Sample records for bacterial isolates including

  1. Cultured bacterial diversity and human impact on alpine glacier cryoconite.

    PubMed

    Lee, Yung Mi; Kim, So-Yeon; Jung, Jia; Kim, Eun Hye; Cho, Kyeung Hee; Schinner, Franz; Margesin, Rosa; Hong, Soon Gyu; Lee, Hong Kum

    2011-06-01

    The anthropogenic effect on the microbial communities in alpine glacier cryoconites was investigated by cultivation and physiological characterization of bacteria from six cryoconite samples taken at sites with different amounts of human impact. Two hundred and forty seven bacterial isolates were included in Actinobacteria (9%, particularly Arthrobacter), Bacteroidetes (14%, particularly Olleya), Firmicutes (0.8%), Alphaproteobacteria (2%), Betaproteobacteria (16%, particularly Janthinobacterium), and Gammaproteobacteria (59%, particularly Pseudomonas). Among them, isolates of Arthrobacter were detected only in samples from sites with no human impact, while isolates affiliated with Enterobacteriaceae were detected only in samples from sites with strong human impact. Bacterial isolates included in Actinobacteria and Bacteroidetes were frequently isolated from pristine sites and showed low maximum growth temperature and enzyme secretion. Bacterial isolates included in Gammaproteobacteria were more frequently isolated from sites with stronger human impact and showed high maximum growth temperature and enzyme secretion. Ecotypic differences were not evident among isolates of Janthinobacterium lividum, Pseudomonas fluorescens, and Pseudomonas veronii, which were frequently isolated from sites with different degrees of anthropogenic effect.

  2. Prevalence of gastrointestinal bacterial pathogens in a population of zoo animals.

    PubMed

    Stirling, J; Griffith, M; Blair, I; Cormican, M; Dooley, J S G; Goldsmith, C E; Glover, S G; Loughrey, A; Lowery, C J; Matsuda, M; McClurg, R; McCorry, K; McDowell, D; McMahon, A; Cherie Millar, B; Nagano, Y; Rao, J R; Rooney, P J; Smyth, M; Snelling, W J; Xu, J; Moore, J E

    2008-04-01

    Faecal prevalence of gastrointestinal bacterial pathogens, including Campylobacter, Escherichia coli O157:H7, Salmonella, Shigella, Yersinia, as well as Arcobacter, were examined in 317 faecal specimens from 44 animal species in Belfast Zoological Gardens, during July-September 2006. Thermophilic campylobacters including Campylobacter jejuni, Campylobacter coli and Campylobacter lari, were the most frequently isolated pathogens, where members of this genus were isolated from 11 animal species (11 of 44; 25%). Yersinia spp. were isolated from seven animal species (seven of 44; 15.9%) and included, Yersinia enterocolitica (five of seven isolates; 71.4%) and one isolate each of Yersinia frederiksenii and Yersinia kristensenii. Only one isolate of Salmonella was obtained throughout the entire study, which was an isolate of Salmonella dublin (O 1,9,12: H g, p), originating from tiger faeces after enrichment. None of the animal species found in public contact areas of the zoo were positive for any gastrointestinal bacterial pathogens. Also, water from the lake in the centre of the grounds, was examined for the same bacterial pathogens and was found to contain C. jejuni. This study is the first report on the isolation of a number of important bacterial pathogens from a variety of novel host species, C. jejuni from the red kangaroo (Macropus rufus), C. lari from a maned wolf (Chrysocyon brachyurus), Y. kristensenii from a vicugna (Vicugna vicugna) and Y. enterocolitica from a maned wolf and red panda (Ailurus fulgens). In conclusion, this study demonstrated that the faeces of animals in public contact areas of the zoo were not positive for the bacterial gastrointestinal pathogens examined. This is reassuring for the public health of visitors, particularly children, who enjoy this educational and recreational resource.

  3. Clonality of Bacterial Pathogens Causing Hospital-Acquired Pneumonia.

    PubMed

    Pudová, V; Htoutou Sedláková, M; Kolář, M

    2016-09-01

    Hospital-acquired pneumonia (HAP) is one of the most serious complications in patients staying in intensive care units. This multicenter study of Czech patients with HAP aimed at assessing the clonality of bacterial pathogens causing the condition. Bacterial isolates were compared using pulsed-field gel electrophoresis. Included in this study were 330 patients hospitalized between May 1, 2013 and December 31, 2014 at departments of anesthesiology and intensive care medicine of four big hospitals in the Czech Republic. A total of 531 bacterial isolates were obtained, of which 267 were classified as etiological agents causing HAP. Similarity or identity was assessed in 231 bacterial isolates most frequently obtained from HAP patients. Over the study period, no significant clonal spread was noted. Most isolates were unique strains, and the included HAP cases may therefore be characterized as mostly endogenous. Yet there were differences in species and potential identical isolates between the participating centers. In three hospitals, Gram-negative bacteria (Enterobacteriaceae and Pseudomonas aeruginosa) prevailed as etiological agents, and Staphylococcus aureus was most prevalent in the fourth center.

  4. Preponderance of bacterial isolates in urine of HIV-positive malaria-infected pregnant women with urinary tract infection.

    PubMed

    Ako-Nai, Kwashie Ajibade; Ebhodaghe, Blessing Itohan; Osho, Patrick; Adejuyigbe, Ebun; Adeyemi, Folasade Mubiat; Kassim, Olakunle O

    2014-12-15

    This study examined HIV and malaria co-infection as a risk factor for urinary tract infections (UTIs) in pregnancy. The study group included 74 pregnant women, 20 to 42 years of age, who attended the antenatal clinic at the Specialist Hospital at Akure, Ondo State, Nigeria. Forty-four of the pregnant women were either HIV seropositive with malaria infection (HIV+Mal+) or HIV seropositive without malaria (HIV+Mal-). The remaining thirty pregnant women served as controls and included women HIV seronegative but with malaria (HIV-Mal+) and women HIV seronegative without malaria. UTI was indicated by a bacterial colony count of greater than 10⁵/mL of urine, using cysteine lactose electrolyte deficient medium (CLED) as the primary isolation medium. Bacterial isolates were characterized using convectional bacteriological methods, and antibiotics sensitivity tests were carried out using the disk diffusion method. A total of 246 bacterial isolates were recovered from the cultures, with a mean of 3.53 isolates per subject. Women who were HIV+Mal+ had the most diverse group of bacterial isolates and the highest frequency of UTIs. The bacterial isolates from the HIV+Mal+ women also showed the highest degree of antibiotic resistance. While pregnancy and HIV infection may each represent a risk factor for UTI, HIV and malaria co-infection may increase its frequency in pregnancy. The higher frequency of multiple antibiotic resistance observed among the isolates, particularly isolates from HIV+Mal+ subjects, poses a serious public health concern as these strains may aggravate the prognosis of both UTI and HIV infection.

  5. Prevalence of LuxR- and LuxI-type quorum sensing circuits in members of the Populus deltoides microbiome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer, Amy L; Lappala, Colin; Morlen, Ryan

    2013-01-01

    We are interested in the root microbiome of the fast-growing Eastern cottonwood tree, Populus 25 deltoides. There is a large bank of bacterial isolates from P. deltoides and there are 44 draft 26 genomes of bacterial endophyte and rhizosphere isolates. As a first step in efforts to understand 27 the roles of bacterial communication and plant-bacterial signaling in P. deltoides we focused on 28 the prevalence of acyl-homoserine lactone (AHL) quorum sensing signal production and 29 reception in members of the P. deltoides microbiome. We screened 129 bacterial isolates for 30 AHL production using a broad-spectrum bioassay that responds tomore » many but not all AHLs, and 31 we queried the available genome sequences of microbiome isolates for homologs of AHL 32 synthase and receptor genes. AHL signal production was detected in 40% of 129 strains tested. 33 Positive isolates included -, - and -Proteobacteria. Members of the luxI family of AHL 34 synthases were identified in 18 of 39 Proteobacteria genomes including genomes of some 35 isolates that tested negative in the bioassay. Members of the luxR family of transcription factors, 36 that include AHL-responsive factors, were more abundant than luxI homologs. There were 72 in 37 the 39 Proteobacteria genomes. Some of the luxR homologs appear to be members of a 38 subfamily of LuxRs that respond to as yet unknown plant signals rather than bacterial AHLs. 39 Apparently, there is a substantial capacity for AHL cell-to-cell communication in Proteobacteria 40 of the P. deltoides microbiota and there are also Proteobacteria with LuxR homologs of the type 41 hypothesized to respond to plant signals or cues.« less

  6. Antimicrobial resistance among aerobic biofilm producing bacteria isolated from chronic wounds in the tertiary care hospitals of Peshawar, Pakistan.

    PubMed

    Rahim, K; Qasim, M; Rahman, H; Khan, T A; Ahmad, I; Khan, N; Ullah, A; Basit, A; Saleha, S

    2016-08-01

    Chronic wound infections impose major medical and economic costs on health-care systems, cause significant morbidity, mortality and prolonged hospitalisation. The presence of biofilm producing bacteria in these wounds is considered as an important virulence factor that leads to chronic implications including ulceration. The undertaken study aimed to isolate and identify the biofilm aerobic bacterial pathogens from patients with chronic wound infections, and determine their antibiotics resistance profiles Method: During this study, swab specimens were collected from patients with chronic wounds at teaching hospitals of Peshawar, Pakistan between May 2013 and June 2014. The isolated aerobic bacterial pathogens were identified on the basis of standard cultural characteristics and biochemical tests. Antibiotics resistance profiles of biofilm producing bacteria against selected antibiotics were then determined. Among the chronic wound infections, diabetic foot ulcers were most common 37 (37%), followed by surgical ulcers 27 (27%). Chronic wounds were common in male patients older than 40 years. Among the total 163 isolated bacterial pathogens the most prevalent bacterial species were Pseudomonas aeruginosa 44 (27%), Klebsiella pneumoniae 26 (16%), Staphylococcus species 22 (14%) and Streptococcus spp. 21 (13%). The isolation rate of bacterial pathogens was high among patients with diabetic foot ulcers 83 (50.9%). Among bacterial isolates, 108 (66.2%) were observed as biofilm producers while 55 (33.8%) did not form biofilm in our model. The investigated biofilm producing bacterial isolates showed comparatively high resistance against tested antibiotics compared to non-biofilm producing bacterial isolates. The most effective antibiotics were amikacine and cefepime against all isolates. Increased multidrug resistance in biofilm producing bacteria associated with chronic wounds was observed in this study. Judicious use of antibiotics is needed to control the wound associated biofilm associated pathogens.

  7. Comparison of different methods for isolation of bacterial DNA from retail oyster tissues

    USDA-ARS?s Scientific Manuscript database

    Oysters are filter-feeders that bio-accumulate bacteria in water while feeding. To evaluate the bacterial genomic DNA extracted from retail oyster tissues, including the gills and digestive glands, four isolation methods were used. Genomic DNA extraction was performed using the Allmag™ Blood Genomic...

  8. Assembled sequence contigs by SOAPdenova and Volvet algorithms from metagenomic short reads of a new bacterial isolate of gut origin

    USDA-ARS?s Scientific Manuscript database

    Assembled sequence contigs by SOAPdenova and Volvet algorithms from metagenomic short reads of a new bacterial isolate of gut origin. This study included 2 submissions with a total of 9.8 million bp of assembled contigs....

  9. Widespread Elevational Occurrence of Antifungal Bacteria in Andean Amphibians Decimated by Disease: A Complex Role for Skin Symbionts in Defense Against Chytridiomycosis

    PubMed Central

    Catenazzi, Alessandro; Flechas, Sandra V.; Burkart, David; Hooven, Nathan D.; Townsend, Joseph; Vredenburg, Vance T.

    2018-01-01

    Emerging infectious disease is a growing threat to global health, and recent discoveries reveal that the microbiota dwelling on and within hosts can play an important role in health and disease. To understand the capacity of skin bacteria to protect amphibian hosts from the fungal disease chytridiomycosis caused by Batrachochytrium dendrobatidis (Bd), we isolated 192 bacterial morphotypes from the skin of 28 host species of frogs (families Bufonidae, Centrolenidae, Hemiphractidae, Hylidae, Leptodactylidae, Strabomantidae, and Telmatobiidae) collected from the eastern slopes of the Peruvian Andes (540–3,865 m a.s.l.) in the Kosñipata Valley near Manu National Park, a site where we previously documented the collapse of montane frog communities following chytridiomycosis epizootics. We obtained isolates through agar culture from skin swabs of wild frogs, and identified bacterial isolates by comparing 16S rRNA sequences against the GenBank database using BLAST. We identified 178 bacterial strains of 38 genera, including 59 bacterial species not previously reported from any amphibian host. The most common bacterial isolates were species of Pseudomonas, Paenibacillus, Chryseobacterium, Comamonas, Sphingobacterium, and Stenotrophomonas. We assayed the anti-fungal abilities of 133 bacterial isolates from 26 frog species. To test whether cutaneous bacteria might inhibit growth of the fungal pathogen, we used a local Bd strain isolated from the mouthparts of stream-dwelling tadpoles (Hypsiboas gladiator, Hylidae). We quantified Bd-inhibition in vitro with co-culture assays. We found 20 bacterial isolates that inhibited Bd growth, including three isolates not previously known for such inhibitory abilities. Anti-Bd isolates occurred on aquatic and terrestrial breeding frogs across a wide range of elevations (560–3,695 m a.s.l.). The inhibitory ability of anti-Bd isolates varied considerably. The proportion of anti-Bd isolates was lowest at mid-elevations (6%), where amphibian declines have been steepest, and among hosts that are highly susceptible to chytridiomycosis (0–14%). Among non-susceptible species, two had the highest proportion of anti-Bd isolates (40 and 45%), but one common and non-susceptible species had a low proportion (13%). In conclusion, we show that anti-Bd bacteria are widely distributed elevationally and phylogenetically across frog species that have persisted in a region where chytridiomycosis emerged, caused a devastating epizootic and continues to infect amphibians. PMID:29593698

  10. [Polyvalence of bacteriophages isolated from fruit trees, affected by bacterial fire blight].

    PubMed

    Tovkach, F I; Moroz, S N; Korol', N A; Faĭdiuk, Iu V; Kushkina, A I

    2013-01-01

    Phage populations appearing as a result of a pathogenic process caused by Erwinia amylovora have been discovered and described. They accompany bacterial fire blight development in the process of quince, pear and apple trees vegetation in Zakarpattya region of Ukraine. Phage isolates of the affected pear and quince include polyvalent virulent phages able to develop on bacterial strains associated with plants--E. amylovora. E. "horticola" and Pantoea agglomerans. E. amylovora isolated from the plant tissues affected by the fire blight and detected at the same time as phages proved to be resistant to the viral infection. It is hard to explain now this characteristic however it was noticed that resistance to phages can change drastically in case of dissociation, lysogenization and mutagenesis of erwinia in laboratory conditions. Phage population study shows that they are heterogeneous and can obviously include not only polyvalent but also specific viruses. Further studies of biology and molecular genetics of pure lines of isolated phages will help to get closer to understanding the place and role of bacteriophages in the complicated network of relations between bacterial pathogens and plants.

  11. Antibiotic Susceptibility Patterns of Bacterial Isolates from Pus Samples in a Tertiary Care Hospital of Punjab, India

    PubMed Central

    Trojan, Rugira; Razdan, Lovely

    2016-01-01

    We determined the prevalence and antibiotic susceptibilities patterns of bacterial isolates from pus samples collected from patients in a tertiary care hospital of Punjab, India. E. coli was the most prevalent pathogen (51.2%) followed by Staphylococcus aureus (21%), Klebsiella pneumoniae (11.6%), Pseudomonas aeruginosa (5.8%), Citrobacter spp. (3.5%), Acinetobacter baumannii (2.3%), Proteus mirabilis (2.3%), and Streptococcus spp. (2.3%). E. coli, K. pneumoniae, A. baumannii, and Citrobacter isolates were resistant to multiple antibiotics including higher generation cephalosporins. S. aureus and Streptococcus isolates were sensitive to cloxacillin and vancomycin. However, P. aeruginosa, P. mirabilis, and Streptococcus isolates were found to be less resistant to the spectrum of antibiotics tested. Overall, our findings indicate the prevalence of resistance to different classes of antibiotics in bacterial isolates from pus infections and hence highlight the need for effective surveillance, regulator reporting, and antibiogram-guided antibiotic prescription. PMID:27872643

  12. Antibiotic Susceptibility Patterns of Bacterial Isolates from Pus Samples in a Tertiary Care Hospital of Punjab, India.

    PubMed

    Trojan, Rugira; Razdan, Lovely; Singh, Nasib

    2016-01-01

    We determined the prevalence and antibiotic susceptibilities patterns of bacterial isolates from pus samples collected from patients in a tertiary care hospital of Punjab, India. E. coli was the most prevalent pathogen (51.2%) followed by Staphylococcus aureus (21%), Klebsiella pneumoniae (11.6%), Pseudomonas aeruginosa (5.8%), Citrobacte r spp. (3.5%), Acinetobacter baumannii (2.3%), Proteus mirabilis (2.3%), and Streptococcus spp. (2.3%). E. coli , K. pneumoniae , A. baumannii , and Citrobacter isolates were resistant to multiple antibiotics including higher generation cephalosporins. S. aureus and Streptococcus isolates were sensitive to cloxacillin and vancomycin. However, P. aeruginosa , P. mirabilis , and Streptococcus isolates were found to be less resistant to the spectrum of antibiotics tested. Overall, our findings indicate the prevalence of resistance to different classes of antibiotics in bacterial isolates from pus infections and hence highlight the need for effective surveillance, regulator reporting, and antibiogram-guided antibiotic prescription.

  13. Predicted Bacterial Interactions Affect in Vivo Microbial Colonization Dynamics in Nematostella

    PubMed Central

    Domin, Hanna; Zurita-Gutiérrez, Yazmín H.; Scotti, Marco; Buttlar, Jann; Hentschel Humeida, Ute; Fraune, Sebastian

    2018-01-01

    The maintenance and resilience of host-associated microbiota during development is a fundamental process influencing the fitness of many organisms. Several host properties were identified as influencing factors on bacterial colonization, including the innate immune system, mucus composition, and diet. In contrast, the importance of bacteria–bacteria interactions on host colonization is less understood. Here, we use bacterial abundance data of the marine model organism Nematostella vectensis to reconstruct potential bacteria–bacteria interactions through co-occurrence networks. The analysis indicates that bacteria–bacteria interactions are dynamic during host colonization and change according to the host’s developmental stage. To assess the predictive power of inferred interactions, we tested bacterial isolates with predicted cooperative or competitive behavior for their ability to influence bacterial recolonization dynamics. Within 3 days of recolonization, all tested bacterial isolates affected bacterial community structure, while only competitive bacteria increased bacterial diversity. Only 1 week after recolonization, almost no differences in bacterial community structure could be observed between control and treatments. These results show that predicted competitive bacteria can influence community structure for a short period of time, verifying the in silico predictions. However, within 1 week, the effects of the bacterial isolates are neutralized, indicating a high degree of resilience of the bacterial community. PMID:29740401

  14. INFECTION RETARDANT COATINGS IMPACT ON BACTERIAL PRESENCE IN PENILE PROSTHESIS SURGERY: A MULTICENTER STUDY.

    PubMed

    Jani, Kavina; Smith, Christopher; Delk, John R; Carson, Culley C; Donatucci, Craig F; Cleves, Mario A; Wilson, Steven K; Henry, Gerard D

    2018-06-09

    To investigate patients for positive culture rates with or without IRC PPs and to examine changes in culture positive isolates found in patients presenting overt clinical infection. Cultures were obtained from PPs immediately upon surgical exposure of the pump. 236 patients were broken down into 2 groups, with each further divided into 2 groups. The non-infected group included 208 patients: 133 with uncoated PPs and 75 with IRC implants. The infected group included 28 patients: 16 with uncoated PP and 12 with IRC IPP. Additionally, sensitivity to the combination of tetracycline and rifampin were evaluated on all cultures. In the non-infected group, culture positive isolates were found in 85 patients with uncoated PP's and in 32 patients with IRC implants [p-value = 0.0003]. Cultures positive for Staphylococcus genus were found in 75 uncoated PP patients, while 20 patients with IRC implants had an isolate of this genus. In the infected group, culture positive isolates were found in 7 patients with uncoated PP and 6 patients with IRC IPPs [p-value = 1.000]. Positive cultures for Staphylococcus genus were found in 6 patients with uncoated PP, while 3 patients with IRC IPP had an isolate of this genus. All bacterial isolates were sensitive to the combination of tetracycline and rifampin. Positive bacterial cultures have been shown to be present on clinically uninfected IPPs at time of revision surgery. Culture isolates grown from patients with IRC IPPs reveal a non-traditional bacterial profile: fewer cultured isolates of Staphylococcus genus. Copyright © 2018. Published by Elsevier Inc.

  15. Isolation of biologically active nanomaterial (inclusion bodies) from bacterial cells

    PubMed Central

    2010-01-01

    Background In recent years bacterial inclusion bodies (IBs) were recognised as highly pure deposits of active proteins inside bacterial cells. Such active nanoparticles are very interesting for further downstream protein isolation, as well as for many other applications in nanomedicine, cosmetic, chemical and pharmaceutical industry. To prepare large quantities of a high quality product, the whole bioprocess has to be optimised. This includes not only the cultivation of the bacterial culture, but also the isolation step itself, which can be of critical importance for the production process. To determine the most appropriate method for the isolation of biologically active nanoparticles, three methods for bacterial cell disruption were analyzed. Results In this study, enzymatic lysis and two mechanical methods, high-pressure homogenization and sonication, were compared. During enzymatic lysis the enzyme lysozyme was found to attach to the surface of IBs, and it could not be removed by simple washing. As this represents an additional impurity in the engineered nanoparticles, we concluded that enzymatic lysis is not the most suitable method for IBs isolation. During sonication proteins are released (lost) from the surface of IBs and thus the surface of IBs appears more porous when compared to the other two methods. We also found that the acoustic output power needed to isolate the IBs from bacterial cells actually damages proteins structures, thereby causing a reduction in biological activity. High-pressure homogenization also caused some damage to IBs, however the protein loss from the IBs was negligible. Furthermore, homogenization had no side-effects on protein biological activity. Conclusions The study shows that among the three methods tested, homogenization is the most appropriate method for the isolation of active nanoparticles from bacterial cells. PMID:20831775

  16. Isolation of biologically active nanomaterial (inclusion bodies) from bacterial cells.

    PubMed

    Peternel, Spela; Komel, Radovan

    2010-09-10

    In recent years bacterial inclusion bodies (IBs) were recognised as highly pure deposits of active proteins inside bacterial cells. Such active nanoparticles are very interesting for further downstream protein isolation, as well as for many other applications in nanomedicine, cosmetic, chemical and pharmaceutical industry.To prepare large quantities of a high quality product, the whole bioprocess has to be optimised. This includes not only the cultivation of the bacterial culture, but also the isolation step itself, which can be of critical importance for the production process.To determine the most appropriate method for the isolation of biologically active nanoparticles, three methods for bacterial cell disruption were analyzed. In this study, enzymatic lysis and two mechanical methods, high-pressure homogenization and sonication, were compared.During enzymatic lysis the enzyme lysozyme was found to attach to the surface of IBs, and it could not be removed by simple washing. As this represents an additional impurity in the engineered nanoparticles, we concluded that enzymatic lysis is not the most suitable method for IBs isolation.During sonication proteins are released (lost) from the surface of IBs and thus the surface of IBs appears more porous when compared to the other two methods. We also found that the acoustic output power needed to isolate the IBs from bacterial cells actually damages proteins structures, thereby causing a reduction in biological activity.High-pressure homogenization also caused some damage to IBs, however the protein loss from the IBs was negligible. Furthermore, homogenization had no side-effects on protein biological activity. The study shows that among the three methods tested, homogenization is the most appropriate method for the isolation of active nanoparticles from bacterial cells.

  17. Microbiological and molecular identification of bacterial species isolated from nasal and oropharyngeal mucosa of fuel workers in Riyadh, Saudi Arabia.

    PubMed

    AlWakeel, Suaad S

    2017-09-01

    This study aimed to determine the bacterial species colonizing the nasal and oropharyngeal mucosa of fuel workers in Central Riyadh, Saudi Arabia on a microbiological and molecular level. Throat and nasal swab samples were obtained from 29 fuel station attendants in the period of time extending from March to May 2014 in Riyadh, Saudi Arabia. Microbiological identification techniques were utilized to identify the bacterial species isolated. Antibiotic sensitivity was assessed for each of the bacterial isolates. Molecular identification techniques based on PCR analysis of specific genomic sequences was conducted and was the basis on which phylogeny representation was done for 10 randomly selected samples of the isolates. Blood was drawn and a complete blood count was conducted to note the hematological indices for each of the study participants. Nineteen bacterial species were isolated from both the nasal cavity and the oropharynx including Streptococcus thoraltensis , alpha-hemolytic streptococci, Staphylococcus hominis , coagulase-negative staphylococci, Leuconostoc mesenteroides , Erysipelothrix rhusiopathiae and several others. We found 100% sensitivity of the isolates to ciprofloxacin, cefuroxime and gentamicin. Whereas cefotaxime and azithromycin posted sensitivities of 85.7% and 91.4%, respectively. Low sensitivities (<60% sensitivity) to the antibiotics ampicillin, erythromycin, clarithromycin and norfloxacin were observed. Ninety-seven percent similarity to the microbial bank species was noted when the isolates were compared to it. Most hematological indices recorded were within the normal range. In conclusion, exposure to toxic fumes and compounds within fuel products may be a contributing factor to bacterial colonization of the respiratory tract in fuel workers.

  18. The effect of different growth regimes on the endophytic bacterial communities of the fern, Dicksonia sellowiana hook (Dicksoniaceae).

    PubMed

    de Araújo Barros, Irene; Luiz Araújo, Welington; Lúcio Azevedo, João

    2010-10-01

    Endophytic bacteria associated with the fern Dicksonia sellowiana were investigated. The bacterial communities from the surface-sterilized pinnae and rachis segments of the plants from the Brazilian Atlantic Rainforest that grew in native field conditions were compared with the bacterial communities from plants grown in greenhouses and plants that were initially grown in greenhouses and then transferred to the forest. From 540 pinnae and 540 rachis segments, 163 (30.2%) and 346 (64.2%) were colonized by bacteria, respectively. The main bacterial genera and species that were isolated included Bacillus spp. ( B. cereus, B. megaterium, B. pumilus and B. subtilis ) , Paenibacillus sp. , Amphibacillus sp. , Gracilibacillus sp. , Micrococcus sp. and Stenotrophomonas spp. ( S. maltophilia and S. nitroreducens ). B. pumilus was the most frequently isolated bacterial species . Amphibacillus and Gracilibacillus were reported as endophytes for the first time. Other commonly found bacterial genera were not observed in D. sellowiana , which may reflect preferences of specific bacterial communities inside this fern or detection limitations due to the isolation procedures. Plants that were grown in greenhouses and plants that were reintroduced into the forest displayed more bacterial genera and species diversity than native field plants, suggesting that reintroduction shifts the bacterial diversity. Endophytic bacteria that displayed antagonistic properties against different microorganisms were detected, but no obvious correlation was found between their frequencies with plant tissues or with plants from different growth regimes. This paper reports the first isolation of endophytic bacteria from a fern.

  19. The effect of different growth regimes on the endophytic bacterial communities of the fern, Dicksonia sellowiana hook (Dicksoniaceae)

    PubMed Central

    de Araújo Barros, Irene; Luiz Araújo, Welington; Lúcio Azevedo, João

    2010-01-01

    Endophytic bacteria associated with the fern Dicksonia sellowiana were investigated. The bacterial communities from the surface-sterilized pinnae and rachis segments of the plants from the Brazilian Atlantic Rainforest that grew in native field conditions were compared with the bacterial communities from plants grown in greenhouses and plants that were initially grown in greenhouses and then transferred to the forest. From 540 pinnae and 540 rachis segments, 163 (30.2%) and 346 (64.2%) were colonized by bacteria, respectively. The main bacterial genera and species that were isolated included Bacillus spp. ( B. cereus, B. megaterium, B. pumilus and B. subtilis ) , Paenibacillus sp. , Amphibacillus sp. , Gracilibacillus sp. , Micrococcus sp. and Stenotrophomonas spp. ( S. maltophilia and S. nitroreducens ). B. pumilus was the most frequently isolated bacterial species . Amphibacillus and Gracilibacillus were reported as endophytes for the first time. Other commonly found bacterial genera were not observed in D. sellowiana , which may reflect preferences of specific bacterial communities inside this fern or detection limitations due to the isolation procedures. Plants that were grown in greenhouses and plants that were reintroduced into the forest displayed more bacterial genera and species diversity than native field plants, suggesting that reintroduction shifts the bacterial diversity. Endophytic bacteria that displayed antagonistic properties against different microorganisms were detected, but no obvious correlation was found between their frequencies with plant tissues or with plants from different growth regimes. This paper reports the first isolation of endophytic bacteria from a fern. PMID:24031575

  20. Oviposition responses of Aedes mosquitoes to bacterial isolates from attractive bamboo infusions.

    PubMed

    Ponnusamy, Loganathan; Schal, Coby; Wesson, Dawn M; Arellano, Consuelo; Apperson, Charles S

    2015-09-23

    The mosquitoes Aedes aegypti and Aedes albopictus are vectors of pathogenic viruses that cause major human illnesses including dengue, yellow fever and chikungunya. Both mosquito species are expanding their geographic distributions and now occur worldwide in temperate and tropical climates. Collection of eggs in oviposition traps (ovitraps) is commonly used for monitoring and surveillance of container-inhabiting Aedes populations by public health agencies charged with managing mosquito-transmitted illness. Addition of an organic infusion in these traps increases the number of eggs deposited. Gravid females are guided to ovitraps by volatile chemicals produced from the breakdown of organic matter by microbes. We previously isolated and cultured 14 species of bacteria from attractive experimental infusions, made from the senescent leaves of canebrake bamboo (Arundinaria gigantea). Cultures were grown for 24 h at 28 °C with constant shaking (120 rpm) and cell densities were determined with a hemocytometer. Behavioral responses to single bacterial isolates and to a mix of isolates at different cell densities were evaluated using two-choice sticky-screen bioassay methods with gravid Ae. aegypti and Ae. albopictus. In behavioral assays of a mix of 14 bacterial isolates, significantly greater attraction responses were exhibited by Ae. aegypti and Ae. albopictus to bacterial densities of 10(7) and 10(8) cells/mL than to the control medium. When we tested single bacterial isolates, seven isolates (B1, B2, B3, B5, B12, B13 and B14) were significantly attractive to Ae. aegypti, and six isolates (B1, B5, B7, B10, B13 and B14) significantly attracted Ae. albopictus. Among all the isolates tested at three different cell densities, bacterial isolates B1, B5, B13 and B14 were highly attractive to both Aedes species. Our results show that at specific cell densities, some bacteria significantly influence the attraction of gravid Ae. aegypti and Ae. albopictus females to potential oviposition sites. Attractive bacterial isolates, when formulated for sustained release of attractants, could be coupled with an ovitrap containing a toxicant to achieve area-wide management of Aedes mosquitoes.

  1. Isolation and identification of the antibacterial active compound from petroleum ether extract of neem oil.

    PubMed

    Zhang, Yu-Qun; Xu, Jiao; Yin, Zhong-Qiong; Jia, Ren-Yong; Lu, Yang; Yang, Fan; Du, Yong-Hua; Zou, Ping; Lv, Cheng; Hu, Ting-Xiu; Liu, Shu-Liang; Shu, Gang; Yi, Geng

    2010-10-01

    From a petroleum ether extract of neem oil (Azadirachta indica A. Juss) the new tetrahydrofuranyl diester 1 was isolated as an anti-bacterial constituent. 1 showed significant activities against three standard bacterial strains, including Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922 and Salmonella enteritidis CMCC (B) 50041. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Bacterial isolates and their antimicrobial susceptibility patterns among pediatric patients with urinary tract infections.

    PubMed

    Ayelign, Birhanu; Abebe, Betelehem; Shibeshi, Adugna; Meshesha, Sosina; Shibabaw, Tewodros; Addis, Zelalem; Gelaw, Aschalew; Dagnew, Mulat

    2018-01-01

    Urinary tract infection is a common pediatric problem with the potential to produce long-term morbidity. Therefore, appropriate diagnosis and prompt treatment is required. However, studies about magnitude of uropathogenicity and antimicrobial resistance pattern of pediatric urinary tract infection (UTI) are lacking in resource limited countries including Ethiopia. This study was aimed to determine bacterial isolates, antimicrobial susceptibility pattern among pediatric patients with UTI. A cross- sectional study was conducted. Pathogenic bacterial isolates were identified by culture and biochemical methods following standard procedures. Antimicrobial susceptibility testing of the isolates for commonly used antibiotics was done using the standard disc diffusion method on Muller Hinton agar. Associations between dependent and independent variables were measured using chi-square test and within 95% confidence interval. P values <0.05 were considered as statistically significant. A total of 310 pediatric patients were included in the study, and 82 (26.45%) bacterial isolates were detected. Gram- negative bacteria were predominant etiologic agents of UTI in this study. E. coli was the most frequently occurring pathogen (n=45; 54.88%) followed by S. aureus and P.aeruginosa (n=8; 9.75% for both), P. vulgaris , P.aeruginosa (n=4; 4.88%, for both) and Enterococcus species (n=3; 3.66%). All K. pneumoniae , P. mirabilis , and K. ozanae straines were 100% resistance to ampicillin, followed by P. aeruginosa (87.5%) and E. coli (69%). While all Gram- positive bacterial isolates were 100% sensitive to ciprofloxacin. Malnutrition, history of catherization and previous history of UTI were independently associated with UTI (p=0.000). There was a high prevalence of uropathogenic bacteria and drug resistance particularly to ampicillin (72%) and tetracycline (37.80%). This condition indicates that antibiotic selection should be based on knowledge of the local prevalence of bacterial organisms and antibiotic sensitivities rather than empirical treatment.

  3. A standard bacterial isolate set for research on contemporary dairy spoilage.

    PubMed

    Trmčić, A; Martin, N H; Boor, K J; Wiedmann, M

    2015-08-01

    Food spoilage is an ongoing issue that could be dealt with more efficiently if some standardization and unification was introduced in this field of research. For example, research and development efforts to understand and reduce food spoilage can greatly be enhanced through availability and use of standardized isolate sets. To address this critical issue, we have assembled a standard isolate set of dairy spoilers and other selected nonpathogenic organisms frequently associated with dairy products. This publicly available bacterial set consists of (1) 35 gram-positive isolates including 9 Bacillus and 15 Paenibacillus isolates and (2) 16 gram-negative isolates including 4 Pseudomonas and 8 coliform isolates. The set includes isolates obtained from samples of pasteurized milk (n=43), pasteurized chocolate milk (n=1), raw milk (n=1), cheese (n=2), as well as isolates obtained from samples obtained from dairy-powder production (n=4). Analysis of growth characteristics in skim milk broth identified 16 gram-positive and 13 gram-negative isolates as psychrotolerant. Additional phenotypic characterization of isolates included testing for activity of β-galactosidase and lipolytic and proteolytic enzymes. All groups of isolates included in the isolate set exhibited diversity in growth and enzyme activity. Source data for all isolates in this isolate set are publicly available in the FoodMicrobeTracker database (http://www.foodmicrobetracker.com), which allows for continuous updating of information and advancement of knowledge on dairy-spoilage representatives included in this isolate set. This isolate set along with publicly available isolate data provide a unique resource that will help advance knowledge of dairy-spoilage organisms as well as aid industry in development and validation of new control strategies. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Bacillus subtilis vegetative isolate surviving chlorine dioxide exposure: an elusive mechanism of resistance.

    PubMed

    Martin, D J H; Wesgate, R L; Denyer, S P; McDonnell, G; Maillard, J-Y

    2015-12-01

    Oxidizing agents such as chlorine dioxide are widely used microbicides, including for disinfection of medical equipment. We isolated a Bacillus subtilis isolate from a washer-disinfector whose vegetative form demonstrated unique resistance to chlorine dioxide (0·03%) and hydrogen peroxide (7·5%). The aim of this study was to understand the mechanisms of resistance expressed by this isolate. A range of resistance mechanisms were investigated in the B. subtilis isolate and a reference B. subtilis strain (ATCC 6051) to include bacterial cell aggregation, the presence of profuse exopolysaccharide (EPS), and the expression of detoxification enzymes. The basis of resistance of the isolate to high concentrations of oxidizing agents was not linked to the presence of endospores. Although, the presence of EPS, aggregation and expression of detoxification enzymes may play a role in bacterial survival to low concentrations of chlorine dioxide, it is unlikely that the mechanisms helped tested to survive the bactericidal effect of higher oxidizer concentrations. Overall, the mechanisms conferring resistance to chlorine dioxide and hydrogen peroxide remains elusive. Based on recent advances in the mode of action of oxidizing agents and notably hydrogen peroxide, we postulate that additional efficient intracellular mechanisms may be involved to explain significant resistance to in-use concentrations of commonly used high-level disinfectants. The isolation of a highly resistant vegetative Gram-positive bacterium to a highly reactive oxidizing agent is worrying. Understanding the mechanisms conferring such resistance is essential to effectively control such bacterial isolates. Here, we postulate that there are still mechanisms of bacterial resistance that have not been fully characterized. © 2015 The Authors published by John Wiley & Sons Ltd on behalf of Society for Applied Microbiology.

  5. A pilot study to assess the bacterial contaminants in hookah pipes in a community setting.

    PubMed

    Martinasek, M; Rivera, Z; Ferrer, A; Freundt, E

    2018-05-01

    Hookah smoking among young adults remains a public health threat. Increasing research has uncovered the deleterious effects of hookah smoking, including both acute and chronic health conditions. Due to the current lack of regulation, hookah bars/lounges lack protocols for equipment sanitation. To examine evidence of bacterial contamination in hookah pipes due to a lack of sanitation regulations. For this field/laboratory study, 10 hookah bars/lounges were studied. Isolated bacteria were characterized and identified by species using 16S ribosomal RNA gene sequencing. At the 10 hookah bars sampled, the mouthpiece had the highest bacterial prevalence and diversity. Some of the bacterial isolates were found to be antibiotic-resistant. Ten of the isolated bacteria were Gram-positive and two were identified as Gram-negative. Levels of bacterial contamination vary widely from one hookah bar to the next, and reflect a lack of industry standards for cleaning these devices. Bacterial contamination of hookah pipes may represent a fomite for transmission of infectious diseases. Our results warrant future surveillance of hookahs to monitor for potential human pathogens.

  6. Synergistic Interactions in Microbial Biofilms Facilitate the Establishment of Opportunistic Pathogenic Fungi in Household Dishwashers.

    PubMed

    Zupančič, Jerneja; Raghupathi, Prem K; Houf, Kurt; Burmølle, Mette; Sørensen, Søren J; Gunde-Cimerman, Nina

    2018-01-01

    Biofilms formed on rubber seals in dishwashers harbor diverse microbiota. In this study, we focussed on the microbial composition of bacteria and fungi, isolated from a defined area of one square centimeter of rubber from four domestic dishwashers and assessed their abilities to in vitro multispecies biofilm formation. A total of 80 isolates (64 bacterial and 16 fungal) were analyzed. Multiple combinations of bacterial isolates from each dishwasher were screened for synergistic interactions. 32 out of 140 tested (23%) four-species bacterial combinations displayed consistent synergism leading to an overall increase in biomass, in all experimental trails. Bacterial isolates from two of the four dishwashers generated a high number of synergistically interacting four-species consortia. Network based correlation analyses also showed higher co-occurrence patterns observed between bacterial members in the same two dishwasher samples, indicating cooperative effects. Furthermore, two synergistic four-species bacterial consortia were tested for their abilities to incorporate an opportunistic fungal pathogen, Exophiala dermatitidis and their establishment as biofilms on sterile ethylene propylene diene monomer M-class (EPDM) rubber and polypropylene (PP) surfaces. When the bacterial consortia included E. dermatitidis , the overall cell numbers of both bacteria and fungi increased and a substantial increase in biofilm biomass was observed. These results indicate a novel phenomenon of cross kingdom synergy in biofilm formation and these observations could have potential implications for human health.

  7. Synergistic Interactions in Microbial Biofilms Facilitate the Establishment of Opportunistic Pathogenic Fungi in Household Dishwashers

    PubMed Central

    Zupančič, Jerneja; Raghupathi, Prem K.; Houf, Kurt; Burmølle, Mette; Sørensen, Søren J.; Gunde-Cimerman, Nina

    2018-01-01

    Biofilms formed on rubber seals in dishwashers harbor diverse microbiota. In this study, we focussed on the microbial composition of bacteria and fungi, isolated from a defined area of one square centimeter of rubber from four domestic dishwashers and assessed their abilities to in vitro multispecies biofilm formation. A total of 80 isolates (64 bacterial and 16 fungal) were analyzed. Multiple combinations of bacterial isolates from each dishwasher were screened for synergistic interactions. 32 out of 140 tested (23%) four-species bacterial combinations displayed consistent synergism leading to an overall increase in biomass, in all experimental trails. Bacterial isolates from two of the four dishwashers generated a high number of synergistically interacting four-species consortia. Network based correlation analyses also showed higher co-occurrence patterns observed between bacterial members in the same two dishwasher samples, indicating cooperative effects. Furthermore, two synergistic four-species bacterial consortia were tested for their abilities to incorporate an opportunistic fungal pathogen, Exophiala dermatitidis and their establishment as biofilms on sterile ethylene propylene diene monomer M-class (EPDM) rubber and polypropylene (PP) surfaces. When the bacterial consortia included E. dermatitidis, the overall cell numbers of both bacteria and fungi increased and a substantial increase in biofilm biomass was observed. These results indicate a novel phenomenon of cross kingdom synergy in biofilm formation and these observations could have potential implications for human health. PMID:29441043

  8. Orbital abscess bacterial isolates and in vitro antimicrobial susceptibility patterns in dogs and cats.

    PubMed

    Wang, Annie L; Ledbetter, Eric C; Kern, Thomas J

    2009-01-01

    To determine bacterial populations, in vitro antimicrobial susceptibility patterns, and sources of microorganisms for dogs and cats with orbital abscess. In total, 34 dogs and 7 cats with orbital abscess participated in the study. Medical records of dogs and cats with a clinical diagnosis of orbital abscess, confirmed by cytologic or histopathologic evaluation of orbital specimens, were reviewed from the years 1990 to 2007. Animal signalment, presumptive source of microorganisms and mechanism of orbital introduction, bacterial isolates, and aerobic bacterial in vitro antimicrobial susceptibility test results were recorded. Percentages of susceptible aerobic bacterial isolates were compared among antimicrobials. Twenty dogs and five cats had positive culture results. The most frequent bacterial genera isolated from dogs were Staphylococcus, Escherichia, Bacteroides, Clostridium and Pasteurella. The most frequent bacterial genera isolated from cats were Pasteurella and Bacteroides. Aerobic bacterial isolates from dogs had the highest percentage of susceptibility to amikacin, ceftiofur, gentamicin, imipenem, ticarcillin and trimethoprim-sulfamethoxazole. Aerobic bacterial isolates from dogs had the lowest percentage of susceptibility to ampicillin, clindamycin, erythromycin and penicillin. Antimicrobial resistance was uncommon among feline aerobic bacterial isolates. The most commonly identified routes of orbital bacteria introduction were extension from adjacent anatomical structures, penetrating exogenous trauma, and foreign bodies. Mixed aerobic and anaerobic bacterial infections of the orbit occur commonly in dogs and cats. On the basis of aerobic and anaerobic bacterial isolates and in vitro susceptibility testing of aerobic bacterial isolates, cephalosporins, extended-spectrum penicillins, potentiated-penicillins and carbapenems are recommended for initial antimicrobial therapy of orbital abscess in dogs and cats.

  9. Bacterial and fungal endophthalmitis in upper Egypt: related species and risk factors.

    PubMed

    Gharamah, A A; Moharram, A M; Ismail, M A; Al-Hussaini, A K

    2012-08-01

    To study risk factors, contributing factors of bacterial and fungal endophthalmitis in Upper Egypt, test the isolated species sensitive to some therapeutic agents, and to investigate the air-borne bacteria and fungi in opthalmology operating rooms. Thirty one cases of endophthalmitis were clinically diagnosed and microbiologically studied. Indoor air-borne bacteria and fungi inside four air-conditioned operating rooms in the Ophthalmology Department at Assiut University Hospitals were also investigated. The isolated microbes from endophthalmitis cases were tested for their ability to produce some extracellular enzymes including protease, lipase, urease, phosphatase and catalase. Also the ability of 5 fungal isolates from endophthalmitis origin to produce mycotoxins and their sensitivity to some therapeutic agents were studied. Results showed that bacteria and fungi were responsihle for infection in 10 and 6 cases of endophthalmitis, respectively and only 2 cases produced a mixture of bacteria and fungi. Trauma was the most prevalent risk factor of endophthalmitis where 58.1% of the 31 cases were due to trauma. In ophthalmology operating rooms, different bacterial and fungal species were isolated. 8 bacterial and 5 fungal isolates showed their ability to produce enzymes while only 3 fungal isolates were able to produce mycotoxins. Terbinafine showed the highest effect against most isolates in vitro. The ability of bacterial and fungal isolates to produce extracellular enzymes and mycotoxins may be aid in the invasion and destruction of eye tissues. Microbial contamination of operating rooms with air-borne bacteria and fungi in the present work may be a source of postoperative endophthalmitis.

  10. Metabolic functions of Pseudomonas fluorescens strains from Populus deltoides depend on rhizosphere or endosphere isolation compartment

    DOE PAGES

    Timm, Collin M.; Campbell, Alicia G.; Utturkar, Sagar M.; ...

    2015-10-14

    The bacterial microbiota of plants is diverse, with ~1000s of operational taxonomic units (OTUs) associated with any individual plant. In this work we investigate how 19 sequenced Pseudomonas fluorescens strains representing a single OTU isolated from Populus deltoides rhizosphere and endosphere differ using phenotypic analysis, comparative genomics, and metabolic models. While no traits were exclusive to either endosphere or rhizosphere P. fluorescens isolates, multiple pathways relevant for bacterial-plant interactions are enriched in endosphere isolate genomes and growth phenotypes such as phosphate solubilization, protease activity, denitrification and root growth promotion are biased towards endosphere isolates. Endosphere isolates have more metabolic pathwaysmore » for plant signaling compounds and an increased metabolic range that includes utilization of energy rich nucleotides and sugars, consistent with endosphere colonization. Rhizosphere P. fluorescens have fewer pathways important for bacterial-plant interactions but show metabolic bias towards chemical substrates often found in root exudates. This work reveals the diverse functions that may contribute to colonization of the endosphere by bacteria that are enriched in event he most closely related isolates.« less

  11. Metabolic functions of Pseudomonas fluorescens strains from Populus deltoides depend on rhizosphere or endosphere isolation compartment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timm, Collin M.; Campbell, Alicia G.; Utturkar, Sagar M.

    The bacterial microbiota of plants is diverse, with ~1000s of operational taxonomic units (OTUs) associated with any individual plant. In this work we investigate how 19 sequenced Pseudomonas fluorescens strains representing a single OTU isolated from Populus deltoides rhizosphere and endosphere differ using phenotypic analysis, comparative genomics, and metabolic models. While no traits were exclusive to either endosphere or rhizosphere P. fluorescens isolates, multiple pathways relevant for bacterial-plant interactions are enriched in endosphere isolate genomes and growth phenotypes such as phosphate solubilization, protease activity, denitrification and root growth promotion are biased towards endosphere isolates. Endosphere isolates have more metabolic pathwaysmore » for plant signaling compounds and an increased metabolic range that includes utilization of energy rich nucleotides and sugars, consistent with endosphere colonization. Rhizosphere P. fluorescens have fewer pathways important for bacterial-plant interactions but show metabolic bias towards chemical substrates often found in root exudates. This work reveals the diverse functions that may contribute to colonization of the endosphere by bacteria that are enriched in event he most closely related isolates.« less

  12. Microbial Surveillance of Potable Water Sources of the International Space Station

    NASA Technical Reports Server (NTRS)

    Bruce, Rebekah J.; Ott, C. Mark; Skuratov, Vladimir M.; Pierson, Duane L.

    2005-01-01

    To mitigate risk to the crew, the microbial surveillance of the quality of potable water sources of the International Space Station (ISS) has been ongoing since before the arrival of the first permanent crew. These water sources have included stored ground-supplied water, water produced by the shuttle fuel cells during flight, and ISS humidity condensate that is reclaimed and processed. Monitoring was accomplished using a self-contained filter designed to allow bacterial growth and enumeration during flight. Upon return to earth, microbial isolates were identified using 16S ribosomal gene sequencing. While the predominant isolates were common Gramnegative bacteria including Ralstonia eutropha, Methylobacterium fujisawaense, and Spingomonas paucimobilis, opportunistic pathogens such as Stenotrophomonas maltophilia and Pseudomonas aeruginosa were also isolated. Results of in-flight enumeration have indicated a fluctuation of bacterial counts above system design specifications. Additional in-flight monitoring capability for the specific detection of coliforms was added in 2004; no coliforms have been detected from any potable water source. Neither the bacterial concentrations nor the identification of the isolates recovered from these samples has suggested a threat to crew health.

  13. New Paenibacillus larvae bacterial isolates from honey bee colonies infected with American foulbrood disease in Egypt.

    PubMed

    Masry, Saad Hamdy Daif; Kabeil, Sanaa Soliman; Hafez, Elsayed Elsayed

    2014-03-04

    The American foulbrood disease is widely distributed all over the world and causes a serious problem for the honeybee industry. Different infected larvae were collected from different apiaries, ground in phosphate saline buffer (PSB) and bacterial isolation was carried out on nutrient agar medium. Different colonies were observed and were characterized biologically. Two bacterial isolates (SH11 and SH33) were subjected to molecular identification using 16S rRNA gene and the sequence analysis revealed that the two isolates are Paenibacillus larvae with identity not exceeding 83%. The DNA sequence alignment between the other P. larvae bacterial strains and the two identified bacterial isolates showed that all the examined bacterial strains have the same ancestor, i.e. they have the same origin. The SH33 isolate was closely related to the P. larvae isolated from Germany, whereas the isolate SH11 was close to the P. larvae isolated from India. The phylogenetic tree constructed for 20 different Bacillus sp. and the two isolates SH11 and SH33 demonstrated that the two isolates are Bacillus sp. and they are new isolates. The bacterial isolates will be subjected to more tests for more confirmations.

  14. Use of bacterial artificial chromosomes in generating targeted mutations in human and mouse cytomegaloviruses.

    PubMed

    Borst, Eva Maria; Benkartek, Corinna; Messerle, Martin

    2007-05-01

    Cloning of cytomegalovirus (CMV) genomes as bacterial artificial chromosomes (BAC) in E. coli and their manipulation using the techniques of bacterial genetics has greatly facilitated the construction of CMV mutants. This unit describes easily applicable procedures that allow rapid introduction of any kind of targeted mutation into BAC-cloned CMV genomes. Protocols for the reconstitution of virus from isolated BAC DNA, preparation of a virus stock, and isolation and characterization of viral DNA are also included. Special emphasis is laid on description of critical steps and thorough characterization of the altered BACs.

  15. Two similar but atypical strains of coryneform group A-4 isolated from patients with endophthalmitis.

    PubMed Central

    Coudron, P E; Harris, R C; Vaughan, M G; Dalton, H P

    1985-01-01

    Corynebacterium species and other coryneform organisms isolated from clinical specimens are frequently considered contaminants. We isolated two strains of a gram-positive organism from the vitreous fluid of two patients with endophthalmitis who had previously received intraocular lens transplants. The biochemical characteristics and gas chromatographic patterns of both isolates were similar to those of coryneform group A-4 strains. Major differences included esculin hydrolysis, nitrate reduction, growth pigment, and lactic acid production. These two strains along with a limited number of strains collected at the Special Bacterial Pathogens Laboratory (Division of Bacterial Diseases, Centers for Disease Control, Atlanta, Ga.) may represent a subgroup of coryneform group A-4. Results of in vitro susceptibility testing performed with antimicrobial agents commonly used to treat patients with bacterial endophthalmitis underscore the importance of determining MBCs for slow-growing organisms. This report cautions microbiologists not to discard organisms frequently considered contaminants when isolated from body fluids that are normally sterile and from patients receiving local steroids. PMID:3935657

  16. Subsurface associations of Acaryochloris-related picocyanobacteria with oil-utilizing bacteria in the Arabian Gulf water body: promising consortia in oil sediment bioremediation.

    PubMed

    Al-Bader, Dhia; Eliyas, Mohamed; Rayan, Rihab; Radwan, Samir

    2013-04-01

    Two picocyanobacterial strains related to Acaryochloris were isolated from the Arabian Gulf, 3 m below the water surface, one from the north shore and the other from the south shore of Kuwait. Both strains were morphologically, ultrastructurally, and albeit to a less extend, phylogenetically similar to Acaryochloris. However, both isolates lacked chlorophyll d and produced instead chlorophyll a, as the major photosynthetic pigment. Both picocyanobacterial isolates were associated with oil-utilizing bacteria in the magnitude of 10(5) cells g(-1). According to their 16S rRNA gene sequences, bacteria associated with the isolate from the north were affiliated to Paenibacillus sp., Bacillus pumilus, and Marinobacter aquaeolei, but those associated with the isolate from the south were affiliated to Bacillus asahii and Alcanivorax jadensis. These bacterial differences were probably due to environmental variations. In batch cultures, the bacterial consortia in the nonaxenic biomass as well as the pure bacterial isolates effectively consumed crude oil and pure aliphatic and aromatic hydrocarbons, including very high-molecular-weight compounds. Water and diethylether extracts from the phototrophic biomass enhanced growth of individual bacterial isolates and their hydrocarbon-consumption potential in batch cultures. It was concluded that these consortia could be promising in bioremediation of hydrocarbon pollutants, especially heavy sediments in the marine ecosystem.

  17. Aerobic bacterial microbiota isolated from the cloaca of the European pond turtle (Emys orbicularis) in Poland.

    PubMed

    Nowakiewicz, Aneta; Ziółkowska, Grażyna; Zięba, Przemysław; Dziedzic, Barbara Majer; Gnat, Sebastian; Wójcik, Mariusz; Dziedzic, Roman; Kostruba, Anna

    2015-01-01

    We conducted a comparative analysis of the aerobic cloacal bacteria of European pond turtles (Emys orbicularis) living in their natural environment and juvenile turtles reared under controlled conditions in a breeding center. We included 130 turtles in the study. The aerobic bacteria isolated from the cloaca of the juvenile turtles were less diverse and more prevalent than the bacteria isolated from free-living adults. We isolated 17 bacterial species from juvenile captive turtles, among which the dominant species were Cellulomonas flavigena (77/96), Enterococcus faecalis (96/96), Escherichia coli (58/96), and Proteus mirabilis (41/96). From the adult, free-living turtles, we isolated 36 bacterial species, some of which are a potential threat to public health (e.g., Salmonella enterica serovars Newport, Daytona, and Braenderup; Listeria monocytogenes; Yersinia enterocolitica; Yersinia ruckeri; Klebsiella pneumoniae; Vibrio fluvialis; and Serratia marcescens), and pathogens that are etiologic agents of diseases of ectothermic animals (e.g., Aeromonas sobria, Aeromonas caviae, Hafnia alvei, Edwardsiella tarda, and Citrobacter braakii; the last two species were isolated from both groups of animals). The cloacal bacterial biota of the European pond turtle was characterized by numerous species of bacteria, and its composition varied with turtle age and environmental conditions. The small number of isolated bacteria that are potential human pathogens may indicate that the European pond turtle is of relatively minor importance as a threat to public health.

  18. Bacterial meningitis - principles of antimicrobial treatment.

    PubMed

    Jawień, Miroslaw; Garlicki, Aleksander M

    2013-01-01

    Bacterial meningitis is associated with significant morbidity and mortality despite the availability of effective antimicrobial therapy. The management approach to patients with suspected or proven bacterial meningitis includes emergent cerebrospinal fluid analysis and initiation of appropriate antimicrobial and adjunctive therapies. The choice of empirical antimicrobial therapy is based on the patient's age and underlying disease status; once the infecting pathogen is isolated, antimicrobial therapy can be modified for optimal treatment. Successful treatment of bacterial meningitis requires the knowledge on epidemiology including prevalence of antimicrobial resistant pathogens, pathogenesis of meningitis, pharmacokinetics and pharmacodynamics of antimicrobial agents. The emergence of antibiotic-resistant bacterial strains in recent years has necessitated the development of new strategies for empiric antimicrobial therapy for bacterial meningitis.

  19. Two approaches to biological decontamination of groundwater and soil polluted by aromatics-characterization of microbial populations.

    PubMed

    Demnerová, Katerina; Mackova, Martina; Spevákova, Veronika; Beranova, Katarina; Kochánková, Lucie; Lovecká, Petra; Ryslavá, Edita; Macek, Tomas

    2005-09-01

    As part of the EU project MULTIBARRIERS, six new endogenous aerobic bacterial isolates able to grow in the presence of BTmX (benzene, toluene, m-xylene) were characterized with respect to their growth specificities. Preliminary analysis included restriction fragment length polymorphism profiles and 16S rDNA sequencing. The diversity of these strains was confirmed by denaturing gradient gel electrophoresis. Additional aerobic bacterial strains were isolated from the rhizospheres of plants grown in polychlorinated biphenyl (PCB)-contaminated soils. Pot experiments were designed to show the beneficial effect of plants on the bacterial degradation of PCBs. The effect of PCB removal from soil was evaluated and bacteria isolated from three different plant species were examined for the presence of the bph operon.

  20. Antibiotic resistance profile of bacterial isolates from animal farming aquatic environments and meats in a peri-urban community in Daejeon, Korea.

    PubMed

    Rho, Hyunjin; Shin, Bongjin; Lee, Okbok; Choi, Yu-Hyun; Rho, Jaerang; Lee, Jiyoung

    2012-05-01

    The increasing usage of antibiotics in the animal farming industry is an emerging worldwide problem contributing to the development of antibiotic resistance. The purpose of this work was to investigate the prevalence and antibiotic resistance profile of bacterial isolates collected from animal farming aquatic environments and meats in a peri-urban community in Daejeon, Korea. In an antibacterial susceptibility test, the bacterial isolates showed a high incidence of resistance (∼26.04%) to cefazolin, tetracycline, gentamycin, norfloxacin, erythromycin and vancomycin. The results from a test for multiple antibiotic resistance indicated that the isolates were displaying an approximately 5-fold increase in the incidence of multiple antibiotic resistance to combinations of two different antibiotics compared to combinations of three or more antibiotics. Most of the isolates showed multi-antibiotic resistance, and the resistance patterns were similar among the sampling groups. Sequencing data analysis of 16S rRNA showed that most of the resistant isolates appeared to be dominated by the classes Betaproteobacteria and Gammaproteobacteria, including the genera Delftia, Burkholderia, Escherichia, Enterobacter, Acinetobacter, Shigella and Pseudomonas.

  1. Morphological characterization of several strains of the rice-pathogenic bacterium Burkholderia glumae in North Sumatra

    NASA Astrophysics Data System (ADS)

    Hasibuan, M.; Safni, I.; Lisnawita; Lubis, K.

    2018-02-01

    Burkholderia glumae is a quarantine seed-borne bacterial pathogen causing panicle blight disease on rice. This pathogen has been detected in some locations in Java, and recently, farmers in North Sumatra have reported rice yield loss with symptoms similar with those on rice infeced by the rice-pathogenic bacterium B. glumae. This research was aimed to isolate several bacterial strains from several rice varieties in various locations in North Sumatra and characterize the morphology of the strains to detect and identify the unknown bacterial strains presumably B. glumae. Several rice seed varieties were collected from Medan and Deli Serdang Districts. The seed samples were extracted, isolated and purified, then grown in semi-selective media PPGA. The morphological characteristics of the bacterial strains were determined including Gram staining, bacterial colony’s and bacterial cell’s morphology. The results showed that of eleven strains isolated, two strains were Gram negative and nine strains were Gram positive. On the basis of colony morphology, all strains had circular form, flat elevation and cream colour while the colony margin varied, i.e. entire and undulate. Most strains had bacillus/rod shape (8 strains) and only 3 strains were coccus.

  2. Culturable microbiota of ranched southern bluefin tuna (Thunnus maccoyii Castelnau).

    PubMed

    Valdenegro-Vega, V; Naeem, S; Carson, J; Bowman, J P; Tejedor del Real, J L; Nowak, B

    2013-10-01

    The Australian tuna industry is based on the ranching of wild southern bluefin tuna (SBT, Thunnus maccoyii). Within this industry, only opportunistic pathogens have been reported infecting external wounds of fish. This study aimed to identify different culturable bacteria present in three cohorts of SBT and to determine normal bacteria and potential pathogens in isolates from harvest fish and moribund/dead fish. Post-mortem changes in the microbiota were also studied. Moribund/dead showed a greater proportion of members from the family Vibrionaceae than harvested fish; the latter presented mainly non-Vibrio species. In harvested fish spleens, Vibrio splendidus I complex was the most commonly identified group among Vibrio isolates, while most groups from the family Vibrionaceae were isolated from gills. For moribund/dead, Vibrio chagasii and Photobacterium damselae subsp. damselae were common in gill, spleen and kidney samples. Non-Vibrio isolates from gills were characterized using 16S rRNA sequencing as Flavobacteriaceae and classes Gammaproteobacteria and Alphaproteobacteria, mainly from the genera Winogradskyella and Tenacibaculum. Post-mortem changes showed dynamic shifts in bacterial dominance in gills, with Vibrionaceae and non-Vibrio spp. found in similar proportions initially and types related to Pseudoalteromonas ruthenica prevailing after 27 h. Spleen samples showed little bacterial growth until 5 h post-mortem, while various Vibrio-associated species were isolated 27 h post-mortem. Bacterial isolates found include a range of potentially pathogenic bacteria that should be monitored though most of them have yet to be associated with disease in tuna. This study forms a foundation for future research into the bacterial population dynamics under different culture conditions of SBT. An understanding of the bacterial compositions in SBT is necessary to evaluate the effects of some bacterial species on their health. © 2013 The Society for Applied Microbiology.

  3. Acquisition and dissemination of cephalosporin-resistant E. coli in migratory birds sampled at an Alaska landfill as inferred through genomic analysis.

    PubMed

    Ahlstrom, Christina A; Bonnedahl, Jonas; Woksepp, Hanna; Hernandez, Jorge; Olsen, Björn; Ramey, Andrew M

    2018-05-09

    Antimicrobial resistance (AMR) in bacterial pathogens threatens global health, though the spread of AMR bacteria and AMR genes between humans, animals, and the environment is still largely unknown. Here, we investigated the role of wild birds in the epidemiology of AMR Escherichia coli. Using next-generation sequencing, we characterized cephalosporin-resistant E. coli cultured from sympatric gulls and bald eagles inhabiting a landfill habitat in Alaska to identify genetic determinants conferring AMR, explore potential transmission pathways of AMR bacteria and genes at this site, and investigate how their genetic diversity compares to isolates reported in other taxa. We found genetically diverse E. coli isolates with sequence types previously associated with human infections and resistance genes of clinical importance, including bla CTX-M and bla CMY . Identical resistance profiles were observed in genetically unrelated E. coli isolates from both gulls and bald eagles. Conversely, isolates with indistinguishable core-genomes were found to have different resistance profiles. Our findings support complex epidemiological interactions including bacterial strain sharing between gulls and bald eagles and horizontal gene transfer among E. coli harboured by birds. Results suggest that landfills may serve as a source for AMR acquisition and/or maintenance, including bacterial sequence types and AMR genes relevant to human health.

  4. Indoleacetic acid production and plant growth promoting potential of bacterial endophytes isolated from rice (Oryza sativa L.) seeds.

    PubMed

    Shahzad, Raheem; Waqas, Muhammad; Khan, Abdul Latif; Al-Hosni, Khadija; Kang, Sang-Mo; Seo, Chang-Woo; Lee, In-Jung

    2017-06-01

    Bacterial endophytes from the phyllosphere and rhizosphere have been used to produce bioactive metabolites and to promote plant growth. However, little is known about the endophytes residing in seeds. This study aimed to isolate and identify seed-borne bacterial endophytes from rice and elucidate their potential for phytohormone production and growth enhancement. The isolated endophytes included Micrococcus yunnanensis RWL-2, Micrococcus luteus RWL-3, Enterobacter soli RWL-4, Leclercia adecarboxylata RWL-5, Pantoea dispersa RWL-6, and Staphylococcus epidermidis RWL-7, which were identified using 16S rRNA sequencing and phylogenetic analysis. These strains were analyzed for indoleacetic acid (IAA) production by using GC-MS and IAA was found in the range of 11.50 ± 0.77 μg ml -1 to 38.80 ± 1.35 μg ml -1 . We also assessed the strains for plant growth promoting potential because these isolates were able to produce IAA in pure culture. Most of the growth attributes of rice plants (shoot and root length, fresh and dry biomass, and chlorophyll content) were significantly increased by bacterial endophytes compared to the controls. These results show that IAA producing bacterial endophytes can improve hostplant growth traits and can be used as bio-fertilizers.

  5. Culturable bacteria present in the fluid of the hooded-pitcher plant Sarracenia minor based on 16S rDNA gene sequence data.

    PubMed

    Siragusa, Alex J; Swenson, Janice E; Casamatta, Dale A

    2007-08-01

    The culturable microbial community within the pitcher fluid of 93 Sarracenia minor carnivorous plants was examined over a 2-year study. Many aspects of the plant/bacterial/insect interaction within the pitcher fluid are minimally understood because the bacterial taxa present in these pitchers have not been identified. Thirteen isolates were characterized by 16S rDNA sequencing and subsequent phylogenetic analysis. The Proteobacteria were the most abundant taxa and included representatives from Serratia, Achromobacter, and Pantoea. The Actinobacteria Micrococcus was also abundant while Bacillus, Lactococcus, Chryseobacterium, and Rhodococcus were infrequently encountered. Several isolates conformed to species identifiers (>98% rDNA gene sequence similarity) including Serratia marcescens (isolates found in 27.5% of pitchers), Achromobacter xylosoxidans (37.6%), Micrococcus luteus (40.9%), Bacillus cereus (isolates found in 10.2%), Bacillus thuringiensis (5.4%), Lactococcus lactis (17.2%), and Rhodococcus equi (2.2%). Species-area curves suggest that sampling efforts were sufficient to recover a representative culturable bacterial community. The bacteria present represent a diverse community probably as a result of introduction by insect vectors, but the ecological significance remains under explored.

  6. Impact of cultivation on characterisation of species composition of soil bacterial communities.

    PubMed

    McCaig, A E.; Grayston, S J.; Prosser, J I.; Glover, L A.

    2001-03-01

    The species composition of culturable bacteria in Scottish grassland soils was investigated using a combination of Biolog and 16S rDNA analysis for characterisation of isolates. The inclusion of a molecular approach allowed direct comparison of sequences from culturable bacteria with sequences obtained during analysis of DNA extracted directly from the same soil samples. Bacterial strains were isolated on Pseudomonas isolation agar (PIA), a selective medium, and on tryptone soya agar (TSA), a general laboratory medium. In total, 12 and 21 morphologically different bacterial cultures were isolated on PIA and TSA, respectively. Biolog and sequencing placed PIA isolates in the same taxonomic groups, the majority of cultures belonging to the Pseudomonas (sensu stricto) group. However, analysis of 16S rDNA sequences proved more efficient than Biolog for characterising TSA isolates due to limitations of the Microlog database for identifying environmental bacteria. In general, 16S rDNA sequences from TSA isolates showed high similarities to cultured species represented in sequence databases, although TSA-8 showed only 92.5% similarity to the nearest relative, Bacillus insolitus. In general, there was very little overlap between the culturable and uncultured bacterial communities, although two sequences, PIA-2 and TSA-13, showed >99% similarity to soil clones. A cloning step was included prior to sequence analysis of two isolates, TSA-5 and TSA-14, and analysis of several clones confirmed that these cultures comprised at least four and three sequence types, respectively. All isolate clones were most closely related to uncultured bacteria, with clone TSA-5.1 showing 99.8% similarity to a sequence amplified directly from the same soil sample. Interestingly, one clone, TSA-5.4, clustered within a novel group comprising only uncultured sequences. This group, which is associated with the novel, deep-branching Acidobacterium capsulatum lineage, also included clones isolated during direct analysis of the same soil and from a wide range of other sample types studied elsewhere. The study demonstrates the value of fine-scale molecular analysis for identification of laboratory isolates and indicates the culturability of approximately 1% of the total population but under a restricted range of media and cultivation conditions.

  7. NORMAL VAGINAL BACTERIAL FLORA OF GIANT PANDAS (AILUROPODA MELANOLEUCA) AND THE ANTIMICROBIAL SUSCEPTIBILITY PATTERNS OF THE ISOLATES.

    PubMed

    Yang, Xin; Yang, Jiang; Wang, Hongning; Li, Caiwu; He, Yongguo; Jin, SenYan; Zhang, Hemin; Li, Desheng; Wang, Pengyan; Xu, Yuesong; Xu, Changwen; Fan, Chengyun; Xu, Lulai; Huang, Shan; Qu, Chunmao; Li, Guo

    2016-03-01

    In order to study the typical vaginal bacterial flora of giant pandas (Ailuropoda melanoleuca), we took vaginal swabs for the sake of bacterial isolation, from 24 healthy female giant pandas. A total of 203 isolates were identified, representing a total of 17 bacterial species. The most common bacteria isolated were Lactobacillus spp. (54.2%, 13 of 24), followed by Staphylococcus epidermidis (41.7%, 10 of 24) and Escherichia coli (33.3%, 8 of 24). Some opportunistic pathogenic bacteria, such as Peptostreptococcus spp., Klebsiella pneumoniae, and Proteus mirabilis, were also isolated but showed no pathology. Antimicrobial susceptibility testing of aerobic bacterial isolates was performed with disk diffusion method. Of the 152 isolates, resistance was most frequently observed with chloramphenicol (17.8%), followed by tetracycline (14.5%), ciprofloxacin (12.5%), streptomycin (11.8%), and florfenicol (11.8%), while 7.2% were multidrug resistant. This is the first report of the normal vaginal culturable bacterial flora of giant pandas, followed by the antimicrobial susceptibility patterns of the isolates.

  8. NORMAL VAGINAL BACTERIAL FLORA OF GIANT PANDAS (AILUROPODA MELANOLEUCA) AND THE ANTIMICROBIAL SUSCEPTIBILITY PATTERNS OF THE ISOLATES.

    PubMed

    Yang, Xin; Yang, Jiang; Wang, Hongning; Li, Caiwu; He, Yongguo; Jin, SenYan; Zhang, Hemin; Li, Desheng; Wang, Pengyan; Xu, Yuesong; Xu, Changwen; Fan, Chengyun; Xu, Lulai; Huang, Shan; Qu, Chunmao; Li, Guo

    2016-06-01

    To study the typical vaginal bacterial flora of giant pandas (Ailuropoda melanoleuca), we took vaginal swabs for the sake of bacterial isolation, from 24 healthy female giant pandas. A total of 203 isolates were identified, representing a total of 17 bacterial species. The most common bacteria isolated were Lactobacillus spp. (54.2%, 13/24), followed by Staphylococcus epidermidis (41.7%, 10/24) and Escherichia coli (33.3%, 8/24). Some opportunistic pathogenic bacteria, such as Peptostreptococcus spp., Klebsiella pneumoniae , and Proteus mirabilis , were also isolated but showed no pathology. Antimicrobial susceptibility testing of aerobic bacterial isolates was performed with the disk diffusion method. Of the 152 isolates, resistance was most frequently observed with chloramphenicol (17.8%), followed by tetracycline (14.5%), ciprofloxacin (12.5%), streptomycin (11.8%), and florfenicol (11.8%), whereas 7.2% were multidrug resistant. This is the first report of the normal culturable vaginal bacterial flora of giant pandas and the antimicrobial susceptibility patterns of the isolates.

  9. Efficacy of a marine bacterial nuclease against biofilm forming microorganisms isolated from chronic rhinosinusitis.

    PubMed

    Shields, Robert C; Mokhtar, Norehan; Ford, Michael; Hall, Michael J; Burgess, J Grant; ElBadawey, Mohamed Reda; Jakubovics, Nicholas S

    2013-01-01

    The persistent colonization of paranasal sinus mucosa by microbial biofilms is a major factor in the pathogenesis of chronic rhinosinusitis (CRS). Control of microorganisms within biofilms is hampered by the presence of viscous extracellular polymers of host or microbial origin, including nucleic acids. The aim of this study was to investigate the role of extracellular DNA in biofilm formation by bacteria associated with CRS. Obstructive mucin was collected from patients during functional endoscopic sinus surgery. Examination of the mucous by transmission electron microscopy revealed an acellular matrix punctuated occasionally with host cells in varying states of degradation. Bacteria were observed in biofilms on mucosal biopsies, and between two and six different species were isolated from each of 20 different patient samples. In total, 16 different bacterial genera were isolated, of which the most commonly identified organisms were coagulase-negative staphylococci, Staphylococcus aureus and α-haemolytic streptococci. Twenty-four fresh clinical isolates were selected for investigation of biofilm formation in vitro using a microplate model system. Biofilms formed by 14 strains, including all 9 extracellular nuclease-producing bacteria, were significantly disrupted by treatment with a novel bacterial deoxyribonuclease, NucB, isolated from a marine strain of Bacillus licheniformis. Extracellular biofilm matrix was observed in untreated samples but not in those treated with NucB and extracellular DNA was purified from in vitro biofilms. Our data demonstrate that bacteria associated with CRS form robust biofilms which can be reduced by treatment with matrix-degrading enzymes such as NucB. The dispersal of bacterial biofilms with NucB may offer an additional therapeutic target for CRS sufferers.

  10. Culture-positive sepsis in neonatal camelids: 21 cases.

    PubMed

    Dolente, Brett A; Lindborg, Susan; Palmer, Jonathan E; Wilkins, Pamela A

    2007-01-01

    There is limited literature on neonatal bacterial sepsis in New World (NW) camelids. Bacterial culture-positive crias have clinical differences based on the specific bacterial genera isolated. Bacterial culture-positive NW camelid crias <21 days of age from 1990 to 2005 were included. Historic physical examination and cliniopathologic data were retrieved from medical records as were the identity and antibiograms of bacterial isolates. Cases were categorized by outcome (survival versus nonsurvival) and type of sepsis (gram-negative or gram-positive). Kruskal-Wallis and chi-square testing were used to evaluate differences between groups. Twenty-one crias met the inclusion criteria. Median age was 2 days. Failure of passive transfer was common. There were few differences identified on the basis of outcome or type of sepsis. Crias without gastrointestinal or central nervous system involvement survived in greater numbers. Forty-six percent of isolates were gram-positive. The most common isolates were the following: Escherichia coli, Enterococcus spp., Listeria monocytogenes, and Citrobacter spp. Overall survival was 67% (14/21). Crias with sepsis do not appear to present with major biochemical, hematologic, or blood gas abnormalities, potentially complicating diagnosis. Affected crias may not have localizing signs at presentation and are not usually febrile, although hypothermia, tachypnea, and tachycardia are relatively common. Total protein concentration was not a substitute for immunoglobulin G measurement in septic crias in this study. Familiarity with the clinical presentation and common pathogens isolated should improve early recognition and treatment and ultimately outcome of crias with sepsis.

  11. Inhibitory effect of gut bacteria from the Japanese honey bee, Apis cerana japonica, against Melissococcus plutonius, the causal agent of European foulbrood disease

    PubMed Central

    Wu, Meihua; Sugimura, Yuya; Iwata, Kyoko; Takaya, Noriko; Takamatsu, Daisuke; Kobayashi, Masaru; Taylor, DeMar; Kimura, Kiyoshi; Yoshiyama, Mikio

    2014-01-01

    Abstract European foulbrood is a contagious bacterial disease of honey bee larvae. Studies have shown that the intestinal bacteria of insects, including honey bees, act as probiotic organisms. Microbial flora from the gut of the Japanese honey bee, Apis cerana japonica F. (Hymenoptera: Apidae) , were characterized and evaluated for their potential to inhibit the growth of Melissococcus plutonius corrig. (ex White) Bailey and Collins (Lactobacillales: Enterococcaceae) , the causative agent of European foulbrood. Analysis of 16S rRNA gene sequences from 17 bacterial strains isolated by using a culture-dependent method revealed that most isolates belonged to Bacillus, Staphylococcus, and Pantoea. The isolates were screened against the pathogenic bacterium M. plutonius by using an in vitro growth inhibition assay, and one isolate (Acja3) belonging to the genus Bacillus exhibited inhibitory activity against M. plutonius. In addition, in vivo feeding assays revealed that isolate Acja3 decreased the mortality of honey bee larvae infected with M plutonius, suggesting that this bacterial strain could potentially be used as a probiotic agent against European foulbrood. PMID:25368073

  12. Characterization of bacterial diversity associated with deep sea ferromanganese nodules from the South China Sea.

    PubMed

    Zhang, De-Chao; Liu, Yan-Xia; Li, Xin-Zheng

    2015-09-01

    Deep sea ferromanganese (FeMn) nodules contain metallic mineral resources and have great economic potential. In this study, a combination of culture-dependent and culture-independent (16S rRNA genes clone library and pyrosequencing) methods was used to investigate the bacterial diversity in FeMn nodules from Jiaolong Seamount, the South China Sea. Eleven bacterial strains including some moderate thermophiles were isolated. The majority of strains belonged to the phylum Proteobacteria; one isolate belonged to the phylum Firmicutes. A total of 259 near full-length bacterial 16S rRNA gene sequences in a clone library and 67,079 valid reads obtained using pyrosequencing indicated that members of the Gammaproteobacteria dominated, with the most abundant bacterial genera being Pseudomonas and Alteromonas. Sequence analysis indicated the presence of many organisms whose closest relatives are known manganese oxidizers, iron reducers, hydrogen-oxidizing bacteria and methylotrophs. This is the first reported investigation of bacterial diversity associated with deep sea FeMn nodules from the South China Sea.

  13. Development of a novel artificial medium based on utilization of algal photosynthetic metabolites by symbiotic heterotrophs.

    PubMed

    Watanabe, K; Imase, M; Aoyagi, H; Ohmura, N; Saiki, H; Tanaka, H

    2008-09-01

    (i) Quantitative and qualitative analyses of photosynthetic metabolites of Chlorella sorokiniana and elucidation of the mechanism of their utilization by algal symbionts. (ii) Development of artificial medium that imitates photoautotroph-heterotroph interaction and investigation of its suitability for isolation of novel microbes from the environment. Various components, including free dissolved carbohydrates, nitrogenous compounds and vitamin, were detected and together contributed 11.1% (as carbon content) of the total photosynthetic metabolites in the medium. Utilization of these photosynthetic metabolites in algal culture broth by algal symbionts was studied. Many symbionts showed specific utilization patterns. A novel artificial extracellular released organic carbon medium, which imitated the nutritional conditions surrounding algae, was developed based on the pattern of utilization of the algal metabolites by the symbiotic heterotrophs. About 42.9% of the isolates were closely related to photoautotrophic-dependent and oligotrophic bacteria. With the novel artificial medium, it was possible to selectively isolate some bacterial strains. Synthetic bacterial growth medium is an important and basic tool for bacterial isolation from environmental samples. The current study shows that preferential separation of typical bacterial subset can be achieved by using artificial medium that mimics photosynthetic metabolites.

  14. Characterizing endophytic competence and plant growth promotion of bacterial endophytes inhabiting the seed endosphere of Rice.

    PubMed

    Walitang, Denver I; Kim, Kiyoon; Madhaiyan, Munusamy; Kim, Young Kee; Kang, Yeongyeong; Sa, Tongmin

    2017-10-26

    Rice (Oryza sativa L. ssp. indica) seeds as plant microbiome present both an opportunity and a challenge to colonizing bacterial community living in close association with plants. Nevertheless, the roles and activities of bacterial endophytes remain largely unexplored and insights into plant-microbe interaction are compounded by its complexity. In this study, putative functions or physiological properties associated with bacterial endophytic nature were assessed. Also, endophytic roles in plant growth and germination that may allow them to be selectively chosen by plants were also studied. The cultivable seed endophytes were dominated by Proteobacteria particularly class Gammaproteobacteria. Highly identical type strains were isolated from the seed endosphere regardless of the rice host's physiological tolerance to salinity. Among the type strains, Flavobacterium sp., Microbacterium sp. and Xanthomonas sp. were isolated from the salt-sensitive and salt-tolerant cultivars. PCA-Biplot ordination also showed that specific type strains isolated from different rice cultivars have distinguishing similar characteristics. Flavobacterium sp. strains are phosphate solubilizers and indole-3-acetic acid producers with high tolerance to salinity and osmotic stress. Pseudomonas strains are characterized as high siderophore producers while Microbacterium sp. and Xanthomonas sp. strains have very high pectinase and cellulase activity. Among the physiological traits of the seed endophytes, bacterial pectinase and cellulase activity are positively correlated as well as salt and osmotic tolerance. Overall characterization shows that majority of the isolates could survive in 4-8% salt concentration as well as in 0.6 M and 1.2 M sucrose solution. The activities of catalase, pectinase and cellulase were also observed in almost all of the isolates indicating the importance of these characteristics for survival and colonization into the seed endosphere. Seed bacterial endophytes also showed promising plant growth promoting activities including hormone modulation, nitrogen fixation, siderophore production and phosphate solubilization. Though many of the isolates possess similar PGP and endophytic physiological traits, this study shows some prominent and distinguishing traits among bacterial groups indicating key determinants for their success as endophytes in the rice seed endosphere. Rice seeds are also inhabited by bacterial endophytes that promote growth during early seedling development.

  15. Oral associated bacterial infection in horses: studies on the normal anaerobic flora from the pharyngeal tonsillar surface and its association with lower respiratory tract and paraoral infections.

    PubMed

    Bailey, G D; Love, D N

    1991-02-15

    Two hundred and seventy bacterial isolates were obtained from the pharyngeal tonsillar surface of 12 normal horses and 98 obligatory anaerobic bacteria were characterised. Of these, 57 isolates belonging to 7 genera (Peptostreptococcus (1); Eubacterium (9); Clostridium (6); Veillonella (6); Megasphera (1); Bacteroides (28); Fusobacterium (6)) were identified, and 16 of these were identified to species level (P. anaerobius (1); E. fossor (9); C. villosum (1); B. fragilis (1); B. tectum (2); B. heparinolyticus (2)). Three hundred and twenty isolates were obtained from 23 samples from horses with lower respiratory tract (LRT) or paraoral (PO) bacterial infections. Of the 143 bacteria selected for detailed characterisation, obligate anaerobes accounted for 100 isolates, facultative anaerobes for 42 isolates and obligate aerobes for one isolate. Phenotypic characterisation separated 99 of the isolates into 14 genera. Among the obligately anaerobic species, Gram-positive cocci including P. anaerobius comprised 25% of isolates, E. fossor 11% and other Gram-positive rods (excluding Clostridium sp.) 18% of isolates. The Gram-negative rods comprised B. fragilis 5%, B. heparinolyticus 5%, asaccharolytic pigmented Bacteroides 3% and other Bacteroides 13%, while a so-far unnamed species of Fusobacterium (7%), and Gram-negative corroding rods (3%) were isolated. Among the facultatively anaerobic isolates, S. equi subsp. zooepidemicus accounted for 31% of isolates, followed by Pasteurella spp. 19%, Escherichia coli 17%, Actinomyces spp. 9%, Streptococcus spp. 9%. Incidental facultative isolates were Enterococcus spp. 2%, Enterobacter cloaceae 2%, Actinobacillus spp. 2% and Gram-negative corroding rods 5%. On the basis of the similarities (as determined by DNA hybridization data and/or phenotypic characteristics) of some of the bacterial species (e.g. E. fossor and B. heparinolyticus) isolated from both the normal pharyngeal tonsillar surfaces and LRT and PO diseases of horses, it is considered that the most likely source of bacteria involved in these disease processes is flora from the oral cavity.

  16. Gamma-irradiated bacterial preparation having anti-tumor activity

    DOEpatents

    Vass, Arpad A.; Tyndall, Richard L.; Terzaghi-Howe, Peggy

    1999-01-01

    A bacterial preparation from Pseudomonas species isolated #15 ATCC 55638 that has been exposed to gamma radiation exhibits cytotoxicity that is specific for neoplastic carcinoma cells. A method for obtaining a bacterial preparation having antitumor activity consists of suspending a bacterial isolate in media and exposing the suspension to gamma radiation. A bacterial preparation of an aged culture of an amoeba-associated bacteria exhibits anti-reverse transcriptase activity. A method for obtaining a bacterial preparation having anti-reverse transcriptase activity from an amoeba-associated bacterial isolate grown to stationary phase is disclosed.

  17. Bacterial Sepsis in Patients with Visceral Leishmaniasis in Northwest Ethiopia

    PubMed Central

    Takele, Yegnasew; Woldeyohannes, Desalegn; Tiruneh, Moges; Mohammed, Rezika; Lynen, Lutgarde; van Griensven, Johan

    2014-01-01

    Background and Objectives. Visceral leishmaniasis (VL) is one of the neglected diseases affecting the poorest segment of world populations. Sepsis is one of the predictors for death of patients with VL. This study aimed to assess the prevalence and factors associated with bacterial sepsis, causative agents, and their antimicrobial susceptibility patterns among patients with VL. Methods. A cross-sectional study was conducted among parasitologically confirmed VL patients suspected of sepsis admitted to the University of Gondar Hospital, Northwest Ethiopia, from February 2012 to May 2012. Blood cultures and other clinical samples were collected and cultured following the standard procedures. Results. Among 83 sepsis suspected VL patients 16 (19.3%) had culture confirmed bacterial sepsis. The most frequently isolated organism was Staphylococcus aureus (68.8%; 11/16), including two methicillin-resistant isolates (MRSA). Patients with focal bacterial infection were more likely to have bacterial sepsis (P < 0.001). Conclusions. The prevalence of culture confirmed bacterial sepsis was high, predominantly due to S. aureus. Concurrent focal bacterial infection was associated with bacterial sepsis, suggesting that focal infections could serve as sources for bacterial sepsis among VL patients. Careful clinical evaluation for focal infections and prompt initiation of empiric antibiotic treatment appears warranted in VL patients. PMID:24895569

  18. Delignification and Enhanced Gas Release from Soil Containing Lignocellulose by Treatment with Bacterial Lignin Degraders.

    PubMed

    Rashid, Goran M M; Duran-Pena, Maria Jesus; Rahmanpour, Rahman; Sapsford, Devin; Bugg, Timothy D H

    2017-04-10

    The aim of the study was to isolate bacterial lignin-degrading bacteria from municipal solid waste soil, and to investigate whether they could be used to delignify lignocellulose-containing soil, and enhance methane release. A set of 20 bacterial lignin degraders, including 11 new isolates from municipal solid waste soil, were tested for delignification and phenol release in soil containing 1% pine lignocellulose. A group of 7 strains were then tested for enhancement of gas release from soil containing 1% lignocellulose in small-scale column tests. Using an aerobic pre-treatment, aerobic strains such as Pseudomonas putida showed enhanced gas release from the treated sample, but four bacterial isolates showed 5-10 fold enhancement in gas release in an in situ experiment under microanaerobic conditions: Agrobacterium sp., Lysinibacillus sphaericus, Comamonas testosteroni, and Enterobacter sp.. The results show that facultative anaerobic bacterial lignin degraders found in landfill soil can be used for in situ delignification and enhanced gas release in soil containing lignocellulose. The study demonstrates the feasibility of using an in situ bacterial treatment to enhance gas release and resource recovery from landfill soil containing lignocellulosic waste. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. The microbiological spectrum and antibiotic sensitivity profile of extubated silicone stents following dacryocystorhinostomy.

    PubMed

    Ali, Mohammad Javed; Manderwad, Guruprasad; Naik, Milind N

    2013-10-01

    We aim to report the microbiological spectrum of organisms cultured from extubated silicone stents after a dacryocystorhinostomy and their antibiotic sensitivity patterns. Prospective interventional study. 50 silicone stents of 50 consecutive patients who underwent either external or endonasal dacryocystorhinostomy were enrolled for the study. All the stents were retrieved under endoscopic guidance from the nasal cavity at 3 months following surgery. All the tubes were immediately inoculated onto blood agar, chocolate agar, brain-heart infusion broth, Saboraud's dextrose agar and potato dextrose agar. Data collected and analyzed include demographics, diagnosis, type of dacryocystorhinostomy and the microbiological profile. The culture results, organisms isolated and their antibiotic sensitivity were studied. The mean age of patients at the time of dacyrocystorhinostomy was 34.4 years. Bacterial growth was noted in 88% (44/50) of all the stents cultured, whereas 60% (30/50) grew fungi and 6% (3/50) showed sterile cultures. 48% (24/50) of the stents showed mixed bacterial and fungal isolates. Among the fungal isolates, Aspergillus species accounted for 66.6% (20/30) followed by Fusarium species, which were seen in 26.6% (8/30). Among the bacterial isolates, gram negative organisms were the most common seen in 54.5% (24/44) and the commonest species isolated was Pseudomonas aeruginosa from 27% (12/44) of the stents. Staphylococcus aureus was the commonest gram positive isolate accounting for 18% of all the bacterial isolates. Gram positive organisms were commonly sensitive to cephalosporins and vancomycin whereas gram negative organisms were sensitive to quinolones and aminoglycosides. The surgical success rate was 96% (48/50). Fungal isolates were cultured from significant number of stents retrieved following dacryocystorhinostomy. Gram negative organisms are more common as compared to the gram positive. The organisms isolated were not found to influence the success of dacryocystorhinostomy.

  20. Carnobacterium divergens - a dominating bacterium of pork meat juice.

    PubMed

    Rieder, Gabriele; Krisch, Linda; Fischer, Harald; Kaufmann, Maria; Maringer, Adolf; Wessler, Silja

    2012-07-01

    Nonspoiled food that nevertheless contains bacterial pathogens constitutes a much more serious health problem than spoiled food, as the consumer is not warned beforehand. However, data on the diversity of bacterial species in meat juice are rare. To study the bacterial load of fresh pork from ten different distributors, we applied a combination of the conventional culture-based and molecular methods for detecting and quantifying the microbial spectrum of fresh pork meat juice samples. Altogether, we identified 23 bacterial species of ten different families analyzed by 16S rRNA gene sequencing. The majority of isolates were belonging to the typical spoilage bacterial population of lactic acid bacteria (LAB), Enterococcaceae, and Pseudomonadaceae. Several additional isolates were identified as Staphylococcus spp. and Bacillus spp. originating from human and animal skin and other environmental niches including plants, soil, and water. Carnobacterium divergens, a LAB contributing to the spoilage of raw meat even at refrigeration temperature, was the most frequently isolated species in our study (5/10) with a bacterial load of 10(3) - 10(7) CFU mL(-1). In several of the analyzed pork meat juice samples, two bacterial faecal indicators, Serratia grimesii and Serratia proteamaculans, were identified together with another opportunistic food-borne pathogen, Staphylococcus equorum. Our data reveal a high bacterial load of fresh pork meat supporting the potential health risk of meat juice for the end consumer even under refrigerated conditions. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  1. Ocular surface infections in northeastern state of malaysia: a 10-year review of bacterial isolates and antimicrobial susceptibility.

    PubMed

    Rahman, Zaidah A; Harun, Azian; Hasan, Habsah; Mohamed, Zeehaida; Noor, Siti S Md; Deris, Zakuan Z; Ismail, Nabilah; Hassan, Asma S; Ahmad, Fadzhilah; Yaakub, Azhany

    2013-09-01

    Ocular surface infections that include infections of conjunctiva, adnexa, and cornea have the potential risk of causing blindness within a given population. Empirical antibiotic therapy is usually initiated based on epidemiological data of common causative agents. Thus, the aims of this study were to determine the bacterial agents and their susceptibility patterns of isolates from ocular surface specimens in our hospital. This is a retrospective analysis and records of bacterial isolates from ocular surface specimens in Hospital Universiti Sains Malaysia from January 2001 to December 2010 were examined. Specimens were processed according to standard laboratory procedures. Antimicrobial susceptibility testing was conducted based on Clinical and Laboratory Standards Institute recommendations. Only single, nonrepetitive isolates were included in the analysis. A total of 1,267 isolates were obtained during the study period, which comprised Staphylococcus aureus (n = 299, 23.6%), Pseudomonas aeruginosa (n = 194, 15.3%), Streptococcus pneumoniae (n = 108, 8.5%), Haemophilus influenzae (n = 100, 7.9%), Haemophilus parainfluenzae (n = 84, 6.6%), and Enterobacter spp. (n = 81, 6.4%). Fungi contributed to 4.4% of the total isolates. The antimicrobial susceptibility testing demonstrated that gram-positive bacteria were generally resistant to gentamicin (19%-57%), whereas gram-negative bacteria were resistant to chloramphenicol (27%-58%). Based on the above results, knowledge of the initial Gram stain findings is imperative before the commencement of empirical antibiotic therapy. Therefore, a simple Gram staining for all eye specimens is highly recommended.

  2. Antagonistic activity of Bacillus subtilis SB1 and its biocontrol effect on tomato bacterial wilt

    USDA-ARS?s Scientific Manuscript database

    A potential biocontrol agent of bacterial wilt, Bacillus subtilis SB1, isolated from tomato roots, showed a broad-spectrum of antimicrobial activity in in vitro experiments. It inhibited the growth of many plant pathogens, including Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, Fusarium ox...

  3. Screening of antagonistic bacteria isolated from Amorphophallus konjac rhizosphere soil

    NASA Astrophysics Data System (ADS)

    Lin, Tianxing; Gong, Mingfu; Guan, Qinlan; Huang, Ying; Qin, Fang

    2018-04-01

    Bacteria lived in Amorphaphallus konjac rhizosphere soil have the potential ability of antagonistic bacterial pathogen activity against to Erwinia carotovora subsp carotovora (Ecc). The paper was to study and analyze all strains of 18 bacteria isolated from A. konjac rhizosphere soil with strong antagonistic effect against to Ecc and to identify antagonistic bacteria with morphology, physiology and biochemistry characteristic. The antagonistic bacterial pathogen activity of different bacterial strains were significantly different. Five of 18 strains isolated from A. konjac rhizosphere soil, including AKSB03, AKSB05, AKSB08, AKSB13 and AKSB16 was screened with antagonistic wider more than 15 mm in first screening test. Strain AKSB08 and strain AKSB16 had a strong antagonism activity for Ecc with antagonistic wider more than 20 mm in second screening test. Strain AKSB08 and strain AKSB16 belonged to Bacillus with morphology, physiology and biochemistry characteristic.

  4. More Easily Cultivated Than Identified: Classical Isolation With Molecular Identification of Vaginal Bacteria

    PubMed Central

    Srinivasan, Sujatha; Munch, Matthew M.; Sizova, Maria V.; Fiedler, Tina L.; Kohler, Christina M.; Hoffman, Noah G.; Liu, Congzhou; Agnew, Kathy J.; Marrazzo, Jeanne M.; Epstein, Slava S.; Fredricks, David N.

    2016-01-01

    Background. Women with bacterial vaginosis (BV) have complex communities of anaerobic bacteria. There are no cultivated isolates of several bacteria identified using molecular methods and associated with BV. It is unclear whether this is due to the inability to adequately propagate these bacteria or to correctly identify them in culture. Methods. Vaginal fluid from 15 women was plated on 6 different media using classical cultivation approaches. Individual isolates were identified by 16S ribosomal RNA (rRNA) gene sequencing and compared with validly described species. Bacterial community profiles in vaginal samples were determined using broad-range 16S rRNA gene polymerase chain reaction and pyrosequencing. Results. We isolated and identified 101 distinct bacterial strains spanning 6 phyla including (1) novel strains with <98% 16S rRNA sequence identity to validly described species, (2) closely related species within a genus, (3) bacteria previously isolated from body sites other than the vagina, and (4) known bacteria formerly isolated from the vagina. Pyrosequencing showed that novel strains Peptoniphilaceae DNF01163 and Prevotellaceae DNF00733 were prevalent in women with BV. Conclusions. We isolated a diverse set of novel and clinically significant anaerobes from the human vagina using conventional approaches with systematic molecular identification. Several previously “uncultivated” bacteria are amenable to conventional cultivation. PMID:27449870

  5. IDENTIFICATION AND CHARACTERIZATION OF AEROMONAS ISOLATES FROM DRINKING WATER DISTRIBUTION SYSTEMS

    EPA Science Inventory

    Members of the bacterial genus Aeromonas are commonly isolated from both fresh and salt waters worldwide and some are believed to cause infections in humans, including gastroenteritis and wound infections. Currently, aeromonads are on the United States Environmental Protection A...

  6. Gamma-irradiated bacterial preparation having anti-tumor activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vass, A.A.; Tyndall, R.L.; Terzaghi-Howe, P.

    1999-11-16

    This application describes a bacterial preparation from Pseudomonas species isolated {number{underscore}sign}15 ATCC 55638 that has been exposed to gamma radiation exhibits cytotoxicity that is specific for neoplastic carcinoma cells. A method for obtaining a bacterial preparation having antitumor activity consists of suspending a bacterial isolate in media and exposing the suspension to gamma radiation. A bacterial preparation of an aged culture of an amoeba-associated bacteria exhibits anti-reverse transcriptase activity. A method for obtaining a bacterial preparation having anti-reverse transcriptase activity from an amoeba-associated bacterial isolate grown to stationary phase is disclosed.

  7. Estimating Herd Immunity to Amphibian Chytridiomycosis in Madagascar Based on the Defensive Function of Amphibian Skin Bacteria

    PubMed Central

    Bletz, Molly C.; Myers, Jillian; Woodhams, Douglas C.; Rabemananjara, Falitiana C. E.; Rakotonirina, Angela; Weldon, Che; Edmonds, Devin; Vences, Miguel; Harris, Reid N.

