Allison, David B.; Hahn, Daniel A.

    2016-01-01

    Metabolic cold adaptation is a pattern where ectotherms from cold, high-latitude, or -altitude habitats have higher metabolic rates than ectotherms from warmer habitats. When found, metabolic cold adaptation is often attributed to countergradient selection, wherein short, cool growing seasons select for a compensatory increase in growth rates and development times of ectotherms. Yet, ectotherms in high-latitude and -altitude environments face many challenges in addition to thermal and time constraints on lifecycles. In addition to short, cool growing seasons, high-latitude and - altitude environments are characterized by regular exposure to extreme low temperatures, which cause ectotherms to enter a transient state of immobility termed chill coma. The ability to resume activity quickly after chill coma increases with latitude and altitude in patterns consistent with local adaptation to cold conditions. We show that artificial selection for fast and slow chill coma recovery among lines of the fly Drosophila melanogaster also affects rates of respiratory metabolism. Cold-hardy fly lines, with fast recovery from chill coma, had higher respiratory metabolic rates than control lines, with cold-susceptible slow-recovering lines having the lowest metabolic rates. Fast chill coma recovery was also associated with higher respiratory metabolism in a set of lines derived from a natural population. Although their metabolic rates were higher than control lines, fast-recovering cold-hardy lines did not have faster growth rates or development times than control lines. This suggests that raised metabolic rates in high-latitude and -altitude species may be driven by adaptation to extreme low temperatures, illustrating the importance of moving “Beyond the Mean”. PMID:27103615

  20. Nationwide Macroeconomic Variables and the Growth Rate of Bariatric Surgeries in Brazil.

    PubMed

    Cazzo, Everton; Ramos, Almino Cardoso; Pareja, José Carlos; Chaim, Elinton Adami

    2018-06-06

    The effect of nationwide economic issues on the necessary expansion in the number of bariatric procedures remains unclear. This study aims to determine whether there are correlations between the growth rate in the number of bariatric surgeries and the major macroeconomic variables over time in Brazil. It is a nationwide analysis regarding the number of bariatric surgeries in Brazil and the main national macroeconomic variables from 2003 through 2016: gross domestic product (GDP), inflation rate, and the unemployment rate, as well as the evolution in the number of registered bariatric surgeons. There were significant positive correlations of the growth rate of surgeries with the early variations of the GDP (R = 0.5558; p = 0.04863) and of the overall health expenditure per capita (R = 0.78322; p = 0.00259). The growth rate of the number of bariatric surgeries was not correlated with the unemployment and inflation rates, as well as with the growth rate of available bariatric surgeons. There were direct relationships between the growth rate of bariatric surgeries and the evolutions of the GDP and health care expenditure per capita. These variables appear to influence the nationwide offer of bariatric surgery.

  1. Silver-decorated orthorhombic nanotubes of lithium vanadium oxide: an impeder of bacterial growth and biofilm.

    PubMed

    Diggikar, Rahul S; Patil, Rajendra H; Kale, Sheetal B; Thombre, Dipalee K; Gade, Wasudeo N; Kulkarni, Milind V; Kale, Bharat B

    2013-09-01

    Reoccurrence of infectious diseases and ability of pathogens to resist antibacterial action has raised enormous challenges which may possibly be confronted by nanotechnology routes. In the present study, uniformly embedded silver nanoparticles in orthorhombic nanotubes of lithium vanadium oxide (LiV2O5/Ag) were explored as an impeder of bacterial growth and biofilm. The LiV2O5/Ag nanocomposites have impeded growth of Gram-positive Bacillus subtilis NCIM 2063 and Gram-negative Escherichia coli NCIM 2931 at 60 to 120 μg/mL. It also impeded the biofilm in Pseudomonas aeruginosa NCIM 2948 at 12.5 to 25 μg/mL. Impedance in the growth and biofilm occurs primarily by direct action of the nanocomposites on the cell surfaces of test organisms as revealed by surface perturbation in scanning electron microscopy. As the metabolic growth and biofilm formation phenomena of pathogens play a central role in progression of pathogenesis, LiV2O5/Ag nanocomposite-based approach is likely to curb the menace of reoccurrence of infectious diseases. Thus, LiV2O5/Ag nanocomposites can be viewed as a promising candidate in biofabrication of biomedical materials.

  2. Phase transition of traveling waves in bacterial colony pattern

    NASA Astrophysics Data System (ADS)

    Wakano, Joe Yuichiro; Komoto, Atsushi; Yamaguchi, Yukio

    2004-05-01

    Depending on the growth condition, bacterial colonies can exhibit different morphologies. Many previous studies have used reaction diffusion equations to reproduce spatial patterns. They have revealed that nonlinear reaction term can produce diverse patterns as well as nonlinear diffusion coefficient. Typical reaction term consists of nutrient consumption, bacterial reproduction, and sporulation. Among them, the functional form of sporulation rate has not been biologically investigated. Here we report experimentally measured sporulation rate. Then, based on the result, a reaction diffusion model is proposed. One-dimensional simulation showed the existence of traveling wave solution. We study the wave form as a function of the initial nutrient concentration and find two distinct types of solution. Moreover, transition between them is very sharp, which is analogous to phase transition. The velocity of traveling wave also shows sharp transition in nonlinear diffusion model, which is consistent with the previous experimental result. The phenomenon can be explained by separatrix in reaction term dynamics. Results of two-dimensional simulation are also shown and discussed.

  3. Physics of Bacterial Morphogenesis

    PubMed Central

    Sun, Sean X.; Jiang, Hongyuan

    2011-01-01

    Summary: Bacterial cells utilize three-dimensional (3D) protein assemblies to perform important cellular functions such as growth, division, chemoreception, and motility. These assemblies are composed of mechanoproteins that can mechanically deform and exert force. Sometimes, small-nucleotide hydrolysis is coupled to mechanical deformations. In this review, we describe the general principle for an understanding of the coupling of mechanics with chemistry in mechanochemical systems. We apply this principle to understand bacterial cell shape and morphogenesis and how mechanical forces can influence peptidoglycan cell wall growth. We review a model that can potentially reconcile the growth dynamics of the cell wall with the role of cytoskeletal proteins such as MreB and crescentin. We also review the application of mechanochemical principles to understand the assembly and constriction of the FtsZ ring. A number of potential mechanisms are proposed, and important questions are discussed. PMID:22126993

  4. A Novel Biocontainment Strategy Makes Bacterial Growth and Survival Dependent on Phosphite.

    PubMed

    Hirota, Ryuichi; Abe, Kenji; Katsuura, Zen-Ichiro; Noguchi, Reiji; Moribe, Shigeaki; Motomura, Kei; Ishida, Takenori; Alexandrov, Maxym; Funabashi, Hisakage; Ikeda, Takeshi; Kuroda, Akio

    2017-03-20

    There is a growing demand to develop biocontainment strategies that prevent unintended proliferation of genetically modified organisms in the open environment. We found that the hypophosphite (H 3 PO 2 , HPt) transporter HtxBCDE from Pseudomonas stutzeri WM88 was also capable of transporting phosphite (H 3 PO 3 , Pt) but not phosphate (H 3 PO 4 , Pi), suggesting the potential for engineering a Pt/HPt-dependent bacterial strain as a biocontainment strategy. We disrupted all Pi and organic Pi transporters in an Escherichia coli strain expressing HtxABCDE and a Pt dehydrogenase, leaving Pt/HPt uptake and oxidation as the only means to obtain Pi. Challenge on non-permissive growth medium revealed that no escape mutants appeared for at least 21 days with a detection limit of 1.94 × 10 -13 per colony forming unit. This represents, to the best of our knowledge, the lowest escape frequency among reported strategies. Since Pt/HPt are ecologically rare and not available in amounts sufficient for the growth of the Pt/HPt-dependent bacteria, this strategy offers a reliable and practical method for biocontainment.

  5. Temporal changes in species interactions in simple aquatic bacterial communities

    PubMed Central

    2012-01-01

    Background Organisms modify their environment and in doing so change the quantity and possibly the quality of available resources. Due to the two-way relationship between organisms and their resource environment, and the complexity it brings to biological communities, measuring species interactions reliably in any biological system is a challenging task. As the resource environment changes, the intensity and even the sign of interactions may vary in time. We used Serratia marcescens and Novosphingobium capsulatum bacteria to study how the interaction between resource environment and organisms influence the growth of the bacterial species during circa 200 generations. We used a sterile-filtering method to measure how changes in resource environment are reflected in growth rates of the two species. Results Changes in the resource environment caused complex time and species composition-dependent effects on bacterial growth performance. Variation in the quality of the growth medium indicated existence of temporally fluctuating within-species facilitation and inhibition, and between-species asymmetric facilitation. Conclusions The interactions between the community members could not be fully predicted based only on the knowledge of the growth performance of each member in isolation. Growth dynamics in sterile-filtered samples of the conditioned growth medium can reveal both biologically meaningful changes in resource availability and temporally changing facilitative resource-mediated interactions between study species. This is the first study we are aware of where the filter-sterilization – growth assay method is applied to study the effect of long-term changes in the environment on species interactions. PMID:22984961

  6. Unusual growth rate during cystic echinococcosis.

    PubMed

    Valour, Florent; Khenifer, Safia; Della-Schiava, Nellie; Cotte, Eddy; Guibert, Benoit; Wallon, Martine; Durupt, Stéphane; Durieu, Isabelle

    2014-04-01

    Cystic echinococcosis is a world wild zoonosis caused by Echinococcus granulosus, leading to hepatic and lung cysts with a usually slight growth rate. We report the case of an 82year-old Algerian woman with hepatic and lung cystic echinococcosis with a 10-fold size increase in 6months. Copyright © 2013. Published by Elsevier Ireland Ltd.

  7. Evaluation of coral pathogen growth rates after exposure to atmospheric African dust samples

    USGS Publications Warehouse

    Lisle, John T.; Garrison, Virginia H.; Gray, Michael A.

    2014-01-01

    Laboratory experiments were conducted to assess if exposure to atmospheric African dust stimulates or inhibits the growth of four putative bacterial coral pathogens. Atmospheric dust was collected from a dust-source region (Mali, West Africa) and from Saharan Air Layer masses over downwind sites in the Caribbean [Trinidad and Tobago and St. Croix, U.S. Virgin Islands (USVI)]. Extracts of dust samples were used to dose laboratory-grown cultures of four putative coral pathogens: Aurantimonas coralicida (white plague type II), Serratia marcescens (white pox), Vibrio coralliilyticus, and V. shiloi (bacteria-induced bleaching). Growth of A. coralicida and V. shiloi was slightly stimulated by dust extracts from Mali and USVI, respectively, but unaffected by extracts from the other dust sources. Lag time to the start of log-growth phase was significantly shortened for A. coralicida when dosed with dust extracts from Mali and USVI. Growth of S. marcescens and V. coralliilyticus was neither stimulated nor inhibited by any of the dust extracts. This study demonstrates that constituents from atmospheric dust can alter growth of recognized coral disease pathogens under laboratory conditions.

  8. Polyamine is a critical determinant of Pseudomonas chlororaphis O6 for GacS-dependent bacterial cell growth and biocontrol capacity.

    PubMed

    Park, Ju Yeon; Kang, Beom Ryong; Ryu, Choong-Min; Anderson, Anne J; Kim, Young Cheol

    2018-05-01

    The Gac/Rsm network regulates, at the transcriptional level, many beneficial traits in biocontrol-active pseudomonads. In this study, we used Phenotype MicroArrays, followed by specific growth studies and mutational analysis, to understand how catabolism is regulated by this sensor kinase system in the biocontrol isolate Pseudomonas chlororaphis O6. The growth of a gacS mutant was decreased significantly relative to that of the wild-type on ornithine and arginine, and on the precursor of these amino acids, N-acetyl-l-glutamic acid. The gacS mutant also showed reduced production of polyamines. Expression of the genes encoding arginine decarboxylase (speA) and ornithine decarboxylases (speC) was controlled at the transcriptional level by the GacS sensor of P. chlororaphis O6. Polyamine production was reduced in the speC mutant, and was eliminated in the speAspeC mutant. The addition of exogenous polyamines to the speAspeC mutant restored the in vitro growth inhibition of two fungal pathogens, as well as the secretion of three biological control-related factors: pyrrolnitrin, protease and siderophore. These results extend our knowledge of the regulation by the Gac/Rsm network in a biocontrol pseudomonad to include polyamine synthesis. Collectively, our studies demonstrate that bacterial polyamines act as important regulators of bacterial cell growth and biocontrol potential. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  9. SIMPLAS: A Simulation of Bacterial Plasmid Maintenance.

    ERIC Educational Resources Information Center

    Dunn, A.; And Others

    1988-01-01

    This article describes a computer simulation of bacterial physiology during growth in a chemostat. The program was designed to help students to appreciate and understand the related effects of parameters which influence plasmid persistence in bacterial populations. (CW)

  10. Modeling Surface Growth of Escherichia coli on Agar Plates

    PubMed Central

    Fujikawa, Hiroshi; Morozumi, Satoshi

    2005-01-01

    Surface growth of Escherichia coli cells on a membrane filter placed on a nutrient agar plate under various conditions was studied with a mathematical model. The surface growth of bacterial cells showed a sigmoidal curve with time on a semilogarithmic plot. To describe it, a new logistic model that we presented earlier (H. Fujikawa et al., Food Microbiol. 21:501-509, 2004) was modified. Growth curves at various constant temperatures (10 to 34°C) were successfully described with the modified model (model III). Model III gave better predictions of the rate constant of growth and the lag period than a modified Gompertz model and the Baranyi model. Using the parameter values of model III at the constant temperatures, surface growth at various temperatures was successfully predicted. Surface growth curves at various initial cell numbers were also sigmoidal and converged to the same maximum cell numbers at the stationary phase. Surface growth curves at various nutrient levels were also sigmoidal. The maximum cell number and the rate of growth were lower as the nutrient level decreased. The surface growth curve was the same as that in a liquid, except for the large curvature at the deceleration period. These curves were also well described with model III. The pattern of increase in the ATP content of cells grown on a surface was sigmoidal, similar to that for cell growth. We discovered several characteristics of the surface growth of bacterial cells under various growth conditions and examined the applicability of our model to describe these growth curves. PMID:16332768

  11. Bacillus amyloliquefaciens L-S60 Reforms the Rhizosphere Bacterial Community and Improves Growth Conditions in Cucumber Plug Seedling

    PubMed Central

    Qin, Yuxuan; Shang, Qingmao; Zhang, Ying; Li, Pinglan; Chai, Yunrong

    2017-01-01

    Vegetable plug seedling has become the most important way to produce vegetable seedlings in China. This seedling method can significantly improve the quality and yield of vegetables compared to conventional methods. In the process of plug seedling, chemical fertilizers or pesticides are often used to improve the yield of the seedlings albeit with increasing concerns. Meanwhile, little is known about the impact of beneficial bacteria on the rhizosphere microbiota and the growth conditions of vegetables during plug seedling. In this study, we applied a culture-independent next-generation sequencing-based approach and investigated the impact of a plant beneficial bacterium, Bacillus amyloliquefaciens L-S60, on the composition and dynamics of rhizosphere microbiota and the growth conditions of cucumbers during plug seedling. Our results showed that application of L-S60 significantly altered the structure of the bacterial community associated with the cucumber seedling; presence of beneficial rhizosphere species such as Bacillus, Rhodanobacter, Paenibacillus, Pseudomonas, Nonomuraea, and Agrobacterium was higher upon L-S60 treatment than in the control group. We also measured the impact of L-S60 application on the physiological properties of the cucumber seedlings as well as the availability of main mineral elements in the seedling at different time points during the plug seedling. Results from those measurements indicated that L-S60 application promoted growth conditions of cucumber seedlings and that more available mineral elements were detected in the cucumber seedlings from the L-S60 treated group than from the control group. The findings in this study provided evidence for the beneficial effects of plant growth-promoting rhizosphere bacteria on the bacterial community composition and growth conditions of the vegetables during plug seedling. PMID:29312278

  12. On the growth rate of gallstones in the human gallbladder

    NASA Astrophysics Data System (ADS)

    Nudelman, I.

    1993-05-01

    The growth rate of a single symmetrically oval shaped gallbladder stone weighing 10.8 g was recorded over a period of six years before surgery and removal. The length of the stone was measured by ultrasonography and the growth rate was found to be linear with time, with a value of 0.4 mm/year. A smaller stone growing in the wall of the gallbladder was detected only three years before removal and grew at a rate of ˜ 1.33 mm/year. The morphology and metallic ion chemical composition of the large stone and of a randomly selected small stone weighing about 1.1 g, extracted from another patient, were analyzed and compared. It was found that the large stone contained besides calcium also lead, whereas the small stone contained mainly calcium. It is possible that the lead causes a difference in mechanism between the growth of a single large and growth of multiple small gallstones.

  13. [THE NATIONAL NUTRIENT MEDIUM FOR DIAGNOSTIC OF PURULENT BACTERIAL MENINGITIS].

    PubMed

    Podkopaev, Ya V; Domotenko, L V; Morozova, T P; Khramov, M K; Shepelin, A P

    2015-05-01

    The national growth mediums were developed for isolating and cultivating of main agents of purulent bacterial meningitis--haemophilus agar, chocolate agar, PBM-agar. The growing and selective characteristics of developed growth mediums are examined. The haemophilus agar ensures growth of Haemophilus influenzae. The chocolate agar, PBM-agar ensure growth of Neisseria meningitidis, Streptococcus pneumoniae and Haemophilus influenzae. By growing characteristics, the national growth mediums match foreign analogues. Under application of growth mediums with selective additions it is possible to achieve selective isolation of main agents of purulent bacterial meningitis with inhibition of growth of microbes-associates.

  14. DKDP crystal growth controlled by cooling rate

    NASA Astrophysics Data System (ADS)

    Xie, Xiaoyi; Qi, Hongji; Shao, Jianda

    2017-08-01

    The performance of deuterated potassium dihydrogen phosphate (DKDP) crystal directly affects beam quality, energy and conversion efficiency in the Inertial Confinement Fusion(ICF)facility, which is related with the initial saturation temperature of solution and the real-time supersaturation during the crystal growth. However, traditional method to measure the saturation temperature is neither efficient nor accurate enough. Besides, the supersaturation is often controlled by experience, which yields the higher error and leads to the instability during the crystal growth. In this paper, DKDP solution with 78% deuteration concentration is crystallized in different temperatures. We study the relation between solubility and temperature of DKDP and fit a theoretical curve with a parabola model. With the model, the measurement of saturation temperature is simplified and the control precision of the cooling rate is improved during the crystal growth, which is beneficial for optimizing the crystal growth process.

  15. Growth rate for blackhole instabilities

    NASA Astrophysics Data System (ADS)

    Prabhu, Kartik; Wald, Robert

    2015-04-01

    Hollands and Wald showed that dynamic stability of stationary axisymmetric black holes is equivalent to positivity of canonical energy on a space of linearised axisymmetric perturbations satisfying certain boundary and gauge conditions. Using a reflection isometry of the background, we split the energy into kinetic and potential parts. We show that the kinetic energy is positive. In the case that potential energy is negative, we show existence of exponentially growing perturbations and further obtain a variational formula for the growth rate.

  16. [Bacterial meningitis].

    PubMed

    Brouwer, M C; van de Beek, D

    2012-05-01

    Bacterial meningitis is a severe disease which affects 35.000 Europeans each year and has a mortality rate of about 20%. During the past 25 years the epidemiology of bacterial meningitis has changed significantly due to the implementation of vaccination against Haemophilus influenzae, Neisseria meningtidis group C and Streptococcus pneumoniae. Due to these vaccines, meningitis is now predominantly a disease occurring in adults, caused especially by Streptococcus pneumoniae, while it was formerly a child disease which was largely caused by Haemophilus influenzae. Bacterial meningitis is often difficult to recognize since the classical presentation with neck stiffness, reduced awareness and fever occurs in less than half of the patients. The only way to diagnose or exclude bacterial meningitis is by performing low-threshold cerebrospinal fluid examination with a suspicion of bacterial meningitis. The treatment consists of the prescription of antibiotics and dexamethasone.

