Sample records for bacterial killing activity

  1. Macrophage P2X4 receptors augment bacterial killing and protect against sepsis

    PubMed Central

    Csóka, Balázs; Németh, Zoltán H.; Szabó, Ildikó; Davies, Daryl L.; Varga, Zoltán V.; Pálóczi, János; Falzoni, Simonetta; Di Virgilio, Francesco; Muramatsu, Rieko; Pacher, Pál

    2018-01-01

    The macrophage is a major phagocytic cell type, and its impaired function is a primary cause of immune paralysis, organ injury, and death in sepsis. An incomplete understanding of the endogenous molecules that regulate macrophage bactericidal activity is a major barrier for developing effective therapies for sepsis. Using an in vitro killing assay, we report here that the endogenous purine ATP augments the killing of sepsis-causing bacteria by macrophages through P2X4 receptors (P2X4Rs). Using newly developed transgenic mice expressing a bioluminescent ATP probe on the cell surface, we found that extracellular ATP levels increase during sepsis, indicating that ATP may contribute to bacterial killing in vivo. Studies with P2X4R-deficient mice subjected to sepsis confirm the role of extracellular ATP acting on P2X4Rs in killing bacteria and protecting against organ injury and death. Results with adoptive transfer of macrophages, myeloid-specific P2X4R-deficient mice, and P2rx4 tdTomato reporter mice indicate that macrophages are essential for the antibacterial, antiinflammatory, and organ protective effects of P2X4Rs in sepsis. Pharmacological targeting of P2X4Rs with the allosteric activator ivermectin protects against bacterial dissemination and mortality in sepsis. We propose that P2X4Rs represent a promising target for drug development to control bacterial growth in sepsis and other infections. PMID:29875325

  2. Powerful bacterial killing by buckwheat honeys is concentration-dependent, involves complete DNA degradation and requires hydrogen peroxide.

    PubMed

    Brudzynski, Katrina; Abubaker, Kamal; Wang, Tony

    2012-01-01

    Exposure of bacterial cells to honey inhibits their growth and may cause cell death. Our previous studies showed a cause-effect relationship between hydroxyl radical generated from honey hydrogen peroxide and growth arrest. Here we explored the role of hydroxyl radicals as inducers of bacterial cells death. The bactericidal effect of ·OH on antibiotic-resistant clinical isolates of MRSA and VRE and standard bacterial strains of E. coli and B. subtiles was examined using a broth microdilution assay supplemented with 3'-(p-aminophenyl) fluorescein (APF) as the ·OH trap, followed by colony enumeration. Bactericidal activities of eight honeys (six varieties of buckwheat, blueberry and manuka honeys) were analyzed. The MBC/MIC ratio ≤4 and the killing curves indicated that honeys exhibited powerful, concentration-dependent bactericidal effect. The extent of killing depended on the ratio of honey concentration to bacterial load, indicating that honey dose was critical for its bactericidal efficacy. The killing rate and potency varied between honeys and ranged from over a 6-log(10) to 4-log(10) CFU/ml reduction of viable cells, equivalent to complete bacterial eradication. The maximal killing was associated with the extensive degradation of bacterial DNA. Honey concentration at which DNA degradation occurred correlated with cell death observed in the concentration-dependent cell-kill on agar plates. There was no quantitative relationship between the ·OH generation by honey and bactericidal effect. At the MBC, where there was no surviving cells and no DNA was visible on agarose gels, the ·OH levels were on average 2-3x lower than at Minimum Inhibitory Concentration (MICs) (p < 0.0001). Pre-treatment of honey with catalase, abolished the bactericidal effect. This raised possibilities that either the abrupt killing prevented accumulation of ·OH (dead cells did not generate ·OH) or that DNA degradation and killing is the actual footprint of ·OH action. In conclusion

  3. S1PR3 Signaling Drives Bacterial Killing and Is Required for Survival in Bacterial Sepsis.

    PubMed

    Hou, JinChao; Chen, QiXing; Wu, XiaoLiang; Zhao, DongYan; Reuveni, Hadas; Licht, Tamar; Xu, MengLong; Hu, Hu; Hoeft, Andreas; Ben-Sasson, Shmuel A; Shu, Qiang; Fang, XiangMing

    2017-12-15

    Efficient elimination of pathogenic bacteria is a critical determinant in the outcome of sepsis. Sphingosine-1-phosphate receptor 3 (S1PR3) mediates multiple aspects of the inflammatory response during sepsis, but whether S1PR3 signaling is necessary for eliminating the invading pathogens remains unknown. To investigate the role of S1PR3 in antibacterial immunity during sepsis. Loss- and gain-of-function experiments were performed using cell and murine models. S1PR3 levels were determined in patients with sepsis and healthy volunteers. S1PR3 protein levels were up-regulated in macrophages upon bacterial stimulation. S1pr3 -/- mice showed increased mortality and increased bacterial burden in multiple models of sepsis. The transfer of wild-type bone marrow-derived macrophages rescued S1pr3 -/- mice from lethal sepsis. S1PR3-overexpressing macrophages further ameliorated the mortality rate of sepsis. Loss of S1PR3 led to markedly decreased bacterial killing in macrophages. Enhancing endogenous S1PR3 activity using a peptide agonist potentiated the macrophage bactericidal function and improved survival rates in multiple models of sepsis. Mechanically, the reactive oxygen species levels were decreased and phagosome maturation was delayed in S1pr3 -/- macrophages due to impaired recruitment of vacuolar protein-sorting 34 to the phagosomes. In addition, S1RP3 expression levels were elevated in monocytes from patients with sepsis. Higher levels of monocytic S1PR3 were associated with efficient intracellular bactericidal activity, better immune status, and preferable outcomes. S1PR3 signaling drives bacterial killing and is essential for survival in bacterial sepsis. Interventions targeting S1PR3 signaling could have translational implications for manipulating the innate immune response to combat pathogens.

  4. A versatile assay to determine bacterial and host factors contributing to opsonophagocytotic killing in hirudin-anticoagulated whole blood.

    PubMed

    van der Maten, Erika; de Jonge, Marien I; de Groot, Ronald; van der Flier, Michiel; Langereis, Jeroen D

    2017-02-08

    Most bacteria entering the bloodstream will be eliminated through complement activation on the bacterial surface and opsonophagocytosis. However, when these protective innate immune systems do not work optimally, or when bacteria are equipped with immune evasion mechanisms that prevent killing, this can lead to serious infections such as bacteremia and meningitis, which is associated with high morbidity and mortality. In order to study the complement evasion mechanisms of bacteria and the capacity of human blood to opsonize and kill bacteria, we developed a versatile whole blood killing assay wherein both phagocyte function and complement activity can easily be monitored and modulated. In this assay we use a selective thrombin inhibitor hirudin to fully preserve complement activity of whole blood. This assay allows controlled analysis of the requirements for active complement by replacing or heat-inactivating plasma, phagocyte function and bacterial immune evasion mechanisms that contribute to survival in human blood.

  5. A versatile assay to determine bacterial and host factors contributing to opsonophagocytotic killing in hirudin-anticoagulated whole blood

    PubMed Central

    van der Maten, Erika; de Jonge, Marien I.; de Groot, Ronald; van der Flier, Michiel; Langereis, Jeroen D.

    2017-01-01

    Most bacteria entering the bloodstream will be eliminated through complement activation on the bacterial surface and opsonophagocytosis. However, when these protective innate immune systems do not work optimally, or when bacteria are equipped with immune evasion mechanisms that prevent killing, this can lead to serious infections such as bacteremia and meningitis, which is associated with high morbidity and mortality. In order to study the complement evasion mechanisms of bacteria and the capacity of human blood to opsonize and kill bacteria, we developed a versatile whole blood killing assay wherein both phagocyte function and complement activity can easily be monitored and modulated. In this assay we use a selective thrombin inhibitor hirudin to fully preserve complement activity of whole blood. This assay allows controlled analysis of the requirements for active complement by replacing or heat-inactivating plasma, phagocyte function and bacterial immune evasion mechanisms that contribute to survival in human blood. PMID:28176849

  6. Antibiotic-induced bacterial killing stimulates tumor necrosis factor-alpha release in whole blood.

    PubMed

    Arditi, M; Kabat, W; Yogev, R

    1993-01-01

    Rapid lysis of gram-negative bacteria is associated with considerable release of free endotoxin. Production of tumor necrosis factor (TNF) from adult whole blood ex vivo in response to bacterial products generated during antibiotic killing of Haemophilus influenzae type b (Hib) was investigated. Heparinized whole blood released TNF in a dose-dependent fashion in response to purified lipooligosaccharide of Hib. Bacteria (10(4)-10(7) cfu/mL) were placed into a Transwell filter insert (0.1 microns) and incubated with whole blood in the presence of various antibiotics. Exposure to ceftriaxone resulted in significantly greater release of TNF during killing of Hib than did exposure to imipenem, despite similar degrees of bacterial killing at 6 h. Polymyxin B inhibited the ceftriaxone-induced TNF release by 97%-99%, indicating that free endotoxin was the predominant stimulus for the increase in TNF release in this system. These observations suggest that ceftriaxone-induced killing of Hib results in bacterial cell wall products that are more proinflammatory than those produced by imipenem.

  7. Mechanisms of Bacterial (Serratia marcescens) Attachment to, Migration along, and Killing of Fungal Hyphae

    PubMed Central

    Hover, Tal; Maya, Tal; Ron, Sapir; Sandovsky, Hani; Shadkchan, Yana; Kijner, Nitzan; Mitiagin, Yulia; Fichtman, Boris; Harel, Amnon; Shanks, Robert M. Q.; Bruna, Roberto E.; García-Véscovi, Eleonora

    2016-01-01

    We have found a remarkable capacity for the ubiquitous Gram-negative rod bacterium Serratia marcescens to migrate along and kill the mycelia of zygomycete molds. This migration was restricted to zygomycete molds and several basidiomycete species. No migration was seen on any molds of the phylum Ascomycota. S. marcescens migration did not require fungal viability or surrounding growth medium, as bacteria migrated along aerial hyphae as well. S. marcescens did not exhibit growth tropism toward zygomycete mycelium. Bacterial migration along hyphae proceeded only when the hyphae grew into the bacterial colony. S. marcescens cells initially migrated along the hyphae, forming attached microcolonies that grew and coalesced to generate a biofilm that covered and killed the mycelium. Flagellum-defective strains of S. marcescens were able to migrate along zygomycete hyphae, although they were significantly slower than the wild-type strain and were delayed in fungal killing. Bacterial attachment to the mycelium does not necessitate type 1 fimbrial adhesion, since mutants defective in this adhesin migrated equally well as or faster than the wild-type strain. Killing does not depend on the secretion of S. marcescens chitinases, as mutants in which all three chitinase genes were deleted retained wild-type killing abilities. A better understanding of the mechanisms by which S. marcescens binds to, spreads on, and kills fungal hyphae might serve as an excellent model system for such interactions in general; fungal killing could be employed in agricultural fungal biocontrol. PMID:26896140

  8. Ozone disinfection of home nebulizers effectively kills common cystic fibrosis bacterial pathogens.

    PubMed

    Towle, Dana; Baker, Vanisha; Schramm, Craig; O'Brien, Matthew; Collins, Melanie S; Feinn, Richard; Murray, Thomas S

    2018-05-01

    The Cystic Fibrosis Foundation (CFF) recommends routine nebulizer disinfection for patients but compliance is challenging due to the heavy burden of home care. SoClean® is a user friendly ozone based home disinfection device currently for home respiratory equipment. The objective of this study was to determine whether SoClean® has potential as a disinfection device for families with CF by killing CF associated bacteria without altering nebulizer output. Ozone based disinfection effectively kills bacterial pathogens inoculated to home nebulizer equipment without gross changes in nebulizer function. Common bacterial pathogens associated with CF were inoculated onto the PariLC® jet nebulizer and bacterial recovery compared with or without varied ozone exposure. In separate experiments, nebulizer output was estimated after repeated ozone exposure by weighing the nebulizer. Ozone disinfection was time dependent with a 5 min infusion time and 120 min dwell time effectively killing >99.99% bacteria tested including Pseudomonas aeruginosa and Staphylococcus aureus. Over 250 h of repeat ozone exposure did not alter nebulizer output. This suggests SoClean® has potential as a user-friendly disinfection technique for home respiratory equipment. © 2018 Wiley Periodicals, Inc.

  9. Mechanisms of Bacterial (Serratia marcescens) Attachment to, Migration along, and Killing of Fungal Hyphae.

    PubMed

    Hover, Tal; Maya, Tal; Ron, Sapir; Sandovsky, Hani; Shadkchan, Yana; Kijner, Nitzan; Mitiagin, Yulia; Fichtman, Boris; Harel, Amnon; Shanks, Robert M Q; Bruna, Roberto E; García-Véscovi, Eleonora; Osherov, Nir

    2016-05-01

    We have found a remarkable capacity for the ubiquitous Gram-negative rod bacterium Serratia marcescens to migrate along and kill the mycelia of zygomycete molds. This migration was restricted to zygomycete molds and several basidiomycete species. No migration was seen on any molds of the phylum Ascomycota. S. marcescens migration did not require fungal viability or surrounding growth medium, as bacteria migrated along aerial hyphae as well.S. marcescens did not exhibit growth tropism toward zygomycete mycelium. Bacterial migration along hyphae proceeded only when the hyphae grew into the bacterial colony. S. marcescens cells initially migrated along the hyphae, forming attached microcolonies that grew and coalesced to generate a biofilm that covered and killed the mycelium. Flagellum-defective strains of S. marcescens were able to migrate along zygomycete hyphae, although they were significantly slower than the wild-type strain and were delayed in fungal killing. Bacterial attachment to the mycelium does not necessitate type 1 fimbrial adhesion, since mutants defective in this adhesin migrated equally well as or faster than the wild-type strain. Killing does not depend on the secretion of S. marcescens chitinases, as mutants in which all three chitinase genes were deleted retained wild-type killing abilities. A better understanding of the mechanisms by which S. marcescens binds to, spreads on, and kills fungal hyphae might serve as an excellent model system for such interactions in general; fungal killing could be employed in agricultural fungal biocontrol. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  10. A small molecule deubiquitinase inhibitor increases localization of inducible nitric oxide synthase to the macrophage phagosome and enhances bacterial killing.

    PubMed

    Burkholder, Kristin M; Perry, Jeffrey W; Wobus, Christiane E; Donato, Nicholas J; Showalter, Hollis D; Kapuria, Vaibhav; O'Riordan, Mary X D

    2011-12-01

    Macrophages are key mediators of antimicrobial defense and innate immunity. Innate intracellular defense mechanisms can be rapidly regulated at the posttranslational level by the coordinated addition and removal of ubiquitin by ubiquitin ligases and deubiquitinases (DUBs). While ubiquitin ligases have been extensively studied, the contribution of DUBs to macrophage innate immune function is incompletely defined. We therefore employed a small molecule DUB inhibitor, WP1130, to probe the role of DUBs in the macrophage response to bacterial infection. Treatment of activated bone marrow-derived macrophages (BMM) with WP1130 significantly augmented killing of the intracellular bacterial pathogen Listeria monocytogenes. WP1130 also induced killing of phagosome-restricted bacteria, implicating a bactericidal mechanism associated with the phagosome, such as the inducible nitric oxide synthase (iNOS). WP1130 had a minimal antimicrobial effect in macrophages lacking iNOS, indicating that iNOS is an effector mechanism for WP1130-mediated bacterial killing. Although overall iNOS levels were not notably different, we found that WP1130 significantly increased colocalization of iNOS with the Listeria-containing phagosome during infection. Taken together, our data indicate that the deubiquitinase inhibitor WP1130 increases bacterial killing in macrophages by enhancing iNOS localization to the phagosome and suggest a potential role for ubiquitin regulation in iNOS trafficking.

  11. Novel Polymyxin Combination With Antineoplastic Mitotane Improved the Bacterial Killing Against Polymyxin-Resistant Multidrug-Resistant Gram-Negative Pathogens.

    PubMed

    Tran, Thien B; Wang, Jiping; Doi, Yohei; Velkov, Tony; Bergen, Phillip J; Li, Jian

    2018-01-01

    Due to limited new antibiotics, polymyxins are increasingly used to treat multidrug-resistant (MDR) Gram-negative bacteria, in particular carbapenem-resistant Acinetobacter baumannii , Pseudomonas aeruginosa , and Klebsiella pneumoniae . Unfortunately, polymyxin monotherapy has led to the emergence of resistance. Polymyxin combination therapy has been demonstrated to improve bacterial killing and prevent the emergence of resistance. From a preliminary screening of an FDA drug library, we identified antineoplastic mitotane as a potential candidate for combination therapy with polymyxin B against polymyxin-resistant Gram-negative bacteria. Here, we demonstrated that the combination of polymyxin B with mitotane enhances the in vitro antimicrobial activity of polymyxin B against 10 strains of A. baumannii , P. aeruginosa , and K. pneumoniae , including polymyxin-resistant MDR clinical isolates. Time-kill studies showed that the combination of polymyxin B (2 mg/L) and mitotane (4 mg/L) provided superior bacterial killing against all strains during the first 6 h of treatment, compared to monotherapies, and prevented regrowth and emergence of polymyxin resistance in the polymyxin-susceptible isolates. Electron microscopy imaging revealed that the combination potentially affected cell division in A. baumannii . The enhanced antimicrobial activity of the combination was confirmed in a mouse burn infection model against a polymyxin-resistant A. baumannii isolate. As mitotane is hydrophobic, it was very likely that the synergistic killing of the combination resulted from that polymyxin B permeabilized the outer membrane of the Gram-negative bacteria and allowed mitotane to enter bacterial cells and exert its antimicrobial effect. These results have important implications for repositioning non-antibiotic drugs for antimicrobial purposes, which may expedite the discovery of novel therapies to combat the rapid emergence of antibiotic resistance.

  12. Fluoro-luminometric real-time measurement of bacterial viability and killing.

    PubMed

    Lehtinen, Janne; Virta, Marko; Lilius, Esa Matti

    2003-10-01

    The viability and killing of Escherichia coli was measured on a real-time basis using a fluoro-luminometric device, which allows successive measurements of fluorescence and bioluminescence without user intervention. Bacteria were made fluorescent and bioluminescent by expression of gfp and insect luciferase (lucFF) genes. The green fluorescent protein (GFP) is a highly fluorescent, extremely stable protein, which accumulates in cells during growth, and therefore the measured fluorescence signal was proportional to the total number of cells. The luciferase reaction is dependent of ATP produced by living cells, so that the bioluminescence level was a direct measure of the viable cells. In contrast to the bacterial luciferase, the insect luciferase uses a water-soluble and nonvolatile substrate, which makes automated multi-well microplate assay possible. For the validation of the assay, the proportion of living and dead cell populations was experimentally modified by incubating E. coli cells in the presence of various ethanol concentrations. Bacterial viability and killing measured by a fluoro-luminometric assay correlated fairly well with the reference methods: conventional plate counting, optical density measurement and various flow cytometric analyses. The real-time assay described here allows following the changes in bacterial cultures and assessing the bactericidal and other effects of various chemical, immunological and physical agents simultaneously in large numbers of samples.

  13. MPLA inhibits release of cytotoxic mediators from human neutrophils while preserving efficient bacterial killing.

    PubMed

    Ruchaud-Sparagano, Marie-Hélène; Mills, Ross; Scott, Jonathan; Simpson, A John

    2014-10-01

    Monophosphoryl lipid A (MPLA) is a lipopolysaccharides (LPS) derivative associated with neutrophil-dependent anti-inflammatory outcomes in animal models of sepsis. Little is known about the effect of MPLA on neutrophil function. This study sought to test the hypothesis that MPLA would reduce release of cytotoxic mediators from neutrophils without impairing bacterial clearance. Neutrophils were isolated from whole blood of healthy volunteers. The effects of MPLA and LPS on autologous serum-opsonised Pseudomonas aeruginosa killing by neutrophils and phagocytosis of autologous serum-opsonised zymosan were examined. Neutrophil oxidative burst, chemotaxis, enzyme and cytokine release as well as Toll-like receptor 4 (TLR4) expression were assessed following exposure to LPS or MPLA. LPS, but not MPLA, induced significant release of superoxide and myeloperoxidase from neutrophils. However, MPLA did not impair neutrophil capacity to ingest microbial particles and kill P. aeruginosa efficiently. MPLA was directly chemotactic for neutrophils, involving TLR4, p38 mitogen-activated protein kinase and tyrosine and alkaline phosphatases. LPS, but not MPLA, impaired N-formyl-methionyl-leucyl phenylalanine-directed migration of neutrophils, increased surface expression of TLR4, increased interleukin-8 release and strongly activated the myeloid differentiation primary response 88 pathway. Phosphoinositide 3-kinase inhibition significantly augmented IL-8 release from MPLA-treated neutrophils. The addition of MPLA to LPS-preincubated neutrophils led to a significant reduction in LPS-mediated superoxide release and TLR4 surface expression. Collectively, these findings suggest that MPLA directs efficient chemotaxis and bacterial killing in human neutrophils without inducing extracellular release of cytotoxic mediators and suggest that MPLA warrants further attention as a potential therapeutic in human sepsis.

  14. Estimation of the bacteriocin ColE7 conjugation-based "kill" - "anti-kill" antimicrobial system by real-time PCR, fluorescence staining and bioluminescence assays.

    PubMed

    Maslennikova, I L; Kuznetsova, M V; Toplak, N; Nekrasova, I V; Žgur Bertok, D; Starčič Erjavec, M

    2018-05-07

    The efficiency of the bacteriocin, colicin ColE7, bacterial conjugation-based "kill" - "anti-kill" antimicrobial system, was assessed using real-time PCR, flow cytometry and bioluminescence. The ColE7 antimicrobial system consists of the genetically modified Escherichia coli strain Nissle 1917 harbouring a conjugative plasmid (derivative of the F-plasmid) encoding the "kill" gene (ColE7 activity gene) and a chromosomally encoded "anti-kill" gene (ColE7 immunity gene). On the basis of traJ gene expression in the killer donor cells, our results showed that the efficiency of the here studied antimicrobial system against target E. coli was higher at 4 than at 24 h. Flow cytometry was used to indirectly estimate DNase activity of the antimicrobial system, as lysis of target E. coli cells in the conjugative mixture with the killer donor strain led to reduction in cell cytosol fluorescence. According to a lux assay, E. coli TG1 (pXen lux + Ap r ) with constitutive luminescence were killed already after 2 h of treatment. Target sensor E. coli C600 with DNA damage SOS-inducible luminescence showed significantly lower SOS induction 6 and 24 h following treatment with the killer donor strain. Our results thus showed that bioluminescent techniques are quick and suitable for estimation of the ColE7 bacterial conjugation-based antimicrobial system antibacterial activity. Bacterial antimicrobial resistance is worldwide rising and causing deaths of thousands of patients infected with multi-drug resistant bacterial strains. In addition, there is a lack of efficient alternative antimicrobial agents. The significance of our research is the use of a number of methods (real-time PCR, flow cytometry and bioluminescence-based technique) to assess the antibacterial activity of the bacteriocin, colicin ColE7, bacterial conjugation-based "kill" - "anti-kill" antimicrobial system. Bioluminescent techniques proved to be rapid and suitable for estimation of antibacterial activity of Col

  15. Charge properties and bacterial contact-killing of hyperbranched polyurea-polyethyleneimine coatings with various degrees of alkylation

    NASA Astrophysics Data System (ADS)

    Roest, Steven; van der Mei, Henny C.; Loontjens, Ton J. A.; Busscher, Henk J.

    2015-11-01

    Coatings of immobilized-quaternary-ammonium-ions (QUAT) uniquely kill adhering bacteria upon contact. QUAT-coatings require a minimal cationic-charge surface density for effective contact-killing of adhering bacteria of around 1014 cm-2. Quaternization of nitrogen is generally achieved through alkylation. Here, we investigate the contribution of additional alkylation with methyl-iodide to the cationic-charge density of hexyl-bromide alkylated, hyperbranched polyurea-polyethyleneimine coatings measuring charge density with fluorescein staining. X-ray-photoelectron-spectroscopy was used to determine the at.% alkylated-nitrogen. Also streaming potentials, water contact-angles and bacterial contact-killing were measured. Cationic-charge density increased with methyl-iodide alkylation times up to 18 h, accompanied by an increase in the at.% alkylated-nitrogen. Zeta-potentials became more negative upon alkylation as a result of shielding of cationiccharges by hydrophobic alkyl-chains. Contact-killing of Gram-positive Staphylococci only occurred when the cationic-charge density exceeded 1016 cm-2 and was carried by alkylated-nitrogen (electron-binding energy 401.3 eV). Gram-negative Escherichia coli was not killed upon contact with the coatings. There with this study reveals that cationic-charge density is neither appropriate nor sufficient to determine the ability of QUAT-coatings to kill adhering bacteria. Alternatively, the at.% of alkylated-nitrogen at 401.3 eV is proposed, as it reflects both cationic-charge and its carrier. The at.% N401.3 eV should be above 0.45 at.% for Gram-positive bacterial contact-killing.

  16. Membrane-active macromolecules kill antibiotic-tolerant bacteria and potentiate antibiotics towards Gram-negative bacteria

    PubMed Central

    Uppu, Divakara S. S. M.; Konai, Mohini M.; Sarkar, Paramita; Samaddar, Sandip; Fensterseifer, Isabel C. M.; Farias-Junior, Celio; Krishnamoorthy, Paramanandam; Shome, Bibek R.; Franco, Octávio L.

    2017-01-01

    Chronic bacterial biofilms place a massive burden on healthcare due to the presence of antibiotic-tolerant dormant bacteria. Some of the conventional antibiotics such as erythromycin, vancomycin, linezolid, rifampicin etc. are inherently ineffective against Gram-negative bacteria, particularly in their biofilms. Here, we report membrane-active macromolecules that kill slow dividing stationary-phase and antibiotic tolerant cells of Gram-negative bacteria. More importantly, these molecules potentiate antibiotics (erythromycin and rifampicin) to biofilms of Gram-negative bacteria. These molecules eliminate planktonic bacteria that are liberated after dispersion of biofilms (dispersed cells). The membrane-active mechanism of these molecules forms the key for potentiating the established antibiotics. Further, we demonstrate that the combination of macromolecules and antibiotics significantly reduces bacterial burden in mouse burn and surgical wound infection models caused by Acinetobacter baumannii and Carbapenemase producing Klebsiella pneumoniae (KPC) clinical isolate respectively. Colistin, a well-known antibiotic targeting the lipopolysaccharide (LPS) of Gram-negative bacteria fails to kill antibiotic tolerant cells and dispersed cells (from biofilms) and bacteria develop resistance to it. On the contrary, these macromolecules prevent or delay the development of bacterial resistance to known antibiotics. Our findings emphasize the potential of targeting the bacterial membrane in antibiotic potentiation for disruption of biofilms and suggest a promising strategy towards developing therapies for topical treatment of Gram-negative infections. PMID:28837596

  17. A whole-body physiologically based pharmacokinetic (WB-PBPK) model of ciprofloxacin: a step towards predicting bacterial killing at sites of infection.

    PubMed

    Sadiq, Muhammad W; Nielsen, Elisabet I; Khachman, Dalia; Conil, Jean-Marie; Georges, Bernard; Houin, Georges; Laffont, Celine M; Karlsson, Mats O; Friberg, Lena E

    2017-04-01

    The purpose of this study was to develop a whole-body physiologically based pharmacokinetic (WB-PBPK) model for ciprofloxacin for ICU patients, based on only plasma concentration data. In a next step, tissue and organ concentration time profiles in patients were predicted using the developed model. The WB-PBPK model was built using a non-linear mixed effects approach based on data from 102 adult intensive care unit patients. Tissue to plasma distribution coefficients (Kp) were available from the literature and used as informative priors. The developed WB-PBPK model successfully characterized both the typical trends and variability of the available ciprofloxacin plasma concentration data. The WB-PBPK model was thereafter combined with a pharmacokinetic-pharmacodynamic (PKPD) model, developed based on in vitro time-kill data of ciprofloxacin and Escherichia coli to illustrate the potential of this type of approach to predict the time-course of bacterial killing at different sites of infection. The predicted unbound concentration-time profile in extracellular tissue was driving the bacterial killing in the PKPD model and the rate and extent of take-over of mutant bacteria in different tissues were explored. The bacterial killing was predicted to be most efficient in lung and kidney, which correspond well to ciprofloxacin's indications pneumonia and urinary tract infections. Furthermore, a function based on available information on bacterial killing by the immune system in vivo was incorporated. This work demonstrates the development and application of a WB-PBPK-PD model to compare killing of bacteria with different antibiotic susceptibility, of value for drug development and the optimal use of antibiotics .

  18. Surface-Selective Preferential Production of Reactive Oxygen Species on Piezoelectric Ceramics for Bacterial Killing.

    PubMed

    Tan, Guoxin; Wang, Shuangying; Zhu, Ye; Zhou, Lei; Yu, Peng; Wang, Xiaolan; He, Tianrui; Chen, Junqi; Mao, Chuanbin; Ning, Chengyun

    2016-09-21

    Reactive oxygen species (ROS) can be used to kill bacterial cells, and thus the selective generation of ROS from material surfaces is an emerging direction in antibacterial material discovery. We found the polarization of piezoelectric ceramic causes the two sides of the disk to become positively and negatively charged, which translate into cathode and anode surfaces in an aqueous solution. Because of the microelectrolysis of water, ROS are preferentially formed on the cathode surface. Consequently, the bacteria are selectively killed on the cathode surface. However, the cell experiment suggested that the level of ROS is safe for normal mammalian cells.

  19. Sterilization of granulomas is common in both active and latent tuberculosis despite extensive within-host variability in bacterial killing

    PubMed Central

    Lin, Philana Ling; Ford, Christopher B.; Coleman, M. Teresa; Myers, Amy J.; Gawande, Richa; Ioerger, Thomas; Sacchettini, James; Fortune, Sarah M.; Flynn, JoAnne L.

    2013-01-01

    Over 30% of the world’s population is infected with Mycobacterium tuberculosis (Mtb), yet only ~5–10% will develop clinical disease1. Despite considerable effort, we understand little about what distinguishes individuals who progress to active tuberculosis (TB) from those who remain latent for decades. The variable course of disease is recapitulated in cynomolgus macaques infected with Mtb2. Active disease in macaques is defined by clinical, microbiologic and immunologic signs and occurs in ~45% of animals, while the remaining are clinically asymptomatic2,3. Here, we use barcoded Mtb isolates and quantitative measures of culturable and cumulative bacterial burden to show that most lesions are likely founded by a single bacterium and reach similar maximum burdens. Despite common origins, the fate of individual lesions varies substantially within the same host. Strikingly, in active disease, the host sterilizes some lesions even while others progress. Our data suggest that lesional heterogeneity arises, in part, through differential killing of bacteria after the onset of adaptive immunity. Thus, individual lesions follow diverse and overlapping trajectories, suggesting critical responses occur at a lesional level to ultimately determine the clinical outcome of infection. Defining the local factors that dictate outcome will be important in developing effective interventions to prevent active TB. PMID:24336248

  20. Paediatric Crohn disease patients with stricturing behaviour exhibit ileal granulocyte–macrophage colony-stimulating factor (GM-CSF) autoantibody production and reduced neutrophil bacterial killing and GM-CSF bioactivity

    PubMed Central

    Jurickova, I; Collins, M H; Chalk, C; Seese, A; Bezold, R; Lake, K; Allmen, D; Frischer, J S; Falcone, R A; Trapnell, B C; Denson, L A

    2013-01-01

    Granulocyte–macrophage colony-stimulating factor (GM-CSF) autoantibodies are associated with stricturing behaviour in Crohn disease (CD). We hypothesized that CD ileal lamina propria mononuclear cells (LPMC) would produce GM-CSF autoantibodies and peripheral blood (PB) samples would contain GM-CSF neutralizing capacity (NC). Paediatric CD and control PBMC and ileal biopsies or LPMC were isolated and cultured and GM-CSF, immunoglobulin (Ig)G and GM-CSF autoantibodies production were measured by enzyme-linked immunosorbent assay (ELISA). Basal and GM-CSF-primed neutrophil bacterial killing and signal transducer and activator of transcription 5 (STAT5) tyrosine phosphorylation (pSTAT5) were measured by flow cytometry. GM-CSF autoantibodies were enriched within total IgG for LPMC isolated from CD ileal strictures and proximal margins compared to control ileum. Neutrophil bacterial killing was reduced in CD patients compared to controls. Within CD, neutrophil GM-CSF-dependent STAT5 activation and bacterial killing were reduced as GM-CSF autoantibodies increased. GM-CSF stimulation of pSTAT5 did not vary between controls and CD patients in washed PB granulocytes in which serum was removed. However, GM-CSF stimulation of pSTAT5 was reduced in whole PB samples from CD patients. These data were used to calculate the GM-CSF NC. CD patients with GM-CSF NC greater than 25% exhibited a fourfold higher rate of stricturing behaviour and surgery. The likelihood ratio (95% confidence interval) for stricturing behaviour for patients with elevation in both GM-CSF autoantibodies and GM-CSF NC was equal to 5 (2, 11). GM-CSF autoantibodies are produced by LPMC isolated from CD ileal resection specimens and are associated with reduced neutrophil bacterial killing. CD peripheral blood contains GM-CSF NC, which is associated with increased rates of stricturing behaviour. PMID:23600834

  1. Killing of Staphylococci by θ-Defensins Involves Membrane Impairment and Activation of Autolytic Enzymes

    PubMed Central

    Wilmes, Miriam; Stockem, Marina; Bierbaum, Gabriele; Schlag, Martin; Götz, Friedrich; Tran, Dat Q.; Schaal, Justin B.; Ouellette, André J.; Selsted, Michael E.; Sahl, Hans-Georg

    2014-01-01

    θ-Defensins are cyclic antimicrobial peptides expressed in leukocytes of Old world monkeys. To get insight into their antibacterial mode of action, we studied the activity of RTDs (rhesus macaque θ-defensins) against staphylococci. We found that in contrast to other defensins, RTDs do not interfere with peptidoglycan biosynthesis, but rather induce bacterial lysis in staphylococci by interaction with the bacterial membrane and/or release of cell wall lytic enzymes. Potassium efflux experiments and membrane potential measurements revealed that the membrane impairment by RTDs strongly depends on the energization of the membrane. In addition, RTD treatment caused the release of Atl-derived cell wall lytic enzymes probably by interaction with membrane-bound lipoteichoic acid. Thus, the premature and uncontrolled activity of these enzymes contributes strongly to the overall killing by θ-defensins. Interestingly, a similar mode of action has been described for Pep5, an antimicrobial peptide of bacterial origin. PMID:25632351

  2. Kinetics of killing Listeria monocytogenes by macrophages: rapid killing accompanying phagocytosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, W.A.

    1983-08-01

    The kinetics of bactericidal activity of activated macrophages can be precisely described by a mathematical model in which phagocytosis, killing, digestion, and release of degraded bacterial material are considered to occur continuously. To gain a better understanding of these events, I have determined the period of time between first contact of bacteria with macrophages and the onset of killing. Activated rat peritoneal macrophages were incubated for various times up to 15 min with Listeria monocytogenes previously labeled with /sup 3/H-thymidine and the unassociated bacteria removed by two centrifugations through a density interface. Both cell-associated radioactivity and cell-associated viable bacteria, determinedmore » as colony forming units after sonication of the cell pellet, increased with time of incubation. However, the specific viability of these bacteria, expressed as the ratio of number of viable bacteria per unit radioactivity declined with time, as an approximate inverse exponential, after a lag period of 2.9 +/- 0.8 min. Evidence is given that other possible causes for this decline in specific viability, other than death of the bacteria, such as preferential ingestion of dead Listeria, clumping of bacteria, variations in autolytic activity, or release of Listericidins are unlikely. I conclude therefore that activated macrophages kill Listeria approximately 3 min after the cell and the bacterium first make contact.« less

  3. Exogenous l-Valine Promotes Phagocytosis to Kill Multidrug-Resistant Bacterial Pathogens

    PubMed Central

    Chen, Xin-hai; Liu, Shi-rao; Peng, Bo; Li, Dan; Cheng, Zhi-xue; Zhu, Jia-xin; Zhang, Song; Peng, Yu-ming; Li, Hui; Zhang, Tian-tuo; Peng, Xuan-xian

    2017-01-01

    The emergence of multidrug-resistant bacteria presents a severe threat to public health and causes extensive losses in livestock husbandry and aquaculture. Effective strategies to control such infections are in high demand. Enhancing host immunity is an ideal strategy with fewer side effects than antibiotics. To explore metabolite candidates, we applied a metabolomics approach to investigate the metabolic profiles of mice after Klebsiella pneumoniae infection. Compared with the mice that died from K. pneumoniae infection, mice that survived the infection displayed elevated levels of l-valine. Our analysis showed that l-valine increased macrophage phagocytosis, thereby reducing the load of pathogens; this effect was not only limited to K. pneumoniae but also included Escherichia coli clinical isolates in infected tissues. Two mechanisms are involved in this process: l-valine activating the PI3K/Akt1 pathway and promoting NO production through the inhibition of arginase activity. The NO precursor l-arginine is necessary for l-valine-stimulated macrophage phagocytosis. The valine-arginine combination therapy effectively killed K. pneumoniae and exerted similar effects in other Gram-negative (E. coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacteria. Our study extends the role of metabolism in innate immunity and develops the possibility of employing the metabolic modulator-mediated innate immunity as a therapy for bacterial infections. PMID:28321214

  4. Individual and co-operative roles of lactic acid and hydrogen peroxide in the killing activity of enteric strain Lactobacillus johnsonii NCC933 and vaginal strain Lactobacillus gasseri KS120.1 against enteric, uropathogenic and vaginosis-associated pathogens.

    PubMed

    Atassi, Fabrice; Servin, Alain L

    2010-03-01

    The mechanism underlying the killing activity of Lactobacillus strains against bacterial pathogens appears to be multifactorial. Here, we investigate the respective contributions of hydrogen peroxide and lactic acid in killing bacterial pathogens associated with the human vagina, urinary tract or intestine by two hydrogen peroxide-producing strains. In co-culture, the human intestinal strain Lactobacillus johnsonii NCC933 and human vaginal strain Lactobacillus gasseri KS120.1 strains killed enteric Salmonella enterica serovar Typhimurium SL1344, vaginal Gardnerella vaginalis DSM 4944 and urinary tract Escherichia coli CFT073 pathogens. The cell-free culture supernatants (CFCSs) produced the same reduction in SL1344, DSM 4944 and CFT073 viability, whereas isolated bacteria had no effect. The killing activity of CFCSs was heat-stable. In the presence of Dulbecco's modified Eagle's minimum essential medium inhibiting the lactic acid-dependent killing activity, CFCSs were less effective at killing of the pathogens. Catalase-treated CFCSs displayed a strong decreased activity. Tested alone, hydrogen peroxide triggered a concentration-dependent killing activity against all three pathogens. Lactic acid alone developed a killing activity only at concentrations higher than that present in CFCSs. In the presence of lactic acid at a concentration present in Lactobacillus CFCSs, hydrogen peroxide displayed enhanced killing activity. Collectively, these results demonstrate that for hydrogen peroxide-producing Lactobacillus strains, the main metabolites of Lactobacillus, lactic acid and hydrogen peroxide, act co-operatively to kill enteric, vaginosis-associated and uropathogenic pathogens.

  5. [Algicidal activity against red-tide algaes by marine bacterial strain N3 isolated from a HABs area, southern China].

    PubMed

    Shi, Rong-jun; Huang, Hong-hui; Qi, Zhan-hui; Hu, Wei-an; Tian, Zi-yang; Dai, Ming

    2013-05-01

    A marine algicidal bacterium N3 was isolated from a HABs area in Mirs Bay, a subtropical bay, in southern China. Algicidal activity and algicidal mode against Phaeodactylum tricornutum, Scrippsiella trochoidea, Prorocentrum micans and Skeletonema costatum were observed by the liquid infection method. The results showed that there were no algicidal activities against P. tricornutum and S. costatum. However, when the bacterial volume fractions were 2% and 10% , S. trochoidea and P. micans could be killed, respectively. S. trochoidea cells which were exposed to strain N3 became irregular in shape and the cellular components lost their integrity and were decomposed. While, the P. micans cells became inflated and the cellular components aggregated, followed by cell lysis. Strain N3 killed S. trochoidea and P. micans directly, and the algicidal activities of the bacterial strain N3 was concentration-dependent. To S. trochoidea, 2% (V/V) of bacteria in algae showed the strongest algicidal activity, all of the S. trochoidea cells were killed within 120 h. But the growth rates of cells, in the 1% and 0. 1% treatment groups, were only slightly lower than that in the control group. In all treatment groups, the densities of strain N3 were in declining trends. While, to P. micans, 10% and 5% of bacteria in algae showed strong algicidal activities, 78% and 70% of the S. trochoidea were killed within 120 h, respectively. However, the number of S. trochoidea after exposure to 1% of bacterial cultures still increased up to 5 incubation days. And in the three treatment groups, the densities of strain N3 experienced a decrease process. The isolated strain N3 was identified as Bacillus sp. by morphological observation, physiological and biochemical characterization, and homology comparisons based on 16S rRNA sequences.

  6. Propionibacterium acnes bacteriophages display limited genetic diversity and broad killing activity against bacterial skin isolates.

    PubMed

    Marinelli, Laura J; Fitz-Gibbon, Sorel; Hayes, Clarmyra; Bowman, Charles; Inkeles, Megan; Loncaric, Anya; Russell, Daniel A; Jacobs-Sera, Deborah; Cokus, Shawn; Pellegrini, Matteo; Kim, Jenny; Miller, Jeff F; Hatfull, Graham F; Modlin, Robert L

    2012-01-01

    Investigation of the human microbiome has revealed diverse and complex microbial communities at distinct anatomic sites. The microbiome of the human sebaceous follicle provides a tractable model in which to study its dominant bacterial inhabitant, Propionibacterium acnes, which is thought to contribute to the pathogenesis of the human disease acne. To explore the diversity of the bacteriophages that infect P. acnes, 11 P. acnes phages were isolated from the sebaceous follicles of donors with healthy skin or acne and their genomes were sequenced. Comparative genomic analysis of the P. acnes phage population, which spans a 30-year temporal period and a broad geographic range, reveals striking similarity in terms of genome length, percent GC content, nucleotide identity (>85%), and gene content. This was unexpected, given the far-ranging diversity observed in virtually all other phage populations. Although the P. acnes phages display a broad host range against clinical isolates of P. acnes, two bacterial isolates were resistant to many of these phages. Moreover, the patterns of phage resistance correlate closely with the presence of clustered regularly interspaced short palindromic repeat elements in the bacteria that target a specific subset of phages, conferring a system of prokaryotic innate immunity. The limited diversity of the P. acnes bacteriophages, which may relate to the unique evolutionary constraints imposed by the lipid-rich anaerobic environment in which their bacterial hosts reside, points to the potential utility of phage-based antimicrobial therapy for acne. Propionibacterium acnes is a dominant member of the skin microflora and has also been implicated in the pathogenesis of acne; however, little is known about the bacteriophages that coexist with and infect this bacterium. Here we present the novel genome sequences of 11 P. acnes phages, thereby substantially increasing the amount of available genomic information about this phage population

  7. Killing of Pseudomonas aeruginosa by Chicken Cathelicidin-2 Is Immunogenically Silent, Preventing Lung Inflammation In Vivo

    PubMed Central

    Coorens, Maarten; Banaschewski, Brandon J. H.; Baer, Brandon J.; Yamashita, Cory; van Dijk, Albert; Veldhuizen, Ruud A. W.; Veldhuizen, Edwin J. A.

    2017-01-01

    ABSTRACT The development of antibiotic resistance by Pseudomonas aeruginosa is a major concern in the treatment of bacterial pneumonia. In the search for novel anti-infective therapies, the chicken-derived peptide cathelicidin-2 (CATH-2) has emerged as a potential candidate, with strong broad-spectrum antimicrobial activity and the ability to limit inflammation by inhibiting Toll-like receptor 2 (TLR2) and TLR4 activation. However, as it is unknown how CATH-2 affects inflammation in vivo, we investigated how CATH-2-mediated killing of P. aeruginosa affects lung inflammation in a murine model. First, murine macrophages were used to determine whether CATH-2-mediated killing of P. aeruginosa reduced proinflammatory cytokine production in vitro. Next, a murine lung model was used to analyze how CATH-2-mediated killing of P. aeruginosa affects neutrophil and macrophage recruitment as well as cytokine/chemokine production in the lung. Our results show that CATH-2 kills P. aeruginosa in an immunogenically silent manner both in vitro and in vivo. Treatment with CATH-2-killed P. aeruginosa showed reduced neutrophil recruitment to the lung as well as inhibition of cytokine and chemokine production, compared to treatment with heat- or gentamicin-killed bacteria. Together, these results show the potential for CATH-2 as a dual-activity antibiotic in bacterial pneumonia, which can both kill P. aeruginosa and prevent excessive inflammation. PMID:28947647

  8. Time-kill behaviour against eight bacterial species and cytotoxicity of antibacterial monomers.

    PubMed

    Li, Fang; Weir, Michael D; Fouad, Ashraf F; Xu, Hockin H K

    2013-10-01

    The objectives of this study were to investigate: (1) the antibacterial activity of two antibacterial monomers, dimethylaminododecyl methacrylate (DMADDM) and dimethylammoniumethyl dimethacrylate (DMAEDM), against eight different species of oral pathogens for the first time; (2) the cytotoxicity of DMAEDM and DMADDM. DMAEDM and DMADDM were synthesized by reacting a tertiary amine group with an organo-halide. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against eight species of bacteria were tested. Time-kill determinations were performed to examine the bactericidal kinetics. Cytotoxicity of monomers on human gingival fibroblasts (HGF) was assessed using a methyl thiazolyltetrazolium assay and live/dead viability assay. DMADDM showed strong bactericidal activity against all bacteria, with MIC of 1.2-9.8μg/mL. DMAEDM had MIC of 20-80mg/mL. Time-kill determinations indicated that DMADDM and DMAEDM had rapid killing effects against eight species of bacteria, and eliminated all bacteria in 30min at the concentration of 4-fold MBC. Median lethal concentration for DMADDM and DMAEDM was between 20 and 40μg/mL, which was 20-fold higher than 1-2μg/mL for BisGMA control. DMAEDM and DMADDM were tested in time-kill assay against eight species of oral bacteria for the first time. Both were effective in bacteria-inhibition, but DMADDM had a higher potency than DMAEDM. Different killing efficacy was found against different bacteria species. DMAEDM and DMADDM had much lower cytotoxicity than BisGMA. Therefore, DMADDM and DMAEDM are promising for use in bonding agents and other restorative/preventive materials to combat a variety of oral pathogens. Published by Elsevier Ltd.

  9. Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries in vivo.

    PubMed

    Gao, Lizeng; Liu, Yuan; Kim, Dongyeop; Li, Yong; Hwang, Geelsu; Naha, Pratap C; Cormode, David P; Koo, Hyun

    2016-09-01

    Dental biofilms (known as plaque) are notoriously difficult to remove or treat because the bacteria can be enmeshed in a protective extracellular matrix. It can also create highly acidic microenvironments that cause acid-dissolution of enamel-apatite on teeth, leading to the onset of dental caries. Current antimicrobial agents are incapable of disrupting the matrix and thereby fail to efficiently kill the microbes within plaque-biofilms. Here, we report a novel strategy to control plaque-biofilms using catalytic nanoparticles (CAT-NP) with peroxidase-like activity that trigger extracellular matrix degradation and cause bacterial death within acidic niches of caries-causing biofilm. CAT-NP containing biocompatible Fe3O4 were developed to catalyze H2O2 to generate free-radicals in situ that simultaneously degrade the biofilm matrix and rapidly kill the embedded bacteria with exceptional efficacy (>5-log reduction of cell-viability). Moreover, it displays an additional property of reducing apatite demineralization in acidic conditions. Using 1-min topical daily treatments akin to a clinical situation, we demonstrate that CAT-NP in combination with H2O2 effectively suppress the onset and severity of dental caries while sparing normal tissues in vivo. Our results reveal the potential to exploit nanocatalysts with enzyme-like activity as a potent alternative approach for treatment of a prevalent biofilm-associated oral disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Photoexcited quantum dots for killing multidrug-resistant bacteria

    NASA Astrophysics Data System (ADS)

    Courtney, Colleen M.; Goodman, Samuel M.; McDaniel, Jessica A.; Madinger, Nancy E.; Chatterjee, Anushree; Nagpal, Prashant

    2016-05-01

    Multidrug-resistant bacterial infections are an ever-growing threat because of the shrinking arsenal of efficacious antibiotics. Metal nanoparticles can induce cell death, yet the toxicity effect is typically nonspecific. Here, we show that photoexcited quantum dots (QDs) can kill a wide range of multidrug-resistant bacterial clinical isolates, including methicillin-resistant Staphylococcus aureus, carbapenem-resistant Escherichia coli, and extended-spectrum β-lactamase-producing Klebsiella pneumoniae and Salmonella typhimurium. The killing effect is independent of material and controlled by the redox potentials of the photogenerated charge carriers, which selectively alter the cellular redox state. We also show that the QDs can be tailored to kill 92% of bacterial cells in a monoculture, and in a co-culture of E. coli and HEK 293T cells, while leaving the mammalian cells intact, or to increase bacterial proliferation. Photoexcited QDs could be used in the study of the effect of redox states on living systems, and lead to clinical phototherapy for the treatment of infections.

  11. The Effect of Bacteriophage Preparations on Intracellular Killing of Bacteria by Phagocytes

    PubMed Central

    Jończyk-Matysiak, Ewa; Łusiak-Szelachowska, Marzanna; Kłak, Marlena; Bubak, Barbara; Międzybrodzki, Ryszard; Weber-Dąbrowska, Beata; Żaczek, Maciej; Fortuna, Wojciech; Rogóż, Paweł; Letkiewicz, Sławomir; Szufnarowski, Krzysztof; Górski, Andrzej

    2015-01-01

    Intracellular killing of bacteria is one of the fundamental mechanisms against invading pathogens. Impaired intracellular killing of bacteria by phagocytes may be the reason of chronic infections and may be caused by antibiotics or substances that can be produced by some bacteria. Therefore, it was of great practical importance to examine whether phage preparations may influence the process of phagocyte intracellular killing of bacteria. It may be important especially in the case of patients qualified for experimental phage therapy (approximately half of the patients with chronic bacterial infections have their immunity impaired). Our analysis included 51 patients with chronic Gram-negative and Gram-positive bacterial infections treated with phage preparations at the Phage Therapy Unit in Wroclaw. The aim of the study was to investigate the effect of experimental phage therapy on intracellular killing of bacteria by patients' peripheral blood monocytes and polymorphonuclear neutrophils. We observed that phage therapy does not reduce patients' phagocytes' ability to kill bacteria, and it does not affect the activity of phagocytes in patients with initially reduced ability to kill bacteria intracellularly. Our results suggest that experimental phage therapy has no significant adverse effects on the bactericidal properties of phagocytes, which confirms the safety of the therapy. PMID:26783541

  12. Disruption of Membrane by Colistin Kills Uropathogenic Escherichia coli Persisters and Enhances Killing of Other Antibiotics.

    PubMed

    Cui, Peng; Niu, Hongxia; Shi, Wanliang; Zhang, Shuo; Zhang, Hao; Margolick, Joseph; Zhang, Wenhong; Zhang, Ying

    2016-11-01

    Persisters are small populations of quiescent bacterial cells that survive exposure to bactericidal antibiotics and are responsible for many persistent infections and posttreatment relapses. However, little is known about how to effectively kill persister bacteria. In the work presented here, we found that colistin, a membrane-active antibiotic, was highly active against Escherichia coli persisters at high concentrations (25 or 50 μg/ml). At a clinically relevant lower concentration (10 μg/ml), colistin alone had no apparent effect on E. coli persisters. In combination with other drugs, this concentration of colistin enhanced the antipersister activity of gentamicin and ofloxacin but not that of ampicillin, nitrofurans, and sulfa drugs in vitro The colistin enhancement effect was most likely due to increased uptake of the other antibiotics, as demonstrated by increased accumulation of fluorescence-labeled gentamicin. Interestingly, colistin significantly enhanced the activity of ofloxacin and nitrofurantoin but not that of gentamicin or sulfa drugs in the murine model of urinary tract infection. Our findings suggest that targeting bacterial membranes is a valuable approach to eradicating persisters and should have implications for more effective treatment of persistent bacterial infections. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. Bacteria killing nanotechnology Bio-Kil effectively reduces bacterial burden in intensive care units.

    PubMed

    Hsueh, P-R; Huang, H-C; Young, T-G; Su, C-Y; Liu, C-S; Yen, M-Y

    2014-04-01

    A contaminated hospital environment has been identified as an important reservoir of pathogens causing healthcare-associated infections. This study is to evaluate the efficacy of bacteria killing nanotechnology Bio-Kil on reducing bacterial counts in an intensive care unit (ICU). Two single-bed rooms (S-19 and S-20) in the ICU were selected from 7 April to 27 May 2011. Ten sets of new textiles (pillow cases, bed sheets, duvet cover, and patient clothing) used by patients in the two single-bed rooms were provided by the sponsors. In the room S-20, the 10 sets of new textiles were washed with Bio-Kil; the room walls, ceiling, and air-conditioning filters were treated with Bio-Kil; and the surfaces of instruments (respirator, telephone, and computer) were covered with Bio-Kil-embedded silicon pads. Room S-19 served as the control. We compared the bacterial count on textiles and environment surfaces as well as air samples between the two rooms. A total of 1,364 samples from 22 different sites in each room were collected. The mean bacterial count on textiles and environmental surfaces in room S-20 was significantly lower than that in room S-19 (10.4 vs 49.6 colony-forming units [CFU]/100 cm(2); P < 0.001). Room S-20 had lower bacterial counts in air samples than room S-19 (33.4-37.6 vs 21.6-25.7 CFU/hour/plate; P < 0.001). The density of microbial isolations was significantly greater among patients admitted to room S-19 than those to room S-20 (9.15 vs 5.88 isolates per 100 patient-days, P < 0.05). Bio-Kil can significantly reduce bacterial burden in the environment of the ICU.

  14. Antibacterial activity of silver-killed bacteria: the "zombies" effect

    NASA Astrophysics Data System (ADS)

    Wakshlak, Racheli Ben-Knaz; Pedahzur, Rami; Avnir, David

    2015-04-01

    We report a previously unrecognized mechanism for the prolonged action of biocidal agents, which we denote as the zombies effect: biocidally-killed bacteria are capable of killing living bacteria. The concept is demonstrated by first killing Pseudomonas aeruginosa PAO1 with silver nitrate and then challenging, with the dead bacteria, a viable culture of the same bacterium: Efficient antibacterial activity of the killed bacteria is observed. A mechanism is suggested in terms of the action of the dead bacteria as a reservoir of silver, which, due to Le-Chatelier's principle, is re-targeted to the living bacteria. Langmuirian behavior, as well as deviations from it, support the proposed mechanism.

  15. Lactobacillus johnsonii HY7042 ameliorates Gardnerella vaginalis-induced vaginosis by killing Gardnerella vaginalis and inhibiting NF-κB activation.

    PubMed

    Joo, Hyun-Min; Hyun, Yang-Jin; Myoung, Kil-Sun; Ahn, Young-Tae; Lee, Jung-Hee; Huh, Chul-Sung; Han, Myung Joo; Kim, Dong-Hyun

    2011-11-01

    Hydrogen peroxide-producing lactic acid bacteria (LAB) were isolated from women's vaginas and their anti-inflammatory effects against Gardnerella vaginalis-induced vaginosis were examined in β-estradiol-immunosuppressed mice. Oral and intravaginal treatment with five LABs significantly decreased viable G. vaginalis numbers in vaginal cavities and myeloperoxidase activity in mouse vaginal tissues. Of the LABs examined, Lactobacillus johnsonii HY7042 (LJ) most potently inhibited G. vaginalis-induced vaginosis. This LAB also inhibited the expressions of IL-1β, IL-6, TNF-α, COX-2, and iNOS, and the activation of NF-κB in vaginal tissues, but increased IL-10 expression. Orally administered LJ (0.2×10(8) CFU/mouse) also inhibited the expression of TNF-α by 91.7% in β-estradiol-immunosuppressed mice intraperitoneally injected with LPS. However, it increased IL-10 expression by 63.3% in these mice. Furthermore, LJ inhibited the expressions of the pro-inflammatory cytokines, TNF-α and IL-1β, and the activation of NF-κB in lipopolysaccharide-stimulated peritoneal macrophages. LJ also killed G. vaginalis attached with and without HeLa cells. These findings suggest that LJ inhibits bacterial vaginosis by inhibiting the expressions of COX-2, iNOS, IL-1β, and TNF-α by regulating NF-κB activation and by killing G. vaginalis, and that LJ could ameliorate bacterial vaginosis. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Copper Reduction and Contact Killing of Bacteria by Iron Surfaces

    PubMed Central

    Mathews, Salima; Kumar, Ranjeet

    2015-01-01

    The well-established killing of bacteria by copper surfaces, also called contact killing, is currently believed to be a combined effect of bacterial contact with the copper surface and the dissolution of copper, resulting in lethal bacterial damage. Iron can similarly be released in ionic form from iron surfaces and would thus be expected to also exhibit contact killing, although essentially no contact killing is observed by iron surfaces. However, we show here that the exposure of bacteria to iron surfaces in the presence of copper ions results in efficient contact killing. The process involves reduction of Cu2+ to Cu+ by iron; Cu+ has been shown to be considerably more toxic to cells than Cu2+. The specific Cu+ chelator, bicinchoninic acid, suppresses contact killing by chelating the Cu+ ions. These findings underline the importance of Cu+ ions in the contact killing process and infer that iron-based alloys containing copper could provide novel antimicrobial materials. PMID:26150470

  17. Contact Killing of Bacteria on Copper Is Suppressed if Bacterial-Metal Contact Is Prevented and Is Induced on Iron by Copper Ions

    PubMed Central

    Mathews, Salima; Hans, Michael

    2013-01-01

    Bacteria are rapidly killed on copper surfaces, and copper ions released from the surface have been proposed to play a major role in the killing process. However, it has remained unclear whether contact of the bacteria with the copper surface is also an important factor. Using laser interference lithography, we engineered copper surfaces which were covered with a grid of an inert polymer which prevented contact of the bacteria with the surface. Using Enterococcus hirae as a model organism, we showed that the release of ionic copper from these modified surfaces was not significantly reduced. In contrast, killing of bacteria was strongly attenuated. When E. hirae cells were exposed to a solid iron surface, the loss of cell viability was the same as on glass. However, exposing cells to iron in the presence of 4 mM CuSO4 led to complete killing in 100 min. These experiments suggest that contact killing proceeds by a mechanism whereby the metal-bacterial contact damages the cell envelope, which, in turn, makes the cells susceptible to further damage by copper ions. PMID:23396344

  18. Efficacy of whole-cell killed bacterial vaccines in preventing pneumonia and death during the 1918 influenza pandemic.

    PubMed

    Chien, Yu-Wen; Klugman, Keith P; Morens, David M

    2010-12-01

    Most deaths in the 1918 influenza pandemic were caused by secondary bacterial pneumonia. We performed a systematic review and reanalysis of studies of bacterial vaccine efficacy (VE) in preventing pneumonia and mortality among patients with influenza during the 1918 pandemic. A meta-analysis of 6 civilian studies of mixed killed bacterial vaccines containing pneumococci identified significant heterogeneity among studies and estimated VE at 34% (95% confidence interval [CI], 19%-47%) in preventing pneumonia and 42% (95% CI, 18%-59%) in reducing case fatality rates among patients with influenza, using random-effects models. Using fixed-effect models, the pooled VE from 3 military studies was 59% (95% CI, 43%-70%) for pneumonia and 70% (95% CI, 50%-82%) for case fatality. Military studies showed less heterogeneity and may provide more accurate results than civilian studies, given the potential biases in the included studies. Findings of 1 military study using hemolytic streptococci also suggested that there was significant protection. Despite significant methodological problems, the systematic biases in these studies do not exclude the possibilities that whole-cell inactivated pneumococcal vaccines may confer cross-protection to multiple pneumococcal serotypes and that bacterial vaccines may play a role in preventing influenza-associated pneumonia.

  19. Antiviral activity and specific modes of action of bacterial prodigiosin against Bombyx mori nucleopolyhedrovirus in vitro.

    PubMed

    Zhou, Wei; Zeng, Cheng; Liu, RenHua; Chen, Jie; Li, Ru; Wang, XinYan; Bai, WenWen; Liu, XiaoYuan; Xiang, TingTing; Zhang, Lin; Wan, YongJi

    2016-05-01

    Prodigiosin, the tripyrrole red pigment, is a bacterial secondary metabolite with multiple bioactivities; however, the antiviral activity has not been reported yet. In the present study, we found the antiviral activity of bacterial prodigiosin on Bombyx mori nucleopolyhedrovirus (BmNPV)-infected cells in vitro, with specific modes of action. Prodigiosin at nontoxic concentrations selectively killed virus-infected cells, inhibited viral gene transcription, especially viral early gene ie-1, and prevented virus-mediated membrane fusion. Under prodigiosin treatment, both progeny virus production and viral DNA replication were significantly inhibited. Fluorescent assays showed that prodigiosin predominantly located in cytoplasm which suggested it might interact with cytoplasm factors to inhibit virus replication. In conclusion, the present study clearly indicates that prodigiosin possesses significant antiviral activity against BmNPV.