    2017-01-01

    For decades, Amphibians have been globally threatened by the still expanding infectious disease, chytridiomycosis. Madagascar is an amphibian biodiversity hotspot where Batrachochytrium dendrobatidis (Bd) has only recently been detected. While no Bd-associated population declines have been reported, the risk of declines is high when invasive virulent lineages become involved. Cutaneous bacteria contribute to host innate immunity by providing defense against pathogens for numerous animals, including amphibians. Little is known, however, about the cutaneous bacterial residents of Malagasy amphibians and the functional capacity they have against Bd. We cultured 3179 skin bacterial isolates from over 90 frog species across Madagascar, identified them via Sanger sequencing of approximately 700 bp of the 16S rRNA gene, and characterized their functional capacity against Bd. A subset of isolates was also tested against multiple Bd genotypes. In addition, we applied the concept of herd immunity to estimate Bd-associated risk for amphibian communities across Madagascar based on bacterial antifungal activity. We found that multiple bacterial isolates (39% of all isolates) cultured from the skin of Malagasy frogs were able to inhibit Bd. Mean inhibition was weakly correlated with bacterial phylogeny, and certain taxonomic groups appear to have a high proportion of inhibitory isolates, such as the Enterobacteriaceae, Pseudomonadaceae, and Xanthamonadaceae (84, 80, and 75% respectively). Functional capacity of bacteria against Bd varied among Bd genotypes; however, there were some bacteria that showed broad spectrum inhibition against all tested Bd genotypes, suggesting that these bacteria would be good candidates for probiotic therapies. We estimated Bd-associated risk for sampled amphibian communities based on the concept of herd immunity. Multiple amphibian communities, including those in the amphibian diversity hotspots, Andasibe and Ranomafana, were estimated to be below the 80% herd immunity threshold, suggesting they may be at higher risk to chytridiomycosis if a lethal Bd genotype emerges in Madagascar. While this predictive approach rests on multiple assumptions, and incorporates only one component of hosts' defense against Bd, their culturable cutaneous bacterial defense, it can serve as a foundation for continued research on Bd-associated risk for the endemic frogs of Madagascar. PMID:28959244

  8. Identification of rare pathogenic bacteria in a clinical microbiology laboratory: impact of matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Seng, Piseth; Abat, Cedric; Rolain, Jean Marc; Colson, Philippe; Lagier, Jean-Christophe; Gouriet, Frédérique; Fournier, Pierre Edouard; Drancourt, Michel; La Scola, Bernard; Raoult, Didier

    2013-07-01

    During the past 5 years, matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) has become a powerful tool for routine identification in many clinical laboratories. We analyzed our 11-year experience in routine identification of clinical isolates (40 months using MALDI-TOF MS and 91 months using conventional phenotypic identification [CPI]). Among the 286,842 clonal isolates, 284,899 isolates of 459 species were identified. The remaining 1,951 isolates were misidentified and required confirmation using a second phenotypic identification for 670 isolates and using a molecular technique for 1,273 isolates of 339 species. MALDI-TOF MS annually identified 112 species, i.e., 36 species/10,000 isolates, compared to 44 species, i.e., 19 species/10,000 isolates, for CPI. Only 50 isolates required second phenotypic identifications during the MALDI-TOF MS period (i.e., 4.5 reidentifications/10,000 isolates) compared with 620 isolates during the CPI period (i.e., 35.2/10,000 isolates). We identified 128 bacterial species rarely reported as human pathogens, including 48 using phenotypic techniques (22 using CPI and 37 using MALDI-TOF MS). Another 75 rare species were identified using molecular methods. MALDI-TOF MS reduced the time required for identification by 55-fold and 169-fold and the cost by 5-fold and 96-fold compared with CPI and gene sequencing, respectively. MALDI-TOF MS was a powerful tool not only for routine bacterial identification but also for identification of rare bacterial species implicated in human infectious diseases. The ability to rapidly identify bacterial species rarely described as pathogens in specific clinical specimens will help us to study the clinical burden resulting from the emergence of these species as human pathogens, and MALDI-TOF MS may be considered an alternative to molecular methods in clinical laboratories.

  9. Identification of Rare Pathogenic Bacteria in a Clinical Microbiology Laboratory: Impact of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    PubMed Central

    Seng, Piseth; Abat, Cedric; Rolain, Jean Marc; Colson, Philippe; Lagier, Jean-Christophe; Gouriet, Frédérique; Fournier, Pierre Edouard; Drancourt, Michel; La Scola, Bernard

    2013-01-01

    During the past 5 years, matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry (MS) has become a powerful tool for routine identification in many clinical laboratories. We analyzed our 11-year experience in routine identification of clinical isolates (40 months using MALDI-TOF MS and 91 months using conventional phenotypic identification [CPI]). Among the 286,842 clonal isolates, 284,899 isolates of 459 species were identified. The remaining 1,951 isolates were misidentified and required confirmation using a second phenotypic identification for 670 isolates and using a molecular technique for 1,273 isolates of 339 species. MALDI-TOF MS annually identified 112 species, i.e., 36 species/10,000 isolates, compared to 44 species, i.e., 19 species/10,000 isolates, for CPI. Only 50 isolates required second phenotypic identifications during the MALDI-TOF MS period (i.e., 4.5 reidentifications/10,000 isolates) compared with 620 isolates during the CPI period (i.e., 35.2/10,000 isolates). We identified 128 bacterial species rarely reported as human pathogens, including 48 using phenotypic techniques (22 using CPI and 37 using MALDI-TOF MS). Another 75 rare species were identified using molecular methods. MALDI-TOF MS reduced the time required for identification by 55-fold and 169-fold and the cost by 5-fold and 96-fold compared with CPI and gene sequencing, respectively. MALDI-TOF MS was a powerful tool not only for routine bacterial identification but also for identification of rare bacterial species implicated in human infectious diseases. The ability to rapidly identify bacterial species rarely described as pathogens in specific clinical specimens will help us to study the clinical burden resulting from the emergence of these species as human pathogens, and MALDI-TOF MS may be considered an alternative to molecular methods in clinical laboratories. PMID:23637301

  10. Identification and Genetic Characterization of Ralstonia solanacearum Species Complex Isolates from Cucurbita maxima in China

    PubMed Central

    She, Xiaoman; Yu, Lin; Lan, Guobing; Tang, Yafei; He, Zifu

    2017-01-01

    Ralstonia solanacearum species complex is a devastating phytopathogen with an unusually wide host range, and new host plants are continuously being discovered. In June 2016, a new bacterial wilt on Cucurbita maxima was observed in Guangdong province, China. Initially, in the adult plant stage, several leaves of each plant withered suddenly and drooped; the plant then wilted completely, and the color of their vasculature changed to dark brown, ultimately causing the entire plant to die. Creamy-whitish bacterial masses were observed to ooze from crosscut stems of these diseased plants. To develop control strategies for C. maxima bacterial wilt, the causative pathogenic isolates were identified and characterized. Twenty-four bacterial isolates were obtained from diseased C. maxima plants, and 16S rRNA gene sequencing and pathogenicity analysis results indicated that the pathogen of C. maxima bacterial wilt was Ralstonia solanacearum. The results from DNA-based analysis, host range determination and bacteriological identification confirmed that the 24 isolates belonged to R. solanacearum phylotype I, race 1, and eight of these isolates belonged to biovar 3, while 16 belonged to biovar 4. Based on the results of partial egl gene sequence analysis, the 24 isolates clustered into three egl- sequence type groups, sequevars 17, 45, and 56. Sequevar 56 is a new sequevar which is described for the first time in this paper. An assessment of the resistance of 21 pumpkin cultivars revealed that C. moschata cv. Xiangyu1 is resistant to strain RS378, C. moschata cv. Xiangmi is moderately resistant to strain RS378, and 19 other pumpkin cultivars, including four C. maxima cultivars and 15 C. moschata cultivars, are susceptible to strain RS378. To the best of our knowledge, this is the first report of C. maxima bacterial wilt caused by R. solanacearum race 1 in the world. Our results provide valuable information for the further development of control strategies for C. maxima wilt disease. PMID:29093727

  11. Identification and Genetic Characterization of Ralstonia solanacearum Species Complex Isolates from Cucurbita maxima in China.

    PubMed

    She, Xiaoman; Yu, Lin; Lan, Guobing; Tang, Yafei; He, Zifu

    2017-01-01

    Ralstonia solanacearum species complex is a devastating phytopathogen with an unusually wide host range, and new host plants are continuously being discovered. In June 2016, a new bacterial wilt on Cucurbita maxima was observed in Guangdong province, China. Initially, in the adult plant stage, several leaves of each plant withered suddenly and drooped; the plant then wilted completely, and the color of their vasculature changed to dark brown, ultimately causing the entire plant to die. Creamy-whitish bacterial masses were observed to ooze from crosscut stems of these diseased plants. To develop control strategies for C. maxima bacterial wilt, the causative pathogenic isolates were identified and characterized. Twenty-four bacterial isolates were obtained from diseased C. maxima plants, and 16S rRNA gene sequencing and pathogenicity analysis results indicated that the pathogen of C. maxima bacterial wilt was Ralstonia solanacearum . The results from DNA-based analysis, host range determination and bacteriological identification confirmed that the 24 isolates belonged to R. solanacearum phylotype I, race 1, and eight of these isolates belonged to biovar 3, while 16 belonged to biovar 4. Based on the results of partial egl gene sequence analysis, the 24 isolates clustered into three egl- sequence type groups, sequevars 17, 45, and 56. Sequevar 56 is a new sequevar which is described for the first time in this paper. An assessment of the resistance of 21 pumpkin cultivars revealed that C. moschata cv. Xiangyu1 is resistant to strain RS378, C. moschata cv. Xiangmi is moderately resistant to strain RS378, and 19 other pumpkin cultivars, including four C. maxima cultivars and 15 C. moschata cultivars, are susceptible to strain RS378. To the best of our knowledge, this is the first report of C. maxima bacterial wilt caused by R. solanacearum race 1 in the world. Our results provide valuable information for the further development of control strategies for C. maxima wilt disease.

  12. Urinary tract infection among obstetric fistula patients at Gondar University Hospital, northwest Ethiopia.

    PubMed

    Wondimeneh, Yitayih; Muluye, Dagnachew; Alemu, Abebe; Atinafu, Asmamaw; Yitayew, Gashaw; Gebrecherkos, Teklay; Alemu, Agersew; Damtie, Demekech; Ferede, Getachew

    2014-01-17

    Many women die from complications related to pregnancy and childbirth. In developing countries particularly in sub-Saharan Africa and Asia, where access to emergency obstetrical care is often limited, obstetric fistula usually occurs as a result of prolonged obstructed labour. Obstetric fistula patients have many social and health related problems like urinary tract infections (UTIs). Despite this reality there was limited data on prevalence UTIs on those patients in Ethiopia. Therefore, the aim of this study was to determine the prevalence, drug susceptibility pattern and associated risk factors of UTI among obstetric fistula patients at Gondar University Hospital, Northwest Ethiopia. A cross sectional study was conducted from January to May, 2013 at Gondar University Hospital. From each post repair obstetric fistula patients, socio-demographic and UTIs associated risk factors were collected by using a structured questionnaire. After the removal of their catheters, the mid-stream urine was collected and cultured on CLED. After overnight incubation, significant bacteriuria was sub-cultured on Blood Agar Plate (BAP) and MacConkey (MAC). The bacterial species were identified by series of biochemical tests. Antibiotic susceptibility test was done by disc diffusion method. Data was entered and analyzed by using SPSS version 20. A total of 53 post repair obstetric fistula patients were included for the determination of bacterial isolate and 28 (52.8%) of them had significant bacteriuria. Majority of the bacterial isolates, 26 (92.9%), were gram negative bacteria and the predominant ones were Citrobacter 13 (24.5%) and E. coli 6 (11.3%). Enterobacter, E.coli and Proteus mirabilis were 100% resistant to tetracycline. Enterobacter, Proteus mirabilis, Klebsella pneumonia, Klebsella ozenae and Staphylococcus aureus were also 100% resistant to ceftriaxone. The prevalence of bacterial isolates in obstetric fistula patients was high and majority of the isolates were gram negative bacteria. Even thought the predominant bacterial isolates were Citrobacter and E. coli, all of the bacterial isolates had multiple antibiotic resistance patterns which alert health profession to look better treatment for these patients.

  13. Insight into Cr6+ reduction efficiency of Rhodococcus erythropolis isolated from coalmine waste water.

    PubMed

    Banerjee, Soumya; Joshi, S R; Mandal, Tamal; Halder, Gopinath

    2017-01-01

    A microbial treatment of Cr 6+ contaminated wastewater with a chromium reducing bacteria isolated from coal mine area was investigated. In a series of batch study metal removal was executed under different parametric conditions which include pH (2-7), temperature (20-50 °C), initial Cr 6+ concentration (1-100 mg/L), substrate utilization and its overall effect on biomass generation. Impact of oxygen availability was checked at different agitation speed and its role on the remedial process. Liquid phase reduction of Cr 6+ was measured in terms of substrate reduction and total biomass yield. The bacterium species isolated was able to tolerate Cr 6+ over a wide range from 1 to 100 mg/L before it reached minimum inhibition concentration. Apart from Cr 6+ , the bacterial isolate showed tolerance towards Fe, As, Cu, Ag, Zn, Mn, Mg and Pb. Removal mechanism adopted by the bacterium recommended that it employed accumulation of Cr 6+ as Cr 3+ both within and outside the cell. Classical Monod equation was used to determine the biokinetics of the bacterial isolate along with the interference of metal ion concentration and substrate utilization. Cr 6+ removal was found prominent even in bimetallic solutions. The bacterial isolate was confirmed to be Rhodococcus erythopolis by 16s rRNA molecular characterization. Thus the bacterial isolate obtained from the coal mine area proved to be a potential agent for microbial remediation of Cr 6+ laden waste water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Role of K1 capsule antigen in cirrhotic patients with Escherichia coli spontaneous bacterial peritonitis in southern Taiwan.

    PubMed

    Wang, M C; Lin, W H; Tseng, C C; Wu, A B; Teng, C H; Yan, J J; Wu, J J

    2013-03-01

    Spontaneous bacterial peritonitis (SBP) is one of the most serious complications in patients with cirrhosis. This study aimed to investigate the prevalence of SBP caused by Escherichia coli isolates with or without the K1 capsule antigen in cirrhotic patients and the outcome. From January 2004 to January 2012, a total of 54 and 41 E. coli strains derived from patients with SBP and intestinal perforation (IP), respectively, were included for comparison in this study. Bacterial characteristics including phylogenetic groups, K1 capsule antigen, and 14 virulence factor genetic determinants, as well as data regarding patient characteristics, clinical manifestations, and in-hospital deaths, were collected and analyzed. The prevalence of the K1 capsule antigen gene neuA was more common in SBP isolates compared to IP isolates (28 % vs. 10 %, p = 0.0385). Phylogenetic groups B2 and group D were dominant in E. coli isolates with and without the K1 capsule antigen, respectively. The prevalence of virulence factors genes papG II, ompT, and usp was higher in E. coli K1 strains. There were 26 deaths (48 %) during hospitalization. Presence of the K1 capsule antigen in E. coli isolates was significantly associated with in-hospital death in cirrhotic patients with SBP (42 % vs. 14 %, p = 0.0331). This study demonstrates a higher prevalence of the K1 capsule antigen in E. coli SBP compared to E. coli peritonitis caused by IP. There were significant associations between the K1 capsule antigen and in-hospital mortality and bacterial virulence in cirrhotic patients with E. coli SBP.

  15. Microbiological etiology and susceptibility of bacterial conjunctivitis isolates from clinical trials with ophthalmic, twice-daily besifloxacin.

    PubMed

    Haas, Wolfgang; Gearinger, Lynne S; Hesje, Christine K; Sanfilippo, Christine M; Morris, Timothy W

    2012-05-01

    Bacterial conjunctivitis is a contagious infection of the surface of the eye usually treated empirically with topical antibiotics. Since the etiologic agent is rarely identified, it is important to monitor which bacteria cause conjunctivitis and determine their antibacterial resistance profiles. A total of 496 bacterial samples were isolated during a randomized, double-masked, vehicle-controlled, parallel-group study conducted in the United States with besifloxacin ophthalmic suspension 0.6% dosed twice daily. Species were determined by standard biochemical and/or molecular identification methods. Minimum inhibitory concentrations were determined according to Clinical and Laboratory Standards Institute standards. The most prevalent species was Haemophilus influenzae, followed by Staphylococcus epidermidis, Staphylococcus aureus, the Streptococcus mitis group, and Streptococcus pneumoniae. One species identified in this study, which was not previously noted as a common cause of bacterial conjunctivitis, was Dolosigranulum pigrum. Ampicillin resistance was common among H. influenzae isolates, while macrolide resistance was high among S. pneumoniae, S. epidermidis, and S. aureus. The latter two species also included a number of isolates resistant to methicillin and ciprofloxacin. Antibiotic resistance among isolates remains a concern and the appearance of an emerging ocular pathogen, D. pigrum, suggests the need for continued observation. The topical ophthalmic fluoroquinolones continue to provide a good balance of low to moderate (i.e., manageable) levels of resistance plus broad-spectrum coverage for empiric treatment of ocular infections.

  16. Bacterial microflora of normal and telangiectatic livers in cattle.

    PubMed

    Stotland, E I; Edwards, J F; Roussel, A J; Simpson, R B

    2001-07-01

    To identify potential bacterial pathogens in normal and telangiectatic livers of mature cattle at slaughter and to identify consumer risk associated with hepatic telangiectasia. 50 normal livers and 50 severely telangiectatic livers. Normal and telangiectatic livers were collected at slaughter for aerobic and anaerobic bacterial culture. Isolates were identified, and patterns of isolation were analyzed. Histologic examination of all livers was performed. Human pathogens isolated from normal and telangiectatic livers included Escherichia coli O157:H7 and group-D streptococci. Most livers in both groups contained bacteria in low numbers; however, more normal livers yielded negative culture results. More group-D streptococci were isolated from the right lobes of telangiectatic livers than from the left lobes, and more gram-negative anaerobic bacteria were isolated from left lobes of telangiectatic livers than from right lobes. All telangiectatic lesions were free of fibrosis, active necrotizing processes, and inflammation. The USDA regulation condemning telangiectatic livers is justified insofar as these livers contain more bacteria than normal livers do; however, normal livers contain similar species of microflora. Development of telangiectasia could not be linked to an infectious process. The finding of E coli O157:H7 in bovine livers suggests that information regarding bacterial content of other offal and muscle may identify sources of this and other potential foodborne pathogens and assist in establishing critical control points for the meat industry.

  17. Automated Identification of Medically Important Bacteria by 16S rRNA Gene Sequencing Using a Novel Comprehensive Database, 16SpathDB▿

    PubMed Central

    Woo, Patrick C. Y.; Teng, Jade L. L.; Yeung, Juilian M. Y.; Tse, Herman; Lau, Susanna K. P.; Yuen, Kwok-Yung

    2011-01-01

    Despite the increasing use of 16S rRNA gene sequencing, interpretation of 16S rRNA gene sequence results is one of the most difficult problems faced by clinical microbiologists and technicians. To overcome the problems we encountered in the existing databases during 16S rRNA gene sequence interpretation, we built a comprehensive database, 16SpathDB (http://147.8.74.24/16SpathDB) based on the 16S rRNA gene sequences of all medically important bacteria listed in the Manual of Clinical Microbiology and evaluated its use for automated identification of these bacteria. Among 91 nonduplicated bacterial isolates collected in our clinical microbiology laboratory, 71 (78%) were reported by 16SpathDB as a single bacterial species having >98.0% nucleotide identity with the query sequence, 19 (20.9%) were reported as more than one bacterial species having >98.0% nucleotide identity with the query sequence, and 1 (1.1%) was reported as no match. For the 71 bacterial isolates reported as a single bacterial species, all results were identical to their true identities as determined by a polyphasic approach. For the 19 bacterial isolates reported as more than one bacterial species, all results contained their true identities as determined by a polyphasic approach and all of them had their true identities as the “best match in 16SpathDB.” For the isolate (Gordonibacter pamelaeae) reported as no match, the bacterium has never been reported to be associated with human disease and was not included in the Manual of Clinical Microbiology. 16SpathDB is an automated, user-friendly, efficient, accurate, and regularly updated database for 16S rRNA gene sequence interpretation in clinical microbiology laboratories. PMID:21389154

  18. Study of bacterial meningitis in children below 5 years with comparative evaluation of gram staining, culture and bacterial antigen detection.

    PubMed

    Yadhav Ml, Kala

    2014-04-01

    Bacterial meningitis is one of the most serious infections seen in infants and children, which is associated with acute complications and chronic morbidity. Infections of Central Nervous System (CNS) still dominate the scene of childhood neurological disorders in most of the developing tropical countries. To isolate, identify and determine the antibiotic susceptibility patterns of pathogens associated with bacterial meningitis. We also aimed to comparatively evaluate of Gram staining, culture and bacterial antigen detection in cerebrospinal fluid samples. Present comparative study included 100 CSF samples of children below the age of 5 years, who were clinically suspected meningitis cases. The samples were subjected to Gram staining, culture and Latex agglutination test (LAT). The organisms isolated in the study were characterized and antibiotic susceptibility test was done according to standard guidelines. It was done by using Gaussian test. Of the 100 cases, 24 were diagnosed as Acute bacterial meningitis (ABM) cases by. Gram staining, culture and latex agglutination test. 21 (87.5%) cases were culture positive, with 2 cases being positive for polymicrobial isolates. Gram staining was positive in 17 (70.53%) cases and LAT was positive in 18 (33.33%) cases. Streptococcus pneumoniae was the predominant organism which was isolated and it was sensitive to antibiotics. In the present study, male to female ratio was 1.27:1, which showed a male preponderance. With the combination of Gram staining, culture, and LAT, 100% sensitivity and specificity can be achieved (p < 0.001). Gram staining and LAT can detect 85% of cases of ABM. Bacterial meningitis is a medical emergency and making an early diagnosis and providing treatment early are life saving and they reduce chronic morbidity.

  19. Bacterial contamination, bacterial profile and antimicrobial susceptibility pattern of isolates from stethoscopes at Jimma University Specialized Hospital

    PubMed Central

    2013-01-01

    Introduction Hospital acquired infections are recognized as critical public health problems. Infections are frequently caused by organisms residing in healthcare environment, including contaminated medical equipment like Stethoscopes. Objective To determine bacterial contamination, bacterial profile and anti-microbial susceptibility pattern of the isolates from stethoscopes at Jimma University Specialized Hospital. Methodology Cross-sectional study conducted from May to September 2011 at Jimma University Specialized Hospital. One hundred seventy-six stethoscopes owned by Health Care Workers (HCWs) and Medical students were randomly selected and studied. Self-administered structured questionnaire was used to collect socio-demographic data. Specimen was collected using moisten sterile cotton swab and 1 ml normal saline was used to transport the specimen, all laboratory investigations were done following standard microbiological techniques, at Microbiology Laboratory, Jimma University. SPSS windows version 16 used for data analysis and P <0.05 was considered statistically significant. Result: A total, of 151 (85.8%) stethoscopes were contaminated. A total of 256 bacterial strains and a mean of 1.44×104 CFUs/diaphragm of stethoscopes was isolated. Of the 256 isolates, 133 (52%) were potential pathogens like S. aureus, Klebsiella spp., Citrobacter spp., Salmonella spp., Proteus spp., Enterobacter spp., P. aeruginosa and E. coli. All strains were resistant to multiple classes of antibiotics (two to eight classes of antibiotics). Disinfection practice was poor. Disinfection practice was found to be associated with bacterial contamination of stethoscopes (P < 0.05). High contamination rate 100 (90.9%) was observed among stethoscopes that had never been disinfected; while the least contamination 29 (72.2%) was found on those disinfected a week or less before the survey. Conclusion Bacterial contamination of the stethoscope was significant. The isolates were potential pathogens and resistant to multiple classes of antibiotics. Stethoscope is potential vehicle in the transmission of infections between patients and Healthcare Workers. Stethoscope diaphragm should be disinfected before and after each patient contact. PMID:24330702

  20. Bacterial contamination, bacterial profile and antimicrobial susceptibility pattern of isolates from stethoscopes at Jimma University Specialized Hospital.

    PubMed

    Shiferaw, Teklu; Beyene, Getenet; Kassa, Tesfaye; Sewunet, Tsegaye

    2013-12-13

    Hospital acquired infections are recognized as critical public health problems. Infections are frequently caused by organisms residing in healthcare environment, including contaminated medical equipment like Stethoscopes. To determine bacterial contamination, bacterial profile and anti-microbial susceptibility pattern of the isolates from stethoscopes at Jimma University Specialized Hospital. Cross-sectional study conducted from May to September 2011 at Jimma University Specialized Hospital. One hundred seventy-six stethoscopes owned by Health Care Workers (HCWs) and Medical students were randomly selected and studied. Self-administered structured questionnaire was used to collect socio-demographic data. Specimen was collected using moisten sterile cotton swab and 1 ml normal saline was used to transport the specimen, all laboratory investigations were done following standard microbiological techniques, at Microbiology Laboratory, Jimma University. SPSS windows version 16 used for data analysis and P <0.05 was considered statistically significant. A total, of 151 (85.8%) stethoscopes were contaminated. A total of 256 bacterial strains and a mean of 1.44×104 CFUs/diaphragm of stethoscopes was isolated. Of the 256 isolates, 133 (52%) were potential pathogens like S. aureus, Klebsiella spp., Citrobacter spp., Salmonella spp., Proteus spp., Enterobacter spp., P. aeruginosa and E. coli. All strains were resistant to multiple classes of antibiotics (two to eight classes of antibiotics). Disinfection practice was poor. Disinfection practice was found to be associated with bacterial contamination of stethoscopes (P < 0.05). High contamination rate 100 (90.9%) was observed among stethoscopes that had never been disinfected; while the least contamination 29 (72.2%) was found on those disinfected a week or less before the survey. Bacterial contamination of the stethoscope was significant. The isolates were potential pathogens and resistant to multiple classes of antibiotics. Stethoscope is potential vehicle in the transmission of infections between patients and Healthcare Workers. Stethoscope diaphragm should be disinfected before and after each patient contact.

  1. Endophyte Microbiome Diversity in Micropropagated Atriplex canescens and Atriplex torreyi var griffithsii

    PubMed Central

    Lucero, Mary E.; Unc, Adrian; Cooke, Peter; Dowd, Scot; Sun, Shulei

    2011-01-01

    Microbial diversity associated with micropropagated Atriplex species was assessed using microscopy, isolate culturing, and sequencing. Light, electron, and confocal microscopy revealed microbial cells in aseptically regenerated leaves and roots. Clone libraries and tag-encoded FLX amplicon pyrosequencing (TEFAP) analysis amplified sequences from callus homologous to diverse fungal and bacterial taxa. Culturing isolated some seed borne endophyte taxa which could be readily propagated apart from the host. Microbial cells were observed within biofilm-like residues associated with plant cell surfaces and intercellular spaces. Various universal primers amplified both plant and microbial sequences, with different primers revealing different patterns of fungal diversity. Bacterial and fungal TEFAP followed by alignment with sequences from curated databases revealed 7 bacterial and 17 ascomycete taxa in A. canescens, and 5 bacterial taxa in A. torreyi. Additional diversity was observed among isolates and clone libraries. Micropropagated Atriplex retains a complex, intimately associated microbiome which includes diverse strains well poised to interact in manners that influence host physiology. Microbiome analysis was facilitated by high throughput sequencing methods, but primer biases continue to limit recovery of diverse sequences from even moderately complex communities. PMID:21437280

  2. Isolation of bacterial skin flora of healthy sheep, with comparison between frequent and minimal human handling.

    PubMed

    Haarstad, Amy C; Eisenschenk, Melissa C; Heinrich, Nicole A; Weese, J Scott; McKeever, Patrick J

    2014-06-01

    Few data are available regarding skin bacterial flora of healthy sheep and meticillin-resistant Staphylococcus carriage. To compare skin, ear and mucosal bacterial populations between minimally and frequently handled sheep; to determine whether the frequency of meticillin-resistant Staphylococcus aureus varied between groups. One hundred and three healthy feedlot and show sheep from eight farms. Swabs were collected from the dorsum, right ear and right nostril of each sheep. Two groups from each farm were evaluated, except from one farm, which had only one group. Bacterial isolates were identified to the genus or species level using phenotypic analysis or matrix-associated laser desorption/ionization time-of-flight mass spectrometry. Antimicrobial susceptibility testing and spa typing were performed on isolates of S. aureus. Sixteen bacterial genera were identified and 11 staphylococcal species, including S. aureus. The skin and mucosal bacterial flora were compared between the groups. The only statistically significant difference in bacteria was Streptococcus spp. on the dorsum (P = 0.0088), with carriage being more common in frequently handled sheep. Antimicrobial susceptibility testing did not find meticillin-resistant S. aureus. There was no significant difference in S. aureus carriage in the ear (P = 0.33), nostril (P = 0.43) or dorsum (P = 0.053) between frequently and minimally handled sheep. The S. aureus isolates belonged to six different spa types. Three were of the ST398 lineage. Sheep are a potential source of livestock-associated meticillin-sensitive Staphylococcus aureus ST398. © 2014 ESVD and ACVD.

  3. Microbial community analysis of a coastal hot spring in Kagoshima, Japan, using molecular- and culture-based approaches.

    PubMed

    Nishiyama, Minako; Yamamoto, Shuichi; Kurosawa, Norio

    2013-08-01

    Ibusuki hot spring is located on the coastline of Kagoshima Bay, Japan. The hot spring water is characterized by high salinity, high temperature, and neutral pH. The hot spring is covered by the sea during high tide, which leads to severe fluctuations in several environmental variables. A combination of molecular- and culture-based techniques was used to determine the bacterial and archaeal diversity of the hot spring. A total of 48 thermophilic bacterial strains were isolated from two sites (Site 1: 55.6°C; Site 2: 83.1°C) and they were categorized into six groups based on their 16S rRNA gene sequence similarity. Two groups (including 32 isolates) demonstrated low sequence similarity with published species, suggesting that they might represent novel taxa. The 148 clones from the Site 1 bacterial library included 76 operational taxonomy units (OTUs; 97% threshold), while 132 clones from the Site 2 bacterial library included 31 OTUs. Proteobacteria, Bacteroidetes, and Firmicutes were frequently detected in both clone libraries. The clones were related to thermophilic, mesophilic and psychrophilic bacteria. Approximately half of the sequences in bacterial clone libraries shared <92% sequence similarity with their closest sequences in a public database, suggesting that the Ibusuki hot spring may harbor a unique and novel bacterial community. By contrast, 77 clones from the Site 2 archaeal library contained only three OTUs, most of which were affiliated with Thaumarchaeota.

  4. Antimicrobial activities of novel cultivable bacteria isolated from marine sponge Tedania anhelans

    NASA Astrophysics Data System (ADS)

    Zeng, Zhen; Zhao, Jing; Ke, Caihuan; Wang, Dexiang

    2013-05-01

    Marine sponge Tedania anhelans distributes throughout the intertidal zone of Fujian, southeastern China, and is a potential source of natural bioactive products. The sponge harbors a large number of bacterial groups that have been identified using various techniques, including fluorescent in situ hybridization (FISH). Fractionation of dissociated sponge allowed isolation of 25 bacterial species. Based on 16S rRNA gene sequencing, phylogenetic analysis attributed most of these eubacteria to α- Proteobacteria, γ- Proteobacteria, Cytophaga / Flavobacterium / Bacteroidetes (CFB group), and the family Bacillaceae of Gram-positive bacteria. In sequence similarity, five putatively novel species were identified with less than 98% similarity to other strains in the NCBI database. Tests for antimicrobial activities were performed against Gram-positive bacteria, Gram-negative bacteria, fungi, antitumor indicators Escherichia coli 343/591 (with DNA repair deficiency), regular E. coli 343/636 (with different DNA repair capacity), and 10 bacterial isolates exhibited inhibitory bioactivities. Among these strains, three isolates were detected involving function gene NRPS-A domains, which were most closely related to the amino acid sequences of linear gramicidin synthetase and pyoverdine synthetase. These results contribute to our knowledge of the microbes associated with marine sponges and further reveal novel bacterial resources for the screening of bioactive marine natural products.

  5. Clavibacter michiganensis subsp. capsici subsp. nov., causing bacterial canker disease in pepper.

    PubMed

    Oh, Eom-Ji; Bae, Chungyun; Lee, Han-Beoyl; Hwang, In Sun; Lee, Hyok-In; Yea, Mi Chi; Yim, Kyu-Ock; Lee, Seungdon; Heu, Sunggi; Cha, Jae-Soon; Oh, Chang-Sik

    2016-10-01

    Clavibacter michiganensis is a Gram-stain-positive bacterium with eight subspecies. One of these subspecies is C. michiganensis subsp. michiganensis, which causes bacterial canker disease in tomato. Bacterial strains showing very similar canker disease symptoms to those of a strain originally classified as C. michiganensis have been isolated from pepper. In this paper, we reclassified strains isolated from pepper. On the basis of phylogenetic analysis with 16S rRNA gene sequences, the strains isolated from pepper were grouped in a separate clade from other subspecies of C. michiganensis. Biochemical, physiological and genetic characteristics of strain PF008T, which is the representative strain of the isolates from pepper, were examined in this study. Based on multi-locus sequence typing and other biochemical and physiological features including colony color, utilization of carbon sources and enzyme activities, strain PF008T was categorically differentiated from eight subspecies of C. michiganensis. Moreover, genome analysis showed that the DNA G+C content of strain PF008T is 73.2 %. These results indicate that PF008T is distinct from other known subspecies of C. michiganensis. Therefore, we propose a novel subspecies, C. michiganensis subsp. capsici, causing bacterial canker disease in pepper, with a type strain of PF008T (=KACC 18448T=LMG 29047T).

  6. Initial nitrogen enrichment conditions determines variations in nitrogen substrate utilization by heterotrophic bacterial isolates.

    PubMed

    Ghosh, Suchismita; Ayayee, Paul A; Valverde-Barrantes, Oscar J; Blackwood, Christopher B; Royer, Todd V; Leff, Laura G

    2017-04-04

    The nitrogen (N) cycle consists of complex microbe-mediated transformations driven by a variety of factors, including diversity and concentrations of N compounds. In this study, we examined taxonomic diversity and N substrate utilization by heterotrophic bacteria isolated from streams under complex and simple N-enrichment conditions. Diversity estimates differed among isolates from the enrichments, but no significant composition were detected. Substrate utilization and substrate range of bacterial assemblages differed within and among enrichments types, and not simply between simple and complex N-enrichments. N substrate use patterns differed between isolates from some complex and simple N-enrichments while others were unexpectedly similar. Taxonomic composition of isolates did not differ among enrichments and was unrelated to N use suggesting strong functional redundancy. Ultimately, our results imply that the available N pool influences physiology and selects for bacteria with various abilities that are unrelated to their taxonomic affiliation.

  7. Isolation and identification of biocellulose-producing bacterial strains from Malaysian acidic fruits.

    PubMed

    Voon, W W Y; Rukayadi, Y; Meor Hussin, A S

    2016-05-01

    Biocellulose (BC) is pure extracellular cellulose produced by several species of micro-organisms that has numerous applications in the food, biomedical and paper industries. However, the existing biocellulose-producing bacterial strain with high yield was limited. The aim of this study was to isolate and identify the potential biocellulose-producing bacterial isolates from Malaysian acidic fruits. One hundred and ninety-three bacterial isolates were obtained from 19 local acidic fruits collected in Malaysia and screened for their ability to produce BC. A total of 15 potential bacterial isolates were then cultured in standard Hestrin-Schramm (HS) medium statically at 30°C for 2 weeks to determine the BC production. The most potent bacterial isolates were identified using 16S rRNA gene sequence analysis, morphological and biochemical characteristics. Three new and potent biocellulose-producing bacterial strains were isolated from soursop fruit and identified as Stenotrophomonas maltophilia WAUPM42, Pantoea vagans WAUPM45 and Beijerinckia fluminensis WAUPM53. Stenotrophomonas maltophilia WAUPM42 was the most potent biocellulose-producing bacterial strain that produced the highest amount of BC 0·58 g l(-1) in standard HS medium. Whereas, the isolates P. vagans WAUPM45 and B. fluminensis WAUPM53 showed 0·50 and 0·52 g l(-1) of BC production, respectively. Biocellulose (BC) is pure extracellular cellulose that is formed by many micro-organisms in the presence of carbon source and acidic condition. It can replace plant-based cellulose in multifarious applications due to its unique characteristics. In this study, three potential biocellulose-producing bacterial strains were obtained from Malaysian acidic fruits and identified as Stenotrophomonas maltophilia WAUPM42, Pantoea vagans WAUPM45 and Beijerinckia fluminensis WAUPM53. This study reports for the first time the new biocellulose-producing bacterial strains isolated from Malaysian acidic fruits. © 2016 The Society for Applied Microbiology.

  8. Numbers of fecal streptococci and Escherichia coli in fresh and dry cattle, horse, and sheep manure.

    PubMed

    Weaver, R W; Entry, J A; Graves, Alexandria

    2005-10-01

    Livestock are known contributors to stream pollution. Numbers of fecal streptococci and Escherichia coli in manure naturally deposited by livestock in the field are needed for activities related to bacterial source tracking and determining maximum daily bacterial loading of streams. We measured populations of fecal streptococci and E. coli in fresh and dry manure from cattle (Bos taurus L.), horses (Equus caballus L.), and sheep (Ovis aires L.) on farms in southern Idaho. Populations of indicator bacteria in dry manure were often as high as that in fresh manure from horse and sheep. There was a 2 log10 drop in the population of fecal coliform numbers in dry cattle manure from cattle in pastures but not from cattle in pens. Bacterial isolates used in source tracking should include isolates from both fresh and dry manure to better represent the bacterial source loading of streams.

  9. Isolation and Host Range of Bacteriophage with Lytic Activity against Methicillin-Resistant Staphylococcus aureus and Potential Use as a Fomite Decontaminant.

    PubMed

    Jensen, Kyle C; Hair, Bryan B; Wienclaw, Trevor M; Murdock, Mark H; Hatch, Jacob B; Trent, Aaron T; White, Tyler D; Haskell, Kyler J; Berges, Bradford K

    2015-01-01

    Staphylococcus aureus (SA) is a commensal bacterium and opportunistic pathogen commonly associated with humans and is capable of causing serious disease and death including sepsis, pneumonia, and meningitis. Methicillin-resistant SA (MRSA) isolates are typically resistant to many available antibiotics with the common exception of vancomycin. The presence of vancomycin resistance in some SA isolates combined with the current heavy use of vancomycin to treat MRSA infections indicates that MRSA may achieve broad resistance to vancomycin in the near future. New MRSA treatments are clearly needed. Bacteriophages (phages) are viruses that infect bacteria, commonly resulting in death of the host bacterial cell. Phage therapy entails the use of phage to treat or prevent bacterial infections. In this study, 12 phages were isolated that can replicate in human SA and/or MRSA isolates as a potential way to control these infections. 5 phage were discovered through mitomycin C induction of prophage and 7 others as extracellular viruses. Primary SA strains were also isolated from environmental sources to be used as tools for phage discovery and isolation as well as to examine the target cell host range of the phage isolates by spot testing. Primary isolates were tested for susceptibility to oxacillin in order to determine which were MRSA. Experiments were performed to assess the host range and killing potential of newly discovered phage, and significant reductions in bacterial load were detected. We explored the utility of some phage to decontaminate fomites (glass and cloth) and found a significant reduction in colony forming units of MRSA following phage treatment, including tests of a phage cocktail against a cocktail of MRSA isolates. Our findings suggest that phage treatment can be used as an effective tool to decontaminate human MRSA from both hard surfaces and fabrics.

  10. Characterization of Multi-Drug Resistant Enterococcus faecalis Isolated from Cephalic Recording Chambers in Research Macaques (Macaca spp.).

    PubMed

    Woods, Stephanie E; Lieberman, Mia T; Lebreton, Francois; Trowel, Elise; de la Fuente-Núñez, César; Dzink-Fox, Joanne; Gilmore, Michael S; Fox, James G

    2017-01-01

    Nonhuman primates are commonly used for cognitive neuroscience research and often surgically implanted with cephalic recording chambers for electrophysiological recording. Aerobic bacterial cultures from 25 macaques identified 72 bacterial isolates, including 15 Enterococcus faecalis isolates. The E. faecalis isolates displayed multi-drug resistant phenotypes, with resistance to ciprofloxacin, enrofloxacin, trimethoprim-sulfamethoxazole, tetracycline, chloramphenicol, bacitracin, and erythromycin, as well as high-level aminoglycoside resistance. Multi-locus sequence typing showed that most belonged to two E. faecalis sequence types (ST): ST 4 and ST 55. The genomes of three representative isolates were sequenced to identify genes encoding antimicrobial resistances and other traits. Antimicrobial resistance genes identified included aac(6')-aph(2"), aph(3')-III, str, ant(6)-Ia, tetM, tetS, tetL, ermB, bcrABR, cat, and dfrG, and polymorphisms in parC (S80I) and gyrA (S83I) were observed. These isolates also harbored virulence factors including the cytolysin toxin genes in ST 4 isolates, as well as multiple biofilm-associated genes (esp, agg, ace, SrtA, gelE, ebpABC), hyaluronidases (hylA, hylB), and other survival genes (ElrA, tpx). Crystal violet biofilm assays confirmed that ST 4 isolates produced more biofilm than ST 55 isolates. The abundance of antimicrobial resistance and virulence factor genes in the ST 4 isolates likely relates to the loss of CRISPR-cas. This macaque colony represents a unique model for studying E. faecalis infection associated with indwelling devices, and provides an opportunity to understand the basis of persistence of this pathogen in a healthcare setting.

  11. Isolation of bacterial cellulose nanocrystalline from pineapple peel waste: Optimization of acid concentration in the hydrolysis method

    NASA Astrophysics Data System (ADS)

    Anwar, Budiman; Rosyid, Nurul Huda; Effendi, Devi Bentia; Nandiyanto, Asep Bayu Dani; Mudzakir, Ahmad; Hidayat, Topik

    2016-02-01

    Isolation of needle-shaped bacterial cellulose nanocrystalline with a diameter of 16-64 nm, a fiber length of 258-806 nm, and a degree of crystallinity of 64% from pineapple peel waste using an acid hydrolysis process was investigated. Experimental showed that selective concentration of acid played important roles in isolating the bacterial cellulose nanocrystalline from the cellulose source. To achieve the successful isolation of bacterial cellulose nanocrystalline, various acid concentrations were tested. To confirm the effect of acid concentration on the successful isolation process, the reaction conditions were fixed at a temperature of 50°C, a hydrolysis time of 30 minutes, and a bacterial cellulose-to-acid ratio of 1:50. Pineapple peel waste was used as a model for a cellulose source because to the best of our knowledge, there is no report on the use of this raw material for producing bacterial cellulose nanocrystalline. In fact, this material can be used as an alternative for ecofriendly and cost-free cellulose sources. Therefore, understanding in how to isolate bacterial cellulose nanocrystalline from pineapple peel waste has the potential for large-scale production of inexpensive cellulose nanocrystalline.

  12. More Easily Cultivated Than Identified: Classical Isolation With Molecular Identification of Vaginal Bacteria.

    PubMed

    Srinivasan, Sujatha; Munch, Matthew M; Sizova, Maria V; Fiedler, Tina L; Kohler, Christina M; Hoffman, Noah G; Liu, Congzhou; Agnew, Kathy J; Marrazzo, Jeanne M; Epstein, Slava S; Fredricks, David N

    2016-08-15

    Women with bacterial vaginosis (BV) have complex communities of anaerobic bacteria. There are no cultivated isolates of several bacteria identified using molecular methods and associated with BV. It is unclear whether this is due to the inability to adequately propagate these bacteria or to correctly identify them in culture. Vaginal fluid from 15 women was plated on 6 different media using classical cultivation approaches. Individual isolates were identified by 16S ribosomal RNA (rRNA) gene sequencing and compared with validly described species. Bacterial community profiles in vaginal samples were determined using broad-range 16S rRNA gene polymerase chain reaction and pyrosequencing. We isolated and identified 101 distinct bacterial strains spanning 6 phyla including (1) novel strains with <98% 16S rRNA sequence identity to validly described species, (2) closely related species within a genus, (3) bacteria previously isolated from body sites other than the vagina, and (4) known bacteria formerly isolated from the vagina. Pyrosequencing showed that novel strains Peptoniphilaceae DNF01163 and Prevotellaceae DNF00733 were prevalent in women with BV. We isolated a diverse set of novel and clinically significant anaerobes from the human vagina using conventional approaches with systematic molecular identification. Several previously "uncultivated" bacteria are amenable to conventional cultivation. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  13. Phenotypic and molecular detection of the bla KPC gene in clinical isolates from inpatients at hospitals in São Luis, MA, Brazil.

    PubMed

    Ribeiro, Patricia Cristina Saldanha; Monteiro, Andrea Souza; Marques, Sirlei Garcia; Monteiro, Sílvio Gomes; Monteiro-Neto, Valério; Coqueiro, Martina Márcia Melo; Marques, Ana Cláudia Garcia; de Jesus Gomes Turri, Rosimary; Santos, Simone Gonçalves; Bomfim, Maria Rosa Quaresma

    2016-12-07

    Bacteria that produce Klebsiella pneumoniae carbapenemases (KPCs) are resistant to broad-spectrum β-lactam antibiotics. The objective of this study was to phenotypically and genotypically characterize the antibiotic susceptibility to carbapenems of 297 isolates recovered from clinical samples obtained from inpatients at 16 hospitals in São Luis (Maranhão, Brazil). The study was conducted using phenotypic tests and molecular methods, including polymerase chain reaction (PCR), sequencing and enterobacterial repetitive intergenic consensus (ERIC)-PCR. The nonparametric chi-square test of independence was used to evaluate the associations between the bacterial bla KPC gene and the modified Hodge test, and the chi-square adherence test was used to assess the frequency of carbapenemases and their association with the bla KPC gene. The most frequently isolated species were Acinetobacter baumannii (n = 128; 43.0%), K. pneumoniae (n = 75; 25.2%), and Pseudomonas aeruginosa (n = 42; 14.1%). Susceptibility assays showed that polymixin B was active against 89.3% of the bacterial isolates. The Acinetobacter spp. and K. pneumoniae strains were susceptible to amikacin and tigecycline, and Pseudomonas spp. were sensitive to gentamicin and amikacin. Among the 297 isolates, 100 (33.7%) were positive for the bla KPC gene, including non-fermentative bacteria (A. baumannii) and Enterobacteriaceae species. Among the isolates positive for the bla KPC gene, K. pneumoniae isolates had the highest positivity rate of 60.0%. The bla KPC gene variants detected included KPC-2, which was found in all isolates belonging to species of the Enterobacteriaceae family. KPC-2 and KPC-3 were observed in A. baumannii isolates. Importantly, the bla KPC gene was also detected in three Raoultella isolates and one isolate of the Pantoea genus. ERIC-PCR patterns showed a high level of genetic diversity among the bacterial isolates; it was capable of distinguishing 34 clones among 100 strains that were positive for bla KPC and were circulating in 11 of the surveyed hospitals. The high frequency of the bla KPC gene and the high degree of clonal diversity among microorganisms isolated from patients from different hospitals in São Luis suggest the need to improve the quality of health care to reduce the incidence of infections and the emergence of carbapenem resistance in these bacteria as well as other Gram-negative pathogens.

  14. Bacterial contamination of tissue allografts - experiences of the donor tissue bank of Victoria.

    PubMed

    Ireland, Lyn; Spelman, Denis

    2005-01-01

    The aim of this study is to report the experience of the Donor Tissue Bank of Victoria with bacteria isolated from musculoskeletal, skin and cardiac allografts retrieved from cadaveric donors. The results of all quality control samples for bacterial culture, taken during retrieval and processing of allografts at the DTBV for a 12 month period, were extracted and analysed. It was found that 15.7% of skin, 15.1% of heart valves and 5.8% of musculoskeletal samples had positive culture results. The number and types of organisms isolated varied with tissue type. The most commonly isolated organisms were Staphylococcus species (including S. aureus). The identity of the isolate and the number of positive specimens from the same donor were considerations in the decision concerning the suitability of tissue for subsequent implantation.

  15. The antimicrobial activity of honey against common equine wound bacterial isolates.

    PubMed

    Carnwath, R; Graham, E M; Reynolds, K; Pollock, P J

    2014-01-01

    Delayed healing associated with distal limb wounds is a particular problem in equine clinical practice. Recent studies in human beings and other species have demonstrated the beneficial wound healing properties of honey, and medical grade honey dressings are available commercially in equine practice. Equine clinicians are reported to source other non-medical grade honeys for the same purpose. This study aimed to assess the antimicrobial activity of a number of honey types against common equine wound bacterial pathogens. Twenty-nine honey products were sourced, including gamma-irradiated and non-irradiated commercial medical grade honeys, supermarket honeys, and honeys from local beekeepers. To exclude contaminated honeys from the project, all honeys were cultured aerobically for evidence of bacterial contamination. Aerobic bacteria or fungi were recovered from 18 products. The antimicrobial activity of the remaining 11 products was assessed against 10 wound bacteria, recovered from the wounds of horses, including methicillin resistant Staphylococcus aureus and Pseudomonas aeruginosa. Eight products were effective against all 10 bacterial isolates at concentrations varying from <2% to 16% (v/v). Overall, the Scottish Heather Honey was the best performing product, and inhibited the growth of all 10 bacterial isolates at concentrations ranging from <2% to 6% (v/v). Although Manuka has been the most studied honey to date, other sources may have valuable antimicrobial properties. Since some honeys were found to be contaminated with aerobic bacteria or fungi, non-sterile honeys may not be suitable for wound treatment. Further assessment of gamma-irradiated honeys from the best performing honeys would be useful. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Development of an Efficient Bacterial Consortium for the Potential Remediation of Hydrocarbons from Contaminated Sites

    PubMed Central

    Patowary, Kaustuvmani; Patowary, Rupshikha; Kalita, Mohan C.; Deka, Suresh

    2016-01-01

    The intrinsic biodegradability of hydrocarbons and the distribution of proficient degrading microorganisms in the environment are very crucial for the implementation of bioremediation practices. Among others, one of the most favorable methods that can enhance the effectiveness of bioremediation of hydrocarbon-contaminated environment is the application of biosurfactant producing microbes. In the present study, the biodegradation capacities of native bacterial consortia toward total petroleum hydrocarbons (TPH) with special emphasis to poly aromatic hydrocarbons were determined. The purpose of the study was to isolate TPH degrading bacterial strains from various petroleum contaminated soil of Assam, India and develop a robust bacterial consortium for bioremediation of crude oil of this native land. From a total of 23 bacterial isolates obtained from three different hydrocarbons contaminated samples five isolates, namely KS2, PG1, PG5, R1, and R2 were selected as efficient crude oil degraders with respect to their growth on crude oil enriched samples. Isolates KS2, PG1, and R2 are biosurfactant producers and PG5, R1 are non-producers. Fourteen different consortia were designed involving both biosurfactant producing and non-producing isolates. Consortium 10, which comprises two Bacillus strains namely, Bacillus pumilus KS2 and B. cereus R2 (identified by 16s rRNA sequencing) has shown the best result in the desired degradation of crude oil. The consortium showed degradation up to 84.15% of TPH after 5 weeks of incubation, as revealed from gravimetric analysis. FTIR (Fourier transform infrared) and GCMS (Gas chromatography-mass spectrometer) analyses were correlated with gravimetric data which reveals that the consortium has removed a wide range of petroleum hydrocarbons in comparison with abiotic control including different aliphatic and aromatic hydrocarbons. PMID:27471499

  17. Culturable bacterial endophytes isolated from Mangrove tree (Rhizophora apiculata Blume) enhance seedling growth in Rice.

    PubMed

    Deivanai, Subramanian; Bindusara, Amitraghata Santhanam; Prabhakaran, Guruswamy; Bhore, Subhash Janardhan

    2014-07-01

    Endophytic bacteria do have several potential applications in medicine and in other various sectors of biotechnology including agriculture. Bacterial endophytes need to be explored for their potential applications in agricultural biotechnology. One of the potential applications of bacterial endophytes in agricultural is to enhance the growth of the agricultural crops. Hence, this study was undertaken to explore the plant growth promoting potential application of bacterial endophytes. The objective of this study was to examine the effect of endophytic bacteria from mangrove tree (Rhizophora apiculata Blume) for their efficacy in promoting seedling growth in rice. Eight endophytic bacterial isolates (EBIs) isolated from twig and petiole tissues of the mangrove were identified based on their 16S ribosomal ribonucleic acid (rRNA) gene sequence homology. Separately, surface sterilized paddy seeds were treated with cell-free broth and cell suspension of the EBIs. Rice seedlings were analyzed by various bioassays and data was recorded. The gene sequences of the isolates were closely related to two genera namely, Bacillus and Pantoea. Inoculation of EBIs from R. apiculata with rice seeds resulted in accelerated root and shoot growth with significant increase in chlorophyll content. Among the isolates, Pantoea ananatis (1MSE1) and Bacillus amyloliquefaciens (3MPE1) had shown predominance of activity. Endophytic invasion was recognized by the non-host by rapid accumulation of reactive oxygen species (ROS) and was counteracted by the production of hydrogen peroxide (H2O2) and lipid peroxide. The results demonstrated that EBIs from mangrove tree can increase the fitness of the rice seedlings under controlled conditions. These research findings could be useful to enhance the seedling growth and could serve as foundation in further research on enhancing the growth of the rice crop using endophytic bacteria.

  18. Raman spectroscopy for bacterial identification and characterization

    NASA Astrophysics Data System (ADS)

    Bernatová, Silvie; Samek, Ota; Pilát, Zdeněk.; Šerý, Mojmír.; Ježek, Jan; Krzyžánek, Vladislav; Zemánek, Pavel; Ružička, Filip

    2012-01-01

    The main goal of our investigation is to use Raman tweezers technique so that the responce of Raman scattering on microorganisms suspended in liquid media (bacteria, algae and yeast cells in microfluidic chips) can be used to identify different species. The investigations presented here include identification of different bacteria strains (biofilm-positive and biofilm-negative) and yeast cells by using principal component analysis (PCA). The main driving force behind our investigation was a common problem in the clinical microbiology laboratory - how to distinguish between contaminant and invasive isolates. Invasive bacterial/yeast isolates can be assumed to form a biofilm, while isolates which do not form a biofilm can be treated as contaminant. Thus, the latter do not represent an important virulence factor.

  19. Treatment history and antimicrobial susceptibility results for Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni isolates from bovine respiratory disease cases submitted to the Iowa State University Veterinary Diagnostic Laboratory from 2013 to 2015.

    PubMed

    Magstadt, Drew R; Schuler, Adlai M; Coetzee, Johann F; Krull, Adam C; O'Connor, Annette M; Cooper, Vickie L; Engelken, Terry J

    2018-01-01

    Bovine respiratory disease is the most costly disease facing the cattle industry. Increasing resistance to antimicrobial treatment has been presented as a significant contributing factor, often through summarized susceptibility testing data. We assessed the relationship between previous antimicrobial treatment and antimicrobial susceptibility results from isolates of Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni cultured from bovine respiratory cases submitted to the Iowa State University Veterinary Diagnostic Laboratory from 2013 to 2015. Antimicrobial susceptibility data from 1,251 bacterial isolates were included for analysis. More bacterial isolates from cattle that received antimicrobial treatment showed resistance compared to isolates from untreated cattle, and the percentage of resistant isolates increased as the number of antimicrobial treatments increased. Resistance to enrofloxacin, spectinomycin, tilmicosin, and tulathromycin was present in >75% of M. haemolytica isolates from cattle that had received 3 or more antimicrobial treatments; resistance to each of those 4 antimicrobials was present in ≤10% of M. haemolytica isolates from untreated cattle. Similar but less dramatic trends were apparent for isolates of P. multocida and H. somni. The percentage of multi-drug resistant bacterial isolates also increased with the number of treatments. Results of our study suggest that previous antimicrobial treatment may have a profound effect on antimicrobial susceptibility testing. Summarized susceptibility results from diagnostic laboratories should not be used to make generalized statements regarding trends in antimicrobial resistance without providing context regarding antimicrobial treatment history.

  20. Culturable endophytic bacterial communities associated with field-grown soybean.

    PubMed

    de Almeida Lopes, K B; Carpentieri-Pipolo, V; Oro, T H; Stefani Pagliosa, E; Degrassi, G

    2016-03-01

    Assess the diversity of the culturable endophytic bacterial population associated with transgenic and nontransgenic soybean grown in field trial sites in Brazil and characterize them phenotypically and genotypically focusing on characteristics related to plant growth promotion. Endophytic bacteria were isolated from roots, stems and leaves of soybean cultivars (nontransgenic (C) and glyphosate-resistant (GR) transgenic soybean), including the isogenic BRS133 and BRS245RR. Significant differences were observed in bacterial densities in relation to genotype and tissue from which the isolates were obtained. The highest number of bacteria was observed in roots and in GR soybean. Based on characteristics related to plant growth promotion, 54 strains were identified by partial 16S rRNA sequence analysis, with most of the isolates belonging to the species Enterobacter ludwigii and Variovorax paradoxus. Among the isolates, 44·4% were able to either produce indoleacetic acid (IAA) or solubilize phosphates, and 9·2% (all from GR soybean) presented both plant growth-promoting activities. The results from this study indicate that the abundance of endophytic bacterial communities of soybean differs between cultivars and in general it was higher in the transgenic cultivars than in nontransgenic cultivars. BRS 245 RR exhibited no significant difference in abundance compared to nontransgenic BRS133. This suggests that the impact of the management used in the GR soybean fields was comparable with the impacts of some enviromental factors. However, the bacterial endophytes associated to GR and nontransgenic soybean were different. The soybean-associated bacteria showing characteristics related to plant growth promotion were identified as belonging to the species Pantoea agglomerans and Variovorax paradoxus. Our study demonstrated differences concerning compostion of culturable endophytic bacterial population in nontransgenic and transgenic soybean. © 2016 The Society for Applied Microbiology.

  1. Intraspecific differences in bacterial responses to modelled reduced gravity

    NASA Technical Reports Server (NTRS)

    Baker, P. W.; Leff, L. G.

    2005-01-01

    AIMS: Bacteria are important residents of water systems, including those of space stations which feature specific environmental conditions, such as lowered effects of gravity. The purpose of this study was to compare responses with modelled reduced gravity of space station, water system bacterial isolates with other isolates of the same species. METHODS AND RESULTS: Bacterial isolates, Stenotrophomonas paucimobilis and Acinetobacter radioresistens, originally recovered from the water supply aboard the International Space Station (ISS) were grown in nutrient broth under modelled reduced gravity. Their growth was compared with type strains S. paucimobilis ATCC 10829 and A. radioresistens ATCC 49000. Acinetobacter radioresistens ATCC 49000 and the two ISS isolates showed similar growth profiles under modelled reduced gravity compared with normal gravity, whereas S. paucimobilis ATCC 10829 was negatively affected by modelled reduced gravity. CONCLUSIONS: These results suggest that microgravity might have selected for bacteria that were able to thrive under this unusual condition. These responses, coupled with impacts of other features (such as radiation resistance and ability to persist under very oligotrophic conditions), may contribute to the success of these water system bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY: Water quality is a significant factor in many environments including the ISS. Efforts to remove microbial contaminants are likely to be complicated by the features of these bacteria which allow them to persist under the extreme conditions of the systems.

  2. Genotypic characterization of bacteria cultured from duck faeces.

    PubMed

    Murphy, J; Devane, M L; Robson, B; Gilpin, B J

    2005-01-01

    To characterize the bacterial composition of mallard duck faeces and determine if novel bacterial species are present that could be utilized as potential indicators of avian faecal contamination. Combined samples of fresh faeces from four ducks were serially diluted and plated onto six different media selected to allow the growth of a range of organisms at 42 degrees C under three atmospheric conditions: aerobic, microaerophilic and anaerobic. Forty-seven morphologically dissimilar isolates were purified and partial sequencing of the16S rRNA indicated at least 31 bacterial species. Twenty of these could be identified to the species level including pathogenic species of Bacillus, Campylobacter, Clostridium and Streptococcus. Other species identified included: Enterococcus, Escherichia, Megamonas, Cellulosimicrobium, Neisseria, Staphylococcus and Veillonella. Potentially novel species, which could represent bacteria specific to avian fauna included Bacillus, Corynebacterium, Macrococcus and Peptostreptococcus, while four isolates had <97% similarity to known bacterial species in the available databases. A survey of the natural microflora of the mallard duck and its hybrid with the grey duck identified both bacteria that are potentially human pathogenic and putative novel bacteria species as determined by 16S rRNA sequencing. This study provides further evidence that duck faeces is a potential human health hazard, and has identified bacteria potentially useful for distinguishing duck faeces from other faecal sources.

  3. Population dynamics of bacteria associated with different strains of the pine wood nematode Bursaphelenchus xylophilus after inoculation in maritime pine (Pinus pinaster).

    PubMed

    Roriz, Mariana; Santos, Carla; Vasconcelos, Marta W

    2011-08-01

    For a long time it was thought that Bursaphelenchus xylophilus was the only agent of the pine wilt disease. Recently, it was discovered that there are bacteria associated with the nematodes that contribute to the pathogenesis of this disease, mainly through the release of toxins that promote the death of the pines. Among the species most commonly found, are bacteria belonging to the Bacillus, Pantoea, Pseudomonas and Xanthomonas genera. The main objective of this work was to study the effect of inoculation of maritime pine (Pinus pinaster) with four different nematode isolates, in the bacterial population of nematodes and trees, at different stages of disease progression. The monitoring of progression of disease symptoms was also recorded. Also, the identification of bacteria isolated from the xylem of trees and the surface of nematodes was performed by classical identification methods, by the API20E identification system and by sequencing of bacterial DNA. The results showed that for the symptoms progression, the most striking difference was observed for the pines inoculated with the avirulent isolate, C14-5, which led to a slower and less severe aggravation of symptoms than in pines inoculated with the virulent isolates. In general, it was found that bacterial population, inside the tree, increased with disease progression. A superior bacterial quantity was isolated from pines inoculated with the nematode isolates HF and 20, and, comparatively, few bacteria were isolated from pines inoculated with the avirulent isolate. The identification system API20E was insufficient in the identification of bacterial species; Enterobacter cloacae species was identified in 79% of the isolated bacterial colonies and seven of these colonies could not be identified by this method. Molecular identification methods, through bacterial DNA sequencing, allowed a more reliable identification: eleven different bacterial species within the Bacillus, Citrobacter, Enterobacter, Escherichia, Klebsiella, Paenibacillus, Pantoea and Terribacillus genera were identified. General bacterial diversity increased with the progression of the disease. Bacillus spp. were predominant at the earlier stage of disease progression and Klebsiella oxytoca at the later stages. Furthermore, bacterial species isolated from the surface of nematodes were similar to those isolated from the xylem of pines. In the present work new bacterial species were identified which have never been reported before in this type of study and may be associated with their geographical origin (Portugal). P. pinaster, the pine species used in this study, was different from those commonly grown in Japan and China. Furthermore, it was the first time that bacteria were isolated and identified from an avirulent pine wood nematode isolate. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Identification of bacteria isolated from veterinary clinical specimens using MALDI-TOF MS.

    PubMed

    Pavlovic, Melanie; Wudy, Corinna; Zeller-Peronnet, Veronique; Maggipinto, Marzena; Zimmermann, Pia; Straubinger, Alix; Iwobi, Azuka; Märtlbauer, Erwin; Busch, Ulrich; Huber, Ingrid

    2015-01-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has recently emerged as a rapid and accurate identification method for bacterial species. Although it has been successfully applied for the identification of human pathogens, it has so far not been well evaluated for routine identification of veterinary bacterial isolates. This study was performed to compare and evaluate the performance of MALDI-TOF MS based identification of veterinary bacterial isolates with commercially available conventional test systems. Discrepancies of both methods were resolved by sequencing 16S rDNA and, if necessary, the infB gene for Actinobacillus isolates. A total of 375 consecutively isolated veterinary samples were collected. Among the 357 isolates (95.2%) correctly identified at the genus level by MALDI-TOF MS, 338 of them (90.1% of the total isolates) were also correctly identified at the species level. Conventional methods offered correct species identification for 319 isolates (85.1%). MALDI-TOF identification therefore offered more accurate identification of veterinary bacterial isolates. An update of the in-house mass spectra database with additional reference spectra clearly improved the identification results. In conclusion, the presented data suggest that MALDI-TOF MS is an appropriate platform for classification and identification of veterinary bacterial isolates.

  5. Isolation of a lead tolerant novel bacterial species, Achromobacter sp. TL-3: assessment of bioflocculant activity.

    PubMed

    Batta, Neha; Subudhi, Sanjukta; Lal, Banwari; Devi, Arundhuti

    2013-11-01

    Lead is one of the four heavy metals that has a profound damaging effects on human health. In the recent past there has been an increasing global concern for development of sustainable bioremediation technologies for detoxification of lead contaminant. Present investigation highlights for lead biosorption by a newly isolated novel bacterial species; Achromobacter sp. TL-3 strain, isolated from activated sludge samples contaminated with heavy metals (collected from oil refinery, Assam, North-East India). For isolation of lead tolerant bacteria, sludge samples were enriched into Luria Broth medium supplemented separately with a range of lead nitrate; 250, 500, 750, 1000, 1250 and 1500 ppm respectively. The bacterial consortium that could tolerate 1500 ppm of lead nitrate was selected further for purification of lead tolerant bacterial isolates. Purified lead tolerant bacterial isolates were then eventually inoculated into production medium supplemented with ethanol and glycerol as carbon and energy source to investigate for bioflocculant production. Bioflocculant production was estimated by monitoring the potential of lead tolerant bacterial isolate to flocculate Kaolin clay in presence of 1% CaCl2. Compared to other isolates, TL-3 isolate demonstrated for maximum bioflocculant activity of 95% and thus was identified based on 16S rRNA gene sequence analysis. TL3 isolate revealed maximum homology (98%) with Achromobacter sp. and thus designated as Achromobacter sp. TL-3. Bioflocculant activity of TL-3 isolate was correlated with the change in pH and growth. Achromobacter sp. TL-3 has significant potential for lead biosorption and can be effectively employed for detoxification of lead contaminated waste effluents/waste waters.

  6. Production and secretion of glucose in photosynthetic prokaryotes (cyanobacteria)

    DOEpatents

    Nobles, Jr., David R. , Brown, Jr., R. Malcolm

    2010-09-28

    The present invention includes compositions and methods for making and using an isolated cyanobacterium that includes a portion of an exogenous bacterial cellulose operon sufficient to express bacterial cellulose, whereby the cyanobacterium produces extracellular glucose. The compositions and methods of the present invention may be used as a new global crop for the manufacture of cellulose, CO.sub.2 fixation, for the production of alternative sources of conventional cellulose as well as a biofuel and precursors thereof.

  7. Chlorhexidine digluconate effects on planktonic growth and biofilm formation in some field isolates of animal bacterial pathogens.

    PubMed

    Ebrahimi, Azizollah; Hemati, Majid; Habibian Dehkordi, Saeed; Bahadoran, Shahab; Khoshnood, Sheida; Khubani, Shahin; Dokht Faraj, Mahdi; Hakimi Alni, Reza

    2014-05-01

    To study chlorhexidine digluconate disinfectant effects on planktonic growth and biofilm formation in some bacterial field isolates from animals. The current study investigated chlorhexidine digluconate effects on planktonic growth and biofilm formation in some field isolates of veterinary bacterial pathogens. Forty clinical isolates of Escherichia coli, Salmonella serotypes, Staphylococcus. aureus and Streptococcus agalactiae (10 isolates for each) were examined for chlorhexidine digluconate effects on biofilm formation and planktonic growth using microtiter plates. In all of the examined strains in the presence of chlorhexidine digluconate, biofilm development and planktonic growth were affected at the same concentrations of the disinfectant. Chlorhexidine digluconate inhibited the planktonic growth of different bacterial species at sub-MICs. But they were able to induce biofilm development of the E. coli, Salmonella spp., S. aureus and Str. agalactiae strains. Bacterial resistance against chlorhexidine is increasing. Sub-MIC doses of chlorhexidine digluconate can stimulate the formation of biofilm strains.

  8. Bacterial Infections in Children With Acute Myeloid Leukemia Receiving Ciprofloxacin Prophylaxis.

    PubMed

    Al Omar, Suha; Anabtawi, Nadine; Al Qasem, Wiam; Rihani, Rawad

    2017-04-01

    The aim of the study was to describe the incidence and type of bacterial infections associated with the use of ciprofloxacin prophylaxis as single agent in pediatric patients with acute myeloid leukemia (AML). This was a retrospective review of all patients with AML, who were treated according to the AML02 protocol between 2011 and 2015. The medical records were reviewed for any positive cultures from the initiation of the protocol until death or protocol discontinuation. Patient demographics, type of infections, type of isolated bacteria, and intensive care unit admissions were recorded. A total of 50 patients were evaluated, who were of a mean age of 8 years±5.1 (SD). We identified 77 episodes of bacterial infections in 42 (84%) patients. Among those bacterial infections, 73 episodes were with bacteremia and included 45 (62%) gram-positive bacterial infections, 24 (33%) gram-negative bacterial infections, and 4 (6%) mixed gram-negative and gram-positive bacterial infections. Coagulase-negative Staphylococcus and Viridans streptococci were the most commonly isolated bacteria in 33% and 30% of the episodes, respectively. Seventeen (45%) patients with bacteremia required intensive care unit admission. A high rate of bacterial infection was detected in patients who received the AML02 protocol, mainly gram-positive bacterial infections. The prophylactic regimen should be reconsidered for its efficacy, and other antibacterial prophylaxis may be used.

  9. Antibacterial activity of tannins isolated from Sapium baccatum extract and use for control of tomato bacterial wilt.

    PubMed

    Vu, Thuy Thu; Kim, Hun; Tran, Vu Khac; Vu, Hoang Dinh; Hoang, Tien Xuan; Han, Jae Woo; Choi, Yong Ho; Jang, Kyoung Soo; Choi, Gyung Ja; Kim, Jin-Cheol

    2017-01-01

    In the search for new antibacterial agents from natural sources, we revealed that a crude methanol extract of Sapium baccatum was highly active against Ralstonia solanacearum, a causal agent of a serious disease called bacterial wilt of tomato. The bioassay-guided fractionation of this extract resulted in the isolation of seven known active compounds, including gallic acid, methyl gallate, corilagin, tercatain, chebulagic acid, chebulinic acid, and quercetin 3-O-α-L-arabinopyranoside. Their chemical structures were determined by electrospray ionization mass spectrometry and nuclear magnetic resonance spectroscopy. An in vitro antibacterial bioassay using a broth microdilution method revealed that, except for quercetin 3-O-α-L-arabinopyranoside (MIC = 250 μg/mL), the isolated compounds exhibited strong antibacterial activity against R. solanacearum (MIC = 26-52 μg/mL). Among the seven compounds, methyl gallate exhibited the strongest broad-spectrum activity against most of the plant pathogenic bacteria tested (MIC = 26-250 μg/mL). In the in vivo experiments, the crude extract of S. baccatum at 2000 and 1000 μg/mL reduced the development of tomato bacterial wilt by 83 and 63%, respectively, under greenhouse conditions after 14 days of infection. The results suggested that the extracts of S. baccatum or isolated tannins could be used as natural bactericides for the control of bacterial wilt of tomato.

  10. Antibacterial activity of tannins isolated from Sapium baccatum extract and use for control of tomato bacterial wilt

    PubMed Central

    Vu, Thuy Thu; Kim, Hun; Tran, Vu Khac; Vu, Hoang Dinh; Hoang, Tien Xuan; Han, Jae Woo; Choi, Yong Ho; Jang, Kyoung Soo; Choi, Gyung Ja

    2017-01-01

    In the search for new antibacterial agents from natural sources, we revealed that a crude methanol extract of Sapium baccatum was highly active against Ralstonia solanacearum, a causal agent of a serious disease called bacterial wilt of tomato. The bioassay-guided fractionation of this extract resulted in the isolation of seven known active compounds, including gallic acid, methyl gallate, corilagin, tercatain, chebulagic acid, chebulinic acid, and quercetin 3-O-α-L-arabinopyranoside. Their chemical structures were determined by electrospray ionization mass spectrometry and nuclear magnetic resonance spectroscopy. An in vitro antibacterial bioassay using a broth microdilution method revealed that, except for quercetin 3-O-α-L-arabinopyranoside (MIC = 250 μg/mL), the isolated compounds exhibited strong antibacterial activity against R. solanacearum (MIC = 26–52 μg/mL). Among the seven compounds, methyl gallate exhibited the strongest broad-spectrum activity against most of the plant pathogenic bacteria tested (MIC = 26–250 μg/mL). In the in vivo experiments, the crude extract of S. baccatum at 2000 and 1000 μg/mL reduced the development of tomato bacterial wilt by 83 and 63%, respectively, under greenhouse conditions after 14 days of infection. The results suggested that the extracts of S. baccatum or isolated tannins could be used as natural bactericides for the control of bacterial wilt of tomato. PMID:28742863

  11. In vitro activity of AT-4140 against clinical bacterial isolates.

    PubMed

    Kojima, T; Inoue, M; Mitsuhashi, S

    1989-11-01

    The activity of AT-4140, a new fluoroquinolone, was evaluated against a wide range of clinical bacterial isolates and compared with those of existing analogs. AT-4140 had a broad spectrum and a potent activity against gram-positive and -negative bacteria, including Legionella spp. and Bacteroides fragilis. The activity of AT-4140 against gram-positive and -negative cocci, including Acinetobacter calcoaceticus, was higher than those of ciprofloxacin, ofloxacin, and norfloxacin. Its activity against gram-negative rods was generally comparable to that of ciprofloxacin. Some isolates of methicillin-resistant Staphylococcus aureus (MIC of methicillin, greater than or equal to 12.5 micrograms/ml) were resistant to existing quinolones, but many of them were still susceptible to AT-4140 at concentrations below 0.39 micrograms/ml. The MICs of AT-4140, ciprofloxacin, ofloxacin, and norfloxacin for 90% of clinical isolates of methicillin-resistant S. aureus were 0.2, 12.5, 6.25, and 100 micrograms/ml, respectively. AT-4140 was bactericidal for each of 20 clinical isolates of Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Serratia marcescens, and Pseudomonas aeruginosa at concentrations near the MICs. AT-4140 inhibited the supercoiling activity of DNA gyrase from E. coli.

  12. Identification of non-Listeria spp. bacterial isolates yielding a β-D-glucosidase-positive phenotype on Agar Listeria according to Ottaviani and Agosti (ALOA).

    PubMed

    Angelidis, Apostolos S; Kalamaki, Mary S; Georgiadou, Sofia S

    2015-01-16

    Agar Listeria according to Ottaviani and Agosti (ALOA) is the mandatory medium used for the detection and enumeration of Listeria monocytogenes in foods according to the official International Organization for Standardization (ISO) methods. On ALOA, Listeria spp. appear as bluish-green colonies due to the production of β-D-glucosidase, an enzyme that cleaves 5-bromo-4-chloro-3-indolyl-β-D-glucopyranoside, a chromogenic substrate included in the formulation of the medium. The present work reports on bacterial isolates (n=64) from ready-to-eat soft cheeses, which are able to grow on ALOA, forming bluish-green colonies and therefore phenotypically resemble Listeria spp. All isolates were also capable of growing on the selective media PALCAM and RAPID L'mono. The isolates were characterised with biochemical tests including those specified in the ISO standards for the confirmation of Listeria spp. and identified via partial sequencing of their 16S rRNA gene. According to sequencing results the isolates represented 12 different bacterial species or species-groups belonging to seven different genera: Bacillus spp. (B. circulans, B. clausii, B. licheniformis and B. oleronius), Cellulosimicrobium spp. (C. funkei), Enterococcus spp. (E. faecalis, E. faecium/durans), Kocuria spp. (K. kristinae), Marinilactibacillus spp. (M. psychrotolerans), Rothia spp. (R. terrae) and Staphylococcus spp. (S. sciuri and S. saprophyticus subsp. saprophyticus/xylosus). Cellulosimicrobium spp. have never been previously isolated from foods. These results significantly extend the list of bacteria previously known as capable of growing on ALOA as bluish-green colonies and suggest that there may be room for further improvement in the medium's inhibitory properties towards non-Listeria spp., Gram-positive bacteria present in foods. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Identification and antimicrobial resistance of pathogens in neonatal septicemia in China-A meta-analysis.

    PubMed

    Li, Jing-Yang; Chen, Shang-Qin; Yan, Yan-Yan; Hu, Ying-Ying; Wei, Jia; Wu, Qiu-Ping; Lin, Zhen-Lang; Lin, Jing

    2018-06-01

    The purpose of this study was to analyze the distribution and antimicrobial resistance of common bacterial pathogens causing neonatal septicemia based on a systematic review of published studies in China. Articles on neonatal sepsis published in the Chinese literature from 2009 to 2014 were identified according to the inclusion and exclusion criteria. Data were extracted and analyzed using Comprehensive Meta-Analysis software. A total of 71 studies were included, in which a total of 8080 bacterial species were isolated from culture-positive blood samples. The pooled distribution rates of common bacterial pathogens were as follows: Staphylococcus 67.1% (95% confidence interval (CI) 63.3-70.6%), Enterococcus 4.1% (95% CI 3.5-4.8%), Streptococcus 2.3% (95% CI 1.6-3.2%), Escherichia coli 7.4% (95% CI 6.4-8.7%), Klebsiella 6.5% (95% CI 5.2-8.2%), Enterobacterium 2.3% (95% CI 1.9-2.8%), Acinetobacter 1.6% (95% CI 1.3-2.0%), Pseudomonas 1.7% (95% CI 1.3-2.2%). Among the Staphylococcus aureus strains isolated, more than 60% were methicillin-resistant (MRSA). In addition, over 50% of the Gram-negative isolates, including Escherichia and Klebsiella, were resistant to the commonly used third-generation cephalosporins. Most of the Gram-positive and Gram-negative bacteria isolated were sensitive to aminoglycosides, especially amikacin. It is concluded that Staphylococcus, especially coagulase-negative Staphylococcus, continues to be the principal organism responsible for neonatal septicemia in China; Enterobacteriaceae are common among the Gram-negative isolates. Significant numbers of MRSA and multidrug-resistant Gram-negative bacteria are being isolated as pathogens responsible for neonatal septicemia in China. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  14. Gram-Negative Bacterial Wound Infections

    DTIC Science & Technology

    2016-07-01

    coli, K. pneumoniae and P. aeruginosa, it showed antibacterial activity against all A. baumannii tested strains, including MRSN and non-MRSN isolates...models showed that Ga-PPIX has significant antibacterial activity by inhibiting the metabolism of iron A. baumannii could scavenge from host’s...concentration significantly reduced bacterial viability, while 40 µg/ml killed all bacteria after 24-h incubation. The antibacterial activity of Ga-PPIX

  15. Reagent-free bacterial identification using multivariate analysis of transmission spectra

    NASA Astrophysics Data System (ADS)

    Smith, Jennifer M.; Huffman, Debra E.; Acosta, Dayanis; Serebrennikova, Yulia; García-Rubio, Luis; Leparc, German F.

    2012-10-01

    The identification of bacterial pathogens from culture is critical to the proper administration of antibiotics and patient treatment. Many of the tests currently used in the clinical microbiology laboratory for bacterial identification today can be highly sensitive and specific; however, they have the additional burdens of complexity, cost, and the need for specialized reagents. We present an innovative, reagent-free method for the identification of pathogens from culture. A clinical study has been initiated to evaluate the sensitivity and specificity of this approach. Multiwavelength transmission spectra were generated from a set of clinical isolates including Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus. Spectra of an initial training set of these target organisms were used to create identification models representing the spectral variability of each species using multivariate statistical techniques. Next, the spectra of the blinded isolates of targeted species were identified using the model achieving >94% sensitivity and >98% specificity, with 100% accuracy for P. aeruginosa and S. aureus. The results from this on-going clinical study indicate this approach is a powerful and exciting technique for identification of pathogens. The menu of models is being expanded to include other bacterial genera and species of clinical significance.

  16. Phenotypic and molecular fingerprinting of fast growing rhizobia of field-grown pigeonpea from the eastern edge of the Brazilian Pantanal.

    PubMed

    Costa, F M; Schiavo, J A; Brasil, M S; Leite, J; Xavier, G R; Fernandes, P I

    2014-01-21

    The aim of this study was to evaluate the diversity of rhizobial isolates obtained from root nodules of pigeonpea plants grown at the eastern edge of the Brazilian Pantanal. The bacterial isolates were isolated from root nodules from field-growing pigeonpea grown in two rural settlements of the Aquidauana municipality. The bacterial isolates were characterized phenotypically by means of cultural characterization, intrinsic antibiotic resistance (IAR), salt and high incubation temperature tolerance, and amylolytic and cellulolytic activities. The molecular characterization of the bacterial isolates was carried out using amplified ribosomal DNA restriction analysis (ARDRA) and Box-polymerase chain reaction (PCR) techniques. In addition, the symbiotic performance of selected rhizobial isolates was evaluated in a greenhouse experiment using sterile substrate. The phenotypic characterization revealed that the bacterial strains obtained from pigeonpea root nodules presented characteristics that are uncommon among rhizobial isolates, indicating the presence of new species nodulating the pigeonpea plants in the Brazilian Pantanal. The molecular fingerprinting of these bacterial isolates also showed a highly diverse collection, with both techniques revealing less than 25% similarity among bacterial isolates. The evaluation of symbiotic performance also indicated the presence of microorganisms with high potential to increase the growth and nitrogen content at the shoots of pigeonpea plants. The results obtained in this study indicate the presence of a highly diversified rhizobial community nodulating the pigeonpea at the eastern edge of the Brazilian Pantanal.

  17. Screening of bacterial strains isolated from uranium mill tailings porewaters for bioremediation purposes.

    PubMed

    Sánchez-Castro, Iván; Amador-García, Ahinara; Moreno-Romero, Cristina; López-Fernández, Margarita; Phrommavanh, Vannapha; Nos, Jeremy; Descostes, Michael; Merroun, Mohamed L

    2017-01-01

    The present work characterizes at different levels a number of bacterial strains isolated from porewaters sampled in the vicinity of two French uranium tailing repositories. The 16S rRNA gene from 33 bacterial isolates, corresponding to the different morphotypes recovered, was almost fully sequenced. The resulting sequences belonged to 13 bacterial genera comprised in the phyla Firmicutes, Actinobacteria and Proteobacteria. Further characterization at physiological level and metals/metalloid tolerance provided evidences for an appropriate selection of bacterial strains potentially useful for immobilization of uranium and other common contaminants. By using High Resolution Transmission Electron Microscope (HRTEM), this potential ability to immobilize uranium as U phosphate mineral phases was confirmed for the bacterial strains Br3 and Br5 corresponding to Arthrobacter sp. and Microbacterium oxydans, respectively. Scanning Transmission Electron Microscope- High-Angle Annular Dark-Field (STEM-HAADF) analysis showed U accumulates on the surface and within bacterial cytoplasm, in addition to the extracellular space. Energy Dispersive X-ray (EDX) element-distribution maps demonstrated the presence of U and P within these accumulates. These results indicate the potential of certain bacterial strains isolated from porewaters of U mill tailings for immobilizing uranium, likely as uranium phosphates. Some of these bacterial isolates might be considered as promising candidates in the design of uranium bioremediation strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Potential virulence factors of bacteria associated with tail fan necrosis in the spiny lobster, Jasus edwardsii.

    PubMed

    Zha, H; Jeffs, A; Dong, Y; Lewis, G

    2018-05-01

    Tail fan necrosis (TFN) is a common condition found in commercially exploited spiny lobsters that greatly diminishes their commercial value. Bacteria possessing proteolytic, chitinolytic and lipolytic capabilities were associated with TFN in spiny lobsters, Jasus edwardsii. In this study, 69 bacterial isolates exhibiting all the three enzymatic capabilities from the haemolymph and tail fans of J. edwardsii with and without TFN were further characterized and compared, including morphology, biofilm formation, antimicrobial activity, antimicrobial resistance, and production of siderophores, melanin and ammonia. The genomic patterns of the most common Vibrio crassostreae isolates were also compared between TFN-affected and unaffected lobsters. Biofilm formation was stronger in bacterial isolates from both haemolymph and tail fans of TFN-affected lobsters compared to those from the unaffected lobsters, while melanin production and siderophore production were stronger in the isolates from tail fans of lobsters with TFN. By contrast, the other characteristics of isolates were similar in lobsters with and without TFN. The Vib. crassostreae isolates from the affected lobsters had similar genomic patterns. Overall, the results indicate that in addition to proteolytic, chitinolytic and lipolytic activities, the bacteria associated with TFN commonly have enhanced activity of important virulence factors, including biofilm formation, melanin production and siderophore production. © 2018 John Wiley & Sons Ltd.

  19. Fluoroquinolone Treatment and Susceptibility of Isolates From Bacterial Keratitis

    PubMed Central

    Ray, Kathryn J.; Prajna, Lalitha; Srinivasan, Muthiah; Geetha, Manoharan; Karpagam, Rajarathinam; Glidden, David; Oldenburg, Catherine E.; Sun, Catherine Q.; McLeod, Stephen D.; Acharya, Nisha R.; Lietman, Thomas M.

    2013-01-01

    Objective To analyze the relationship between fluoroquinolone use at presentation and minimum inhibitory concentration in bacterial keratitis. Methods The Steroids for Corneal Ulcers Trial was a randomized, double-masked, placebo-controlled trial assessing the effect of adjunctive topical corticosteroid treatment on outcomes in bacterial keratitis. After presentation, all patients were treated with moxifloxacin hydrochloride, 0.5%. We compare antibiotic use at presentation with minimum inhibitory concentration against moxifloxacin for all isolates. Separate analyses accounted for organism species and fluoroquinolone generation. Results Topical fluoroquinolone use at presentation was reported in 92 of 480 cases (19.2%). Causative organisms in the 480 cases included Streptococcus pneumoniae (247 cases [51.5%]), Pseudomonas aeruginosa (109 cases [22.7%]), and Nocardia species (55 cases [11.5%]). Isolates from patients who reported fluoroquinolone use at presentation had a 2.01-fold–higher minimum inhibitory concentration (95% CI, 1.39-fold to 2.91-fold; P <.001). Fourth-generation fluoroquinolones were associated with a 3.48-fold–higher minimum inhibitory concentration than those isolates that were not exposed to pretreatment at enrollment (95% CI, 1.99-fold to 6.06-fold; P <.001). Conclusion This study provides evidence that prior use of fluoroquinolones is associated with antibiotic resistance. PMID:23307105

  20. Fluoroquinolone treatment and susceptibility of isolates from bacterial keratitis.

    PubMed

    Ray, Kathryn J; Prajna, Lalitha; Srinivasan, Muthiah; Geetha, Manoharan; Karpagam, Rajarathinam; Glidden, David; Oldenburg, Catherine E; Sun, Catherine Q; McLeod, Stephen D; Acharya, Nisha R; Lietman, Thomas M

    2013-03-01

    To analyze the relationship between fluoroquinolone use at presentation and minimum inhibitory concentration in bacterial keratitis. The Steroids for Corneal Ulcers Trial was a randomized, double-masked, placebo-controlled trial assessing the effect of adjunctive topical corticosteroid treatment on outcomes in bacterial keratitis. After presentation, all patients were treated with moxifloxacin hydrochloride, 0.5%. We compare antibiotic use at presentation with minimum inhibitory concentration against moxifloxacin for all isolates. Separate analyses accounted for organism species and fluoroquinolone generation. Topical fluoroquinolone use at presentation was reported in 92 of 480 cases (19.2%). Causative organisms in the 480 cases included Streptococcus pneumoniae (247 cases [51.5%]), Pseudomonas aeruginosa (109 cases [22.7%]), and Nocardia species (55 cases [11.5%]). Isolates from patients who reported fluoroquinolone use at presentation had a 2.01-fold-higher minimum inhibitory concentration (95% CI, 1.39-fold to 2.91-fold; P < .001). Fourth-generation fluoroquinolones were associated with a 3.48-fold-higher minimum inhibitory concentration than those isolates that were not exposed to pretreatment at enrollment (95% CI, 1.99-fold to 6.06-fold; P < .001). This study provides evidence that prior use of fluoroquinolones is associated with antibiotic resistance. clinicaltrials.gov Identifier: NCT00324168.

  1. A Year of Infection in the Intensive Care Unit: Prospective Whole Genome Sequencing of Bacterial Clinical Isolates Reveals Cryptic Transmissions and Novel Microbiota

    PubMed Central

    Roach, David J.; Burton, Joshua N.; Lee, Choli; Stackhouse, Bethany; Butler-Wu, Susan M.; Cookson, Brad T.

    2015-01-01

    Bacterial whole genome sequencing holds promise as a disruptive technology in clinical microbiology, but it has not yet been applied systematically or comprehensively within a clinical context. Here, over the course of one year, we performed prospective collection and whole genome sequencing of nearly all bacterial isolates obtained from a tertiary care hospital’s intensive care units (ICUs). This unbiased collection of 1,229 bacterial genomes from 391 patients enables detailed exploration of several features of clinical pathogens. A sizable fraction of isolates identified as clinically relevant corresponded to previously undescribed species: 12% of isolates assigned a species-level classification by conventional methods actually qualified as distinct, novel genomospecies on the basis of genomic similarity. Pan-genome analysis of the most frequently encountered pathogens in the collection revealed substantial variation in pan-genome size (1,420 to 20,432 genes) and the rate of gene discovery (1 to 152 genes per isolate sequenced). Surprisingly, although potential nosocomial transmission of actively surveilled pathogens was rare, 8.7% of isolates belonged to genomically related clonal lineages that were present among multiple patients, usually with overlapping hospital admissions, and were associated with clinically significant infection in 62% of patients from which they were recovered. Multi-patient clonal lineages were particularly evident in the neonatal care unit, where seven separate Staphylococcus epidermidis clonal lineages were identified, including one lineage associated with bacteremia in 5/9 neonates. Our study highlights key differences in the information made available by conventional microbiological practices versus whole genome sequencing, and motivates the further integration of microbial genome sequencing into routine clinical care. PMID:26230489

  2. Patterns of isolation of common gram positive bacterial pathogens and their susceptibilities to antimicrobial agents in Jimma Hospital.

    PubMed

    Gebreselassie, Solomon

    2002-04-01

    Gram positive bacteria are frequently emerging as antibiotic resistant pathogens, causing serious infections than ever before in the ill and debilitated patients. The pattern of isolation and the antimicrobial susceptibilities of common Gram positive cocci including Staphylococcus aureus, coagulase negative staphylococcus (CoNS), Streptococcus pyogenes, Enterococcus species and Streptococcus pneumoniae was investigated between January 1997 and June 2000 in Jimma Hospital. Of the 500 specimens collected from children and adults, 116 (23.2%) consisted of one or more of the above organisms. The following strains: Staphylococcus aureus, 47 (40.5%), CoNS, 36 (31.0%), Streptococcus pneumoniae, 26 (22.4%) Streptococcus pyogenes, 5 (4.3%) and Streptococcus faecalis, 2(1.7%) were isolated from different specimens including pus, sputum, urine, stool, blood and oro/nasopharyngeal swabs of patients. The in vitro activities of 14 different antibiotics including penicillin G, ampicillin, cloxacillin, cephalothin, gentamicin, kanamycin, tetracycline, chloramphenicol, erythromycin, trimethoprim-sulfamethoxazole, streptomycin, methicillin, vancomycin and clindamycin was determined against the clinical bacterial isolates. The antimicrobial activities were evaluated by agar diffusion technique using Mueller-Hinton agar according to NCCLS recommendations. The majority of the pathogens, 59(50.9%) were recovered from upper respiratory tract infections and 17 (14.6%) from the lower respiratory tract. The resistance patterns of S. aureus, CoNS, S. pneumoniae and enterococci to penicillin was 91.5%, 94.4%, 7.7% and 100% respectively. Penicillin, ampicillin and cloxacillin showed low effects (< 60%) on both S. aureus and CoNS. Multi-drug resistance was observed in all the gram-positive isolates, especially higher in staphylococcus species. All isolates of S. aureus (100%) were susceptible to vancomycin, clindamycin and gentamicin. In order to reduce morbidity and mortality due to antibiotic resistance susceptibility testing should be performed for the proper management of bacterial infections. This entails the need for national surveillance to monitor antibiotic resistance in bacteria by susceptibility testing using reliable methods.

  3. Diversity, Bacterial Symbionts and Antibacterial Potential of Gut-Associated Fungi Isolated from the Pantala flavescens Larvae in China

    PubMed Central

    Shao, Ming-Wei; Lu, Yi-Hui; Miao, Shuang; Zhang, Yun; Chen, Ting-Ting; Zhang, Ying-Lao

    2015-01-01

    The diversity of fungi associated with the gut of Pantala flavescens larvae was investigated using a culture-dependent method and molecular identification based on an analysis of the internally transcribed spacer sequence. In total, 48 fungal isolates were obtained from P. flavescens larvae. Based on phylogenetic analyses, the fungal isolates were grouped in 5 classes and 12 different genera. Fourteen bacterial 16S rDNA sequences derived from total genomic DNA extractions of fungal mycelia were obtained. The majority of the sequences were associated with Proteobacteria (13/14), and one Bacillaceae (1/14) was included. Leclercia sp., Oceanobacillus oncorhynchi and Methylobacterium extorquens, were reported for the first time as bacterial endosymbionts in fungi. High-performance liquid chromatography (HPLC) analysis indicated that bacterial symbionts produced specific metabolites and also exerted an inhibitory effect on fungal metabolites. The biological activity of the fungal culture extracts against the pathogenic bacteria Staphylococcus aureus (ATCC 6538), Bacillus subtilis (ATCC 6633) and Escherichia coli (ATCC 8739) was investigated, and 20 extracts (42%) exhibited antibacterial activity against at least one of the tested bacterial strains. This study is the first report on the diversity and antibacterial activity of symbiotic fungi residing in the gut of P. flavescens larvae, and the results show that these fungi are highly diverse and could be exploited as a potential source of bioactive compounds. PMID:26221957

  4. Diversity, Bacterial Symbionts and Antibacterial Potential of Gut-Associated Fungi Isolated from the Pantala flavescens Larvae in China.

    PubMed

    Shao, Ming-Wei; Lu, Yi-Hui; Miao, Shuang; Zhang, Yun; Chen, Ting-Ting; Zhang, Ying-Lao

    2015-01-01

    The diversity of fungi associated with the gut of Pantala flavescens larvae was investigated using a culture-dependent method and molecular identification based on an analysis of the internally transcribed spacer sequence. In total, 48 fungal isolates were obtained from P. flavescens larvae. Based on phylogenetic analyses, the fungal isolates were grouped in 5 classes and 12 different genera. Fourteen bacterial 16S rDNA sequences derived from total genomic DNA extractions of fungal mycelia were obtained. The majority of the sequences were associated with Proteobacteria (13/14), and one Bacillaceae (1/14) was included. Leclercia sp., Oceanobacillus oncorhynchi and Methylobacterium extorquens, were reported for the first time as bacterial endosymbionts in fungi. High-performance liquid chromatography (HPLC) analysis indicated that bacterial symbionts produced specific metabolites and also exerted an inhibitory effect on fungal metabolites. The biological activity of the fungal culture extracts against the pathogenic bacteria Staphylococcus aureus (ATCC 6538), Bacillus subtilis (ATCC 6633) and Escherichia coli (ATCC 8739) was investigated, and 20 extracts (42%) exhibited antibacterial activity against at least one of the tested bacterial strains. This study is the first report on the diversity and antibacterial activity of symbiotic fungi residing in the gut of P. flavescens larvae, and the results show that these fungi are highly diverse and could be exploited as a potential source of bioactive compounds.

  5. Plasmid profiling of bacterial isolates from confined environments

    NASA Astrophysics Data System (ADS)

    van Houdt, Rob; Provoost, Ann; Coninx, Ilse; Leys, Natalie; Mergeay, Max

    Plasmid profiling of bacterial isolates from confined environments R. Van Houdt, I. Coninx, A. Provoost, N. Leys, and M. Mergeay Expertise group for Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, B-2400 Mol, Belgium. Human exploration of extreme and isolated hostile environments such as space requires special confined small volume habitats to protect and house the crew. However, human confinement in such small volume habitats has restrictions on waste disposal and personal hygiene and inevitably generates a particular community of microorganisms within the habitat. These microorganisms are mainly originating from the crew (skin, mucous membranes, upper respiratory tract, mouth, and gastrointestinal tract) but also include the residing environmental microorganisms. Earth-based confined habitats such as the Antarctic Research Station Concordia are used as test beds for long-duration spaceflights to study the physiologic and psychological adaptation to isolated environments. The dynamics of the environmental microbial population in such a test bed could render additional insights in assessing the potential health risks in long-duration space missions. Not only total bacterial contamination levels are important, but it is essential to identify also the predominant microbial taxa and their mobile genetic elements (MGE). These MGEs could be exchanged between bacteria by horizontal gene transfer and may alter the pathogenic potential since they often carry antibiotic resistance or more in general adaptation-enhancing traits. In this study several bacterial strains isolated in the Concordia research station were examined for their plasmid content. An optimized protocol for extraction of large plasmids showed the present of at least one plasmid in 50% of the strains. For all strains the minimal inhibitory concentration of a range of antibiotics was determined indicating resistance to different classes of antibiotics including aminoglycosides, penicillins, macrolides and chloramphenicol. Whether these antibiotic resistance determinants are plasmid-bound and whether these traits can be transferred to other bacteria is under investigation.

  6. Pilot Screening to Determine Antimicrobial Synergies in a Multidrug-Resistant Bacterial Strain Library

    PubMed Central

    Kim, Si-Hyun; Park, Chulmin; Chun, Hye-Sun; Choi, Jae-Ki; Lee, Hyo-Jin; Cho, Sung-Yeon; Park, Sun Hee; Choi, Su-Mi; Choi, Jung-Hyun; Yoo, Jin-Hong

    2016-01-01

    With the rise in multidrug-resistant (MDR) bacterial infections, there has been increasing interest in combinations of ≥2 antimicrobial agents with synergistic effects. We established an MDR bacterial strain library to screen for in vitro antimicrobial synergy by using a broth microdilution checkerboard method and high-throughput luciferase-based bacterial cell viability assay. In total, 39 MDR bacterial strains, including 23 carbapenem-resistant gram-negative bacteria, 9 vancomycin-intermediate Staphylococcus aureus, and 7 vancomycin-resistant Enterococcus faecalis, were used to screen for potential antimicrobial synergies. Synergies were more frequently identified with combinations of imipenem plus trimethoprim–sulfamethoxazole for carbapenem-resistant Acinetobacter baumannii in the library. To verify this finding, we tested 34 A. baumannii clinical isolates resistant to both imipenem and trimethoprim–sulfamethoxazole by the checkerboard method. The imipenem plus trimethoprim–sulfamethoxazole combination showed synergy in the treatment of 21 (62%) of the clinical isolates. The results indicate that pilot screening for antimicrobial synergy in the MDR bacterial strain library could be valuable in the selection of combination therapeutic regimens to treat MDR bacterial infections. Further studies are warranted to determine whether this screening system can be useful to screen for the combined effects of conventional antimicrobials and new-generation antimicrobials or nonantimicrobials. PMID:26974861

  7. Diversity and antibiograms of bacterial organisms isolated from samples of household drinking-water consumed by HIV-positive individuals in rural settings, South Africa.

    PubMed

    Samie, A; Mashao, M B; Bessong, P O; NKgau, T F; Momba, M N B; Obi, C L

    2012-09-01

    Diarrhoea is a hallmark of HIV infections in developing countries, and many diarrhoea-causing agents are often transmitted through water. The objective of the study was to determine the diversity and antibiotic susceptibility profiles of bacterial organisms isolated from samples of household drinking-water consumed by HIV-infected and AIDS patients. In the present study, household water stored for use by HIV-positive patients was tested for microbial quality, and isolated bacterial organisms were analyzed for their susceptibility profiles against 25 different antibiotics. The microbial quality of water was generally poor, and about 58% of water samples (n=270) were contaminated with faecal coliforms, with counts varying from 2 colony-forming unit (CFU)/100 mL to 2.4x10⁴ CFU/100 mL. Values of total coliform counts ranged from 17 CFU/100 mL to 7.9x10⁵/100 mL. In total, 37 different bacterial species were isolated, and the major isolates included Acinetobacter lwoffii (7.5%), Enterobacter cloacae (7.5%), Shigella spp. (14.2%), Yersinia enterocolitica (6.7%), and Pseudomonas spp. (16.3%). No Vibrio cholerae could be isolated; however, V. fluvialis was isolated from three water samples. The isolated organisms were highly resistant to cefazolin (83.5%), cefoxitin (69.2%), ampicillin (66.4%), and cefuroxime (66.2%). Intermediate resistance was observed against gentamicin (10.6%), cefepime (13.4%), ceftriaxone (27.6%), and cefotaxime (29.9%). Levofloxacin (0.7%), ceftazidime (2.2%), meropenem (3%), and ciprofloxacin (3.7%) were the most active antibiotics against all the microorganisms, with all recording less than 5% resistance. Multiple drug resistance was very common, and 78% of the organisms were resistant to three or more antibiotics. Education on treatment of household water is advised for HIV-positive patients, and measures should be taken to improve point-of-use water treatment as immunosuppressed individuals would be more susceptible to opportunistic infections.