  17. Inhibition of Pseudogymnoascus destructans growth from conidia and mycelial extension by bacterially produced volatile organic compounds.

    PubMed

    Cornelison, Christopher T; Gabriel, Kyle T; Barlament, Courtney; Crow, Sidney A

    2014-02-01

    The recently identified causative agent of white-nose syndrome (WNS), Pseudogymnoascus destructans, has been implicated in the mortality of an estimated 5.5 million North American bats since its initial documentation in 2006 (Frick et al. in Science 329:679-682, 2010). In an effort to identify potential biological and chemical control options for WNS, 6 previously described bacterially produced volatile organic compounds (VOCs) were screened for anti-P. destructans activity. The compounds include decanal; 2-ethyl-1-hexanol; nonanal; benzothiazole; benzaldehyde; andN,N-dimethyloctylamine. P. destructans conidia and mycelial plugs were exposed to the VOCs in a closed air space at 15 and 4 °C and then evaluated for growth inhibition. All VOCs inhibited growth from conidia as well as inhibiting radial mycelial extension, with the greatest effect at 4 °C. Studies of the ecology of fungistatic soils and the natural abundance of the fungistatic VOCs present in these environments suggest a synergistic activity of select VOCs may occur. The evaluation of formulations of two or three VOCs at equivalent concentrations was supportive of synergistic activity in several cases. The identification of bacterially produced VOCs with anti-P. destructans activity indicates disease-suppressive and fungistatic soils as a potentially significant reservoir of biological and chemical control options for WNS and provides wildlife management personnel with tools to combat this devastating disease.

  18. Mechanical influences in bacterial morphogenesis and cell division

    NASA Astrophysics Data System (ADS)

    Sun, Sean

    2010-03-01

    Bacterial cells utilize a ring-like organelle (the Z-ring) to accomplish cell division. The Z-ring actively generates a contractile force and influences cell wall growth. We will discuss a general model of bacterial morphogenesis where mechanical forces are coupled to the growth dynamics of the cell wall. The model suggests a physical mechanism that determines the shapes of bacteria cells. The roles of several bacterial cytoskeletal proteins and the Z-ring are discussed. We will also explore molecular mechanisms of force generation by the Z-ring and how cells can generate mechanical forces without molecular motors.

  19. Age class, longevity and growth rate relationships: protracted growth increases in old trees in the eastern United States.

    PubMed

    Johnson, Sarah E; Abrams, Marc D

    2009-11-01

    This study uses data from the International Tree-Ring Data Bank website and tree cores collected in the field to explore growth rate (basal area increment, BAI) relationships across age classes (from young to old) for eight tree species in the eastern US. These species represent a variety of ecological traits and include those in the genera Populus, Quercus, Pinus, Tsuga and Nyssa. We found that most trees in all age classes and species exhibit an increasing BAI throughout their lives. This is particularly unusual for trees in the older age classes that we expected to have declining growth in the later years, as predicted by physiological growth models. There exists an inverse relationship between growth rate and increasing age class. The oldest trees within each species have consistently slow growth throughout their lives, implying an inverse relationship between growth rate and longevity. Younger trees (< 60 years of age) within each species are consistently growing faster than the older trees when they are of the same age resulting from a higher proportion of fast-growing trees in these young age classes. Slow, but increasing, BAI in the oldest trees in recent decades is a continuation of their growth pattern established in previous centuries. The fact that they have not shown a decreasing growth rate in their old age contradicts physiological growth models and may be related to the stimulatory effects of global change phenomenon (climate and land-use history).

  20. Crystal Growth Rate Dispersion: A Predictor of Crystal Quality in Microgravity?

    NASA Technical Reports Server (NTRS)

    Kephart, Richard D.; Judge, Russell A.; Snell, Edward H.; vanderWoerd, Mark J.

    2003-01-01

    In theory macromolecular crystals grow through a process involving at least two transport phenomena of solute to the crystal surface: diffusion and convection. In absence of standard gravitational forces, the ratio of these two phenomena can change and explain why crystal growth in microgravity is different from that on Earth. Experimental evidence clearly shows, however, that crystal growth of various systems is not equally sensitive to reduction in gravitational forces, leading to quality improvement in microgravity for some crystals but not for others. We hypothesize that the differences in final crystal quality are related to crystal growth rate dispersion. If growth rate dispersion exists on Earth, decreases in microgravity, and coincides with crystal quality improvements then this dispersion is a predictor for crystal quality improvement. In order to test this hypothesis, we will measure growth rate dispersion both in microgravity and on Earth and will correlate the data with previously established data on crystal quality differences for the two environments. We present here the first crystal growth rate measurement data for three proteins (lysozyme, xylose isomerase and human recombinant insulin), collected on Earth, using hardware identical to the hardware to be used in microgravity and show how these data correlate with crystal quality improvements established in microgravity.

  1. Effects of root inoculation with bacteria on the growth, Cd uptake and bacterial communities associated with rape grown in Cd-contaminated soil.

    PubMed

    Chen, Zhao-jin; Sheng, Xia-fang; He, Lin-yan; Huang, Zhi; Zhang, Wen-hui

    2013-01-15

    Two metal-resistant and plant growth-promoting bacteria (Burkholderia sp. J62 and Pseudomonas thivervalensis Y-1-3-9) were evaluated for their impacts on plant growth promotion, Cd availability in soil, and Cd uptake in rape (Brassica napus) grown in different level (0, 50, and 100 mg kg(-1)) of Cd-contaminated soils. The impacts of the bacteria on the rape-associated bacterial community structures were also evaluated using denaturing gradient gel electrophoresis (DGGE) analysis of bacterial DNA extracted from the root interior and rhizosphere and bulk soil samples collected at day 60 after inoculation. Canonical correspondence analysis (CCA) was used to have a comparative analysis of DGGE profiles. Inoculation with live bacteria not only significantly increased root (ranging from 38% to 86%), stem (ranging from 27% to 65%) and leaf (ranging from 23% to 55%) dry weights and water-extractive Cd contents (ranging from 59% to 237%) in the rhizosphere soils of the rape but also significantly increased root (ranging from 10% to 61%), stem (ranging from 41% to 57%) and leaf (ranging from 46% to 68%) total Cd uptake of rape compared to the dead bacterial-inoculated controls. DGGE and sequence analyses showed that the bacteria could colonize the rhizosphere soils and root interiors of rape plants. DGGE-CCA also showed that root interior and rhizosphere and bulk soil community profiles from the live bacteria-inoculated rape were significantly different from those from the dead bacteria-inoculated rape respectively. These results suggested that the bacteria had the potential to promote the growth and Cd uptake of rape and to influence the development of the rape-associated bacterial community structures. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Growth rate dependence of boron incorporation into BxGa1-xAs layers

    NASA Astrophysics Data System (ADS)

    Detz, H.; MacFarland, D.; Zederbauer, T.; Lancaster, S.; Andrews, A. M.; Schrenk, W.; Strasser, G.

    2017-11-01

    This work provides a comprehensive study of the incorporation behavior of B in growing GaAs under molecular beam epitaxy conditions. Structural characterization of superlattices revealed a strong dependence of the BAs growth rate on the GaAs growth rate used. In general, higher GaAs growth rates lead to a higher apparent BAs growth rate, although lower B cell temperatures showed saturation behavior. Each B cell temperature requires a minimum GaAs growth rate for producing smooth films. The B incorporation into single thick layers was found to be reduced to 75-80% compared to superlattice structures. The p-type carrier densities in 1000 nm thick layers were found to be indirectly proportional to the B content. Furthermore, 500 nm thick BxGa1-xAs layers showed significantly lower carrier concentrations, indicating B segregation on the surface during growth of thicker layers.

  3. Development of bacterial colony phenotyping instrument using reflected scatter light

    NASA Astrophysics Data System (ADS)

    Doh, Iyll-Joon

    Bacterial rapid detection using optical scattering technology (BARDOT) involves in differentiating elastic scattering pattern of bacterial colony. This elastic light scatter technology has shown promising label-free classification rate. However, there is limited success in certain circumstances where either a growth media or a colony has higher opacity. This situation is due to the physical principles of the current BARDOT which mainly relies on optical patterns generated by transmitted signals. Incoming light is obstructed and cannot be transmitted through the dense bacterial colonies, such as Lactobacillus, Yeast, mold and soil bacteria. Moreover, a blood agar, widely used in clinical field, is an example of an opaque media that does not allow light to be transmitted through. Therefore, in this research, a newly designed reflection type scatterometer is presented. The reflection type scatterometer measures the elastic scattering pattern generated by reflected signal. A theoretical model to study the optical pattern characteristic with respect to bacterial colony morphology is presented. Both theoretical and experiment results show good agreement that the size of backward scattering pattern has positive correlation to colony aspect ratio, a colony elevation to diameter ratio. Four pathogenic bacteria on blood agar, Escherichia coli K12, Listeria innocua, Salmonella Typhimurium, and Staphylococcus aureus, are tested and measured with proposed instrument. The measured patterns are analyzed with a classification software, and high classification rate can be achieved.

  4. Soil Bacterial and Fungal Communities Show Distinct Recovery Patterns during Forest Ecosystem Restoration

    PubMed Central

    Li, Song; Avera, Bethany N.; Strahm, Brian D.; Badgley, Brian D.

    2017-01-01

    ABSTRACT Bacteria and fungi are important mediators of biogeochemical processes and play essential roles in the establishment of plant communities, which makes knowledge about their recovery after extreme disturbances valuable for understanding ecosystem development. However, broad ecological differences between bacterial and fungal organisms, such as growth rates, stress tolerance, and substrate utilization, suggest they could follow distinct trajectories and show contrasting dynamics during recovery. In this study, we analyzed both the intra-annual variability and decade-scale recovery of bacterial and fungal communities in a chronosequence of reclaimed mined soils using next-generation sequencing to quantify their abundance, richness, β-diversity, taxonomic composition, and cooccurrence network properties. Bacterial communities shifted gradually, with overlapping β-diversity patterns across chronosequence ages, while shifts in fungal communities were more distinct among different ages. In addition, the magnitude of intra-annual variability in bacterial β-diversity was comparable to the changes across decades of chronosequence age, while fungal communities changed minimally across months. Finally, the complexity of bacterial cooccurrence networks increased with chronosequence age, while fungal networks did not show clear age-related trends. We hypothesize that these contrasting dynamics of bacteria and fungi in the chronosequence result from (i) higher growth rates for bacteria, leading to higher intra-annual variability; (ii) higher tolerance to environmental changes for fungi; and (iii) stronger influence of vegetation on fungal communities. IMPORTANCE Both bacteria and fungi play essential roles in ecosystem functions, and information about their recovery after extreme disturbances is important for understanding whole-ecosystem development. Given their many differences in phenotype, phylogeny, and life history, a comparison of different bacterial and fungal

  5. Soil Bacterial and Fungal Communities Show Distinct Recovery Patterns during Forest Ecosystem Restoration.

    PubMed

    Sun, Shan; Li, Song; Avera, Bethany N; Strahm, Brian D; Badgley, Brian D

    2017-07-15

    Bacteria and fungi are important mediators of biogeochemical processes and play essential roles in the establishment of plant communities, which makes knowledge about their recovery after extreme disturbances valuable for understanding ecosystem development. However, broad ecological differences between bacterial and fungal organisms, such as growth rates, stress tolerance, and substrate utilization, suggest they could follow distinct trajectories and show contrasting dynamics during recovery. In this study, we analyzed both the intra-annual variability and decade-scale recovery of bacterial and fungal communities in a chronosequence of reclaimed mined soils using next-generation sequencing to quantify their abundance, richness, β-diversity, taxonomic composition, and cooccurrence network properties. Bacterial communities shifted gradually, with overlapping β-diversity patterns across chronosequence ages, while shifts in fungal communities were more distinct among different ages. In addition, the magnitude of intra-annual variability in bacterial β-diversity was comparable to the changes across decades of chronosequence age, while fungal communities changed minimally across months. Finally, the complexity of bacterial cooccurrence networks increased with chronosequence age, while fungal networks did not show clear age-related trends. We hypothesize that these contrasting dynamics of bacteria and fungi in the chronosequence result from (i) higher growth rates for bacteria, leading to higher intra-annual variability; (ii) higher tolerance to environmental changes for fungi; and (iii) stronger influence of vegetation on fungal communities. IMPORTANCE Both bacteria and fungi play essential roles in ecosystem functions, and information about their recovery after extreme disturbances is important for understanding whole-ecosystem development. Given their many differences in phenotype, phylogeny, and life history, a comparison of different bacterial and fungal recovery

  6. The impact of natural transformation on adaptation in spatially structured bacterial populations.

    PubMed

    Moradigaravand, Danesh; Engelstädter, Jan

    2014-06-20

    Recent studies have demonstrated that natural transformation and the formation of highly structured populations in bacteria are interconnected. In spite of growing evidence about this connection, little is known about the dynamics of natural transformation in spatially structured bacterial populations. In this work, we model the interdependency between the dynamics of the bacterial gene pool and those of environmental DNA in space to dissect the effect of transformation on adaptation. Our model reveals that even with only a single locus under consideration, transformation with a free DNA fragment pool results in complex adaptation dynamics that do not emerge in previous models focusing only on the gene shuffling effect of transformation at multiple loci. We demonstrate how spatial restriction on population growth and DNA diffusion in the environment affect the impact of transformation on adaptation. We found that in structured bacterial populations intermediate DNA diffusion rates predominantly cause transformation to impede adaptation by spreading deleterious alleles in the population. Overall, our model highlights distinctive evolutionary consequences of bacterial transformation in spatially restricted compared to planktonic bacterial populations.

  7. Quantification, Distribution, and Possible Source of Bacterial Biofilm in Mouse Automated Watering Systems

    PubMed Central

    Meier, Thomas R; Maute, Carrie J; Cadillac, Joan M; Lee, Ji Young; Righter, Daniel J; Hugunin, Kelly MS; Deininger, Rolf A; Dysko, Robert C

    2008-01-01

    The use of automated watering systems for providing drinking water to rodents has become commonplace in the research setting. Little is known regarding bacterial biofilm growth within the water piping attached to the racks (manifolds). The purposes of this project were to determine whether the mouse oral flora contributed to the aerobic bacterial component of the rack biofilm, quantify bacterial growth in rack manifolds over 6 mo, assess our rack sanitation practices, and quantify bacterial biofilm development within sections of the manifold. By using standard methods of bacterial identification, the aerobic oral flora of 8 strains and stocks of mice were determined on their arrival at our animal facility. Ten rack manifolds were sampled before, during, and after sanitation and monthly for 6 mo. Manifolds were evaluated for aerobic bacterial growth by culture on R2A and trypticase soy agar, in addition to bacterial ATP quantification by bioluminescence. In addition, 6 racks were sampled at 32 accessible sites for evaluation of biofilm distribution within the watering manifold. The identified aerobic bacteria in the oral flora were inconsistent with the bacteria from the manifold, suggesting that the mice do not contribute to the biofilm bacteria. Bacterial growth in manifolds increased while they were in service, with exponential growth of the biofilm from months 3 to 6 and a significant decrease after sanitization. Bacterial biofilm distribution was not significantly different across location quartiles of the rack manifold, but bacterial levels differed between the shelf pipe and connecting elbow pipes. PMID:18351724

  8. Quantification, distribution, and possible source of bacterial biofilm in mouse automated watering systems.

    PubMed

    Meier, Thomas R; Maute, Carrie J; Cadillac, Joan M; Lee, Ji Young; Righter, Daniel J; Hugunin, Kelly M S; Deininger, Rolf A; Dysko, Robert C

    2008-03-01

    The use of automated watering systems for providing drinking water to rodents has become commonplace in the research setting. Little is known regarding bacterial biofilm growth within the water piping attached to the racks (manifolds). The purposes of this project were to determine whether the mouse oral flora contributed to the aerobic bacterial component of the rack biofilm, quantify bacterial growth in rack manifolds over 6 mo, assess our rack sanitation practices, and quantify bacterial biofilm development within sections of the manifold. By using standard methods of bacterial identification, the aerobic oral flora of 8 strains and stocks of mice were determined on their arrival at our animal facility. Ten rack manifolds were sampled before, during, and after sanitation and monthly for 6 mo. Manifolds were evaluated for aerobic bacterial growth by culture on R2A and trypticase soy agar, in addition to bacterial ATP quantification by bioluminescence. In addition, 6 racks were sampled at 32 accessible sites for evaluation of biofilm distribution within the watering manifold. The identified aerobic bacteria in the oral flora were inconsistent with the bacteria from the manifold, suggesting that the mice do not contribute to the biofilm bacteria. Bacterial growth in manifolds increased while they were in service, with exponential growth of the biofilm from months 3 to 6 and a significant decrease after sanitization. Bacterial biofilm distribution was not significantly different across location quartiles of the rack manifold, but bacterial levels differed between the shelf pipe and connecting elbow pipes.

  9. Two-Way Selection for Growth Rate in the Common Carp (CYPRINUS CARPIO L.)

    PubMed Central

    Moav, R.; Wohlfarth, G.

    1976-01-01

    The domesticated European carp was subjected to a two-way selection for growth rate. Five generations of mass selection for faster growth rate did not yield any response, but subsequent selection between groups (families) resulted in considerable progress while maintaining a large genetic variance. Selection for slow growth rate yielded relatively strong response for the first three generations. Random-bred control lines suffered from strong inbreeding depression and when two lines were crossed, the F1 showed a high degree of heterosis. Selection was performed on pond-raised fish, but growth rate was also tested in cages. A strong pond-cage genetic interaction was found. A theoretical explanation was suggested involving overdominance for fast growth rate and amplification through competition of intra-group but not inter-group variation. PMID:1248737

  10. Long-term growth rates and effects of bleaching in Acropora hyacinthus

    NASA Astrophysics Data System (ADS)

    Gold, Zachary; Palumbi, Stephen R.

    2018-03-01

    Understanding the response of coral growth to natural variation in the environment, as well as to acute temperature stress under current and future climate change conditions, is critical to predicting the future health of coral reef ecosystems. As such, ecological surveys are beginning to focus on corals that live in high thermal stress environments to understand how future coral populations may adapt to climate change. We investigated the relationship between coral growth, thermal microhabitat, symbionts type, and thermal acclimatization of four species of the Acropora hyacinthus complex in back-reef lagoons in American Samoa. Coral growth was measured from August 2010 to April 2016 using horizontal planar area of coral colonies derived from photographs and in situ maximum width measurements. Despite marked intraspecific variation, we found that planar colony growth rates were significantly different among cryptic species. The highly heat tolerant A. hyacinthus variant "HE" increased in area an average of 2.9% month-1 (0.03 cm average mean radial extension month-1). By contrast, the three less tolerant species averaged 6.1% (0.07 cm average mean radial extension month-1). Planar growth rates were 40% higher on average in corals harboring Clade C versus Clade D symbiont types, although marked inter-colony variation in growth rendered this difference nonsignificant. Planar growth rates for all four species dropped to near zero following a 2015 bleaching event, independent of the visually estimated percent area of bleaching. Within 1 yr, growth rates recovered to previous levels, confirming previous studies that found sublethal effects of thermal stress on coral growth. Long-term studies of individual coral colonies provide an important tool to measure impacts of environmental change and allow integration of coral physiology, genetics, symbionts, and microclimate on reef growth patterns.