  20. Kill rate of mastitis pathogens by a combination of cefalexin and kanamycin.

    PubMed

    Maneke, E; Pridmore, A; Goby, L; Lang, I

    2011-01-01

    To assess the bacterial killing rate produced by a combination of cefalexin and kanamycin at two different concentration ratios. Time-kill kinetics of cefalexin and kanamycin, individually and in combination, were determined against one strain each of Escherichia coli, Staphylococcus aureus, Streptococcus agalactiae, Streptococcus dysgalactiae and Streptococcus uberis. The combination was tested using two fixed ratios (cefalexin : kanamycin ratios of 1·25 : 1 and 1 : 2·3) and two concentrations of each ratio. Time-kill curves produced with either ratio were quite similar. Against most bacterial species, higher concentrations produced faster kill. In all cases, the combination of cefalexin and kanamycin showed faster and greater kill at lower antibiotic concentrations than those observed with either drug alone. The combination of cefalexin and kanamycin results in a fast initial killing of major mastitis pathogens at both concentration ratios. The combination of cefalexin and kanamycin achieved rapid bacterial kill at concentrations and ratios that can be achieved in vivo following intramammary infusion of a mastitis treatment. © 2010 Boehringer Ingelheim Vetmedica GmbH. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology.

  1. Bacterial killing by several root filling materials and methods in an ex vivo infected root canal model.

    PubMed

    Özcan, E; Eldeniz, A U; Arı, H

    2011-12-01

    To evaluate the ability of two root canal sealers (Epoxy resin-based AH Plus or polydimethylsiloxane-based GuttaFlow) and five root filling techniques (continuous wave of condensation, Thermafil, lateral condensation, matched taper single gutta-percha point, laterally condensed-matched taper gutta-percha point) to kill bacteria in experimentally infected dentinal tubules. An infected dentine block model was used. One hundred and twenty extracted, single-rooted human teeth were randomly divided into 10 test (n = 10) and 2 control (n = 10) groups. The roots, except negative controls, were infected with Enterococcus faecalis for 21 days. The root canals were then filled using the test materials and methods. Positive controls were not filled. Sterile roots were used as negative controls. Dentine powder was obtained from all root canals using gates glidden drills using a standard method. The dentine powder was diluted and inoculated into bacterial growth media. Total colony-forming units (CFU) were calculated for each sample. Statistical analysis was performed using the Kruskal-Wallis and Mann-Whitney U test. The epoxy resin-based sealer was effective in killing E. faecalis except when using Thermafil (P < 0.05), but the polydimethylsiloxane-based sealer was not effective in killing this microorganism except in the continuous wave group (P < 0.05). In the test model, AH Plus killed bacteria in infected dentine more effectively than GuttaFlow. The filling method was less important than the sealer material. © 2011 International Endodontic Journal.

  2. Assessment of early combination effects of colistin and meropenem against Pseudomonas aeruginosa and Acinetobacter baumannii in dynamic time-kill experiments.

    PubMed

    Tängdén, Thomas; Karvanen, Matti; Friberg, Lena E; Odenholt, Inga; Cars, Otto

    2017-07-01

    In view of the paucity of clinical evidence, in vitro studies are needed to find antibiotic combinations effective against multidrug-resistant Gram-negative bacteria. Interpretation of in vitro effects is usually based on bacterial growth after 24 h in time-kill and checkerboard experiments. However, the clinical relevance of the effects observed in vitro is not established. In this study we explored alternative output parameters to assess the activities of colistin and meropenem against Pseudomonas aeruginosa and Acinetobacter baumannii. Four strains each of P. aeruginosa and A. baumannii were exposed to colistin and meropenem, alone and in combination, in 8 h dynamic time-kill experiments. Initial (1 h), maximum and 8 h bacterial reductions and the area under the bacterial time-kill curve were evaluated. Checkerboards, interpreted based on fractional inhibitory concentration indices after 24 h, were performed for comparison. In the time-kill experiments, the combination resulted in enhanced 1 h, maximum and 8 h bacterial reductions against 2, 3 and 5 of 8 strains, respectively, as compared to the single drugs. A statistically significant reduction in the area under the time-kill curve was observed for three strains. In contrast, the checkerboards did not identify synergy for any of the strains. Combination effects were frequently found with colistin and meropenem against P. aeruginosa and A. baumannii in time-kill experiments but were not detected with the checkerboard method. We propose that the early dynamics of bacterial killing and growth, which may be of great clinical importance, should be considered in future in vitro combination studies.

  3. Prokaryotic RNA Associated to Bacterial Viability Induces Polymorphonuclear Neutrophil Activation.

    PubMed

    Rodriguez-Rodrigues, Nahuel; Castillo, Luis A; Landoni, Verónica I; Martire-Greco, Daiana; Milillo, M Ayelén; Barrionuevo, Paula; Fernández, Gabriela C

    2017-01-01

    Polymorphonuclear neutrophils (PMN) are the first cellular line of antibacterial host defense. They sense pathogens through recognition of pathogen-associated molecular patterns (PAMPs) by innate pattern recognition receptors, such as Toll-like receptors (TLR). The aim of this study was to investigate whether PMN sense bacterial viability and explore which viability factor could be involved in this phenomenon. For this purpose, different functions were evaluated in isolated human PMN using live Escherichia coli (Ec) and heat-killed Ec (HK-Ec). We found that bacterial viability was indispensable to induce PMN activation, as measured by forward-scatter (FSC) increase, CD11b surface expression, chemotaxis, reactive oxygen species (ROS) generation and neutrophil extracellular trap (NET) formation. As uncapped non-polyadenylated prokaryotic mRNA has been recognized as a PAMP associated to bacterial viability by macrophages and dendritic cells, total prokaryotic RNA (pRNA) from live Ec was purified and used as a stimulus for PMN. pRNA triggered similar responses to those observed with live bacteria. No RNA could be isolated from HK-Ec, explaining the lack of effect of dead bacteria. Moreover, the supernatant of dead bacteria was able to induce PMN activation, and this was associated with the presence of pRNA in this supernatant, which is released in the killing process. The induction of bactericidal functions (ROS and NETosis) by pRNA were abolished when the supernatant of dead bacteria or isolated pRNA were treated with RNAse. Moreover, endocytosis was necessary for pRNA-induced ROS generation and NETosis, and priming was required for the induction of pRNA-induced ROS in whole blood. However, responses related to movement and degranulation (FSC increase, CD11b up-regulation, and chemotaxis) were still triggered when pRNA was digested with RNase, and were not dependent on pRNA endocytosis or PMN priming. In conclusion, our results indicate that PMN sense live bacteria

  4. Prokaryotic RNA Associated to Bacterial Viability Induces Polymorphonuclear Neutrophil Activation

    PubMed Central

    Rodriguez-Rodrigues, Nahuel; Castillo, Luis A.; Landoni, Verónica I.; Martire-Greco, Daiana; Milillo, M. Ayelén; Barrionuevo, Paula; Fernández, Gabriela C.

    2017-01-01

    Polymorphonuclear neutrophils (PMN) are the first cellular line of antibacterial host defense. They sense pathogens through recognition of pathogen-associated molecular patterns (PAMPs) by innate pattern recognition receptors, such as Toll-like receptors (TLR). The aim of this study was to investigate whether PMN sense bacterial viability and explore which viability factor could be involved in this phenomenon. For this purpose, different functions were evaluated in isolated human PMN using live Escherichia coli (Ec) and heat-killed Ec (HK-Ec). We found that bacterial viability was indispensable to induce PMN activation, as measured by forward-scatter (FSC) increase, CD11b surface expression, chemotaxis, reactive oxygen species (ROS) generation and neutrophil extracellular trap (NET) formation. As uncapped non-polyadenylated prokaryotic mRNA has been recognized as a PAMP associated to bacterial viability by macrophages and dendritic cells, total prokaryotic RNA (pRNA) from live Ec was purified and used as a stimulus for PMN. pRNA triggered similar responses to those observed with live bacteria. No RNA could be isolated from HK-Ec, explaining the lack of effect of dead bacteria. Moreover, the supernatant of dead bacteria was able to induce PMN activation, and this was associated with the presence of pRNA in this supernatant, which is released in the killing process. The induction of bactericidal functions (ROS and NETosis) by pRNA were abolished when the supernatant of dead bacteria or isolated pRNA were treated with RNAse. Moreover, endocytosis was necessary for pRNA-induced ROS generation and NETosis, and priming was required for the induction of pRNA-induced ROS in whole blood. However, responses related to movement and degranulation (FSC increase, CD11b up-regulation, and chemotaxis) were still triggered when pRNA was digested with RNase, and were not dependent on pRNA endocytosis or PMN priming. In conclusion, our results indicate that PMN sense live bacteria

  5. Effect of IFN-gamma on the killing of S. aureus in human whole blood. Assessment of bacterial viability by CFU determination and by a new method using alamarBlue.

    PubMed

    DeForge, L E; Billeci, K L; Kramer, S M

    2000-11-01

    Given the increasing incidence of methicillin resistant Staphylococcus aureus (MRSA) and the recent emergence of MRSA with a reduced susceptibility to vancomycin, alternative approaches to the treatment of infection are of increasing relevance. The purpose of these studies was to evaluate the effect of IFN-gamma on the ability of white blood cells to kill S. aureus and to develop a simpler, higher throughput bacterial killing assay. Using a methicillin sensitive clinical isolate of S. aureus, a clinical isolate of MRSA, and a commercially available strain of MRSA, studies were conducted using a killing assay in which the bacteria were added directly into whole blood. The viability of the bacteria in samples harvested at various time points was then evaluated both by the classic CFU assay and by a new assay using alamarBlue. In the latter method, serially diluted samples and a standard curve containing known concentrations of bacteria were placed on 96-well plates, and alamarBlue was added. Fluorescence readings were taken, and the viability of the bacteria in the samples was calculated using the standard curve. The results of these studies demonstrated that the CFU and alamarBlue methods yielded equivalent detection of bacteria diluted in buffer. For samples incubated in whole blood, however, the alamarBlue method tended to yield lower viabilities than the CFU method due to the emergence of a slower growing subpopulation of S. aureus upon incubation in the blood matrix. A significant increase in bacterial killing was observed upon pretreatment of whole blood for 24 h with 5 or 25 ng/ml IFN-gamma. This increase in killing was detected equivalently by the CFU and alamarBlue methods. In summary, these studies describe a method that allows for the higher throughput analysis of the effects of immunomodulators on bacterial killing.

  6. Gram-Negative Bacterial Wound Infections

    DTIC Science & Technology

    2016-07-01

    coli, K. pneumoniae and P. aeruginosa, it showed antibacterial activity against all A. baumannii tested strains, including MRSN and non-MRSN isolates...models showed that Ga-PPIX has significant antibacterial activity by inhibiting the metabolism of iron A. baumannii could scavenge from host’s...concentration significantly reduced bacterial viability, while 40 µg/ml killed all bacteria after 24-h incubation. The antibacterial activity of Ga-PPIX

  7. Delineating the Importance of Serum Opsonins and the Bacterial Capsule in Affecting the Uptake and Killing of Burkholderia pseudomallei by Murine Neutrophils and Macrophages

    PubMed Central

    Mulye, Minal; Bechill, Michael P.; Grose, William; Ferreira, Viviana P.; Lafontaine, Eric R.; Wooten, R. Mark

    2014-01-01

    Infection of susceptible hosts by the encapsulated Gram-negative bacterium Burkholderia pseudomallei (Bp) causes melioidosis, with septic patients attaining mortality rates ≥40%. Due to its high infectivity through inhalation and limited effective therapies, Bp is considered a potential bioweapon. Thus, there is great interest in identifying immune effectors that effectively kill Bp. Our goal is to compare the relative abilities of murine macrophages and neutrophils to clear Bp, as well as determine the importance of serum opsonins and bacterial capsule. Our findings indicate that murine macrophages and neutrophils are inherently unable to clear either unopsonized Bp or the relatively-avirulent acapsular bacterium B. thailandensis (Bt). Opsonization of Bp and Bt with complement or pathogen-specific antibodies increases macrophage-uptake, but does not promote clearance, although antibody-binding enhances complement deposition. In contrast, complement opsonization of Bp and Bt causes enhanced uptake and killing by neutrophils, which is linked with rapid ROS induction against bacteria exhibiting a threshold level of complement deposition. Addition of bacteria-specific antibodies enhances complement deposition, but antibody-binding alone cannot elicit neutrophil clearance. Bp capsule provides some resistance to complement deposition, but is not anti-phagocytic or protective against reactive oxygen species (ROS)-killing. Macrophages were observed to efficiently clear Bp only after pre-activation with IFNγ, which is independent of serum- and/or antibody-opsonization. These studies indicate that antibody-enhanced complement activation is sufficient for neutrophil-clearance of Bp, whereas macrophages are ineffective at clearing serum-opsonized Bp unless pre-activated with IFNγ. This suggests that effective immune therapies would need to elicit both antibodies and Th1-adaptive responses for successful prevention/eradication of melioidosis. PMID:25144195

  8. Death Becomes Them: Bacterial Community Dynamics and Stilbene Antibiotic Production in Cadavers of Galleria mellonella Killed by Heterorhabditis and Photorhabdus spp.

    PubMed Central

    Wollenberg, Amanda C.; Slough, Greg; Hoinville, Megan E.

    2016-01-01

    ABSTRACT Insect larvae killed by entomopathogenic nematodes are thought to contain bacterial communities dominated by a single bacterial genus, that of the nematode's bacterial symbiont. In this study, we used next-generation sequencing to profile bacterial community dynamics in greater wax moth (Galleria mellonella) larvae cadavers killed by Heterorhabditis nematodes and their Photorhabdus symbionts. We found that, although Photorhabdus strains did initially displace an Enterococcus-dominated community present in uninfected G. mellonella insect larvae, the cadaver community was not static. Twelve days postinfection, Photorhabdus shared the cadaver with Stenotrophomonas species. Consistent with this result, Stenotrophomonas strains isolated from infected cadavers were resistant to Photorhabdus-mediated toxicity in solid coculture assays. We isolated and characterized a Photorhabdus-produced antibiotic from G. mellonella cadavers, produced it synthetically, and demonstrated that both the natural and synthetic compounds decreased G. mellonella-associated Enterococcus growth, but not Stenotrophomonas growth, in vitro. Finally, we showed that the Stenotrophomonas strains described here negatively affected Photorhabdus growth in vitro. Our results add an important dimension to a broader understanding of Heterorhabditis-Photorhabdus biology and also demonstrate that interspecific bacterial competition likely characterizes even a theoretically monoxenic environment, such as a Heterorhabditis-Photorhabdus-parasitized insect cadaver. IMPORTANCE Understanding, and eventually manipulating, both human and environmental health depends on a complete accounting of the forces that act on and shape microbial communities. One of these underlying forces is hypothesized to be resource competition. A resource that has received little attention in the general microbiological literature, but likely has ecological and evolutionary importance, is dead/decaying multicellular organisms

  9. Fosfomycin enhances phagocyte-mediated killing of Staphylococcus aureus by extracellular traps and reactive oxygen species.

    PubMed

    Shen, Fengge; Tang, Xudong; Cheng, Wei; Wang, Yang; Wang, Chao; Shi, Xiaochen; An, Yanan; Zhang, Qiaoli; Liu, Mingyuan; Liu, Bo; Yu, Lu

    2016-01-18

    The successful treatment of bacterial infections is the achievement of a synergy between the host's immune defences and antibiotics. Here, we examined whether fosfomycin (FOM) could improve the bactericidal effect of phagocytes, and investigated the potential mechanisms. FOM enhanced the phagocytosis and extra- or intracellular killing of S. aureus by phagocytes. And FOM enhanced the extracellular killing of S. aureus in macrophage (MФ) and in neutrophils mediated by extracellular traps (ETs). ET production was related to NADPH oxidase-dependent reactive oxygen species (ROS). Additionally, FOM increased the intracellular killing of S. aureus in phagocytes, which was mediated by ROS through the oxidative burst process. Our results also showed that FOM alone induced S. aureus producing hydroxyl radicals in order to kill the bacterial cells in vitro. In a mouse peritonitis model, FOM treatment increased the bactericidal extra- and intracellular activity in vivo, and FOM strengthened ROS and ET production from peritoneal lavage fluid ex vivo. An IVIS imaging system assay further verified the observed in vivo bactericidal effect of the FOM treatment. This work may provide a deeper understanding of the role of the host's immune defences and antibiotic interactions in microbial infections.

  10. Fosfomycin enhances phagocyte-mediated killing of Staphylococcus aureus by extracellular traps and reactive oxygen species

    PubMed Central

    Shen, Fengge; Tang, Xudong; Cheng, Wei; Wang, Yang; Wang, Chao; Shi, Xiaochen; An, Yanan; Zhang, Qiaoli; Liu, Mingyuan; Liu, Bo; Yu, Lu

    2016-01-01

    The successful treatment of bacterial infections is the achievement of a synergy between the host’s immune defences and antibiotics. Here, we examined whether fosfomycin (FOM) could improve the bactericidal effect of phagocytes, and investigated the potential mechanisms. FOM enhanced the phagocytosis and extra- or intracellular killing of S. aureus by phagocytes. And FOM enhanced the extracellular killing of S. aureus in macrophage (MФ) and in neutrophils mediated by extracellular traps (ETs). ET production was related to NADPH oxidase-dependent reactive oxygen species (ROS). Additionally, FOM increased the intracellular killing of S. aureus in phagocytes, which was mediated by ROS through the oxidative burst process. Our results also showed that FOM alone induced S. aureus producing hydroxyl radicals in order to kill the bacterial cells in vitro. In a mouse peritonitis model, FOM treatment increased the bactericidal extra- and intracellular activity in vivo, and FOM strengthened ROS and ET production from peritoneal lavage fluid ex vivo. An IVIS imaging system assay further verified the observed in vivo bactericidal effect of the FOM treatment. This work may provide a deeper understanding of the role of the host’s immune defences and antibiotic interactions in microbial infections. PMID:26778774

  11. Bacterial Call to Arms for Warfare at the Infection Site.

    PubMed

    Cabral, Vitor; Xavier, Karina B

    2018-03-14

    Bacterial sensing is important for perceiving environmental cues and activating responses. In this issue of Cell Host & Microbe, Hertzog et al. (2018) show that group A Streptococcus can couple the ability to respond to host cues with autoinduction of a quorum sensing system, leading to killing of bacterial competitors. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Alleviating Cancer Drug Toxicity by Inhibiting a Bacterial Enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, Bret D.; Wang, Hongwei; Lane, Kimberly T.

    2011-08-12

    The dose-limiting side effect of the common colon cancer chemotherapeutic CPT-11 is severe diarrhea caused by symbiotic bacterial {beta}-glucuronidases that reactivate the drug in the gut. We sought to target these enzymes without killing the commensal bacteria essential for human health. Potent bacterial {beta}-glucuronidase inhibitors were identified by high-throughput screening and shown to have no effect on the orthologous mammalian enzyme. Crystal structures established that selectivity was based on a loop unique to bacterial {beta}-glucuronidases. Inhibitors were highly effective against the enzyme target in living aerobic and anaerobic bacteria, but did not kill the bacteria or harm mammalian cells. Finally,more » oral administration of an inhibitor protected mice from CPT-11-induced toxicity. Thus, drugs may be designed to inhibit undesirable enzyme activities in essential microbial symbiotes to enhance chemotherapeutic efficacy.« less

  13. Alleviating Cancer Drug Toxicity by Inhibiting a Bacterial Enzyme

    PubMed Central

    Wallace, Bret D.; Wang, Hongwei; Lane, Kimberly T.; Scott, John E.; Orans, Jillian; Koo, Ja Seol; Venkatesh, Madhukumar; Jobin, Christian; Yeh, Li-An; Mani, Sridhar; Redinbo, Matthew R.

    2011-01-01

    The dose-limiting side effect of the common colon cancer chemotherapeutic CPT-11 is severe diarrhea caused by symbiotic bacterial β-glucuronidases that reactivate the drug in the gut. We sought to target these enzymes without killing the commensal bacteria essential for human health. Potent bacterial β-glucuronidase inhibitors were identified by high-throughput screening and shown to have no effect on the orthologous mammalian enzyme. Crystal structures established that selectivity was based on a loop unique to bacterial β-glucuronidases. Inhibitors were highly effective against the enzyme target in living aerobic and anaerobic bacteria, but did not kill the bacteria or harm mammalian cells. Finally, oral administration of an inhibitor protected mice from CPT-11–induced toxicity. Thus, drugs may be designed to inhibit undesirable enzyme activities in essential microbial symbiotes to enhance chemotherapeutic efficacy. PMID:21051639

  14. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme.

    PubMed

    Wallace, Bret D; Wang, Hongwei; Lane, Kimberly T; Scott, John E; Orans, Jillian; Koo, Ja Seol; Venkatesh, Madhukumar; Jobin, Christian; Yeh, Li-An; Mani, Sridhar; Redinbo, Matthew R

    2010-11-05

    The dose-limiting side effect of the common colon cancer chemotherapeutic CPT-11 is severe diarrhea caused by symbiotic bacterial β-glucuronidases that reactivate the drug in the gut. We sought to target these enzymes without killing the commensal bacteria essential for human health. Potent bacterial β-glucuronidase inhibitors were identified by high-throughput screening and shown to have no effect on the orthologous mammalian enzyme. Crystal structures established that selectivity was based on a loop unique to bacterial β-glucuronidases. Inhibitors were highly effective against the enzyme target in living aerobic and anaerobic bacteria, but did not kill the bacteria or harm mammalian cells. Finally, oral administration of an inhibitor protected mice from CPT-11-induced toxicity. Thus, drugs may be designed to inhibit undesirable enzyme activities in essential microbial symbiotes to enhance chemotherapeutic efficacy.

  15. Cytolysin-dependent evasion of lysosomal killing.

    PubMed

    Håkansson, Anders; Bentley, Colette Cywes; Shakhnovic, Elizabeth A; Wessels, Michael R

    2005-04-05

    Local host defenses limit proliferation and systemic spread of pathogenic bacteria from sites of mucosal colonization. For pathogens such as streptococci that fail to grow intracellularly, internalization and killing by epithelial cells contribute to the control of bacterial growth and dissemination. Here, we show that group A Streptococcus (GAS), the agent of streptococcal sore throat and invasive soft tissue infections, evades internalization and intracellular killing by pharyngeal epithelial cells. Production of the cholesterol-binding cytotoxin streptolysin O (SLO) prevented internalization of GAS into lysosomes. In striking contrast, GAS rendered defective in production of SLO were internalized directly or rapidly transported into lysosomes, where they were killed by a pH-dependent mechanism. Because SLO is the prototype of cholesterol-dependent cytolysins produced by many Gram-positive bacteria, cytolysin-mediated evasion of lysosomal killing may be a general mechanism to protect such pathogens from clearance by host epithelial cells.

  16. Macrophage migration inhibitory factor deficiency is associated with impaired killing of gram-negative bacteria by macrophages and increased susceptibility to Klebsiella pneumoniae sepsis.

    PubMed

    Roger, Thierry; Delaloye, Julie; Chanson, Anne-Laure; Giddey, Marlyse; Le Roy, Didier; Calandra, Thierry

    2013-01-15

    The cytokine macrophage migration inhibitory factor (MIF) is an important component of the early proinflammatory response of the innate immune system. However, the antimicrobial defense mechanisms mediated by MIF remain fairly mysterious. In the present study, we examined whether MIF controls bacterial uptake and clearance by professional phagocytes, using wild-type and MIF-deficient macrophages. MIF deficiency did not affect bacterial phagocytosis, but it strongly impaired the killing of gram-negative bacteria by macrophages and host defenses against gram-negative bacterial infection, as shown by increased mortality in a Klebsiella pneumonia model. Consistent with MIF's regulatory role of Toll-like 4 expression in macrophages, MIF-deficient cells stimulated with lipopolysaccharide or Escherichia coli exhibited reduced nuclear factor κB activity and tumor necrosis factor (TNF) production. Addition of recombinant MIF or TNF corrected the killing defect of MIF-deficient macrophages. Together, these data show that MIF is a key mediator of host responses against gram-negative bacteria, acting in part via a modulation of bacterial killing by macrophages.

  17. Correlation of Increased Metabolic Activity, Resistance to Infection, Enhanced Phagocytosis, and Inhibition of Bacterial Growth by Macrophages from Listeria- and BCG-Infected Mice

    PubMed Central

    Ratzan, Kenneth R.; Musher, Daniel M.; Keusch, Gerald T.; Weinstein, Louis

    1972-01-01

    Macrophages from mice infected with facultative intracellular organisms such as Listeria monocytogenes and BCG have been shown to resist infection by antigenically unrelated intracellular bacterial parasites. This study compares phagocytosis, bacterial growth inhibition, and oxidation of glucose by macrophages from normal mice, mice infected with listeria or BCG, or mice immunized with killed listeria in incomplete Freund's adjuvant. Macrophages from listeria- and BCG-infected mice ingested more listeria; 67 and 57%, respectively, had three or more cell-associated bacteria versus 22% of controls (P < 0.001). Peritoneal macrophages from listeria- and BCG-infected animals significantly (P < 0.001 covariance analysis) inhibited growth of listeria in suspension, whereas control macrophages had no such inhibitory effect. The rate of oxidation of glucose-1-14C was higher in macrophages from listeria- and BCG-infected mice than from either uninfected animals or those immunized with killed listeria. During phagocytosis of killed or live bacteria, or latex particles, the rate of glucose oxidation was increased (P < 0.01). These data suggest that the cellular immunity after infection by an intracellular organism is associated with an increase in metabolic activity of macrophages, namely, an increase in the rate of glucose oxidation resulting in enhancement of phagocytosis and killing. PMID:4629124

  18. Killed but metabolically active Bacillus anthracis vaccines induce broad and protective immunity against anthrax.

    PubMed

    Skoble, Justin; Beaber, John W; Gao, Yi; Lovchik, Julie A; Sower, Laurie E; Liu, Weiqun; Luckett, William; Peterson, Johnny W; Calendar, Richard; Portnoy, Daniel A; Lyons, C Rick; Dubensky, Thomas W

    2009-04-01

    Bacillus anthracis is the causative agent of anthrax. We have developed a novel whole-bacterial-cell anthrax vaccine utilizing B. anthracis that is killed but metabolically active (KBMA). Vaccine strains that are asporogenic and nucleotide excision repair deficient were engineered by deleting the spoIIE and uvrAB genes, rendering B. anthracis extremely sensitive to photochemical inactivation with S-59 psoralen and UV light. We also introduced point mutations into the lef and cya genes, which allowed inactive but immunogenic toxins to be produced. Photochemically inactivated vaccine strains maintained a high degree of metabolic activity and secreted protective antigen (PA), lethal factor, and edema factor. KBMA B. anthracis vaccines were avirulent in mice and induced less injection site inflammation than recombinant PA adsorbed to aluminum hydroxide gel. KBMA B. anthracis-vaccinated animals produced antibodies against numerous anthrax antigens, including high levels of anti-PA and toxin-neutralizing antibodies. Vaccination with KBMA B. anthracis fully protected mice against challenge with lethal doses of toxinogenic unencapsulated Sterne 7702 spores and rabbits against challenge with lethal pneumonic doses of fully virulent Ames strain spores. Guinea pigs vaccinated with KBMA B. anthracis were partially protected against lethal Ames spore challenge, which was comparable to vaccination with the licensed vaccine anthrax vaccine adsorbed. These data demonstrate that KBMA anthrax vaccines are well tolerated and elicit potent protective immune responses. The use of KBMA vaccines may be broadly applicable to bacterial pathogens, especially those for which the correlates of protective immunity are unknown.

  19. The Alpha-Tocopherol Form of Vitamin E Boosts Elastase Activity of Human PMNs and Their Ability to Kill Streptococcus pneumoniae.

    PubMed

    Bou Ghanem, Elsa N; Lee, James N; Joma, Basma H; Meydani, Simin N; Leong, John M; Panda, Alexander

    2017-01-01

    Despite the availability of vaccines, Streptococcus pneumoniae remains a leading cause of life-threatening infections, such as pneumonia, bacteremia and meningitis. Polymorphonuclear leukocytes (PMNs) are a key determinant of disease course, because optimal host defense requires an initial robust pulmonary PMN response to control bacterial numbers followed by modulation of this response later in infection. The elderly, who manifest a general decline in immune function and higher basal levels of inflammation, are at increased risk of developing pneumococcal pneumonia. Using an aged mouse infection model, we previously showed that oral supplementation with the alpha-tocopherol form of vitamin E (α-Toc) decreases pulmonary inflammation, in part by modulating neutrophil migration across lung epithelium into alveolar spaces, and reverses the age-associated decline in resistance to pneumococcal pneumonia. The objective of this study was to test the effect of α-Toc on the ability of neutrophils isolated from young (22-35 years) or elderly (65-69 years) individuals to migrate across epithelial cell monolayers in response to S. pneumoniae and to kill complement-opsonized pneumococci. We found that basal levels of pneumococcal-induced transepithelial migration by PMNs from young or elderly donors were indistinguishable, suggesting that the age-associated exacerbation of pulmonary inflammation is not due to intrinsic properties of PMNs of elderly individuals but rather may reflect the inflammatory milieu of the aged lung. Consistent with its anti-inflammatory activity, α-Toc treatment diminished PMN migration regardless of donor age. Unexpectedly, unlike previous studies showing poor killing of antibody-opsonized bacteria, we found that PMNs of elderly donors were more efficient at killing complement-opsonized bacteria ex vivo than their younger counterparts. We also found that the heightened antimicrobial activity in PMNs from older donors correlated with increased

  20. The Alpha-Tocopherol Form of Vitamin E Boosts Elastase Activity of Human PMNs and Their Ability to Kill Streptococcus pneumoniae

    PubMed Central

    Bou Ghanem, Elsa N.; Lee, James N.; Joma, Basma H.; Meydani, Simin N.; Leong, John M.; Panda, Alexander

    2017-01-01

    Despite the availability of vaccines, Streptococcus pneumoniae remains a leading cause of life-threatening infections, such as pneumonia, bacteremia and meningitis. Polymorphonuclear leukocytes (PMNs) are a key determinant of disease course, because optimal host defense requires an initial robust pulmonary PMN response to control bacterial numbers followed by modulation of this response later in infection. The elderly, who manifest a general decline in immune function and higher basal levels of inflammation, are at increased risk of developing pneumococcal pneumonia. Using an aged mouse infection model, we previously showed that oral supplementation with the alpha-tocopherol form of vitamin E (α-Toc) decreases pulmonary inflammation, in part by modulating neutrophil migration across lung epithelium into alveolar spaces, and reverses the age-associated decline in resistance to pneumococcal pneumonia. The objective of this study was to test the effect of α-Toc on the ability of neutrophils isolated from young (22–35 years) or elderly (65–69 years) individuals to migrate across epithelial cell monolayers in response to S. pneumoniae and to kill complement-opsonized pneumococci. We found that basal levels of pneumococcal-induced transepithelial migration by PMNs from young or elderly donors were indistinguishable, suggesting that the age-associated exacerbation of pulmonary inflammation is not due to intrinsic properties of PMNs of elderly individuals but rather may reflect the inflammatory milieu of the aged lung. Consistent with its anti-inflammatory activity, α-Toc treatment diminished PMN migration regardless of donor age. Unexpectedly, unlike previous studies showing poor killing of antibody-opsonized bacteria, we found that PMNs of elderly donors were more efficient at killing complement-opsonized bacteria ex vivo than their younger counterparts. We also found that the heightened antimicrobial activity in PMNs from older donors correlated with increased

  1. Identification and structural analysis of an L-asparaginase enzyme from guinea pig with putative tumor cell killing properties.

    PubMed

    Schalk, Amanda M; Nguyen, Hien-Anh; Rigouin, Coraline; Lavie, Arnon

    2014-11-28

    The initial observation that guinea pig serum kills lymphoma cells marks the serendipitous discovery of a new class of anti-cancer agents. The serum cell killing factor was shown to be an enzyme with L-asparaginase (ASNase) activity. As a direct result of this observation, several bacterial L-asparaginases were developed and are currently approved by the Food and Drug Administration for the treatment of the subset of hematological malignancies that are dependent on the extracellular pool of the amino acid asparagine. As drugs, these enzymes act to hydrolyze asparagine to aspartate, thereby starving the cancer cells of this amino acid. Prior to the work presented here, the precise identity of this guinea pig enzyme has not been reported in the peer-reviewed literature. We discovered that the guinea pig enzyme annotated as H0W0T5_CAVPO, which we refer to as gpASNase1, has the required low Km property consistent with that possessed by the cell-killing guinea pig serum enzyme. Elucidation of the ligand-free and aspartate complex gpASNase1 crystal structures allows a direct comparison with the bacterial enzymes and serves to explain the lack of L-glutaminase activity in the guinea pig enzyme. The structures were also used to generate a homology model for the human homolog hASNase1 and to help explain its vastly different kinetic properties compared with gpASNase1, despite a 70% sequence identity. Given that the bacterial enzymes frequently present immunogenic and other toxic side effects, this work suggests that gpASNase1 could be a promising alternative to these bacterial enzymes. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Correlation of in vitro time-kill curves and kinetics of bacterial killing in cerebrospinal fluid during ceftriaxone therapy of experimental Escherichia coli meningitis.

    PubMed Central

    Decazes, J M; Ernst, J D; Sande, M A

    1983-01-01

    Ceftriaxone was highly active in eliminating Escherichia coli from the cerebrospinal fluid of rabbits infected with experimental meningitis. However, concentrations equal to or greater than 10 times the minimal bactericidal concentration had to be achieved to ensure optimal efficacy (rate of kill, 1.5 log10 CFU/ml per h). In contrast to other beta-lactams studied in this model, ceftriaxone concentrations in cerebrospinal fluid progressively increased, whereas serum steady state was obtained by constant infusion. The percent penetration was 2.1% after 1 h of therapy, in contrast to 8.9% after 7 h (P less than 0.001). In vitro time-kill curves done in cerebrospinal fluid or broth more closely predicted the drug concentrations required for a maximum cidal effect in vivo than that predicted by determinations of minimal inhibitory or bactericidal concentrations. PMID:6316841

  3. 5-Aminoimidazole-4-carboxamide ribonucleoside-mediated adenosine monophosphate-activated protein kinase activation induces protective innate responses in bacterial endophthalmitis.

    PubMed

    Kumar, Ajay; Giri, Shailendra; Kumar, Ashok

    2016-12-01

    The retina is considered to be the most metabolically active tissue in the body. However, the link between energy metabolism and retinal inflammation, as incited by microbial infection such as endophthalmitis, remains unexplored. In this study, using a mouse model of Staphylococcus aureus (SA) endophthalmitis, we demonstrate that the activity (phosphorylation) of 5' adenosine monophosphate-activated protein kinase alpha (AMPKα), a cellular energy sensor and its endogenous substrate; acetyl-CoA carboxylase is down-regulated in the SA-infected retina. Intravitreal administration of an AMPK activator, 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), restored AMPKα and acetyl-CoA carboxylase phosphorylation. AICAR treatment reduced both the bacterial burden and intraocular inflammation in SA-infected eyes by inhibiting NF-kB and MAP kinases (p38 and JNK) signalling. The anti-inflammatory effects of AICAR were diminished in eyes pretreated with AMPK inhibitor, Compound C. The bioenergetics (Seahorse) analysis of SA-infected microglia and bone marrow-derived macrophages revealed an increase in glycolysis, which was reinstated by AICAR treatment. AICAR also reduced the expression of SA-induced glycolytic genes, including hexokinase 2 and glucose transporter 1 in microglia, bone marrow-derived macrophages and the mouse retina. Interestingly, AICAR treatment enhanced the bacterial phagocytic and intracellular killing activities of cultured microglia, macrophages and neutrophils. Furthermore, AMPKα1 global knockout mice exhibited increased susceptibility towards SA endophthalmitis, as evidenced by increased inflammatory mediators and bacterial burden and reduced retinal function. Together, these findings provide the first evidence that AMPK activation promotes retinal innate defence in endophthalmitis by modulating energy metabolism and that it can be targeted therapeutically to treat ocular infections. © 2016 John Wiley & Sons Ltd.

  4. Antibacterial Activity of Cinnamaldehyde and Estragole Extracted from Plant Essential Oils against Pseudomonas syringae pv. actinidiae Causing Bacterial Canker Disease in Kiwifruit

    PubMed Central

    Song, Yu-Rim; Choi, Min-Seon; Choi, Geun-Won; Park, Il-Kwon; Oh, Chang-Sik

    2016-01-01

    Pseudomonas syringae pv. actinidiae (Psa) causes bacterial canker disease in kiwifruit. Antibacterial activity of plant essential oils (PEOs) originating from 49 plant species were tested against Psa by a vapor diffusion and a liquid culture assays. The five PEOs from Pimenta racemosa, P. dioica, Melaleuca linariifolia, M. cajuputii, and Cinnamomum cassia efficiently inhibited Psa growth by either assays. Among their major components, estragole, eugenol, and methyl eugenol showed significant antibacterial activity by only the liquid culture assay, while cinnamaldehyde exhibited antibacterial activity by both assays. The minimum inhibitory concentrations (MICs) of estragole and cinnamaldehyde by the liquid culture assay were 1,250 and 2,500 ppm, respectively. The MIC of cinnamaldehyde by the vapor diffusion assay was 5,000 ppm. Based on the formation of clear zones or the decrease of optical density caused by these compounds, they might kill the bacterial cells and this feature might be useful for managing the bacterial canker disease in kiwifruit. PMID:27493612

  5. Comparative antianaerobic activities of doripenem determined by MIC and time-kill analysis.

    PubMed

    Credito, Kim L; Ednie, Lois M; Appelbaum, Peter C

    2008-01-01

    Against 447 anaerobe strains, the investigational carbapenem doripenem had an MIC 50 of 0.125 microg/ml and an MIC 90 of 1 microg/ml. Results were similar to those for imipenem, meropenem, and ertapenem. Time-kill studies showed that doripenem had very good bactericidal activity compared to other carbapenems, with 99.9% killing of 11 strains at 2x MIC after 48 h.

  6. Bacterial incorporation of leucine into protein down to -20 degrees C with evidence for potential activity in sub-eutectic saline ice formations.

    PubMed

    Junge, Karen; Eicken, Hajo; Swanson, Brian D; Deming, Jody W

    2006-06-01

    Direct evidence for metabolism in a variety of frozen environments has pushed temperature limits for bacterial activity to increasingly lower temperatures, so far to -20 degrees C. To date, the metabolic activities of marine psychrophilic bacteria, important components of sea-ice communities, have not been studied in laboratory culture, not in ice and not below -12 degrees C. We measured [3H]-leucine incorporation into macromolecules (further fractionated biochemically) by the marine psychrophilic bacterium Colwellia psychrerythraea strain 34H over a range of anticipated activity-permissive temperatures, from +13 to -20 degrees C, including expected negative controls at -80 and -196 degrees C. For incubation temperatures below -1 degrees C, the cell suspensions [all in artificial seawater (ASW)] were first quick-frozen in liquid nitrogen. We also examined the effect of added extracellular polymeric substances (EPS) on [3H]-leucine incorporation. Results showed that live cells of strain 34H incorporated substantial amounts of [3H]-leucine into TCA-precipitable material (primarily protein) down to -20 degrees C. At temperatures from -1 to -20 degrees C, rates were enhanced by EPS. No activity was detected in the killed controls for strain 34H (or in Escherichia coli controls), which included TCA-killed, heat-killed, and sodium azide- and chloramphenicol-treated samples. Surprisingly, evidence for low but significant rates of intracellular incorporation of [3H]-leucine into protein was observed for both ASW-only and EPS-amended (and live only) samples incubated at -80 and -196 degrees C. Mechanisms that could explain the latter results require further study, but the process of vitrification promoted by rapid freezing and the presence of salts and organic polymers may be relevant. Overall, distinguishing between intracellular and extracellular aspects of bacterial activity appears important to understanding behavior at sub-freezing temperatures.

  7. Bacteriome from Pinus arizonica and P. durangensis: Diversity, Comparison of Assemblages, and Overlapping Degree with the Gut Bacterial Community of a Bark Beetle That Kills Pines.

    PubMed

    Gonzalez-Escobedo, Roman; Briones-Roblero, Carlos I; Pineda-Mendoza, Rosa M; Rivera-Orduña, Flor N; Zúñiga, Gerardo

    2018-01-01

    Symbioses between plants and microorganims have been fundamental in the evolution of both groups. The endophytic bacteria associated with conifers have been poorly studied in terms of diversity, ecology, and function. Coniferous trees of the genera Larix , Pseudotsugae , Picea and mainly Pinus , are hosts of many insects, including bark beetles and especially the Dendroctonus species. These insects colonize and kill these trees during their life cycle. Several bacteria detected in the gut and cuticle of these insects have been identified as endophytes in conifers. In this study, we characterized and compared the endophytic bacterial diversity in roots, phloem and bark of non-attacked saplings of Pinus arizonica and P. durangensis using 16S rRNA gene pyrosequencing. In addition, we evaluated the degree of taxonomic relatedness, and the association of metabolic function profiles of communities of endophytic bacteria and previously reported gut bacterial communities of D. rhizophagus ; a specialized bark beetle that colonizes and kills saplings of these pine species. Our results showed that both pine species share a similar endophytic community. A total of seven bacterial phyla, 14 classes, 26 orders, 43 families, and 51 genera were identified. Enterobacteriaceae was the most abundant family across all samples, followed by Acetobacteraceae and Acidobacteriaceae, which agree with previous studies performed in other pines and conifers. Endophytic communities and that of the insect gut were significantly different, however, the taxonomic relatedness of certain bacterial genera of pines and insect assemblages suggested that some bacteria from pine tissues might be the same as those in the insect gut. Lastly, the metabolic profile using PICRUSt showed there to be a positive association between communities of both pines and insect gut. This study represents the baseline into the knowledge of the endophytic bacterial communities of two of the major hosts affected by D

  8. Role of CD44 in lymphokine-activated killer cell-mediated killing of melanoma.

    PubMed

    Sun, Jingping; Law, Gabriela P; McKallip, Robert J

    2012-03-01

    In the current study, we examined the potential significance of CD44 expression on lymphokine-activated killer (LAK) cells in their interaction and killing of melanoma cells. Stimulation of splenocytes with IL-2 led to a significant increase in the expression of CD44 on T cells, NK cells, and NKT cells. Treatment of melanoma-bearing CD44 WT mice with IL-2 led to a significant reduction in the local tumor growth while treatment of melanoma-bearing CD44 KO mice with IL-2 was ineffective at controlling tumor growth. Furthermore, the ability of splenocytes from IL-2-treated CD44 KO mice to kill melanoma tumor targets was significantly reduced when compared to the anti-tumor activity of splenocytes from IL-2-treated CD44 WT mice. The importance of CD44 expression on the LAK cells was further confirmed by the observation that adoptively transferred CD44 WT LAK cells were significantly more effective than CD44 KO LAK cells at controlling tumor growth in vivo. Next, the significance of the increased expression of CD44 in tumor killing was examined and showed that following stimulation with IL-2, distinct populations of cells with low (CD44(lo)) or elevated (CD44(hi)) expression of CD44 are generated and that the CD44(hi) cells are responsible for killing of the melanoma cells. The reduced killing activity of the CD44 KO LAK cells did not result from reduced activation or expression of effector molecules but was due, at least in part, to a reduced ability to adhere to B16F10 tumor cells.

  9. Comparative Antianaerobic Activities of Doripenem Determined by MIC and Time-Kill Analysis▿

    PubMed Central

    Credito, Kim L.; Ednie, Lois M.; Appelbaum, Peter C.

    2008-01-01

    Against 447 anaerobe strains, the investigational carbapenem doripenem had an MIC50 of 0.125 μg/ml and an MIC90 of 1 μg/ml. Results were similar to those for imipenem, meropenem, and ertapenem. Time-kill studies showed that doripenem had very good bactericidal activity compared to other carbapenems, with 99.9% killing of 11 strains at 2× MIC after 48 h. PMID:17938185

  10. Mitochondrial Fragmentation in Aspergillus fumigatus as Early Marker of Granulocyte Killing Activity

    PubMed Central

    Ruf, Dominik; Brantl, Victor; Wagener, Johannes

    2018-01-01

    The host's defense against invasive mold infections relies on diverse antimicrobial activities of innate immune cells. However, studying these mechanisms in vitro is complicated by the filamentous nature of such pathogens that typically form long, branched, multinucleated and compartmentalized hyphae. Here we describe a novel method that allows for the visualization and quantification of the antifungal killing activity exerted by human granulocytes against hyphae of the opportunistic pathogen Aspergillus fumigatus. The approach relies on the distinct impact of fungal cell death on the morphology of mitochondria that were visualized with green fluorescent protein (GFP). We show that oxidative stress induces complete fragmentation of the tubular mitochondrial network which correlates with cell death of affected hyphae. Live cell microscopy revealed a similar and non-reversible disruption of the mitochondrial morphology followed by fading of fluorescence in Aspergillus hyphae that were killed by human granulocytes. Quantitative microscopic analysis of fixed samples was subsequently used to estimate the antifungal activity. By utilizing this assay, we demonstrate that lipopolysaccharides as well as human serum significantly increase the killing efficacy of the granulocytes. Our results demonstrate that evaluation of the mitochondrial morphology can be utilized to assess the fungicidal activity of granulocytes against A. fumigatus hyphae. PMID:29868488

  11. Gamma-irradiated bacterial preparation having anti-tumor activity

    DOEpatents

    Vass, Arpad A.; Tyndall, Richard L.; Terzaghi-Howe, Peggy

    1999-01-01

    A bacterial preparation from Pseudomonas species isolated #15 ATCC 55638 that has been exposed to gamma radiation exhibits cytotoxicity that is specific for neoplastic carcinoma cells. A method for obtaining a bacterial preparation having antitumor activity consists of suspending a bacterial isolate in media and exposing the suspension to gamma radiation. A bacterial preparation of an aged culture of an amoeba-associated bacteria exhibits anti-reverse transcriptase activity. A method for obtaining a bacterial preparation having anti-reverse transcriptase activity from an amoeba-associated bacterial isolate grown to stationary phase is disclosed.

  12. Two interdependent mechanisms of antimicrobial activity allow for efficient killing in nylon-3-based polymeric mimics of innate immunity peptides ☆

    PubMed Central

    Lee, Michelle W.; Chakraborty, Saswata; Schmidt, Nathan W.; Murgai, Rajan; Gellman, Samuel H.; Wong, Gerard C.L.

    2015-01-01

    Novel synthetic mimics of antimicrobial peptides have been developed to exhibit structural properties and antimicrobial activity similar to those of natural antimicrobial peptides (AMPs) of the innate immune system. These molecules have a number of potential advantages over conventional antibiotics, including reduced bacterial resistance, cost-effective preparation, and customizable designs. In this study, we investigate a family of nylon-3 polymer-based antimicrobials. By combining vesicle dye leakage, bacterial permeation, and bactericidal assays with small-angle X-ray scattering (SAXS), we find that these polymers are capable of two interdependent mechanisms of action: permeation of bacterial membranes and binding to intracellular targets such as DNA, with the latter necessarily dependent on the former. We systemically examine polymer-induced membrane deformation modes across a range of lipid compositions that mimic both bacteria and mammalian cell membranes. The results show that the polymers' ability to generate negative Gaussian curvature (NGC), a topological requirement for membrane permeation and cellular entry, in model Escherichia coli membranes correlates with their ability to permeate membranes without complete membrane disruption and kill E. coli cells. Our findings suggest that these polymers operate with a concentration dependent mechanism of action: at low concentrations permeation and DNA binding occur without membrane disruption, while at high concentrations complete disruption of the membrane occurs. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. PMID:24743021

  13. Determinants of eukaryal cell killing by the bacterial ribotoxin PrrC

    PubMed Central

    Meineke, Birthe; Schwer, Beate; Schaffrath, Raffael; Shuman, Stewart

    2011-01-01

    tRNA damage inflicted by the Escherichia coli anticodon nuclease PrrC (EcoPrrC) underlies an antiviral response to phage T4 infection. PrrC homologs are present in many bacterial proteomes, though their biological activities are uncharted. PrrCs consist of two domains: an N-terminal NTPase module related to the ABC family and a distinctive C-terminal ribonuclease module. In this article, we report that the expression of EcoPrrC in budding yeast is fungicidal, signifying that PrrC is toxic in a eukaryon in the absence of other bacterial or viral proteins. Whereas Streptococcus PrrC is also toxic in yeast, Neisseria and Xanthomonas PrrCs are not. Via analysis of the effects of 118 mutations on EcoPrrC toxicity in yeast, we identified 22 essential residues in the NTPase domain and 11 in the nuclease domain. Overexpressing PrrCs with mutations in the NTPase active site ameliorated the toxicity of wild-type EcoPrrC. Our findings support a model in which EcoPrrC toxicity is contingent on head-to-tail dimerization of the NTPase domains to form two composite NTP phosphohydrolase sites. Comparisons of EcoPrrC activity in a variety of yeast genetic backgrounds, and the rescuing effects of tRNA overexpression, implicate tRNALys(UUU) as a target of EcoPrrC toxicity in yeast. PMID:20855293

  14. Determinants of eukaryal cell killing by the bacterial ribotoxin PrrC.

    PubMed

    Meineke, Birthe; Schwer, Beate; Schaffrath, Raffael; Shuman, Stewart

    2011-01-01

    tRNA damage inflicted by the Escherichia coli anticodon nuclease PrrC (EcoPrrC) underlies an antiviral response to phage T4 infection. PrrC homologs are present in many bacterial proteomes, though their biological activities are uncharted. PrrCs consist of two domains: an N-terminal NTPase module related to the ABC family and a distinctive C-terminal ribonuclease module. In this article, we report that the expression of EcoPrrC in budding yeast is fungicidal, signifying that PrrC is toxic in a eukaryon in the absence of other bacterial or viral proteins. Whereas Streptococcus PrrC is also toxic in yeast, Neisseria and Xanthomonas PrrCs are not. Via analysis of the effects of 118 mutations on EcoPrrC toxicity in yeast, we identified 22 essential residues in the NTPase domain and 11 in the nuclease domain. Overexpressing PrrCs with mutations in the NTPase active site ameliorated the toxicity of wild-type EcoPrrC. Our findings support a model in which EcoPrrC toxicity is contingent on head-to-tail dimerization of the NTPase domains to form two composite NTP phosphohydrolase sites. Comparisons of EcoPrrC activity in a variety of yeast genetic backgrounds, and the rescuing effects of tRNA overexpression, implicate tRNA(Lys(UUU)) as a target of EcoPrrC toxicity in yeast.

  15. Could Killing Bacterial Subpopulations Hit Tuberculosis out of the Park?

    PubMed

    Baranowski, Catherine; Rubin, Eric J

    2016-07-14

    One hurdle to treating tuberculosis could be that it is so difficult to kill nonreplicating subpopulations of the causative pathogens. This work describes two new cephalosporin derivatives that specifically target this population of Mycobacterium tuberculosis.

  16. Evaluation of bacterial kill when modelling the bronchopulmonary pharmacokinetic profile of moxifloxacin and levofloxacin against parC-containing isolates of Streptococcus pneumoniae.

    PubMed

    Deryke, C Andrew; Du, Xiaoli; Nicolau, David P

    2006-09-01

    The increasingly recognized prevalence of first-step parC mutants in Streptococcus pneumoniae and the development of de novo resistance while on fluoroquinolone therapy are of concern. Previous work by our group demonstrated the ability of moxifloxacin, but not levofloxacin, to eradicate parC mutants. The objective of this experiment was to determine whether these fluoroquinolone antibiotics provided equivalent bacterial kill when similar AUC/MICs were examined. An in vitro pharmacodynamic model was used to simulate the epithelial lining fluid (ELF) concentrations following oral administration of levofloxacin 500 mg once daily and moxifloxacin 400 mg once daily in older adults. In addition, a range of AUC/MICs were also modelled, including levofloxacin 750 mg once daily. Five different S. pneumoniae containing first-step parC mutations and one isolate without mutations were tested for 48 h and time-kill curves were constructed. Samples at 0, 24 and 48 h were collected for phenotypic and genotypic profiling. HPLC was used to verify that target exposures were achieved. The isolate without a parC mutation displayed a 4 log reduction in cfu after treatment with levofloxacin 500 mg and did not select for resistance. In all five isolates containing first-step parC mutations, resistance emerged within 48 h with a > or =16-fold increase in MIC and the acquisition of a gyrA mutant. Increasing the exposure of levofloxacin to approximately 750 mg dose still led to > or =16-fold increase in MIC at 48 h in two of the four isolates containing parC mutations. On the other hand, moxifloxacin 400 mg sustained bacterial killing against the two isolates tested without the selection of resistant mutants. It appears that the critical AUC/MIC necessary to prevent the acquisition of resistance for levofloxacin is 200 and approximately 400 for moxifloxacin. Due to suboptimal exposures, once-daily oral regimens of levofloxacin at both 500 and 750 mg inconsistently led to bactericidal

  17. Gamma-irradiated bacterial preparation having anti-tumor activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vass, A.A.; Tyndall, R.L.; Terzaghi-Howe, P.

    1999-11-16

    This application describes a bacterial preparation from Pseudomonas species isolated {number{underscore}sign}15 ATCC 55638 that has been exposed to gamma radiation exhibits cytotoxicity that is specific for neoplastic carcinoma cells. A method for obtaining a bacterial preparation having antitumor activity consists of suspending a bacterial isolate in media and exposing the suspension to gamma radiation. A bacterial preparation of an aged culture of an amoeba-associated bacteria exhibits anti-reverse transcriptase activity. A method for obtaining a bacterial preparation having anti-reverse transcriptase activity from an amoeba-associated bacterial isolate grown to stationary phase is disclosed.

  18. Two interdependent mechanisms of antimicrobial activity allow for efficient killing in nylon-3-based polymeric mimics of innate immunity peptides.

    PubMed

    Lee, Michelle W; Chakraborty, Saswata; Schmidt, Nathan W; Murgai, Rajan; Gellman, Samuel H; Wong, Gerard C L

    2014-09-01

    Novel synthetic mimics of antimicrobial peptides have been developed to exhibit structural properties and antimicrobial activity similar to those of natural antimicrobial peptides (AMPs) of the innate immune system. These molecules have a number of potential advantages over conventional antibiotics, including reduced bacterial resistance, cost-effective preparation, and customizable designs. In this study, we investigate a family of nylon-3 polymer-based antimicrobials. By combining vesicle dye leakage, bacterial permeation, and bactericidal assays with small-angle X-ray scattering (SAXS), we find that these polymers are capable of two interdependent mechanisms of action: permeation of bacterial membranes and binding to intracellular targets such as DNA, with the latter necessarily dependent on the former. We systemically examine polymer-induced membrane deformation modes across a range of lipid compositions that mimic both bacteria and mammalian cell membranes. The results show that the polymers' ability to generate negative Gaussian curvature (NGC), a topological requirement for membrane permeation and cellular entry, in model Escherichia coli membranes correlates with their ability to permeate membranes without complete membrane disruption and kill E. coli cells. Our findings suggest that these polymers operate with a concentration-dependent mechanism of action: at low concentrations permeation and DNA binding occur without membrane disruption, while at high concentrations complete disruption of the membrane occurs. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Synergy and Order Effects of Antibiotics and Phages in Killing Pseudomonas aeruginosa Biofilms

    PubMed Central

    Chaudhry, Waqas Nasir; Concepción-Acevedo, Jeniffer; Park, Taehyun; Andleeb, Saadia; Bull, James J.

    2017-01-01

    In contrast to planktonic cells, bacteria imbedded biofilms are notoriously refractory to treatment by antibiotics or bacteriophage (phage) used alone. Given that the mechanisms of killing differ profoundly between drugs and phages, an obvious question is whether killing is improved by combining antibiotic and phage therapy. However, this question has only recently begun to be explored. Here, in vitro biofilm populations of Pseudomonas aeruginosa PA14 were treated singly and with combinations of two phages and bactericidal antibiotics of five classes. By themselves, phages and drugs commonly had only modest effects in killing the bacteria. However some phage-drug combinations reduced bacterial densities to well below that of the best single treatment; in some cases, bacterial densities were reduced even below the level expected if both agents killed independently of each other (synergy). Furthermore, there was a profound order effect in some cases: treatment with phages before drugs achieved maximum killing. Combined treatment was particularly effective in killing in Pseudomonas biofilms grown on layers of cultured epithelial cells. Phages were also capable of limiting the extent to which minority populations of bacteria resistant to the treating antibiotic ascend. The potential of combined antibiotic and phage treatment of biofilm infections is discussed as a realistic way to evaluate and establish the use of bacteriophage for the treatment of humans. PMID:28076361

  20. Lactoferricin Peptides Increase Macrophages' Capacity To Kill Mycobacterium avium

    PubMed Central

    Silva, Tânia; Moreira, Ana C.; Nazmi, Kamran; Moniz, Tânia; Vale, Nuno; Rangel, Maria; Gomes, Paula; Bolscher, Jan G. M.; Rodrigues, Pedro N.; Bastos, Margarida

    2017-01-01

    ABSTRACT Mycobacterial infections cause a significant burden of disease and death worldwide. Their treatment is long, toxic, costly, and increasingly prone to failure due to bacterial resistance to currently available antibiotics. New therapeutic options are thus clearly needed. Antimicrobial peptides represent an important source of new antimicrobial molecules, both for their direct activity and for their immunomodulatory potential. We have previously reported that a short version of the bovine antimicrobial peptide lactoferricin with amino acids 17 to 30 (LFcin17–30), along with its variants obtained by specific amino acid substitutions, killed Mycobacterium avium in broth culture. In the present work, those peptides were tested against M. avium living inside its natural host cell, the macrophage. We found that the peptides increased the antimicrobial action of the conventional antibiotic ethambutol inside macrophages. Moreover, the d-enantiomer of the lactoferricin peptide (d-LFcin17–30) was more stable and induced significant killing of intracellular mycobacteria by itself. Interestingly, d-LFcin17–30 did not localize to M. avium-harboring phagosomes but induced the production of proinflammatory cytokines and increased the formation of lysosomes and autophagosome-like vesicles. These results lead us to conclude that d-LFcin17–30 primes macrophages for intracellular microbial digestion through phagosomal maturation and/or autophagy, culminating in mycobacterial killing. IMPORTANCE The genus Mycobacterium comprises several pathogenic species, including M. tuberculosis, M. leprae, M. avium, etc. Infections caused by these bacteria are particularly difficult to treat due to their intrinsic impermeability, low growth rate, and intracellular localization. Antimicrobial peptides are increasingly acknowledged as potential treatment tools, as they have a high spectrum of activity, low tendency to induce bacterial resistance, and immunomodulatory properties. In

  1. Lactoferricin Peptides Increase Macrophages' Capacity To Kill Mycobacterium avium.

    PubMed

    Silva, Tânia; Moreira, Ana C; Nazmi, Kamran; Moniz, Tânia; Vale, Nuno; Rangel, Maria; Gomes, Paula; Bolscher, Jan G M; Rodrigues, Pedro N; Bastos, Margarida; Gomes, Maria Salomé

    2017-01-01

    Mycobacterial infections cause a significant burden of disease and death worldwide. Their treatment is long, toxic, costly, and increasingly prone to failure due to bacterial resistance to currently available antibiotics. New therapeutic options are thus clearly needed. Antimicrobial peptides represent an important source of new antimicrobial molecules, both for their direct activity and for their immunomodulatory potential. We have previously reported that a short version of the bovine antimicrobial peptide lactoferricin with amino acids 17 to 30 (LFcin17-30), along with its variants obtained by specific amino acid substitutions, killed Mycobacterium avium in broth culture. In the present work, those peptides were tested against M. avium living inside its natural host cell, the macrophage. We found that the peptides increased the antimicrobial action of the conventional antibiotic ethambutol inside macrophages. Moreover, the d-enantiomer of the lactoferricin peptide (d-LFcin17-30) was more stable and induced significant killing of intracellular mycobacteria by itself. Interestingly, d-LFcin17-30 did not localize to M. avium -harboring phagosomes but induced the production of proinflammatory cytokines and increased the formation of lysosomes and autophagosome-like vesicles. These results lead us to conclude that d-LFcin17-30 primes macrophages for intracellular microbial digestion through phagosomal maturation and/or autophagy, culminating in mycobacterial killing. IMPORTANCE The genus Mycobacterium comprises several pathogenic species, including M. tuberculosis , M. leprae , M. avium , etc. Infections caused by these bacteria are particularly difficult to treat due to their intrinsic impermeability, low growth rate, and intracellular localization. Antimicrobial peptides are increasingly acknowledged as potential treatment tools, as they have a high spectrum of activity, low tendency to induce bacterial resistance, and immunomodulatory properties. In this study, we

  2. Propionibacterium acnes Bacteriophages Display Limited Genetic Diversity and Broad Killing Activity against Bacterial Skin Isolates

    PubMed Central

    Marinelli, Laura J.; Fitz-Gibbon, Sorel; Hayes, Clarmyra; Bowman, Charles; Inkeles, Megan; Loncaric, Anya; Russell, Daniel A.; Jacobs-Sera, Deborah; Cokus, Shawn; Pellegrini, Matteo; Kim, Jenny; Miller, Jeff F.; Hatfull, Graham F.; Modlin, Robert L.