  8. Diversity and Antibiograms of Bacterial Organisms Isolated from Samples of Household Drinking-water Consumed by HIV-positive Individuals in Rural Settings, South Africa

    PubMed Central

    Mashao, M.B.; Bessong, P.O.; NKgau, T.F.; Momba, M.N.B.; Obi, C.L.

    2012-01-01

    Diarrhoea is a hallmark of HIV infections in developing countries, and many diarrhoea-causing agents are often transmitted through water. The objective of the study was to determine the diversity and antibiotic susceptibility profiles of bacterial organisms isolated from samples of household drinking-water consumed by HIV-infected and AIDS patients. In the present study, household water stored for use by HIV-positive patients was tested for microbial quality, and isolated bacterial organisms were analyzed for their susceptibility profiles against 25 different antibiotics. The microbial quality of water was generally poor, and about 58% of water samples (n=270) were contaminated with faecal coliforms, with counts varying from 2 colony-forming unit (CFU)/100 mL to 2.4×104 CFU/100 mL. Values of total coliform counts ranged from 17 CFU/100 mL to 7.9×105/100 mL. In total, 37 different bacterial species were isolated, and the major isolates included Acinetobacter lwoffii (7.5%), Enterobacter cloacae (7.5%), Shigella spp. (14.2%), Yersinia enterocolitica (6.7%), and Pseudomonas spp. (16.3%). No Vibrio cholerae could be isolated; however, V. fluvialis was isolated from three water samples. The isolated organisms were highly resistant to cefazolin (83.5%), cefoxitin (69.2%), ampicillin (66.4%), and cefuroxime (66.2%). Intermediate resistance was observed against gentamicin (10.6%), cefepime (13.4%), ceftriaxone (27.6%), and cefotaxime (29.9%). Levofloxacin (0.7%), ceftazidime (2.2%), meropenem (3%), and ciprofloxacin (3.7%) were the most active antibiotics against all the microorganisms, with all recording less than 5% resistance. Multiple drug resistance was very common, and 78% of the organisms were resistant to three or more antibiotics. Education on treatment of household water is advised for HIV-positive patients, and measures should be taken to improve point-of-use water treatment as immunosuppressed individuals would be more susceptible to opportunistic infections. PMID:23082625

  9. A study of bacterial pathogens and antibiotic susceptibility patterns in chronic suppurative otitis media.

    PubMed

    Mofatteh, M R; Shahabian Moghaddam, F; Yousefi, M; Namaei, M H

    2018-01-01

    To assess the frequency of bacterial agents in chronic suppurative otitis media and the antibiotic susceptibility patterns of isolates among patients. A total of 185 patients clinically diagnosed with chronic suppurative otitis media were interviewed and middle-ear effusion samples were collected using sterile swabs. All bacterial isolates were identified by conventional microbiological methods. Antibiotic susceptibility patterns of the isolates were determined by Kirby-Bauer disc diffusion. Staphylococci spp. (64.9 per cent) were the most prevalent bacteria isolated, followed by Klebsiella spp. (12.9 per cent) and Pseudomonas aeruginosa (10.3 per cent). The most effective antibiotic for treatment of bacterial chronic suppurative otitis media was ciprofloxacin. Statistical analysis showed no significant difference in bacterial infestations among chronic suppurative otitis media patients and the antimicrobial susceptibility patterns of the bacterial isolates based on gender and age (p > 0.05). Our findings highlight the importance of a continuous and periodic evaluation of the bacteriological profile and antibiotic susceptibility patterns in chronic suppurative otitis media patients for efficacious treatment of the infection.

  10. Potassium permanganate cleansing is an effective sanitary method for the reduction of bacterial bioload on raw Coriandrum sativum.

    PubMed

    Subramanya, Supram Hosuru; Pai, Vasudha; Bairy, Indira; Nayak, Niranjan; Gokhale, Shishir; Sathian, Brijesh

    2018-02-13

    Raw vegetables including flowers, leaves, stems, and roots are important carriers of food borne pathogens. We evaluated the bacteriological contamination of unwashed coriander leaves, and effectiveness of cleansing with 0.1% potassium permanganate solution as decontamination method. Significant bacterial contamination including pathogens like Salmonella species and Aeromonas species were isolated from unwashed coriander leaves. Decontamination with 0.1% potassium permanganate was found to be more effective than three steps wash with sterile water.

  11. Bacterial isolates from equine infections in western Canada (1998–2003)

    PubMed Central

    Clark, Chris; Greenwood, Sarah; Boison, Joe O.; Chirino-Trejo, Manuel; Dowling, Patricia M.

    2008-01-01

    All bacterial samples of equine origin submitted to the diagnostic laboratory at the Western College of Veterinary Medicine from January 1998 to December 2003 from either “in-clinic” or Field Service cases were accessed (1323 submissions). The most common bacterial isolates from specific presenting signs were identified, along with their in vitro antimicrobial susceptibility patterns. The most common site from which significant bacterial isolates were recovered was the respiratory tract, followed by wounds. Streptococcus zooepidemicus was the most common isolate from most infections, followed by Escherichia coli. Antimicrobial resistance was not common in the isolates and acquired antimicrobial resistance to multiple drugs was rare. The results are compared with previous published studies from other institutions and used to suggest appropriate antimicrobial treatments for equine infections in western Canada. PMID:18309745

  12. Diverse Bacteria with Lignin Degrading Potentials Isolated from Two Ranks of Coal

    PubMed Central

    Wang, Lu; Nie, Yong; Tang, Yue-Qin; Song, Xin-Min; Cao, Kun; Sun, Li-Zhu; Wang, Zhi-Jian; Wu, Xiao-Lei

    2016-01-01

    Taking natural coal as a “seed bank” of bacterial strains able to degrade lignin that is with molecular structure similar to coal components, we isolated 393 and 483 bacterial strains from a meager lean coal sample from Hancheng coalbed and a brown coal sample from Bayannaoer coalbed, respectively, by using different media. Statistical analysis showed that isolates were significantly more site-specific than medium-specific. Of the 876 strains belonging to 27 genera in Actinobacteria, Firmicutes, and Proteobacteria, 612 were positive for lignin degradation function, including 218 strains belonging to 35 species in Hancheng and 394 strains belonging to 19 species in Zhongqi. Among them, the dominant lignin-degrading strains were Thauera (Hancheng), Arthrobacter (Zhongqi) and Rhizobium (both). The genes encoding the laccases- or laccase-like multicopper oxidases, key enzymes in lignin production and degradation, were detected in three genera including Massila for the first time, which was in high expression by real time PCR (qRT-PCR) detection, confirming coal as a good seed bank. PMID:27667989

  13. Isolation and identification of efficient Egyptian malathion-degrading bacterial isolates.

    PubMed

    Hamouda, S A; Marzouk, M A; Abbassy, M A; Abd-El-Haleem, D A; Shamseldin, Abdelaal

    2015-03-01

    Bacterial isolates degrading malathion were isolated from the soil and agricultural waste water due to their ability to grow on minimal salt media amended with malathion as a sole carbon source. Efficiencies of native Egyptian bacterial malathion-degrading isolates were investigated and the study generated nine highly effective malathion-degrading bacterial strains among 40. Strains were identified by partial sequencing of 16S rDNA analysis. Comparative analysis of 16S rDNA sequences revealed that these bacteria are similar with the genus Acinetobacter and Bacillus spp. and RFLP based PCR of 16S rDNA gave four different RFLP patterns among strains with enzyme HinfI while with enzyme HaeI they gave two RFLP profiles. The degradation rate of malathion in liquid culture was estimated using gas chromatography. Bacterial strains could degrade more than 90% of the initial malathion concentration (1000 ppm) within 4 days. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Chlorhexidine Digluconate Effects on Planktonic Growth and Biofilm Formation in Some Field Isolates of Animal Bacterial Pathogens

    PubMed Central

    Ebrahimi, Azizollah; Hemati, Majid; Habibian Dehkordi, Saeed; Bahadoran, Shahab; Khoshnood, Sheida; Khubani, Shahin; Dokht Faraj, Mahdi; Hakimi Alni, Reza

    2014-01-01

    Background: To study chlorhexidine digluconate disinfectant effects on planktonic growth and biofilm formation in some bacterial field isolates from animals. Objectives: The current study investigated chlorhexidine digluconate effects on planktonic growth and biofilm formation in some field isolates of veterinary bacterial pathogens. Materials and Methods: Forty clinical isolates of Escherichia coli, Salmonella serotypes, Staphylococcus. aureus and Streptococcus agalactiae (10 isolates for each) were examined for chlorhexidine digluconate effects on biofilm formation and planktonic growth using microtiter plates. In all of the examined strains in the presence of chlorhexidine digluconate, biofilm development and planktonic growth were affected at the same concentrations of the disinfectant. Results: Chlorhexidine digluconate inhibited the planktonic growth of different bacterial species at sub-MICs. But they were able to induce biofilm development of the E. coli, Salmonella spp., S. aureus and Str. agalactiae strains. Conclusions: Bacterial resistance against chlorhexidine is increasing. Sub-MIC doses of chlorhexidine digluconate can stimulate the formation of biofilm strains. PMID:24872940

  15. How conserved are the bacterial communities associated with aphids? A detailed assessment of the Brevicoryne brassicae (Hemiptera: Aphididae) using 16S rDNA.

    PubMed

    Clark, E L; Daniell, T J; Wishart, J; Hubbard, S F; Karley, A J

    2012-12-01

    Aphids harbor a community of bacteria that include obligate and facultative endosymbionts belonging to the Enterobacteriaceae along with opportunistic, commensal, or pathogenic bacteria. This study represents the first detailed analysis of the identity and diversity of the bacterial community associated with the cabbage aphid, Brevicoryne brassicae (L.). 16S rDNA sequence analysis revealed that the community of bacteria associated with B. brassicae was diverse, with at least four different bacterial community types detected among aphid lines, collected from widely dispersed sites in Northern Britain. The bacterial sequence types isolated from B. brassicae showed little similarity to any bacterial endosymbionts characterized in insects; instead, they were closely related to free-living extracellular bacterial species that have been isolated from the aphid gut or that are known to be present in the environment, suggesting that they are opportunistic bacteria transmitted between the aphid gut and the environment. To quantify variation in bacterial community between aphid lines, which was driven largely by differences in the proportions of two dominant bacterial orders, the Pseudomonales and the Enterobacteriales, we developed a novel real-time (Taqman) qPCR assay. By improving our knowledge of aphid microbial ecology, and providing novel molecular tools to examine the presence and function of the microbial community, this study forms the basis of further research to explore the influence of the extracellular bacterial community on aphid fitness, pest status, and susceptibility to control by natural enemies.

  16. Aerobic bacteria occurring in the vagina of bitches with reproductive disorders.

    PubMed

    Bjurström, L

    1993-01-01

    A retrospective survey was performed of aerobic bacterial species found in the vagina of 203 bitches with genital disorders, e.g. infertility, vaginitis, pyometra and puppy death. Escherichia coli, beta-hemolytic streptococci, Staphylococcus intermedius and Pasteurella multocida were the species most often isolated. From bitches with pyometra E. coli in pure culture was the most frequent isolate. In contrast, the majority of infertile bitches gave rise to mixed cultures, and no specific bacterial species was consistently associated with infertility. Thus, bacterial sampling from infertile bitches was concluded to be of low diagnostic value. Bacterial species isolated from the bitches having vaginitis were present in pure culture in 26.9% of the samples while nonspecific mixed cultures were obtained from 34.6% of the samples from these bitches. E. coli was the most frequently isolated bacterial species from bitches with dead puppies. However, in such cases it is important to relate the vaginal bacterial findings to autopsy findings and the results of bacteriological cultures of the pups.

  17. Temperature range and degree of acidity growth of isolate of indigenous bacteria on fermented feed “fermege”

    NASA Astrophysics Data System (ADS)

    Isnawati; Trimulyono, G.

    2018-01-01

    Fermege is a fermented feed of ruminants, especially goats made from water hyacinth (Eichhornia crassipes). Temperature range and pH need to know in making starter formula for acceleration of fermentation process at making ruminant feed made from this materials. The starter formula expired period can be extended by adjusting starter storage temperature and pH of the starter. This research was aimed to find the temperature and pH range for the growth of isolate of indigenous bacteria “fermege.” This research is an explorative research conducted by growing bacteria isolate indigenous fermege in liquid medium with various pH and incubation in various temperature. Bacterial population was calculated based on turbidity of bacterial suspension with turbidometer. The stages of this research were to isolate the bacteria present in the fermege, purify the isolates found, and then grow the isolates in a liquid medium with various pH values. The isolated bacterials were incubated at different temperature variations. The cell population density of the isolates was calculated after incubation for 24 hours. The results showed there were eight indigenous bacterial isolates. All isolates can grow in the pH range 6 and 7. Two isolates (Bacillus subtilis and B. pumilus) can grow at 4°C. All isolates obtained can grow at a temperature of 30°C. Isolates Bacillus badius, B. subtilis, B. cereus, Pseudomonas stutzeri and P. diminuta can grow at 50°C. Based on research indicates that indigenous fermege bacterial isolates have the ability to grow in the neutral pH range and temperature range between 4°C and 50°C.

  18. Identification of Heterotrophic Zinc Mobilization Processes among Bacterial Strains Isolated from Wheat Rhizosphere (Triticum aestivum L.).

    PubMed

    Costerousse, Benjamin; Schönholzer-Mauclaire, Laurie; Frossard, Emmanuel; Thonar, Cécile

    2018-01-01

    Soil and plant inoculation with heterotrophic zinc-solubilizing bacteria (ZSB) is considered a promising approach for increasing zinc (Zn) phytoavailability and enhancing crop growth and nutritional quality. Nevertheless, it is necessary to understand the underlying bacterial solubilization processes to predict their repeatability in inoculation strategies. Acidification via gluconic acid production remains the most reported process. In this study, wheat rhizosphere soil serial dilutions were plated on several solid microbiological media supplemented with scarcely soluble Zn oxide (ZnO), and 115 putative Zn-solubilizing isolates were directly detected based on the formation of solubilization halos around the colonies. Eight strains were selected based on their Zn solubilization efficiency and siderophore production capacity. These included one strain of Curtobacterium , two of Plantibacter , three strains of Pseudomonas , one of Stenotrophomonas , and one strain of Streptomyces In ZnO liquid solubilization assays, the presence of glucose clearly stimulated organic acid production, leading to medium acidification and ZnO solubilization. While solubilization by Streptomyces and Curtobacterium was attributed to the accumulated production of six and seven different organic acids, respectively, the other strains solubilized Zn via gluconic, malonic, and oxalic acids exclusively. In contrast, in the absence of glucose, ZnO dissolution resulted from proton extrusion (e.g., via ammonia consumption by Plantibacter strains) and complexation processes (i.e., complexation with glutamic acid in cultures of Curtobacterium ). Therefore, while gluconic acid production was described as a major Zn solubilization mechanism in the literature, this study goes beyond and shows that solubilization mechanisms vary among ZSB and are strongly affected by growth conditions. IMPORTANCE Barriers toward a better understanding of the mechanisms underlying zinc (Zn) solubilization by bacteria include the lack of methodological tools for isolation, discrimination, and identification of such organisms. Our study proposes a direct bacterial isolation procedure, which prevents the need to screen numerous bacterial candidates (for which the ability to solubilize Zn is unknown) for recovering Zn-solubilizing bacteria (ZSB). Moreover, we confirm the potential of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) as a quick and accurate tool for the identification and discrimination of environmental bacterial isolates. This work also describes various Zn solubilization processes used by wheat rhizosphere bacteria, including proton extrusion and the production of different organic acids among bacterial strains. These processes were also clearly affected by growth conditions (i.e., solid versus liquid cultures and the presence and absence of glucose). Although highlighted mechanisms may have significant effects at the soil-plant interface, these should only be transposed cautiously to real ecological situations. Copyright © 2017 American Society for Microbiology.

  19. Antimicrobial susceptibility profiles of gram-negative bacteria causing infections collected across India during 2014-2016: Study for monitoring antimicrobial resistance trend report.

    PubMed

    Veeraraghavan, Balaji; Jesudason, Mark Ranjan; Prakasah, John Antony Jude; Anandan, Shalini; Sahni, Rani Diana; Pragasam, Agila Kumari; Bakthavatchalam, Yamuna Devi; Selvakumar, Rajesh Joseph; Dhole, T N; Rodrigues, Camilla; Roy, Indranil; Joshi, Sangeetha; Chaudhuri, Bhaskar Narayan; Chitnis, D S

    2018-01-01

    The emergence of antibiotic resistance among bacterial pathogens in the hospital and community has increased the concern to the health-care providers due to the limited treatment options. Surveillance of antimicrobial resistance (AMR) in frequently isolated bacterial pathogens causing severe infections is of great importance. The data generated will be useful for the clinicians to decide empiric therapy on the local epidemiological resistance profile of the antimicrobial agents. This study aims to monitor the distribution of bacterial pathogen and their susceptibility pattern to the commonly used antimicrobial agents. This study includes Gram-negative bacilli collected from intra-abdominal, urinary tract and respiratory tract infections during 2014-2016. Isolates were collected from seven hospitals across India. All the study isolates were characterised up to species level, and minimum inhibitory concentration was determined for a wide range of antimicrobials included in the study panel. The test results were interpreted as per standard Clinical Laboratory Standards Institute guidelines. A total of 2731 isolates of gram-negative bacteria were tested during study period. The most frequently isolated pathogens were 44% of Escherichia coli (n = 1205) followed by 25% of Klebsiella pneumoniae (n = 676) and 11% of Pseudomonas aeruginosa (n = 308). Among the antimicrobials tested, carbapenems were the most active, followed by amikacin and piperacillin/tazobactam. The rate of extended-spectrum beta-lactamase (ESBL)-positive isolates were ranged from 66%-77% in E. coli to 61%-72% in K. pneumoniae, respectively. Overall, colistin retains its activity in > 90% of the isolates tested and appear promising. Increasing rates of ESBL producers have been noted, which is alarming. Further, carbapenem resistance was also gradually increasing, which needs much attention. Overall, this study data show that carbapenems, amikacin and colistin continue to be the best agents available to treat drug-resistant infections. Thus continuous monitoring of susceptibility profile of the clinically important Gram-negative pathogens is of great importance to guide effective antimicrobial therapy.

  20. Bacterial and fungal keratitis in Upper Egypt: In vitro screening of enzymes, toxins and antifungal activity

    PubMed Central

    Gharamah, Abdullah A; Moharram, Ahmed M; Ismail, Mady A; AL-Hussaini, Ashraf K

    2014-01-01

    Purpose: This work was conducted to study the ability of bacterial and fungal isolates from keratitis cases in Upper Egypt to produce enzymes, toxins, and to test the isolated fungal species sensitivity to some therapeutic agents. Materials and Methods: One hundred and fifteen patients clinically diagnosed to have microbial keratitis were investigated. From these cases, 37 bacterial isolates and 25 fungal isolates were screened for their ability to produce extra-cellular enzymes in solid media. In addition, the ability of fungal isolates to produce mycotoxins and their sensitivity to 4 antifungal agents were tested. Results: Protease, lipase, hemolysins, urease, phosphatase, and catalase were detected respectively in 48.65%, 37.84%, 59.46%, 43.24%, 67.57%, and 100% out of 37 bacterial isolates tested. Out of 25 fungal isolates tested during the present study, 80% were positive for protease, 84% for lipase and urease, 28% for blood hemolysis, and 100% for phosphatase and catalase enzymes. Thirteen fungal isolates were able to produce detectable amounts of 7 mycotoxins in culture medium (aflatoxins (B1, B2, G1, and G2), sterigmatocystin, fumagillin, diacetoxyscirpenol, zearalenone, T-2 toxin, and trichodermin). Among the antifungal agents tested in this study, terbinafine showed the highest effect against most isolates in vitro. Conclusion: In conclusion, the ability of bacterial and fungal isolates to produce extracellular enzymes and toxins may be aid in the invasion and destruction of eye tissues, which, in turn, lead to vision loss. PMID:24008795

  1. Assessment of bacterial diversity during composting of agricultural byproducts

    PubMed Central

    2013-01-01

    Background Composting is microbial decomposition of biodegradable materials and it is governed by physicochemical, physiological and microbiological factors. The importance of microbial communities (bacteria, actinomycetes and fungi) during composting is well established. However, the microbial diversity during composting may vary with the variety of composting materials and nutrient supplements. Therefore, it is necessary to study the diversity of microorganisms during composting of different agricultural byproducts like wheat bran, rice bran, rice husk, along with grass clippings and bulking agents. Here it has been attempted to assess the diversity of culturable bacteria during composting of agricultural byproducts. Results The culturable bacterial diversity was assessed during the process by isolating the most prominent bacteria. Bacterial population was found to be maximum during the mesophilic phase, but decreased during the thermophilic phase and declined further in the cooling and maturation phase of composting. The bacterial population ranged from 105 to 109 cfu g-1 compost. The predominant bacteria were characterized biochemically, followed by 16S rRNA gene sequencing. The isolated strains, both Gram-positive and Gram-negative groups belonged to the order Burkholderiales, Enterobacteriales, Actinobacteriales and Bacillales, which includes genera e.g. Staphylococcus, Serratia, Klebsiella, Enterobacter, Terribacillus, Lysinibacillus Kocuria, Microbacterium, Acidovorax and Comamonas. Genera like Kocuria, Microbacterium, Acidovorax, Comamonas and some new species of Bacillus were also identified for the first time from the compost made from agricultural byproducts. Conclusion The use of appropriate nitrogen amendments and bulking agents in composting resulted in good quality compost. The culture based strategy enabled us to isolate some novel bacterial isolates like Kocuria, Microbacterium, Acidovorax and Comamonas first time from agro-byproducts compost. These bacteria can be used as potential compost inoculants for accelerating composting process. PMID:23651653

  2. Conjunctival bacterial and fungal flora in clinically normal sheep.

    PubMed

    Bonelli, Francesca; Barsotti, Giovanni; Attili, Anna Rita; Mugnaini, Linda; Cuteri, Vincenzo; Preziuso, Silvia; Corazza, Michele; Preziuso, Giovanna; Sgorbini, Micaela

    2014-01-01

    The aim was to identify conjunctival bacterial and fungal flora in clinically normal sheep. Prospective study. Tuscany. 100 eyes from 50 adult Massese female sheep were examined. The sheep included in the study were considered free of anterior ophthalmic abnormalities. Bacteria were identified by morphological assessment, Gram staining, biochemical tests. Identification of filamentous fungi was achieved at the genus level, and Aspergillus species were identified based on keys provided by other authors. Yeast colonies were highlighted, but not identified. Positive cultures were obtained from 100/100 eyes for bacteria, and from 86/100 eyes for fungi. A total of 14 types of bacteria and 5 types of fungi were isolated. Yeasts were isolated from 13/100 eyes. The most frequent fungal isolates were saprophytic fungi. Conjunctival bacterial and fungal flora of clinically normal eyes were reported in sheep. The positivity obtained for conjunctival bacteria was higher compared to findings in the literature by other authors in the same species (100 per cent v 40 per cent), while our results were in line with a recent work performed on mouflons (Ovis Musimon) with a 100 per cent positivity for bacterial conjunctival fornix. In our survey, Gram-positive species were prevalent, as reported by other authors in different species. Few data are available in the literature regarding conjunctival fungal flora in healthy small ruminants. The prevalence of conjunctival fungal flora in this study was higher than findings reported in mouflons (86 per cent v 45 per cent). Differences in fungal prevalence may be due to different methods of managing herds, though further studies are required to verify this hypothesis. The similarities in bacterial and fungal isolates between sheep and mouflons suggest a genera pattern of conjunctival colonisation by bacteria and fungi.

  3. Bacterial Species and Antibiotic Sensitivity in Korean Patients Diagnosed with Acute Otitis Media and Otitis Media with Effusion.

    PubMed

    Kim, Sang Hoon; Jeon, Eun Ju; Hong, Seok Min; Bae, Chang Hoon; Lee, Ho Yun; Park, Moo Kyun; Byun, Jae Yong; Kim, Myung Gu; Yeo, Seung Geun

    2017-04-01

    Changes over time in pathogens and their antibiotic sensitivity resulting from the recent overuse and misuse of antibiotics in otitis media (OM) have complicated treatment. This study evaluated changes over 5 years in principal pathogens and their antibiotic sensitivity in patients in Korea diagnosed with acute OM (AOM) and OM with effusion (OME). The study population consisted of 683 patients who visited the outpatient department of otorhinolaryngology in 7 tertiary hospitals in Korea between January 2010 and May 2015 and were diagnosed with acute AOM or OME. Aural discharge or middle ear fluid were collected from patients in the operating room or outpatient department and subjected to tests of bacterial identification and antibiotic sensitivity. The overall bacteria detection rate of AOM was 62.3% and OME was 40.9%. The most frequently isolated Gram-positive bacterial species was coagulase negative Staphylococcus aureus (CNS) followed by methicillin-susceptible S. aureus (MSSA), methicillin-resistant S. aureus (MRSA), and Streptococcus pneumonia (SP), whereas the most frequently isolated Gram-negative bacterium was Pseudomonas aeruginosa (PA). Regardless of OM subtype, ≥ 80% of CNS and MRSA strains were resistant to penicillin (PC) and tetracycline (TC); isolated MRSA strains showed low sensitivity to other antibiotics, with 100% resistant to PC, TC, cefoxitin (CFT), and erythromycin (EM); and isolated PA showed low sensitivity to quinolone antibiotics, including ciprofloxacin (CIP) and levofloxacin (LFX), and to aminoglycosides. Bacterial species and antibiotic sensitivity did not change significantly over 5 years. The rate of detection of MRSA was higher in OME than in previous studies. As bacterial predominance and antibiotic sensitivity could change over time, continuous and periodic surveillance is necessary in guiding appropriate antibacterial therapy. © 2017 The Korean Academy of Medical Sciences.

  4. Phytochemical, toxicological and antimicrobial evaluation of Lawsonia inermis extracts against clinical isolates of pathogenic bacteria.

    PubMed

    Gull, Iram; Sohail, Maria; Aslam, Muhammad Shahbaz; Amin Athar, Muhammad

    2013-12-01

    The emerging resistance of pathogen against the currently available antimicrobial agents demands the search of new antimicrobial agents. The use of medicinal plants as natural substitute is the paramount area of research to overwhelm the drug resistance of infectious agents. Scientists have not made enough effort on the evaluation of safety of medicinal plant yet. In the present study antimicrobial activity of Lawsonia inermis is investigated against clinical isolates of seven bacteria including four Gram negative (Escherichia coli, Salmonella typhi, Klebsiella spp., Shigella sonnei) and three Gram positive (Bacillus subtilis, Staphylococcus aureus, Staphylococcus epidermidis) using disc diffusion method. Four types of Lawsonia inermis extracts were prepared using methanol, chloroform, acetone and water as extraction solvents, while DMSO (Dimethyl sulfoxide) and water as dissolution solvents. The rate and extent of bacterial killing was estimated by time-kill kinetic assay at 1× MIC of each bacterial isolate. The overall safety of Lawsonia inermis extracts was assessed in mice. Lawsonia inermis displayed noteworthy antimicrobial activity against both gram positive and gram negative bacterial strains used in the study. The minimum value of MIC for different bacterial strains ranged from 2.31 mg/ml to 9.27 mg/ml. At 1x MIC of each bacterial isolate, 3log10 decrease in CFU was recorded after 6 hours of drug exposure and no growth was observed in almost all tested bacteria after 24 hours of exposure. No sign of toxidrome were observed during in vivo toxicity evaluation in mice at 300 mg/kg concentration. In conclusion, the present study provides the scientific rational for medicinal use of Lawsonia inermis. The use of Lawsonia inermis extracts is of great significance as substitute antimicrobial agent in therapeutics.

  5. Phytochemical, toxicological and antimicrobial evaluation of lawsonia inermis extracts against clinical isolates of pathogenic bacteria

    PubMed Central

    2013-01-01

    Background The emerging resistance of pathogen against the currently available antimicrobial agents demands the search of new antimicrobial agents. The use of medicinal plants as natural substitute is the paramount area of research to overwhelm the drug resistance of infectious agents. Scientists have not made enough effort on the evaluation of safety of medicinal plant yet. Methods In the present study antimicrobial activity of Lawsonia inermis is investigated against clinical isolates of seven bacteria including four Gram negative (Escherichia coli, Salmonella typhi, Klebsiella spp., Shigella sonnei) and three Gram positive (Bacillus subtilis, Staphylococcus aureus, Staphylococcus epidermidis) using disc diffusion method. Four types of Lawsonia inermis extracts were prepared using methanol, chloroform, acetone and water as extraction solvents, while DMSO (Dimethyl sulfoxide) and water as dissolution solvents. The rate and extent of bacterial killing was estimated by time-kill kinetic assay at 1× MIC of each bacterial isolate. The overall safety of Lawsonia inermis extracts was assessed in mice. Results Lawsonia inermis displayed noteworthy antimicrobial activity against both gram positive and gram negative bacterial strains used in the study. The minimum value of MIC for different bacterial strains ranged from 2.31 mg/ml to 9.27 mg/ml. At 1x MIC of each bacterial isolate, 3log10 decrease in CFU was recorded after 6 hours of drug exposure and no growth was observed in almost all tested bacteria after 24 hours of exposure. No sign of toxidrome were observed during in vivo toxicity evaluation in mice at 300 mg/kg concentration. Conclusion In conclusion, the present study provides the scientific rational for medicinal use of Lawsonia inermis. The use of Lawsonia inermis extracts is of great significance as substitute antimicrobial agent in therapeutics. PMID:24289297

  6. Bacteriophage Ecology in a Commercial Cucumber Fermentation

    PubMed Central

    Pérez-Díaz, I. M.; Hayes, J. S.; Breidt, F.

    2012-01-01

    To reduce high-salt waste from cucumber fermentations, low-salt fermentations are under development. These fermentations may require the use of starter cultures to ensure normal fermentations. Because potential phage infection can cause starter culture failure, it is important to understand phage ecology in the fermentations. This study investigated the phage ecology in a commercial cucumber fermentation. Brine samples taken from a fermentation tank over a 90-day period were plated onto deMan-Rogosa-Sharpe agar plates. A total of 576 lactic acid bacterial isolates were randomly selected to serve as potential hosts for phage isolation. Filtered brine served as a phage source. Fifty-seven independent phage isolates were obtained, indicating that 10% of the bacterial isolates were sensitive to phage attack. Phage hosts include Lactobacillus brevis (67% of all hosts), Lactobacillus plantarum (21%), Weissella paramesenteroides, Weissella cibaria, and Pediococcus ethanolidurans. Nearly 50% of phages were isolated on day 14, and the majority of them attacked L. brevis. Some phages had a broad host range and were capable of infecting multiple hosts in two genera. Other phages were species specific or strain specific. About 30% of phage isolates produced turbid pinpoint plaques or only caused reduced cell growth on the bacterial lawns. Six phages with distinct host ranges were characterized. The data from this study showed that abundant and diverse phages were present in the commercial cucumber fermentation, which could cause significant mortality to the lactic acid bacteria population. Therefore, a phage control strategy may be needed in low-salt cucumber fermentations. PMID:23023756

  7. Bovine Intestinal Bacteria Inactivate and Degrade Ceftiofur and Ceftriaxone with Multiple β-Lactamases▿

    PubMed Central

    Wagner, R. Doug; Johnson, Shemedia J.; Cerniglia, Carl E.; Erickson, Bruce D.

    2011-01-01

    The veterinary cephalosporin drug ceftiofur is rapidly degraded in the bovine intestinal tract. A cylinder-plate assay was used to detect microbiologically active ceftiofur, and high-performance liquid chromatography-mass spectrometry analysis was used to quantify the amount of ceftiofur remaining after incubation with bovine intestinal anaerobic bacteria, which were isolated from colon contents or feces from 8 cattle. Ninety-six percent of the isolates were able to inactivate ceftiofur to some degree, and 54% actually degraded the drug. None of 9 fungal isolates inactivated or degraded ceftiofur. Facultative and obligate anaerobic bacterial species that inactivated or degraded ceftiofur were identified with Vitek and Biolog systems, respectively. A subset of ceftiofur degraders also degraded the chemically similar drug ceftriaxone. Most of the species of bacteria that degraded ceftiofur belonged to the genera Bacillus and Bacteroides. PCR analysis of bacterial DNA detected specific β-lactamase genes. Bacillus cereus and B. mycoides isolates produced extended-spectrum β-lactamases and metallo-β-lactamases. Seven isolates of Bacteroides spp. produced multiple β-lactamases, including possibly CepA, and metallo-β-lactamases. Isolates of Eubacterium biforme, Bifidobacterium breve, and several Clostridium spp. also produced ceftiofur-degrading β-lactamases. An agar gel overlay technique on isoelectric focusing separations of bacterial lysates showed that β-lactamase enzymes were sufficient to degrade ceftiofur. These results suggest that ceftiofur is inactivated nonenzymatically and degraded enzymatically by multiple β-lactamases from bacteria in the large intestines of cattle. PMID:21876048

  8. Bovine intestinal bacteria inactivate and degrade ceftiofur and ceftriaxone with multiple beta-lactamases.

    PubMed

    Wagner, R Doug; Johnson, Shemedia J; Cerniglia, Carl E; Erickson, Bruce D

    2011-11-01

    The veterinary cephalosporin drug ceftiofur is rapidly degraded in the bovine intestinal tract. A cylinder-plate assay was used to detect microbiologically active ceftiofur, and high-performance liquid chromatography-mass spectrometry analysis was used to quantify the amount of ceftiofur remaining after incubation with bovine intestinal anaerobic bacteria, which were isolated from colon contents or feces from 8 cattle. Ninety-six percent of the isolates were able to inactivate ceftiofur to some degree, and 54% actually degraded the drug. None of 9 fungal isolates inactivated or degraded ceftiofur. Facultative and obligate anaerobic bacterial species that inactivated or degraded ceftiofur were identified with Vitek and Biolog systems, respectively. A subset of ceftiofur degraders also degraded the chemically similar drug ceftriaxone. Most of the species of bacteria that degraded ceftiofur belonged to the genera Bacillus and Bacteroides. PCR analysis of bacterial DNA detected specific β-lactamase genes. Bacillus cereus and B. mycoides isolates produced extended-spectrum β-lactamases and metallo-β-lactamases. Seven isolates of Bacteroides spp. produced multiple β-lactamases, including possibly CepA, and metallo-β-lactamases. Isolates of Eubacterium biforme, Bifidobacterium breve, and several Clostridium spp. also produced ceftiofur-degrading β-lactamases. An agar gel overlay technique on isoelectric focusing separations of bacterial lysates showed that β-lactamase enzymes were sufficient to degrade ceftiofur. These results suggest that ceftiofur is inactivated nonenzymatically and degraded enzymatically by multiple β-lactamases from bacteria in the large intestines of cattle.

  9. Phylogeny and Antagonistic Activities of Culturable Bacteria Associated with the Gut Microbiota of the Sea Urchin (Paracentrotus lividus).

    PubMed

    Laport, Marinella Silva; Bauwens, Mathieu; Collard, Marie; George, Isabelle

    2018-03-01

    In this study, we have investigated the phylogeny and the antagonistic interactions of culturable bacteria isolated from the sea urchin Paracentrotus lividus collected from Aber and Morgat, both located in Crozon peninsula, France. Bacteria were isolated from the gastrointestinal tracts of ten specimens by using conventional culture-dependent method and then investigated by using phylogenetic analysis based on 16S rRNA gene sequence comparisons. Assays for antagonistic interactions among the bacterial strains were performed; bacteria (including at least one strain representative of each OTU identified) were screened for antimicrobial substance production. So, 367 bacterial strains were isolated on marine-agar. On the basis of morphological characteristics, 180 strains were sequenced and 94 OTUs were classified. The dominant phyla were Proteobacteria, Firmicutes and Actinobacteria, with a high abundance of the strains belonging to the genus Psychrobacter. From the antagonistic interactions assays, it could be determined that 22.7% strains were positive for at least one antagonism interaction, 18.3% of them isolated from the sea urchins collected in Morgat. We hypothesize that the bacteria isolated in this study may represent the transitory microbiota of the gastrointestinal tract of P. lividus, and that this microbiota may be related to the diet of this marine invertebrate. Furthermore, our results suggest that chemical antagonism could play a significant role in shaping the bacterial communities within gastrointestinal tract of the sea urchins. In addition, most isolated bacteria may have promising biotechnology applications.

  10. Developing live bacterial vaccines by selecting resistance to antibacterials

    USDA-ARS?s Scientific Manuscript database

    Four chemicals were used in this study to modify bacterial isolates through chemical-resistance strategy. All bacteria were able to develop high resistance to gossypol. However, none of the gossypol-resistant isolate was attenuated. Although majority of the proflavine hemisulfate-resistant isolates ...

  11. In Search of Alternative Antibiotic Drugs: Quorum-Quenching Activity in Sponges and their Bacterial Isolates

    PubMed Central

    Saurav, Kumar; Bar-Shalom, Rinat; Haber, Markus; Burgsdorf, Ilia; Oliviero, Giorgia; Costantino, Valeria; Morgenstern, David; Steindler, Laura

    2016-01-01

    Owing to the extensive development of drug resistance in pathogens against the available antibiotic arsenal, antimicrobial resistance is now an emerging major threat to public healthcare. Anti-virulence drugs are a new type of therapeutic agent aiming at virulence factors rather than killing the pathogen, thus providing less selective pressure for evolution of resistance. One promising example of this therapeutic concept targets bacterial quorum sensing (QS), because QS controls many virulence factors responsible for bacterial infections. Marine sponges and their associated bacteria are considered a still untapped source for unique chemical leads with a wide range of biological activities. In the present study, we screened extracts of 14 sponge species collected from the Red and Mediterranean Sea for their quorum-quenching (QQ) potential. Half of the species showed QQ activity in at least 2 out of 3 replicates. Six out of the 14 species were selected for bacteria isolation, to test for QQ activity also in isolates, which, once cultured, represent an unlimited source of compounds. We show that ≈20% of the isolates showed QQ activity based on a Chromobacterium violaceum CV026 screen, and that the presence or absence of QQ activity in a sponge extract did not correlate with the abundance of isolates with the same activity from the same sponge species. This can be explained by the unknown source of QQ compounds in sponge-holobionts (host or symbionts), and further by the possible non-symbiotic nature of bacteria isolated from sponges. The potential symbiotic nature of the isolates showing QQ activity was tested according to the distribution and abundance of taxonomically close bacterial Operational Taxonomic Units (OTUs) in a dataset including 97 sponge species and 178 environmental samples (i.e., seawater, freshwater, and marine sediments). Most isolates were found not to be enriched in sponges and may simply have been trapped in the filtration channels of the sponge at the time of collection. Our results highlight potential for QQ-bioactive lead molecules for anti-virulence therapy both from sponges and the bacteria isolated thereof, independently on the symbiotic nature of the latter. PMID:27092109

  12. Culturing of female bladder bacteria reveals an interconnected urogenital microbiota.

    PubMed

    Thomas-White, Krystal; Forster, Samuel C; Kumar, Nitin; Van Kuiken, Michelle; Putonti, Catherine; Stares, Mark D; Hilt, Evann E; Price, Travis K; Wolfe, Alan J; Lawley, Trevor D

    2018-04-19

    Metagenomic analyses have indicated that the female bladder harbors an indigenous microbiota. However, there are few cultured reference strains with sequenced genomes available for functional and experimental analyses. Here we isolate and genome-sequence 149 bacterial strains from catheterized urine of 77 women. This culture collection spans 78 species, representing approximately two thirds of the bacterial diversity within the sampled bladders, including Proteobacteria, Actinobacteria, and Firmicutes. Detailed genomic and functional comparison of the bladder microbiota to the gastrointestinal and vaginal microbiotas demonstrates similar vaginal and bladder microbiota, with functional capacities that are distinct from those observed in the gastrointestinal microbiota. Whole-genome phylogenetic analysis of bacterial strains isolated from the vagina and bladder in the same women identifies highly similar Escherichia coli, Streptococcus anginosus, Lactobacillus iners, and Lactobacillus crispatus, suggesting an interlinked female urogenital microbiota that is not only limited to pathogens but is also characteristic of health-associated commensals.

  13. Infectious complications after esophagectomy.

    PubMed

    Neoral, Cestmir; Horakova, Martina; Aujesky, Rene; Chudacek, Josef; Hanulik, Vojtech; Chroma, Magdalena; Kolar, Milan

    2012-06-01

    Esophageal cancer is a serious diagnosis that has a relative incidence of 4/100,000 inhabitants in the Czech Republic. This disorder is managed predominantly by surgery. The steps to improving the outcome of treatment include a multifactorial approach. The role of operative technique in improving outcomes seems to have reached its limits. However, antibiotic prophylaxis and the treatment of complicating bacterial infections continue to play important roles. A total of 85 patients with strictly defined antibiotic prophylaxis during surgical esophagectomy were included in our study. Bacterial strains were isolated from the patient's clinical materials after operation; only one strain from each patient, the first to be isolated, was tested for antibiotic sensitivity. Infectious complications were observed in 15.3% of patients and the mortality rate from infectious complications reached 30.8%. The most frequently documented complicated infection was pneumonia (69.2%) and the most frequent pathogens were enteric bacteria (56.5%). Some bacterial strains producing extended-spectrum beta-lactamases and AmpC beta-lactamases were found. The infections in our patient set were of endogenous origin. In cases of pneumonia, it is appropriate to begin with antibiotics effective against enteric bacteria and Pseudomonas aeruginosa.

  14. Isolation and identification of bacterial endophytes from grasses along the Oregon coast

    USDA-ARS?s Scientific Manuscript database

    Bacterial endophytes have been shown to improve abiotic and biotic stress responses in plants. Grasses growing along the Oregon coast are exposed to harsh conditions and may harbor endophytes that enable them to survive and grow under these conditions. Bacterial endophytes were isolated from thirty-...

  15. Bacterial consortia at different wine fermentation phases of two typical Central European grape varieties: Blaufränkisch (Frankovka modrá) and Grüner Veltliner (Veltlínske zelené).

    PubMed

    Godálová, Zuzana; Kraková, Lucia; Puškárová, Andrea; Bučková, Mária; Kuchta, Tomáš; Piknová, Ľubica; Pangallo, Domenico

    2016-01-18

    This is the first study focused to bacterial diversity and dynamic during the vinification of two important Central Europe grape vines: Blaufränkisch and Grüner Veltliner. The investigation strategy included culture-dependent and culture-independent approaches. Four different agar media were utilized for the isolation of various bacteria occurring in several fermentation stages. The isolates were clustered by fluorescent-ITS PCR and, one or more representatives of each cluster, were identified by 16 rRNA gene sequencing. The culture-independent approach, based on 16S rRNA gene amplification, combined the denaturing gradient gel electrophoresis (DGGE) method and the construction of bacterial clone library for each wine fermentation step. A complex bacterial community was identified, comprising different lactic acid bacteria and acetic acid bacteria, such as Leuconostoc spp., Lactobacillus spp. and Gluconobacter spp. Other OTUs and bacterial isolates embraced the Actinobacteria, Bacilli, Alpha-, Beta- and Gamma-proteobacteria classes. Different taxa already detected by recent studies, such as Sphingomonas, Variovorax, Pantoea, Enterobacter and Tatumella, were detected confirming the continuous occurrence of these kinds of bacteria in wine environment. Moreover, novel genera (Amycolatopsis, Hydrogenophilus, Snodgrassella, Telluria, Gilliamella, Lelliottia, and Lonsdale quercina) never detected before were recognized, too. The role of these, until now anonymous, bacteria during vinification deserves investigation, which could open a new research field in wine technology. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Probiotic Potential of Autochthonous Bacteria Isolated from the Gastrointestinal Tract of Four Freshwater Teleosts.

    PubMed

    Nandi, Ankita; Dan, Suhas Kumar; Banerjee, Goutam; Ghosh, Pinki; Ghosh, Koushik; Ringø, Einar; Ray, Arun Kumar

    2017-03-01

    In this study, a total of 121 bacterial strains were isolated from the gastrointestinal tract of four teleostean species, namely striped snakehead (Channa striatus), striped dwarf catfish (Mystus vittatus), orangefin labeo (Labeo calbasu) and mrigal carp (Cirrhinus mrigala), among which 8 isolates showed promising antibacterial activity against four potential fish pathogens, Aeromonas hydrophila, Aeromonas salmonicida, Aeromonas sobria and Pseudomonas fluorescens and were non-hemolytic. The isolates were further screened in response to fish bile tolerance and extracellular digestive enzyme activity. Two bacterial strains MVF1 and MVH7 showed highest tolerance and extracellular enzymes activities, and selected for further studies. Antagonistic activity of these two isolates was further confirmed by in vitro growth inhibition assay against four selected fish pathogens in liquid medium. Finally, these two bacterial strains MVF1 and MVH7 were selected as potential probiotic candidates and thus identification by partial 16S rRNA gene sequence analysis. The bacterial isolates MVF1 and MVH7 were identified as two strains of Bacillus sp.

  17. Biofilm-forming activity of bacteria isolated from toilet bowl biofilms and the bactericidal activity of disinfectants against the isolates.

    PubMed

    Mori, Miho; Gomi, Mitsuhiro; Matsumune, Norihiko; Niizeki, Kazuma; Sakagami, Yoshikazu

    2013-01-01

    To evaluate the sanitary conditions of toilets, the bacterial counts of the toilet bowl biofilms in 5 Kansai area and 11 Kansai and Kanto area homes in Japan were measured in winter and summer seasons, respectively. Isolates (128 strains) were identified by analyzing 16S ribosomal RNA sequences. The number of colonies and bacterial species from biofilms sampled in winter tended to be higher and lower, respectively, than those in summer. Moreover, the composition of bacterial communities in summer and winter samples differed considerably. In summer samples, biofilms in Kansai and Kanto areas were dominated by Blastomonas sp. and Mycobacterium sp., respectively. Methylobacterium sp. was detected in all toilet bowl biofilms except for one sample. Methylobacterium sp. constituted the major presence in biofilms along with Brevundimonas sp., Sphingomonas sp., and/or Pseudomonas sp. The composition ratio of the sum of their genera was 88.0 from 42.9% of the total bacterial flora. The biofilm formation abilities of 128 isolates were investigated, and results suggested that Methylobacterium sp. and Sphingomonas sp. were involved in biofilm formation in toilet bowls. The biofilm formation of a mixed bacteria system that included bacteria with the highest biofilm-forming ability in a winter sample was greater than mixture without such bacteria. This result suggests that isolates possessing a high biofilm-forming activity are involved in the biofilm formation in the actual toilet bowl. A bactericidal test against 25 strains indicated that the bactericidal activities of didecyldimethylammonium chloride (DDAC) tended to be higher than those of polyhexamethylene biguanide (PHMB) and N-benzyl-N,N-dimethyldodecylammonium chloride (ADBAC). In particular, DDAC showed high bactericidal activity against approximately 90% of tested strains under the 5 h treatment.

  18. Identification of Erwinia species isolated from apples and pears by differential PCR.

    PubMed

    Gehring, I; Geider, K

    2012-04-01

    Many pathogenic and epiphytic bacteria isolated from apples and pears belong to the genus Erwinia; these include the species E. amylovora, E. pyrifoliae, E. billingiae, E. persicina, E. rhapontici and E. tasmaniensis. Identification and classification of freshly isolated bacterial species often requires tedious taxonomic procedures. To facilitate routine identification of Erwinia species, we have developed a PCR method based on species-specific oligonucleotides (SSOs) from the sequences of the housekeeping genes recA and gpd. Using species-specific primers that we report here, differentiation was done with conventional PCR (cPCR) and quantitative PCR (qPCR) applying two consecutive primer annealing temperatures. The specificity of the primers depends on terminal Single Nucleotide Polymorphisms (SNPs) that are characteristic for the target species. These PCR assays enabled us to distinguish eight Erwinia species, as well as to identify new Erwinia isolates from plant surfaces. When performed with mixed bacterial cultures, they only detected a single target species. This method is a novel approach to classify strains within the genus Erwinia by PCR and it can be used to confirm other diagnostic data, especially when specific PCR detection methods are not already available. The method may be applied to classify species within other bacterial genera. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. A colorimetric assay of 1-aminocyclopropane-1-carboxylate (ACC) based on ninhydrin reaction for rapid screening of bacteria containing ACC deaminase.

    PubMed

    Li, Z; Chang, S; Lin, L; Li, Y; An, Q

    2011-08-01

    1-Aminocyclopropane-1-carboxylate (ACC) deaminase activity is an efficient marker for bacteria to promote plant growth by lowering ethylene levels in plants. We aim to develop a method for rapidly screening bacteria containing ACC deaminase, based on a colorimetric ninhydrin assay of ACC. A reliable colorimetric ninhydrin assay was developed to quantify ACC using heat-resistant polypropylene chimney-top 96-well PCR plates, having the wells evenly heated in boiling water, preventing accidental contamination from boiling water and limiting evaporation. With this method to measure bacterial consumption of ACC, 44 ACC-utilizing bacterial isolates were rapidly screened out from 311 bacterial isolates that were able to grow on minimal media containing ACC as the sole nitrogen source. The 44 ACC-utilizing bacterial isolates showed ACC deaminase activities and belonged to the genus Burkholderia, Pseudomonas or Herbaspirillum. Determination of bacterial ACC consumption by the PCR-plate ninhydrin-ACC assay is a rapid and efficient method for screening bacteria containing ACC deaminase from a large number of bacterial isolates. The PCR-plate ninhydrin-ACC assay extends the utility of the ninhydrin reaction and enables a rapid screening of bacteria containing ACC deaminase from large numbers of bacterial isolates. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  20. Diversity of Hindgut Bacterial Population in Subterranean Termite, Reticulitermes flavipes

    Treesearch

    Olanrewaju Raji; Dragica Jeremic-Nikolic; Juliet D. Tang

    2017-01-01

    The termite hindgut contains a bacterial community that symbiotically aids in digestion of cellulosic materials. For this paper, a species survey of bacterial hindgut symbionts in termites collected from Saucier, Mississippi was examined. Two methods were tested for optimal genetic material isolation. Genomic DNA was isolated from the hindgut luminal contents of five...

  1. External Bacterial Flora and Antimicrobial Susceptibility Patterns of Staphylococcus spp. and Pseudomonas spp. Isolated from Two Household Cockroaches, Blattella germanica and Blatta orientalis.

    PubMed

    Menasria, Taha; Tine, Samir; Mahcene, Djaouida; Benammar, Leyla; Megri, Rochdi; Boukoucha, Mourad; Debabza, Manel

    2015-04-01

    A study was performed to estimate the prevalence of the external bacterial flora of two domestic cockroaches (Blattella germanica and Blatta orientalis) collected from households in Tebessa (northeast Algeria). Three major bacterial groups were cultured (total aerobic, enterobacteria, and staphylococci) from 14 specimens of cockroaches, and antibiotic susceptibility was tested for both Staphylococcus and Pseudomonas isolates. Culturing showed that the total bacterial load of cockroaches from different households were comparable (P<0.001) and enterobacteria were the predominant colonizers of the insect surface, with a bacterial load of (2.1 × 10⁵ CFU/insect), whereas the staphylococci group was the minority. Twenty-eight bacterial species were isolated, and susceptibility patterns showed that most of the staphylococci isolates were highly susceptible to chloramphenicol, gentamycin, pristinamycin, ofloxacin, clindamycin, and vancomycin; however, Pseudomonas strains exhibited resistance to amoxicillin/clavulanic acid, imipenem, and the second-generation antibiotic cephalosporin cefuroxime. Copyright © 2015 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  2. The Structure of Resting Bacterial Populations in Soil and Subsoil Permafrost

    NASA Astrophysics Data System (ADS)

    Soina, Vera S.; Mulyukin, Andrei L.; Demkina, Elena V.; Vorobyova, Elena A.; El-Registan, Galina I.

    2004-09-01

    The structure of individual cells in microbial populations in situ of the Arctic and Antarctic permafrost was studied by scanning and transmission electron microscopy methods and compared with that of cyst-like resting forms generated under special conditions by the non-sporeforming bacteria Arthrobacter and Micrococcus isolated from the permafrost. Electron microscopy examination of microorganisms in situ revealed several types of bacterial cells having no signs of damage, including "dwarf" curved forms similar to nanoforms. Intact bacterial cells in situ and frozen cultures of the permafrost isolates differed from vegetative cells by thickened cell walls, the altered structure of cytoplasm, and the compact nucleoid, and were similar in these features to cyst-like resting forms of non-spore-forming "permafrost" bacterial strains of Arthrobacter and Micrococcus spp. Cyst-like cells, being resistant to adverse external factors, are regarded as being responsible for survival of the non-spore-formers under prolonged exposure to subzero temperatures and can be a target to search for living microorganisms in natural environments both on the Earth and on extraterrestrial bodies.

  3. Bacterial endophytes enhance competition by invasive plants.

    PubMed

    Rout, Marnie E; Chrzanowski, Thomas H; Westlie, Tara K; DeLuca, Thomas H; Callaway, Ragan M; Holben, William E

    2013-09-01

    Invasive plants can alter soil microbial communities and profoundly alter ecosystem processes. In the invasive grass Sorghum halepense, these disruptions are consequences of rhizome-associated bacterial endophytes. We describe the effects of N2-fixing bacterial strains from S. halepense (Rout and Chrzanowski, 2009) on plant growth and show that bacteria interact with the plant to alter soil nutrient cycles, enabling persistence of the invasive. • We assessed fluxes in soil nutrients for ∼4 yr across a site invaded by S. halepense. We assayed the N2-fixing bacteria in vitro for phosphate solubilization, iron chelation, and production of the plant-growth hormone indole-3-acetic acid (IAA). We assessed the plant's ability to recruit bacterial partners from substrates and vertically transmit endophytes to seeds and used an antibiotic approach to inhibit bacterial activity in planta and assess microbial contributions to plant growth. • We found persistent alterations to eight biogeochemical cycles (including nitrogen, phosphorus, and iron) in soils invaded by S. halepense. In this context, three bacterial isolates solubilized phosphate, and all produced iron siderophores and IAA in vitro. In growth chamber experiments, bacteria were transmitted vertically, and molecular analysis of bacterial community fingerprints from rhizomes indicated that endophytes are also horizontally recruited. Inhibiting bacterial activity with antibiotics resulted in significant declines in plant growth rate and biomass, with pronounced rhizome reductions. • This work suggests a major role of endophytes on growth and resource allocation of an invasive plant. Indeed, bacterial isolate physiology is correlated with invader effects on biogeochemical cycles of nitrogen, phosphate, and iron.

  4. Chemically synthesized silver nanoparticles as cell lysis agent for bacterial genomic DNA isolation

    NASA Astrophysics Data System (ADS)

    Goswami, Gunajit; Boruah, Himangshu; Gautom, Trishnamoni; Jyoti Hazarika, Dibya; Barooah, Madhumita; Boro, Robin Chandra

    2017-12-01

    Silver nanoparticles (AgNPs) have seen a recent spurt of use in varied fields of science. In this paper, we showed a novel application of AgNP as a promising microbial cell-lysis agent for genomic DNA isolation. We utilized chemically synthesized AgNPs for lysing bacterial cells to isolate their genomic DNA. The AgNPs efficiently lysed bacterial cells to yield good quality DNA that could be subsequently used for several molecular biology works.

  5. Characterization of Xenorhabdus isolates from La Rioja (Northern Spain) and virulence with and without their symbiotic entomopathogenic nematodes (Nematoda: Steinernematidae).

    PubMed

    Campos-Herrera, R; Tailliez, P; Pagès, S; Ginibre, N; Gutiérrez, C; Boemare, N E

    2009-10-01

    Eighteen Xenorhabdus isolates associated with Spanish entomopathogenic nematodes of the genus Steinernema were characterized using a polyphasic approach including phenotypic and molecular methods. Two isolates were classified as Xenorhabdus nematophila and were associated with Steinernema carpocapsae. Sixteen isolates were classified as Xenorhabdus bovienii, of which fifteen were associated with Steinernema feltiae and one with Steinernema kraussei. Two X. bovienii Phase II were also isolated, one instable phase isolated from S. feltiae strain Rioja and one stable phase from S. feltiae strain BZ. Four representative bacterial isolates were chosen to study their pathogenicity against Spodoptera littoralis with and without the presence of their nematode host. The four bacterial isolates were pathogenic for S. littoralis leading to septicemia 24h post-injection and killing around 90% of the insect larvae 36 h post-injection, except for that isolated from S. kraussei. After 48 h of injection, this latter isolate showed a lower final population in the larval hemolymph (10(7) instead of 10(8)CFU per larvae) and a lower larval mortality (70% instead of 95-100%). The virulence of the nematode-bacteria complexes against S. littoralis showed similar traits with a significant insect larvae mortality (80-90%) 5 days post-infection except for S. kraussei, although this strain reached similar of larval mortality at 7 days after infection.

  6. Control of artefactual variation in reported inter-sample relatedness during clinical use of a Mycobacterium tuberculosis sequencing pipeline.

    PubMed

    Wyllie, David H; Sanderson, Nicholas; Myers, Richard; Peto, Tim; Robinson, Esther; Crook, Derrick W; Smith, E Grace; Walker, A Sarah

    2018-06-06

    Contact tracing requires reliable identification of closely related bacterial isolates. When we noticed the reporting of artefactual variation between M. tuberculosis isolates during routine next generation sequencing of Mycobacterium spp, we investigated its basis in 2,018 consecutive M. tuberculosis isolates. In the routine process used, clinical samples were decontaminated and inoculated into broth cultures; from positive broth cultures DNA was extracted, sequenced, reads mapped, and consensus sequences determined. We investigated the process of consensus sequence determination, which selects the most common nucleotide at each position. Having determined the high-quality read depth and depth of minor variants across 8,006 M. tuberculosis genomic regions, we quantified the relationship between the minor variant depth and the amount of non-Mycobacterial bacterial DNA, which originates from commensal microbes killed during sample decontamination. In the presence of non-Mycobacterial bacterial DNA, we found significant increases in minor variant frequencies of more than 1.5 fold in 242 regions covering 5.1% of the M. tuberculosis genome. Included within these were four high variation regions strongly influenced by the amount of non-Mycobacterial bacterial DNA. Excluding these four regions from pairwise distance comparisons reduced biologically implausible variation from 5.2% to 0% in an independent validation set derived from 226 individuals. Thus, we have demonstrated an approach identifying critical genomic regions contributing to clinically relevant artefactual variation in bacterial similarity searches. The approach described monitors the outputs of the complex multi-step laboratory and bioinformatics process, allows periodic process adjustments, and will have application to quality control of routine bacterial genomics. Copyright © 2018 Wyllie et al.

  7. Using PacBio sequencing to investigate the bacterial microbiota of traditional Buryatian cottage cheese and comparison with Italian and Kazakhstan artisanal cheeses.

    PubMed

    Jin, Hao; Mo, Lanxin; Pan, Lin; Hou, Qaingchaun; Li, Chuanjuan; Darima, Iaptueva; Yu, Jie

    2018-05-09

    Traditional fermented dairy foods including cottage cheese have been major components of the Buryatia diet for centuries. Buryatian cheeses have maintained not only their unique taste and flavor but also their rich natural lactic acid bacteria (LAB) content. However, relatively few studies have described their microbial communities or explored their potential to serve as LAB resources. In this study, the bacterial microbiota community of 7 traditional artisan cheeses produced by local Buryatian families was investigated using single-molecule, real-time sequencing. In addition, we compared the bacterial microbiota of the Buryatian cheese samples with data sets of cheeses from Kazakhstan and Italy. Furthermore, we isolated and preserved several LAB samples from Buryatian cheese. A total of 62 LAB strains (belonging to 6 genera and 14 species or subspecies) were isolated from 7 samples of Buryatian cheese. Full-length 16S rRNA sequencing of the microbiota revealed 145 species of 82 bacterial genera, belonging to 7 phyla. The most dominant species was Lactococcus lactis (43.89%). Data sets of cheeses from Italy and Kazakhstan were retrieved from public databases. Principal component analysis and multivariate ANOVA showed marked differences in the structure of the microbiota communities in the cheese data sets from the 3 regions. Linear discriminant analyses of the effect size identified 48 discriminant bacterial clades among the 3 groups, which might have contributed to the observed structural differences. Our results indicate that the bacterial communities of traditional artisan cheeses vary depending on geographic origin. In addition, we isolated novel and valuable LAB resources for the improvement of cottage cheese production. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Isolation of bacterial metabolites as natural inducers for larval settlement in the marine polychaete Hydroides elegans (Haswell).

    PubMed

    Harder, Tilmann; Lau, Stanley Chun Kwan; Dahms, Hans-Uwe; Qian, Pei-Yuan

    2002-10-01

    The bacterial component of marine biofilms plays an important role in the induction of larval settlement in the polychaete Hydroides elegans. In this study, we provide experimental evidence that bacterial metabolites comprise the chemical signal for larval settlement. Bacteria were isolated from biofilms, purified and cultured according to standard procedures. Bacterial metabolites were isolated from spent culture broth by chloroform extraction as well as by closed-loop stripping and adsorption of volatile components on surface-modified silica gel. A pronounced biological activity was exclusively observed when concentrated metabolites were adsorbed on activated charcoal. Larvae did not respond to waterbome metabolites when prevented from contacting the bacterial film surface. These results indicate that an association of the chemical signal with a sorbent-like substratum may be an essential cofactor for the expression of biological activity. The functional role of bacterial exopolymers as an adsorptive matrix for larval settlement signals is discussed.

  9. Imipenem-resistant Gram-negative bacterial isolates carried by persons upon medical examination in Korea.

    PubMed

    Kim, So Yeon; Shin, Sang Yop; Rhee, Ji-Young; Ko, Kwan Soo

    2017-08-01

    Carbapenem-resistant Gram-negative bacteria (CR-GNB) have emerged and disseminated worldwide, become a great concern worldwide including Korea. The prevalence of fecal carriage of imipenem-resistant Gram-negative bacteria (IR-GNB) in persons in Korea was investigated. Stool samples were collected from 300 persons upon medical examination. Samples were screened for IR-GNB by using MacConkey agar with 2 μl/ml imipenem. Species were identified by 16S rRNA gene sequence analysis, and antimicrobial susceptibility was determined by the broth microdilution method. In total, 82 IR-GNB bacterial isolates were obtained from 79 (26.3%) out of 300 healthy persons. Multilocus sequence typing analysis showed very high diversity among IR P. aeruginosa, S. maltophilia, and E. cloacae isolates, and pulsed-field gel electrophoresis revealed five main pulsotypes of IR P. mirabilis. As for the presence of metallo-β-lactamases (MBLs), only one IMP-25-producing S. marcescens isolate was identified. Although only one carbapenemase-producing isolate was identified, the high colonization rates with IR-GNB isolates in this study is notable because carriers may be a reservoir for the dissemination of resistant pathogens within the community as well as in health care institutions.

  10. Socioeconomic and Behavioral Factors Leading to Acquired Bacterial Resistance to Antibiotics in Developing Countries

    PubMed Central

    Okeke, Iruka N.; Lamikanra, Adebayo

    1999-01-01

    In developing countries, acquired bacterial resistance to antimicrobial agents is common in isolates from healthy persons and from persons with community-acquired infections. Complex socioeconomic and behavioral factors associated with antibiotic resistance, particularly regarding diarrheal and respiratory pathogens, in developing tropical countries, include misuse of antibiotics by health professionals, unskilled practitioners, and laypersons; poor drug quality; unhygienic conditions accounting for spread of resistant bacteria; and inadequate surveillance. PMID:10081668

  11. Sequence-Specific Affinity Chromatography of Bacterial Small Regulatory RNA-Binding Proteins from Bacterial Cells.

    PubMed

    Gans, Jonathan; Osborne, Jonathan; Cheng, Juliet; Djapgne, Louise; Oglesby-Sherrouse, Amanda G

    2018-01-01

    Bacterial small RNA molecules (sRNAs) are increasingly recognized as central regulators of bacterial stress responses and pathogenesis. In many cases, RNA-binding proteins are critical for the stability and function of sRNAs. Previous studies have adopted strategies to genetically tag an sRNA of interest, allowing isolation of RNA-protein complexes from cells. Here we present a sequence-specific affinity purification protocol that requires no prior genetic manipulation of bacterial cells, allowing isolation of RNA-binding proteins bound to native RNA molecules.

  12. Monitoring of oil pollution at Gemsa Bay and bioremediation capacity of bacterial isolates with biosurfactants and nanoparticles.

    PubMed

    El-Sheshtawy, H S; Khalil, N M; Ahmed, W; Abdallah, R I

    2014-10-15

    Fifteen crude oil-degrading bacterial isolates were isolated from an oil-polluted area in Gemsa Bay, Red Sea, Egypt. Two bacterial species showed the highest growth rate on crude oil hydrocarbons. From an analysis of 16S rRNA sequences, these isolates were identified as Pseudomonas xanthomarina KMM 1447 and Pseudomonas stutzeri ATCC 17588. Gas Chromatographic (GC) analysis of the crude oil remaining in the culture medium after one week at 30°C showed that the optimum biodegradation of crude petroleum oil was demonstrated at 50% in medium containing biosurfactant with two types of nanoparticles separately and two bacterial species. The complete degradation of some different members of polyaromatics and the percentage biodegradation of other polyaromatics increased in microcosm containing two different types of nanoparticles with biosurfactant after 7 days. In conclusion, these bacterial strains may be useful for the bioremediation process in the Gemsa Bay, Red Sea decreasing oil pollution in this marine ecosystem. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Biosorption of Heavy Metals from Aqueous Solution by Bacteria Isolated from Contaminated Soil.

    PubMed

    Dhanwal, Pradeep; Kumar, Anil; Dudeja, Shruti; Badgujar, Hemlata; Chauhan, Rohit; Kumar, Abhishek; Dhull, Poonam; Chhokar, Vinod; Beniwal, Vikas

    2018-05-01

      This study was carried out to analyze the heavy metals biosorption potential of bacteria isolated from soil contaminated with electroplating industrial effluents. Bacterial isolates were screened for their multi-metal biosorption potential against copper, nickel, lead, and chromium. Bacterial isolate CU4A showed the maximum uptake of copper, nickel, lead, and chromium in aqueous solution, with a biosorption efficiency of 87.16 %, 79.62%, 84.92%, and 68.12%, respectively. The bacterial strain CU4A was identified as Bacillus cereus, following 16S rRNA gene sequence analysis. The surface chemical functional groups of bacterial biomass were identified by Fourier transform infrared (FTIR) spectroscopy as hydroxyl, carboxyl, amine, and halide, which may be involved in the biosorption of heavy metals. Analysis with scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) confirmed the adsorption of metals on the bacterial cell mass. The results of this study are significant and could be further investigated for the removal of heavy metals from contaminated environments.

  14. In Vitro Evaluation of Delafloxacin Activity when Tested Against Contemporary community-Acquired Bacterial Respiratory Tract Infection Isolates (2014–2016): Results from the Sentry Antimicrobial Surveillance Program

    PubMed Central

    Shortridge, Dee; Streit, Jennifer M; Huband, Michael D; Rhomberg, Paul R; Flamm, Robert K

    2017-01-01

    Abstract Background Delafloxacin (DLX) is a broad-spectrum fluoroquinolone (FQ) antibacterial that has completed clinical development (oral and intravenous formulations) with the new drug application currently under the Food and Drug Administration review for the treatment of acute bacterial skin and skin structure infections (ABSSSI). DLX is also in clinical trials for community-acquired bacterial pneumonia. In this study, in vitro susceptibility results for DLX and comparator agents were determined for clinical isolates from community-acquired respiratory tract infections (CA-RTI) collected in medical centers in the United States and Europe participating in the SENTRY surveillance program during 2014–2016. Methods A total of 3,093 isolates that included 1,673 Streptococcus pneumoniae (SPN), 805 Haemophilus influenzae (HI) and 555 Moraxella catarrhalis (MC) were collected during 2014–2016 and included only 1 isolate/patient/infection episode. Isolate identifications were confirmed at JMI Laboratories. Susceptibility testing was performed according to CLSI reference broth microdilution methodology, and results were interpreted per CLSI (2017) breakpoints. Other antibacterials tested included levofloxacin (LVX) and penicillin. Β-lactamase production for HI and MC was determined by the nitrocephin disk test. Results DLX demonstrated potent in vitro activity against SPN (MIC50/90 0.015/0.03 mg/L). Activity remained the same for penicillin-intermediate or -resistant isolates. For 23 LVX nonsusceptible SPN, the DLX MIC50/90 were 0.12/0.25 mg/L with all isolates having DLX MIC values ≤1 mg/L. For HI, the DLX MIC50/90 were ≤0.001/0.004 mg/L, and for MC the MIC50/90 were 0.008/0.008 mg/L. DLX activity was unaffected by the presence of β-lactamase for either HI or MC. Activity of DLX was similar for US and European isolates. Conclusion Delafloxacin demonstrated potent in vitro antibacterial activity against CA-RTI pathogens, including SPN, HI, and MC. These data support the continued study of DLX as a potential treatment for community-acquired pneumonia. Disclosures D. Shortridge, Melinta Therapeutics: Research Contractor, Research grant; J. M. Streit, Melinta Therapeutics: Research Contractor, Research grant; M. D. Huband, Melinta Therapeutics: Research Contractor, Research grant; P. R. Rhomberg, Melinta Therapeutics: Research Contractor, Research grant; R. K. Flamm, Melinta Therapeutics: Research Contractor, Research grant

  15. Molecular characterization of Mycobacterium bovis strains isolated from cattle slaughtered at two abattoirs in Algeria

    PubMed Central

    Sahraoui, Naima; Müller, Borna; Guetarni, Djamel; Boulahbal, Fadéla; Yala, Djamel; Ouzrout, Rachid; Berg, Stefan; Smith, Noel H; Zinsstag, Jakob

    2009-01-01

    Background Bovine Tuberculosis is prevalent in Algeria despite governmental attempts to control the disease. The objective of this study was to conduct, for the first time, molecular characterization of a population sample of Mycobacterium bovis strains isolated from slaughter cattle in Algeria. Between August and November 2007, 7250 animals were consecutively screened at the abattoirs of Algiers and Blida. In 260 animals, gross visible granulomatous lesions were detected and put into culture. Bacterial isolates were subsequently analysed by molecular methods. Results Altogether, 101 bacterial strains from 100 animals were subjected to molecular characterization. M. bovis was isolated from 88 animals. Other bacteria isolated included one strain of M. caprae, four Rhodococcus equi strains, three Non-tuberculous Mycobacteria (NTM) and five strains of other bacterial species. The M. bovis strains isolated showed 22 different spoligotype patterns; four of them had not been previously reported. The majority of M. bovis strains (89%) showed spoligotype patterns that were previously observed in strains from European cattle. Variable Number of Tandem Repeat (VNTR) typing supported a link between M. bovis strains from Algeria and France. One spoligotype pattern has also been shown to be frequent in M. bovis strains from Mali although the VNTR pattern of the Algerian strains differed from the Malian strains. Conclusion M. bovis infections account for a high amount of granulomatous lesions detected in Algerian slaughter cattle during standard meat inspection at Algiers and Blida abattoir. Molecular typing results suggested a link between Algerian and European strains of M. bovis. PMID:19173726

  16. A culture-based study of the bacterial communities within the guts of nine longicorn beetle species and their exo-enzyme producing properties for degrading xylan and pectin.

    PubMed

    Park, Doo-Sang; Oh, Hyun-Woo; Jeong, Won-Jin; Kim, Hyangmi; Park, Ho-Yong; Bae, Kyung Sook

    2007-10-01

    In this study, bacterial communities within the guts of several longicorn beetles were investigated by a culture-dependent method. A total of 142 bacterial strains were isolated from nine species of longicorn beetle, including adults and larvae. A comparison of their partial 16S rRNA gene sequences showed that most of the bacteria constituting the gut communities can typically be found in soil, plants and the intestines of animals, and approximately 10% were proposed as unreported. Phylogenetic analysis demonstrated that the bacterial species comprised 7 phyla, and approximately half were Gammaproteobacteria. Actinobacteria were the second most populous group (19%), followed by Firmicutes (13%) and Alphaproteobacteria (11%). Betaproteobacteria, Flavobacteria, and Acidobacteria were minor constituents. The taxonomic compositions of the isolates were variable according to the species of longicorn beetle. Particularly, an abundance of Actinobacteria existed in Moechotypa diphysis and Mesosa hirsute, which eat broadleaf trees; however, no Actinobacteria were isolated from Corymbia rubra and Monochamus alternatus, which are needle-leaf eaters. Considerable proportions of xylanase and pectinase producing bacteria in the guts of the longicorn beetles implied that the bacteria may play an important role in the digestion of woody diets. Actinobacteria and Gammaproteobacteria were the dominant xylanase producers in the guts of the beetles.

  17. Gram-positive marine bacteria as a potential resource for the discovery of quorum sensing inhibitors.

    PubMed

    Teasdale, Margaret E; Donovan, Kellye A; Forschner-Dancause, Stephanie R; Rowley, David C

    2011-08-01

    Inhibitors of bacterial quorum sensing have been proposed as potentially novel therapeutics for the treatment of certain bacterial diseases. We recently reported a marine Halobacillus salinus isolate that secretes secondary metabolites capable of quenching quorum sensing phenotypes in several Gram-negative reporter strains. To investigate how widespread the production of such compounds may be in the marine bacterial environment, 332 Gram-positive isolates from diverse habitats were tested for their ability to interfere with Vibrio harveyi bioluminescence, a cell signaling-regulated phenotype. Rapid assay methods were employed where environmental isolates were propagated alongside the reporter strain. "Actives" were defined as bacteria that interfered with bioluminescence without visible cell-killing effects (antibiotic activity). A total of 49 bacterial isolates interfered with bioluminescence production in the assays. Metabolite extracts were generated from cultures of the active isolates, and 28 reproduced the bioluminescence inhibition against V. harveyi. Of those 28, five extracts additionally inhibited violacein production by Chromobacterium violaceum. Chemical investigations revealed that phenethylamides and a cyclic dipeptide are two types of secondary metabolites responsible for the observed activities. The active bacterial isolates belonged primarily to either the genus Bacillus or Halobacillus. The results suggest that Gram-positive marine bacteria are worthy of further investigation for the discovery of quorum sensing antagonists.

  18. Phenotypic and genotypic characterization of biofilm formation among Staphylococcus aureus isolates from clinical specimens, an Atomic Force Microscopic (AFM) study.

    PubMed

    Bazari, Pelin Aslani Menareh; Honarmand Jahromy, Sahar; Zare Karizi, Shohreh

    2017-09-01

    Staphylococcus aureus is a major cause of nosocomial infections. Biofilm formation is an important factor for bacterial pathogenesis. Its mechanisms are complex and include of many genes depends on expression of icaADBC operon involved in the synthesis of a polysaccharide intercellular adhesion. The aim of study was to investigate biofilm forming ability of Staphylococcus aureus strains by phenotypic and genotypic methods. Also Atomic Force microscope (AFM) was used to visualize biofilm formation. 140 Isolates were collected from clinical specimens of patients in Milad Hospital, Tehran and diagnosed by biochemical tests. The ability of strains to produce slime was evaluated by CRA method. For diagnosing of bacterial EPS, Indian ink staining were used and finally biofilm surface of 3 isolates observed by AFM. The prevalence of icaA and icaD genes was determined by PCR. By CRA method 15% of samples considered as positive slime producers, 44.28% as intermediate and 40.71% indicative as negative slime producers. 118 staphylococcus aureus strains showed a distinct halo transparent zone but 22 strains showed no halo zone. AFM analysis of Slime positive isolates showed a distinct and complete biofilm formation. In slime negative strain, there was not observed biofilm. The prevalence of icaA, icaD genes was 44.2% and 10% of the isolates had both genes simultaneously. There is a relationship between exopolysaccharide layer and biofilm formation of Staphylococcus aureus isolates. The presence of icaAD genes among isolates is not associated with in vitro formation of biofilm. AFM is a useful tool for observation of bacterial biofilm formation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Phenylacetic acid-producing Rhizoctonia solani represses the biosynthesis of nematicidal compounds in vitro and influences biocontrol of Meloidogyne incognita in tomato by Pseudomonas fluorescens strain CHA0 and its GM derivatives.

    PubMed

    Siddiqui, I A; Shaukat, S S

    2005-01-01

    The aim of the present investigation was to determine the influence of Rhizoctonia solani and its pathogenicity factor on the production of nematicidal agent(s) by Pseudomonas fluorescens strain CHA0 and its GM derivatives in vitro and nematode biocontrol potential by bacterial inoculants in tomato. One (Rs7) of the nine R. solani isolates from infected tomato roots inhibited seedling emergence and caused root rot in tomato. Thin layer chromatography revealed that culture filtrates of two isolates (Rs3 and Rs7) produced brown spots at Rf-values closely similar to synthetic phenylacetic acid (PAA), a phytotoxic factor. Filtrates from isolate Rs7, amended with the growth medium of P. fluorescens, markedly repressed nematicidal activity and PhlA'-'LacZ reporter gene expression of the bacteria in vitro. On the contrary, isolate Rs4 enhanced nematicidal potential of a 2,4-diacetylphloroglucinol overproducing mutant, CHA0/pME3424, of P. fluorescens strain CHA0 in vitro. Therefore, R. solani isolates Rs4 and Rs7 were tested more rigorously for their potential to influence biocontrol effectiveness of the bacterial agents. Methanol extract of the culture filtrates of PAA-producing isolate Rs7 resulting from medium amended with phenylalanine enhanced fungal repression of the production of nematicidal agents by bacteria, while amendments with zinc or molybdenum eliminated such fungal repression, thereby restoring bacterial potential to cause nematode mortality in vitro. A pot experiment was carried out, 3-week-old tomato seedlings were infested with R. solani isolates Rs4 or Rs7 and/or inoculated with Meloidogyne incognita, the root-knot nematode. The infested soil was treated with aqueous cell suspensions (10(8) CFU) of P. fluorescens strain CHA0 or its GM derivatives or left untreated (as a control). Observations taken 45 days after nematode inoculation revealed that, irrespective of the bacterial treatments, galling intensity per gram of fresh tomato roots was markedly higher in soil amended with isolate Rs4 than in Rs7-amended soils. Soil amendments with R. solani and the bacterial antagonists resulted in substantial reductions of the number of galls per gram of root. These results are contradictory to those obtained under in vitro conditions where culture filtrates of PAA-positive Rs7 repressed the production of nematicidal compounds. Plants grown in Rs7-amended soils, with or without bacterial inoculants, had lesser shoot and root weights than plants grown in nonamended or Rs4-amended soils. Moreover, amendments with Rs7 substantially retarded root growth and produced necrotic lesions that reduced the number of entry sites for invasion and subsequent infection by nematodes. Populations of P. fluorescens in the tomato rhizosphere were markedly higher in Rs7-amended soils. PAA-producing virulent R. solani drastically affects the potential of P. fluorescens to cause death of M. incognita juveniles in vitro and influences bacterial effectiveness to suppress nematodes in tomato roots. As most agricultural soils are infested with root-infecting fungi, including R. solani, it is likely that some PAA-producing isolates of the fungus may also be isolated from such soils. The inhibitory effect of PAA-producing R. solani on the biosynthesis of nematicidal agent(s) critical in biocontrol may reduce or even eliminate the effectiveness of fluorescent pseudomonads against root-knot nematodes, both in nursery beds and in field conditions. Introduction of bacterial inoculants, for the control of any plant pathogen, should be avoided in soils infested with PAA-producing R. solani. Alternatively, the agents could be applied together with an appropriate quantity of fungicide or chemicals such as zinc to create an environment more favourable for bacterial biocontrol action.

  20. Antimicrobial Activity of Bacillus Persicus 24-DSM Isolated from Dead Sea Mud.

    PubMed

    Al-Karablieh, Nehaya

    2017-01-01

    Dead Sea is a hypersaline lake with 34% salinity, gains its name due to the absence of any living macroscopic creatures. Despite the extreme hypersaline environment, it is a unique ecosystem for various halophilic microorganisms adapted to this environment. Halophilic microorganisms are known for various potential biotechnological applications, the purpose of the current research is isolation and screening of halophilic bacteria from Dead Sea mud for potential antimicrobial applications. Screening for antagonistic bacteria was conducted by bacterial isolation from Dead Sea mud samples and agar plate antagonistic assay. The potential antagonistic isolates were subjected to biochemical characterization and identification by 16S-rRNA sequencing. Among the collected isolates, four isolates showed potential antagonistic activity against Bacillus subtilis 6633 and Escherichia coli 8739. The most active isolate (24-DSM) was subjected for antagonistic activity and minimal inhibitory concentration against different gram positive and negative bacterial strains after cultivation in different salt concentration media. Results: The results of 16S-rRNA analysis revealed that 24-DSM is very closely related to Bacillus persicus strain B48, which was isolated from hypersaline lake in Iran. Therefore, the isolate 24-DSM is assigned as a new strain of B. persicusi isolated from the Dead Sea mud. B. persicusi 24-DSM showed higher antimicrobial activity, when it was cultivated with saline medium, against all tested bacterial strains, where the most sensitive bacterial strain was Corynebacterium diphtheria 51696.

  1. Evidence for colonization and destruction of hinge ligaments in cultured juvenile Pacific oysters (Crassostrea gigas) by cytophaga-like bacteria.

    PubMed Central

    Dungan, C F; Elston, R A; Schiewe, M H

    1989-01-01

    Several strains of cytophaga-like gliding bacteria (CLB) were isolated as numerically dominant or codominant components of bacterial populations associated with proteinaceous hinge ligaments of cultured juvenile Pacific oysters, Crassostrea gigas. These bacteria were morphologically similar to long, flexible bacilli occurring within degenerative lesions in oyster hinge ligaments. Among bacteria isolated from hinge ligaments, only CLB strains were capable of sustained growth with hinge ligament matrix as the sole source of organic carbon and nitrogen. In vitro incubation of cuboidal portions of ligament resilium with ligament CLB resulted in bacterial proliferation on the surfaces and penetration deep into ligament matrices. Bacterial proliferation was accompanied by loss of resilium structural and mechanical integrity, including complete liquefaction, at incubation temperatures between 10 and 20 degrees C. The morphological, distributional, and degradative characteristics of CLB isolated from oyster hinge ligaments provide compelling, albeit indirect, evidence that CLB are the agents of a degenerative disease affecting juvenile cultured oysters. The motility, metabolic, and hydrolytic characteristics of hinge ligament CLB and the low moles percent G + C values (32.4 to 32.9) determined for three representative strains indicate that they are marine Cytophaga spp. Images PMID:2757377

  2. Evidence for colonization and destruction of hinge ligaments in cultured juvenile Pacific oysters (Crassostrea gigas) by cytophaga-like bacteria.

    PubMed

    Dungan, C F; Elston, R A; Schiewe, M H

    1989-05-01

    Several strains of cytophaga-like gliding bacteria (CLB) were isolated as numerically dominant or codominant components of bacterial populations associated with proteinaceous hinge ligaments of cultured juvenile Pacific oysters, Crassostrea gigas. These bacteria were morphologically similar to long, flexible bacilli occurring within degenerative lesions in oyster hinge ligaments. Among bacteria isolated from hinge ligaments, only CLB strains were capable of sustained growth with hinge ligament matrix as the sole source of organic carbon and nitrogen. In vitro incubation of cuboidal portions of ligament resilium with ligament CLB resulted in bacterial proliferation on the surfaces and penetration deep into ligament matrices. Bacterial proliferation was accompanied by loss of resilium structural and mechanical integrity, including complete liquefaction, at incubation temperatures between 10 and 20 degrees C. The morphological, distributional, and degradative characteristics of CLB isolated from oyster hinge ligaments provide compelling, albeit indirect, evidence that CLB are the agents of a degenerative disease affecting juvenile cultured oysters. The motility, metabolic, and hydrolytic characteristics of hinge ligament CLB and the low moles percent G + C values (32.4 to 32.9) determined for three representative strains indicate that they are marine Cytophaga spp.

  3. Isolation and Characterization of Bacteria Colonizing Acartia tonsa Copepod Eggs and Displaying Antagonist Effects against Vibrio anguillarum, Vibrio alginolyticus and Other Pathogenic Strains

    PubMed Central

    Zidour, Mahammed; Chevalier, Mickaël; Belguesmia, Yanath; Cudennec, Benoit; Grard, Thierry; Drider, Djamel; Souissi, Sami; Flahaut, Christophe

    2017-01-01

    Copepods represent a major source of food for many aquatic species of commercial interest for aquaculture such as mysis shrimp and early stages of fishes. For the purpose of this study, the culturable mesophilic bacterial flora colonizing Acartia tonsa copepod eggs was isolated and identified. A total of 175 isolates were characterized based on their morphological and biochemical traits. The majority of these isolates (70%) were Gram-negative bacteria. Matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) was used for rapid identification of bacterial isolates. Here, 58% of isolates were successfully identified at the genus level and among them, 54% were identified at the species level. These isolates belong to 12 different genera and 29 species. Five strains, identified as Bacillus pumilus, named 18 COPS, 35A COPS, 35R COPS, 38 COPS, and 40A COPS, showed strong antagonisms against several potential fish pathogens including Vibrio alginolyticus, V. anguillarum, Listeria monocytogenes, and Staphylococcus aureus. Furthermore, using a differential approach, we show that the antimicrobial activity of the 35R COPS strain is linked primarily to the production of antimicrobial compounds of the amicoumacin family, as demonstrated by the specific UV-absorbance and the MS/MS fragmentation patterns of these compounds. PMID:29085344

  4. Effectiveness of acidic oxidative potential water in preventing bacterial infection in islet transplantation.

    PubMed

    Miyamoto, M; Inoue, K; Gu, Y; Hoki, M; Haji, S; Ohyanagi, H

    1999-01-01

    At a number of points in the current procedures of islet isolation and islet culture after the harvesting of donor pancreata, microorganisms could potentially infect the islet preparation. Furthermore, the use of islets from multiple donors can compound the risks of contamination of individual recipients. Acidic oxidative potential water (also termed electrolyzed strong acid solution, function water, or acqua oxidation water), which was developed in Japan, is a strong acid formed on the anode in the electrolysis of water containing a small amount of sodium chloride. It has these physical properties: pH, from 2.3 to 2.7; oxidative-reduction potential, from 1,000 to 1,100 mV; dissolved chlorine, from 30 to 40 ppm; and dissolved oxygen, from 10 to 30 ppm. Because of these properties, acidic oxidative potential water has strong bactericidal effects on all bacteria including methicillin-resistant Staphylococcus aureus (MRSA), viruses including HIV, HBV, HCV, CMV, and fungi as a result of the action of the active oxygen and active chlorine that it contains. We conducted this study to evaluate the effect of acidic oxidative potential water irrigation on bacterial contamination on the harvesting of porcine pancreata from slaughterhouses for islet xenotransplantation by counting the number of pancreatic surface bacteria using the Dip-slide method, and on the results of islet culture; and to evaluate the direct effect on isolated islets when it is used to prevent bacterial contamination by the static incubation test and by morphological examination. Direct irrigation of the pancreas by acidic oxidative potential water was found to be very effective in preventing bacterial contamination, but direct irrigation of isolated islets slightly decreased their viability and function.

  5. Microbial Culturomics Broadens Human Vaginal Flora Diversity: Genome Sequence and Description of Prevotella lascolaii sp. nov. Isolated from a Patient with Bacterial Vaginosis.

    PubMed

    Diop, Khoudia; Diop, Awa; Levasseur, Anthony; Mediannikov, Oleg; Robert, Catherine; Armstrong, Nicholas; Couderc, Carine; Bretelle, Florence; Raoult, Didier; Fournier, Pierre-Edouard; Fenollar, Florence

    2018-03-01

    Microbial culturomics is a new subfield of postgenomic medicine and omics biotechnology application that has broadened our awareness on bacterial diversity of the human microbiome, including the human vaginal flora bacterial diversity. Using culturomics, a new obligate anaerobic Gram-stain-negative rod-shaped bacterium designated strain khD1 T was isolated in the vagina of a patient with bacterial vaginosis and characterized using taxonogenomics. The most abundant cellular fatty acids were C 15:0 anteiso (36%), C 16:0 (19%), and C 15:0 iso (10%). Based on an analysis of the full-length 16S rRNA gene sequences, phylogenetic analysis showed that the strain khD1 T exhibited 90% sequence similarity with Prevotella loescheii, the phylogenetically closest validated Prevotella species. With 3,763,057 bp length, the genome of strain khD1 T contained (mol%) 48.7 G + C and 3248 predicted genes, including 3194 protein-coding and 54 RNA genes. Given the phenotypical and biochemical characteristic results as well as genome sequencing, strain khD1 T is considered to represent a novel species within the genus Prevotella, for which the name Prevotella lascolaii sp. nov. is proposed. The type strain is khD1 T ( = CSUR P0109, = DSM 101754). These results show that microbial culturomics greatly improves the characterization of the human microbiome repertoire by isolating potential putative new species. Further studies will certainly clarify the microbial mechanisms of pathogenesis of these new microbes and their role in health and disease. Microbial culturomics is an important new addition to the diagnostic medicine toolbox and warrants attention in future medical, global health, and integrative biology postgraduate teaching curricula.

  6. Bacteria in the apical root canals of teeth with apical periodontitis.

    PubMed

    Lee, Li-Wan; Lee, Ya-Ling; Hsiao, Sheng-Huang; Lin, Hung-Pin

    2017-06-01

    Bacteria in the tooth root canal may cause apical periodontitis. This study examined the bacterial species present in the apical root canal of teeth with apical periodontitis. Antibiotic sensitivity tests were performed to evaluate whether these identified bacterial species were susceptible to specific kinds of antibiotics. Selective media plating and biochemical tests were used first to detect the bacterial species in samples taken from the apical portion of root canals of 62 teeth with apical periodontitis. The isolated bacterial species were further confirmed by matrix-assisted laser desorption ionization-time of flight mass spectrometry. We found concomitant presence of two (32 teeth) or three species (18 teeth) of bacteria in 50 (80.6%) out of 62 tested teeth. However, only 34 bacterial species were identified. Of a total of 118 bacterial isolates (83 anaerobes and 35 aerobes), Prophyromonas endodontalis was detected in 10; Bacteroides, Dialister invisus or Fusobacterium nucleatum in 9; Treponema denticola or Enterococcus faecalis in 8; Peptostreptococcus or Olsenella uli in 6; and Veillonella in 5 teeth. The other 25 bacterial species were detected in fewer than five teeth. Approximately 80-95% of bacterial isolates of anaerobes were sensitive to ampicillin/sulbactam (Unasyn), amoxicillin/clavulanate (Augmentin), cefoxitin, and clindamycin. For E. faecalis, 85-90% of bacterial isolates were sensitive to gentamicin and linezolid. Root canal infections are usually caused by a mixture of two or three species of bacteria. Specific kinds of antibiotic can be selected to control these bacterial infections after antibiotic sensitivity testing. Copyright © 2016. Published by Elsevier B.V.

  7. Kinetics of arsenite removal by halobacteria from a highland Andean Chilean Salar

    PubMed Central

    2013-01-01

    Background The purpose of this study was to identify arsenite-oxidizing halobacteria in samples obtained from Salar de Punta Negra, II Region of Chile. Seven bacterial isolates, numbered as isolates I to VII, grown in a culture medium with 100 ppm as NaAsO2 (As (III)) were tested. Bacterial growth kinetics and the percent of arsenite removal (PAR) were performed simultaneously with the detection of an arsenite oxidase enzyme through Dot Blot analysis. Results An arsenite oxidase enzyme was detected in all isolates, expressed constitutively after 10 generations grown in the absence of As (III). Bacterial growth kinetics and corresponding PAR values showed significant fluctuations over time. PARs close to 100% were shown by isolates V, VI, and VII, at different times of the bacterial growth phase; while isolate II showed PAR values around 40%, remaining constant over time. Conclusion Halobacteria from Salar de Punta Negra showed promising properties as arsenite removers under control conditions, incubation time being a critical parameter. PMID:23547876

  8. Survival of prokaryotes in a polluted waste dump during remediation by alkaline hydrolysis.

    PubMed

    Nielsen, Marie Bank; Kjeldsen, Kasper Urup; Lever, Mark Alexander; Ingvorsen, Kjeld

    2014-04-01

    A combination of culture-dependent and culture-independent techniques was used to characterize bacterial and archaeal communities in a highly polluted waste dump and to assess the effect of remediation by alkaline hydrolysis on these communities. This waste dump (Breakwater 42), located in Denmark, contains approximately 100 different toxic compounds including large amounts of organophosphorous pesticides such as parathions. The alkaline hydrolysis (12 months at pH >12) decimated bacterial and archaeal abundances, as estimated by 16S rRNA gene-based qPCR, from 2.1 × 10(4) and 2.9 × 10(3) gene copies per gram wet soil respectively to below the detection limit of the qPCR assay. Clone libraries constructed from PCR-amplified 16S rRNA gene fragments showed a significant reduction in bacterial diversity as a result of the alkaline hydrolysis, with preferential survival of Betaproteobacteria, which increased in relative abundance from 0 to 48 %. Many of the bacterial clone sequences and the 27 isolates were related to known xenobiotic degraders. An archaeal clone library from a non-hydrolyzed sample showed the presence of three main clusters, two representing methanogens and one representing marine aerobic ammonia oxidizers. Isolation of alkalitolerant bacterial pure cultures from the hydrolyzed soil confirmed that although alkaline hydrolysis severely reduces microbial community diversity and size certain bacteria survive a prolonged alkaline hydrolysis process. Some of the isolates from the hydrolyzed soil were capable of growing at high pH (pH 10.0) in synthetic media indicating that they could become active in in situ biodegradation upon hydrolysis.

  9. Diversity and biological activities of the bacterial community associated with the marine sponge Phorbas tenacior (Porifera, Demospongiae).

    PubMed

    Dupont, S; Carré-Mlouka, A; Descarrega, F; Ereskovsky, A; Longeon, A; Mouray, E; Florent, I; Bourguet-Kondracki, M L

    2014-01-01

    The diversity of the cultivable microbiota of the marine sponge Phorbas tenacior frequently found in the Mediterranean Sea was investigated, and its potential as a source of antimicrobial, antioxidant and antiplasmodial compounds was evaluated. The cultivable bacterial community was studied by isolation, cultivation and 16S rRNA gene sequencing. Twenty-three bacterial strains were isolated and identified in the Proteobacteria (α or γ classes) and Actinobacteria phyla. Furthermore, three different bacterial morphotypes localized extracellularly within the sponge tissues were revealed by microscopic observations. Bacterial strains were assigned to seven different genera, namely Vibrio, Photobacterium, Shewanella, Pseudomonas, Ruegeria, Pseudovibrio and Citricoccus. The strains affiliated to the same genus were differentiated according to their genetic dissimilarities using random amplified polymorphic DNA (RAPD) analyses. Eleven bacterial strains were selected for evaluation of their bioactivities. Three isolates Pseudovibrio P1Ma4, Vibrio P1MaNal1 and Citricoccus P1S7 revealed antimicrobial activity; Citricoccus P1S7 and Vibrio P1MaNal1 isolates also exhibited antiplasmodial activity, while two Vibrio isolates P1Ma8 and P1Ma5 displayed antioxidant activity. These data confirmed the importance of Proteobacteria and Actinobacteria associated with marine sponges as a reservoir of bioactive compounds. This study presents the first report on the diversity of the cultivable bacteria associated with the marine sponge Phorbas tenacior, frequently found in the Mediterranean Sea. Evaluation of the antiplasmodial, antimicrobial and antioxidant activities of the isolates has been investigated and allowed to select bacterial strains, confirming the importance of Proteobacteria and Actinobacteria as sources of bioactive compounds. © 2013 The Society for Applied Microbiology.

  10. Bacterial populations associated with the dirty area of a South African poultry abattoir.

    PubMed

    Geornaras, I; de Jesus, A E; von Holy, A

    1998-06-01

    Bacterial populations associated with three sample types from the neck region of poultry carcasses in the dirty area of an abattoir were characterized. Sample types before and after scalding were skin only, feathers only, and a skin and feather combination. The neck skin of carcasses after the defeathering processing stage was also sampled. Bacterial populations associated with water from the scald tank, rubber fingers at the exit of the defeathering machine, and air in the dirty area were also characterized. Bacterial colonies (751) were randomly isolated from yeast extract-supplemented tryptone soya agar plates exhibiting 30 to 300 colonies. Micrococcus spp. were isolated in the highest proportion from pre-and postscalded carcass samples (63.5 to 86.1% of isolates), regardless of the sample type. Conversely, Enterobacteriaceae (40.3%), Acinetobacter (19.4%), and Aeromonas/Vibrio (12.5%) species predominated on neck skin samples taken from mechanically defeathered carcasses. Isolates from the rubber fingers were, however, predominantly Micrococcus spp. (94.4%). Bacterial groups isolated in the highest proportion from scald tank water samples were Micrococcus spp. (38.3%), species of Enterobacteriaceae (29.1%), and lactic acid bacteria (17.0%). Corynebacterium spp., species of Enterobacteriaceae, and Micrococcus spp. were dominant on air settle plates.

  11. Resistance of Bacteria to Biocides.

    PubMed

    Maillard, Jean-Yves

    2018-04-01

    Biocides and formulated biocides are used worldwide for an increasing number of applications despite tightening regulations in Europe and in the United States. One concern is that such intense usage of biocides could lead to increased bacterial resistance to a product and cross-resistance to unrelated antimicrobials including chemotherapeutic antibiotics. Evidence to justify such a concern comes mostly from the use of health care-relevant bacterial isolates, although the number of studies of the resistance characteristics of veterinary isolates to biocides have increased the past few years. One problem remains the definition of "resistance" and how to measure resistance to a biocide. This has yet to be addressed globally, although the measurement of resistance is becoming more pressing, with regulators both in Europe and in the United States demanding that manufacturers provide evidence that their biocidal products will not impact on bacterial resistance. Alongside in vitro evidence of potential antimicrobial cross-resistance following biocide exposure, our understanding of the mechanisms of bacterial resistance and, more recently, our understanding of the effect of biocides to induce a mechanism(s) of resistance in bacteria has improved. This article aims to provide an understanding of the development of antimicrobial resistance in bacteria following a biocide exposure. The sections provide evidence of the occurrence of bacterial resistance and its mechanisms of action and debate how to measure bacterial resistance to biocides. Examples pertinent to the veterinary field are used where appropriate.