  11. Volatiles in Inter-Specific Bacterial Interactions

    PubMed Central

    Tyc, Olaf; Zweers, Hans; de Boer, Wietse; Garbeva, Paolina

    2015-01-01

    The importance of volatile organic compounds for functioning of microbes is receiving increased research attention. However, to date very little is known on how inter-specific bacterial interactions effect volatiles production as most studies have been focused on volatiles produced by monocultures of well-described bacterial genera. In this study we aimed to understand how inter-specific bacterial interactions affect the composition, production and activity of volatiles. Four phylogenetically different bacterial species namely: Chryseobacterium, Dyella, Janthinobacterium, and Tsukamurella were selected. Earlier results had shown that pairwise combinations of these bacteria induced antimicrobial activity in agar media whereas this was not the case for monocultures. In the current study, we examined if these observations were also reflected by the production of antimicrobial volatiles. Thus, the identity and antimicrobial activity of volatiles produced by the bacteria were determined in monoculture as well in pairwise combinations. Antimicrobial activity of the volatiles was assessed against fungal, oomycetal, and bacterial model organisms. Our results revealed that inter-specific bacterial interactions affected volatiles blend composition. Fungi and oomycetes showed high sensitivity to bacterial volatiles whereas the effect of volatiles on bacteria varied between no effects, growth inhibition to growth promotion depending on the volatile blend composition. In total 35 volatile compounds were detected most of which were sulfur-containing compounds. Two commonly produced sulfur-containing volatile compounds (dimethyl disulfide and dimethyl trisulfide) were tested for their effect on three target bacteria. Here, we display the importance of inter-specific interactions on bacterial volatiles production and their antimicrobial activities. PMID:26733959

  12. [Correlation between growth rate of corpus callosum and neuromotor development in preterm infants].

    PubMed

    Liu, Rui-Ke; Sun, Jie; Hu, Li-Yan; Liu, Fang

    2015-08-01

    To investigate the growth rate of corpus callosum by cranial ultrasound in very low birth weight preterm infants and to provide a reference for early evaluation and improvement of brain development. A total of 120 preterm infants under 33 weeks' gestation were recruited and divided into 26-29(+6) weeks group (n=64) and 30-32(+6) weeks group (n=56) according to the gestational age. The growth rate of corpus callosum was compared between the two groups. The correlation between the corpus callosum length and the cerebellar vermis length and the relationship of the growth rate of corpus callosum with clinical factors and the neuromotor development were analyzed. The growth rate of corpus callosum in preterm infants declined since 2 weeks after birth. Compared with the 30-32(+6) weeks group, the 26-29(+6) weeks group had a significantly lower growth rate of corpus callosum at 3-4 weeks after birth, at 5-6 weeks after birth, and from 7 weeks after birth to 40 weeks of corrected gestational age. There was a positive linear correlation between the corpus callosum length and the cerebellar vermis length. Small-for-gestational age infants had a low growth rate of corpus callosum at 2 weeks after birth. The 12 preterm infants with severe abnormal intellectual development had a lower growth rate of corpus callosum compared with the 108 preterm infants with non-severe abnormal intellectual development at 3-6 weeks after birth. The 5 preterm infants with severe abnormal motor development had a significantly lower growth rate of corpus callosum compared with the 115 preterm infants with non-severe abnormal motor development at 3-6 weeks after birth. The decline of growth rate of corpus callosum in preterm infants at 2-6 weeks after birth can increase the risk of severe abnormal neuromotor development.

  13. Delta L: An Apparatus for Measuring Macromolecule Crystal Growth Rates in Microgravity

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Strongly diffracting high quality macromolecule crystals of suitable volume are keenly sought for X-ray diffraction analysis so that high-resolution molecular structure data can be obtained. Such data is of tremendous value to medical research, agriculture and commercial biotechnology. In previous studies by many investigators microgravity has been reported in some instances to improve biological macromolecule X-ray crystal quality while little or no improvement was observed in other cases. A better understanding of processes effecting crystal quality improvement in microgravity will therefore be of great benefit in optimizing crystallization success in microgravity. In ground based research with the protein lysozyme we have previously shown that a population of crystals grown under the same solution conditions, exhibit a variation in X-ray diffraction properties (Judge et al., 1999). We have also observed that under the same solution conditions, individual crystals will grow at slightly different growth rates. This phenomenon is called growth rate dispersion. For small molecule materials growth rate dispersion has been directly related to crystal quality (Cunningham et al., 1991; Ristic et al., 1991). We therefore postulate that microgravity may act to improve crystal quality by reducing growth rate dispersion. If this is the case then as different, Materials exhibit different degrees of growth rate dispersion on the ground then growth rate dispersion could be used to screen which materials may benefit the most from microgravity crystallization. In order to assess this theory the Delta L hardware is being developed so that macromolecule crystal growth rates can be measured in microgravity. Crystal growth rate is defined as the change or delta in crystal size (defined as a characteristic length, L) over time; hence the name of the hardware. Delta L will consist of an optics, a fluids, and a data acquisition sub-assemblies. The optics assembly will consist of a

  14. Effect of compression rate on ice VI crystal growth using dDAC

    NASA Astrophysics Data System (ADS)

    Lee, Yun-Hee; Kim, Yong-Jae; Lee, Sooheyong; Cho, Yong Chan; Lee, Geun Woo; Frontier in Extreme Physics Team

    It is well known that static and dynamic pressure give different results in many aspects. Understanding of crystal growth under such different pressure condition is one of the crucial issues for the formation of materials in the earth and planets. To figure out the crystal growth under the different pressure condition, we should control compression rate from static to dynamic pressurization. Here, we use a dynamic diamond anvil cell (dDAC) technique to study the effect of compression rate of ice VI crystal growth. Using dDAC with high speed camera, we monitored growth of a single crystal ice VI. A rounded ice crystal with rough surface was selected in the phase boundary of water and ice VI and then, its repetitive growth and melting has been carried out by dynamic operation of the pressure cell. The roughened crystal showed interesting growth transition with compression rate from three dimensional to two dimensional growth as well as faceting process. We will discuss possible mechanism of the growth change by compression rate with diffusion mechanism of water. This research was supported by the Converging Research Center Program through the Ministry of Science, ICT and Future Planning, Korea (NRF-2014M1A7A1A01030128).

  15. Cell Size and Growth Rate Are Modulated by TORC2-Dependent Signals.

    PubMed

    Lucena, Rafael; Alcaide-Gavilán, Maria; Schubert, Katherine; He, Maybo; Domnauer, Matthew G; Marquer, Catherine; Klose, Christian; Surma, Michal A; Kellogg, Douglas R

    2018-01-22

    The size of all cells, from bacteria to vertebrates, is proportional to the growth rate set by nutrient availability, but the underlying mechanisms are unknown. Here, we show that nutrients modulate cell size and growth rate via the TORC2 signaling network in budding yeast. An important function of the TORC2 network is to modulate synthesis of ceramide lipids, which play roles in signaling. TORC2-dependent control of ceramide signaling strongly influences both cell size and growth rate. Thus, cells that cannot make ceramides fail to modulate their growth rate or size in response to changes in nutrients. PP2A associated with the Rts1 regulatory subunit (PP2A Rts1 ) is embedded in a feedback loop that controls TORC2 signaling and helps set the level of TORC2 signaling to match nutrient availability. Together, the data suggest a model in which growth rate and cell size are mechanistically linked by ceramide-dependent signals arising from the TORC2 network. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Antibiotic-Induced Anomalous Statistics of Collective Bacterial Swarming

    NASA Astrophysics Data System (ADS)

    Benisty, Sivan; Ben-Jacob, Eshel; Ariel, Gil; Be'er, Avraham

    2015-01-01

    Under sublethal antibiotics concentrations, the statistics of collectively swarming Bacillus subtilis transitions from normal to anomalous, with a heavy-tailed speed distribution and a two-step temporal correlation of velocities. The transition is due to changes in the properties of the bacterial motion and the formation of a motility-defective subpopulation that self-segregates into regions. As a result, both the colonial expansion and the growth rate are not affected by antibiotics. This phenomenon suggests a new strategy bacteria employ to fight antibiotic stress.

  17. Adoption of multivariate copulae in prognostication of economic growth by means of interest rate

    NASA Astrophysics Data System (ADS)

    Saputra, Dewi Tanasia; Indratno, Sapto Wahyu, Dr.

    2015-12-01

    Inflation, at a healthy rate, is a sign of growing economy. Nonetheless, when inflation rate grows uncontrollably, it will negatively influence economic growth. Many tackle this problem by increasing interest rate to help protecting the value of money which is detained by inflation. There are few, however, who study the effects of interest rate in economic growth. The main purposes of this paper are to find how the change of interest rate affects economic growth and to use the relationship in prognostication of economic growth. By using expenditure model, a linear relationship between economic growth and interest rate is developed. The result is then used for prediction by normal copula and Vine Archimedean copula. It is shown that increasing interest rate to tackle inflation is a poor solution. Whereas implementation of copula in predicting economic growth yields an accurate result, with not more than 0.5% difference.

  18. Correcting speleothem oxygen isotopic variations for growth-rate controlled kinetic fractionation effects

    NASA Astrophysics Data System (ADS)

    Stoll, Heather; Moreno, Ana; Cacho, Isabel; Mendez Vicence, Ana; Gonzalez Lemos, Saul; Pirla Casasayas, Gemma; Cheng, Hai; Wang, Xianfeng; Edwards, R. Lawrence

    2015-04-01

    The oxygen isotopic signature may be the most widely used climate indicator in stalagmites, but recent experimental and theoretical studies indicate the potential for kinetic fractionation effects which may be significant, especially in situations where the primary signal from rainfall isotopic composition and cave temperature is limited to a few permil. Here we use a natural set of stalagmites to illustrate the magnitude of such effects and the potential for deconvolving kinetic signals from the primary temperature and rainfall signals. We compare isotopic records from 6 coeval stalagmites covering the interval 140 to 70 ka, from two proximal caves in NW Spain which experienced the same primary variations in temperature and rainfall d18O, but exhibit a large range in growth rates and temporal trends in growth rate. Stalagmites growing at faster rates near 50 microns/year have oxygen isotopic ratios more than 1 permil more negative than coeval stalagmites with very slow (5 micron/year) growth rates. Because growth rate variations also occur over time within any given stalagmite, the measured oxygen isotopic time series for a given stalagmite includes both climatic and kinetic components. Removal of the kinetic component of variation in each stalagmite, based on the dependence of the kinetic component on growth rate, is effective at distilling a common temporal evolution among the oxygen isotopic records of the multiple stalagmites. However, this approach is limited by the quality of the age model. For time periods characterized by very slow growth and long durations between dates, the presence of crypto-hiatus may result in average growth rates which underestimate the instantaneous speleothem deposition rates and which therefore underestimate the magnitude of kinetic effects. We compare the composite corrected oxygen isotopic record with other records of the timing of glacial inception in the North Atlantic realm.

  19. Coordinated Changes in Mutation and Growth Rates Induced by Genome Reduction.

    PubMed

    Nishimura, Issei; Kurokawa, Masaomi; Liu, Liu; Ying, Bei-Wen

    2017-07-05

    Genome size is determined during evolution, but it can also be altered by genetic engineering in laboratories. The systematic characterization of reduced genomes provides valuable insights into the cellular properties that are quantitatively described by the global parameters related to the dynamics of growth and mutation. In the present study, we analyzed a small collection of W3110 Escherichia coli derivatives containing either the wild-type genome or reduced genomes of various lengths to examine whether the mutation rate, a global parameter representing genomic plasticity, was affected by genome reduction. We found that the mutation rates of these cells increased with genome reduction. The correlation between genome length and mutation rate, which has been reported for the evolution of bacteria, was also identified, intriguingly, for genome reduction. Gene function enrichment analysis indicated that the deletion of many of the genes encoding membrane and transport proteins play a role in the mutation rate changes mediated by genome reduction. Furthermore, the increase in the mutation rate with genome reduction was highly associated with a decrease in the growth rate in a nutrition-dependent manner; thus, poorer media showed a larger change that was of higher significance. This negative correlation was strongly supported by experimental evidence that the serial transfer of the reduced genome improved the growth rate and reduced the mutation rate to a large extent. Taken together, the global parameters corresponding to the genome, growth, and mutation showed a coordinated relationship, which might be an essential working principle for balancing the cellular dynamics appropriate to the environment. IMPORTANCE Genome reduction is a powerful approach for investigating the fundamental rules for living systems. Whether genetically disturbed genomes have any specific properties that are different from or similar to those of natively evolved genomes has been under

  20. Interface coupling and growth rate measurements in multilayer Rayleigh-Taylor instabilities

    NASA Astrophysics Data System (ADS)

    Adkins, Raymond; Shelton, Emily M.; Renoult, Marie-Charlotte; Carles, Pierre; Rosenblatt, Charles

    2017-06-01

    Magnetic levitation was used to measure the growth rate Σ vs wave vector k of a Rayleigh-Taylor instability in a three-layer fluid system, a crucial step in the elucidation of interface coupling in finite-layer instabilities. For a three-layer (low-high-low density) system, the unstable mode growth rate decreases as both the height h of the middle layer and k are reduced, consistent with an interface coupling ∝e-k h . The ratios of the three-layer to the established two-layer growth rates are in good agreement with those of classic linear stability theory, which has long resisted verification in that configuration.

  1. [Specific growth rate and the rate of energy metabolism in the ontogenesis of axolotl, Ambystoma mexicanum (Amphibia: Ambystomatidae)].

    PubMed

    Vladimirova, I G; Kleĭmenov, S Iu; Alekseeva, T A; Radzinskaia, L I

    2003-01-01

    Concordant changes in the rate of energy metabolism and specific growth rate of axolotls have been revealed. Several periods of ontogeny are distinguished, which differ in the ratio of energy metabolism to body weight and, therefore, are described by different allometric equations. It is suggested that the specific growth rate of an animal determines the type of dependence of energy metabolism on body weight.

  2. Postnatal growth rates covary weakly with embryonic development rates and do not explain adult mortality probability among songbirds on four continents.

    PubMed

    Martin, Thomas E; Oteyza, Juan C; Mitchell, Adam E; Potticary, Ahva L; Lloyd, Penn

    2015-03-01

    Growth and development rates may result from genetic programming of intrinsic processes that yield correlated rates between life stages. These intrinsic rates are thought to affect adult mortality probability and longevity. However, if proximate extrinsic factors (e.g., temperature, food) influence development rates differently between stages and yield low covariance between stages, then development rates may not explain adult mortality probability. We examined these issues based on study of 90 songbird species on four continents to capture the diverse life-history strategies observed across geographic space. The length of the embryonic period explained little variation (ca. 13%) in nestling periods and growth rates among species. This low covariance suggests that the relative importance of intrinsic and extrinsic influences on growth and development rates differs between stages. Consequently, nestling period durations and nestling growth rates were not related to annual adult mortality probability among diverse songbird species within or among sites. The absence of a clear effect of faster growth on adult mortality when examined in an evolutionary framework across species may indicate that species that evolve faster growth also evolve physiological mechanisms for ameliorating costs on adult mortality. Instead, adult mortality rates of species in the wild may be determined more strongly by extrinsic environmental causes.

  3. Postnatal growth rates covary weakly with embryonic development rates and do not explain adult mortality probability among songbirds on four continents

    USGS Publications Warehouse

    Martin, Thomas E.; Oteyza, Juan C.; Mitchell, Adam E.; Potticary, Ahva L.; Lloyd, P.

    2016-01-01

    Growth and development rates may result from genetic programming of intrinsic processes that yield correlated rates between life stages. These intrinsic rates are thought to affect adult mortality probability and longevity. However, if proximate extrinsic factors (e.g., temperature, food) influence development rates differently between stages and yield low covariance between stages, then development rates may not explain adult mortality probability. We examined these issues based on study of 90 songbird species on four continents to capture the diverse life-history strategies observed across geographic space. The length of the embryonic period explained little variation (ca. 13%) in nestling periods and growth rates among species. This low covariance suggests that the relative importance of intrinsic and extrinsic influences on growth and development rates differs between stages. Consequently, nestling period durations and nestling growth rates were not related to annual adult mortality probability among diverse songbird species within or among sites. The absence of a clear effect of faster growth on adult mortality when examined in an evolutionary framework across species may indicate that species that evolve faster growth also evolve physiological mechanisms for ameliorating costs on adult mortality. Instead, adult mortality rates of species in the wild may be determined more strongly by extrinsic environmental causes.

  4. Ergodicity, hidden bias and the growth rate gain

    NASA Astrophysics Data System (ADS)

    Rochman, Nash D.; Popescu, Dan M.; Sun, Sean X.

    2018-05-01

    Many single-cell observables are highly heterogeneous. A part of this heterogeneity stems from age-related phenomena: the fact that there is a nonuniform distribution of cells with different ages. This has led to a renewed interest in analytic methodologies including use of the ‘von Foerster equation’ for predicting population growth and cell age distributions. Here we discuss how some of the most popular implementations of this machinery assume a strong condition on the ergodicity of the cell cycle duration ensemble. We show that one common definition for the term ergodicity, ‘a single individual observed over many generations recapitulates the behavior of the entire ensemble’ is implied by the other, ‘the probability of observing any state is conserved across time and over all individuals’ in an ensemble with a fixed number of individuals but that this is not true when the ensemble is growing. We further explore the impact of generational correlations between cell cycle durations on the population growth rate. Finally, we explore the ‘growth rate gain’—the phenomenon that variations in the cell cycle duration leads to an improved population-level growth rate—in this context. We highlight that, fundamentally, this effect is due to asymmetric division.

  5. The effects of population density on juvenile growth rate in white-tailed deer.

    PubMed

    Barr, Brannon; Wolverton, Steve

    2014-10-01

    Animal body size is driven by habitat quality, food availability, and nutrition. Adult size can relate to birth weight, to length of the ontogenetic growth period, and/or to the rate of growth. Data requirements are high for studying these growth mechanisms, but large datasets exist for some game species. In North America, large harvest datasets exist for white-tailed deer (Odocoileus virginianus), but such data are collected under a variety of conditions and are generally dismissed for ecological research beyond local population and habitat management. We contend that such data are useful for studying the ecology of white-tailed deer growth and body size when analyzed at ordinal scale. In this paper, we test the response of growth rate to food availability by fitting a logarithmic equation that estimates growth rate only to harvest data from Fort Hood, Texas, and track changes in growth rate over time. Results of this ordinal scale model are compared to previously published models that include additional parameters, such as birth weight and adult weight. It is shown that body size responds to food availability by variation in growth rate. Models that estimate multiple parameters may not work with harvest data because they are prone to error, which renders estimates from complex models too variable to detect interannual changes in growth rate that this ordinal scale model captures. This model can be applied to harvest data, from which inferences about factors that influence animal growth and body size (e.g., habitat quality and nutritional availability) can be drawn.

  6. The Effects of Population Density on Juvenile Growth Rate in White-Tailed Deer

    NASA Astrophysics Data System (ADS)

    Barr, Brannon; Wolverton, Steve

    2014-10-01

    Animal body size is driven by habitat quality, food availability, and nutrition. Adult size can relate to birth weight, to length of the ontogenetic growth period, and/or to the rate of growth. Data requirements are high for studying these growth mechanisms, but large datasets exist for some game species. In North America, large harvest datasets exist for white-tailed deer ( Odocoileus virginianus), but such data are collected under a variety of conditions and are generally dismissed for ecological research beyond local population and habitat management. We contend that such data are useful for studying the ecology of white-tailed deer growth and body size when analyzed at ordinal scale. In this paper, we test the response of growth rate to food availability by fitting a logarithmic equation that estimates growth rate only to harvest data from Fort Hood, Texas, and track changes in growth rate over time. Results of this ordinal scale model are compared to previously published models that include additional parameters, such as birth weight and adult weight. It is shown that body size responds to food availability by variation in growth rate. Models that estimate multiple parameters may not work with harvest data because they are prone to error, which renders estimates from complex models too variable to detect interannual changes in growth rate that this ordinal scale model captures. This model can be applied to harvest data, from which inferences about factors that influence animal growth and body size (e.g., habitat quality and nutritional availability) can be drawn.

  7. Scaling laws in the dynamics of crime growth rate

    NASA Astrophysics Data System (ADS)

    Alves, Luiz G. A.; Ribeiro, Haroldo V.; Mendes, Renio S.