    2012-01-01

    ABSTRACT Investigation of the human microbiome has revealed diverse and complex microbial communities at distinct anatomic sites. The microbiome of the human sebaceous follicle provides a tractable model in which to study its dominant bacterial inhabitant, Propionibacterium acnes, which is thought to contribute to the pathogenesis of the human disease acne. To explore the diversity of the bacteriophages that infect P. acnes, 11 P. acnes phages were isolated from the sebaceous follicles of donors with healthy skin or acne and their genomes were sequenced. Comparative genomic analysis of the P. acnes phage population, which spans a 30-year temporal period and a broad geographic range, reveals striking similarity in terms of genome length, percent GC content, nucleotide identity (>85%), and gene content. This was unexpected, given the far-ranging diversity observed in virtually all other phage populations. Although the P. acnes phages display a broad host range against clinical isolates of P. acnes, two bacterial isolates were resistant to many of these phages. Moreover, the patterns of phage resistance correlate closely with the presence of clustered regularly interspaced short palindromic repeat elements in the bacteria that target a specific subset of phages, conferring a system of prokaryotic innate immunity. The limited diversity of the P. acnes bacteriophages, which may relate to the unique evolutionary constraints imposed by the lipid-rich anaerobic environment in which their bacterial hosts reside, points to the potential utility of phage-based antimicrobial therapy for acne. PMID:23015740

  3. New target for inhibition of bacterial RNA polymerase: 'switch region'.

    PubMed

    Srivastava, Aashish; Talaue, Meliza; Liu, Shuang; Degen, David; Ebright, Richard Y; Sineva, Elena; Chakraborty, Anirban; Druzhinin, Sergey Y; Chatterjee, Sujoy; Mukhopadhyay, Jayanta; Ebright, Yon W; Zozula, Alex; Shen, Juan; Sengupta, Sonali; Niedfeldt, Rui Rong; Xin, Cai; Kaneko, Takushi; Irschik, Herbert; Jansen, Rolf; Donadio, Stefano; Connell, Nancy; Ebright, Richard H

    2011-10-01

    A new drug target - the 'switch region' - has been identified within bacterial RNA polymerase (RNAP), the enzyme that mediates bacterial RNA synthesis. The new target serves as the binding site for compounds that inhibit bacterial RNA synthesis and kill bacteria. Since the new target is present in most bacterial species, compounds that bind to the new target are active against a broad spectrum of bacterial species. Since the new target is different from targets of other antibacterial agents, compounds that bind to the new target are not cross-resistant with other antibacterial agents. Four antibiotics that function through the new target have been identified: myxopyronin, corallopyronin, ripostatin, and lipiarmycin. This review summarizes the switch region, switch-region inhibitors, and implications for antibacterial drug discovery. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Ecological approaches to oral biofilms: control without killing.

    PubMed

    Marsh, Phil D; Head, David A; Devine, Deirdre A

    2015-01-01

    Humans have co-evolved with micro-organisms and have a symbiotic or mutualistic relationship with their resident microbiome. As at other body surfaces, the mouth has a diverse microbiota that grows on oral surfaces as structurally and functionally organised biofilms. The oral microbiota is natural and provides important benefits to the host, including immunological priming, down-regulation of excessive pro-inflammatory responses, regulation of gastrointestinal and cardiovascular systems, and colonisation by exogenous microbes. On occasions, this symbiotic relationship breaks down, and previously minor components of the microbiota outcompete beneficial bacteria, thereby increasing the risk of disease. Antimicrobial agents have been formulated into many oral care products to augment mechanical plaque control. A delicate balance is needed, however, to control the oral microbiota at levels compatible with health, without killing beneficial bacteria and losing the key benefits delivered by these resident microbes. These antimicrobial agents may achieve this by virtue of their recommended twice daily topical use, which results in pharmacokinetic profiles indicating that they are retained in the mouth for relatively long periods at sublethal levels. At these concentrations they are still able to inhibit bacterial traits implicated in disease (e.g. sugar transport/acid production; protease activity) and retard growth without eliminating beneficial species. In silico modelling studies have been performed which support the concept that either reducing the frequency of acid challenge and/or the terminal pH, or by merely slowing bacterial growth, results in maintaining a community of beneficial bacteria under conditions that might otherwise lead to disease (control without killing). 2015 S. Karger AG, Basel

  5. Activity of Telithromycin (HMR 3647) against Anaerobic Bacteria Compared to Those of Eight Other Agents by Time-Kill Methodology†

    PubMed Central

    Credito, Kim L.; Ednie, Lois M.; Jacobs, Michael R.; Appelbaum, Peter C.

    1999-01-01

    Time-kill studies examined the activities of telithromycin (HMR 3647), erythromycin A, azithromycin, clarithromycin, roxithromycin, clindamycin, pristinamycin, amoxicillin-clavulanate, and metronidazole against 11 gram-positive and gram-negative anaerobic bacteria. Time-kill studies were carried out with the addition of Oxyrase in order to prevent the introduction of CO2. Macrolide-azalide-ketolide MICs were 0.004 to 32.0 μg/ml. Of the latter group, telithromycin had the lowest MICs, especially against non-Bacteroides fragilis group strains, followed by azithromycin, clarithromycin, erythromycin A, and roxithromycin. Clindamycin was active (MIC ≤ 2.0 μg/ml) against all anaerobes except Peptostreptococcus magnus and Bacteroides thetaiotaomicron, while pristinamycin MICs were 0.06 to 4.0 μg/ml. Amoxicillin-clavulanate had MICs of ≤1.0 μg/ml, while metronidazole was active (MICs, 0.03 to 2.0 μg/ml) against all except Propionibacterium acnes. After 48 h at twice the MIC, telithromycin was bactericidal (≥99.9% killing) against 6 strains, with 99% killing of 9 strains and 90% killing of 10 strains. After 24 h at twice the MIC, 90, 99, and 99.9% killing of nine, six, and three strains, respectively, occurred. Lower rates of killing were seen at earlier times. Similar kill kinetics relative to the MIC were seen with other macrolides. After 48 h at the MIC, clindamycin was bactericidal against 8 strains, with 99 and 90% killing of 9 and 10 strains, respectively. After 24 h, 90% killing of 10 strains occurred at the MIC. The kinetics of clindamycin were similar to those of pristinamycin. After 48 h at the MIC, amoxicillin-clavulanate showed 99.9% killing of seven strains, with 99% killing of eight strains and 90% killing of nine strains. At four times the MIC, metronidazole was bactericidal against 8 of 10 strains tested after 48 h and against all 10 strains after 24 h; after 12 h, 99% killing of all 10 strains occurred. PMID:10428930

  6. Activity of telithromycin (HMR 3647) against anaerobic bacteria compared to those of eight other agents by time-kill methodology.

    PubMed

    Credito, K L; Ednie, L M; Jacobs, M R; Appelbaum, P C

    1999-08-01

    Time-kill studies examined the activities of telithromycin (HMR 3647), erythromycin A, azithromycin, clarithromycin, roxithromycin, clindamycin, pristinamycin, amoxicillin-clavulanate, and metronidazole against 11 gram-positive and gram-negative anaerobic bacteria. Time-kill studies were carried out with the addition of Oxyrase in order to prevent the introduction of CO(2). Macrolide-azalide-ketolide MICs were 0.004 to 32.0 microg/ml. Of the latter group, telithromycin had the lowest MICs, especially against non-Bacteroides fragilis group strains, followed by azithromycin, clarithromycin, erythromycin A, and roxithromycin. Clindamycin was active (MIC active (MICs, 0.03 to 2.0 microg/ml) against all except Propionibacterium acnes. After 48 h at twice the MIC, telithromycin was bactericidal (>/=99.9% killing) against 6 strains, with 99% killing of 9 strains and 90% killing of 10 strains. After 24 h at twice the MIC, 90, 99, and 99.9% killing of nine, six, and three strains, respectively, occurred. Lower rates of killing were seen at earlier times. Similar kill kinetics relative to the MIC were seen with other macrolides. After 48 h at the MIC, clindamycin was bactericidal against 8 strains, with 99 and 90% killing of 9 and 10 strains, respectively. After 24 h, 90% killing of 10 strains occurred at the MIC. The kinetics of clindamycin were similar to those of pristinamycin. After 48 h at the MIC, amoxicillin-clavulanate showed 99.9% killing of seven strains, with 99% killing of eight strains and 90% killing of nine strains. At four times the MIC, metronidazole was bactericidal against 8 of 10 strains tested after 48 h and against all 10 strains after 24 h; after 12 h, 99% killing of all 10 strains occurred.

  7. Increased Staphylococcus-killing activity of an antimicrobial peptide, lactoferricin B, with minocycline and monoacylglycerol.

    PubMed

    Wakabayashi, Hiroyuki; Teraguchi, Susumu; Tamura, Yoshitaka

    2002-10-01

    This study aimed to find antibiotics or other compounds that could increase the antimicrobial activity of an antimicrobial peptide, lactoferricin B (LFcin B), against Staphylococcus aureus, including antibiotic-resistant strains. Among conventional antibiotics, minocycline increased the bactericidal activity of LFcin B against S. aureus, but methicillin, ceftizoxime, and sulfamethoxazole-trimethoprim did not have such an effect. The combination of minocycline and LFcin B had synergistic effects against three antibiotic-resistant strains of S. aureus, according to result of checkerboard analysis. Screening of 33 compounds, including acids and salts, alcohols, amino acids, proteins and peptides, sugar, and lipids, showed that medium-chain monoacylglycerols increased the bactericidal activity of LFcin B against three S. aureus strains. The short-term killing test in water and the killing curve test in growing cultures showed that a combination of LFcin B and monolaurin (a monoacylglycerol with a 12-carbon acyl chain) killed S. aureus more rapidly than either agent alone. These findings may be helpful in the application of antimicrobial peptides in medical or other situations.

  8. The development and evaluation of ultrasound for the treatment of bacterial suspensions. A study of frequency, power and sonication time on cultured Bacillus species.

    PubMed

    Joyce, E; Phull, S S; Lorimer, J P; Mason, T J

    2003-10-01

    Some species of bacteria produce colonies and spores which agglomerate in spherical clusters (Bacillus subtilis) and this serves as a protection for the organisms inside against biocidal attack. Flocs of fine particles e.g. clay can entrap bacteria which can also protect them against the biocides. It is because of problems such as these that alternative methods of disinfecting water are under active investigation. One such method is the use of power ultrasound, either alone or in combination with other methods. Ultrasound is able to inactivate bacteria and deagglomerate bacterial clusters or flocs through a number of physical, mechanical and chemical effects arising from acoustic cavitation. The aim of this study was to investigate the effect of power ultrasound at different powers and frequencies on Bacillus subtilis. Viable plate count techniques were used as a measure of microbial activity. Results showed a significant increase in percent kill for Bacillus species with increasing duration of exposure and intensity of ultrasound in the low-kilohertz range (20 and 38 kHz). Results obtained at two higher frequencies (512 and 850 kHz) indicated a significant increase in bacteria count suggesting declumping. In assessing the bacterial kill with time under different sonication regimes three types of behaviour were characterized: High power ultrasound (lower frequencies) in low volumes of bacterial suspension results in a continuous reduction in bacterial cell numbers i.e. the kill rate predominates. High power ultrasound (lower frequencies) in larger volumes results in an initial rise in cell numbers suggesting declumping of the bacteria but this initial rise then falls as the declumping finishes and the kill rate becomes more important. Low intensity ultrasound (higher frequencies) gives an initial rise in cell numbers as a result of declumping. The kill rate is low and so there is no significant subsequent decrease in bacterial cell numbers.

  9. Application of a loading dose of colistin methanesulfonate in critically ill patients: population pharmacokinetics, protein binding, and prediction of bacterial kill.

    PubMed

    Mohamed, Ami F; Karaiskos, Ilias; Plachouras, Diamantis; Karvanen, Matti; Pontikis, Konstantinos; Jansson, Britt; Papadomichelakis, Evangelos; Antoniadou, Anastasia; Giamarellou, Helen; Armaganidis, Apostolos; Cars, Otto; Friberg, Lena E

    2012-08-01

    A previous pharmacokinetic study on dosing of colistin methanesulfonate (CMS) at 240 mg (3 million units [MU]) every 8 h indicated that colistin has a long half-life, resulting in insufficient concentrations for the first 12 to 48 h after initiation of treatment. A loading dose would therefore be beneficial. The aim of this study was to evaluate CMS and colistin pharmacokinetics following a 480-mg (6-MU) loading dose in critically ill patients and to explore the bacterial kill following the use of different dosing regimens obtained by predictions from a pharmacokinetic-pharmacodynamic model developed from an in vitro study on Pseudomonas aeruginosa. The unbound fractions of colistin A and colistin B were determined using equilibrium dialysis and considered in the predictions. Ten critically ill patients (6 males; mean age, 54 years; mean creatinine clearance, 82 ml/min) with infections caused by multidrug-resistant Gram-negative bacteria were enrolled in the study. The pharmacokinetic data collected after the first and eighth doses were analyzed simultaneously with the data from the previous study (total, 28 patients) in the NONMEM program. For CMS, a two-compartment model best described the pharmacokinetics, and the half-lives of the two phases were estimated to be 0.026 and 2.2 h, respectively. For colistin, a one-compartment model was sufficient and the estimated half-life was 18.5 h. The unbound fractions of colistin in the patients were 26 to 41% at clinical concentrations. Colistin A, but not colistin B, had a concentration-dependent binding. The predictions suggested that the time to 3-log-unit bacterial kill for a 480-mg loading dose was reduced to half of that for the dose of 240 mg.

  10. Application of a Loading Dose of Colistin Methanesulfonate in Critically Ill Patients: Population Pharmacokinetics, Protein Binding, and Prediction of Bacterial Kill

    PubMed Central

    Karaiskos, Ilias; Plachouras, Diamantis; Karvanen, Matti; Pontikis, Konstantinos; Jansson, Britt; Papadomichelakis, Evangelos; Antoniadou, Anastasia; Giamarellou, Helen; Armaganidis, Apostolos; Cars, Otto; Friberg, Lena E.

    2012-01-01

    A previous pharmacokinetic study on dosing of colistin methanesulfonate (CMS) at 240 mg (3 million units [MU]) every 8 h indicated that colistin has a long half-life, resulting in insufficient concentrations for the first 12 to 48 h after initiation of treatment. A loading dose would therefore be beneficial. The aim of this study was to evaluate CMS and colistin pharmacokinetics following a 480-mg (6-MU) loading dose in critically ill patients and to explore the bacterial kill following the use of different dosing regimens obtained by predictions from a pharmacokinetic-pharmacodynamic model developed from an in vitro study on Pseudomonas aeruginosa. The unbound fractions of colistin A and colistin B were determined using equilibrium dialysis and considered in the predictions. Ten critically ill patients (6 males; mean age, 54 years; mean creatinine clearance, 82 ml/min) with infections caused by multidrug-resistant Gram-negative bacteria were enrolled in the study. The pharmacokinetic data collected after the first and eighth doses were analyzed simultaneously with the data from the previous study (total, 28 patients) in the NONMEM program. For CMS, a two-compartment model best described the pharmacokinetics, and the half-lives of the two phases were estimated to be 0.026 and 2.2 h, respectively. For colistin, a one-compartment model was sufficient and the estimated half-life was 18.5 h. The unbound fractions of colistin in the patients were 26 to 41% at clinical concentrations. Colistin A, but not colistin B, had a concentration-dependent binding. The predictions suggested that the time to 3-log-unit bacterial kill for a 480-mg loading dose was reduced to half of that for the dose of 240 mg. PMID:22615285

  11. Cryptococcus Neoformans Modulates Extracellular Killing by Neutrophils

    PubMed Central

    Qureshi, Asfia; Grey, Angus; Rose, Kristie L.; Schey, Kevin L.; Del Poeta, Maurizio

    2011-01-01

    We recently established a key role for host sphingomyelin synthase (SMS) in regulating the killing activity of neutrophils against Cryptococcus neoformans. In this paper, we studied the effect of C. neoformans on the killing activity of neutrophils and whether SMS would still be a player against C. neoformans in immunocompromised mice lacking T and natural killer (NK) cells (Tgε26 mice). To this end, we analyzed whether C. neoformans would have any effect on neutrophil survival and killing in vitro and in vivo. We show that unlike Candida albicans, neither the presence nor the capsule size of C. neoformans cells have any effect on neutrophil viability. Interestingly, melanized C. neoformans cells totally abrogated the killing activity of neutrophils. We monitored how exposure of neutrophils to C. neoformans cells would interfere with any further killing activity of the conditioned medium and found that pre-incubation with live but not “heat-killed” fungal cells significantly inhibits further killing activity of the medium. We then studied whether activation of SMS at the site of C. neoformans infection is dependent on T and NK cells. Using matrix-assisted laser desorption–ionization tissue imaging in infected lung we found that similar to previous observations in the isogenic wild-type CBA/J mice, SM 16:0 levels are significantly elevated at the site of infection in mice lacking T and NK cells, but only at early time points. This study highlights that C. neoformans may negatively regulate the killing activity of neutrophils and that SMS activation in neutrophils appears to be partially independent of T and/or NK cells. PMID:21960987

  12. Bacterial Responses to Reactive Chlorine Species

    PubMed Central

    Gray, Michael J.; Wholey, Wei-Yun; Jakob, Ursula

    2013-01-01

    Hypochlorous acid (HOCl), the active ingredient of household bleach, is the most common disinfectant in medical, industrial, and domestic use and plays an important role in microbial killing in the innate immune system. Given the critical importance of the antimicrobial properties of chlorine to public health, it is surprising how little is known about the ways in which bacteria sense and respond to reactive chlorine species (RCS). Although the literature on bacterial responses to reactive oxygen species (ROS) is enormous, work addressing bacterial responses to RCS has begun only recently. Transcriptomic and proteomic studies now provide new insights into how bacteria mount defenses against this important class of antimicrobial compounds. In this review, we summarize the current knowledge, emphasizing the overlaps between RCS stress responses and other more well-characterized bacterial defense systems, and identify outstanding questions that represent productive avenues for future research. PMID:23768204

  13. Copper effects on bacterial activity of estuarine silty sediments

    NASA Astrophysics Data System (ADS)

    Almeida, Adelaide; Cunha, Ângela; Fernandes, Sandra; Sobral, Paula; Alcântara, Fernanda

    2007-07-01

    Bacteria of silty estuarine sediments were spiked with copper to 200 μg Cu g -1 dry weight sediment in order to assess the impact of copper on bacterial degradation of organic matter and on bacterial biomass production. Bacterial density was determined by direct counting under epifluorescence microscopy and bacterial production by the incorporation of 3H-Leucine. Leucine turnover rate was evaluated by 14C-leucine incorporation and ectoenzymatic activities were estimated as the hydrolysis rate of model substrates for β-glucosidase and leucine-aminopeptidase. The presence of added copper in the microcosms elicited, after 21 days of incubation, generalised anoxia and a decrease in organic matter content. The non-eroded surface of the copper-spiked sediment showed, when compared to the control, a decrease in bacterial abundance and significant lower levels of bacterial production and of leucine turnover rate. Bacterial production and leucine turnover rate decreased to 1.4% and 13% of the control values, respectively. Ectoenzymatic activities were also negatively affected but by smaller factors. After erosion by the water current in laboratory flume conditions, the eroded surface of the control sediment showed a generalised decline in all bacterial activities. The erosion of the copper-spiked sediment showed, however, two types of responses with respect to bacterial activities at the exposed surface: positive responses of bacterial production and leucine turnover rate contrasting with slight negative responses of ectoenzymatic activities. The effects of experimental erosion in the suspended cells were also different in the control and in the copper-spiked sediment. Bacterial cells in the control microcosm exhibited, when compared to the non-eroded sediment cells, decreases in all activities after the 6-h suspension. The response of the average suspended copper-spiked sediment cell differed from the control by a less sharp decrease in ectoenzymatic activities and

  14. Photothermal Nanotherapeutics and Nanodiagnostics for Selective Killing of Bacteria Targeted with Gold Nanoparticles

    PubMed Central

    Zharov, Vladimir P.; Mercer, Kelly E.; Galitovskaya, Elena N.; Smeltzer, Mark S.

    2006-01-01

    We describe a new method for selective laser killing of bacteria targeted with light-absorbing gold nanoparticles conjugated with specific antibodies. The multifunctional photothermal (PT) microscope/spectrometer provides a real-time assessment of this new therapeutic intervention. In this integrated system, strong laser-induced overheating effects accompanied by the bubble-formation phenomena around clustered gold nanoparticles are the main cause of bacterial damage. PT imaging and time-resolved monitoring of the integrated PT responses assessed these effects. Specifically, we used this technology for selective killing of the Gram-positive bacterium Staphylococcus aureus by targeting the bacterial surface using 10-, 20-, and 40-nm gold particles conjugated with anti-protein A antibodies. Labeled bacteria were irradiated with focused laser pulses (420–570 nm, 12 ns, 0.1–5 J/cm2, 100 pulses), and laser-induced bacterial damage observed at different laser fluences and nanoparticle sizes was verified by optical transmission, electron microscopy, and conventional viability testing. PMID:16239330

  15. Preventing bacterial growth on implanted device with an interfacial metallic film and penetrating X-rays.

    PubMed

    An, Jincui; Sun, An; Qiao, Yong; Zhang, Peipei; Su, Ming

    2015-02-01

    Device-related infections have been a big problem for a long time. This paper describes a new method to inhibit bacterial growth on implanted device with tissue-penetrating X-ray radiation, where a thin metallic film deposited on the device is used as a radio-sensitizing film for bacterial inhibition. At a given dose of X-ray, the bacterial viability decreases as the thickness of metal film (bismuth) increases. The bacterial viability decreases with X-ray dose increases. At X-ray dose of 2.5 Gy, 98% of bacteria on 10 nm thick bismuth film are killed; while it is only 25% of bacteria are killed on the bare petri dish. The same dose of X-ray kills 8% fibroblast cells that are within a short distance from bismuth film (4 mm). These results suggest that penetrating X-rays can kill bacteria on bismuth thin film deposited on surface of implant device efficiently.

  16. Nitric oxide-dependent killing of aerobic, anaerobic and persistent Burkholderia pseudomallei

    PubMed Central

    Jones-Carson, Jessica; Laughlin, James R.; Stewart, Amanda L.; Voskuil, Martin I.; Vázquez-Torres, Andrés

    2012-01-01

    Burkholderia pseudomallei infections are fastidious to treat with conventional antibiotic therapy, often involving a combination of drugs and long-term regimes. Bacterial genetic determinants contribute to the resistance of B. pseudomallei to many classes of antibiotics. In addition, anaerobiosis and hypoxia in abscesses typical of melioidosis select for persistent populations of B. pseudomallei refractory to a broad spectrum of antibacterials. We tested the susceptibility of B. pseudomallei to the drugs hydroxyurea, spermine NONOate and DETA NONOate that release nitric oxide (NO). Our investigations indicate that B. pseudomallei are killed by NO in a concentration and time-dependent fashion. The cytoxicity of this diatomic radical against B. pseudomallei depends on both the culture medium and growth phase of the bacteria. Rapidly growing, but not stationary phase, B. pseudomallei are readily killed upon exposure to the NO donor spermine NONOate. NO also has excellent antimicrobial activity against anaerobic B. pseudomallei. In addition, persistent bacteria highly resistant to most conventional antibiotics are remarkably susceptible to NO. Sublethal concentrations of NO inhibited the enzymatic activity of [4Fe-4S]-cofactored aconitase of aerobic and anaerobic B. pseudomallei. The strong anti-B. pseudomallei activity of NO described herein merits further studies on the application of NO-based antibiotics for the treatment of melioidosis. PMID:22521523

  17. Bisphosphocins: novel antimicrobials for enhanced killing of drug-resistant and biofilm-forming bacteria.

    PubMed

    Wong, Jonathan P; DiTullio, Paul; Parkinson, Steve

    2015-01-01

    The global prevalence of antibiotic resistance and the threat posed by drug-resistant superbugs are a leading challenge confronting modern medicine in the 21st century. However, the progress on the development of novel antibiotics to combat this problem is severely lagging. A more concerted effort to develop novel therapeutic agents with robust activity and unique mechanisms of action will be needed to overcome the problem of drug resistance. Furthermore, biofilm forming bacteria are known to be increasingly resistant to the actions of antibiotics and are a leading cause of mortality or morbidity in nosocomial infections. Bisphosphocins (also scientifically known as nubiotics) are novel small protonated deoxynucleotide molecules, and exert their antibacterial activity by depolarization of the bacterial cell membrane, causing bacterial cell death. Bisphosphocins may represent an effective weapon against antibiotic-resistant and biofilm-forming pathogenic bacteria. Preclinical efficacy studies in animals have shown that the compounds are safe and, efficacious against various bacterial infections, including drug-resistant pathogens. In vitro biochemical analysis confirmed that the bactericidal activity of bisphosphocins is mediated by depolarization of the bacterial cell membrane, and these compounds are better able to penetrate through bacterial biofilm and kill the biofilm encased bacteria. This article will cover the structure, mode of action, safety, efficacy and the current state of development of bisphosphocins. Together, the information presented here will present a strong case for bisphosphocins to be considered for use as new weapons to complement the existing arsenal of antimicrobial drugs and as a first line defence against drug-resistant and biofilm-forming bacteria.

  18. Antibacterial surface design - Contact kill

    NASA Astrophysics Data System (ADS)

    Kaur, Rajbir; Liu, Song

    2016-08-01

    Designing antibacterial surfaces has become extremely important to minimize Healthcare Associated Infections which are a major cause of mortality worldwide. A previous biocide-releasing approach is based on leaching of encapsulated biocides such as silver and triclosan which exerts negative impacts on the environment and potentially contributes to the development of bacterial resistance. This drawback of leachable compounds led to the shift of interest towards a more sustainable and environmentally friendly approach: contact-killing surfaces. Biocides that can be bound onto surfaces to give the substrates contact-active antibacterial activity include quaternary ammonium compounds (QACs), quaternary phosphoniums (QPs), carbon nanotubes, antibacterial peptides, and N-chloramines. Among the above, QACs and N-chloramines are the most researched contact-active biocides. We review the engineering of contact-active surfaces using QACs or N-chloramines, the modes of actions as well as the test methods. The charge-density threshold of cationic surfaces for desired antibacterial efficacy and attempts to combine various biocides for the generation of new contact-active surfaces are discussed in detail. Surface positive charge density is identified as a key parameter to define antibacterial efficacy. We expect that this research field will continue to attract more research interest in view of the potential impact of self-disinfective surfaces on healthcare-associated infections, food safety and corrosion/fouling resistance required on industrial surfaces such as oil pipes and ship hulls.

  19. Tetracyclines function as dual-action light-activated antibiotics.

    PubMed

    He, Ya; Huang, Ying-Ying; Xi, Liyan; Gelfand, Jeffrey A; Hamblin, Michael R

    2018-01-01

    Antimicrobial photodynamic inactivation (aPDI) employs photosensitizing dyes activated by visible light to produce reactive oxygen species. aPDI is independent of the antibiotic resistance status of the target cells, and is thought unlikely to produce resistance itself. Among many PS that have been investigated, tetracyclines occupy a unique niche. They are potentially dual-action compounds that can both kill bacteria under illumination, and prevent bacterial regrowth by inhibiting ribosomes. Tetracycline antibiotics are regarded as bacteriostatic rather than bactericidal. Doxycycline (DOTC) is excited best by UVA light (365 nm) while demeclocycline (DMCT) can be efficiently activated by blue light (415 nm) as well as UVA. Both compounds were able to eradicate Gram-positive (methicillin-resistant Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria (>6 log(10) steps of killing) at concentrations (10-50μM) and fluences (10-20J/cm2). In contrast to methylene blue, MB plus red light, tetracyclines photoinactivated bacteria in rich growth medium. When ~3 logs of bacteria were killed with DMCT/DOTC+light and the surviving cells were added to growth medium, further bacterial killing was observed, while the same experiment with MB allowed complete regrowth. MIC studies were carried out either in the dark or exposed to 0.5mW/cm2 blue light. Up to three extra steps (8-fold) increased antibiotic activity was found with light compared to dark, with MRSA and tetracycline-resistant strains of E. coli. Tetracyclines can accumulate in bacterial ribosomes, where they could be photoactivated with blue/UVA light producing microbial killing via ROS generation.

  20. Anti-Pseudomonas aeruginosa IgY Antibodies Induce Specific Bacterial Aggregation and Internalization in Human Polymorphonuclear Neutrophils

    PubMed Central

    Thomsen, K.; Christophersen, L.; Bjarnsholt, T.; Jensen, P. Ø.; Moser, C.

    2015-01-01

    Polymorphonuclear neutrophils (PMNs) are essential cellular constituents in the innate host response, and their recruitment to the lungs and subsequent ubiquitous phagocytosis controls primary respiratory infection. Cystic fibrosis pulmonary disease is characterized by progressive pulmonary decline governed by a persistent, exaggerated inflammatory response dominated by PMNs. The principal contributor is chronic Pseudomonas aeruginosa biofilm infection, which attracts and activates PMNs and thereby is responsible for the continuing inflammation. Strategies to prevent initial airway colonization with P. aeruginosa by augmenting the phagocytic competence of PMNs may postpone the deteriorating chronic biofilm infection. Anti-P. aeruginosa IgY antibodies significantly increase the PMN-mediated respiratory burst and subsequent bacterial killing of P. aeruginosa in vitro. The mode of action is attributed to IgY-facilitated formation of immobilized bacteria in aggregates, as visualized by fluorescence microscopy and the induction of increased bacterial hydrophobicity. Thus, the present study demonstrates that avian egg yolk immunoglobulins (IgY) targeting P. aeruginosa modify bacterial fitness, which enhances bacterial killing by PMN-mediated phagocytosis and thereby may facilitate a rapid bacterial clearance in airways of people with cystic fibrosis. PMID:25895968

  1. Staphylococcus aureus capsular polysaccharide types 5 and 8 reduce killing by bovine neutrophils in vitro.

    PubMed

    Kampen, Annette H; Tollersrud, Tore; Lund, Arve

    2005-03-01

    Isogenic variants of Staphylococcus aureus strain Reynolds expressing either no capsule or capsular polysaccharide (CP) type 5 (CP5) or type 8 (CP8) were used to assess the effect of CP on bacterial killing and the respiratory burst of bovine neutrophils. The effects of antisera specific for CP5 and CP8 were also evaluated. The killing of live bacteria by isolated neutrophils was quantified in a bactericidal assay, while the respiratory burst after stimulation with live bacteria in whole blood was measured by flow cytometry. The expression of a CP5 or CP8 capsule protected the bacteria from being killed by bovine neutrophils in vitro (P <0.001), and the capsule-expressing variants did not stimulate respiratory burst activity in calf whole blood. The addition of serotype-specific antisera increased the killing of the capsule-expressing bacteria and enhanced their stimulating effect in the respiratory burst assay (P <0.01). When the S. aureus variants were grown under conditions known not to promote capsule expression, there were no significant differences between them. The present study demonstrates that the expression of S. aureus CP5 or CP8 confers resistance to opsonophagocytic killing and prevents the bacteria from inducing respiratory burst of bovine neutrophils in vitro and that these effects can be reversed by the addition of serotype-specific antisera.

  2. Mechanisms of Dendritic Cell Lysosomal Killing of Cryptococcus

    NASA Astrophysics Data System (ADS)

    Hole, Camaron R.; Bui, Hoang; Wormley, Floyd L.; Wozniak, Karen L.

    2012-10-01

    Cryptococcus neoformans is an opportunistic pulmonary fungal pathogen that disseminates to the CNS causing fatal meningitis in immunocompromised patients. Dendritic cells (DCs) phagocytose C. neoformans following inhalation. Following uptake, cryptococci translocate to the DC lysosomal compartment and are killed by oxidative and non-oxidative mechanisms. DC lysosomal extracts kill cryptococci in vitro; however, the means of antifungal activity remain unknown. Our studies determined non-oxidative antifungal activity by DC lysosomal extract. We examined DC lysosomal killing of cryptococcal strains, anti-fungal activity of purified lysosomal enzymes, and mechanisms of killing against C. neoformans. Results confirmed DC lysosome fungicidal activity against all cryptococcal serotypes. Purified lysosomal enzymes, specifically cathepsin B, inhibited cryptococcal growth. Interestingly, cathepsin B combined with its enzymatic inhibitors led to enhanced cryptococcal killing. Electron microscopy revealed structural changes and ruptured cryptococcal cell walls following treatment. Finally, additional studies demonstrated that osmotic lysis was responsible for cryptococcal death.

  3. Hijacking Complement Regulatory Proteins for Bacterial Immune Evasion.

    PubMed

    Hovingh, Elise S; van den Broek, Bryan; Jongerius, Ilse

    2016-01-01

    The human complement system plays an important role in the defense against invading pathogens, inflammation and homeostasis. Invading microbes, such as bacteria, directly activate the complement system resulting in the formation of chemoattractants and in effective labeling of the bacteria for phagocytosis. In addition, formation of the membrane attack complex is responsible for direct killing of Gram-negative bacteria. In turn, bacteria have evolved several ways to evade complement activation on their surface in order to be able to colonize and invade the human host. One important mechanism of bacterial escape is attraction of complement regulatory proteins to the microbial surface. These molecules are present in the human body for tight regulation of the complement system to prevent damage to host self-surfaces. Therefore, recruitment of complement regulatory proteins to the bacterial surface results in decreased complement activation on the microbial surface which favors bacterial survival. This review will discuss recent advances in understanding the binding of complement regulatory proteins to the bacterial surface at the molecular level. This includes, new insights that have become available concerning specific conserved motives on complement regulatory proteins that are favorable for microbial binding. Finally, complement evasion molecules are of high importance for vaccine development due to their dominant role in bacterial survival, high immunogenicity and homology as well as their presence on the bacterial surface. Here, the use of complement evasion molecules for vaccine development will be discussed.

  4. Hijacking Complement Regulatory Proteins for Bacterial Immune Evasion

    PubMed Central

    Hovingh, Elise S.; van den Broek, Bryan; Jongerius, Ilse

    2016-01-01

    The human complement system plays an important role in the defense against invading pathogens, inflammation and homeostasis. Invading microbes, such as bacteria, directly activate the complement system resulting in the formation of chemoattractants and in effective labeling of the bacteria for phagocytosis. In addition, formation of the membrane attack complex is responsible for direct killing of Gram-negative bacteria. In turn, bacteria have evolved several ways to evade complement activation on their surface in order to be able to colonize and invade the human host. One important mechanism of bacterial escape is attraction of complement regulatory proteins to the microbial surface. These molecules are present in the human body for tight regulation of the complement system to prevent damage to host self-surfaces. Therefore, recruitment of complement regulatory proteins to the bacterial surface results in decreased complement activation on the microbial surface which favors bacterial survival. This review will discuss recent advances in understanding the binding of complement regulatory proteins to the bacterial surface at the molecular level. This includes, new insights that have become available concerning specific conserved motives on complement regulatory proteins that are favorable for microbial binding. Finally, complement evasion molecules are of high importance for vaccine development due to their dominant role in bacterial survival, high immunogenicity and homology as well as their presence on the bacterial surface. Here, the use of complement evasion molecules for vaccine development will be discussed. PMID:28066340

  5. Effect of pulsed ultrasound in combination with gentamicin on bacterial killing of biofilms on bone cements in vivo

    PubMed Central

    Ensing, G.T.; Roeder, B.L.; Nelson, J.L.; van Horn, J.R.; van der Mei, H.C.; Busscher, H.J.; Pitt, W.G.

    2008-01-01

    Aim The aim of this study is to investigate whether pulsed ultrasound in combination with gentamicin yields increased killing of bacterial biofilms on bone cements in vivo. Methods and Results Bacterial survival on bone cement in the presence and absence of ultrasound was compared in a rabbit model. Two bone cement samples with E. coli ATCC 10798 biofilm were implanted in a total of nine rabbits. In two groups bone cement disks loaded with gentamicin were used, and in one group unloaded bone cement disks in combination with systemically administered gentamicin were used. Pulsed ultrasound with a mean acoustic intensity of 167 mW cm−2 and a maximum acoustic intensity of 500 mW cm−2 was applied from 24 h till 72 h post surgery on one of the two implanted disks. After euthanization, the bacteria removed from the disk were quantified. Application of ultrasound, combined with gentamicin, reduced the biofilm in all three groups varying between 58 to 69% compared to the negative control. Ultrasound proved to be safe with respect to creating skin lesions. Conclusions Ultrasound resulted in an tendency of improved efficacy of gentamicin, either applied locally or systemically. Significance and impact of Study This study implies that ultrasound could improve the prevention of infection, especially because the biomaterials, gentamicin and ultrasound used in this model are all in clinical usage, but not yet combined in clinical practice. PMID:16108785

  6. How microglia kill neurons.

    PubMed

    Brown, Guy C; Vilalta, Anna

    2015-12-02

    Microglia are resident brain macrophages that become inflammatory activated in most brain pathologies. Microglia normally protect neurons, but may accidentally kill neurons when attempting to limit infections or damage, and this may be more common with degenerative disease as there was no significant selection pressure on the aged brain in the past. A number of mechanisms by which activated microglia kill neurons have been identified, including: (i) stimulation of the phagocyte NADPH oxidase (PHOX) to produce superoxide and derivative oxidants, (ii) expression of inducible nitric oxide synthase (iNOS) producing NO and derivative oxidants, (iii) release of glutamate and glutaminase, (iv) release of TNFα, (v) release of cathepsin B, (vi) phagocytosis of stressed neurons, and (vii) decreased release of nutritive BDNF and IGF-1. PHOX stimulation contributes to microglial activation, but is not directly neurotoxic unless NO is present. NO is normally neuroprotective, but can react with superoxide to produce neurotoxic peroxynitrite, or in the presence of hypoxia inhibit mitochondrial respiration. Glutamate can be released by glia or neurons, but is neurotoxic only if the neurons are depolarised, for example as a result of mitochondrial inhibition. TNFα is normally neuroprotective, but can become toxic if caspase-8 or NF-κB activation are inhibited. If the above mechanisms do not kill neurons, they may still stress the neurons sufficiently to make them susceptible to phagocytosis by activated microglia. We review here whether microglial killing of neurons is an artefact, makes evolutionary sense or contributes in common neuropathologies and by what mechanisms. This article is part of a Special Issue entitled SI: Neuroprotection. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Time-kill studies of the antianaerobe activity of garenoxacin compared with those of nine other agents.

    PubMed

    Credito, Kim L; Jacobs, Michael R; Appelbaum, Peter C

    2003-04-01

    The activities of garenoxacin, ciprofloxacin, levofloxacin, moxifloxacin, trovafloxacin, amoxicillin-clavulanate, piperacillin-tazobactam, imipenem, clindamycin, and metronidazole against 20 anaerobes were tested. At two times the MIC, garenoxacin was bactericidal against 19 of 20 strains after 48 h and against 17 of 20 after 24 h. Other drugs, except clindamycin (which gave lower killing rates), gave killing rates similar to those for garenoxacin.

  8. Neutrophil Extracellular Trap (NET)-Mediated Killing of Pseudomonas aeruginosa: Evidence of Acquired Resistance within the CF Airway, Independent of CFTR

    PubMed Central

    Young, Robert L.; Malcolm, Kenneth C.; Kret, Jennifer E.; Caceres, Silvia M.; Poch, Katie R.; Nichols, David P.; Taylor-Cousar, Jennifer L.; Saavedra, Milene T.; Randell, Scott H.; Vasil, Michael L.; Burns, Jane L.; Moskowitz, Samuel M.; Nick, Jerry A.

    2011-01-01

    The inability of neutrophils to eradicate Pseudomonas aeruginosa within the cystic fibrosis (CF) airway eventually results in chronic infection by the bacteria in nearly 80 percent of patients. Phagocytic killing of P. aeruginosa by CF neutrophils is impaired due to decreased cystic fibrosis transmembrane conductance regulator (CFTR) function and virulence factors acquired by the bacteria. Recently, neutrophil extracellular traps (NETs), extracellular structures composed of neutrophil chromatin complexed with granule contents, were identified as an alternative mechanism of pathogen killing. The hypothesis that NET-mediated killing of P. aeruginosa is impaired in the context of the CF airway was tested. P. aeruginosa induced NET formation by neutrophils from healthy donors in a bacterial density dependent fashion. When maintained in suspension through continuous rotation, P. aeruginosa became physically associated with NETs. Under these conditions, NETs were the predominant mechanism of killing, across a wide range of bacterial densities. Peripheral blood neutrophils isolated from CF patients demonstrated no impairment in NET formation or function against P. aeruginosa. However, isogenic clinical isolates of P. aeruginosa obtained from CF patients early and later in the course of infection demonstrated an acquired capacity to withstand NET-mediated killing in 8 of 9 isolates tested. This resistance correlated with development of the mucoid phenotype, but was not a direct result of the excess alginate production that is characteristic of mucoidy. Together, these results demonstrate that neutrophils can kill P. aeruginosa via NETs, and in vitro this response is most effective under non-stationary conditions with a low ratio of bacteria to neutrophils. NET-mediated killing is independent of CFTR function or bacterial opsonization. Failure of this response in the context of the CF airway may occur, in part, due to an acquired resistance against NET-mediated killing by

  9. Burkholderia pseudomallei Capsule Exacerbates Respiratory Melioidosis but Does Not Afford Protection against Antimicrobial Signaling or Bacterial Killing in Human Olfactory Ensheathing Cells

    PubMed Central

    Dando, Samantha J.; Ipe, Deepak S.; Batzloff, Michael; Sullivan, Matthew J.; Crossman, David K.; Crowley, Michael; Strong, Emily; Kyan, Stephanie; Leclercq, Sophie Y.; Ekberg, Jenny A. K.; St. John, James

    2016-01-01

    Melioidosis, caused by the bacterium Burkholderia pseudomallei, is an often severe infection that regularly involves respiratory disease following inhalation exposure. Intranasal (i.n.) inoculation of mice represents an experimental approach used to study the contributions of bacterial capsular polysaccharide I (CPS I) to virulence during acute disease. We used aerosol delivery of B. pseudomallei to establish respiratory infection in mice and studied CPS I in the context of innate immune responses. CPS I improved B. pseudomallei survival in vivo and triggered multiple cytokine responses, neutrophil infiltration, and acute inflammatory histopathology in the spleen, liver, nasal-associated lymphoid tissue, and olfactory mucosa (OM). To further explore the role of the OM response to B. pseudomallei infection, we infected human olfactory ensheathing cells (OECs) in vitro and measured bacterial invasion and the cytokine responses induced following infection. Human OECs killed >90% of the B. pseudomallei in a CPS I-independent manner and exhibited an antibacterial cytokine response comprising granulocyte colony-stimulating factor, tumor necrosis factor alpha, and several regulatory cytokines. In-depth genome-wide transcriptomic profiling of the OEC response by RNA-Seq revealed a network of signaling pathways activated in OECs following infection involving a novel group of 378 genes that encode biological pathways controlling cellular movement, inflammation, immunological disease, and molecular transport. This represents the first antimicrobial program to be described in human OECs and establishes the extensive transcriptional defense network accessible in these cells. Collectively, these findings show a role for CPS I in B. pseudomallei survival in vivo following inhalation infection and the antibacterial signaling network that exists in human OM and OECs. PMID:27091931

  10. Antibiotic efficacy is linked to bacterial cellular respiration

    PubMed Central

    Lobritz, Michael A.; Belenky, Peter; Porter, Caroline B. M.; Gutierrez, Arnaud; Yang, Jason H.; Schwarz, Eric G.; Dwyer, Daniel J.; Khalil, Ahmad S.; Collins, James J.

    2015-01-01

    Bacteriostatic and bactericidal antibiotic treatments result in two fundamentally different phenotypic outcomes—the inhibition of bacterial growth or, alternatively, cell death. Most antibiotics inhibit processes that are major consumers of cellular energy output, suggesting that antibiotic treatment may have important downstream consequences on bacterial metabolism. We hypothesized that the specific metabolic effects of bacteriostatic and bactericidal antibiotics contribute to their overall efficacy. We leveraged the opposing phenotypes of bacteriostatic and bactericidal drugs in combination to investigate their activity. Growth inhibition from bacteriostatic antibiotics was associated with suppressed cellular respiration whereas cell death from most bactericidal antibiotics was associated with accelerated respiration. In combination, suppression of cellular respiration by the bacteriostatic antibiotic was the dominant effect, blocking bactericidal killing. Global metabolic profiling of bacteriostatic antibiotic treatment revealed that accumulation of metabolites involved in specific drug target activity was linked to the buildup of energy metabolites that feed the electron transport chain. Inhibition of cellular respiration by knockout of the cytochrome oxidases was sufficient to attenuate bactericidal lethality whereas acceleration of basal respiration by genetically uncoupling ATP synthesis from electron transport resulted in potentiation of the killing effect of bactericidal antibiotics. This work identifies a link between antibiotic-induced cellular respiration and bactericidal lethality and demonstrates that bactericidal activity can be arrested by attenuated respiration and potentiated by accelerated respiration. Our data collectively show that antibiotics perturb the metabolic state of bacteria and that the metabolic state of bacteria impacts antibiotic efficacy. PMID:26100898

  11. Time-Kill Studies of the Antianaerobe Activity of Garenoxacin Compared with Those of Nine Other Agents

    PubMed Central

    Credito, Kim L.; Jacobs, Michael R.; Appelbaum, Peter C.

    2003-01-01

    The activities of garenoxacin, ciprofloxacin, levofloxacin, moxifloxacin, trovafloxacin, amoxicillin-clavulanate, piperacillin-tazobactam, imipenem, clindamycin, and metronidazole against 20 anaerobes were tested. At two times the MIC, garenoxacin was bactericidal against 19 of 20 strains after 48 h and against 17 of 20 after 24 h. Other drugs, except clindamycin (which gave lower killing rates), gave killing rates similar to those for garenoxacin. PMID:12654677

  12. Nitric oxide-dependent killing of aerobic, anaerobic and persistent Burkholderia pseudomallei.

    PubMed

    Jones-Carson, Jessica; Laughlin, James R; Stewart, Amanda L; Voskuil, Martin I; Vázquez-Torres, Andrés

    2012-06-30

    Burkholderia pseudomallei infections are fastidious to treat with conventional antibiotic therapy, often involving a combination of drugs and long-term regimes. Bacterial genetic determinants contribute to the resistance of B. pseudomallei to many classes of antibiotics. In addition, anaerobiosis and hypoxia in abscesses typical of melioidosis select for persistent populations of B. pseudomallei refractory to a broad spectrum of antibacterials. We tested the susceptibility of B. pseudomallei to the drugs hydroxyurea, spermine NONOate and DETA NONOate that release nitric oxide (NO). Our investigations indicate that B. pseudomallei are killed by NO in a concentration and time-dependent fashion. The cytoxicity of this diatomic radical against B. pseudomallei depends on both the culture medium and growth phase of the bacteria. Rapidly growing, but not stationary phase, B. pseudomallei are readily killed upon exposure to the NO donor spermine NONOate. NO also has excellent antimicrobial activity against anaerobic B. pseudomallei. In addition, persistent bacteria highly resistant to most conventional antibiotics are remarkably susceptible to NO. Sublethal concentrations of NO inhibited the enzymatic activity of [4Fe-4S]-cofactored aconitase of aerobic and anaerobic B. pseudomallei. The strong anti-B. pseudomallei activity of NO described herein merits further studies on the application of NO-based antibiotics for the treatment of melioidosis. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Structure-based design of bacterial nitric oxide synthase inhibitors

    DOE PAGES

    Holden, Jeffrey K.; Kang, Soosung; Hollingsworth, Scott A.; ...

    2014-12-18

    Inhibition of bacterial nitric oxide synthase (bNOS) has the potential to improve the efficacy of antimicrobials used to treat infections by Gram-positive pathogens Staphylococcus aureus and Bacillus anthracis. However, inhibitor specificity toward bNOS over the mammalian NOS (mNOS) isoforms remains a challenge because of the near identical NOS active sites. One key structural difference between the NOS isoforms is the amino acid composition of the pterin cofactor binding site that is adjacent to the NOS active site. Previously, we demonstrated that a NOS inhibitor targeting both the active and pterin sites was potent and functioned as an antimicrobial. Here wemore » present additional crystal structures, binding analyses, and bacterial killing studies of inhibitors that target both the active and pterin sites of a bNOS and function as antimicrobials. Lastly, these data provide a framework for continued development of bNOS inhibitors, as each molecule represents an excellent chemical scaffold for the design of isoform selective bNOS inhibitors.« less

  14. Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages.

    PubMed

    Pati, Rashmirekha; Mehta, Ranjit Kumar; Mohanty, Soumitra; Padhi, Avinash; Sengupta, Mitali; Vaseeharan, Baskarlingam; Goswami, Chandan; Sonawane, Avinash

    2014-08-01

    Here we studied immunological and antibacterial mechanisms of zinc oxide nanoparticles (ZnO-NPs) against human pathogens. ZnO-NPs showed more activity against Staphylococcus aureus and least against Mycobacterium bovis-BCG. However, BCG killing was significantly increased in synergy with antituberculous-drug rifampicin. Antibacterial mechanistic studies showed that ZnO-NPs disrupt bacterial cell membrane integrity, reduce cell surface hydrophobicity and down-regulate the transcription of oxidative stress-resistance genes in bacteria. ZnO-NP treatment also augmented the intracellular bacterial killing by inducing reactive oxygen species production and co-localization with Mycobacterium smegmatis-GFP in macrophages. Moreover, ZnO-NPs disrupted biofilm formation and inhibited hemolysis by hemolysin toxin producing S. aureus. Intradermal administration of ZnO-NPs significantly reduced the skin infection, bacterial load and inflammation in mice, and also improved infected skin architecture. We envision that this study offers novel insights into antimicrobial actions of ZnO-NPs and also demonstrates ZnO-NPs as a novel class of topical anti-infective agent for the treatment of skin infections. This in-depth study demonstrates properties of ZnO nanoparticles in infection prevention and treatment in several skin infection models, dissecting the potential mechanisms of action of these nanoparticles and paving the way to human applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Killing machines: three pore-forming proteins of the immune system

    PubMed Central

    McCormack, Ryan; de Armas, Lesley; Shiratsuchi, Motoaki

    2014-01-01

    The evolution of early multicellular eukaryotes 400–500 million years ago required a defensive strategy against microbial invasion. Pore-forming proteins containing the membrane-attack-complex-perforin (MACPF) domain were selected as the most efficient means to destroy bacteria or virally infected cells. The mechanism of pore formation by the MACPF domain is distinctive in that pore formation is purely physical and unspecific. The MACPF domain polymerizes, refolds, and inserts itself into bilayer membranes or bacterial outer cell walls. The displacement of surface lipid/carbohydrate molecules by the polymerizing MACPF domain creates clusters of large, water-filled holes that destabilize the barrier function and provide access for additional anti-bacterial or anti-viral effectors to sensitive sites that complete the destruction of the invader via enzymatic or chemical attack. The highly efficient mechanism of anti-microbial defense by a combined physical and chemical strategy using pore-forming MACPF-proteins has been retargeted during evolution of vertebrates and mammals for three purposes: (1) to kill extracellular bacteria C9/polyC9 evolved in conjunction with complement, (2) to kill virus infected and cancer cells perforin-1/polyperforin-1 CTL evolved targeted by NK and CTL, and (3) to kill intracellular bacteria transmembrane perforin-2/putative polyperforin-2 evolved targeted by phagocytic and nonphagocytic cells. Our laboratory has been involved in the discovery and description of each of the three pore-formers that will be reviewed here. PMID:24293008

  16. Galectin-9 Signaling through TIM-3 Is Involved in Neutrophil-Mediated Gram-Negative Bacterial Killing: An Effect Abrogated within the Cystic Fibrosis Lung

    PubMed Central

    Vega-Carrascal, Isabel; Bergin, David A.; McElvaney, Oliver J.; McCarthy, Cormac; Banville, Nessa; Pohl, Kerstin; Hirashima, Mitsuomi; Kuchroo, Vijay K.; Reeves, Emer P.; McElvaney, Noel G.

    2016-01-01

    The T cell Ig and mucin domain–containing molecule (TIM) family of receptors have emerged as potential therapeutic targets to correct abnormal immune function in chronic inflammatory conditions. TIM-3 serves as a functional receptor in structural cells of the airways and via the ligand galectin-9 (Gal-9) can modulate the inflammatory response. The aim of this study was to investigate TIM-3 expression and function in neutrophils, focusing on its potential role in cystic fibrosis (CF) lung disease. Results revealed that TIM-3 mRNA and protein expression values of circulating neutrophils were equal between healthy controls (n = 20) and people with CF (n = 26). TIM-3 was detected on resting neutrophil membranes by FACS analysis, and expression levels significantly increased post IL-8 or TNF-α exposure (p < 0.05). Our data suggest a novel role for TIM-3/Gal-9 signaling involving modulation of cytosolic calcium levels. Via TIM-3 interaction, Gal-9 induced neutrophil degranulation and primed the cell for enhanced NADPH oxidase activity. Killing of Pseudomonas aeruginosa was significantly increased upon bacterial opsonization with Gal-9 (p < 0.05), an effect abrogated by blockade of TIM-3 receptors. This mechanism appeared to be Gram-negative bacteria specific and mediated via Gal-9/ LPS binding. Additionally, we have demonstrated that neutrophil TIM-3/Gal-9 signaling is perturbed in the CF airways due to proteolytic degradation of the receptor. In conclusion, results suggest a novel neutrophil defect potentially contributing to the defective bacterial clearance observed in the CF airways and suggest that manipulation of the TIM-3 signaling pathway may be of therapeutic value in CF, preferably in conjunction with antiprotease treatment. PMID:24477913

  17. In Search of Alternative Antibiotic Drugs: Quorum-Quenching Activity in Sponges and their Bacterial Isolates

    PubMed Central

    Saurav, Kumar; Bar-Shalom, Rinat; Haber, Markus; Burgsdorf, Ilia; Oliviero, Giorgia; Costantino, Valeria; Morgenstern, David; Steindler, Laura

    2016-01-01

    Owing to the extensive development of drug resistance in pathogens against the available antibiotic arsenal, antimicrobial resistance is now an emerging major threat to public healthcare. Anti-virulence drugs are a new type of therapeutic agent aiming at virulence factors rather than killing the pathogen, thus providing less selective pressure for evolution of resistance. One promising example of this therapeutic concept targets bacterial quorum sensing (QS), because QS controls many virulence factors responsible for bacterial infections. Marine sponges and their associated bacteria are considered a still untapped source for unique chemical leads with a wide range of biological activities. In the present study, we screened extracts of 14 sponge species collected from the Red and Mediterranean Sea for their quorum-quenching (QQ) potential. Half of the species showed QQ activity in at least 2 out of 3 replicates. Six out of the 14 species were selected for bacteria isolation, to test for QQ activity also in isolates, which, once cultured, represent an unlimited source of compounds. We show that ≈20% of the isolates showed QQ activity based on a Chromobacterium violaceum CV026 screen, and that the presence or absence of QQ activity in a sponge extract did not correlate with the abundance of isolates with the same activity from the same sponge species. This can be explained by the unknown source of QQ compounds in sponge-holobionts (host or symbionts), and further by the possible non-symbiotic nature of bacteria isolated from sponges. The potential symbiotic nature of the isolates showing QQ activity was tested according to the distribution and abundance of taxonomically close bacterial Operational Taxonomic Units (OTUs) in a dataset including 97 sponge species and 178 environmental samples (i.e., seawater, freshwater, and marine sediments). Most isolates were found not to be enriched in sponges and may simply have been trapped in the filtration channels of the

  18. Artificial activation of toxin-antitoxin systems as an antibacterial strategy.

    PubMed

    Williams, Julia J; Hergenrother, Paul J

    2012-06-01

    Toxin-antitoxin (TA) systems are unique modules that effect plasmid stabilization via post-segregational killing of the bacterial host. The genes encoding TA systems also exist on bacterial chromosomes, and it has been speculated that these are involved in a variety of cellular processes. Interest in TA systems has increased dramatically over the past 5 years as the ubiquitous nature of TA genes on bacterial genomes has been revealed. The exploitation of TA systems as an antibacterial strategy via artificial activation of the toxin has been proposed and has considerable potential; however, efforts in this area remain in the early stages and several major questions remain. This review investigates the tractability of targeting TA systems to kill bacteria, including fundamental requirements for success, recent advances, and challenges associated with artificial toxin activation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. In Vitro Fungicidal Activities of Anidulafungin, Caspofungin, and Micafungin against Candida glabrata, Candida bracarensis, and Candida nivariensis Evaluated by Time-Kill Studies

    PubMed Central

    Gil-Alonso, Sandra; Jauregizar, Nerea; Cantón, Emilia; Eraso, Elena

    2015-01-01

    Anidulafungin, caspofungin, and micafungin killing activities against Candida glabrata, Candida bracarensis, and Candida nivariensis were evaluated by the time-kill methodology. The concentrations assayed were 0.06, 0.125, and 0.5 μg/ml, which are achieved in serum. Anidulafungin and micafungin required between 13 and 26 h to reach the fungicidal endpoint (99.9% killing) against C. glabrata and C. bracarensis. All echinocandins were less active against C. nivariensis. PMID:25801575

  20. Report Bee Kills

    EPA Pesticide Factsheets

    EPA uses incident report data to help inform our pesticide regulatory decisions. Information from these reports helps us identify patterns of bee kills associated with the use of specific pesticides or active ingredients. Here's how to report incidents.

  1. No increase in endotoxin release during antibiotic killing of meningococci.

    PubMed

    Prins, J M; Speelman, P; Kuijper, E J; Dankert, J; van Deventer, S J

    1997-01-01

    Endotoxin is liberated following antibiotic killing of Gram-negative rods, and antibiotics may differ in this respect. Although the amount of filterable endotoxin has also been reported to increase following antibiotic killing of meningococci, it is unknown how this influences the host response. We investigated the influence of three antibiotics on levels of free endotoxin in culture medium and cytokine production in whole blood ex vivo during killing of four strains of meningococci. Bacterial killing was significantly more efficient with penicillin or ceftriaxone than with chloramphenicol, and free endotoxin levels were lower after exposure to antibiotics as compared with no treatment (ANOVA, P < 0.001). Endotoxin levels were lowest after exposure to chloramphenicol. In three of the four strains exposure to antibiotics resulted in considerably lower cytokine levels (ANOVA, P < 0.001), and TNF-alpha levels were significantly lower after exposure to penicillin or ceftriaxone than after chloramphenicol treatment. Only in the strain that induced the lowest levels of TNF-alpha were cytokine levels comparable for untreated and treated samples. We conclude that fear of excessive endotoxin release or cytokine production caused by effective antibiotics is not justified in the treatment of meningococcal infections.

  2. Synergistic activity of antibiotics combined with ivermectin to kill body lice.

    PubMed

    Sangaré, Abdoul Karim; Rolain, Jean Marc; Gaudart, Jean; Weber, Pascal; Raoult, Didier

    2016-03-01

    Ivermectin and doxycycline have been found to be independently effective in killing body lice. In this study, 450 body lice were artificially fed on a Parafilm™ membrane with human blood associated with antibiotics (doxycycline, erythromycin, rifampicin and azithromycin) alone and in combination with ivermectin. Fluorescence in situ hybridisation and spectral deconvolution were performed to evaluate bacterial transcriptional activity following antibiotic intake by the lice. In the first series, a lethal effect of antibiotics on lice was observed compared with the control group at 18 days (log-rank test, P≤10(-3)), with a significant difference between groups in the production of nits (P=0.019, Kruskal-Wallis test). A high lethal effect of ivermectin alone (50ng/mL) was observed compared with the control group (log-rank test, P≤10(-3)). Fluorescence of bacteriocytes in lice treated with 20μg/mL doxycycline was lower than in untreated lice (P<0.0001, Kruskal-Wallis test). In the second series with antibiotic-ivermectin combinations, a synergistic lethal effect on treated lice (log-rank test, P<10(-6)) was observed compared with the control group at 18 days, associated with a significant decrease in the production of nits (P≤0.001, Kruskal-Wallis test). Additionally, survival of lice in the combination treatment groups compared with ivermectin alone was significant (log-rank test, P=0.0008). These data demonstrate that the synergistic effect of combinations of antibiotics and ivermectin could be used to achieve complete eradication of lice and to avoid selection of a resistant louse population. Copyright © 2016 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  3. Intravenous immunoglobulin enhances the killing activity and autophagy of neutrophils isolated from immunocompromised patients against multidrug-resistant bacteria.