  12. Characterization of the pigment xanthomonadin in the bacterial genus Xanthomonas using micro- and resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Paret, Mathews L.; Sharma, Shiv K.; Misra, Anupam K.; Acosta, Tayro; deSilva, Asoka S.; Vowell, Tomie; Alvarez, Anne M.

    2012-06-01

    We used micro- and resonance Raman spectroscopy with 785 nm and 514.5 nm laser excitation, respectively, to characterize a plant pathogenic bacteria, Xanthomonas axonopodis pv. dieffenbachiae D150. The bacterial genus Xathomonas is closely related to bacterial genus Stenotrophomonas that causes an infection in humans. This study has identified for the first time the unique Raman spectra of the carotenoid-like pigment xanthomonadin of the Xanthomonas strain. Xanthomonadin is a brominated aryl-polyene pigment molecule similar to carotenoids. Further studies were conducted using resonance Raman spectroscopy with 514.5 nm laser excitation on several strains of the bacterial genus Xanthomonas isolated from numerous plants from various geographical locations. The current study revealed that the Raman bands representing the vibrations (v1, v2, v3) of the polyene chain of xanthomonadin are 1003-1005 (v3), 1135-1138 (v2), and 1530 (v1). Overtone bands representing xanthomonadin were identified as 2264-2275 (2v2), and combinational bands at 2653-2662 (v1+ v2). The findings from this study validate our previous finding that the Raman fingerprints of xanthomonadin are unique for the genus Xanthomonas. This facilitates rapid identification (~5 minutes) of Xanthomonas spp. from bacterial culture plates. The xanthomonadin marker is different from Raman markers of many other bacterial genus including Agrobacterium, Bacillus, Clavibacter, Enterobacter, Erwinia, Microbacterium, Paenibacillus, and Ralstonia. This study also identified Xanthomonas spp. from bacterial strains isolated from a diseased wheat sample on a culture plate.

  13. Spatial pattern in Antarctica: what can we learn from Antarctic bacterial isolates?

    PubMed

    Chong, Chun Wie; Goh, Yuh Shan; Convey, Peter; Pearce, David; Tan, Irene Kit Ping

    2013-09-01

    A range of small- to moderate-scale studies of patterns in bacterial biodiversity have been conducted in Antarctica over the last two decades, most suggesting strong correlations between the described bacterial communities and elements of local environmental heterogeneity. However, very few of these studies have advanced interpretations in terms of spatially associated patterns, despite increasing evidence of patterns in bacterial biogeography globally. This is likely to be a consequence of restricted sampling coverage, with most studies to date focusing only on a few localities within a specific Antarctic region. Clearly, there is now a need for synthesis over a much larger spatial to consolidate the available data. In this study, we collated Antarctic bacterial culture identities based on the 16S rRNA gene information available in the literature and the GenBank database (n > 2,000 sequences). In contrast to some recent evidence for a distinct Antarctic microbiome, our phylogenetic comparisons show that a majority (~75 %) of Antarctic bacterial isolates were highly similar (≥99 % sequence similarity) to those retrieved from tropical and temperate regions, suggesting widespread distribution of eurythermal mesophiles in Antarctic environments. However, across different Antarctic regions, the dominant bacterial genera exhibit some spatially distinct diversity patterns analogous to those recently proposed for Antarctic terrestrial macroorganisms. Taken together, our results highlight the threat of cross-regional homogenisation in Antarctic biodiversity, and the imperative to include microbiota within the framework of biosecurity measures for Antarctica.

  14. Microbial contamination of mobile phones in a health care setting in Alexandria, Egypt.

    PubMed

    Selim, Heba Sayed; Abaza, Amani Farouk

    2015-01-01

    This study aimed at investigating the microbial contamination of mobile phones in a hospital setting. Swab samples were collected from 40 mobile phones of patients and health care workers at the Alexandria University Students' Hospital. They were tested for their bacterial contamination at the microbiology laboratory of the High Institute of Public Health. Quantification of bacteria was performed using both surface spread and pour plate methods. Isolated bacterial agents were identified using standard microbiological methods. Methicillin-resistant Staphylococcus aureus was identified by disk diffusion method described by Bauer and Kirby. Isolated Gram-negative bacilli were tested for being extended spectrum beta lactamase producers using the double disk diffusion method according to the Clinical and Laboratory Standards Institute recommendations. All of the tested mobile phones (100%) were contaminated with either single or mixed bacterial agents. The most prevalent bacterial contaminants were methicillin-resistant S. aureus and coagulase-negative staphylococci representing 53% and 50%, respectively. The mean bacterial count was 357 CFU/ml, while the median was 13 CFU/ml using the pour plate method. The corresponding figures were 2,192 and 1,720 organisms/phone using the surface spread method. Mobile phones usage in hospital settings poses a risk of transmission of a variety of bacterial agents including multidrug-resistant pathogens as methicillin-resistant S. aureus. The surface spread method is an easy and useful tool for detection and estimation of bacterial contamination of mobile phones.

  15. Microbial contamination of mobile phones in a health care setting in Alexandria, Egypt

    PubMed Central

    Selim, Heba Sayed; Abaza, Amani Farouk

    2015-01-01

    Aim: This study aimed at investigating the microbial contamination of mobile phones in a hospital setting. Methods: Swab samples were collected from 40 mobile phones of patients and health care workers at the Alexandria University Students’ Hospital. They were tested for their bacterial contamination at the microbiology laboratory of the High Institute of Public Health. Quantification of bacteria was performed using both surface spread and pour plate methods. Isolated bacterial agents were identified using standard microbiological methods. Methicillin-resistant Staphylococcus aureus was identified by disk diffusion method described by Bauer and Kirby. Isolated Gram-negative bacilli were tested for being extended spectrum beta lactamase producers using the double disk diffusion method according to the Clinical and Laboratory Standards Institute recommendations. Results: All of the tested mobile phones (100%) were contaminated with either single or mixed bacterial agents. The most prevalent bacterial contaminants were methicillin-resistant S. aureus and coagulase-negative staphylococci representing 53% and 50%, respectively. The mean bacterial count was 357 CFU/ml, while the median was 13 CFU/ml using the pour plate method. The corresponding figures were 2,192 and 1,720 organisms/phone using the surface spread method. Conclusions: Mobile phones usage in hospital settings poses a risk of transmission of a variety of bacterial agents including multidrug-resistant pathogens as methicillin-resistant S. aureus. The surface spread method is an easy and useful tool for detection and estimation of bacterial contamination of mobile phones. PMID:25699226

  16. In Vitro Antibacterial Activity of AZD0914, a New Spiropyrimidinetrione DNA Gyrase/Topoisomerase Inhibitor with Potent Activity against Gram-Positive, Fastidious Gram-Negative, and Atypical Bacteria

    PubMed Central

    Bradford, Patricia A.; Otterson, Linda G.; Basarab, Gregory S.; Kutschke, Amy C.; Giacobbe, Robert A.; Patey, Sara A.; Alm, Richard A.; Johnstone, Michele R.; Potter, Marie E.; Miller, Paul F.; Mueller, John P.

    2014-01-01

    AZD0914 is a new spiropyrimidinetrione bacterial DNA gyrase/topoisomerase inhibitor with potent in vitro antibacterial activity against key Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus pyogenes, and Streptococcus agalactiae), fastidious Gram-negative (Haemophilus influenzae and Neisseria gonorrhoeae), atypical (Legionella pneumophila), and anaerobic (Clostridium difficile) bacterial species, including isolates with known resistance to fluoroquinolones. AZD0914 works via inhibition of DNA biosynthesis and accumulation of double-strand cleavages; this mechanism of inhibition differs from those of other marketed antibacterial compounds. AZD0914 stabilizes and arrests the cleaved covalent complex of gyrase with double-strand broken DNA under permissive conditions and thus blocks religation of the double-strand cleaved DNA to form fused circular DNA. Whereas this mechanism is similar to that seen with fluoroquinolones, it is mechanistically distinct. AZD0914 exhibited low frequencies of spontaneous resistance in S. aureus, and if mutants were obtained, the mutations mapped to gyrB. Additionally, no cross-resistance was observed for AZD0914 against recent bacterial clinical isolates demonstrating resistance to fluoroquinolones or other drug classes, including macrolides, β-lactams, glycopeptides, and oxazolidinones. AZD0914 was bactericidal in both minimum bactericidal concentration and in vitro time-kill studies. In in vitro checkerboard/synergy testing with 17 comparator antibacterials, only additivity/indifference was observed. The potent in vitro antibacterial activity (including activity against fluoroquinolone-resistant isolates), low frequency of resistance, lack of cross-resistance, and bactericidal activity of AZD0914 support its continued development. PMID:25385112

  17. Antimicrobial resistance prevalence of Aeromonas hydrophila isolates from motile Aeromonas septicemia disease

    NASA Astrophysics Data System (ADS)

    Kusdarwati, R.; Rozi; Dinda, N. D.; Nurjanah, I.

    2018-04-01

    Fish suffer, from bacteria, fungi, virus and parasites or by physical ailments. Gurami (Osphronemus gouramy), nila (Oreochromis niloticus), carp (Cyprinus carpio), catfish (Clarias sp.) were the most reported infections caused by Aeromonas are bacterial hemorrhagic septicemia or Motile Aeromonas Septicemia (MAS). Antibiotics are drugs of natural or synthetic origin that have the capacity to kill or to inhibit the growth of micro-organisms included MAS. However, the use of antibiotics in the long term can cause negative impacts, among others, feared the occurrence of bacterial resistance in certain antibiotics. The results showed five of isolates were sensitive to antibiotics of chloramphenicol, gentamycin, oxytetracycline, cefradoxil and nalidixic acid but resistant to vancomycin colistin sulphate, rifampisin, cephalosporin and novobiocin.

  18. Isolation, Characterization and Identification of Environmental Bacterial Isolates with Screening for Antagonism Against Three Bacterial Targets

    DTIC Science & Technology

    2017-04-01

    treatments. This report summarizes work conducted to identify microorganisms that exhibit narrow-spectrum activity through the secretion of...induced activity against three target strains of interest to the DoD: Bacillus anthracis Sterne, Staphylococcus aureus and Pseudomonas aeruginosa. The...percentage of environmental isolates that demonstrated activity against Bacillus anthracis Sterne was 15% (9 of 62 isolates screened), while 2% of

  19. Association between Gallbladder Ultrasound Findings and Bacterial Culture of Bile in 70 Cats and 202 Dogs.

    PubMed

    Policelli Smith, R; Gookin, J L; Smolski, W; Di Cicco, M F; Correa, M; Seiler, G S

    2017-09-01

    Bacterial cholecystitis often is diagnosed by combination of gallbladder ultrasound (US) findings and positive results of bile culture. The value of gallbladder US in determining the likelihood of bile bacterial infection in cats and dogs with suspected biliary disease is unknown. To determine the value of gallbladder US in predicting bile bacterial culture results, identify most common bacterial isolates from bile, and describe complications after cholecystocentesis in cats and dogs with suspected hepatobiliary disease. Cats (70) and dogs (202) that underwent an abdominal US and submission of bile for culture were included in the study. A cross-sectional study design was used to determine the association of gallbladder US abnormalities and the results of bile cultures, and complications of cholecystocentesis. Abnormal gallbladder US had high sensitivity (96%) but low specificity (49%) in cats with positive and negative results of bile bacterial culture, respectively. Cats with normal gallbladder US findings were unlikely to have positive bile bacterial culture (negative predictive value of 96%). Gallbladder US had lower sensitivity (81%), specificity (31%), positive predictive value (20%), and negative predictive value (88%) in dogs. The most common bacterial isolates were of enteric origin, the prevalence being higher in cats. Incidence of complications after cholecystocentesis was 3.4%. Gallbladder US has a high negative predictive value for bile culture results in cats. This modality is less predictive of infection in dogs. Percutaneous US-guided cholecystocentesis has a low complication rate. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  20. Effects of solid-medium type on routine identification of bacterial isolates by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Anderson, Neil W; Buchan, Blake W; Riebe, Katherine M; Parsons, Lauren N; Gnacinski, Stacy; Ledeboer, Nathan A

    2012-03-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is a rapid method for the identification of bacteria. Factors that may alter protein profiles, including growth conditions and presence of exogenous substances, could hinder identification. Bacterial isolates identified by conventional methods were grown on various media and identified using the MALDI Biotyper (Bruker Daltonics, Billerica, MA) using a direct smear method and an acid extraction method. Specimens included 23 Pseudomonas isolates grown on blood agar, Pseudocel (CET), and MacConkey agar (MAC); 20 Staphylococcus isolates grown on blood agar, colistin-nalidixic acid agar (CNA), and mannitol salt agar (MSA); and 25 enteric isolates grown on blood agar, xylose lysine deoxycholate agar (XLD), Hektoen enteric agar (HE), salmonella-shigella agar (SS), and MAC. For Pseudomonas spp., the identification rate to genus using the direct method was 83% from blood, 78% from MAC, and 94% from CET. For Staphylococcus isolates, the identification rate to genus using the direct method was 95% from blood, 75% from CNA, and 95% from MSA. For enteric isolates, the identification rate to genus using the direct method was 100% from blood, 100% from MAC, 100% from XLD, 92% from HE, and 87% from SS. Extraction enhanced identification rates. The direct method of MALDI-TOF analysis of bacteria from selective and differential media yields identifications of varied confidence. Notably, Staphylococci spp. from CNA exhibit low identification rates. Extraction enhances identification rates and is recommended for colonies from this medium.

  1. Interactions between amphibians' symbiotic bacteria cause the production of emergent anti-fungal metabolites

    PubMed Central

    Loudon, Andrew H.; Holland, Jessica A.; Umile, Thomas P.; Burzynski, Elizabeth A.; Minbiole, Kevin P. C.; Harris, Reid N.

    2014-01-01

    Amphibians possess beneficial skin bacteria that protect against the disease chytridiomycosis by producing secondary metabolites that inhibit the pathogen Batrachochytrium dendrobatidis (Bd). Metabolite production may be a mechanism of competition between bacterial species that results in host protection as a by-product. We expect that some co-cultures of bacterial species or strains will result in greater Bd inhibition than mono-cultures. To test this, we cultured four bacterial isolates (Bacillus sp., Janthinobacterium sp., Pseudomonas sp. and Chitinophaga arvensicola) from red-backed salamanders (Plethodon cinereus) and cultured isolates both alone and together to collect their cell-free supernatants (CFS). We challenged Bd with CFSs from four bacterial species in varying combinations. This resulted in three experimental treatments: (1) CFSs of single isolates; (2) combined CFSs of two isolates; and (3) CFSs from co-cultures. Pair-wise combinations of four bacterial isolates CFSs were assayed against Bd and revealed additive Bd inhibition in 42.2% of trials, synergistic inhibition in 42.2% and no effect in 16.6% of trials. When bacteria isolates were grown in co-cultures, complete Bd inhibition was generally observed, and synergistic inhibition occurred in four out of six trials. A metabolite profile of the most potent co-culture, Bacillus sp. and Chitinophaga arvensicola, was determined with LC-MS and compared with the profiles of each isolate in mono-culture. Emergent metabolites appearing in the co-culture were inhibitory to Bd, and the most potent inhibitor was identified as tryptophol. Thus mono-cultures of bacteria cultured from red-backed salamanders interacted synergistically and additively to inhibit Bd, and such bacteria produced emergent metabolites when cultured together, with even greater pathogen inhibition. Knowledge of how bacterial species interact to inhibit Bd can be used to select probiotics to provide amphibians with protection against Bd. PMID:25191317

  2. Studies on the factors modulating indole-3-acetic acid production in endophytic bacterial isolates from Piper nigrum and molecular analysis of ipdc gene.

    PubMed

    Jasim, B; Jimtha John, C; Shimil, V; Jyothis, M; Radhakrishnan, E K

    2014-09-01

    The study mainly aimed quantitative analysis of IAA produced by endophytic bacteria under various conditions including the presence of extract from Piper nigrum. Analysis of genetic basis of IAA production was also conducted by studying the presence and diversity of the ipdc gene among the selected isolates. Five endophytic bacteria isolated previously from P. nigrum were used for the study. The effect of temperature, pH, agitation, tryptophan concentration and plant extract on modulating IAA production of selected isolates was analysed by colorimetric method. Comparative and quantitative analysis of IAA production by colorimetric isolates under optimal culture condition was analysed by HPTLC method. Presence of ipdc gene and thereby biosynthetic basis of IAA production among the selected isolates were studied by PCR-based amplification and subsequent insilico analysis of sequence obtained. Among the selected bacterial isolates from P. nigrum, isolate PnB 8 (Klebsiella pneumoniae) was found to have the maximum yield of IAA under various conditions optimized and was confirmed by colorimetric, HPLC and HPTLC analysis. Very interestingly, the study showed stimulating effect of phytochemicals from P. nigrum on IAA production by endophytic bacteria isolated from same plant. This study is unique because of the selection of endophytes from same source for comparative and quantitative analysis of IAA production under various conditions. Study on stimulatory effect of phytochemicals on bacterial IAA production as explained in the study is a novel approach. Studies on molecular basis of IAA production which was confirmed by sequence analysis of ipdc gene make the study scientifically attractive. Even though microbial production of IAA is well known, current report on detailed optimization, effect of plant extract and molecular confirmation of IAA biosynthesis is comparatively novel in its approach. © 2014 The Society for Applied Microbiology.

  3. Isolation and molecular identification of lactic acid bacteria and Bifidobacterium spp. from faeces of the blue-fronted Amazon parrot in Brazil.

    PubMed

    Allegretti, L; Revolledo, L; Astolfi-Ferreira, C S; Chacón, J L; Martins, L M; Seixas, G H F; Ferreira, A J P

    2014-12-01

    In Brazil, the blue-fronted Amazon parrot (Amazona aestiva) is a common pet. The faecal microbiota of these birds include a wide variety of bacterial species, the majority of which belong to the Gram-positive lactic acid bacteria (LAB) clade. The aim of this study was to investigate differences in the diversity and abundance of LAB and Bifidobacterium spp. in the cloacae between wild and captive birds and to select, identify and characterise LAB for consideration as a parrot probiotic. Cloacal swabs were collected from 26 wild and 26 captive birds. Bacterial DNA was extracted, and the 16S rRNA genes were amplified. The numbers of PCR-positive Enterococcus, Pediococcus, and Lactobacillus species isolated from wild and captive birds were significantly different (P<0.05). Enterococcus was the most frequently isolated genus, followed by Pediococcus, Lactobacillus, Lactococcus and Bifidobacterium. Enterococcus faecium, Pediococcus pentosaceus, Lactococcus lactis, Lactobacillus coryniformis, Lactobacillus sanfranciscensis and Bifidobacterium bifidum were the most frequently isolated species from all birds. This study increases our understanding of the faecal microbiota, and may help to improve the nutrition and habitat management of captive and wild parrots. The bacterial population identified in the faecal microbiota of clinically healthy wild and captive parrots can serve as a database to analyse variations in the gut microbiota of pathogen-infected parrots and to develop probiotics specific to these genera.

  4. Celecoxib Enhances the Efficacy of Low-Dose Antibiotic Treatment against Polymicrobial Sepsis in Mice and Clinical Isolates of ESKAPE Pathogens

    PubMed Central

    Annamanedi, Madhavi; Varma, Gajapati Y. N.; Anuradha, K.; Kalle, Arunasree M.

    2017-01-01

    Treatment of multidrug resistant bacterial infections has been a great challenge globally. Previous studies including our study have highlighted the use of celecoxib, a non-steroidal anti-inflammatory drug in combination with antibiotic has decreased the minimal inhibitory concentration to limit Staphylococcus aureus infection. However, the efficacy of this combinatorial treatment against various pathogenic bacteria is not determined. Therefore, we have evaluated the potential use of celecoxib in combination with low doses of antibiotic in limiting Gram-positive and Gram-negative bacteria in vivo in murine polymicrobial sepsis developed by cecum ligation and puncture (CLP) method and against clinically isolated human ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). The in vivo results clearly demonstrated a significant reduction in the bacterial load in different organs and in the inflammatory markers such as COX-2 and NF-κB via activation of SIRT1 in mice treated with imipenem, a choice of antibiotic for polymicrobial sepsis treatment. Combinatorial treatment of ampicillin and celecoxib was effective on clinical isolates of ESKAPE pathogens, 45% of tested clinical isolates showed more than 50% reduction in the colony forming units when compared to ampicillin alone. In conclusion, this non-traditional treatment strategy might be effective in clinic to reduce the dose of antibiotic to treat drug-resistant bacterial infections. PMID:28533769

  5. Celecoxib Enhances the Efficacy of Low-Dose Antibiotic Treatment against Polymicrobial Sepsis in Mice and Clinical Isolates of ESKAPE Pathogens.

    PubMed

    Annamanedi, Madhavi; Varma, Gajapati Y N; Anuradha, K; Kalle, Arunasree M

    2017-01-01

    Treatment of multidrug resistant bacterial infections has been a great challenge globally. Previous studies including our study have highlighted the use of celecoxib, a non-steroidal anti-inflammatory drug in combination with antibiotic has decreased the minimal inhibitory concentration to limit Staphylococcus aureus infection. However, the efficacy of this combinatorial treatment against various pathogenic bacteria is not determined. Therefore, we have evaluated the potential use of celecoxib in combination with low doses of antibiotic in limiting Gram-positive and Gram-negative bacteria in vivo in murine polymicrobial sepsis developed by cecum ligation and puncture (CLP) method and against clinically isolated human ESKAPE pathogens ( Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa , and Enterobacter species). The in vivo results clearly demonstrated a significant reduction in the bacterial load in different organs and in the inflammatory markers such as COX-2 and NF-κB via activation of SIRT1 in mice treated with imipenem, a choice of antibiotic for polymicrobial sepsis treatment. Combinatorial treatment of ampicillin and celecoxib was effective on clinical isolates of ESKAPE pathogens, 45% of tested clinical isolates showed more than 50% reduction in the colony forming units when compared to ampicillin alone. In conclusion, this non-traditional treatment strategy might be effective in clinic to reduce the dose of antibiotic to treat drug-resistant bacterial infections.

  6. Microbial Degradation of Isopropyl-N-3-Chlorophenylcarbamate and 2-Chloroethyl-N-3-Chlorophenylcarbamate

    PubMed Central

    Kaufman, D. D.; Kearney, P. C.

    1965-01-01

    Microbial degradation of isopropyl-N-3-chlorophenylcarbamate (CIPC) and 2-chloroethyl-N-3-chlorophenylcarbamate (CEPC) was observed in a soil perfusion system. Degradation in perfused soils, and by pure cultures of effective bacterial isolates, was demonstrated by the production of 3-chloroaniline and the subsequent liberation of free chloride ion. Identified isolates effective in degrading and utilizing CIPC as a sole source of carbon included Pseudomonas striata Chester, a Flavobacterium sp., an Agrobacterium sp., and an Achromobacter sp. Identified isolates, effective in degrading and utilizing CEPC as a sole source of carbon, included an Achromobacter sp. and an Arthrobacter sp. CIPC-effective isolates degraded CEPC more slowly than CIPC, whereas CEPC-effective isolates degraded CIPC more rapidly than CEPC. Both CIPC- and CEPC-effective isolates degraded isopropyl N-phenylcarbamate (IPC) more rapidly than either CIPC or CEPC. Images Fig. 3 PMID:14325285

  7. Phylogenetic diversity of Pasteurellaceae and horizontal gene transfer of leukotoxin in wild and domestic sheep.

    PubMed

    Kelley, Scott T; Cassirer, E Frances; Weiser, Glen C; Safaee, Shirin

    2007-01-01

    Wild and domestic animal populations are known to be sources and reservoirs of emerging diseases. There is also a growing recognition that horizontal genetic transfer (HGT) plays an important role in bacterial pathogenesis. We used molecular phylogenetic methods to assess diversity and cross-transmission rates of Pasteurellaceae bacteria in populations of bighorn sheep, Dall's sheep, domestic sheep and domestic goats. Members of the Pasteurellaceae cause an array of deadly illnesses including bacterial pneumonia known as "pasteurellosis", a particularly devastating disease for bighorn sheep. A phylogenetic analysis of a combined dataset of two RNA genes (16S ribosomal RNA and RNAse P RNA) revealed remarkable evolutionary diversity among Pasteurella trehalosi and Mannheimia (Pasteurella) haemolytica bacteria isolated from sheep and goats. Several phylotypes appeared to associate with particular host species, though we found numerous instances of apparent cross-transmission among species and populations. Statistical analyses revealed that host species, geographic locale and biovariant classification, but not virulence, correlated strongly with Pasteurellaceae phylogeny. Sheep host species correlated with P. trehalosi isolates phylogeny (PTP test; P=0.002), but not with the phylogeny of M. haemolytica isolates, suggesting that P. trehalosi bacteria may be more host specific. With regards to populations within species, we also discovered a strong correlation between geographic locale and isolate phylogeny in the Rocky Mountain bighorn sheep (PTP test; P=0.001). We also investigated the potential for HGT of the leukotoxin A (lktA) gene, which produces a toxin that plays an integral role in causing disease. Comparative analysis of the combined RNA gene phylogeny and the lktA phylogenies revealed considerable incongruence between the phylogenies, suggestive of HGT. Furthermore, we found identical lktA alleles in unrelated bacterial species, some of which had been isolated from sheep in distantly removed populations. For example, lktA sequences from P. trehalosi isolated from remote Alaskan Dall's sheep were 100% identical over a 900-nucleotide stretch to sequences determined from M. haemolytica isolated from domestic sheep in the UK. This extremely high degree of sequence similarity of lktA sequences among distinct bacterial species suggests that HGT has played a role in the evolution of lktA in wild hosts.

  8. Comparative antimicrobial activity of levofloxacin and ciprofloxacin against Streptococcus pneumoniae.

    PubMed

    Garrison, Mark W

    2003-09-01

    Levofloxacin has good coverage against both Gram-positive and Gram-negative pathogens. Recent reports demonstrate enhanced activity associated with a higher 750 mg dosage of levofloxacin. The objective of this study was to comparatively evaluate the activity of common regimens of levofloxacin (500 mg) and ciprofloxacin (500 mg), and a higher 750 mg levofloxacin regimen against penicillin susceptible and non-susceptible strains of S. pneumoniae. An in vitro pharmacodynamic modelling apparatus (PDMA) characterized specific bacterial kill profiles for simulated regimens of levofloxacin and ciprofloxacin against four strains of S. pneumoniae. Total log reduction, time for 3-log reduction and AUC/MIC were determined. Ciprofloxacin was less effective than the levofloxacin regimens against all four study isolates. Ciprofloxacin produced 3-log reduction in only one isolate compared with all four isolates with the levofloxacin regimens. Bacterial regrowth did not occur over 12 h with levofloxacin; however, three of four isolates demonstrated bacterial regrowth with ciprofloxacin. None of the isolates were cleared from the PDMA by ciprofloxacin. The 500 mg levofloxacin regimen cleared two of four isolates and the 750 mg dose of levofloxacin cleared all study isolates. Respective AUC/MIC values for levofloxacin (500 and 750 mg) and ciprofloxacin were 44-89, 63-126 and < or =13, which correlated well with bacterial kill data. Both levofloxacin regimens were more effective than ciprofloxacin against the study isolates tested. The 750 mg levofloxacin regimen generated more favourable bacterial killing compared with the 500 mg levofloxacin regimen. In addition to using the 750 mg levofloxacin dose for nosocomial infections, this dose may also prove useful for the management of resistant pneumococcal infections.

  9. Identification of Bacterial Species in Kuwaiti Waters Through DNA Sequencing

    NASA Astrophysics Data System (ADS)

    Chen, K.

    2017-01-01

    With an objective of identifying the bacterial diversity associated with ecosystem of various Kuwaiti Seas, bacteria were cultured and isolated from 3 water samples. Due to the difficulties for cultured and isolated fecal coliforms on the selective agar plates, bacterial isolates from marine agar plates were selected for molecular identification. 16S rRNA genes were successfully amplified from the genome of the selected isolates using Universal Eubacterial 16S rRNA primers. The resulted amplification products were subjected to automated DNA sequencing. Partial 16S rDNA sequences obtained were compared directly with sequences in the NCBI database using BLAST as well as with the sequences available with Ribosomal Database Project (RDP).

  10. Activity of fosfomycin against nosocomial multiresistant bacterial pathogens from Croatia: a multicentric study

    PubMed Central

    Bielen, Luka; Likić, Robert; Erdeljić, Viktorija; Mareković, Ivana; Firis, Nataša; Grgić-Medić, Marijana; Godan, Ana; Tomić, Ivan; Hunjak, Blaženka; Markotić, Alemka; Bejuk, Danijela; Tičić, Vladimira; Balzar, Silvana; Bedenić, Branka

    2018-01-01

    Aim To determine in vitro susceptibility of multiresistant bacterial isolates to fosfomycin. Methods In this prospective in vitro study (local non-random sample, level of evidence 3), 288 consecutively collected multiresistant bacterial isolates from seven medical centers in Croatia were tested from February 2014 until October 2016 for susceptibility to fosfomycin and other antibiotics according to Clinical and Laboratory Standards Institute methodology. Susceptibility to fosfomycin was determined by agar dilution method, while disc diffusion were performed for in vitro testing of other antibiotics. Polymerase chain reaction and sequencing was performed for the majority of extended spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae (K. pneumoniae) and carbapenem-resistant isolates. Results The majority of 288 multiresistant bacterial isolates (82.6%) were susceptible to fosfomycin. The 236 multiresistant Gram-negative isolates showed excellent susceptibility to fosfomycin. Susceptibility rates were as follows: Escherichia coli ESBL 97%, K. pneumoniae ESBL 80%, Enterobacter species 85.7%, Citrobacter freundii 100%, Proteus mirabilis 93%, and Pseudomonas aeruginosa 60%. Of the 52 multiresistant Gram-positive isolates, methicillin-resistant Staphylococcus aureus showed excellent susceptibility to fosfomycin (94.4%) and vancomycin-resistant enterococcus showed low susceptibility to fosfomycin (31%). Polymerase chain reaction analysis of 36/50 ESBL-producing K. pneumoniae isolates showed that majority of isolates had CTX-M-15 beta lactamase (27/36) preceded by ISEcp insertion sequence. All carbapenem-resistant Enterobacter and Citrobacter isolates had blaVIM-1 metallo-beta-lactamase gene. Conclusion With the best in vitro activity among the tested antibiotics, fosfomycin could be an effective treatment option for infections caused by multiresistant Gram-negative and Gram-positive bacterial strains in the hospital setting. PMID:29740989

  11. In vitro bacterial isolate susceptibility to empirically selected antimicrobials in 111 dogs with bacterial pneumonia.

    PubMed

    Proulx, Alexandre; Hume, Daniel Z; Drobatz, Kenneth J; Reineke, Erica L

    2014-01-01

    To determine the proportion of airway bacterial isolates resistant to both empirically selected and recently administered antimicrobials, and to assess the impact of inappropriate initial empiric antimicrobials selection on length of hospital stay and survival to discharge in dogs with bacterial pneumonia. Retrospective study. University veterinary teaching hospital. One hundred and eleven dogs with a clinical diagnosis of bacterial pneumonia that had aerobic bacterial culture and susceptibility testing performed from a tracheal wash sample. None. Overall, 26% (29/111) of the dogs had at least 1 bacterial isolate that was resistant to empirically selected antimicrobials. In dogs with a history of antimicrobial administration within the preceding 4 weeks, a high incidence (57.4%, 31/54) of in vitro bacterial resistance to those antimicrobials was found: 64.7% (11/17) in the community-acquired pneumonia group, 55.2% (16/29) in the aspiration pneumonia group, and 50.0% (4/8) in the other causes of bacterial pneumonia group. No statistically significant association was found between bacterial isolate resistance to empirically selected antimicrobials and length of hospital stay or mortality. The high proportion of in vitro airway bacterial resistance to empiric antimicrobials would suggest that airway sampling for bacterial culture and susceptibility testing may be helpful in guiding antimicrobial therapy and recently administered antimicrobials should be avoided when empirically selecting antimicrobials. Although no relationship was found between inappropriate initial empiric antimicrobial selection and length of hospital stay or mortality, future prospective studies using standardized airway-sampling techniques, treatment modalities, and stratification of disease severity based on objective values, such as arterial blood gas analysis in all dogs with pneumonia, would be needed to determine if a clinical effect of in vitro bacterial resistance to empirically administered antimicrobials truly exists or not. © Veterinary Emergency and Critical Care Society 2013.

  12. Antimicrobial activity and safety evaluation of peptides isolated from the hemoglobin of chickens.

    PubMed

    Hu, Fengjiao; Wu, Qiaoxing; Song, Shuang; She, Ruiping; Zhao, Yue; Yang, Yifei; Zhang, Meikun; Du, Fang; Soomro, Majid Hussain; Shi, Ruihan

    2016-12-05

    Hemoglobin is a rich source of biological peptides. As a byproduct and even wastewater of poultry-slaughtering facilities, chicken blood is one of the most abundant source of hemoglobin. In this study, the chicken hemoglobin antimicrobial peptides (CHAP) were isolated and the antimicrobial and bactericidal activities were tested by the agarose diffusion assay, minimum inhibitory concentration (MIC) analysis, minimal bactericidal concentration (MBC) analysis, and time-dependent inhibitory and bactericidal assays. The results demonstrated that CHAP had potent and rapid antimicrobial activity against 19 bacterial strains, including 9 multidrug-resistant bacterial strains. Bacterial biofilm and NaCl permeability assays, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were further performed to detect the mechanism of its antimicrobial effect. Additionally, CHAP showed low hemolytic activity, embryo toxicity, and high stability in different temperatures and animal plasma. CHAP may have great potential for expanding production and development value in animal medication, the breeding industry and environment protection.

  13. Characterization of gut bacterial flora of Apis mellifera from north-west Pakistan.

    PubMed

    Anjum, Syed Ishtiaq; Shah, Abdul Haleem; Aurongzeb, Muhammad; Kori, Junaid; Azim, M Kamran; Ansari, Mohammad Javed; Bin, Li

    2018-02-01

    Gut microbiota has been recognized to play a beneficial role in honey bees ( Apis mellifera ). Present study was designed to characterize the gut bacterial flora of honey bees in north-west Pakistan. Total 150 aerobic and facultative anaerobic bacteria from guts of 45 worker bees were characterized using biochemical assays and 16S rDNA sequencing followed by bioinformatics analysis. The gut isolates were classified into three bacterial phyla of Firmicutes (60%), Proteobacteria (26%) and Actinobacteria (14%). Most of the isolates belonged to genera and families of Staphylococcus , Bacillus , Enterococcus , Ochrobactrum , Sphingomonas , Ralstonia , Enterobacteriaceae , Corynebacterium and Micrococcineae . Many of these bacteria were tolerant to acidic environments and fermented sugars, hence considered beneficial gut inhabitants and involved the maintenance of a healthy microbiota. However, several opportunistic commensals that proliferate in the hive environment including members Staphylococcus haemolyticus group and Sphingomonas paucimobilis were also identified. This is the first report on bee gut microbiota from north-west Pakistan geographically situated at the crossroads of Indian subcontinent and central Asia.

  14. Bacillus isolates from the spermosphere of peas and dwarf French beans with antifungal activity against Botrytis cinerea and Pythium species.

    PubMed

    Walker, R; Powell, A A; Seddon, B

    1998-05-01

    A range of isolation procedures including washing, sonication and incubation in nutrient broth were used separately and in combination to obtain potential bacterial antagonists to Botrytis cinerea and Pythium mamillatum from the testae and cotyledons of peas and dwarf French beans. Heat treatment was also used to bias this selection towards spore-forming bacteria. Ninety-two bacterial isolates were obtained, 72 of which were provisionally characterized as species of Bacillus. Four of these Bacillus isolates (B3, C1, D4 and J7) displayed distinct antagonism in vitro against Botrytis cinerea and P. mamillatum when screened using dual culture analysis. Further characterization of these antagonists using API 50CHB biochemical profiling identified isolate D4 as Bacillus polymyxa and isolates B3, C1 and J7 as strains of B. subtilis. In vitro screening techniques, using cell-free and heat-killed extracts of liquid cultures against Botrytis cinerea, demonstrated the production of antifungal compounds by these four Bacillus antagonists. With each isolate the antifungal activity was found not to be either exclusively spore-bound nor released entirely into the medium but present in both fractions. The antifungal compounds produced by these isolates were shown to be heat-stable. Their identification, production and release require further study for exploitation as biocontrol systems.

  15. Prevalence of MDR pathogens of bacterial meningitis in Egypt and new synergistic antibiotic combinations.

    PubMed

    Abdelkader, Mona M; Aboshanab, Khaled M; El-Ashry, Marwa A; Aboulwafa, Mohammad M

    2017-01-01

    The aim of this study was identifying bacterial pathogens involved in meningitis, studying their antibiotic resistance profiles, investigating the antibiotic resistance genes as well as evaluating the use of various antibiotic combinations. Antibiotic susceptibility tests were evaluated according to CLSI guidelines. Antibiotic combinations were evaluated by calculating the Fractional Inhibitory Concentration (FIC) index. A total of 71 bacterial isolates were recovered from 68 culture positive CSF specimens. Sixty five of these isolates (91.5%) were recovered from single infection specimens, while 6 isolates (8.4%) were recovered from mixed infection specimens. Out of the 71 recovered isolates, 48 (67.6%) were Gram-positive, and 23 (32.4%) were Gram-negative. Thirty one of the Gram positive isolates were S. pneumoniae (64.6%, n = 48). Out of the recovered 71 isolates; 26 (36.6%) were multidrug-resistant (MDR) isolates of which, 18 (69.2%) were Gram-negative and 8 (30.8%) were Gram-positive. All MDR isolates (100%) showed resistance to penicillin and ampicillin, however, they showed lower resistance to meropenem (50%), levofloxacin (50%), amikacin (48%), pipercillin-tazobactam (45.8%). Most common antibiotic resistance genes were investigated including: tem (21.1%), shv (15.8%), ctx-m (15.8%) coding for TEM-, SHV, CTX-M extended-spectrum beta-lactamases (ESBLs), respectively; aac(6')-I b(26.3%) coding for aminoglycoside 6'-N-acetyltransferase type Ib ciprofloxacin resistant variant; and qnrA (5.3%) gene coding for quinolone resistance. The DNA sequences of the respective resistance genes of some selected isolates were PCR amplified, analyzed and submitted to the GenBank database under the accession numbers, KX214665, KX214664, KX214663, KX214662, respectively. The FIC values for ampicillin/sulbactam plus cefepime showed either additive or synergistic effect against ten tested Gram-negative MDR isolates, while doxycycline plus levofloxacin combination revealed synergism against two MDR Gram-positive isolates. The results indicate high prevalence of antibiotic resistance among MDR isolates. Therefore, new guidelines should be implemented in Egypt to rationalize the use and avoid the misuse and abuse of antimicrobial agents.

  16. Development of biocontrol agents from food microbial isolates for controlling post-harvest peach brown rot caused by Monilinia fructicola.

    PubMed

    Zhou, Ting; Schneider, Karin E; Li, Xiu-Zhen

    2008-08-15

    An unconventional strategy of screening food microbes for biocontrol activity was used to develop biocontrol agents for controlling post-harvest peach brown rot caused by Monilinia fructicola. Forty-four microbial isolates were first screened for their biocontrol activity on apple fruit. Compared with the pathogen-only check, seven of the 44 isolates reduced brown rot incidence by >50%, including four bacteria: Bacillus sp. C06, Lactobacillus sp. C03-b and Bacillus sp. T03-c, Lactobacillus sp. P02 and three yeasts: Saccharomyces delbrueckii A50, S. cerevisiae YE-5 and S. cerevisiae A41. Eight microbial isolates were selected for testing on peaches by wound co-inoculation with mixtures of individual microbial cultures and conidial suspension of M. fructicola. Only two of them showed significant biocontrol activity after five days of incubation at 22 degrees C. Bacillus sp. C06 suppressed brown rot incidence by 92% and reduced lesion diameter by 88% compared to the pathogen-only check. Bacillus sp.T03-c reduced incidence and lesion diameter by 40% and 62%, respectively. The two isolates were compared with Pseudomonas syringae MA-4, a biocontrol agent for post-harvest peach diseases, by immersing peaches in an aliquot containing individual microbial isolates and the pathogen conidia. Treatments with isolates MA-4, C06 and T03-c significantly controlled brown rot by 91, 100, and 100% respectively. However, only isolates MA-4 and C06 significantly reduced brown rot by 80% and 15%, respectively when bacterial cells alone were applied. On naturally infected peaches, both the bacterial culture and its cell-free filtrate of the isolate C06 significantly controlled peach decay resulting in 77 and 90% reduction, respectively, whereas the treatment using only the bacterial cells generally had no effect. Isolate C06 is a single colony isolate obtained from a mesophilic cheese starter, and has been identified belonging to Bacillus amyloliquefaciens. The results have clearly demonstrated that isolate C06 has a great potential for being developed into a biocontrol agent.

  17. Diversity of bacterial species in the nasal cavity of sheep in the highlands of Ethiopia and first report of Histophilus somni in the country.

    PubMed

    Tesfaye, Biruk; Sisay Tessema, Tesfaye; Tefera, Genene

    2013-06-01

    A study was conducted to isolate bacterial species/pathogens from the nasal cavity of apparently healthy and pneumonic sheep. Nasal swabs were collected aseptically, transported in tryptose soya broth and incubated for 24 h. Then, each swab was streaked onto chocolate and blood agar for culture. Bacterial species were identified following standard bacteriological procedures. Accordingly, a total of 1,556 bacteria were isolated from 960 nasal swabs collected from three different highland areas of Ethiopia, namely Debre Berhan, Asella, and Gimba. In Debre Berhan, 140 Mannheimia haemolytica, 81 Histophilus somni, 57 Staphylococcus species, and 52 Bibersteinia trehalosi were isolated. While from Gimba M. haemolytica, Staphylococcus, Streptococcus, and H. somni were isolated at rates of 25.2, 15.9, 11.4, and 5.9 %, respectively, of the total 647 bacterial species. In Asella from 352 bacterial species isolated, 93 (26.4 %) were M. haemolytica, 48 (13.6 %) were Staphylococcus species, 26 (7.4 %) were B. trehalosi, and 17 (4.8 %) H. somni were recognized. Further identification and characterization using BIOLOG identification system Enterococcus avium and Sphingomonas sanguinis were identified at 100 % probability, while, H. somni and Actinobacillus lignerisii were suggested by the system. The study showed that a variety of bacterial species colonize the nasal cavity of the Ethiopian highland sheep with variable proportion between healthy and pneumonic ones. To our knowledge, this is the first report on isolation of H. somni, an important pathogen in cattle, from the respiratory tract of a ruminant species in the country.

  18. Identification and Pathogenicity of Bacteria Associated with Etiolation and Decline of Creeping Bentgrass Golf Course Putting Greens.

    PubMed

    Roberts, Joseph A; Ma, Bangya; Tredway, Lane P; Ritchie, David F; Kerns, James P

    2018-01-01

    Bacterial etiolation and decline has developed into a widespread issue with creeping bentgrass (CBG) (Agrostis stolonifera) putting green turf. The condition is characterized by an abnormal elongation of turfgrass stems and leaves that in rare cases progresses into a rapid and widespread necrosis and decline. Recent reports have cited bacteria, Acidovorax avenae and Xanthomonas translucens, as causal agents; however, few cases exist where either bacterium were isolated in conjunction with turf exhibiting bacterial disease symptoms. From 2010 to 2014, turfgrass from 62 locations submitted to the NC State Turf Diagnostic Clinic exhibiting bacterial etiolation and/or decline symptoms were sampled for the presence of bacterial pathogens. Isolated bacteria were identified using rRNA sequencing of the 16S subunit and internal transcribed spacer region (16S-23S or ITS). Results showed diverse bacteria isolated from symptomatic turf and A. avenae and X. translucens were only isolated in 26% of samples. Frequently isolated bacterial species were examined for pathogenicity to 4-week-old 'G2' CBG seedlings and 8-week-old 'A-1' CBG turfgrass stands in the greenhouse. While results confirmed pathogenicity of A. avenae and X. translucens, Pantoea ananatis was also shown to infect CBG turf; although pathogenicity varied among isolated strains. These results illustrate that multiple bacteria are associated with bacterial disease and shed new light on culturable bacteria living in CBG turfgrass putting greens. Future research to evaluate additional microorganisms (i.e., bacteria and fungi) could provide new information on host-microbe interactions and possibly develop ideas for management tactics to reduce turfgrass pests.

  19. Aseptic laboratory techniques: plating methods.

    PubMed

    Sanders, Erin R

    2012-05-11

    Microorganisms are present on all inanimate surfaces creating ubiquitous sources of possible contamination in the laboratory. Experimental success relies on the ability of a scientist to sterilize work surfaces and equipment as well as prevent contact of sterile instruments and solutions with non-sterile surfaces. Here we present the steps for several plating methods routinely used in the laboratory to isolate, propagate, or enumerate microorganisms such as bacteria and phage. All five methods incorporate aseptic technique, or procedures that maintain the sterility of experimental materials. Procedures described include (1) streak-plating bacterial cultures to isolate single colonies, (2) pour-plating and (3) spread-plating to enumerate viable bacterial colonies, (4) soft agar overlays to isolate phage and enumerate plaques, and (5) replica-plating to transfer cells from one plate to another in an identical spatial pattern. These procedures can be performed at the laboratory bench, provided they involve non-pathogenic strains of microorganisms (Biosafety Level 1, BSL-1). If working with BSL-2 organisms, then these manipulations must take place in a biosafety cabinet. Consult the most current edition of the Biosafety in Microbiological and Biomedical Laboratories (BMBL) as well as Material Safety Data Sheets (MSDS) for Infectious Substances to determine the biohazard classification as well as the safety precautions and containment facilities required for the microorganism in question. Bacterial strains and phage stocks can be obtained from research investigators, companies, and collections maintained by particular organizations such as the American Type Culture Collection (ATCC). It is recommended that non-pathogenic strains be used when learning the various plating methods. By following the procedures described in this protocol, students should be able to: Perform plating procedures without contaminating media. Isolate single bacterial colonies by the streak-plating method. Use pour-plating and spread-plating methods to determine the concentration of bacteria. Perform soft agar overlays when working with phage. Transfer bacterial cells from one plate to another using the replica-plating procedure. Given an experimental task, select the appropriate plating method.

  20. Degradation and depolymerization of plastic waste by local bacterial isolates and bubble column reactor

    NASA Astrophysics Data System (ADS)

    Hussein, Amal A.; Alzuhairi, Mohammed; Aljanabi, Noor H.

    2018-05-01

    Accumulation of plastics, especially Polyethylene terephthalate (PET), is an ever increasing ecological threat due to its excessive usage in everyday human life. Nowadays, there are many methods to get rid of plastic wastes including burning, recycling and burying. However, these methods are not very active since their long period, anaerobic conditions that increase the rate of toxic materials released into the environment. This work aims to study the biological degradation of PET microorganism isolated from soil sample. Thirty eight (38) bacterial isolates were isolated from ten soil and plastic waste sample collected from four different waste disposal sites in Baghdad city during different periods between December 2016 and March 2017. Isolation was performed using enrichment culture method (flasks method) by culturing the soil samples in flasks with MSM medium where there is no carbon source only PET. Results showed that Al-Za'farania sample gave a higher number of isolates (13 isolates), while other samples gave less number of isolates. Screening was performed depending on their ability to grow in liquid MSM which contains PET powder and pieces and change the color of the PET-emulsified liquid medium as well as their ability to form the clear zone on PET-MSM agar. The results showed that NH-D-1 isolate has the higher ability to degrade DPET and PET pieces. According to morphological, biochemical characterization and Vitek-2 technique, the most active isolate was identified as Acinetobacter baumannii.

  1. Molecular and phenetic characterization of the bacterial assemblage of Hot Lake, WA, an environment with high concentrations of magnesium sulphate, and its relevance to Mars

    NASA Astrophysics Data System (ADS)

    Kilmer, Brian R.; Eberl, Timothy C.; Cunderla, Brent; Chen, Fei; Clark, Benton C.; Schneegurt, Mark A.

    2014-01-01

    Hot Lake (Oroville, WA) is an athalassohaline epsomite lake that can have precipitating concentrations of MgSO4 salts, mainly epsomite. Little biotic study has been done on epsomite lakes and it was unclear whether microbes isolated from epsomite lakes and their margins would fall within recognized halotolerant genera, common soil genera or novel phyla. Our initial study cultivated and characterized epsotolerant bacteria from the lake and its margins. Approximately 100 aerobic heterotrophic microbial isolates were obtained by repetitive streak-plating in high-salt media including either 10% NaCl or 2 M MgSO4. The collected isolates were all bacteria, nearly evenly divided between Gram-positive and Gram-negative clades, the most abundant genera being Halomonas, Idiomarina, Marinobacter, Marinococcus, Nesterenkonia, Nocardiopsis and Planococcus. Bacillus, Corynebacterium, Exiguobacterium, Kocuria and Staphylococcus also were cultured. This initial study included culture-independent community analysis of direct DNA extracts of lake margin soil using PCR-based clone libraries and 16S rRNA gene phylogeny. Clones assigned to Gram-positive bacterial clades (70% of total clones) were dominated by sequences related to uncultured actinobacteria. There were abundant Deltaproteobacteria clones related to bacterial sulphur metabolisms and clones of Legionella and Coxiella. These epsomite lake microbial communities seem to be divided between bacteria primarily associated with hyperhaline environments rich in NaCl and salinotolerant relatives of common soil organisms. Archaea appear to be in low abundance and none were isolated, despite near-saturated salinities. Growth of microbes at very high concentrations of magnesium and other sulphates has relevance to planetary protection and life-detection missions to Mars, where scant liquid water may form as deliquescent brines and appear as eutectic liquids.

  2. [Epidemiological aspects relating to the determination of fosfomycin sensitivity: results of a study on 300 strains isolated in a hospital milieu in Turin].

    PubMed

    Vanini, G C; Moiraghi Ruggenini, A; Grassi, R; Maury, F; Giardini, F

    1979-01-01

    The AA. evaluated the sensitivity to Fosfomycin and to other commonly used antibiotics of 105 bacterial strains isolated from hospital environment and 195 from pathological materials. They also studied the problem of bacterial resistence to Fosfomycin considering the frequency of "inner colonies" and of bacterial cross-resistance to other antibiotics.

  3. Detection and characterization of broad-spectrum antipathogen activity of novel rhizobacterial isolates and suppression of Fusarium crown and root rot disease of tomato.

    PubMed

    Zhang, L; Khabbaz, S E; Wang, A; Li, H; Abbasi, P A

    2015-03-01

    To detect and characterize broad-spectrum antipathogen activity of indigenous bacterial isolates obtained from potato soil and soya bean leaves for their potential to be developed as biofungicides to control soilborne diseases such as Fusarium crown and root rot of tomato (FCRR) caused by Fusarium oxysporum f. sp. radicis-lycopersici (Forl). Thirteen bacterial isolates (Bacillus amyloliquefaciens (four isolates), Paenibacillus polymyxa (three isolates), Pseudomonas chlororaphis (two isolates), Pseudomonas fluorescens (two isolates), Bacillus subtilis (one isolate) and Pseudomonas sp. (one isolate)) or their volatiles showed antagonistic activity against most of the 10 plant pathogens in plate assays. Cell-free culture filtrates (CF) of five isolates or 1-butanol extracts of CFs also inhibited the growth of most pathogen mycelia in plate assays. PCR analysis confirmed the presence of most antibiotic biosynthetic genes such as phlD, phzFA, prnD and pltC in most Pseudomonas isolates and bmyB, bacA, ituD, srfAA and fenD in most Bacillus isolates. These bacterial isolates varied in the production of hydrogen cyanide (HCN), siderophores, β-1,3-glucanases, chitinases, proteases, indole-3-acetic acid, salicylic acid, and for nitrogen fixation and phosphate solubilization. Gas chromatography-mass spectrometry analysis identified 10 volatile compounds from 10 isolates and 18 compounds from 1-butanol extracts of CFs of five isolates. Application of irradiated peat formulation of six isolates to tomato roots prior to transplanting in a Forl-infested potting mix and field soil provided protection of tomato plants from FCRR disease and enhanced plant growth under greenhouse conditions. Five of the 13 indigenous bacterial isolates were antagonistic to eight plant pathogens, both in vitro and in vivo. Antagonistic and plant-growth promotion activities of these isolates might be related to the production of several types of antibiotics, lytic enzymes, phytohormones, secondary metabolites, siderophores and volatile compounds; however, any specific role of each needs to be determined. Indigenous antagonistic bacterial isolates have the potential to be developed as biofungicides for minimizing early crop losses due to soilborne diseases caused by Fusarium and other soilborne pathogens. © 2014 Her Majesty the Queen in Right of Canada © 2014 The Society for Applied Microbiology. Reproduced with the permission of the Minister of Agriculture and Agri-Food Canada.

  4. Frequency and antimicrobial susceptibility of aerobic bacterial vaginal isolates.

    PubMed

    Tariq, Nabia; Jaffery, Tara; Ayub, Rukhsana; Alam, Ali Yawar; Javid, Mahmud Haider; Shafique, Shamsa

    2006-03-01

    To determine the frequency and antimicrobial susceptibility of aerobic bacterial isolates from high vaginal swab cultures. Cross-sectional survey. Shifa International Hospital, Islamabad, from January 2003 to February 2004. The subjects included 136 symptomatic women attending Obstetrics and Gynecology Out-Patient Department. A proforma was filled to document the demographic details, presenting complaint and examination findings. High vaginal swabs were taken for gram staining, culture and antimicrobial sensitivity testing using standard microbiologic techniques. Normal flora was isolated in 30% of the cases, followed by Candida spp. (21.3%), Enterococcus spp. (14.7%), E.coli (10.2%), Beta hemolytic Streptococcus spp. (7.3%), Staphylococcus spp. (4.4%), Enterobacter spp. (4.4%), while Streptococcus pyogenes, Staphylococcus epidermidis and Klebsiella spp. were isolated 1.5% each. Enterococcus, Staphylococcus and Streptococcus were mostly sensitive to penicillin and amoxicillin while E.coli and Klebsiella were sensitive to (piperacillin-Tazobactum, Imipenem and vancomycin. Enterococci species showed significant resistance to aminoglycoside antibiotics (68.8% to 81.3%) resistance to vancomycin was 5%. Thirty percent of symptomatic patients had normal flora on culture. Candida spp was the most frequent pathogen isolated. Co-amoxiclav should be used as empiric therapy until culture-sensitivity report is available.

  5. [Systematic review of antimicrobial resistance in Enterobacteriaceae isolates from Colombian hospitals].

    PubMed

    González, Leidy; Cortés, Jorge Alberto

    2014-01-01

    Bacterial resistance is a public health problem worldwide that seriously compromises the possibility to treat infections. To identify levels of resistance to antibiotic markers in Enterobacteriaceae isolates from Colombian hospitals. A systematic literature survey was done including articles indexed in Medline, Embase and LILACS. A manual search was made of Colombian scientific journals and other publications on infectious disease that were not available electronically. In total, 43 observational studies and epidemiological reports were identified with information about resistance among Enterobacteriaceae isolates in Colombian hospitals, mainly from Bogotá, Cali and Medellín. The resistance rate of Escherichia coli ranges from 3 to 11%, 5 to 20% and from 0.2 to 0.8% for piperacillin-tazobactam, third generation cephalosporins and carbapenems, respectively. For Klebsiella pneumoniae resistance rates ranges from 21.8 to 48.1% to piperacillin-tazobactam, 20 to 35% to broad-spectrum cephalosporins and 3 to 8% to carbapenems, with significant variations by cities, levels of care and clinical settings. The spread of bacterial resistance in Enterobacteriaceae isolated in Colombian hospitals is a growing problem that calls for priority action to cut the chains of transmission.

  6. In Vitro Activity of Delafloxacin and Microbiological Response against Fluoroquinolone-Susceptible and Nonsusceptible Staphylococcus aureus Isolates from Two Phase 3 Studies of Acute Bacterial Skin and Skin Structure Infections

    PubMed Central

    Lawrence, L.; Quintas, M.; Woosley, L.; Flamm, R.; Tseng, C.; Cammarata, S.

    2017-01-01

    ABSTRACT Delafloxacin is an investigational anionic fluoroquinolone antibiotic with broad-spectrum in vitro activity, including activity against Gram-positive organisms, Gram-negative organisms, atypical organisms, and anaerobes. The in vitro activity of delafloxacin and the percent microbiological response in subjects infected with fluoroquinolone-susceptible and nonsusceptible Staphylococcus aureus isolates were determined from two global phase 3 studies of delafloxacin versus vancomycin plus aztreonam in patients with acute bacterial skin and skin structure infections (ABSSSI). Patients from 23 countries, predominately the United States but also Europe, South America, and Asia, were enrolled. The microbiological intent-to-treat (MITT) population included 1,042 patients from which 685 S. aureus isolates were submitted for identification and susceptibility testing per CLSI guidelines at the central laboratory (JMI Laboratories, North Liberty, IA). The comparator fluoroquinolone antibiotics included levofloxacin and ciprofloxacin. Nonsusceptibility to these antibiotics was determined using CLSI breakpoints. S. aureus isolates were 33.7% levofloxacin nonsusceptible (LVX-NS). The delafloxacin MIC90 values against levofloxacin-nonsusceptible S. aureus, methicillin-resistant S. aureus (MRSA), and methicillin-susceptible S. aureus isolates were all 0.25 μg/ml. Delafloxacin demonstrated high rates of microbiological response against LVX-NS isolates as well as isolates with documented mutations in the quinolone resistance-determining region (QRDR). S. aureus was eradicated or presumed eradicated in 98.4% (245/249) of delafloxacin-treated patients. Similar eradication rates were observed for delafloxacin-treated subjects with levofloxacin-nonsusceptible S. aureus isolates (80/81; 98.8%) and MRSA isolates (70/71; 98.6%). Microbiological response rates of 98.6% were observed with delafloxacin-treated subjects with S. aureus isolates with the S84L mutation in gyrA and the S80Y mutation in parC, the most commonly observed mutations in global phase 3 studies. The data suggest that delafloxacin could be a good option for the treatment of infections caused by S. aureus isolates causing ABSSSI, including MRSA isolates, where high rates of ciprofloxacin and levofloxacin nonsusceptibility are observed. (The phase 3 studies described in this paper have been registered at ClinicalTrials.gov under identifiers NCT01984684 and NCT01811732.) PMID:28630189

  7. In Vitro Activity of Delafloxacin and Microbiological Response against Fluoroquinolone-Susceptible and Nonsusceptible Staphylococcus aureus Isolates from Two Phase 3 Studies of Acute Bacterial Skin and Skin Structure Infections.

    PubMed

    McCurdy, S; Lawrence, L; Quintas, M; Woosley, L; Flamm, R; Tseng, C; Cammarata, S

    2017-09-01

    Delafloxacin is an investigational anionic fluoroquinolone antibiotic with broad-spectrum in vitro activity, including activity against Gram-positive organisms, Gram-negative organisms, atypical organisms, and anaerobes. The in vitro activity of delafloxacin and the percent microbiological response in subjects infected with fluoroquinolone-susceptible and nonsusceptible Staphylococcus aureus isolates were determined from two global phase 3 studies of delafloxacin versus vancomycin plus aztreonam in patients with acute bacterial skin and skin structure infections (ABSSSI). Patients from 23 countries, predominately the United States but also Europe, South America, and Asia, were enrolled. The microbiological intent-to-treat (MITT) population included 1,042 patients from which 685 S. aureus isolates were submitted for identification and susceptibility testing per CLSI guidelines at the central laboratory (JMI Laboratories, North Liberty, IA). The comparator fluoroquinolone antibiotics included levofloxacin and ciprofloxacin. Nonsusceptibility to these antibiotics was determined using CLSI breakpoints. S. aureus isolates were 33.7% levofloxacin nonsusceptible (LVX-NS). The delafloxacin MIC 90 values against levofloxacin-nonsusceptible S. aureus , methicillin-resistant S. aureus (MRSA), and methicillin-susceptible S. aureus isolates were all 0.25 μg/ml. Delafloxacin demonstrated high rates of microbiological response against LVX-NS isolates as well as isolates with documented mutations in the quinolone resistance-determining region (QRDR). S. aureus was eradicated or presumed eradicated in 98.4% (245/249) of delafloxacin-treated patients. Similar eradication rates were observed for delafloxacin-treated subjects with levofloxacin-nonsusceptible S. aureus isolates (80/81; 98.8%) and MRSA isolates (70/71; 98.6%). Microbiological response rates of 98.6% were observed with delafloxacin-treated subjects with S. aureus isolates with the S84L mutation in gyrA and the S80Y mutation in parC , the most commonly observed mutations in global phase 3 studies. The data suggest that delafloxacin could be a good option for the treatment of infections caused by S. aureus isolates causing ABSSSI, including MRSA isolates, where high rates of ciprofloxacin and levofloxacin nonsusceptibility are observed. (The phase 3 studies described in this paper have been registered at ClinicalTrials.gov under identifiers NCT01984684 and NCT01811732.). Copyright © 2017 McCurdy et al.

  8. Bacterial communities of tyre monofill sites: growth on tyre shreds and leachate.

    PubMed

    Vukanti, R; Crissman, M; Leff, L G; Leff, A A

    2009-06-01

    To investigate bacterial communities of tyre monofill sites, colonization of tyre material by bacteria and the effect of tyre leachate on bacteria. Culturable bacteria were isolated from buried tyre shreds and identified using fatty acid methyl ester analysis. Isolates belonged to taxonomic groups such as Bacilli, Actinobacteria, Clostridia, Flavobacteria, beta and gamma-proteobacteria. For tyre material colonization experiments, Bacillus megatarium, Bacillus cereus, Hydrogenophaga flava, Janthinobacterium lividum, Cellulosimicrobium cellulans, Arthrobacter globiformis (isolated from tyre shreds or leachate at the study site); Escherichia coli and Acidithiobacillus ferrooxidans were used. Beakers containing tyre shreds and artificial rain water were inoculated with a given bacterial culture, incubated at room temperature and sampled at regular intervals. 4',6-diamidino-2-phenylindole (DAPI) staining followed by epifluorescent microscopy was used to enumerate bacteria in samples. Of the bacteria tested, B. megatarium, J. lividum, E. coli, C. cellulans and A. globiformis exhibited the most extensive colonization of the tyre shreds. However, the extent of colonization varied among bacteria. Response to tyre leachate was also examined using B. cereus and J. lividum. Both bacteria increased in abundance due to the addition of leachate. Bacteria associated with buried tyre shreds were identified and found to include typical soil and freshwater organisms. The majority of indigenous isolates grew on tyre material (or leachate) suggesting that they play an active role in the ecology of these sites and that their potential role in tyre degradation should be explored. This study provides information on bacterial communities of tyre-waste disposal sites, explores the interaction between tyre material and bacteria and identifies bacteria that could be involved in or employed for recycling tyre-waste.

  9. Microbial quality of industrial liquid egg white: assumptions on spoiling issues in egg-based chilled desserts.

    PubMed

    Techer, Clarisse; Daoud, Amina; Madec, Marie-Noëlle; Gautier, Michel; Jan, Sophie; Baron, Florence

    2015-02-01

    As a 1st step, this study aimed at investigating the microbial quality of liquid egg white in a French egg processing company. Thirty raw and 33 pasteurized liquid egg white samples were analyzed. Pasteurization was globally found efficient on mesophilic contaminants (1.7 ± 1.6 and 0.8 ± 0.9 log CFU/mL in raw and pasteurized samples, respectively), including for the control of Salmonella. However, Gram-positive enterococci were still detected in the pasteurized samples. As a 2nd step, a representative bacterial collection was built for exploring the spoilage issue in egg-based chilled desserts. Custard cream was chosen as growth medium since this food is widely used for the production of French chilled desserts. All of the 166 isolates of the bacterial collection were shown to be able to grow and to induce spoilage of the custard cream at refrigeration temperature (10 °C). Several spoilage types were highlighted in the custard cream, on the basis of changes regarding pH, consistency, production of holes or gas. As a 3rd step, bacterial enzymatic activities were explored on custard cream-based agar media. The bacterial collection was reduced to 43 isolates, based on further selection regarding the genera and the spoilage types previously highlighted. Albeit to different degrees, all these isolates were able to produce proteases. A large part of these isolates also expressed lipolytic and amylolytic activities. This study emphasizes the need to control egg white contamination and especially with Gram-positive heat-resistant Enterococi, in order to guarantee the shelf life of egg-based chilled desserts. © 2015 Institute of Food Technologists®

  10. Application of Pulsed-Field Gel Electrophoresis and Binary Typing as Tools in Veterinary Clinical Microbiology and Molecular Epidemiologic Analysis of Bovine and Human Staphylococcus aureus Isolates

    PubMed Central

    Zadoks, Ruth; van Leeuwen, Willem; Barkema, Herman; Sampimon, Otlis; Verbrugh, Henri; Schukken, Ynte Hein; van Belkum, Alex

    2000-01-01

    Thirty-eight bovine mammary Staphylococcus aureus isolates from diverse clinical, temporal, and geographical origins were genotyped by pulsed-field gel electrophoresis (PFGE) after SmaI digestion of prokaryotic DNA and by means of binary typing using 15 strain-specific DNA probes. Seven pulsed-field types and four subtypes were identified, as were 16 binary types. Concordant delineation of genetic relatedness was documented by both techniques, yet based on practical and epidemiological considerations, binary typing was the preferable method. Genotypes of bovine isolates were compared to 55 previously characterized human S. aureus isolates through cluster analysis of binary types. Genetic clusters containing strains of both human and bovine origin were found, but bacterial genotypes were predominantly associated with a single host species. Binary typing proved an excellent tool for comparison of S. aureus strains, including methicillin-resistant S. aureus, derived from different host species and from different databases. For 28 bovine S. aureus isolates, detailed clinical observations in vivo were compared to strain typing results in vitro. Associations were found between distinct genotypes and severity of disease, suggesting strain-specific bacterial virulence. Circumstantial evidence furthermore supports strain-specific routes of bacterial dissemination. We conclude that PFGE and binary typing can be successfully applied for genetic analysis of S. aureus isolates from bovine mammary secretions. Binary typing in particular is a robust and simple method and promises to become a powerful tool for strain characterization, for resolution of clonal relationships of bacteria within and between host species, and for identification of sources and transmission routes of bovine S. aureus. PMID:10790124

  11. Indication for Co-evolution of Lactobacillus johnsonii with its hosts

    PubMed Central

    2012-01-01

    Background The intestinal microbiota, composed of complex bacterial populations, is host-specific and affected by environmental factors as well as host genetics. One important bacterial group is the lactic acid bacteria (LAB), which include many health-promoting strains. Here, we studied the genetic variation within a potentially probiotic LAB species, Lactobacillus johnsonii, isolated from various hosts. Results A wide survey of 104 fecal samples was carried out for the isolation of L. johnsonii. As part of the isolation procedure, terminal restriction fragment length polymorphism (tRFLP) was performed to identify L. johnsonii within a selected narrow spectrum of fecal LAB. The tRFLP results showed host specificity of two bacterial species, the Enterococcus faecium species cluster and Lactobacillus intestinalis, to different host taxonomic groups while the appearance of L. johnsonii and E. faecalis was not correlated with any taxonomic group. The survey ultimately resulted in the isolation of L. johnsonii from few host species. The genetic variation among the 47 L. johnsonii strains isolated from the various hosts was analyzed based on variation at simple sequence repeats (SSR) loci and multi-locus sequence typing (MLST) of conserved hypothetical genes. The genetic relationships among the strains inferred by each of the methods were similar, revealing three different clusters of L. johnsonii strains, each cluster consisting of strains from a different host, i.e. chickens, humans or mice. Conclusions Our typing results support phylogenetic separation of L. johnsonii strains isolated from different animal hosts, suggesting specificity of L. johnsonii strains to their hosts. Taken together with the tRFLP results, that indicated the association of specific LAB species with the host taxonomy, our study supports co-evolution of the host and its intestinal lactic acid bacteria. PMID:22827843

  12. Indication for Co-evolution of Lactobacillus johnsonii with its hosts.

    PubMed

    Buhnik-Rosenblau, Keren; Matsko-Efimov, Vera; Jung, Minju; Shin, Heuynkil; Danin-Poleg, Yael; Kashi, Yechezkel

    2012-07-25

    The intestinal microbiota, composed of complex bacterial populations, is host-specific and affected by environmental factors as well as host genetics. One important bacterial group is the lactic acid bacteria (LAB), which include many health-promoting strains. Here, we studied the genetic variation within a potentially probiotic LAB species, Lactobacillus johnsonii, isolated from various hosts. A wide survey of 104 fecal samples was carried out for the isolation of L. johnsonii. As part of the isolation procedure, terminal restriction fragment length polymorphism (tRFLP) was performed to identify L. johnsonii within a selected narrow spectrum of fecal LAB. The tRFLP results showed host specificity of two bacterial species, the Enterococcus faecium species cluster and Lactobacillus intestinalis, to different host taxonomic groups while the appearance of L. johnsonii and E. faecalis was not correlated with any taxonomic group. The survey ultimately resulted in the isolation of L. johnsonii from few host species. The genetic variation among the 47 L. johnsonii strains isolated from the various hosts was analyzed based on variation at simple sequence repeats (SSR) loci and multi-locus sequence typing (MLST) of conserved hypothetical genes. The genetic relationships among the strains inferred by each of the methods were similar, revealing three different clusters of L. johnsonii strains, each cluster consisting of strains from a different host, i.e. chickens, humans or mice. Our typing results support phylogenetic separation of L. johnsonii strains isolated from different animal hosts, suggesting specificity of L. johnsonii strains to their hosts. Taken together with the tRFLP results, that indicated the association of specific LAB species with the host taxonomy, our study supports co-evolution of the host and its intestinal lactic acid bacteria.

  13. The Biochemistry and Physiology of Bacterial Adhesion to Surfaces

    DTIC Science & Technology

    1984-01-20

    Organism S was isolated from surfaces incubated 33258 (Calbiochem-Behring Corp.. La Jolla, Calif.) in in an aquarium containing Instant Ocean...Abstiact /The physiologic mechanisms involved in bacterial adhesion to inert surfaces have been Investigated employing fouling isolates obtained from...of Madilyn Fletcher. Environmental Sci- A n l ms ences Department. University of Warwick. Coventry. All organisms isolated from surfaces exposed

  14. Interactions between stream fungi and bacteria associated with decomposing leaf litter at different levels of nutrient availability

    Treesearch

    Vladislav Gulis; Keller Suberkropp

    2003-01-01

    We examined the potential for interactions between aquatic hyphomycetes and bacteria isolated from leaves decaying in a headwater stream. In agar plate assays, culture filtrates of each of 28 aquatic hyphomycete isolates tested (5 species) inhibited bacterial growth (16 Gram-negative bacterial isolates belonging to 6 colony morphotypes were tested). Inhibition of...

  15. Larval settlement and metamorphosis of the mussel Mytilus coruscus in response to monospecific bacterial biofilms.

    PubMed

    Yang, Jin-Long; Shen, Pei-Jing; Liang, Xiao; Li, Yi-Feng; Bao, Wei-Yang; Li, Jia-Le

    2013-01-01

    The effects of bacterial biofilms (BFs) on larval settlement and metamorphosis of the mussel, Mytilus coruscus, were investigated in the laboratory. Of nine different isolates, Shewanella sp.1 BF induced the highest percentage of larval settlement and metamorphosis, whereas seven other isolates had a moderate inducing activity and one isolate, Pseudoalteromonas sp. 4, had a no inducing activity. The inducing activity of individual bacterial isolates was not correlated either with their phylogenetic relationship or with the surfaces from which they were isolated. Among the eight bacterial species that demonstrated inducing activity, bacterial density was significantly correlated with the inducing activity for each strain, with the exception of Vibrio sp. 1. The Shewanella sp. 1 BF cue that was responsible for inducing larval settlement and metamorphosis was further investigated. Treatment of the BFs with formalin, antibiotics, ultraviolet irradiation, heat, and ethanol resulted in a significant decrease in their inducing activities and cell survival. BF-conditioned water (CW) did not induce larval metamorphosis, but it triggered larval settlement behavior. A synergistic effect of CW with formalin-fixed Shewanella sp. 1 BF significantly promoted larval metamorphosis. Thus, a cocktail of chemical cues derived from bacteria may be necessary to stimulate larval settlement and metamorphosis in this species.

  16. Spatiotemporal changes in bacterial community and microbial activity in a full-scale drinking water treatment plant.

    PubMed

    Hou, Luanfeng; Zhou, Qin; Wu, Qingping; Gu, Qihui; Sun, Ming; Zhang, Jumei

    2018-06-01

    To gain insight into the bacterial dynamics present in drinking water treatment (DWT) systems, the microbial community and activity in a full-scale DWT plant (DWTP) in Guangzhou, South China, were investigated using Illumina Hiseq sequencing analyses combined with cultivation-based techniques during the wet and dry seasons. Illumina sequencing analysis of 16S rRNA genes revealed a large shift in the proportion of Actinobacteria, Proteobacteria and Firmicutes during the treatment process, with the proportion of Actinobacteria decreased sharply, whereas that of Proteobacteria and Firmicutes increased and predominated in treated water. Both microbial activity and bacterial diversity during the treatment process showed obvious spatial variation, with higher levels observed during the dry season and lower levels during the wet season. Clustering analysis and principal component analysis indicated dramatic shifts in the bacterial community after chlorination, suggesting that chlorination was highly effective at influencing the bacterial community. The bacterial community structure of finished water primarily comprised Pseudomonas, Citrobacter, and Acinetobacter, and interestingly showed high similarity to biofilms on granular activated carbon. Additionally, the abundance of bacterial communities was relatively stable in finished water and did not change with the season. A large number of unique operational taxonomic units were shared during treatment steps, indicating the presence of a diverse core microbiome throughout the treatment process. Opportunistic pathogens, including Pseudomonas, Acinetobacter, Citrobacter, Mycobacterium, Salmonella, Staphylococcus, Legionella, Streptococcus and Enterococcus, were detected in water including finished water, suggesting a potential threat to drinking-water safety. We also detected bacteria isolated from each treatment step using the pure-culture method. In particular, two isolates, identified as Mycobacterium sp. and Blastococcus sp., which belong to the phylum Actinobacteria, were obtained from finished water during the dry season. Together, these results provided evidence of spatial and temporal variations in DWTPs and contributed to the beneficial manipulation of the drinking water microbiome. Copyright © 2017. Published by Elsevier B.V.

  17. The blow fly, Chrysomya megacephala, and the house fly, Musca domestica, as mechanical vectors of pathogenic bacteria in Northeast Thailand.

    PubMed

    Chaiwong, T; Srivoramas, T; Sueabsamran, P; Sukontason, K; Sanford, M R; Sukontason, K L

    2014-06-01

    The Oriental latrine fly, Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae) and the house fly, Musca domestica L., (Diptera: Muscidae) are synanthropic flies which are adapted to live in close association with human habitations, thereby making them likely mechanical vectors of several pathogens to humans. There were two main aims of this study. The first aim was to determine the prevalence of these two fly species from five types of human habitations including: fresh-food markets, garbage piles, restaurants, school cafeterias and paddy fields, in the Muang Ubon Ratchathani and Warinchamrap districts of Ubon Ratchathani province of Northeast Thailand. Flies collection were conducted monthly from September 2010-October 2011 using a reconstructable funnel trap, containing 1 day-tainted beef offal as bait. A total of 7 750 flies (6 401 C. megacephala and 1 349 M.domestica) were collected. The second aim was to examine the potential of these flies to carry pathogenic bacteria. Bacteria were isolated from 994 individual flies collected using a sweep net (555 C. megacephala and 439 M. domestica). A total of 15 bacterial genera were isolated from the external surfaces, comprising ten genera of gram-negative bacteria and five gram-positive bacteria. The most common bacteria isolated from both species were coagulase-negative staphylococci, followed by Streptococcus group D non-enterococci. Human pathogenic enteric bacteria isolated were Salmonella sp., Shigella sp., Escherichia coli O157:H7, Salmonella typhi, Bacillus sp., and Enterococcus sp., of which S. typhi is the first report of isolation from these fly species. Other human pathogens included Staphylococcus aureus and Pseudomonas aeruginosa. Not only were the number of C. megacephala positive for bacteria significantly higher than for M. domestica, but they were also carrying ~11-12 times greater bacterial load than M. domestica. These data suggest that both fly species should be considered potential mechanical vectors of bacterial pathogens associated with human habitations year-round in this region of Northeast Thailand.

  18. Comparative genomic analysis and characterization of incompatibility group FIB plasmid encoded virulence factors of Salmonella enterica isolated from food sources.

    PubMed

    Khajanchi, Bijay K; Hasan, Nur A; Choi, Seon Young; Han, Jing; Zhao, Shaohua; Colwell, Rita R; Cerniglia, Carl E; Foley, Steven L

    2017-08-02

    The degree to which the chromosomal mediated iron acquisition system contributes to virulence of many bacterial pathogens is well defined. However, the functional roles of plasmid encoded iron acquisition systems, specifically Sit and aerobactin, have yet to be determined for Salmonella spp. In a recent study, Salmonella enterica strains isolated from different food sources were sequenced on the Illumina MiSeq platform and found to harbor the incompatibility group (Inc) FIB plasmid. In this study, we examined sequence diversity and the contribution of factors encoded on the IncFIB plasmid to the virulence of S. enterica. Whole genome sequences of seven S. enterica isolates were compared to genomes of serovars of S. enterica isolated from food, animal, and human sources. SeqSero analysis predicted that six strains were serovar Typhimurium and one was Heidelberg. Among the S. Typhimurium strains, single nucleotide polymorphism (SNP)-based phylogenetic analyses revealed that five of the isolates clustered as a single monophyletic S. Typhimurium subclade, while one of the other strains branched with S. Typhimurium from a bovine source. DNA sequence based phylogenetic diversity analyses showed that the IncFIB plasmid-encoded Sit and aerobactin iron acquisition systems are conserved among bacterial species including S. enterica. The IncFIB plasmid was transferred to an IncFIB plasmid deficient strain of S. enterica by conjugation. The transconjugant SE819::IncFIB persisted in human intestinal epithelial (Caco-2) cells at a higher rate than the recipient SE819. Genes of the Sit and aerobactin operons in the IncFIB plasmid were differentially expressed in iron-rich and iron-depleted growth media. Minimal sequence diversity was detected in the Sit and aerobactin operons in the IncFIB plasmids present among different bacterial species, including foodborne Salmonella strains. IncFIB plasmid encoded factors play a role during infection under low-iron conditions in host cells.

  19. Biodegradation of polyether algal toxins--isolation of potential marine bacteria.

    PubMed

    Shetty, Kateel G; Huntzicker, Jacqueline V; Rein, Kathleen S; Jayachandran, Krish

    2010-12-01

    Marine algal toxins such as brevetoxins, okadaic acid, yessotoxin, and ciguatoxin are polyether compounds. The fate of polyether toxins in the aqueous phase, particularly bacterial biotransformation of the toxins, is poorly understood. An inexpensive and easily available polyether structural analog salinomycin was used for enrichment and isolation of potential polyether toxin degrading aquatic marine bacteria from Florida bay area, and from red tide endemic sites in the South Florida Gulf coast. Bacterial growth on salinomycin was observed in most of the enrichment cultures from both regions with colony forming units ranging from 0 to 6×10(7) per mL. The salinomycin biodegradation efficiency of bacterial isolates determined using LC-MS ranged from 22% to 94%. Selected bacterial isolates were grown in media with brevetoxin as the sole carbon source to screen for brevetoxin biodegradation capability using ELISA. Out of the two efficient salinomycin biodegrading isolates MB-2 and MB-4, maximum brevetoxin biodegradation efficiency of 45% was observed with MB-4, while MB-2 was unable to biodegrade brevetoxin. Based on 16S rRNA sequence similarity MB-4 was found have a match with Chromohalobacter sp.

  20. Bacteria Associated to Plants Naturally Selected in a Historical PCB Polluted Soil Show Potential to Sustain Natural Attenuation.

    PubMed

    Vergani, Lorenzo; Mapelli, Francesca; Marasco, Ramona; Crotti, Elena; Fusi, Marco; Di Guardo, Antonio; Armiraglio, Stefano; Daffonchio, Daniele; Borin, Sara

    2017-01-01

    The exploitation of the association between plants and microorganisms is a promising approach able to boost natural attenuation processes for soil clean-up in vast polluted areas characterized by mixed chemical contamination. We aimed to explore the selection of root-associated bacterial communities driven by different plant species spontaneously established in abandoned agricultural soils within a historical polluted site in north Italy. The site is highly contaminated by chlorinated persistent organic pollutants, mainly constituted by polychlorobiphenyls (PCBs), together with heavy metals and metalloids, in variable concentrations and uneven distribution. The overall structure of the non-vegetated and root-associated soil fractions bacterial communities was described by high-throughput sequencing of the 16S rRNA gene, and a collection of 165 rhizobacterial isolates able to use biphenyl as unique carbon source was assayed for plant growth promotion (PGP) traits and bioremediation potential. The results showed that the recruitment of specific bacterial communities in the root-associated soil fractions was driven by both soil fractions and plant species, explaining 21 and 18% of the total bacterial microbiome variation, respectively. PCR-based detection in the soil metagenome of bacterial bphA gene, encoding for the biphenyl dioxygenase α subunit, indicated that the soil in the site possesses metabolic traits linked to PCB degradation. Biphenyl-utilizing bacteria isolated from the rhizosphere of the three different plant species showed low phylogenetic diversity and well represented functional traits, in terms of PGP and bioremediation potential. On average, 72% of the strains harbored the bphA gene and/or displayed catechol 2,3-dioxygenase activity, involved in aromatic ring cleavage. PGP traits, including 1-aminocyclopropane-1-carboxylic acid deaminase activity potentially associated to plant stress tolerance induction, were widely distributed among the isolates according to in vitro assays. PGP tested in vivo on tomato plants using eleven selected bacterial isolates, confirmed the promotion and protection potential of the rhizosphere bacteria. Different spontaneous plant species naturally selected in a historical chronically polluted site showed to determine the enrichment of peculiar bacterial communities in the soil fractions associated to the roots. All the rhizosphere communities, nevertheless, hosted bacteria with degradation/detoxification and PGP potential, putatively sustaining the natural attenuation process.

  1. Bacteria Associated to Plants Naturally Selected in a Historical PCB Polluted Soil Show Potential to Sustain Natural Attenuation

    PubMed Central

    Vergani, Lorenzo; Mapelli, Francesca; Marasco, Ramona; Crotti, Elena; Fusi, Marco; Di Guardo, Antonio; Armiraglio, Stefano; Daffonchio, Daniele; Borin, Sara

    2017-01-01

    The exploitation of the association between plants and microorganisms is a promising approach able to boost natural attenuation processes for soil clean-up in vast polluted areas characterized by mixed chemical contamination. We aimed to explore the selection of root-associated bacterial communities driven by different plant species spontaneously established in abandoned agricultural soils within a historical polluted site in north Italy. The site is highly contaminated by chlorinated persistent organic pollutants, mainly constituted by polychlorobiphenyls (PCBs), together with heavy metals and metalloids, in variable concentrations and uneven distribution. The overall structure of the non-vegetated and root-associated soil fractions bacterial communities was described by high-throughput sequencing of the 16S rRNA gene, and a collection of 165 rhizobacterial isolates able to use biphenyl as unique carbon source was assayed for plant growth promotion (PGP) traits and bioremediation potential. The results showed that the recruitment of specific bacterial communities in the root-associated soil fractions was driven by both soil fractions and plant species, explaining 21 and 18% of the total bacterial microbiome variation, respectively. PCR-based detection in the soil metagenome of bacterial bphA gene, encoding for the biphenyl dioxygenase α subunit, indicated that the soil in the site possesses metabolic traits linked to PCB degradation. Biphenyl-utilizing bacteria isolated from the rhizosphere of the three different plant species showed low phylogenetic diversity and well represented functional traits, in terms of PGP and bioremediation potential. On average, 72% of the strains harbored the bphA gene and/or displayed catechol 2,3-dioxygenase activity, involved in aromatic ring cleavage. PGP traits, including 1-aminocyclopropane-1-carboxylic acid deaminase activity potentially associated to plant stress tolerance induction, were widely distributed among the isolates according to in vitro assays. PGP tested in vivo on tomato plants using eleven selected bacterial isolates, confirmed the promotion and protection potential of the rhizosphere bacteria. Different spontaneous plant species naturally selected in a historical chronically polluted site showed to determine the enrichment of peculiar bacterial communities in the soil fractions associated to the roots. All the rhizosphere communities, nevertheless, hosted bacteria with degradation/detoxification and PGP potential, putatively sustaining the natural attenuation process. PMID:28790991

  2. Diversity of Staphylococcus pseudintermedius in carriage sites and skin lesions of dogs with superficial bacterial folliculitis: potential implications for diagnostic testing and therapy.

    PubMed

    Larsen, Rikke Friis; Boysen, Lene; Jessen, Lisbeth Rem; Guardabassi, Luca; Damborg, Peter

    2018-05-21

    Staphylococcus pseudintermedius is genotypically diverse within the canine population and multiple strains may colonize individual dogs at any given time. If multiple strains with distinct antimicrobial resistance profiles are present in superficial bacterial folliculitis (SBF), sampling a single skin lesion for culture and antimicrobial susceptibility testing (AST) might be inadequate to select effective therapy. To investigate S. pseudintermedius diversity in carriage sites and lesions of dogs with SBF. Fourteen dogs with SBF. Staphylococcus pseudintermedius isolates obtained from perineum, gingiva and four to six skin lesions per dog were subjected to pulsed-field gel electrophoresis (PFGE) and AST to assess diversity between lesions. For two dogs, 14-16 isolates per lesion were included in the analysis to assess diversity within lesions. Analysis of one isolate per lesion revealed one to four strains displaying unique PFGE profiles, and up to three unique antimicrobial resistance (AMR) profiles for each dog. Multiple pustules from the same dog always harboured the same strain, whereas papules, crusts and collarettes did not. Up to four strains with distinct AMR profiles were isolated from the same lesion in two dogs. In 12 dogs, at least one carriage site strain also was represented in lesions. Lesions of SBF may harbour multiple S. pseudintermedius strains with distinct antimicrobial resistance profiles. Pustules are the best target for bacterial culture. It remains unclear whether isolation of different strains from other lesion types is a consequence of contamination or co-infection by multiple strains. © 2018 ESVD and ACVD.

  3. Host-Plant Selectivity of Rhizobacteria in a Crop/Weed Model System

    PubMed Central

    Zeller, Simon L.; Brandl, Helmut; Schmid, Bernhard

    2007-01-01

    Belowground microorganisms are known to influence plants' performance by altering the soil environment. Plant pathogens such as cyanide-producing strains of the rhizobacterium Pseudomonas may show strong host-plant selectivity. We analyzed interactions between different host plants and Pseudomonas strains and tested if these can be linked to the cyanide sensitivity of host plants, the cyanide production of bacterial strains or the plant identity from which strains had been isolated. Eight strains (four cyanide producing) were isolated from roots of four weed species and then re-inoculated on the four weed and two additional crop species. Bacterial strain composition varied strongly among the four weed species. Although all six plant species showed different reductions in root growth when cyanide was artificially applied to seedlings, they were generally not negatively affected by inoculation with cyanide-producing bacterial strains. We found a highly significant plant species x bacterial strain interaction. Partitioning this interaction into contrasts showed that it was entirely due to a strongly negative effect of a bacterial strain (Pseudomonas kilonensis/brassicacearum, isolated from Galium mollugo) on Echinochloa crus-galli. This exotic weed may not have become adapted to the bacterial strain isolated from a native weed. Our findings suggest that host-specific rhizobacteria hold some promise as biological weed-control agents. PMID:17786217

  4. Pathogen characteristics reveal novel antibacterial approaches for interstitial lung disease.

    PubMed

    Lu, Hai-Wen; Ji, Xiao-Bin; Liang, Shuo; Fan, Li-Chao; Bai, Jiu-Wu; Chen, Ke-Bing; Zhou, Yin; Li, Hui-Ping; Xu, Jin-Fu

    2014-12-01

    Interstitial lung disease (ILD) is a clinical disorder associated with changes of lung structure. Concurrent infection is a serious complication and one of the major factors that exacerbates ILD. Pathogen screening is a critical step in early diagnosis and proper treatment of ILD with secondary infection. Here we analyzed distribution and drug susceptibility of pathogens isolated from hospitalized ILD patients from January, 2007 to December, 2008 and compared them to bacterial drug resistance data in CHINET during the same period. The main specimens were from sputum culture, lavage fluid culture, lung biopsy tissue culture, and pleural effusion culture and bacterial or fungal cultures were performed on these specimens accordingly. Drug susceptibility was tested for positive bacterial cultures using disk diffusion (Kirby-Bauer method) and E Test strips in which results were determined based on the criteria of CLSI (2007). A total of 371 pathogen strains from ILD patients, including 306 bacterial strains and 65 fungal strains were isolated and cultured. Five main bacterial strains and their distribution were as follows: Klebsiella pneumoniae (31.7%), Pseudomonas aeruginosa (20.6%), Acinetobacter (12.7%), Enterobacter cloacae (8.2%), and Staphylococcus aureus (7.8%). The results showed that ILD patients who had anti-infection treatment tended to have Gram-negative bacteria, whether they acquired an infection in the hospital or elsewhere. Drug resistance screening indicated that aminoglycosides and carbapenems had lower antibiotic resistance rates. In addition, we found that the usage of immunosuppressants was associated with the increased infection rate and number of pathogens that were isolated. In conclusion, aminoglycosides and carbapenems may be selected as a priority for secondary infection to control ILD progression. Meanwhile, the use of anti-MRSA/MRCNS drugs may be considered for Staphylococcus infection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Isolation and identification of a bacterium from marine shrimp digestive tract: A new degrader of starch and protein

    NASA Astrophysics Data System (ADS)

    Li, Jiqiu; Tan, Beiping; Mai, Kangsen

    2011-09-01

    It is a practical approach to select candidate probiotic bacterial stains on the basis of their special traits. Production of digestive enzyme was used as a trait to select a candidate probiotic bacterial strain in this study. In order to select a bacterium with the ability to degrade both starch and protein, an ideal bacterial strain STE was isolated from marine shrimp ( Litopenaeus vannamei) intestines by using multiple selective media. The selected isolate STE was identified on the basis of its morphological, physiological, and biochemical characteristics as well as molecular analyses. Results of degradation experiments confirmed the ability of the selected isolate to degrade both starch and casein. The isolate STE was aerobic, Gram-negative, rod-shaped, motile and non-spore-forming, and had catalase and oxidase activities but no glucose fermentation activity. Among the tested carbon/nitrogen sources, only Tween40, alanyl-glycine, aspartyl-glycine, and glycyl-l-glutamic acid were utilized by the isolate STE. Results of homology comparison analyses of the 16S rDNA sequences showed that the isolate STE had a high similarity to several Pseudoalteromonas species and, in the phylogenetic tree, grouped with P. ruthenica with maximum bootstrap support (100%). In conclusion, the isolate STE was characterized as a novel strain belonging to the genus Pseudoalteromonas. This study provides a further example of a probiotic bacterial strain with specific characteristics isolated from the host gastrointestinal tract.

  6. Genotypic and phenotypic characterization of aerosolized bacteria collected from African dust events

    DOE PAGES

    Wilson, Christina A.; Brigmon, Robin L.; Yeager, Chris; ...

    2013-07-31

    Twenty-one bacteria were isolated and characterized from air samples collected in Africa and the Caribbean by the United States Geological Survey (USGS). Isolates were selected based on preliminary characterization as possible pathogens. Identification of the bacterial isolates was 25 achieved using 16S rRNA gene sequence analysis, fatty acid methyl esters (FAMEs) profiling, the BIOLOG Microlog® System (carbon substrate assay), and repetitive extragenic palindromic (REP)-PCR analysis. The majority of isolates (18/21) were identified as species of the genus Bacillus. Three isolates were classified within the Bacillus cereus senso lato group, which includes Bacillus anthracis, Bacillus thuringiensis, and Bacillus cereus strains. Onemore » isolate was identified as a Staphylococcus sp., 30 most closely related to species (i.e Staphylococcus kloosii, Staphylococcus warneri) that are commonly associated with human or animal skin, but can also act as opportunistic pathogen. Another isolate was tentatively identified as Tsukamurella inchonensis, a known respiratory pathogen, and was resistant to the ten antibiotics tested including vancomycin.« less

  7. Prevalence, aetiology and antibiotic sensitivity profile of asymptomatic bacteriuria isolates from pregnant women in selected antenatal clinic from Nairobi, Kenya.

    PubMed

    Ayoyi, Adelaide Ogutu; Kikuvi, Gideon; Bii, Christine; Kariuki, Samuel

    2017-01-01

    Asymptomatic bacteriuria (ASB) is the presence of bacteria in urine without apparent symptoms of urinary tract infections. The importance of asymptomatic bacteriuria lies in the insight it provides into symptomatic infections. To determine prevalence, bacterial isolates and Antibiotic Sensitivity Profile of asymptomatic bacterial urinary tract infection in pregnant women in selected clinics in Nairobi. This was a cross-sectional study involving women attending antenatal clinic at selected clinics of Nairobi County. The women who met the inclusion criteria were included in the study. The midstream urine samples of these women were subjected to microscopy, culture and sensitivity. A total of 1020 of women on their first antenatal clinic visit participated in the study; 219 of them had ASB, giving a prevalence of 21.5 % at 95% confidence level. Escherichia coli were the common organism isolated at 38.8%. The majority of the organisms were sensitive to imipenem and gentamycin. There is a high prevalence of ASB among pregnant women included in the study from the Nairobi county clinics. Therefore, routine ASB screening of pregnant women is recommended among the women attending antennal clinics in Nairobi county clinics.

  8. Prevalence, aetiology and antibiotic sensitivity profile of asymptomatic bacteriuria isolates from pregnant women in selected antenatal clinic from Nairobi, Kenya

    PubMed Central

    Ayoyi, Adelaide Ogutu; Kikuvi, Gideon; Bii, Christine; Kariuki, Samuel

    2017-01-01

    Introduction Asymptomatic bacteriuria (ASB) is the presence of bacteria in urine without apparent symptoms of urinary tract infections. The importance of asymptomatic bacteriuria lies in the insight it provides into symptomatic infections. To determine prevalence, bacterial isolates and Antibiotic Sensitivity Profile of asymptomatic bacterial urinary tract infection in pregnant women in selected clinics in Nairobi. Methods This was a cross-sectional study involving women attending antenatal clinic at selected clinics of Nairobi County. The women who met the inclusion criteria were included in the study. The midstream urine samples of these women were subjected to microscopy, culture and sensitivity. Results A total of 1020 of women on their first antenatal clinic visit participated in the study; 219 of them had ASB, giving a prevalence of 21.5 % at 95% confidence level. Escherichia coli were the common organism isolated at 38.8%. The majority of the organisms were sensitive to imipenem and gentamycin. Conclusion There is a high prevalence of ASB among pregnant women included in the study from the Nairobi county clinics. Therefore, routine ASB screening of pregnant women is recommended among the women attending antennal clinics in Nairobi county clinics. PMID:28451019

  9. Paediatric bacterial keratitis cases in Shanghai: microbiological profile, antibiotic susceptibility and visual outcomes

    PubMed Central

    Hong, J; Chen, J; Sun, X; Deng, S X; Chen, L; Gong, L; Cao, W; Yu, X; Xu, J

    2012-01-01

    Purpose The purpose of this study was to review the microbiological profile, in vitro antibiotic susceptibility and visual outcomes of paediatric microbial keratitis in Shanghai, China over the past 6 years. Methods Medical records of patients aged ≤16 years were reviewed, who were diagnosed as having bacterial keratitis between 1 January 2005 and 31 December 2010. Bacterial culture results and in vitro antibiotic susceptibility were analysed. A logistic regression analysis was conducted to evaluate the relationship between visual impairment and possible risk factors. Results Eighty consecutive cases of paediatric bacterial keratitis cases were included, among which 59 were identified as having positive culture. Staphylococcus epidermidis was the most commonly isolated organism (n=23; 39.0%), followed by Streptococcus pneumoniae (n=11; 18.6%) and Pseudomonas aeruginosa (n=6; 10.2%). Antibiotic sensitivities revealed that tested bacteria had low resistance rates to fluoroquinolones and aminoglycosides (8.3–18.4% and 12.5–24.4%, respectively). Multivariate logistic regression analysis proved that visual impairment was significantly associated with Gram-negative bacterial infection (odds ratio (OR)=7.626; P=0.043) and an increasing number of resistant antibiotics (OR=0.385; P=0.040). Conclusions S. epidermidis was the most common isolated organism in Shanghai paediatric keratitis. The fluoroquinolones and aminoglycosides remained good choices for treating these patients. Gram-negative bacterial infection and an increasing number of resistant antibiotics were associated with worse visual prognoses in paediatric keratitis. PMID:23079751

  10. Effect of cell physicochemical characteristics and motility on bacterial transport in groundwater

    USGS Publications Warehouse

    Becker, M.W.; Collins, S.A.; Metge, D.W.; Harvey, R.W.; Shapiro, A.M.

    2004-01-01

    The influence of physicochemical characteristics and motility on bacterial transport in groundwater were examined in flow-through columns. Four strains of bacteria isolated from a crystalline rock groundwater system were investigated, with carboxylate-modified and amidine-modified latex microspheres and bromide as reference tracers. The bacterial isolates included a gram-positive rod (ML1), a gram-negative motile rod (ML2), a nonmotile mutant of ML2 (ML2m), and a gram-positive coccoid (ML3). Experiments were repeated at two flow velocities, in a glass column packed with glass beads, and in another packed with iron-oxyhydroxide coated glass beads. Bacteria breakthrough curves were interpreted using a transport equation that incorporates a sorption model from microscopic observation of bacterial deposition in flow-cell experiments. The model predicts that bacterial desorption rate will decrease exponentially with the amount of time the cell is attached to the solid surface. Desorption kinetics appeared to influence transport at the lower flow rate, but were not discernable at the higher flow rate. Iron-oxyhydroxide coatings had a lower-than-expected effect on bacterial breakthrough and no effect on the microsphere recovery in the column experiments. Cell wall type and shape also had minor effects on breakthrough. Motility tended to increase the adsorption rate, and decrease the desorption rate. The transport model predicts that at field scale, desorption rate kinetics may be important to the prediction of bacteria transport rates. ?? 2003 Elsevier B.V. All rights reserved.

  11. Can procalcitonin help identify associated bacterial infection in patients with severe influenza pneumonia? A multicentre study.