    2013-06-01

    The increasing number of crimes in areas with large concentrations of people have made cities one of the main sources of violence. Understanding characteristics of how crime rate expands and its relations with the cities size goes beyond an academic question, being a central issue for contemporary society. Here, we characterize and analyze quantitative aspects of murders in the period from 1980 to 2009 in Brazilian cities. We find that the distribution of the annual, biannual and triannual logarithmic homicide growth rates exhibit the same functional form for distinct scales, that is, a scale invariant behavior. We also identify asymptotic power-law decay relations between the standard deviations of these three growth rates and the initial size. Further, we discuss similarities with complex organizations.

  8. The Differential Effects of Anesthetics on Bacterial Behaviors

    PubMed Central

    Chamberlain, Matthew; Koutsogiannaki, Sophia; Schaefers, Matthew; Babazada, Hasan; Liu, Renyu; Yuki, Koichi

    2017-01-01

    Volatile anesthetics have been in clinical use for a long period of time and are considered to be promiscuous by presumably interacting with several ion channels in the central nervous system to produce anesthesia. Because ion channels and their existing evolutionary analogues, ion transporters, are very important in various organisms, it is possible that volatile anesthetics may affect some bacteria. In this study, we hypothesized that volatile anesthetics could affect bacterial behaviors. We evaluated the impact of anesthetics on bacterial growth, motility (swimming and gliding) and biofilm formation of four common bacterial pathogens in vitro. We found that commonly used volatile anesthetics isoflurane and sevoflurane affected bacterial motility and biofilm formation without any effect on growth of the common bacterial pathogens studied here. Using available Escherichia coli gene deletion mutants of ion transporters and in silico molecular docking, we suggested that these altered behaviors might be at least partly via the interaction of volatile anesthetics with ion transporters. PMID:28099463

  9. The effect of growth rate on pyrazinamide activity in Mycobacterium tuberculosis - insights for early bactericidal activity?

    PubMed

    Pullan, Steven T; Allnutt, Jon C; Devine, Rebecca; Hatch, Kim A; Jeeves, Rose E; Hendon-Dunn, Charlotte L; Marsh, Philip D; Bacon, Joanna

    2016-05-17

    Pyrazinamide (PZA) plays an essential part in the shortened six-month tuberculosis (TB) treatment course due to its activity against slow-growing and non-replicating organisms. We tested whether PZA preferentially targets slow growing cells of Mycobacterium tuberculosis that could be representative of bacteria that remain after the initial kill with isoniazid (INH), by observing the response of either slow growing or fast growing bacilli to differing concentrations of PZA. M. tuberculosis H37Rv was grown in continuous culture at either a constant fast growth rate (Mean Generation Time (MGT) of 23.1 h) or slow growth rate (69.3 h MGT) at a controlled dissolved oxygen tension of 10 % and a controlled acidity at pH 6.3 ± 0.1. Cultures were exposed to step-wise increases in the concentration of PZA (25 to 500 μgml(-1)) every two MGTs, and bacterial survival was measured. PZA-induced global gene expression was explored for each increase in PZA-concentration, using DNA microarray. At a constant pH 6.3, actively dividing mycobacteria were susceptible to PZA, with similar responses to increasing concentrations of PZA at both growth rates. Three distinct phases of drug response could be distingished for both slow growing (69.3 h MGT) and fast growing (23.1 h MGT) bacilli. A bacteriostatic phase at a low concentration of PZA was followed by a recovery period in which the culture adapted to the presence of PZA and bacteria were actively dividing in steady-state. In contrast, there was a rapid loss of viability at bactericidal concentrations. There was a notable delay in the onset of the recovery period in quickly dividing cells compared with those dividing more slowly. Fast growers and slow growers adapted to PZA-exposure via very similar mechanisms; through reduced gene expression of tRNA, 50S, and 30S ribosomal proteins. PZA had an equivalent level of activity against fast growing and slow growing M. tuberculosis. At both growth rates drug-tolerance to sub

  10. Aerobic cyanide degradation by bacterial isolates from cassava factory wastewater

    PubMed Central

    Kandasamy, Sujatha; Dananjeyan, Balachandar; Krishnamurthy, Kumar; Benckiser, Gero

    2015-01-01

    Ten bacterial strains that utilize cyanide (CN) as a nitrogen source were isolated from cassava factory wastewater after enrichment in a liquid media containing sodium cyanide (1 mM) and glucose (0.2% w/v). The strains could tolerate and grow in cyanide concentrations of up to 5 mM. Increased cyanide levels in the media caused an extension of lag phase in the bacterial growth indicating that they need some period of acclimatisation. The rate of cyanide removal by the strains depends on the initial cyanide and glucose concentrations. When initial cyanide and glucose concentrations were increased up to 5 mM, cyanide removal rate increased up to 63 and 61 per cent by Bacillus pumilus and Pseudomonas putida. Metabolic products such as ammonia and formate were detected in culture supernatants, suggesting a direct hydrolytic pathway without an intermediate formamide. The study clearly demonstrates the potential of aerobic treatment with cyanide degrading bacteria for cyanide removal in cassava factory wastewaters. PMID:26413045

  11. Aerobic cyanide degradation by bacterial isolates from cassava factory wastewater.

    PubMed

    Kandasamy, Sujatha; Dananjeyan, Balachandar; Krishnamurthy, Kumar; Benckiser, Gero

    2015-01-01

    Ten bacterial strains that utilize cyanide (CN) as a nitrogen source were isolated from cassava factory wastewater after enrichment in a liquid media containing sodium cyanide (1 mM) and glucose (0.2% w/v). The strains could tolerate and grow in cyanide concentrations of up to 5 mM. Increased cyanide levels in the media caused an extension of lag phase in the bacterial growth indicating that they need some period of acclimatisation. The rate of cyanide removal by the strains depends on the initial cyanide and glucose concentrations. When initial cyanide and glucose concentrations were increased up to 5 mM, cyanide removal rate increased up to 63 and 61 per cent by Bacillus pumilus and Pseudomonas putida. Metabolic products such as ammonia and formate were detected in culture supernatants, suggesting a direct hydrolytic pathway without an intermediate formamide. The study clearly demonstrates the potential of aerobic treatment with cyanide degrading bacteria for cyanide removal in cassava factory wastewaters.

  12. Single-Cell Microfluidics to Study the Effects of Genome Deletion on Bacterial Growth Behavior.

    PubMed

    Yuan, Xiaofei; Couto, Jillian M; Glidle, Andrew; Song, Yanqing; Sloan, William; Yin, Huabing

    2017-12-15

    By directly monitoring single cell growth in a microfluidic platform, we interrogated genome-deletion effects in Escherichia coli strains. We compared the growth dynamics of a wild type strain with a clean genome strain, and their derived mutants at the single-cell level. A decreased average growth rate and extended average lag time were found for the clean genome strain, compared to those of the wild type strain. Direct correlation between the growth rate and lag time of individual cells showed that the clean genome population was more heterogeneous. Cell culturability (the ratio of growing cells to the sum of growing and nongrowing cells) of the clean genome population was also lower. Interestingly, after the random mutations induced by a glucose starvation treatment, for the clean genome population mutants that had survived the competition of chemostat culture, each parameter markedly improved (i.e., the average growth rate and cell culturability increased, and the lag time and heterogeneity decreased). However, this effect was not seen in the wild type strain; the wild type mutants cultured in a chemostat retained a high diversity of growth phenotypes. These results suggest that quasi-essential genes that were deleted in the clean genome might be required to retain a diversity of growth characteristics at the individual cell level under environmental stress. These observations highlight that single-cell microfluidics can reveal subtle individual cellular responses, enabling in-depth understanding of the population.

  13. Bacterial impregnation of mineral fertilizers improves yield and nutrient use efficiency of wheat.

    PubMed

    Ahmad, Shakeel; Imran, Muhammad; Hussain, Sabir; Mahmood, Sajid; Hussain, Azhar; Hasnain, Muhammad

    2017-08-01

    The fertilizer use efficiency (FUE) of agricultural crops is generally low, which results in poor crop yields and low economic benefits to farmers. Among the various approaches used to enhance FUE, impregnation of mineral fertilizers with plant growth-promoting bacteria (PGPB) is attracting worldwide attention. The present study was aimed to improve growth, yield and nutrient use efficiency of wheat by bacterially impregnated mineral fertilizers. Results of the pot study revealed that impregnation of diammonium phosphate (DAP) and urea with PGPB was helpful in enhancing the growth, yield, photosynthetic rate, nitrogen use efficiency (NUE) and phosphorus use efficiency (PUE) of wheat. However, the plants treated with F8 type DAP and urea, prepared by coating a slurry of PGPB (Bacillus sp. strain KAP6) and compost on DAP and urea granules at the rate of 2.0 g 100 g -1 fertilizer, produced better results than other fertilizer treatments. In this treatment, growth parameters including plant height, root length, straw yield and root biomass significantly (P ≤ 0.05) increased from 58.8 to 70.0 cm, 41.2 to 50.0 cm, 19.6 to 24.2 g per pot and 1.8 to 2.2 g per pot, respectively. The same treatment improved grain yield of wheat by 20% compared to unimpregnated DAP and urea (F0). Likewise, the maximum increase in photosynthetic rate, grain NP content, grain NP uptake, NUE and PUE of wheat were also recorded with F8 treatment. The results suggest that the application of bacterially impregnated DAP and urea is highly effective for improving growth, yield and FUE of wheat. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Canopy disturbance intervals, early growth rates, and canopy accession trends of oak-dominated old-growth forests

    Treesearch

    James S. Rentch; Ray R., Jr. Hicks

    2003-01-01

    Using a radial growth averaging technique, changes in growth rates of overstory oaks were used to quantify canopy disturbance events at five old-growth sites. On average, at least one canopy disturbance occurred on these sites every 3 years; larger multiple-tree disturbances occurred every 17 years. Although there was some variation by site and by historical period,...

  15. Size-dependent standard deviation for growth rates: Empirical results and theoretical modeling

    NASA Astrophysics Data System (ADS)

    Podobnik, Boris; Horvatic, Davor; Pammolli, Fabio; Wang, Fengzhong; Stanley, H. Eugene; Grosse, I.

    2008-05-01

    We study annual logarithmic growth rates R of various economic variables such as exports, imports, and foreign debt. For each of these variables we find that the distributions of R can be approximated by double exponential (Laplace) distributions in the central parts and power-law distributions in the tails. For each of these variables we further find a power-law dependence of the standard deviation σ(R) on the average size of the economic variable with a scaling exponent surprisingly close to that found for the gross domestic product (GDP) [Phys. Rev. Lett. 81, 3275 (1998)]. By analyzing annual logarithmic growth rates R of wages of 161 different occupations, we find a power-law dependence of the standard deviation σ(R) on the average value of the wages with a scaling exponent β≈0.14 close to those found for the growth of exports, imports, debt, and the growth of the GDP. In contrast to these findings, we observe for payroll data collected from 50 states of the USA that the standard deviation σ(R) of the annual logarithmic growth rate R increases monotonically with the average value of payroll. However, also in this case we observe a power-law dependence of σ(R) on the average payroll with a scaling exponent β≈-0.08 . Based on these observations we propose a stochastic process for multiple cross-correlated variables where for each variable (i) the distribution of logarithmic growth rates decays exponentially in the central part, (ii) the distribution of the logarithmic growth rate decays algebraically in the far tails, and (iii) the standard deviation of the logarithmic growth rate depends algebraically on the average size of the stochastic variable.

  16. Size-dependent standard deviation for growth rates: empirical results and theoretical modeling.

    PubMed

    Podobnik, Boris; Horvatic, Davor; Pammolli, Fabio; Wang, Fengzhong; Stanley, H Eugene; Grosse, I

    2008-05-01

    We study annual logarithmic growth rates R of various economic variables such as exports, imports, and foreign debt. For each of these variables we find that the distributions of R can be approximated by double exponential (Laplace) distributions in the central parts and power-law distributions in the tails. For each of these variables we further find a power-law dependence of the standard deviation sigma(R) on the average size of the economic variable with a scaling exponent surprisingly close to that found for the gross domestic product (GDP) [Phys. Rev. Lett. 81, 3275 (1998)]. By analyzing annual logarithmic growth rates R of wages of 161 different occupations, we find a power-law dependence of the standard deviation sigma(R) on the average value of the wages with a scaling exponent beta approximately 0.14 close to those found for the growth of exports, imports, debt, and the growth of the GDP. In contrast to these findings, we observe for payroll data collected from 50 states of the USA that the standard deviation sigma(R) of the annual logarithmic growth rate R increases monotonically with the average value of payroll. However, also in this case we observe a power-law dependence of sigma(R) on the average payroll with a scaling exponent beta approximately -0.08 . Based on these observations we propose a stochastic process for multiple cross-correlated variables where for each variable (i) the distribution of logarithmic growth rates decays exponentially in the central part, (ii) the distribution of the logarithmic growth rate decays algebraically in the far tails, and (iii) the standard deviation of the logarithmic growth rate depends algebraically on the average size of the stochastic variable.

  17. Malaria infection and feather growth rate predict reproductive success in house martins.

    PubMed

    Marzal, Alfonso; Reviriego, Maribel; Hermosell, Ignacio G; Balbontín, Javier; Bensch, Staffan; Relinque, Carmen; Rodríguez, Laura; Garcia-Longoria, Luz; de Lope, Florentino

    2013-04-01

    Carry-over effects take place when events occurring in one season influence individual performance in a subsequent season. Blood parasites (e.g. Plasmodium and Haemoproteus) have strong negative effects on the body condition of their hosts and could slow the rate of feather growth on the wintering grounds. In turn, these winter moult costs could reduce reproductive success in the following breeding season. In house martins Delichon urbica captured and studied at a breeding site in Europe, we used ptilochronology to measure growth rate of tail feathers moulted on the winter range in Africa, and assessed infection status of blood parasites transmitted on the wintering grounds. We found a negative association between haemosporidian parasite infection status and inferred growth rate of tail feathers. A low feather growth rate and blood parasite infections were related to a delay in laying date in their European breeding quarters. In addition, clutch size and the number of fledglings were negatively related to a delayed laying date and blood parasite infection. These results stress the importance of blood parasites and feather growth rate as potentially mechanisms driving carry-over effects to explain fitness differences in wild populations of migratory birds.

  18. Impairment of the Bacterial Biofilm Stability by Triclosan

    PubMed Central

    Hubas, Cédric; Behrens, Sebastian; Ricciardi, Francesco; Paterson, David M.

    2012-01-01

    The accumulation of the widely-used antibacterial and antifungal compound triclosan (TCS) in freshwaters raises concerns about the impact of this harmful chemical on the biofilms that are the dominant life style of microorganisms in aquatic systems. However, investigations to-date rarely go beyond effects at the cellular, physiological or morphological level. The present paper focuses on bacterial biofilms addressing the possible chemical impairment of their functionality, while also examining their substratum stabilization potential as one example of an important ecosystem service. The development of a bacterial assemblage of natural composition – isolated from sediments of the Eden Estuary (Scotland, UK) – on non-cohesive glass beads (<63 µm) and exposed to a range of triclosan concentrations (control, 2 – 100 µg L−1) was monitored over time by Magnetic Particle Induction (MagPI). In parallel, bacterial cell numbers, division rate, community composition (DGGE) and EPS (extracellular polymeric substances: carbohydrates and proteins) secretion were determined. While the triclosan exposure did not prevent bacterial settlement, biofilm development was increasingly inhibited by increasing TCS levels. The surface binding capacity (MagPI) of the assemblages was positively correlated to the microbial secreted EPS matrix. The EPS concentrations and composition (quantity and quality) were closely linked to bacterial growth, which was affected by enhanced TCS exposure. Furthermore, TCS induced significant changes in bacterial community composition as well as a significant decrease in bacterial diversity. The impairment of the stabilization potential of bacterial biofilm under even low, environmentally relevant TCS levels is of concern since the resistance of sediments to erosive forces has large implications for the dynamics of sediments and associated pollutant dispersal. In addition, the surface adhesive capacity of the biofilm acts as a sensitive measure of

  19. Measurement of Microscopic Growth Rates in Float-Zone Silicon Crystals

    NASA Technical Reports Server (NTRS)

    Dold, P.; Schweizer, M.; Benz, K. W.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Time dependent convective flows during crystal growth of doped semiconductors lead to fluctuations of the composition, so called dopant striations. In general, it is difficult to decide which is the main mechanism for the generation of these striations, it might be either the fluctuation of the concentration field in the melt and the extent of the solute boundary layer ahead of the solid-liquid interface or a variation of the growth velocity. Direct access to the concentration field is rather complicated to achieve, especially considering the high process temperature and the chemical activity of liquid silicon. The contribution of growth rate fluctuations to the formation of compositional fluctuations can be determined by measuring microscopic growth rates. The classical method of current pulses requires electrical feed-throughs and good electrical contacts, both are critical issues for the growth of high purity silicon crystals. Using a radiation based heating system, the heating power can be modulated very fast and effectively. We added to the normal heater power a sinusoidal off-set in the frequency range of 1 to 10 Hz, generating a narrow spaced weak rippling in the grown crystals which are superposed to the dopant striations caused by natural and by thermocapillary convection. The pulling speed was varied between 1 and 4mm/min. The microscope images of etched crystals slices have been analyzed by peak-search algorithms (measuring the spacing between each artificially induced marker) and by FFT. Performing growth experiments under a time-dependent flow regime, fluctuations of the microscopic growth velocity of Delta(v)/v(sub average) up to 50% have been measured. Damping the time-dependent convection by the use of an axial, static magnetic field of 500mT, the microscopic growth rate became constant within the resolution limit of this method. The results will be discussed using analytical methods for the calculation of microscopic growth velocity and by

  20. Growth rate in the dynamical dark energy models.

    PubMed

    Avsajanishvili, Olga; Arkhipova, Natalia A; Samushia, Lado; Kahniashvili, Tina

    Dark energy models with a slowly rolling cosmological scalar field provide a popular alternative to the standard, time-independent cosmological constant model. We study the simultaneous evolution of background expansion and growth in the scalar field model with the Ratra-Peebles self-interaction potential. We use recent measurements of the linear growth rate and the baryon acoustic oscillation peak positions to constrain the model parameter [Formula: see text] that describes the steepness of the scalar field potential.

  1. Vitamin B12 Production by Marine Bacteria in Organic Substrate Limited, Slow Growth Conditions

    NASA Astrophysics Data System (ADS)

    Villegas-Mendoza, J.; Cajal-Medrano, R.; Maske, H.

    2016-02-01

    The conditions and processes governing the B12 vitamin dissemination through planktonic organisms are little understood. It is generally assumed that bacteria produce B12 vitamin and the whole auxotrophic plankton community consumes it. We used natural marine bacteria communities and marine bacteria Dinoroseobacter shibae cultures, growing in substrate-limited continuous cultures at low specific growth rates [0.1 to 1 d-1] to measure intracellular and dissolved B12 production, bacterial and viral abundance, particulate organic carbon, and nitrogen, bacterial production, oxygen consumption, carbon dioxide production, ETS activity, and taxonomic composition. We find dissolved B12 vitamin at concentrations between 0 to 1.4 pM with no relation to growth or respiration rates. The intracellular B12 vitamin normalized to cell volume ranged between 1x10-2 to 4.6x10-2 pmol μm3 showing a significant relationship with growth rate [y=0.02(m)1.07; r2=0.78; p≤0.05; y=intracellular B12 production, pmol μm3 day-1; m=specific growth rate, day-1], and respiration rates [y=2.4ln(x)-2.66; r2=0.87; p≤0.05; x=CO2 production, μM day-1]. The vitamin B12 producing bacteria D. shibae, showed a dissolved B12 concentration between 0 and 1.8 pM, whereas intracellular B12 normalized to cell volume varied between 1.1x10-2 to 1.8x10-2 pmol μm-3, responding significantly to growth rate [y=0.01(m)0.56; r2=0.85; p≤0.05], and to respiration rates [y=3.01ln(x)-7.56, r2=0.97, p≤0.05; x=CO2 production, μM day-1]. The lack of correlation of dissolved B12 vitamin with the metabolic activity suggests that the dissolved B12 concentration depends on the interactions among vitamin B12 producers and consumers while the bacterial metabolism is regulating the intracellular production of B12 vitamin.