    PubMed

    Matsuo, Hidemasa; Itoh, Hiroshi; Kitamura, Naoko; Kamikubo, Yasuhiko; Higuchi, Takeshi; Shiga, Shuichi; Ichiyama, Satoshi; Kondo, Tadakazu; Takaori-Kondo, Akifumi; Adachi, Souichi

    2015-08-14

    Intravenous immunoglobulin (IVIG) is periodically administered to immunocompromised patients together with antimicrobial agents. The evidence that supports the effectiveness of IVIG is mostly based on data from randomized clinical trials; the underlying mechanisms are poorly understood. A recent study revealed that killing of multidrug-resistant bacteria and drug-sensitive strains by neutrophils isolated from healthy donors is enhanced by an IVIG preparation. However, the effectiveness of IVIG in immunocompromised patients remains unclear. The present study found that IVIG increased both killing activity and O2(-) release by neutrophils isolated from six patients receiving immune-suppressive drugs after hematopoietic stem cell transplantation (HSCT); these neutrophils killed both multidrug-resistant extended-spectrum β-lactamase-producing Escherichia coli (E. coli) and multidrug-resistant Pseudomonas aeruginosa (P. aeruginosa). Moreover, IVIG increased the autophagy of the neutrophils, which is known to play an important role in innate immunity. These results suggest that IVIG promotes both the killing activity and autophagy of neutrophils isolated from immunocompromised patients against multidrug-resistant bacteria. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Killing of Leishmania parasites in activated murine macrophages is based on an L-arginine-dependent process that produces nitrogen derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maul, J.R.; Ransijn, A.; Buchmueller-Rouiller, Y.

    1991-01-01

    The experiments described in this report were aimed at determining whether L-arginine (L-arg)-derived nitrogen oxidation products (nitric oxide, nitrous acid, nitrites) are involved in the intracellular killing of Leishmania parasites by activated murine macrophages in vitro. Peritoneal or bone marrow-derived macrophages were infected with L. enriettii or L. major, then activated by exposure to recombinant murine interferon-gamma or to macrophage activating factor (MAF)-rich media in the presence of lipopolysaccharide. Activation of macrophages in regular (i.e., arginine-containing) culture medium led to complete destruction of the microorganisms within 24 h (L. enriettii) or 48 h (L. major), concomitant with accumulation of nitritesmore » (NO2-) in the culture fluids. When macrophage activation was carried out in L-arg-free medium, however, neither parasite killing nor NO2- production was obtained. A similar inhibition of macrophage leishmanicidal activity and of NO2- release was observed using media treated with arginase (which converts L-arg to urea and ornithine), or supplemented with NG-monomethyl-L-arg or guanidine (which inhibit the conversion of L-arg to nitrogen oxidation products). In all these situations, an excellent correlation between the levels of NO2- production by macrophages and intracellular killing of Leishmania was observed, whereas no strict correlation was detectable between leishmanicidal activity and superoxide production. Intracellular parasite killing by activated macrophages could be prevented by addition of iron salts to the incubation fluids. Incubation of free parasites with NaNO2 at acid pH led to immobilisation, multiplication arrest, and morphological degeneration of the microorganisms. Similarly, exposure of infected cells to NaNO2 led to killing of the intracellular parasite without affecting macrophage viability.« less

  5. Integrability conditions for Killing-Yano tensors and conformal Killing-Yano tensors

    NASA Astrophysics Data System (ADS)

    Batista, Carlos

    2015-01-01

    The integrability conditions for the existence of a conformal Killing-Yano tensor of arbitrary order are worked out in all dimensions and expressed in terms of the Weyl tensor. As a consequence, the integrability conditions for the existence of a Killing-Yano tensor are also obtained. By means of such conditions, it is shown that in certain Einstein spaces one can use a conformal Killing-Yano tensor of order p to generate a Killing-Yano tensor of order (p -1 ) . Finally, it is proved that in maximally symmetric spaces the covariant derivative of a Killing-Yano tensor is a closed conformal Killing-Yano tensor and that every conformal Killing-Yano tensor is uniquely decomposed as the sum of a Killing-Yano tensor and a closed conformal Killing-Yano tensor.

  6. Collective chemotaxis and segregation of active bacterial colonies

    NASA Astrophysics Data System (ADS)

    Amar, M. Ben

    2016-02-01

    Still recently, bacterial fluid suspensions have motivated a lot of works, both experimental and theoretical, with the objective to understand their collective dynamics from universal and simple rules. Since some species are active, most of these works concern the strong interactions that these bacteria exert on a forced flow leading to instabilities, chaos and turbulence. Here, we investigate the self-organization of expanding bacterial colonies under chemotaxis, proliferation and eventually active-reaction. We propose a simple model to understand and quantify the physical properties of these living organisms which either give cohesion or on the contrary dispersion to the colony. Taking into account the diffusion and capture of morphogens complicates the model since it induces a bacterial density gradient coupled to bacterial density fluctuations and dynamics. Nevertheless under some specific conditions, it is possible to investigate the pattern formation as a usual viscous fingering instability. This explains the similarity and differences of patterns according to the physical bacterial suspension properties and explain the factors which favor compactness or branching.

  7. Killing-Yano tensors in spaces admitting a hypersurface orthogonal Killing vector

    NASA Astrophysics Data System (ADS)

    Garfinkle, David; Glass, E. N.

    2013-03-01

    Methods are presented for finding Killing-Yano tensors, conformal Killing-Yano tensors, and conformal Killing vectors in spacetimes with a hypersurface orthogonal Killing vector. These methods are similar to a method developed by the authors for finding Killing tensors. In all cases one decomposes both the tensor and the equation it satisfies into pieces along the Killing vector and pieces orthogonal to the Killing vector. Solving the separate equations that result from this decomposition requires less computing than integrating the original equation. In each case, examples are given to illustrate the method.

  8. Chronic Iron Overload Results in Impaired Bacterial Killing of THP-1 Derived Macrophage through the Inhibition of Lysosomal Acidification

    PubMed Central

    Kao, Jun-Kai; Wang, Shih-Chung; Ho, Li-Wei; Huang, Shi-Wei; Chang, Shu-Hao; Yang, Rei-Cheng; Ke, Yu-Yuan; Wu, Chun-Ying; Wang, Jiu-Yao; Shieh, Jeng-Jer

    2016-01-01

    Iron is essential for living organisms and the disturbance of iron homeostasis is associated with altered immune function. Additionally, bacterial infections can cause major complications in instances of chronic iron overload, such as patients with transfusion-dependent thalassemia. Monocytes and macrophages play important roles in maintaining systemic iron homoeostasis and in defense against invading pathogens. However, the effect of iron overload on the function of monocytes and macrophages is unclear. We elucidated the effects of chronic iron overload on human monocytic cell line (THP-1) and THP-1 derived macrophages (TDM) by continuously exposing them to high levels of iron (100 μM) to create I-THP-1 and I-TDM, respectively. Our results show that iron overload did not affect morphology or granularity of I-THP-1, but increased the granularity of I-TDM. Bactericidal assays for non-pathogenic E. coli DH5α, JM109 and pathogenic P. aeruginosa all revealed decreased efficiency with increasing iron concentration in I-TDM. The impaired P. aeruginosa killing ability of human primary monocyte derived macrophages (hMDM) was also found when cells are cultured in iron contained medium. Further studies on the bactericidal activity of I-TDM revealed lysosomal dysfunction associated with the inhibition of lysosomal acidification resulting in increasing lysosomal pH, the impairment of post-translational processing of cathepsins (especially cathepsin D), and decreased autophagic flux. These findings may explain the impaired innate immunity of thalassemic patients with chronic iron overload, suggesting the manipulation of lysosomal function as a novel therapeutic approach. PMID:27244448

  9. Optimal killing for obligate killers: the evolution of life histories and virulence of semelparous parasites.

    PubMed Central

    Ebert, D; Weisser, W W

    1997-01-01

    Many viral, bacterial and protozoan parasites of invertebrates first propagate inside their host without releasing any transmission stages and then kill their host to release all transmission stages at once. Life history and the evolution of virulence of these obligately killing parasites are modelled, assuming that within-host growth is density dependent. We find that the parasite should kill the host when its per capita growth rate falls to the level of the host mortality rate. The parasite should kill its host later when the carrying capacity, K, is higher, but should kill it earlier when the parasite-independent host mortality increases or when the parasite has a higher birth rate. When K(t), for parasite growth, is not constant over the duration of an infection, but increases with time, the parasite should kill the host around the stage when the growth rate of the carrying capacity decelerates strongly. In case that K(t) relates to host body size, this deceleration in growth is around host maturation. PMID:9263465

  10. Plasma Assisted Decontamination of Bacterial Spores

    PubMed Central

    Kuo, Spencer P

    2008-01-01

    The efficacy and mechanism of killing bacterial spores by a plasma torch is studied. Bacterial-spore (Bacillus cereus) suspension is inoculated onto glass/paper slide-coupons and desiccated into dry samples, and inoculated into well-microplate as wet sample. The exposure distance of all samples is 4 cm from the nozzle of the torch. In the experiment, paper slide-coupon is inserted inside an envelope. The kill times on spores in three types of samples are measured to be about 3, 9, and 24 seconds. The changes in the morphology and shape of still viable spores in treated wet samples are recorded by scanning electron and atomic force microscopes. The loss of appendages and exosporium in the structure and squashed/flattened cell shape are observed. The emission spectroscopy of the torch indicates that the plasma effluent carries abundant reactive atomic oxygen, which is responsible for the destruction of spores. PMID:19662115

  11. Advanced Copper Composites Against Copper-Tolerant Xanthomonas perforans and Tomato Bacterial Spot.

    PubMed

    Strayer-Scherer, A; Liao, Y Y; Young, M; Ritchie, L; Vallad, G E; Santra, S; Freeman, J H; Clark, D; Jones, J B; Paret, M L

    2018-02-01

    Bacterial spot, caused by Xanthomonas spp., is a widespread and damaging bacterial disease of tomato (Solanum lycopersicum). For disease management, growers rely on copper bactericides, which are often ineffective due to the presence of copper-tolerant Xanthomonas strains. This study evaluated the antibacterial activity of the new copper composites core-shell copper (CS-Cu), multivalent copper (MV-Cu), and fixed quaternary ammonium copper (FQ-Cu) as potential alternatives to commercially available micron-sized copper bactericides for controlling copper-tolerant Xanthomonas perforans. In vitro, metallic copper from CS-Cu and FQ-Cu at 100 μg/ml killed the copper-tolerant X. perforans strain within 1 h of exposure. In contrast, none of the micron-sized copper rates (100 to 1,000 μg/ml) from Kocide 3000 significantly reduced copper-tolerant X. perforans populations after 48 h of exposure compared with the water control (P < 0.05). All copper-based treatments killed the copper-sensitive X. perforans strain within 1 h. Greenhouse studies demonstrated that all copper composites significantly reduced bacterial spot disease severity when compared with copper-mancozeb and water controls (P < 0.05). Although there was no significant impact on yield, copper composites significantly reduced disease severity when compared with water controls, using 80% less metallic copper in comparison with copper-mancozeb in field studies (P < 0.05). This study highlights the discovery that copper composites have the potential to manage copper-tolerant X. perforans and tomato bacterial spot.

  12. Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism

    PubMed Central

    Caccia, Silvia; Di Lelio, Ilaria; La Storia, Antonietta; Marinelli, Adriana; Varricchio, Paola; Franzetti, Eleonora; Banyuls, Núria; Tettamanti, Gianluca; Casartelli, Morena; Giordana, Barbara; Ferré, Juan; Gigliotti, Silvia; Pennacchio, Francesco

    2016-01-01

    Bacillus thuringiensis is a widely used bacterial entomopathogen producing insecticidal toxins, some of which are expressed in insect-resistant transgenic crops. Surprisingly, the killing mechanism of B. thuringiensis remains controversial. In particular, the importance of the septicemia induced by the host midgut microbiota is still debated as a result of the lack of experimental evidence obtained without drastic manipulation of the midgut and its content. Here this key issue is addressed by RNAi-mediated silencing of an immune gene in a lepidopteran host Spodoptera littoralis, leaving the midgut microbiota unaltered. The resulting cellular immunosuppression was characterized by a reduced nodulation response, which was associated with a significant enhancement of host larvae mortality triggered by B. thuringiensis and a Cry toxin. This was determined by an uncontrolled proliferation of midgut bacteria, after entering the body cavity through toxin-induced epithelial lesions. Consequently, the hemolymphatic microbiota dramatically changed upon treatment with Cry1Ca toxin, showing a remarkable predominance of Serratia and Clostridium species, which switched from asymptomatic gut symbionts to hemocoelic pathogens. These experimental results demonstrate the important contribution of host enteric flora in B. thuringiensis-killing activity and provide a sound foundation for developing new insect control strategies aimed at enhancing the impact of biocontrol agents by reducing the immunocompetence of the host. PMID:27506800

  13. A rapid microtiter plate serum bactericidal assay method for determining serum complement-mediated killing of Mannheimia haemolytica.

    PubMed

    Ayalew, Sahlu; Confer, Anthony W; Shrestha, Binu; Payton, Mark E

    2012-05-01

    In this study, we describe a rapid microtiter serum bactericidal assay (RMSBA) that can be used to measure the functionality of immune sera. It quantifies bactericidal activity of immune sera in the presence of complement against a homologous bacterium, M. haemolytica in this case. There is high correlation between data from RMSBA and standard complement-mediated bacterial killing assay (r=0.756; p<0.0001). The RMSBA activity of sera can be generated in less than 5 h instead of overnight incubation. RMSBA costs substantially less in terms of time, labor, and resources and is highly reproducible. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Discovery and identification of a male-killing agent in the Japanese ladybird Propylea japonica (Coleoptera: Coccinellidae)

    PubMed Central

    2010-01-01

    Background Endosymbionts that manipulate the reproduction of their hosts have been reported widely in invertebrates. One such group of endosymbionts is the male-killers. To date all male-killers reported are bacterial in nature, but comprise a diverse group. Ladybirds have been described as a model system for the study of male-killing, which has been reported in multiple species from widespread geographic locations. Whilst criteria of low egg hatch-rate and female-biased progenic sex ratio have been used to identify female hosts of male-killers, variation in vertical transmission efficiency and host genetic factors may result in variation in these phenotypic indicators of male-killer presence. Molecular identification of bacteria and screening for bacterial presence provide us with a more accurate method than breeding data alone to link the presence of the bacteria to the male-killing phenotype. In addition, by identifying the bacteria responsible we may find evidence for horizontal transfer between endosymbiont hosts and can gain insight into the evolutionary origins of male-killing. Phylogenetic placement of male-killing bacteria will allow us to address the question of whether male-killing is a potential strategy for only some, or all, maternally inherited bacteria. Together, phenotypic and molecular characterisation of male-killers will allow a deeper insight into the interactions between host and endosymbiont, which ultimately may lead to an understanding of how male-killers identify and kill male-hosts. Results A male-killer was detected in the Japanese coccinellid, Propylea japonica (Thunberg) a species not previously known to harbour male-killers. Families produced by female P. japonica showed significantly female-biased sex ratios. One female produced only daughters. This male-killer trait was maternally inherited and antibiotic treatment produced a full, heritable cure. Molecular analysis identified Rickettsia to be associated with the trait in this

  15. Arginine-lysine positional swap of the LL-37 peptides reveals evolutional advantages of the native sequence and leads to bacterial probes.

    PubMed

    Wang, Xiuqing; Junior, José Carlos Bozelli; Mishra, Biswajit; Lushnikova, Tamara; Epand, Richard M; Wang, Guangshun

    2017-08-01

    Antimicrobial peptides are essential components of the innate immune system of multicellular organisms. Although cationic and hydrophobic amino acids are known determinants of these amphipathic molecules for bacterial killing, it is not clear how lysine-arginine (K-R) positional swaps influence peptide structure and activity. This study addresses this question by investigating two groups of peptides (GF-17 and 17BIPHE2) derived from human cathelicidin LL-37. K-R positional swap showed little effect on minimal inhibitory concentrations of the peptides. However, there are clear differences in bacterial killing kinetics. The membrane permeation patterns vary with peptide and bacterial types, but not changes in fluorescent dyes, salts or pH. In general, the original peptide is more efficient in bacterial killing, but less toxic to human cells, than the K-R swapped peptides, revealing the evolutionary significance of the native sequence for host defense. The characteristic membrane permeation patterns for different bacteria suggest a possible application of these K-R positional-swapped peptides as molecular probes for the type of bacteria. Such differences are related to bacterial membrane compositions: minimal for Gram-positive Staphylococcus aureus with essentially all anionic lipids (cardiolipin and phosphatidylglycerol), but evident for Gram-negative Klebsiella pneumoniae, Pseudomonas aeruginosa and Escherichia coli with a mixture of phosphatidylethanolamine and phosphatidylglycerol. Biophysical characterization found similar structures and binding affinities for these peptides in vesicle systems mimicking E. coli and S. aureus. It seems that interfacial arginines of GF-17 are preferred over lysines in bacterial membrane permeation. Our study sheds new light on the design of cationic amphipathic peptides. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Identification of Pseudomonas aeruginosa Phenazines that Kill Caenorhabditis elegans

    PubMed Central

    Cezairliyan, Brent; Vinayavekhin, Nawaporn; Grenfell-Lee, Daniel; Yuen, Grace J.; Saghatelian, Alan; Ausubel, Frederick M.

    2013-01-01

    Pathogenic microbes employ a variety of methods to overcome host defenses, including the production and dispersal of molecules that are toxic to their hosts. Pseudomonas aeruginosa, a Gram-negative bacterium, is a pathogen of a diverse variety of hosts including mammals and the nematode Caenorhabditis elegans. In this study, we identify three small molecules in the phenazine class that are produced by P. aeruginosa strain PA14 that are toxic to C. elegans. We demonstrate that 1-hydroxyphenazine, phenazine-1-carboxylic acid, and pyocyanin are capable of killing nematodes in a matter of hours. 1-hydroxyphenazine is toxic over a wide pH range, whereas the toxicities of phenazine-1-carboxylic acid and pyocyanin are pH-dependent at non-overlapping pH ranges. We found that acidification of the growth medium by PA14 activates the toxicity of phenazine-1-carboxylic acid, which is the primary toxic agent towards C. elegans in our assay. Pyocyanin is not toxic under acidic conditions and 1-hydroxyphenazine is produced at concentrations too low to kill C. elegans. These results suggest a role for phenazine-1-carboxylic acid in mammalian pathogenesis because PA14 mutants deficient in phenazine production have been shown to be defective in pathogenesis in mice. More generally, these data demonstrate how diversity within a class of metabolites could affect bacterial toxicity in different environmental niches. PMID:23300454

  17. Landscape review of current HIV 'kick and kill' cure research - some kicking, not enough killing.

    PubMed

    Thorlund, Kristian; Horwitz, Marc S; Fife, Brian T; Lester, Richard; Cameron, D William

    2017-08-29

    Current antiretroviral therapy (ART) used to treat human immunodeficiency virus (HIV) patients is life-long because it only suppresses de novo infections. Recent efforts to eliminate HIV have tested the ability of a number of agents to reactivate ('Kick') the well-known latent reservoir. This approach is rooted in the assumption that once these cells are reactivated the host's immune system itself will eliminate ('Kill') the virus. While many agents have been shown to reactivate large quantities of the latent reservoir, the impact on the size of the latent reservoir has been negligible. This suggests that the immune system is not sufficient to eliminate reactivated reservoirs. Thus, there is a need for more emphasis on 'kill' strategies in HIV cure research, and how these might work in combination with current or future kick strategies. We conducted a landscape review of HIV 'cure' clinical trials using 'kick and kill' approaches. We identified and reviewed current available clinical trial results in human participants as well as ongoing and planned clinical trials. We dichotomized trials by whether they did not include or include a 'kill' agent. We extracted potential reasons why the 'kill' is missing from current 'kick and kill' strategies. We subsequently summarized and reviewed current 'kill' strategies have entered the phase of clinical trial testing in human participants and highlighted those with the greatest promise. The identified 'kick' trials only showed promise on surrogate measures activating latent T-cells, but did not show any positive effects on clinical 'cure' measures. Of the 'kill' agents currently being tested in clinical trials, early results have shown small but meaningful proportions of participants remaining off ART for several months with broadly neutralizing antibodies, as well as agents for regulating immune cell responses. A similar result was also recently observed in a trial combining a conventional 'kick' with a vaccine immune booster

  18. Structure of a bacterial toxin-activating acyltransferase.

    PubMed

    Greene, Nicholas P; Crow, Allister; Hughes, Colin; Koronakis, Vassilis

    2015-06-09

    Secreted pore-forming toxins of pathogenic Gram-negative bacteria such as Escherichia coli hemolysin (HlyA) insert into host-cell membranes to subvert signal transduction and induce apoptosis and cell lysis. Unusually, these toxins are synthesized in an inactive form that requires posttranslational activation in the bacterial cytosol. We have previously shown that the activation mechanism is an acylation event directed by a specialized acyl-transferase that uses acyl carrier protein (ACP) to covalently link fatty acids, via an amide bond, to specific internal lysine residues of the protoxin. We now reveal the 2.15-Å resolution X-ray structure of the 172-aa ApxC, a toxin-activating acyl-transferase (TAAT) from pathogenic Actinobacillus pleuropneumoniae. This determination shows that bacterial TAATs are a structurally homologous family that, despite indiscernible sequence similarity, form a distinct branch of the Gcn5-like N-acetyl transferase (GNAT) superfamily of enzymes that typically use acyl-CoA to modify diverse bacterial, archaeal, and eukaryotic substrates. A combination of structural analysis, small angle X-ray scattering, mutagenesis, and cross-linking defined the solution state of TAATs, with intermonomer interactions mediated by an N-terminal α-helix. Superposition of ApxC with substrate-bound GNATs, and assay of toxin activation and binding of acyl-ACP and protoxin peptide substrates by mutated ApxC variants, indicates the enzyme active site to be a deep surface groove.

  19. Antimicrobial activity of platelet-rich plasma and other plasma preparations against periodontal pathogens.

    PubMed

    Yang, Li-Chiu; Hu, Suh-Woan; Yan, Min; Yang, Jaw-Ji; Tsou, Sing-Hua; Lin, Yuh-Yih

    2015-02-01

    In addition to releasing a pool of growth factors during activation, platelets have many features that indicate their role in the anti-infective host defense. The antimicrobial activities of platelet-rich plasma (PRP) and related plasma preparations against periodontal disease-associated bacteria were evaluated. Four distinct plasma fractions were extracted in the formulation used commonly in dentistry and were tested for their antibacterial properties against three periodontal bacteria: Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Fusobacterium nucleatum. The minimum inhibitory concentration of each plasma preparation was determined, and in vitro time-kill assays were used to detect their abilities to inhibit bacterial growth. Bacterial adhesion interference and the susceptibility of bacterial adherence by these plasma preparations were also conducted. All plasma preparations can inhibit bacterial growth, with PRP showing the superior activity. Bacterial growth inhibition by PRP occurred in the first 24 hours after application in the time-kill assay. PRP interfered with P. gingivalis and A. actinomycetemcomitans attachment and enhanced exfoliation of attached P. gingivalis but had no influences on F. nucleatum bacterial adherence. PRP expressed antibacterial properties, which may be attributed to platelets possessing additional antimicrobial molecules. The application of PRP on periodontal surgical sites is advisable because of its regenerative potential and its antibacterial effects.

  20. Berberine augments ATP-induced inflammasome activation in macrophages by enhancing AMPK signaling

    PubMed Central

    Xu, Li-Hui; Liang, Yi-Dan; Wei, Hong-Xia; Hu, Bo; Pan, Hao; Zha, Qing-Bing; Ouyang, Dong-Yun; He, Xian-Hui

    2017-01-01

    The isoquinoline alkaloid berberine possesses many pharmacological activities including antibacterial infection. Although the direct bactericidal effect of berberine has been documented, its influence on the antibacterial functions of macrophages is largely unknown. As inflammasome activation in macrophages is important for the defense against bacterial infection, we aimed to investigate the influence of berberine on inflammasome activation in murine macrophages. Our results showed that berberine significantly increased ATP-induced inflammasome activation as reflected by enhanced pyroptosis as well as increased release of caspase-1p10 and mature interleukin-1β (IL-1β) in macrophages. Such effects of berberine could be suppressed by AMP-activated protein kinase (AMPK) inhibitor compound C or by knockdown of AMPKα expression, indicating the involvement of AMPK signaling in this process. In line with increased IL-1β release, the ability of macrophages to kill engulfed bacteria was also intensified by berberine. This was corroborated by the in vivo finding that the peritoneal live bacterial load was decreased by berberine treatment. Moreover, berberine administration significantly improved survival of bacterial infected mice, concomitant with increased IL-1β levels and elevated neutrophil recruitment in the peritoneal cavity. Collectively, these data suggested that berberine could enhance bacterial killing by augmenting inflammasome activation in macrophages through AMPK signaling. PMID:27980220

  1. Berberine augments ATP-induced inflammasome activation in macrophages by enhancing AMPK signaling.

    PubMed

    Li, Chen-Guang; Yan, Liang; Jing, Yan-Yun; Xu, Li-Hui; Liang, Yi-Dan; Wei, Hong-Xia; Hu, Bo; Pan, Hao; Zha, Qing-Bing; Ouyang, Dong-Yun; He, Xian-Hui

    2017-01-03

    The isoquinoline alkaloid berberine possesses many pharmacological activities including antibacterial infection. Although the direct bactericidal effect of berberine has been documented, its influence on the antibacterial functions of macrophages is largely unknown. As inflammasome activation in macrophages is important for the defense against bacterial infection, we aimed to investigate the influence of berberine on inflammasome activation in murine macrophages. Our results showed that berberine significantly increased ATP-induced inflammasome activation as reflected by enhanced pyroptosis as well as increased release of caspase-1p10 and mature interleukin-1β (IL-1β) in macrophages. Such effects of berberine could be suppressed by AMP-activated protein kinase (AMPK) inhibitor compound C or by knockdown of AMPKα expression, indicating the involvement of AMPK signaling in this process. In line with increased IL-1β release, the ability of macrophages to kill engulfed bacteria was also intensified by berberine. This was corroborated by the in vivo finding that the peritoneal live bacterial load was decreased by berberine treatment. Moreover, berberine administration significantly improved survival of bacterial infected mice, concomitant with increased IL-1β levels and elevated neutrophil recruitment in the peritoneal cavity. Collectively, these data suggested that berberine could enhance bacterial killing by augmenting inflammasome activation in macrophages through AMPK signaling.

  2. PDE5 Inhibitors Enhance Celecoxib Killing in Multiple Tumor Types

    PubMed Central

    BOOTH, LAURENCE; ROBERTS, JANE L.; CRUICKSHANKS, NICHOLA; TAVALLAI, SEYEDMEHRAD; WEBB, TIMOTHY; SAMUEL, PETER; CONLEY, ADAM; BINION, BRITTANY; YOUNG, HAROLD F.; POKLEPOVIC, ANDREW; SPIEGEL, SARAH; DENT, PAUL

    2015-01-01

    The present studies determined whether clinically relevant phosphodiesterase 5 (PDE5) inhibitors interacted with a clinically relevant NSAID, celecoxib, to kill tumor cells. Celecoxib and PDE5 inhibitors interacted in a greater than additive fashion to kill multiple tumor cell types. Celecoxib and sildenafil killed ex vivo primary human glioma cells as well as their associated activated microglia. Knock down of PDE5 recapitulated the effects of PDE5 inhibitor treatment; the nitric oxide synthase inhibitor L-NAME suppressed drug combination toxicity. The effects of celecoxib were COX2 independent. Over-expression of c-FLIP-s or knock down of CD95/FADD significantly reduced killing by the drug combination. CD95 activation was dependent on nitric oxide and ceramide signaling. CD95 signaling activated the JNK pathway and inhibition of JNK suppressed cell killing. The drug combination inactivated mTOR and increased the levels of autophagy and knock down of Beclin1 or ATG5 strongly suppressed killing by the drug combination. The drug combination caused an ER stress response; knock down of IRE1α/XBP1 enhanced killing whereas knock down of eIF2α/ATF4/CHOP suppressed killing. Sildenafil and celecoxib treatment suppressed the growth of mammary tumors in vivo. Collectively our data demonstrate that clinically achievable concentrations of celecoxib and sildenafil have the potential to be a new therapeutic approach for cancer. PMID:25303541

  3. Photodynamic antimicrobial chemotherapy using zinc phthalocyanine derivatives in treatment of bacterial skin infection

    NASA Astrophysics Data System (ADS)

    Chen, Zhuo; Zhang, Yaxin; Wang, Dong; Li, Linsen; Zhou, Shanyong; Huang, Joy H.; Chen, Jincan; Hu, Ping; Huang, Mingdong

    2016-01-01

    Photodynamic antimicrobial chemotherapy (PACT) is an effective method for killing bacterial cells in view of the increasing problem of multiantibiotic resistance. We herein reported the PACT effect on bacteria involved in skin infections using a zinc phthalocyanine derivative, pentalysine β-carbonylphthalocyanine zinc (ZnPc-Lys). Compared with its anionic ZnPc counterpart, ZnPc-Lys showed an enhanced antibacterial efficacy in vitro and in an animal model of localized infection. Meanwhile, ZnPc-Lys was observed to significantly reduce the wound skin blood flow during wound healing, indicating an anti-inflammation activity. This study provides new insight on the mechanisms of PACT in bacterial skin infection.

  4. FACTORS INFLUENCING IN VITRO KILLING OF BACTERIA BY HEMOCYTES OF THE EASTERN OYSTER (CRASSOSTREA VIRGINICA)

    EPA Science Inventory

    A tetrazolium dye reduction assay was used to study factors governing killing of bacteria by oyster hemocytes. In vitro tests were performed on bacterial strains by using hemocytes from oysters collected from the same location in winter and summer. Vibrio parahaemolyticus strains...

  5. Human Bile Reduces Antimicrobial Activity of Selected Antibiotics against Enterococcus faecalis and Escherichia coli In Vitro.

    PubMed

    Wulkersdorfer, Beatrix; Jaros, David; Eberl, Sabine; Poschner, Stefan; Jäger, Walter; Cosentini, Enrico; Zeitlinger, Markus; Schwameis, Richard

    2017-08-01

    It has been known from previous studies that body fluids, such as cerebrospinal fluid, lung surfactant, and urine, have a strong impact on the bacterial killing of many anti-infective agents. However, the influence of human bile on the antimicrobial activity of antibiotics is widely unknown. Human bile was obtained and pooled from 11 patients undergoing cholecystectomy. After sterilization of the bile fluid by gamma irradiation, its effect on bacterial killing was investigated for linezolid (LZD) and tigecycline (TGC) against Enterococcus faecalis ATCC 29212. Further, ciprofloxacin (CIP), meropenem (MEM), and TGC were tested against Escherichia coli ATCC 25922. Time-kill curves were performed in pooled human bile and Mueller-Hinton broth (MHB) over 24 h. Bacterial counts (in CFU per milliliter after 24 h) of bile growth controls were approximately equal to MHB growth controls for E. coli and approximately 2-fold greater for E. faecalis , indicating a promotion of bacterial growth by bile for the latter strain. Bile reduced the antimicrobial activity of CIP, MEM, and TGC against E. coli as well as the activity of LZD and TGC against E. faecalis This effect was strongest for TGC against the two strains. Degradation of TGC in bile was identified as the most likely explanation. These findings may have important implications for the treatment of bacterial infections of the gallbladder and biliary tract and should be explored in more detail. Copyright © 2017 American Society for Microbiology.

  6. Industrial activated sludge exhibit unique bacterial community composition at high taxonomic ranks.

    PubMed

    Ibarbalz, Federico M; Figuerola, Eva L M; Erijman, Leonardo

    2013-07-01

    Biological degradation of domestic and industrial wastewater by activated sludge depends on a common process of separation of the diverse self-assembled and self-sustained microbial flocs from the treated wastewater. Previous surveys of bacterial communities indicated the presence of a common core of bacterial phyla in municipal activated sludge, an observation consistent with the concept of ecological coherence of high taxonomic ranks. The aim of this work was to test whether this critical feature brings about a common pattern of abundance distribution of high bacterial taxa in industrial and domestic activated sludge, and to relate the bacterial community structure of industrial activated sludge with relevant operational parameters. We have applied 454 pyrosequencing of 16S rRNA genes to evaluate bacterial communities in full-scale biological wastewater treatment plants sampled at different times, including seven systems treating wastewater from different industries and one plant that treats domestic wastewater, and compared our datasets with the data from municipal wastewater treatment plants obtained by three different laboratories. We observed that each industrial activated sludge system exhibited a unique bacterial community composition, which is clearly distinct from the common profile of bacterial phyla or classes observed in municipal plants. The influence of process parameters on the bacterial community structure was evaluated using constrained analysis of principal coordinates (CAP). Part of the differences in the bacterial community structure between industrial wastewater treatment systems were explained by dissolved oxygen and pH. Despite the ecological relevance of floc formation for the assembly of bacterial communities in activated sludge, the wastewater characteristics are likely to be the major determinant that drives bacterial composition at high taxonomic ranks. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Light and dark-activated biocidal activity of conjugated polyelectrolytes.

    PubMed

    Ji, Eunkyung; Corbitt, Thomas S; Parthasarathy, Anand; Schanze, Kirk S; Whitten, David G

    2011-08-01

    This Spotlight on Applications provides an overview of a research program that has focused on the development and mechanistic study of cationic conjugated polyelectrolytes (CPEs) that function as light- and dark-active biocidal agents. Investigation has centered on poly-(phenylene ethynylene) (PPE) type conjugated polymers that are functionalized with cationic quaternary ammonium solubilizing groups. These polymers are found to interact strongly with Gram-positive and Gram-negative bacteria, and upon illumination with near-UV and visible light act to rapidly kill the bacteria. Mechanistic studies suggest that the cationic PPE-type polymers efficiently sensitize singlet oxygen ((1)O(2)), and this cytotoxic agent is responsible for initiating the sequence of events that lead to light-activated bacterial killing. Specific CPEs also exhibit dark-active antimicrobial activity, and this is believed to arise due to interactions between the cationic/lipophilic polymers and the negatively charged outer membrane characteristic of Gram-negative bacteria. Specific results are shown where a cationic CPE with a degree of polymerization of 49 exhibits pronounced light-activated killing of E. coli when present in the cell suspension at a concentration of 1 μg mL(-1).

  8. High vancomycin MICs within the susceptible range in Staphylococcus aureus bacteraemia isolates are associated with increased cell wall thickness and reduced intracellular killing by human phagocytes.

    PubMed

    Falcón, Rocío; Martínez, Alba; Albert, Eliseo; Madrid, Silvia; Oltra, Rosa; Giménez, Estela; Soriano, Mario; Vinuesa, Víctor; Gozalbo, Daniel; Gil, María Luisa; Navarro, David

    2016-05-01

    Vancomycin minimum inhibitory concentrations (MICs) at the upper end of the susceptible range for Staphylococcus aureus have been associated with poor clinical outcomes of bloodstream infections. We tested the hypothesis that high vancomycin MICs in S. aureus bacteraemia isolates are associated with increased cell wall thickness and suboptimal bacterial internalisation or lysis by human phagocytes. In total, 95 isolates were evaluated. Original vancomycin MICs were determined by Etest. The susceptibility of S. aureus isolates to killing by phagocytes was assessed in a human whole blood assay. Internalisation of bacterial cells by phagocytes was investigated by flow cytometry. Cell wall thickness was evaluated by transmission electron microscopy. Genotypic analysis of S. aureus isolates was performed using a DNA microarray system. Vancomycin MICs were significantly higher (P=0.006) in isolates that were killed suboptimally (killing index <60%) compared with those killed efficiently (killing index >70%) and tended to correlate inversely (P=0.08) with the killing indices. Isolates in both killing groups were internalised by human neutrophils and monocytes with comparable efficiency. The cell wall was significantly thicker (P=0.03) in isolates in the low killing group. No genotypic differences were found between the isolates in both killing groups. In summary, high vancomycin MICs in S. aureus bacteraemia isolates were associated with increased cell wall thickness and reduced intracellular killing by phagocytes. Copyright © 2016 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  9. Mechanisms of bacterial membrane permeabilization by crotalicidin (Ctn) and its fragment Ctn(15-34), antimicrobial peptides from rattlesnake venom.

    PubMed

    Pérez-Peinado, Clara; Dias, Susana Almeida; Domingues, Marco M; Benfield, Aurélie H; Freire, João Miguel; Rádis-Baptista, Gandhi; Gaspar, Diana; Castanho, Miguel A R B; Craik, David J; Henriques, Sónia Troeira; Veiga, Ana Salomé; Andreu, David

    2018-02-02

    Crotalicidin (Ctn), a cathelicidin-related peptide from the venom of a South American rattlesnake, possesses potent antimicrobial, antitumor, and antifungal properties. Previously, we have shown that its C-terminal fragment, Ctn(15-34), retains the antimicrobial and antitumor activities but is less toxic to healthy cells and has improved serum stability. Here, we investigated the mechanisms of action of Ctn and Ctn(15-34) against Gram-negative bacteria. Both peptides were bactericidal, killing ∼90% of Escherichia coli and Pseudomonas aeruginosa cells within 90-120 and 5-30 min, respectively. Studies of ζ potential at the bacterial cell membrane suggested that both peptides accumulate at and neutralize negative charges on the bacterial surface. Flow cytometry experiments confirmed that both peptides permeabilize the bacterial cell membrane but suggested slightly different mechanisms of action. Ctn(15-34) permeabilized the membrane immediately upon addition to the cells, whereas Ctn had a lag phase before inducing membrane damage and exhibited more complex cell-killing activity, probably because of two different modes of membrane permeabilization. Using surface plasmon resonance and leakage assays with model vesicles, we confirmed that Ctn(15-34) binds to and disrupts lipid membranes and also observed that Ctn(15-34) has a preference for vesicles that mimic bacterial or tumor cell membranes. Atomic force microscopy visualized the effect of these peptides on bacterial cells, and confocal microscopy confirmed their localization on the bacterial surface. Our studies shed light onto the antimicrobial mechanisms of Ctn and Ctn(15-34), suggesting Ctn(15-34) as a promising lead for development as an antibacterial/antitumor agent. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Isolation of biologically active nanomaterial (inclusion bodies) from bacterial cells.

    PubMed

    Peternel, Spela; Komel, Radovan

    2010-09-10

    In recent years bacterial inclusion bodies (IBs) were recognised as highly pure deposits of active proteins inside bacterial cells. Such active nanoparticles are very interesting for further downstream protein isolation, as well as for many other applications in nanomedicine, cosmetic, chemical and pharmaceutical industry.To prepare large quantities of a high quality product, the whole bioprocess has to be optimised. This includes not only the cultivation of the bacterial culture, but also the isolation step itself, which can be of critical importance for the production process.To determine the most appropriate method for the isolation of biologically active nanoparticles, three methods for bacterial cell disruption were analyzed. In this study, enzymatic lysis and two mechanical methods, high-pressure homogenization and sonication, were compared.During enzymatic lysis the enzyme lysozyme was found to attach to the surface of IBs, and it could not be removed by simple washing. As this represents an additional impurity in the engineered nanoparticles, we concluded that enzymatic lysis is not the most suitable method for IBs isolation.During sonication proteins are released (lost) from the surface of IBs and thus the surface of IBs appears more porous when compared to the other two methods. We also found that the acoustic output power needed to isolate the IBs from bacterial cells actually damages proteins structures, thereby causing a reduction in biological activity.High-pressure homogenization also caused some damage to IBs, however the protein loss from the IBs was negligible. Furthermore, homogenization had no side-effects on protein biological activity. The study shows that among the three methods tested, homogenization is the most appropriate method for the isolation of active nanoparticles from bacterial cells.

  11. Killing mediated spatial structure in V. Cholerae biofilms

    NASA Astrophysics Data System (ADS)

    Yanni, David

    Most bacteria live in biofilms, which are implicated in 60 - 80 % of microbial infections in the body. The spatial structure of a biofilm confers advantages to its member-cells, such as antibiotic resistance, and is strongly affected by competition between strains and taxa. However, A complete picture of how competition affects the self-organized structure of these complex, far-from-equilibrium systems, is yet to emerge. To that end, we investigate phase separation dynamics driven by T6SS-facilitated bacterial warfare in a system composed of two strains of mutually antagonistic V. cholerae. T6SS is a contact mediated killing mechanism present in 25 % of all gram negative bacteria, and has been shown by recent work to play a major role in the spatial assortment of biofilms. T6SS events induce lysis, causing variations in local mechanical pressure, and acting as thermalizing events. We study cells immobilized in biofilms at the air-solid interface, so our experimental system represents a different type active matter, wherein activity is due to cell death and reproduction, not mobility. Here, we show how that activity imposes a constraint of minimal curvature on strain-strain interfaces; an effective Laplace pressure is characterized which governs interfacial dynamics.

  12. Anti-bacterial activity of some Brazilian medicinal plants.

    PubMed

    de Lima, Maria Raquel Ferreira; de Souza Luna, Josiane; dos Santos, Aldenir Feitosa; de Andrade, Maria Cristina Caño; Sant'Ana, Antônio Euzébio Goulart; Genet, Jean-Pierre; Marquez, Béatrice; Neuville, Luc; Moreau, Nicole

    2006-04-21

    Extracts from various organs of 25 plants of Brazilian traditional medicine were assayed with respect to their anti-bacterial activities against Escherichia coli, a susceptible strain of Staphylococcus aureus and two resistant strains of Staphylococcus aureus harbouring the efflux pumps NorA and MsrA. Amongst the 49 extracts studied, 14 presented anti-bacterial activity against Staphylococcus aureus, including the ethanolic extracts from the rhizome of Jatropha elliptica, from the stem barks of Schinus terebinthifolius and Erythrina mulungu, from the stems and leaves of Caesalpinia pyramidalis and Serjania lethalis, and from the stem bark and leaves of Lafoensia pacari. The classes of compounds present in the active extracts were determined as a preliminary step towards their bioactivity-guided separation. No extracts were active against Escherichia coli.

  13. The E3 ubiquitin ligase NEDD4 enhances killing of membrane-perturbing intracellular bacteria by promoting autophagy

    PubMed Central

    Pei, Gang; Buijze, Hellen; Liu, Haipeng; Moura-Alves, Pedro; Goosmann, Christian; Brinkmann, Volker; Kawabe, Hiroshi; Dorhoi, Anca; Kaufmann, Stefan H. E.

    2017-01-01

    ABSTRACT The E3 ubiquitin ligase NEDD4 has been intensively studied in processes involved in viral infections, such as virus budding. However, little is known about its functions in bacterial infections. Our investigations into the role of NEDD4 in intracellular bacterial infections demonstrate that Mycobacterium tuberculosis and Listeria monocytogenes, but not Mycobacterium bovis BCG, replicate more efficiently in NEDD4 knockdown macrophages. In parallel, NEDD4 knockdown or knockout impaired basal macroautophagy/autophagy, as well as infection-induced autophagy. Conversely, NEDD4 expression promoted autophagy in an E3 catalytic activity-dependent manner, thereby restricting intracellular Listeria replication. Mechanistic studies uncovered that endogenous NEDD4 interacted with BECN1/Beclin 1 and this interaction increased during Listeria infection. Deficiency of NEDD4 resulted in elevated K48-linkage ubiquitination of endogenous BECN1. Further, NEDD4 mediated K6- and K27- linkage ubiquitination of BECN1, leading to elevated stability of BECN1 and increased autophagy. Thus, NEDD4 participates in killing of intracellular bacterial pathogens via autophagy by sustaining the stability of BECN1. PMID:29251248

  14. Reporter gene assay for fish-killing activity produced by Pfiesteria piscicida.

    PubMed Central

    Fairey, E R; Edmunds, J S; Deamer-Melia, N J; Glasgow, H; Johnson, F M; Moeller, P R; Burkholder, J M; Ramsdell, J S

    1999-01-01

    Collaborative studies were performed to develop a functional assay for fish-killing activity produced by Pfiesteria piscicida. Eight cell lines were used to screen organic fractions and residual water fraction by using a 3-[4, 5-dimethylthiazol-(2-4)]-diphenyltetrazolium bromide cytotoxicity assay. Diethyl ether and a residual water fraction were cytotoxic to several cell lines including rat pituitary (GH(4)C(1)) cells. Residual water as well as preextracted culture water containing P. piscicida cells induced c-fos-luciferase expressed in GH(4)C(1) cells with a rapid time course of induction and sensitive detection. The reporter gene assay detected activity in toxic isolates of P. piscicida from several North Carolina estuaries in 1997 and 1998 and may also be suitable for detecting toxic activity in human and animal serum. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:10464070

  15. 33 CFR 117.801 - Newtown Creek, Dutch Kills, English Kills and their tributaries.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., English Kills and their tributaries. 117.801 Section 117.801 Navigation and Navigable Waters COAST GUARD....801 Newtown Creek, Dutch Kills, English Kills and their tributaries. (a) The following requirements apply to all bridges across Newtown Creek, Dutch Kills, English Kills, and their tributaries: (1) The...

  16. Broad-spectrum in vitro antibacterial activities of clay minerals against antibiotic-susceptible and antibiotic-resistant bacterial pathogens

    PubMed Central

    HAYDEL, SHELLEY E.; REMENIH, CHRISTINE M.; WILLIAMS, LYNDA B.

    2008-01-01

    SYNOPSIS Objectives The capacity to properly address the worldwide incidence of infectious diseases lies in the ability to detect, prevent, and effectively treat these infections. Therefore, identifying and analyzing inhibitory agents are worthwhile endeavors in an era when few new classes of effective antimicrobials have been developed. The use of geological nanomaterials to heal skin infections has been evident since the earliest recorded history, and specific clay minerals may prove valuable in the treatment of bacterial diseases, including infections for which there are no effective antibiotics, such as Buruli ulcer and multi-drug resistant infections. Methods We have subjected two iron-rich clay minerals, which have previously been used to treat Buruli ulcer patients, to broth culture testing of antibiotic-susceptible and -resistant pathogenic bacteria to assess the feasibility of using clay minerals as therapeutic agents. Results One specific mineral, CsAg02, demonstrated bactericidal activity against pathogenic Escherichia coli, extended-spectrum β-lactamase (ESBL) E. coli, S. enterica serovar Typhimurium, Pseudomonas aeruginosa, and Mycobacterium marinum and a combined bacteriostatic/bactericidal effect against Staphylococcus aureus, penicillin-resistant S. aureus (PRSA), methicillin-resistant S. aureus (MRSA), and Mycobacterium smegmatis, while another mineral with similar structure and bulk crystal chemistry, CsAr02, had no effect on or enhanced bacterial growth. The <0.2 μm fraction of CsAg02 and CsAg02 heated to 200°C or 550°C retained bactericidal activity, while cation-exchanged CsAg02 and CsAg02 heated to 900°C no longer killed E. coli. Conclusions Our results indicate that specific mineral products have intrinsic, heat-stable antibacterial properties, which could provide an inexpensive treatment against numerous human bacterial infections. PMID:18070832

  17. Isolation of biologically active nanomaterial (inclusion bodies) from bacterial cells

    PubMed Central

    2010-01-01

    Background In recent years bacterial inclusion bodies (IBs) were recognised as highly pure deposits of active proteins inside bacterial cells. Such active nanoparticles are very interesting for further downstream protein isolation, as well as for many other applications in nanomedicine, cosmetic, chemical and pharmaceutical industry. To prepare large quantities of a high quality product, the whole bioprocess has to be optimised. This includes not only the cultivation of the bacterial culture, but also the isolation step itself, which can be of critical importance for the production process. To determine the most appropriate method for the isolation of biologically active nanoparticles, three methods for bacterial cell disruption were analyzed. Results In this study, enzymatic lysis and two mechanical methods, high-pressure homogenization and sonication, were compared. During enzymatic lysis the enzyme lysozyme was found to attach to the surface of IBs, and it could not be removed by simple washing. As this represents an additional impurity in the engineered nanoparticles, we concluded that enzymatic lysis is not the most suitable method for IBs isolation. During sonication proteins are released (lost) from the surface of IBs and thus the surface of IBs appears more porous when compared to the other two methods. We also found that the acoustic output power needed to isolate the IBs from bacterial cells actually damages proteins structures, thereby causing a reduction in biological activity. High-pressure homogenization also caused some damage to IBs, however the protein loss from the IBs was negligible. Furthermore, homogenization had no side-effects on protein biological activity. Conclusions The study shows that among the three methods tested, homogenization is the most appropriate method for the isolation of active nanoparticles from bacterial cells. PMID:20831775

  18. Killing fetuses and killing newborns.

    PubMed

    Di Nucci, Ezio

    2013-05-01

    The argument for the moral permissibility of killing newborns is a challenge to liberal positions on abortion because it can be considered a reductio of their defence of abortion. Here I defend the liberal stance on abortion by arguing that the argument for the moral permissibility of killing newborns on ground of the social, psychological and economic burden on the parents recently put forward by Giubilini and Minerva is not valid; this is because they fail to show that newborns cannot be harmed and because there are morally relevant differences between fetuses and newborns.

  19. It's not just conflict that motivates killing of orangutans.

    PubMed

    Davis, Jacqueline T; Mengersen, Kerrie; Abram, Nicola K; Ancrenaz, Marc; Wells, Jessie A; Meijaard, Erik

    2013-01-01

    We investigated why orangutans are being killed in Kalimantan, Indonesia, and the role of conflict in these killings. Based on an analysis of interview data from over 5,000 respondents in over 450 villages, we also assessed the socio-ecological factors associated with conflict and non-conflict killings. Most respondents never kill orangutans. Those who reported having personally killed an orangutan primarily did so for non-conflict reasons; for example, 56% of these respondents said that the reason they had killed an orangutan was to eat it. Of the conflict-related reasons for killing, the most common reasons orangutans were killed was fear of orangutans or in self-defence. A similar pattern was evident among reports of orangutan killing by other people in the villages. Regression analyses indicated that religion and the percentage of intact forest around villages were the strongest socio-ecological predictors of whether orangutans were killed for conflict or non-conflict related reasons. Our data indicate that between 44,170 and 66,570 orangutans were killed in Kalimantan within the respondents' active hunting lifetimes: between 12,690 and 29,024 for conflict reasons (95%CI) and between 26,361 and 41,688 for non-conflict reasons (95% CI). These findings confirm that habitat protection alone will not ensure the survival of orangutans in Indonesian Borneo, and that effective reduction of orangutan killings is urgently needed.

  20. Inhibition of C5a-induced inflammation with preserved C5b-9-mediated bactericidal activity in a human whole blood model of meningococcal sepsis.

    PubMed

    Sprong, Tom; Brandtzaeg, Petter; Fung, Michael; Pharo, Anne M; Høiby, E Arne; Michaelsen, Terje E; Aase, Audun; van der Meer, Jos W M; van Deuren, Marcel; Mollnes, Tom E

    2003-11-15

    The complement system plays an important role in the initial defense against Neisseria meningitidis. In contrast, uncontrolled activation in meningococcal sepsis contributes to the development of tissue damage and shock. In a novel human whole blood model of meningococcal sepsis, we studied the effect of complement inhibition on inflammation and bacterial killing. Monoclonal antibodies (mAbs) blocking lectin and alternative pathways inhibited complement activation by N meningitidis and oxidative burst induced in granulocytes and monocytes. Oxidative burst was critically dependent on CD11b/CD18 (CR3) expression but not on Fc gamma-receptors. Specific inhibition of C5a using mAb 137-26 binding the C5a moiety of C5 before cleavage prohibited CR3 up-regulation, phagocytosis, and oxidative burst but had no effect on C5b-9 (TCC) formation, lysis, and bacterial killing. An mAb-blocking cleavage of C5, preventing C5a and TCC formation, showed the same effect on CR3, phagocytosis, and oxidative burst as the anti-C5a mAb but additionally inhibited TCC formation, lysis, and bacterial killing, consistent with a C5b-9-dependent killing mechanism. In conclusion, the anti-C5a mAb 137-26 inhibits the potentially harmful effects of N meningitidis-induced C5a formation while preserving complement-mediated bacterial killing. We suggest that this may be an attractive approach for the treatment of meningococcal sepsis.

  1. Green synthesized nickel nanoparticles for targeted detection and killing of S. typhimurium.

    PubMed

    Jeyaraj Pandian, Chitra; Palanivel, Rameshthangam; Balasundaram, Usha

    2017-09-01

    Simple and sensitive colorimetric immunosensor based on peroxidase mimetic activity and photothermal effect of nickel oxide nanoparticle (NiOGs) has been developed to detect and kill food borne pathogen Salmonella typhimurium. NiOGs showed superior peroxidase mimetic activity for oxidation of peroxidase substrate 3, 3', 5, 5'-tetramethylbenzidine (TMB). Oxidation of TMB by NiOGs followed Michaelis-Menten kinetics with K m and V max values of 0.25mM and 2.64×10 -8 M/s respectively. NiOGs was coated with citric acid (CA-NiOGs) followed by conjugation with antibody (anti-S. typhimurium) (Ab-CA-NiOGs) that effectively captured S. typhimurium. Colorimetric detection of S. typhimurium by Ab-CA-NiOGs showed a linear relationship between pathogen concentration (1×10 1 to 1×10 6 cfu/mL) and color signal (652nm) with limit of detection (LOD) of 10cfu/mL. The proposed method showed no cross reactivity against other pathogens. Recovery of S. typhimurium in milk and juice samples was found to be 95 to 100% and 92 to 99% respectively. NiOGs exposed to laser irradiation showed dose dependent increase in temperature and singlet oxygen within 5min. Bacteria bound to Ab-CA-NiOGs after laser irradiation, induced membrane damage and reduced bacterial viability to 6%. The bifunctional peroxidase-mimetic activity and photothermal effect of NiOGs can be exploited in selective sensing and killing of target pathogens respectively in food products. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. FLICE-like inhibitory protein (FLIP) protects against apoptosis and suppresses NF-kappaB activation induced by bacterial lipopolysaccharide.

    PubMed

    Bannerman, Douglas D; Eiting, Kristine T; Winn, Robert K; Harlan, John M

    2004-10-01

    Bacterial lipopolysaccharide (LPS) via its activation of Toll-like receptor-4 contributes to much of the vascular injury/dysfunction associated with gram-negative sepsis. Inhibition of de novo gene expression has been shown to sensitize endothelial cells (EC) to LPS-induced apoptosis, the onset of which correlates with decreased expression of FLICE-like inhibitory protein (FLIP). We now have data that conclusively establish a role for FLIP in protecting EC against LPS-induced apoptosis. Overexpression of FLIP protected against LPS-induced apoptosis, whereas down-regulation of FLIP using antisense oligonucleotides sensitized EC to direct LPS killing. Interestingly, FLIP overexpression suppressed NF-kappaB activation induced by LPS, but not by phorbol ester, suggesting a specific role for FLIP in mediating LPS activation. Conversely, mouse embryo fibroblasts (MEF) obtained from FLIP -/- mice showed enhanced LPS-induced NF-kappaB activation relative to those obtained from wild-type mice. Reconstitution of FLIP-/- MEF with full-length FLIP reversed the enhanced NF-kappaB activity elicited by LPS in the FLIP -/- cells. Changes in the expression of FLIP had no demonstrable effect on other known LPS/Tlr-4-activated signaling pathways including the p38, Akt, and Jnk pathways. Together, these data support a dual role for FLIP in mediating LPS-induced apoptosis and NF-kappaB activation.

  3. Membrane-active mechanism of LFchimera against Burkholderia pseudomallei and Burkholderia thailandensis.

    PubMed

    Kanthawong, Sakawrat; Puknun, Aekkalak; Bolscher, Jan G M; Nazmi, Kamran; van Marle, Jan; de Soet, Johannes J; Veerman, Enno C I; Wongratanacheewin, Surasakdi; Taweechaisupapong, Suwimol

    2014-10-01

    LFchimera, a construct combining two antimicrobial domains of bovine lactoferrin, lactoferrampin265-284 and lactoferricin17-30, possesses strong bactericidal activity. As yet, no experimental evidence was presented to evaluate the mechanisms of LFchimera against Burkholderia isolates. In this study we analyzed the killing activity of LFchimera on the category B pathogen Burkholderia pseudomallei in comparison to the lesser virulent Burkholderia thailandensis often used as a model for the highly virulent B. pseudomallei. Killing kinetics showed that B. thailandensis E264 was more susceptible for LFchimera than B. pseudomallei 1026b. Interestingly the bactericidal activity of LFchimera appeared highly pH dependent; B. thailandensis killing was completely abolished at and below pH 6.4. FITC-labeled LFchimera caused a rapid accumulation within 15 min in the cytoplasm of both bacterial species. Moreover, freeze-fracture electron microscopy demonstrated extreme effects on the membrane morphology of both bacterial species within 1 h of incubation, accompanied by altered membrane permeability monitored as leakage of nucleotides. These data indicate that the mechanism of action of LFchimera is similar for both species and encompasses disruption of the plasma membrane and subsequently leakage of intracellular nucleotides leading to cell dead.

  4. Comparative antimicrobial activity of levofloxacin and ciprofloxacin against Streptococcus pneumoniae.

    PubMed

    Garrison, Mark W

    2003-09-01

    Levofloxacin has good coverage against both Gram-positive and Gram-negative pathogens. Recent reports demonstrate enhanced activity associated with a higher 750 mg dosage of levofloxacin. The objective of this study was to comparatively evaluate the activity of common regimens of levofloxacin (500 mg) and ciprofloxacin (500 mg), and a higher 750 mg levofloxacin regimen against penicillin susceptible and non-susceptible strains of S. pneumoniae. An in vitro pharmacodynamic modelling apparatus (PDMA) characterized specific bacterial kill profiles for simulated regimens of levofloxacin and ciprofloxacin against four strains of S. pneumoniae. Total log reduction, time for 3-log reduction and AUC/MIC were determined. Ciprofloxacin was less effective than the levofloxacin regimens against all four study isolates. Ciprofloxacin produced 3-log reduction in only one isolate compared with all four isolates with the levofloxacin regimens. Bacterial regrowth did not occur over 12 h with levofloxacin; however, three of four isolates demonstrated bacterial regrowth with ciprofloxacin. None of the isolates were cleared from the PDMA by ciprofloxacin. The 500 mg levofloxacin regimen cleared two of four isolates and the 750 mg dose of levofloxacin cleared all study isolates. Respective AUC/MIC values for levofloxacin (500 and 750 mg) and ciprofloxacin were 44-89, 63-126 and < or =13, which correlated well with bacterial kill data. Both levofloxacin regimens were more effective than ciprofloxacin against the study isolates tested. The 750 mg levofloxacin regimen generated more favourable bacterial killing compared with the 500 mg levofloxacin regimen. In addition to using the 750 mg levofloxacin dose for nosocomial infections, this dose may also prove useful for the management of resistant pneumococcal infections.

  5. Silver ion-mediated killing of a food pathogen: Melting curve analysis data of silver resistance genes and growth curve data.

    PubMed

    Gokulan, Kuppan; Williams, Katherine; Khare, Sangeeta

    2017-04-01

    Limited antibacterial activity of silver ions leached from silver-impregnated food contact materials could be due to: 1) the presence of silver resistance genes in tested bacteria ; or 2) lack of susceptibility to silver ion-mediated killing in the bacterial strain (K. Williams, L. Valencia, K. Gokulan, R. Trbojevich, S. Khare, 2016 [1]). This study contains data to address the specificity of silver resistance genes in Salmonella Typhimurium during the real time PCR using melting curve analysis and an assessment of the minimum inhibitory concentration of silver ions for Salmonella .

  6. Impact of postfire logging on soil bacterial and fungal communities and soil biogeochemistry in a mixed-conifer forest in central Oregon

    Treesearch

    Tara N. Jennings; Jane E. Smith; Kermit Cromack; Elizabeth W. Sulzman; Donaraye McKay; Bruce A. Caldwell; Sarah I. Beldin

    2012-01-01

    Postfire logging recoups the economic value of timber killed by wildfire, but whether such forest management activity supports or impedes forest recovery in stands differing in structure from historic conditions remains unclear. The aim of this study was to determine the impact of mechanical logging after wildfire on soil bacterial and fungal communities and other...

  7. Rapid Detection of Urinary Tract Infections via Bacterial Nuclease Activity.

    PubMed

    Flenker, Katie S; Burghardt, Elliot L; Dutta, Nirmal; Burns, William J; Grover, Julia M; Kenkel, Elizabeth J; Weaver, Tyler M; Mills, James; Kim, Hyeon; Huang, Lingyan; Owczarzy, Richard; Musselman, Catherine A; Behlke, Mark A; Ford, Bradley; McNamara, James O

    2017-06-07

    Rapid and accurate bacterial detection methods are needed for clinical diagnostic, water, and food testing applications. The wide diversity of bacterial nucleases provides a rich source of enzymes that could be exploited as signal amplifying biomarkers to enable rapid, selective detection of bacterial species. With the exception of the use of micrococcal nuclease activity to detect Staphylococcus aureus, rapid methods that detect bacterial pathogens via their nuclease activities have not been developed. Here, we identify endonuclease I as a robust biomarker for E. coli and develop a rapid ultrasensitive assay that detects its activity. Comparison of nuclease activities of wild-type and nuclease-knockout E. coli clones revealed that endonuclease I is the predominant DNase in E. coli lysates. Endonuclease I is detectable by immunoblot and activity assays in uropathogenic E. coli strains. A rapid assay that detects endonuclease I activity in patient urine with an oligonucleotide probe exhibited substantially higher sensitivity for urinary tract infections than that reported for rapid urinalysis methods. The 3 hr turnaround time is much shorter than that of culture-based methods, thereby providing a means for expedited administration of appropriate antimicrobial therapy. We suggest this approach could address various unmet needs for rapid detection of E. coli. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  8. Chromophore-enhanced bacterial photothermolysis

    NASA Astrophysics Data System (ADS)

    Huckleby, Jana K.; Morton, Rebecca J.; Bartels, Kenneth E.