    PubMed

    Cuquemelle, E; Soulis, F; Villers, D; Roche-Campo, F; Ara Somohano, C; Fartoukh, M; Kouatchet, A; Mourvillier, B; Dellamonica, J; Picard, W; Schmidt, M; Boulain, T; Brun-Buisson, C

    2011-05-01

    To determine whether procalcitonin (PCT) levels could help discriminate isolated viral from mixed (bacterial and viral) pneumonia in patients admitted to the intensive care unit (ICU) during the A/H1N1v2009 influenza pandemic. A retrospective observational study was performed in 23 French ICUs during the 2009 H1N1 pandemic. Levels of PCT at admission were compared between patients with confirmed influenzae A pneumonia associated or not associated with a bacterial co-infection. Of 103 patients with confirmed A/H1N1 infection and not having received prior antibiotics, 48 (46.6%; 95% CI 37-56%) had a documented bacterial co-infection, mostly caused by Streptococcus pneumoniae (54%) or Staphylococcus aureus (31%). Fifty-two patients had PCT measured on admission, including 19 (37%) having bacterial co-infection. Median (range 25-75%) values of PCT were significantly higher in patients with bacterial co-infection: 29.5 (3.9-45.3) versus 0.5 (0.12-2) μg/l (P < 0.01). For a cut-off of 0.8 μg/l or more, the sensitivity and specificity of PCT for distinguishing isolated viral from mixed pneumonia were 91 and 68%, respectively. Alveolar condensation combined with a PCT level of 0.8 μg/l or more was strongly associated with bacterial co-infection (OR 12.9, 95% CI 3.2-51.5; P < 0.001). PCT may help discriminate viral from mixed pneumonia during the influenza season. Levels of PCT less than 0.8 μg/l combined with clinical judgment suggest that bacterial infection is unlikely.

  12. Evaluation of the Andromas Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry System for Identification of Aerobically Growing Gram-Positive Bacilli

    PubMed Central

    Farfour, E.; Leto, J.; Barritault, M.; Barberis, C.; Meyer, J.; Dauphin, B.; Le Guern, A.-S.; Leflèche, A.; Badell, E.; Guiso, N.; Leclercq, A.; Le Monnier, A.; Lecuit, M.; Rodriguez-Nava, V.; Bergeron, E.; Raymond, J.; Vimont, S.; Bille, E.; Carbonnelle, E.; Guet-Revillet, H.; Lécuyer, H.; Beretti, J.-L.; Vay, C.; Berche, P.; Ferroni, A.; Nassif, X.

    2012-01-01

    Matrix-associated laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) is a rapid and simple microbial identification method. Previous reports using the Biotyper system suggested that this technique requires a preliminary extraction step to identify Gram-positive rods (GPRs), a technical issue that may limit the routine use of this technique to identify pathogenic GPRs in the clinical setting. We tested the accuracy of the MALDI-TOF MS Andromas strategy to identify a set of 659 GPR isolates representing 16 bacterial genera and 72 species by the direct colony method. This bacterial collection included 40 C. diphtheriae, 13 C. pseudotuberculosis, 19 C. ulcerans, and 270 other Corynebacterium isolates, 32 L. monocytogenes and 24 other Listeria isolates, 46 Nocardia, 75 Actinomyces, 18 Actinobaculum, 11 Propionibacterium acnes, 18 Propionibacterium avidum, 30 Lactobacillus, 21 Bacillus, 2 Rhodococcus equi, 2 Erysipelothrix rhusiopathiae, and 38 other GPR isolates, all identified by reference techniques. Totals of 98.5% and 1.2% of non-Listeria GPR isolates were identified to the species or genus level, respectively. Except for L. grayi isolates that were identified to the species level, all other Listeria isolates were identified to the genus level because of highly similar spectra. These data demonstrate that rapid identification of pathogenic GPRs can be obtained without an extraction step by MALDI-TOF mass spectrometry. PMID:22692743

  13. Comparison of Asian porcine high fever disease isolates of porcine reproductive and respiratory syndrome virus to United States isolates for their ability to cause disease and secondary bacterial infection in swine

    USDA-ARS?s Scientific Manuscript database

    Epidemiologic data from Asian outbreaks of highly-pathogenic (HP) porcine reproductive and respiratory syndrome virus (PRRSV) suggest that disease severity was associated with both the virulence of the PRRSV isolates and secondary bacterial infections. Previous reports have indicated that U.S. isola...

  14. Calcium carbonates: induced biomineralization with controlled macromorphology

    NASA Astrophysics Data System (ADS)

    Meier, Aileen; Kastner, Anne; Harries, Dennis; Wierzbicka-Wieczorek, Maria; Majzlan, Juraj; Büchel, Georg; Kothe, Erika

    2017-11-01

    Biomineralization of (magnesium) calcite and vaterite by bacterial isolates has been known for quite some time. However, the extracellular precipitation has hardly ever been linked to different morphologies of the minerals that are observed. Here, isolates from limestone-associated groundwater, rock and soil were shown to form calcite, magnesium calcite or vaterite. More than 92 % of isolates were indeed able to form carbonates, while abiotic controls failed to form minerals. The crystal morphologies varied, including rhombohedra, prisms and pyramid-like macromorphologies. Different conditions like varying temperature, pH or media components, but also cocultivation to test for collaborative effects of sympatric bacteria, were used to differentiate between mechanisms of calcium carbonate formation. Single crystallites were cemented with bacterial cells; these may have served as nucleation sites by providing a basic pH at short distance from the cells. A calculation of potential calcite formation of up to 2 g L-1 of solution made it possible to link the microbial activity to geological processes.

  15. Tetrachloromethane-Degrading Bacterial Enrichment Cultures and Isolates from a Contaminated Aquifer.

    PubMed

    Penny, Christian; Gruffaz, Christelle; Nadalig, Thierry; Cauchie, Henry-Michel; Vuilleumier, Stéphane; Bringel, Françoise

    2015-07-02

    The prokaryotic community of a groundwater aquifer exposed to high concentrations of tetrachloromethane (CCl₄) for more than three decades was followed by terminal restriction fragment length polymorphism (T-RFLP) during pump-and-treat remediation at the contamination source. Bacterial enrichments and isolates were obtained under selective anoxic conditions, and degraded 10 mg·L(-1) CCl₄, with less than 10% transient formation of chloroform. Dichloromethane and chloromethane were not detected. Several tetrachloromethane-degrading strains were isolated from these enrichments, including bacteria from the Klebsiella and Clostridium genera closely related to previously described CCl₄ degrading bacteria, and strain TM1, assigned to the genus Pelosinus, for which this property was not yet described. Pelosinus sp. TM1, an oxygen-tolerant, Gram-positive bacterium with strictly anaerobic metabolism, excreted a thermostable metabolite into the culture medium that allowed extracellular CCl₄ transformation. As estimated by T-RFLP, phylotypes of CCl₄-degrading enrichment cultures represented less than 7%, and archaeal and Pelosinus strains less than 0.5% of the total prokaryotic groundwater community.

  16. Phenotypic and Molecular Antibiotic Resistance Determination of Airborne Coagulase Negative Staphylococcus spp. Strains from Healthcare Facilities in Southern Poland.

    PubMed

    Lenart-Boroń, Anna; Wolny-Koładka, Katarzyna; Stec, Joanna; Kasprowic, Andrzej

    2016-10-01

    This study assessed the antimicrobial resistance of airborne Staphylococcus spp. strains isolated from healthcare facilities in southern Poland. A total of 55 isolates, belonging to 10 coagulase-negative staphylococci (CoNS) species, isolated from 10 healthcare facilities (including hospitals and outpatient units) were included in the analysis. The most frequently identified species were Staphylococcus saprophyticus and Staphylococcus warneri, which belong to normal human skin flora, but can also be the cause of common and even severe nosocomial infections. Disk diffusion tests showed that the bacterial strains were most frequently resistant to erythromycin and tetracycline and only 18% of strains were susceptible to all tested antimicrobials. Polymerase chain reaction amplification of specific gene regions was used to determine the presence of the Macrolide-Lincosamide-Streptogramin resistance mechanisms in CoNS. The molecular analysis, conducted using specific primer pairs, identified the msrA1 gene, encoding active efflux pumps in bacterial cells, as the most frequent resistance gene. As many as seven antibiotic resistance genes were found in one isolate, whereas the most common number of resistance genes per isolate was five (n = 17). It may be concluded that drug resistance was widely spread among the tested strains, but the resulting antimicrobial resistance profile indicates that in the case of infection, the use of antibiotics from the basic antibiogram group will be effective in therapy. However, before administering treatment, determination of the specific antimicrobial resistance should be conducted, particularly in the case of hospitalized patients.

  17. Characterization of the Cultivable Gut Microflora in Wild-Caught 
Mediterranean Fish Species.

    PubMed

    Jammal, Ahmad; Bariche, Michel; Zu Dohna, Heinrich; Kambris, Zakaria

    2017-05-01

    Microflora of the gastrointestinal tract plays important roles in food digestion, nutrient absorption and in host defense against ingested pathogens. Several studies have focused on the microflora of farmed fishes, but the gut flora of wild fishes remains poorly characterized. The aim of this work was to provide an overview of the bacteria colonizing the gut of wild-caught fishes and to determine whether some bacterial species can be pathogenic. We isolated cultivable bacteria from fifteen wild-caught Mediterranean fish species corresponding to different habitat, diet and origin. Bacterial species identity was determined by 16s rRNA gene sequencing for the 61 isolates. The potential pathogenicity of isolated bacteria was investigated using fruit fly (Drosophila melanogaster) and zebrafish (Danio rerio) as model organisms. Two bacterial strains (Serratia sp. and Aeromonas salmonicida) were lethal when microinjected to Drosophila, while zebrafish did not develop any disease when exposed to any of 34 isolated bacterial strains. However, it was interesting to note that two bacterial strains (Shewanella and Arthrobacter) isolated from marine fishes were able to colonize the guts of freshwater zebrafish. The results of this study give an overview of the bacterial species found in the guts of wild fishes living off Beirut seashore. It shows that some parameters believed to be limiting factors to host-gut colonization by bacteria can be overcome by some species. This pilot study could be extended by sampling a larger number of fish species with several specimens per fish species, and by identifying uncultivable bacteria that reside in the fish guts. Our results may have implications for the utilization of certain bacterial species in fish farming or their use as bio-indicators for water and/or food quality.

  18. A primary assessment of the endophytic bacterial community in a xerophilous moss (Grimmia montana) using molecular method and cultivated isolates

    PubMed Central

    Liu, Xiao Lei; Liu, Su Lin; Liu, Min; Kong, Bi He; Liu, Lei; Li, Yan Hong

    2014-01-01

    Investigating the endophytic bacterial community in special moss species is fundamental to understanding the microbial-plant interactions and discovering the bacteria with stresses tolerance. Thus, the community structure of endophytic bacteria in the xerophilous moss Grimmia montana were estimated using a 16S rDNA library and traditional cultivation methods. In total, 212 sequences derived from the 16S rDNA library were used to assess the bacterial diversity. Sequence alignment showed that the endophytes were assigned to 54 genera in 4 phyla (Proteobacteria, Firmicutes, Actinobacteria and Cytophaga/Flexibacter/Bacteroids). Of them, the dominant phyla were Proteobacteria (45.9%) and Firmicutes (27.6%), the most abundant genera included Acinetobacter, Aeromonas, Enterobacter, Leclercia, Microvirga, Pseudomonas, Rhizobium, Planococcus, Paenisporosarcina and Planomicrobium. In addition, a total of 14 species belonging to 8 genera in 3 phyla (Proteobacteria, Firmicutes, Actinobacteria) were isolated, Curtobacterium, Massilia, Pseudomonas and Sphingomonas were the dominant genera. Although some of the genera isolated were inconsistent with those detected by molecular method, both of two methods proved that many different endophytic bacteria coexist in G. montana. According to the potential functional analyses of these bacteria, some species are known to have possible beneficial effects on hosts, but whether this is the case in G. montana needs to be confirmed. PMID:24948927

  19. A Model to Explain Plant Growth Promotion Traits: A Multivariate Analysis of 2,211 Bacterial Isolates

    PubMed Central

    da Costa, Pedro Beschoren; Granada, Camille E.; Ambrosini, Adriana; Moreira, Fernanda; de Souza, Rocheli; dos Passos, João Frederico M.; Arruda, Letícia; Passaglia, Luciane M. P.

    2014-01-01

    Plant growth-promoting bacteria can greatly assist sustainable farming by improving plant health and biomass while reducing fertilizer use. The plant-microorganism-environment interaction is an open and complex system, and despite the active research in the area, patterns in root ecology are elusive. Here, we simultaneously analyzed the plant growth-promoting bacteria datasets from seven independent studies that shared a methodology for bioprospection and phenotype screening. The soil richness of the isolate's origin was classified by a Principal Component Analysis. A Categorical Principal Component Analysis was used to classify the soil richness according to isolate's indolic compound production, siderophores production and phosphate solubilization abilities, and bacterial genera composition. Multiple patterns and relationships were found and verified with nonparametric hypothesis testing. Including niche colonization in the analysis, we proposed a model to explain the expression of bacterial plant growth-promoting traits according to the soil nutritional status. Our model shows that plants favor interaction with growth hormone producers under rich nutrient conditions but favor nutrient solubilizers under poor conditions. We also performed several comparisons among the different genera, highlighting interesting ecological interactions and limitations. Our model could be used to direct plant growth-promoting bacteria bioprospection and metagenomic sampling. PMID:25542031

  20. A multicentre study of meticillin-resistant Staphylococcus aureus in acute bacterial skin and skin-structure infections in China: susceptibility to ceftaroline and molecular epidemiology.

    PubMed

    Zhang, Hui; Xiao, Meng; Kong, Fanrong; O'Sullivan, Matthew V N; Mao, Lei-Li; Zhao, Hao-Ran; Zhao, Ying; Wang, He; Xu, Ying-Chun

    2015-04-01

    Ceftaroline is a novel cephalosporin with activity against Gram-positive organisms, including meticillin-resistant Staphylococcus aureus (MRSA). The objective of this study was to investigate the susceptibility to ceftaroline of hospital-associated MRSA (HA-MRSA) isolates causing acute bacterial skin and skin-structure infections (ABSSSIs) in China and to examine their relationship by genotyping. A total of 251 HA-MRSA isolates causing ABSSSIs were collected from a multicentre study involving 56 hospitals in 38 large cities across 26 provinces in mainland China. All isolates were characterised by multilocus sequence typing (MLST), staphylococcal cassette chromosome mec (SCCmec) typing, spa typing and detection of the Panton-Valentine leukocidin locus (lukS-PV and lukF-PV). Minimum inhibitory concentrations (MICs) of 14 antimicrobial agents, including ceftaroline, were determined by broth microdilution and were interpreted using Clinical and Laboratory Standards Institute breakpoints. The ceftaroline MIC50 and MIC90 values (MICs that inhibit 50% and 90% of the isolates, respectively) were 1 μg/mL and 2 μg/mL, respectively; 33.5% (n=84) of the isolates studied were ceftaroline-non-susceptible, with MICs of 2 μg/mL, but no isolate exhibited ceftaroline resistance (MIC>2 μg/mL). All of the ceftaroline-non-susceptible isolates belonged to the predominant HA-MRSA clones: 95.2% (n=80) from MLST clonal complex 8 (CC8), with the remaining 4.8% (n=4) from CC5. The high rate of non-susceptibility to ceftaroline amongst HA-MRSA causing ABSSSIs in China is concerning. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  1. Isolation of Pseudobutyrivibrio ruminis and Pseudobutyrivibrio xylanivorans from rumen of Creole goats fed native forage diet.

    PubMed

    Grilli, D J; Cerón, M E; Paez, S; Egea, V; Schnittger, L; Cravero, S; Escudero, M Sosa; Allegretti, L; Arenas, G N

    2013-09-01

    We isolated and identified functional groups of bacteria in the rumen of Creole goats involved in ruminal fermentation of native forage shrubs. The functional bacterial groups were evaluated by comparing the total viable, total anaerobic, cellulolytic, hemicellulolytic, and amylolytic bacterial counts in the samples taken from fistulated goats fed native forage diet (Atriplex lampa and Prosopis flexuosa). Alfalfa hay and corn were used as control diet. The roll tubes method increased the possibility of isolating and 16S rDNA gene sequencing allowed definitive identification of bacterial species involved in the ruminal fermentation. The starch and fiber contents of the diets influenced the number of total anaerobic bacteria and fibrolytic and amylolytic functional groups. Pseudobutyrivibrio ruminis and Pseudobutyrivibrio xylanivorans were the main species isolated and identified. The identification of bacterial strains involved in the rumen fermentation helps to explain the ability of these animals to digest fiber plant cell wall contained in native forage species.

  2. Hydrocarbon-Degrading Bacteria and the Bacterial Community Response in Gulf of Mexico Beach Sands Impacted by the Deepwater Horizon Oil Spill▿†‡

    PubMed Central

    Kostka, Joel E.; Prakash, Om; Overholt, Will A.; Green, Stefan J.; Freyer, Gina; Canion, Andy; Delgardio, Jonathan; Norton, Nikita; Hazen, Terry C.; Huettel, Markus

    2011-01-01

    A significant portion of oil from the recent Deepwater Horizon (DH) oil spill in the Gulf of Mexico was transported to the shoreline, where it may have severe ecological and economic consequences. The objectives of this study were (i) to identify and characterize predominant oil-degrading taxa that may be used as model hydrocarbon degraders or as microbial indicators of contamination and (ii) to characterize the in situ response of indigenous bacterial communities to oil contamination in beach ecosystems. This study was conducted at municipal Pensacola Beach, FL, where chemical analysis revealed weathered oil petroleum hydrocarbon (C8 to C40) concentrations ranging from 3.1 to 4,500 mg kg−1 in beach sands. A total of 24 bacterial strains from 14 genera were isolated from oiled beach sands and confirmed as oil-degrading microorganisms. Isolated bacterial strains were primarily Gammaproteobacteria, including representatives of genera with known oil degraders (Alcanivorax, Marinobacter, Pseudomonas, and Acinetobacter). Sequence libraries generated from oiled sands revealed phylotypes that showed high sequence identity (up to 99%) to rRNA gene sequences from the oil-degrading bacterial isolates. The abundance of bacterial SSU rRNA gene sequences was ∼10-fold higher in oiled (0.44 × 107 to 10.2 × 107 copies g−1) versus clean (0.024 × 107 to 1.4 × 107 copies g−1) sand. Community analysis revealed a distinct response to oil contamination, and SSU rRNA gene abundance derived from the genus Alcanivorax showed the largest increase in relative abundance in contaminated samples. We conclude that oil contamination from the DH spill had a profound impact on the abundance and community composition of indigenous bacteria in Gulf beach sands, and our evidence points to members of the Gammaproteobacteria (Alcanivorax, Marinobacter) and Alphaproteobacteria (Rhodobacteraceae) as key players in oil degradation there. PMID:21948834

  3. Bacterial community composition in Brazilian Anthrosols and adjacent soils characterized using culturing and molecular identification.

    PubMed

    O'Neill, B; Grossman, J; Tsai, M T; Gomes, J E; Lehmann, J; Peterson, J; Neves, E; Thies, J E

    2009-07-01

    Microbial community composition was examined in two soil types, Anthrosols and adjacent soils, sampled from three locations in the Brazilian Amazon. The Anthrosols, also known as Amazonian dark earths, are highly fertile soils that are a legacy of pre-Columbian settlement. Both Anthrosols and adjacent soils are derived from the same parent material and subject to the same environmental conditions, including rainfall and temperature; however, the Anthrosols contain high levels of charcoal-like black carbon from which they derive their dark color. The Anthrosols typically have higher cation exchange capacity, higher pH, and higher phosphorus and calcium contents. We used culture media prepared from soil extracts to isolate bacteria unique to the two soil types and then sequenced their 16S rRNA genes to determine their phylogenetic placement. Higher numbers of culturable bacteria, by over two orders of magnitude at the deepest sampling depths, were counted in the Anthrosols. Sequences of bacteria isolated on soil extract media yielded five possible new bacterial families. Also, a higher number of families in the bacteria were represented by isolates from the deeper soil depths in the Anthrosols. Higher bacterial populations and a greater diversity of isolates were found in all of the Anthrosols, to a depth of up to 1 m, compared to adjacent soils located within 50-500 m of their associated Anthrosols. Compared to standard culture media, soil extract media revealed diverse soil microbial populations adapted to the unique biochemistry and physiological ecology of these Anthrosols.

  4. Airsacculitis in fourteen juvenile southern Bornean orangutans (Pongo pygmaeus wurmbii).

    PubMed

    Lawson, Becki; Garriga, Rosa; Galdikas, Biruté M F

    2006-06-01

    Airsacculitis is a clinical condition which has been reported in a range of primates species, including orangutans. This report describes the occurence and management of airsacculitis in fourteen juvenile Southern Bornean orangutans (Pongo pygmaeus wurmbii) that presented beween January 1st 1999 and January 31st 2001 at the Orangutan Care Center and Quarantine (OCC&Q), Kalimantan Tengah, Indonesia (S 2 degrees 43' 49.2"; E 111 degrees 38' 54.2"). Details of the signalment, clinical history, presenting clinical signs, clinicopathological findings and bacterial isolates in each case were reviewed. Cough, halitosis and nasal discharge were the most frequently observed clinical signs. A range of Gram-negative bacteria were isolated from infected air sacs, including Pseudomonas sp., Enterobacter sp. and Klebsiella pneumoniae. A simple drainage and lavage technique was used in cases where surgical intervention was indicated, in combination with local and systemic antibiotic therapy. The importance of early diagnosis, prompt management and antibiotic selection, based on bacterial culture and sensitivity profiles, is outlined.

  5. Effects of Bacterial Microflora of the Lower Digestive Tract of Free-Range Waterfowl on Influenza Virus Activation ▿

    PubMed Central

    King, Marcus D.; Guentzel, M. Neal; Arulanandam, Bernard P.; Bodour, Adria A.; Brahmakshatriya, Vinayak; Lupiani, Blanca; Chambers, James P.

    2011-01-01

    Proteolytic cleavage activation of influenza virus hemagglutinin (HA0) is required for cell entry via receptor-mediated endocytosis. Despite numerous studies describing bacterial protease-mediated influenza A viral activation in mammals, very little is known about the role of intestinal bacterial flora of birds in hemagglutinin cleavage/activation. Therefore, the cloaca of wild waterfowl was examined for (i) representative bacterial types and (ii) their ability to cleave in a “trypsin-like” manner the precursor viral hemagglutinin molecule (HA0). Using radiolabeled HA0, bacterial secretion-mediated trypsin-like conversion of HA0 to HA1 and HA2 peptide products was observed to various degrees in 42 of 44 bacterial isolates suggestive of influenza virus activation in the cloaca of wild waterfowl. However, treatment of uncleaved virus with all bacterial isolates gave rise to substantially reduced emergent virus progeny compared with what was expected. Examination of two isolates exhibiting pronounced trypsin-like conversion of HA0 to HA1 and HA2 peptide products and low infectivity revealed lipase activity to be present. Because influenza virus possesses a complex lipid envelope, the presence of lipid hydrolase activity could in part account for the observed less-than-expected level of viable progeny. A thorough characterization of respective isolate protease HA0 hydrolysis products as well as other resident activities (i.e., lipase) is ongoing such that the role of these respective contributors in virus activation/inactivation can be firmly established. PMID:21531837

  6. Dual Induction of New Microbial Secondary Metabolites by Fungal Bacterial Co-cultivation.

    PubMed

    Wakefield, Jennifer; Hassan, Hossam M; Jaspars, Marcel; Ebel, Rainer; Rateb, Mostafa E

    2017-01-01

    The frequent re-isolation of known compounds is one of the major challenges in drug discovery. Many biosynthetic genes are not expressed under standard culture conditions, thus limiting the chemical diversity of microbial compounds that can be obtained through fermentation. On the other hand, the competition during co-cultivation of two or more different microorganisms in most cases leads to an enhanced production of constitutively present compounds or an accumulation of cryptic compounds that are not detected in axenic cultures of the producing strain under different fermentation conditions. Herein, we report the dual induction of newly detected bacterial and fungal metabolites by the co-cultivation of the marine-derived fungal isolate Aspergillus fumigatus MR2012 and two hyper-arid desert bacterial isolates Streptomyces leeuwenhoekii strain C34 and strain C58. Co-cultivation of the fungal isolate MR2012 with the bacterial strain C34 led to the production of luteoride D, a new luteoride derivative and pseurotin G, a new pseurotin derivative in addition to the production of terezine D and 11- O -methylpseurotin A which were not traced before from this fungal strain under different fermentation conditions. In addition to the previously detected metabolites in strain C34, the lasso peptide chaxapeptin was isolated under co-culture conditions. The gene cluster for the latter compound had been identified through genome scanning, but it had never been detected before in the axenic culture of strain C34. Furthermore, when the fungus MR2012 was co-cultivated with the bacterial strain C58, the main producer of chaxapeptin, the titre of this metabolite was doubled, while additionally the bacterial metabolite pentalenic acid was detected and isolated for the first time from this strain, whereas the major fungal metabolites that were produced under axenic culture were suppressed. Finally, fermentation of the MR2012 by itself led to the isolation of the new diketopiperazine metabolite named brevianamide X.

  7. Antibacterial Activity of the Isolation Ethyl Acetate-Soluble Extract Noni Fruit (Morindra citrifolia L.) against Meat Bacterial Decay

    NASA Astrophysics Data System (ADS)

    Nugraheni, E. R.; Nurrakhman, M. B. E.; Munawaroh, H.; Saputri, L.

    2017-02-01

    Noni (Morindra citrifolia L.) is native to Indonesia which have medicinal properties. One of them as an antibacterial. This study aims to determine the antibacterial activity of isolates from the ethanol extract noni fruit to bacterial decay meat is Bacillus licheniformis, Klebsiella pneumonia, Bacillus alvei, Acinetobacter calcoaceticus, and Staphylococcus saprophyticus. The extraction process using the maceration method, and then made a partition by centrifugation ethyl acetate. Soluble part partition showed bacterial growth inhibition activity of the strong to very strong. Furthermore, the ethyl acetate soluble partition on preparative thin layer chromatography produced 5 isolates. Isolates obtained antibacterial activity test performed with a concentration of 20% and 30%. The results of antibacterial test against bacteria test isolates, showing isolates A can not inhibit the growth of bacteria, isolates B and C have medium activity and strong, isolates D and E isolates have activity against bacteria that were tested. MIC and MBC test results showed that the isolates B gives an inhibitory effect (bacteriostatic) against all bacteria. Content analysis of compounds by TLC using the reagents cerium (IV) sulfate indicates a phenol group. Isolates B contains a major compound which can be used as an antibacterial candidate in food preservation replace chemical preservatives.

  8. Aerobic bacteria from mucous membranes, ear canals, and skin wounds of feral cats in Grenada, and the antimicrobial drug susceptibility of major isolates.

    PubMed

    Hariharan, Harry; Matthew, Vanessa; Fountain, Jacqueline; Snell, Alicia; Doherty, Devin; King, Brittany; Shemer, Eran; Oliveira, Simone; Sharma, Ravindra N

    2011-03-01

    In a 2-year period 54 feral cats were captured in Grenada, West Indies, and a total of 383 samples consisting of swabs from rectum, vagina, ears, eyes, mouth, nose and wounds/abscesses, were cultured for aerobic bacteria and campylobacters. A total of 251 bacterial isolates were obtained, of which 205 were identified to species level and 46 to genus level. A commercial bacterial identification system (API/Biomerieux), was used for this purpose. The most common species was Escherichia coli (N=60), followed by Staphylococcus felis/simulans (40), S. hominis (16), S. haemolyticus (12), Streptococcus canis (9), Proteus mirabilis (8), Pasteurella multocida (7), Streptococcus mitis (7), Staphylococcus xylosus (7), S. capitis (6), S. chromogenes (4), S. sciuri (3), S. auricularis (2), S. lentus (2), S. hyicus (2), Streptococcus suis (2) and Pseudomonas argentinensis (2). Sixteen other isolates were identified to species level. A molecular method using 16S rRNA sequencing was used to confirm/identify 22 isolates. Salmonella or campylobacters were not isolated from rectal swabs. E. coli and S. felis/simulans together constituted 50% of isolates from vagina. S. felis/simulans was the most common species from culture positive ear and eye samples. P. multocida was isolated from 15% of mouth samples. Coagulase-negative staphylococci were the most common isolates from nose and wound swabs. Staphylococcus aureus, or S. intemedius/S. pseudintermedius were not isolated from any sample. Antimicrobial drug resistance was minimal, most isolates being susceptible to all drugs tested against, including tetracycline. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Evaluation of a Method Using Three Genomic Guided Escherichia coli Markers for Phylogenetic Typing of E. coli Isolates of Various Genetic Backgrounds

    PubMed Central

    Hamamoto, Kouta; Ueda, Shuhei; Yamamoto, Yoshimasa

    2015-01-01

    Genotyping and characterization of bacterial isolates are essential steps in the identification and control of antibiotic-resistant bacterial infections. Recently, one novel genotyping method using three genomic guided Escherichia coli markers (GIG-EM), dinG, tonB, and dipeptide permease (DPP), was reported. Because GIG-EM has not been fully evaluated using clinical isolates, we assessed this typing method with 72 E. coli collection of reference (ECOR) environmental E. coli reference strains and 63 E. coli isolates of various genetic backgrounds. In this study, we designated 768 bp of dinG, 745 bp of tonB, and 655 bp of DPP target sequences for use in the typing method. Concatenations of the processed marker sequences were used to draw GIG-EM phylogenetic trees. E. coli isolates with identical sequence types as identified by the conventional multilocus sequence typing (MLST) method were localized to the same branch of the GIG-EM phylogenetic tree. Sixteen clinical E. coli isolates were utilized as test isolates without prior characterization by conventional MLST and phylogenetic grouping before GIG-EM typing. Of these, 14 clinical isolates were assigned to a branch including only isolates of a pandemic clone, E. coli B2-ST131-O25b, and these results were confirmed by conventional typing methods. Our results suggested that the GIG-EM typing method and its application to phylogenetic trees might be useful tools for the molecular characterization and determination of the genetic relationships among E. coli isolates. PMID:25809972

  10. Evaluation of a Method Using Three Genomic Guided Escherichia coli Markers for Phylogenetic Typing of E. coli Isolates of Various Genetic Backgrounds.

    PubMed

    Hamamoto, Kouta; Ueda, Shuhei; Yamamoto, Yoshimasa; Hirai, Itaru

    2015-06-01

    Genotyping and characterization of bacterial isolates are essential steps in the identification and control of antibiotic-resistant bacterial infections. Recently, one novel genotyping method using three genomic guided Escherichia coli markers (GIG-EM), dinG, tonB, and dipeptide permease (DPP), was reported. Because GIG-EM has not been fully evaluated using clinical isolates, we assessed this typing method with 72 E. coli collection of reference (ECOR) environmental E. coli reference strains and 63 E. coli isolates of various genetic backgrounds. In this study, we designated 768 bp of dinG, 745 bp of tonB, and 655 bp of DPP target sequences for use in the typing method. Concatenations of the processed marker sequences were used to draw GIG-EM phylogenetic trees. E. coli isolates with identical sequence types as identified by the conventional multilocus sequence typing (MLST) method were localized to the same branch of the GIG-EM phylogenetic tree. Sixteen clinical E. coli isolates were utilized as test isolates without prior characterization by conventional MLST and phylogenetic grouping before GIG-EM typing. Of these, 14 clinical isolates were assigned to a branch including only isolates of a pandemic clone, E. coli B2-ST131-O25b, and these results were confirmed by conventional typing methods. Our results suggested that the GIG-EM typing method and its application to phylogenetic trees might be useful tools for the molecular characterization and determination of the genetic relationships among E. coli isolates. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Federal and State Quarantine and Isolation Authority

    DTIC Science & Technology

    2006-08-16

    agents that are naturally occurring or released during a terrorist attack, the isolation of infected persons, and the quarantine of certain cities or...http://www.cdc.gov/ncidod/dq/sars_facts/isolationquarantine.pdf]. 9 42 U.S.C. § 264(e) and 42 C.F.R. § 70.2. agent from infecting others.5 The... agents ,” which include “anthrax, ebola, plague, smallpox, tularemia, or other bacterial, fungal, rickettsial, or viral agent , biological toxin, or other

  12. Properties of Polyhydroxyalkanoate Granules and Bioemulsifiers from Pseudomonas sp. and Burkholderia sp. Isolates Growing on Glucose.

    PubMed

    Sacco, Laís Postai; Castellane, Tereza Cristina Luque; Lopes, Erica Mendes; de Macedo Lemos, Eliana Gertrudes; Alves, Lúcia Maria Carareto

    2016-03-01

    A Burkholderia and Pseudomonas species designated as AB4 and AS1, respectively, were isolated from soil containing decomposing straw or sugar cane bagasse collected from Brazil. This study sought to evaluate the capacities of culture media, cell-free medium, and crude lysate preparations (containing PHB inclusion bodies) from bacterial cell cultures to stabilize emulsions with several hydrophobic compounds. Four conditions showed good production of bioemulsifiers (E24 ≥ 50 %), headed by substantially cell-free media from bacterial cell cultures in which bacterial isolates from Burkholderia sp. strain AB4 and Pseudomonas sp. strain AS1 were grown. Our results revealed that the both isolates (AB4 and AS1 strains) exhibited high emulsification indices (indicating usefulness in bioremediation) and good stabilities.

  13. Bactericidal efficacy of molybdenum oxide nanoparticles against antimicrobial-resistant pathogens.

    PubMed

    Lopes, E; Piçarra, S; Almeida, P L; de Lencastre, H; Aires-de-Sousa, M

    2018-06-25

    Multidrug-resistant bacteria pose a major threat to effective antibiotics and alternatives to fight multidrug-resistant pathogens are needed. We synthetized molybdenum oxide (MoO3) nanoparticles (NP) and determined their antibacterial activity against 39 isolates: (i) eight Staphylococcus aureus, including representatives of methicillin-resistant S. aureus epidemic clones; (ii) six enterococci, including vancomycin-resistant isolates; and (iii) 25 Gram-negative isolates (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, Enterobacter cloacae), including extended spectrum beta-lactamases and carbapenemases producers. All isolates showed a MoO3 NP MIC of 700-800 mg l -1 . MoO3 NP produced a clear inhibition zone for S. aureus and all Gram-negative isolates at concentrations ≥25 mg ml -1 and ≥50 mg ml -1 for enterococci. When the NP solutions were adjusted to pH ~7, the biocidal activity was completely abolished. MoO3 NP create an acidic pH and show a universal antimicrobial activity against susceptible and resistant isolates belonging to the most relevant bacterial species responsible for hospital-acquired infections.

  14. Medicinal Plants Used by a Mbyá-Guarani Tribe Against Infections: Activity on KPC-Producing Isolates and Biofilm-Forming Bacteria.

    PubMed

    Brandelli, Clara Lia Costa; Ribeiro, Vanessa Bley; Zimmer, Karine Rigon; Barth, Afonso Luís; Tasca, Tiana; Macedo, Alexandre José

    2015-11-01

    The traditional use of medicinal plants for treatment of infectious diseases by an indigenous Mbyá-Guarani tribe from South Brazil was assessed by evaluating the antibiotic and antibiofilm activities against relevant bacterial pathogens. Aqueous extracts from 10 medicinal plants were prepared according to indigenous Mbyá-Guarani traditional uses. To evaluate antibiotic (OD600) and antibiofilm (crystal violet method) activities, Pseudomonas aeruginosa ATCC 27853, Staphylococcus epidermidis ATCC 35984 and seven multi-drug resistant Klebsiella pneumoniae carbapenemase (KPC)-producing bacterial clinical isolates were challenged with the extracts. Furthermore, the susceptibility profile of KPC-producing bacteria and the ability of these isolates to form biofilm were evaluated. The plants Campomanesia xanthocarpa, Maytenus ilicifolia, Bidens pilosa and Verbena sp. showed the best activity against bacterial growth and biofilm formation. The majority of KPC-producing isolates, which showed strong ability to form biofilm and a multidrug resistance profile, was inhibited by more than 50% by some extracts. The Enterobacter cloacae (KPC 05) clinical isolate was the only one resistant to all extracts. This study confirms the importance of indigenous traditional medicinal knowledge and describes for the first time the ability of these plants to inhibit biofilm formation and/or bacterial growth of multi-drug resistant KPC-producing isolates.

  15. Diversity of halophilic bacteria isolated from Rambla Salada, Murcia (Spain).

    PubMed

    Luque, Rocío; Béjar, Victoria; Quesada, Emilia; Llamas, Inmaculada

    2014-12-01

    In this study we analyzed the diversity of the halophilic bacteria community from Rambla Salada during the years 2006 and 2007. We collected a total of 364 strains, which were then identified by means of phenotypic tests and by the hypervariable V1-V3 region of the 16S rRNA sequences (around 500 bp). The ribosomal data showed that the isolates belonged to Proteobacteria (72.5%), Firmicutes (25.8%), Actinobacteria (1.4%), and Bacteroidetes (0.3%) phyla, with Gammaproteobacteria the predominant class. Halomonas was the most abundant genus (41.2% isolates) followed by Marinobacter (12.9% isolates) and Bacillus (12.6% isolates). In addition, 9 strains showed <97% sequence identity with validly described species and may well represent new taxa. The diversity of the bacterial community analyzed with the DOTUR package determined 139 operational taxonomic units at 3% genetic distance level. Rarefaction curves and diversity indexes demonstrated that our collection of isolates adequately represented all the bacterial community at Rambla Salada that can be grown under the conditions used in this work. We found that the sampling season influenced the composition of the bacterial community, and bacterial diversity was higher in 2007; this fact could be related to lower salinity at this sampling time.

  16. Evaluation of Bacillus spp. as dough starters for Adhirasam - A traditional rice based fermented food of Southern India.

    PubMed

    Anisha, Anvar Hussain Noorul; Anandham, Rangasamy; Kwon, Soon Woo; Gandhi, Pandiyan Indira; Gopal, Nellaiappan Olaganathan

    2015-01-01

    Adhirasam is a cereal based, doughnut shaped, deep fried dessert consumed in the southern regions of India. The dough used to prepare adhirasam is fermented and contains rice flour and jaggery. The aim of the present study was to characterize the cultivable bacteria associated with this fermented dough and to identify a suitable starter culture for the production of quality adhirasam. In total, one hundred and seventy bacterial isolates were recovered from de Man Rogosa Sharp (MRS) agar, nutrient agar, lysogeny agar and tryptic soy agar media. Out of the 170 bacterial isolates, sixteen isolates were selected based on their ability to tolerate glucose and sucrose. All the bacterial isolates tolerated 15% glucose and 30% sucrose. Analyses of 16S rDNA gene sequences of the bacterial isolates showed that the dominant cultivable bacteria were members of the genus Bacillus. These strains were further used as starters and tested for their ability to ferment rice flour with jaggery to produce adhirasam dough. Organoleptic evaluation was carried out to choose the best starter strain. Adhirasam prepared from Bacillus subtilis isolates S4-P11, S2-G2-A1 and S1-G15, Bacillus tequilensis isolates S2-H16, S3-P9, S3-G10 and Bacillus siamensis isolate S2-G13 were highly acceptable to consumers. Adhirasam prepared using these starter cultures had superior product characteristics such as softness in texture, flavor and enhanced aroma and sweet taste.

  17. [Acute bacterial parotitis in infants under 3 months of age: a retrospective study in a pediatric tertiary care center].

    PubMed

    Makhoul, J; Lorrot, M; Teissier, N; Delacroix, G; Doit, C; Bingen, E; Faye, A

    2011-12-01

    Acute bacterial parotitis is a rare infectious disease in infants under 3 months of age. To describe the clinical characteristics and the course of acute bacterial parotitis in infants less than 3 months old. Infants under 3 months of age, hospitalized at Robert Debré university hospital, Paris, France, between January 2005 and December 2009 for acute bacterial parotitis, were included in a retrospective study. Five infants less than 3 months of age were included in this study, for a frequency of 2.5/1000 hospitalizations in this age group. All were born at term, 4 of 5 were male. Three of the 5 patients had specific clinical signs of parotitis on admission. One patient had septic shock on admission. The ultrasound confirmed the parotitis in all cases. No parotid abscess was demonstrated on imaging. All patients had at least one abnormal inflammatory biological test (WBC, CRP, PCT). Bacteria were identified in 4 of 5 cases: Staphylococcus aureus was isolated in the pus culture of the Stenon duct in 2 patients and a group B Streptococcus was isolated from blood culture of 2 other patients. The duration of intravenous antibiotic therapy varied from 4 to 13 days, and the total duration of antibiotic therapy was between 10 and 16 days. No surgical procedures were needed. Acute bacterial parotitis in infants under 3 months of age might be associated with localized infections due to S. aureus, but also with a more severe clinical presentation due to group B streptococcus infection. Early diagnosis and appropriate antibiotic therapy might prevent the progression to serious complications. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  18. Antimicrobial resistance patterns of bacteria isolated from canine urinary samples submitted to a New Zealand veterinary diagnostic laboratory between 2005-2012.

    PubMed

    McMeekin, C H; Hill, K E; Gibson, I R; Bridges, J P; Benschop, J

    2017-03-01

    To identify and describe culture and antimicrobial resistance (AMR) patterns in bacteria isolated from canine urinary samples submitted to a New Zealand veterinary diagnostic laboratory. Records from a veterinary diagnostic laboratory were examined for bacterial isolates cultured from canine urine samples between January 2005 and December 2012. Culture and susceptibility results were compiled with information on the age, sex and breed of dog. Repeat submissions were removed. Susceptibility was assessed using results of the Kirby-Bauer disk diffusion method, for a standard panel including amoxicillin-clavulanic acid (AMC), cefovecin (from 2010-2012), cephalothin, clindamycin, enrofloxacin and trimethoprim-sulphonamide (TMS). A total of 5,786 urine samples were submitted for analysis, and 3,135 bacterial isolates were cultured from 2,184 samples. Of these 3,135 isolates, 1,104 (35.2%) were Escherichia coli, 442 (14.1%) were Staphylococcus spp., 357 (11.4%) Proteus mirabilis and 276 (8.8%) were Enterococcus spp. The frequency of culture-positive samples increased with increasing age in both female and male dogs (p<0.001). The percentage of E. coli isolates resistant to AMC and cephalothin increased between 2005 and 2012 (p<0.001), as did resistance to enrofloxacin (p=0.022), but there was no change in resistance to TMS (p=0.696). Enrofloxacin was the antimicrobial with the least resistance shown by the four most common bacteria isolated during the course of the study. The results of this study provide important regional information regarding the prevalence of bacterial uropathogens and their susceptibility patterns. There was an increase in resistance to some commonly used antimicrobials in the treatment of urinary tract infections. Having access to regional antimicrobial susceptibility results is crucial when forming guidelines for the use of antimicrobials for the treatment of urinary tract infections. Given changes in practising habits and antimicrobial usage over time, ongoing monitoring and surveillance of resistance in pathogens is needed.

  19. Diverse bacteria isolated from microtherm oil-production water.

    PubMed

    Sun, Ji-Quan; Xu, Lian; Zhang, Zhao; Li, Yan; Tang, Yue-Qin; Wu, Xiao-Lei

    2014-02-01

    In total, 435 pure bacterial strains were isolated from microtherm oil-production water from the Karamay Oilfield, Xinjiang, China, by using four media: oil-production water medium (Cai medium), oil-production water supplemented with mineral salt medium (CW medium), oil-production water supplemented with yeast extract medium (CY medium), and blood agar medium (X medium). The bacterial isolates were affiliated with 61 phylogenetic groups that belong to 32 genera in the phyla Actinobacteria, Firmicutes, and Proteobacteria. Except for the Rhizobium, Dietzia, and Pseudomonas strains that were isolated using all the four media, using different media led to the isolation of bacteria with different functions. Similarly, nonheme diiron alkane monooxygenase genes (alkB/alkM) also clustered according to the isolation medium. Among the bacterial strains, more than 24 % of the isolates could use n-hexadecane as the sole carbon source for growth. For the first time, the alkane-degrading ability and alkB/alkM were detected in Rhizobium, Rhodobacter, Trichococcus, Micrococcus, Enterococcus, and Bavariicoccus strains, and the alkM gene was detected in Firmicutes strains.

  20. Evaluation of Microorganisms Cultured from Injured and Repressed Tissue Regeneration Sites in Endangered Giant Aquatic Ozark Hellbender Salamanders

    PubMed Central

    Nickerson, Cheryl A.; Ott, C. Mark; Castro, Sarah L.; Garcia, Veronica M.; Molina, Thomas C.; Briggler, Jeffrey T.; Pitt, Amber L.; Tavano, Joseph J.; Byram, J. Kelly; Barrila, Jennifer; Nickerson, Max A.

    2011-01-01

    Investigation into the causes underlying the rapid, global amphibian decline provides critical insight into the effects of changing ecosystems. Hypothesized and confirmed links between amphibian declines, disease, and environmental changes are increasingly represented in published literature. However, there are few long-term amphibian studies that include data on population size, abnormality/injury rates, disease, and habitat variables to adequately assess changes through time. We cultured and identified microorganisms isolated from abnormal/injured and repressed tissue regeneration sites of the endangered Ozark Hellbender, Cryptobranchus alleganiensis bishopi, to discover potential causative agents responsible for their significant decline in health and population. This organism and our study site were chosen because the population and habitat of C. a. bishopi have been intensively studied from 1969–2009, and the abnormality/injury rate and apparent lack of regeneration were established. Although many bacterial and fungal isolates recovered were common environmental organisms, several opportunistic pathogens were identified in association with only the injured tissues of C.a. bishopi. Bacterial isolates included Aeromonas hydrophila, a known amphibian pathogen, Granulicetella adiacens, Gordonai terrae, Stenotrophomonas maltophilia, Aerococcus viridans, Streptococcus pneumoniae and a variety of Pseudomonads, including Pseudomonas aeruginosa, P. stutzeri, and P. alcaligenes. Fungal isolates included species in the genera Penicillium, Acremonium, Cladosporium, Curvularia, Fusarium, Streptomycetes, and the Class Hyphomycetes. Many of the opportunistic pathogens identified are known to form biofilms. Lack of isolation of the same organism from all wounds suggests that the etiological agent responsible for the damage to C. a. bishopi may not be a single organism. To our knowledge, this is the first study to profile the external microbial consortia cultured from a Cryptobranchid salamander. The incidence of abnormalities/injury and retarded regeneration in C. a. bishopi may have many contributing factors including disease and habitat degradation. Results from this study may provide insight into other amphibian population declines. PMID:22205979

  1. Characterization of bacterial etiologic agents of biofilm formation in medical devices in critical care setup.

    PubMed

    Revdiwala, Sangita; Rajdev, Bhaumesh M; Mulla, Summaiya

    2012-01-01

    Background. Biofilms contaminate catheters, ventilators, and medical implants; they act as a source of disease for humans, animals, and plants. Aim. Critical care units of any healthcare institute follow various interventional strategies with use of medical devices for the management of critical cases. Bacteria contaminate medical devices and form biofilms. Material and Methods. The study was carried out on 100 positive bacteriological cultures of medical devices which were inserted in hospitalized patients. The bacterial isolates were processed as per microtitre plate. All the isolates were subjected to antibiotic susceptibility testing by VITEK 2 compact automated systems. Results. Out of the total 100 bacterial isolates tested, 88 of them were biofilm formers. A 16-20-hour incubation period was found to be optimum for biofilm development. 85% isolates were multidrug resistants and different mechanisms of bacterial drug resistance like ESBL, carbapenemase, and MRSA were found among isolates. Conclusion. Availability of nutrition in the form of glucose enhances the biofilm formation by bacteria. Time and availability of glucose are important factors for assessment of biofilm progress. It is an alarm for those who are associated with invasive procedures and indwelling medical devices especially in patients with low immunity.

  2. Pseudomonas, Pantoea and Cupriavidus isolates induce calcium carbonate precipitation for biorestoration of ornamental stone.

    PubMed

    Daskalakis, M I; Magoulas, A; Kotoulas, G; Catsikis, I; Bakolas, A; Karageorgis, A P; Mavridou, A; Doulia, D; Rigas, F

    2013-08-01

    Bacterially induced calcium carbonate precipitation from various isolates was investigated aiming at developing an environmentally friendly technique for ornamental stone protection and restoration. Micro-organisms isolated from stone samples and identified using 16S rDNA and biochemical tests promoted calcium carbonate precipitation in solid and novel liquid growth media. Biomineral morphology was studied on marble samples with scanning electron microscopy. Most isolates demonstrated specimen weight increase, covering partially or even completely the marble surfaces mainly with vaterite. The conditions under which vaterite precipitated and its stability throughout the experimental runs are presented. A growth medium that facilitated bacterial growth of different species and promoted biomineralization was formulated. Most isolates induced biomineralization of CaCO3 . Micro-organisms may actually be a milestone in the investigation of vaterite formation facilitating our understanding of geomicrobiological interactions. Pseudomonas, Pantoea and Cupriavidus strains could be candidates for bioconsolidation of ornamental stone protection. Characterization of biomineralization capacity of different bacterial species improves understanding of the bacterially induced mineralization processes and enriches the list of candidates for biorestoration applications. Knowledge of biomineral morphology assists in differentiating mineral from biologically induced precipitates. © 2013 The Society for Applied Microbiology.

  3. New Medium for Isolation of Bacteria From Cement Kiln Dust with a Potential to Apply in Bio-Concrete

    NASA Astrophysics Data System (ADS)

    Alshalif, A. F.; Irwan, J. M.; Othman, N.; Al-Gheethi, A.

    2018-04-01

    The present study aimed to introduce a new isolation medium named kiln dust medium (KDM) for recovering of bacteria from cement kiln dust with high pH (>pH 11) without the need for nutrients additives. The cement kiln dust samples were collected from five different areas of Cement Industries of Malaysia Berhad (CIMA). The bacterial isolates were recovered on KDM by direct plating technique. The chemical components for all collected samples were identified using X-ray fluorescence (XRF). The primary identification for the bacterial isolates indicated that these bacteria belongs to Bacillus spp. Based on the morphological characteristics. The growth curve of the bacterial strains was monitored using the optical density (OD) with 650 nm wavelength, which in role confirmed that all isolated bacteria had the ability to grow successfully in the proposed medium. The ability of the bacterial strains to grow at high pH reflects their potential in the bio-concrete applications (aerated and non-aerated concrete). These findings indicated that the cement kiln dust samples from Cement Industries represent the most appropriate source for bacteria used in the bioconcrete.

  4. Biodegradation of polyether algal toxins–Isolation of potential marine bacteria

    PubMed Central

    SHETTY, KATEEL G.; HUNTZICKER, JACQUELINE V.; REIN, KATHLEEN S.; JAYACHANDRAN, KRISH

    2012-01-01

    Marine algal toxins such as brevetoxins, okadaic acid, yessotoxin, and ciguatoxin are polyether compounds. The fate of polyether toxins in the aqueous phase, particularly bacterial biotransformation of the toxins, is poorly understood. An inexpensive and easily available polyether structural analog salinomycin was used for enrichment and isolation of potential polyether toxin degrading aquatic marine bacteria from Florida bay area, and from red tide endemic sites in the South Florida Gulf coast. Bacterial growth on salinomycin was observed in most of the enrichment cultures from both regions with colony forming units ranging from 0 to 6 × 107 per mL. The salinomycin biodegradation efficiency of bacterial isolates determined using LC-MS ranged from 22% to 94%. Selected bacterial isolates were grown in media with brevetoxin as the sole carbon source to screen for brevetoxin biodegradation capability using ELISA. Out of the two efficient salinomycin biodegrading isolates MB-2 and MB-4, maximum brevetoxin biodegradation efficiency of 45% was observed with MB-4, while MB-2 was unable to biodegrade brevetoxin. Based on 16S rRNA sequence similarity MB-4 was found have a match with Chromohalobacter sp. PMID:20954040

  5. Evaluation of isolation methods for bacterial RNA quantitation in Dickeya dadantii

    USDA-ARS?s Scientific Manuscript database

    Dickeya dadantii is a difficult source for RNA of a sufficient quality for real-time qRT-PCR analysis of gene expression. Three RNA isolation methods were evaluated for their ability to produce high-quality RNA from this bacterium. Bacterial lysis with Trizol using standard protocols consistently ga...

  6. Identification and characterization of multidrug-resistant Salmonella enterica serotype Albert isolates in the United States

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica is one of the most common causes of bacterial foodborne illness in the United States. Although most Salmonella infections are self-limiting, antimicrobial treatment is critical for invasive salmonellosis. Primary antimicrobial treatment options include fluoroquinolones or extende...

  7. Identification and Antimicrobial Resistance of Bacteria Isolated from Probiotic Products Used in Shrimp Culture.

    PubMed

    Noor Uddin, Gazi Md; Larsen, Marianne Halberg; Christensen, Henrik; Aarestrup, Frank M; Phu, Tran Minh; Dalsgaard, Anders

    2015-01-01

    Probiotics are increasingly used in aquaculture to control diseases and improve feed digestion and pond water quality; however, little is known about the antimicrobial resistance properties of such probiotic bacteria and to what extent they may contribute to the development of bacterial resistance in aquaculture ponds. Concerns have been raised that the declared information on probiotic product labels are incorrect and information on bacterial composition are often missing. We therefore evaluated seven probiotics commonly used in Vietnamese shrimp culture for their bacterial species content, phenotypic antimicrobial resistance and associated transferable resistance genes. The bacterial species was established by 16S rRNA sequence analysis of 125 representative bacterial isolates. MIC testing was done for a range of antimicrobials and whole genome sequencing of six multiple antimicrobial resistant Bacillus spp. used to identify resistance genes and genetic elements associated with horizontal gene transfer. Thirteen bacterial species declared on the probiotic products could not be identified and 11 non-declared Bacillus spp. were identified. Although our culture-based isolation and identification may have missed a few bacterial species present in the tested products this would represent minor bias, but future studies may apply culture independent identification methods like pyro sequencing. Only 6/60 isolates were resistant to more than four antimicrobials and whole genome sequencing showed that they contained macrolide (ermD), tetracycline (tetL), phenicol (fexA) and trimethoprim (dfrD, dfrG and dfrK) resistance genes, but not known structures associated with horizontal gene transfer. Probiotic bacterial strains used in Vietnamese shrimp culture seem to contribute with very limited types and numbers of resistance genes compared to the naturally occurring bacterial species in aquaculture environments. Approval procedures of probiotic products must be strengthened through scientific-based efficacy trials and product labels should allow identification of individual bacterial strains and inform the farmer on specific purpose, dosage and correct application measures.

  8. Phenotypic Characterization and Antibiogram of CSF Isolates in Acute Bacterial Meningitis.

    PubMed

    Modi, Syamal; Anand, Amit Kumar

    2013-12-01

    Acute bacterial meningitis (ABM) is a medical emergency, which warrants an early diagnosis and an aggressive therapy. Despite the availability of potent newer antibiotics, the mortality rate caused by acute bacterial meningitis remains significantly high in India and in other developing countries, which ranges from 16 - 32%. There is a need of a periodic review of bacterial meningitis worldwide, since the pathogens which are responsible for the infection may vary with time, geography and the age of the patient. Our aim was to study the bacterial profiles and antimicrobial susceptibility patterns of the CSF isolates which were obtained from patients of acute bacterial meningitis in our area. Two hundred and fifty two clinically diagnosed cases of acute bacterial meningitis, who were admitted to the wards of a tertiary medical centre in Patna, during the period from August 2011 to December 2012, were included in this study. Two hundred and fifty two CSF samples from as many patients of ABM were processed for cell counts, biochemical analysis, gram staining, culture, antigen detection by latex agglutination test (LAT) and antibiotic susceptibility tests, as per the standard techniques. In this study, 62.3% patients were males and 37.7% were females The most common age group of presentation was 12-60 years (80.2%). Gram stained smears were positive in 162 (64.3%) samples, while culture yielded positive growth in 200 (79.4%) patients. Streptococcus pneumoniae was the most common pathogen which was isolated in 120 (60%) culture positive cases. Cell counts showed the predominance of neutrophils in all cases with ABM. High protein and low sugar levels correlated well with the features of ABM. All gram positive isolates were sensitive to vancomycin. All the gram negative isolates were sensitive to imipenem. Twenty two (8.7%) patients expired during the course of study. Deaths were caused by N.meningitidis in 9 (40.9%) cases, by S.pneumoniae in 3 (13.6%) cases and by H.influenzea in 1 (4.5%) case. In the remaining 9 (40.9%) mortality cases, the organism could not be identified. Simple, rapid, inexpensive tests like gram staining remain significant means for diagnosis of ABM in developing countries. LAT for pneumococcal antigen should be performed first, since Streptococcus pneumoniae remains the major aetiological agent of ABM, both in adults and children. The final diagnosis of ABM depends upon a comprehensive analysis of CSF smears, cultures, LAT, cytological, biochemical and clinical findings of the cases, and a single test or parameter cannot be used to decide the course of management in the patients. However, empirical therapy is advocated, considering the potentially high rate of mortality in these patients.

  9. Potential and use of bacterial small RNAs to combat drug resistance: a systematic review

    PubMed Central

    Liu, Xiaodong; Zhang, Lin; Wong, Sunny Hei; Chan, Matthew TV; Wu, William KK

    2017-01-01

    Background Over the decades, new antibacterial agents have been developed in an attempt to combat drug resistance, but they remain unsuccessful. Recently, a novel class of bacterial gene expression regulators, bacterial small RNAs (sRNAs), has received increasing attention toward their involvement in antibiotic resistance. This systematic review aimed to discuss the potential of these small molecules as antibacterial drug targets. Methods Two investigators performed a comprehensive search of MEDLINE, EmBase, and ISI Web of Knowledge from inception to October 2016, without restriction on language. We included all in vitro and in vivo studies investigating the role of bacterial sRNA in antibiotic resistance. Risk of bias of the included studies was assessed by a modified guideline of Systematic Review Center for Laboratory Animal Experimentation (SYRCLE). Results Initial search yielded 432 articles. After exclusion of non-original articles, 20 were included in this review. Of these, all studies examined bacterial-type strains only. There were neither relevant in vivo nor clinical studies. The SYRCLE scores ranged from to 5 to 7, with an average of 5.9. This implies a moderate risk of bias. sRNAs influenced the antibiotics susceptibility through modulation of gene expression relevant to efflux pumps, cell wall synthesis, and membrane proteins. Conclusion Preclinical studies on bacterial-type strains suggest that modulation of sRNAs could enhance bacterial susceptibility to antibiotics. Further studies on clinical isolates and in vivo models are needed to elucidate the therapeutic value of sRNA modulation on treatment of multidrug-resistant bacterial infection. PMID:29290689

  10. Biodegradation of marine crude oil pollution using a salt-tolerant bacterial consortium isolated from Bohai Bay, China.

    PubMed

    Li, Xinfei; Zhao, Lin; Adam, Mohamed

    2016-04-15

    This study aims at constructing an efficient bacterial consortium to biodegrade crude oil spilled in China's Bohai Sea. In this study, TCOB-1 (Ochrobactrum), TCOB-2 (Brevundimonas), TCOB-3 (Brevundimonas), TCOB-4 (Bacillus) and TCOB-5 (Castellaniella) were isolated from Bohai Bay. Through the analysis of hydrocarbon biodegradation, TCOB-4 was found to biodegrade more middle-chain n-alkanes (from C17 to C23) and long-chain n-alkanes (C31-C36). TCOB-5 capable to degrade more n-alkanes including C24-C30 and aromatics. On the basis of complementary advantages, TCOB-4 and TCOB-5 were chosen to construct a consortium which was capable of degrading about 51.87% of crude oil (2% w/v) after 1week of incubation in saline MSM (3% NaCl). It is more efficient compared with single strain. In order to biodegrade crude oil, the construction of bacterial consortia is essential and the principle of complementary advantages could reduce competition between microbes. Copyright © 2016. Published by Elsevier Ltd.

  11. A Brucella spp. Isolate from a Pac-Man Frog (Ceratophrys ornata) Reveals Characteristics Departing from Classical Brucellae

    PubMed Central

    Soler-Lloréns, Pedro F.; Quance, Chris R.; Lawhon, Sara D.; Stuber, Tod P.; Edwards, John F.; Ficht, Thomas A.; Robbe-Austerman, Suelee; O'Callaghan, David; Keriel, Anne

    2016-01-01

    Brucella are highly infectious bacterial pathogens responsible for brucellosis, a frequent worldwide zoonosis. The Brucella genus has recently expanded from 6 to 11 species, all of which were associated with mammals; The natural host range recently expanded to amphibians after some reports of atypical strains from frogs. Here we describe the first in depth phenotypic and genetic characterization of a Brucella strains isolated from a frog. Strain B13-0095 was isolated from a Pac-Man frog (Ceratophyrus ornate) at a veterinary hospital in Texas and was initially misidentified as Ochrobactrum anthropi. We found that B13-0095 belongs to a group of early-diverging brucellae that includes Brucella inopinata strain BO1 and the B. inopinata-like strain BO2, with traits that depart significantly from those of the “classical” Brucella spp. Analysis of B13-0095 genome sequence revealed several specific features that suggest that this isolate represents an intermediate between a soil associated ancestor and the host adapted “classical” species. Like strain BO2, B13-0095 does not possess the genes required to produce the perosamine based LPS found in classical Brucella, but has a set of genes that could encode a rhamnose based O-antigen. Despite this, B13-0095 has a very fast intracellular replication rate in both epithelial cells and macrophages. Finally, another major finding in this study is the bacterial motility observed for strains B13-0095, BO1, and BO2, which is remarkable for this bacterial genus. This study thus highlights several novel characteristics in strains belonging to an emerging group within the Brucella genus. Accurate identification tools for such atypical Brucella isolates and careful evaluation of their zoonotic potential, are urgently required. PMID:27734009

  12. A Brucella spp. Isolate from a Pac-Man Frog (Ceratophrys ornata) Reveals Characteristics Departing from Classical Brucellae.

    PubMed

    Soler-Lloréns, Pedro F; Quance, Chris R; Lawhon, Sara D; Stuber, Tod P; Edwards, John F; Ficht, Thomas A; Robbe-Austerman, Suelee; O'Callaghan, David; Keriel, Anne

    2016-01-01

    Brucella are highly infectious bacterial pathogens responsible for brucellosis, a frequent worldwide zoonosis. The Brucella genus has recently expanded from 6 to 11 species, all of which were associated with mammals; The natural host range recently expanded to amphibians after some reports of atypical strains from frogs. Here we describe the first in depth phenotypic and genetic characterization of a Brucella strains isolated from a frog. Strain B13-0095 was isolated from a Pac-Man frog ( Ceratophyrus ornate ) at a veterinary hospital in Texas and was initially misidentified as Ochrobactrum anthropi . We found that B13-0095 belongs to a group of early-diverging brucellae that includes Brucella inopinata strain BO1 and the B. inopinata -like strain BO2, with traits that depart significantly from those of the "classical" Brucella spp. Analysis of B13-0095 genome sequence revealed several specific features that suggest that this isolate represents an intermediate between a soil associated ancestor and the host adapted "classical" species. Like strain BO2, B13-0095 does not possess the genes required to produce the perosamine based LPS found in classical Brucella , but has a set of genes that could encode a rhamnose based O-antigen. Despite this, B13-0095 has a very fast intracellular replication rate in both epithelial cells and macrophages. Finally, another major finding in this study is the bacterial motility observed for strains B13-0095, BO1, and BO2, which is remarkable for this bacterial genus. This study thus highlights several novel characteristics in strains belonging to an emerging group within the Brucella genus. Accurate identification tools for such atypical Brucella isolates and careful evaluation of their zoonotic potential, are urgently required.

  13. Activity of nadifloxacin (OPC-7251) and seven other antimicrobial agents against aerobic and anaerobic Gram-positive bacteria isolated from bacterial skin infections.

    PubMed

    Nenoff, P; Haustein, U-F; Hittel, N

    2004-10-01

    The in vitro activity of nadifloxacin (OPC-7251), a novel topical fluoroquinolone, was assessed and compared with those of ofloxacin, oxacillin, flucloxacillin, cefotiam, erythromycin, clindamycin, and gentamicin against 144 Gram-positive bacteria: 28 Staphylococcus aureus, 10 Streptococcus spp., 68 coagulase-negative staphylococci (CNS), 36 Propionibacterium acnes, and 2 Propionibacterium granulosum strains. All strains originated from bacterial-infected skin disease and were isolated from patients with impetigo, secondary infected wounds, folliculitis and sycosis vulgaris, and impetiginized dermatitis. In vitro susceptibility of all clinical isolates was tested by agar dilution procedure and minimum inhibitory concentrations (MICs) were determined. Nadifloxacin was active against all aerobic and anaerobic isolates. MIC(90) (MIC at which 90% of the isolates are inhibited) was 0.1 microg/ml for S. aureus, 0.78 microg/ml for both Streptococcus spp. and CNS, and 0.39 microg/ml for Propionibacterium spp. On the other hand, resistant strains with MICs exceeding 12.5 mug/ml were found in tests with the other antibiotics. For both CNS and Propionibacterium acnes, MIC(90) values > or =100 microg/ml were demonstrated for erythromycin. Ofloxacin, cefotiam, erythromycin, clindamycin and gentamicin exhibited MIC(90) values < or =1 microg/ml for some bacterial species tested. Both oxacillin and flucloxacillin were active against all investigated bacterial species with MIC(90) values < or =1 microg/ml. In summary, nadifloxacin, a topical fluoroquinolone, was found to be highly active against aerobic and anaerobic bacteria isolated from patients with infected skin disease, and seems to be a new alternative for topical antibiotic treatment in bacterial skin infections.

  14. Detection of carboxylesterase and esterase activity in culturable gut bacterial flora isolated from diamondback moth, Plutella xylostella (Linnaeus), from India and its possible role in indoxacarb degradation.

    PubMed

    Ramya, Shanivarsanthe Leelesh; Venkatesan, Thiruvengadam; Srinivasa Murthy, Kottilingam; Jalali, Sushil Kumar; Verghese, Abraham

    2016-01-01

    Diamondback moth (DBM), Plutella xylostella (Linnaeus), is a notorious pest of brassica crops worldwide and is resistant to all groups of insecticides. The insect system harbors diverse groups of microbiota, which in turn helps in enzymatic degradation of xenobiotic-like insecticides. The present study aimed to determine the diversity of gut microflora in DBM, quantify esterase activity and elucidate their possible role in degradation of indoxacarb. We screened 11 geographic populations of DBM in India and analyzed them for bacterial diversity. The culturable gut bacterial flora underwent molecular characterization with 16S rRNA. We obtained 25 bacterial isolates from larvae (n=13) and adults (n=12) of DBM. In larval gut isolates, gammaproteobacteria was the most abundant (76%), followed by bacilli (15.4%). Molecular characterization placed adult gut bacterial strains into three major classes based on abundance: gammaproteobacteria (66%), bacilli (16.7%) and flavobacteria (16.7%). Esterase activity from 19 gut bacterial isolates ranged from 0.072 to 2.32μmol/min/mg protein. Esterase bands were observed in 15 bacterial strains and the banding pattern differed in Bacillus cereus - KC985225 and Pantoea agglomerans - KC985229. The bands were characterized as carboxylesterase with profenofos used as an inhibitor. Minimal media study showed that B. cereus degraded indoxacarb up to 20%, so it could use indoxacarb for metabolism and growth. Furthermore, esterase activity was greater with minimal media than control media: 1.87 versus 0.26μmol/min/mg protein. Apart from the insect esterases, bacterial carboxylesterase may aid in the degradation of insecticides in DBM. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  15. First isolation of Haemophilus parasuis and other NAD-dependent Pasteurellaceae of swine from European wild boars.

    PubMed

    Olvera, A; Cerdà-Cuéllar, M; Mentaberre, G; Casas-Diaz, E; Lavin, S; Marco, I; Aragon, V

    2007-11-15

    Haemophilus parasuis is a colonizer of the upper respiratory tract of pigs and the etiological agent of Glässer's disease, which is characterized by a fibrinous polyserositis, meningitis and arthritis. Glässer's disease has never been reported in wild boar (Sus scrofa), although antibodies against H. parasuis have been detected. The goal of this study was to confirm the presence of this bacterium in wild boar by bacterial isolation and to compare the strains to H. parasuis from domesticated pigs. Therefore, nasal swabs from 42 hunted wild boars were processed for bacterial isolation and subsequent H. parasuis identification by specific PCR, biochemical tests and 16S rRNA gene sequencing. Two different strains of H. parasuis from two wild boars were isolated. These strains belonged to serotype 2 and were included by 16S rRNA gene sequencing and MLST analysis in a cluster with other H. parasuis strains of nasal origin from domestic pigs. During this study, Actinobacillus minor and Actinobacillus indolicus, which are NAD-dependent Pasteurellaceae closely related to H. parasuis, were also isolated. Our results indicate similarities in the respiratory microbiota of wild boars and domestic pigs, and although H. parasuis was isolated from wild boars, more studies are needed to determine if this could be a source of H. parasuis infection for domestic pigs.

  16. Viruses are prevalent in non-ventilated hospital-acquired pneumonia.

    PubMed

    Shorr, Andrew F; Zilberberg, Marya D; Micek, Scott T; Kollef, Marin H

    2017-01-01

    Hospital-acquired pneumonia arising in non-ventilated patients (NVHAP) is traditionally thought to be caused by bacteria, and little is known about viral etiologies in this syndrome. We sought to describe the prevalence of viruses causing NVHAP and to determine factors independently associated with the isolation of a virus. We identified patients with NVHAP over one year and reviewed their cultures to determine etiologies. Patients with a viral process were compared to those with either negative cultures or a bacterial infection to determine variables independently associated with the recovery of a virus. Among 174 cases, cultures were positive in 46.0%, with viruses identified in 22.4%. Bacterial pathogens arose 23.6% of subjects. The most common viruses included rhinovirus, influenza, and parainfluenza. We noted no seasonality in the isolation of viral organisms, and most cases of viral NVHAP developed after more than a week length of stay (LOS). Outcomes in viral NVHAP were similar to those with bacterial NVHAP. Patients with viral and bacterial NVHAP were generally similar. Two variables were independently associated with isolation of a virus: a history of coronary artery disease (adjusted odds ratio: 5.16, 95% CI: 1.14-22.44) and a LOS of greater than 10 days prior to NVHAP diagnosis (adjusted odds ratio: 2.97, 95% CI: 1.35-6.51). As a screening test for a virus, neither had a good sensitivity or specificity. Viruses represent a common cause of NVHAP. Clinicians should consider viral diagnostic testing in NVHAP, as this may represent a means to enhance antimicrobial stewardship. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Multiple reservoirs contribute to intraoperative bacterial transmission.

    PubMed

    Loftus, Randy W; Brown, Jeremiah R; Koff, Matthew D; Reddy, Sundara; Heard, Stephen O; Patel, Hetal M; Fernandez, Patrick G; Beach, Michael L; Corwin, Howard L; Jensen, Jens T; Kispert, David; Huysman, Bridget; Dodds, Thomas M; Ruoff, Kathryn L; Yeager, Mark P

    2012-06-01

    Intraoperative stopcock contamination is a frequent event associated with increased patient mortality. In the current study we examined the relative contributions of anesthesia provider hands, the patient, and the patient environment to stopcock contamination. Our secondary aims were to identify risk factors for stopcock contamination and to examine the prior association of stopcock contamination with 30-day postoperative infection and mortality. Additional microbiological analyses were completed to determine the prevalence of bacterial pathogens within intraoperative bacterial reservoirs. Pulsed-field gel electrophoresis was used to assess the contribution of reservoir bacterial pathogens to 30-day postoperative infections. In a multicenter study, stopcock transmission events were observed in 274 operating rooms, with the first and second cases of the day in each operating room studied in series to identify within- and between-case transmission events. Reservoir bacterial cultures were obtained and compared with stopcock set isolates to determine the origin of stopcock contamination. Between-case transmission was defined by the isolation of 1 or more bacterial isolates from the stopcock set of a subsequent case (case 2) that were identical to reservoir isolates from the preceding case (case 1). Within-case transmission was defined by the isolation of 1 or more bacterial isolates from a stopcock set that were identical to bacterial reservoirs from the same case. Bacterial pathogens within these reservoirs were identified, and their potential contribution to postoperative infections was evaluated. All patients were followed for 30 days postoperatively for the development of infection and all-cause mortality. Stopcock contamination was detected in 23% (126 out of 548) of cases with 14 between-case and 30 within-case transmission events confirmed. All 3 reservoirs contributed to between-case (64% environment, 14% patient, and 21% provider) and within-case (47% environment, 23% patient, and 30% provider) stopcock transmission. The environment was a more likely source of stopcock contamination than provider hands (relative risk [RR] 1.91, confidence interval [CI] 1.09 to 3.35, P = 0.029) or patients (RR 2.56, CI 1.34 to 4.89, P = 0.002). Hospital site (odds ratio [OR] 5.09, CI 2.02 to 12.86, P = 0.001) and case 2 (OR 6.82, CI 4.03 to 11.5, P < 0.001) were significant predictors of stopcock contamination. Stopcock contamination was associated with increased mortality (OR 58.5, CI 2.32 to 1477, P = 0.014). Intraoperative bacterial contamination of patients and provider hands was linked to 30-day postoperative infections. Bacterial contamination of patients, provider hands, and the environment contributes to stopcock transmission events, but the surrounding patient environment is the most likely source. Stopcock contamination is associated with increased patient mortality. Patient and provider bacterial reservoirs contribute to 30-day postoperative infections. Multimodal programs designed to target each of these reservoirs in parallel should be studied intensely as a comprehensive approach to reducing intraoperative bacterial transmission.

  18. Early microbial colonization of cystic fibrosis patients identified by neonatal screening, with emphasis on Staphylococcus aureus.

    PubMed

    Souza, Helena A P H M; Nogueira, Keite S; Matos, Adriana P; Vieira, Ricardo P; Riedi, Carlos A; Rosário, Nelson A; Telles, Flávio Q; Costa, Libera M Dalla

    2006-01-01

    To assess bacterial colonization prospectively in patients with cystic fibrosis identified by neonatal screening. To assess susceptibility to antimicrobials and to perform the molecular typing of Staphylococcus aureus strains isolated from the oropharynx of patients during the study. Twenty-five cystic fibrosis patients receiving regular treatment at the Cystic Fibrosis Outpatient Clinic of Hospital de Clínicas of Universidade Federal do Paraná, Brazil, were included in the study. All patients were identified by trypsin-like immunoreactivity and their diagnosis was confirmed by two or more sweat tests. Oropharyngeal swabs were collected and cultured according to routine methods; bacterial colonies were phenotypically identified and their susceptibility to antimicrobials was tested. S. aureus isolates were submitted to molecular typing using pulsed-field gel electrophoresis. Out of 234 oropharyngeal swabs, S. aureus was the most frequently isolated strain (76% of patients, 42% of swabs), followed by Pseudomonas aeruginosa (36% of patients, 16% of swabs) and Haemophilus spp. (76% of patients; 19% of swabs). Seventy-three isolates were obtained from 19 patients colonized with S. aureus, of which 18 were oxacillin-resistant (24.6%), isolated from two patients, with the same electrophoretic profiles as that of the Brazilian clone. The remaining oxacillin-sensitive isolates were distributed into 18 electrophoretic profiles. There was higher prevalence of S. aureus, with earlier isolation than other pathogens. Multi-sensitive isolates were distributed into different clones, characterizing non-transmissibility among community-acquired strains. The isolated oxacillin-resistant S. aureus showed identical electrophoretic profiles, probably acquired in hospital. P. aeruginosa was not so frequent in the studied population.

  19. Microbial Characterization and Comparison of Isolates During the Mir and ISS Missions

    NASA Technical Reports Server (NTRS)

    Fontenot, Sondra L.; Castro, Victoria; Bruce, Rebekah; Ott, C. Mark; Pierson, Duane L.

    2004-01-01

    Spacecraft represent a semi-closed ecosystem that provides a unique model of microbial interaction with other microbes, potential hosts, and their environment. Environmental samples from the Mir Space Station (1995-1998) and the International Space Station (ISS) (2000-Present) were collected and processed to provide insight into the characterization of microbial diversity aboard spacecraft over time and assess any potential health risks to the crew. All microbiota were isolated using standard media-based methodologies. Isolates from Mir and ISS were processed using various methods of analysis, including VITEK biochemical analysis, 16s ribosomal identification, and fingerprinting using rep-PCR analysis. Over the first 41 months of habitation, the diversity of the microbiota from air and surface samples aboard ISS increased from an initial six to 53 different bacterial species. During the same period, fungal diversity increased from 2 to 24 species. Based upon rep-PCR analysis, the majority of isolates were unique suggesting the need for increased sampling frequency and a more thorough analysis of samples to properly characterize the ISS microbiota. This limited fungal and bacterial data from environmental samples acquired during monitoring currently do not indicate a microbial hazard to ISS or any trends suggesting potential health risks.

  20. Comparison of culture and PCR methods in the diagnosis of bacterial meningitis.

    PubMed

    Başpınar, Emel Ödemiş; Dayan, Saim; Bekçibaşı, Muhammed; Tekin, Recep; Ayaz, Celal; Deveci, Özcan; Hoşoğlu, Salih

    Our aim in this study is to compare the standard culture method with the multiplex PCR and the Speed-Oligo ® Bacterial Meningitis Test (SO-BMT) - a hybridization-based molecular test method - during the CSF examination of the patients with the pre-diagnosis of acute bacterial meningitis. For the purposes of this study, patients with acute bacterial meningitis treated at the Dicle University Medical Faculty Hospital, Infectious Diseases and Clinical Microbiology Clinic between December 2009 and April 2012 were retrospectively evaluated. The diagnosis of bacterial meningitis was made based on the clinical findings, laboratory test anomalies, CSF analysis results, and the radiological images. Growth was observed in the CSF cultures of 10 out of the 57 patients included in the study (17.5%) and Streptococcus pneumoniae was isolated in all of them. The CSF samples of 34 patients (59.6%) were positive according to the SO-BMT and S. pneumoniae was detected in 33 of the samples (97.05%), while Neisseria meningitidis was found in 1 sample (2.95%). In a total of 10 patients, S. pneumoniae was both isolated in the CSF culture and detected in the SO-BMT. The culture and the SO-BMT were negative in 23 of the CSF samples. There was no sample in which the CSF culture was positive although the SO-BMT was negative. While SO-BMT seems to be a more efficient method than bacterial culturing to determine the pathogens that most commonly cause bacterial meningitis in adults, further studies conducted on larger populations are needed in order to assess its efficiency and uses. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  1. Xylella fastidiosa Isolates from Both subsp. multiplex and fastidiosa Cause Disease on Southern Highbush Blueberry (Vaccinium sp.) Under Greenhouse Conditions.

    PubMed

    Oliver, J E; Cobine, P A; De La Fuente, L

    2015-07-01

    Xylella fastidiosa is a xylem-limited gram-negative plant pathogen that affects numerous crop species, including grape, citrus, peach, pecan, and almond. Recently, X. fastidiosa has also been found to be the cause of bacterial leaf scorch on blueberry in the southeastern United States. Thus far, all X. fastidiosa isolates obtained from infected blueberry have been classified as X. fastidiosa subsp. multiplex; however, X. fastidiosa subsp. fastidiosa isolates are also present in the southeastern United States and commonly cause Pierce's disease of grapevines. In this study, seven southeastern U.S. isolates of X. fastidiosa, including three X. fastidiosa subsp. fastidiosa isolates from grape, one X. fastidiosa subsp. fastidiosa isolate from elderberry, and three X. fastidiosa subsp. multiplex isolates from blueberry, were used to infect the southern highbush blueberry 'Rebel'. Following inoculation, all isolates colonized blueberry, and isolates from both X. fastidiosa subsp. multiplex and X. fastidiosa subsp. fastidiosa caused symptoms, including characteristic stem yellowing and leaf scorch symptoms as well as dieback of the stem tips. Two X. fastidiosa subsp. multiplex isolates from blueberry caused more severe symptoms than the other isolates examined, and infection with these two isolates also had a significant impact on host mineral nutrient content in sap and leaves. These findings have potential implications for understanding X. fastidiosa host adaptation and expansion and the development of emerging diseases caused by this bacterium.

  2. Chitosanase purified from bacterial isolate Bacillus licheniformis of ruined vegetables displays broad spectrum biofilm inhibition.

    PubMed

    Muslim, Sahira Nsayef; Al-Kadmy, Israa M S; Hussein, Nadheema Hammood; Mohammed Ali, Alaa Naseer; Taha, Buthainah Mohammed; Aziz, Sarah Naji; Kheraif, Abdulaziz Abdullah Al; Divakar, Darshan Devang; Ramakrishnaiah, Ravikumar

    2016-11-01

    A number of bacterial species produces chitosanases which has variety of applications because of its high biodegradability, non-toxicity and antimicrobial assets. In the present study chitosanase is purified from new bacterial species Bacillus licheniformis from spoiled vegetable. This novel strain of Bacillus licheniformis isolated from spoilt cucumber and pepper samples has the ability to produce the chitosanase enzyme when grown on chitosan substrate. Study also examined its antibiofilm properties against diverse bacterial species with biofilm forming ability. The purified chitosanase inhibited the biofilm formation ability for all Gram-negative and Gram-positive biofilm-forming bacteria [biofilm producers] tested in this study in congo red agar and microtiter plate's methods. Highly antibiofilm activity of chitosanase was recorded against Pseudomonas aeruginosa followed by Klebsiella pneumoniae with reduction of biofilm formation upto 22 and 29%, respectively compared with [100] % of control. Biofilm formation has multiple role including ability to enhance resistance and self-protection from external stress. This chitosanase has promising benefit as antibiofilm agent against biofilm forming pathogenic bacteria and has promising application as alternative antibiofilm agents to combat the growing number of multidrug resistant pathogen-associated infections, especially in situation where biofilms are involved. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Fusobacterium nucleatum in endodontic flare-ups.

    PubMed

    Chávez de Paz Villanueva, Luis Eduardo

    2002-02-01

    The extent to which Fusobacterium nucleatum is recovered from root canals of teeth that present with an interappointment flare-up following endodontic instrumentation was investigated. Included in the study were 28 patients that sought emergency treatment after initiation of root canal therapy. Only non-painful teeth that had been treated because of a necrotic pulp and periapical inflammatory lesion were studied. Root canal samples for bacterial analysis were taken, transported to a bacteriological laboratory, and processed for a semiquantitative assessment of bacterial isolates. Bacterial findings were correlated with self-assessed pain intensity as recorded by means of a Visual Analogue Scale. Clinical presentation of swelling and presence of exudate in the treated root canals were also linked. Bacteria were recovered from all teeth examined. Gram-negative anaerobic coccoid rods (Prevotella species and Porphyromonas species) were frequent isolates. All teeth in patients who were reported to be in severe pain (Visual Analogue Scale > or = 6) displayed F nucleatum. Nine out of 10 of these teeth also had swelling and exudate in the root canals. Samples from the remaining patients that had teeth with less pain score showed a variable bacterial recovery. None of these teeth displayed F nucleatum. F nucleatum appears to be associated with the development of the most severe forms of interappointment endodontic flare-ups.

  4. Proof of Principle for a Real-Time Pathogen Isolation Media Diagnostic: The Use of Laser-Induced Breakdown Spectroscopy to Discriminate Bacterial Pathogens and Antimicrobial-Resistant Staphylococcus aureus Strains Grown on Blood Agar

    PubMed Central

    Multari, Rosalie A.; Cremers, David A.; Bostian, Melissa L.; Dupre, Joanne M.

    2013-01-01

    Laser-Induced Breakdown Spectroscopy (LIBS) is a rapid, in situ, diagnostic technique in which light emissions from a laser plasma formed on the sample are used for analysis allowing automated analysis results to be available in seconds to minutes. This speed of analysis coupled with little or no sample preparation makes LIBS an attractive detection tool. In this study, it is demonstrated that LIBS can be utilized to discriminate both the bacterial species and strains of bacterial colonies grown on blood agar. A discrimination algorithm was created based on multivariate regression analysis of spectral data. The algorithm was deployed on a simulated LIBS instrument system to demonstrate discrimination capability using 6 species. Genetically altered Staphylococcus aureus strains grown on BA, including isogenic sets that differed only by the acquisition of mutations that increase fusidic acid or vancomycin resistance, were also discriminated. The algorithm successfully identified all thirteen cultures used in this study in a time period of 2 minutes. This work provides proof of principle for a LIBS instrumentation system that could be developed for the rapid discrimination of bacterial species and strains demonstrating relatively minor genomic alterations using data collected directly from pathogen isolation media. PMID:24109513

  5. Fungal Peritonitis Due to Fusarium solani Species Complex Sequential Isolates Identified with DNA Sequencing in a Kidney Transplant Recipient in Brazil.

    PubMed

    da Silva-Rocha, Walicyranison Plinio; Zuza-Alves, Diana Luzia; Melo, Analy Salles de Azevedo; Chaves, Guilherme Maranhão

    2015-12-01

    Fungal peritonitis is a rare serious complication most commonly observed in immunocompromised patients under peritoneal dialysis. Nevertheless, this clinical condition is more difficult to treat than bacterial peritonitis. Bacterial peritonitis followed by the use of antibiotics is the main risk factor for developing fungal peritonitis. Candida spp. are more frequently isolated, and the isolation of filamentous fungi is only occasional. Here we describe a case of Fusarium solani species complex peritonitis associated with bacterial peritonitis in a female kidney transplant recipient with previous history of nephrotic syndrome. The patient has had Enterobacter sp. endocarditis and was hypertensive and diabetic. Two sequential isolates of F. solani were recovered from cultures and identified with different molecular techniques. She was successfully treated with 50 mg daily amphotericin B for 4 weeks.

  6. Whole-Genome Sequences of 94 Environmental Isolates of Bacillus cereus Sensu Lato

    PubMed Central

    Feldgarden, Michael; Kolter, Roberto; Mahillon, Jacques

    2013-01-01

    Bacillus cereus sensu lato is a species complex that includes the anthrax pathogen Bacillus anthracis and other bacterial species of medical, industrial, and ecological importance. Their phenotypes of interest are typically linked to large plasmids that are closely related to the anthrax plasmids pXO1 and pXO2. Here, we present the draft genome sequences of 94 isolates of B. cereus sensu lato, which were chosen for their plasmid content and environmental origins. PMID:24092776

  7. Viability, diversity and composition of the bacterial community in a high Arctic permafrost soil from Spitsbergen, Northern Norway.

    PubMed

    Hansen, Aviaja A; Herbert, Rodney A; Mikkelsen, Karina; Jensen, Lars Liengård; Kristoffersen, Tommy; Tiedje, James M; Lomstein, Bente Aa; Finster, Kai W

    2007-11-01

    The viable and non-viable fractions of the bacterial community in a 2347-year-old permafrost soil from Spitsbergen were subjected to a comprehensive investigation using culture-independent and culture-dependent methods. LIVE/DEAD BacLight staining revealed that 26% of the total number of bacterial cells were viable. Quantitatively, aerobic microcolonies, aerobic colony-forming units and culturable anaerobic bacteria comprised a minor fraction of the total number of viable bacteria, which underlines the necessity for alternative cultivation approaches in bacterial cryobiology. Sulfate reduction was detected at temperatures between -2 degrees C and 29 degrees C while methanogenesis was not detected. Bacterial diversity was high with 162 operational taxonomic units observed from 800 16S rDNA clone sequences. The 158 pure cultures isolated from the permafrost soil affiliated with 29 different bacterial genera, the majority of which have not previously been isolated from permafrost habitats. Most of the strains isolated were affiliated to the genera Cellulomonas and Arthrobacter and several of the pure cultures were closely related to bacteria reported from other cryohabitats. Characterization of viable bacterial communities in permafrost soils is important as it will enable identification of functionally important groups together with the as yet undescribed adaptations that bacteria have evolved for surviving subzero temperatures for millennia.

  8. Reduction in bacterial load using hypochlorous acid hygiene solution on ocular skin

    PubMed Central

    Stroman, David W; Mintun, Keri; Epstein, Arthur B; Brimer, Crystal M; Patel, Chirag R; Branch, James D; Najafi-Tagol, Kathryn

    2017-01-01

    Purpose To examine the magnitude of bacterial load reduction on the surface of the periocular skin 20 minutes after application of a saline hygiene solution containing 0.01% pure hypochlorous acid (HOCl). Methods Microbiological specimens were collected immediately prior to applying the hygiene solution and again 20 minutes later. Total microbial colonies were counted and each unique colony morphology was processed to identify the bacterial species and to determine the susceptibility profile to 15 selected antibiotics. Results Specimens were analyzed from the skin samples of 71 eyes from 36 patients. Prior to treatment, 194 unique bacterial isolates belonging to 33 different species were recovered. Twenty minutes after treatment, 138 unique bacterial isolates belonging to 26 different species were identified. Staphylococci accounted for 61% of all strains recovered and Staphylococcus epidermidis strains comprised 60% of the staphylococcal strains. No substantial differences in the distribution of Gram-positive, Gram-negative, or anaerobic species were noted before and after treatment. The quantitative data demonstrated a >99% reduction in the staphylococcal load on the surface of the skin 20 minutes following application of the hygiene solution. The total S. epidermidis colony-forming units were reduced by 99.5%. The HOCl hygiene solution removed staphylococcal isolates that were resistant to multiple antibiotics equally well as those isolates that were susceptible to antibiotics. Conclusion The application of a saline hygiene solution preserved with pure HOCl acid reduced the bacterial load significantly without altering the diversity of bacterial species remaining on the skin under the lower eyelid. PMID:28458509

  9. The Epidemiology, Management, and Outcomes of Bacterial Meningitis in Infants.

    PubMed

    Ouchenir, Lynda; Renaud, Christian; Khan, Sarah; Bitnun, Ari; Boisvert, Andree-Anne; McDonald, Jane; Bowes, Jennifer; Brophy, Jason; Barton, Michelle; Ting, Joseph; Roberts, Ashley; Hawkes, Michael; Robinson, Joan L

    2017-07-01

    The pathogens that cause bacterial meningitis in infants and their antimicrobial susceptibilities may have changed in this era of increasing antimicrobial resistance, use of conjugated vaccines, and maternal antibiotic prophylaxis for group B Streptococcus (GBS). The objective was to determine the optimal empirical antibiotics for bacterial meningitis in early infancy. This was a cohort study of infants <90 days of age with bacterial meningitis at 7 pediatric tertiary care hospitals across Canada in 2013 and 2014. There were 113 patients diagnosed with proven meningitis ( n = 63) or suspected meningitis ( n = 50) presented at median 19 days of age, with 63 patients (56%) presenting a diagnosis from home. Predominant pathogens were Escherichia coli ( n = 37; 33%) and GBS ( n = 35; 31%). Two of 15 patients presenting meningitis on day 0 to 6 had isolates resistant to both ampicillin and gentamicin ( E coli and Haemophilus influenzae type B). Six of 60 infants presenting a diagnosis of meningitis from home from day 7 to 90 had isolates, for which cefotaxime would be a poor choice ( Listeria monocytogenes [ n = 3], Enterobacter cloacae , Cronobacter sakazakii , and Pseudomonas stutzeri ). Sequelae were documented in 84 infants (74%), including 8 deaths (7%). E coli and GBS remain the most common causes of bacterial meningitis in the first 90 days of life. For empirical therapy of suspected bacterial meningitis, one should consider a third-generation cephalosporin (plus ampicillin for at least the first month), potentially substituting a carbapenem for the cephalosporin if there is evidence for Gram-negative meningitis. Copyright © 2017 by the American Academy of Pediatrics.

  10. Comparison of UV C light and chemicals for disinfection of surfaces in hospital isolation units.

    PubMed

    Andersen, B M; Bånrud, H; Bøe, E; Bjordal, O; Drangsholt, F

    2006-07-01

    To determine the bactericidal effect on surfaces of ceiling- and wall-mounted UV C (UVC) light (wavelength, 254 nm) in isolation units, compared with standard hospital environmental cleaning and chemical disinfection during final disinfection after patients are treated for infections. Microbial samples were obtained from surfaces in isolation units (patient room, anteroom, and bathroom) before and after irradiation with UVC, chloramine disinfection, and standard hospital environmental cleaning. Samples were tested using standard contact plates. Four identical, negative air-pressure isolation units (patient room, anteroom, and bathroom) with a defined number of ceiling- and wall-mounted UVC light units. The UVC distribution was monitored in one isolation unit after irradiation for approximately 40 minutes, corresponding to doses ranging from 160 J/m2 in a shadowed area to 19,230 J/m2 at the mostly highly exposed site (which is high enough to inactivate most bacterial organisms, including spores). UVC disinfection significantly reduced the number of bacteria on surfaces directly or indirectly exposed to UVC to a very low number, as did 5% chloramine disinfection alone (P<.001 for both). Completely shadowed areas in the isolation unit (eg, the bed rail, lockers, and mattresses) still required disinfection by chemicals. Disinfection with UVC light may significantly reduce environmental bacterial contamination and thereby protect the next patient housed in an isolation room. UVC disinfection may not be used alone but is a good addition to chemical disinfection.

  11. Bacteria isolated from bats inhibit the growth of Pseudogymnoascus destructans, the causative agent of white-nose syndrome.

    PubMed

    Hoyt, Joseph R; Cheng, Tina L; Langwig, Kate E; Hee, Mallory M; Frick, Winifred F; Kilpatrick, A Marm

    2015-01-01

    Emerging infectious diseases are a key threat to wildlife. Several fungal skin pathogens have recently emerged and caused widespread mortality in several vertebrate groups, including amphibians, bats, rattlesnakes and humans. White-nose syndrome, caused by the fungal skin pathogen Pseudogymnoascus destructans, threatens several hibernating bat species with extinction and there are few effective treatment strategies. The skin microbiome is increasingly understood to play a large role in determining disease outcome. We isolated bacteria from the skin of four bat species, and co-cultured these isolates with P. destructans to identify bacteria that might inhibit or kill P. destructans. We then conducted two reciprocal challenge experiments in vitro with six bacterial isolates (all in the genus Pseudomonas) to quantify the effect of these bacteria on the growth of P. destructans. All six Pseudomonas isolates significantly inhibited growth of P. destructans compared to non-inhibitory control bacteria, and two isolates performed significantly better than others in suppressing P. destructans growth for at least 35 days. In both challenge experiments, the extent of suppression of P. destructans growth was dependent on the initial concentration of P. destructans and the initial concentration of the bacterial isolate. These results show that bacteria found naturally occurring on bats can inhibit the growth of P. destructans in vitro and should be studied further as a possible probiotic to protect bats from white-nose syndrome. In addition, the presence of these bacteria may influence disease outcomes among individuals, populations, and species.

  12. Bacteria Isolated from Bats Inhibit the Growth of Pseudogymnoascus destructans, the Causative Agent of White-Nose Syndrome

    PubMed Central

    Hoyt, Joseph R.; Cheng, Tina L.; Langwig, Kate E.; Hee, Mallory M.; Frick, Winifred F.; Kilpatrick, A. Marm

    2015-01-01

    Emerging infectious diseases are a key threat to wildlife. Several fungal skin pathogens have recently emerged and caused widespread mortality in several vertebrate groups, including amphibians, bats, rattlesnakes and humans. White-nose syndrome, caused by the fungal skin pathogen Pseudogymnoascus destructans, threatens several hibernating bat species with extinction and there are few effective treatment strategies. The skin microbiome is increasingly understood to play a large role in determining disease outcome. We isolated bacteria from the skin of four bat species, and co-cultured these isolates with P. destructans to identify bacteria that might inhibit or kill P. destructans. We then conducted two reciprocal challenge experiments in vitro with six bacterial isolates (all in the genus Pseudomonas) to quantify the effect of these bacteria on the growth of P. destructans. All six Pseudomonas isolates significantly inhibited growth of P. destructans compared to non-inhibitory control bacteria, and two isolates performed significantly better than others in suppressing P. destructans growth for at least 35 days. In both challenge experiments, the extent of suppression of P. destructans growth was dependent on the initial concentration of P. destructans and the initial concentration of the bacterial isolate. These results show that bacteria found naturally occurring on bats can inhibit the growth of P. destructans in vitro and should be studied further as a possible probiotic to protect bats from white-nose syndrome. In addition, the presence of these bacteria may influence disease outcomes among individuals, populations, and species. PMID:25853558

  13. Isolation and identification of bacterial populations of zoonotic importance from captive non-venomous snakes in Malaysia.

    PubMed

    Abba, Yusuf; Ilyasu, Yusuf Maina; Noordin, Mustapha Mohamed

    2017-07-01

    Captivity of non-venomous snakes such as python and boa are common in zoos, aquariums and as pets in households. Poor captivity conditions expose these reptiles to numerous pathogens which may result in disease conditions. The purpose of this study was to investigate the common bacteria isolated from necropsied captive snakes in Malaysia over a five year period. A total of 27 snake carcasses presented for necropsy at the Universiti Putra Malaysia (UPM) were used in this survey. Samples were aseptically obtained at necropsy from different organs/tissues (lung, liver, heart, kindey, oesophagus, lymph node, stomach, spinal cord, spleen, intestine) and cultured onto 5% blood and McConkey agar, respectively. Gram staining, morphological evaluation and biochemical test such as oxidase, catalase and coagulase were used to tentatively identify the presumptive bacterial isolates. Pythons had the highest number of cases (81.3%) followed by anaconda (14.8%) and boa (3.7%). Mixed infection accounted for 81.5% in all snakes and was highest in pythons (63%). However, single infection was only observed in pythons (18.5%). A total of 82.7%, 95.4% and 100% of the bacterial isolates from python, anaconda and boa, respectively were gram negative. Aeromonas spp was the most frequently isolated bacteria in pythons and anaconda with incidences of 25 (18%) and 8 (36.6%) with no difference (p > 0.05) in incidence, respectively, while Salmonella spp was the most frequently isolated in boa and significantly higher (p < 0.05) than in python and anaconda. Bacteria species were most frequently isolated from the kidney of pythons 35 (25.2%), intestines of anacondas 11 (50%) and stomach of boa 3 (30%). This study showed that captive pythons harbored more bacterial species than anaconda or boa. Most of the bacterial species isolated from these snakes have public health importance and have been incriminated in human infections worldwide. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Isolation and functional characterization of bacterial endophytes from Carica papaya fruits.

    PubMed

    Krishnan, P; Bhat, R; Kush, A; Ravikumar, P

    2012-08-01

    To isolate and characterize the endophytes from papaya fruits and to determine the fermentative potential of the strains. Endophytes provide potential sources for novel natural products for the use in agriculture and nutrition. There is very limited information on isolation and characterization of bacterial endophytes from papaya. We describe isolation and characterization of eighteen endophytes of papaya fruit from four economically important papaya varieties viz 'Red lady', 'Solo', 'Coorg Honey' and 'Bangalore'. The phylogenetic analysis based on the 16S rRNA sequence revealed that isolated endophytes are genetically distinct and cluster as discrete clades in the dendrogram. The Bacillus species is a predominant bacterial endophyte across papaya varieties. The seeds and the endocarp of papaya fruits harbour Kocuria, Acinetobacter and Enterobacter species. The Staphylococcus species were detected in the fruit mesocarp of two papaya varieties used in the study. The endophytes isolated from papaya fruits were capable of producing extracellular enzymes like amylase, cellulase, pectinase and xylanase. Three isolates, Bacillus (PE-LR-1 and PE-LR-3) and Kocuria (PE-LR-2), were selected for fruit fermentation, and antioxidant potential of the fermented product was evaluated. PE-LR-3 fermented product has the free radical scavenging activity of 61·2% and a microbial cocktail of PE-LR-3 with Saccharomyces cerevisiae MTCC 2918 enhances the antioxidant potential to 75·7%. These findings suggest that different parts of papaya fruits harbour an array of bacterial endophytes that could be important agents in attributing the high nutritive status to the fruit and can serve as potent microbial cocktails for developing value-added fermented products of this important fruit. This study describes isolation of a bacterial endophyte from papaya fruit that is capable of improving the antioxidant potential of raw papaya after fermentation. No claim to Indian Government works Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  15. Aseptic Laboratory Techniques: Plating Methods

    PubMed Central

    Sanders, Erin R.