  2. Study of Bacterial Response to Antibiotics in Low Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Abdul-Moqueet, Mohammad; Albalawi, Abdullah; Masood, Samina

    Effect of low magnetic fields on bacterial growth has been well established. Current study shows how different magnetic fields effect the bacterial response to antibiotics shows that the bacterial infections treatment and disease cure is changed in the presence of weak fields. This study has focused on understanding how different types of low magnetic fields change the response the bacterium to antibiotics in a liquid medium. This low magnetic field coupled with the introduction of antibiotics to the growth medium shows a drop in the growth curve. The most significant effect of low magnetic fields was seen with the uniform electromagnetic field as compared to the similar strength of constant static magnetic field produced by a bar magnets.

  3. Ethylene and 1-Aminocyclopropane-1-carboxylate (ACC) in Plant–Bacterial Interactions

    PubMed Central

    Nascimento, Francisco X.; Rossi, Márcio J.; Glick, Bernard R.

    2018-01-01

    Ethylene and its precursor 1-aminocyclopropane-1-carboxylate (ACC) actively participate in plant developmental, defense and symbiotic programs. In this sense, ethylene and ACC play a central role in the regulation of bacterial colonization (rhizospheric, endophytic, and phyllospheric) by the modulation of plant immune responses and symbiotic programs, as well as by modulating several developmental processes, such as root elongation. Plant-associated bacterial communities impact plant growth and development, both negatively (pathogens) and positively (plant-growth promoting and symbiotic bacteria). Some members of the plant-associated bacterial community possess the ability to modulate plant ACC and ethylene levels and, subsequently, modify plant defense responses, symbiotic programs and overall plant development. In this work, we review and discuss the role of ethylene and ACC in several aspects of plant-bacterial interactions. Understanding the impact of ethylene and ACC in both the plant host and its associated bacterial community is key to the development of new strategies aimed at increased plant growth and protection. PMID:29520283

  4. Growth rates of rainbow smelt in Lake Champlain: Effects of density and diet

    USGS Publications Warehouse

    Stritzel, Thomson J.L.; Parrish, D.L.; Parker-Stetter, S. L.; Rudstam, L. G.; Sullivan, P.J.

    2011-01-01

    Stritzel Thomson JL, Parrish DL, Parker-Stetter SL, Rudstam LG, Sullivan PJ. Growth rates of rainbow smelt in Lake Champlain: effects of density and diet. Ecology of Freshwater Fish 2010. ?? 2010 John Wiley & Sons A/S Abstract- We estimated the densities of rainbow smelt (Osmerus mordax) using hydroacoustics and obtained specimens for diet analysis and groundtruthed acoustics data from mid-water trawl sampling in four areas of Lake Champlain, USA-Canada. Densities of rainbow smelt cohorts alternated during the 2-year study; age-0 rainbow smelt were very abundant in 2001 (up to 6fish per m2) and age-1 and older were abundant (up to 1.2fish per m2) in 2002. Growth rates and densities varied among areas and years. We used model selection on eight area-year-specific variables to investigate biologically plausible predictors of rainbow smelt growth rates. The best supported model of growth rates of age-0 smelt indicated a negative relationship with age-0 density, likely associated with intraspecific competition for zooplankton. The next best-fit model had age-1 density as a predictor of age-0 growth. The best supported models (N=4) of growth rates of age-1 fish indicated a positive relationship with availability of age-0 smelt and resulting levels of cannibalism. Other plausible models were contained variants of these parameters. Cannibalistic rainbow smelt consumed younger conspecifics that were up to 53% of their length. Prediction of population dynamics for rainbow smelt requires an understanding of the relationship between density and growth as age-0 fish outgrow their main predators (adult smelt) by autumn in years with fast growth rates, but not in years with slow growth rates. ?? 2011 John Wiley & Sons A/S.

  5. Calcite growth-rate inhibition by fulvic acid and magnesium ion—Possible influence on biogenic calcite formation

    NASA Astrophysics Data System (ADS)

    Reddy, Michael M.

    2012-08-01

    Increases in ocean surface water dissolved carbon dioxide (CO2) concentrations retard biocalcification by reducing calcite supersaturation (Ωc). Reduced calcification rates may influence growth-rate dependent magnesium ion (Mg) incorporation into biogenic calcite modifying the use of calcifying organisms as paleoclimate proxies. Fulvic acid (FA) at biocalcification sites may further reduce calcification rates. Calcite growth-rate inhibition by FA and Mg, two common constituents of seawater and soil water involved in the formation of biogenic calcite, was measured separately and in combination under identical, highly reproducible experimental conditions. Calcite growth rates (pH=8.5 and Ωc=4.5) are reduced by FA (0.5 mg/L) to 47% and by Mg (10-4 M) to 38%, compared to control experiments containing no added growth-rate inhibitor. Humic acid (HA) is twice as effective a calcite growth-rate inhibitor as FA. Calcite growth rate in the presence of both FA (0.5 mg/L) and Mg (10-4 M) is reduced to 5% of the control rate. Mg inhibits calcite growth rates by substitution for calcium ion at the growth site. In contrast, FA inhibits calcite growth rates by binding multiple carboxylate groups on the calcite surface. FA and Mg together have an increased affinity for the calcite growth sites reducing calcite growth rates.

  6. Calcite growth-rate inhibition by fulvic acid and magnesium ion—Possible influence on biogenic calcite formation

    USGS Publications Warehouse

    Reddy, Michael M.

    2012-01-01

    Increases in ocean surface water dissolved carbon dioxide (CO2) concentrations retard biocalcification by reducing calcite supersaturation (Ωc). Reduced calcification rates may influence growth-rate dependent magnesium ion (Mg) incorporation into biogenic calcite modifying the use of calcifying organisms as paleoclimate proxies. Fulvic acid (FA) at biocalcification sites may further reduce calcification rates. Calcite growth-rate inhibition by FA and Mg, two common constituents of seawater and soil water involved in the formation of biogenic calcite, was measured separately and in combination under identical, highly reproducible experimental conditions. Calcite growth rates (pH=8.5 and Ωc=4.5) are reduced by FA (0.5 mg/L) to 47% and by Mg (10−4 M) to 38%, compared to control experiments containing no added growth-rate inhibitor. Humic acid (HA) is twice as effective a calcite growth-rate inhibitor as FA. Calcite growth rate in the presence of both FA (0.5 mg/L) and Mg (10−4 M) is reduced to 5% of the control rate. Mg inhibits calcite growth rates by substitution for calcium ion at the growth site. In contrast, FA inhibits calcite growth rates by binding multiple carboxylate groups on the calcite surface. FA and Mg together have an increased affinity for the calcite growth sites reducing calcite growth rates.

  7. Coordinated Changes in Mutation and Growth Rates Induced by Genome Reduction

    PubMed Central

    Nishimura, Issei; Kurokawa, Masaomi; Liu, Liu

    2017-01-01

    ABSTRACT Genome size is determined during evolution, but it can also be altered by genetic engineering in laboratories. The systematic characterization of reduced genomes provides valuable insights into the cellular properties that are quantitatively described by the global parameters related to the dynamics of growth and mutation. In the present study, we analyzed a small collection of W3110 Escherichia coli derivatives containing either the wild-type genome or reduced genomes of various lengths to examine whether the mutation rate, a global parameter representing genomic plasticity, was affected by genome reduction. We found that the mutation rates of these cells increased with genome reduction. The correlation between genome length and mutation rate, which has been reported for the evolution of bacteria, was also identified, intriguingly, for genome reduction. Gene function enrichment analysis indicated that the deletion of many of the genes encoding membrane and transport proteins play a role in the mutation rate changes mediated by genome reduction. Furthermore, the increase in the mutation rate with genome reduction was highly associated with a decrease in the growth rate in a nutrition-dependent manner; thus, poorer media showed a larger change that was of higher significance. This negative correlation was strongly supported by experimental evidence that the serial transfer of the reduced genome improved the growth rate and reduced the mutation rate to a large extent. Taken together, the global parameters corresponding to the genome, growth, and mutation showed a coordinated relationship, which might be an essential working principle for balancing the cellular dynamics appropriate to the environment. PMID:28679744

  8. Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers.

    PubMed

    Adesemoye, A O; Torbert, H A; Kloepper, J W

    2009-11-01

    The search for microorganisms that improve soil fertility and enhance plant nutrition has continued to attract attention due to the increasing cost of fertilizers and some of their negative environmental impacts. The objectives of this greenhouse study with tomato were to determine (1) if reduced rates of inorganic fertilizer coupled with microbial inoculants will produce plant growth, yield, and nutrient uptake levels equivalent to those with full rates of the fertilizer and (2) the minimum level to which fertilizer could be reduced when inoculants were used. The microbial inoculants used in the study were a mixture of plant growth-promoting rhizobacteria (PGPR) strains Bacillus amyloliquefaciens IN937a and Bacillus pumilus T4, a formulated PGPR product, and the arbuscular mycorrhiza fungus (AMF), Glomus intraradices. Results showed that supplementing 75% of the recommended fertilizer rate with inoculants produced plant growth, yield, and nutrient (nitrogen and phosphorus) uptake that were statistically equivalent to the full fertilizer rate without inoculants. When inoculants were used with rates of fertilizer below 75% of the recommended rate, the beneficial effects were usually not consistent; however, inoculation with the mixture of PGPR and AMF at 70% fertility consistently produced the same yield as the full fertility rate without inoculants. Without inoculants, use of fertilizer rates lower than the recommended resulted in significantly less plant growth, yield, and nutrient uptake or inconsistent impacts. The results suggest that PGPR-based inoculants can be used and should be further evaluated as components of integrated nutrient management strategies.

  9. Bacterial activity in sea ice and open water of the Weddell Sea, Antarctica: A microautoradiographic study.

    PubMed

    Grossmann, S

    1994-07-01

    Metabolic activity of bacteria was investigated in open water, newly forming sea ice, and successive stages of pack ice in the Weddell Sea. Microautoradiography, using [(3)H]leucine as substrate, was compared with incorporation rates of [(3)H]leucine into proteins. Relation of [(3)H]leucine incorporation to the biomass of active bacteria provides information about changes of specific metabolic activity of cells. During a phytoplankton bloom in an ice-free, stratified water column, total numbers of bacteria in the euphotic zone averaged 2.3 × 10(5) ml(-1), but only about 13% showed activity via leucine uptake. Growth rate of the active bacteria was estimated as 0.3-0.4 days(-1). Total cell concentration of bacteria in 400 m depth was 6.6 × 10(4) ml(-1). Nearly 50% of these cells were active, although biomass production and specific growth rate were only about one-tenth that of the surface populations. When sea ice was forming in high concentrations of phytoplankton, bacterial biomass in the newly formed ice was 49.1 ng C ml(-1), exceeding that in open water by about one order of magnitude. Attachment of large bacteria to algal cells seems to cause their enrichment in the new ice, since specific bacterial activity was reduced during ice formation, and enrichment of bacteria was not observed when ice formed at low algal concentration. During growth of pack ice, biomass of bacteria increased within the brine channel system. Specific activity was still reduced at these later stages of ice development, and percentages of active cells were as low as 3-5%. In old, thick pack ice, bacterial activity was high and about 30% of cells were active. However, biomass-specific activity of bacteria remained significantly lower than that in open water. It is concluded that bacterial assemblages different to those of open water developed within the ice and were dominated by bacteria with lower average metabolic activity than those of ice-free water.

  10. Growth determinations for unattached bacteria in a contaminated aquifer.

    USGS Publications Warehouse

    Harvey, R.W.; George, L.H.

    1987-01-01

    Growth rates of unattached bacteria in groundwater contaminated with treated sewage and collected at various distances from the source of contamination were estimated by using frequency of dividing cells and tritiated-thymidine uptake and compared with growth rates obtained with unsupplemented, closed-bottle incubations. Estimates of bacterial generation times [(In 2)/mu] along a 3-km-long transect in oxygen-depleted (0.1 to 0.7 mg of dissolved oxygen liter-1) groundwater ranged from 16 h at 0.26 km downgradient from an on-land, treated-sewage outfall to 139 h at 1.6 km and correlated with bacterial abundance (r2 = 0.88 at P less than 0.001). Partitioning of assimilated thymidine into nucleic acid generally decreased with distance from the contaminant source, and one population in heavily contaminated groundwater assimilated little thymidine during a 20-h incubation. Several assumptions commonly made when frequency of dividing cells and tritiated-thymidine uptake are used were not applicable to the groundwater samples.

  11. Artemisia princeps Pamp. Essential oil and its constituents eucalyptol and α-terpineol ameliorate bacterial vaginosis and vulvovaginal candidiasis in mice by inhibiting bacterial growth and NF-κB activation.

    PubMed

    Trinh, Hien-Trung; Lee, In-Ah; Hyun, Yang-Jin; Kim, Dong-Hyun

    2011-12-01

    To investigate the inhibitory effects of Artemisia princeps Pamp. (family Asteraceae) essential oil (APEO) and its main constituents against bacterial vaginosis and vulvovaginal candidiasis, their antimicrobial activities against Gardnerella vaginalis and Candida albicans in vitro and their anti-inflammatory effects against G. vaginalis-induced vaginosis and vulvovaginal candidiasis were examined in mice. APEO and its constituents eucalyptol and α-terpineol were found to inhibit microbe growths. α-Terpineol most potently inhibited the growths of G. vaginalis and C. albicans with MIC values of 0.06 and 0.125 % (v/v), respectively. The antimicrobial activity of α-terpineol was found to be comparable to that of clotrimazole. Intravaginal treatment with APEO, eucalyptol, or α-terpineol significantly decreased viable G. vaginalis and C. albicans numbers in the vaginal cavity and myeloperoxidase activity in mouse vaginal tissues compared with controls. These agents also inhibited the expressions of proinflammatory cytokines (IL-1 β, IL-6, TNF- α), COX-2, iNOS, and the activation of NF- κB and increased expression of the anti-inflammatory cytokine IL-10. In addition, they inhibited the expressions of proinflammatory cytokines and the activation of NF- κB in lipopolysaccharide-stimulated peritoneal macrophages, and α-terpineol most potently inhibited the expressions of proinflammatory cytokines and NF- κB activation. Based on these findings, APEO and its constituents, particularly α-terpineol, ameliorate bacterial vaginosis and vulvovaginal candidiasis by inhibiting the growths of vaginal pathogens and the activation of NF- κB. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Growth of Dunaliella tertiolecta and associated bacteria in photobioreactors.

    PubMed

    Lakaniemi, Aino-Maija; Intihar, Veera M; Tuovinen, Olli H; Puhakka, Jaakko A

    2012-09-01

    The aim of this study was to test three flat-plate photobioreactor configurations for cultivation of marine green alga Dunaliella tertiolecta under non-axenic growth conditions and to characterize and quantify the associated bacteria. The photobioreactor cultivations were conducted using tap water-based media. Static mixers intended to enhance mixing and light utilization did not generally increase algal growth at the low light intensities used. The maximum biomass concentration (measured as volatile suspended solids) and maximum specific growth rate achieved in the flat plate with no mixer were 2.9 g l⁻¹ and 1.3 day⁻¹, respectively. Based on quantitative polymerase chain reaction, bacterial growth followed the growth of D. tertiolecta. Based on 16S rDNA amplification and denaturing gradient gel electrophoresis profiling, heterotrophic bacteria in the D. tertiolecta cultures mainly originated from the non-axenic algal inocula, and tap water heterotrophs were not enriched in high chloride media (3 % salinity). Bacterial communities were relatively stable and reproducible in all flat-plate cultivations and were dominated by Gammaproteobacteria, Flavobacteria, and Alphaproteobacteria.

  13. Effects of assimilable organic carbon and free chlorine on bacterial growth in drinking water.

    PubMed

    Liu, Xiaolu; Wang, Jingqi; Liu, Tingting; Kong, Weiwen; He, Xiaoqing; Jin, Yi; Zhang, Bolin

    2015-01-01

    Assimilable organic carbon (AOC) is one of the most important factors affecting the re-growth of microorganisms in drinking water. High AOC concentrations result in biological instability, but disinfection kills microbes to ensure the safety of drinking water. Free chlorine is an important oxidizing agent used during the disinfection process. Therefore, we explored the combined effects of AOC and free chlorine on bacterial growth in drinking water using flow cytometry (FCM). The initial AOC concentration was 168 μg.L(-1) in all water samples. Without free chlorine, the concentrations of intact bacteria increased but the level of AOC decreased. The addition of sodium hypochlorite caused an increase and fluctuation in AOC due to the oxidation of organic carbon. The concentrations of intact bacteria decreased from 1.1 × 10(5) cells.mL(-1) to 2.6 × 10(4) cells.mL(-1) at an initial free chlorine dose of 0.6 mg.L(-1) to 4.8 × 10(4) cells.mL(-1) at an initial free chlorine dose of 0.3 mg.L(-1) due to free chlorine originating from sodium hypochlorite. Additionally, free chlorine might be more obviously affected AOC concentrations than microbial growth did. These results suggested that AOC and free chlorine might have combined effects on microbial growth. In this study, our results showed concentrations determined by FCM were higher than those by HPC, which indicated that some E. coli detected by FCM might not be detected using HPC in drinking water. The level of free chlorine might restrain the consumption of AOC by inhibiting the growth of E. coli; on the other hand, chlorination might increase the level of AOC, thereby increase the potential for microbial growth in the drinking water network.

  14. Effects of Assimilable Organic Carbon and Free Chlorine on Bacterial Growth in Drinking Water

    PubMed Central

    Liu, Tingting; Kong, Weiwen; He, Xiaoqing; Jin, Yi; Zhang, Bolin

    2015-01-01

    Assimilable organic carbon (AOC) is one of the most important factors affecting the re-growth of microorganisms in drinking water. High AOC concentrations result in biological instability, but disinfection kills microbes to ensure the safety of drinking water. Free chlorine is an important oxidizing agent used during the disinfection process. Therefore, we explored the combined effects of AOC and free chlorine on bacterial growth in drinking water using flow cytometry (FCM). The initial AOC concentration was 168 μg.L-1 in all water samples. Without free chlorine, the concentrations of intact bacteria increased but the level of AOC decreased. The addition of sodium hypochlorite caused an increase and fluctuation in AOC due to the oxidation of organic carbon. The concentrations of intact bacteria decreased from 1.1×105 cells.mL-1 to 2.6×104 cells.mL-1 at an initial free chlorine dose of 0.6 mg.L-1 to 4.8×104 cells.mL-1 at an initial free chlorine dose of 0.3 mg.L-1 due to free chlorine originating from sodium hypochlorite. Additionally, free chlorine might be more obviously affected AOC concentrations than microbial growth did. These results suggested that AOC and free chlorine might have combined effects on microbial growth. In this study, our results showed concentrations determined by FCM were higher than those by HPC, which indicated that some E. coli detected by FCM might not be detected using HPC in drinking water. The level of free chlorine might restrain the consumption of AOC by inhibiting the growth of E. coli; on the other hand, chlorination might increase the level of AOC, thereby increase the potential for microbial growth in the drinking water network. PMID:26034988

  15. Are leaf glandular trichomes of oregano hospitable habitats for bacterial growth?

    PubMed

    Karamanoli, K; Thalassinos, G; Karpouzas, D; Bosabalidis, A M; Vokou, D; Constantinidou, H-I

    2012-05-01

    Phyllospheric bacteria were isolated from microsites around essential-oil-containing glands of two oregano (Origanum vulgare subsp. hirtum) lines. These bacteria, 20 isolates in total, were subjected to bioassays to examine their growth potential in the presence of essential oils at different concentrations. Although there were qualitative and quantitative differences in the essential oil composition between the two oregano lines, no differences were recorded in their antibacterial activity. In disk diffusion bioassays, four of the isolated strains could grow almost unrestrained in the presence of oregano oil, another five proved very sensitive, and the remaining 11 showed intermediate sensitivity. The strain least inhibited by oregano essential oil was further identified by complete16s rRNA gene sequencing as Pseudomonas putida. It was capable of forming biofilms even in the presence of oregano oil at high concentrations. Resistance of P. putida to oregano oil was further elaborated by microwell dilution bioassays, and its topology on oregano leaves was studied by electron microscopy. When inoculated on intact oregano plants, P. putida was able not only to colonize sites adjacent to essential oil-containing glands, but even to grow intracellularly. This is the first time that such prolific bacterial growth inside the glands has been visually observed. Results of this study further revealed that several bacteria can be established on oregano leaves, suggesting that these bacteria have attributes that allow them to tolerate or benefit from oregano secondary metabolites.