    1999-06-01

    The use of chromophore dyes to enhance the bactericidal effect of laser energy was studied as a means to optimize laser treatment for the decontamination of wound. Using an in vitro study, various concentrations of indocyanine green (ICG), carbon black, and fluorescein were mixed with a suspension of bacteria and plated on tryptic soy agar. Plates were exposed to a laser beam of 10-15 watts for times ranging from 0 to 180 seconds, incubated overnight, and colony counts were performed. Bacteria not mixed with chromophore were used as controls. Six bacterial strains encompassing a range of bacterial types were used: Staphylococcus aureau, Streptococcus pyogenes, Escherichia coli, Pseudomonas aeruginosa, Bacillus cereus spore suspensions, and Clostridium perfringens. Laser treatment alone had no effect on any of the bacteria. Significant killing of gram-positive bacteria, including spores of Bacillus cereus, was observed only with the use of ICG and diode laser energy. No effect was observed using any of the chromophores on the gram-negative bacteria. The results of this study indicate that successful killing of gram-positive bacteria can be achieved using ICG combined with appropriate laser energy and wavelength. Efforts to enhance the susceptibility of gram-negative bacteria to photothermolysis by laser energy were unsuccessful.

  9. Twenty Years of Active Bacterial Core Surveillance

    PubMed Central

    Schaffner, William; Farley, Monica M.; Lynfield, Ruth; Bennett, Nancy M.; Reingold, Arthur; Thomas, Ann; Harrison, Lee H.; Nichols, Megin; Petit, Susan; Miller, Lisa; Moore, Matthew R.; Schrag, Stephanie J.; Lessa, Fernanda C.; Skoff, Tami H.; MacNeil, Jessica R.; Briere, Elizabeth C.; Weston, Emily J.; Van Beneden, Chris

    2015-01-01

    Active Bacterial Core surveillance (ABCs) was established in 1995 as part of the Centers for Disease Control and Prevention Emerging Infections Program (EIP) network to assess the extent of invasive bacterial infections of public health importance. ABCs is distinctive among surveillance systems because of its large, population-based, geographically diverse catchment area; active laboratory-based identification of cases to ensure complete case capture; detailed collection of epidemiologic information paired with laboratory isolates; infrastructure that allows for more in-depth investigations; and sustained commitment of public health, academic, and clinical partners to maintain the system. ABCs has directly affected public health policies and practices through the development and evaluation of vaccines and other prevention strategies, the monitoring of antimicrobial drug resistance, and the response to public health emergencies and other emerging infections. PMID:26292067

  10. Male Killing Spiroplasma Preferentially Disrupts Neural Development in the Drosophila melanogaster Embryo

    PubMed Central

    Martin, Jennifer; Chong, Trisha; Ferree, Patrick M.

    2013-01-01

    Male killing bacteria such as Spiroplasma are widespread pathogens of numerous arthropods including Drosophila melanogaster. These maternally transmitted bacteria can bias host sex ratios toward the female sex in order to ‘selfishly’ enhance bacterial transmission. However, little is known about the specific means by which these pathogens disrupt host development in order to kill males. Here we show that a male-killing Spiroplasma strain severely disrupts nervous tissue development in male but not female D. melanogaster embryos. The neuroblasts, or neuron progenitors, form properly and their daughter cells differentiate into neurons of the ventral nerve chord. However, the neurons fail to pack together properly and they produce highly abnormal axons. In contrast, non-neural tissue, such as mesoderm, and body segmentation appear normal during this time, although the entire male embryo becomes highly abnormal during later stages. Finally, we found that Spiroplasma is altogether absent from the neural tissue but localizes within the gut and the epithelium immediately surrounding the neural tissue, suggesting that the bacterium secretes a toxin that affects neural tissue development across tissue boundaries. Together these findings demonstrate the unique ability of this insect pathogen to preferentially affect development of a specific embryonic tissue to induce male killing. PMID:24236124

  11. Targeted nanoparticles for enhanced X-ray radiation killing of multidrug-resistant bacteria.

    PubMed

    Luo, Yang; Hossain, Mainul; Wang, Chaoming; Qiao, Yong; An, Jincui; Ma, Liyuan; Su, Ming

    2013-01-21

    This paper describes a nanoparticle enhanced X-ray irradiation based strategy that can be used to kill multidrug resistant (MDR) bacteria. In the proof-of-concept experiment using MDR Pseudomonas aeruginosa (P. aeruginosa) as an example, polyclonal antibody modified bismuth nanoparticles are introduced into bacterial culture to specifically target P. aeruginosa. After washing off uncombined bismuth nanoparticles, the bacteria are irradiated with X-rays, using a setup that mimics a deeply buried wound in humans. Results show that up to 90% of MDR P. aeruginosa are killed in the presence of 200 μg ml(-1) bismuth nanoparticles, whereas only ∼6% are killed in the absence of bismuth nanoparticles when exposed to 40 kVp X-rays for 10 min. The 200 μg ml(-1) bismuth nanoparticles enhance localized X-ray dose by 35 times higher than the control with no nanoparticles. In addition, no significant harmful effects on human cells (HeLa and MG-63 cells) have been observed with 200 μg ml(-1) bismuth nanoparticles and 10 min 40 kVp X-ray irradiation exposures, rendering the potential for future clinical use. Since X-rays can easily penetrate human tissues, this bactericidal strategy has the potential to be used in effectively killing deeply buried MDR bacteria in vivo.

  12. Antimicrobial Activities and Time-Kill Kinetics of Extracts of Selected Ghanaian Mushrooms

    PubMed Central

    Appiah, Theresa; Boakye, Yaw Duah

    2017-01-01

    The rapid rise of antimicrobial resistance is a worldwide problem. This has necessitated the need to search for new antimicrobial agents. Mushrooms are rich sources of potential antimicrobial agents. This study investigated the antimicrobial properties of methanol extracts of Trametes gibbosa, Trametes elegans, Schizophyllum commune, and Volvariella volvacea. Agar well diffusion, broth microdilution, and time-kill kinetic assays were used to determine the antimicrobial activity of the extracts against selected test organisms. Preliminary mycochemical screening revealed the presence of tannins, flavonoids, triterpenoids, anthraquinones, and alkaloids in the extracts. Methanol extracts of T. gibbosa, T. elegans, S. commune, and V. volvacea showed mean zone of growth inhibition of 10.00 ± 0.0 to 21.50 ± 0.84, 10.00 ± 0.0 to 22.00 ± 1.10, 9.00 ± 0.63 to 21.83 ± 1.17, and 12.00 ± 0.0 to 21.17 ± 1.00 mm, respectively. The minimum inhibitory concentration of methanol extracts of T. gibbosa, T. elegans, S. commune, and V. volvacea ranged from 4.0 to 20, 6.0 to 30.0, 8.0 to 10.0, and 6.0 to 20.0 mg/mL, respectively. Time-kill kinetics studies showed that the extracts possess bacteriostatic action. Methanol extracts of T. gibbosa, T. elegans, S. commune, and V. volvacea exhibited antimicrobial activity and may contain bioactive compounds which may serve as potential antibacterial and antifungal agents. PMID:29234399

  13. 33 CFR 117.801 - Newtown Creek, Dutch Kills, English Kills and their tributaries.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Newtown Creek, Dutch Kills, English Kills and their tributaries. 117.801 Section 117.801 Navigation and Navigable Waters COAST GUARD....801 Newtown Creek, Dutch Kills, English Kills and their tributaries. (a) The following requirements...

  14. 33 CFR 117.801 - Newtown Creek, Dutch Kills, English Kills and their tributaries.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Newtown Creek, Dutch Kills, English Kills and their tributaries. 117.801 Section 117.801 Navigation and Navigable Waters COAST GUARD....801 Newtown Creek, Dutch Kills, English Kills and their tributaries. (a) The following requirements...

  15. 33 CFR 117.801 - Newtown Creek, Dutch Kills, English Kills and their tributaries.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Newtown Creek, Dutch Kills, English Kills and their tributaries. 117.801 Section 117.801 Navigation and Navigable Waters COAST GUARD....801 Newtown Creek, Dutch Kills, English Kills and their tributaries. (a) The following requirements...

  16. 33 CFR 117.801 - Newtown Creek, Dutch Kills, English Kills and their tributaries.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Newtown Creek, Dutch Kills, English Kills and their tributaries. 117.801 Section 117.801 Navigation and Navigable Waters COAST GUARD....801 Newtown Creek, Dutch Kills, English Kills and their tributaries. (a) The following requirements...

  17. A Host-Produced Autoinducer-2 Mimic Activates Bacterial Quorum Sensing.

    PubMed

    Ismail, Anisa S; Valastyan, Julie S; Bassler, Bonnie L

    2016-04-13

    Host-microbial symbioses are vital to health; nonetheless, little is known about the role crosskingdom signaling plays in these relationships. In a process called quorum sensing, bacteria communicate with one another using extracellular signal molecules called autoinducers. One autoinducer, AI-2, is proposed to promote interspecies bacterial communication, including in the mammalian gut. We show that mammalian epithelia produce an AI-2 mimic activity in response to bacteria or tight-junction disruption. This AI-2 mimic is detected by the bacterial AI-2 receptor, LuxP/LsrB, and can activate quorum-sensing-controlled gene expression, including in the enteric pathogen Salmonella typhimurium. AI-2 mimic activity is induced when epithelia are directly or indirectly exposed to bacteria, suggesting that a secreted bacterial component(s) stimulates its production. Mutagenesis revealed genes required for bacteria to both detect and stimulate production of the AI-2 mimic. These findings uncover a potential role for the mammalian AI-2 mimic in fostering crosskingdom signaling and host-bacterial symbioses. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Characterization of Antibacterial Activities of Eastern Subterranean Termite, Reticulitermes flavipes, against Human Pathogens

    PubMed Central

    Zeng, Yuan; Hu, Xing Ping

    2016-01-01

    The emergence and dissemination of multidrug resistant bacterial pathogens necessitate research to find new antimicrobials against these organisms. We investigated antimicrobial production by eastern subterranean termites, Reticulitermes flavipes, against a panel of bacteria including three multidrug resistant (MDR) and four non-MDR human pathogens. We determined that the crude extract of naïve termites had a broad-spectrum activity against the non-MDR bacteria but it was ineffective against the three MDR pathogens Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus (MRSA), and Acinetobacter baumannii. Heat or trypsin treatment resulted in a complete loss of activity suggesting that antibacterial activity was proteinaceous in nature. The antimicrobial activity changed dramatically when the termites were fed with either heat-killed P. aeruginosa or MRSA. Heat-killed P. aeruginosa induced activity against P. aeruginosa and MRSA while maintaining or slightly increasing activity against non-MDR bacteria. Heat-killed MRSA induced activity specifically against MRSA, altered the activity against two other Gram-positive bacteria, and inhibited activity against three Gram-negative bacteria. Neither the naïve termites nor the termites challenged with heat-killed pathogens produced antibacterial activity against A. baumannii. Further investigation demonstrated that hemolymph, not the hindgut, was the primary source of antibiotic activity. This suggests that the termite produces these antibacterial activities and not the hindgut microbiota. Two-dimensional gel electrophoretic analyses of 493 hemolymph protein spots indicated that a total of 38 and 65 proteins were differentially expressed at least 2.5-fold upon being fed with P. aeruginosa and MRSA, respectively. Our results provide the first evidence of constitutive and inducible activities produced by R. flavipes against human bacterial pathogens. PMID:27611223

  19. Killing spinors are Killing vector fields in Riemannian supergeometry

    NASA Astrophysics Data System (ADS)

    Alekseevsky, D. V.; Cortés, V.; Devchand, C.; Semmelmann, U.

    1998-06-01

    A supermanifold M is canonically associated to any pseudo-Riemannian spin manifold ( M0, g0). Extending the metric g0 to a field g of bilinear forms g( p) on TpM, pɛM0, the pseudo-Riemannian supergeometry of ( M, g) is formulated as G-structure on M, where G is a supergroup with even part G 0 ≊ Spin(k, l); (k, l) the signature of ( M0, go). Killing vector fields on ( M, g) are, by definition, infinitesimal automorphisms of this G-structure. For every spinor field s there exists a corresponding odd vector field Xs on M. Our main result is that Xs is a Killing vector field on ( M, g) if and only if s is a twistor spinor. In particular, any Killing spinor s defines a Killing vector field Xs.

  20. Fas-Fas ligand interactions are essential for the binding to and killing of activated macrophages by gamma delta T cells.

    PubMed

    Dalton, Jane E; Howell, Gareth; Pearson, Jayne; Scott, Phillip; Carding, Simon R

    2004-09-15

    Gammadelta T cells have a direct role in resolving the host immune response to infection by eliminating populations of activated macrophages. Macrophage reactivity resides within the Vgamma1/Vdelta6.3 subset of gammadelta T cells, which have the ability to kill activated macrophages following infection with Listeria monocytogenes (Lm). However, it is not known how gammadelta T cell macrophage cytocidal activity is regulated, or what effector mechanisms gammadelta T cells use to kill activated macrophages. Using a macrophage-T cell coculture system in which peritoneal macrophages from naive or Lm-infected TCRdelta-/- mice were incubated with splenocytes from wild-type and Fas ligand (FasL)-deficient mice (gld), the ability of Vgamma1 T cells to bind macrophages was shown to be dependent upon Fas-FasL interactions. Combinations of anti-TCR and FasL Abs completely abolished binding to and killing of activated macrophages by Vgamma1 T cells. In addition, confocal microscopy showed that Fas and the TCR colocalized on Vgamma1 T cells at points of contact with macrophages. Collectively, these studies identify an accessory or coreceptor-like function for Fas-FasL that is essential for the interaction of Vgamma1 T cells with activated macrophages and their elimination during the resolution stage of pathogen-induced immune responses. Copyright 2004 The American Association of Immunologists, Inc.

  1. A Nuclease from Streptococcus mutans Facilitates Biofilm Dispersal and Escape from Killing by Neutrophil Extracellular Traps

    PubMed Central

    Liu, Jia; Sun, Luping; Liu, Wei; Guo, Lihong; Liu, Zhaohui; Wei, Xi; Ling, Junqi

    2017-01-01

    Streptococcus mutans is the primary etiologic agent of dental caries and occasionally infective endocarditis, with the ability to form biofilms and disperse cells into distal sites to exacerbate and spread infection. In this study, we identified a nuclease (DeoC) as a S. mutans biofilm dispersal modulating factor through microarray analysis. In vitro assays revealed a dispersal defect of a deoC deletion mutant, and functional studies with purified protein were indicative of the biofilm dispersal activity of DeoC. Neutrophils are a key host response factor restraining bacterial spreading through the formation of neutrophil extracellular traps (NETs), which consist of a nuclear DNA backbone associated with antimicrobial peptides. Therefore, we hypothesized that the dispersed S. mutans might utilize DeoC to degrade NETs and escape killing by the immune system. It was found that S. mutans induced NET formation upon contact with neutrophils, while the presence of NETs in turn enhanced the deoC expression of S. mutans. Fluorescence microscopy inspection showed that deoC deletion resulted in a decreased NET degradation ability of S. mutans and enhanced susceptibility to neutrophil killing. Data obtained from this study assigned two important roles for DeoC in S. mutans: contributing to the spread of infection through mediating biofilm dispersal, and facilitating the escape of S. mutans from neutrophil killing through NET degradation. PMID:28401067

  2. A Nuclease from Streptococcus mutans Facilitates Biofilm Dispersal and Escape from Killing by Neutrophil Extracellular Traps.

    PubMed

    Liu, Jia; Sun, Luping; Liu, Wei; Guo, Lihong; Liu, Zhaohui; Wei, Xi; Ling, Junqi

    2017-01-01

    Streptococcus mutans is the primary etiologic agent of dental caries and occasionally infective endocarditis, with the ability to form biofilms and disperse cells into distal sites to exacerbate and spread infection. In this study, we identified a nuclease (DeoC) as a S. mutans biofilm dispersal modulating factor through microarray analysis. In vitro assays revealed a dispersal defect of a deoC deletion mutant, and functional studies with purified protein were indicative of the biofilm dispersal activity of DeoC. Neutrophils are a key host response factor restraining bacterial spreading through the formation of neutrophil extracellular traps (NETs), which consist of a nuclear DNA backbone associated with antimicrobial peptides. Therefore, we hypothesized that the dispersed S. mutans might utilize DeoC to degrade NETs and escape killing by the immune system. It was found that S. mutans induced NET formation upon contact with neutrophils, while the presence of NETs in turn enhanced the deoC expression of S. mutans . Fluorescence microscopy inspection showed that deoC deletion resulted in a decreased NET degradation ability of S. mutans and enhanced susceptibility to neutrophil killing. Data obtained from this study assigned two important roles for DeoC in S. mutans : contributing to the spread of infection through mediating biofilm dispersal, and facilitating the escape of S. mutans from neutrophil killing through NET degradation.

  3. Ecosystem Resilience and Limitations Revealed by Soil Bacterial Community Dynamics in a Bark Beetle-Impacted Forest

    PubMed Central

    Brouillard, Brent M.; Bokman, Chelsea M.; Sharp, Jonathan O.

    2017-01-01

    ABSTRACT Forested ecosystems throughout the world are experiencing increases in the incidence and magnitude of insect-induced tree mortality with large ecologic ramifications. Interestingly, correlations between water quality and the extent of tree mortality in Colorado montane ecosystems suggest compensatory effects from adjacent live vegetation that mute responses in less severely impacted forests. To this end, we investigated whether the composition of the soil bacterial community and associated functionality beneath beetle-killed lodgepole pine was influenced by the extent of surrounding tree mortality. The most pronounced changes were observed in the potentially active bacterial community, where alpha diversity increased in concert with surrounding tree mortality until mortality exceeded a tipping point of ~30 to 40%, after which diversity stabilized and decreased. Community structure also clustered in association with the extent of surrounding tree mortality with compositional trends best explained by differences in NH4+ concentrations and C/N ratios. C/N ratios, which were lower in soils under beetle-killed trees, further correlated with the relative abundance of putative nitrifiers and exoenzyme activity. Collectively, the response of soil microorganisms that drive heterotrophic respiration and decay supports observations of broader macroscale threshold effects on water quality in heavily infested forests and could be utilized as a predictive mechanism during analogous ecosystem disruptions. PMID:29208740

  4. Killing Coyotes.

    ERIC Educational Resources Information Center

    Beasley, Conger, Jr.

    1993-01-01

    Presents different viewpoints concerning the federal government's Animal Damage Control (ADC) Program cited as responsible for killing millions of predators. Critics provide evidence of outdated and inhumane methods exemplified in the coyote killings. The ADC emphasizes new, nonlethal methods of controlling animals cited as "noxious."…

  5. The eyeball killer: serial killings with postmortem globe enucleation.

    PubMed

    Coyle, Julie; Ross, Karen F; Barnard, Jeffrey J; Peacock, Elizabeth; Linch, Charles A; Prahlow, Joseph A

    2015-05-01

    Although serial killings are relatively rare, they can be the cause of a great deal of anxiety while the killer remains at-large. Despite the fact that the motivations for serial killings are typically quite complex, the psychological analysis of a serial killer can provide valuable insight into how and why certain individuals become serial killers. Such knowledge may be instrumental in preventing future serial killings or in solving ongoing cases. In certain serial killings, the various incidents have a variety of similar features. Identification of similarities between separate homicidal incidents is necessary to recognize that a serial killer may be actively killing. In this report, the authors present a group of serial killings involving three prostitutes who were shot to death over a 3-month period. Scene and autopsy findings, including the unusual finding of postmortem enucleation of the eyes, led investigators to recognize the serial nature of the homicides. © 2015 American Academy of Forensic Sciences.

  6. It’s Not Just Conflict That Motivates Killing of Orangutans

    PubMed Central

    Davis, Jacqueline T.; Mengersen, Kerrie; Abram, Nicola K.; Ancrenaz, Marc; Wells, Jessie A.; Meijaard, Erik

    2013-01-01

    We investigated why orangutans are being killed in Kalimantan, Indonesia, and the role of conflict in these killings. Based on an analysis of interview data from over 5,000 respondents in over 450 villages, we also assessed the socio-ecological factors associated with conflict and non-conflict killings. Most respondents never kill orangutans. Those who reported having personally killed an orangutan primarily did so for non-conflict reasons; for example, 56% of these respondents said that the reason they had killed an orangutan was to eat it. Of the conflict-related reasons for killing, the most common reasons orangutans were killed was fear of orangutans or in self-defence. A similar pattern was evident among reports of orangutan killing by other people in the villages. Regression analyses indicated that religion and the percentage of intact forest around villages were the strongest socio-ecological predictors of whether orangutans were killed for conflict or non-conflict related reasons. Our data indicate that between 44,170 and 66,570 orangutans were killed in Kalimantan within the respondents’ active hunting lifetimes: between 12,690 and 29,024 for conflict reasons (95%CI) and between 26,361 and 41,688 for non-conflict reasons (95% CI). These findings confirm that habitat protection alone will not ensure the survival of orangutans in Indonesian Borneo, and that effective reduction of orangutan killings is urgently needed. PMID:24130707

  7. Antibacterial Surface Design of Titanium-Based Biomaterials for Enhanced Bacteria-Killing and Cell-Assisting Functions Against Periprosthetic Joint Infection.

    PubMed

    Wang, Jiaxing; Li, Jinhua; Qian, Shi; Guo, Geyong; Wang, Qiaojie; Tang, Jin; Shen, Hao; Liu, Xuanyong; Zhang, Xianlong; Chu, Paul K

    2016-05-04

    Periprosthetic joint infection (PJI) is one of the formidable and recalcitrant complications after orthopedic surgery, and inhibiting biofilm formation on the implant surface is considered crucial to prophylaxis of PJI. However, it has recently been demonstrated that free-floating biofilm-like aggregates in the local body fluid and bacterial colonization on the implant and peri-implant tissues can coexist and are involved in the pathogenesis of PJI. An effective surface with both contact-killing and release-killing antimicrobial capabilities can potentially abate these concerns and minimize PJI caused by adherent/planktonic bacteria. Herein, Ag nanoparticles (NPs) are embedded in titania (TiO2) nanotubes by anodic oxidation and plasma immersion ion implantation (PIII) to form a contact-killing surface. Vancomycin is then incorporated into the nanotubes by vacuum extraction and lyophilization to produce the release-killing effect. A novel clinical PJI model system involving both in vitro and in vivo use of methicillin-resistant Staphylococcus aureus (MRSA) ST239 is established to systematically evaluate the antibacterial properties of the hybrid surface against planktonic and sessile bacteria. The vancomycin-loaded and Ag-implanted TiO2 nanotubular surface exhibits excellent antimicrobial and antibiofilm effects against planktonic/adherent bacteria without appreciable silver ion release. The fibroblasts/bacteria cocultures reveal that the surface can help fibroblasts to combat bacteria. We first utilize the nanoarchitecture of implant surface as a bridge between the inorganic bactericide (Ag NPs) and organic antibacterial agent (vancomycin) to achieve total victory in the battle of PJI. The combination of contact-killing and release-killing together with cell-assisting function also provides a novel and effective strategy to mitigate bacterial infection and biofilm formation on biomaterials and has large potential in orthopedic applications.

  8. Peroxidasin contributes to lung host defense by direct binding and killing of gram-negative bacteria.

    PubMed

    Shi, Ruizheng; Cao, Zehong; Li, Hong; Graw, Jochen; Zhang, Guogang; Thannickal, Victor J; Cheng, Guangjie

    2018-05-01

    Innate immune recognition is classically mediated by the interaction of host pattern-recognition receptors and pathogen-associated molecular patterns; this triggers a series of downstream signaling events that facilitate killing and elimination of invading pathogens. In this report, we provide the first evidence that peroxidasin (PXDN; also known as vascular peroxidase-1) directly binds to gram-negative bacteria and mediates bactericidal activity, thus, contributing to lung host defense. PXDN contains five leucine-rich repeats and four immunoglobulin domains, which allows for its interaction with lipopolysaccharide, a membrane component of gram-negative bacteria. Bactericidal activity of PXDN is mediated via its capacity to generate hypohalous acids. Deficiency of PXDN results in a failure to eradicate Pseudomonas aeruginosa and increased mortality in a murine model of Pseudomonas lung infection. These observations indicate that PXDN mediates previously unrecognized host defense functions against gram-negative bacterial pathogens.

  9. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores.

    PubMed

    Liu, Xing; Zhang, Zhibin; Ruan, Jianbin; Pan, Youdong; Magupalli, Venkat Giri; Wu, Hao; Lieberman, Judy

    2016-07-07

    Inflammatory caspases (caspases 1, 4, 5 and 11) are activated in response to microbial infection and danger signals. When activated, they cleave mouse and human gasdermin D (GSDMD) after Asp276 and Asp275, respectively, to generate an N-terminal cleavage product (GSDMD-NT) that triggers inflammatory death (pyroptosis) and release of inflammatory cytokines such as interleukin-1β. Cleavage removes the C-terminal fragment (GSDMD-CT), which is thought to fold back on GSDMD-NT to inhibit its activation. However, how GSDMD-NT causes cell death is unknown. Here we show that GSDMD-NT oligomerizes in membranes to form pores that are visible by electron microscopy. GSDMD-NT binds to phosphatidylinositol phosphates and phosphatidylserine (restricted to the cell membrane inner leaflet) and cardiolipin (present in the inner and outer leaflets of bacterial membranes). Mutation of four evolutionarily conserved basic residues blocks GSDMD-NT oligomerization, membrane binding, pore formation and pyroptosis. Because of its lipid-binding preferences, GSDMD-NT kills from within the cell, but does not harm neighbouring mammalian cells when it is released during pyroptosis. GSDMD-NT also kills cell-free bacteria in vitro and may have a direct bactericidal effect within the cytosol of host cells, but the importance of direct bacterial killing in controlling in vivo infection remains to be determined.

  10. The role of the time-kill kinetics assay as part of a preclinical modeling framework for assessing the activity of anti-tuberculosis drugs.

    PubMed

    Bax, Hannelore I; Bakker-Woudenberg, Irma A J M; de Vogel, Corné P; van der Meijden, Aart; Verbon, Annelies; de Steenwinkel, Jurriaan E M

    2017-07-01

    Novel treatment strategies for tuberculosis are urgently needed. Many different preclinical models assessing anti-tuberculosis drug activity are available, but it is yet unclear which combination of models is most predictive of clinical treatment efficacy. The aim of this study was to determine the role of our in vitro time kill-kinetics assay as an asset to a predictive preclinical modeling framework assessing anti-tuberculosis drug activity. The concentration- and time-dependent mycobacterial killing capacities of six anti-tuberculosis drugs were determined during exposure as single drugs or in dual, triple and quadruple combinations towards a Mycobacterium tuberculosis Beijing genotype strain and drug resistance was assessed. Streptomycin, rifampicin and isoniazid were most active against fast-growing M. tuberculosis. Isoniazid with rifampicin or high dose ethambutol were the only synergistic drug combinations. The addition of rifampicin or streptomycin to isoniazid prevented isoniazid resistance. In vitro ranking showed agreement with early bactericidal activity in tuberculosis patients for some but not all anti-tuberculosis drugs. The time-kill kinetics assay provides important information on the mycobacterial killing dynamics of anti-tuberculosis drugs during the early phase of drug exposure. As such, this assay is a valuable component of the preclinical modeling framework. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Induction of Direct Antimicrobial Activity Through Mammalian Toll-Like Receptors

    NASA Astrophysics Data System (ADS)

    Thoma-Uszynski, Sybille; Stenger, Steffen; Takeuchi, Osamu; Ochoa, Maria Teresa; Engele, Matthias; Sieling, Peter A.; Barnes, Peter F.; Röllinghoff, Martin; Bölcskei, Pal L.; Wagner, Manfred; Akira, Shizuo; Norgard, Michael V.; Belisle, John T.; Godowski, Paul J.; Bloom, Barry R.; Modlin, Robert L.

    2001-02-01

    The mammalian innate immune system retains from Drosophila a family of homologous Toll-like receptors (TLRs) that mediate responses to microbial ligands. Here, we show that TLR2 activation leads to killing of intracellular Mycobacterium tuberculosis in both mouse and human macrophages, through distinct mechanisms. In mouse macrophages, bacterial lipoprotein activation of TLR2 leads to a nitric oxide-dependent killing of intracellular tubercle bacilli, but in human monocytes and alveolar macrophages, this pathway was nitric oxide-independent. Thus, mammalian TLRs respond (as Drosophila Toll receptors do) to microbial ligands and also have the ability to activate antimicrobial effector pathways at the site of infection.

  12. Algicidal activity against Skeletonema costatum by marine bacteria isolated from a high frequency harmful algal blooms area in southern Chinese coast.

    PubMed

    Shi, Rongjun; Huang, Honghui; Qi, Zhanhui; Hu, Weian; Tian, Ziyang; Dai, Ming

    2013-01-01

    Four marine bacterial strains P1, P5, N5 and N21 were isolated from the surface water and sediment of Mirs Bay in southern Chinese coast using the liquid infection method with 48-well plates. These bacteria were all shown to have algicidal activities against Skeletonema costatum. Based on morphological observations, biochemical tests and homology comparisons by 16S rDNA sequences, the isolated strains P1, P5, N5 and N21 were identified as Halobacillus sp., Muricauda sp., Kangiella sp. and Roseivirga sp., respectively. Our results showed that bacterial strain P1 killed S. costatum by release of heat labile algicide, while strains P5, N5 and N21 killed them directly. The algicidal processes of four bacterial strains were different. Strains P1, N5 and N21 disrupted the chain structure and S. costatum appeared as single cells, in which the cellular components were aggregated and the individual cells were inflated and finally lysed, while strain P5 decomposed the algal chains directly. We also showed that the algicidal activities of the bacterial strains were concentration-dependent. More specifically, 10 % (v/v) of bacteria in algae showed the strongest algicidal activities, as all S. costatum cells were killed by strains N5 and N21 within 72 h and by strains P1 and P5 within 96 h. 5 % of bacteria in algae also showed significant algicidal activities, as all S. costatum were killed by strains N5, P5 and N21 within 72, 96 and 120 h, respectively, whereas at this concentration, only 73.4 % of S. costatum cells exposed to strain P1 were killed within 120 h. At the concentration of 1 % bacteria in algae, the number of S. costatum cells continued to increase and the growth rate of algae upon exposure to strain N5 was significantly inhibited.

  13. Imaging burst kinetics and spatial coordination during serial killing by single natural killer cells

    PubMed Central

    Choi, Paul J.; Mitchison, Timothy J.

    2013-01-01

    Cytotoxic lymphocytes eliminate virus-infected and cancerous cells by immune recognition and killing through the perforin-granzyme pathway. Traditional killing assays measure average target cell lysis at fixed times and high effector:target ratios. Such assays obscure kinetic details that might reveal novel physiology. We engineered target cells to report on granzyme activity, used very low effector:target ratios to observe potential serial killing, and performed low magnification time-lapse imaging to reveal time-dependent statistics of natural killer (NK) killing at the single-cell level. Most kills occurred during serial killing, and a single NK cell killed up to 10 targets over a 6-h assay. The first kill was slower than subsequent kills, especially on poor targets, or when NK signaling pathways were partially inhibited. Spatial analysis showed that sequential kills were usually adjacent. We propose that NK cells integrate signals from the previous and current target, possibly by simultaneous contact. The resulting burst kinetics and spatial coordination may control the activity of NK cells in tissues. PMID:23576740

  14. Higher order first integrals, Killing tensors and Killing-Maxwell system

    NASA Astrophysics Data System (ADS)

    Visinescu, Mihai

    2012-02-01

    Higher order first integrals of motion of particles in the presence of external gauge fields in a covariant Hamiltonian approach are investigated. The special role of Stackel-Killing and Killing-Yano tensors is pointed out. A condition of the electromagnetic field to maintain the hidden symmetry of the system is stated. A concrete realization of this condition is given by the Killing-Maxwell system and exemplified with the Kerr metric. Another application of the gauge covariant approach is provided by a non relativistic point charge in the field of a Dirac monopole. The corresponding dynamical system possessing a Kepler type symmetry is associated with the Taub-NUT metric using a reduction procedure of symplectic manifolds with symmetries. The reverse of the reduction procedure can be used to investigate higher-dimensional spacetimes admitting Killing tensors.

  15. Mechanism of killing of streptococcus mutans by light-activated drugs

    NASA Astrophysics Data System (ADS)

    Burns, Tracy; Wilson, Michael; Pearson, G. J.

    1996-01-01

    Recent studies have shown that cariogenic bacteria can be killed when exposed to low power laser light in the presence of a photosensitizing agent. The purpose of this study was to determine the mechanism by which the cariogenic bacterium Streptococcus mutans can be killed by toluidine blue O and helium neon laser light. To determine whether membrane damage occurred, suspensions of sensitized S. mutans were exposed to a 7.3 mW HeNe laser for 30 mins and samples removed every 5 mins. Survivors were enumerated by viable counting on tryptone soya agar plates and cell free filtrates were assayed for phosphate and (beta) -galactosidase. Lipid peroxidation was assessed by assaying for malondialdehyde, a by- product of lipid peroxidation. The role of oxygen and reactive oxygen species was studied by exposing sensitized bacteria to laser light (1) under different atmospheric conditions, (2) in the presence of deuterium oxide, and (3) in the presence of inhibitors of reactive oxygen species. Following exposure of sensitizede S. mutans to 13.2 J of HeNe laser light, 2.6 nmoles of phosphate and 228 nmoles of (beta) -galactosidase were detected in the cell free filtrates. Ten micrometers oles of malondialdehyde were also detected. When the sensitized bacteria were exposed to laser light under anaerobic conditions there was no significant decrease in the viable count compared to a 60% kill in the presence of oxygen. In the presence of D2O there was a 15-fold increase in the numbers of bacteria killed. O.1 M methionine and 0.5 M sodium azide each afforded 98% protection from lethal photosensitization. These results imply that lethal photosensitization results from membrane damage due to lipid peroxidation and that reactive oxygen species are mediators of this process.

  16. Effects of β-caryophyllene and Murraya paniculata essential oil in the murine hepatoma cells and in the bacteria and fungi 24-h time-kill curve studies.

    PubMed

    Selestino Neta, Maria Cipriano; Vittorazzi, Catia; Guimarães, Aline Cristina; Martins, João Damasceno Lopes; Fronza, Marcio; Endringer, Denise Coutinho; Scherer, Rodrigo

    2017-12-01

    Orange Jessamine [Murraya paniculata L. (Rutaceae)] has been used worldwide in folk medicine as an anti-inflammatory, antibiotic and analgesic. The objective of this study is to investigate the in vitro antioxidant, cytotoxic, antibacterial and antifungal activity and the time-kill curve studies of orange jessamine essential oil and β-caryophyllene, as well as the chemical composition of the essential oil. The cytotoxic activity of M. paniculata and β-caryophyllene (7.8-500 μg/mL) was evaluated using the MTT assay on normal fibroblasts and hepatoma cells. The minimal inhibitory concentration and time-kill curves (24 h) were evaluated against those of Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, Enterococcus faecallis, Aspergillus (niger, fumigates and parasiticum) and F. solani by the broth microdilution method. The antioxidant activity was measured by the DPPH and ABTS assays. Chemical composition was evaluated by GC/MS analyses. GC/MS analyses identified 13 compounds, with β-caryophyllene as the major compound. The oil exhibited moderate antibacterial activity (MIC <1.0 mg/mL) and strong antifungal activity. Time-kill curve studies showed that either the essential oil or β-caryophyllene presented rapid bacterial killing (4 h for S. aureus) and fungicidal effect (2-4 h for F. solani); however, both displayed weak free radical scavenger capacity. The cytotoxic activity exhibited a prominent selective effect against hepatoma cancer cells (IC 50 value =63.7 μg/mL) compared with normal fibroblasts (IC 50 value =195.0 μg/mL), whereas the β-caryophyllene showed low cytotoxicity. The experimental data suggest that the activities of M. paniculata essential oil are due to the synergistic action among its components.

  17. Killing Range

    PubMed Central

    Asal, Victor; Rethemeyer, R. Karl; Horgan, John

    2015-01-01

    This paper presents an analysis of the Provisional Irish Republican Army's (PIRA) brigade level behavior during the Northern Ireland Conflict (1970-1998) and identifies the organizational factors that impact a brigade's lethality as measured via terrorist attacks. Key independent variables include levels of technical expertise, cadre age, counter-terrorism policies experienced, brigade size, and IED components and delivery methods. We find that technical expertise within a brigade allows for careful IED usage, which significantly minimizes civilian casualties (a specific strategic goal of PIRA) while increasing the ability to kill more high value targets with IEDs. Lethal counter-terrorism events also significantly affect a brigade's likelihood of killing both civilians and high-value targets but in different ways. Killing PIRA members significantly decreases IED fatalities but also significantly decreases the possibility of zero civilian IED-related deaths in a given year. Killing innocent Catholics in a Brigade's county significantly increases total and civilian IED fatalities. Together the results suggest the necessity to analyze dynamic situational variables that impact terrorist group behavior at the sub-unit level. PMID:25838603

  18. Dynamic metabolic exchange governs a marine algal-bacterial interaction.

    PubMed

    Segev, Einat; Wyche, Thomas P; Kim, Ki Hyun; Petersen, Jörn; Ellebrandt, Claire; Vlamakis, Hera; Barteneva, Natasha; Paulson, Joseph N; Chai, Liraz; Clardy, Jon; Kolter, Roberto

    2016-11-18

    Emiliania huxleyi is a model coccolithophore micro-alga that generates vast blooms in the ocean. Bacteria are not considered among the major factors influencing coccolithophore physiology. Here we show through a laboratory model system that the bacterium Phaeobacter inhibens , a well-studied member of the Roseobacter group, intimately interacts with E. huxleyi. While attached to the algal cell, bacteria initially promote algal growth but ultimately kill their algal host. Both algal growth enhancement and algal death are driven by the bacterially-produced phytohormone indole-3-acetic acid. Bacterial production of indole-3-acetic acid and attachment to algae are significantly increased by tryptophan, which is exuded from the algal cell. Algal death triggered by bacteria involves activation of pathways unique to oxidative stress response and programmed cell death. Our observations suggest that bacteria greatly influence the physiology and metabolism of E. huxleyi. Coccolithophore-bacteria interactions should be further studied in the environment to determine whether they impact micro-algal population dynamics on a global scale.

  19. Determination of bacterial activity by use of an evanescent-wave fiber-optic sensor

    NASA Astrophysics Data System (ADS)

    John, M. Shelly; Kishen, Anil; Sing, Lim Chu; Asundi, Anand

    2002-12-01

    A novel technique based on fiber-optic evanescent-wave spectroscopy is proposed for the detection of bacterial activity in human saliva. The sensor determines the specific concentration of Streptococcus mutans in saliva, which is a major causative factor in dental caries. In this design, one prepares the fiber-optic bacterial sensor by replacing a portion of the cladding region of a multimode fiber with a dye-encapsulated xerogel, using the solgel technique. The exponential decay of the evanescent wave at the core-cladding interface of a multimode fiber is utilized for the determination of bacterial activity in saliva. The acidogenic profile of Streptococcus mutans is estimated by use of evanescent-wave absorption spectra at various levels of bacterial activity.

  20. Kill operation requires thorough analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abel, L.W.

    1995-05-15

    Full control of a blowout well requires a properly designed post-capping kill operation because failures in regaining well control usually occur during the kill operation, not during capping. Capping (the installation of pressure control or diverter equipment on the wellhead) is generally very reliable in gaining control of a blowout well. The following techniques are some of the viable means of killing blowout wells once the capping assemblies are in place: direct shut in of the flow; bullheading; momentum kill; volumetric control for migration of fluids or lubrication after migration ceases; and dynamic kills (friction-based dynamic kills or mass flowmore » rate kills) The objective of most post-capping operations is to stop the flow and put the well under hydrostatic control. The means of killing a blowout once capping assemblies are in place should be chosen with care to avoid problems such as cratering, equipment failure, and underground blowouts. The particular circumstances and well integrity will dictate which kill method will be the most viable. Each of these five methods are explained.« less

  1. Mannitol Does Not Enhance Tobramycin Killing of Pseudomonas aeruginosa in a Cystic Fibrosis Model System of Biofilm Formation

    PubMed Central

    Price, Katherine E.; Orazi, Giulia; Ruoff, Kathryn L.; Hebert, Wesley P.; O’Toole, George A.; Mastoridis, Paul

    2015-01-01

    Cystic Fibrosis (CF) is a human genetic disease that results in the accumulation of thick, sticky mucus in the airways, which results in chronic, life-long bacterial biofilm infections that are difficult to clear with antibiotics. Pseudomonas aeruginosa lung infection is correlated with worsening lung disease and P. aeruginosa transitions to an antibiotic tolerant state during chronic infections. Tobramycin is an aminoglycoside currently used to combat lung infections in individuals with CF. While tobramycin is effective at eradicating P. aeruginosa in the airways of young patients, it is unable to completely clear the chronic P. aeruginosa infections in older patients. A recent report showed that co-addition of tobramycin and mannitol enhanced killing of P. aeruginosa grown in vitro as a biofilm on an abiotic surface. Here we employed a model system of bacterial biofilms formed on the surface of CF-derived airway cells to determine if mannitol would enhance the antibacterial activity of tobramycin against P. aeruginosa grown on a more clinically relevant surface. Using this model system, which allows the growth of robust biofilms with high-level antibiotic tolerance analogous to in vivo biofilms, we were unable to find evidence for enhanced antibacterial activity of tobramycin with the addition of mannitol, supporting the observation that this type of co-treatment failed to reduce the P. aeruginosa bacterial load in a clinical setting. PMID:26506004

  2. Chitin-induced T6SS in Vibrio cholerae is dependent on ChiS activation.

    PubMed

    Chourashi, Rhishita; Das, Suman; Dhar, Debarpan; Okamoto, Keinosuke; Mukhopadhyay, Asish K; Chatterjee, Nabendu Sekhar

    2018-05-01

    Vibrio cholerae regularly colonizes the chitinous exoskeleton of crustacean shells in the aquatic region. The type 6 secretion system (T6SS) in V. cholerae is an interbacterial killing device. This system is thought to provide a competitive advantage to V. cholerae in a polymicrobial community of the aquatic region under nutrient-poor conditions. V. cholerae chitin sensing is known to be initiated by the activation of a two-component sensor histidine kinase ChiS in the presence of GlcNAc2 (N,N'-diacetylchitobiose) residues generated by the action of chitinases on chitin. It is known that T6SS in V. cholerae is generally induced by chitin. However, the effect of ChiS activation on T6SS is unknown. Here, we found that ChiS inactivation resulted in impaired bacterial killing and reduced expression of T6SS genes. Active ChiS positively affected T6SS-mediated natural transformation in V. cholerae. ChiS depletion or inactivation also resulted in reduced colonization on insoluble chitin surfaces. Therefore, we have shown that V. cholerae colonization on chitinous surfaces activates ChiS, which promotes T6SS-dependent bacterial killing and horizontal gene transfer. We also highlight the importance of chitinases in T6SS upregulation.

  3. Antimicrobial activity of bovine NK-lysin-derived peptides on bovine respiratory pathogen Histophilus somni

    PubMed Central

    Falkenberg, Shollie M.; Briggs, Robert E.; Tatum, Fred M.; Sacco, Randy E.

    2017-01-01

    Bovine NK-lysins, which are functionally and structurally similar to human granulysin and porcine NK-lysin, are predominantly found in the granules of cytotoxic T-lymphocytes and NK-cells. Although antimicrobial activity of bovine NK-lysin has been assessed for several bacterial pathogens, not all the important bacterial pathogens that are involved in the bovine respiratory disease complex have been studied. Therefore the objective of the present study was to evaluate the antimicrobial activity of bovine NK-lysin-derived peptides on bovine respiratory pathogen Histophilus somni. Four, 30-mer peptides corresponding to the functional region of NK-lysin helices 2 and 3 were synthesized and assessed for antibacterial activity on four bovine pneumonic H. somni isolates. Although there were some differences in the efficiency of bactericidal activity among the NK-lysin peptides at lower concentrations (2–5 μM), all four peptides effectively killed most H. somni isolates at higher concentrations (10–30 μM) as determined by a bacterial killing assay. Confocal microscopic and flow cytometric analysis of Live/Dead Baclight stained H. somni (which were preincubated with NK-lysin peptides) were consistent with the killing assay findings and suggest NK-lysin peptides are bactericidal for H. somni. Among the four peptides, NK2A-derived peptide consistently showed the highest antimicrobial activity against all four H. somni isolates. Electron microscopic examination of H. somni following incubation with NK-lysin revealed extensive cell membrane damage, protrusions of outer membranes, and cytoplasmic content leakage. Taken together, the findings from this study clearly demonstrate the antimicrobial activity of all four bovine NK-lysin-derived peptides against bovine H. somni isolates. PMID:28827826

  4. Antimicrobial activity of bovine NK-lysin-derived peptides on bovine respiratory pathogen Histophilus somni.

    PubMed

    Dassanayake, Rohana P; Falkenberg, Shollie M; Briggs, Robert E; Tatum, Fred M; Sacco, Randy E

    2017-01-01

    Bovine NK-lysins, which are functionally and structurally similar to human granulysin and porcine NK-lysin, are predominantly found in the granules of cytotoxic T-lymphocytes and NK-cells. Although antimicrobial activity of bovine NK-lysin has been assessed for several bacterial pathogens, not all the important bacterial pathogens that are involved in the bovine respiratory disease complex have been studied. Therefore the objective of the present study was to evaluate the antimicrobial activity of bovine NK-lysin-derived peptides on bovine respiratory pathogen Histophilus somni. Four, 30-mer peptides corresponding to the functional region of NK-lysin helices 2 and 3 were synthesized and assessed for antibacterial activity on four bovine pneumonic H. somni isolates. Although there were some differences in the efficiency of bactericidal activity among the NK-lysin peptides at lower concentrations (2-5 μM), all four peptides effectively killed most H. somni isolates at higher concentrations (10-30 μM) as determined by a bacterial killing assay. Confocal microscopic and flow cytometric analysis of Live/Dead Baclight stained H. somni (which were preincubated with NK-lysin peptides) were consistent with the killing assay findings and suggest NK-lysin peptides are bactericidal for H. somni. Among the four peptides, NK2A-derived peptide consistently showed the highest antimicrobial activity against all four H. somni isolates. Electron microscopic examination of H. somni following incubation with NK-lysin revealed extensive cell membrane damage, protrusions of outer membranes, and cytoplasmic content leakage. Taken together, the findings from this study clearly demonstrate the antimicrobial activity of all four bovine NK-lysin-derived peptides against bovine H. somni isolates.

  5. Bacterial diversity and active biomass in full-scale granular activated carbon filters operated at low water temperatures.

    PubMed

    Kaarela, Outi E; Härkki, Heli A; Palmroth, Marja R T; Tuhkanen, Tuula A

    2015-01-01

    Granular activated carbon (GAC) filtration enhances the removal of natural organic matter and micropollutants in drinking water treatment. Microbial communities in GAC filters contribute to the removal of the biodegradable part of organic matter, and thus help to control microbial regrowth in the distribution system. Our objectives were to investigate bacterial community dynamics, identify the major bacterial groups, and determine the concentration of active bacterial biomass in full-scale GAC filters treating cold (3.7-9.5°C), physicochemically pretreated, and ozonated lake water. Three sampling rounds were conducted to study six GAC filters of different operation times and flow modes in winter, spring, and summer. Total organic carbon results indicated that both the first-step and second-step filters contributed to the removal of organic matter. Length heterogeneity analysis of amplified 16S rRNA genes illustrated that bacterial communities were diverse and considerably stable over time. α-Proteobacteria, β-Proteobacteria, and Nitrospira dominated in all of the GAC filters, although the relative proportion of dominant phylogenetic groups in individual filters differed. The active bacterial biomass accumulation, measured as adenosine triphosphate, was limited due to low temperature, low flux of nutrients, and frequent backwashing. The concentration of active bacterial biomass was not affected by the moderate seasonal temperature variation. In summary, the results provided an insight into the biological component of GAC filtration in cold water temperatures and the operational parameters affecting it.

  6. TNF-induced target cell killing by CTL activated through cross-presentation.

    PubMed

    Wohlleber, Dirk; Kashkar, Hamid; Gärtner, Katja; Frings, Marianne K; Odenthal, Margarete; Hegenbarth, Silke; Börner, Carolin; Arnold, Bernd; Hämmerling, Günter; Nieswandt, Bernd; van Rooijen, Nico; Limmer, Andreas; Cederbrant, Karin; Heikenwalder, Mathias; Pasparakis, Manolis; Protzer, Ulrike; Dienes, Hans-Peter; Kurts, Christian; Krönke, Martin; Knolle, Percy A

    2012-09-27

    Viruses can escape cytotoxic T cell (CTL) immunity by avoiding presentation of viral components via endogenous MHC class I antigen presentation in infected cells. Cross-priming of viral antigens circumvents such immune escape by allowing noninfected dendritic cells to activate virus-specific CTLs, but they remain ineffective against infected cells in which immune escape is functional. Here, we show that cross-presentation of antigen released from adenovirus-infected hepatocytes by liver sinusoidal endothelial cells stimulated cross-primed effector CTLs to release tumor necrosis factor (TNF), which killed virus-infected hepatocytes through caspase activation. TNF receptor signaling specifically eliminated infected hepatocytes that showed impaired anti-apoptotic defense. Thus, CTL immune surveillance against infection relies on two similarly important but distinct effector functions that are both MHC restricted, requiring either direct antigen recognition on target cells and canonical CTL effector function or cross-presentation and a noncanonical effector function mediated by TNF. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.

  7. The influence of uraemia and haemodialysis on neutrophil phagocytosis and antimicrobial killing.

    PubMed

    Anding, Kirsten; Gross, Peter; Rost, Jan M; Allgaier, Dirk; Jacobs, Enno

    2003-10-01

    Neutrophil functions in haemodialysis (HD) patients are altered by uraemia and by HD procedure. We investigated details of the neutrophil dysfunction as its nature and origin is not well understood. This is reflected by conflicting results about neutrophil phagocytosis activity and by scarce data on the neutrophil killing capability in HD patients. Using a flow-cytometric test system we have measured simultaneously phagocytosis and the production of reactive oxygen species (ROS) of neutrophils and in parallel antimicrobial killing of yeast by neutrophils. 117 whole-blood samples of healthy controls and 50 pre- and 50 post-dialysis samples of HD patients, half of them with diabetes mellitus (DM), have been evaluated. We have constructed a model to account for the dependence on the stimulus-to-cell ratio and obtain means for phagocytosis and killing at different incubation times. (i) HD patients have significantly lower neutrophil killing (20%) than healthy controls. (ii) Dialysis improves the killing capability by 10-15%, after dialysis the killing activity remains significantly (10%) below that of the controls. (iii) The percentage of neutrophils, which exhibit phagocytosis and produce ROS, does not differ significantly between HD patients and healthy controls. (iv) Age has no significant influence on phagocytosis and killing. The neutrophil killing capability is reduced in HD patients while the amount of neutrophils that phagocyte and produce ROS remains unchanged. Functional impairment of uraemic neutrophils is therefore mainly a result of their reduced capability to kill microorganisms intracellularly.

  8. Planning a dynamic kill

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abel, L.W.

    1996-05-01

    This article discusses the methodology, design philosophy, and guidelines for planning a dynamic-kill operation for a wild well. The topics covered are two methods of computer analysis for designing dynamic-kill requirements, the design process, determining the pumping spread, and the pitfalls that a designer faces in planning a dynamic kill.

  9. Uric acid disrupts hypochlorous acid production and the bactericidal activity of HL-60 cells.

    PubMed

    Carvalho, Larissa A C; Lopes, João P P B; Kaihami, Gilberto H; Silva, Railmara P; Bruni-Cardoso, Alexandre; Baldini, Regina L; Meotti, Flavia C

    2018-06-01

    Uric acid is the end product of purine metabolism in humans and is an alternative physiological substrate for myeloperoxidase. Oxidation of uric acid by this enzyme generates uric acid free radical and urate hydroperoxide, a strong oxidant and potentially bactericide agent. In this study, we investigated whether the oxidation of uric acid and production of urate hydroperoxide would affect the killing activity of HL-60 cells differentiated into neutrophil-like cells (dHL-60) against a highly virulent strain (PA14) of the opportunistic pathogen Pseudomonas aeruginosa. While bacterial cell counts decrease due to dHL-60 killing, incubation with uric acid inhibits this activity, also decreasing the release of the inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF- α). In a myeloperoxidase/Cl - /H 2 O 2 cell-free system, uric acid inhibited the production of HOCl and bacterial killing. Fluorescence microscopy showed that uric acid also decreased the levels of HOCl produced by dHL-60 cells, while significantly increased superoxide production. Uric acid did not alter the overall oxidative status of dHL-60 cells as measured by the ratio of reduced (GSH) and oxidized (GSSG) glutathione. Our data show that uric acid impairs the killing activity of dHL-60 cells likely by competing with chloride by myeloperoxidase catalysis, decreasing HOCl production. Despite diminishing HOCl, uric acid probably stimulates the formation of other oxidants, maintaining the overall oxidative status of the cells. Altogether, our results demonstrated that HOCl is, indeed, the main relevant oxidant against bacteria and deviation of myeloperoxidase activity to produce other oxidants hampers dHL-60 killing activity. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Oral Administration of Heat-Killed Mycobacterium manresensis Delays Progression toward Active Tuberculosis in C3HeB/FeJ Mice

    PubMed Central

    Cardona, Paula; Marzo-Escartín, Elena; Tapia, Gustavo; Díaz, Jorge; García, Vanessa; Varela, Ismael; Vilaplana, Cristina; Cardona, Pere-Joan

    2016-01-01

    Low-dose tolerance using heat-killed mycobacteria has been tested as a means of stopping progression toward active tuberculosis (TB) lesions in a human-like murine model using C3HeB/FeJ mice. In the present study, we studied the effect of different treatment schedules with heat-killed non-tuberculous-mycobacteria (NTM) species when given orally, based on the hypothesis of generating oral tolerance. This study included M. manresensis, a new species belonging to the fortuitum group, present in drinking water. Oral treatment with M. manresensis for 2 weeks was able to induce a PPD-specific Tregs population, which has been related to a decrease in the neutrophilic infiltration found in TB lesions. Further mechanistic analysis using PPD-stimulated splenocytes links this 2-week treatment with heat-killed M. manresensis to IL-10 production and memory PPD-specific Tregs, and also to a weak PPD-specific global immune response stimulation, increasing IL-6, TNF, and IFN-γ production. In lungs, this treatment decreased the bacillary load, granulomatous infiltration and pro-inflammatory cytokines (TNF, IFN-γ, IL-6, and IL-17). Oral administration of M. manresensis during standard treatment for TB also significantly reduced the relapse of active TB after ending the treatment. Overall the data suggest that the use of heat-killed M. manresensis could be a new and promising tool for avoiding active TB induction and as adjunctive to TB treatment. This supports the usefulness of generating a new kind of protection based on a complex balanced immune response focused on both destroying the bacilli and including control of an excessive inflammatory response. PMID:26779140

  11. Oral Administration of Heat-Killed Mycobacterium manresensis Delays Progression toward Active Tuberculosis in C3HeB/FeJ Mice.

    PubMed

    Cardona, Paula; Marzo-Escartín, Elena; Tapia, Gustavo; Díaz, Jorge; García, Vanessa; Varela, Ismael; Vilaplana, Cristina; Cardona, Pere-Joan

    2015-01-01

    Low-dose tolerance using heat-killed mycobacteria has been tested as a means of stopping progression toward active tuberculosis (TB) lesions in a human-like murine model using C3HeB/FeJ mice. In the present study, we studied the effect of different treatment schedules with heat-killed non-tuberculous-mycobacteria (NTM) species when given orally, based on the hypothesis of generating oral tolerance. This study included M. manresensis, a new species belonging to the fortuitum group, present in drinking water. Oral treatment with M. manresensis for 2 weeks was able to induce a PPD-specific Tregs population, which has been related to a decrease in the neutrophilic infiltration found in TB lesions. Further mechanistic analysis using PPD-stimulated splenocytes links this 2-week treatment with heat-killed M. manresensis to IL-10 production and memory PPD-specific Tregs, and also to a weak PPD-specific global immune response stimulation, increasing IL-6, TNF, and IFN-γ production. In lungs, this treatment decreased the bacillary load, granulomatous infiltration and pro-inflammatory cytokines (TNF, IFN-γ, IL-6, and IL-17). Oral administration of M. manresensis during standard treatment for TB also significantly reduced the relapse of active TB after ending the treatment. Overall the data suggest that the use of heat-killed M. manresensis could be a new and promising tool for avoiding active TB induction and as adjunctive to TB treatment. This supports the usefulness of generating a new kind of protection based on a complex balanced immune response focused on both destroying the bacilli and including control of an excessive inflammatory response.

  12. A comparative analysis of green synthesis approach starch capped metal oxides (ZnO & CdO) nanoparticles and its bacterial activity

    NASA Astrophysics Data System (ADS)

    Vidhya, K.; Devarajan, V. P.; Viswanathan, C.; Nataraj, D.; Bhoopathi, G.

    2013-06-01

    In this study, we have investigated the bacterial activity of starch capped ZnO & CdO NPs. The NPs were prepared through green technique under room temperature and then obtained samples were characterized by using XRD and PL techniques. XRD pattern confirms the crystal nature it shows hexagonal structure for ZnO NPs and monoclinic structure for CdO NPs and their average particle size is ±20 nm. Further, the optical properties of NPs were investigated using PL technique in which the starch capped ZnO NPs shows maximum emission at 440 nm whereas starch capped CdO NPs shows maximum emission at 545 nm. Finally, toxic test was performed with E.coli bacteria and their results were investigated. Hence, starch capped ZnO NPs induced less killing effect when compared with starch capped CdO NPs. Therefore, we conclude that the starch capped ZnO NPs may be less toxic to microorganisms when compared with starch capped CdO NPs. In addition, starch capped ZnO NPs is also suitable for anti-microbial activity.

  13. Inflammasome - activated gasdermin D causes pyroptosis by forming membrane pores

    PubMed Central

    Liu, Xing; Zhang, Zhibin; Ruan, Jianbin; Pan, Youdong; Magupalli, Venkat Giri; Wu, Hao; Lieberman, Judy

    2017-01-01

    Inflammatory caspases (caspases 1, 4, 5 and 11) are activated in response to microbial infection and danger signals. When activated, they cleave mouse and human gasdermin D (GSDMD) after Asp276 and Asp275, respectively, to generate an N-terminal cleavage product (GSDMD-NT) that triggers inflammatory death (pyroptosis) and release of inflammatory cytokines such as interleukin-1β1,2. Cleavage removes the C-terminal fragment (GSDMD-CT), which is thought to fold back on GSDMD-NT to inhibit its activation. However, how GSDMD-NT causes cell death is unknown. Here we show that GSDMD-NT oligomerizes in membranes to form pores that are visible by electron microscopy. GSDMD-NT binds to phosphatidylinositol phosphates and phosphatidylserine (restricted to the cell membrane inner leaflet) and cardiolipin (present in the inner and outer leaflets of bacterial membranes). Mutation of four evolutionarily conserved basic residues blocks GSDMD-NT oligomerization, membrane binding, pore formation and pyroptosis. Because of its lipid-binding preferences, GSDMD-NT kills from within the cell, but does not harm neighbouring mammalian cells when it is released during pyroptosis. GSDMD-NT also kills cell-free bacteria in vitro and may have a direct bactericidal effect within the cytosol of host cells, but the importance of direct bacterial killing in controlling in vivo infection remains to be determined. PMID:27383986

  14. Sterilization of bacterial endospores by an atmospheric-pressure argon plasma jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uhm, Han S.; Lim, Jin P.; Li, Shou Z.

    2007-06-25

    Argon plasma jets penetrate deep into ambient air and create a path for oxygen radicals to sterilize microbes. A sterilization experiment with bacterial endospores indicates that an argon-oxygen plasma jet very effectively kills endospores of Bacillus atrophaeus (ATCC 9372), thereby demonstrating its capability to clean surfaces and its usefulness for reinstating contaminated equipment as free from toxic biological warfare agents. However, the spore-killing efficiency of the atmospheric-pressure argon-oxygen jet depends very sensitively on the oxygen concentration in the argon gas.