    2012-01-01

    Microorganisms are present on all inanimate surfaces creating ubiquitous sources of possible contamination in the laboratory. Experimental success relies on the ability of a scientist to sterilize work surfaces and equipment as well as prevent contact of sterile instruments and solutions with non-sterile surfaces. Here we present the steps for several plating methods routinely used in the laboratory to isolate, propagate, or enumerate microorganisms such as bacteria and phage. All five methods incorporate aseptic technique, or procedures that maintain the sterility of experimental materials. Procedures described include (1) streak-plating bacterial cultures to isolate single colonies, (2) pour-plating and (3) spread-plating to enumerate viable bacterial colonies, (4) soft agar overlays to isolate phage and enumerate plaques, and (5) replica-plating to transfer cells from one plate to another in an identical spatial pattern. These procedures can be performed at the laboratory bench, provided they involve non-pathogenic strains of microorganisms (Biosafety Level 1, BSL-1). If working with BSL-2 organisms, then these manipulations must take place in a biosafety cabinet. Consult the most current edition of the Biosafety in Microbiological and Biomedical Laboratories (BMBL) as well as Material Safety Data Sheets (MSDS) for Infectious Substances to determine the biohazard classification as well as the safety precautions and containment facilities required for the microorganism in question. Bacterial strains and phage stocks can be obtained from research investigators, companies, and collections maintained by particular organizations such as the American Type Culture Collection (ATCC). It is recommended that non-pathogenic strains be used when learning the various plating methods. By following the procedures described in this protocol, students should be able to: ● Perform plating procedures without contaminating media. ● Isolate single bacterial colonies by the streak-plating method. ● Use pour-plating and spread-plating methods to determine the concentration of bacteria. ● Perform soft agar overlays when working with phage. ● Transfer bacterial cells from one plate to another using the replica-plating procedure. ● Given an experimental task, select the appropriate plating method. PMID:22617405

  16. Activity of Norspermidine on Bacterial Biofilms of Multidrug-Resistant Clinical Isolates Associated with Persistent Extremity Wound Infections.

    PubMed

    Cardile, Anthony P; Woodbury, Ronald L; Sanchez, Carlos J; Becerra, Sandra C; Garcia, Rebecca A; Mende, Katrin; Wenke, Joseph C; Akers, Kevin S

    2017-01-01

    Biofilm formation is a major virulence factor for numerous pathogenic bacteria and is cited as a central event in the pathogenesis of chronic human infections, which is in large part due to excessive extracellular matrix secretion and metabolic changes that occur within the biofilm rendering them highly tolerant to antimicrobial treatments. Polyamines, including norspermidine, play central roles in bacterial biofilm development, but have also recently been shown to inhibit biofilm formation in select strains of various pathogenic bacteria. The aim of this study was to evaluate in vitro the biofilm dispersive and inhibitory activities of norspermidine against multidrug-resistant clinical isolates of Acinetobacter baumannii(n = 4), Klebsiella pneumoniae (n = 3), Pseudomonas aeruginosa (n = 5) and Staphylococcus aureus (n = 4) associated with chronic extremity wound infections using the semi-quantitative 96-well plate method and confocal laser microscopy. In addition to the antibiofilm activity, biocompatibility of norspermidine was also evaluated by measuring toxicity in vitro to human cell lines and whole porcine tissue explants using MTT viability assay and histological analysis. Norspermidine (5-20 mM) had variable dispersive and inhibitory activity on biofilms which was dependent on both the strain and species. Of the clinical bacterial species evaluated herein, A. baumannii isolates were the most sensitive to the effect of norspermidine, which was in part due to the inhibitory effects of norspermidine on bacterial motility and expression of genes involved in the production of homoserine lactones and quorum sensing molecules both essential for biofilm formation. Importantly, exposure of cell lines and whole tissues to norspermidine for prolonged periods of time (≥24 h) was observed to reduce viability and alter tissue histology in a time and concentration dependent manner, with 20 mM exposure having the greatest negative effects on both tissues and individual cell lines. Collectively our findings demonstrate that, similar to other polyamines, norspermidine displays both inhibitory and dispersive activities on biofilms of clinical multidrug-resistant bacterial isolates, in particular for strains of A. baumannii. Additionally our findings suggest that direct application may be considered on tissues, albeit for limited exposure times.

  17. A new disease of parsley (Petroselinum crispum) in California caused by a fluorescent pseudomonad related to Pseudomonas viridiflava.

    USDA-ARS?s Scientific Manuscript database

    In 2008 fluorescent bacteria were isolated from bacterial leaf spot symptoms on Italian parsley (Petroselinum crispum) in Ceres, California. These isolates were different from the known bacterial pathogens of parsley in California. To determine the etiology of this disease pathogenicity was evaluate...

  18. PHYLOGENETIC AFFILIATION OF WATER DISTRIBUTION SYSTEM BACTERIAL ISOLATES USING 16S RDNA SEQUENCE ANALYSIS

    EPA Science Inventory

    In a previously described study, only 15% of the bacterial strains isolated from a water distribution system (WDS) grown on R2A agar were identifiable using fatty acid methyl esthers (FAME) profiling. The lack of success was attributed to the use of fatty acid databases of bacter...

  19. Incidence of bacterial respiratory pathogens and their susceptibility to common antibacterial agents.

    PubMed Central

    Qadri, S. M.; Lee, G. C.; Ueno, Y.; Burdette, J. M.

    1993-01-01

    Although most respiratory tract infections are caused by viruses, bacterial pathogens are responsible for higher morbidity and mortality. Because virtually nothing is known about the etiology of bacterial respiratory pathogens in Saudi Arabia, this study examined the incidence of these organisms in 5426 patients over a 1-year period. Of the bacterial pathogens isolated from 904 patients, the most common organism was Hemophilus influenzae (31%), followed by pneumococci (22%), Pseudomonas aeruginosa (16%), and others (31%). Because the first two organisms accounted for more than 50% of isolates, their susceptibility to commonly used antibiotics was also reviewed. The results are presented here. PMID:8496993

  20. Involvement of cyclodipeptides in the competition of bacterial communities in the oligotrophic Churince aquatic system of Cuatro Ciénegas Basin dominated by Gammaproteobacteria.

    PubMed

    Martínez-Carranza, Enrique; Ponce-Soto, Gabriel Y; Díaz-Pérez, Alma L; Cadenas, Erasmo; Souza, Valeria; Campos-García, Jesús

    2018-01-01

    The Cuatro Ciénegas Basin (CCB) within the Chihuahuan Desert in México is an extremely oligotrophic oasis with negligible phosphorous levels, described as a hot spot of biodiversity, not only in stromatolites and microbial mats, but also in living forms in general. The microorganisms possess the capability to produce a wide variety of virulence factors, antibiotics, and quorum-sensing (QS) crosstalk signals such as non-ribosomal cyclodipeptides (CDPs) which enables them to colonize diverse ecological niches. In the aquatic system of CCB known as Churince, a bacterial population was isolated from the Lagunita pond dominated by Gammaproteobacteria. In this work, we determined the relationships between the antagonism and CDPs production in this bacterial population. Results indicate that 68% of isolates showed antagonistic effects over other isolates, correlating with production of CDPs and the antibiotic 2,4-diacetylphloroglucinol (DAPG). Although a minority of the isolates were capable of inducing a QS biosensor strain, bacterial QS interference was not the main mechanism in the antagonism observed. Thus, our results indicate that CDPs primarily, and DAPG to a lesser degree, are involved with the growth-inhibition competition mechanisms of bacterial communities in the Lagunita pond and was associated with a Gammaproteobacteria dominancy phenomena.

  1. Screening of marine bacterial producers of polyunsaturated fatty acids and optimisation of production.

    PubMed

    Abd El Razak, Ahmed; Ward, Alan C; Glassey, Jarka

    2014-02-01

    Water samples from three different environments including Mid Atlantic Ridge, Red Sea and Mediterranean Sea were screened in order to isolate new polyunsaturated fatty acids (PUFAs) bacterial producers especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Two hundred and fifty-one isolates were screened for PUFA production and among them the highest number of producers was isolated from the Mid-Atlantic Ridge followed by the Red Sea while no producers were found in the Mediterranean Sea samples. The screening strategy included a simple colourimetric method followed by a confirmation via GC/MS. Among the tested producers, an isolate named 66 was found to be a potentially high PUFA producer producing relatively high levels of EPA in particular. A Plackett-Burman statistical design of experiments was applied to screen a wide number of media components identifying glycerol and whey as components of a production medium. The potential low-cost production medium was optimised by applying a response surface methodology to obtain the highest productivity converting industrial by-products into value-added products. The maximum achieved productivity of EPA was 20 mg/g, 45 mg/l, representing 11% of the total fatty acids, which is approximately five times more than the amount produced prior to optimisation. The production medium composition was 10.79 g/l whey and 6.87 g/l glycerol. To our knowledge, this is the first investigation of potential bacteria PUFA producers from Mediterranean and Red Seas providing an evaluation of a colourimetric screening method as means of rapid screening of a large number of isolates.

  2. Evaluation of Bacillus spp. as dough starters for Adhirasam - A traditional rice based fermented food of Southern India

    PubMed Central

    Anisha, Anvar Hussain Noorul; Anandham, Rangasamy; Kwon, Soon Woo; Gandhi, Pandiyan Indira; Gopal, Nellaiappan Olaganathan

    2015-01-01

    Abstract Adhirasam is a cereal based, doughnut shaped, deep fried dessert consumed in the southern regions of India. The dough used to prepare adhirasam is fermented and contains rice flour and jaggery. The aim of the present study was to characterize the cultivable bacteria associated with this fermented dough and to identify a suitable starter culture for the production of quality adhirasam. In total, one hundred and seventy bacterial isolates were recovered from de Man Rogosa Sharp (MRS) agar, nutrient agar, lysogeny agar and tryptic soy agar media. Out of the 170 bacterial isolates, sixteen isolates were selected based on their ability to tolerate glucose and sucrose. All the bacterial isolates tolerated 15% glucose and 30% sucrose. Analyses of 16S rDNA gene sequences of the bacterial isolates showed that the dominant cultivable bacteria were members of the genus Bacillus. These strains were further used as starters and tested for their ability to ferment rice flour with jaggery to produce adhirasam dough. Organoleptic evaluation was carried out to choose the best starter strain. Adhirasam prepared from Bacillus subtilis isolates S4-P11, S2-G2-A1 and S1-G15, Bacillus tequilensis isolates S2-H16, S3-P9, S3-G10 and Bacillus siamensis isolate S2-G13 were highly acceptable to consumers. Adhirasam prepared using these starter cultures had superior product characteristics such as softness in texture, flavor and enhanced aroma and sweet taste. PMID:26691480

  3. Isolation and in vitro evaluation of bacteriophages against MDR-bacterial isolates from septic wound infections.

    PubMed

    Pallavali, Roja Rani; Degati, Vijaya Lakshmi; Lomada, Dakshayani; Reddy, Madhava C; Durbaka, Vijaya Raghava Prasad

    2017-01-01

    Multi-drug resistance has become a major problem for the treatment of pathogenic bacterial infections. The use of bacteriophages is an attractive approach to overcome the problem of drug resistance in several pathogens that cause fatal diseases. Our study aimed to isolate multi drug resistant bacteria from patients with septic wounds and then isolate and apply bacteriophages in vitro as alternative therapeutic agents. Pus samples were aseptically collected from Rajiv Gandhi Institute of Medical Science (RIMS), Kadapa, A.P., and samples were analyzed by gram staining, evaluating morphological characteristics, and biochemical methods. MDR-bacterial strains were collected using the Kirby-Bauer disk diffusion method against a variety of antibiotics. Bacteriophages were collected and tested in vitro for lytic activity against MDR-bacterial isolates. Analysis of the pus swab samples revealed that the most of the isolates detected had Pseudomonas aeruginosa as the predominant bacterium, followed by Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli. Our results suggested that gram-negative bacteria were more predominant than gram-positive bacteria in septic wounds; most of these isolates were resistant to ampicillin, amoxicillin, penicillin, vancomycin and tetracycline. All the gram-positive isolates (100%) were multi-drug resistant, whereas 86% of the gram-negative isolates had a drug resistant nature. Further bacteriophages isolated from sewage demonstrated perfect lytic activity against the multi-drug resistant bacteria causing septic wounds. In vitro analysis of the isolated bacteriophages demonstrated perfect lysis against the corresponding MDR-bacteria, and these isolated phages may be promising as a first choice for prophylaxis against wound sepsis, Moreover, phage therapy does not enhance multi-drug resistance in bacteria and could work simultaneously on a wide variety of MDR-bacteria when used in a bacteriophage cocktail. Hence, our results suggest that these bacteriophages could be potential therapeutic options for treating septic wounds caused by P. aeruginosa, S. aureus, K. pneumoniae and E. coli.

  4. In vitro activities of 10 antimicrobial agents against bacterial vaginosis-associated anaerobic isolates from pregnant Japanese and Thai women.

    PubMed

    Puapermpoonsiri, S; Watanabe, K; Kato, N; Ueno, K

    1997-10-01

    The in vitro activities of 10 antimicrobial agents against 159 bacterial vaginosis-associated anaerobic isolates from pregnant Japanese and Thai women were determined. Clindamycin, imipenem, cefmetazole, amoxicillin, amoxicillin-clavulanate, and metronidazole were highly active against all anaerobic isolates except Prevotella bivia and Mobiluncus species, which were resistant to amoxicillin and metronidazole, respectively. Cefotiam, ceftazidime, and ofloxacin were variably effective, while cefaclor was the least effective agent.

  5. StrainSeeker: fast identification of bacterial strains from raw sequencing reads using user-provided guide trees.

    PubMed

    Roosaare, Märt; Vaher, Mihkel; Kaplinski, Lauris; Möls, Märt; Andreson, Reidar; Lepamets, Maarja; Kõressaar, Triinu; Naaber, Paul; Kõljalg, Siiri; Remm, Maido

    2017-01-01

    Fast, accurate and high-throughput identification of bacterial isolates is in great demand. The present work was conducted to investigate the possibility of identifying isolates from unassembled next-generation sequencing reads using custom-made guide trees. A tool named StrainSeeker was developed that constructs a list of specific k -mers for each node of any given Newick-format tree and enables the identification of bacterial isolates in 1-2 min. It uses a novel algorithm, which analyses the observed and expected fractions of node-specific k -mers to test the presence of each node in the sample. This allows StrainSeeker to determine where the isolate branches off the guide tree and assign it to a clade whereas other tools assign each read to a reference genome. Using a dataset of 100 Escherichia coli isolates, we demonstrate that StrainSeeker can predict the clades of E. coli with 92% accuracy and correct tree branch assignment with 98% accuracy. Twenty-five thousand Illumina HiSeq reads are sufficient for identification of the strain. StrainSeeker is a software program that identifies bacterial isolates by assigning them to nodes or leaves of a custom-made guide tree. StrainSeeker's web interface and pre-computed guide trees are available at http://bioinfo.ut.ee/strainseeker. Source code is stored at GitHub: https://github.com/bioinfo-ut/StrainSeeker.

  6. Cost Savings Realized by Implementation of Routine Microbiological Identification by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    PubMed Central

    Alby, Kevin; Kerr, Alan; Jones, Melissa; Gilligan, Peter H.

    2015-01-01

    Matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry (MS) is an emerging technology for rapid identification of bacterial and fungal isolates. In comparison to conventional methods, this technology is much less labor intensive and can provide accurate and reliable results in minutes from a single isolated colony. We compared the cost of performing the bioMérieux Vitek MALDI-TOF MS with conventional microbiological methods to determine the amount saved by the laboratory by converting to the new technology. Identification costs for 21,930 isolates collected between April 1, 2013, and March 31, 2014, were directly compared for MALDI-TOF MS and conventional methodologies. These isolates were composed of commonly isolated organisms, including commonly encountered aerobic and facultative bacteria and yeast but excluding anaerobes and filamentous fungi. Mycobacterium tuberculosis complex and rapidly growing mycobacteria were also evaluated for a 5-month period during the study. Reagent costs and a total cost analysis that included technologist time in addition to reagent expenses and maintenance service agreement costs were analyzed as part of this study. The use of MALDI-TOF MS equated to a net savings of $69,108.61, or 87.8%, in reagent costs annually compared to traditional methods. When total costs are calculated to include technologist time and maintenance costs, traditional identification would have cost $142,532.69, versus $68,886.51 with the MALDI-TOF MS method, resulting in a laboratory savings of $73,646.18, or 51.7%, annually by adopting the new technology. The initial cost of the instrument at our usage level would be offset in about 3 years. MALDI-TOF MS not only represents an innovative technology for the rapid and accurate identification of bacterial and fungal isolates, it also provides a significant cost savings for the laboratory. PMID:25994167

  7. Cost Savings Realized by Implementation of Routine Microbiological Identification by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry.

    PubMed

    Tran, Anthony; Alby, Kevin; Kerr, Alan; Jones, Melissa; Gilligan, Peter H

    2015-08-01

    Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) is an emerging technology for rapid identification of bacterial and fungal isolates. In comparison to conventional methods, this technology is much less labor intensive and can provide accurate and reliable results in minutes from a single isolated colony. We compared the cost of performing the bioMérieux Vitek MALDI-TOF MS with conventional microbiological methods to determine the amount saved by the laboratory by converting to the new technology. Identification costs for 21,930 isolates collected between April 1, 2013, and March 31, 2014, were directly compared for MALDI-TOF MS and conventional methodologies. These isolates were composed of commonly isolated organisms, including commonly encountered aerobic and facultative bacteria and yeast but excluding anaerobes and filamentous fungi. Mycobacterium tuberculosis complex and rapidly growing mycobacteria were also evaluated for a 5-month period during the study. Reagent costs and a total cost analysis that included technologist time in addition to reagent expenses and maintenance service agreement costs were analyzed as part of this study. The use of MALDI-TOF MS equated to a net savings of $69,108.61, or 87.8%, in reagent costs annually compared to traditional methods. When total costs are calculated to include technologist time and maintenance costs, traditional identification would have cost $142,532.69, versus $68,886.51 with the MALDI-TOF MS method, resulting in a laboratory savings of $73,646.18, or 51.7%, annually by adopting the new technology. The initial cost of the instrument at our usage level would be offset in about 3 years. MALDI-TOF MS not only represents an innovative technology for the rapid and accurate identification of bacterial and fungal isolates, it also provides a significant cost savings for the laboratory. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Antibacterial activity of natural spices on multiple drug resistant Escherichia coli isolated from drinking water, Bangladesh

    PubMed Central

    2011-01-01

    Background Spices traditionally have been used as coloring agents, flavoring agents, preservatives, food additives and medicine in Bangladesh. The present work aimed to find out the antimicrobial activity of natural spices on multi-drug resistant Escherichia coli isolates. Methods Anti-bacterial potentials of six crude plant extracts (Allium sativum, Zingiber officinale, Allium cepa, Coriandrum sativum, Piper nigrum and Citrus aurantifolia) were tested against five Escherichia coli isolated from potable water sources at kushtia, Bangladesh. Results All the bacterial isolates were susceptible to undiluted lime-juice. None of them were found to be susceptible against the aqueous extracts of garlic, onion, coriander, pepper and ginger alone. However, all the isolates were susceptible when subjected to 1:1:1 aqueous extract of lime, garlic and ginger. The highest inhibition zone was observed with lime (11 mm). Conclusion Natural spices might have anti-bacterial activity against enteric pathogens and could be used for prevention of diarrheal diseases. Further evaluation is necessary. PMID:21406097

  9. Occurrence of Internal Stipe Necrosis of Cultivated Mushrooms (Agaricus bisporus) Caused by Ewingella americana in Korea

    PubMed Central

    Jhune, Chang-Sung; Cheong, Jong-Chun; Yun, Hyung-Sik; Cho, Weon-Dae

    2009-01-01

    The internal stipe necrosis of cultivated mushrooms (Agaricus bisporus) is caused by the bacterium Ewingella americana, a species of the Enterobacteriaceae. Recently, Ewingella americana was isolated from cultivated white button mushrooms in Korea evidencing symptoms of internal stipe browning. Its symptoms are visible only at harvest, and appear as a variable browning reaction in the center of the stipes. From these lesions, we isolated one bacterial strain (designated CH4). Inoculation of the bacterial isolate into mushroom sporocarps yielded the characteristic browning symptoms that were distinguishable from those of the bacterial soft rot that is well known to mushroom growers. The results of Gram stain, flagellal staining, and biochemical tests identified these isolates as E. americana. This was verified by pathogenicity, physiological and biochemical characteristics, and the results of an analysis of the 16S rRNA gene sequences and the fatty acids profile. This is the first report of the isolation of E. americana from cultivated white button mushrooms in Korea. PMID:23983509

  10. Antibacterial activity of natural spices on multiple drug resistant Escherichia coli isolated from drinking water, Bangladesh.

    PubMed

    Rahman, Shahedur; Parvez, Anowar Khasru; Islam, Rezuanul; Khan, Mahboob Hossain

    2011-03-15

    Spices traditionally have been used as coloring agents, flavoring agents, preservatives, food additives and medicine in Bangladesh. The present work aimed to find out the antimicrobial activity of natural spices on multi-drug resistant Escherichia coli isolates. Anti-bacterial potentials of six crude plant extracts (Allium sativum, Zingiber officinale, Allium cepa, Coriandrum sativum, Piper nigrum and Citrus aurantifolia) were tested against five Escherichia coli isolated from potable water sources at kushtia, Bangladesh. All the bacterial isolates were susceptible to undiluted lime-juice. None of them were found to be susceptible against the aqueous extracts of garlic, onion, coriander, pepper and ginger alone. However, all the isolates were susceptible when subjected to 1:1:1 aqueous extract of lime, garlic and ginger. The highest inhibition zone was observed with lime (11 mm). Natural spices might have anti-bacterial activity against enteric pathogens and could be used for prevention of diarrheal diseases. Further evaluation is necessary.

  11. Comparison of commercial DNA extraction kits for isolation and purification of bacterial and eukaryotic DNA from PAH-contaminated soils.

    PubMed

    Mahmoudi, Nagissa; Slater, Greg F; Fulthorpe, Roberta R

    2011-08-01

    Molecular characterization of the microbial populations of soils and sediments contaminated with polycyclic aromatic hydrocarbons (PAHs) is often a first step in assessing intrinsic biodegradation potential. However, soils are problematic for molecular analysis owing to the presence of organic matter, such as humic acids. Furthermore, the presence of contaminants, such as PAHs, can cause further challenges to DNA extraction, quantification, and amplification. The goal of our study was to compare the effectiveness of four commercial soil DNA extraction kits (UltraClean Soil DNA Isolation kit, PowerSoil DNA Isolation kit, PowerMax Soil DNA Isolation kit, and FastDNA SPIN kit) to extract pure, high-quality bacterial and eukaryotic DNA from PAH-contaminated soils. Six different contaminated soils were used to determine if there were any biases among the kits due to soil properties or level of contamination. Extracted DNA was used as a template for bacterial 16S rDNA and eukaryotic 18S rDNA amplifications, and PCR products were subsequently analyzed using denaturing gel gradient electrophoresis (DGGE). We found that the FastDNA SPIN kit provided significantly higher DNA yields for all soils; however, it also resulted in the highest levels of humic acid contamination. Soil texture and organic carbon content of the soil did not affect the DNA yield of any kit. Moreover, a liquid-liquid extraction of the DNA extracts found no residual PAHs, indicating that all kits were effective at removing contaminants in the extraction process. Although the PowerSoil DNA Isolation kit gave relatively low DNA yields, it provided the highest quality DNA based on successful amplification of both bacterial and eukaryotic DNA for all six soils. DGGE fingerprints among the kits were dramatically different for both bacterial and eukaryotic DNA. The PowerSoil DNA Isolation kit revealed multiple bands for each soil and provided the most consistent DGGE profiles among replicates for both bacterial and eukaryotic DNA.

  12. Bacterial Profile, Antibacterial Resistance Pattern, and Associated Factors from Women Attending Postnatal Health Service at University of Gondar Teaching Hospital, Northwest Ethiopia.

    PubMed

    Bitew Kifilie, Abebaw; Dagnew, Mulat; Tegenie, Birhanemeskel; Yeshitela, Biruk; Howe, Rawleigh; Abate, Ebba

    2018-01-01

    Surgical site infection is a vital cause of maternal mortality and morbidity, especially in resource-limited countries. The rise of antibiotic resistance bacterial infection poses a big threat to this vulnerable population. However, there is lack of studies around the study area. The purpose of this study was to identify bacterial profile, antibacterial resistance pattern, and associated factors among mothers attending postnatal care health service. Institutional based cross-sectional study was conducted on 107 study participants at University of Gondar Teaching Hospital from 1 January 2016 to 30 May 2016. Wound swab, aspirate, and biopsy were collected and performed for culture and drug resistance testing. Data were entered and analyzed by using SPSS version 20. Bivariate and multivariate logistic regression models were fitted to determine the associated factors for bacterial infection. Odds ratio (95% CI) was calculated to determine the strength of statistically significant associated factors. Bacterial growth was confirmed in 90 (84.1%) of 107 study participants suspected to have surgical site infection. The predominant bacterial isolates were S. aureus (41.6%), E. coli (19.8%), K. pneumoniae (13.9%), coagulase negative Staphylococcus (12.9%), and Enterobacter spp. (4%). The majority of isolates were resistant to ampicillin, amoxicillin, and tetracycline but susceptible to ceftriaxone and amikacin. Multidrug-resistant bacteria species were isolated. Using a procedure such as cesarean section and episiotomy for delivery and premature rapture of membrane had strong association with bacterial infection. The high prevalence of bacterial profile and isolation of multidrug-resistant bacteria pose a big threat to postnatal mothers and their children. Factors such as cesarean section, episiotomy for delivery, and premature rapture of membrane were predictors for bacterial infection. Therefore, there should be done a continuous surveillance as well as rational use of antibiotics and a longitudinal study using phenotypic and genotypic methods will be done.

  13. Secondary metabolites produced by marine streptomyces as antibiofilm and quorum-sensing inhibitor of uropathogen Proteus mirabilis.

    PubMed

    Younis, Khansa Mohammed; Usup, Gires; Ahmad, Asmat

    2016-03-01

    Quorum-sensing regulates bacterial biofilm formation and virulence factors, thereby making it an interesting target for attenuating pathogens. In this study, we investigated anti-biofilm and anti-quorum-sensing compounds from secondary metabolites of halophiles marine streptomyces against urinary catheter biofilm forming Proteus mirabilis without effect on growth viability. A total of 40 actinomycetes were isolated from samples collected from different places in Iraq including marine sediments and soil samples. Fifteen isolates identified as streptomyces and their supernatant screened as anti-quorum-sensing by inhibiting quorum-sensing regulated prodigiosin biosynthesis of Serratia marcescens strain Smj-11 as a reporter strain. Isolate Sediment Lake Iraq (sdLi) showed potential anti-quorum-sensing activity. Out of 35 clinical isolates obtained from Urinary catheter used by patient at the Universiti Kebangsaan Malaysia Medical Center, 22 isolates were characterized and identified as Proteus mirabilis. Isolate Urinary Catheter B4 (UCB4) showed the highest biofilm formation with highest resistance to used antibiotic and was chosen for further studies. Ethyl acetate secondary metabolites extract was produced from sdLi isolate. First, we determined the Minimum Inhibitory Concentration (MIC) of sdLi crude extract against UCB4 isolate, and all further experiments used concentrations below the MIC. Tests of subinhibitory concentrations of sdLi crude extract showed good inhibition against UCB4 isolate biofilm formation on urinary catheter and cover glass using Scanning electron microscopy and light microscopy respectively. The influence of sub-MIC of sdLi crude extract was also found to attenuate the quorum sensing (QS)-dependent factors such as hemolysin activity, urease activity, pH value, and motility of UCB4 isolate. Evidence is presented that these nontoxic secondary metabolites may act as antagonists of bacterial quorum sensing by competing with quorum-sensing signals for receptor binding.

  14. Characterization of bacterial community associated to biofilms of corroded oil pipelines from the southeast of Mexico.

    PubMed

    Neria-González, Isabel; Wang, En Tao; Ramírez, Florina; Romero, Juan M; Hernández-Rodríguez, César

    2006-06-01

    Microbial communities associated to biofilms promote corrosion of oil pipelines. The community structure of bacteria in the biofilm formed in oil pipelines is the basic knowledge to understand the complexity and mechanisms of metal corrosion. To assess bacterial diversity, biofilm samples were obtained from X52 steel coupons corroded after 40 days of exposure to normal operation and flow conditions. The biofilm samples were directly used to extract metagenomic DNA, which was used as template to amplify 16S ribosomal gene by PCR. The PCR products of 16S ribosomal gene were also employed as template for sulfate-reducing bacteria (SRB) specific nested-PCR and both PCR products were utilized for the construction of gene libraries. The V3 region of the 16S rRNA gene was also amplified to analyse the bacterial diversity by analysis of denaturing gradient gel electrophoresis (DGGE). Ribosomal library and DGGE profiles exhibited limited bacterial diversity, basically including Citrobacter spp., Enterobacter spp. and Halanaerobium spp. while Desulfovibrio alaskensis and a novel clade within the genus Desulfonatronovibrio were detected from the nested PCR library. The biofilm samples were also taken for the isolation of SRB. Desulfovibrio alaskensis and Desulfovibrio capillatus, as well as some strains related to Citrobacter were isolated. SRB consists in a very small proportion of the community and Desulfovibrio spp. were the relatively abundant groups among the SRB. This is the first study directly exploring bacterial diversity in corrosive biofilms associated to steel pipelines subjected to normal operation conditions.

  15. Use of Endophytic and Rhizosphere Bacteria To Improve Phytoremediation of Arsenic-Contaminated Industrial Soils by Autochthonous Betula celtiberica.

    PubMed

    Mesa, Victoria; Navazas, Alejandro; González-Gil, Ricardo; González, Aida; Weyens, Nele; Lauga, Béatrice; Gallego, Jose Luis R; Sánchez, Jesús; Peláez, Ana Isabel

    2017-04-15

    The aim of this study was to investigate the potential of indigenous arsenic-tolerant bacteria to enhance arsenic phytoremediation by the autochthonous pseudometallophyte Betula celtiberica The first goal was to perform an initial analysis of the entire rhizosphere and endophytic bacterial communities of the above-named accumulator plant, including the cultivable bacterial species. B. celtiberica 's microbiome was dominated by taxa related to Flavobacteriales , Burkholderiales , and Pseudomonadales , especially the Pseudomonas and Flavobacterium genera. A total of 54 cultivable rhizobacteria and 41 root endophytes, mainly affiliated with the phyla Proteobacteria , Bacteroidetes , Firmicutes , and Actinobacteria , were isolated and characterized with respect to several potentially useful features for metal plant accumulation, such as the ability to promote plant growth, metal chelation, and/or mitigation of heavy-metal stress. Seven bacterial isolates were further selected and tested for in vitro accumulation of arsenic in plants; four of them were finally assayed in field-scale bioaugmentation experiments. The exposure to arsenic in vitro caused an increase in the total nonprotein thiol compound content in roots, suggesting a detoxification mechanism through phytochelatin complexation. In the contaminated field, the siderophore and indole-3-acetic acid producers of the endophytic bacterial consortium enhanced arsenic accumulation in the leaves and roots of Betula celtiberica , whereas the rhizosphere isolate Ensifer adhaerens strain 91R mainly promoted plant growth. Field experimentation showed that additional factors, such as soil arsenic content and pH, influenced arsenic uptake in the plant, attesting to the relevance of field conditions in the success of phytoextraction strategies. IMPORTANCE Microorganisms and plants have developed several ways of dealing with arsenic, allowing them to resist and metabolize this metalloid. These properties form the basis of phytoremediation treatments and the understanding that the interactions of plants with soil bacteria are crucial for the optimization of arsenic uptake. To address this in our work, we initially performed a microbiome analysis of the autochthonous Betula celtiberica plants growing in arsenic-contaminated soils, including endosphere and rhizosphere bacterial communities. We then proceeded to isolate and characterize the cultivable bacteria that were potentially better suited to enhance phytoextraction efficiency. Eventually, we went to the field application stage. Our results corroborated the idea that recovery of pseudometallophyte-associated bacteria adapted to a large historically contaminated site and their use in bioaugmentation technologies are affordable experimental approaches and potentially very useful for implementing effective phytoremediation strategies with plants and their indigenous bacteria. Copyright © 2017 American Society for Microbiology.

  16. Use of Endophytic and Rhizosphere Bacteria To Improve Phytoremediation of Arsenic-Contaminated Industrial Soils by Autochthonous Betula celtiberica

    PubMed Central

    Navazas, Alejandro; González-Gil, Ricardo; González, Aida; Weyens, Nele; Lauga, Béatrice; Gallego, Jose Luis R.; Sánchez, Jesús; Peláez, Ana Isabel

    2017-01-01

    ABSTRACT The aim of this study was to investigate the potential of indigenous arsenic-tolerant bacteria to enhance arsenic phytoremediation by the autochthonous pseudometallophyte Betula celtiberica. The first goal was to perform an initial analysis of the entire rhizosphere and endophytic bacterial communities of the above-named accumulator plant, including the cultivable bacterial species. B. celtiberica's microbiome was dominated by taxa related to Flavobacteriales, Burkholderiales, and Pseudomonadales, especially the Pseudomonas and Flavobacterium genera. A total of 54 cultivable rhizobacteria and 41 root endophytes, mainly affiliated with the phyla Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria, were isolated and characterized with respect to several potentially useful features for metal plant accumulation, such as the ability to promote plant growth, metal chelation, and/or mitigation of heavy-metal stress. Seven bacterial isolates were further selected and tested for in vitro accumulation of arsenic in plants; four of them were finally assayed in field-scale bioaugmentation experiments. The exposure to arsenic in vitro caused an increase in the total nonprotein thiol compound content in roots, suggesting a detoxification mechanism through phytochelatin complexation. In the contaminated field, the siderophore and indole-3-acetic acid producers of the endophytic bacterial consortium enhanced arsenic accumulation in the leaves and roots of Betula celtiberica, whereas the rhizosphere isolate Ensifer adhaerens strain 91R mainly promoted plant growth. Field experimentation showed that additional factors, such as soil arsenic content and pH, influenced arsenic uptake in the plant, attesting to the relevance of field conditions in the success of phytoextraction strategies. IMPORTANCE Microorganisms and plants have developed several ways of dealing with arsenic, allowing them to resist and metabolize this metalloid. These properties form the basis of phytoremediation treatments and the understanding that the interactions of plants with soil bacteria are crucial for the optimization of arsenic uptake. To address this in our work, we initially performed a microbiome analysis of the autochthonous Betula celtiberica plants growing in arsenic-contaminated soils, including endosphere and rhizosphere bacterial communities. We then proceeded to isolate and characterize the cultivable bacteria that were potentially better suited to enhance phytoextraction efficiency. Eventually, we went to the field application stage. Our results corroborated the idea that recovery of pseudometallophyte-associated bacteria adapted to a large historically contaminated site and their use in bioaugmentation technologies are affordable experimental approaches and potentially very useful for implementing effective phytoremediation strategies with plants and their indigenous bacteria. PMID:28188207

  17. Use of mycelia as paths for the isolation of contaminant‐degrading bacteria from soil

    PubMed Central

    Furuno, Shoko; Remer, Rita; Chatzinotas, Antonis; Harms, Hauke; Wick, Lukas Y.

    2012-01-01

    Summary Mycelia of fungi and soil oomycetes have recently been found to act as effective paths boosting bacterial mobility and bioaccessibility of contaminants in vadose environments. In this study, we demonstrate that mycelia can be used for targeted separation and isolation of contaminant‐degrading bacteria from soil. In a ‘proof of concept’ study we developed a novel approach to isolate bacteria from contaminated soil using mycelia of the soil oomycete Pythium ultimum as translocation networks for bacteria and the polycyclic aromatic hydrocarbon naphthalene (NAPH) as selective carbon source. NAPH‐degrading bacterial isolates were affiliated with the genera Xanthomonas, Rhodococcus and Pseudomonas. Except for Rhodococcus the NAPH‐degrading isolates exhibited significant motility as observed in standard swarming and swimming motility assays. All steps of the isolation procedures were followed by cultivation‐independent terminal 16S rRNA gene terminal fragment length polymorphism (T‐RFLP) analysis. Interestingly, a high similarity (63%) between both the cultivable NAPH‐degrading migrant and the cultivable parent soil bacterial community profiles was observed. This suggests that mycelial networks generally confer mobility to native, contaminant‐degrading soil bacteria. Targeted, mycelia‐based dispersal hence may have high potential for the isolation of bacteria with biotechnologically useful properties. PMID:22014110

  18. Survival of bacterial isolates exposed to simulated Jovian trapped radiation belt electrons and solar wind protons

    NASA Technical Reports Server (NTRS)

    Taylor, D. M.; Hagen, C. A.; Renninger, G. M.; Simko, G. J.; Smith, C. D.; Yelinek, J. A.

    1972-01-01

    With missions to Jupiter, the spacecraft will be exposed for extended duration to solar wind radiation and the Jovian trapped radiation belt. This study is designed to determine the effect of these radiation environments on spacecraft bacterial isolates. The information can be used in the probability of contamination analysis for these missions. A bacterial subpopulation from Mariner Mars 1971 spacecraft (nine sporeforming and three nonsporeforming isolates) plus two comparative organisms, Staphylococcus epidermidis ATCC 17917 and a strain of Bacillus subtilis var. niger, were exposed to 2-, 12-, and 25-MeV electrons at different doses with simultaneous exposure to a vacuum of 0.0013 N/sqm at 20 and -20 C. The radioresistance of the subpopulation was dependent on the isolate, dose, and energy of electrons. Temperature affected the radioresistance of only the sporeforming isolates. Survival data indicated that spores were reduced approximately 1 log/1500 J/kg, while nonsporeforming isolates (micrococci) were reduced 1.5 to 2 logs/1500 J/kg with the exception of an apparent radioresistant isolate whose resistance approached that of the spores. The subpopulation was found to be less resistant to lower energy than to higher energy electrons.

  19. Multidrug-Resistant CTX-M-(15, 9, 2)- and KPC-2-Producing Enterobacter hormaechei and Enterobacter asburiae Isolates Possessed a Set of Acquired Heavy Metal Tolerance Genes Including a Chromosomal sil Operon (for Acquired Silver Resistance).

    PubMed

    Andrade, Leonardo N; Siqueira, Thiago E S; Martinez, Roberto; Darini, Ana Lucia C

    2018-01-01

    Bacterial resistance to antibiotics is concern in healthcare-associated infections. On the other hand, bacterial tolerance to other antimicrobials, like heavy metals, has been neglected and underestimated in hospital pathogens. Silver has long been used as an antimicrobial agent and it seems to be an important indicator of heavy metal tolerance. To explore this perspective, we searched for the presence of acquired silver resistance genes ( sil operon: silE, silS, silR, silC, silF, silB, silA , and silP ) and acquired extended-spectrum cephalosporin and carbapenem resistance genes ( bla CTX-M and bla KPC ) in Enterobacter cloacae Complex (EcC) ( n = 27) and Enterobacter aerogenes ( n = 8) isolated from inpatients at a general hospital. Moreover, the genetic background of the silA (silver-efflux pump) and the presence of other acquired heavy metal tolerance genes, pcoD (copper-efflux pump), arsB (arsenite-efflux pump), terF (tellurite resistance protein), and merA (mercuric reductase) were also investigated. Outstandingly, 21/27 (78%) EcC isolates harbored silA gene located in the chromosome. Complete sil operon was found in 19/21 silA -positive EcC isolates. Interestingly, 8/20 (40%) E. hormaechei and 5/6 (83%) E. asburiae co-harbored silA/pcoD genes and bla CTX-M-(15,2,or9) and/or bla KPC-2 genes. Frequent occurrences of arsB, terF , and merA genes were detected, especially in silA/pcoD -positive, multidrug-resistant (MDR) and/or CTX-M-producing isolates. Our study showed co-presence of antibiotic and heavy metal tolerance genes in MDR EcC isolates. In our viewpoint, there are few studies regarding to bacterial heavy metal tolerance and we call attention for more investigations and discussion about this issue in different hospital pathogens.

  20. Multidrug-Resistant CTX-M-(15, 9, 2)- and KPC-2-Producing Enterobacter hormaechei and Enterobacter asburiae Isolates Possessed a Set of Acquired Heavy Metal Tolerance Genes Including a Chromosomal sil Operon (for Acquired Silver Resistance)

    PubMed Central

    Andrade, Leonardo N.; Siqueira, Thiago E. S.; Martinez, Roberto; Darini, Ana Lucia C.

    2018-01-01

    Bacterial resistance to antibiotics is concern in healthcare-associated infections. On the other hand, bacterial tolerance to other antimicrobials, like heavy metals, has been neglected and underestimated in hospital pathogens. Silver has long been used as an antimicrobial agent and it seems to be an important indicator of heavy metal tolerance. To explore this perspective, we searched for the presence of acquired silver resistance genes (sil operon: silE, silS, silR, silC, silF, silB, silA, and silP) and acquired extended-spectrum cephalosporin and carbapenem resistance genes (blaCTX−M and blaKPC) in Enterobacter cloacae Complex (EcC) (n = 27) and Enterobacter aerogenes (n = 8) isolated from inpatients at a general hospital. Moreover, the genetic background of the silA (silver-efflux pump) and the presence of other acquired heavy metal tolerance genes, pcoD (copper-efflux pump), arsB (arsenite-efflux pump), terF (tellurite resistance protein), and merA (mercuric reductase) were also investigated. Outstandingly, 21/27 (78%) EcC isolates harbored silA gene located in the chromosome. Complete sil operon was found in 19/21 silA-positive EcC isolates. Interestingly, 8/20 (40%) E. hormaechei and 5/6 (83%) E. asburiae co-harbored silA/pcoD genes and blaCTX−M−(15,2,or9) and/or blaKPC−2 genes. Frequent occurrences of arsB, terF, and merA genes were detected, especially in silA/pcoD-positive, multidrug-resistant (MDR) and/or CTX-M-producing isolates. Our study showed co-presence of antibiotic and heavy metal tolerance genes in MDR EcC isolates. In our viewpoint, there are few studies regarding to bacterial heavy metal tolerance and we call attention for more investigations and discussion about this issue in different hospital pathogens. PMID:29628916

  1. Potential Information Loss Due to Categorization of Minimum Inhibitory Concentration Frequency Distributions.

    PubMed

    Mazloom, Reza; Jaberi-Douraki, Majid; Comer, Jeffrey R; Volkova, Victoriya

    2018-01-01

    A bacterial isolate's susceptibility to antimicrobial is expressed as the lowest drug concentration inhibiting its visible growth, termed minimum inhibitory concentration (MIC). The susceptibilities of isolates from a host population at a particular time vary, with isolates with specific MICs present at different frequencies. Currently, for either clinical or monitoring purposes, an isolate is most often categorized as Susceptible, Intermediate, or Resistant to the antimicrobial by comparing its MIC to a breakpoint value. Such data categorizations are known in statistics to cause information loss compared to analyzing the underlying frequency distributions. The U.S. National Antimicrobial Resistance Monitoring System (NARMS) includes foodborne bacteria at the food animal processing and retail product points. The breakpoints used to interpret the MIC values for foodborne bacteria are those relevant to clinical treatments by the antimicrobials in humans in whom the isolates were to cause infection. However, conceptually different objectives arise when inference is sought concerning changes in susceptibility/resistance across isolates of a bacterial species in host populations among different sampling points or times. For the NARMS 1996-2013 data for animal processing and retail, we determined the fraction of comparisons of susceptibility/resistance to 44 antimicrobial drugs of twelve classes of a bacterial species in a given animal host or product population where there was a significant change in the MIC frequency distributions between consecutive years or the two sampling points, while the categorization-based analyses concluded no change. The categorization-based analyses missed significant changes in 54% of the year-to-year comparisons and in 71% of the slaughter-to-retail within-year comparisons. Hence, analyses using the breakpoint-based categorizations of the MIC data may miss significant developments in the resistance distributions between the sampling points or times. Methods considering the MIC frequency distributions in their entirety may be superior for epidemiological analyses of resistance dynamics in populations.

  2. Identification and evolution of drug efflux pump in clinical Enterobacter aerogenes strains isolated in 1995 and 2003.

    PubMed

    Chevalier, Jacqueline; Mulfinger, Céline; Garnotel, Eric; Nicolas, Pierre; Davin-Régli, Anne; Pagès, Jean-Marie

    2008-09-12

    The high mortality impact of infectious diseases will increase due to accelerated evolution of antibiotic resistance in important human pathogens. Development of antibiotic resistance is a evolutionary process inducing the erosion of the effectiveness of our arsenal of antibiotics. Resistance is not necessarily limited to a single class of antibacterial agents but may affect many unrelated compounds; this is termed 'multidrug resistance' (MDR). The major mechanism of MDR is the active expulsion of drugs by bacterial pumps; the treatment of gram negative bacterial infections is compromised due to resistance mechanisms including the expression of efflux pumps that actively expel various usual antibiotics (beta-lactams, quinolones, ...). Enterobacter aerogenes has emerged among Enterobacteriaceae associated hospital infections during the last twenty years due to its faculty of adaptation to antibiotic stresses. Clinical isolates of E. aerogenes belonging to two strain collections isolated in 1995 and 2003 respectively, were screened to assess the involvement of efflux pumps in antibiotic resistance. Drug susceptibility assays were performed on all bacterial isolates and an efflux pump inhibitor (PAbetaN) previously characterized allowed to decipher the role of efflux in the resistance. Accumulation of labelled chloramphenicol was monitored in the presence of an energy poison to determine the involvement of active efflux on the antibiotic intracellular concentrations. The presence of the PAbetaN-susceptible efflux system was also identified in resistant E. aerogenes strains. For the first time a noticeable increase in clinical isolates containing an efflux mechanism susceptible to pump inhibitor is report within an 8 year period. After the emergence of extended spectrum beta-lactamases in E. aerogenes and the recent characterisation of porin mutations in clinical isolates, this study describing an increase in inhibitor-susceptible efflux throws light on a new step in the evolution of mechanism in E. aerogenes.

  3. Identification and Evolution of Drug Efflux Pump in Clinical Enterobacter aerogenes Strains Isolated in 1995 and 2003

    PubMed Central

    Garnotel, Eric; Nicolas, Pierre; Davin-Régli, Anne; Pagès, Jean-Marie

    2008-01-01

    Background The high mortality impact of infectious diseases will increase due to accelerated evolution of antibiotic resistance in important human pathogens. Development of antibiotic resistance is a evolutionary process inducing the erosion of the effectiveness of our arsenal of antibiotics. Resistance is not necessarily limited to a single class of antibacterial agents but may affect many unrelated compounds; this is termed ‘multidrug resistance’ (MDR). The major mechanism of MDR is the active expulsion of drugs by bacterial pumps; the treatment of Gram negative bacterial infections is compromised due to resistance mechanisms including the expression of efflux pumps that actively expel various usual antibiotics (ß-lactams, quinolones, …). Methodology/Principal Findings Enterobacter aerogenes has emerged among Enterobacteriaceae associated hospital infections during the last twenty years due to its faculty of adaptation to antibiotic stresses. Clinical isolates of E. aerogenes belonging to two strain collections isolated in 1995 and 2003 respectively, were screened to assess the involvement of efflux pumps in antibiotic resistance. Drug susceptibility assays were performed on all bacterial isolates and an efflux pump inhibitor (PAßN) previously characterized allowed to decipher the role of efflux in the resistance. Accumulation of labelled chloramphenicol was monitored in the presence of an energy poison to determine the involvement of active efflux on the antibiotic intracellular concentrations. The presence of the PAßN-susceptible efflux system was also identified in resistant E. aerogenes strains. Conclusions/Significance For the first time a noticeable increase in clinical isolates containing an efflux mechanism susceptible to pump inhibitor is report within an 8 year period. After the emergence of extended spectrum ß-lactamases in E. aerogenes and the recent characterisation of porin mutations in clinical isolates, this study describing an increase in inhibitor-susceptible efflux throws light on a new step in the evolution of mechanism in E. aerogenes. PMID:18787654

  4. Flotation of mastitis pathogens with cream from subclinically infected quarters. Prospects for developing a cream-rising test for detecting mastitis caused by major mastitis pathogens.

    PubMed

    Sandholm, M; Kaartinen, L; Hyvönen, P; Veijalainen, K; Kuosa, P L

    1989-02-01

    Bacterial isolates, originating from 36 subclinically infected quarter milk samples, were labelled with 75Se and checked for cream-rising at various temperatures in a system analogous to the ABR test ("Abortus Bang Ringprobe"; the cream-rising test based on stained brucella organisms for detection of brucellosis). Diagnostic specificity and sensitivity were analyzed in experiments where labelled bacterial isolates were mixed with a number of quarter milk samples with known bacteriological status as well as samples from healthy control quarters. Creaming at 37 degrees C resulted in specific "recognization" as the bacterial isolates showed preferential flotation in the milk samples from which they had been isolated as well as is milk samples harbouring the same bacterial species. At lower creaming temperatures, the specificity was lost since all the isolates became concentrated in the cream phase irrespective of the milk sample. When comparing the specific recognization by cream of the respective bacteria, bacterial species vary: The prospects for developing diagnostic cream-rising tests for Streptococcus agalactiae, Staphylococcus aureus and Escherichia coli seems promising, but less so for coagulase-negative staphylococci, Streptococcus dysgalactiae, and Streptococcus uberis. The mechanism behind the cream-rising of labelled bacteria at 37 degrees C seems to lie in specific fat globule membrane-bound immunity of IgA type. Therefore the milk fat globules from chronically infected quarters function as absorbents for the respective isolates. Flotation of bacteria with cream indicates an in vivo mechanism enabling bacteria to invade the upper parts of milk ducts within the udder.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Relationship between lactobacilli and opportunistic bacterial pathogens associated with vaginitis.

    PubMed

    Razzak, Mohammad Sabri A; Al-Charrakh, Alaa H; Al-Greitty, Bara Hamid

    2011-04-01

    Vaginitis, is an infectious inflammation of the vaginal mucosa, which sometimes involves the vulva. The balance of the vaginal flora is maintained by the Lactobacilli and its protective and probiotic role in treating and preventing vaginal infection by producing antagonizing compounds which are regarded as safe for humans. The aim of this study was to evaluate the protective role of Lactobacilli against common bacterial opportunistic pathogens in vaginitis and study the effects of some antibiotics on Lactobacilli isolates. In this study (110) vaginal swabs were obtained from women suffering from vaginitis who admitted to Babylon Hospital of Maternity and Paediatrics in Babylon province, Iraq. The study involved the role of intrauterine device among married women with vaginitis and also involved isolation of opportunistic bacterial isolates among pregnant and non pregnant women. This study also involved studying probiotic role of Lactobacilli by production of some defense factors like hydrogen peroxide, bacteriocin, and lactic acid. Results revealed that a total of 130 bacterial isolates were obtained. Intrauterine device was a predisposing factor for vaginitis. The most common opportunistic bacterial isolates were Staphylococcus aureus, Escherichia coli, Streptococcus agalactiae, and Klebsiella pneumoniae. All Lactobacilli were hydrogen peroxide producers while some isolates were bacteriocin producers that inhibited some of opportunistic pathogens (S. aureus, E. coli). Lactobacilli were sensitive to erythromycin while 93.3% of them were resistant to ciprofloxacin and (40%, 53.3%) of them were resistant to amoxicillin and gentamycin respectively. Results revealed that there was an inverse relationship between Lactobacilli presence and organisms causing vaginitis. This may be attributed to the production of defense factors by Lactobacilli. The types of antibiotics used to treat vaginitis must be very selective in order not to kill the beneficial bacteria (Lactobacilli) that help in preservation of vaginal health and ecosystem as being one of the probiotic bacteria.

  6. Interspecific Variability in Sensitivity to UV Radiation and Subsequent Recovery in Selected Isolates of Marine Bacteria†

    PubMed Central

    Arrieta, Jesús María; Weinbauer, Markus G.; Herndl, Gerhard J.

    2000-01-01

    The interspecific variability in the sensitivity of marine bacterial isolates to UV-B (295- to 320-nm) radiation and their ability to recover from previous UV-B stress were examined. Isolates originating from different microenvironments of the northern Adriatic Sea were transferred to aged seawater and exposed to artificial UV-B radiation for 4 h and subsequently to different radiation regimens excluding UV-B to determine the recovery from UV-B stress. Bacterial activity was assessed by thymidine and leucine incorporation measurements prior to and immediately after the exposure to UV-B and after the subsequent exposure to the different radiation regimens. Large interspecific differences among the 11 bacterial isolates were found in the sensitivity to UV-B, ranging from 21 to 92% inhibition of leucine incorporation compared to the bacterial activity measured in dark controls and from 14 to 84% for thymidine incorporation. Interspecific differences in the recovery from the UV stress were also large. An inverse relation was detectable between the ability to recover under dark conditions and the recovery under photosynthetic active radiation (400 to 700 nm). The observed large interspecific differences in the sensitivity to UV-B radiation and even more so in the subsequent recovery from UV-B stress are not related to the prevailing radiation conditions of the microhabitats from which the bacterial isolates originate. Based on our investigations on the 11 marine isolates, we conclude that there are large interspecific differences in the sensitivity to UV-B radiation and even larger differences in the mechanisms of recovery from previous UV stress. This might lead to UV-mediated shifts in the bacterioplankton community composition in marine surface waters. PMID:10742228

  7. Staphylococcus aureus requires less virulence to establish an infection in diabetic hosts.

    PubMed

    Tuchscherr, Lorena; Korpos, Èva; van de Vyver, Hélène; Findeisen, Clais; Kherkheulidze, Salome; Siegmund, Anke; Deinhardt-Emmer, Stefanie; Bach, Olaf; Rindert, Martin; Mellmann, Alexander; Sunderkötter, Cord; Peters, Georg; Sorokin, Lydia; Löffler, Bettina

    2018-05-22

    Staphylococcus aureus is the most frequent pathogen causing diabetic foot infections. Here, we investigated the degree of bacterial virulence required to establish invasive tissue infections in diabetic organisms. Staphylococcal isolates from diabetic and non-diabetic foot ulcers were tested for their virulence in in vitro functional assays of host cell invasion and cytotoxicity. Isolates from diabetes mellitus type I/II patients exhibited less virulence than isolates from non-diabetic patients, but were nevertheless able to establish severe infections. In some cases, non-invasive isolates were detected deep within diabetic wounds, even though the strains were non-pathogenic in cell culture models. Testing of defined isolates in murine footpad injection models revealed that both low- and high-virulent bacterial strains persisted in higher numbers in diabetic compared to non-diabetic hosts, suggesting that hyperglycemia favors bacterial survival. Additionally, the bacterial load was higher in NOD mice, which have a compromised immune system, compared to C57Bl/6 mice. Our results reveal that high as well as low-virulent staphylococcal strains are able to cause soft tissue infections and to persist in diabetic humans and mice, suggesting a reason for the frequent and endangering infections in patients with diabetes. Copyright © 2018 Elsevier GmbH. All rights reserved.

  8. Microbiological testing of pharmaceuticals and cosmetics in Egypt.

    PubMed

    Zeitoun, Hend; Kassem, Mervat; Raafat, Dina; AbouShlieb, Hamida; Fanaki, Nourhan

    2015-12-09

    Microbial contamination of pharmaceuticals poses a great problem to the pharmaceutical manufacturing process, especially from a medical as well as an economic point of view. Depending upon the product and its intended use, the identification of isolates should not merely be limited to the United States Pharmacopeia (USP) indicator organisms. Eighty-five pre-used non-sterile pharmaceuticals collected from random consumers in Egypt were examined for the eventual presence of bacterial contaminants. Forty-one bacterial contaminants were isolated from 31 of the tested preparations. These isolates were subjected to biochemical identification by both conventional tests as well as API kits, which were sufficient for the accurate identification of only 11 out of the 41 bacterial contaminants (26.8%) to the species level. The remaining isolates were inconclusively identified or showed contradictory results after using both biochemical methods. Using molecular methods, 24 isolates (58.5%) were successfully identified to the species level. Moreover, polymerase chain reaction (PCR) assays were compared to standard biochemical methods in the detection of pharmacopoeial bacterial indicators in artificially-contaminated pharmaceutical samples. PCR-based methods proved to be superior regarding speed, cost-effectiveness and sensitivity. Therefore, pharmaceutical manufacturers would be advised to adopt PCR-based methods in the microbiological quality testing of pharmaceuticals in the future.

  9. Isolation and characterization of diuron-degrading bacteria from lotic surface water.

    PubMed

    Batisson, Isabelle; Pesce, Stéphane; Besse-Hoggan, Pascale; Sancelme, Martine; Bohatier, Jacques

    2007-11-01

    The bacterial community structure of a diuron-degrading enrichment culture from lotic surface water samples was analyzed and the diuron-degrading strains were selected using a series of techniques combining temporal temperature gradient gel electrophoresis (TTGE) of 16 S rDNA gene V1-V3 variable regions, isolation of strains on agar plates, colony hybridization methods, and biodegradation assays. The TTGE fingerprints revealed that diuron had a strong impact on bacterial community structure and highlighted both diuron-sensitive and diuron-adapted bacterial strains. Two bacterial strains, designated IB78 and IB93 and identified as belonging to Pseudomonas sp. and Stenotrophomonas sp., were isolated and shown to degrade diuron in pure resting cells in a first-order kinetic reaction during the first 24 h of incubation with no 3,4-DCA detected. The percentages of degradation varied from 25% to 60% for IB78 and 20% to 65% for IB93 and for a diuron concentration range from 20 mg/L to 2 mg/L, respectively. It is interesting to note that diuron was less degraded by single isolates than by mixed resting cells, thereby underlining a cumulative effect between these two strains. To the best of our knowledge, this is the first report of diuron-degrading strains isolated from lotic surface water.

  10. Isolation of Ralstonia solanacearum-infecting bacteriophages from tomato fields in Chiang Mai, Thailand, and their experimental use as biocontrol agents.

    PubMed

    Bhunchoth, A; Phironrit, N; Leksomboon, C; Chatchawankanphanich, O; Kotera, S; Narulita, E; Kawasaki, T; Fujie, M; Yamada, T

    2015-04-01

    To isolate and characterize novel bacteriophages infecting the phytopathogen, Ralstonia solanacearum, and to evaluate them as resources with potential uses in the biocontrol of bacterial wilt. Fourteen phages infecting R. solanacearum were isolated from soil samples collected in Chiang Mai, Thailand. The phages showed different host ranges when tested against 59 R. solanacearum strains isolated from Thailand and Japan. These phages were characterized as nine podoviruses and five myoviruses based on their morphology. Podovirus J2 in combination with another podovirus (φRSB2) lysed host cells very efficiently in contaminated soil. J2 treatment prevented wilting of tomato plants infected with a highly virulent R. solanacearum strain. Treatment with J2 effectively reduced the amount of the bacterial wilt pathogen in contaminated soil and prevented bacterial wilt of tomato in pot experiments. Myovirus J6 possessed jumbo phage features, giving a unique opportunity to study its utilization as a biocontrol agent. As exemplified by J2, the phages isolated in this study represent valuable resources with potential uses in biocontrol of bacterial wilt. A rare jumbo phage J6 served as a valuable subject to understand and utilize this new group of phages. © 2015 The Society for Applied Microbiology.

  11. Label-free isolation and deposition of single bacterial cells from heterogeneous samples for clonal culturing

    NASA Astrophysics Data System (ADS)

    Riba, J.; Gleichmann, T.; Zimmermann, S.; Zengerle, R.; Koltay, P.

    2016-09-01

    The isolation and analysis of single prokaryotic cells down to 1 μm and less in size poses a special challenge and requires micro-engineered devices to handle volumes in the picoliter to nanoliter range. Here, an advanced Single-Cell Printer (SCP) was applied for automated and label-free isolation and deposition of bacterial cells encapsulated in 35 pl droplets by inkjet-like printing. To achieve this, dispenser chips to generate micro droplets have been fabricated with nozzles 20 μm in size. Further, the magnification of the optical system used for cell detection was increased. Redesign of the optical path allows for collision-free addressing of any flat substrate since no compartment protrudes below the nozzle of the dispenser chip anymore. The improved system allows for deterministic isolation of individual bacterial cells. A single-cell printing efficiency of 93% was obtained as shown by printing fluorescent labeled E. coli. A 96-well plate filled with growth medium is inoculated with single bacteria cells on average within about 8 min. Finally, individual bacterial cells from a heterogeneous sample of E. coli and E. faecalis were isolated for clonal culturing directly on agar plates in user-defined array geometry.

  12. Characterisation of the aerobic bacterial flora of boid snakes: application of MALDI-TOF mass spectrometry.

    PubMed

    Plenz, Bastian; Schmidt, Volker; Grosse-Herrenthey, Anke; Krüger, Monika; Pees, Michael

    2015-03-14

    The aim of this study was to identify aerobic bacterial isolates from the respiratory tract of boids with matrix-assisted laser desorption ionisation-time-of-flight mass spectrometry (MALDI-TOF MS). From 47 boid snakes, swabs from the oral cavity, tracheal wash samples and, in cases in which postmortem examination was performed, pulmonary tissue samples were taken. Each snake was classified as having inflammation of the respiratory tract and/or oral cavity, or without evidence of inflammation based on combination of clinical, cytological and histopathological findings. Samples collected from the respiratory tract and oral cavity were inoculated onto routine media and bacteria were cultured aerobically. All morphologically distinct individual colonies obtained were analysed using MALDI-TOF MS. Unidentified isolates detected in more than three snakes were selected for further 16S rDNA PCR and sequencing. Among all examined isolates (n=243), 49 per cent (n=119) could be sufficiently speciated using MALDI-TOF MS. Molecular biology revealed several bacterial species that have not been previously described in reptiles. With an average of 6.3 different isolates from the respiratory tract and/or oral cavity, boids with inflammatory disease harboured significantly more bacterial species than boids without inflammatory disease (average 2.8 isolates). British Veterinary Association.

  13. Unique core genomes of the bacterial family vibrionaceae: insights into niche adaptation and speciation.

    PubMed

    Kahlke, Tim; Goesmann, Alexander; Hjerde, Erik; Willassen, Nils Peder; Haugen, Peik

    2012-05-10

    The criteria for defining bacterial species and even the concept of bacterial species itself are under debate, and the discussion is apparently intensifying as more genome sequence data is becoming available. However, it is still unclear how the new advances in genomics should be used most efficiently to address this question. In this study we identify genes that are common to any group of genomes in our dataset, to determine whether genes specific to a particular taxon exist and to investigate their potential role in adaptation of bacteria to their specific niche. These genes were named unique core genes. Additionally, we investigate the existence and importance of unique core genes that are found in isolates of phylogenetically non-coherent groups. These groups of isolates, that share a genetic feature without sharing a closest common ancestor, are termed genophyletic groups. The bacterial family Vibrionaceae was used as the model, and we compiled and compared genome sequences of 64 different isolates. Using the software orthoMCL we determined clusters of homologous genes among the investigated genome sequences. We used multilocus sequence analysis to build a host phylogeny and mapped the numbers of unique core genes of all distinct groups of isolates onto the tree. The results show that unique core genes are more likely to be found in monophyletic groups of isolates. Genophyletic groups of isolates, in contrast, are less common especially for large groups of isolate. The subsequent annotation of unique core genes that are present in genophyletic groups indicate a high degree of horizontally transferred genes. Finally, the annotation of the unique core genes of Vibrio cholerae revealed genes involved in aerotaxis and biosynthesis of the iron-chelator vibriobactin. The presented work indicates that genes specific for any taxon inside the bacterial family Vibrionaceae exist. These unique core genes encode conserved metabolic functions that can shed light on the adaptation of a species to its ecological niche. Additionally, our study suggests that unique core genes can be used to aid classification of bacteria and contribute to a bacterial species definition on a genomic level. Furthermore, these genes may be of importance in clinical diagnostics and drug development.

  14. Isolation and characterization of marine bacteria capable of utilizing phthalate.

    PubMed

    Iwaki, Hiroaki; Nishimura, Ayaka; Hasegawa, Yoshie

    2012-03-01

    Eleven phthalate-degrading bacterial strains were isolated from seawater collected off the coast of Japan. The isolates were found to be most closely related to the marine bacterial genera Alteromonas, Citreicella, Marinomonas, Marinovum, Pelagibaca, Rhodovulum, Sulfitobacter, Thalassobius, Thalassococcus, Thalassospira, and Tropicibacter. For the first time, members of these genera were shown to be capable of growth on phthalate. The plate assay for visual detection of phthalate dioxygenase activity and PCR detection of a possible gene encoding 4,5-dihydroxyphthalate decarboxylase indicated that phthalate is degraded via 4,5-dihydroxyphthalate to protocatechuate in all the isolates.

  15. Isolation and characterization of anti-SEB peptides using magnetic sorting and bacterial peptide display library technology

    NASA Astrophysics Data System (ADS)

    Pennington, Joseph M.; Kogot, Joshua M.; Sarkes, Deborah A.; Pellegrino, Paul M.; Stratis-Cullum, Dimitra N.

    2012-06-01

    Peptide display libraries offer an alternative method to existing antibody development methods enabling rapid isolation of highly stable reagents for detection of new and emerging biological threats. Bacterial display libraries are used to isolate new peptide reagents within 1 week, which is simpler and timelier than using competing display library technology based on phage or yeast. Using magnetic sorting methods, we have isolated peptide reagents with high affinity and specificity to staphylococcal enterotoxin B (SEB), a suspected food pathogen. Flow cytometry methods were used for on-cell characterization and the binding affinity (Kd) of this new peptide reagent was determined to be 56 nm with minimal cross-reactivity to other proteins. These results demonstrated that magnetic sorting for new reagents using bacterial display libraries is a rapid and effective method and has the potential for current and new and emerging food pathogen targets.

  16. Bacteriophage Procurement for Therapeutic Purposes

    PubMed Central

    Weber-Dąbrowska, Beata; Jończyk-Matysiak, Ewa; Żaczek, Maciej; Łobocka, Małgorzata; Łusiak-Szelachowska, Marzanna; Górski, Andrzej

    2016-01-01

    Bacteriophages (phages), discovered 100 years ago, are able to infect and destroy only bacterial cells. In the current crisis of antibiotic efficacy, phage therapy is considered as a supplementary or even alternative therapeutic approach. Evolution of multidrug-resistant and pandrug-resistant bacterial strains poses a real threat, so it is extremely important to have the possibility to isolate new phages for therapeutic purposes. Our phage laboratory and therapy center has extensive experience with phage isolation, characterization, and therapeutic application. In this article we present current progress in bacteriophages isolation and use for therapeutic purposes, our experience in this field and its practical implications for phage therapy. We attempt to summarize the state of the art: properties of phages, the methods for their isolation, criteria of phage selection for therapeutic purposes and limitations of their use. Perspectives for the use of genetically engineered phages to specifically target bacterial virulence-associated genes are also briefly presented. PMID:27570518

  17. Detection of Brucella sp. infection through serological, microbiological, and molecular methods applied to buffaloes in Maranhão State, Brazil.

    PubMed

    Dos Santos, Larissa Sarmento; Sá, Joicy Cortez; Dos Santos Ribeiro, Diego Luiz; Chaves, Nancyleni Pinto; da Silva Mol, Juliana Pinto; Santos, Renato Lima; da Paixão, Tatiane Alves; de Carvalho Neta, Alcina Vieira

    2017-04-01

    The aim of the current study is to diagnose Brucella spp. infection using methods such as serology, bacterial isolation, and molecular analysis in buffaloes bred in Maranhão State. In order to do so, 390 samples of buffalo serum were subjected to serological tests, to Rose Bengal Plate Test (RBPT) and to 2-mercaptoethanol (2-ME) combined with slow agglutination test (SAT). Vaginal swabs were collected from seropositive animals and subjected to bacterial isolation and to generic PCR. According to the serological test, 16 animals had a positive reaction to the confirmatory test (2-ME/SAT). As for bacterial isolation, three samples resulted in the isolation of Brucella spp.-characteristic colonies, which were confirmed through PCR. These results confirmed Brucella spp. infection in the buffalo herd from Maranhão State.

  18. Biotransformation of Tributyltin chloride by Pseudomonas stutzeri strain DN2

    PubMed Central

    Khanolkar, Dnyanada S.; Naik, Milind Mohan; Dubey, Santosh Kumar

    2014-01-01

    A bacterial isolate capable of utilizing tributyltin chloride (TBTCl) as sole carbon source was isolated from estuarine sediments of west coast of India and identified as Pseudomonas stutzeri based on biochemical tests and Fatty acid methyl ester (FAME) analysis. This isolate was designated as strain DN2. Although this bacterial isolate could resist up to 3 mM TBTCl level, it showed maximum growth at 2 mM TBTCl in mineral salt medium (MSM). Pseudomonas stutzeri DN2 exposed to 2 mM TBTCl revealed significant alteration in cell morphology as elongation and shrinkage in cell size along with roughness of cell surface. FTIR and NMR analysis of TBTCl degradation product extracted using chloroform and purified using column chromatography clearly revealed biotransformation of TBTCl into Dibutyltin dichloride (DBTCl2) through debutylation process. Therefore, Pseudomonas stutzeri strain DN2 may be used as a potential bacterial strain for bioremediation of TBTCl contaminated aquatic environmental sites. PMID:25763027

  19. Culture-based Identification Of Microcystin-Degrading Bacteria In the Sandusky Bay and Maumee Bay of Lake Erie

    NASA Astrophysics Data System (ADS)

    Ormiston, A.; Mou, X.

    2012-12-01

    Harmful cyanobacteria blooms (cyanoHABs) are a serious issue that affects wildlife, human health, recreation and local economics worldwide. CyanoHABs produce cyanotoxins, such as microcystins (MCs) that lead to skin irritation, illness and liver tumors. Bacterially mediated degradation of MCs plays a key role to transform these toxic substrates to less harmful metabolites in natural environments. However, only a few Sphingomonos species have been isolated for degradation of MCs and many of which are from other habitats such as water plants. This project aims to isolate and identify bacteria that can degrade MC-LR and MC-RR, two major forms of MCs found during cyanoHABs in Lake Erie. Water samples were collected from the surface of Sandusky Bay and Maumee Bay of Lake Erie and immediately filtered through 3.0 -μm-pore-size membrane filters to obtain bacterioplankton fraction. The filtrates were amended with excessive inorganic nitrogen and phosphorus compounds and incubated in the dark for a week to purposely establish a carbon-limited condition. Afterwards, enrichment microcosms were established in flasks filled with pre-incubated bacterioplankton and single MC compounds (final concentration 10 μM). Once cell growth was confirmed by flow cytometry-based cell counting, bacterial cells in enriched microcosms were transferred onto solid surfaces, i.e., GFF filter and noble agar for colony isolation. Obtained single colonies were inoculated in defined liquid media with MCs as single carbon source. DNA was extracted from each purified isolate and analyzed by restriction fragment length polymorphism analysis (RFLP). A total of 18 different RFLP banding patterns were found, indicating MC-degrading bacteria may be heterogeneous in studied water samples. 16S rRNA genes of selected bacterial isolates were PCR amplified and sequenced for taxonomic identification. Our results demonstrated that MCs can be degraded by multiple bacterial species in Lake Erie. Future directions for this research include a comparison of MC-degrading bacteria in different habitats, and investigating the interactions between heterotrophic bacteria, cyanobacteria and zooplankton during CyanoHABs.

  20. A genomic window into the virulence of Histophilus somni.

    PubMed

    Sandal, Indra; Inzana, Thomas J

    2010-02-01

    Histophilus somni is an obligate inhabitant of the respiratory and genital mucosal surfaces of bovines and ovines. An individual strain can be a primary pathogen, an opportunistic pathogen, or a commensal, but can also move between these classifications if introduced into an appropriate site (e.g. the lungs) under conditions that favor bacterial persistence. H. somni is one of the bacterial agents responsible for bovine respiratory disease complex and can also cause a variety of systemic diseases in cattle and sheep. Isolates from disease sites, such as the lungs, heart, and brain, express a wide array of virulence factors (including biofilm formation) designed to evade host defense mechanisms. By contrast, some isolates from the healthy genital tract often lack many of these virulence factors. The genomic sequences of two bovine isolates, one from pneumonic lung and the other from healthy prepuce, have aided in deciphering the differences in phenotype and virulence between the two strains, and reveal their striking genetic similarity to Haemophilus influenzae and other members of the Pasteurellaceae. (c) 2009 Elsevier Ltd. All rights reserved.

  1. Antimicrobial activity of a multispecies probiotic (Ecologic 641) against pathogens isolated from infected pancreatic necrosis.

    PubMed

    Ridwan, B U; Koning, C J M; Besselink, M G H; Timmerman, H M; Brouwer, E C; Verhoef, J; Gooszen, H G; Akkermans, L M A

    2008-01-01

    Although probiotic prophylaxis has been suggested to prevent small bowel bacterial overgrowth, bacterial translocation and infection of pancreatic necrosis in severe acute pancreatitis, limited data are available on their antimicrobial activity. Using the well-diffusion method, we studied the antimicrobial properties of a multispecies probiotic product (Ecologic 641) against a collection of pathogens cultured from infected pancreatic necrosis. All individual probiotic strains included in the multispecies preparation were able to inhibit the growth of the pathogens to some extent. However, the combination of the individual strains (i.e. the multispecies preparation) was able to inhibit all pathogenic isolates. Probiotic-free supernatants adjusted to pH 7 were not able to inhibit pathogen growth. Ecologic 641 is capable of inhibiting growth of a wide variety of pathogens isolated from infected pancreatic necrosis. The antimicrobial properties are to a large extent explained by the production of organic acids. Ecologic 641 is currently being used in a Dutch nationwide double-blind, placebo-controlled, randomized multicentre trial in patients with predicted severe acute pancreatitis.

  2. Tetrachloromethane-Degrading Bacterial Enrichment Cultures and Isolates from a Contaminated Aquifer

    PubMed Central

    Penny, Christian; Gruffaz, Christelle; Nadalig, Thierry; Cauchie, Henry-Michel; Vuilleumier, Stéphane; Bringel, Françoise

    2015-01-01

    Abstract: The prokaryotic community of a groundwater aquifer exposed to high concentrations of tetrachloromethane (CCl4) for more than three decades was followed by terminal restriction fragment length polymorphism (T-RFLP) during pump-and-treat remediation at the contamination source. Bacterial enrichments and isolates were obtained under selective anoxic conditions, and degraded 10 mg·L−1 CCl4, with less than 10% transient formation of chloroform. Dichloromethane and chloromethane were not detected. Several tetrachloromethane-degrading strains were isolated from these enrichments, including bacteria from the Klebsiella and Clostridium genera closely related to previously described CCl4 degrading bacteria, and strain TM1, assigned to the genus Pelosinus, for which this property was not yet described. Pelosinus sp. TM1, an oxygen-tolerant, Gram-positive bacterium with strictly anaerobic metabolism, excreted a thermostable metabolite into the culture medium that allowed extracellular CCl4 transformation. As estimated by T-RFLP, phylotypes of CCl4-degrading enrichment cultures represented less than 7%, and archaeal and Pelosinus strains less than 0.5% of the total prokaryotic groundwater community. PMID:27682092

  3. Production of extracellular fructans by Gluconobacter nephelii P1464.

    PubMed

    Semjonovs, P; Shakirova, L; Treimane, R; Shvirksts, K; Auzina, L; Cleenwerck, I; Zikmanis, P

    2016-02-01

    Bacterial extracellular fructans, known as levans, have potential applications in food, pharmaceutical and cosmetic industries and high fructan producing strains could contribute into the cost reduction and more extensive commercial usage of them. An acetic acid bacteria (AAB) isolate P1464 was obtained from the Microbial Strain Collection of Institute of Microbiology and Biotechnology, University of Latvia and identified as Gluconobacter nephelii by DNA-DNA hybridization and the formation of extracellular fructans by this strain was confirmed. Isolated extracellular fructose polymers were characterized using FT-IR spectroscopy and the structural features of fructan appeared as similar to the reference sample of bacterial levan. Molecular mass estimates showed that the isolated G. nephelii P1464 fructose polymer has a relatively small molecular weight (Mw 1122·939 ± 153·453 kDa) and a sizeable polydispersity (Mw/Mn = 21·57 ± 1·60), as compared with other AAB, which could promote their physiological activity, including the prebiotic effects. Obtained at different cultivation conditions characteristics of fructan production, including the biotechnological indices such as the productivity (Qp) and yield (Yp/s) ranging from 0·774 to 1·244 g l(-1)  h and from 0·181 to 0·436 g g(-1) , respectively, confirmed, that G. nephelii P1464 could be used as promising strain for commercial production of levan. Bacterial fructans, known as levans, have extensive options for practical usage, however, actually limited due to high production costs. Therefore, the searches for efficient producer strains should be an urgent task to reduce costs. This study is the first report on the formation of fructans by a novel strain of acetic acid bacteria (AAB) Gluconobacter nephelii P1464. Characteristics obtained at different cultivation conditions confirmed the operation of a competitive and perspective producer strain. Isolated extracellular fructans are characterized by a lower molecular weight as compared with other AAB which could promote their physiological activity, including the prebiotic effects. © 2015 The Society for Applied Microbiology.

  4. Quinones are growth factors for the human gut microbiota.

    PubMed

    Fenn, Kathrin; Strandwitz, Philip; Stewart, Eric J; Dimise, Eric; Rubin, Sarah; Gurubacharya, Shreya; Clardy, Jon; Lewis, Kim

    2017-12-20

    The human gut microbiome has been linked to numerous components of health and disease. However, approximately 25% of the bacterial species in the gut remain uncultured, which limits our ability to properly understand, and exploit, the human microbiome. Previously, we found that growing environmental bacteria in situ in a diffusion chamber enables growth of uncultured species, suggesting the existence of growth factors in the natural environment not found in traditional cultivation media. One source of growth factors proved to be neighboring bacteria, and by using co-culture, we isolated previously uncultured organisms from the marine environment and identified siderophores as a major class of bacterial growth factors. Here, we employ similar co-culture techniques to grow bacteria from the human gut microbiome and identify novel growth factors. By testing dependence of slow-growing colonies on faster-growing neighboring bacteria in a co-culture assay, eight taxonomically diverse pairs of bacteria were identified, in which an "induced" isolate formed a gradient of growth around a cultivatable "helper." This set included two novel species Faecalibacterium sp. KLE1255-belonging to the anti-inflammatory Faecalibacterium genus-and Sutterella sp. KLE1607. While multiple helper strains were identified, Escherichia coli was also capable of promoting growth of all induced isolates. Screening a knockout library of E. coli showed that a menaquinone biosynthesis pathway was required for growth induction of Faecalibacterium sp. KLE1255 and other induced isolates. Purified menaquinones induced growth of 7/8 of the isolated strains, quinone specificity profiles for individual bacteria were identified, and genome analysis suggests an incomplete menaquinone biosynthetic capability yet the presence of anaerobic terminal reductases in the induced strains, indicating an ability to respire anaerobically. Our data show that menaquinones are a major class of growth factors for bacteria from the human gut microbiome. These organisms are taxonomically diverse, including members of the genus Faecalibacterium, Bacteroides, Bilophila, Gordonibacter, and Sutterella. This suggests that loss of quinone biosynthesis happened independently in many lineages of the human microbiota. Quinones can be used to improve existing bacterial growth media or modulate the human gut microbiota by encouraging the growth of important symbionts, such as Faecalibacterium species.

  5. Characterization of a new bacteria, Ochrobactrum sp., as a co-infectant with Newcastle disease virus in chickens experiencing high mortality

    USDA-ARS?s Scientific Manuscript database

    Virulent Newcastle disease virus and a new bacterial species were isolated from eight oral swabs obtained from chickens, pigeons and a domestic duck in Nigeria and Pakistan that were experiencing high mortality. Bacterial samples were streaked on solid media (TSA or Farrell’s) for colony isolation a...

  6. Draft Genome Sequence of Chryseobacterium sp. JV274 Isolated from Maize Rhizosphere

    PubMed Central

    Vacheron, Jordan; Dubost, Audrey; Chapulliot, David; Prigent-Combaret, Claire

    2017-01-01

    ABSTRACT We report the draft genome sequence of Chryseobacterium sp. JV274. This strain was isolated from the rhizosphere of maize during a greenhouse experiment. JV274 harbors genes involved in flexirubin production (darA and darB genes), bacterial competition (type VI secretion system), and gliding (bacterial motility; type IX secretion system). PMID:28408666

  7. Two poplar-associated bacterial isolates induce additive favorable responses in a constructed plant-microbiome system

    DOE PAGES

    Jawdy, Sara S.; Gunter, Lee E.; Engle, Nancy L.; ...

    2016-04-26

    Here, the biological function of the plant-microbiome system is the result of contributions from the host plant and microbiome members. In this work we study the function of a simplified community consisting of Pseudomonas and Burkholderia bacterial strains isolated from Populus hosts and inoculated on axenic Populus cutting in controlled laboratory conditions. Inoculation individually with either bacterial isolate increased root growth relative to uninoculated controls. Root area, photosynthetic efficiency, gene expression and metabolite expression data in individual and dual inoculated treatments indicate that the effects of these bacteria are unique and additive, suggesting that the function of a microbiome communitymore » may be predicted from the additive functions of the individual members.« less

  8. Biodegradation of 2-nitrotoluene by Micrococcus sp. strain SMN-1.

    PubMed

    Mulla, Sikandar I; Hoskeri, Robertcyril S; Shouche, Yogesh S; Ninnekar, Harichandra Z

    2011-02-01

    A bacterial consortium capable of degrading nitroaromatic compounds was isolated from pesticide-contaminated soil samples by selective enrichment on 2-nitrotoluene as a sole source of carbon and energy. The three different bacterial isolates obtained from bacterial consortium were identified as Bacillus sp. (A and C), Bacillus flexus (B) and Micrococcus sp. (D) on the basis of their morphological and biochemical characteristics and by phylogenetic analysis based on 16S rRNA gene sequences. The pathway for the degradation of 2-nitrotoluene by Micrococcus sp. strain SMN-1 was elucidated by the isolation and identification of metabolites, growth and enzymatic studies. The organism degraded 2-nitrotoluene through 3-methylcatechol by a meta-cleavage pathway, with release of nitrite.

  9. Severe necrotizing myocarditis caused by serratia marcescens infection in an axolotl (Ambystoma mexicanum).

    PubMed

    Del-Pozo, J; Girling, S; Pizzi, R; Mancinelli, E; Else, R W

    2011-05-01

    This report provides the first account of the pathological changes associated with infection by Serratia marcescens in an adult male axolotl. The infection resulted in septicaemia with severe multifocal necrotizing myocarditis. The latter lesion evolved to cardiac rupture, haemopericardium and death resulting from cardiac tamponade. This animal was exposed to higher than usual temperatures (24-25 °C) 2 weeks before the onset of disease and this may have resulted in immunocompromise and opportunistic bacterial infection. S. marcescens was isolated from the coelomic and pericardial cavity. Both isolates were identical and were resistant to β-lactam antibiotics, but not to aminoglycosides or fluoroquinolones. The production of red prodigiosin pigment by the bacterium suggested an environmental origin. Overall, the clinical and histopathological presentation suggests that S. marcescens should be included in the list of aetiological agents of the 'red-leg'/bacterial dermatosepticaemia syndrome of amphibians. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Diversity of bacteria in surface ice of Austre Lovénbreen glacier, Svalbard.

    PubMed

    Zeng, Yin-Xin; Yan, Ming; Yu, Yong; Li, Hui-Rong; He, Jian-Feng; Sun, Kun; Zhang, Fang

    2013-05-01

    Two 16S rRNA gene clone libraries Cores 1U and 2U were constructed using two ice core samples collected from Austre Lovénbreen glacier in Svalbard. The two libraries yielded a total of 262 clones belonging to 59 phylotypes. Sequences fell into 10 major lineages of the domain Bacteria, including Proteobacteria (alpha, beta, gamma and delta subdivisions), Bacteroidetes, Actinobacteria, Firmicutes, Acidobacteria, Deinococcus-Thermus, Chloroflexi, Planctomycetes, Cyanobacteria and candidate division TM7. Among them, Bacteroidetes, Actinobacteria, Alphaproteobacteria and Cyanobacteria were most abundant. UniFrac data showed no significant differences in community composition between the two ice cores. A total of nineteen bacterial strains from the genera Pseudoalteromonas and Psychrobacter were isolated from the ice cores. Phylogenetic and phenotypic analyses revealed a close relationship between the ice core isolates and bacteria in marine environments, indicating a wide distribution of some bacterial phylotypes in both terrestrial and marine ecosystems.

  11. Isolation, characterization and identification of pericarp-degrading bacteria for the production of off-odour-free white pepper from fresh berries of Piper nigrum L.

    PubMed

    Vinod, V; Kumar, A; Zachariah, T J

    2014-04-01

    To isolate, fermentatively evaluate and identify black pepper (Piper nigrum L.)-associated bacteria for the microbial decortication of fresh ripened berries and dried black pepper for preparation of off-odour-free white pepper. Among 45 bacterial isolates obtained from black pepper, seven of them were found to decorticate black pepper (>60%) and fresh pepper berries (98-100%) into white pepper within 5 days of immersion in bacterial suspension. The 16S rRNA genes (1500-bp amplicon) of these bacteria were sequenced, and species identity was established by closest match in GenBank. Superior-quality white pepper was obtained with Bacillus subtilis (IISR WP 33, 34, 38), Bacillus licheniformis (IISR WP 43), Acinetobacter baumanii (IISR WP 35), Klebsiella pneumoniae (IISR WP 19) and Microbacterium barkeri (IISR WP25). The bacterial isolates were found to secrete multiple hydrolytic enzymes such as cellulase, pectinase, amylase, protease and xylanase. Bacterial cultures were deposited with International Depository Authority at Microbial Type Culture Collection, India, as patent deposits as prescribed in Budapest Treaty for microbial deposits. The white pepper, thus obtained from bacterial decortication process, was free from off-odour compound, especially skatole. Other biochemical constituents such as oleoresin, piperine and essential oils were found in the acceptable range. The bacterial decortication did not affect inherent constituents of pepper such as essential oil constituents, oleoresin and piperine content. One of the most significant findings of the work is identification of specific bacterial species for decortication of fresh berries or black pepper berries into value-added white pepper. This work paved way for developing a technological process for microbial decortication of fresh/black pepper for the production of superior-quality white pepper. © 2014 The Society for Applied Microbiology.

  12. Non-capsulated and capsulated Haemophilus influenzae in children with acute otitis media in Venezuela: a prospective epidemiological study.

    PubMed

    Naranjo, Laura; Suarez, Jose Antonio; DeAntonio, Rodrigo; Sanchez, Francis; Calvo, Alberto; Spadola, Enza; Rodríguez, Nicolás; Andrade, Omaira; Bertuglia, Francisca; Márquez, Nelly; Castrejon, Maria Mercedes; Ortega-Barria, Eduardo; Colindres, Romulo E

    2012-02-15

    Non-typeable Haemophilus influenzae (NTHi) and Streptococcus pneumoniae are major causes of bacterial acute otitis media (AOM). Data regarding AOM are limited in Latin America. This is the first active surveillance in a private setting in Venezuela to characterize the bacterial etiology of AOM in children < 5 years of age. Between December 2008 and December 2009, 91 AOM episodes (including sporadic, recurrent and treatment failures) were studied in 87 children enrolled into a medical center in Caracas, Venezuela. Middle ear fluid samples were collected either by tympanocentesis or spontaneous otorrhea swab sampling method. Standard laboratory and microbiological techniques were used to identify bacteria and test for antimicrobial resistance. The results were interpreted according to Clinical Laboratory Standards Institute (CLSI) 2009 for non-meningitis isolates. All statistical analyses were performed using SAS 9.1 and Microsoft Excel (for graphical purposes). Overall, bacteria were cultured from 69.2% (63 of the 91 episodes); at least one pathogen (S. pneumoniae, H. influenzae, S. pyogenes or M. catarrhalis) was cultured from 65.9% (60/91) of episodes. H. influenzae (55.5%; 35/63 episodes) and S. pneumoniae (34.9%; 22/63 episodes) were the most frequently reported bacteria. Among H. influenzae isolates, 62.9% (22/35 episodes) were non-capsulated (NTHi) and 31.4% (11/35 episodes) were capsulated including types d, a, c and f, across all age groups. Low antibiotic resistance for H. influenzae was observed to amoxicillin/ampicillin (5.7%; 2/35 samples). NTHi was isolated in four of the six H. influenzae positive samples (66.7%) from recurrent episodes. We found H. influenzae and S. pneumoniae to be the main pathogens causing AOM in Venezuela. Pneumococcal conjugate vaccines with efficacy against these bacterial pathogens may have the potential to maximize protection against AOM.

  13. Differential staining of bacteria: gram stain.

    PubMed

    Moyes, Rita B; Reynolds, Jackie; Breakwell, Donald P

    2009-11-01

    In 1884, Hans Christian Gram, a Danish doctor, developed a differential staining technique that is still the cornerstone of bacterial identification and taxonomic division. This multistep, sequential staining protocol separates bacteria into four groups based on cell morphology and cell wall structure: Gram-positive cocci, Gram-negative cocci, Gram-positive rods, and Gram-negative rods. The Gram stain is useful for assessing bacterial contamination of tissue culture samples or for examining the Gram stain status and morphological features of bacteria isolated from mixed or isolated bacterial cultures. (c) 2009 by John Wiley & Sons, Inc.

  14. Identification of different species of Bacillus isolated from Nisargruna Biogas Plant by FTIR, UV-Vis and NIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Ghosh, S. B.; Bhattacharya, K.; Nayak, S.; Mukherjee, P.; Salaskar, D.; Kale, S. P.

    2015-09-01

    Definitive identification of microorganisms, including pathogenic and non-pathogenic bacteria, is extremely important for a wide variety of applications including food safety, environmental studies, bio-terrorism threats, microbial forensics, criminal investigations and above all disease diagnosis. Although extremely powerful techniques such as those based on PCR and microarrays exist, they require sophisticated laboratory facilities along with elaborate sample preparation by trained researchers. Among different spectroscopic techniques, FTIR was used in the 1980s and 90s for bacterial identification. In the present study five species of Bacillus were isolated from the aerobic predigester chamber of Nisargruna Biogas Plant (NBP) and were identified to the species level by biochemical and molecular biological (16S ribosomal DNA sequence) methods. Those organisms were further checked by solid state spectroscopic absorbance measurements using a wide range of electromagnetic radiation (wavelength 200 nm to 25,000 nm) encompassing UV, visible, near Infrared and Infrared regions. UV-Vis and NIR spectroscopy was performed on dried bacterial cell suspension on silicon wafer in specular mode while FTIR was performed on KBr pellets containing the bacterial cells. Consistent and reproducible species specific spectra were obtained and sensitivity up to a level of 1000 cells was observed in FTIR with a DTGS detector. This clearly shows the potential of solid state spectroscopic techniques for simple, easy to implement, reliable and sensitive detection of bacteria from environmental samples.

  15. Chronic bacterial seminal vesiculitis as a potential disease entity in men with chronic prostatitis.

    PubMed

    Park, Soo-Hwan; Ryu, Ji-Kan; Choo, Gwoan-Youb; Chung, Yeun-Goo; Seong, Do-Hwan; Kim, Chang-Ho; Choe, Won-Sik; Ryu, Dong-Soo; Hyun, In Young; Suh, Jun-Kyu

    2015-05-01

    To investigate bacterial infection in the seminal vesicles by bacteriological examination and radionuclide imaging in men with chronic prostatitis. The study included 50 patients with chronic prostatitis who showed hot uptake in seminal vesicles on Tc-99m ciprofloxacin imaging and eight patients who did not show hot uptake. The evaluation included the National Institutes of Health Chronic Prostatitis Symptom Index and four-glass test. In all participants, transperineal aspiration of seminal vesicle fluid under the guidance of transrectal ultrasonography and bacteriological examination was carried out. Of the 50 patients who showed hot uptake in the seminal vesicles on the isotope study, microorganisms were isolated from the seminal vesicle fluid in 17 patients (positive predictive value, 34%). The most common causative organisms were Escherichia coli in 13 patients (26%), followed by coagulase-negative Staphylococcus species in two patients (4%), Enterococcus faecalis in one patient (2%) and Chlamydia trachomatis in one patient (2%). No microorganisms were isolated in the eight patients who did not show hot uptake in the seminal vesicles (negative predictive value, 100%). However, there were no significant differences in National Institutes of Health Chronic Prostatitis Symptom Index total scores and subscores between the study groups. Chronic bacterial seminal vesiculitis might simultaneously affect a considerable portion of patients with chronic prostatitis, although the clinical implication of the disease remains to be further investigated. © 2015 The Japanese Urological Association.

  16. Prevalence of vaginal infections and associated lifestyles of students in the university of Cape Coast, Ghana

    PubMed Central

    Aubyn, Gloria Baaba; Tagoe, Daniel Nii Aryee

    2013-01-01

    Objective To determine the prevalence of vaginal infections and associated lifestyles of students visiting the University of Cape Coast Hospital. Methods Fifty female students presenting with clinical symptoms of vaginitis were sampled. One hundred samples made up of 50 urine and 50 higher vaginal swabs (HVS) were obtained from patients and questionnaire administered. Samples were wet prepared, examined microscopically, and cultured on blood and chocolate agars for 24 h at (35±2) °C. Colonial morphology, Gram reactions and biochemical tests were used for the identification of isolates. Results There were high percentages of pus cells (64%), epithelial cells (62%) and yeast cells (56%) in all urine samples. Bacterial isolates included Staphylococcus aureus (28%) and (22%), Klebsiella spp. (6%) and (4%) in urine and HVS samples respectively; Escherichia coli in urine (18%) and Candida in HVS (16%). The overall prevalence of vaginitis was 66%, including bacterial vaginosis 28%, Candida infection 22% and co-infection of bacterial and Candida 16%. Lifestyle data showed all sampled students were sexually active, 48% used contraceptives, 54% used antimicrobial agents, and 92% prefered wearing of trousers and shorts. Conclusions The present study indicates prevalence of vaginal infection among female students, which strongly correlates with student lifestyle. Education on lifestyle modifications will go a long way in reducing the prevalence of vaginitis.

  17. Phylogenetic characterization of bacteria in the gut of house flies (Musca domestica L.).

    PubMed

    Gupta, Arvind K; Nayduch, Dana; Verma, Pankaj; Shah, Bhavin; Ghate, Hemant V; Patole, Milind S; Shouche, Yogesh S

    2012-03-01

    House flies (Musca domestica L.) are cosmopolitan, ubiquitous, synanthropic insects that serve as mechanical or biological vectors for various microorganisms. To fully assess the role of house flies in the epidemiology of human diseases, it is essential to understand the diversity of microbiota harbored by natural fly populations. This study aimed to identify the diversity of house fly gut bacteria by both culture-dependent and culture-independent approaches. A total of 102 bacterial strains were isolated from the gut of 65 house flies collected from various public places including a garden, public park, garbage/dump area, public toilet, hospital, restaurant/canteen, mutton shop/market, and house/human habitation. Molecular phylogenetic analyses placed these isolates into 22 different genera. The majority of bacteria identified were known potential pathogens of the genera Klebsiella, Aeromonas, Shigella, Morganella, Providencia, and Staphylococcus. Culture-independent methods involved the construction of a 16S rRNA gene clone library, and sequence analyses supported culture recovery results. However, additional bacterial taxa not determined via culture recovery were revealed using this methodology and included members of the classes Alphaproteobacteria, Deltaproteobacteria, and the phylum Bacteroidetes. Here, we show that the house fly gut is an environmental reservoir for a vast number of bacterial species, which may have impacts on vector potential and pathogen transmission. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  18. A glimpse of the endophytic bacterial diversity in roots of blackberry plants (Rubus fruticosus).

    PubMed

    Contreras, M; Loeza, P D; Villegas, J; Farias, R; Santoyo, G

    2016-09-16

    The aim of this study was to explore the diversity of culturable bacterial communities residing in blackberry plants (Rubus fruticosus). Bacterial endophytes were isolated from plant roots, and their 16S rDNA sequences were amplified and sequenced. Our results show that the roots of R. fruticosus exhibit low colony forming units of bacterial endophytes per gram of fresh tissue (6 x 10 2 ± 0.5 x 10 2 ). We identified 41 endophytic bacterial species in R. fruticosus by BLAST homology search and a subsequent phylogenetic analysis, belonging to the classes Actinobacteria, Bacilli, Alfaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. Predominantly, genera belonging the Proteobacteria (Burkholderia, 29.4%; Herbaspirillum, 10.7%; Pseudomonas, 4.9%; and Dyella, 3.9%), Firmicutes (Bacillus, 42.1%), and Actinobacteria (two isolates showing high identity with the Streptomyces genus, 1.9%) divisions were identified. Fifty percent of the bacterial endophytes produced the phytohormone indole-acetic acid (IAA), eleven of which exhibited higher IAA production (>5.8 mg/mL) compared to the plant growth-promoting strain, Pseudomonas fluorescens UM270. Additionally, the endophytic isolates exhibited protease activity (22%), produced siderophores (26.4%), and demonstrated antagonistic action (>50% inhibition of mycelial growth) against the grey mold phytopathogen Botrytis cinerea (3.9%). These results suggested that field-grown R. fruticosus plants contain bacterial endophytes within their tissues with the potential to promote plant growth and display antagonism towards plant pathogens.

  19. Bacteriological quality of raw camel milk along the market value chain in Fafen zone, Ethiopian Somali regional state.

    PubMed

    Abera, Tsegalem; Legesse, Yoseph; Mummed, Behar; Urga, Befekadu

    2016-05-26

    The camel is a multipurpose animal with a huge productive potential. Camel milk is a key food in arid and semi-arid areas of the African and Asian countries. The quality of milk is influenced by different bacteria present in milk. This study was conducted to evaluate total bacterial content in raw camel milk along the market chain in Fafen zone, Ethiopian Somali Regional State. One hundred twenty-six raw camel milk samples were collected from Gursum (47.1 %) and Babile (52.9 %) districts. The three sampling levels included were udder (14.7 %), milking bucket (29.4 %) and market (55.9 %). Milk samples were analyzed for total bacterial counts (TBC) and coliform counts (CC). Furthermore, major pathogens were isolated and identified. 108 (85.7 %) of raw camel milk samples demonstrated bacterial contamination. The overall mean TBC and CC of contaminated raw camel milk samples was 4.75 ± 0.17 and 4.03 ± 0.26 log CFU/ml, respectively. TBC increased from udder to market level and was higher in Gursum compared to Babile district (P < 0.05). Around 38.9 % of TBCs and 88.2 % CCs in contaminated raw camel milk samples were in the range considered unsafe for human utility. Staphylococcus spp. (89.8 %), Streptococcus spp. (53.7 %), E. coli (31.5 %), Salmonella spp. (17.6 %), Klebsiella spp. (5.6 %) and Enterobacter spp. (5.6 %) were the major bacterial microorganisms isolated. The majority of the bacterial isolates in this study showed high incidence in market as compared to production level. These results indicate a lack of compliance with good production practices and hygiene at milking, transportation and market of raw camel milk.

  20. The distribution of carbapenem- and colistin-resistance in Gram-negative bacteria from the Tamil Nadu region in India.