  16. Influence of milk processing temperature on growth performance, nitrogen retention, and hindgut's inflammatory status and bacterial populations in a calf model.

    PubMed

    Bach, Alex; Aris, Anna; Vidal, Maria; Fàbregas, Francesc; Terré, Marta

    2017-08-01

    This research communication describes a study aimed at evaluating the effects of heat treatment of milk on growth performance, N retention, and hindgut's inflammatory status and bacterial populations using young dairy calves as a model. Twenty-one Holstein calves were randomly allocated to one of three treatments: raw milk (RM), pasteurised milk (PAST), or UHT milk (UHT). Calves were submitted to a N balance study, and a biopsy from the distal colon and a faecal sample were obtained from 5 animals per treatment to determine expression of several genes and potential changes in the hindgut's bacterial population. Milk furosine content was 33-fold greater in UHT than in RM and PAST milks. Calves receiving RM grew more than those fed UHT, and urinary N excretion was greatest in calves fed UHT. Quantification of Lactobacillus was lower in calves consuming PAST or UHT, and Gram negative bacteria were greater in UHT than in PAST calves. The expression of IL-8 in the hindgut's mucosa was lowest and that of IL-10 tended to be lowest in RM calves, and expression of claudin-4 tended to be greatest in UHT calves. In conclusion, the nutritional value of UHT-treated milk may be hampered because it compromises growth and increases N excretion in young calves and may have deleterious effects on the gut's bacterial population and inflammation status.

  17. Growth promotion of Lactuca sativa in response to volatile organic compounds emitted from diverse bacterial species.

    PubMed

    Fincheira, Paola; Venthur, Herbert; Mutis, Ana; Parada, Maribel; Quiroz, Andrés

    2016-12-01

    Agrochemicals are currently used in horticulture to increase crop production. Nevertheless, their indiscriminate use is a relevant issue for environmental and legal aspects. Alternative tools for reducing fertilizers and synthetic phytohormones are being investigated, such as the use of volatile organic compounds (VOCs) as growth inducers. Some soil bacteria, such as Pseudomonas and Bacillus, stimulate Arabidopsis and tobacco growth by releasing VOCs, but their effects on vegetables have not been investigated. Lactuca sativa was used as model vegetable to investigate bacterial VOCs as growth inducers. We selected 10 bacteria strains, belonging to Bacillus, Staphylococcus and Serratia genera that are able to produce 3-hydroxy-2-butanone (acetoin), a compound with proven growth promoting activity. Two-day old-seedlings of L. sativa were exposed to VOCs emitted by the selected bacteria grown in different media cultures for 7 days. The results showed that the VOCs released from the bacteria elicited an increase in the number of lateral roots, dry weight, root growth and shoot length, depending on the media used. Three Bacillus strains, BCT53, BCT9 and BCT4, were selected according to its their growth inducing capacity. The BCT9 strain elicited the greatest increases in dry weight and primary root length when L. sativa seedlings were subjected to a 10-day experiment. Finally, because acetoin only stimulated root growth, we suggest that other volatiles could be responsible for the growth promotion of L. sativa. In conclusion, our results strongly suggest that bacteria volatiles can be used as growth-inducers as alternative or complementary strategies for application in horticulture species. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Bacterial translocation and intestinal injury in experimental necrotizing enterocolitis model.

    PubMed

    Ciftci, I; Ozdemir, M; Aktan, M; Aslan, K

    2012-01-01

    To study the occurrence of bacterial translocation and to assess the impact of breastfeeding on bacterial translocation in the animal model of necrotizing enterocolitis. A total of 20 neonate Sprague-Dawley rats were enrolled in the study. Rats were randomly allocated into either control or study group just after birth. Ten newborn rats in the control group were left with their mother to be breast-fed. In contrary, necrotizing enterocolitis group consisted of neonates that were separated from their mothers, housed in an incubator and were gavaged with a special rodent formula three times daily. Survival rates, weight changes, and morphologic scoring obtained after microscopic evaluation were determined as microbiologic evaluation criteria. All the rats in the control group survived, while 1 (10 %) rat died in the necrotizing enterocolitis group. Mortality rates of the two groups were similar. All the formula-fed animals in the necrotizing enterocolitis group had significant weight loss compared to the breast milk-fed rats in the control group (p<0.05). A total of 7 (70 %) and 2 (20 %) E. coli growths were identified in the bowel lumen, liver, and spleen of necrotizing enterocolitis and control groups, respectively. This difference was statistically significant. In peritoneal smear cultures, a total of 3 (30 %) growths were detected in the necrotizing enterocolitis group and 1 (10 %) growth in the control group. As the result of a disturbance in the intestinal flora and impairment of the intestinal barrier in necrotizing enterocolitis, microrganisms in the bowel pass through the intestinal barrier and reach the liver and the spleen via the hematogenous route. This condition is closely related to the impairment of physiological and functional features of the intestinal barrier and is independent from the degree of intestinal injury. Bacterial translocation should be remembered in cases suspected of necrotizing enterocolitis, and a rapid and effective treatment

  19. Gross domestic product growth rates as confined Lévy flights: Towards a unifying theory of economic growth rate fluctuations

    NASA Astrophysics Data System (ADS)

    Lera, Sandro Claudio; Sornette, Didier

    2018-01-01

    A model that combines economic growth rate fluctuations at the microscopic and macroscopic levels is presented. At the microscopic level, firms are growing at different rates while also being exposed to idiosyncratic shocks at the firm and sector levels. We describe such fluctuations as independent Lévy-stable fluctuations, varying over multiple orders of magnitude. These fluctuations are aggregated and measured at the macroscopic level in averaged economic output quantities such as GDP. A fundamental question is thereby to what extent individual firm size fluctuations can have a noticeable impact on the overall economy. We argue that this question can be answered by considering the Lévy fluctuations as embedded in a steep confining potential well, ensuring nonlinear mean-reversal behavior, without having to rely on microscopic details of the system. The steepness of the potential well directly controls the extent to which idiosyncratic shocks to firms and sectors are damped at the level of the economy. Additionally, the theory naturally accounts for business cycles, represented in terms of a bimodal economic output distribution and thus connects two so far unrelated fields in economics. By analyzing 200 years of U.S. gross domestic product growth rates, we find that the model is in good agreement with the data.

  20. Gross domestic product growth rates as confined Lévy flights: Towards a unifying theory of economic growth rate fluctuations.

    PubMed

    Lera, Sandro Claudio; Sornette, Didier

    2018-01-01

    A model that combines economic growth rate fluctuations at the microscopic and macroscopic levels is presented. At the microscopic level, firms are growing at different rates while also being exposed to idiosyncratic shocks at the firm and sector levels. We describe such fluctuations as independent Lévy-stable fluctuations, varying over multiple orders of magnitude. These fluctuations are aggregated and measured at the macroscopic level in averaged economic output quantities such as GDP. A fundamental question is thereby to what extent individual firm size fluctuations can have a noticeable impact on the overall economy. We argue that this question can be answered by considering the Lévy fluctuations as embedded in a steep confining potential well, ensuring nonlinear mean-reversal behavior, without having to rely on microscopic details of the system. The steepness of the potential well directly controls the extent to which idiosyncratic shocks to firms and sectors are damped at the level of the economy. Additionally, the theory naturally accounts for business cycles, represented in terms of a bimodal economic output distribution and thus connects two so far unrelated fields in economics. By analyzing 200 years of U.S. gross domestic product growth rates, we find that the model is in good agreement with the data.

  1. Observations of Bacterial Behavior during Infection Using the ARGOS Method

    NASA Astrophysics Data System (ADS)

    Charest, A. J.; Algarni, S.; Iannacchione, G. S.

    2015-03-01

    This research employed the Area Recorded Generalized Optical Scattering (ARGOS) approach which allowed for the observation of bacterial changes in terms of individual particles and population dynamics in real time. This new approach allows for an aqueous environment to be manipulated while conducting time-specific measurements over an indefinite amount of time. This current study provides a more time-specific method in which the bacteria remained within the initial conditions and allows for more time precision than provided by analyzing concentrations of plaque-forming units (PFU). This study involved the bacteria (F-amp) during infection by bacteriophage (MS2). The relative total intensity allows for detailed measurements of the bacteria population over time. The bacteria characteristics were also evaluated such as the root mean square image difference (at specific wavevectors), fractal dimension and effective radius. The growth rate of the infected bacteria occurred at a rate higher than the uninfected bacteria similarly, the death rates were also higher for the infected bacteria than the uninfected bacteria. The present study indicates that bacteria may react to infection by increasing the rate of population growth.

  2. Influence of corruption on economic growth rate and foreign investment

    NASA Astrophysics Data System (ADS)

    Podobnik, Boris; Shao, Jia; Njavro, Djuro; Ivanov, Plamen Ch.; Stanley, H. E.

    2008-06-01

    We analyze the dependence of the Gross Domestic Product ( GDP) per capita growth rates on changes in the Corruption Perceptions Index ( CPI). For the period 1999 2004 for all countries in the world, we find on average that an increase of CPI by one unit leads to an increase of the annual GDP per capita growth rate by 1.7%. By regressing only the European countries with transition economies, we find that an increase of CPI by one unit generates an increase of the annual GDP per capita growth rate by 2.4%. We also analyze the relation between foreign direct investments received by different countries and CPI, and we find a statistically significant power-law functional dependence between foreign direct investment per capita and the country corruption level measured by the CPI. We introduce a new measure to quantify the relative corruption between countries based on their respective wealth as measured by GDP per capita.

  3. Delta L: An Apparatus for Measuring Macromolecular Crystal Growth Rates in Microgravity

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    In order to determine how macromolecule crystal quality improvement in microgravity is related to crystal growth characteristics, is was necessary to develop new hardware that could measure the crystal growth rates of a population of crystals growing under the same solution conditions. As crystal growth rate is defined as the change or delta in a defined dimension or length (L) of a crystal over time, the hardware was named Delta L. Delta L consists of fluids, optics, and data acquisition, sub-assemblies. Temperature control is provided for the crystal growth chamber. Delta L will be used in connection with the Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) inside the Microgravity Science Glovebox (MSG), onboard the International Space Station (ISS). Delta L prototype hardware has been assembled. This paper will describe an overview of the design of Delta L and present preliminary crystal growth rate data.

  4. Phenytoin crystal growth rates in the presence of phosphate and chloride ions

    NASA Astrophysics Data System (ADS)

    Zipp, G. L.; Rodríguez-Hornedo, N.

    1992-09-01

    Phenytoin crystal growth kinetics have been measured as a function of supersaturation in pH 2.2 phosphoric acid and pH 2.2 hydrochloric acid solutions. Two different methods were used for the kinetic analysis. The first involved a zone-sensing device which provided an analysis of the distribution of crystals in a batch crystallizer. Crystal growth rates were calculated from the increase in the size of the distribution with time. In the second method, growth rates were evaluated from the change in size with time of individual crystals observed under an inverted microscope. The results from each method compare favorably. The use of both techniques provides an excellent opportunity to exploit the strengths of each: an average growth rate from a population of crystals from batch crystallization and insight into the effect of growth on the morphology of the crystals from the individual crystal measurements.

  5. Effects of Bacillus amyloliquefaciens FZB42 on Lettuce Growth and Health under Pathogen Pressure and Its Impact on the Rhizosphere Bacterial Community

    PubMed Central

    Rändler, Manuela; Schmid, Michael; Junge, Helmut; Borriss, Rainer; Hartmann, Anton; Grosch, Rita

    2013-01-01

    The soil-borne pathogen Rhizoctonia solani is responsible for crop losses on a wide range of important crops worldwide. The lack of effective control strategies and the increasing demand for organically grown food has stimulated research on biological control. The aim of the present study was to evaluate the rhizosphere competence of the commercially available inoculant Bacillus amyloliquefaciens FZB42 on lettuce growth and health together with its impact on the indigenous rhizosphere bacterial community in field and pot experiments. Results of both experiments demonstrated that FZB42 is able to effectively colonize the rhizosphere (7.45 to 6.61 Log 10 CFU g−1 root dry mass) within the growth period of lettuce in the field. The disease severity (DS) of bottom rot on lettuce was significantly reduced from severe symptoms with DS category 5 to slight symptom expression with DS category 3 on average through treatment of young plants with FZB42 before and after planting. The 16S rRNA gene based fingerprinting method terminal restriction fragment length polymorphism (T-RFLP) showed that the treatment with FZB42 did not have a major impact on the indigenous rhizosphere bacterial community. However, the bacterial community showed a clear temporal shift. The results also indicated that the pathogen R. solani AG1-IB affects the rhizosphere microbial community after inoculation. Thus, we revealed that the inoculant FZB42 could establish itself successfully in the rhizosphere without showing any durable effect on the rhizosphere bacterial community. PMID:23935892

  6. Spatial and directional variation of growth rates in Arabidopsis root apex: a modelling study.

    PubMed

    Nakielski, Jerzy; Lipowczan, Marcin

    2013-01-01

    Growth and cellular organization of the Arabidopsis root apex are investigated in various aspects, but still little is known about spatial and directional variation of growth rates in very apical part of the apex, especially in 3D. The present paper aims to fill this gap with the aid of a computer modelling based on the growth tensor method. The root apex with a typical shape and cellular pattern is considered. Previously, on the basis of two types of empirical data: the published velocity profile along the root axis and dimensions of cell packets formed in the lateral part of the root cap, the displacement velocity field for the root apex was determined. Here this field is adopted to calculate the linear growth rate in different points and directions. The results are interpreted taking principal growth directions into account. The root apex manifests a significant anisotropy of the linear growth rate. The directional preferences depend on a position within the root apex. In the root proper the rate in the periclinal direction predominates everywhere, while in the root cap the predominating direction varies with distance from the quiescent centre. The rhizodermis is distinguished from the neighbouring tissues (cortex, root cap) by relatively high contribution of the growth rate in the anticlinal direction. The degree of growth anisotropy calculated for planes defined by principal growth directions and exemplary cell walls may be as high as 25. The changes in the growth rate variation are modelled.

  7. Continuous monitoring of bacterial attachment

    NASA Technical Reports Server (NTRS)

    Koeing, D. W.; Mishra, S. K.; Pierson, D. L.

    1994-01-01

    A major concern with the Space Station Freedom (SSF) water supply system is the control of longterm microbial contamination and biofilm development in the water storage and distribution systems. These biofilms have the potential for harboring pathogens as well as microbial strains containing resistance factors that could negatively influence crew health. The proposed means for disinfecting the water system on SSF (iodine) may encourage the selection of resistant strains. In fact, biofilm bacteria were observed in water lines from the Space Shuttle Columbia (OV-102); therefore, an alternative remediation method is required to disinfect spacecraft water lines. A thorough understanding of colonization events and the physiological parameters that will influence bacteria adhesion is required. The limiting factor for development of this technology is the ability to continuously monitor adhesion events and the effects of biocides on sessile bacteria. Methods were developed to allow bacterial adhesion and subsequent biocidal treatment to be monitored continuously. This technique couples automated image analysis with a continuous flow of a bacterial suspension through an optical flow cell. A strain of Pseudomonas cepacia isolated from the water supply of the Space Shuttle Discovery (OV-103) during STS-39 was grown in a nitrogen-limited continuous culture. This culture was challenged continuously with iodine during growth, and the adhesion characteristics of this strain was measure with regard to flow rate. Various biocides (ozone, hypochlorite, and iodine) were added to the flow stream to evaluate how well each chemical removed the bacteria. After biocide treatment, a fresh bacterial suspension was introduced into the flow cell, and the attachment rate was evaluated on the previously treated surface. This secondary fouling was again treated with biocide to determine the efficacy of multiple batch chemical treatments in removing biofilm.

  8. Skeletal muscle protein accretion rates and hindlimb growth are reduced in late gestation intrauterine growth-restricted fetal sheep.

    PubMed

    Rozance, Paul J; Zastoupil, Laura; Wesolowski, Stephanie R; Goldstrohm, David A; Strahan, Brittany; Cree-Green, Melanie; Sheffield-Moore, Melinda; Meschia, Giacomo; Hay, William W; Wilkening, Randall B; Brown, Laura D

    2018-01-01

    Adults who were affected by intrauterine growth restriction (IUGR) suffer from reductions in muscle mass, which may contribute to insulin resistance and the development of diabetes. We demonstrate slower hindlimb linear growth and muscle protein synthesis rates that match the reduced hindlimb blood flow and oxygen consumption rates in IUGR fetal sheep. These adaptations resulted in hindlimb blood flow rates in IUGR that were similar to control fetuses on a weight-specific basis. Net hindlimb glucose uptake and lactate output rates were similar between groups, whereas amino acid uptake was significantly lower in IUGR fetal sheep. Among all fetuses, blood O 2 saturation and plasma glucose, insulin and insulin-like growth factor-1 were positively associated and norepinephrine was negatively associated with hindlimb weight. These results further our understanding of the metabolic and hormonal adaptations to reduced oxygen and nutrient supply with placental insufficiency that develop to slow hindlimb growth and muscle protein accretion. Reduced skeletal muscle mass in the fetus with intrauterine growth restriction (IUGR) persists into adulthood and may contribute to increased metabolic disease risk. To determine how placental insufficiency with reduced oxygen and nutrient supply to the fetus affects hindlimb blood flow, substrate uptake and protein accretion rates in skeletal muscle, late gestation control (CON) (n = 8) and IUGR (n = 13) fetal sheep were catheterized with aortic and femoral catheters and a flow transducer around the external iliac artery. Muscle protein kinetic rates were measured using isotopic tracers. Hindlimb weight, linear growth rate, muscle protein accretion rate and fractional synthetic rate were lower in IUGR compared to CON (P < 0.05). Absolute hindlimb blood flow was reduced in IUGR (IUGR: 32.9 ± 5.6 ml min -1 ; CON: 60.9 ± 6.5 ml min -1 ; P < 0.005), although flow normalized to hindlimb weight was similar between groups

  9. How do output growth-rate distributions look like? Some cross-country, time-series evidence

    NASA Astrophysics Data System (ADS)

    Fagiolo, G.; Napoletano, M.; Roventini, A.

    2007-05-01

    This paper investigates the statistical properties of within-country gross domestic product (GDP) and industrial production (IP) growth-rate distributions. Many empirical contributions have recently pointed out that cross-section growth rates of firms, industries and countries all follow Laplace distributions. In this work, we test whether also within-country, time-series GDP and IP growth rates can be approximated by tent-shaped distributions. We fit output growth rates with the exponential-power (Subbotin) family of densities, which includes as particular cases both Gaussian and Laplace distributions. We find that, for a large number of OECD (Organization for Economic Cooperation and Development) countries including the US, both GDP and IP growth rates are Laplace distributed. Moreover, we show that fat-tailed distributions robustly emerge even after controlling for outliers, autocorrelation and heteroscedasticity.

  10. [Growth rate and bone maturation in celiac disease (author's transl)].

    PubMed

    Martínez Sopena, M J; Calvo Romero, M C; Bedate Calderón, P; Alonso Franch, M; Sánchez Villares, E

    1978-05-01

    The growth and bone maturation of 43 celiac patients were analyzed. A significant correlation between gluten intake and growth rate was found. The authors suggest this is a good parameter to advise the best moment to make the control biopsie and the provocation test.