  15. Characterization of CCN and IN activity of bacterial isolates collected in Atlanta, GA

    NASA Astrophysics Data System (ADS)

    Purdue, Sara; Waters, Samantha; Karthikeyan, Smruthi; Konstantinidis, Kostas; Nenes, Athanasios

    2016-04-01

    Characterization of CCN activity of bacteria, other than a few select types such as Pseudomonas syringae, is limited, especially when looked at in conjunction with corresponding IN activity. The link between these two points is especially important for bacteria as those that have high CCN activity are likely to form an aqueous phase required for immersion freezing. Given the high ice nucleation temperature of bacterial cells, especially in immersion mode, it is important to characterize the CCN and IN activity of many different bacterial strains. To this effect, we developed a droplet freezing assay (DFA) which consists of an aluminum cold plate, cooled by a continuous flow of an ethylene glycol-water mixture, in order to observe immersion freezing of the collected bacteria. Here, we present the initial results on the CCN and IN activities of bacterial samples we have collected in Atlanta, GA. Bacterial strains were collected and isolated from rainwater samples taken from different storms throughout the year. We then characterized the CCN activity of each strain using a DMT Continuous Flow Streamwise Thermal Gradient CCN Counter by exposing the aerosolized bacteria to supersaturations ranging from 0.05% to 0.6%. Additionally, using our new DFA, we characterized the IN activity of each bacterial strain at temperatures ranging from -20oC to 0oC. The combined CCN and IN activity gives us valuable information on how some uncharacterized bacteria contribute to warm and mixed-phase cloud formation in the atmosphere.

  16. Efficacy of 4 Irrigation Protocols in Killing Bacteria Colonized in Dentinal Tubules Examined by a Novel Confocal Laser Scanning Microscope Analysis

    PubMed Central

    Azim, Adham A.; Aksel, Hacer; Zhuang, Tingting; Mashtare, Terry; Babu, Jegdish P.; Huang, George T.-J.

    2016-01-01

    Introduction The aim of this study was to determine the efficiency of 4 irrigation systems in eliminating bacteria in root canals, particularly in dentinal tubules. Methods Roots of human teeth were prepared to 25/04, autoclaved, and inoculated with Enterococcus faecalis for 3 weeks. Canals were then disinfected by (1) standard needle irrigation, (2) sonically agitating with EndoActivator, (3) XP Endo finisher, or (4) erbium:yttrium aluminum garnet laser (PIPS) (15 roots/group). The bacterial reduction in the canal was determined by MTT assays. For measuring live versus dead bacteria in the dentinal tubules (4 teeth/group), teeth were split open and stained with LIVE/DEAD BackLight. Coronal, middle, and apical thirds of the canal dentin were scanned by using a confocal laser scanning microscope (CLSM) to determine the ratio of dead/total bacteria in the dentinal tubules at various depths. Results All 4 irrigation protocols significantly eliminated bacteria in the canal, ranging from 89.6% to 98.2% reduction (P < .001). XP Endo had the greatest bacterial reduction compared with other 3 techniques (P < .05). CLSM analysis showed that XP Endo had the highest level of dead bacteria in the coronal, middle, and apical segments at 50-μm depth. On the other hand, PIPS had the greatest bacterial killing efficiency at the 150-μm depth in all 3 root segments. Conclusions XP Endo appears to be more efficient than other 3 techniques in disinfecting the main canal space and up to 50 μm deep into the dentinal tubules. PIPS appears to be most effective in killing the bacteria deep in the dentinal tubules. PMID:27130334

  17. Factors Affecting Zebra Mussel Kill by the Bacterium Pseudomonas fluorescens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel P. Molloy

    2004-02-24

    The specific purpose of this research project was to identify factors that affect zebra mussel kill by the bacterium Pseudomonas fluorescens. Test results obtained during this three-year project identified the following key variables as affecting mussel kill: treatment concentration, treatment duration, mussel siphoning activity, dissolved oxygen concentration, water temperature, and naturally suspended particle load. Using this latter information, the project culminated in a series of pipe tests which achieved high mussel kill inside power plants under once-through conditions using service water in artificial pipes.

  18. Escherichia coli Free Radical-Based Killing Mechanism Driven by a Unique Combination of Iron Restriction and Certain Antibiotics

    PubMed Central

    Ma, Li; Gao, Yongjun

    2015-01-01

    ABSTRACT Bacterial resistance to antibiotics is precipitating a medical crisis, and new antibacterial strategies are being sought. Hypothesizing that a growth-restricting strategy could be used to enhance the efficacy of antibiotics, we determined the effect of FDA-approved iron chelators and various antibiotic combinations on invasive and multidrug-resistant extraintestinal pathogenic Escherichia coli (ExPEC), the Gram-negative bacterium most frequently isolated from the bloodstreams of hospitalized patients. We report that certain antibiotics used at sublethal concentrations display enhanced growth inhibition and/or killing when combined with the iron chelator deferiprone (DFP). Inductively coupled plasma optical emission spectrometry reveals abnormally high levels of cell-associated iron under these conditions, a response that correlates with an iron starvation response and supraphysiologic levels of reactive oxygen species (ROS). The high ROS level is reversed upon the addition of antioxidants, which restores bacterial growth, suggesting that the cells are inhibited or killed by excessive free radicals. A model is proposed in which peptidoglycan-targeting antibiotics facilitate the entry of lethal levels of iron-complexed DFP into the bacterial cytoplasm, a process that drives the generation of ROS. This new finding suggests that, in addition to restriction of access to iron as a general growth-restricting strategy, targeting of cellular pathways or networks that selectively disrupt normal iron homeostasis can have potent bactericidal outcomes. IMPORTANCE The prospect that common bacteria will become resistant to all antibiotics is challenging the medical community. In addition to the development of next-generation antibiotics, new bacterial targets that display cytotoxic properties when altered need to be identified. Data presented here demonstrate that combining subinhibitory levels of both iron chelators and certain antibiotics kills pathogenic Escherichia

  19. Antimicrobial Nanoparticle for the Treatment of Bacterial Infection

    NASA Astrophysics Data System (ADS)

    Pornpattananangkul, Dissaya

    into the liposome membranes and form pores, through which the encapsulated therapeutic agents are released. The released drugs subsequently impose antimicrobial effects on the toxin-secreting bacteria. It was observed that in the presence of toxin-secreting bacteria, 100% of the encapsulated antibiotics were released from the gold nanoparticle-stabilized liposomes and bacterial growth was effectively inhibited by the released antibiotics in 24 h. The second area is to demonstrate an application of the invented technology to treat acne vulgaris by delivering therapeutics to the acne-causing bacteria, named Propionibacterium acnes (P.acnes). First, lauric acid (LA), an antimicrobial with strong activity against P. acnes, is encapsulated in liposomes (LipoLA), which is shown to effectively kill the bacteria by fusion with the bacterial membrane, resulting in a direct insertion of LA molecules to the membrane and destruction of its surface structure in vitro and in vivo. The system is then further improved by the acid-responsive technology based on the fact that the acne lesions on human skin are typically acidic. Demonstrated by fluorescent and antimicrobial experiments, the bound gold nanoparticles effectively prevent LipoLA from fusing with one another at neutral pH value. However, at acidic condition, the gold particles detatch from LipoLA surface, allowing the fusion with P.acnes membrane and lauric acid delivery, resulting in a complete killing effect. The stimuli-responsive liposomes presented here provide a new, safe, and effective approach to treat bacterial infections. They can be broadly applied to treat a variety of infections caused by bacteria that reside in acidic environment and secrete pore-forming toxins.

  20. Characterization of a Staphylococcus aureus surface virulence factor that promotes resistance to oxidative killing and infectious endocarditis.

    PubMed

    Malachowa, Natalia; Kohler, Petra L; Schlievert, Patrick M; Chuang, Olivia N; Dunny, Gary M; Kobayashi, Scott D; Miedzobrodzki, Jacek; Bohach, Gregory A; Seo, Keun Seok

    2011-01-01

    Staphylococcus aureus is a prominent human pathogen and a leading cause of community- and hospital-acquired bacterial infections worldwide. Herein, we describe the identification and characterization of the S. aureus 67.6-kDa hypothetical protein, named for the surface factor promoting resistance to oxidative killing (SOK) in this study. Sequence analysis showed that the SOK gene is conserved in all sequenced S. aureus strains and homologous to the myosin cross-reactive antigen of Streptococcus pyogenes. Immunoblotting and immunofluorescence analysis showed that SOK was copurified with membrane fractions and was exposed on the surface of S. aureus Newman and RN4220. Comparative analysis of wild-type S. aureus and an isogenic deletion strain indicated that SOK contributes to both resistance to killing by human neutrophils and to oxidative stress. In addition, the S. aureus sok deletion strain showed dramatically reduced aortic valve vegetation and bacterial cell number in a rabbit endocarditis model. These results, plus the suspected role of the streptococcal homologue in certain diseases such as acute rheumatic fever, suggest that SOK plays an important role in cardiovascular and other staphylococcal infections.

  1. Simultaneous cytofluorometric measurement of phagocytosis, burst production and killing of human phagocytes using Candida albicans and Staphylococcus aureus as target organisms.

    PubMed

    Salih, H R; Husfeld, L; Adam, D

    2000-05-01

    Polymorphonuclear leukocytes (PMN) play a central role in the elimination of most extracellular pathogens, and an impairment of their functions predisposes an individual towards local and systemic bacterial and fungal infections. Here we describe a rapid and easy-to-perform cytofluorometric assay for investigation of PMN activity using Candida albicans and Staphylococcus aureus as target organisms. Phagocytes were stained with anti-CD13-RPE antibody, and microorganisms were stained with calcein-AM. Oxidative burst production was measured by oxidation of dihydroethidium. The percentage of killed target organisms after ingestion was determined by staining with ethidium-homodimer-1 after lysis of human cells. The dyes and procedures used in this method were chosen after comparison of different stains and cell preparation techniques described in previous assays. Concerning phagocytosis, the percentages of active phagocytes and of ingested microorganisms were determined. Furthermore, the method allowed measurement of the resulting percentage of PMNs producing respiratory burst, and of the percentage of killed microorganisms. We minimized artifactual changes, which might have been the reason for the difficulties and conflicting results of other cytofluorometric methods. The described method provides a new whole blood cytofluorometric assay, which combines rapid and simple handling with high reproducibility of results obtained by investigation of PMN activity using Candida albicans and Staphylococcus aureus as target organisms.

  2. Functional Activity of Antibodies Directed towards Flagellin Proteins of Non-Typhoidal Salmonella

    PubMed Central

    Boyd, Mary A.; Wang, Jin Y.; Tulapurkar, Mohan E.; Pasetti, Marcela F.; Levine, Myron M.; Simon, Raphael

    2016-01-01

    Non-typhoidal Salmonella (NTS) serovars Typhimurium and Enteritidis are major causes of invasive bacterial infections in children under 5 years old in sub-Saharan Africa, with case fatality rates of ~20%. There are no licensed NTS vaccines for humans. Vaccines that induce antibodies against a Salmonella Typhi surface antigen, Vi polysaccharide, significantly protect humans against typhoid fever, establishing that immune responses to Salmonella surface antigens can be protective. Flagella proteins, abundant surface antigens in Salmonella serovars that cause human disease, are also powerful immunogens, but the functional capacity of elicited anti-flagellar antibodies and their role in facilitating bacterial clearance has been unclear. We examined the ability of anti-flagellar antibodies to mediate microbial killing by immune system components in-vitro and assessed their role in protecting mice against invasive Salmonella infection. Polyclonal (hyperimmune sera) and monoclonal antibodies raised against phase 1 flagellin proteins of S. Enteritidis and S. Typhimurium facilitated bacterial uptake and killing of the homologous serovar pathogen by phagocytes. Polyclonal anti-flagellar antibodies accompanied by complement also achieved direct bacterial killing. Serum bactericidal activity was restricted to Salmonella serovars expressing the same flagellin used as immunogen. Notably, individual anti-flagellin monoclonal antibodies with complement were not bactericidal, but this biological activity was restored when different monoclonal anti-flagellin antibodies were combined. Passive transfer immunization with a monoclonal IgG antibody specific for phase 1 flagellin from S. Typhimurium protected mice against lethal challenge with a representative African invasive S. Typhimurium strain. These findings have relevance for the use of flagellin proteins in NTS vaccines, and confirm the role of anti-flagellin antibodies as mediators of protective immunity. PMID:26998925

  3. Aloe vera enhances the innate immune response of pacu (Piaractus mesopotamicus) after transport stress and combined heat killed Aeromonas hydrophila infection.

    PubMed

    Zanuzzo, Fábio S; Sabioni, Rafael E; Montoya, Luz Natalia F; Favero, Gisele; Urbinati, Elisabeth C

    2017-06-01

    In this study, pacu (Piaractus mesopotamicus) were fed with diets containing Aloe vera for 10 days prior to transport stress and infection with heat killed Aeromonas hydrophila. A. vera is popular around the world due to its medicinal properties, including immunostimulatory effects which was observed in this study. The results show that transport causes immunosuppression, an effect that was prevented by A. vera. Specifically, A. vera prevented reductions of both leukocyte respiratory burst and hemolytic activity of complement system caused by transport. Further, fish fed with A. vera also showed significantly higher leukocyte respiratory burst, serum lysozyme concentrations and activity of complement system 24 h after bacterial infection. Additionally, we observed that A. vera may modulate the innate response through activation of complement system during bacterial immune stimulation. In summary, A. vera extract enhanced innate immune parameters and consequently the ability of fish to cope with pathogens following transport stress. These findings show that A. vera has promise for use in aquaculture and add further evidence that medicinal herbs added to fish feed assist to prevent disease outbreaks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. In Vitro Trypanocidal Activity of Antibodies to Bacterially Expressed Trypanosoma brucei Tubulin

    PubMed Central

    Kateete, DP; Alezuyo, C; Nanteza, A; Asiimwe, C; Lubega, GW

    2012-01-01

    Background There are only four drugs for treating African trypanosomiasis, a devastating disease in sub-Saharan Africa. With slow discovery of better drugs, vaccination is viewed as the best method of control. We previously showed that antibodies to native Trypanosoma brucei brucei tubulin inhibit the growth of trypanosomes in culture. Here, we aimed to determine the effect of antibodies to bacterially expressed trypanosome tubulin on T. brucei brucei growth. Methods T. brucei brucei alpha and beta tubulin genes were individually expressed in Escherichia coli under the tryptophan promoter. Monoclonal tubulin antibodies reacted specifically with the expressed tubulins with no cross-reaction with the opposite tubulin. Rabbits were immunized with 450µg each of the concentrated recombinant tubulin, and production of antibodies assessed by ELISA and Western blotting. The effect of polyclonal antibodies on trypanosome growth was determined by culturing bloodstream T. brucei brucei in up to 25% of antisera. Results Low antisera dilutions (25%) from the immunized rabbits inhibited trypanosome growth. The most cytotoxic antisera were from one rabbit immunized with a mixture of both alpha and beta tubulins. However, the result was not reproduced in other rabbits and there was no apparent effect on growth at higher antisera dilutions. Conclusion Antibodies to bacterially expressed trypanosome tubulin are not effective at killing cultured bloodstream trypanosomes. PMID:23109963

  5. NAADP Activates Two-Pore Channels on T Cell Cytolytic Granules to Stimulate Exocytosis and Killing

    PubMed Central

    Davis, Lianne C.; Morgan, Anthony J.; Chen, Ji-Li; Snead, Charlotte M.; Bloor-Young, Duncan; Shenderov, Eugene; Stanton-Humphreys, Megan N.; Conway, Stuart J.; Churchill, Grant C.; Parrington, John; Cerundolo, Vincenzo; Galione, Antony

    2012-01-01

    Summary A cytotoxic T lymphocyte (CTL) kills an infected or tumorigenic cell by Ca2+-dependent exocytosis of cytolytic granules at the immunological synapse formed between the two cells. Although inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ release from the endoplasmic reticulum activates the store-operated Ca2+-influx pathway that is necessary for exocytosis, it is not a sufficient stimulus [1–4]. Here we identify the Ca2+-mobilizing messenger nicotinic acid adenine dinucleotide phosphate (NAADP) and its recently identified molecular target, two-pore channels (TPCs) [5–7], as being important for T cell receptor signaling in CTLs. We demonstrate that cytolytic granules are not only reservoirs of cytolytic proteins but are also the acidic Ca2+ stores mobilized by NAADP via TPC channels on the granules themselves, so that TPCs migrate to the immunological synapse upon CTL activation. Moreover, NAADP activates TPCs to drive exocytosis in a way that is not mimicked by global Ca2+ signals induced by IP3 or ionomycin, suggesting that critical, local Ca2+ nanodomains around TPCs stimulate granule exocytosis. Hence, by virtue of the NAADP/TPC pathway, cytolytic granules generate Ca2+ signals that lead to their own exocytosis and to cell killing. This study highlights a selective role for NAADP in stimulating exocytosis crucial for immune cell function and may impact on stimulus-secretion coupling in wider cellular contexts. PMID:23177477

  6. Evolution of coalitionary killing.

    PubMed

    Wrangham, R W

    1999-01-01

    Warfare has traditionally been considered unique to humans. It has, therefore, often been explained as deriving from features that are unique to humans, such as the possession of weapons or the adoption of a patriarchal ideology. Mounting evidence suggests, however, that coalitional killing of adults in neighboring groups also occurs regularly in other species, including wolves and chimpanzees. This implies that selection can favor components of intergroup aggression important to human warfare, including lethal raiding. Here I present the principal adaptive hypothesis for explaining the species distribution of intergroup coalitional killing. This is the "imbalance-of-power hypothesis," which suggests that coalitional killing is the expression of a drive for dominance over neighbors. Two conditions are proposed to be both necessary and sufficient to account for coalitional killing of neighbors: (1) a state of intergroup hostility; (2) sufficient imbalances of power between parties that one party can attack the other with impunity. Under these conditions, it is suggested, selection favors the tendency to hunt and kill rivals when the costs are sufficiently low. The imbalance-of-power hypothesis has been criticized on a variety of empirical and theoretical grounds which are discussed. To be further tested, studies of the proximate determinants of aggression are needed. However, current evidence supports the hypothesis that selection has favored a hunt-and-kill propensity in chimpanzees and humans, and that coalitional killing has a long history in the evolution of both species.

  7. Repurposing a Prokaryotic Toxin-Antitoxin System for the Selective Killing of Oncogenically Stressed Human Cells.

    PubMed

    Preston, Mark A; Pimentel, Belén; Bermejo-Rodríguez, Camino; Dionne, Isabelle; Turnbull, Alice; de la Cueva-Méndez, Guillermo

    2016-07-15

    Prokaryotes express intracellular toxins that pass unnoticed to carrying cells until coexpressed antitoxin partners are degraded in response to stress. Although not evolved to function in eukaryotes, one of these toxins, Kid, induces apoptosis in mammalian cells, an effect that is neutralized by its cognate antitoxin, Kis. Here we engineered this toxin-antitoxin pair to create a synthetic system that becomes active in human cells suffering a specific oncogenic stress. Inspired by the way Kid becomes active in bacterial cells, we produced a Kis variant that is selectively degraded in human cells expressing oncoprotein E6. The resulting toxin-antitoxin system functions autonomously in human cells, distinguishing those that suffer the oncogenic insult, which are killed by Kid, from those that do not, which remain protected by Kis. Our results provide a framework for developing personalized anticancer strategies avoiding off-target effects, a challenge that has been hardly tractable by other means thus far.

  8. The osmolyte xylitol reduces the salt concentration of airway surface liquid and may enhance bacterial killing

    NASA Astrophysics Data System (ADS)

    Zabner, Joseph; Seiler, Michael P.; Launspach, Janice L.; Karp, Philip H.; Kearney, William R.; Look, Dwight C.; Smith, Jeffrey J.; Welsh, Michael J.

    2000-10-01

    The thin layer of airway surface liquid (ASL) contains antimicrobial substances that kill the small numbers of bacteria that are constantly being deposited in the lungs. An increase in ASL salt concentration inhibits the activity of airway antimicrobial factors and may partially explain the pathogenesis of cystic fibrosis (CF). We tested the hypothesis that an osmolyte with a low transepithelial permeability may lower the ASL salt concentration, thereby enhancing innate immunity. We found that the five-carbon sugar xylitol has a low transepithelial permeability, is poorly metabolized by several bacteria, and can lower the ASL salt concentration in both CF and non-CF airway epithelia in vitro. Furthermore, in a double-blind, randomized, crossover study, xylitol sprayed for 4 days into each nostril of normal volunteers significantly decreased the number of nasal coagulase-negative Staphylococcus compared with saline control. Xylitol may be of value in decreasing ASL salt concentration and enhancing the innate antimicrobial defense at the airway surface.

  9. Active bacterial community structure along vertical redox gradients in Baltic Sea sediment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jansson, Janet; Edlund, Anna; Hardeman, Fredrik

    Community structures of active bacterial populations were investigated along a vertical redox profile in coastal Baltic Sea sediments by terminal-restriction fragment length polymorphism (T-RFLP) and clone library analysis. According to correspondence analysis of T-RFLP results and sequencing of cloned 16S rRNA genes, the microbial community structures at three redox depths (179 mV, -64 mV and -337 mV) differed significantly. The bacterial communities in the community DNA differed from those in bromodeoxyuridine (BrdU)-labeled DNA, indicating that the growing members of the community that incorporated BrdU were not necessarily the most dominant members. The structures of the actively growing bacterial communities weremore » most strongly correlated to organic carbon followed by total nitrogen and redox potentials. Bacterial identification by sequencing of 16S rRNA genes from clones of BrdU-labeled DNA and DNA from reverse transcription PCR (rt-PCR) showed that bacterial taxa involved in nitrogen and sulfur cycling were metabolically active along the redox profiles. Several sequences had low similarities to previously detected sequences indicating that novel lineages of bacteria are present in Baltic Sea sediments. Also, a high number of different 16S rRNA gene sequences representing different phyla were detected at all sampling depths.« less

  10. Ion-kill dosimetry

    NASA Technical Reports Server (NTRS)

    Katz, R.; Cucinotta, F. A.; Fromm, M.; Chambaudet, A.

    2001-01-01

    Unanticipated late effects in neutron and heavy ion therapy, not attributable to overdose, imply a qualitative difference between low and high LET therapy. We identify that difference as 'ion kill', associated with the spectrum of z/beta in the radiation field, whose measurement we label 'ion-kill dosimetry'.

  11. Intestinal mucus protects Giardia lamblia from killing by human milk.

    PubMed

    Zenian, A J; Gillin, F D

    1987-02-01

    We have previously shown that nonimmune human milk kills Giardia lamblia trophozoites in vitro. Killing requires a bile salt and the activity of the milk bile salt-stimulated lipase. We now show that human small-intestinal mucus protects trophozoites from killing by milk. Parasite survival increased with mucus concentration, but protection was overcome during longer incubation times or with greater milk concentrations. Trophozoites preincubated with mucus and then washed were not protected. Protective activity was associated with non-mucin CsCl density gradient fractions. Moreover, it was heat-stable, non-dialyzable, and non-lipid. Whereas whole mucus inhibited milk lipolytic activity, protective mucus fractions did not inhibit the enzyme. Furthermore, mucus partially protected G. lamblia trophozoites against the toxicity of oleic acid, a fatty acid which is released from milk triglycerides by lipase. These studies show that mucus protects G. lamblia both by inhibiting lipase activity and by decreasing the toxicity of products of lipolysis. The ability of mucus to protect G. lamblia from toxic lipolytic products may help to promote intestinal colonization by this parasite.

  12. Asymptotic symmetries on Killing horizons

    NASA Astrophysics Data System (ADS)

    Koga, Jun-Ichirou

    2001-12-01

    We investigate asymptotic symmetries regularly defined on spherically symmetric Killing horizons in Einstein theory with or without the cosmological constant. These asymptotic symmetries are described by asymptotic Killing vectors, along which the Lie derivatives of perturbed metrics vanish on a Killing horizon. We derive the general form of the asymptotic Killing vectors and find that the group of asymptotic symmetries consists of rigid O(3) rotations of a horizon two-sphere and supertranslations along the null direction on the horizon, which depend arbitrarily on the null coordinate as well as the angular coordinates. By introducing the notion of asymptotic Killing horizons, we also show that local properties of Killing horizons are preserved not only under diffeomorphisms but also under nontrivial transformations generated by the asymptotic symmetry group. Although the asymptotic symmetry group contains the Diff(S1) subgroup, which results from supertranslations dependent only on the null coordinate, it is shown that the Poisson brackets algebra of the conserved charges conjugate to asymptotic Killing vectors does not acquire nontrivial central charges. Finally, by considering extended symmetries, we discuss the fact that unnatural reduction of the symmetry group is necessary in order to obtain the Virasoro algebra with nontrivial central charges, which is not justified when we respect the spherical symmetry of Killing horizons.

  13. Cloning, killing, and identity.

    PubMed Central

    McMahan, J

    1999-01-01

    One potentially valuable use of cloning is to provide a source of tissues or organs for transplantation. The most important objection to this use of cloning is that a human clone would be the sort of entity that it would be seriously wrong to kill. I argue that entities of the sort that you and I essentially are do not begin to exist until around the seventh month of fetal gestation. Therefore to kill a clone prior to that would not be to kill someone like you or me but would be only to prevent one of us from existing. And even after one of us begins to exist, the objections to killing it remain comparatively weak until its psychological capacities reach a certain level of maturation. These claims support the permissibility of killing a clone during the early stages of its development in order to use its organs for transplantation. PMID:10226909

  14. 220D-F2 from Rubus ulmifolius kills Streptococcus pneumoniae planktonic cells and pneumococcal biofilms.

    PubMed

    Talekar, Sharmila J; Chochua, Sopio; Nelson, Katie; Klugman, Keith P; Quave, Cassandra L; Vidal, Jorge E

    2014-01-01

    Streptococcus pneumoniae (pneumococcus) forms organized biofilms to persist in the human nasopharynx. This persistence allows the pneumococcus to produce severe diseases such as pneumonia, otitis media, bacteremia and meningitis that kill nearly a million children every year. While bacteremia and meningitis are mediated by planktonic pneumococci, biofilm structures are present during pneumonia and otitis media. The global emergence of S. pneumoniae strains resistant to most commonly prescribed antibiotics warrants further discovery of alternative therapeutics. The present study assessed the antimicrobial potential of a plant extract, 220D-F2, rich in ellagic acid, and ellagic acid derivatives, against S. pneumoniae planktonic cells and biofilm structures. Our studies first demonstrate that, when inoculated together with planktonic cultures, 220D-F2 inhibited the formation of pneumococcal biofilms in a dose-dependent manner. As measured by bacterial counts and a LIVE/DEAD bacterial viability assay, 100 and 200 µg/ml of 220D-F2 had significant bactericidal activity against pneumococcal planktonic cultures as early as 3 h post-inoculation. Quantitative MIC's, whether quantified by qPCR or dilution and plating, showed that 80 µg/ml of 220D-F2 completely eradicated overnight cultures of planktonic pneumococci, including antibiotic resistant strains. When preformed pneumococcal biofilms were challenged with 220D-F2, it significantly reduced the population of biofilms 3 h post-inoculation. Minimum biofilm inhibitory concentration (MBIC)50 was obtained incubating biofilms with 100 µg/ml of 220D-F2 for 3 h and 6 h of incubation. 220D-F2 also significantly reduced the population of pneumococcal biofilms formed on human pharyngeal cells. Our results demonstrate potential therapeutic applications of 220D-F2 to both kill planktonic pneumococcal cells and disrupt pneumococcal biofilms.

  15. In vitro anti-biofilm and anti-bacterial activity of Junceella juncea for its biomedical application

    PubMed Central

    Kumar, P; Selvi, S Senthamil; Govindaraju, M

    2012-01-01

    Objective To investigate the anti-biofilm and anti-bacterial activity of Junceella juncea (J. juncea) against biofilm forming pathogenic strains. Methods Gorgonians were extracted with methanol and analysed with fourier transform infrared spectroscopy. Biofilm forming pathogens were identified by Congo red agar supplemented with sucrose. A quantitative spectrophotometric method was used to monitor in vitro biofilm reduction by microtitre plate assay. Anti-bacterial activity of methanolic gorgonian extract (MGE) was carried out by disc diffusion method followed by calculating the percentage of increase with crude methanol (CM). Results The presence of active functional group was exemplified by FT-IR spectroscopy. Dry, black, crystalline colonies confirm the production of extracellular polymeric substances responsible for biofilm formation in Congo red agar. MGE exhibited potential anti-biofilm activity against all tested bacterial strains. The anti-bacterial activity of methanolic extract was comparably higher in Salmonella typhii followed by Escherichia coli, Vibrio cholerae and Shigella flexneri. The overall percentage of increase was higher by 50.2% to CM. Conclusions To conclude, anti-biofilm and anti-bacterial efficacy of J. juncea is impressive over biofilm producing pathogens and are good source for novel anti-bacterial compounds. PMID:23593571

  16. In vitro activity of rifaximin against isolates from patients with small intestinal bacterial overgrowth.

    PubMed

    Pistiki, Aikaterini; Galani, Irene; Pyleris, Emmanouel; Barbatzas, Charalambos; Pimentel, Mark; Giamarellos-Bourboulis, Evangelos J

    2014-03-01

    Rifaximin, a non-absorbable rifamycin derivative, has published clinical efficacy in the alleviation of symptoms in patients with irritable bowel syndrome (IBS). Small intestinal bacterial overgrowth (SIBO) is associated with the pathogenesis of IBS. This study describes for the first time the antimicrobial effect of rifaximin against SIBO micro-organisms from humans. Fluid was aspirated from the third part of the duodenum from 567 consecutive patients; quantitative cultures diagnosed SIBO in 117 patients (20.6%). A total of 170 aerobic micro-organisms were isolated and the in vitro efficacy of rifaximin was studied by (i) minimum inhibitory concentration (MIC) testing by a microdilution technique and (ii) time-kill assays using bile to simulate the small intestinal environment. At a breakpoint of 32 μg/mL, rifaximin inhibited in vitro 85.4% of Escherichia coli, 43.6% of Klebsiella spp., 34.8% of Enterobacter spp., 54.5% of other Enterobacteriaceae spp., 82.6% of non-Enterobacteriaceae Gram-negative spp., 100% of Enterococcus faecalis, 100% of Enterococcus faecium and 100% of Staphylococcus aureus. For the time-kill assays, 11 E. coli, 15 non-E. coli Gram-negative enterobacteria and three E. faecalis isolates were studied. Rifaximin produced a >3 log10 decrease in the starting inoculum against most of the tested isolates at 500 μg/mL after 24h of growth. The results indicate that rifaximin has a potent effect on specific small bowel flora associated with SIBO. This conclusion should be regarded in light of the considerable time-kill effect at concentrations lower than those achieved in the bowel lumen after administration of conventional doses in humans. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  17. Evaluating Bacteriocin Production by Environmental Enterococci: An Inquiry-Based Activity in Bacterial Antgonism

    ERIC Educational Resources Information Center

    Middleton, June

    2007-01-01

    Bacteriocins, bacteriocidal proteins produced by bacteria, have a very restricted killing range. In this exercise each student isolates an environmental "Enterococcus spp." culture using selective media and then evaluates it for bacteriocin activity against "Enterococcus" strains isolated by classmates.

  18. Relationship among Phosphorus Circulation Activity, Bacterial Biomass, pH, and Mineral Concentration in Agricultural Soil.

    PubMed

    Adhikari, Dinesh; Jiang, Tianyi; Kawagoe, Taiki; Kai, Takamitsu; Kubota, Kenzo; Araki, Kiwako S; Kubo, Motoki

    2017-12-04

    Improvement of phosphorus circulation in the soil is necessary to enhance phosphorus availability to plants. Phosphorus circulation activity is an index of soil's ability to supply soluble phosphorus from organic phosphorus in the soil solution. To understand the relationship among phosphorus circulation activity; bacterial biomass; pH; and Fe, Al, and Ca concentrations (described as mineral concentration in this paper) in agricultural soil, 232 soil samples from various agricultural fields were collected and analyzed. A weak relationship between phosphorus circulation activity and bacterial biomass was observed in all soil samples ( R ² = 0.25), and this relationship became significantly stronger at near-neutral pH (6.0-7.3; R ² = 0.67). No relationship between phosphorus circulation activity and bacterial biomass was observed at acidic (pH < 6.0) or alkaline (pH > 7.3) pH. A negative correlation between Fe and Al concentrations and phosphorus circulation activity was observed at acidic pH ( R ² = 0.72 and 0.73, respectively), as well as for Ca at alkaline pH ( R ² = 0.64). Therefore, bacterial biomass, pH, and mineral concentration should be considered together for activation of phosphorus circulation activity in the soil. A relationship model was proposed based on the effects of bacterial biomass and mineral concentration on phosphorus circulation activity. The suitable conditions of bacterial biomass, pH, and mineral concentration for phosphorus circulation activity could be estimated from the relationship model.

  19. A network-based approach for resistance transmission in bacterial populations.

    PubMed

    Gehring, Ronette; Schumm, Phillip; Youssef, Mina; Scoglio, Caterina

    2010-01-07

    Horizontal transfer of mobile genetic elements (conjugation) is an important mechanism whereby resistance is spread through bacterial populations. The aim of our work is to develop a mathematical model that quantitatively describes this process, and to use this model to optimize antimicrobial dosage regimens to minimize resistance development. The bacterial population is conceptualized as a compartmental mathematical model to describe changes in susceptible, resistant, and transconjugant bacteria over time. This model is combined with a compartmental pharmacokinetic model to explore the effect of different plasma drug concentration profiles. An agent-based simulation tool is used to account for resistance transfer occurring when two bacteria are adjacent or in close proximity. In addition, a non-linear programming optimal control problem is introduced to minimize bacterial populations as well as the drug dose. Simulation and optimization results suggest that the rapid death of susceptible individuals in the population is pivotal in minimizing the number of transconjugants in a population. This supports the use of potent antimicrobials that rapidly kill susceptible individuals and development of dosage regimens that maintain effective antimicrobial drug concentrations for as long as needed to kill off the susceptible population. Suggestions are made for experiments to test the hypotheses generated by these simulations.

  20. A Safe Bacterial Microsyringe for In Vivo Antigen Delivery and Immunotherapy

    PubMed Central

    Le Gouëllec, Audrey; Chauchet, Xavier; Laurin, David; Aspord, Caroline; Verove, Julien; Wang, Yan; Genestet, Charlotte; Trocme, Candice; Ahmadi, Mitra; Martin, Sandrine; Broisat, Alexis; Cretin, François; Ghezzi, Catherine; Polack, Benoit; Plumas, Joël; Toussaint, Bertrand

    2013-01-01

    The industrial development of active immunotherapy based on live-attenuated bacterial vectors has matured. We developed a microsyringe for antigen delivery based on the type III secretion system (T3SS) of P. aeruginosa. We applied the “killed but metabolically active” (KBMA) attenuation strategy to make this bacterial vector suitable for human use. We demonstrate that attenuated P. aeruginosa has the potential to deliver antigens to human antigen-presenting cells in vitro via T3SS with considerable attenuated cytotoxicity as compared with the wild-type vector. In a mouse model of cancer, we demonstrate that this KBMA strain, which cannot replicate in its host, efficiently disseminates into lymphoid organs and delivers its heterologous antigen. The attenuated strain effectively induces a cellular immune response to the cancerous cells while lowering the systemic inflammatory response. Hence, a KBMA P. aeruginosa microsyringe is an efficient and safe tool for in vivo antigen delivery. PMID:23531551

  1. Temporins A and B Stimulate Migration of HaCaT Keratinocytes and Kill Intracellular Staphylococcus aureus

    PubMed Central

    Di Grazia, Antonio; Luca, Vincenzo; Segev-Zarko, Li-av T.; Shai, Yechiel

    2014-01-01

    The growing number of microbial pathogens resistant to available antibiotics is a serious threat to human life. Among them is the bacterium Staphylococcus aureus, which colonizes keratinocytes, the most abundant cell type in the epidermis. Its intracellular accumulation complicates treatments against resulting infections, mainly due to the limited diffusion of conventional drugs into the cells. Temporins A (Ta) and B (Tb) are short frog skin antimicrobial peptides (AMPs). Despite extensive studies regarding their antimicrobial activity, very little is known about their activity on infected cells or involvement in various immunomodulatory functions. Here we show that Tb kills both ATCC-derived and multidrug-resistant clinical isolates of S. aureus within infected HaCaT keratinocytes (80% and 40% bacterial mortality, respectively) at a nontoxic concentration, i.e., 16 μM, whereas a weaker effect is displayed by Ta. Furthermore, the peptides prevent killing of keratinocytes by the invading bacteria. Further studies revealed that both temporins promote wound healing in a monolayer of HaCaT cells, with front speed migrations of 19 μm/h and 12 μm/h for Ta and Tb, respectively. Migration is inhibited by mitomycin C and involves the epidermal growth factor receptor (EGFR) signaling pathway. Finally, confocal fluorescence microscopy indicated that the peptides diffuse into the cells. By combining antibacterial and wound-healing activities, Ta and Tb may act as multifunctional mediators of innate immunity in humans. Particularly, their nonendogenous origin may reduce microbial resistance to them as well as the risk of autoimmune diseases in mammals. PMID:24514087

  2. Dynamic metabolic exchange governs a marine algal-bacterial interaction

    PubMed Central

    Segev, Einat; Wyche, Thomas P; Kim, Ki Hyun; Petersen, Jörn; Ellebrandt, Claire; Vlamakis, Hera; Barteneva, Natasha; Paulson, Joseph N; Chai, Liraz; Clardy, Jon; Kolter, Roberto

    2016-01-01

    Emiliania huxleyi is a model coccolithophore micro-alga that generates vast blooms in the ocean. Bacteria are not considered among the major factors influencing coccolithophore physiology. Here we show through a laboratory model system that the bacterium Phaeobacter inhibens, a well-studied member of the Roseobacter group, intimately interacts with E. huxleyi. While attached to the algal cell, bacteria initially promote algal growth but ultimately kill their algal host. Both algal growth enhancement and algal death are driven by the bacterially-produced phytohormone indole-3-acetic acid. Bacterial production of indole-3-acetic acid and attachment to algae are significantly increased by tryptophan, which is exuded from the algal cell. Algal death triggered by bacteria involves activation of pathways unique to oxidative stress response and programmed cell death. Our observations suggest that bacteria greatly influence the physiology and metabolism of E. huxleyi. Coccolithophore-bacteria interactions should be further studied in the environment to determine whether they impact micro-algal population dynamics on a global scale. DOI: http://dx.doi.org/10.7554/eLife.17473.001 PMID:27855786

  3. Killing of Bacillus Megaterium Spores by X-rays at the Phosphorus K-edge

    NASA Technical Reports Server (NTRS)

    Richmond, Robert C.; Frigo, Sean P.; Ehret, Charles F.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    This study continues a progression of experiments on the radiation-induced killing of bacterial spores that began at the Argonne National Laboratory in 1957. A series of aliquots of Bacillus megaterium spores were prepared onto polycarbonate filters and irradiated with photons of 2159 eV compared to 2140 eV energy on the 2-IDB beamline at the Advanced Photon Source. Flux density was approximately 10(exp 18) photons/sec/sq mm. The phosphorous K-edge absorption spectrum in these spores was determined to peak at 2159 eV, wheras 2140 eV was determined to be outside that absorption spectrum. Spores on filters were irradiated at ambient conditions, and were either immediately plated for colony formation after irradiation, or were held for postirradiation exposure to oxygen prior to plating. Slopes of survival curves from the four conditions of irradiation, i.e., two photon energies each comparing immediate plating vs postirradiation holding, were used for quantitative determination of differences in rates of spore killing over a range of radiation doses. It was found that spores irradiated at the phosphorus K-edge were killed 20% more efficiently than when irradiated with 2140 eV photons, and this was true for both immediate plating and postirradiation holding in air. Postirradiation holding in air increased killing efficiency by about 12% for both photon energies compared to plating immediately after irradiation. The increase of killing efficiency with postirradiation holding is less than expected from earlier experiments using relatively low-flux X-rays, and raises the possibility of dose-mitigation by radical-radical recombination in the case of high-flux X-rays from the synchrotron.

  4. Killing of Bacillus Megaterium Spores by X-Rays at the Phosphorus K-Edge

    NASA Technical Reports Server (NTRS)

    Richmond, Robert C.; Frigo, Sean P.; Ehret, Charles F.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    This study continues a progression of experiments on the radiation-induced killing of bacterial spores that began at the Argonne National Laboratory in 1957. A series of aliquots of Bacillus megaterium spores were prepared onto polycarbonate filters and irradiated with photons of 2159 eV compared to 2140 eV energy on the 2-IDB beamline at the Advanced Photon Source. Flux density was approximately 10 photons/sec/mm . The phosphorous K-edge absorption spectrum in these spores was determined to peak at 2159 eV, wheras 2140 eV was determined to be outside that absorption spectrum. Spores on filters were irradiated at ambient conditions, and were either immediately plated for colony formation after irradiation, or were held for postirradiation exposure to oxygen prior to plating. Slopes of survival curves from the four conditions of irradiation, i.e., two photon energies each comparing immediate plating vs postirradiation holding, were used for quantitative determination of differences in rates of spore killing over a range of radiation doses. It was found that spores irradiated at the phosphorus K-edge were killed 20% more efficiently than when irradiated with 2140eV photons, and this was true for both immediate plating and postirradiation holding in air. Postirradiation holding in air increased killing efficiency by about 12% for both photon energies compared to plating immediately after irradiation. The increase of killing efficiency with postirradiation holding is less than expected from earlier experiments using relatively low-flux X-rays, and raises the possibility of dose-mitigation by radical-radical recombination in the case of high-flux X-rays from the synchrotron.

  5. Drivers shaping the diversity and biogeography of total and active bacterial communities in the South China Sea

    PubMed Central

    Zhang, Yao; Zhao, Zihao; Dai, Minhan; Jiao, Nianzhi; Herndl, Gerhard J

    2014-01-01

    To test the hypothesis that different drivers shape the diversity and biogeography of the total and active bacterial community, we examined the bacterial community composition along two transects, one from the inner Pearl River estuary to the open waters of the South China Sea (SCS) and the other from the Luzon Strait to the SCS basin, using 454 pyrosequencing of the 16S rRNA and 16S rRNA gene (V1-3 regions) and thereby characterizing the active and total bacterial community, respectively. The diversity and biogeographic patterns differed substantially between the active and total bacterial communities. Although the composition of both the total and active bacterial community was strongly correlated with environmental factors and weakly correlated with geographic distance, the active bacterial community displayed higher environmental sensitivity than the total community and particularly a greater distance effect largely caused by the active assemblage from deep waters. The 16S rRNA vs. rDNA relationships indicated that the active bacteria were low in relative abundance in the SCS. This might be due to a high competition between active bacterial taxa as indicated by our community network models. Based on these analyses, we speculate that high competition could cause some dispersal limitation of the active bacterial community resulting in a distinct distance-decay relationship. Altogether, our results indicated that the biogeographic distribution of bacteria in the SCS is the result of both environmental control and distance decay. PMID:24684298

  6. Atropine and glycopyrrolate do not support bacterial growth-safety and economic considerations.

    PubMed

    Ittzes, Balazs; Weiling, Zsolt; Batai, Istvan Zoard; Kerenyi, Monika; Batai, Istvan

    2016-12-01

    Evaluation of bacterial growth in atropine and glycopyrrolate. Laboratory investigation. Standard microbiological methods were used to evaluate the impact of atropine and glycopyrrolate on the growth of Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli. Bacterial count was checked at 0, 1, 2, 3, 4, 6, and 24 hours. Atropine or glycopyrrolate did not support the growth of the above bacteria at any examined time at room temperature. Glycopyrrolate killed all of the examined strains (P < .05), whereas in atropine, only the clinical isolates of Staphylococcus and Acinetobacter were killed (P < .05). Drawing up atropine or glycopyrrolate at the beginning of the operating list and use within 24 hours if needed are a safe practice and do not pose infection hazard. We can also reduce hospital costs if we do not throw away these unused syringes following each case. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The Effect of Light on Bacterial Activity in a Seaweed Holobiont.

    PubMed

    Coelho-Souza, Sergio A; Jenkins, Stuart R; Casarin, Antonio; Baeta-Neves, Maria Helena; Salgado, Leonardo T; Guimaraes, Jean R D; Coutinho, Ricardo

    2017-11-01

    Holobionts are characterized by the relationship between host and their associated organisms such as the biofilm associated with macroalgae. Considering that light is essential to macroalgae survival, the aim of this study was to verify the effect of light on the heterotrophic activity in biofilms of the brown macroalgae Sargassum furcatum during its growth cycle. Measurements of heterotrophic activity were done under natural light levels at different times during a daily cycle and under an artificial extinction of natural light during the afternoon. We also measured Sargassum primary production under these light levels in the afternoon. Both measurements were done with and without photosynthesis inhibitor and antibiotics. Biofilm composition was mainly represented by bacteria but diatoms, cyanobacteria, and other organisms were also common. When a peak of diatom genera was recorded, the heterotrophic activity of the biofilm was higher. Heterotrophic activity was usually highest during the afternoon and the presence of a photosynthesis inhibitor caused an average reduction of 17% but there was no relationship with Sargassum primary production. These results indicate that autotrophic production in the biofilm was reduced by the inhibitor with consequences on bacterial activity. Heterotrophic activity was mainly bacterial and the antibiotics chloramphenicol and penicillin were more effective than streptomycin. We suggest primary producers in the biofilm are more important to increase bacterial activity than the macroalgae itself because of coherence of the peaks of heterotrophic and autotrophic activity in biofilm during the afternoon and the effects of autotrophic inhibitors on heterotrophic activity.

  8. Interactive effects of solar radiation and dissolved organic matter on bacterial activity and community structure

    PubMed Central

    Pérez, María Teresa; Sommaruga, Ruben

    2007-01-01

    We studied the interactive effects of dissolved organic matter (DOM) and solar radiation on the activity and community structure of bacteria from an alpine lake. Activity was assessed both at the community level as leucine incorporation rates and at the single-cell level by microautoradiography. Fluorescent in situ hybridization and signal amplification by catalysed reporter deposition (CARD-FISH) was used to track changes in the bacterial community composition. Bacteria-free filtrates of different DOM sources (lake, algae or soil) were incubated either in the dark or exposed to solar radiation. Afterwards, the natural bacterial assemblage was inoculated and the cultures incubated in the dark for 24–48 h. Bacterial activity was enhanced in the first 24 h in the soil and algal DOM amendments kept in the dark. After 48 h, the enhancement effect was greatly reduced. The initial bacterial community was dominated by Betaproteobacteria followed by Actinobacteria. The relative abundance (expressed as a percentage of DAPI-stained cells) of Betaproteobacteria increased first in dark incubated DOM amendments, but after 48 h no significant differences were detected among treatments. In contrast, the relative abundance of Actinobacteria increased in pre-irradiated DOM treatments. Although Betaproteobacteria dominated at the end of the experiment, the relative abundance of their R-BT subgroup differed among treatments. Changes in bacterial community activity were significantly correlated with those of the relative abundance and activity of Betaproteobacteria, whereas the contribution of Actinobacteria to the bulk activity was very modest. Our results indicate a negative effect of DOM photoalteration on the bulk bacterial activity. The magnitude of this effect was time-dependent and related to rapid changes in the bacterial assemblage composition. PMID:17686018

  9. Interactive effects of solar radiation and dissolved organic matter on bacterial activity and community structure.

    PubMed

    Pérez, María Teresa; Sommaruga, Ruben

    2007-09-01

    We studied the interactive effects of dissolved organic matter (DOM) and solar radiation on the activity and community structure of bacteria from an alpine lake. Activity was assessed both at the community level as leucine incorporation rates and at the single-cell level by microautoradiography. Fluorescent in situ hybridization and signal amplification by catalysed reporter deposition (CARD-FISH) was used to track changes in the bacterial community composition. Bacteria-free filtrates of different DOM sources (lake, algae or soil) were incubated either in the dark or exposed to solar radiation. Afterwards, the natural bacterial assemblage was inoculated and the cultures incubated in the dark for 24-48 h. Bacterial activity was enhanced in the first 24 h in the soil and algal DOM amendments kept in the dark. After 48 h, the enhancement effect was greatly reduced. The initial bacterial community was dominated by Betaproteobacteria followed by Actinobacteria. The relative abundance (expressed as a percentage of DAPI-stained cells) of Betaproteobacteria increased first in dark incubated DOM amendments, but after 48 h no significant differences were detected among treatments. In contrast, the relative abundance of Actinobacteria increased in pre-irradiated DOM treatments. Although Betaproteobacteria dominated at the end of the experiment, the relative abundance of their R-BT subgroup differed among treatments. Changes in bacterial community activity were significantly correlated with those of the relative abundance and activity of Betaproteobacteria, whereas the contribution of Actinobacteria to the bulk activity was very modest. Our results indicate a negative effect of DOM photoalteration on the bulk bacterial activity. The magnitude of this effect was time-dependent and related to rapid changes in the bacterial assemblage composition.

  10. Bacterial adhesion forces to Ag-impregnated contact lens cases and transmission to contact lenses.

    PubMed

    Qu, Wenwen; Busscher, Henk J; van der Mei, Henny C; Hooymans, Johanna M M

    2013-03-01

    To measure adhesion forces of Pseudomonas aeruginosa, Staphylococcus aureus, and Serratia marcescens to a rigid contact lens (CL), standard polypropylene, and Ag-impregnated lens cases using atomic force microscopy and determine bacterial transmission from lens case to CL. Adhesion forces of bacterial strains to Ag-impregnated and polypropylene lens cases and a rigid CL were measured using atomic force microscopy. Adhesion forces were used to calculate Weibull distributions, from which transmission probabilities from lens case to CL were derived. Transmission probabilities were compared with actual transmission of viable bacteria from a lens case to the CL in 0.9% NaCl and in an antimicrobial lens care solution. Bacterial transmission probabilities from polypropylene lens cases based on force analysis coincided well for all strains with actual transmission in 0.9% NaCl. Bacterial adhesion forces on Ag-impregnated lens cases were much smaller than that on polypropylene and CLs, yielding a high probability of transmission. Comparison with actual bacterial transmission indicated bacterial killing due to Ag ions during colony-forming unit transmission from an Ag-impregnated lens case, especially for P. aeruginosa. Transmission of viable bacteria from Ag-impregnated lens cases could be further decreased by use of an antimicrobial lens care solution instead of 0.9% NaCl. Bacterial transmission probabilities are higher from Ag-impregnated lens cases than from polypropylene lens cases because of small adhesion forces, but this is compensated for by enhanced bacterial killing due to Ag impregnation, especially when in combination with an antimicrobial lens care solution. This calls for a balanced combination of antimicrobial lens care solutions and surface properties of a lens case and CL.

  11. Lie algebra of conformal Killing-Yano forms

    NASA Astrophysics Data System (ADS)

    Ertem, Ümit

    2016-06-01

    We provide a generalization of the Lie algebra of conformal Killing vector fields to conformal Killing-Yano forms. A new Lie bracket for conformal Killing-Yano forms that corresponds to slightly modified Schouten-Nijenhuis bracket of differential forms is proposed. We show that conformal Killing-Yano forms satisfy a graded Lie algebra in constant curvature manifolds. It is also proven that normal conformal Killing-Yano forms in Einstein manifolds also satisfy a graded Lie algebra. The constructed graded Lie algebras reduce to the graded Lie algebra of Killing-Yano forms and the Lie algebras of conformal Killing and Killing vector fields in special cases.

  12. Humane killing of animals for disease control purposes.

    PubMed

    Thornber, P M; Rubira, R J; Styles, D K

    2014-04-01

    Killing for disease control purposes is an emotional issue for everyone concerned. Large-scale euthanasia or depopulation of animals may be necessary for the emergency control or eradication of animal diseases, to remove animals from a compromised situation (e.g. following flood, storm, fire, drought or a feed contamination event), to effect welfare depopulation when there is an oversupply due to a dysfunctional or closed marketing channel, or to depopulate and dispose of animals with minimal handling to decrease the risk of a zoonotic disease infecting humans. The World Organisation for Animal Health (OIE) developed international standards to provide advice on humane killing for various species and situations. Some fundamental issues are defined, such as competency of animal handling and implementation of humane killing techniques. Some of these methods have been used for many years, but novel approaches for the mass killing of particular species are being explored. Novel vaccines and new diagnostic techniques that differentiate between vaccinated and infected animals will save many animals from being killed as part of biosecurity response measures. Unfortunately, the destruction of affected livestock will still be required to control diseases whilst vaccination programmes are activated or where effective vaccines are not available. This paper reviews the principles of humane destruction and depopulation and explores available techniques with their associated advantages and disadvantages. It also identifies some current issues that merit consideration, such as legislative conflicts (emergency disease legislation versus animal welfare legislation, occupational health and safety), media issues, opinions on the future approaches to killing for disease control, and animal welfare.

  13. SQ109 and PNU-100480 interact to kill Mycobacterium tuberculosis in vitro.

    PubMed

    Reddy, Venkata M; Dubuisson, Tia; Einck, Leo; Wallis, Robert S; Jakubiec, Wesley; Ladukto, Lynn; Campbell, Sheldon; Nacy, Carol A

    2012-05-01

    To investigate in vitro interaction between two compounds, SQ109 and PNU-100480, currently in development for the treatment of Mycobacterium tuberculosis (MTB). The two-drug interactions between SQ109 and PNU-100480 and its major metabolite PNU-101603 were assessed by chequerboard titration, and the rate of killing and intracellular activity were determined in both J774A.1 mouse macrophages and whole blood culture. In chequerboard titration, interactions between SQ109 and either oxazolidinone were additive. In time-kill studies, SQ109 killed MTB faster than PNU compounds, and its rate of killing was further enhanced by both oxazolidinones. The order of efficacy of single compounds against intracellular MTB was SQ109 > PNU-100480 > PNU-101603. At sub-MIC, combinations of SQ109 + PNU compounds showed improved intracellular activity over individual drugs; at ≥MIC, the order of efficacy was SQ109 > SQ109 + PNU-100480 > SQ109 + PNU-101603. In whole blood culture, the combined bactericidal activities of SQ109 and PNU-100480 and its major metabolite against intracellular M. tuberculosis did not differ significantly from the sum of the compounds tested individually. SQ109 and PNU combinations were additive and improved the rate of MTB killing over individual drugs. These data suggest that the drugs may work together cooperatively to eliminate MTB in vivo.

  14. Actinomycin D enhances killing of cancer cells by immunotoxin RG7787 through activation of the extrinsic pathway of apoptosis

    PubMed Central

    Liu, Xiu Fen; Xiang, Laiman; Zhou, Qi; Carralot, Jean-Philippe; Prunotto, Marco; Niederfellner, Gerhard; Pastan, Ira

    2016-01-01

    RG7787 is a mesothelin-targeted immunotoxin designed to have low-immunogenicity, high-cytotoxic activity and fewer side effects. RG7787 kills many types of mesothelin-expressing cancer cells lines and causes tumor regressions in mice. Safety and immunogenicity of RG7787 is now being assessed in a phase I trial. To enhance the antitumor activity of RG7787, we screened for clinically used drugs that can synergize with RG7787. Actinomycin D is a potent transcription inhibitor that is used for treating several cancers. We report here that actinomycin D and RG7787 act synergistically to kill many mesothelin-positive cancer cell lines and produce major regressions of pancreatic and stomach cancer xenografts. Analyses of RNA expression show that RG7787 or actinomycin D alone and together increase levels of TNF/TNFR family members and NF-κB–regulated genes. Western blots revealed the combination changed apoptotic protein levels and enhanced cleavage of Caspases and PARP. PMID:27601652

  15. Metabolic sensor governing bacterial virulence in Staphylococcus aureus.

    PubMed

    Ding, Yue; Liu, Xing; Chen, Feifei; Di, Hongxia; Xu, Bin; Zhou, Lu; Deng, Xin; Wu, Min; Yang, Cai-Guang; Lan, Lefu

    2014-11-18

    An effective metabolism is essential to all living organisms, including the important human pathogen Staphylococcus aureus. To establish successful infection, S. aureus must scavenge nutrients and coordinate its metabolism for proliferation. Meanwhile, it also must produce an array of virulence factors to interfere with host defenses. However, the ways in which S. aureus ties its metabolic state to its virulence regulation remain largely unknown. Here we show that citrate, the first intermediate of the tricarboxylic acid (TCA) cycle, binds to and activates the catabolite control protein E (CcpE) of S. aureus. Using structural and site-directed mutagenesis studies, we demonstrate that two arginine residues (Arg145 and Arg256) within the putative inducer-binding cavity of CcpE are important for its allosteric activation by citrate. Microarray analysis reveals that CcpE tunes the expression of 126 genes that comprise about 4.7% of the S. aureus genome. Intriguingly, although CcpE is a major positive regulator of the TCA-cycle activity, its regulon consists predominantly of genes involved in the pathogenesis of S. aureus. Moreover, inactivation of CcpE results in increased staphyloxanthin production, improved ability to acquire iron, increased resistance to whole-blood-mediated killing, and enhanced bacterial virulence in a mouse model of systemic infection. This study reveals CcpE as an important metabolic sensor that allows S. aureus to sense and adjust its metabolic state and subsequently to coordinate the expression of virulence factors and bacterial virulence.

  16. Population cycles and species diversity in dynamic Kill-the-Winner model of microbial ecosystems

    NASA Astrophysics Data System (ADS)

    Maslov, Sergei; Sneppen, Kim

    2017-01-01

    Determinants of species diversity in microbial ecosystems remain poorly understood. Bacteriophages are believed to increase the diversity by the virtue of Kill-the-Winner infection bias preventing the fastest growing organism from taking over the community. Phage-bacterial ecosystems are traditionally described in terms of the static equilibrium state of Lotka-Volterra equations in which bacterial growth is exactly balanced by losses due to phage predation. Here we consider a more dynamic scenario in which phage infections give rise to abrupt and severe collapses of bacterial populations whenever they become sufficiently large. As a consequence, each bacterial population in our model follows cyclic dynamics of exponential growth interrupted by sudden declines. The total population of all species fluctuates around the carrying capacity of the environment, making these cycles cryptic. While a subset of the slowest growing species in our model is always driven towards extinction, in general the overall ecosystem diversity remains high. The number of surviving species is inversely proportional to the variation in their growth rates but increases with the frequency and severity of phage-induced collapses. Thus counter-intuitively we predict that microbial communities exposed to more violent perturbations should have higher diversity.

  17. Population cycles and species diversity in dynamic Kill-the-Winner model of microbial ecosystems

    PubMed Central

    Maslov, Sergei; Sneppen, Kim

    2017-01-01

    Determinants of species diversity in microbial ecosystems remain poorly understood. Bacteriophages are believed to increase the diversity by the virtue of Kill-the-Winner infection bias preventing the fastest growing organism from taking over the community. Phage-bacterial ecosystems are traditionally described in terms of the static equilibrium state of Lotka-Volterra equations in which bacterial growth is exactly balanced by losses due to phage predation. Here we consider a more dynamic scenario in which phage infections give rise to abrupt and severe collapses of bacterial populations whenever they become sufficiently large. As a consequence, each bacterial population in our model follows cyclic dynamics of exponential growth interrupted by sudden declines. The total population of all species fluctuates around the carrying capacity of the environment, making these cycles cryptic. While a subset of the slowest growing species in our model is always driven towards extinction, in general the overall ecosystem diversity remains high. The number of surviving species is inversely proportional to the variation in their growth rates but increases with the frequency and severity of phage-induced collapses. Thus counter-intuitively we predict that microbial communities exposed to more violent perturbations should have higher diversity. PMID:28051127

  18. Killing(-Yano) tensors in string theory

    NASA Astrophysics Data System (ADS)

    Chervonyi, Yuri; Lunin, Oleg

    2015-09-01

    We construct the Killing(-Yano) tensors for a large class of charged black holes in higher dimensions and study general properties of such tensors, in particular, their behavior under string dualities. Killing(-Yano) tensors encode the symmetries beyond isometries, which lead to insights into dynamics of particles and fields on a given geometry by providing a set of conserved quantities. By analyzing the eigenvalues of the Killing tensor, we provide a prescription for constructing several conserved quantities starting from a single object, and we demonstrate that Killing tensors in higher dimensions are always associated with ellipsoidal coordinates. We also determine the transformations of the Killing(-Yano) tensors under string dualities, and find the unique modification of the Killing-Yano equation consistent with these symmetries. These results are used to construct the explicit form of the Killing(-Yano) tensors for the Myers-Perry black hole in arbitrary number of dimensions and for its charged version.

  19. The Opportunistic Pathogen Serratia marcescens Utilizes Type VI Secretion To Target Bacterial Competitors ▿†

    PubMed Central

    Murdoch, Sarah L.; Trunk, Katharina; English, Grant; Fritsch, Maximilian J.; Pourkarimi, Ehsan; Coulthurst, Sarah J.