    PubMed

    Manohar, Prasanth; Shanthini, Thamaraiselvan; Ayyanar, Ramankannan; Bozdogan, Bulent; Wilson, Aruni; Tamhankar, Ashok J; Nachimuthu, Ramesh; Lopes, Bruno S

    2017-07-01

    The occurrence of carbapenem- and colistin-resistance among Gram-negative bacteria is increasing worldwide. The aim of this study was to understand the distribution of carbapenem- and colistin-resistance in two areas in Tamil Nadu, India. The clinical isolates (n=89) used in this study were collected from two diagnostic centres in Tamil Nadu, India. The bacterial isolates were screened for meropenem- and colistin-resistance. Further, resistance genes blaNDM-1, blaOXA-48-like, blaIMP, blaVIM, blaKPC, mcr-1 and mcr-2 and integrons were studied. The synergistic effect of meropenem in combination with colistin was assessed. A total of 89 bacterial isolates were studied which included Escherichia coli (n=43), Klebsiella pneumoniae (n=18), Pseudomonas aeruginosa (n=10), Enterobacter cloacae (n=6), Acinetobacter baumannii (n=5), Klebsiella oxytoca (n=4), Proteus mirabilis (n=2) and Salmonella paratyphi (n=1). MIC testing showed that 58/89 (65 %) and 29/89 (32 %) isolates were resistant to meropenem and colistin, respectively, whereas 27/89 (30 %) isolates were resistant to both antibiotics. Escherichia coli, K. pneumoniae, K. oxytoca, Pseudomonas aeruginosa, and Enterobacter cloacae isolates were blaNDM-1-positive (n=20). Some strains of Escherichia coli, K. pneumoniae and K. oxytoca were blaOXA-181-positive (n=4). Class 1, 2 and 3 integrons were found in 24, 20 and 3 isolates, respectively. Nine NDM-1-positive Escherichia coli strains could transfer carbapenem resistance via plasmids to susceptible Escherichia coli AB1157. Meropenem and colistin showed synergy in 10/20 (50 %) isolates by 24 h time-kill studies. Our results highlight the distribution of carbapenem- and colistin-resistance in Gram-negative bacteria isolated from the Tamil Nadu region in South India.

  1. A meta-analysis of bacterial diversity in the feces of cattle

    USDA-ARS?s Scientific Manuscript database

    In this study, we conducted a meta-analysis on 16S rRNA gene sequences of bovine fecal origin that are publicly available in the RDP database. A total of 13663 sequences including 603 isolate sequences were identified in the RDP database (Release 11, Update 1), where 13447 sequences were assigned t...

  2. Colibactin: More Than a New Bacterial Toxin.

    PubMed

    Faïs, Tiphanie; Delmas, Julien; Barnich, Nicolas; Bonnet, Richard; Dalmasso, Guillaume

    2018-04-10

    Cyclomodulins are bacterial toxins that interfere with the eukaryotic cell cycle. A new cyclomodulin called colibactin, which is synthetized by the pks genomic island, was discovered in 2006. Despite many efforts, colibactin has not yet been purified, and its structure remains elusive. Interestingly, the pks island is found in members of the family Enterobacteriaceae (mainly Escherichia coli and Klebsiella pneumoniae ) isolated from different origins, including from intestinal microbiota, septicaemia, newborn meningitis, and urinary tract infections. Colibactin-producing bacteria induce chromosomal instability and DNA damage in eukaryotic cells, which leads to senescence of epithelial cells and apoptosis of immune cells. The pks island is mainly observed in B2 phylogroup E. coli strains, which include extra-intestinal pathogenic E. coli strains, and pks E. coli are over-represented in biopsies isolated from colorectal cancer. In addition, pks E. coli bacteria increase the number of tumours in diverse colorectal cancer mouse models. Thus, colibactin could have a major impact on human health. In the present review, we will focus on the biological effects of colibactin, the distribution of the pks island, and summarize what is currently known about its synthesis and its structure.

  3. Epidemiology of bacterial isolates among pediatric cancer patients from a tertiary care oncology center in North India.

    PubMed

    Kapoor, G; Sachdeva, N; Jain, S

    2014-01-01

    Infections are a major cause of morbidity and mortality in pediatric oncology. Resistance pattern of bacterial isolates determine empiric antibiotic therapy and influence outcome. This study was planned to determine profile of bacterial isolates and their antibiotic resistance pattern among pediatric cancer patients. It was a retrospective, single institutional study. The study was carried out in the department of pediatric hematology-oncology of a tertiary care cancer centre in north India over a period of 24 months (2012-2014). Microbiological data pertaining to pediatric cancer patients, less than 18 yrs of age was analysed. Hence, 238 bacterial isolates were cultured from among 1757 blood, urine and other specimens. Gram negative bacteria were the most common (74%) pathogens identified and E. coli and Klebsiella comprised 80% of them. A high incidence of extended spectrum beta lactamase producing organisms (84%), beta-lactam beta-lactamase inhibitor (78%) and carbapenem resistance was observed (29%). Blood stream infection with multi-drug resistant Klebsiella was associated with high mortality. The gram positive bacteria isolated were predominantly staphylococcus aureus and were antibiotic sensitive. Reduction in the number of culture positive isolates in the second year of our study was probably due to rigorous implementation of infection control measures. These results on microbiologic profile and antibiotic sensitivity pattern of the isolates will be extremely helpful in revision of antibiotic guidelines for our patients and in developing strategies for coping with high prevalence of multi-drug resistance. Antibiotic stewardship and strict implementation of infection control practices will be important components of this effort.

  4. Characterization of bacterial knot disease caused by Pseudomonas savastanoi pv. savastanoi on pomegranate (Punica granatum L.) trees: a new host of the pathogen.

    PubMed

    Bozkurt, I A; Soylu, S; Mirik, M; Ulubas Serce, C; Baysal, Ö

    2014-11-01

    This study aimed to isolate and identify the causal organism causing hyperplastic outgrowths (knots) on stems and branches of pomegranate trees in the Eastern Mediterranean region of Turkey. Bacterial colonies were isolated from young knots on plates containing selective nutrient media. Biochemical tests, fatty acid analysis and PCR were performed to identify possible causal disease agent. Representative isolates were identified as Pseudomonas.pv.savastanoi (Psv) using biochemical tests, fatty acid profiling and PCR. Following inoculation of pomegranate plants (cv. hicaz) with bacterial suspensions, 25 of 54 bacterial isolates caused typical knots at the site of inoculation. PCR analysis, using specific primer for Psv, generated a single amplicon from all isolates. The similarity of the sequence of Turkish pomegranate isolate was 99% similar to the corresponding gene sequences of Psv in the databases. Based on symptoms, biochemical, molecular, pathogenicity tests and sequence analyses, the disease agent of knots observed on the pomegranate trees is Psv. To the best of our knowledge, this research has revealed pomegranate as a natural host of Psv, which extends the list of host plant species affected by the pathogen in the world and Turkey. Pomegranate trees were affected by the disease with outgrowths (galls or knot) disease. Currently, there is no published study on disease agent(s) causing the galls or knots on pomegranate trees in worldwide. Bacterial colonies were isolated from young knots. The causal agent of the knot Pseudomonas savastanoi pv.savastanoi (Psv) was identified based on symptoms, biochemical, molecular methods, pathogenicity tests and sequence analysis. To the best of our knowledge, this is the first report of Psv on pomegranate as a natural host, which extends the growing list of plant species affected by this bacterium in the world and Turkey. © 2014 The Society for Applied Microbiology.

  5. Novel Polymyxin Combination With Antineoplastic Mitotane Improved the Bacterial Killing Against Polymyxin-Resistant Multidrug-Resistant Gram-Negative Pathogens.

    PubMed

    Tran, Thien B; Wang, Jiping; Doi, Yohei; Velkov, Tony; Bergen, Phillip J; Li, Jian

    2018-01-01

    Due to limited new antibiotics, polymyxins are increasingly used to treat multidrug-resistant (MDR) Gram-negative bacteria, in particular carbapenem-resistant Acinetobacter baumannii , Pseudomonas aeruginosa , and Klebsiella pneumoniae . Unfortunately, polymyxin monotherapy has led to the emergence of resistance. Polymyxin combination therapy has been demonstrated to improve bacterial killing and prevent the emergence of resistance. From a preliminary screening of an FDA drug library, we identified antineoplastic mitotane as a potential candidate for combination therapy with polymyxin B against polymyxin-resistant Gram-negative bacteria. Here, we demonstrated that the combination of polymyxin B with mitotane enhances the in vitro antimicrobial activity of polymyxin B against 10 strains of A. baumannii , P. aeruginosa , and K. pneumoniae , including polymyxin-resistant MDR clinical isolates. Time-kill studies showed that the combination of polymyxin B (2 mg/L) and mitotane (4 mg/L) provided superior bacterial killing against all strains during the first 6 h of treatment, compared to monotherapies, and prevented regrowth and emergence of polymyxin resistance in the polymyxin-susceptible isolates. Electron microscopy imaging revealed that the combination potentially affected cell division in A. baumannii . The enhanced antimicrobial activity of the combination was confirmed in a mouse burn infection model against a polymyxin-resistant A. baumannii isolate. As mitotane is hydrophobic, it was very likely that the synergistic killing of the combination resulted from that polymyxin B permeabilized the outer membrane of the Gram-negative bacteria and allowed mitotane to enter bacterial cells and exert its antimicrobial effect. These results have important implications for repositioning non-antibiotic drugs for antimicrobial purposes, which may expedite the discovery of novel therapies to combat the rapid emergence of antibiotic resistance.

  6. Reducing oyster-associated bacteria levels using supercritical fluid CO2 as an agent of warm pasteurization.

    PubMed

    Meujo, Damaris A F; Kevin, Dion A; Peng, Jiangnan; Bowling, John J; Liu, Jianping; Hamann, Mark T

    2010-03-31

    An innovative approach to Post-Harvest Processing (PHP) of oysters is introduced focusing on the effects of supercritical carbon dioxide (scCO(2)) on bacterial contaminants trapped in the digestive system of oysters. Oysters were exposed to scCO(2) under two conditions: (1) 100 bar and 37 degrees C for 30 min and (2) 172 bar and 60 degrees C for 60 min. Using FDA standard guidelines for food analysis, variations in the Aerobic Plate Count (APC) were assessed. It was established that exposing oysters to CO(2) at 100 bar and 37 degrees C for 30 min and at 172 bar and 60 degrees C for 60 min induced 2-log and 3-log reductions in the APC respectively. The decrease in the microbial load as a result of treatment with scCO(2) was found to be significant (P=0.002). A release of adductor muscles from the shell was noted in oysters treated at 172 bar and 60 degrees C for 60 min; this was not the case for oysters treated at 100 bar and 37 degrees C for 30 min. A blind study allowing sensory analysis of treated vs. untreated oysters was also completed and no significant change in the physical appearance, smell, or texture was recorded. In this paper, we also report the effect of scCO(2) on several bacterial isolates, including a referenced ATCC strain of a non-pathogenic Vibrio (Vibrio fischeri) as well as several other bacterial isolates cultured from oyster' tissues and found to share biochemical features common to pathogenic Vibrio strains. A complete inactivation (minimum 7-log reduction) was achieved with these latter bacterial isolates. A 6-log reduction was observed with V. fischeri. Copyright 2009 Elsevier B.V. All rights reserved.

  7. Reducing Oyster-Associated Bacteria Levels Using Supercritical Fluid CO2 as an Agent of Warm Pasteurization

    PubMed Central

    Meujo, Damaris A.F.; Kevin, Dion; Peng, Jiangnan; Bowling, John J.; Liu, Jianping; Hamann, Mark T.

    2010-01-01

    An innovative approach to Post-Harvest Processing (PHP) of oysters is introduced focusing on the effects of supercritical carbon dioxide (scCO2) on bacterial contaminants trapped in the digestive system of oysters. Oysters were exposed to scCO2 under two conditions: (1) 100 bar and 37 °C for 30 minutes and (2) 172 bar and 60 °C for 60 minutes. Using FDA standard guidelines for food analysis, variations in the Aerobic Plate Count (APC) was assessed. It was established that exposing oysters to CO2 at 100 bar and 37 °C for 30 minutes and at 172 bar and 60°C for 60 minutes induced 2-log and 3-log reductions in the APC respectively. The decrease in the microbial load as a result of treatment with scCO2 was found to be significant (P=0.002). A release of adductor muscles from the shell was noted in oysters treated at 172 bar and 60 °C for 60 minutes; this was not the case for oysters treated at 100 bar and 37 °C for 30 minutes. A blind study allowing sensory analysis of treated vs. untreated oysters was also completed and no significant change in the physical appearance, smell, or texture was recorded. In this paper, we also report the effect of scCO2 on several bacterial isolates, including a referenced ATCC strain of a non pathogenic Vibrio (V. fisherii) as well as several other bacterial isolates cultured from oyster’ tissues and found to share biochemical features common to pathogenic Vibrio strains. A complete inactivation (minimum 7-log reduction) was achieved with these latter bacterial isolates. A 6-log reduction was observed with V. fisherii. PMID:20022650

  8. Characterization of bacterial coliform occurrences in different zones of a drinking water distribution system.

    PubMed

    Blanch, A R; Galofré, B; Lucena, F; Terradillos, A; Vilanova, X; Ribas, F

    2007-03-01

    To compare the bacterial coliforms detected from occurrences in three zones of a water distribution system supplied by two separate water sources. Conventional and standardized protocols for identifying enterobacterial populations were applied. Additional tests to confirm isolates were included. Analyses of diversity and population similarity were performed using the Phene Plate System, a miniaturized biochemical phenotyping method. Isolates were identified by the API 20E system in tandem with biochemical phenotyping. A total of 16 576 samples were taken from the water distribution system, with 1416 isolates analysed. A low number of coliform occurrences were observed (2%). Escherichia coli was not detected in either water origin or in Zone 2 samples; however, in Zones 1 and 3 a low number of cases of E. coli were recorded. The percentages of E. coli depended on the identification criteria. Eight biochemical profiles for coliform populations were defined according to the results of the confirmative tests. There was a high diversity among these populations in the three zones studied, although no significant variations in their composition (associated with occurrences in the different zones) were observed. Klebsiella oxytoca was the most commonly detected species irrespective of zone, although seven other enterobacterial genera were also found. Analysis of the enzymatic activity of beta-glucuronidase or application of the criteria established in the norm ISO 9308-1, in tandem with thermotolerance was needed to evaluate the occurrence of E. coli in the distribution systems. Detected occurrences of bacterial coliforms could be associated with re-growth patterns for specific sampling points in the distribution system. Seasonal differences, independent of the studied zones, were observed. Biochemical phenotyping of bacterial coliforms was shown to be a useful method on the characterization of occurrences in water distribution systems.

  9. Isolation and characterisation of obligately anaerobic, lipolytic bacteria from the rumen of red deer.

    PubMed

    Jarvis, G N; Strömpl, C; Moore, E R; Thiele, J H

    1998-03-01

    Two Gram-positive, obligately anaerobic, lipolytic bacteria, isolates LIP4 and LIP5, were obtained from the rumen contents of juvenile red deer. These mesophilic bacterial strains were capable of hydrolysing the neutral lipids, tallow, tripalmitin and oliver oil, into their constituent free long-chain fatty acid and glycerol moieties. The latter compound was dissimilated by both isolates, with isolate LIP4 producing propionate as the predominant product, while isolate LIP5 produced acetate, ethanol and succinate. The lactate-utilising isolate LIP4 grew on a limited range of saccharide substrates including glucose, fructose and ribose, and exhibited an unusual cell wall structure and morphology. The isolate LIP5 grew upon a wider range of saccharides, but was unable to use lactate as a substrate. Based upon phenotypic and 16S rRNA gene sequence analyses, isolate LIP4 clusters with species in the genus Propionibacterium, while isolate LIP5 is a member of clostridial cluster XIVa.

  10. Development of a Single Locus Sequence Typing (SLST) Scheme for Typing Bacterial Species Directly from Complex Communities.

    PubMed

    Scholz, Christian F P; Jensen, Anders

    2017-01-01

    The protocol describes a computational method to develop a Single Locus Sequence Typing (SLST) scheme for typing bacterial species. The resulting scheme can be used to type bacterial isolates as well as bacterial species directly from complex communities using next-generation sequencing technologies.

  11. Bioactive Oligosaccharide Natural Products

    PubMed Central

    McCranie, Emilianne K.; Bachmann, Brian O.

    2016-01-01

    Oligosaccharide natural products target a wide spectrum of biological processes including disruption of cell wall biosynthesis, interference of bacterial translation, and inhibition of human α-amylase. Correspondingly, oligosaccharides possess potential for development as treatments of such diverse diseases as bacterial infections and type II diabetes. Despite their potent and selective activities and potential clinical relevance, isolated bioactive secondary metabolic oligosaccharides are less prevalent than other classes of natural products and their biosynthesis has received comparatively less attention. This review highlights the unique modes of action and biosynthesis of four classes of bioactive oligosaccharides: the orthosomycins, moenomycins, saccharomicins, and acarviostatins. PMID:24883430

  12. Isolation and characterization of metal-reducing thermoanaerobacter strains from deep subsurface environments of the Piceance Basin, Colorado.

    PubMed

    Roh, Yul; Liu, Shi V; Li, Guangshan; Huang, Heshu; Phelps, Tommy J; Zhou, Jizhong

    2002-12-01

    Five bacterial strains were isolated from anaerobic enrichment cultures that had originated from inoculations with samples collected from the deep subsurface environments of the millions-of-years-old, geologically and hydrologically isolated Piceance Basin in Colorado. Small-subunit rRNA gene-based analyses indicated that all of these bacteria were closely related to Thermoanaerobacter ethanolicus, with similarities of 99.4 to 99.5%. Three isolates (X513, X514, and X561) from the five bacterial strains were used to examine physiological characteristics. These thermophilic bacteria were able to use acetate, glucose, hydrogen, lactate, pyruvate, succinate, and xylose as electron donors while reducing Fe(III), cobalt(III), chromium(VI), manganese(IV), and uranium(VI) at 60 degrees C. One of the isolates (X514) was also able to utilize hydrogen as an electron donor for Fe(III) reduction. These bacteria exhibited diverse mineral precipitation capabilities, including the formation of magnetite (Fe(3)O(4)), siderite (FeCO(3)), rhodochrosite (MnCO(3)), and uraninite (UO(2)). The gas composition of the incubation headspace and the ionic composition of the incubation medium exerted profound influences on the types of minerals formed. The susceptibility of the thermophilic Fe(III)-reducing cultures to metabolic inhibitors specific for ferric reductase, hydrogenase, and electron transport indicated that iron reduction by these bacteria is an enzymatic process.

  13. Acanthamoeba castellanii of the T4 genotype is a potential environmental host for Enterobacter aerogenes and Aeromonas hydrophila

    PubMed Central

    2013-01-01

    Background Acanthamoeba can interact with a wide range of microorganisms such as viruses, algae, yeasts, protists and bacteria including Legionella pneumophila, Pseudomonas aeruginosa, Vibrio cholerae, Helicobacter pylori, Listeria monocytogenes, Mycobacterium spp., and Escherichia coli. In this capacity, Acanthamoeba has been suggested as a vector in the transmission of bacterial pathogens to the susceptible hosts. Methods Here, we used a keratitis isolate of A. castellanii of the T4 genotype and studied its interactions with two bacterial genera which have not been tested before, Enterobacter aerogenes, and Aeromonas hydrophila, as well as E. coli. Assays were performed to determine bacterial association with and invasion of A. castellanii. Additionally, bacterial survival intracellular of A. castellanii trophozoites as well as cysts was determined. Results All three bacterial isolates tested, associated, invaded, and survived inside A. castellanii trophozoites as well as A. castellanii cysts. However, E. aerogenes and E. coli exhibited significantly reduced association with and invasion of A. castellanii as compared with A. hydrophila (P < 0.01 using paired T-test, one tail distribution). In the long term survival assays, all three bacterial isolates tested remained viable inside A. castellanii trophozoites, while amoeba remained intact; however A. hydrophila exhibited higher survival inside amoebae (14.54 ± 3.3 bacteria:amoeba ratio) compared with E. aerogenes (3.96 ± 0.7 bacteria:amoeba ratio) and E. coli (5.85 ± 1.1 bacteria:amoeba ratio). A. hydrophila, E. coli, and E. aerogenes remained viable during the encystment process and exhibited higher levels of recovery from mature cysts (14.13 ± 0.89 A. hydrophila:amoeba ratio, 10.13 ± 1.17 E. aerogenes:amoeba ratio, and 11.95 ± 0.7 E. coli:amoeba ratio). Conclusions A. hydrophila and E. aerogenes also joined the ranks of other bacteria that could benefit from A. castellanii. Because cysts can be airborne, these findings suggest that Acanthamoeba is a potential vector in the transmission of A. hydrophila and E. aerogenes to susceptible hosts. PMID:23742105

  14. Acanthamoeba castellanii of the T4 genotype is a potential environmental host for Enterobacter aerogenes and Aeromonas hydrophila.

    PubMed

    Yousuf, Farzana Abubakar; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed

    2013-06-07

    Acanthamoeba can interact with a wide range of microorganisms such as viruses, algae, yeasts, protists and bacteria including Legionella pneumophila, Pseudomonas aeruginosa, Vibrio cholerae, Helicobacter pylori, Listeria monocytogenes, Mycobacterium spp., and Escherichia coli. In this capacity, Acanthamoeba has been suggested as a vector in the transmission of bacterial pathogens to the susceptible hosts. Here, we used a keratitis isolate of A. castellanii of the T4 genotype and studied its interactions with two bacterial genera which have not been tested before, Enterobacter aerogenes, and Aeromonas hydrophila, as well as E. coli. Assays were performed to determine bacterial association with and invasion of A. castellanii. Additionally, bacterial survival intracellular of A. castellanii trophozoites as well as cysts was determined. All three bacterial isolates tested, associated, invaded, and survived inside A. castellanii trophozoites as well as A. castellanii cysts. However, E. aerogenes and E. coli exhibited significantly reduced association with and invasion of A. castellanii as compared with A. hydrophila (P < 0.01 using paired T-test, one tail distribution). In the long term survival assays, all three bacterial isolates tested remained viable inside A. castellanii trophozoites, while amoeba remained intact; however A. hydrophila exhibited higher survival inside amoebae (14.54 ± 3.3 bacteria:amoeba ratio) compared with E. aerogenes (3.96 ± 0.7 bacteria:amoeba ratio) and E. coli (5.85 ± 1.1 bacteria:amoeba ratio). A. hydrophila, E. coli, and E. aerogenes remained viable during the encystment process and exhibited higher levels of recovery from mature cysts (14.13 ± 0.89 A. hydrophila:amoeba ratio, 10.13 ± 1.17 E. aerogenes:amoeba ratio, and 11.95 ± 0.7 E. coli:amoeba ratio). A. hydrophila and E. aerogenes also joined the ranks of other bacteria that could benefit from A. castellanii. Because cysts can be airborne, these findings suggest that Acanthamoeba is a potential vector in the transmission of A. hydrophila and E. aerogenes to susceptible hosts.

  15. Validation of hierarchical cluster analysis for identification of bacterial species using 42 bacterial isolates

    NASA Astrophysics Data System (ADS)

    Ghebremedhin, Meron; Yesupriya, Shubha; Luka, Janos; Crane, Nicole J.

    2015-03-01

    Recent studies have demonstrated the potential advantages of the use of Raman spectroscopy in the biomedical field due to its rapidity and noninvasive nature. In this study, Raman spectroscopy is applied as a method for differentiating between bacteria isolates for Gram status and Genus species. We created models for identifying 28 bacterial isolates using spectra collected with a 785 nm laser excitation Raman spectroscopic system. In order to investigate the groupings of these samples, partial least squares discriminant analysis (PLSDA) and hierarchical cluster analysis (HCA) was implemented. In addition, cluster analyses of the isolates were performed using various data types consisting of, biochemical tests, gene sequence alignment, high resolution melt (HRM) analysis and antimicrobial susceptibility tests of minimum inhibitory concentration (MIC) and degree of antimicrobial resistance (SIR). In order to evaluate the ability of these models to correctly classify bacterial isolates using solely Raman spectroscopic data, a set of 14 validation samples were tested using the PLSDA models and consequently the HCA models. External cluster evaluation criteria of purity and Rand index were calculated at different taxonomic levels to compare the performance of clustering using Raman spectra as well as the other datasets. Results showed that Raman spectra performed comparably, and in some cases better than, the other data types with Rand index and purity values up to 0.933 and 0.947, respectively. This study clearly demonstrates that the discrimination of bacterial species using Raman spectroscopic data and hierarchical cluster analysis is possible and has the potential to be a powerful point-of-care tool in clinical settings.

  16. Isolation and Molecular Characterization of Novel Chlorpyrifos and 3,5,6-trichloro-2-pyridinol-degrading Bacteria from Sugarcane Farm Soils

    PubMed Central

    Rayu, Smriti; Nielsen, Uffe N.; Nazaries, Loïc; Singh, Brajesh K.

    2017-01-01

    Chlorpyrifos (CP) is one of the most widely used organophosphate pesticides in agriculture worldwide, but its extensive use has led to the contamination of various soil and water systems. Microbial bioremediation is considered to be one of the most viable options for the removal of CP from the environment; however, little is known about the soil bacterial diversity that degrade CP. Sequential soil and liquid culture enrichments enabled the isolation of bacterial CP degraders with sequence homologies to Xanthomonas sp., Pseudomonas sp., and Rhizobium sp. The efficacy of the three isolated strains: Xanthomonas sp. 4R3-M1, Pseudomonas sp. 4H1-M3, and Rhizobium sp. 4H1-M1 was further investigated for biodegradation of CP and its primary metabolic product, 3,5,6-trichloro-2-pyridinol (TCP). The results indicate that all three bacterial strains almost completely metabolized CP (10 mg/L) and TCP, occurring as a metabolic degradation product, in mineral salt media as a sole source of carbon and nitrogen. The isolated bacterial strains Xanthomonas sp. 4R3-M1 and Pseudomonas sp. 4H1-M3 could also degrade TCP (10 mg/L) as a sole carbon and nitrogen source, when provided externally. Thus, these bacterial strains may be effective in practical application of bioremediation of both CP and TCP. PMID:28421040

  17. Analysis of ESBL- and AmpC-positive Enterobacteriaceae at the Department of Neonatology, University Hospital Olomouc.

    PubMed

    Husičková, Vendula; Chromá, Magdaléna; Kolář, Milan; Hricová, Kristýna; Stosová, Taťána; Kantor, Lumír; Dubrava, Lubomír

    2011-06-01

    Bacterial infections are an important issue in current clinical medicine. The severity of infectious diseases has increased dramatically in recent years, which is also due to increasing numbers of resistant bacteria, including strains producing broad-spectrum beta-lactamases. The study aimed at determining the prevalence of ESBL- and AmpC-positive Enterobacteriaceae at the Department of Neonatology, University Hospital Olomouc. Enterobacteriaceae were isolated from clinical samples from infants hospitalized at the Department of Neonatology, University Hospital Olomouc over a period of 2 years. ESBL- and AmpC-positive isolates were subjected to basic genetic analysis. In the study period, a total of 1,526 isolates of the Enterobacteriaceae family were identified, including 55 (3.6%) cases of the ESBL phenotype and 17 (1.1%) AmpC-positive isolates. Genetic analysis of ESBL-positive isolates revealed a majority of CTX-M enzymes. Among AmpC beta-lactamases, the EBC, CIT, DHA, and MOX types were detected. An Escherichia coli strain was isolated with mutations in the promoter region of the ampC chromosomal gene that are associated with overproduction of the relevant enzyme.

  18. Chitosan and cloxacillin combination improve antibiotic efficacy against different lifestyle of coagulase-negative Staphylococcus isolates from chronic bovine mastitis.

    PubMed

    Breser, María L; Felipe, Verónica; Bohl, Luciana P; Orellano, María S; Isaac, Paula; Conesa, Agustín; Rivero, Virginia E; Correa, Silvia G; Bianco, Ismael D; Porporatto, Carina

    2018-03-23

    Bovine mastitis affects the health of dairy cows and the profitability of herds worldwide. Coagulase-negative staphylococci (CNS) are the most frequently isolated pathogens in bovine intramammary infection. Based on the wide range of antimicrobial, mucoadhesive and immunostimulant properties demonstrated by chitosan, we have evaluated therapy efficiency of chitosan incorporation to cloxacillin antibiotic as well as its effect against different bacterial lifestyles of seven CNS isolates from chronic intramammary infections. The therapeutic effects of combinations were evaluated on planktonic cultures, bacterial biofilms and intracellular growth in mammary epithelial cells. We found that biofilms and intracellular growth forms offered a strong protection against antibiotic therapy. On the other hand, we found that chitosan addition to cloxacillin efficiently reduced the antibiotic concentration necessary for bacterial killing in different lifestyle. Remarkably, the combined treatment was not only able to inhibit bacterial biofilm establishment and increase preformed biofilm eradication, but it also reduced intracellular bacterial viability while it increased IL-6 secretion by infected epithelial cells. These findings provide a new approach to prophylactic drying therapy that could help to improve conventional antimicrobial treatment against different forms of bacterial growth in an efficient, safer and greener manner reducing multiresistant bacteria generation and spread.

  19. Bacterial Quality of Urinary Tract Infections in Diabetic and Non Diabetics of the Population of Ma'an Province, Jordan.

    PubMed

    Al-Asoufi, Ali; Khlaifat, Ali; Tarawneh, Amjad Al; Alsharafa, Khalid; Al-Limoun, Muhamad; Khleifat, Khaled

    2017-01-01

    The patients with Diabetes Mellitus (DM) have malfunction in bladder which prompt urine accumulation in its pool which serves a decent situation to the microbes to be develop and cause Urinary Tract Infection (UTI). The UTI is the most infectious disease that affects both males and females. This study was designed to detect the bacterial species responsible for UTI in both diabetic and non-diabetic patients in Ma'an province, Jordan. One hundred sixteen urine samples were investigated to determine UTI-causing bacteria. These samples distributed unequally between diabetic male (12) and diabetic female (25) and also non-diabetic male (13) and non-diabetic female (66). It was observed that E. coli is responsible for large proportion (44.8%) of UTI in both diabetic (15.5%) and non-diabetic (29.3%) patients. This study showed inequality in the bacterial species that were isolated from both diabetic and non-diabetic samples. However, five bacterial species including E. aerogenes, E. cloacae, C. freundii, A. baumannii and B. subtilis did not exist in all diabetic samples. Treatment of UTI in both diabetic and non-diabetic patients with chloramphenicol (30 μg), ciprofloxacin (5 μg) and vancomycin (30 μg) resulted in more favorability than other antibiotics. At the same time cephalothin (30 μg) was not recommended. Escherichia coli was the prevailing bacterial infections among those which were isolated from patients with UTI. Certain forms of bacterial infections inclined to be extra common in diabetic patients than others and other infections may be more severe in people with diabetics than in non diabetics.

  20. Molecular analysis of microbiota along the digestive tract of juvenile Atlantic salmon (Salmo salar L.).

    PubMed

    Navarrete, P; Espejo, R T; Romero, J

    2009-04-01

    Dominant bacterial microbiota of the gut of juvenile farmed Atlantic salmon was investigated using a combination of molecular approaches. Bacterial community composition from the stomach, the pyloric caeca, and the intestine was assessed by extracting DNA directly from each gut compartment. Temporal temperature gradient gel electrophoresis (TTGE) analysis of 16S ribosomal DNA (rDNA) amplicons showed very similar bacterial compositions throughout the digestive tract. Band sequencing revealed a narrow diversity of species with a dominance of Pseudomonas in the three compartments. However, cloning revealed more diversity among the Pseudomonas sequences. To confirm these results, we analyzed the bacterial community by amplifying the variable 16S-23S rDNA intergenic spacer region (ITS). Similar ITS profiles were observed among gastrointestinal compartments of salmon, confirming the TTGE results. Moreover, the dominant ITS band at 650 bp, identified as Pseudomonas, was observed in the ITS profile from fish collected in two seasons (July 2003 and 2004). In contrast, aerobic culture analysis revealed Shewanella spp. as the most prevalent isolate. This discrepancy was resolved by evaluating 16S rDNA and ITS polymerase chain reaction amplification efficiency from both Shewanella and Pseudomonas isolates. Very similar efficiencies were observed in the two bacteria. Hence, this discrepancy may be explained by preferential cultivation of Shewanella spp. under the experimental conditions. Also, we included analyses of pelleted feed and the water influent to explore environmental influences on the bacterial composition of the gut microbiota. Overall, these results indicate a homogeneous composition of the bacterial community composition along the gastrointestinal tract of reared juvenile salmon. This community is mainly composed of Pseudomonas spp., which could be derived from water influent and may be selectively associated with salmon in this hatchery.

  1. The Australian bush fly (Musca vetustissima) as a potential vector in the transmission of foodborne pathogens at outdoor eateries.

    PubMed

    Vriesekoop, Frank; Shaw, Rachel

    2010-03-01

    Abstract Australian outdoor activities are often accompanied by a barbeque (BBQ) with family, friends, and guests, which are often interrupted by uninvited guests in the form of the Australian bush fly, Musca vetustissima. We investigated the bacterial loading associated with the Australian bush in three different environments: on a cattle farm, in a typical urban area (shopping center car park), and at a BBQ. The highest bacterial populations per fly were found to occur in a farm environment ( approximately 9.1 x 10(4) CFU per fly), whereas the bacterial population was lowest on flies caught in an urban environment ( approximately 1.9 x 10(4) CFU per fly). The median CFU per fly caught near a BBQ was approximately 5.0 x 10(4). Escherichia coli was the most commonly isolated potential pathogen, whereas Shigella sp. was the least common bacterial isolate that was screened. All isolated foodborne pathogens or indicator bacteria were screened for antibiotic resistance against commonly prescribed antibiotics. This revealed a very high prevalence of multidrug resistance, especially among the Salmonella and Shigella isolates of 94% and 87% resistance, respectively, against amoxicillin, roxythromycin and cefaclor.

  2. Non-typeable Haemophilus influenzae and Streptococcus pneumoniae as primary causes of acute otitis media in colombian children: a prospective study

    PubMed Central

    2011-01-01

    Background Acute otitis media (AOM) is one of the most frequently encountered bacterial infections in children aged < 5 years; Streptococcus pneumoniae (S. pneumoniae) and non-typeable Haemophilus influenzae (NTHi) are historically identified as primary AOM causes. Nevertheless, recent data on bacterial pathogens causing AOM in Latin America are limited. This prospective study aimed to identify and characterize bacterial etiology and serotypes of AOM cases including antimicrobial susceptibility in < 5 year old Colombian children. Methods From February 2008 to January 2009, children ≥3 months and < 5 years of age presenting with AOM and for whom a middle ear fluid (MEF) sample was available were enrolled in two medical centers in Cali, Colombia. MEF samples were collected either by tympanocentesis procedure or spontaneous otorrhea swab sampling. Bacteria were identified using standard laboratory methods, and antimicrobial resistance testing was performed based on the 2009 Clinical and Laboratory Standards Institute (CLSI) criteria. Most of the cases included in the study were sporadic in nature. Results Of the 106 enrolled children, 99 were included in the analysis. Bacteria were cultured from 62/99 (63%) of samples with S. pneumoniae, H. influenzae, or S. pyogenes. The most commonly isolated bacteria were H. influenzae in 31/99 (31%) and S. pneumoniae in 30/99 (30%) of samples. The majority of H. influenzae episodes were NTHi (27/31; 87%). 19F was the most frequently isolated pneumococcal serotype (10/30; 33%). Of the 30 S. pneumoniae positive samples, 8/30 (27%) were resistant to tetracycline, 5/30 (17%) to erythromycin and 8/30 (27%) had intermediate resistance to penicillin. All H. influenzae isolates tested were negative to beta-lactamase. Conclusions NTHi and S. pneumoniae are the leading causes of AOM in Colombian children. A pneumococcal conjugate vaccine that prevents both pathogens could be useful in maximizing protection against AOM. PMID:21208431

  3. Microbial Ecology of Activated Sludge

    PubMed Central

    Dias, F. F.; Bhat, J. V.

    1964-01-01

    Over 300 bacterial strains were isolated from seven samples of activated sludge by plating on sewage agar. Gram-negative bacteria of the genera Zoogloea and Comamonas predominated. Many isolates (51%) showed sudanophilic inclusions of poly-β-hydroxybutyric acid, whereas 34% accumulated iodophilic material on media containing starch. A large number required either vitamins or amino acids, or both, for growth. None of the isolates tested for their ability to bring about changes in autoclaved sewage produced an effluent comparable in quality to the activated sludge control, although the Zoogloea did produce activated sludgelike flocs. A study of 150 bacterial strains isolated from raw sewage revealed that they differed from the sludge isolates in several respects. Coliforms, which constitute nearly a quarter of the sewage isolates, were rarely encountered in sludge. PMID:14215970

  4. Isolation and characterization of lipase-producing bacteria in the intestine of the silkworm, Bombyx mori, reared on different forage.

    PubMed

    Feng, Wei; Wang, Xiao-Qiang; Zhou, Wei; Liu, Guang-Ying; Wan, Yong-Ji

    2011-01-01

    The silkworm, Bombyx mori L. (Lepidoptera: Bombycidae), an oligophagous insect that mainly feeds on mulberry leaves, is susceptible to entomopathogen infection when reared with tricuspid cudrania leaves. A total of 56 dominant bacterial strains, classified into 12 phylotypes based on bacteriological properties and analysis of 16S rRNA genes, were isolated from the intestine of the fourth and fifth instar silkworm larvae. Ten and seven phylotypes exist in the intestine of the silkworm larvae reared with mulberry leaves and tricuspid cudrania leaves, respectively. Four of them are common in the intestine of the two treatment groups. By screening their lipolytic ability on a Rhodamine B agar plate, nine lipase-producing bacterial strains were obtained and classified into six genera, including Bacillus, Brevibacterium, Corynebacterium, Staphylococcus, Klebsiella, and Stenotrophomonas. Except for Stenotrophomonas, which is common in both, the other genera only exist in the intestine of the silkworm larvae fed with mulberry leaves. In addition, by culture and fermentation in vitro, the maximum cell density and lipase activity of lipase-producing bacteria were examined at about 48 hours. The results indicate that diet has a significant impact on the gut bacterial community, especially lipase-producing bacteria. We suggest that the difference of lipase-producing bacterial diversity might be related to disease resistance of the silkworm.

  5. Evaluation of anti-bacterial and anti-oxidant potential of andrographolide and echiodinin isolated from callus culture of Andrographis paniculata Nees

    PubMed Central

    Arifullah, Mohmmed; Namsa, Nima Dandu; Mandal, Manabendra; Chiruvella, Kishore Kumar; Vikrama, Paritala; Gopal, Ghanta Rama

    2013-01-01

    Objective To evaluate the anti-bacterial and anti-oxidant activity of andrographolide (AND) and echiodinin (ECH) of Andrographis paniculata. Methods In this study, an attempt has been made to demonstrate the anti-microbial and anti-oxidant activity of isolated AND and ECH by broth micro-dilution method and 2,2-diphenyl-2-picryl-hydrazyl (DPPH) assay, respectively. Structure elucidation was determined by electro-spray ionization-MSD, NMR (1H and 13C) and IR spectra. Results AND was effective against most of the strains tested including Mycobacterium smegmatis, showing broad spectrum of growth inhibition activity with Minimum inhibitory concentration values against Staphylococcus aureus (100 µg/mL), Streptococcus thermophilus (350 µg/mL) Bacillus subtilis (100 µg/mL), Escherichia coli (50 µg/mL), Mycobacterium smegmatis (200 µg/mL), Klebsiella pneumonia (100 µg/mL), and Pseudomonas aeruginosa (200 µg/mL). ECH showed specific anti-bacterial activity against Staphylococcus aureus, Escherichia coli, Bacillus subtilis and Pseudomonas aeruginosa at a concentration higher than 225 µg/mL. Both AND and ECH were not effective against the two yeast strains, Candida albicans and Saccharomyces cerevisiae tested in this study. Conclusion This preliminary study showed promising anti-bacterial activity and moderate free radical scavenging activity of AND and ECH, and it may provide the scientific rationale for its popular folklore medicines. PMID:23905016

  6. Bacterial genospecies that are not ecologically coherent: population genomics of Rhizobium leguminosarum

    PubMed Central

    Kumar, Nitin; Lad, Ganesh; Giuntini, Elisa; Kaye, Maria E.; Udomwong, Piyachat; Shamsani, N. Jannah; Young, J. Peter W.; Bailly, Xavier

    2015-01-01

    Biological species may remain distinct because of genetic isolation or ecological adaptation, but these two aspects do not always coincide. To establish the nature of the species boundary within a local bacterial population, we characterized a sympatric population of the bacterium Rhizobium leguminosarum by genomic sequencing of 72 isolates. Although all strains have 16S rRNA typical of R. leguminosarum, they fall into five genospecies by the criterion of average nucleotide identity (ANI). Many genes, on plasmids as well as the chromosome, support this division: recombination of core genes has been largely within genospecies. Nevertheless, variation in ecological properties, including symbiotic host range and carbon-source utilization, cuts across these genospecies, so that none of these phenotypes is diagnostic of genospecies. This phenotypic variation is conferred by mobile genes. The genospecies meet the Mayr criteria for biological species in respect of their core genes, but do not correspond to coherent ecological groups, so periodic selection may not be effective in purging variation within them. The population structure is incompatible with traditional ‘polyphasic taxonomy′ that requires bacterial species to have both phylogenetic coherence and distinctive phenotypes. More generally, genomics has revealed that many bacterial species share adaptive modules by horizontal gene transfer, and we envisage a more consistent taxonomic framework that explicitly recognizes this. Significant phenotypes should be recognized as ‘biovars' within species that are defined by core gene phylogeny. PMID:25589577

  7. Diversity of endophytic fungal and bacterial communities in Ilex paraguariensis grown under field conditions.

    PubMed

    Pérez, María Laura; Collavino, Mónica Mariana; Sansberro, Pedro Alfonso; Mroginski, Luis Amado; Galdeano, Ernestina

    2016-04-01

    The composition and diversity of the endophytic community associated with yerba mate (Ilex paraguariensis) was investigated using culture-depending methods. Fungi were identified based on their micromorphological characteristics and internal transcribed spacer rDNA sequence analysis; for bacteria 16S rDNA sequence analysis was used. Fungal and bacterial diversity did not show significant differences between organ age. The highest fungal diversity was registered during fall season and the lowest in winter. Bacterial diversity was higher in stems and increased from summer to winter, in contrast with leaves, which decreased. The most frequently isolated fungus was Fusarium, followed by Colletotrichum; they were both present in all the sampling seasons and organ types assayed. Actinobacteria represented 57.5 % of all bacterial isolates. The most dominant bacterial taxa were Curtobacterium and Microbacterium. Other bacteria frequently found were Methylobacterium, Sphingomonas, Herbiconiux and Bacillus. Nitrogen fixation and phosphate solubilization activity, ACC deaminase production and antagonism against plant fungal pathogens were assayed in endophytic bacterial strains. In the case of fungi, strains of Trichoderma, Penicillium and Aspergillus were assayed for antagonism against pathogenic Fusarium sp. All microbial isolates assayed showed at least one growth promoting activity. Strains of Bacillus, Pantoea, Curtobacterium, Methylobacterium, Brevundimonas and Paenibacillus had at least two growth-promoting activities, and Bacillus, Paenibacillus and the three endophytic fungi showed high antagonistic activity against Fusarium sp. In this work we have made a wide study of the culturable endophytic community within yerba mate plants and found that several microbial isolates could be considered as potential inoculants useful for improving yerba mate production.

  8. Vancomycin-Resistant Gram-Positive Cocci Isolated from the Saliva of Wild Songbirds

    PubMed Central

    Ishihara, Shingo; Bitner, Jessica J.; Farley, Greg H.

    2014-01-01

    We analyzed highly vancomycin-resistant Gram-positive bacteria isolated from the saliva of migratory songbirds captured, sampled, and released from a birdbanding station in western Kansas. Individual bacterial isolates were identified by partial 16S rRNA sequencing. Most of the bacteria in this study were shown to be Staphylococcus succinus with the majority being isolated from the American Robin. Some of these bacteria were shown to carry vanA, vanB, and vanC vancomycin-resistance genes and have the ability to form biofilms. One of the van gene-carrying isolates is also coagulase positive, which is normally considered a virulence factor. Other organisms isolated included Staphylococcus saprophyticus as well as Enterococcus gallinarum. Given the wide range of the American Robin and ease of horizontal gene transfer between Gram-positive cocci, we postulate that these organisms could serve as a reservoir of vancomycin-resistance genes capable of transferring to human pathogens. PMID:23224296

  9. Vancomycin-resistant gram-positive cocci isolated from the saliva of wild songbirds.

    PubMed

    Ishihara, Shingo; Bitner, Jessica J; Farley, Greg H; Gillock, Eric T

    2013-04-01

    We analyzed highly vancomycin-resistant Gram-positive bacteria isolated from the saliva of migratory songbirds captured, sampled, and released from a bird-banding station in western Kansas. Individual bacterial isolates were identified by partial 16S rRNA sequencing. Most of the bacteria in this study were shown to be Staphylococcus succinus with the majority being isolated from the American Robin. Some of these bacteria were shown to carry vanA, vanB, and vanC vancomycin-resistance genes and have the ability to form biofilms. One of the van gene-carrying isolates is also coagulase positive, which is normally considered a virulence factor. Other organisms isolated included Staphylococcus saprophyticus as well as Enterococcus gallinarum. Given the wide range of the American Robin and ease of horizontal gene transfer between Gram-positive cocci, we postulate that these organisms could serve as a reservoir of vancomycin-resistance genes capable of transferring to human pathogens.

  10. Anaerobic infections in surgical wards: a two year study

    PubMed Central

    Ananth-Shenoy, Padmaja; Vishwanath, Shashidhar; Targain, Ryumzook; Shetty, Seema; Sunil-Rodrigues, Gabriel; Mukhopadhyay, Chiranjay; Chawla, Kiran

    2016-01-01

    Background and Objectives: Anaerobic bacteria are recognized as important pathogens in surgical infections. However, they are the most overlooked microorganisms by the clinic and the laboratory because of the tedious culture techniques with longer turn-around times. The study was aimed to analyze the frequency of anaerobic bacterial surgical infections and their predisposing factors. Materials and Methods: A retrospective study was conducted over a period of two years including patients with surgical infections. The specimens were processed by Gram staining, aerobic and anaerobic culture. The anaerobic bacteria were isolated using standard procedures. The predisposing factors and clinical presentation were studied in these patients. Results: A total of 261 specimens were received from patients with diverse infections from surgical wards. Ninety-one anaerobes were isolated from 64 (24.5%) surgical patients with a predominance of Gram-negative bacilli (37.4%). Anaerobic bacteria as monomicrobial isolates were seen in 21.9% isolates. Anaerobic bacterial isolation along with aerobic bacteria was seen in 71.9% of patients and polymicrobial anaerobic growth was detected in 6.3% of patients. Diabetes mellitus (28, 43.8%) was found to be the most frequent predisposing factor. Bacteroides fragilis group (20.9%) were the most frequent anaerobic Gram-negative bacilli followed by Prevotella spp. (12.1%). Peptostreptococcus anaerobius was the predominant anaerobic cocci isolated (14.3%). Necrotizing fascitis (34.4%) was the most common clinical presentation with anaerobic etiology followed by deep seated abscesses (23.4%). Conclusion: Anaerobic bacteria were isolated from a significant proportion of surgical infections. To avoid therapeutic failures, anaerobic bacteria in surgical infections need to be recognized by surgeons and laboratorians. PMID:27928485

  11. Optimization of Culture Parameters for Maximum Polyhydroxybutyrate Production by Selected Bacterial Strains Isolated from Rhizospheric Soils.

    PubMed

    Lathwal, Priyanka; Nehra, Kiran; Singh, Manpreet; Jamdagni, Pragati; Rana, Jogender S

    2015-01-01

    The enormous applications of conventional non-biodegradable plastics have led towards their increased usage and accumulation in the environment. This has become one of the major causes of global environmental concern in the present century. Polyhydroxybutyrate (PHB), a biodegradable plastic is known to have properties similar to conventional plastics, thus exhibiting a potential for replacing conventional non-degradable plastics. In the present study, a total of 303 different bacterial isolates were obtained from soil samples collected from the rhizospheric area of three crops, viz., wheat, mustard and sugarcane. All the isolates were screened for PHB (Poly-3-hydroxy butyric acid) production using Sudan Black staining method, and 194 isolates were found to be PHB positive. Based upon the amount of PHB produced, the isolates were divided into three categories: high, medium and low producers. Representative isolates from each category were selected for biochemical characterization; and for optimization of various culture parameters (carbon source, nitrogen source, C/N ratio, different pH, temperature and incubation time periods) for maximizing PHB accumulation. The highest PHB yield was obtained when the culture medium was supplemented with glucose as the carbon source, ammonium sulphate at a concentration of 1.0 g/l as the nitrogen source, and by maintaining the C/N ratio of the medium as 20:1. The physical growth parameters which supported maximum PHB accumulation included a pH of 7.0, and an incubation temperature of 30 degrees C for a period of 48 h. A few isolates exhibited high PHB accumulation under optimized conditions, thus showing a potential for their industrial exploitation.

  12. Isolation and enzyme bioprospection of endophytic bacteria associated with plants of Brazilian mangrove ecosystem.

    PubMed

    Castro, Renata A; Quecine, Maria Carolina; Lacava, Paulo T; Batista, Bruna D; Luvizotto, Danice M; Marcon, Joelma; Ferreira, Anderson; Melo, Itamar S; Azevedo, João L

    2014-01-01

    The mangrove ecosystem is a coastal tropical biome located in the transition zone between land and sea that is characterized by periodic flooding, which confers unique and specific environmental conditions on this biome. In these ecosystems, the vegetation is dominated by a particular group of plant species that provide a unique environment harboring diverse groups of microorganisms, including the endophytic microorganisms that are the focus of this study. Because of their intimate association with plants, endophytic microorganisms could be explored for biotechnologically significant products, such as enzymes, proteins, antibiotics and others. Here, we isolated endophytic microorganisms from two mangrove species, Rhizophora mangle and Avicennia nitida, that are found in streams in two mangrove systems in Bertioga and Cananéia, Brazil. Bacillus was the most frequently isolated genus, comprising 42% of the species isolated from Cananéia and 28% of the species from Bertioga. However, other common endophytic genera such as Pantoea, Curtobacterium and Enterobacter were also found. After identifying the isolates, the bacterial communities were evaluated for enzyme production. Protease activity was observed in 75% of the isolates, while endoglucanase activity occurred in 62% of the isolates. Bacillus showed the highest activity rates for amylase and esterase and endoglucanase. To our knowledge, this is the first reported diversity analysis performed on endophytic bacteria obtained from the branches of mangrove trees and the first overview of the specific enzymes produced by different bacterial genera. This work contributes to our knowledge of the microorganisms and enzymes present in mangrove ecosystems.

  13. Isolation and molecular identification of Vibrio spp. by sequencing of 16S rDNA from seafood, meat and meat products in Libya.

    PubMed

    Azwai, S M; Alfallani, E A; Abolghait, S K; Garbaj, A M; Naas, H T; Moawad, A A; Gammoudi, F T; Rayes, H M; Barbieri, I; Eldaghayes, I M

    2016-01-01

    The genus Vibrio includes several food-borne pathogens that cause a spectrum of clinical conditions including septicemia, cholera and milder forms of gastroenteritis. Several Vibrio spp. are commonly associated with food-borne transmission including Vibrio cholerae, Vibrio parahemolyticus, and Vibrio vulnificus. Microbiological analysis for enumeration and isolation of Vibrio spp. were carried out for a total of 93 samples of seafood, meat and meat products from different geographic localities in Libya (Tripoli, Regdalin, Janzour and Tobruk). Vibrio spp. were detected by conventional cultural and molecular method using PCR and sequencing of 16S rDNA. Out of the 93 cultured samples only 48 (51.6%) yielded colonies on Thiosulfate Citrate Bile Salt agar (TCBS) with culture characteristics of Vibrio spp. More than half (n=27) of processed seafood samples (n=46) yielded colonies on TCBS, while only 44.6 % of samples of meat and meat products showed colonies on TCBS. Among cultured seafood samples, the highest bacterial count was recorded in clam with a count of 3.8 ×10(4) CFU\\g. Chicken burger samples showed the highest bacterial count with 6.5 ×10(4) CFU\\g. Molecular analysis of the isolates obtained in this study, showed that 11 samples out of 48 (22.9%) were Vibrio spp. Vibrio parahemolyticus was isolated from camel meat for the first time. This study is an initial step to provide a baseline for future molecular research targeting Vibrio spp. foodborne illnesses. This data will be used to provide information on the magnitude of such pathogens in Libyan seafood, meat and meat products.

  14. Isolation and molecular identification of Vibrio spp. by sequencing of 16S rDNA from seafood, meat and meat products in Libya

    PubMed Central

    Azwai, S.M.; Alfallani, E.A.; Abolghait, S.K.; Garbaj, A.M.; Naas, H.T.; Moawad, A.A.; Gammoudi, F.T.; Rayes, H.M.; Barbieri, I.; Eldaghayes, I.M.

    2016-01-01

    The genus Vibrio includes several food-borne pathogens that cause a spectrum of clinical conditions including septicemia, cholera and milder forms of gastroenteritis. Several Vibrio spp. are commonly associated with food-borne transmission including Vibrio cholerae, Vibrio parahemolyticus, and Vibrio vulnificus. Microbiological analysis for enumeration and isolation of Vibrio spp. were carried out for a total of 93 samples of seafood, meat and meat products from different geographic localities in Libya (Tripoli, Regdalin, Janzour and Tobruk). Vibrio spp. were detected by conventional cultural and molecular method using PCR and sequencing of 16S rDNA. Out of the 93 cultured samples only 48 (51.6%) yielded colonies on Thiosulfate Citrate Bile Salt agar (TCBS) with culture characteristics of Vibrio spp. More than half (n=27) of processed seafood samples (n=46) yielded colonies on TCBS, while only 44.6 % of samples of meat and meat products showed colonies on TCBS. Among cultured seafood samples, the highest bacterial count was recorded in clam with a count of 3.8 ×104 CFU\\g. Chicken burger samples showed the highest bacterial count with 6.5 ×104 CFU\\g. Molecular analysis of the isolates obtained in this study, showed that 11 samples out of 48 (22.9%) were Vibrio spp. Vibrio parahemolyticus was isolated from camel meat for the first time. This study is an initial step to provide a baseline for future molecular research targeting Vibrio spp. foodborne illnesses. This data will be used to provide information on the magnitude of such pathogens in Libyan seafood, meat and meat products. PMID:27004169

  15. Application of MALDI-TOF MS Systems in the Rapid Identification of Campylobacter spp. of Public Health Importance.

    PubMed

    Hsieh, Ying-Hsin; Wang, Yun F; Moura, Hercules; Miranda, Nancy; Simpson, Steven; Gowrishankar, Ramnath; Barr, John; Kerdahi, Khalil; Sulaiman, Irshad M

    2018-05-01

    Campylobacteriosis is an infectious gastrointestinal disease caused by Campylobacter spp. In most cases, it is either underdiagnosed or underreported due to poor diagnostics and limited databases. Several DNA-based molecular diagnostic techniques, including 16S ribosomal RNA (rRNA) sequence typing, have been widely used in the species identification of Campylobacter. Nevertheless, these assays are time-consuming and require a high quality of bacterial DNA. Matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) MS is an emerging diagnostic technology that can provide the rapid identification of microorganisms by using their intact cells without extraction or purification. In this study, we analyzed 24 American Type Culture Collection reference isolates of 16 Campylobacter spp. and five unknown clinical bacterial isolates for rapid identification utilizing two commercially available MADI-TOF MS platforms, namely the bioMérieux VITEK® MS and Bruker Biotyper systems. In addition, 16S rRNA sequencing was performed to confirm the species-level identification of the unknown clinical isolates. Both MALDI-TOF MS systems identified the isolates of C. jejuni, C. coli, C. lari, and C. fetus. The results of this study suggest that the MALDI-TOF MS technique can be used in the identification of Campylobacter spp. of public health importance.

  16. Prevalence of antibiotic resistance genes in the bacterial flora of integrated fish farming environments of Pakistan and Tanzania.

    PubMed

    Shah, Syed Q A; Colquhoun, Duncan J; Nikuli, Hamisi L; Sørum, Henning

    2012-08-21

    The use of a wide variety of antimicrobials in human and veterinary medicine, including aquaculture, has led to the emergence of antibiotic resistant pathogens. In the present study, bacteria from water, sediments, and fish were collected from fish farms in Pakistan and Tanzania with no recorded history of antibiotic use. The isolates were screened for the presence of resistance genes against various antimicrobials used in aquaculture and animal husbandry. Resistant isolates selected by disk diffusion and genotyped by Southern hybridization were further screened by polymerase chain reaction (PCR) and amplicon sequencing. The prominent resistance genes identified encoded tetracycline [tetA(A) and tetA(G)], trimethoprim [dfrA1, dfrA5, dfrA7, dfrA12, and dfrA15], amoxicillin [bla(TEM)], streptomycin [strA-strB], chloramphenicol [cat-1], and erythromycin resistance [mefA]. The int1 gene was found in more than 30% of the bacterial isolates in association with gene cassettes. MAR indices ranged from 0.2 to 1. The bla(NDM-1) gene was not identified in ertapenem resistant isolates. It is hypothesized that integrated fish farming practices utilizing domestic farm and poultry waste along with antibiotic residues from animal husbandry may have contributed to a pool of resistance genes in the aquaculture systems studied.

  17. Bacterium-bacterium inhibitory interactions among psychrotrophic bacteria isolated from Antarctic seawater (Terra Nova Bay, Ross Sea).

    PubMed

    Lo Giudice, Angelina; Brilli, Matteo; Bruni, Vivia; De Domenico, Maria; Fani, Renato; Michaud, Luigi

    2007-06-01

    One hundred and forty bacteria isolated from Antarctic seawater samples were examined for their ability to inhibit the growth of indigenous isolates and their sensitivity to antibacterial activity expressed by one another. On the basis of 16S rRNA gene sequencing and analysis, bacterial isolates were assigned to five phylogenetically different taxa, Actinobacteria, alpha and gamma subclasses of Proteobacteria, Bacillaceae, and Bacteroidetes. Twenty-one isolates (15%), predominantly Actinobacteria, exhibited antagonistic properties against marine bacteria of Antarctic origin. Members of Bacteroidetes and Firmicutes did not show any inhibitory activity. Differences were observed among inhibition patterns of single isolates, suggesting that their activity was more likely strain-specific rather than dependent on phylogenetic affiliation. A novel analysis based on network theory confirmed these results, showing that the structure of this population is probably robust to perturbations, but also that it depends strongly on the most active strains. The determination of plasmid incidence in the bacterial strains investigated revealed that there was no correlation between their presence and the antagonistic activity. The data presented here provide evidence for the antagonistic interactions within bacterial strains inhabiting Antarctic seawater and suggest the potential exploitation of Antarctic bacteria as a novel source of antibiotics.

  18. Diazotrophic bacteria isolated from wild rice Oryza glumaepatula (Poaceae) in the Brazilian Amazon.

    PubMed

    Júnior, Paulo Ivan Fernandes; Pereira, Gilmara Maria Duarte; Perin, Liamara; da Silva, Luana Mesquita; Baraúna, Alexandre Cardoso; Alvess, Francilene Muniz; Passos, Samuel Ribeiro; Zilli, Jerri Edson

    2013-06-01

    The association of wild grasses with diazotrophic bacteria in Brazilian biomes is poorly understood. The isolation and characterization of bacteria associated with wild grasses can contribute to understand the diazotrophic ecology as well as to identify bacteria with biotechnological applications. In this study, we isolated and characterized diazotrophic bacterial isolates from Oryza glumaepatula collected in Cerrado and Forest areas of the Amazon in Roraima State, Brazil. Healthy O. glumepatula plants were collected at five sampling sites at Forest and seven at Cerrado, respectively. The plants were collected at the Cerrado areas in September 2008 while the Forest plants were collected in June/2008 and April/2009. The plants and the soil adhering to the roots were transferred to pots and grown for 35 days in greenhouse conditions. During the harvest, the shoots and the roots were crushed separately in a saline solution; the suspension was diluted serially and inoculated in Petri dishes containing Dyg's medium. All distinct bacterial colonies were purified in the same medium. The diazotrophic capacity of each bacterium in microaerophilic conditions was assessed in semisolid BMGM medium. In addition, the pellicles forming bacterial isolates were also evaluated by PCR amplification for nifH gene. The diversity of nifH bacteria was analyzed by Box-PCR fingerprinting. For selected strains, the growth promoting capacity of O. sativa as a model plant was also evaluated. A total of 992 bacterial isolates were obtained. Fifty-one bacteria were able to form pellicles in the semisolid medium and 38 also positively amplified the 360 bp nifH gene fragment. Among the 38 nifH+ isolates, 24 were obtained from the shoots, while 14 originated from the roots. The Box-PCR profiles showed that the bacterial isolates obtained in this study presented a low similarity with the reference strains belonging to the Herbaspirillum, Azospirillum and Burkholderia genus. The growth-promoting ability was confirmed for at least five isolates. For these bacteria, the root and shoot growing results showed higher increases when compared to those observed in plants inoculated with the evaluated reference strains. These results indicate that O. glumaepatula is colonized by a high diverse diazotrophic community in the Brazilian Amazon. Further investigations are now being carried out to determine the taxonomic positions of these isolates and their growth promoting mechanisms.

  19. Recent Evolutionary Radiation and Host Plant Specialization in the Xylella fastidiosa Subspecies Native to the United States

    PubMed Central

    Vickerman, Danel B.; Bromley, Robin E.; Russell, Stephanie A.; Hartman, John R.; Morano, Lisa D.; Stouthamer, Richard

    2013-01-01

    The bacterial pathogen, Xylella fastidiosa, infects many plant species in the Americas, making it a good model for investigating the genetics of host adaptation. We used multilocus sequence typing (MLST) to identify isolates of the native U.S. subsp. multiplex that were largely unaffected by intersubspecific homologous recombination (IHR) and to investigate how their evolutionary history influences plant host specialization. We identified 110 “non-IHR” isolates, 2 minimally recombinant “intermediate” ones (including the subspecific type), and 31 with extensive IHR. The non-IHR and intermediate isolates defined 23 sequence types (STs) which we used to identify 22 plant hosts (73% trees) characteristic of the subspecies. Except for almond, subsp. multiplex showed no host overlap with the introduced subspecies (subspecies fastidiosa and sandyi). MLST sequences revealed that subsp. multiplex underwent recent radiation (<25% of subspecies age) which included only limited intrasubspecific recombination (ρ/θ = 0.02); only one isolated lineage (ST50 from ash) was older. A total of 20 of the STs grouped into three loose phylogenetic clusters distinguished by nonoverlapping hosts (excepting purple leaf plum): “almond,” “peach,” and “oak” types. These host differences were not geographical, since all three types also occurred in California. ST designation was a good indicator of host specialization. ST09, widespread in the southeastern United States, only infected oak species, and all peach isolates were ST10 (from California, Florida, and Georgia). Only ST23 had a broad host range. Hosts of related genotypes were sometimes related, but often host groupings crossed plant family or even order, suggesting that phylogenetically plastic features of hosts affect bacterial pathogenicity. PMID:23354698

  20. A high incidence of Staphylococcus aureus colonization in the external eyes of patients with atopic dermatitis.

    PubMed

    Nakata, K; Inoue, Y; Harada, J; Maeda, N; Watanabe, H; Tano, Y; Shimomura, Y; Harino, S; Sawa, M

    2000-12-01

    To determine the frequency distribution of bacteria on the external surface of eyes of patients with atopic dermatitis (AD) and to investigate the relationship between the frequency of bacterial colonization and the grade of atopy or ocular diseases associated with AD. Comparative cross-sectional study. Thirty-six AD patients (mean age, 24.5 years) and 16 nonatopic, age-matched control participants (mean age, 25.5 years). The eyelid margins and conjunctival sacs were scraped with sterile swabs. These samples were inoculated into aerobic and anaerobic culture media. The frequency distribution of bacteria isolated from the eyelid margins and conjunctival sacs. Bacteria isolated from AD patients were: Staphylococcus aureus in 21 of 36 patients (including methicillin-resistant Staphylococcus aureus in two patients); Staphylococcus epidermidis in two patients (including methicillin-resistant Staphylococcus epidermidis in one patient); other coagulase-negative Staphylococcus in six patients;alpha-streptococcus in three patients; Corynebacterium species in three patients; Neisseria species in two patients; and Propionibacterium acnes in one patient. From the nonatopic control participants, we isolated S. aureus in one patient, S. epidermidis in two patients and alpha-streptococcus in one patient. S. aureus was isolated from 67% of the AD patients, and any type of bacteria was isolated from 86% of the patients. These rates were significantly higher than those of nonatopic control participants (6% S. aureus and 25% any bacteria). There was no significant relationship between the frequency distribution of bacteria and the grade of atopy or associated ocular diseases. High rates of bacterial colonization, especially S. aureus, were found in the conjunctival sacs and eyelid margins of AD patients. In case management of AD patients, this unique distribution of bacteria must be carefully considered.

  1. Recent evolutionary radiation and host plant specialization in the Xylella fastidiosa subspecies native to the United States.

    PubMed

    Nunney, Leonard; Vickerman, Danel B; Bromley, Robin E; Russell, Stephanie A; Hartman, John R; Morano, Lisa D; Stouthamer, Richard

    2013-04-01

    The bacterial pathogen, Xylella fastidiosa, infects many plant species in the Americas, making it a good model for investigating the genetics of host adaptation. We used multilocus sequence typing (MLST) to identify isolates of the native U.S. subsp. multiplex that were largely unaffected by intersubspecific homologous recombination (IHR) and to investigate how their evolutionary history influences plant host specialization. We identified 110 "non-IHR" isolates, 2 minimally recombinant "intermediate" ones (including the subspecific type), and 31 with extensive IHR. The non-IHR and intermediate isolates defined 23 sequence types (STs) which we used to identify 22 plant hosts (73% trees) characteristic of the subspecies. Except for almond, subsp. multiplex showed no host overlap with the introduced subspecies (subspecies fastidiosa and sandyi). MLST sequences revealed that subsp. multiplex underwent recent radiation (<25% of subspecies age) which included only limited intrasubspecific recombination (ρ/θ = 0.02); only one isolated lineage (ST50 from ash) was older. A total of 20 of the STs grouped into three loose phylogenetic clusters distinguished by nonoverlapping hosts (excepting purple leaf plum): "almond," "peach," and "oak" types. These host differences were not geographical, since all three types also occurred in California. ST designation was a good indicator of host specialization. ST09, widespread in the southeastern United States, only infected oak species, and all peach isolates were ST10 (from California, Florida, and Georgia). Only ST23 had a broad host range. Hosts of related genotypes were sometimes related, but often host groupings crossed plant family or even order, suggesting that phylogenetically plastic features of hosts affect bacterial pathogenicity.

  2. Nonspecific Bacterial Flora Isolated from the Body Surface and Inside Ixodes ricinus Ticks.

    PubMed

    Okła, Hubert; Sosnowska, Malwina; Jasik, Krzysztof P; Słodki, Jan; Wojtyczka, Robert D

    2012-09-28

    Ixodes ricinus and other representatives of the order Ixodida are vectors of typical pathogens: Borrelia burgdorferi sensu lato, Anaplasma phagocytophilium, Babesia spp., a tick-borne encephalitis virus, and other microorganisms which are important from a medical and veterinary point of view. The presented study focuses on the verification of nonspecific bacterial flora of I. ricinus. We analyzed ticks collected in a forest region in Silesia, an industrial district in Poland. Methods of classical microbiology and biochemical assays (API 20 NE test, API Staph test and MICRONAUT System) were used for isolation and identification of microorganisms living on the body surface of I. ricinus and inside ticks. The results show the presence of various bacteria on the surface and inside ticks' bodies. During the study, we isolated Acinetobacter lwoffi, Pseudomonas fluorescens, Aeromonas hydrophila, Achromobacter denitrificans, Alcaligenes faecalis, Stenotrophomonas maltophilia, Pseudomonas oryzihabitans, Micrococcus spp., Kocuria varians, Staphylococcus lentus, Kocuria kristinae, Streptococcus pneumoniae, Rhizobium radiobacter, Staphylococcus xylosus. Majority of the isolated species are non-pathogenic environmental microorganisms, but some of the isolated bacterial strains could cause severe infections.

  3. Mycobacterium Avium subsp. Paratuberculosis Isolates Induce In Vitro Granuloma Formation and Show Successful Survival Phenotype, Common Anti-Inflammatory and Antiapoptotic Responses within Ovine Macrophages Regardless of Genotype or Host of Origin

    PubMed Central

    Abendaño, Naiara; Tyukalova, Lyudmila; Barandika, Jesse F.; Balseiro, Ana; Sevilla, Iker A.; Garrido, Joseba M.; Juste, Ramon A.; Alonso-Hearn, Marta

    2014-01-01

    The analysis of the early macrophage responses, including bacterial growth within macrophages, represents a powerful tool to characterize the virulence of clinical isolates of Mycobcaterium avium susbp. paratuberculosis (Map). The present study represents the first assessment of the intracellular behaviour in ovine monocyte-derived macrophages (MDMs) of Map isolates representing distinct genotypes (C, S and B), and isolated from cattle, sheep, goat, fallow deer, deer, and wild boar. Intracellular growth and survival of the selected isolates in ovine MDMs was assessed by quantification of CFUs inside of the host cells at 2 h p.i. (day 0) and 7 d p. i. using an automatic liquid culture system (Bactec MGIT 960). Variations in bacterial counts over 7 days from the baseline were small, in a range between 1.63 to 1.05-fold. After 7 d of infection, variations in the estimated log10 CFUs between all the tested isolates were not statistically significant. In addition, ovine MDMs exhibited enhanced anti-inflammatory, antiapoptotic and antidestructive responses when infected with two ovine isolates of distinct genotype (C and S) or with two C-type isolates from distinct hosts (cattle and sheep); which correlated with the successful survival of these isolates within ovine MDMs. A second objective was to study, based on an in vitro granuloma model, latter stages of the infection by investigating the capacity of two Map isolates from cattle and sheep to trigger formation of microgranulomas. Upon 10 d p.i., both Map isolates were able to induce the formation of granulomas comparable to the granulomas observed in clinical specimens with respect to the cellular components involved. In summary, our results demonstrated that Map isolates from cattle, sheep, goats, deer, fallow-deer and wild boar were able not only to initiate but also to establish a successful infection in ovine macrophages regardless of genotype. PMID:25111300

  4. Normal bacterial flora from vaginas of Criollo Limonero cows.

    PubMed

    Zambrano-Nava, Sunny; Boscán-Ocando, Julio; Nava, Jexenia

    2011-02-01

    In order to describe the normal bacterial flora in vaginas of Criollo Limonero cows, 51 healthy multiparous cows, at least 90-day postpartum, were selected. Duplicated swabs (N = 102) were taken from the vaginal fornix of cows to perform aerobic and anaerobic cultures as well as conventional biochemical tests. Out of 102 swabs, bacterial growth was obtained in 55 (53.9%) while the remaining 47 (46.1%) did not exhibited any bacterial growth. Of the 55 bacterial growths, 23 (41.8%) were aerobic whereas 32 (58.1%) were anaerobic. Likewise, 29 (52.72%) of bacterial growths were pure and 26 (47.27%) were mixed. Under both aerobic and anaerobic conditions, Gram positive bacteria were predominant (81.82% and 73.08%, respectively) over Gram negative bacteria (18.18% and 26.92%, respectively). Isolated bacteria were Arcanobacterium pyogenes (22.92%), Staphylococcus aureus (15.63%), Staphylococcus coagulase negative (17.71%), Erysipelothrix rhusiopathiae (6.25%), Bacteroides spp. (13.54%), and Peptostreptococcus spp. (7.29%). In conclusion, normal vaginal bacterial flora of Criollo Limonero cows was predominantly Gram positive and included A. pyogenes, S. aureus, coagulase negative Staphylococcus, E. rhusiopathiae, Bacteroides spp., and Peptostreptococcus spp. In Criollo Limonero cattle, adaptive aspects such as development of humoral and physical mechanisms for defense, and bacterial adaptation to host deserve research attention.

  5. Antagonistic Activity of Nocardia brasiliensis PTCC 1422 Against Isolated Enterobacteriaceae from Urinary Tract Infections.

    PubMed

    Jalali, Hossnieh Kafshdar; Salamatzadeh, Abdolreza; Jalali, Arezou Kafshdar; Kashani, Hamed Haddad; Asbchin, Salman Ahmadi; Issazadeh, Khosro

    2016-03-01

    The main drawback of current antibiotic therapies is the emergence and rapid increase in antibiotic resistance. Nocardiae are aerobic, Gram-positive, catalase-positive, non-motile actinomycetes. Nocardia brasiliensis was reported as antibiotic producer. The purpose of the study was to determine antibacterial activity of N. brasiliensis PTCC 1422 against isolated Enterobacteriaceae from urinary tract infections (UTIs). The common bacteria from UTIs were isolated from hospital samples. Antimicrobial susceptibility test was performed for the isolated pathogens using Kirby-Bauer disk diffusion method according to clinical and Laboratory Standards Institute guideline. Antagonistic activity of N. brasiliensis PTCC 1422 was examined with well diffusion methods. Supernatant of N. brasiliensis PTCC 1422 by submerged culture was analyzed with gas chromatography-mass spectrometry. Isolated strains included Escherichia coli, Klebsiella pneumoniae, Serratia marcescens and Proteus mirabilis. The most common pathogen isolated was E. coli (72.5%). Bacterial isolates revealed the presence of high levels of antimicrobial resistances to ceftriaxone and low levels of resistance to cephalexin. Supernatant of N. brasiliensis PTCC 1422 showed antibacterial activity against all of the isolated microorganisms in well diffusion method. The antibiotic resistance among the uropathogens is an evolving process, so a routine surveillance to monitor the etiologic agents of UTI and the resistance pattern should be carried out timely to choose the most effective empirical treatment by the physicians. Our present investigation indicates that the substances present in the N. brasiliensis PTCC 1422 could be used to inhibit the growth of human pathogen. Antibacterial resistance among bacterial uropathogen is an evolving process. Therefore, in the field on the need of re-evaluation of empirical treatment of UTIs, our present. The study has demonstrated that N. brasiliensis PTCC 1422 has a high potential for the treatment of UTIs.

  6. Improvements of high-throughput culturing yielded novel SAR11 strains and other abundant marine bacteria from the Oregon coast and the Bermuda Atlantic Time Series study site.

    PubMed

    Stingl, Ulrich; Tripp, Harry James; Giovannoni, Stephen J

    2007-08-01

    The introduction of high-throughput dilution-to-extinction culturing (HTC) of marine bacterioplankton using sterilized natural sea water as media yielded isolates of many abundant but previously uncultured marine bacterial clades. In early experiments, bacteria from the SAR11 cluster (class Alphaproteobacteria), which are presumed to be the most abundant prokaryotes on earth, were cultured. Although many additional attempts were made, no further strains of the SAR11 clade were obtained. Here, we describe improvements to the HTC technique, which led to the isolation of 17 new SAR11 strains from the Oregon coast and the Sargasso Sea, accounting for 28% and 31% of all isolates in these experiments. Phylogenetic analysis of the internal transcribed spacer (ITS) region showed that the isolates from the Oregon coast represent three different subclusters of SAR11, while isolates from the Sargasso Sea were more uniform and represented a single ITS cluster. A PCR assay proved the presence of proteorhodopsin (PR) in nearly all SAR11 isolates. Analysis of PR amino-acid sequences indicated that isolates from the Oregon coast were tuned to either green or blue light, while PRs from strains obtained from the Sargasso Sea were exclusively tuned to maximum absorbance in the blue. Interestingly, phylogenies based on PR and ITS did not correlate, suggesting lateral gene transfer. In addition to the new SAR11 strains, many novel strains belonging to clusters of previously uncultured or undescribed species of different bacterial phyla, including the first strain of the highly abundant alphaproteobacterial SAR116 clade, were isolated using the modified methods.

  7. Analytical specificity and sensitivity of a real-time polymerase chain reaction assay for identification of bovine mastitis pathogens.

    PubMed

    Koskinen, M T; Holopainen, J; Pyörälä, S; Bredbacka, P; Pitkälä, A; Barkema, H W; Bexiga, R; Roberson, J; Sølverød, L; Piccinini, R; Kelton, D; Lehmusto, H; Niskala, S; Salmikivi, L

    2009-03-01

    Intramammary infection (IMI), also known as mastitis, is the most frequently occurring and economically the most important infectious disease in dairy cattle. This study provides a validation of the analytical specificity and sensitivity of a real-time PCR-based assay that identifies 11 major pathogen species or species groups responsible for IMI, and a gene coding for staphylococcal beta-lactamase production (penicillin resistance). Altogether, 643 culture isolates originating from clinical bovine mastitis, human, and companion animal samples were analyzed using the assay. The isolates represented 83 different species, groups, or families, and originated from 6 countries in Europe and North America. The analytical specificity and sensitivity of the assay was 100% in bacterial and beta-lactamase identification across all isolates originating from bovine mastitis (n = 454). When considering the entire culture collection (including also the isolates originating from human and companion animal samples), 4 Streptococcus pyogenes, 1 Streptococcus salivarius, and 1 Streptococcus sanguis strain of human origin were identified as Streptococcus uberis, and 3 Shigella spp. strains were identified as Escherichia coli, decreasing specificity to 99% in Strep. uberis and to 99.5% in E. coli. These false-positive results were confirmed by sequencing of the 16S rRNA gene. Specificity and sensitivity remained at 100% for all other bacterial targets across the entire culture collection. In conclusion, the real-time PCR assay shows excellent analytical accuracy and holds much promise for use in routine bovine IMI testing programs. This study provides the basis for evaluating the assay's diagnostic performance against the conventional bacterial culture method in clinical field trials using mastitis milk samples.

  8. Antimicrobial potential of metabolites extracted from bacterial symbionts associated with marine sponges in coastal area of Gulf of Mannar Biosphere, India.

    PubMed

    Skariyachan, S; G Rao, A; Patil, M R; Saikia, B; Bharadwaj Kn, V; Rao Gs, J

    2014-03-01

    Marine coastal areas of India have vast diversity of sponges which harbours many endosymbiotic bacteria which are the source of many potential antimicrobial metabolites. This study focuses the screening and characterization of drug-producing bacteria symbiotically which are associated with marine sponges collected from Gulf of Mannar, South Coast India. Six different sponges were collected and they were identified on the basis of their morphology. The drug-producing isolates were screened by agar overlay method towards various clinical strains. The secondary metabolites were characterized and were found to be quinones, alkaloids, flavanoids and flavonyl glycosides. The metabolites showed significant inhibitory properties against clinical strains that were further identified as chromophoric and fluorophoric in nature. Ethyl acetate extracts of chromophore and floureophore substances showed significant inhibitory properties against Methicillin resistant Staphylococcus aureus (MRSA) and Salmonella typhi respectively. 16S rRNA gene sequencing of theses isolates revealed that chomophore-producing strain were closely related to Pseudomonas spp. RHLB12, isolated from Callyspongia spp. and floureophore-producing bacteria was related to Bacillus licheniformis T6-1 which was isolated from Haliclona spp. Hence, our study demonstrated that antimicrobial metabolites extracted from symbiotic bacteria associated with marine sponges have high therapeutic potential against many bacterial pathogens including multidrug-resistant strains. This is the first study demonstrating antimicrobial potential of flurophoric and chromophoric metabolites extracted from bacterial biosymbionts associated with marine sponges. Our study has significant scope as Indian coastal area especially harbours vast varieties of sponges with novel secondary metabolites-producing organisms. The natural metabolites extracted from sponge-derived bacteria pave novel therapeutic remedy against various pathogens when most of them are emerged as extreme drug resistant superbugs. Letters in Applied Microbiology © 2013 The Society for Applied Microbiology.

  9. Establishing Statistical Equivalence of Data from Different Sampling Approaches for Assessment of Bacterial Phenotypic Antimicrobial Resistance

    PubMed Central

    2018-01-01

    ABSTRACT To assess phenotypic bacterial antimicrobial resistance (AMR) in different strata (e.g., host populations, environmental areas, manure, or sewage effluents) for epidemiological purposes, isolates of target bacteria can be obtained from a stratum using various sample types. Also, different sample processing methods can be applied. The MIC of each target antimicrobial drug for each isolate is measured. Statistical equivalence testing of the MIC data for the isolates allows evaluation of whether different sample types or sample processing methods yield equivalent estimates of the bacterial antimicrobial susceptibility in the stratum. We demonstrate this approach on the antimicrobial susceptibility estimates for (i) nontyphoidal Salmonella spp. from ground or trimmed meat versus cecal content samples of cattle in processing plants in 2013-2014 and (ii) nontyphoidal Salmonella spp. from urine, fecal, and blood human samples in 2015 (U.S. National Antimicrobial Resistance Monitoring System data). We found that the sample types for cattle yielded nonequivalent susceptibility estimates for several antimicrobial drug classes and thus may gauge distinct subpopulations of salmonellae. The quinolone and fluoroquinolone susceptibility estimates for nontyphoidal salmonellae from human blood are nonequivalent to those from urine or feces, conjecturally due to the fluoroquinolone (ciprofloxacin) use to treat infections caused by nontyphoidal salmonellae. We also demonstrate statistical equivalence testing for comparing sample processing methods for fecal samples (culturing one versus multiple aliquots per sample) to assess AMR in fecal Escherichia coli. These methods yield equivalent results, except for tetracyclines. Importantly, statistical equivalence testing provides the MIC difference at which the data from two sample types or sample processing methods differ statistically. Data users (e.g., microbiologists and epidemiologists) may then interpret practical relevance of the difference. IMPORTANCE Bacterial antimicrobial resistance (AMR) needs to be assessed in different populations or strata for the purposes of surveillance and determination of the efficacy of interventions to halt AMR dissemination. To assess phenotypic antimicrobial susceptibility, isolates of target bacteria can be obtained from a stratum using different sample types or employing different sample processing methods in the laboratory. The MIC of each target antimicrobial drug for each of the isolates is measured, yielding the MIC distribution across the isolates from each sample type or sample processing method. We describe statistical equivalence testing for the MIC data for evaluating whether two sample types or sample processing methods yield equivalent estimates of the bacterial phenotypic antimicrobial susceptibility in the stratum. This includes estimating the MIC difference at which the data from the two approaches differ statistically. Data users (e.g., microbiologists, epidemiologists, and public health professionals) can then interpret whether that present difference is practically relevant. PMID:29475868

  10. Establishing Statistical Equivalence of Data from Different Sampling Approaches for Assessment of Bacterial Phenotypic Antimicrobial Resistance.

    PubMed

    Shakeri, Heman; Volkova, Victoriya; Wen, Xuesong; Deters, Andrea; Cull, Charley; Drouillard, James; Müller, Christian; Moradijamei, Behnaz; Jaberi-Douraki, Majid

    2018-05-01

    To assess phenotypic bacterial antimicrobial resistance (AMR) in different strata (e.g., host populations, environmental areas, manure, or sewage effluents) for epidemiological purposes, isolates of target bacteria can be obtained from a stratum using various sample types. Also, different sample processing methods can be applied. The MIC of each target antimicrobial drug for each isolate is measured. Statistical equivalence testing of the MIC data for the isolates allows evaluation of whether different sample types or sample processing methods yield equivalent estimates of the bacterial antimicrobial susceptibility in the stratum. We demonstrate this approach on the antimicrobial susceptibility estimates for (i) nontyphoidal Salmonella spp. from ground or trimmed meat versus cecal content samples of cattle in processing plants in 2013-2014 and (ii) nontyphoidal Salmonella spp. from urine, fecal, and blood human samples in 2015 (U.S. National Antimicrobial Resistance Monitoring System data). We found that the sample types for cattle yielded nonequivalent susceptibility estimates for several antimicrobial drug classes and thus may gauge distinct subpopulations of salmonellae. The quinolone and fluoroquinolone susceptibility estimates for nontyphoidal salmonellae from human blood are nonequivalent to those from urine or feces, conjecturally due to the fluoroquinolone (ciprofloxacin) use to treat infections caused by nontyphoidal salmonellae. We also demonstrate statistical equivalence testing for comparing sample processing methods for fecal samples (culturing one versus multiple aliquots per sample) to assess AMR in fecal Escherichia coli These methods yield equivalent results, except for tetracyclines. Importantly, statistical equivalence testing provides the MIC difference at which the data from two sample types or sample processing methods differ statistically. Data users (e.g., microbiologists and epidemiologists) may then interpret practical relevance of the difference. IMPORTANCE Bacterial antimicrobial resistance (AMR) needs to be assessed in different populations or strata for the purposes of surveillance and determination of the efficacy of interventions to halt AMR dissemination. To assess phenotypic antimicrobial susceptibility, isolates of target bacteria can be obtained from a stratum using different sample types or employing different sample processing methods in the laboratory. The MIC of each target antimicrobial drug for each of the isolates is measured, yielding the MIC distribution across the isolates from each sample type or sample processing method. We describe statistical equivalence testing for the MIC data for evaluating whether two sample types or sample processing methods yield equivalent estimates of the bacterial phenotypic antimicrobial susceptibility in the stratum. This includes estimating the MIC difference at which the data from the two approaches differ statistically. Data users (e.g., microbiologists, epidemiologists, and public health professionals) can then interpret whether that present difference is practically relevant. Copyright © 2018 Shakeri et al.

  11. Histophagous ciliate Pseudocollinia brintoni and bacterial assemblage interaction with krill Nyctiphanes simplex. I. Transmission process.

    PubMed

    Gómez-Gutiérrez, Jaime; López-Cortés, Alejandro; Aguilar-Méndez, Mario J; Del Angel-Rodríguez, Jorge A; Tremblay, Nelly; Zenteno-Savín, Tania; Robinson, Carlos J

    2015-10-27

    Histophagous ciliates of the genus Pseudocollinia cause epizootic events that kill adult female krill (Euphausiacea), but their mode of transmission is unknown. We compared 16S rRNA sequences of bacterial strains isolated from stomachs of healthy krill Nyctiphanes simplex specimens with sequences of bacterial isolates and sequences of natural bacterial communities from the hemocoel of N. simplex specimens infected with P. brintoni to determine possible transmission pathways. All P. brintoni endoparasitic life stages and the transmission tomite stage (outside the host) were associated with bacterial assemblages. 16S rRNA sequences from isolated bacterial strains showed that Photobacterium spp. and Pseudoalteromonas spp. were dominant members of the bacterial assemblages during all life phases of P. brintoni and potential pathobionts. They were apparently unaffected by the krill's immune system or the histophagous activity of P. brintoni. However, other bacterial strains were found only in certain P. brintoni life phases, indicating that as the infection progressed, microhabitat conditions and microbial interactions may have become unfavorable for some strains of bacteria. Trophic infection is the most parsimonious explanation for how P. brintoni infects krill. We estimated N. simplex vulnerability to P. brintoni infection during more than three-fourths of their life span, infecting mostly adult females. The ciliates have relatively high prevalence levels (albeit at <10% of sampled stations) and a short life cycle (estimated <7 d). Histophagous ciliate-krill interactions may occur in other krill species, particularly those that form dense swarms and attain high population densities that potentially enhance trophic transmission and allow completion of the Pseudocollinia spp. life cycle.

  12. Detection of antibiotic-resistant bacteria endowed with antimicrobial activity from a freshwater lake and their phylogenetic affiliation

    PubMed Central

    Zothanpuia; Passari, Ajit K.; Gupta, Vijai K.

    2016-01-01

    Antimicrobial resistance poses a serious challenge to global public health. In this study, fifty bacterial strains were isolated from the sediments of a freshwater lake and were screened for antibiotic resistance. Out of fifty isolates, thirty-three isolates showed resistance against at least two of the selected antibiotics. Analysis of 16S rDNA sequencing revealed that the isolates belonged to ten different genera, namely Staphylococcus(n = 8), Bacillus(n = 7), Lysinibacillus(n = 4), Achromobacter(n=3), bacterium(n = 3), Methylobacterium(n = 2), Bosea(n = 2), Aneurinibacillus(n = 2), Azospirillum(n = 1), Novosphingobium(n = 1). Enterobacterial repetitive intergenic consensus (ERIC) and BOX-PCR markers were used to study the genetic relatedness among the antibiotic resistant isolates. Further, the isolates were screened for their antimicrobial activity against bacterial pathogens viz., Staphylococcus aureus(MTCC-96), Pseudomonas aeruginosa(MTCC-2453) and Escherichia coli(MTCC-739), and pathogenic fungi viz., Fusarium proliferatum (MTCC-286), Fusarium oxysporum (CABI-293942) and Fusarium oxy. ciceri (MTCC-2791). In addition, biosynthetic genes (polyketide synthase II (PKS-II) and non-ribosomal peptide synthetase (NRPS)) were detected in six and seven isolates, respectively. This is the first report for the multifunctional analysis of the bacterial isolates from a wetland with biosynthetic potential, which could serve as potential source of useful biologically active metabolites. PMID:27330861

  13. Bacterial infections in HIV-infected children admitted with severe acute malnutrition in Durban, South Africa.

    PubMed

    Archary, Moherndran; Adler, Hugh; La Russa, Philip; Mahabeer, Prasha; Bobat, Raziya A

    2017-02-01

    Bacterial infections in HIV-infected children admitted with severe acute malnutrition (SAM) contribute to higher mortality and poorer outcomes. This study describes the spectrum of bacterial infections in antiretroviral treatment (ART)-naïve, HIV-infected children admitted with SAM. Between July 2012 and February 2015, 82 children were prospectively enrolled in the King Edward VIII Hospital, Durban. Specimens obtained on and during admission for microbiological evaluation, if clinically indicated, included blood, urine (obtained by catheterisation or suprapubic aspiration), induced sputum and cerebrospinal fluid. All positive bacterial cultures between admission and 30 days after enrollment were documented and characterised into samples taken either within 2 days of admission (infections on admission) or within 2-30 days of admission (hospital-acquired infections, HAIs). On admission, 67% of patients had abnormal white blood cell counts (WBCC) (>12 or <4 × 10 9 /L) and 70% had elevated CRP; 65% were classified as severely immunosuppressed according to the WHO immunological classification. 1 A pathogen was isolated on the admission blood culture in four patients (6%) and in 27% of urine specimens. HAIs were predominately Gram-negative (39/43), and 39.5% were extended-spectrum β-lactamase-positive. Mortality was not significantly associated with isolation of a bacterial pathogen. Routine pre-hospital administration of antibiotics as per the Integrated Management of Childhood Illness (IMCI) guidelines may be responsible for the low rates of positive admission blood cultures. HAIs with drug-resistant Gram-negative organisms are an area of concern and strategies to improve the prevention of HAIs in this vulnerable population are urgently needed.

  14. Expression and Purification of the Main Component Contained in Camel Milk and Its Antimicrobial Activities Against Bacterial Plant Pathogens.

    PubMed

    Tanhaeian, Abbas; Shahriari Ahmadi, Farajollah; Sekhavati, Mohammad Hadi; Mamarabadi, Mojtaba

    2018-04-04

    Lactoferrin is the most dominant protein in milk after casein. This protein plays a crucial role in many biological processes including the regulation of iron metabolism, induction and modulation of the immune system, the primary defense against microorganisms, inhibiting lipid peroxidation and presenting antimicrobial activity against various pathogens such as parasites, fungi, bacteria, and viruses. The major antimicrobial effect of lactoferrin is related to its N-terminal tail where different peptides for instance lactoferricin and lactoferrampin which are important for their antimicrobial abilities are present. The growth rate of bacterial cells in camel milk is lower than that of the cow milk due to having more antimicrobial compounds. In this study, we have fused a codon-optimized partial camel lactoferrcin and lactoferrampin DNA sequences in order to construct a fused peptide via a lysine. This chimeric 42-mer peptide consists of complete and partial amino acid sequence of camel lactoferrampin and lactoferricin, respectively. Human embryonic kidney 293 (HEK-293) cells were used for synthesizing this recombinant peptide. Finally, the antibacterial activities of this constructed peptide were investigated under in vitro condition. The result showed that, all construction, cloning and expression processes were successfully performed in HEK-293. One His-tag tail was added to the chimera in order to optimize the isolation and purification processes and also reduce the cost of production. Additionally, His-tag retained the antimicrobial activity of the chimera. The antimicrobial tests showed that the growth rate in the majority of bacterial plant pathogens, including gram negative and positive bacteria, was inhibited by recombinant chimera as the level of MIC values were evaluated between 0.39 and 25.07 μg/ml for different bacterial isolates.

  15. Comparative study of 6-APA production by free and agar immobilized bacteria in nutrient broth culture.

    PubMed

    Dolui, A K; Das, S

    2011-04-01

    In the present study different bacterial samples were isolated from soil of different places of Dibrugarh and screened for biotransformation ability to produce 6-Aminopenicillanic acid. Among ten isolated bacterial samples, three gram positive bacterial samples designated as AKDD-2, AKDD-4 and AKDD-6 showed the production of 6-APA from penicillin G. Assessment of production of 6-APA after incubation in penicillin G (2 mg/ml) by three different samples separately in free and agar immobilization state was done by HPLC analysis. Reusability of immobilized cells was found successful up to 14 days.

  16. [THE NATIONAL NUTRIENT MEDIUM FOR DIAGNOSTIC OF PURULENT BACTERIAL MENINGITIS].

    PubMed

    Podkopaev, Ya V; Domotenko, L V; Morozova, T P; Khramov, M K; Shepelin, A P

    2015-05-01

    The national growth mediums were developed for isolating and cultivating of main agents of purulent bacterial meningitis--haemophilus agar, chocolate agar, PBM-agar. The growing and selective characteristics of developed growth mediums are examined. The haemophilus agar ensures growth of Haemophilus influenzae. The chocolate agar, PBM-agar ensure growth of Neisseria meningitidis, Streptococcus pneumoniae and Haemophilus influenzae. By growing characteristics, the national growth mediums match foreign analogues. Under application of growth mediums with selective additions it is possible to achieve selective isolation of main agents of purulent bacterial meningitis with inhibition of growth of microbes-associates.

  17. Complete Genome Sequence of a Putative New Bacterial Strain, I507, Isolated from the Indian Ocean

    PubMed Central

    Wang, Shu-yan; Wei, Jia-qiang

    2018-01-01

    ABSTRACT Bacterial strain I507 was isolated from the central Indian Ocean and may be a potential novel species, according to the 16S rRNA gene sequence. Here, we present its complete genome sequence and expect that it will provide researchers with valuable information to further understand its classification and function in the future. PMID:29674539

  18. Biodegradation of the metallic carcinogen hexavalent chromium Cr(VI) by an indigenously isolated bacterial strain

    PubMed Central

    Mishra, Susmita

    2010-01-01

    Background: Hexavalent chromium [Cr(VI)], a potential mutagen and carcinogen, is regularly introduced into the environment through diverse anthropogenic activities, including electroplating, leather tanning, and pigment manufacturing. Human exposure to this toxic metal ion not only causes potential human health hazards but also affects other life forms. The World Health Organization, the International Agency for Research on Cancer, and the Environmental Protection Agency have determined that Cr(VI) compounds are known human carcinogens. The Sukinda valley in Jajpur District, Orissa, is known for its deposit of chromite ore, producing nearly 98% of the chromite ore in India and one of the prime open cast chromite ore mines in the world (CES, Orissa Newsletter). Materials and Methods: Our investigation involved microbial remediation of Cr(VI) without producing any byproduct. Bacterial cultures tolerating high concentrations of Cr were isolated from the soil sample collected from the chromite-contaminated sites of Sukinda, and their bioaccumulation properties were investigated. Strains capable of growing at 250 mg/L Cr(VI) were considered as Cr resistant. Results: The experimental investigation showed the maximum specific Cr uptake at pH 7 and temperature 30°C. At about 50 mg/L initial Cr(VI) concentrations, uptake of the selected potential strain exceeded 98% within 12 h of incubation. The bacterial isolate was identified by 16S rRNA sequencing as Brevebacterium casei. Conclusion: Results indicated promising approach for microbial remediation of effluents containing elevated levels of Cr(VI). PMID:20976016

  19. Bacterial growth tolerance to concentrations of chlorate and perchlorate salts relevant to Mars

    NASA Astrophysics Data System (ADS)

    Al Soudi, Amer F.; Farhat, Omar; Chen, Fei; Clark, Benton C.; Schneegurt, Mark A.

    2017-07-01

    The Phoenix lander at Mars polar cap found appreciable levels of (per)chlorate salts, a mixture of perchlorate and chlorate salts of Ca, Fe, Mg and Na at levels of ~0.6% in regolith. These salts are highly hygroscopic and can form saturated brines through deliquescence, likely producing aqueous solutions with very low freezing points on Mars. To support planetary protection efforts, we have measured bacterial growth tolerance to (per)chlorate salts. Existing bacterial isolates from the Great Salt Plains of Oklahoma (NaCl-rich) and Hot Lake in Washington (MgSO4-rich) were tested in high concentrations of Mg, K and Na salts of chlorate and perchlorate. Strong growth was observed with nearly all of these salinotolerant isolates at 1% (~0.1 M) (per)chlorate salts, similar to concentrations observed in bulk soils on Mars. Growth in perchlorate salts was observed at concentrations of at least 10% (~1.0 M). Greater tolerance was observed for chlorate salts, where growth was observed to 2.75 M (>25%). Tolerance to K salts was greatest, followed by Mg salts and then Na salts. Tolerances varied among isolates, even among those within the same phylogenetic clade. Tolerant bacteria included genera that also are found in spacecraft assembly facilities. Substantial microbial tolerance to (per)chlorate salts is a concern for planetary protection since tolerant microbes contaminating spacecraft would have a greater chance for survival and proliferation, despite the harsh chemical conditions found near the surface of Mars.

  20. RESPONSES OF OYSTER (CRASSOSTREA VIRGINICA) HEMOCYTES TO NONPATHOGENIC AND CLINICAL ISOLATES OF VIBRIO PARAHAEMOLYTICUS

    EPA Science Inventory

    Bacterial uptake by oysters (Crassostrea virginica) and bactericidal activity of oyster hemocytes were studied using four environmental isolates and three clinical isolates of Vibrio parahaemolyticus. Clinical isolates (2030, 2062, 2107) were obtained from gastroenteritis patien...

  1. Novel components of leaf bacterial communities of field-grown tomato plants and their potential for plant growth promotion and biocontrol of tomato diseases.