  11. Evolution of bacterial virulence.

    PubMed

    Diard, Médéric; Hardt, Wolf-Dietrich

    2017-09-01

    Bacterial virulence is highly dynamic and context-dependent. For this reason, it is challenging to predict how molecular changes affect the growth of a pathogen in a host and its spread in host population. Two schools of thought have taken quite different directions to decipher the underlying principles of bacterial virulence. While molecular infection biology is focusing on the basic mechanisms of the pathogen-host interaction, evolution biology takes virulence as one of several parameters affecting pathogen spread in a host population. We review both approaches and discuss how they can complement each other in order to obtain a comprehensive understanding of bacterial virulence, its emergence, maintenance and evolution. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Is your lunch salad safe to eat? Occurrence of bacterial pathogens and potential for pathogen growth in pre-packed ready-to-eat mixed-ingredient salads.

    PubMed

    Söderqvist, Karin

    2017-01-01

    As part of a trend toward healthy convenience foods, ready-to-eat (RTE) mixed-ingredient salads have become popular products among consumers. A mixed-ingredient salad contains combinations of raw ( e.g . leafy vegetables and tomatoes) and processed ( e.g . chicken, salmon, ham, pasta and couscous) ingredients. Contamination of leafy vegetables can occur during any step in the production chain and, since there is no step that kills pathogens, a completely safe final product can never be guaranteed. Meat ingredients, for example poultry meat and ham, are generally heat-treated before preparation, but may be contaminated after this treatment, e.g . when diced or sliced. When several ingredients are mixed together, cross-contamination may occur. Preparation of mixed-ingredient salads requires human handling, which presents an additional risk of bacterial contamination. With high-protein ingredients, e.g . cooked meat, the mixed-ingredient salad represents an excellent substrate for bacterial growth. This article reviews current knowledge regarding human bacterial pathogen prevalence in mixed-ingredient salads and the potential for pathogen growth in this product during storage.

  13. Is your lunch salad safe to eat? Occurrence of bacterial pathogens and potential for pathogen growth in pre-packed ready-to-eat mixed-ingredient salads

    PubMed Central

    Söderqvist, Karin

    2017-01-01

    ABSTRACT As part of a trend toward healthy convenience foods, ready-to-eat (RTE) mixed-ingredient salads have become popular products among consumers. A mixed-ingredient salad contains combinations of raw (e.g. leafy vegetables and tomatoes) and processed (e.g. chicken, salmon, ham, pasta and couscous) ingredients. Contamination of leafy vegetables can occur during any step in the production chain and, since there is no step that kills pathogens, a completely safe final product can never be guaranteed. Meat ingredients, for example poultry meat and ham, are generally heat-treated before preparation, but may be contaminated after this treatment, e.g. when diced or sliced. When several ingredients are mixed together, cross-contamination may occur. Preparation of mixed-ingredient salads requires human handling, which presents an additional risk of bacterial contamination. With high-protein ingredients, e.g. cooked meat, the mixed-ingredient salad represents an excellent substrate for bacterial growth. This article reviews current knowledge regarding human bacterial pathogen prevalence in mixed-ingredient salads and the potential for pathogen growth in this product during storage. PMID:29230273

  14. In situ growth rates of deep-water octocorals determined from 3D photogrammetric reconstructions

    NASA Astrophysics Data System (ADS)

    Bennecke, Swaantje; Kwasnitschka, Tom; Metaxas, Anna; Dullo, Wolf-Christian

    2016-12-01

    Growth rates of deep-water corals provide important information on the recovery potential of these ecosystems, for example from fisheries-induced impacts. Here, we present in situ growth dynamics that are currently largely unknown for deep-water octocorals, calculated by applying a non-destructive method. Videos of a boulder harbouring multiple colonies of Paragorgia arborea and Primnoa resedaeformis in the Northeast Channel Coral Conservation Area at the entrance to the Gulf of Maine at 863 m depth were collected in 2006, 2010 and 2014. Photogrammetric reconstructions of the boulder and the fauna yielded georeferenced 3D models for all sampling years. Repeated measurements of total length and cross-sectional area of the same colonies allowed the observation of growth dynamics. Growth rates of total length of Paragorgia arborea decreased over time with higher rates between 2006 and 2010 than between 2010 and 2014, while growth rates of cross-sectional area remained comparatively constant. A general trend of decreasing growth rates of total length with size of the coral colony was documented. While no growth was observed for the largest colony (165 cm in length) between 2010 and 2014, a colony 50-65 cm in length grew 3.7 cm yr-1 between 2006 and 2010. Minimum growth rates of 1.6-2.7 cm yr-1 were estimated for two recruits (<23 cm in 2014) of Primnoa resedaeformis. We successfully extracted biologically meaningful data from photogrammetric models and present the first in situ growth rates for these coral species in the Northwest Atlantic.

  15. Extremely high frequency electromagnetic radiation enforces bacterial effects of inhibitors and antibiotics.

    PubMed

    Tadevosyan, Hasmik; Kalantaryan, Vitaly; Trchounian, Armen

    2008-01-01

    The coherent electromagnetic radiation (EMR) of the frequency of 51.8 and 53 GHz with low intensity (the power flux density of 0.06 mW/cm(2)) affected the growth of Escherichia coli K12(lambda) under fermentation conditions: the lowering of the growth specific rate was considerably (approximately 2-fold) increased with exposure duration of 30-60 min; a significant decrease in the number of viable cells was also shown. Moreover, the enforced effects of the N,N'-dicyclohexylcarbodiimide (DCCD), inhibitor of H(+)-transporting F(0)F(1)-ATPase, on energy-dependent H(+) efflux by whole cells and of antibiotics like tetracycline and chloramphenicol on the following bacterial growth and survival were also determined after radiation. In addition, the lowering in DCCD-inhibited ATPase activity of membrane vesicles from exposed cells was defined. The results confirmed the input of membranous changes in bacterial action of low intensity extremely high frequency EMR, when the F(0)F(1)-ATPase is probably playing a key role. The radiation of bacteria might lead to changed metabolic pathways and to antibiotic resistance. It may also give bacteria with a specific role in biosphere.

  16. Effects of climate change on plant population growth rate and community composition change.

    PubMed

    Chang, Xiao-Yu; Chen, Bao-Ming; Liu, Gang; Zhou, Ting; Jia, Xiao-Rong; Peng, Shao-Lin

    2015-01-01

    The impacts of climate change on forest community composition are still not well known. Although directional trends in climate change and community composition change were reported in recent years, further quantitative analyses are urgently needed. Previous studies focused on measuring population growth rates in a single time period, neglecting the development of the populations. Here we aimed to compose a method for calculating the community composition change, and to testify the impacts of climate change on community composition change within a relatively short period (several decades) based on long-term monitoring data from two plots-Dinghushan Biosphere Reserve, China (DBR) and Barro Colorado Island, Panama (BCI)-that are located in tropical and subtropical regions. We proposed a relatively more concise index, Slnλ, which refers to an overall population growth rate based on the dominant species in a community. The results indicated that the population growth rate of a majority of populations has decreased over the past few decades. This decrease was mainly caused by population development. The increasing temperature had a positive effect on population growth rates and community change rates. Our results promote understanding and explaining variations in population growth rates and community composition rates, and are helpful to predict population dynamics and population responses to climate change.

  17. Growth-rate periodicity of Streptomyces levoris during space flight

    NASA Technical Reports Server (NTRS)

    Rogers, T. D.; Brower, M. E.; Taylor, G. R.

    1977-01-01

    Streptomyces levoris provides a suitable biological test system to investigate the effects of space flight on the rhythms of vegetative and spore phase characteristics of both growth-rate periodicity and culture morphology during the pre-, in-, and post-flight periods of the Apollo-Soyuz Test Project. The objectives of the American participation were to study the effects of space flight on the biorhythms of Streptomyces levoris based on a comparison of the growth-rate periodicity of the vegetative and spore phase within each culture, to examine the possible alteration of spore morphology and development by SEM, and to compare the effects of a 12-hr phase shift on the periodic growth characteristics of this microorganism in cultures which were exchanged during the joint activities of the space flight. No uniform differences in the biorhythm of Streptomyces levoris during space flight were observed. It appears that the single most variable factor related to the experiment was the lack of temperature control for the space-flight specimens.

  18. A Minimalistic Resource Allocation Model to Explain Ubiquitous Increase in Protein Expression with Growth Rate

    PubMed Central

    Keren, Leeat; Segal, Eran; Milo, Ron

    2016-01-01

    Most proteins show changes in level across growth conditions. Many of these changes seem to be coordinated with the specific growth rate rather than the growth environment or the protein function. Although cellular growth rates, gene expression levels and gene regulation have been at the center of biological research for decades, there are only a few models giving a base line prediction of the dependence of the proteome fraction occupied by a gene with the specific growth rate. We present a simple model that predicts a widely coordinated increase in the fraction of many proteins out of the proteome, proportionally with the growth rate. The model reveals how passive redistribution of resources, due to active regulation of only a few proteins, can have proteome wide effects that are quantitatively predictable. Our model provides a potential explanation for why and how such a coordinated response of a large fraction of the proteome to the specific growth rate arises under different environmental conditions. The simplicity of our model can also be useful by serving as a baseline null hypothesis in the search for active regulation. We exemplify the usage of the model by analyzing the relationship between growth rate and proteome composition for the model microorganism E.coli as reflected in recent proteomics data sets spanning various growth conditions. We find that the fraction out of the proteome of a large number of proteins, and from different cellular processes, increases proportionally with the growth rate. Notably, ribosomal proteins, which have been previously reported to increase in fraction with growth rate, are only a small part of this group of proteins. We suggest that, although the fractions of many proteins change with the growth rate, such changes may be partially driven by a global effect, not necessarily requiring specific cellular control mechanisms. PMID:27073913

  19. Bacterial Associations with Diatoms Influence Host Health in a Xenic Model System

    NASA Astrophysics Data System (ADS)

    Baker, L.; Kemp, P. F.

    2016-02-01

    Diatoms are photosynthetic unicellular eukaryotes found ubiquitously in aquatic systems. Microorganisms such as bacteria are frequently found attached to diatoms and may influence the fitness of their host. The most commonly used model organisms in studies of diatom-bacterial associations are Alteromonas and Marinobacter. Some strains of Alteromonas are capable of parasitism, producing chitinases or having algicidal interactions; some strains of Marinobacter are capable of mutualism, providing its host with vital nutrients. In this study, multiple strains of Alteromonas and Marinobacter were isolated from the centric diatom Chaetoceros sp KBDT20. Isolates were added back in varying concentration to cultures of their original xenic diatom host, and to cultures of a smaller, xenic naïve host, Chaetoceros sp. KBDT32. The growth rate of the diatom host was monitored using flow cytometry to assess the impact of the added bacterial isolates on host health. Our results suggest that all strains of Alteromonas tested have an antagonistic relationship with both the original as well as the naïve host while all strains of Marinobacter tested have a synergistic relationship with both diatom cultures. The functional basis for these relationships is being explored by supplementing xenic diatom cultures with materials essential for diatom growth that may be contributed by bacteria, such as B-vitamins and bioavailable trace metals. The colonization rates and competitive interactions between bacteria are investigated through surface colonization studies. The goal of this study is to better inform our understanding of how bacterial associates of diatom populations may contribute to their health, success, or failure in aquatic systems.

  20. Exploring Anti-Bacterial Compounds against Intracellular Legionella

    PubMed Central

    Harrison, Christopher F.; Kicka, Sébastien; Trofimov, Valentin; Berschl, Kathrin; Ouertatani-Sakouhi, Hajer; Ackermann, Nikolaus; Hedberg, Christian; Cosson, Pierre; Soldati, Thierry; Hilbi, Hubert

    2013-01-01

    Legionella pneumophila is a ubiquitous fresh-water bacterium which reproduces within its erstwhile predators, environmental amoeba, by subverting the normal pathway of phagocytosis and degradation. The molecular mechanisms which confer resistance to amoeba are apparently conserved and also allow replication within macrophages. Thus, L. pneumophila can act as an ‘accidental’ human pathogen and cause a severe pneumonia known as Legionnaires’ disease. The intracellular localisation of L. pneumophila protects it from some antibiotics, and this fact must be taken into account to develop new anti-bacterial compounds. In addition, the intracellular lifestyle of L. pneumophila may render the bacteria susceptible to compounds diminishing bacterial virulence and decreasing intracellular survival and replication of this pathogen. The development of a single infection cycle intracellular replication assay using GFP-producing L. pneumophila and Acanthamoeba castellanii amoeba is reported here. This fluorescence-based assay allows for continuous monitoring of intracellular replication rates, revealing the effect of bacterial gene deletions or drug treatment. To examine how perturbations of the host cell affect L. pneumophila replication, several known host-targeting compounds were tested, including modulators of cytoskeletal dynamics, vesicle scission and Ras GTPase localisation. Our results reveal a hitherto unrealized potential antibiotic property of the β-lactone-based Ras depalmitoylation inhibitor palmostatin M, but not the closely related inhibitor palmostatin B. Further characterisation indicated that this compound caused specific growth inhibition of Legionella and Mycobacterium species, suggesting that it may act on a common bacterial target. PMID:24058631

  1. Exploring anti-bacterial compounds against intracellular Legionella.

    PubMed

    Harrison, Christopher F; Kicka, Sébastien; Trofimov, Valentin; Berschl, Kathrin; Ouertatani-Sakouhi, Hajer; Ackermann, Nikolaus; Hedberg, Christian; Cosson, Pierre; Soldati, Thierry; Hilbi, Hubert

    2013-01-01

    Legionella pneumophila is a ubiquitous fresh-water bacterium which reproduces within its erstwhile predators, environmental amoeba, by subverting the normal pathway of phagocytosis and degradation. The molecular mechanisms which confer resistance to amoeba are apparently conserved and also allow replication within macrophages. Thus, L. pneumophila can act as an 'accidental' human pathogen and cause a severe pneumonia known as Legionnaires' disease. The intracellular localisation of L. pneumophila protects it from some antibiotics, and this fact must be taken into account to develop new anti-bacterial compounds. In addition, the intracellular lifestyle of L. pneumophila may render the bacteria susceptible to compounds diminishing bacterial virulence and decreasing intracellular survival and replication of this pathogen. The development of a single infection cycle intracellular replication assay using GFP-producing L. pneumophila and Acanthamoebacastellanii amoeba is reported here. This fluorescence-based assay allows for continuous monitoring of intracellular replication rates, revealing the effect of bacterial gene deletions or drug treatment. To examine how perturbations of the host cell affect L. pneumophila replication, several known host-targeting compounds were tested, including modulators of cytoskeletal dynamics, vesicle scission and Ras GTPase localisation. Our results reveal a hitherto unrealized potential antibiotic property of the β-lactone-based Ras depalmitoylation inhibitor palmostatin M, but not the closely related inhibitor palmostatin B. Further characterisation indicated that this compound caused specific growth inhibition of Legionella and Mycobacterium species, suggesting that it may act on a common bacterial target.

  2. Systematic bacterialization of yeast genes identifies a near-universally swappable pathway

    PubMed Central

    Kachroo, Aashiq H; Laurent, Jon M; Akhmetov, Azat; Szilagyi-Jones, Madelyn; McWhite, Claire D; Zhao, Alice; Marcotte, Edward M

    2017-01-01

    Eukaryotes and prokaryotes last shared a common ancestor ~2 billion years ago, and while many present-day genes in these lineages predate this divergence, the extent to which these genes still perform their ancestral functions is largely unknown. To test principles governing retention of ancient function, we asked if prokaryotic genes could replace their essential eukaryotic orthologs. We systematically replaced essential genes in yeast by their 1:1 orthologs from Escherichia coli. After accounting for mitochondrial localization and alternative start codons, 31 out of 51 bacterial genes tested (61%) could complement a lethal growth defect and replace their yeast orthologs with minimal effects on growth rate. Replaceability was determined on a pathway-by-pathway basis; codon usage, abundance, and sequence similarity contributed predictive power. The heme biosynthesis pathway was particularly amenable to inter-kingdom exchange, with each yeast enzyme replaceable by its bacterial, human, or plant ortholog, suggesting it as a near-universally swappable pathway. DOI: http://dx.doi.org/10.7554/eLife.25093.001 PMID:28661399

  3. Influence of Three Contrasting Detrital Carbon Sources on Planktonic Bacterial Metabolism in a Mesotrophic Lake.

    PubMed

    Wehr; Petersen; Findlay

    1999-01-01

    Abstract Lakes receive organic carbon from a diversity of sources which vary in their contribution to planktonic microbial food webs. We conducted a mesocosm study to test the effects of three different detrital carbon sources (algae, aquatic macrophytes, terrestrial leaves) on several measures of microbial metabolism in a small meso-eutrophic lake (DOC approximately 5 mg/L). Small DOC additions (DeltaC < 1 mg/L) affected bacterial numbers, growth, and pathways of carbon acquisition. Macrophyte and leaf detritus significantly increased TDP and color, but bacterial densities initially (+12 h) were unaffected. After 168 h, densities in systems amended with terrestrial detritus were 60% less than in controls, while production rates in mesocosms with macrophyte detritus were 4-fold greater. Detritus treatments resulted in greater per-cell production rates either through stable cell numbers and greater growth rates (macrophyte-C) or lower densities with stable production rates (terrestrial-C). After only 12 h, rates of leucine aminopeptidase (LAPase) activity were 2.5x greater in macrophyte-C systems than in controls, but LAPase and beta-N-acetylglucosamindase activities in systems amended with terrestrial-C were only 50% of rates in controls. After 168 h, beta-xylosidase rates were significantly greater in communities with terrestrial and phytoplankton detritus. Microbial utilization of >20% of 102 carbon sources tested were affected by at least one detritus addition. Macrophyte-C had positive (6% of substrates) and negative (14%) effects on substrate use; terrestrial detritus had mainly positive effects. An ordination based on carbon-use profiles (+12 h) revealed a cluster of macrophyte-amended communities with greater use of psicose, lactulose, and succinamic acid; controls and algal-detritus systems were more effective in metabolizing two common sugars and cellobiose. After 168 h, communities receiving terrestrial detritus were most tightly clustered, exhibiting

  4. Estimating meningitis hospitalization rates for sentinel hospitals conducting invasive bacterial vaccine-preventable diseases surveillance.

    PubMed

    2013-10-04

    The World Health Organization (WHO)-coordinated Global Invasive Bacterial Vaccine-Preventable Diseases (IB-VPD) sentinel hospital surveillance network provides data for decision making regarding use of pneumococcal conjugate vaccine and Haemophilus influenzae type b (Hib) vaccine, both recommended for inclusion in routine childhood immunization programs worldwide. WHO recommends that countries conduct sentinel hospital surveillance for meningitis among children aged <5 years, including collection of cerebrospinal fluid (CSF) for laboratory detection of bacterial etiologies. Surveillance for pneumonia and sepsis are recommended at selected hospitals with well-functioning laboratories where meningitis surveillance consistently meets process indicators (e.g., surveillance performance indicators). To use sentinel hospital surveillance for meningitis to estimate meningitis hospitalization rates, WHO developed a rapid method to estimate the number of children at-risk for meningitis in a sentinel hospital catchment area. Monitoring changes in denominators over time using consistent methods is essential for interpreting changes in sentinel surveillance incidence data and for assessing the effect of vaccine introduction on disease epidemiology. This report describes the method and its use in The Gambia and Senegal.

  5. Chronic bacterial prostatitis in men with spinal cord injury.

    PubMed

    Krebs, Jörg; Bartel, Peter; Pannek, Jürgen

    2014-12-01

    Recurrent urinary tract infections (UTI) are a major problem affecting spinal cord injury (SCI) patients and may stem from chronic bacterial prostatitis. We have therefore investigated the presence of chronic bacterial prostatitis and its role in the development of recurrent symptomatic UTI in SCI men. This study is a prospective cross-sectional investigation of bacterial prostatitis in SCI men in a single SCI rehabilitation center. In 50 men with chronic SCI presenting for a routine urologic examination, urine samples before and after prostate massage were taken for microbiologic investigation and white blood cell counting. Furthermore, patient characteristics, bladder diary details, and the annual rate of symptomatic UTI were collected retrospectively. No participant reported current symptoms of UTI or prostatitis. In most men (39/50, 78 %), the microbiologic analysis of the post-massage urine sample revealed growth of pathogenic bacteria. The majority of these men (32/39, 82 %) also presented with mostly (27/39, 69 %) the same pathogenic bacteria in the pre-massage sample. There was no significant (p = 0.48) difference in the number of symptomatic UTI in men with a positive post-massage culture compared with those with a negative culture. No significant (p = 0.67) difference in the frequency distribution of positive versus negative post-massage cultures was detected between men with recurrent and sporadic UTI. Most SCI men are affected by asymptomatic bacterial prostatitis; however, bacterial prostatitis does not play a major role in the development of recurrent UTI. The indication for antibiotic treatment of chronic bacterial prostatitis in asymptomatic SCI men with recurrent UTI is questionable.