    2011-01-01

    The type VI secretion system (T6SS) is the most recently described and least understood of the protein secretion systems of Gram-negative bacteria. It is widely distributed and has been implicated in the virulence of various pathogens, but its mechanism and exact mode of action remain to be defined. Additionally there have been several very recent reports that some T6SSs can target bacteria rather than eukaryotic cells. Serratia marcescens is an opportunistic enteric pathogen, a class of bacteria responsible for a significant proportion of hospital-acquired infections. We describe the identification of a functional T6SS in S. marcescens strain Db10, the first report of type VI secretion by an opportunist enteric bacterium. The T6SS of S. marcescens Db10 is active, with secretion of Hcp to the culture medium readily detected, and is expressed constitutively under normal growth conditions from a large transcriptional unit. Expression of the T6SS genes did not appear to be dependent on the integrity of the T6SS. The S. marcescens Db10 T6SS is not required for virulence in three nonmammalian virulence models. It does, however, exhibit dramatic antibacterial killing activity against several other bacterial species and is required for S. marcescens to persist in a mixed culture with another opportunist pathogen, Enterobacter cloacae. Importantly, this antibacterial killing activity is highly strain specific, with the S. marcescens Db10 T6SS being highly effective against another strain of S. marcescens with a very similar and active T6SS. We conclude that type VI secretion plays a crucial role in the competitiveness, and thus indirectly the virulence, of S. marcescens and other opportunistic bacterial pathogens. PMID:21890705

  20. Heat-killed Lactobacillus spp. cells enhance survivals of Caenorhabditis elegans against Salmonella and Yersinia infections.

    PubMed

    Lee, J; Choe, J; Kim, J; Oh, S; Park, S; Kim, S; Kim, Y

    2015-12-01

    This study examined the effect of feeding heat-killed Lactobacillus cells on the survival of Caenorhabditis elegans nematodes after Salmonella Typhimurium and Yersinia enterocolitica infection. The feeding of heat-killed Lactobacillus plantarum 133 (LP133) and Lactobacillus fermentum 21 (LP21) cells to nematodes was shown to significantly increase the survival rate as well as stimulate the expression of pmk-1 gene that key factor for C. elegans immunity upon infection compared with control nematodes that were only fed Escherichia coli OP50 (OP50) cells. These results suggest that heat-killed LP133 and LF21 cells exert preventive or protective effects against the Gram-negative bacteria Salm. Typhimurium and Y. enterocolitica. To better understand the mechanisms underlying the LF21-mediated and LP133-mediated protection against bacterial infection in nematodes, transcriptional profiling was performed for each experimental group. These experiments showed that genes related to energy generation and ageing, regulators of insulin/IGF-1-like signalling, DAF genes, oxidation and reduction processes, the defence response and/or the innate immune response, and neurological processes were upregulated in nematodes that had been fed heat-killed Lactobacillus cells compared with nematodes that had been fed E. coli cells. In this study, the feeding of heat-killed Lactobacillus bacteria to Caenorhabditis elegans nematodes was shown to decrease infection by Gram-negative bacteria and increase the host lifespan. C. elegans has a small, well-organized genome and is an excellent in vivo model organism; thus, these results will potentially shed light on important Lactobacillus-host interactions. © 2015 The Society for Applied Microbiology.

  1. Killing-Yano Symmetry in Supergravity Theories

    NASA Astrophysics Data System (ADS)

    Houri, Tsuyoshi

    Killing-Yano symmetry has played an important role in the study of black hole physics. In supergravity theories, Killing-Yano symmetry is deformed by the presence of the fluxes which can be identified with skew-symmetric torsion. Therefore, we attempt to classify spacetimes admitting Killing-Yano symmetry with torsion. In particular, the classification problem of metrics admitting a principal Killing-Yano tensor with torsion is discussed.

  2. Effect of flow and active mixing on bacterial growth in a colon-like geometry

    NASA Astrophysics Data System (ADS)

    Cremer, Jonas; Segota, Igor; Arnoldini, Markus; Groisman, Alex; Hwa, Terence

    The large intestine harbors bacteria from hundreds of species, with bacterial densities reaching up to 1012 cells per gram. Many different factors influence bacterial growth dynamics and thus bacterial density and microbiota composition. One dominant force is flow which can in principle lead to a washout of bacteria from the proximal colon. Active mixing by Contractions of the colonic wall together with bacterial growth might counteract such flow-forces and allow high bacterial densities to occur. As a step towards understanding bacterial growth in the presence of mixing and flow, we constructed an in-vitro setup where controlled wall-deformations of a channel emulate Contractions. We investigate growth along the channel under a steady nutrient inflow. In the limits of no or very frequent Contractions, the device behaves like a plug-flow reactor and a chemostat respectively. Depending on mixing and flow, we observe varying spatial gradients in bacterial density along the channel. Active mixing by deformations of the channel wall is shown to be crucial in maintaining a steady-state bacterial population in the presence of flow. The growth-dynamics is quantitatively captured by a simple mathematical model, with the effect of mixing described by an effective diffusion term.

  3. Efficient Kill-Save Ratios Ease Up the Cognitive Demands on Counterintuitive Moral Utilitarianism.

    PubMed

    Trémolière, Bastien; Bonnefon, Jean-François

    2014-07-01

    The dual-process model of moral judgment postulates that utilitarian responses to moral dilemmas (e.g., accepting to kill one to save five) are demanding of cognitive resources. Here we show that utilitarian responses can become effortless, even when they involve to kill someone, as long as the kill-save ratio is efficient (e.g., 1 is killed to save 500). In Experiment 1, participants responded to moral dilemmas featuring different kill-save ratios under high or low cognitive load. In Experiments 2 and 3, participants responded at their own pace or under time pressure. Efficient kill-save ratios promoted utilitarian responding and neutered the effect of load or time pressure. We discuss whether this effect is more easily explained by a parallel-activation model or by a default-interventionist model. © 2014 by the Society for Personality and Social Psychology, Inc.

  4. Bacterial virulence effectors and their activities.

    PubMed

    Hann, Dagmar R; Gimenez-Ibanez, Selena; Rathjen, John P

    2010-08-01

    The major virulence strategy for plant pathogenic bacteria is deployment of effector molecules within the host cytoplasm. Each bacterial strain possesses a set of 20-30 effectors which have overlapping activities, are functionally interchangeable, and diverge in composition between strains. Effectors target host molecules to suppress immunity. Two main strategies are apparent. Effectors that target host proteins seem to attack conserved structural domains but otherwise lack specificity. On the other hand, those that influence host gene transcription directly do so with extreme specificity. In both cases, examples are known where the host has exploited effector-target affinities to establish immune recognition of effectors. The molecular activity of each effector links virulence and immune outcomes. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Coupling Bacterial Activity Measurements with Cell Sorting by Flow Cytometry.

    PubMed

    Servais; Courties; Lebaron; Troussellier

    1999-08-01

    > Abstract A new procedure to investigate the relationship between bacterial cell size and activity at the cellular level has been developed; it is based on the coupling of radioactive labeling of bacterial cells and cell sorting by flow cytometry after SYTO 13 staining. Before sorting, bacterial cells were incubated in the presence of tritiated leucine using a procedure similar to that used for measuring bacterial production by leucine incorporation and then stained with SYTO 13. Subpopulations of bacterial cells were sorted according to their average right-angle light scatter (RALS) and fluorescence. Average RALS was shown to be significantly related to the average biovolume. Experiments were performed on samples collected at different times in a Mediterranean seawater mesocosm enriched with nitrogen and phosphorus. At four sampling times, bacteria were sorted in two subpopulations (cells smaller and larger than 0.25 µm(3)). The results indicate that, at each sampling time, the growth rate of larger cells was higher than that of smaller cells. In order to confirm this tendency, cell sorting was performed on six subpopulations differing in average biovolume during the mesocosm follow-up. A clear increase of the bacterial growth rates was observed with increasing cell size for the conditions met in this enriched mesocosm.http://link.springer-ny.com/link/service/journals/00248/bibs/38n2p180.html

  6. Inhibition of Insulin Degrading Enzyme and Insulin Degradation by UV-Killed Lactobacillus acidophilus.

    PubMed

    Neyazi, Nadia; Motevaseli, Elahe; Khorramizadeh, Mohammad Reza; Mohammadi Farsani, Taiebeh; Nouri, Zahra; Nasli Esfahani, Ensieh; Ghahremani, Mohammad Hossein

    2018-05-11

    Probiotics have beneficial effects on management of type 2 diabetes (T2D). The major hallmarks of T2D are insulin deficiency and insulin resistance which emphasize insulin therapy in onset of disease. Lactobacilli such as Lactobacillus acidophilus ( L. acidophilus ) have well known properties on prevention of T2D and insulin resistance but not on insulin degradation. Insulin-degrading enzyme (IDE) degrades insulin in the human body. We studied the effects of cell-free supernatant (CFS) and ultraviolet (UV)-killed L. acidophilus (ATCC 314) on IDE activity and insulin degradation in vitro. Cell growth inhibition by CFS and UV-killed L. acidophilus (ATCC 314) was studied and Western blotting and a fluoregenic assay was performed to determine IDE expression and its activity, respectively. Insulin degradation was evaluated by sandwich enzyme-linked immunosorbent assay(ELISA). IDE expression and activity was reduced by CFS and UV-killed L. acidophilus (ATCC 314). Although, decreased enzyme expression and activity was not significant for CFS in contrast to MRL (MRS with same pH as CFS). Also, reduction in IDE activity was not statistically considerable when compared to IDE expression. Insulin degradation was increased by CFS but decreased by UV-killed L. acidophilus (ATCC 314).

  7. Hypoxia-activated cytotoxic agent tirapazamine enhances hepatic artery ligation-induced killing of liver tumor in HBx transgenic mice

    PubMed Central

    Lin, Wei-Hsiang; Yeh, Shiou-Hwei; Yeh, Kun-Huei; Chen, Kai-Wei; Cheng, Ya-Wen; Su, Tung-Hung; Jao, Ping; Ni, Lin-Chun; Chen, Pei-Jer; Chen, Ding-Shinn

    2016-01-01

    Transarterial chemoembolization (TACE) is the main treatment for intermediate stage hepatocellular carcinoma (HCC) with Barcelona Clinic Liver Cancer classification because of its exclusive arterial blood supply. Although TACE achieves substantial necrosis of the tumor, complete tumor necrosis is uncommon, and the residual tumor generally rapidly recurs. We combined tirapazamine (TPZ), a hypoxia-activated cytotoxic agent, with hepatic artery ligation (HAL), which recapitulates transarterial embolization in mouse models, to enhance the efficacy of TACE. The effectiveness of this combination treatment was examined in HCC that spontaneously developed in hepatitis B virus X protein (HBx) transgenic mice. We proved that the tumor blood flow in this model was exclusively supplied by the hepatic artery, in contrast to conventional orthotopic HCC xenografts that receive both arterial and venous blood supplies. At levels below the threshold oxygen levels created by HAL, TPZ was activated and killed the hypoxic cells, but spared the normoxic cells. This combination treatment clearly limited the toxicity of TPZ to HCC, which caused the rapid and near-complete necrosis of HCC. In conclusion, the combination of TPZ and HAL showed a synergistic tumor killing activity that was specific for HCC in HBx transgenic mice. This preclinical study forms the basis for the ongoing clinical program for the TPZ-TACE regimen in HCC treatment. PMID:27702890

  8. Clinical Concentrations of Thioridazine Kill Intracellular Multidrug-Resistant Mycobacterium tuberculosis

    PubMed Central

    Ordway, Diane; Viveiros, Miguel; Leandro, Clara; Bettencourt, Rosário; Almeida, Josefina; Martins, Marta; Kristiansen, Jette E.; Molnar, Joseph; Amaral, Leonard

    2003-01-01

    The phenothiazines chlorpromazine (CPZ) and thioridazine (TZ) have equal in vitro activities against antibiotic-sensitive and -resistant Mycobacterium tuberculosis. These compounds have not been used as anti-M. tuberculosis agents because their in vitro activities take place at concentrations which are beyond those that are clinically achievable. In addition, chronic administration of CPZ produces frequent severe side effects. Because CPZ has been shown to enhance the killing of intracellular M. tuberculosis at concentrations in the medium that are clinically relevant, we have investigated whether TZ, a phenothiazine whose negative side effects are less frequent and serious than those associated with CPZ, kills M. tuberculosis organisms that have been phagocytosed by human macrophages, which have nominal killing activities against these bacteria. Both CPZ and TZ killed intracellular antibiotic-sensitive and -resistant M. tuberculosis organisms when they were used at concentrations in the medium well below those present in the plasma of patients treated with these agents. These concentrations in vitro were not toxic to the macrophage, nor did they affect in vitro cellular immune processes. TZ thus appears to be a serious candidate for the management of a freshly diagnosed infection of pulmonary tuberculosis or as an adjunct to conventional antituberculosis therapy if the patient originates from an area known to have a high prevalence of multidrug-resistant M. tuberculosis isolates. Nevertheless, we must await the outcomes of clinical trials to determine whether TZ itself may be safely and effectively used as an antituberculosis agent. PMID:12604522

  9. Nafcillin enhances innate immune-mediated killing of methicillin-resistant Staphylococcus aureus.

    PubMed

    Sakoulas, George; Okumura, Cheryl Y; Thienphrapa, Wdee; Olson, Joshua; Nonejuie, Poochit; Dam, Quang; Dhand, Abhay; Pogliano, Joseph; Yeaman, Michael R; Hensler, Mary E; Bayer, Arnold S; Nizet, Victor

    2014-02-01

    Based on in vitro synergy studies, the addition of nafcillin to daptomycin was used to treat refractory methicillin-resistant Staphylococcus aureus (MRSA) bacteremia. Daptomycin is a de facto cationic antimicrobial peptide in vivo, with antistaphylococcal mechanisms reminiscent of innate host defense peptides (HDPs). In this study, the effects of nafcillin on HDP activity against MRSA were examined in vitro and in vivo. Exposures to β-lactam antimicrobials in general, and nafcillin in particular, significantly increased killing of S. aureus by selected HDPs from keratinocytes, neutrophils, and platelets. This finding correlated with enhanced killing of MRSA by whole blood, neutrophils, and keratinocytes after growth in nafcillin. Finally, nafcillin pretreatment ex vivo reduced MRSA virulence in a murine subcutaneous infection model. Despite the lack of direct activity against MRSA, these studies show potent, consistent, and generalized nafcillin-mediated "sensitization" to increased killing of MRSA by various components of the innate host response. The use of nafcillin as adjunctive therapy in MRSA bacteremia merits further study and should be considered in cases refractory to standard therapy. Nafcillin has been used as adjunctive therapy to clear persistent MRSA bacteremia. Nafcillin enhances killing of MRSA by a cadre of innate host defense peptides. Nafcillin increases binding of human cathelicidin LL-37 to the MRSA membrane. Nafcillin enhances killing of MRSA by neutrophils. Nafcillin reduces virulence of MRSA in a murine subcutaneous infection model.

  10. In vitro killing of Escherichia coli, Staphylococcus pseudintermedius and Pseudomonas aeruginosa by enrofloxacin in combination with its active metabolite ciprofloxacin using clinically relevant drug concentrations in the dog and cat.

    PubMed

    Blondeau, J M; Borsos, S; Blondeau, L D; Blondeau, B J

    2012-03-23

    Enrofloxacin is a fluoroquinolone antibacterial agent used to treat infections in companion animals. Enrofloxacin's antimicrobial spectrum includes Gram positive and Gram-negative bacteria and demonstrates concentration-dependent bacteriocidal activity. In dogs and cats, enrofloxacin is partially metabolized to ciprofloxacin and both active agents circulate simultaneously in treated animals at ratios of approximately 60-70% enrofloxacin to 30-40% ciprofloxacin. We were interested in determining the killing of companion animal isolates of Escherichia coli, Staphylococcus pseudintermedius and Pseudomonas aeruginosa by enrofloxacin and ciprofloxacin combined using clinically relevant drug concentrations and ratios. For E. coli isolates exposed to 2.1 and 4.1μg/ml of enrofloxacin/ciprofloxacin at 50:50, 60:40 and 70:30 ratios, a 1.7-2.5log(10) reduction (94-99% kill) was seen following 20min of drug exposure; 0.89-1.7log(10) (92-99% kill) of S. pseudintermedius following 180min of drug exposure; 0.85-3.4log(10) (98-99% kill) of P. aeruginosa following 15min of drug exposure. Killing of S. pseudintermedius was enhanced in the presence of enrofloxacin whereas killing of P. aeruginosa was enhanced in the presence of ciprofloxacin. Antagonism was not seen when enrofloxacin and ciprofloxacin were used in kill assays. The unique feature of partial metabolism of enrofloxacin to ciprofloxacin expands the spectrum of enhanced killing of common companion animal pathogens. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Bactericidal activity of juvenile chinook salmon macrophages against Aeromonas salmonicida after exposure to live or heat-killed Renibacterium salmoninarum or to soluble proteins produced by R. salmoninarum

    USGS Publications Warehouse

    Siegel, D.C.; Congleton, J.L.

    1997-01-01

    Macrophages isolated from the anterior kidney of juvenile chinook salmon Oncorhynchus tshawytscha in 96-well microtiter plates were exposed for 72 h to 0, 105, or 106 live or heat-killed Renibacterium salmoninarum cells per well or to 0, 0.1, 1.0, or 10 ??g/mL of R. salmoninarum soluble proteins. After treatment, the bactericidal activity of the macrophages against Aerornonas salmonicida was determined by a colorimetric assay based on the reduction of the tetrazolium dye MTT to formazan by viable bacteria. The MTT assay was modified to allow estimation of the percentage of bacteria killed by reference to a standard curve relating the number of bacteria added to microtiter wells to absorbance by formazan at 600 nm. The live and heat-killed R. salmoninarum treatments significantly (P < 0.001) increased killing of A. salmonicida by chinook salmon macrophages. In each of the five trials, significantly (P < 0.05) greater increases in killing occurred after exposure to 105 R. salmoninarum cells than to 106 R. salmoninarum cells per well. In contrast, treatment of macrophages with 10 ??g/mL R. salmoninarum soluble proteins significantly (P < 0.001) decreased killing of A. salmonicida, but treatment with lower doses did not. These results show that the bactericidal activity of chinook salmon macrophages is stimulated by exposure to R. salmoninarum cells at lower dose levels but inhibited by exposure to R. salmoninarum cells or soluble proteins at higher dose levels.

  12. A Lipopeptide Facilitate Induction of Mycobacterium leprae Killing in Host Cells

    PubMed Central

    Maeda, Yumi; Tamura, Toshiki; Fukutomi, Yasuo; Mukai, Tetsu; Kai, Masanori; Makino, Masahiko

    2011-01-01

    Little is known of the direct microbicidal activity of T cells in leprosy, so a lipopeptide consisting of the N-terminal 13 amino acids lipopeptide (LipoK) of a 33-kD lipoprotein of Mycobacterium leprae, was synthesized. LipoK activated M. leprae infected human dendritic cells (DCs) to induce the production of IL-12. These activated DCs stimulated autologous CD4+ or CD8+ T cells towards type 1 immune response by inducing interferon-gamma secretion. T cell proliferation was also evident from the CFSE labeling of target CD4+ or CD8+ T cells. The direct microbicidal activity of T cells in the control of M. leprae multiplication is not well understood. The present study showed significant production of granulysin, granzyme B and perforin from these activated CD4+ and CD8+ T cells when stimulated with LipoK activated, M. leprae infected DCs. Assessment of the viability of M. leprae in DCs indicated LipoK mediated T cell-dependent killing of M. leprae. Remarkably, granulysin as well as granzyme B could directly kill M. leprae in vitro. Our results provide evidence that LipoK could facilitate M. leprae killing through the production of effector molecules granulysin and granzyme B in T cells. PMID:22132248

  13. Bacterial killing in macrophages and amoeba: do they all use a brass dagger?

    PubMed

    German, Nadezhda; Doyscher, Dominik; Rensing, Christopher

    2013-10-01

    Macrophages are immune cells that are known to engulf pathogens and destroy them by employing several mechanisms, including oxidative burst, induction of Fe(II) and Mn(II) efflux, and through elevation of Cu(I) and Zn(II) concentrations in the phagosome ('brass dagger'). The importance of the latter mechanism is supported by the presence of multiple counteracting efflux systems in bacteria, responsible for the efflux of toxic metals. We hypothesize that similar bacteria-killing mechanisms are found in predatory protozoa/amoeba species. Here, we present a brief summary of soft metal-related mechanisms used by macrophages, and perhaps amoeba, to inactivate and destroy bacteria. Based on this, we think it is likely that copper resistance is also selected for by protozoan grazing in the environment.

  14. Two Novel Algicidal Isolates Kill Chlorella pyrenoidosa by Inhibiting their Host Antioxidase Activities.

    PubMed

    Liao, Chunli; Liu, Xiaobo; Liu, Ruifang; Shan, Linna

    2015-09-01

    In the biocontrol of harmful algal blooms, there has been considerable interest about the role of algicidal bacteria in algicidal activity. In this experiment, two novel algicidal bacteria (strains NP23 and AM11) against Chlorella pyrenoidosa were isolated from the Baiguishan reservoir in China. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strains NP23 and AM11 belonged to Enterobacter cloacae and Gibberella moniliformis, respectively. To further understand the algicidal activities, five parameters including the chlorophyll a content, cell survival rate, superoxide dismutase (SOD) peroxide dismutase (POD), and catalase (CAT) were tested in the C. pyrenoidosa cells after inoculation with the algicidal bacteria Enterobacter cloacae NP23 and Gibberella moniliformis AM11. As a result, the growth of the treated C. pyrenoidosa was significantly restrained with a great decline of chlorophyll a content. Meanwhile, three antioxidase activities of the treated C. pyrenoidosa were initially stimulated from day 1 to day 3 but then dramatically inhibited at low level. These results induced that the oxidative imbalance (i.e., inhibition of antioxidase activities) caused by algicidal bacteria could be the killing agent of the C. pyrenoidosa cells.

  15. Efficacy of 4 Irrigation Protocols in Killing Bacteria Colonized in Dentinal Tubules Examined by a Novel Confocal Laser Scanning Microscope Analysis.

    PubMed

    Azim, Adham A; Aksel, Hacer; Zhuang, Tingting; Mashtare, Terry; Babu, Jegdish P; Huang, George T-J

    2016-06-01

    The aim of this study was to determine the efficiency of 4 irrigation systems in eliminating bacteria in root canals, particularly in dentinal tubules. Roots of human teeth were prepared to 25/04, autoclaved, and inoculated with Enterococcus faecalis for 3 weeks. Canals were then disinfected by (1) standard needle irrigation, (2) sonically agitating with EndoActivator, (3) XP Endo finisher, or (4) erbium:yttrium aluminum garnet laser (PIPS) (15 roots/group). The bacterial reduction in the canal was determined by MTT assays. For measuring live versus dead bacteria in the dentinal tubules (4 teeth/group), teeth were split open and stained with LIVE/DEAD BackLight. Coronal, middle, and apical thirds of the canal dentin were scanned by using a confocal laser scanning microscope (CLSM) to determine the ratio of dead/total bacteria in the dentinal tubules at various depths. All 4 irrigation protocols significantly eliminated bacteria in the canal, ranging from 89.6% to 98.2% reduction (P < .001). XP Endo had the greatest bacterial reduction compared with other 3 techniques (P < .05). CLSM analysis showed that XP Endo had the highest level of dead bacteria in the coronal, middle, and apical segments at 50-μm depth. On the other hand, PIPS had the greatest bacterial killing efficiency at the 150-μm depth in all 3 root segments. XP Endo appears to be more efficient than other 3 techniques in disinfecting the main canal space and up to 50 μm deep into the dentinal tubules. PIPS appears to be most effective in killing the bacteria deep in the dentinal tubules. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Xylitol-supplemented nutrition enhances bacterial killing and prolongs survival of rats in experimental pneumococcal sepsis

    PubMed Central

    Renko, Marjo; Valkonen, Päivi; Tapiainen, Terhi; Kontiokari, Tero; Mattila, Pauli; Knuuttila, Matti; Svanberg, Martti; Leinonen, Maija; Karttunen, Riitta; Uhari, Matti

    2008-01-01

    Background Xylitol has antiadhesive effects on Streptococcus pneumoniae and inhibits its growth, and has also been found to be effective in preventing acute otitis media and has been used in intensive care as a valuable source of energy. Results We evaluated the oxidative burst of neutrophils in rats fed with and without xylitol. The mean increase in the percentage of activated neutrophils from the baseline was higher in the xylitol-exposed group than in the control group (58.1% vs 51.4%, P = 0.03 for the difference) and the mean induced increase in the median strength of the burst per neutrophil was similarly higher in the xylitol group (159.6 vs 140.3, P = 0.04). In two pneumococcal sepsis experiments rats were fed either a basal powder diet (control group) or the same diet supplemented with 10% or 20% xylitol and infected with an intraperitoneal inoculation of S. pneumoniae after two weeks. The mean survival time was 48 hours in the xylitol groups and 34 hours in the control groups (P < 0.001 in log rank test). Conclusion Xylitol has beneficial effects on both the oxidative killing of bacteria in neutrophilic leucocytes and on the survival of rats with experimental pneumococcal sepsis. PMID:18334022

  17. Bacteria-killing ability of fresh blood plasma compared to frozen blood plasma

    DOE PAGES

    Jacobs, Anne C.; Fair, Jeanne Marie

    2015-10-09

    In recent years, the bacteria-killing assay (BKA) has become a popular technique among ecoimmunologists. New variations of that assay allow researchers to use smaller volumes of blood, an important consideration for those working on small-bodied animals. However, this version of the assay requires access to a lab with a nanodrop spectrophotometer, something that may not be available in the field. One possible solution is to freeze plasma for transport; however, this assumes that frozen plasma samples will give comparable results to fresh ones. Here, we tested this assumption using plasma samples from three species of birds: chickens (Gallus gallus), ash-throatedmore » flycatchers (Myiarchus cinerascens), and western bluebirds (Sialia mexicana). Chicken plasma samples lost most or all of their bacterial killing ability after freezing. This did not happen in flycatchers and bluebirds; however, frozen plasma did not produce results comparable to those obtained using fresh plasma. Finally, we caution researchers using the BKA to use fresh samples whenever possible, and to validate the use of frozen samples on a species-by-species basis.« less

  18. Bacteria-killing ability of fresh blood plasma compared to frozen blood plasma.

    PubMed

    Jacobs, Anne C; Fair, Jeanne M

    2016-01-01

    In recent years, the bacteria-killing assay (BKA) has become a popular technique among ecoimmunologists. New variations of that assay allow researchers to use smaller volumes of blood, an important consideration for those working on small-bodied animals. However, this version of the assay requires access to a lab with a nanodrop spectrophotometer, something that may not be available in the field. One possible solution is to freeze plasma for transport; however, this assumes that frozen plasma samples will give comparable results to fresh ones. We tested this assumption using plasma samples from three species of birds: chickens (Gallus gallus), ash-throated flycatchers (Myiarchus cinerascens), and western bluebirds (Sialia mexicana). Chicken plasma samples lost most or all of their bacterial killing ability after freezing. This did not happen in flycatchers and bluebirds; however, frozen plasma did not produce results comparable to those obtained using fresh plasma. We caution researchers using the BKA to use fresh samples whenever possible, and to validate the use of frozen samples on a species-by-species basis. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Bacteria-killing ability of fresh blood plasma compared to frozen blood plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, Anne C.; Fair, Jeanne Marie

    In recent years, the bacteria-killing assay (BKA) has become a popular technique among ecoimmunologists. New variations of that assay allow researchers to use smaller volumes of blood, an important consideration for those working on small-bodied animals. However, this version of the assay requires access to a lab with a nanodrop spectrophotometer, something that may not be available in the field. One possible solution is to freeze plasma for transport; however, this assumes that frozen plasma samples will give comparable results to fresh ones. Here, we tested this assumption using plasma samples from three species of birds: chickens (Gallus gallus), ash-throatedmore » flycatchers (Myiarchus cinerascens), and western bluebirds (Sialia mexicana). Chicken plasma samples lost most or all of their bacterial killing ability after freezing. This did not happen in flycatchers and bluebirds; however, frozen plasma did not produce results comparable to those obtained using fresh plasma. Finally, we caution researchers using the BKA to use fresh samples whenever possible, and to validate the use of frozen samples on a species-by-species basis.« less

  20. RIG-I detects infection with live Listeria by sensing secreted bacterial nucleic acids

    PubMed Central

    Abdullah, Zeinab; Schlee, Martin; Roth, Susanne; Mraheil, Mobarak Abu; Barchet, Winfried; Böttcher, Jan; Hain, Torsten; Geiger, Sergej; Hayakawa, Yoshihiro; Fritz, Jörg H; Civril, Filiz; Hopfner, Karl-Peter; Kurts, Christian; Ruland, Jürgen; Hartmann, Gunther; Chakraborty, Trinad; Knolle, Percy A

    2012-01-01

    Immunity against infection with Listeria monocytogenes is not achieved from innate immune stimulation by contact with killed but requires viable Listeria gaining access to the cytosol of infected cells. It has remained ill-defined how such immune sensing of live Listeria occurs. Here, we report that efficient cytosolic immune sensing requires access of nucleic acids derived from live Listeria to the cytoplasm of infected cells. We found that Listeria released nucleic acids and that such secreted bacterial RNA/DNA was recognized by the cytosolic sensors RIG-I, MDA5 and STING thereby triggering interferon β production. Secreted Listeria nucleic acids also caused RIG-I-dependent IL-1β-production and inflammasome activation. The signalling molecule CARD9 contributed to IL-1β production in response to secreted nucleic acids. In conclusion, cytosolic recognition of secreted bacterial nucleic acids by RIG-I provides a mechanistic explanation for efficient induction of immunity by live bacteria. PMID:23064150

  1. Bacterial anti-apoptotic activities.

    PubMed

    Häcker, Georg; Fischer, Silke F

    2002-05-21

    Cell death by apoptosis is a common response to environmental stimuli and a frequent event in a multicellular organism. Not surprisingly, apoptosis is also found in microbial infections where it may contribute to progression and outcome. Perhaps less predictably, a number of bacteria have also been found to alleviate or even to inhibit apoptosis. Today we are at a point where our in some parts detailed knowledge of the molecular pathway to apoptosis allows us to probe situations in biology for the occurrence of apoptosis and to inquire into mechanisms of apoptosis induction and inhibition. In this brief article we will focus on anti-apoptotic activities exhibited by various bacteria. We will attempt to present the current knowledge on how the contact between mammalian and bacterial cell decrees resistance to apoptosis, what the respective contributions of the two partners are and how this interaction relates to the molecular path to apoptosis.

  2. Reptile road-kills in Southern Brazil: Composition, hot moments and hotspots.

    PubMed

    Gonçalves, Larissa Oliveira; Alvares, Diego Janisch; Teixeira, Fernanda Zimmermann; Schuck, Gabriela; Coelho, Igor Pfeifer; Esperandio, Isadora Beraldi; Anza, Juan; Beduschi, Júlia; Bastazini, Vinicius Augusto Galvão; Kindel, Andreas

    2018-02-15

    Understanding road-kill patterns is the first step to assess the potential effects of road mortality on wildlife populations, as well as to define the need for mitigation and support its planning. Reptiles are one of the vertebrate groups most affected by roads through vehicle collisions, both because they are intentionally killed by drivers, and due to their biological needs, such as thermoregulation, which make them more prone to collisions. We conducted monthly road surveys (33months), searching for carcasses of freshwater turtles, lizards, and snakes on a 277-km stretch of BR-101 road in Southernmost Brazil to estimate road-kill composition and magnitude and to describe the main periods and locations of road-kills. We modeled the distribution of road-kills in space according to land cover classes and local traffic volume. Considering the detection capacity of our method and carcass persistence probability, we estimated that 15,377 reptiles are road-killed per year (55reptiles/km/year). Road-kills, especially lizards and snakes, were concentrated during summer, probably due to their higher activity in this period. Road-kill hotspots were coincident among freshwater turtles, lizards, and snakes. Road-kill distribution was negatively related to pine plantations, and positively related to rice plantations and traffic volume. A cost-benefit analysis highlighted that if mitigation measures were installed at road-kill hotspots, which correspond to 21% of the road, they could have avoided up to 45% of recorded reptile fatalities, assuming a 100% mitigation effectiveness. Given the congruent patterns found for all three taxa, the same mitigation measures could be used to minimize the impacts of collision on local herpetofauna. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Nordihydroguaiaretic acid enhances the activities of aminoglycosides against methicillin- sensitive and resistant Staphylococcus aureus in vitro and in vivo.

    PubMed

    Cunningham-Oakes, Edward; Soren, Odel; Moussa, Caroline; Rathor, Getika; Liu, Yingjun; Coates, Anthony; Hu, Yanmin

    2015-01-01

    Infections caused by methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) are prevalent. MRSA infections are difficult to treat and there are no new classes of antibiotics produced to the market to treat infections caused by the resistant bacteria. Therefore, using antibiotic enhancers to rescue existing classes of antibiotics is an attractive strategy. Nordihydroguaiaretic acid (NDGA) is an antioxidant compound found in extracts from plant Larrea Tridentata. It exhibits antimicrobial activity and may target bacterial cell membrane. Combination efficacies of NDGA with many classes of antibiotics were examined by chequerboard method against 200 clinical isolates of MRSA and MSSA. NDGA in combination with gentamicin, neomycin, and tobramycin was examined by time-kill assays. The synergistic combinations of NDGA and aminoglycosides were tested in vivo using a murine skin infection model. Calculations of the fractional inhibitory concentration index (FICI) showed that NDGA when combined with gentamicin, neomycin, or tobramycin displayed synergistic activities in more than 97% of MSSA and MRSA, respectively. Time kill analysis demonstrated that NDGA significantly augmented the activities of these aminoglycosides against MRSA and MSSA in vitro and in murine skin infection model. The enhanced activity of NDGA resides on its ability to damage bacterial cell membrane leading to accumulation of the antibiotics inside bacterial cells. We demonstrated that NDGA strongly revived the therapeutic potencies of aminoglycosides in vitro and in vivo. This combinational strategy could contribute major clinical implications to treat antibiotic resistant bacterial infections.

  4. A single Photorhabdus gene, makes caterpillars floppy (mcf), allows Escherichia coli to persist within and kill insects

    PubMed Central

    Daborn, P. J.; Waterfield, N.; Silva, C. P.; Au, C. P. Y.; Sharma, S.; ffrench-Constant, R. H.

    2002-01-01

    Photorhabdus luminescens, a bacterium with alternate pathogenic and symbiotic phases of its lifestyle, represents a source of novel genes associated with both virulence and symbiosis. This entomopathogen lives in a “symbiosis of pathogens” with nematodes that invade insects. Thus the bacteria are symbiotic with entomopathogenic nematodes but become pathogenic on release from the nematode into the insect blood system. Within the insect, the bacteria need to both avoid the peptide- and cellular- (hemocyte) mediated immune response and also to kill the host, which then acts as a reservoir for bacterial and nematode reproduction. However, the mechanisms whereby Photorhabdus evades the insect immune system and kills the host are unclear. Here we show that a single large Photorhabdus gene, makes caterpillars floppy (mcf), is sufficient to allow Esherichia coli both to persist within and kill an insect. The predicted high molecular weight Mcf toxin has little similarity to other known protein sequences but carries a BH3 domain and triggers apoptosis in both insect hemocytes and the midgut epithelium. PMID:12136122

  5. A single Photorhabdus gene, makes caterpillars floppy (mcf), allows Escherichia coli to persist within and kill insects.

    PubMed

    Daborn, P J; Waterfield, N; Silva, C P; Au, C P Y; Sharma, S; Ffrench-Constant, R H

    2002-08-06

    Photorhabdus luminescens, a bacterium with alternate pathogenic and symbiotic phases of its lifestyle, represents a source of novel genes associated with both virulence and symbiosis. This entomopathogen lives in a "symbiosis of pathogens" with nematodes that invade insects. Thus the bacteria are symbiotic with entomopathogenic nematodes but become pathogenic on release from the nematode into the insect blood system. Within the insect, the bacteria need to both avoid the peptide- and cellular- (hemocyte) mediated immune response and also to kill the host, which then acts as a reservoir for bacterial and nematode reproduction. However, the mechanisms whereby Photorhabdus evades the insect immune system and kills the host are unclear. Here we show that a single large Photorhabdus gene, makes caterpillars floppy (mcf), is sufficient to allow Esherichia coli both to persist within and kill an insect. The predicted high molecular weight Mcf toxin has little similarity to other known protein sequences but carries a BH3 domain and triggers apoptosis in both insect hemocytes and the midgut epithelium.

  6. Retargeting pre-existing human antibodies to a bacterial pathogen with an alpha-Gal conjugated aptamer.

    PubMed

    Kristian, Sascha A; Hwang, John H; Hall, Bradley; Leire, Emma; Iacomini, John; Old, Robert; Galili, Uri; Roberts, Charles; Mullis, Kary B; Westby, Mike; Nizet, Victor

    2015-06-01

    The ever-increasing threat of multi-drug resistant bacterial infections has spurred renewed interest in alternative approaches to classical antibiotic therapy. In contrast to other mammals, humans do not express the galactose-α-1,3-galactosyl-β-1,4-N-acetyl-glucosamine (α-Gal) epitope. As a result of exposure of humans to α-Gal in the environment, a large proportion of circulating antibodies are specific for the trisaccharide. In this study, we examine whether these anti-Gal antibodies can be recruited and redirected to exert anti-bacterial activity. We show that a specific DNA aptamer conjugated to an α-Gal epitope at its 5' end, herein termed an alphamer, can bind to group A Streptococcus (GAS) bacteria by recognition of a conserved region of the surface-anchored M protein. The anti-GAS alphamer was shown to recruit anti-Gal antibodies to the streptococcal surface in an α-Gal-specific manner, elicit uptake and killing of the bacteria by human phagocytes, and slow growth of invasive GAS in human whole blood. These studies provide a first in vitro proof of concept that alphamers have the potential to redirect pre-existing antibodies to bacteria in a specific manner and trigger an immediate antibacterial immune response. Further validation of this novel therapeutic approach of applying α-Gal technology in in vivo models of bacterial infection is warranted. . α-Gal-tagged aptamers lead to GAS opsonization with anti-Gal antibodies. . α-Gal-tagged aptamers confer phagocytosis and killing of GAS cells by human phagocytes. . α-Gal-tagged aptamers reduces replication of GAS in human blood. . α-Gal-tagged aptamers may have the potential to be used as novel passive immunization drugs.

  7. Conventional CD4+ T cells present bacterial antigens to induce cytotoxic and memory CD8+ T cell responses.

    PubMed

    Cruz-Adalia, Aránzazu; Ramirez-Santiago, Guillermo; Osuna-Pérez, Jesús; Torres-Torresano, Mónica; Zorita, Virgina; Martínez-Riaño, Ana; Boccasavia, Viola; Borroto, Aldo; Martínez Del Hoyo, Gloria; González-Granado, José María; Alarcón, Balbino; Sánchez-Madrid, Francisco; Veiga, Esteban

    2017-11-17

    Bacterial phagocytosis and antigen cross-presentation to activate CD8 + T cells are principal functions of professional antigen presenting cells. However, conventional CD4 + T cells also capture and kill bacteria from infected dendritic cells in a process termed transphagocytosis (also known as transinfection). Here, we show that transphagocytic T cells present bacterial antigens to naive CD8 + T cells, which proliferate and become cytotoxic in response. CD4 + T-cell-mediated antigen presentation also occurs in vivo in the course of infection, and induces the generation of central memory CD8 + T cells with low PD-1 expression. Moreover, transphagocytic CD4 + T cells induce protective anti-tumour immune responses by priming CD8 + T cells, highlighting the potential of CD4 + T cells as a tool for cancer immunotherapy.

  8. A New Pharmacological Agent (AKB-4924) Stabilizes Hypoxia Inducible Factor (HIF) and Increases Skin Innate Defenses Against Bacterial Infection

    PubMed Central

    Okumura, Cheryl Y.M.; Hollands, Andrew; Tran, Dan N.; Olson, Joshua; Dahesh, Samira; von Köckritz-Blickwede, Maren; Thienphrapa, Wdee; Corle, Courtney; Jeung, Seung Nam; Kotsakis, Anna; Shalwitz, Robert A.; Johnson, Randall S.; Nizet, Victor

    2013-01-01

    Hypoxia inducible factor-1 (HIF-1) is a transcription factor that is a major regulator of energy homeostasis and cellular adaptation to low oxygen stress. HIF-1 is also activated in response to bacterial pathogens and supports the innate immune response of both phagocytes and keratinocytes. In this work, we show that a new pharmacological compound AKB-4924 (Akebia Therapeutics) increases HIF-1α levels and enhances the antibacterial activity of phagocytes and keratinocytes against both methicillin-sensitive and -resistant strains of Staphylococcus aureus in vitro. AKB-4924 is also effective in stimulating the killing capacity of keratinocytes against the important opportunistic skin pathogens Pseudomonas aeruginosa and Acinitobacter baumanii. The effect of AKB-4924 is mediated through the activity of host cells, as the compound exerts no direct antimicrobial activity. Administered locally as a single agent, AKB-4924 limits S. aureus proliferation and lesion formation in a mouse skin abscess model. This approach to pharmacologically boost the innate immune response via HIF-1 stabilization may serve as a useful adjunctive treatment for antibiotic-resistant bacterial infections. PMID:22371073

  9. Studies on the kinetics of killing and the proposed mechanism of action of microemulsions against fungi.

    PubMed

    Al-Adham, Ibrahim S I; Ashour, Hana; Al-Kaissi, Elham; Khalil, Enam; Kierans, Martin; Collier, Phillip J

    2013-09-15

    Microemulsions are physically stable oil/water clear dispersions, spontaneously formed and thermodynamically stable. They are composed in most cases of water, oil, surfactant and cosurfactant. Microemulsions are stable, self-preserving antimicrobial agents in their own right. The observed levels of antimicrobial activity associated with microemulsions may be due to the direct effect of the microemulsions themselves on the bacterial cytoplasmic membrane. The aim of this work is to study the growth behaviour of different microbes in presence of certain prepared physically stable microemulsion formulae over extended periods of time. An experiment was designed to study the kinetics of killing of a microemulsion preparation (17.3% Tween-80, 8.5% n-pentanol, 5% isopropyl myristate and 69.2% sterile distilled water) against selected test microorganisms (Candida albicans, Aspergillus niger, Schizosaccharomyces pombe and Rhodotorula spp.). Secondly, an experiment was designed to study the effects of the microemulsion preparation on the cytoplasmic membrane structure and function of selected fungal species by observation of 260 nm component leakage. Finally, the effects of the microemulsion on the fungal membrane structure and function using S. pombe were studied using transmission electron microscopy. The results showed that the prepared microemulsions are stable, effective antimicrobial systems with effective killing rates against C. albicans, A. niger, S. pombe and Rhodotorula spp. The results indicate a proposed mechanism of action of significant anti-membrane activity, resulting in the gross disturbance and dysfunction of the cytoplasmic membrane structure which is followed by cell wall modifications, cytoplasmic coagulation, disruption of intracellular metabolism and cell death. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Stable Concentrated Emulsions of the 1-Monoglyceride of Capric Acid (Monocaprin) with Microbicidal Activities against the Food-Borne Bacteria Campylobacter jejuni, Salmonella spp., and Escherichia coli

    PubMed Central

    Thormar, Halldor; Hilmarsson, Hilmar; Bergsson, Gudmundur

    2006-01-01

    Of 11 fatty acids and monoglycerides tested against Campylobacter jejuni, the 1-monoglyceride of capric acid (monocaprin) was the most active in killing the bacterium. Various monocaprin-in-water emulsions were prepared which were stable after storage at room temperature for many months and which retained their microbicidal activity. A procedure was developed to manufacture up to 500 ml of 200 mM preconcentrated emulsions of monocaprin in tap water. The concentrates were clear and remained stable for at least 12 months. They were active against C. jejuni upon 160- to 200-fold dilution in tap water and caused a >6- to 7-log10 reduction in viable bacterial count in 1 min at room temperature. The addition of 0.8% Tween 40 to the concentrates as an emulsifying agent did not change the microbicidal activity. Emulsions of monocaprin killed a variety of Campylobacter isolates from humans and poultry and also killed strains of Campylobacter coli and Campylobacter lari, indicating a broad anticampylobacter activity. Emulsions of 1.25 mM monocaprin in citrate-lactate buffer at pH 4 to 5 caused a >6- to 7-log10 reduction in viable bacterial counts of Salmonella spp. and Escherichia coli in 10 min. C. jejuni was also more susceptible to monocaprin emulsions at low pH. The addition of 5 and 10 mM monocaprin emulsions to Campylobacter-spiked chicken feed significantly reduced the bacterial contamination. These results are discussed in view of the possible utilization of monocaprin emulsions in controlling the spread of food-borne bacteria from poultry to humans. PMID:16391087

  11. Selective killing of human immunodeficiency virus infected cells by non-nucleoside reverse transcriptase inhibitor-induced activation of HIV protease.

    PubMed

    Jochmans, Dirk; Anders, Maria; Keuleers, Inge; Smeulders, Liesbeth; Kräusslich, Hans-Georg; Kraus, Günter; Müller, Barbara

    2010-10-15

    Current antiretroviral therapy against human immunodeficiency virus (HIV-1) reduces viral load and thereby prevents viral spread, but it cannot eradicate proviral genomes from infected cells. Cells in immunological sanctuaries as well as cells producing low levels of virus apparently contribute to a reservoir that maintains HIV persistence in the presence of highly active antiretroviral therapy. Thus, accelerated elimination of virus producing cells may represent a complementary strategy to control HIV infection. Here we sought to exploit HIV protease (PR) related cytotoxicity in order to develop a strategy for drug induced killing of HIV producing cells. PR processes the viral Gag and Gag-Pol polyproteins during virus maturation, but is also implicated in killing of virus producing cells through off-target cleavage of host proteins. It has been observed previously that micromolar concentrations of certain non-nucleoside reverse transcriptase inhibitors (NNRTIs) can stimulate intracellular PR activity, presumably by enhancing Gag-Pol dimerization. Using a newly developed cell-based assay we compared the degree of PR activation displayed by various NNRTIs. We identified inhibitors showing higher potency with respect to PR activation than previously described for NNRTIs, with the most potent compounds resulting in ~2-fold increase of the Gag processing signal at 250 nM. The degree of enhancement of intracellular Gag processing correlated with the compound's ability to enhance RT dimerization in a mammalian two-hybrid assay. Compounds were analyzed for their potential to mediate specific killing of chronically infected MT-4 cells. Levels of cytotoxicity on HIV infected cells determined for the different NNRTIs corresponded to the relative degree of drug induced intracellular PR activation, with CC50 values ranging from ~0.3 μM to above the tested concentration range (10 μM). Specific cytotoxicity was reverted by addition of PR inhibitors. Two of the most active

  12. Selective killing of human immunodeficiency virus infected cells by non-nucleoside reverse transcriptase inhibitor-induced activation of HIV protease

    PubMed Central

    2010-01-01

    Background Current antiretroviral therapy against human immunodeficiency virus (HIV-1) reduces viral load and thereby prevents viral spread, but it cannot eradicate proviral genomes from infected cells. Cells in immunological sanctuaries as well as cells producing low levels of virus apparently contribute to a reservoir that maintains HIV persistence in the presence of highly active antiretroviral therapy. Thus, accelerated elimination of virus producing cells may represent a complementary strategy to control HIV infection. Here we sought to exploit HIV protease (PR) related cytotoxicity in order to develop a strategy for drug induced killing of HIV producing cells. PR processes the viral Gag and Gag-Pol polyproteins during virus maturation, but is also implicated in killing of virus producing cells through off-target cleavage of host proteins. It has been observed previously that micromolar concentrations of certain non-nucleoside reverse transcriptase inhibitors (NNRTIs) can stimulate intracellular PR activity, presumably by enhancing Gag-Pol dimerization. Results Using a newly developed cell-based assay we compared the degree of PR activation displayed by various NNRTIs. We identified inhibitors showing higher potency with respect to PR activation than previously described for NNRTIs, with the most potent compounds resulting in ~2-fold increase of the Gag processing signal at 250 nM. The degree of enhancement of intracellular Gag processing correlated with the compound's ability to enhance RT dimerization in a mammalian two-hybrid assay. Compounds were analyzed for their potential to mediate specific killing of chronically infected MT-4 cells. Levels of cytotoxicity on HIV infected cells determined for the different NNRTIs corresponded to the relative degree of drug induced intracellular PR activation, with CC50 values ranging from ~0.3 μM to above the tested concentration range (10 μM). Specific cytotoxicity was reverted by addition of PR inhibitors. Two of

  13. Inquiry-based examination of chemical disruption of bacterial biofilms.

    PubMed

    Redelman, Carly V; Hawkins, Misty A W; Drumwright, Franklin R; Ransdell, Beverly; Marrs, Kathleen; Anderson, Gregory G

    2012-01-01

    Inquiry-based instruction in the sciences has been demonstrated as a successful educational strategy to use for both high school and college science classrooms. As participants in the NSF Graduate STEM Fellows in K-12 Education (GK-12) Program, we were tasked with creating novel inquiry-based activities for high school classrooms. As a way to introduce microbiology, molecular biology, ecology, and human health to students, we created a laboratory activity involving formation of biofilms composed of environmental bacteria from pond water and investigation into the resistance of these biofilms to antimicrobial agents. Two high schools participated in this study in different ways. Pike High School biology and advanced environmental science classrooms obtained pond water samples and grew biofilms from the bacteria in the pond water on plastic plates. They also observed killing of these biofilms by common household antimicrobial agents. As a senior capstone project, students at Arsenal Technical High School built on these research findings by isolating two different bacterial strains from the pond water and demonstrating the stimulatory effect of ethanol on biofilms formed by isolated bacterial strains. These activities were successful at introducing complex biological topics to high school students in a unique and exciting way. The students scored significantly higher on postactivity surveys compared with preactivity surveys that measured microbiology knowledge and experimental design knowledge. Furthermore, these projects seemed to elicit an excitement for science in the students who participated. Copyright © 2012 Wiley Periodicals, Inc.

  14. Immotile Active Matter: Activity from Death and Reproduction.

    PubMed

    Kalziqi, Arben; Yanni, David; Thomas, Jacob; Ng, Siu Lung; Vivek, Skanda; Hammer, Brian K; Yunker, Peter J

    2018-01-05

    Unlike equilibrium atomic solids, biofilms-soft solids composed of bacterial cells-do not experience significant thermal fluctuations at the constituent level. However, living cells stochastically reproduce and die, provoking a mechanical response. We investigate the mechanical consequences of cellular death and reproduction by measuring surface-height fluctuations of biofilms containing two mutually antagonistic strains of Vibrio cholerae that kill one another on contact via the type VI secretion system. While studies of active matter typically focus on activity via constituent mobility, here, activity is mediated by reproduction and death events in otherwise immobilized cells. Biofilm surface topography is measured in the nearly homeostatic limit via white light interferometry. Although biofilms are far from equilibrium systems, measured surface-height fluctuation spectra resemble the spectra of thermal permeable membranes but with an activity-mediated effective temperature, as predicted by Risler, Peilloux, and Prost [Phys. Rev. Lett. 115, 258104 (2015)PRLTAO0031-900710.1103/PhysRevLett.115.258104]. By comparing the activity of killer strains of V. cholerae with that of genetically modified strains that cannot kill each other and validating with individual-based simulations, we demonstrate that extracted effective temperatures increase with the amount of death and reproduction and that death and reproduction can fluidize biofilms. Together, these observations demonstrate the unique physical consequences of activity mediated by death and reproduction events.

  15. Immotile Active Matter: Activity from Death and Reproduction

    NASA Astrophysics Data System (ADS)

    Kalziqi, Arben; Yanni, David; Thomas, Jacob; Ng, Siu Lung; Vivek, Skanda; Hammer, Brian K.; Yunker, Peter J.

    2018-01-01

    Unlike equilibrium atomic solids, biofilms—soft solids composed of bacterial cells—do not experience significant thermal fluctuations at the constituent level. However, living cells stochastically reproduce and die, provoking a mechanical response. We investigate the mechanical consequences of cellular death and reproduction by measuring surface-height fluctuations of biofilms containing two mutually antagonistic strains of Vibrio cholerae that kill one another on contact via the type VI secretion system. While studies of active matter typically focus on activity via constituent mobility, here, activity is mediated by reproduction and death events in otherwise immobilized cells. Biofilm surface topography is measured in the nearly homeostatic limit via white light interferometry. Although biofilms are far from equilibrium systems, measured surface-height fluctuation spectra resemble the spectra of thermal permeable membranes but with an activity-mediated effective temperature, as predicted by Risler, Peilloux, and Prost [Phys. Rev. Lett. 115, 258104 (2015), 10.1103/PhysRevLett.115.258104]. By comparing the activity of killer strains of V. cholerae with that of genetically modified strains that cannot kill each other and validating with individual-based simulations, we demonstrate that extracted effective temperatures increase with the amount of death and reproduction and that death and reproduction can fluidize biofilms. Together, these observations demonstrate the unique physical consequences of activity mediated by death and reproduction events.

  16. In vitro characterization of the antibacterial spectrum of novel bacterial type II topoisomerase inhibitors of the aminobenzimidazole class.

    PubMed

    Mani, Nagraj; Gross, Christian H; Parsons, Jonathan D; Hanzelka, Brian; Müh, Ute; Mullin, Steve; Liao, Yusheng; Grillot, Anne-Laure; Stamos, Dean; Charifson, Paul S; Grossman, Trudy H

    2006-04-01

    Antibiotics with novel mechanisms of action are becoming increasingly important in the battle against bacterial resistance to all currently used classes of antibiotics. Bacterial DNA gyrase and topoisomerase IV (topoIV) are the familiar targets of fluoroquinolone and coumarin antibiotics. Here we present the characterization of two members of a new class of synthetic bacterial topoII ATPase inhibitors: VRT-125853 and VRT-752586. These aminobenzimidazole compounds were potent inhibitors of both DNA gyrase and topoIV and had excellent antibacterial activities against a wide spectrum of problematic pathogens responsible for both nosocomial and community-acquired infections, including staphylococci, streptococci, enterococci, and mycobacteria. Consistent with the novelty of their structures and mechanisms of action, antibacterial potency was unaffected by commonly encountered resistance phenotypes, including fluoroquinolone resistance. In time-kill assays, VRT-125853 and VRT-752586 were bactericidal against Staphylococcus aureus, Streptococcus pneumoniae, Enterococcus faecalis, and Haemophilus influenzae, causing 3-log reductions in viable cells within 24 h. Finally, similar to the fluoroquinolones, relatively low frequencies of spontaneous resistance to VRT-125853 and VRT-752586 were found, a property consistent with their in vitro dual-targeting activities.

  17. In Vitro Characterization of the Antibacterial Spectrum of Novel Bacterial Type II Topoisomerase Inhibitors of the Aminobenzimidazole Class

    PubMed Central

    Mani, Nagraj; Gross, Christian H.; Parsons, Jonathan D.; Hanzelka, Brian; Müh, Ute; Mullin, Steve; Liao, Yusheng; Grillot, Anne-Laure; Stamos, Dean; Charifson, Paul S.; Grossman, Trudy H.

    2006-01-01

    Antibiotics with novel mechanisms of action are becoming increasingly important in the battle against bacterial resistance to all currently used classes of antibiotics. Bacterial DNA gyrase and topoisomerase IV (topoIV) are the familiar targets of fluoroquinolone and coumarin antibiotics. Here we present the characterization of two members of a new class of synthetic bacterial topoII ATPase inhibitors: VRT-125853 and VRT-752586. These aminobenzimidazole compounds were potent inhibitors of both DNA gyrase and topoIV and had excellent antibacterial activities against a wide spectrum of problematic pathogens responsible for both nosocomial and community-acquired infections, including staphylococci, streptococci, enterococci, and mycobacteria. Consistent with the novelty of their structures and mechanisms of action, antibacterial potency was unaffected by commonly encountered resistance phenotypes, including fluoroquinolone resistance. In time-kill assays, VRT-125853 and VRT-752586 were bactericidal against Staphylococcus aureus, Streptococcus pneumoniae, Enterococcus faecalis, and Haemophilus influenzae, causing 3-log reductions in viable cells within 24 h. Finally, similar to the fluoroquinolones, relatively low frequencies of spontaneous resistance to VRT-125853 and VRT-752586 were found, a property consistent with their in vitro dual-targeting activities. PMID:16569833

  18. Factors influencing bacterial adhesion to contact lenses.

    PubMed

    Dutta, Debarun; Cole, Nerida; Willcox, Mark

    2012-01-01

    The process of any contact lens related keratitis generally starts with the adhesion of opportunistic pathogens to contact lens surface. This article focuses on identifying the factors which have been reported to affect bacterial adhesion to contact lenses. Adhesion to lenses differs between various genera/species/strains of bacteria. Pseudomonas aeruginosa, which is the predominant causative organism, adheres in the highest numbers to both hydrogel and silicone hydrogel lenses in vitro. The adhesion of this strain reaches maximum numbers within 1h in most in vitro studies and a biofilm has generally formed within 24 h of cells adhering to the lens surface. Physical and chemical properties of contact lens material affect bacterial adhesion. The water content of hydroxyethylmethacrylate (HEMA)-based lenses and their iconicity affect the ability of bacteria to adhere. The higher hydrophobicity of silicone hydrogel lenses compared to HEMA-based lenses has been implicated in the higher numbers of bacteria that can adhere to their surfaces. Lens wear has different effects on bacterial adhesion, partly due to differences between wearers, responses of bacterial strains and the ability of certain tear film proteins when bound to a lens surface to kill certain types of bacteria.

  19. Factors influencing bacterial adhesion to contact lenses

    PubMed Central

    Dutta, Debarun; Willcox, Mark

    2012-01-01

    The process of any contact lens related keratitis generally starts with the adhesion of opportunistic pathogens to contact lens surface. This article focuses on identifying the factors which have been reported to affect bacterial adhesion to contact lenses. Adhesion to lenses differs between various genera/species/strains of bacteria. Pseudomonas aeruginosa, which is the predominant causative organism, adheres in the highest numbers to both hydrogel and silicone hydrogel lenses in vitro. The adhesion of this strain reaches maximum numbers within 1h in most in vitro studies and a biofilm has generally formed within 24 h of cells adhering to the lens surface. Physical and chemical properties of contact lens material affect bacterial adhesion. The water content of hydroxyethylmethacrylate (HEMA)-based lenses and their iconicity affect the ability of bacteria to adhere. The higher hydrophobicity of silicone hydrogel lenses compared to HEMA-based lenses has been implicated in the higher numbers of bacteria that can adhere to their surfaces. Lens wear has different effects on bacterial adhesion, partly due to differences between wearers, responses of bacterial strains and the ability of certain tear film proteins when bound to a lens surface to kill certain types of bacteria. PMID:22259220

  20. Direct quantification of bacterial biomass in influent, effluent and activated sludge of wastewater treatment plants by using flow cytometry.

    PubMed

    Foladori, P; Bruni, L; Tamburini, S; Ziglio, G

    2010-07-01

    A rapid multi-step procedure, potentially amenable to automation, was proposed for quantifying viable and active bacterial cells, estimating their biovolume using flow cytometry (FCM) and to calculate their biomass within the main stages of a wastewater treatment plant: raw wastewater, settled wastewater, activated sludge and effluent. Fluorescent staining of bacteria using SYBR-Green I + Propidium Iodide (to discriminate cell integrity or permeabilisation) and BCECF-AM (to identify enzymatic activity) was applied to count bacterial cells by FCM. A recently developed specific procedure was applied to convert Forward Angle Light Scatter measured by FCM into the corresponding bacterial biovolume. This conversion permits the calculation of the viable and active bacterial biomass in wastewater, activated sludge and effluent, expressed as Volatile Suspended Solids (VSS) or particulate Chemical Oxygen Demand (COD). Viable bacterial biomass represented only a small part of particulate COD in raw wastewater (4.8 +/- 2.4%), settled wastewater (10.7 +/- 3.1%), activated sludge (11.1 +/- 2.1%) and effluent (3.2 +/- 2.2%). Active bacterial biomass counted for a percentage of 30-47% of the viable bacterial biomass within the stages of the wastewater treatment plant. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Killing, letting die and euthanasia.

    PubMed Central

    Husak, D N

    1979-01-01

    Medical ethicists debate whether or not the moral assessment of cases of euthanasia should depend on whether the patient is 'killed' or 'allowed to die'. The usual presupposition is that a clear distinction between killing and letting die can be drawn so that this substantive question is not begged. I contend that the categorisation of cases of instances of killing rather than as instances of letting die depends in part on a prior moral assessment of the case. Hence is it trivially rather than substantively true that the distinction has moral significance. But even if a morally neutral (ie non-question begging) distinction could be drawn, its application to the euthanasia controversy is problematic. I illustrate the difficulties of employing this distinction to reach moral conclusions by critically discussing Philippa Foot's recent treatment of euthanasia. I conclude that even if an act of euthanasia is an instance of killing, and there exists a prima facie moral duty not to kill, and no more stringent duty overrides this duty, one still cannot determine such an act to be morally impermissible. PMID:541821

  2. Killing, letting die and euthanasia.

    PubMed

    Husak, D N

    1979-12-01

    Medical ethicists debate whether or not the moral assessment of cases of euthanasia should depend on whether the patient is 'killed' or 'allowed to die'. The usual presupposition is that a clear distinction between killing and letting die can be drawn so that this substantive question is not begged. I contend that the categorisation of cases of instances of killing rather than as instances of letting die depends in part on a prior moral assessment of the case. Hence is it trivially rather than substantively true that the distinction has moral significance. But even if a morally neutral (ie non-question begging) distinction could be drawn, its application to the euthanasia controversy is problematic. I illustrate the difficulties of employing this distinction to reach moral conclusions by critically discussing Philippa Foot's recent treatment of euthanasia. I conclude that even if an act of euthanasia is an instance of killing, and there exists a prima facie moral duty not to kill, and no more stringent duty overrides this duty, one still cannot determine such an act to be morally impermissible.