    PubMed

    Romero, Fernando M; Marina, María; Pieckenstain, Fernando L

    2016-04-01

    This work aimed to characterize potentially endophytic culturable bacteria from leaves of cultivated tomato and analyze their potential for growth promotion and biocontrol of diseases caused by Botrytis cinerea and Pseudomonas syringae. Bacteria were obtained from inner tissues of surface-disinfected tomato leaves of field-grown plants. Analysis of 16S rRNA gene sequences identified bacterial isolates related to Exiguobacterium aurantiacum (isolates BT3 and MT8), Exiguobacterium spp. (isolate GT4), Staphylococcus xylosus (isolate BT5), Pantoea eucalypti (isolate NT6), Bacillus methylotrophicus (isolate MT3), Pseudomonas veronii (isolates BT4 and NT2), Pseudomonas rhodesiae (isolate BT2) and Pseudomonas cichorii (isolate NT3). After seed inoculation, BT2, BT4, MT3, MT8, NT2 and NT6 were re-isolated from leaf extracts. NT2, BT2, MT3 and NT6 inhibited growth of Botrytis cinerea and Pseudomonas syringae pv. tomato in vitro, produced antimicrobial compounds and reduced leaf damage caused by B. cinerea. Some of these isolates also promoted growth of tomato plants, produced siderophores, the auxin indole-3-acetic and solubilized inorganic phosphate. Thus, bacterial communities of leaves from field-grown tomato plants were found to harbor potentially endophytic culturable beneficial bacteria capable of antagonizing pathogenic microorganisms and promoting plant growth, which could be used as biological control agents and biofertilizers/biostimulators for promotion of tomato plant growth. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  2. Growth Inhibition of Beauveria bassiana by Bacteria Isolated from the Cuticular Surface of the Corn Leafhopper, Dalbulus maidis and the Planthopper, Delphacodes kuscheli, Two Important Vectors of Maize Pathogens

    PubMed Central

    Toledo, A.V.; Alippi, A.M.; de Remes Lenicov, A.M.M.

    2011-01-01

    The phytosanitary importance of the corn leafhopper, Dalbulus maidis (De Long and Wolcott) (Hemiptera: Cicadellidae) and the planthopper, Delphacodes kuscheli Fennah (Hemiptera: Delphacidae) lies in their ability to transmit phloem-associated plant pathogens, mainly viruses and mollicutes, and to cause considerable mechanical damage to corn plants during feeding and oviposition. Fungi, particularly some members of the Ascomycota, are likely candidates for biocontrol agents against these insect pests, but several studies revealed their failure to invade the insect cuticle possibly because of the presence of inhibitory compounds such as phenols, quinones, and lipids and also by the antibiosis effect of the microbiota living on the cuticular surface of the host. The present work aims to understand interactions between the entomopathogenic fungus Beauveria bassiana (Balsamao-Crivelli) Vuillemin (Hypocreales: Cordycipitaceae) and bacterial antagonists isolated from the cuticular surface of D. maidis and D. kuscheli. A total of 155 bacterial isolates were recovered from the insect's cuticle and tested against B. bassiana. Ninety-one out of 155 strains inhibited the growth of B. bassiana. Bacterial strains isolated from D. maidis were significantly more antagonistic against B. bassiana than those isolates from D. kuscheli. Among the most effective antagonistic strains, six isolates of Bacillus thuringiensis Berliner (Bacillales: Bacillaeae (after B. subtilis)), one isolate of B. mycoides Flügge, eight isolates of B. megaterium de Bary, five isolates of B.pumilus Meyer and Gottheil, one isolate of B. licheniformis (Weigmann) Chester, and four isolates of B. subtilis (Ehrenberg) Cohn were identified. PMID:21529147

  3. Prevalence and antimicrogram of Staphylococcus intermedius group isolates from veterinary staff, companion animals, and the environment in veterinary hospitals in Korea.

    PubMed

    Youn, Jung-Ho; Yoon, Jang Won; Koo, Hye Cheong; Lim, Suk-Kyung; Park, Yong Ho

    2011-03-01

    The Staphylococcus intermedius bacterial group (SIG) includes 3 distinct genetically heterogenous species: S. intermedius, S. pseudintermedius, and S. delphini. This pathogen group is associated with many opportunistic skin and ear infections in companion animals. Human infections with S. intermedius and S. pseudintermedius isolates and the emergence of methicillin-resistant isolates have been recently reported, which emphasizes the importance of nationwide identification of SIG isolate prevalence and antibiotic resistance in veterinary clinics. In the present study, a total of 178 SIG isolates were obtained from veterinary staff (n  =  40), companion animals (n  =  115), and the local environment (n  =  23) in 8 Korean veterinary hospitals. Isolates were differentiated into 167 S. pseudintermedius (93.8%) and 11 S. intermedius (6.2%) isolates; S. delphini isolates were not identified. The most effective antibiotics against these isolates included amoxicillin-clavulanic acid, amikacin, nitrofloxacin, imipenem, and vancomycin; whereas ampicillin, penicillin, tetracycline, erythromycin, and trimethoprim-sulfamethoxazole were not effective. Surprisingly, the 128 SIG isolates (71.9%) displayed multiple drug resistance (MDR) against 3 or more antibiotic classes. Out of 52 SIG isolates carrying the methicillin-resistance gene (mecA), only 34 (65.4%) were oxacillin-resistant, and 49 (94.2%) methicillin-resistant SIG were multidrug resistant. This finding suggests the presence of greater numbers of MDR phenotypes than other isolates (P < 0.05).

  4. Isolation and characterization of a hydrocarbonoclastic bacterial enrichment from total petroleum hydrocarbon contaminated sediments: potential candidates for bioaugmentation in bio-based processes.

    PubMed

    Di Gregorio, Simona; Siracusa, Giovanna; Becarelli, Simone; Mariotti, Lorenzo; Gentini, Alessandro; Lorenzi, Roberto

    2016-06-01

    Seven hydrocarbonoclastic new bacterial isolates were isolated from dredged sediments of a river estuary in Italy. The sediments were contaminated by shipyard activities since decades, mainly ascribable to the exploitation of diesel oil as the fuel for recreational and commercial navigation of watercrafts. The bacterial isolates were able to utilize diesel oil as sole carbon source. Their metabolic capacities were evaluated by GC-MS analysis, with reference to the depletion of both the normal and branched alkanes, the nC18 fatty acid methyl ester and the unresolved complex mixture of organic compounds. They were taxonomically identified as different species of Stenotrophomonas and Pseudomonas spp. by the combination of amplified ribosomal DNA restriction analysis (ARDRA) and repetitive sequence-based PCR (REP-PCR) analysis. The metabolic activities of interest were analyzed both in relation to the single bacterial strains and to the combination of the latter as a multibacterial species system. After 6 days of incubation in mineral medium with diesel oil as sole carbon source, the Stenotrophomonas sp. M1 strain depleted 43-46 % of Cn-alkane from C28 up to C30, 70 % of the nC18 fatty acid methyl ester and the 46 % of the unresolved complex mixture of organic compounds. On the other hand, the Pseudomonas sp. NM1 strain depleted the 76 % of the nC18 fatty acid methyl ester, the 50 % of the unresolved complex mixture of organic compounds. The bacterial multispecies system was able to completely deplete Cn-alkane from C28 up to C30 and to deplete the 95 % of the unresolved complex mixture of organic compounds. The isolates, either as single strains and as a bacterial multispecies system, were proposed as candidates for bioaugmentation in bio-based processes for the decontamination of dredged sediments.

  5. Novel bacterial consortia isolated from plastic garbage processing areas demonstrated enhanced degradation for low density polyethylene.

    PubMed

    Skariyachan, Sinosh; Manjunatha, Vishal; Sultana, Subiya; Jois, Chandana; Bai, Vidya; Vasist, Kiran S

    2016-09-01

    This study aimed to formulate novel microbial consortia isolated from plastic garbage processing areas and thereby devise an eco-friendly approach for enhanced degradation of low-density polyethylene (LDPE). The LDPE degrading bacteria were screened and microbiologically characterized. The best isolates were formulated as bacterial consortia, and degradation efficiency was compared with the consortia formulated using known isolates obtained from the Microbial Culture Collection Centre (MTCC). The degradation products were analyzed by FTIR, GC-FID, tensile strength, and SEM. The bacterial consortia were characterized by 16S ribosomal DNA (rDNA) sequencing. The formulated bacterial consortia demonstrated 81 ± 4 and 38 ± 3 % of weight reduction for LDPE strips and LDPE pellets, respectively, over a period of 120 days. However, the consortia formulated by MTCC strains demonstrated 49 ± 4 and 20 ± 2 % of weight reduction for LDPE strips and pellets, respectively, for the same period. Furthermore, the three isolates in its individual application exhibited 70 ± 4, 68 ± 4, and 64 ± 4 % weight reduction for LDPE strips and 21 ± 2, 28 ± 2, 24 ± 2 % weight reduction for LDPE pellets over a period of 120 days (p < 0.05). The end product analysis showed structural changes and formation of bacterial film on degraded LDPE strips. The 16S rDNA characterization of bacterial consortia revealed that these organisms were novel strains and designated as Enterobacter sp. bengaluru-btdsce01, Enterobacter sp. bengaluru-btdsce02, and Pantoea sp. bengaluru-btdsce03. The current study thus suggests that industrial scale-up of these microbial consortia probably provides better insights for waste management of LDPE and similar types of plastic garbage.

  6. Mineral Type and Solution Chemistry Affect the Structure and Composition of Actively Growing Bacterial Communities as Revealed by Bromodeoxyuridine Immunocapture and 16S rRNA Pyrosequencing.

    PubMed

    Kelly, L C; Colin, Y; Turpault, M-P; Uroz, S

    2016-08-01

    Understanding how minerals affect bacterial communities and their in situ activities in relation to environmental conditions are central issues in soil microbial ecology, as minerals represent essential reservoirs of inorganic nutrients for the biosphere. To determine the impact of mineral type and solution chemistry on soil bacterial communities, we compared the diversity, composition, and functional abilities of a soil bacterial community incubated in presence/absence of different mineral types (apatite, biotite, obsidian). Microcosms were prepared containing different liquid culture media devoid of particular essential nutrients, the nutrients provided only in the introduced minerals and therefore only available to the microbial community through mineral dissolution by biotic and/or abiotic processes. By combining functional screening of bacterial isolates and community analysis by bromodeoxyuridine DNA immunocapture and 16S rRNA gene pyrosequencing, we demonstrated that bacterial communities were mainly impacted by the solution chemistry at the taxonomic level and by the mineral type at the functional level. Metabolically active bacterial communities varied with solution chemistry and mineral type. Burkholderia were significantly enriched in the obsidian treatment compared to the biotite treatment and were the most effective isolates at solubilizing phosphorous or mobilizing iron, in all the treatments. A detailed analysis revealed that the 16S rRNA gene sequences of the OTUs or isolated strains assigned as Burkholderia in our study showed high homology with effective mineral-weathering bacteria previously recovered from the same experimental site.

  7. Biodegradation of malathion, α- and β-endosulfan by bacterial strains isolated from agricultural soil in Veracruz, Mexico.

    PubMed

    Jimenez-Torres, Catya; Ortiz, Irmene; San-Martin, Pablo; Hernandez-Herrera, R Idalia

    2016-12-01

    The objective of this study was to evaluate the capacity of two bacterial strains isolated, cultivated, and purified from agricultural soils of Veracruz, Mexico, for biodegradation and mineralisation of malathion (diethyl 2-(dimethoxyphosphorothioyl) succinate) and α- and β-endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6-9-methano-2,4,3-benzodioxathiepine-3-oxide). The isolated bacterial strains were identified using biochemical and morphological characterization and the analysis of their 16S rDNA gene, as Enterobacter cloacae strain PMM16 (E1) and E. amnigenus strain XGL214 (M1). The E1 strain was able to degrade endosulfan, whereas the M1 strain was capable of degrading both pesticides. The E1 strain degraded 71.32% of α-endosulfan and 100% of β-endosulfan within 24 days. The absence of metabolites, such as endosulfan sulfate, endosulfan lactone, or endosulfan diol, would suggest degradation of endosulfan isomers through non-oxidative pathways. Malathion was completely eliminated by the M1 strain. The major metabolite was butanedioic acid. There was a time-dependent increase in bacterial biomass, typical of bacterial growth, correlated with the decrease in pesticide concentration. The CO 2 production also increased significantly with the addition of pesticides to the bacterial growth media, demonstrating that, under aerobic conditions, the bacteria utilized endosulfan and malathion as a carbon source. Here, two bacterial strains are shown to metabolize two toxic pesticides into non-toxic intermediates.

  8. Substrate utilization profiles of bacterial strains in plankton from the River Warnow, a humic and eutrophic river in north Germany.

    PubMed

    Freese, Heike M; Eggert, Anja; Garland, Jay L; Schumann, Rhena

    2010-01-01

    Bacteria are very important degraders of organic substances in aquatic environments. Despite their influential role in the carbon (and many other element) cycle(s), the specific genetic identity of active bacteria is mostly unknown, although contributing phylogenetic groups had been investigated. Moreover, the degree to which phenotypic potential (i. e., utilization of environmentally relevant carbon substrates) is related to the genomic identity of bacteria or bacterial groups is unclear. The present study compared the genomic fingerprints of 27 bacterial isolates from the humic River Warnow with their ability to utilize 14 environmentally relevant substrates. Acetate was the only substrate utilized by all bacterial strains. Only 60% of the strains respired glucose, but this substrate always stimulated the highest bacterial activity (respiration and growth). Two isolates, both closely related to the same Pseudomonas sp., also had very similar substrate utilization patterns. However, similar substrate utilization profiles commonly belonged to genetically different strains (e.g., the substrate profile of Janthinobacterium lividum OW6/RT-3 and Flavobacterium sp. OW3/15-5 differed by only three substrates). Substrate consumption was sometimes totally different for genetically related isolates. Thus, the genomic profiles of bacterial strains were not congruent with their different substrate utilization profiles. Additionally, changes in pre-incubation conditions strongly influenced substrate utilization. Therefore, it is problematic to infer substrate utilization and especially microbial dissolved organic matter transformation in aquatic systems from bacterial molecular taxonomy.

  9. Identification and Characterization of Imipenem-Resistant Klebsiella pneumoniae and Susceptible Klebsiella variicola Isolates Obtained from the Same Patient.

    PubMed

    Garza-Ramos, Ulises; Moreno-Dominguez, Stephania; Hernández-Castro, Rigoberto; Silva-Sanchez, Jesús; Barrios, Humberto; Reyna-Flores, Fernando; Sanchez-Perez, Alejandro; Carrillo-Casas, Erika M; Sanchez-León, María Carmen; Moncada-Barron, David

    2016-04-01

    Klebsiella variicola, a bacterium closely genetically related to Klebsiella pneumoniae, is commonly misidentified as K. pneumoniae by biochemical tests. To distinguish between the two bacteria, phylogenetic analysis of the rpoB gene and the identification of unique genes in both bacterial species by multiplex-polymerase chain reaction (PCR) provide the means to reliably identify and genotype K. variicola. In recent years, K. variicola has been described both as the cause of an intrahospital outbreak in a pediatric hospital, which resulted in sepsis in inpatients, and as a frequent cause of bloodstream infections. In the present study, K. pneumoniae and K. variicola were isolated from a unique patient displaying different antimicrobial susceptibility phenotypes and different genotypes of virulence determinants. Eight clinical isolates were obtained at different time intervals; all during a 5-month period. The isolates were identified as K. pneumoniae by an automated identification system. The clinical (biochemical test) and molecular (multiplex-PCR and rpoB gene) characterization identified imipenem resistance in the first six K. pneumoniae ST258 isolates, which encode the SHV-12 cephalosporinase and KPC-3 carbapenemase genes. The two last remaining isolates corresponded to susceptible K. variicola. The bacterial species showed a specific profile of virulence-associated determinants, specifically the fimA, fimH, and ecpRAB fimbrial-encoding genes identified only in K. pneumoniae isolates. However, the entb (enterobactin), mrkD (fimbrial adhesin), uge (epimerase), ureA (urease), and wabG (transferase) genes were shared between both bacterial species. Recent studies attribute a higher mortality rate to K. variicola than to K. pneumonia. This work highlights the identification of K. pneumoniae and the closely related K. variicola isolated from the same patient. The value of distinguishing between these two bacterial species is in their clinical significance, their different phenotypes and genotypes, and the fact that they can be isolated from the same patient.

  10. Survival of bacterial isolates exposed to simulated Jovian trapped radiation belt electrons and solar wind protons

    NASA Technical Reports Server (NTRS)

    Taylor, D. M.; Hagen, C. A.; Renninger, G. M.; Simko, G. J.; Smith, C. D.; Yelinek, J. A.

    1973-01-01

    With missions to Jupiter, the spacecraft will be exposed for extended durations to solar wind radiation and the Jovian trapped radiation belt. This study is designed to determine the effect of these radiation environments on spacecraft bacterial isolates. The information can be used in the probability of contamination analysis for these missions. A bacterial subpopulation from Mariner Mars 1971 spacecraft (nine spore-forming and three non-spore-forming isolates) plus two comparative organisms, Staphylococcus epidermidis ATCC 17917 and a strain of Bacillus subtilis var. niger, were exposed to 2, 12, and 25 MeV electrons at different doses with simultaneous exposure to a vacuum of 1.3 x 10(-4) N m-2 at 20 and -20 degrees C. The radioresistance of the subpopulation was dependent on the isolate, dose and energy of electrons. Temperature affected the radioresistance of only the spore-forming isolates. Survival data indicated that spores were reduced approximately 1 log/1500 J kg-1 (10 J kg-1=1 krad), while non-spore-forming isolates (micrococci) were reduced 1.5-2 logs/1500 J kg-1 with the exception of an apparent radioresistant isolate whose resistance approached that of the spores. The subpopulation was found to be less resistant to lower energy than to higher energy electrons. The bacterial isolates were exposed to 3 keV protons under the same conditions as the electrons with a total fluence of 1.5 x 10(13) p cm-2 and a dose rate of 8.6 x 10(9) p cm-2 s-1. The results showed that only 20% of S. epidermidis and 45% of B. subtilis populations survived exposure to the 3 keV protons, while the mean survival of the spacecraft subpopulation was 45% with a range from 31.8% (non-spore-former) to 64.8% (non-spore-former). No significant difference existed between spore-forming and non-spore-forming isolates.

  11. Future direction in marine bacterial agarases for industrial applications.

    PubMed

    Jahromi, Saeid Tamadoni; Barzkar, Noora

    2018-06-16

    The marine ecosystem has been known to be a rich source of novel enzymes. Agarase is a key enzyme that can hydrolyze agar in the marine environment. Marine bacterial agarase has been isolated from various sources, such as sediments, coastal water, and deep sea and from the surface of crustaceans and seaweeds. This review presents an account of the agarase production of marine bacteria. General information about agar, agarase, isolation, and purification of marine bacterial agarases; the biochemical properties of native agarase from marine bacteria; the biochemical properties of recombinant marine bacterial agarases from engineered microorganisms; and the industrial future of marine bacterial agarases is analyzed. With recent biotechnological processes, researchers need novel functional enzymes like agarase from marine resources, such as marine bacteria, that can be used for diverse applications in the biotechnological industry. Marine bacterial agarases might be of significant interest to the industry because they are safe and are a natural source. This review highlights the potential of marine bacteria as important sources of agarase for application in various industries.

  12. Bioaccumulation of Vanadium by Vanadium-Resistant Bacteria Isolated from the Intestine of Ascidia sydneiensis samea.

    PubMed

    Romaidi; Ueki, Tatsuya

    2016-06-01

    Isolation of naturally occurring bacterial strains from metal-rich environments has gained popularity due to the growing need for bioremediation technologies. In this study, we found that the vanadium concentration in the intestine of the vanadium-rich ascidian Ascidia sydneiensis samea could reach 0.67 mM, and thus, we isolated vanadium-resistant bacteria from the intestinal contents and determined the ability of each bacterial strain to accumulate vanadium and other heavy metals. Nine strains of vanadium-resistant bacteria were successfully isolated, of which two strains, V-RA-4 and S-RA-6, accumulated vanadium at a higher rate than did the other strains. The maximum vanadium absorption by these bacteria was achieved at pH 3, and intracellular accumulation was the predominant mechanism. Each strain strongly accumulated copper and cobalt ions, but accumulation of nickel and molybdate ions was relatively low. These bacterial strains can be applied to protocols for bioremediation of vanadium and heavy metal toxicity.

  13. [Association of the pH change of vaginal environment in bacterial vaginosis with presence of Enterococcus faecalis in vagina].

    PubMed

    Jahić, Mahira; Nurkić, Mahmud; Fatusić, Zlatan

    2006-01-01

    Normal pH value of vagina from 3.8 to 4.2 has regulatory and protectors mechanisms of vaginal environment. The change in the pH value indicates to presence of disbalance in the ecosystem of vaginal environment. The value of pH above 4.0 is indicator of the decreased number of lactobacillus bacteria and the increased number of other microorganisms in the vaginal environment. This situation is present in the case of developing of bacterial vaginosis. One of the bacteria which is often isolated from vaginal swabs is Enterococcus faecalis. Aims of this study are to examine presence o f Enterococcus faecalis in vagina in healthy women and womenwith signs of bacterial vaginosis, the most often present signs in patients with bacterial vaginosis and isolated Enterococcus faecalis from vaginal swabs, and to determine whether the change of the pH value of vaginal environment could be indicator for bacterial vaginosis associated with Enterococcus faecalis. In this study there were included 90 patients. To all patients there were done: gynecological survey, determined pH of vaginal environment and color of vaginal secret, amino odor test, and taken vaginal swabs for microbiological examination. Enterococcus faecalis was found in the patients with pH 4.0 in 24.05 % cases, but in the patients with signs of bacterial vaginosis it was found in 52.78 %. Positive findings of Enterococcus faecalis was the most often associated with presence of all tree signs of bacterial vaginosis (pH>4.0, changed color of vaginal secret and positive amino odor test) it is in 60.78 6% cases. With two signs of bacterial vaginosis (pH>4.0, changed color of vaginal secret) Enterococcus faecalis was present in 60 % cases. The only presence of change in the pH>4.0 was associated with Enterococcus faecalis in 52.78 %. This study showed that pH change of vaginal environment was associated with Enterococcus faecalis in bacterial vaginosis in high percentage but it can not be used as the sure sign of presence of Enterococcus faecalis in vaginal discharge. Therefore it is necessary to make microbiology examination vaginal discharge.

  14. [Pharmaceutical use and antibiotic therapy in intensive care units].

    PubMed

    Gauzit, R

    2000-05-01

    The present study has involved a sample of 750 medical or medical/surgical intensive care units. The aim was to identify the variations of antibiotic (AB) use, measured in monetary terms, and to sort out explicative variables accounting for the corresponding expense. Activity and expense data have been recorded for 1997. "Second intention" antibiotics have been defined as follows: imipenem, ceftazidime, cefpirome, cefepime, piperacillin/tazobactam, amikacin, isepamicin, vancomycin and teicoplanin. Only 60 evaluable sheets have been sent back. They include data about 28,000 admissions and 183,960 hospital days. The results are presented as means +/- standard deviation (SD) and the variability has been considered to be important if the ratio SD/mean was > 1. Nosocomial infections (NI) surveillance, antibiotic advisory board and restriction of use for some molecules were present in 95%, 67% and 78% of units, respectively. The units usually had 10 beds (range: 6-24) and the mean activity was 468 +/- 184 admissions/year and 3,066 +/- 1,454 hospital days/year. Mean duration of hospitalisation (MDH) was 6.9 +/- 2.7 days and mean omega score 114 +/- 61. Mean age of patients was 56.5 years, IGS II score 35.7 +/- 7; 29 +/- 16% of patients were mechanically ventilated for more than 48 hours and mortality rate was 17 +/- 7%. The mean number of bacterial isolates per unit was 369 +/- 323: Staphylococcus sp. 30% [including 25% of meticillin-resistant Staphylococcus aureus (MRSA)]; enterobacteria 30% (including 14% of cefotaxime-resistant isolates); Pseudomonas sp. 14% (including 40% of ticarcillin R isolates); other 26%. Pharmaceutical expense was 834 +/- 364 FF per day of hospitalisation, including 536 +/- 273 FF for drugs. Antibiotics accounted for 32% of the expense and second intention molecules for nearly 50% of antibiotic expense. More than 80% of antibiotic expense was accounted for by only 10 molecules. The mean cost/hospital day for the most expensive antibiotic, whatever the molecule ranking first, was 27 FF, for the second and third ones 18 and 14 FF. The expense for the tenth molecule was only 3 FF. There was a correlation between antibiotic expense and number of beds, number of hospital days, MDH, omega score, number of patients mechanically ventilated for more than 48 hours, mortality, number of bacterial isolates and incidence of NI. Molecules thought to be active against MRSA and ticarcillin-resistant Pseudomonas sp. accounted for 7 and 20% of total antibiotic expense, as compared to 7.5 and 4.6%, respectively, of bacterial isolates. As a conclusion, in this sample of 60 intensive care units, differences were shown for the cost of antibiotics, but the variability was low, without major discrepancies. Ten molecules accounted for 83% of total antibiotic expense. The financial impact of molecules against ticarcillin-resistant Pseudomonas sp is high.

  15. Identification of bacterial contaminants from calcium carbonate filler production lines and an evaluation of biocide based decontamination procedures.

    PubMed

    Odić, Duško; Prah, Jana; Avguštin, Gorazd

    2017-04-01

    The aim of this study was to analyze the bacterial community in the production line of a calcium carbonate filler production company and to investigate possible causes for bacterial presence. Throughout 2012, 24 carbonate slurry and six groundwater samples were analyzed. Pseudomonas and Microbacterium were the most frequent contaminants in the slurry, whereas Pseudomonas and Brevundimonas dominated the groundwater samples. Of the 43 different bacterial strains isolated, only five were found both in the slurry and the groundwater, indicating that the latter was not a major source of contamination. The efficacy of 54 commercial biocidal formulations was tested against an artificial bacterial consortium composed of selected slurry isolates. A formulation containing 7.5-15% (v v -1 ) bronopol and 1.0-2.5% (v v -1 ) [chloroisothiazolinone (CIT) + methylisothiazolinone (MIT)] exhibited the highest efficacy. Of the possible causes for bacterial presence, sporogenesis and biocide adsorption to carbonate particles were found to be less probable compared to bacterial adsorption to particles, and the acquisition of resistance to biocides.

  16. Antibacterial Activity of Ethyl Acetate the Extract of Noni Fruit (Morinda citrifolia L.) Against Bacterial Spoilage in Fish

    NASA Astrophysics Data System (ADS)

    Nugraheni, E. R.; Adriani, G. R.; Munawaroh, H.

    2017-04-01

    Noni fruit (Morinda citrifolia L.) contains compounds that have potential as antibacterial agent. Antibacterial compounds produced noni fruit (M. citrifolia L.) can inhibit bacterial growth. This study was conducted to test the antibacterial activity of ethyl acetate extract of noni fruit (M. citrifolia L.) against spoilage bacterial in fish. Pseudomonas aeruginosa, Bacillus cereus, Escherichia coli, Klebsiella oxytoca, and Enterobacter aerogenes isolates and examine antibacterial phytochemical profile. Extraction of noni compounds was done by maceration, followed by partition with ethyl acetate to obtain the soluble and insoluble ethyl acetate fraction. Previews result show that the ethyl acetate extract had very strong activity. Extraction process continued by separation and isolation used preparative thin layer chromatography method, so that obtained five isolates and mark them as A, B, C, D and E. Antibacterial activity assay performed on isolates A, B, C, D, and E with 20 and 30% concentration. The test results showed that isolates A could not be inhibit the growth of bacteria, isolates B, C, D, and E has antibacterial activity with weak to strong inhibition. Isolate B had the greatest inhibition activity against the B. cereus, whereas isolates E had the greatest inhibition activity against P. aeroginosa. MIC (Minimum Inhibitor Concentration) and MBC (Minimum Bactericidal Concentration) test result showed that MIC and MBC values could not be determined. Analysis of compounds by TLC showed that isolate B suspected contains coumarin or flavonoids compounds that have antibacterial activity.

  17. Korean indigenous bacterial species with valid names belonging to the phylum Actinobacteria.

    PubMed

    Bae, Kyung Sook; Kim, Mi Sun; Lee, Ji Hee; Kang, Joo Won; Kim, Dae In; Lee, Ji Hee; Seong, Chi Nam

    2016-12-01

    To understand the isolation and classification state of actinobacterial species with valid names for Korean indigenous isolates, isolation source, regional origin, and taxonomic affiliation of the isolates were studied. At the time of this writing, the phylum Actinobacteria consisted of only one class, Actinobacteria, including five subclasses, 10 orders, 56 families, and 330 genera. Moreover, new taxa of this phylum continue to be discovered. Korean actinobacterial species with a valid name has been reported from 1995 as Tsukamurella inchonensis isolated from a clinical specimen. In 1997, Streptomyces seoulensis was validated with the isolate from the natural Korean environment. Until Feb. 2016, 256 actinobacterial species with valid names originated from Korean territory were listed on LPSN. The species were affiliated with three subclasses (Acidimicrobidae, Actinobacteridae, and Rubrobacteridae), four orders (Acidimicrobiales, Actinomycetales, Bifidobacteriales, and Solirubrobacterales), 12 suborders, 36 families, and 93 genera. Most of the species belonged to the subclass Actinobacteridae, and almost of the members of this subclass were affiliated with the order Actinomycetales. A number of novel isolates belonged to the families Nocardioidaceae, Microbacteriaceae, Intrasporangiaceae, and Streptomycetaceae as well as the genera Nocardioides, Streptomyces, and Microbacterium. Twenty-six novel genera and one novel family, Motilibacteraceae, were created first with Korean indigenous isolates. Most of the Korean indigenous actionobacterial species were isolated from natural environments such as soil, seawater, tidal flat sediment, and fresh-water. A considerable number of species were isolated from artificial resources such as fermented foods, wastewater, compost, biofilm, and water-cooling systems or clinical specimens. Korean indigenous actinobacterial species were isolated from whole territory of Korea, and especially a large number of species were from Jeju, Gyeonggi, Jeonnam, Daejeon, and Chungnam. A large number of novel actinobacterial species continue to be discovered since the Korean government is encouraging the search for new bacterial species and researchers are endeavoring to find out novel strains from extreme or untapped environments.

  18. Bacterial meningitis among children under the age of 2 years in a high human immunodeficiency virus prevalence area after Haemophilus influenzae type b vaccine introduction.

    PubMed

    Nansera, Denis; Max, Irama; Annet, Kisakye; Gessner, Bradford D

    2012-04-01

    The aim of this study was to describe bacterial causes of meningitis among children < 2 years in a high human immunodeficiency virus (HIV) prevalence area after introduction of routine Haemophilus influenzae type b vaccination. Data collected between April 2003 and December 2008 were extracted from a surveillance database and medical records of children < 2 years admitted in Mbarara Hospital, Uganda with suspected bacterial meningitis. HIV infection was confirmed using rapid tests and polymerase chain reaction and bacterial meningitis by using cerebrospinal fluid culture. Between April 2003 and December 2008, 1464 children under 5 years were admitted with suspected bacterial meningitis of which 1235 (84.4%) had cerebrospinal fluid collected; 894 (72.4%) of these samples were from children < 2 years. Of the 894 samples, 64 (7.2%) grew an organism including Streptococcus pneumoniae (26; 41%), Salmonella species (20; 31%), H. influenzae (6; 9%) and coliforms (7; 11%), and five (8%) grew contaminants that are all coagulase negative Staphylococcus. Of the 894 children, 468 (52.3%) were tested for HIV; 16.7% were positive. Fifty-one children had a pathogenic isolate and a treatment outcome, and 23 (45%) died; 13 (56.6%) deaths were due to S. pneumoniae, eight (34.8%) were due to Salmonella spp., one (4.3%) was due to H. influenzae and one (4.3%) was due to coliforms. HIV infection was associated with a threefold increase in mortality, increased likelihood of a bacterial isolate and decreased likelihood of malaria parasitaemia. Following H. influenzae type b vaccine introduction, S. pneumoniae and Salmonella spp. are the major causes of bacterial meningitis among children < 2 years in Uganda. Pneumococcal conjugate vaccines and reduction in mother to child transmission of HIV could reduce the observed mortality. © 2011 The Authors. Journal of Paediatrics and Child Health © 2011 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  19. Distribution and Phylogeny of Microsymbionts Associated with Cowpea (Vigna unguiculata) Nodulation in Three Agroecological Regions of Mozambique

    PubMed Central

    Chidebe, Ifeoma N.

    2017-01-01

    ABSTRACT Cowpea derives most of its N nutrition from biological nitrogen fixation (BNF) via symbiotic bacteroids in root nodules. In Sub-Saharan Africa, the diversity and biogeographic distribution of bacterial microsymbionts nodulating cowpea and other indigenous legumes are not well understood, though needed for increased legume production. The aim of this study was to describe the distribution and phylogenies of rhizobia at different agroecological regions of Mozambique using PCR of the BOX element (BOX-PCR), restriction fragment length polymorphism of the internal transcribed spacer (ITS-RFLP), and sequence analysis of ribosomal, symbiotic, and housekeeping genes. A total of 122 microsymbionts isolated from two cowpea varieties (IT-1263 and IT-18) grouped into 17 clades within the BOX-PCR dendrogram. The PCR-ITS analysis yielded 17 ITS types for the bacterial isolates, while ITS-RFLP analysis placed all test isolates in six distinct clusters (I to VI). BLASTn sequence analysis of 16S rRNA and four housekeeping genes (glnII, gyrB, recA, and rpoB) showed their alignment with Rhizobium and Bradyrhizobium species. The results revealed a group of highly diverse and adapted cowpea-nodulating microsymbionts which included Bradyrhizobium pachyrhizi, Bradyrhizobium arachidis, Bradyrhizobium yuanmingense, and a novel Bradyrhizobium sp., as well as Rhizobium tropici, Rhizobium pusense, and Neorhizobium galegae in Mozambican soils. Discordances observed in single-gene phylogenies could be attributed to horizontal gene transfer and/or subsequent recombinations of the genes. Natural deletion of 60 bp of the gyrB region was observed in isolate TUTVU7; however, this deletion effect on DNA gyrase function still needs to be confirmed. The inconsistency of nifH with core gene phylogenies suggested differences in the evolutionary history of both chromosomal and symbiotic genes. IMPORTANCE A diverse group of both Bradyrhizobium and Rhizobium species responsible for cowpea nodulation in Mozambique was found in this study. Future studies could prove useful in evaluating these bacterial isolates for symbiotic efficiency and strain competitiveness in Mozambican soils. PMID:29101189

  20. Reemergence of Lower-Airway Microbiota in Lung Transplant Patients with Cystic Fibrosis.

    PubMed

    Syed, Saad A; Whelan, Fiona J; Waddell, Barbara; Rabin, Harvey R; Parkins, Michael D; Surette, Michael G

    2016-12-01

    Chronic lung infections are a hallmark of cystic fibrosis; they are responsible for progressive airway destruction and ultimately lead to respiratory death or the requirement for life-saving bilateral lung transplant. Furthermore, recurrent isolation of airway pathogens such as Pseudomonas aeruginosa in the allograft after transplant is associated with adverse outcomes, including bronchiolitis obliterans syndrome and acute infections. Little information exists on the impact of bilateral lung transplant on the lower-airway microbiota. To compare, at a microbiome and single-pathogen level (P. aeruginosa), the bacterial communities in pre- and post-transplant samples. We retrospectively accessed our biobank of sputum samples and sputum-derived bacterial pathogens for patients who had matched samples, including those who were clinically stable before transplant, those who had a pulmonary exacerbation before transplant, and those who had pulmonary exacerbation after transplant. We used 16S ribosomal RNA gene sequencing to characterize the lower-airway microbiome of 14 adult transplant patients with cystic fibrosis. Genotyping and phenotyping of P. aeruginosa isolates from 12 of these patients with matched isolates was performed. Although α-diversity (richness and evenness) of patient microbiomes was similar before and after transplant, β- diversity (core microbiome composition) measures stratified patients evenly into two groups with more similar and more dissimilar communities. P. aeruginosa strains isolated before transplant were found to reemerge in 11 of 12 patients; however, phenotypic variation was observed. These findings indicate that recolonization by P. aeruginosa after transplant is almost always strain specific, suggesting a within-host source. The polymicrobial colonization of the airways after transplant does not always reflect the pretransplant sputum microbiota.

  1. Multicenter Evaluation of the Bruker MALDI Biotyper CA System for the Identification of Clinical Aerobic Gram-Negative Bacterial Isolates

    PubMed Central

    Faron, Matthew L.; Buchan, Blake W.; Hyke, Josh; Madisen, Neil; Lillie, Jennifer L.; Granato, Paul A.; Wilson, Deborah A.; Procop, Gary W.; Novak-Weekley, Susan; Marlowe, Elizabeth; Cumpio, Joven; Griego-Fullbright, Christen; Kindig, Sandra; Timm, Karen; Young, Stephen; Ledeboer, Nathan A.

    2015-01-01

    The prompt and accurate identification of bacterial pathogens is fundamental to patient health and outcome. Recent advances in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) have revolutionized bacterial identification in the clinical laboratory, but uniform incorporation of this technology in the U.S. market has been delayed by a lack of FDA-cleared systems. In this study, we conducted a multicenter evaluation of the MALDI Biotyper CA (MBT-CA) System (Bruker Daltonics Inc, Billerica, MA) for the identification of aerobic gram-negative bacteria as part of a 510(k) submission to the FDA. A total of 2,263 aerobic gram negative bacterial isolates were tested representing 23 genera and 61 species. Isolates were collected from various clinical sources and results obtained from the MBT-CA System were compared to DNA sequencing and/or biochemical testing. Isolates that failed to report as a "high confidence species ID" [log(score) ≥2.00] were re-tested using an extraction method. The MBT-CA System identified 96.8% and 3.1% of isolates with either a "high confidence" or a "low confidence" [log(score) value between 1.70 and <2.00] species ID, respectively. Two isolates did not produce acceptable confidence scores after extraction. The MBT-CA System correctly identified 99.8% (2,258/2,263) to genus and 98.2% (2,222/2,263) to species level. These data demonstrate that the MBT-CA System provides accurate results for the identification of aerobic gram-negative bacteria. PMID:26529504

  2. Multicenter Evaluation of the Bruker MALDI Biotyper CA System for the Identification of Clinical Aerobic Gram-Negative Bacterial Isolates.

    PubMed

    Faron, Matthew L; Buchan, Blake W; Hyke, Josh; Madisen, Neil; Lillie, Jennifer L; Granato, Paul A; Wilson, Deborah A; Procop, Gary W; Novak-Weekley, Susan; Marlowe, Elizabeth; Cumpio, Joven; Griego-Fullbright, Christen; Kindig, Sandra; Timm, Karen; Young, Stephen; Ledeboer, Nathan A

    2015-01-01

    The prompt and accurate identification of bacterial pathogens is fundamental to patient health and outcome. Recent advances in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) have revolutionized bacterial identification in the clinical laboratory, but uniform incorporation of this technology in the U.S. market has been delayed by a lack of FDA-cleared systems. In this study, we conducted a multicenter evaluation of the MALDI Biotyper CA (MBT-CA) System (Bruker Daltonics Inc, Billerica, MA) for the identification of aerobic gram-negative bacteria as part of a 510(k) submission to the FDA. A total of 2,263 aerobic gram negative bacterial isolates were tested representing 23 genera and 61 species. Isolates were collected from various clinical sources and results obtained from the MBT-CA System were compared to DNA sequencing and/or biochemical testing. Isolates that failed to report as a "high confidence species ID" [log(score) ≥2.00] were re-tested using an extraction method. The MBT-CA System identified 96.8% and 3.1% of isolates with either a "high confidence" or a "low confidence" [log(score) value between 1.70 and <2.00] species ID, respectively. Two isolates did not produce acceptable confidence scores after extraction. The MBT-CA System correctly identified 99.8% (2,258/2,263) to genus and 98.2% (2,222/2,263) to species level. These data demonstrate that the MBT-CA System provides accurate results for the identification of aerobic gram-negative bacteria.

  3. Bacteria as growth-promoting agents for citrus rootstocks.

    PubMed

    Giassi, Valdionei; Kiritani, Camila; Kupper, Katia Cristina

    2016-09-01

    The microbial community plays an essential role in maintaining the ecological balance of soils. Interactions between microorganisms and plants have a major influence on the nutrition and health of the latter, and growth-promoting rhizobacteria can be used to improve plant development through a wide range of mechanisms. Therefore, the objective of the present study was to evaluate bacteria as growth-promoting agents for citrus rootstocks. A total of 30 bacterial isolates (11 of Bacillus spp., 11 actinobacteria, and 8 lactic acid bacteria) were evaluated in vitro for indoleacetic acid production, phosphate solubilization, and nitrogen (N) fixation. In vivo testing consisted of growth promotion trials of the bacterial isolates that yielded the best results on in vitro tests with three rootstocks: Swingle citrumelo [Citrus×paradisi Macfad cv. Duncan×Poncirus trifoliata (L.) Raf.], Sunki mandarin (Citrus sunki Hort. ex Tan), and rangpur (Citrus×limonia Osbeck). The parameters of interest were height, number of leaves, stem diameter, shoot and root dry mass, and total dry mass at 150days after germination. The results showed that most bacterial isolates were capable of IAA production. Only one lactic acid bacterium isolate (BL06) solubilized phosphate, with a high solubilization index (PSI>3). In the actinobacteria group, isolates ACT01 (PSI=2.09) and ACT07 (PSI=2.01) exhibited moderate phosphate-solubilizing properties. Of the Bacillus spp. isolates, only CPMO6 and BM17 solubilized phosphate. The bacterial isolates that most fixated nitrogen were BM17, ACT11, and BL24. In the present study, some bacteria were able to promote growth of citrus rootstocks; however, this response was dependent on plant genotype and isolate. Bacillus spp. BM16 and CPMO4 were able to promote growth of Swingle citrumelo. In Sunki mandarin plants, the best treatment results were obtained with BM17 (Bacillus sp.) and ACT11 (actinobacteria). For Rangpur lime rootstock, only BM05 (Bacillus sp.) was able to promote increase in two parameters assessed, height and number of leaves. When the bacterial isolates were used in mixture there was not promoted growth of plants on rootstocks. This fact may be associated with the different mechanisms of action of each bacteria involved or with the presence of competition among the microorganisms of the mixture. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Hexavalent chromium reduction by bacterial consortia and pure strains from an alkaline industrial effluent.

    PubMed

    Piñón-Castillo, H A; Brito, E M S; Goñi-Urriza, M; Guyoneaud, R; Duran, R; Nevarez-Moorillon, G V; Gutiérrez-Corona, J F; Caretta, C A; Reyna-López, G E

    2010-12-01

    To characterize the bacterial consortia and isolates selected for their role in hexavalent chromium removal by adsorption and reduction. Bacterial consortia from industrial wastes revealed significant Cr(VI) removal after 15 days when incubated in medium M9 at pH 6·5 and 8·0. The results suggested chromium reduction. The bacterial consortia diversity (T-RFLP based on 16S rRNA gene) indicated a highest number of operational taxonomic units in an alkaline carbonate medium mimicking in situ conditions. However, incubations under such conditions revealed low Cr(VI) removal. Genomic libraries were obtained for the consortia exhibiting optimal Cr(VI) removal (M9 medium at pH 6·5 and 8·0). They revealed the dominance of 16S rRNA gene sequences related to the genera Pseudomonas/Stenotrophomonas or Enterobacter/Halomonas, respectively. Isolates related to Pseudomonas fluorescens and Enterobacter aerogenes were efficient in Cr(VI) reduction and adsorption to the biomass. Cr(VI) reduction was better at neutral pH rather than under in situ conditions (alkaline pH with carbonate). Isolated strains exhibited significant capacity for Cr(VI) reduction and adsorption. Bacterial communities from chromium-contaminated industrial wastes as well as isolates were able to remove Cr(VI). The results suggest a good potential for bioremediation of industrial wastes when optimal conditions are applied. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology. No claim to Mexican Government works.

  5. Phenotypic and genotypic evaluation of fluoroquinolone resistance in clinical isolates of Staphylococcus aureus in Tehran

    PubMed Central

    Aligholi, Marzieh; Mirsalehian, Akbar; Halimi, Shahnaz; Imaneini, Hossein; Taherikalani, Morovat; Jabalameli, Fereshteh; Asadollahi, Parisa; Mohajer, Babak; Abdollahi, Alireza; Emaneini, Mohammad

    2011-01-01

    Summary Background Fluoroquinolones are broad-spectrum antibiotics widely used in the treatment of bacterial infections such as Staphylococcus aureus isolates. Resistance to these antibiotics is increasing. Material/Methods The occurrence of mutations in the grlA and gyrA loci were evaluated in 69 fluoroquinolone-resistant S. aureus isolates from 2 teaching hospitals of Tehran University of Medical Sciences. Results Out of the 165 S. aureus isolates, 87 (52.7%) were resistant to methicillin and 69 (41.8%) were resistant to fluoroquinolone. Fluoroquinolone-resistant S. aureus isolates had a mutation at codon 80 in the grlA gene and different mutational combinations in the gyrA gene. These mutational combinations included 45 isolates at codons 84 and 86, 23 isolates at codons 84, 86 and 106 and 1 isolate at codons 84, 86 and 90. Fluoroquinolone-resistant S. aureus isolates were clustered into 33 PFGE types. Conclusions The findings of this study show that the fluoroquinolone-resistant S. aureus strains isolated in the teaching hospitals in Tehran had multiple mutations in the QRDRs region of both grlA and gyrA genes. PMID:21873957

  6. Phenotypic and genotypic evaluation of fluoroquinolone resistance in clinical isolates of Staphylococcus aureus in Tehran.

    PubMed

    Aligholi, Marzieh; Mirsalehian, Akbar; Halimi, Shahnaz; Imaneini, Hossein; Taherikalani, Morovat; Jabalameli, Fereshteh; Asadollahi, Parisa; Mohajer, Babak; Abdollahi, Alireza; Emaneini, Mohammad

    2011-09-01

    Fluoroquinolones are broad-spectrum antibiotics widely used in the treatment of bacterial infections such as Staphylococcus aureus isolates. Resistance to these antibiotics is increasing. The occurrence of mutations in the grlA and gyrA loci were evaluated in 69 fluoroquinolone-resistant S. aureus isolates from 2 teaching hospitals of Tehran University of Medical Sciences. Out of the 165 S. aureus isolates, 87 (52.7%) were resistant to methicillin and 69 (41.8%) were resistant to fluoroquinolone. Fluoroquinolone-resistant S. aureus isolates had a mutation at codon 80 in the grlA gene and different mutational combinations in the gyrA gene. These mutational combinations included 45 isolates at codons 84 and 86, 23 isolates at codons 84, 86 and 106 and 1 isolate at codons 84, 86 and 90. Fluoroquinolone-resistant S. aureus isolates were clustered into 33 PFGE types. The findings of this study show that the fluoroquinolone-resistant S. aureus strains isolated in the teaching hospitals in Tehran had multiple mutations in the QRDRs region of both grlA and gyrA genes.

  7. BACTERIAL PREFERENCES OF THE BACTERIVOROUS SOIL NEMATODE CEPHALOBUS BREVICAUDA (CEPHALOBIDAE): EFFECT OF BACTERIAL TYPE AND SIZE

    EPA Science Inventory

    Cell size and type may affect availability of bacteria for consumption by bacterivorous nematodes in the soil and in culture. This study explored the bacterial preferences of the bacterivorous soil nematode Cephalobus brevicauda (Cephalobidae) by comparing bactgeria isolated dir...

  8. Relationship between lactobacilli and opportunistic bacterial pathogens associated with vaginitis

    PubMed Central

    Razzak, Mohammad Sabri A.; Al-Charrakh, Alaa H.; AL-Greitty, Bara Hamid

    2011-01-01

    Background: Vaginitis, is an infectious inflammation of the vaginal mucosa, which sometimes involves the vulva. The balance of the vaginal flora is maintained by the Lactobacilli and its protective and probiotic role in treating and preventing vaginal infection by producing antagonizing compounds which are regarded as safe for humans. Aim: The aim of this study was to evaluate the protective role of Lactobacilli against common bacterial opportunistic pathogens in vaginitis and study the effects of some antibiotics on Lactobacilli isolates. Materials and Methods: In this study (110) vaginal swabs were obtained from women suffering from vaginitis who admitted to Babylon Hospital of Maternity and Paediatrics in Babylon province, Iraq. The study involved the role of intrauterine device among married women with vaginitis and also involved isolation of opportunistic bacterial isolates among pregnant and non pregnant women. This study also involved studying probiotic role of Lactobacilli by production of some defense factors like hydrogen peroxide, bacteriocin, and lactic acid. Results: Results revealed that a total of 130 bacterial isolates were obtained. Intrauterine device was a predisposing factor for vaginitis. The most common opportunistic bacterial isolates were Staphylococcus aureus, Escherichia coli, Streptococcus agalactiae, and Klebsiella pneumoniae. All Lactobacilli were hydrogen peroxide producers while some isolates were bacteriocin producers that inhibited some of opportunistic pathogens (S. aureus, E. coli). Lactobacilli were sensitive to erythromycin while 93.3% of them were resistant to ciprofloxacin and (40%, 53.3%) of them were resistant to amoxicillin and gentamycin respectively. Results revealed that there was an inverse relationship between Lactobacilli presence and organisms causing vaginitis. This may be attributed to the production of defense factors by Lactobacilli. Conclusion: The types of antibiotics used to treat vaginitis must be very selective in order not to kill the beneficial bacteria (Lactobacilli) that help in preservation of vaginal health and ecosystem as being one of the probiotic bacteria. PMID:22540089

  9. Slit lamps and lenses: a potential source of nosocomial infections?

    PubMed

    Sobolewska, Bianka; Buhl, Michael; Liese, Jan; Ziemssen, Focke

    2018-01-30

    The aim of the study was to evaluate the bacterial contamination level of contact surfaces on slit lamps and the grip areas of lenses. Within unannounced audits, two regions of the slit lamps (headrest and joystick), indirect ophthalmoscopy devices, and ultrasound probes were obtained with rayon-tipped swab. Non-contact lenses used for indirect fundoscopy were pressed on RODAC (Replicate Organism Detection and Counting) plates. One hundred and eighty-one surfaces were sampled. The total number of colony-forming units was assessed and bacterial species were identified. Spa-typing and antimicrobial susceptibility testing were performed from Staphylococcus aureus isolates. Among the total bacterial isolates from ophthalmological equipment (lenses: 51 of 78, slit lamps: 43 of 88, ophthalmoscopy helmets: 3 of 8, ultrasound probes: 2 of 7), coagulase-negative staphylococci (CNS) was most frequently found, followed by Micrococcus spp. (lenses vs. slit lamps: P < 0.001 and P = 0.01, respectively). The bacterial contamination of lenses (76%) was significantly higher than that of slit lamps (54%) (P < 0.003). A significantly higher contamination with CNS was observed on lenses from residents vs. from consultants (78% vs. 35%, P = 0.01). A total of seven different spa-types of S. aureus were isolated. No correlation was found between S. aureus contamination of different ophthalmological equipments (Spearman's rank correlation coefficient, ρ = 0.04, P = 0.75). Methicillin-resistant S. aureus was not detected. Bacterial species of the normal skin flora were isolated from the ophthalmological equipment. The bacterial contamination of the portable devices was significantly higher than that of slit lamps. Therefore, proper hygiene of the mobile instruments should be monitored in order to prevent transmission of bacteria in residents and consultants.

  10. Salmonella L-forms: formation in human bile in vitro and isolation culture from patients' gallbladder samples by a non-high osmotic isolation technique.

    PubMed

    Wang, D N; Wu, W J; Wang, T; Pan, Y Z; Tang, K L; She, X L; Ding, W J; Wang, H

    2015-05-01

    Bacterial L-forms have always been considered as osmotic-pressure-sensitive cell-wall-deficient bacteria and isolation culture of L-forms must use media with high osmotic pressure. However, isolation culture of stable L-forms formed in humans and animals is very difficult because they have adapted to the physiological osmotic pressure condition of the host. We use a non-high osmotic isolation technique to isolate stable L-forms of Salmonella Typhi and Salmonella Paratyphi A from bile-inducer cultures in vitro and from patients' gallbladder specimens. Multiplex PCR assay for Salmonella-specific genes and nucleotide sequencing are used to identify the Salmonella L-forms in stable L-form isolates. Using this method, we confirmed that Salmonella Paratyphi A and Salmonella Typhi cannot be isolated from bile-inducer cultures cultured for 6 h or 48 h, but the L-forms can be isolated from 1 h to 45 days. In the 524 gallbladder samples, the positive rate for bacterial forms was 19.7% and the positive rate for Salmonella spp. was 0.6% by routine bacteriological methods. The positive rate for bacterial L-forms was 75.4% using non-high osmotic isolation culture. In the L-form isolates, the positive rate of Salmonella invA gene was 3.1%. In these invA-positive L-form isolates, four were positive for the invA and flic-d genes of Salmonella Typhi, and ten were positive for the invA and flic-a genes of Salmonella Paratyphi A. Copyright © 2014 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  11. Assessment of active bacteria metabolizing phenolic acids in the peanut (Arachis hypogaea L.) rhizosphere.

    PubMed

    Liu, Jinguang; Wang, Xingxiang; Zhang, Taolin; Li, Xiaogang

    2017-12-01

    Phenolic acids can enhance the mycotoxin production and activities of hydrolytic enzymes related to pathogenicity of soilborne fungus Fusarium oxysporum. However, characteristics of phenolic acid-degrading bacteria have not been investigated. The objectives of this study were to isolate and characterize bacteria capable of growth on benzoic and vanillic acids as the sole carbon source in the peanut rhizosphere. Twenty-four bacteria were isolated, and the identification based on 16S rRNA gene sequencing revealed that pre-exposure to phenolic acids before sowing shifted the dominant culturable bacterial degraders from Arthrobacter to Burkholderia stabilis-like isolates. Both Arthrobacter and B. stabilis-like isolates catalysed the aromatic ring cleavage via the ortho pathway, and Arthrobacter isolates did not exhibit higher C12O enzyme activity than B. stabilis-like isolates. The culture filtrate of Fusarium sp. ACCC36194 caused a strong inhibition of Arthrobacter growth but not B. stabilis-like isolates. Additionally, Arthrobacter isolates responded differently to the culture filtrates of B. stabilis-like isolates. The Arthrobacter isolates produced higher indole acetic acid (IAA) levels than B. stabilis-like isolates, but B. stabilis-like isolates were also able to produce siderophores, solubilize mineral phosphate, and exert an antagonistic activity against peanut root rot pathogen Fusarium sp. ACCC36194. Results indicate that phenolic acids can shift their dominant culturable bacterial degraders from Arthrobacter to Burkholderia species in the peanut rhizosphere, and microbial interactions might lead to the reduction of culturable Arthrobacter. Furthermore, increasing bacterial populations metabolizing phenolic acids in monoculture fields might be a control strategy for soilborne diseases caused by Fusarium spp. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. Antibiotic resistance and biofilm formation of some bacteria isolated from sediment, water and fish farms in Malaysia

    NASA Astrophysics Data System (ADS)

    Faja, Orooba Meteab; Usup, Gires; Ahmad, Asmat

    2018-04-01

    A total of 90 isolates of bacteria were isolated, from sediment (10) samples, water (10) samples and fish (12) samples (Sea bass, Snapper, Grouper and Tilapia). These include 22 isolates of bacteria from sediment, 28 isolates from water and 40 isolates from fish. All the isolates were tested for sensitivity to 13 antibiotics using disc diffusion method. The isolates showed high resistance to some antibiotics based on samples source. Isolates from sediment showed highest resistance toward novobiocin, kanamycin, ampicillin and streptomycin while isolates from water showed highest resistance against vancomycin, penicillin, streptomycin and tetracycline, in contrast, in fish sample showed highest resistance toward vancomycin, ampicillin, streptomycin and tetracycline. Most of the isolates showed biofilm formation ability with different degrees. Out of 22 bacteria isolates from water, two isolates were weak biofilm formers, six isolates moderate biofilm formers and fourteen isolates strong biofilm formers. While, out of 28 bacteria isolates from water one isolate was weak biofilm former, five isolates moderate biofilm formers and 22 strong biofilm formers Fish isolate showed three isolates (8%) moderate biofilm formers and 27 isolates strong biofilm formers. Biofilm formation was one of the factors that lead to antibiotic resistance of the bacterial isolates from these samples.

  13. Identification and properties of an alpha-amylase from a strain of Eubacterium sp. isolated from the rat intestinal tract.

    PubMed

    Delahaye, E P; Foglietti, M J; Andrieux, C; Chardon-Loriaux, I; Szylit, O; Raibaud, P

    1991-01-01

    1. A bacterial amylase was isolated from the intestinal content of monoxenic rats inoculated with Eubacterium sp. B86. 2. Affinity chromatography on cross-linked starch allowed its separation from rat endogenous amylases. 3. The bacterial enzyme was characterized by its pI, molecular weight and action pattern. It behaves as a typical endo-amylase (alpha-amylase).

  14. Draft Genome Sequence of Two Strains of Xanthomonas arboricola Isolated from Prunus persica Which Are Dissimilar to Strains That Cause Bacterial Spot Disease on Prunus spp.

    PubMed Central

    Garita-Cambronero, Jerson; Palacio-Bielsa, Ana; López, María M.

    2016-01-01

    The draft genome sequences of two strains of Xanthomonas arboricola, isolated from asymptomatic peach trees in Spain, are reported here. These strains are avirulent and do not belong to the same phylogroup as X. arboricola pv. pruni, a causal agent of bacterial spot disease of stone fruits and almonds. PMID:27609931

  15. Exploring cultivable Bacteria from the prokaryotic community associated with the carnivorous sponge Asbestopluma hypogea.

    PubMed

    Dupont, Samuel; Carre-Mlouka, Alyssa; Domart-Coulon, Isabelle; Vacelet, Jean; Bourguet-Kondracki, Marie-Lise

    2014-04-01

    Combining culture-dependent and independent approaches, we investigated for the first time the cultivable fraction of the prokaryotic community associated with the carnivorous sponge Asbestopluma hypogea. The heterotrophic prokaryotes isolated from this tiny sponge were compared between specimens freshly collected from cave and maintained in aquarium. Overall, 67 isolates obtained in pure culture were phylogenetically affiliated to the bacterial phyla Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes. This cultivable diversity was lower than the prokaryotic diversity obtained by previous pyrosequencing study and comparable to that of another Mediterranean demosponge, the filter-feeding Phorbas tenacior. Furthermore, using fluorescence in situ hybridization, we visualized bacterial and archaeal cells, confirming the presence of both prokaryotes in A. hypogea tissue. Approximately 16% of the bacterial isolates tested positive for chitinolytic activity, suggesting potential microbial involvement in the digestion processes of crustacean prey by this carnivorous sponge. Additionally, 6% and 16% of bacterial isolates revealed antimicrobial and antioxidant activities, respectively. One Streptomyces sp. S1CA strain was identified as a promising candidate for the production of antimicrobial and antioxidant secondary metabolites as well as chitinolytic enzymes. Implications in the context of the sponge biology and prey-feeding strategy are discussed. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  16. A Little Vacation on Mars: Mars Simulation Microbial Challenge Experiments

    NASA Astrophysics Data System (ADS)

    Boston, P.; Todd, P.; Van De Camp, J.; Northup, D.; Spilde, M.

    2008-06-01

    Communities of microbial organisms isolated from a variety of extreme environments were subjected to 1 to 5 weeks of simulated Martian environmental conditions using the Mars Environment Simulation Chamber at the Techshot, Inc. facility in Greenville, Indiana. The goal of the overall experiment program was to assess survival of test Earth organisms under Mars full spectrum sunlight, low-latitude daily temperature profile and various Mars-atmosphere pressures (~50 mbar to 500 mbar, 100% CO2) and low moisture content. Organisms surviving after 5 weeks at 100 mbar included those from gypsum surface fracture communities in a Permian aged evaporite basin, desert varnish on andesite lavas around a manganese mine, and iron and manganese oxidizing organisms isolated from two caves in Mew Mexico. Phylogenetic DNA analysis revealed strains of cyanobacteria, bacterial genera (present in all surviving communities) Asticacaulis, Achromobacter, Comamonas, Pantoea, Verrucomicrobium, Bacillus, Gemmatimonas, Actinomyces, and others. At least one microcolonial fungal strain from a desert varnish community and at least one strain from Utah survived simulations. Strains related to the unusual cave bacterial group Bacteroidetes are present in survivor communities that resist isolation into pure culture implying that their consortial relationships may be critical to their survival.

  17. Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation

    PubMed Central

    Liu, Hongxia; Kolter, Roberto; Losick, Richard; Guo, Jian-hua

    2014-01-01

    Summary Bacillus subtilis and other Bacilli have long been used as biological control agents against plant bacterial diseases but the mechanisms by which the bacteria confer protection are not well understood. Our goal in this study was to isolate strains of B. subtilis that exhibit high levels of biocontrol efficacy from natural environments and to investigate the mechanisms by which these strains confer plant protection. We screened a total of sixty isolates collected from various locations across China and obtained six strains that exhibited above 50% biocontrol efficacy on tomato plants against the plant pathogen Ralstonia solanacearum under greenhouse conditions. These wild strains were able to form robust biofilms both in defined medium and on tomato plant roots and exhibited strong antagonistic activities against various plant pathogens in plate assays. We show that plant protection by those strains depended on widely conserved genes required for biofilm formation, including regulatory genes and genes for matrix production. We provide evidence suggesting that matrix production is critical for bacterial colonization on plant root surfaces. Finally, we have established a model system for studies of B. subtilis-tomato plant interactions in protection against a plant pathogen. PMID:22934631

  18. Littoral lichens as a novel source of potentially bioactive Actinobacteria.

    PubMed

    Parrot, Delphine; Antony-Babu, Sanjay; Intertaglia, Laurent; Grube, Martin; Tomasi, Sophie; Suzuki, Marcelino T

    2015-10-30

    Cultivable Actinobacteria are the largest source of microbially derived bioactive molecules. The high demand for novel antibiotics highlights the need for exploring novel sources of these bacteria. Microbial symbioses with sessile macro-organisms, known to contain bioactive compounds likely of bacterial origin, represent an interesting and underexplored source of Actinobacteria. We studied the diversity and potential for bioactive-metabolite production of Actinobacteria associated with two marine lichens (Lichina confinis and L. pygmaea; from intertidal and subtidal zones) and one littoral lichen (Roccella fuciformis; from supratidal zone) from the Brittany coast (France), as well as the terrestrial lichen Collema auriforme (from a riparian zone, Austria). A total of 247 bacterial strains were isolated using two selective media. Isolates were identified and clustered into 101 OTUs (98% identity) including 51 actinobacterial OTUs. The actinobacterial families observed were: Brevibacteriaceae, Cellulomonadaceae, Gordoniaceae, Micrococcaceae, Mycobacteriaceae, Nocardioidaceae, Promicromonosporaceae, Pseudonocardiaceae, Sanguibacteraceae and Streptomycetaceae. Interestingly, the diversity was most influenced by the selective media rather than lichen species or the level of lichen thallus association. The potential for bioactive-metabolite biosynthesis of the isolates was confirmed by screening genes coding for polyketide synthases types I and II. These results show that littoral lichens are a source of diverse potentially bioactive Actinobacteria.

  19. Littoral lichens as a novel source of potentially bioactive Actinobacteria

    PubMed Central

    Parrot, Delphine; Antony-Babu, Sanjay; Intertaglia, Laurent; Grube, Martin; Tomasi, Sophie; Suzuki, Marcelino T.

    2015-01-01

    Cultivable Actinobacteria are the largest source of microbially derived bioactive molecules. The high demand for novel antibiotics highlights the need for exploring novel sources of these bacteria. Microbial symbioses with sessile macro-organisms, known to contain bioactive compounds likely of bacterial origin, represent an interesting and underexplored source of Actinobacteria. We studied the diversity and potential for bioactive-metabolite production of Actinobacteria associated with two marine lichens (Lichina confinis and L. pygmaea; from intertidal and subtidal zones) and one littoral lichen (Roccella fuciformis; from supratidal zone) from the Brittany coast (France), as well as the terrestrial lichen Collema auriforme (from a riparian zone, Austria). A total of 247 bacterial strains were isolated using two selective media. Isolates were identified and clustered into 101 OTUs (98% identity) including 51 actinobacterial OTUs. The actinobacterial families observed were: Brevibacteriaceae, Cellulomonadaceae, Gordoniaceae, Micrococcaceae, Mycobacteriaceae, Nocardioidaceae, Promicromonosporaceae, Pseudonocardiaceae, Sanguibacteraceae and Streptomycetaceae. Interestingly, the diversity was most influenced by the selective media rather than lichen species or the level of lichen thallus association. The potential for bioactive-metabolite biosynthesis of the isolates was confirmed by screening genes coding for polyketide synthases types I and II. These results show that littoral lichens are a source of diverse potentially bioactive Actinobacteria. PMID:26514347

  20. A keystone predator controls bacterial diversity in the pitcher-plant (Sarracenia purpurea) microecosystem.

    PubMed

    Peterson, Celeste N; Day, Stephanie; Wolfe, Benjamin E; Ellison, Aaron M; Kolter, Roberto; Pringle, Anne

    2008-09-01

    The community of organisms inhabiting the water-filled leaves of the carnivorous pitcher-plant Sarracenia purpurea includes arthropods, protozoa and bacteria, and serves as a model system for studies of food web dynamics. Despite the wealth of data collected by ecologists and zoologists on this food web, very little is known about the bacterial assemblage in this microecosystem. We used terminal restriction fragment length polymorphism (T-RFLP) analysis to quantify bacterial diversity within the pitchers as a function of pitcher size, pH of the pitcher fluid and the presence of the keystone predator in this food web, larvae of the pitcher-plant mosquito Wyeomyia smithii. Results were analysed at two spatial scales: within a single bog and across three isolated bogs. Pitchers were sterile before they opened and composition of the bacterial assemblage was more variable between different bogs than within bogs. Measures of bacterial richness and diversity were greater in the presence of W. smithii and increased with increasing pitcher size. Our results suggest that fundamental ecological concepts derived from macroscopic food webs can also be used to predict the bacterial assemblages in pitcher plants.

  1. Adaptations in bacterial catabolic enzyme activity and community structure in membrane-coupled bioreactors fed simple synthetic wastewater.

    PubMed

    LaPara, Timothy M; Klatt, Christian G; Chen, Ruoyu

    2006-02-10

    Membrane-coupled bioreactors (MBRs) offer substantial benefits compared to conventional reactor designs for biological wastewater treatment. MBR treatment efficiency, however, has not been optimized because the effects of the MBR on process microbiology are poorly understood. In this study, the structure and function of the microbial communities growing in MBRs fed simple synthetic wastewater were investigated. In four starch-fed MBRs, the bacterial community substantially increased its alpha-glucosidase affinity (>1000-fold), while the leucine aminopeptidase and heptanoate esterase affinities increased slightly (<40-fold) or remained relatively constant. Concomitant to these physiological adaptations, shifts in the bacterial community structure in two of the starch-fed MBRs were detected by PCR-DGGE. Four of the bacterial populations detected by PCR-DGGE were isolated and exhibited specific growth rates in batch culture ranging from 0.009 to 0.22 h(-1). Our results suggest that bacterial communities growing under increasingly stringent nutrient limitation adapt their enzyme activities primarily for the nutrients provided, but that there is also a more subtle response not linked to the substrates included in the feed medium. Our research also demonstrates that MBRs can support relatively complex bacterial communities even on simple feed media.

  2. Determination of antimicrobial susceptibilities on infected urines without isolation

    NASA Technical Reports Server (NTRS)

    Picciolo, G. L.; Chappelle, E. W.; Deming, J. W.; Shrock, C. G.; Vellend, H.; Barza, M. J.; Weinstein, L. (Inventor)

    1979-01-01

    A method is described for the quick determination of the susceptibilities of various unidentified bacteria contained in an aqueous physiological fluid sample, particularly urine, to one or more antibiotics. A bacterial adenosine triphosphate (ATP) assay is carried out after the elimination of non-bacterial ATP to determine whether an infection exists. If an infection does exist, a portion of the sample is further processed, including subjecting parts of the portion to one or more antibiotics. Growth of the bacteria in the parts are determined, again by an ATP assay, to determine whether the unidentified bacteria in the sample are susceptible to the antibiotic or antibiotics under test.

  3. Newly Isolated Bacteriophages from the Podoviridae, Siphoviridae, and Myoviridae Families Have Variable Effects on Putative Novel Dickeya spp.

    PubMed

    Alič, Špela; Naglič, Tina; Tušek-Žnidarič, Magda; Ravnikar, Maja; Rački, Nejc; Peterka, Matjaž; Dreo, Tanja

    2017-01-01

    Soft rot pathogenic bacteria from the genus Dickeya cause severe economic losses in orchid nurseries worldwide, and there is no effective control currently available. In the last decade, the genus Dickeya has undergone multiple changes as multiple new taxa have been described, and just recently a new putative Dickeya species was reported. This study reports the isolation of three bacteriophages active against putative novel Dickeya spp. isolates from commercially produced infected orchids that show variable host-range profiles. Bacteriophages were isolated through enrichment from Dickeya -infected orchid tissue. Convective interaction media monolith chromatography was used to isolate bacteriophages from wastewaters, demonstrating its suitability for the isolation of infective bacteriophages from natural sources. Based on bacteriophage morphology, all isolated bacteriophages were classified as being in the order Caudovirales , belonging to three different families, Podoviridae , Myoviridae , and Siphoviridae . The presence of three different groups of bacteriophages was confirmed by analyzing the bacteriophage specificity of bacterial hosts, restriction fragment length polymorphism and plaque morphology. Bacteriophage BF25/12, the first reported Podoviridae bacteriophage effective against Dickeya spp., was selected for further characterization. Its genome sequence determined by next-generation sequencing showed limited similarity to other characterized Podoviridae bacteriophages. Interactions among the bacteriophages and Dickeya spp. were examined using transmission electron microscopy, which revealed degradation of electron-dense granules in response to bacteriophage infection in some Dickeya strains. The temperature stability of the chosen Podoviridae bacteriophage monitored over 1 year showed a substantial decrease in the survival of bacteriophages stored at -20°C over longer periods. It showed susceptibility to low pH and UV radiation but was stable in neutral and alkaline pH. Furthermore, the stability of the tested bacteriophage was also connected to the incubation medium and bacteriophage concentration at certain pH values. Finally, the emergence of bacteriophage-resistant bacterial colonies is highly connected to the concentration of bacteriophages in the bacterial environment. This is the first report on bacteriophages against Dickeya from the Podoviridae family to expand on potential bacteriophages to include in bacteriophage cocktails as biocontrol agents. Some of these bacteriophage isolates also showed activity against Dickeya solani , an aggressive strain that causes the soft rot of potatoes, which indicates their broad potential as biocontrol agents.

  4. Newly Isolated Bacteriophages from the Podoviridae, Siphoviridae, and Myoviridae Families Have Variable Effects on Putative Novel Dickeya spp.

    PubMed Central

    Alič, Špela; Naglič, Tina; Tušek-Žnidarič, Magda; Ravnikar, Maja; Rački, Nejc; Peterka, Matjaž; Dreo, Tanja

    2017-01-01

    Soft rot pathogenic bacteria from the genus Dickeya cause severe economic losses in orchid nurseries worldwide, and there is no effective control currently available. In the last decade, the genus Dickeya has undergone multiple changes as multiple new taxa have been described, and just recently a new putative Dickeya species was reported. This study reports the isolation of three bacteriophages active against putative novel Dickeya spp. isolates from commercially produced infected orchids that show variable host-range profiles. Bacteriophages were isolated through enrichment from Dickeya-infected orchid tissue. Convective interaction media monolith chromatography was used to isolate bacteriophages from wastewaters, demonstrating its suitability for the isolation of infective bacteriophages from natural sources. Based on bacteriophage morphology, all isolated bacteriophages were classified as being in the order Caudovirales, belonging to three different families, Podoviridae, Myoviridae, and Siphoviridae. The presence of three different groups of bacteriophages was confirmed by analyzing the bacteriophage specificity of bacterial hosts, restriction fragment length polymorphism and plaque morphology. Bacteriophage BF25/12, the first reported Podoviridae bacteriophage effective against Dickeya spp., was selected for further characterization. Its genome sequence determined by next-generation sequencing showed limited similarity to other characterized Podoviridae bacteriophages. Interactions among the bacteriophages and Dickeya spp. were examined using transmission electron microscopy, which revealed degradation of electron-dense granules in response to bacteriophage infection in some Dickeya strains. The temperature stability of the chosen Podoviridae bacteriophage monitored over 1 year showed a substantial decrease in the survival of bacteriophages stored at -20°C over longer periods. It showed susceptibility to low pH and UV radiation but was stable in neutral and alkaline pH. Furthermore, the stability of the tested bacteriophage was also connected to the incubation medium and bacteriophage concentration at certain pH values. Finally, the emergence of bacteriophage-resistant bacterial colonies is highly connected to the concentration of bacteriophages in the bacterial environment. This is the first report on bacteriophages against Dickeya from the Podoviridae family to expand on potential bacteriophages to include in bacteriophage cocktails as biocontrol agents. Some of these bacteriophage isolates also showed activity against Dickeya solani, an aggressive strain that causes the soft rot of potatoes, which indicates their broad potential as biocontrol agents. PMID:29033917

  5. Identification of different species of Bacillus isolated from Nisargruna Biogas Plant by FTIR, UV-Vis and NIR spectroscopy.

    PubMed

    Ghosh, S B; Bhattacharya, K; Nayak, S; Mukherjee, P; Salaskar, D; Kale, S P

    2015-09-05

    Definitive identification of microorganisms, including pathogenic and non-pathogenic bacteria, is extremely important for a wide variety of applications including food safety, environmental studies, bio-terrorism threats, microbial forensics, criminal investigations and above all disease diagnosis. Although extremely powerful techniques such as those based on PCR and microarrays exist, they require sophisticated laboratory facilities along with elaborate sample preparation by trained researchers. Among different spectroscopic techniques, FTIR was used in the 1980s and 90s for bacterial identification. In the present study five species of Bacillus were isolated from the aerobic predigester chamber of Nisargruna Biogas Plant (NBP) and were identified to the species level by biochemical and molecular biological (16S ribosomal DNA sequence) methods. Those organisms were further checked by solid state spectroscopic absorbance measurements using a wide range of electromagnetic radiation (wavelength 200 nm to 25,000 nm) encompassing UV, visible, near Infrared and Infrared regions. UV-Vis and NIR spectroscopy was performed on dried bacterial cell suspension on silicon wafer in specular mode while FTIR was performed on KBr pellets containing the bacterial cells. Consistent and reproducible species specific spectra were obtained and sensitivity up to a level of 1000 cells was observed in FTIR with a DTGS detector. This clearly shows the potential of solid state spectroscopic techniques for simple, easy to implement, reliable and sensitive detection of bacteria from environmental samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Bacterial contamination of platelet components not detected by BacT/ALERT®.

    PubMed

    Abela, M A; Fenning, S; Maguire, K A; Morris, K G

    2018-02-01

    To investigate the possible causes for false negative results in BacT/ALERT ® 3D Signature System despite bacterial contamination of platelet units. The Northern Ireland Blood Transfusion Service (NIBTS) routinely extends platelet component shelf life to 7 days. Components are sampled and screened for bacterial contamination using an automated microbial detection system, the BacT/ALERT ® 3D Signature System. We report on three platelet components with confirmed bacterial contamination, which represent false negative BacT/ALERT ® results and near-miss serious adverse events. NIBTS protocols for risk reduction of bacterial contamination of platelet components are described. The methodology for bacterial detection using BacT/ALERT ® is outlined. Laboratory tests, relevant patient details and relevant follow-up information are analysed. In all three cases, Staphylococcus aureus was isolated from the platelet residue and confirmed on terminal sub-culture using BacT/ALERT ® . In two cases, S. aureus with similar genetic makeup was isolated from the donors. Risk reduction measures for bacterial contamination of platelet components are not always effective. Automated bacterial culture detection does not eliminate the risk of bacterial contamination. Visual inspection of platelet components prior to release, issue and administration remains an important last line of defence. © 2017 British Blood Transfusion Society.

  7. Identification of pathogenic factors potentially involved in Staphylococcus aureus keratitis using proteomics.

    PubMed

    Khan, Shamila; Cole, Nerida; Hume, Emma B H; Garthwaite, Linda L; Nguyen-Khuong, Terry; Walsh, Bradley J; Willcox, Mark D P

    2016-10-01

    Staphylococcus is a leading cause of microbial keratitis, characterized by destruction of the cornea by bacterial exoproteins and host-associated factors. The aim of this study was to compare extracellular and cell-associated proteins produced by two different isolates of S. aureus, a virulent clinical isolate (Staph 38) and a laboratory strain (Staphylococcus aureus 8325-4) of weaker virulence in the mouse keratitis model. Proteins were analyzed using 2D polyacrylamide gel electrophoresis and identified by subsequent mass spectrometry. Activity of staphylococcal adhesins was assessed by allowing strains to bind to various proteins adsorbed onto polymethylmethacrylate squares. Thirteen proteins in the extracellular fraction and eight proteins in the cell-associated fractions after bacterial growth were produced in increased amounts in the clinical isolate Staph 38. Four of these proteins were S. aureus virulence factor adhesins, fibronectin binding protein A, staphopain, glyceraldehyde-3-phosphate dehydrogenase 2 and extracellular adherence protein. The clinical isolate Staph 38 adhered to a greater extent to all mammalian proteins tested, indicating the potential of the adhesins to be active on its surface. Other proteins with increased expression in Staph 38 included potential moonlighting proteins and proteins involved in transcription or translation. This is the first demonstration of the proteome of S. aureus isolates from keratitis. These results indicate that the virulent clinical isolate produces more potentially important virulence factors compared to the less virulent laboratory strain and these may be associated with the ability of a S. aureus strain to cause more severe keratitis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Bacterial succession within an ephemeral hypereutrophic Mojave Desert playa Lake.

    PubMed

    Navarro, Jason B; Moser, Duane P; Flores, Andrea; Ross, Christian; Rosen, Michael R; Dong, Hailiang; Zhang, Gengxin; Hedlund, Brian P

    2009-02-01

    Ephemerally wet playas are conspicuous features of arid landscapes worldwide; however, they have not been well studied as habitats for microorganisms. We tracked the geochemistry and microbial community in Silver Lake playa, California, over one flooding/desiccation cycle following the unusually wet winter of 2004-2005. Over the course of the study, total dissolved solids increased by approximately 10-fold and pH increased by nearly one unit. As the lake contracted and temperatures increased over the summer, a moderately dense planktonic population of approximately 1x10(6) cells ml(-1) of culturable heterotrophs was replaced by a dense population of more than 1x10(9) cells ml(-1), which appears to be the highest concentration of culturable planktonic heterotrophs reported in any natural aquatic ecosystem. This correlated with a dramatic depletion of nitrate as well as changes in the microbial community, as assessed by small subunit ribosomal RNA gene sequencing of bacterial isolates and uncultivated clones. Isolates from the early-phase flooded playa were primarily Actinobacteria, Firmicutes, and Bacteroidetes, yet clone libraries were dominated by Betaproteobacteria and yet uncultivated Actinobacteria. Isolates from the late-flooded phase ecosystem were predominantly Proteobacteria, particularly alkalitolerant isolates of Rhodobaca, Porphyrobacter, Hydrogenophaga, Alishwenella, and relatives of Thauera; however, clone libraries were composed almost entirely of Synechococcus (Cyanobacteria). A sample taken after the playa surface was completely desiccated contained diverse culturable Actinobacteria typically isolated from soils. In total, 205 isolates and 166 clones represented 82 and 44 species-level groups, respectively, including a wide diversity of Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, Gemmatimonadetes, Acidobacteria, and Cyanobacteria.

  9. Bacterial succession within an ephemeral hypereutrophic mojave desert playa lake

    USGS Publications Warehouse

    Navarro, J.B.; Moser, D.P.; Flores, A.; Ross, C.; Rosen, Michael R.; Dong, H.; Zhang, G.; Hedlund, B.P.

    2009-01-01

    Ephemerally wet playas are conspicuous features of arid landscapes worldwide; however, they have not been well studied as habitats for microorganisms. We tracked the geochemistry and microbial community in Silver Lake playa, California, over one flooding/desiccation cycle following the unusually wet winter of 2004-2005. Over the course of the study, total dissolved solids increased by 10-fold and pH increased by nearly one unit. As the lake contracted and temperatures increased over the summer, a moderately dense planktonic population of 1 ?????106 cells ml-1 of culturable heterotrophs was replaced by a dense population of more than 1????????109 cells ml-1, which appears to be the highest concentration of culturable planktonic heterotrophs reported in any natural aquatic ecosystem. This correlated with a dramatic depletion of nitrate as well as changes in the microbial community, as assessed by small subunit ribosomal RNA gene sequencing of bacterial isolates and uncultivated clones. Isolates from the early-phase flooded playa were primarily Actinobacteria, Firmicutes, and Bacteroidetes, yet clone libraries were dominated by Betaproteobacteria and yet uncultivated Actinobacteria. Isolates from the late-flooded phase ecosystem were predominantly Proteobacteria, particularly alkalitolerant isolates of Rhodobaca, Porphyrobacter, Hydrogenophaga, Alishwenella, and relatives of Thauera; however, clone libraries were composed almost entirely of Synechococcus (Cyanobacteria). A sample taken after the playa surface was completely desiccated contained diverse culturable Actinobacteria typically isolated from soils. In total, 205 isolates and 166 clones represented 82 and 44 species-level groups, respectively, including a wide diversity of Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, Gemmatimonadetes, Acidobacteria, and Cyanobacteria. ?? 2008 Springer Science+Business Media, LLC.

  10. Control of biofouling by xanthine oxidase on seawater reverse osmosis membranes from a desalination plant: enzyme production and screening of bacterial isolates from the full-scale plant.

    PubMed

    Nagaraj, V; Skillman, L; Li, D; Xie, Z; Ho, G

    2017-07-01

    Control of biofouling on seawater reverse osmosis (SWRO) membranes is a major challenge as treatments can be expensive, damage the membrane material and often biocides do not remove the polymers in which bacteria are embedded. Biological control has been largely ignored for biofouling control. The objective of this study was to demonstrate the effectiveness of xanthine oxidase enzyme against complex fouling communities and then identify naturally occurring bacterial strains that produce the free radical generating enzyme. Initially, 64 bacterial strains were isolated from different locations of the Perth Seawater Desalination Plant. In our preceding study, 25/64 isolates were selected from the culture collection as models for biofouling studies, based on their prevalence in comparison to the genomic bacterial community. In this study, screening of these model strains was performed using a nitroblue tetrazolium assay in the presence of hypoxanthine as substrate. Enzyme activity was measured by absorbance. Nine of 25 strains tested positive for xanthine oxidase production, of which Exiguobacterium from sand filters and Microbacterium from RO membranes exhibited significant levels of enzyme production. Other genera that produced xanthine oxidase were Marinomonas, Pseudomonas, Bacillus, Pseudoalteromonas and Staphylococcus. Strain variations were observed between members of the genera Microbacterium and Bacillus. Xanthine oxidase, an oxidoreductase enzyme that generates reactive oxygen species, is endogenously produced by many bacterial species. In this study, production of the enzyme by bacterial isolates from a full-scale desalination plant was investigated for potential use as biological control of membrane fouling in seawater desalination. We have previously demonstrated that free radicals generated by a commercially available xanthine oxidase in the presence of a hypoxanthine substrate, effectively dispersed biofilm polysaccharides on industrially fouled membranes. Bacterial xanthine oxidase production in the presence of hypoxanthine may prove to be a cost effective, in situ method for alleviation of fouling. © 2017 The Society for Applied Microbiology.

  11. Isolation and analysis of bacteria with antimicrobial activities from the marine sponge Haliclona simulans collected from Irish waters.

    PubMed

    Kennedy, Jonathan; Baker, Paul; Piper, Clare; Cotter, Paul D; Walsh, Marcella; Mooij, Marlies J; Bourke, Marie B; Rea, Mary C; O'Connor, Paula M; Ross, R Paul; Hill, Colin; O'Gara, Fergal; Marchesi, Julian R; Dobson, Alan D W

    2009-01-01

    Samples of the marine sponge Haliclona simulans were collected from Irish coastal waters, and bacteria were isolated from these samples. Phylogenetic analyses of the cultured isolates showed that four different bacterial phyla were represented; Bacteriodetes, Actinobacteria, Proteobacteria, and Firmicutes. The sponge bacterial isolates were assayed for the production of antimicrobial substances, and biological activities against Gram-positive and Gram-negative bacteria and fungi were demonstrated, with 50% of isolates showing antimicrobial activity against at least one of the test strains. Further testing showed that the antimicrobial activities extended to the important pathogens Pseudomonas aeruginosa, Clostridium difficile, multi-drug-resistant Staphylococcus aureus, and pathogenic yeast strains. The Actinomycetes were numerically the most abundant producers of antimicrobial activities, although activities were also noted from Bacilli and Pseudovibrio isolates. Surveys for the presence of potential antibiotic encoding polyketide synthase and nonribosomal peptide synthetase genes also revealed that genes for the biosynthesis of these secondary metabolites were present in most bacterial phyla but were particularly prevalent among the Actinobacteria and Proteobacteria. This study demonstrates that the culturable fraction of bacteria from the sponge H. simulans is diverse and appears to possess much potential as a source for the discovery of new medically relevant biological active agents.

  12. Spectrum and Sensitivity of Bacterial Keratitis Isolates in Auckland.

    PubMed

    Marasini, S; Swift, S; Dean, S J; Ormonde, S E; Craig, J P

    2016-01-01

    Background. The bacteria isolated from severe cases of keratitis and their antibiotic sensitivity are recognised to vary geographically and over time. Objectives. To identify the most commonly isolated bacteria in keratitis cases admitted over a 24-month period to a public hospital in Auckland, New Zealand, and to investigate in vitro sensitivity to antibiotics. Methods. Hospital admissions for culture-proven bacterial keratitis between January 2013 and December 2014 were identified. Laboratory records of 89 culture positive cases were retrospectively reviewed and antibiotic sensitivity patterns compared with previous studies from other NZ centres. Results. From 126 positive cultures, 35 species were identified. Staphylococcus was identified to be the most common isolate (38.2%), followed by Pseudomonas (21.3%). Over the last decade, infection due to Pseudomonas species, in the same setting, has increased (p ≤ 0.05). Aminoglycosides, cefazolin, ceftazidime, erythromycin, tetracycline, and doxycycline were 100% effective against tested isolates in vitro. Amoxicillin (41.6%), cefuroxime (33.3%), and chloramphenicol (94.7%) showed reduced efficacy against Gram-negative bacteria, whereas penicillin (51%) and ciprofloxacin (98.8%) showed reduced efficacy against Gram-positive bacteria. Conclusions. Despite a shift in the spectrum of bacterial keratitis isolates, antibiotic sensitivity patterns have generally remained stable and show comparability to results within the last decade from NZ centres.

  13. Spectrum and Sensitivity of Bacterial Keratitis Isolates in Auckland

    PubMed Central

    Swift, S.; Dean, S. J.; Ormonde, S. E.

    2016-01-01

    Background. The bacteria isolated from severe cases of keratitis and their antibiotic sensitivity are recognised to vary geographically and over time. Objectives. To identify the most commonly isolated bacteria in keratitis cases admitted over a 24-month period to a public hospital in Auckland, New Zealand, and to investigate in vitro sensitivity to antibiotics. Methods. Hospital admissions for culture-proven bacterial keratitis between January 2013 and December 2014 were identified. Laboratory records of 89 culture positive cases were retrospectively reviewed and antibiotic sensitivity patterns compared with previous studies from other NZ centres. Results. From 126 positive cultures, 35 species were identified. Staphylococcus was identified to be the most common isolate (38.2%), followed by Pseudomonas (21.3%). Over the last decade, infection due to Pseudomonas species, in the same setting, has increased (p ≤ 0.05). Aminoglycosides, cefazolin, ceftazidime, erythromycin, tetracycline, and doxycycline were 100% effective against tested isolates in vitro. Amoxicillin (41.6%), cefuroxime (33.3%), and chloramphenicol (94.7%) showed reduced efficacy against Gram-negative bacteria, whereas penicillin (51%) and ciprofloxacin (98.8%) showed reduced efficacy against Gram-positive bacteria. Conclusions. Despite a shift in the spectrum of bacterial keratitis isolates, antibiotic sensitivity patterns have generally remained stable and show comparability to results within the last decade from NZ centres. PMID:27213052

  14. Identification of Lactobacillus strains with probiotic features from the bottlenose dolphin (Tursiops truncatus)

    PubMed Central

    Diaz, MA; Bik, EM; Carlin, KP; Venn-Watson, SK; Jensen, ED; Jones, SE; Gaston, EP; Relman, DA; Versalovic, J

    2013-01-01

    Aims In order to develop complementary health management strategies for marine mammals, we used culture-based and culture-independent approaches to identify gastrointestinal lactobacilli of the common bottlenose dolphin, Tursiops truncatus. Methods and Results We screened 307 bacterial isolates from oral and rectal swabs, milk and gastric fluid, collected from 38 dolphins in the U.S. Navy Marine Mammal Program, for potentially beneficial features. We focused our search on lactobacilli and evaluated their ability to modulate TNF secretion by host cells and inhibit growth of pathogens. We recovered Lactobacillus salivarius strains which secreted factors that stimulated TNF production by human monocytoid cells. These Lact. salivarius isolates inhibited growth of selected marine mammal and human bacterial pathogens. In addition, we identified a novel Lactobacillus species by culture and direct sequencing with 96·3% 16S rDNA sequence similarity to Lactobacillus ceti. Conclusions Dolphin-derived Lact. salivarius isolates possess features making them candidate probiotics for clinical studies in marine mammals. Significance and Impact of the Study This is the first study to isolate lactobacilli from dolphins, including a novel Lactobacillus species and a new strain of Lact. salivarius, with potential for veterinary probiotic applications. The isolation and identification of novel Lactobacillus spp. and other indigenous microbes from bottlenose dolphins will enable the study of the biology of symbiotic members of the dolphin microbiota and facilitate the understanding of the microbiomes of these unique animals. PMID:23855505

  15. High-Resolution Melting-Curve Analysis of Ligation-Mediated Real-Time PCR for Rapid Evaluation of an Epidemiological Outbreak of Extended-Spectrum-Beta-Lactamase-Producing Escherichia coli ▿

    PubMed Central

    Woksepp, Hanna; Jernberg, Cecilia; Tärnberg, Maria; Ryberg, Anna; Brolund, Alma; Nordvall, Michaela; Olsson-Liljequist, Barbro; Wisell, Karin Tegmark; Monstein, Hans-Jürg; Nilsson, Lennart E.; Schön, Thomas

    2011-01-01

    Methods for the confirmation of nosocomial outbreaks of bacterial pathogens are complex, expensive, and time-consuming. Recently, a method based on ligation-mediated PCR (LM/PCR) using a low denaturation temperature which produces specific melting-profile patterns of DNA products has been described. Our objective was to further develop this method for real-time PCR and high-resolution melting analysis (HRM) in a single-tube system optimized in order to achieve results within 1 day. Following the optimization of LM/PCR for real-time PCR and HRM (LM/HRM), the method was applied for a nosocomial outbreak of extended-spectrum-beta-lactamase (ESBL)-producing and ST131-associated Escherichia coli isolates (n = 15) and control isolates (n = 29), including four previous clusters. The results from LM/HRM were compared to results from pulsed-field gel electrophoresis (PFGE), which served as the gold standard. All isolates from the nosocomial outbreak clustered by LM/HRM, which was confirmed by gel electrophoresis of the LM/PCR products and PFGE. Control isolates that clustered by LM/PCR (n = 4) but not by PFGE were resolved by confirmatory gel electrophoresis. We conclude that LM/HRM is a rapid method for the detection of nosocomial outbreaks of bacterial infections caused by ESBL-producing E. coli strains. It allows the analysis of isolates in a single-tube system within a day, and the discriminatory power is comparable to that of PFGE. PMID:21956981

  16. High-resolution melting-curve analysis of ligation-mediated real-time PCR for rapid evaluation of an epidemiological outbreak of extended-spectrum-beta-lactamase-producing Escherichia coli.

    PubMed

    Woksepp, Hanna; Jernberg, Cecilia; Tärnberg, Maria; Ryberg, Anna; Brolund, Alma; Nordvall, Michaela; Olsson-Liljequist, Barbro; Wisell, Karin Tegmark; Monstein, Hans-Jürg; Nilsson, Lennart E; Schön, Thomas

    2011-12-01

    Methods for the confirmation of nosocomial outbreaks of bacterial pathogens are complex, expensive, and time-consuming. Recently, a method based on ligation-mediated PCR (LM/PCR) using a low denaturation temperature which produces specific melting-profile patterns of DNA products has been described. Our objective was to further develop this method for real-time PCR and high-resolution melting analysis (HRM) in a single-tube system optimized in order to achieve results within 1 day. Following the optimization of LM/PCR for real-time PCR and HRM (LM/HRM), the method was applied for a nosocomial outbreak of extended-spectrum-beta-lactamase (ESBL)-producing and ST131-associated Escherichia coli isolates (n = 15) and control isolates (n = 29), including four previous clusters. The results from LM/HRM were compared to results from pulsed-field gel electrophoresis (PFGE), which served as the gold standard. All isolates from the nosocomial outbreak clustered by LM/HRM, which was confirmed by gel electrophoresis of the LM/PCR products and PFGE. Control isolates that clustered by LM/PCR (n = 4) but not by PFGE were resolved by confirmatory gel electrophoresis. We conclude that LM/HRM is a rapid method for the detection of nosocomial outbreaks of bacterial infections caused by ESBL-producing E. coli strains. It allows the analysis of isolates in a single-tube system within a day, and the discriminatory power is comparable to that of PFGE.

  17. Comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry methods with conventional phenotypic identification for routine identification of bacteria to the species level.

    PubMed

    Cherkaoui, Abdessalam; Hibbs, Jonathan; Emonet, Stéphane; Tangomo, Manuela; Girard, Myriam; Francois, Patrice; Schrenzel, Jacques

    2010-04-01

    Bacterial identification relies primarily on culture-based methodologies requiring 24 h for isolation and an additional 24 to 48 h for species identification. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is an emerging technology newly applied to the problem of bacterial species identification. We evaluated two MALDI-TOF MS systems with 720 consecutively isolated bacterial colonies under routine clinical laboratory conditions. Isolates were analyzed in parallel on both devices, using the manufacturers' default recommendations. We compared MS with conventional biochemical test system identifications. Discordant results were resolved with "gold standard" 16S rRNA gene sequencing. The first MS system (Bruker) gave high-confidence identifications for 680 isolates, of which 674 (99.1%) were correct; the second MS system (Shimadzu) gave high-confidence identifications for 639 isolates, of which 635 (99.4%) were correct. Had MS been used for initial testing and biochemical identification used only in the absence of high-confidence MS identifications, the laboratory would have saved approximately US$5 per isolate in marginal costs and reduced average turnaround time by more than an 8-h shift, with no loss in accuracy. Our data suggest that implementation of MS as a first test strategy for one-step species identification would improve timeliness and reduce isolate identification costs in clinical bacteriology laboratories now.

  18. Isolation of bacterial extrachromosomal DNA from human dental plaque associated with periodontal disease, using transposon-aided capture (TRACA).

    PubMed

    Warburton, Philip J; Allan, Elaine; Hunter, Stephanie; Ward, John; Booth, Veronica; Wade, William G; Mullany, Peter

    2011-11-01

    The human oral cavity is host to a complex microbial community estimated to comprise >700 bacterial species, of which at least half are thought to be not yet cultivable in vitro. To investigate the plasmids present in this community, we used a transposon-aided capture system, which allowed the isolation of plasmids from human oral supra- and subgingival plaque samples. Thirty-two novel plasmids and a circular molecule that could be an integrase-generated circular intermediate were isolated. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  19. Bacterial Secretome Analysis in Hunt for Novel Bacteriocins with Ability to Control Xanthomonas citri subsp. Citri

    PubMed Central

    Gholami, Dariush; Goodarzi, Tannaz; Aminzadeh, Saeed; Alavi, Seyed Mehdi; Kazemipour, Nasrin; Farrokhi, Naser

    2015-01-01

    Background Xanthomonas citri subsp. citri (Xcc), the causative agent of bacterial citrus canker, has affected citriculture worldwide. Varieties of means have been used to minimize its devastating effects, but no attention has been given to bacteriocins. Objectives Here and for the first time, we report the isolation and characterization of two novel bacteriocins. Materials and Methods Secretome containing bacteriocins of isolated bacteria was separated via SDS-PAGE. Each isolated protein band was characterized and checked for its efficacy in controlling two pathogenic isolates of Xcc via disk diffusion assay. The effects of varieties of carbon, nitrogen and phosphate sources were evaluated on both bacterial growth and bacteriocin production via Taguchi orthogonal method. Results The two bacteriocins showed an activity up to 55ºC that were sensitive to proteases suggesting being protein in nature. Analysis of SDS-PAGE purified protein bands of bacterial secretomes with demonstrated potency against Xcc revealed the presence of peptides with relative molecular masses of 16.9 and 17 kDa for Cronobacter and Enterobacter, respectively. Sequence analysis of peptides revealed an HCP1 family VI secretion system homologue for Cronobacter (YP_001439956) and pilin FimA homologue for Enterobacter (CBK85798.1). A Taguchi orthogonal array was also implemented to determine the effect of temperature and eight other chemical factors on bacteriocin production for each bacterium. Conclusions Two peptides with novel antibacterial activities effective against Xcc were isolated, characterized and conditions were optimized for their higher production. PMID:28959294

  20. Whole-Genome Sequencing and Concordance Between Antimicrobial Susceptibility Genotypes and Phenotypes of Bacterial Isolates Associated with Bovine Respiratory Disease

    PubMed Central

    Owen, Joseph R.; Noyes, Noelle; Young, Amy E.; Prince, Daniel J.; Blanchard, Patricia C.; Lehenbauer, Terry W.; Aly, Sharif S.; Davis, Jessica H.; O’Rourke, Sean M.; Abdo, Zaid; Belk, Keith; Miller, Michael R.; Morley, Paul; Van Eenennaam, Alison L.

    2017-01-01

    Extended laboratory culture and antimicrobial susceptibility testing timelines hinder rapid species identification and susceptibility profiling of bacterial pathogens associated with bovine respiratory disease, the most prevalent cause of cattle mortality in the United States. Whole-genome sequencing offers a culture-independent alternative to current bacterial identification methods, but requires a library of bacterial reference genomes for comparison. To contribute new bacterial genome assemblies and evaluate genetic diversity and variation in antimicrobial resistance genotypes, whole-genome sequencing was performed on bovine respiratory disease–associated bacterial isolates (Histophilus somni, Mycoplasma bovis, Mannheimia haemolytica, and Pasteurella multocida) from dairy and beef cattle. One hundred genomically distinct assemblies were added to the NCBI database, doubling the available genomic sequences for these four species. Computer-based methods identified 11 predicted antimicrobial resistance genes in three species, with none being detected in M. bovis. While computer-based analysis can identify antibiotic resistance genes within whole-genome sequences (genotype), it may not predict the actual antimicrobial resistance observed in a living organism (phenotype). Antimicrobial susceptibility testing on 64 H. somni, M. haemolytica, and P. multocida isolates had an overall concordance rate between genotype and phenotypic resistance to the associated class of antimicrobials of 72.7% (P < 0.001), showing substantial discordance. Concordance rates varied greatly among different antimicrobial, antibiotic resistance gene, and bacterial species combinations. This suggests that antimicrobial susceptibility phenotypes are needed to complement genomically predicted antibiotic resistance gene genotypes to better understand how the presence of antibiotic resistance genes within a given bacterial species could potentially impact optimal bovine respiratory disease treatment and morbidity/mortality outcomes. PMID:28739600

Top