  6. Strain energy release rate analysis of cyclic delamination growth in compressively loaded laminates

    NASA Technical Reports Server (NTRS)

    Whitcomb, J. D.

    1983-01-01

    Delamination growth in compressively loaded composite laminates was studied analytically and experimentally. The configuration used was a laminate with an across-the-width delamination. An approximate super-position stress analysis was developed to quantify the effects of various geometric, material, and load parameters on mode 2 and mode 2 strain energy release rates G sub/1 and G sub 2, respectively. Calculated values of G sub 1 and G sub 2 were then compared with measured cyclic delamination growth rates to determine the relative importance of G sub 1 and G sub 2. High growth rates were observed only when G sub 1 was large. However, slow growth was observed even when G sub 1 was negligibly small. This growth apparently was due to a large value of G sub 2.

  7. Impact of the 3 °C temperature rise on bacterial growth and carbon transfer towards higher trophic levels: Empirical models for the Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Šolić, Mladen; Krstulović, Nada; Šantić, Danijela; Šestanović, Stefanija; Kušpilić, Grozdan; Bojanić, Natalia; Ordulj, Marin; Jozić, Slaven; Vrdoljak, Ana

    2017-09-01

    The Mediterranean Sea (including the Adriatic Sea) has been identified as a 'hotspot' for climate change, with the prediction of the increase in water temperature of 2-4 °C over the next few decades. Being mainly oligotrophic, and strongly phosphorus limited, the Adriatic Sea is characterized by the important role of the microbial food web in production and transfer of biomass and energy towards higher trophic levels. We hypothesized that predicted 3 °C temperature rise in the near future might cause an increase of bacterial production and bacterial losses to grazers, which could significantly enlarge the trophic base for metazoans. This empirical study is based on a combined 'space-for-time substitution' analysis (which is performed on 3583 data sets) and on an experimental approach (36 in situ grazing experiments performed at different temperatures). It showed that the predicted 3 °C temperature increase (which is a result of global warming) in the near future could cause a significant increase in bacterial growth at temperatures lower than 16 °C (during the colder winter-spring period, as well as in the deeper layers). The effect of temperature on bacterial growth could be additionally doubled in conditions without phosphorus limitation. Furthermore, a 3 °C increase in temperature could double the grazing on bacteria by heterotrophic nanoflagellate (HNF) and ciliate predators and it could increase the proportion of bacterial production transferred to the metazoan food web by 42%. Therefore, it is expected that global warming may further strengthen the role of the microbial food web in a carbon cycle in the Adriatic Sea.

  8. New microbial growth factor

    NASA Technical Reports Server (NTRS)

    Bok, S. H.; Casida, L. E., Jr.

    1977-01-01

    A screening procedure was used to isolate from soil a Penicillium sp., two bacterial isolates, and a Streptomyces sp. that produced a previously unknown microbial growth factor. This factor was an absolute growth requirement for three soil bacteria. The Penicillium sp. and one of the bacteria requiring the factor, an Arthrobacter sp., were selected for more extensive study concerning the production and characteristics of the growth factor. It did not seem to be related to the siderochromes. It was not present in soil extract, rumen fluid, or any other medium component tested. It appears to be a glycoprotein of high molecular weight and has high specific activity. When added to the diets for a meadow-vole mammalian test system, it caused an increased consumption of diet without a concurrent increase in rate of weight gain.

  9. The effects of temperature and NaCl concentration on tetragonal lysozyme face growth rates

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth; Pusey, Marc Lee

    1994-01-01

    Measurements were made of the (110) and (101) face growth rates of the tetragonal form of hen egg white lysozyme at 0.1M sodium acetate buffer, pH 4.0, from 4 to 22 C and with 3.0%, 5.0%, and 7.0% NaCl used as the precipitating salt. The data were collected at supersaturation ratios ranging from approximately 4 to approximately 63. Both decreasing temperature and increasing salt concentrations shifted plots of the growth rate versus C/C(sat) to the right, i.e. higher supersaturations were required for comparable growth rates. The observed trends in the growth data are counter to those expected from the solubility data. If tetragonal lysozyme crystal growth is by addition of ordered aggregates from the solution, then the observed growth data could be explained as a result of the effects of lowered temperature and increased salt concentration on the kinetics and equilibrium processes governing protein-protein interactions in solution. The data indicate that temperature would be a more tractable means of controlling the growth rate for tetragonal lysozyme crystals contrary to the usual practice in, e.g., vapor diffusion protein crystal growth, where both the precipitant and protein concentrations are simultaneously increased. However, the available range for control is dependent upon the protein concentration, with the greatest growth rate control being at the lower concentration.

  10. Modeling the cost and benefit of proteome regulation in a growing bacterial cell

    NASA Astrophysics Data System (ADS)

    Sharma, Pooja; Pratim Pandey, Parth; Jain, Sanjay

    2018-07-01

    Escherichia coli cells differentially regulate the production of metabolic and ribosomal proteins in order to stay close to an optimal growth rate in different environments, and exhibit the bacterial growth laws as a consequence. We present a simple mathematical model of a growing-dividing cell in which an internal dynamical mechanism regulates the allocation of proteomic resources between different protein sectors. The model allows an endogenous determination of the growth rate of the cell as a function of cellular and environmental parameters, and reproduces the bacterial growth laws. We use the model and its variants to study the balance between the cost and benefit of regulation. A cost is incurred because cellular resources are diverted to produce the regulatory apparatus. We show that there is a window of environments or a ‘niche’ in which the unregulated cell has a higher fitness than the regulated cell. Outside this niche there is a large space of constant and time varying environments in which regulation is an advantage. A knowledge of the ‘niche boundaries’ allows one to gain an intuitive understanding of the class of environments in which regulation is an advantage for the organism and which would therefore favour the evolution of regulation. The model allows us to determine the ‘niche boundaries’ as a function of cellular parameters such as the size of the burden of the regulatory apparatus. This class of models may be useful in elucidating various tradeoffs in cells and in making in-silico predictions relevant for synthetic biology.

  11. Associations between heterozygosity and growth rate variables in three western forest trees

    Treesearch

    Jeffry B. Milton; Peggy Knowles; Kareen B. Sturgeon; Yan B. Linhart; Martha Davis

    1981-01-01

    For each of three species, quaking aspen, ponderosa pine, and lodgepole pine, we determined the relationships between a ranking of heterozygosity of individuals and measures of growth rate. Genetic variation was assayed by starch gel electrophoresis of enzymes. Growth rates were characterized by the mean, standard deviation, logarithm of the variance, and coefficient...

  12. Contribution of heterotrophic bacterial production to the carbon budget of the river Seine (France).

    PubMed

    Servais, P; Garnier, J

    1993-01-01

    Bacterial activity was measured in the river Seine by two methods, (3)H-thymidine incorporation into DNA and (3)H-leucine incorporation into proteins. Both incorporation rates are characterized by low values upstream of Paris, a large increase just downstream of the outfall of the Achères treatment plant effluents, and then decreasing values further downstream. The covariation of both activities is demonstrated by the constancy of the molar ratio (leucine to thymidine incorporation rate) in the range of 6 to 8 for all the samples, except in the perturbed area where it is higher (15 to 35). These high values of molar ratio are linked to the introduction into the river of large sized bacteria ([Symbol: see text]1 µm) with higher incorporation rates per cell or biomass unit than the small autochthonous bacteria (< 1 µm). Growth rates of large bacteria were on average 3.7 times higher than those of small bacteria. Bacterial production was calculated with experimentally determined conversion factors (0.5 × 10(18) cells per mole of thymidine incorporated and 900 gC per mole of leucine incorporated) and by taking into account the activity of both size classes of bacteria measured through fractionation experiments (post-incubation filtration). Production estimated in the perturbed area downstream of Ach6res was very high, up to 60 µgC liter(-1)h(-1) in the summer. Carbon consumption by bacteria in the area perturbed by the Ach6res effluents was calculated assuming a growth yield of 0.2 and compared to the load of biodegradable organic matter discharged by the treatment plant. In summer, an additional supply of organic matter is required to account for the intense bacterial activity, suggesting the importance of phytoplankton production in the carbon budget.

  13. The evaluation system of city's smart growth success rates

    NASA Astrophysics Data System (ADS)

    Huang, Yifan

    2018-04-01

    "Smart growth" is to pursue the best integrated perform+-ance of the Economically prosperous, socially Equitable, and Environmentally Sustainable(3E). Firstly, we establish the smart growth evaluation system(SGI) and the sustainable development evaluation system(SDI). Based on the ten principles and the definition of three E's of sustainability. B y using the Z-score method and the principal component analysis method, we evaluate and quantify indexes synthetically. Then we define the success of smart growth as the ratio of the SDI to the SGI composite score growth rate (SSG). After that we select two cities — Canberra and Durres as the objects of our model in view of the model. Based on the development plans and key data of these two cities, we can figure out the success of smart growth. And according to our model, we adjust some of the growth indicators for both cities. Then observe the results before and after adjustment, and finally verify the accuracy of the model.

  14. Cholesterol supplementation improves growth rates of Histomonas meleagridis in vitro.

    PubMed

    Gruber, Janine; Pletzer, Alena; Hess, Michael

    2018-02-01

    Research on the energy metabolism of various protozoan parasites showed the essentiality and benefits of cholesterol in the cultivation of these organisms. However, not much is known about the energy metabolism of Histomonas meleagridis, although such information is of high importance to improve cultivation of the parasite for advancements in diagnostics, research and vaccine development. By supplementing a serum enriched cultivation medium with cholesterol, numbers of parasites could be doubled in comparison to unsupplemented negative controls. This effect was demonstrated for two different strains of the parasite, at different levels of in vitro-passages and for histomonads under xenic or monoxenic settings. Supplementing medium free of serum with cholesterol, resulted in significant growth of the parasite over 72 h. However, there were differences in growth behaviour in serum free medium between the different histomonad cultures and continuous passaging of the cultures without serum was not possible. Monitoring the bacterial growth of two different co-cultivated E. coli strains in monoxenic histomonad cultures during these experiments showed that there was no significant impact of cholesterol on the bacteria. Therefore, a direct effect of cholesterol on the parasite itself could be demonstrated. The results of these experiments supply new insights into the metabolism of H. meleagridis and it can be concluded that cholesterol is an important component to enhance parasite growth in vitro. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Rate limits in silicon sheet growth - The connections between vertical and horizontal methods

    NASA Technical Reports Server (NTRS)

    Thomas, Paul D.; Brown, Robert A.

    1987-01-01

    Meniscus-defined techniques for the growth of thin silicon sheets fall into two categories: vertical and horizontal growth. The interactions of the temperature field and the crystal shape are analyzed for both methods using two-dimensional finite-element models which include heat transfer and capillarity. Heat transfer in vertical growth systems is dominated by conduction in the melt and the crystal, with almost flat melt/crystal interfaces that are perpendicular to the direction of growth. The high axial temperature gradients characteristic of vertical growth lead to high thermal stresses. The maximum growth rate is also limited by capillarity which can restrict the conduction of heat from the melt into the crystal. In horizontal growth the melt/crystal interface stretches across the surface of the melt pool many times the crystal thickness, and low growth rates are achievable with careful temperature control. With a moderate axial temperature gradient in the sheet a substantial portion of the latent heat conducts along the sheet and the surface of the melt pool becomes supercooled, leading to dendritic growth. The thermal supercooling is surpressed by lowering the axial gradient in the crystal; this configuration is the most desirable for the growth of high quality crystals. An expression derived from scaling analysis relating the growth rate and the crucible temperature is shown to be reliable for horizontal growth.

  16. Growth Rates and Mechanisms of Magmatic Orbicule Formation: Insights from Calcium Isotopes

    NASA Astrophysics Data System (ADS)

    Antonelli, M. A.; Watkins, J. M.; DePaolo, D. J.

    2017-12-01

    Orbicular diorites and granites are rare plutonic rock textures that remain enigmatic despite a century of study. Orbicules consist of a rounded core (xenolith, xenocryst, or autolith) surrounded by a variable number of concentric rings defined by different modal mineralogies and textures. Recent work suggests that the alternating layers of mineral growth are a consequence of either changes in external conditions of the magma (e.g. temperature, magma composition due to mixing, changes in volatile abundances), or rapid growth of one mineral phase (e.g plagioclase) creating a depleted boundary layer that then promotes precipitation of an alternative mineral phase (e.g. pyroxene). This process can be repeated to produce multiple layers. The rates at which orbicules grow is also of interest and relates to the mechanisms. Studies of orbicular diorites from the northern Sierra Nevada suggest exceptionally high growth rates (McCarthy et al., 2016). Ca isotopes can offer a unique perspective on orbicule formation, as diffusive isotope fractionation should be substantial when growth rates are high, and they are also sensitive to the nature of the growth medium (silicate liquid or supercritical fluid phase). We present δ44Ca measurements and chemistry for a transect of a dioritic orbicule collected from Emerald Lake, California (Sierra Nevada), where the growth layers are defined by variations in plagioclase/pyroxene ratio, grain size, and texture. Ca concentration varies from 5-13 wt%, and d44Ca values oscillate between -0.5 to 0.0‰ relative to BSE, correlating with changes in mineralogy and texture. Zones of plagioclase comb texture are associated with negative δ44Ca excursions of -0.2 to -0.4‰, consistent with diffusive isotope fractionation during rapid mineral growth. Assuming a 10‰ difference in diffusivity for 44Ca vs. 40Ca in dioritic liquids (Watson et al., 2016), and using the models of Watson and Muller (2009) as a guide, these small fractionations

  17. Shape of growth-rate distribution determines the type of Non-Gibrat’s Property

    NASA Astrophysics Data System (ADS)

    Ishikawa, Atushi; Fujimoto, Shouji; Mizuno, Takayuki

    2011-11-01

    In this study, the authors examine exhaustive business data on Japanese firms, which cover nearly all companies in the mid- and large-scale ranges in terms of firm size, to reach several key findings on profits/sales distribution and business growth trends. Here, profits denote net profits. First, detailed balance is observed not only in profits data but also in sales data. Furthermore, the growth-rate distribution of sales has wider tails than the linear growth-rate distribution of profits in log-log scale. On the one hand, in the mid-scale range of profits, the probability of positive growth decreases and the probability of negative growth increases symmetrically as the initial value increases. This is called Non-Gibrat’s First Property. On the other hand, in the mid-scale range of sales, the probability of positive growth decreases as the initial value increases, while the probability of negative growth hardly changes. This is called Non-Gibrat’s Second Property. Under detailed balance, Non-Gibrat’s First and Second Properties are analytically derived from the linear and quadratic growth-rate distributions in log-log scale, respectively. In both cases, the log-normal distribution is inferred from Non-Gibrat’s Properties and detailed balance. These analytic results are verified by empirical data. Consequently, this clarifies the notion that the difference in shapes between growth-rate distributions of sales and profits is closely related to the difference between the two Non-Gibrat’s Properties in the mid-scale range.

  18. Temporal variability in detritus resource maintains diversity of bacterial communities

    NASA Astrophysics Data System (ADS)

    Hiltunen, Teppo; Laakso, Jouni; Kaitala, Veijo; Suomalainen, Lotta-Riina; Pekkonen, Minna

    2008-05-01

    Competition theory generally predicts that diversity is maintained by temporal environmental fluctuations. One of the many suggested mechanisms for maintaining diversity in fluctuating environments is the gleaner-opportunist trade-off, whereby gleaner species have low threshold resource levels and low maximum growth rates in high resource concentration while opportunist species show opposite characteristics. We measured the growth rates of eight heterotrophic aquatic bacteria under different concentrations of chemically complex plant detritus resource. The growth rates revealed gleaner-opportunist trade-offs. The role of environmental variability in maintaining diversity was tested in a 28-day experiment with three different resource fluctuation regimes imposed on two four-species bacterial communities in microcosms. We recorded population densities with serial dilution plating and total biomass as turbidity. Changes in resource availability were measured from filter-sterilised medium by re-introducing the consumer species and recording short-term growth rates. The type of environmental variation had no effect on resource availability, which declined slowly during the experiment and differed in level between the communities. However, the slowly fluctuating environment had the highest Shannon diversity index, biomass, and coefficient of variation of biomass in both communities. We did not find a clear link between the gleaner-opportunist trade-off and diversity in fluctuating environments. Nevertheless, our results do not exclude this explanation and support the general view that temporal environmental variation maintains species diversity also in communities feeding chemically complex resource.

  19. Stable Regulation of Cell Cycle Events in Mycobacteria: Insights From Inherently Heterogeneous Bacterial Populations.

    PubMed

    Logsdon, Michelle M; Aldridge, Bree B

    2018-01-01

    Model bacteria, such as E. coli and B. subtilis , tightly regulate cell cycle progression to achieve consistent cell size distributions and replication dynamics. Many of the hallmark features of these model bacteria, including lateral cell wall elongation and symmetric growth and division, do not occur in mycobacteria. Instead, mycobacterial growth is characterized by asymmetric polar growth and division. This innate asymmetry creates unequal birth sizes and growth rates for daughter cells with each division, generating a phenotypically heterogeneous population. Although the asymmetric growth patterns of mycobacteria lead to a larger variation in birth size than typically seen in model bacterial populations, the cell size distribution is stable over time. Here, we review the cellular mechanisms of growth, division, and cell cycle progression in mycobacteria in the face of asymmetry and inherent heterogeneity. These processes coalesce to control cell size. Although Mycobacterium smegmatis and Mycobacterium bovis Bacillus Calmette-Guérin (BCG) utilize a novel model of cell size control, they are similar to previously studied bacteria in that initiation of DNA replication is a key checkpoint for cell division. We compare the regulation of DNA replication initiation and strategies used for cell size homeostasis in mycobacteria and model bacteria. Finally, we review the importance of cellular organization and chromosome segregation relating to the physiology of mycobacteria and consider how new frameworks could be applied across the wide spectrum of bacterial diversity.

  20. Maximum Rate of Growth of Enstrophy in Solutions of the Fractional Burgers Equation

    NASA Astrophysics Data System (ADS)

    Yun, Dongfang; Protas, Bartosz

    2018-02-01

    This investigation is a part of a research program aiming to characterize the extreme behavior possible in hydrodynamic models by analyzing the maximum growth of certain fundamental quantities. We consider here the rate of growth of the classical and fractional enstrophy in the fractional Burgers equation in the subcritical and supercritical regimes. Since solutions to this equation exhibit, respectively, globally well-posed behavior and finite-time blowup in these two regimes, this makes it a useful model to study the maximum instantaneous growth of enstrophy possible in these two distinct situations. First, we obtain estimates on the rates of growth and then show that these estimates are sharp up to numerical prefactors. This is done by numerically solving suitably defined constrained maximization problems and then demonstrating that for different values of the fractional dissipation exponent the obtained maximizers saturate the upper bounds in the estimates as the enstrophy increases. We conclude that the power-law dependence of the enstrophy rate of growth on the fractional dissipation exponent has the same global form in the subcritical, critical and parts of the supercritical regime. This indicates that the maximum enstrophy rate of growth changes smoothly as global well-posedness is lost when the fractional dissipation exponent attains supercritical values. In addition, nontrivial behavior is revealed for the maximum rate of growth of the fractional enstrophy obtained for small values of the fractional dissipation exponents. We also characterize the structure of the maximizers in different cases.