  3. Staphylococcus aureus Membrane-Derived Vesicles Promote Bacterial Virulence and Confer Protective Immunity in Murine Infection Models.

    PubMed

    Askarian, Fatemeh; Lapek, John D; Dongre, Mitesh; Tsai, Chih-Ming; Kumaraswamy, Monika; Kousha, Armin; Valderrama, J Andrés; Ludviksen, Judith A; Cavanagh, Jorunn P; Uchiyama, Satoshi; Mollnes, Tom E; Gonzalez, David J; Wai, Sun N; Nizet, Victor; Johannessen, Mona

    2018-01-01

    Staphylococcus aureus produces membrane-derived vesicles (MVs), which share functional properties to outer membrane vesicles. Atomic force microscopy revealed that S. aureus -derived MVs are associated with the bacterial surface or released into the surrounding environment depending on bacterial growth conditions. By using a comparative proteomic approach, a total of 131 and 617 proteins were identified in MVs isolated from S. aureus grown in Luria-Bertani and brain-heart infusion broth, respectively. Purified S. aureus MVs derived from the bacteria grown in either media induced comparable levels of cytotoxicity and neutrophil-activation. Administration of exogenous MVs increased the resistance of S. aureus to killing by whole blood or purified human neutrophils ex vivo and increased S. aureus survival in vivo . Finally, immunization of mice with S. aureus -derived MVs induced production of IgM, total IgG, IgG1, IgG2a, and IgG2b resulting in protection against subcutaneous and systemic S. aureus infection. Collectively, our results suggest S. aureus MVs can influence bacterial-host interactions during systemic infections and provide protective immunity in murine models of infection.

  4. Synergic activity, for anaerobes, of trovafloxacin with clindamycin or metronidazole: chequerboard and time-kill methods.

    PubMed

    Ednie, L M; Credito, K L; Khantipong, M; Jacobs, M R; Appelbaum, P C

    2000-05-01

    Chequerboard titrations were used to test the activity of trovafloxacin, alone and in combination with clindamycin or metronidazole, against 156 Gram-positive or Gram-negative anaerobes, including 47 Bacteroides fragilis group, 36 Prevotella spp., 26 fusobacteria, 21 peptostreptococci and 26 clostridia. MIC50/MIC90 values (mg/L) of each drug alone against all 156 strains were: trovafloxacin, 0.5/1; clindamycin, 0.25/2; metronidazole, 1/2. Synergy (FIC indices 0. 5-2.0); no antagonism (FIC indices >4.0) was seen. In addition, synergy was tested by time-kill methodology for each of the above combinations against 12 Gram-positive or Gram-negative strains. Results indicated that synergy (defined as a >/= 2 log(10) decrease in cfu/mL at 48 h compared with the more active drug alone) was found between trovafloxacin at or below the MIC and both clindamycin and metronidazole at or below the MIC in one strain each of Bacteroides fragilis, Bacteroides thetaiotaomicron, Prevotella intermedia, Fusobacterium varium, Peptostreptococcus asaccharolyticus and Clostridium bifermentans. Synergy between trovafloxacin (killing was observed with the combination after 48 h, but not with trovafloxacin alone.

  5. Notes on super Killing tensors

    NASA Astrophysics Data System (ADS)

    Howe, P. S.; Lindström, U.

    2016-03-01

    The notion of a Killing tensor is generalised to a superspace setting. Conserved quantities associated with these are defined for superparticles and Poisson brackets are used to define a supersymmetric version of the even Schouten-Nijenhuis bracket. Superconformal Killing tensors in flat superspaces are studied for spacetime dimensions 3,4,5,6 and 10. These tensors are also presented in analytic superspaces and super-twistor spaces for 3,4 and 6 dimensions. Algebraic structures associated with superconformal Killing tensors are also briefly discussed.

  6. 33 CFR 117.702 - Arthur Kill.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Arthur Kill. 117.702 Section 117... OPERATION REGULATIONS Specific Requirements New Jersey § 117.702 Arthur Kill. (a) The draw of the Arthur Kill (AK) Railroad Bridge shall be maintained in the full open position for navigation at all times...

  7. 33 CFR 117.702 - Arthur Kill.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Arthur Kill. 117.702 Section 117... OPERATION REGULATIONS Specific Requirements New Jersey § 117.702 Arthur Kill. (a) The draw of the Arthur Kill (AK) Railroad Bridge shall be maintained in the full open position for navigation at all times...

  8. 33 CFR 117.702 - Arthur Kill.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Arthur Kill. 117.702 Section 117... OPERATION REGULATIONS Specific Requirements New Jersey § 117.702 Arthur Kill. (a) The draw of the Arthur Kill (AK) Railroad Bridge shall be maintained in the full open position for navigation at all times...

  9. 33 CFR 117.702 - Arthur Kill.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Arthur Kill. 117.702 Section 117... OPERATION REGULATIONS Specific Requirements New Jersey § 117.702 Arthur Kill. (a) The draw of the Arthur Kill (AK) Railroad Bridge shall be maintained in the full open position for navigation at all times...

  10. Active depinning of bacterial droplets: The collective surfing of Bacillus subtilis

    PubMed Central

    Hennes, Marc; Tailleur, Julien; Charron, Gaëlle

    2017-01-01

    How systems are endowed with migration capacity is a fascinating question with implications ranging from the design of novel active systems to the control of microbial populations. Bacteria, which can be found in a variety of environments, have developed among the richest set of locomotion mechanisms both at the microscopic and collective levels. Here, we uncover, experimentally, a mode of collective bacterial motility in humid environment through the depinning of bacterial droplets. Although capillary forces are notoriously enormous at the bacterial scale, even capable of pinning water droplets of millimetric size on inclined surfaces, we show that bacteria are able to harness a variety of mechanisms to unpin contact lines, hence inducing a collective slipping of the colony across the surface. Contrary to flagella-dependent migration modes like swarming, we show that this much faster “colony surfing” still occurs in mutant strains of Bacillus subtilis lacking flagella. The active unpinning seen in our experiments relies on a variety of microscopic mechanisms, which could each play an important role in the migration of microorganisms in humid environment. PMID:28536199

  11. 75 FR 30299 - Drawbridge Operation Regulations; Newtown Creek, Dutch Kills, English Kills, and Their...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket No. USCG-2010-0355] Drawbridge Operation Regulations; Newtown Creek, Dutch Kills, English Kills, and Their Tributaries, NY, Maintenance AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation from regulations. SUMMARY: The Commander...

  12. 75 FR 62469 - Drawbridge Operation Regulations; Newtown Creek, Dutch Kills, English Kills, and Their...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket No. USCG-2010-0907] Drawbridge Operation Regulations; Newtown Creek, Dutch Kills, English Kills, and Their Tributaries, NY, Maintenance AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation from regulations. SUMMARY: The Commander...

  13. On integrability of the Killing equation

    NASA Astrophysics Data System (ADS)

    Houri, Tsuyoshi; Tomoda, Kentaro; Yasui, Yukinori

    2018-04-01

    Killing tensor fields have been thought of as describing the hidden symmetry of space(-time) since they are in one-to-one correspondence with polynomial first integrals of geodesic equations. Since many problems in classical mechanics can be formulated as geodesic problems in curved space and spacetime, solving the defining equation for Killing tensor fields (the Killing equation) is a powerful way to integrate equations of motion. Thus it has been desirable to formulate the integrability conditions of the Killing equation, which serve to determine the number of linearly independent solutions and also to restrict the possible forms of solutions tightly. In this paper, we show the prolongation for the Killing equation in a manner that uses Young symmetrizers. Using the prolonged equations, we provide the integrability conditions explicitly.

  14. Bacterial cheating limits antibiotic resistance

    NASA Astrophysics Data System (ADS)

    Xiao Chao, Hui; Yurtsev, Eugene; Datta, Manoshi; Artemova, Tanya; Gore, Jeff

    2012-02-01

    The widespread use of antibiotics has led to the evolution of resistance in bacteria. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removing the antibiotic. The cooperative nature of this growth suggests that a cheater strain---which does not contribute to breaking down the antibiotic---may be able to take advantage of cells cooperatively inactivating the antibiotic. Here we find experimentally that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We observe stable coexistence between the two strains and find that a simple model successfully explains the behavior as a function of antibiotic concentration and cell density. We anticipate that our results will provide insight into the evolutionary origin of phenotypic diversity and cooperative behaviors.

  15. Killing-Yano forms and Killing tensors on a warped space

    NASA Astrophysics Data System (ADS)

    Krtouš, Pavel; KubizÅák, David; Kolář, Ivan

    2016-01-01

    We formulate several criteria under which the symmetries associated with the Killing and Killing-Yano tensors on the base space can be lifted to the symmetries of the full warped geometry. The procedure is explicitly illustrated on several examples, providing new prototypes of spacetimes admitting such tensors. In particular, we study a warped product of two Kerr-NUT-(A)dS spacetimes and show that it gives rise to a new class of highly symmetric vacuum (with a cosmological constant) black hole solutions that inherit many of the properties of the Kerr-NUT-(A)dS geometry.

  16. Bacterial toxin-antitoxin systems: more than selfish entities?

    PubMed

    Van Melderen, Laurence; Saavedra De Bast, Manuel

    2009-03-01

    Bacterial toxin-antitoxin (TA) systems are diverse and widespread in the prokaryotic kingdom. They are composed of closely linked genes encoding a stable toxin that can harm the host cell and its cognate labile antitoxin, which protects the host from the toxin's deleterious effect. TA systems are thought to invade bacterial genomes through horizontal gene transfer. Some TA systems might behave as selfish elements and favour their own maintenance at the expense of their host. As a consequence, they may contribute to the maintenance of plasmids or genomic islands, such as super-integrons, by post-segregational killing of the cell that loses these genes and so suffers the stable toxin's destructive effect. The function of the chromosomally encoded TA systems is less clear and still open to debate. This Review discusses current hypotheses regarding the biological roles of these evolutionarily successful small operons. We consider the various selective forces that could drive the maintenance of TA systems in bacterial genomes.

  17. Bacterial Toxin–Antitoxin Systems: More Than Selfish Entities?

    PubMed Central

    Van Melderen, Laurence; Saavedra De Bast, Manuel

    2009-01-01

    Bacterial toxin–antitoxin (TA) systems are diverse and widespread in the prokaryotic kingdom. They are composed of closely linked genes encoding a stable toxin that can harm the host cell and its cognate labile antitoxin, which protects the host from the toxin's deleterious effect. TA systems are thought to invade bacterial genomes through horizontal gene transfer. Some TA systems might behave as selfish elements and favour their own maintenance at the expense of their host. As a consequence, they may contribute to the maintenance of plasmids or genomic islands, such as super-integrons, by post-segregational killing of the cell that loses these genes and so suffers the stable toxin's destructive effect. The function of the chromosomally encoded TA systems is less clear and still open to debate. This Review discusses current hypotheses regarding the biological roles of these evolutionarily successful small operons. We consider the various selective forces that could drive the maintenance of TA systems in bacterial genomes. PMID:19325885

  18. Synergistic Killing of Multidrug-Resistant Pseudomonas aeruginosa at Multiple Inocula by Colistin Combined with Doripenem in an In Vitro Pharmacokinetic/Pharmacodynamic Model ▿

    PubMed Central

    Bergen, Phillip J.; Tsuji, Brian T.; Bulitta, Jurgen B.; Forrest, Alan; Jacob, Jovan; Sidjabat, Hanna E.; Paterson, David L.; Nation, Roger L.; Li, Jian

    2011-01-01

    Combination therapy may be required for multidrug-resistant (MDR) Pseudomonas aeruginosa. The aim of this study was to systematically investigate bacterial killing and emergence of colistin resistance with colistin and doripenem combinations against MDR P. aeruginosa. Studies were conducted in a one-compartment in vitro pharmacokinetic/pharmacodynamic model for 96 h at two inocula (∼106 and ∼108 CFU/ml) against a colistin-heteroresistant reference strain (ATCC 27853) and a colistin-resistant MDR clinical isolate (19147 n/m). Four combinations utilizing clinically achievable concentrations were investigated. Microbiological response was examined by log changes and population analysis profiles. Colistin (constant concentrations of 0.5 or 2 mg/liter) plus doripenem (peaks of 2.5 or 25 mg/liter every 8 h; half-life, 1.5 h) substantially increased bacterial killing against both strains at the low inoculum, while combinations containing colistin at 2 mg/liter increased activity against ATCC 27853 at the high inoculum; only colistin at 0.5 mg/liter plus doripenem at 2.5 mg/liter failed to improve activity against 19147 n/m at the high inoculum. Combinations were additive or synergistic against ATCC 27853 in 16 and 11 of 20 cases (4 combinations across 5 sample points) at the 106- and 108-CFU/ml inocula, respectively; the corresponding values for 19147 n/m were 16 and 9. Combinations containing doripenem at 25 mg/liter resulted in eradication of 19147 n/m at the low inoculum and substantial reductions in regrowth (including to below the limit of detection at ∼50 h) at the high inoculum. Emergence of colistin-resistant subpopulations of ATCC 27853 was substantially reduced and delayed with combination therapy. This investigation provides important information for optimization of colistin-doripenem combinations. PMID:21911563

  19. Ecosystem Resilience and Limitations Revealed by Soil Bacterial Community Dynamics in a Bark Beetle-Impacted Forest

    DOE PAGES

    Mikkelson, Kristin M.; Brouillard, Brent M.; Bokman, Chelsea M.; ...

    2017-12-05

    ABSTRACT Forested ecosystems throughout the world are experiencing increases in the incidence and magnitude of insect-induced tree mortality with large ecologic ramifications. Interestingly, correlations between water quality and the extent of tree mortality in Colorado montane ecosystems suggest compensatory effects from adjacent live vegetation that mute responses in less severely impacted forests. To this end, we investigated whether the composition of the soil bacterial community and associated functionality beneath beetle-killed lodgepole pine was influenced by the extent of surrounding tree mortality. The most pronounced changes were observed in the potentially active bacterial community, where alpha diversity increased in concert withmore » surrounding tree mortality until mortality exceeded a tipping point of ~30 to 40%, after which diversity stabilized and decreased. Community structure also clustered in association with the extent of surrounding tree mortality with compositional trends best explained by differences in NH 4 + concentrations and C/N ratios. C/N ratios, which were lower in soils under beetle-killed trees, further correlated with the relative abundance of putative nitrifiers and exoenzyme activity. Collectively, the response of soil microorganisms that drive heterotrophic respiration and decay supports observations of broader macroscale threshold effects on water quality in heavily infested forests and could be utilized as a predictive mechanism during analogous ecosystem disruptions. IMPORTANCE Forests around the world are succumbing to insect infestation with repercussions for local soil biogeochemistry and downstream water quality and quantity. This study utilized microbial community dynamics to address why we are observing watershed scale biogeochemical impacts from forest mortality in some impacted areas but not others. Through a unique “tree-centric” approach, we were able to delineate plots with various tree mortality levels

  20. Ecosystem Resilience and Limitations Revealed by Soil Bacterial Community Dynamics in a Bark Beetle-Impacted Forest.

    PubMed

    Mikkelson, Kristin M; Brouillard, Brent M; Bokman, Chelsea M; Sharp, Jonathan O

    2017-12-05

    Forested ecosystems throughout the world are experiencing increases in the incidence and magnitude of insect-induced tree mortality with large ecologic ramifications. Interestingly, correlations between water quality and the extent of tree mortality in Colorado montane ecosystems suggest compensatory effects from adjacent live vegetation that mute responses in less severely impacted forests. To this end, we investigated whether the composition of the soil bacterial community and associated functionality beneath beetle-killed lodgepole pine was influenced by the extent of surrounding tree mortality. The most pronounced changes were observed in the potentially active bacterial community, where alpha diversity increased in concert with surrounding tree mortality until mortality exceeded a tipping point of ~30 to 40%, after which diversity stabilized and decreased. Community structure also clustered in association with the extent of surrounding tree mortality with compositional trends best explained by differences in NH 4 + concentrations and C/N ratios. C/N ratios, which were lower in soils under beetle-killed trees, further correlated with the relative abundance of putative nitrifiers and exoenzyme activity. Collectively, the response of soil microorganisms that drive heterotrophic respiration and decay supports observations of broader macroscale threshold effects on water quality in heavily infested forests and could be utilized as a predictive mechanism during analogous ecosystem disruptions. IMPORTANCE Forests around the world are succumbing to insect infestation with repercussions for local soil biogeochemistry and downstream water quality and quantity. This study utilized microbial community dynamics to address why we are observing watershed scale biogeochemical impacts from forest mortality in some impacted areas but not others. Through a unique "tree-centric" approach, we were able to delineate plots with various tree mortality levels within the same watershed

  1. Ecosystem Resilience and Limitations Revealed by Soil Bacterial Community Dynamics in a Bark Beetle-Impacted Forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikkelson, Kristin M.; Brouillard, Brent M.; Bokman, Chelsea M.

    ABSTRACT Forested ecosystems throughout the world are experiencing increases in the incidence and magnitude of insect-induced tree mortality with large ecologic ramifications. Interestingly, correlations between water quality and the extent of tree mortality in Colorado montane ecosystems suggest compensatory effects from adjacent live vegetation that mute responses in less severely impacted forests. To this end, we investigated whether the composition of the soil bacterial community and associated functionality beneath beetle-killed lodgepole pine was influenced by the extent of surrounding tree mortality. The most pronounced changes were observed in the potentially active bacterial community, where alpha diversity increased in concert withmore » surrounding tree mortality until mortality exceeded a tipping point of ~30 to 40%, after which diversity stabilized and decreased. Community structure also clustered in association with the extent of surrounding tree mortality with compositional trends best explained by differences in NH 4 + concentrations and C/N ratios. C/N ratios, which were lower in soils under beetle-killed trees, further correlated with the relative abundance of putative nitrifiers and exoenzyme activity. Collectively, the response of soil microorganisms that drive heterotrophic respiration and decay supports observations of broader macroscale threshold effects on water quality in heavily infested forests and could be utilized as a predictive mechanism during analogous ecosystem disruptions. IMPORTANCE Forests around the world are succumbing to insect infestation with repercussions for local soil biogeochemistry and downstream water quality and quantity. This study utilized microbial community dynamics to address why we are observing watershed scale biogeochemical impacts from forest mortality in some impacted areas but not others. Through a unique “tree-centric” approach, we were able to delineate plots with various tree mortality levels

  2. Effect of long-term industrial waste effluent pollution on soil enzyme activities and bacterial community composition.

    PubMed

    Subrahmanyam, Gangavarapu; Shen, Ju-Pei; Liu, Yu-Rong; Archana, Gattupalli; Zhang, Li-Mei

    2016-02-01

    Although numerous studies have addressed the influence of exogenous pollutants on microorganisms, the effect of long-term industrial waste effluent (IWE) pollution on the activity and diversity of soil bacteria was still unclear. Three soil samples characterized as uncontaminated (R1), moderately contaminated (R2), and highly contaminated (R3) receiving mixed organic and heavy metal pollutants for more than 20 years through IWE were collected along the Mahi River basin, Gujarat, western India. Basal soil respiration and in situ enzyme activities indicated an apparent deleterious effect of IWE on microbial activity and soil function. Community composition profiling of soil bacteria using 16S rRNA gene amplification and denaturing gradient gel electrophoresis (DGGE) method indicated an apparent bacterial community shift in the IWE-affected soils. Cloning and sequencing of DGGE bands revealed that the dominated bacterial phyla in polluted soil were affiliated with Firmicutes, Acidobacteria, and Actinobacteria, indicating that these bacterial phyla may have a high tolerance to pollutants. We suggested that specific bacterial phyla along with soil enzyme activities could be used as relevant biological indicators for long-term pollution assessment on soil quality. Graphical Abstract Bacterial community profiling and soil enzyme activities in long-term industrial waste effluent polluted soils.

  3. Bacterial Infection of Fly Ovaries Reduces Egg Production and Induces Local Hemocyte Activation

    PubMed Central

    Brandt, Stephanie M.; Schneider, David S.

    2009-01-01

    Summary Morbidity, the state of being diseased, is an important aspect of pathogenesis that has gone relatively unstudied in fruit flies. Our interest is in characterizing how bacterial pathogenesis affects various physiologies of the fly. We chose to examine the fly ovary because we found bacterial infection had a striking effect on fly reproduction. We observed decreased egg laying after bacterial infection that correlated with increased bacterial virulence. We also found that bacteria colonized the ovary in a previously undescribed manner; bacteria were found in the posterior of the ovary, adjacent to the lateral oviduct. This local infection in the ovary resulted in melanization and activation of the cellular immune response at the site of infection. PMID:17400292

  4. Bacterial diversity is strongly associated with historical penguin activity in an Antarctic lake sediment profile.

    PubMed

    Zhu, Renbin; Shi, Yu; Ma, Dawei; Wang, Can; Xu, Hua; Chu, Haiyan

    2015-11-25

    Current penguin activity in Antarctica affects the geochemistry of sediments and their microbial communities; the effects of historical penguin activity are less well understood. Here, bacterial diversity in ornithogenic sediment was investigated using high-throughput pyrosequencing. The relative abundances of dominant phyla were controlled by the amount of historical penguin guano deposition. Significant positive correlations were found between both the bacterial richness and diversity, and the relative penguin number (p < 0.01); this indicated that historical penguin activity drove the vertical distribution of the bacterial communities. The lowest relative abundances of individual phyla corresponded to lowest number of penguin population at 1,800-2,300 yr BP during a drier and colder period; the opposite was observed during a moister and warmer climate (1,400-1,800 yr BP). This study shows that changes in the climate over millennia affected penguin populations and the outcomes of these changes affect the sediment bacterial community today.

  5. Bacterial diversity is strongly associated with historical penguin activity in an Antarctic lake sediment profile

    PubMed Central

    Zhu, Renbin; Shi, Yu; Ma, Dawei; Wang, Can; Xu, Hua; Chu, Haiyan

    2015-01-01

    Current penguin activity in Antarctica affects the geochemistry of sediments and their microbial communities; the effects of historical penguin activity are less well understood. Here, bacterial diversity in ornithogenic sediment was investigated using high-throughput pyrosequencing. The relative abundances of dominant phyla were controlled by the amount of historical penguin guano deposition. Significant positive correlations were found between both the bacterial richness and diversity, and the relative penguin number (p < 0.01); this indicated that historical penguin activity drove the vertical distribution of the bacterial communities. The lowest relative abundances of individual phyla corresponded to lowest number of penguin population at 1,800–2,300 yr BP during a drier and colder period; the opposite was observed during a moister and warmer climate (1,400–1,800 yr BP). This study shows that changes in the climate over millennia affected penguin populations and the outcomes of these changes affect the sediment bacterial community today. PMID:26601753

  6. Histophagous ciliate Pseudocollinia brintoni and bacterial assemblage interaction with krill Nyctiphanes simplex. I. Transmission process.

    PubMed

    Gómez-Gutiérrez, Jaime; López-Cortés, Alejandro; Aguilar-Méndez, Mario J; Del Angel-Rodríguez, Jorge A; Tremblay, Nelly; Zenteno-Savín, Tania; Robinson, Carlos J

    2015-10-27

    Histophagous ciliates of the genus Pseudocollinia cause epizootic events that kill adult female krill (Euphausiacea), but their mode of transmission is unknown. We compared 16S rRNA sequences of bacterial strains isolated from stomachs of healthy krill Nyctiphanes simplex specimens with sequences of bacterial isolates and sequences of natural bacterial communities from the hemocoel of N. simplex specimens infected with P. brintoni to determine possible transmission pathways. All P. brintoni endoparasitic life stages and the transmission tomite stage (outside the host) were associated with bacterial assemblages. 16S rRNA sequences from isolated bacterial strains showed that Photobacterium spp. and Pseudoalteromonas spp. were dominant members of the bacterial assemblages during all life phases of P. brintoni and potential pathobionts. They were apparently unaffected by the krill's immune system or the histophagous activity of P. brintoni. However, other bacterial strains were found only in certain P. brintoni life phases, indicating that as the infection progressed, microhabitat conditions and microbial interactions may have become unfavorable for some strains of bacteria. Trophic infection is the most parsimonious explanation for how P. brintoni infects krill. We estimated N. simplex vulnerability to P. brintoni infection during more than three-fourths of their life span, infecting mostly adult females. The ciliates have relatively high prevalence levels (albeit at <10% of sampled stations) and a short life cycle (estimated <7 d). Histophagous ciliate-krill interactions may occur in other krill species, particularly those that form dense swarms and attain high population densities that potentially enhance trophic transmission and allow completion of the Pseudocollinia spp. life cycle.

  7. The neural correlates of justified and unjustified killing: an fMRI study

    PubMed Central

    Ogilvie, Claudette; Louis, Winnifred R.; Decety, Jean; Bagnall, Jessica; Bain, Paul G.

    2015-01-01

    Despite moral prohibitions on hurting other humans, some social contexts allow for harmful actions such as killing of others. One example is warfare, where killing enemy soldiers is seen as morally justified. Yet, the neural underpinnings distinguishing between justified and unjustified killing are largely unknown. To improve understanding of the neural processes involved in justified and unjustified killing, participants had to imagine being the perpetrator whilst watching ‘first-person perspective’ animated videos where they shot enemy soldiers (‘justified violence’) and innocent civilians (‘unjustified violence’). When participants imagined themselves shooting civilians compared with soldiers, greater activation was found in the lateral orbitofrontal cortex (OFC). Regression analysis revealed that the more guilt participants felt about shooting civilians, the greater the response in the lateral OFC. Effective connectivity analyses further revealed an increased coupling between lateral OFC and the temporoparietal junction (TPJ) when shooting civilians. The results show that the neural mechanisms typically implicated with harming others, such as the OFC, become less active when the violence against a particular group is seen as justified. This study therefore provides unique insight into how normal individuals can become aggressors in specific situations. PMID:25752904

  8. 7 CFR 29.1018 - Fire-killed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Fire-killed. 29.1018 Section 29.1018 Agriculture... Type 92) § 29.1018 Fire-killed. Any leaf of which 5 percent or more of its surface has a set green... tobacco may be described as fire-killed. (See Rule 23.) [42 FR 21092, Apr. 25, 1977. Redesignated at 51 FR...

  9. Temperate bacterial viruses as double-edged swords in bacterial warfare.

    PubMed

    Gama, João Alves; Reis, Ana Maria; Domingues, Iolanda; Mendes-Soares, Helena; Matos, Ana Margarida; Dionisio, Francisco

    2013-01-01

    It has been argued that bacterial cells may use their temperate viruses as biological weapons. For instance, a few bacterial cells among a population of lysogenic cells could release the virus and kill susceptible non-lysogenic competitors, while their clone mates would be immune. Because viruses replicate inside their victims upon infection, this process would amplify their number in the arena. Sometimes, however, temperate viruses spare recipient cells from death by establishing themselves in a dormant state inside cells. This phenomenon is called lysogenization and, for some viruses such as the λ virus, the probability of lysogenization increases with the multiplicity of infection. Therefore, the amplification of viruses leads to conflicting predictions about the efficacy of temperate viruses as biological weapons: amplification can increase the relative advantage of clone mates of lysogens but also the likelihood of saving susceptible cells from death, because the probability of lysogenization is higher. To test the usefulness of viruses as biological weapons, we performed competition experiments between lysogenic Escherichia coli cells carrying the λ virus and susceptible λ-free E. coli cells, either in a structured or unstructured habitat. In structured and sometimes in unstructured habitats, the λ virus qualitatively behaved as a "replicating toxin". However, such toxic effect of λ viruses ceased after a few days of competition. This was due to the fact that many of initially susceptible cells became lysogenic. Massive lysogenization of susceptible cells occurred precisely under the conditions where the amplification of the virus was substantial. From then on, these cells and their descendants became immune to the λ virus. In conclusion, if at short term bacterial cells may use temperate viruses as biological weapons, after a few days only the classical view of temperate bacterial viruses as parasitic agents prevails.

  10. Temperate Bacterial Viruses as Double-Edged Swords in Bacterial Warfare

    PubMed Central

    Gama, João Alves; Reis, Ana Maria; Domingues, Iolanda; Mendes-Soares, Helena; Matos, Ana Margarida; Dionisio, Francisco

    2013-01-01

    It has been argued that bacterial cells may use their temperate viruses as biological weapons. For instance, a few bacterial cells among a population of lysogenic cells could release the virus and kill susceptible non-lysogenic competitors, while their clone mates would be immune. Because viruses replicate inside their victims upon infection, this process would amplify their number in the arena. Sometimes, however, temperate viruses spare recipient cells from death by establishing themselves in a dormant state inside cells. This phenomenon is called lysogenization and, for some viruses such as the λ virus, the probability of lysogenization increases with the multiplicity of infection. Therefore, the amplification of viruses leads to conflicting predictions about the efficacy of temperate viruses as biological weapons: amplification can increase the relative advantage of clone mates of lysogens but also the likelihood of saving susceptible cells from death, because the probability of lysogenization is higher. To test the usefulness of viruses as biological weapons, we performed competition experiments between lysogenic Escherichia coli cells carrying the λ virus and susceptible λ-free E. coli cells, either in a structured or unstructured habitat. In structured and sometimes in unstructured habitats, the λ virus qualitatively behaved as a “replicating toxin”. However, such toxic effect of λ viruses ceased after a few days of competition. This was due to the fact that many of initially susceptible cells became lysogenic. Massive lysogenization of susceptible cells occurred precisely under the conditions where the amplification of the virus was substantial. From then on, these cells and their descendants became immune to the λ virus. In conclusion, if at short term bacterial cells may use temperate viruses as biological weapons, after a few days only the classical view of temperate bacterial viruses as parasitic agents prevails. PMID:23536852

  11. A new pharmacological agent (AKB-4924) stabilizes hypoxia inducible factor-1 (HIF-1) and increases skin innate defenses against bacterial infection.

    PubMed

    Okumura, Cheryl Y M; Hollands, Andrew; Tran, Dan N; Olson, Joshua; Dahesh, Samira; von Köckritz-Blickwede, Maren; Thienphrapa, Wdee; Corle, Courtney; Jeung, Seung Nam; Kotsakis, Anna; Shalwitz, Robert A; Johnson, Randall S; Nizet, Victor

    2012-09-01

    Hypoxia inducible factor-1 (HIF-1) is a transcription factor that is a major regulator of energy homeostasis and cellular adaptation to low oxygen stress. HIF-1 is also activated in response to bacterial pathogens and supports the innate immune response of both phagocytes and keratinocytes. In this work, we show that a new pharmacological compound AKB-4924 increases HIF-1 levels and enhances the antibacterial activity of phagocytes and keratinocytes against both methicillin-sensitive and methicillin-resistant strains of Staphylococcus aureus in vitro. AKB-4924 is also effective in stimulating the killing capacity of keratinocytes against the important opportunistic skin pathogens Pseudomonas aeruginosa and Acinetobacter baumanii. The effect of AKB-4924 is mediated through the activity of host cells, as the compound exerts no direct antimicrobial activity. Administered locally as a single agent, AKB-4924 limits S. aureus proliferation and lesion formation in a mouse skin abscess model. This approach to pharmacologically boost the innate immune response via HIF-1 stabilization may serve as a useful adjunctive treatment for antibiotic-resistant bacterial infections.

  12. Bull heading to kill live gas wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oudeman, P.; Avest, D. ter; Grodal, E.O.

    1994-12-31

    To kill a live closed-in gas well by bull heading down the tubing, the selected pump rate should be high enough to ensure efficient displacement of the gas into the formation (i.e., to avoid the kill fluid bypassing the gas). On the other hand, the pressures that develop during bull heading at high rate must not exceed wellhead pressure rating, tubing or casing burst pressures or the formation breakdown gradient, since this will lead, at best, to a very inefficient kill job. Given these constraints, the optimum kill rate, requited hydraulic horsepower, density and type of kill fluids have tomore » be selected. For this purpose a numerical simulator has been developed, which predicts the sequence of events during bull heading. Pressures and flow rates in the well during the kill job are calculated, taking to account slip between the gas and kill fluid, hydrostatic and friction pressure drop, wellbore gas compression and leak-off to the formation. Comparison with the results of a dedicated field test demonstrates that these parameters can be estimated accurately. Example calculations will be presented to show how the simulator can be used to identify an optimum kill scenario.« less

  13. The Effects of Vaccination and Immunity on Bacterial Infection Dynamics In Vivo

    PubMed Central

    Coward, Chris; Restif, Olivier; Dybowski, Richard; Grant, Andrew J.; Maskell, Duncan J.; Mastroeni, Pietro

    2014-01-01

    Salmonella enterica infections are a significant global health issue, and development of vaccines against these bacteria requires an improved understanding of how vaccination affects the growth and spread of the bacteria within the host. We have combined in vivo tracking of molecularly tagged bacterial subpopulations with mathematical modelling to gain a novel insight into how different classes of vaccines and branches of the immune response protect against secondary Salmonella enterica infections of the mouse. We have found that a live Salmonella vaccine significantly reduced bacteraemia during a secondary challenge and restrained inter-organ spread of the bacteria in the systemic organs. Further, fitting mechanistic models to the data indicated that live vaccine immunisation enhanced both the bacterial killing in the very early stages of the infection and bacteriostatic control over the first day post-challenge. T-cell immunity induced by this vaccine is not necessary for the enhanced bacteriostasis but is required for subsequent bactericidal clearance of Salmonella in the blood and tissues. Conversely, a non-living vaccine while able to enhance initial blood clearance and killing of virulent secondary challenge bacteria, was unable to alter the subsequent bacterial growth rate in the systemic organs, did not prevent the resurgence of extensive bacteraemia and failed to control the spread of the bacteria in the body. PMID:25233077

  14. Developing a Critical Literacy Approach with "To Kill a Mockingbird."

    ERIC Educational Resources Information Center

    Spires, Marian

    2000-01-01

    Ponders why the novel "To Kill a Mockingbird" has held a place in the secondary school canon for 40 years. Describes a 10-week unit for year 10 English students that takes a critical literacy approach to the novel. Outlines a set of pre-reading activities, during reading activities and post-reading activities. (SR)

  15. Integrated analysis of bacterial and microeukaryotic communities from differentially active mud volcanoes in the Gulf of Cadiz

    NASA Astrophysics Data System (ADS)

    Coelho, Francisco J. R. C.; Louvado, António; Domingues, Patrícia M.; Cleary, Daniel F. R.; Ferreira, Marina; Almeida, Adelaide; Cunha, Marina R.; Cunha, Ângela; Gomes, Newton C. M.

    2016-10-01

    The present study assesses the diversity and composition of sediment bacterial and microeukaryotic communities from deep-sea mud volcanoes (MVs) associated with strike-slip faults in the South-West Iberian Margin (SWIM). We used a 16S/18S rRNA gene based pyrosequencing approach to characterize and correlate the sediment bacterial and microeukaryotic communities from MVs with differing gas seep regimes and from an additional site with no apparent seeping activity. In general, our results showed significant compositional changes of bacterial and microeukaryotic communities in sampling sites with different seepage regimes. Sediment bacterial communities were enriched with Methylococcales (putative methanotrophs) but had lower abundances of Rhodospirillales, Nitrospirales and SAR202 in the more active MVs. Within microeukaryotic communities, members of the Lobosa (lobose amoebae) were enriched in more active MVs. We also showed a strong correlation between Methylococcales populations and lobose amoeba in active MVs. This study provides baseline information on the diversity and composition of bacterial and microeukaryotic communities in deep-sea MVs associated with strike-slip faults.

  16. Integrated analysis of bacterial and microeukaryotic communities from differentially active mud volcanoes in the Gulf of Cadiz

    PubMed Central

    Coelho, Francisco J. R. C.; Louvado, António; Domingues, Patrícia M.; Cleary, Daniel F. R.; Ferreira, Marina; Almeida, Adelaide; Cunha, Marina R.; Cunha, Ângela; Gomes, Newton C. M.

    2016-01-01

    The present study assesses the diversity and composition of sediment bacterial and microeukaryotic communities from deep-sea mud volcanoes (MVs) associated with strike-slip faults in the South-West Iberian Margin (SWIM). We used a 16S/18S rRNA gene based pyrosequencing approach to characterize and correlate the sediment bacterial and microeukaryotic communities from MVs with differing gas seep regimes and from an additional site with no apparent seeping activity. In general, our results showed significant compositional changes of bacterial and microeukaryotic communities in sampling sites with different seepage regimes. Sediment bacterial communities were enriched with Methylococcales (putative methanotrophs) but had lower abundances of Rhodospirillales, Nitrospirales and SAR202 in the more active MVs. Within microeukaryotic communities, members of the Lobosa (lobose amoebae) were enriched in more active MVs. We also showed a strong correlation between Methylococcales populations and lobose amoeba in active MVs. This study provides baseline information on the diversity and composition of bacterial and microeukaryotic communities in deep-sea MVs associated with strike-slip faults. PMID:27762306

  17. Integrated analysis of bacterial and microeukaryotic communities from differentially active mud volcanoes in the Gulf of Cadiz.

    PubMed

    Coelho, Francisco J R C; Louvado, António; Domingues, Patrícia M; Cleary, Daniel F R; Ferreira, Marina; Almeida, Adelaide; Cunha, Marina R; Cunha, Ângela; Gomes, Newton C M

    2016-10-20

    The present study assesses the diversity and composition of sediment bacterial and microeukaryotic communities from deep-sea mud volcanoes (MVs) associated with strike-slip faults in the South-West Iberian Margin (SWIM). We used a 16S/18S rRNA gene based pyrosequencing approach to characterize and correlate the sediment bacterial and microeukaryotic communities from MVs with differing gas seep regimes and from an additional site with no apparent seeping activity. In general, our results showed significant compositional changes of bacterial and microeukaryotic communities in sampling sites with different seepage regimes. Sediment bacterial communities were enriched with Methylococcales (putative methanotrophs) but had lower abundances of Rhodospirillales, Nitrospirales and SAR202 in the more active MVs. Within microeukaryotic communities, members of the Lobosa (lobose amoebae) were enriched in more active MVs. We also showed a strong correlation between Methylococcales populations and lobose amoeba in active MVs. This study provides baseline information on the diversity and composition of bacterial and microeukaryotic communities in deep-sea MVs associated with strike-slip faults.

  18. An Aqueous Extract of Marine Microalgae Exhibits Antimetastatic Activity through Preferential Killing of Suspended Cancer Cells and Anticolony Forming Activity

    PubMed Central

    Somasekharan, Syam Prakash; El-Naggar, Amal; Sorensen, Poul H.

    2016-01-01

    Research on marine natural products as potential anticancer agents is still limited. In the present study, an aqueous extract of a Canadian marine microalgal preparation was assessed for anticancer activities using various assays and cell lines of human cancers, including lung, prostate, stomach, breast, and pancreatic cancers, as well as an osteosarcoma. In vitro, the microalgal extract exhibited marked anticolony forming activity. In addition, it was more toxic, as indicated by increased apoptosis, to nonadherent cells (grown in suspension) than to adherent cells. In vivo, an antimetastatic effect of the extract was observed in NOD-SCID mice carrying subrenal capsule xenografts of PC3 prostate cancer cells. The results of the present study suggest that the antimetastatic effect of the aqueous microalgal extract is based on inhibition of colony forming ability of cancer cells and the preferential killing of suspended cancer cells. Further research aimed at identification of the molecular basis of the anticancer activities of the microalgal extract appears to be warranted. PMID:27656243

  19. Synergistic and Additive Effect of Oregano Essential Oil and Biological Silver Nanoparticles against Multidrug-Resistant Bacterial Strains

    PubMed Central

    Scandorieiro, Sara; de Camargo, Larissa C.; Lancheros, Cesar A. C.; Yamada-Ogatta, Sueli F.; Nakamura, Celso V.; de Oliveira, Admilton G.; Andrade, Célia G. T. J.; Duran, Nelson; Nakazato, Gerson; Kobayashi, Renata K. T.

    2016-01-01

    Bacterial resistance to conventional antibiotics has become a clinical and public health problem, making therapeutic decisions more challenging. Plant compounds and nanodrugs have been proposed as potential antimicrobial alternatives. Studies have shown that oregano (Origanum vulgare) essential oil (OEO) and silver nanoparticles have potent antibacterial activity, also against multidrug-resistant strains; however, the strong organoleptic characteristics of OEO and the development of resistance to these metal nanoparticles can limit their use. This study evaluated the antibacterial effect of a two-drug combination of biologically synthesized silver nanoparticles (bio-AgNP), produced by Fusarium oxysporum, and OEO against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. OEO and bio-AgNP showed bactericidal effects against all 17 strains tested, with minimal inhibitory concentrations (MIC) ranging from 0.298 to 1.193 mg/mL and 62.5 to 250 μM, respectively. Time-kill curves indicated that OEO acted rapidly (within 10 min), while the metallic nanoparticles took 4 h to kill Gram-negative bacteria and 24 h to kill Gram-positive bacteria. The combination of the two compounds resulted in a synergistic or additive effect, reducing their MIC values and reducing the time of action compared to bio-AgNP used alone, i.e., 20 min for Gram-negative bacteria and 7 h for Gram-positive bacteria. Scanning electron microscopy (SEM) revealed similar morphological alterations in Staphylococcus aureus (non-methicillin-resistant S. aureus, non-MRSA) cells exposed to three different treatments (OEO, bio-AgNP and combination of the two), which appeared cell surface blebbing. Individual and combined treatments showed reduction in cell density and decrease in exopolysaccharide matrix compared to untreated bacterial cells. It indicated that this composition have an antimicrobial activity against S. aureus by disrupting cells. Both compounds showed very low

  20. Synergistic and Additive Effect of Oregano Essential Oil and Biological Silver Nanoparticles against Multidrug-Resistant Bacterial Strains.

    PubMed

    Scandorieiro, Sara; de Camargo, Larissa C; Lancheros, Cesar A C; Yamada-Ogatta, Sueli F; Nakamura, Celso V; de Oliveira, Admilton G; Andrade, Célia G T J; Duran, Nelson; Nakazato, Gerson; Kobayashi, Renata K T

    2016-01-01

    Bacterial resistance to conventional antibiotics has become a clinical and public health problem, making therapeutic decisions more challenging. Plant compounds and nanodrugs have been proposed as potential antimicrobial alternatives. Studies have shown that oregano (Origanum vulgare) essential oil (OEO) and silver nanoparticles have potent antibacterial activity, also against multidrug-resistant strains; however, the strong organoleptic characteristics of OEO and the development of resistance to these metal nanoparticles can limit their use. This study evaluated the antibacterial effect of a two-drug combination of biologically synthesized silver nanoparticles (bio-AgNP), produced by Fusarium oxysporum, and OEO against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. OEO and bio-AgNP showed bactericidal effects against all 17 strains tested, with minimal inhibitory concentrations (MIC) ranging from 0.298 to 1.193 mg/mL and 62.5 to 250 μM, respectively. Time-kill curves indicated that OEO acted rapidly (within 10 min), while the metallic nanoparticles took 4 h to kill Gram-negative bacteria and 24 h to kill Gram-positive bacteria. The combination of the two compounds resulted in a synergistic or additive effect, reducing their MIC values and reducing the time of action compared to bio-AgNP used alone, i.e., 20 min for Gram-negative bacteria and 7 h for Gram-positive bacteria. Scanning electron microscopy (SEM) revealed similar morphological alterations in Staphylococcus aureus (non-methicillin-resistant S. aureus, non-MRSA) cells exposed to three different treatments (OEO, bio-AgNP and combination of the two), which appeared cell surface blebbing. Individual and combined treatments showed reduction in cell density and decrease in exopolysaccharide matrix compared to untreated bacterial cells. It indicated that this composition have an antimicrobial activity against S. aureus by disrupting cells. Both compounds showed very low

  1. Role of copper oxides in contact killing of bacteria.

    PubMed

    Hans, Michael; Erbe, Andreas; Mathews, Salima; Chen, Ying; Solioz, Marc; Mücklich, Frank

    2013-12-31

    The potential of metallic copper as an intrinsically antibacterial material is gaining increasing attention in the face of growing antibiotics resistance of bacteria. However, the mechanism of the so-called "contact killing" of bacteria by copper surfaces is poorly understood and requires further investigation. In particular, the influences of bacteria-metal interaction, media composition, and copper surface chemistry on contact killing are not fully understood. In this study, copper oxide formation on copper during standard antimicrobial testing was measured in situ by spectroscopic ellipsometry. In parallel, contact killing under these conditions was assessed with bacteria in phosphate buffered saline (PBS) or Tris-Cl. For comparison, defined Cu2O and CuO layers were thermally generated and characterized by grazing incidence X-ray diffraction. The antibacterial properties of these copper oxides were tested under the conditions used above. Finally, copper ion release was recorded for both buffer systems by inductively coupled plasma atomic absorption spectroscopy, and exposed copper samples were analyzed for topographical surface alterations. It was found that there was a fairly even growth of CuO under wet plating conditions, reaching 4-10 nm in 300 min, but no measurable Cu2O was formed during this time. CuO was found to significantly inhibit contact killing, compared to pure copper. In contrast, thermally generated Cu2O was essentially as effective in contact killing as pure copper. Copper ion release from the different surfaces roughly correlated with their antibacterial efficacy and was highest for pure copper, followed by Cu2O and CuO. Tris-Cl induced a 10-50-fold faster copper ion release compared to PBS. Since the Cu2O that primarily forms on copper under ambient conditions is as active in contact killing as pure copper, antimicrobial objects will retain their antimicrobial properties even after oxide formation.

  2. 9 CFR 113.213 - Pseudorabies Vaccine, Killed Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Pseudorabies Vaccine, Killed Virus... REQUIREMENTS Killed Virus Vaccines § 113.213 Pseudorabies Vaccine, Killed Virus. Pseudorabies Vaccine, Killed... established as pure, safe, and immunogenic shall be used for preparing seeds for vaccine production. All...

  3. 9 CFR 113.213 - Pseudorabies Vaccine, Killed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Pseudorabies Vaccine, Killed Virus... REQUIREMENTS Killed Virus Vaccines § 113.213 Pseudorabies Vaccine, Killed Virus. Pseudorabies Vaccine, Killed... established as pure, safe, and immunogenic shall be used for preparing seeds for vaccine production. All...

  4. 9 CFR 113.213 - Pseudorabies Vaccine, Killed Virus.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Pseudorabies Vaccine, Killed Virus... REQUIREMENTS Killed Virus Vaccines § 113.213 Pseudorabies Vaccine, Killed Virus. Pseudorabies Vaccine, Killed... established as pure, safe, and immunogenic shall be used for preparing seeds for vaccine production. All...

  5. 9 CFR 113.213 - Pseudorabies Vaccine, Killed Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Pseudorabies Vaccine, Killed Virus... REQUIREMENTS Killed Virus Vaccines § 113.213 Pseudorabies Vaccine, Killed Virus. Pseudorabies Vaccine, Killed... established as pure, safe, and immunogenic shall be used for preparing seeds for vaccine production. All...

  6. 9 CFR 113.213 - Pseudorabies Vaccine, Killed Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Pseudorabies Vaccine, Killed Virus... REQUIREMENTS Killed Virus Vaccines § 113.213 Pseudorabies Vaccine, Killed Virus. Pseudorabies Vaccine, Killed... established as pure, safe, and immunogenic shall be used for preparing seeds for vaccine production. All...

  7. Effects of Bacterial Microflora of the Lower Digestive Tract of Free-Range Waterfowl on Influenza Virus Activation

    PubMed Central

    King, Marcus D.; Guentzel, M. Neal; Arulanandam, Bernard P.; Bodour, Adria A.; Brahmakshatriya, Vinayak; Lupiani, Blanca; Chambers, James P.

    2011-01-01

    Proteolytic cleavage activation of influenza virus hemagglutinin (HA0) is required for cell entry via receptor-mediated endocytosis. Despite numerous studies describing bacterial protease-mediated influenza A viral activation in mammals, very little is known about the role of intestinal bacterial flora of birds in hemagglutinin cleavage/activation. Therefore, the cloaca of wild waterfowl was examined for (i) representative bacterial types and (ii) their ability to cleave in a “trypsin-like” manner the precursor viral hemagglutinin molecule (HA0). Using radiolabeled HA0, bacterial secretion-mediated trypsin-like conversion of HA0 to HA1 and HA2 peptide products was observed to various degrees in 42 of 44 bacterial isolates suggestive of influenza virus activation in the cloaca of wild waterfowl. However, treatment of uncleaved virus with all bacterial isolates gave rise to substantially reduced emergent virus progeny compared with what was expected. Examination of two isolates exhibiting pronounced trypsin-like conversion of HA0 to HA1 and HA2 peptide products and low infectivity revealed lipase activity to be present. Because influenza virus possesses a complex lipid envelope, the presence of lipid hydrolase activity could in part account for the observed less-than-expected level of viable progeny. A thorough characterization of respective isolate protease HA0 hydrolysis products as well as other resident activities (i.e., lipase) is ongoing such that the role of these respective contributors in virus activation/inactivation can be firmly established. PMID:21531837

  8. Augmented Passive Immunotherapy with P4 Peptide Improves Phagocyte Activity in Severe Sepsis.

    PubMed

    Morton, Ben; Mitsi, Elena; Pennington, Shaun H; Reiné, Jesús; Wright, Angela D; Parker, Robert; Welters, Ingeborg D; Blakey, John D; Rajam, Gowrisankar; Ades, Edwin W; Ferreira, Daniela M; Wang, Duolao; Kadioglu, Aras; Gordon, Stephen B

    2016-12-01

    Antimicrobial resistance threatens to undermine treatment of severe infection; new therapeutic strategies are urgently needed. Preclinical work shows that augmented passive immunotherapy with P4 peptide increases phagocytic activity and shows promise as a novel therapeutic strategy. Our aim was to determine ex vivo P4 activity in a target population of patients admitted to critical care with severe infection. We prospectively recruited UK critical care unit patients with severe sepsis and observed clinical course (≥3 months postdischarge). Blood samples were taken in early (≤48 h postdiagnosis, n = 54), latent (7 days postdiagnosis, n = 39), and convalescent (3-6 months postdiagnosis, n = 18) phases of disease. The primary outcome measure was killing of opsonized Streptococcus pneumoniae by neutrophils with and without P4 peptide stimulation. We also used a flow cytometric whole blood phagocytosis assay to determine phagocyte association and oxidation of intraphagosomal reporter beads. P4 peptide increased neutrophil killing of opsonized pneumococci by 8.6% (confidence interval 6.35-10.76, P < 0.001) in all phases of sepsis, independent of infection source and microbiological status. This represented a 54.9% increase in bacterial killing compared with unstimulated neutrophils (15.6%) in early phase samples. Similarly, P4 peptide treatment significantly increased neutrophil and monocyte intraphagosomal reporter bead association and oxidation, independent of infection source. We have extended preclinical work to demonstrate that P4 peptide significantly increases phagocytosis and bacterial killing in samples from a target patient population with severe sepsis. This study supports the rationale for augmented passive immunotherapy as a therapeutic strategy in severe sepsis.

  9. Bacterial persistence by RNA endonucleases

    PubMed Central

    Maisonneuve, Etienne; Shakespeare, Lana J.; Jørgensen, Mikkel Girke; Gerdes, Kenn

    2011-01-01

    Bacteria form persisters, individual cells that are highly tolerant to different types of antibiotics. Persister cells are genetically identical to nontolerant kin but have entered a dormant state in which they are recalcitrant to the killing activity of the antibiotics. The molecular mechanisms underlying bacterial persistence are unknown. Here, we show that the ubiquitous Lon (Long Form Filament) protease and mRNA endonucleases (mRNases) encoded by toxin-antitoxin (TA) loci are required for persistence in Escherichia coli. Successive deletion of the 10 mRNase-encoding TA loci of E. coli progressively reduced the level of persisters, showing that persistence is a phenotype common to TA loci. In all cases tested, the antitoxins, which control the activities of the mRNases, are Lon substrates. Consistently, cells lacking lon generated a highly reduced level of persisters. Moreover, Lon overproduction dramatically increased the levels of persisters in wild-type cells but not in cells lacking the 10 mRNases. These results support a simple model according to which mRNases encoded by TA loci are activated in a small fraction of growing cells by Lon-mediated degradation of the antitoxins. Activation of the mRNases, in turn, inhibits global cellular translation, and thereby induces dormancy and persistence. Many pathogenic bacteria known to enter dormant states have a plethora of TA genes. Therefore, in the future, the discoveries described here may lead to a mechanistic understanding of the persistence phenomenon in pathogenic bacteria. PMID:21788497

  10. Exploring the links between groundwater quality and bacterial communities near oil and gas extraction activities.

    PubMed

    Santos, Inês C; Martin, Misty S; Reyes, Michelle L; Carlton, Doug D; Stigler-Granados, Paula; Valerio, Melissa A; Whitworth, Kristina W; Hildenbrand, Zacariah L; Schug, Kevin A

    2018-03-15

    Bacterial communities in groundwater are very important as they maintain a balanced biogeochemical environment. When subjected to stressful environments, for example, due to anthropogenic contamination, bacterial communities and their dynamics change. Studying the responses of the groundwater microbiome in the face of environmental changes can add to our growing knowledge of microbial ecology, which can be utilized for the development of novel bioremediation strategies. High-throughput and simpler techniques that allow the real-time study of different microbiomes and their dynamics are necessary, especially when examining larger data sets. Matrix-assisted laser desorption-ionization (MALDI) time-of-flight mass spectrometry (TOF-MS) is a workhorse for the high-throughput identification of bacteria. In this work, groundwater samples were collected from a rural area in southern Texas, where agricultural activities and unconventional oil and gas development are the most prevalent anthropogenic activities. Bacterial communities were assessed using MALDI-TOF MS, with bacterial diversity and abundance being analyzed with the contexts of numerous organic and inorganic groundwater constituents. Mainly denitrifying and heterotrophic bacteria from the Phylum Proteobacteria were isolated. These microorganisms are able to either transform nitrate into gaseous forms of nitrogen or degrade organic compounds such as hydrocarbons. Overall, the bacterial communities varied significantly with respect to the compositional differences that were observed from the collected groundwater samples. Collectively, these data provide a baseline measurement of bacterial diversity in groundwater located near anthropogenic surface and subsurface activities. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Comparison of bacterial communities of conventional and A-stage activated sludge systems

    PubMed Central

    Gonzalez-Martinez, Alejandro; Rodriguez-Sanchez, Alejandro; Lotti, Tommaso; Garcia-Ruiz, Maria-Jesus; Osorio, Francisco; Gonzalez-Lopez, Jesus; van Loosdrecht, Mark C. M.

    2016-01-01

    The bacterial community structure of 10 different wastewater treatment systems and their influents has been investigated through pyrosequencing, yielding a total of 283486 reads. These bioreactors had different technological configurations: conventional activated sludge (CAS) systems and very highly loaded A-stage systems. A-stage processes are proposed as the first step in an energy producing municipal wastewater treatment process. Pyrosequencing analysis indicated that bacterial community structure of all influents was similar. Also the bacterial community of all CAS bioreactors was similar. Bacterial community structure of A-stage bioreactors showed a more case-specific pattern. A core of genera was consistently found for all influents, all CAS bioreactors and all A-stage bioreactors, respectively, showing that different geographical locations in The Netherlands and Spain did not affect the functional bacterial communities in these technologies. The ecological roles of these bacteria were discussed. Influents and A-stage bioreactors shared several core genera, while none of these were shared with CAS bioreactors communities. This difference is thought to reside in the different operational conditions of the two technologies. This study shows that bacterial community structure of CAS and A-stage bioreactors are mostly driven by solids retention time (SRT) and hydraulic retention time (HRT), as suggested by multivariate redundancy analysis. PMID:26728449

  12. A human pathogenic bacterial infection model using the two-spotted cricket, Gryllus bimaculatus.

    PubMed

    Kochi, Yuto; Miyashita, Atsushi; Tsuchiya, Kohsuke; Mitsuyama, Masao; Sekimizu, Kazuhisa; Kaito, Chikara

    2016-08-01

    Invertebrate animal species that can withstand temperatures as high as 37°C, the human body temperature, are limited. In the present study, we utilized the two-spotted cricket, Gryllus bimaculatus, which lives in tropical and subtropical regions, as an animal model of human pathogenic bacterial infection. Injection of Pseudomonas aeruginosa or Staphylococcus aureus into the hemolymph killed crickets. Injected P. aeruginosa or S. aureus proliferated in the hemolymph until the cricket died. The ability of these pathogenic bacteria to kill the crickets was blocked by the administration of antibiotics. S. aureus gene-knockout mutants of virulence factors, including cvfA, agr and srtA, exhibited decreased killing ability compared with the parent strain. The dose at which 50% of crickets were killed by P. aeruginosa or S. aureus was not decreased at 37°C compared with that at 27°C. Injection of Listeria monocytogenes, which upregulates toxin expression at 37°C, killed crickets, and the dose at which 50% of crickets were killed was decreased at 37°C compared with that at 27°C. These findings suggest that the two-spotted cricket is a useful model animal for evaluating the virulence properties of various human pathogenic bacteria at variable temperature including 37°C. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Bacterial Acclimation Inside an Aqueous Battery.

    PubMed

    Dong, Dexian; Chen, Baoling; Chen, P

    2015-01-01

    Specific environmental stresses may lead to induced genomic instability in bacteria, generating beneficial mutants and potentially accelerating the breeding of industrial microorganisms. The environmental stresses inside the aqueous battery may be derived from such conditions as ion shuttle, pH gradient, free radical reaction and electric field. In most industrial and medical applications, electric fields and direct currents are used to kill bacteria and yeast. However, the present study focused on increasing bacterial survival inside an operating battery. Using a bacterial acclimation strategy, both Escherichia coli and Bacillus subtilis were acclimated for 10 battery operation cycles and survived in the battery for over 3 days. The acclimated bacteria changed in cell shape, growth rate and colony color. Further analysis indicated that electrolyte concentration could be one of the major factors determining bacterial survival inside an aqueous battery. The acclimation process significantly improved the viability of both bacteria E. coli and B. subtilis. The viability of acclimated strains was not affected under battery cycle conditions of 0.18-0.80 mA cm(-2) and 1.4-2.1 V. Bacterial addition within 1.0×10(10) cells mL(-1) did not significantly affect battery performance. Because the environmental stress inside the aqueous battery is specific, the use of this battery acclimation strategy may be of great potential for the breeding of industrial microorganisms.

  14. Bacterial Acclimation Inside an Aqueous Battery

    PubMed Central

    Dong, Dexian; Chen, Baoling; Chen, P.

    2015-01-01

    Specific environmental stresses may lead to induced genomic instability in bacteria, generating beneficial mutants and potentially accelerating the breeding of industrial microorganisms. The environmental stresses inside the aqueous battery may be derived from such conditions as ion shuttle, pH gradient, free radical reaction and electric field. In most industrial and medical applications, electric fields and direct currents are used to kill bacteria and yeast. However, the present study focused on increasing bacterial survival inside an operating battery. Using a bacterial acclimation strategy, both Escherichia coli and Bacillus subtilis were acclimated for 10 battery operation cycles and survived in the battery for over 3 days. The acclimated bacteria changed in cell shape, growth rate and colony color. Further analysis indicated that electrolyte concentration could be one of the major factors determining bacterial survival inside an aqueous battery. The acclimation process significantly improved the viability of both bacteria E. coli and B. subtilis. The viability of acclimated strains was not affected under battery cycle conditions of 0.18-0.80 mA cm-2 and 1.4-2.1 V. Bacterial addition within 1.0×1010 cells mL-1 did not significantly affect battery performance. Because the environmental stress inside the aqueous battery is specific, the use of this battery acclimation strategy may be of great potential for the breeding of industrial microorganisms. PMID:26070088

  15. Anti-bacterial activity of Achatina CRP and its mechanism of action.

    PubMed

    Mukherjee, Sandip; Barman, Soma; Mandal, Narayan Chandra; Bhattacharya, Shelley

    2014-07-01

    The physiological role of C-reactive protein (CRP), the classical acute-phase protein, is not well documented, despite many reports on biological effects of CRP in vitro and in model systems in vivo. It has been suggested that CRP protects mice against lethal toxicity of bacterial infections by implementing immunological responses. In Achatina fulica CRP is a constitutive multifunctional protein in haemolymph and considered responsible for their survival in the environment for millions of years. The efficacy of Achatina CRP (ACRP) was tested against both Salmonella typhimurium and Bacillus subtilis infections in mice where endogenous CRP level is negligible even after inflammatory stimulus. Further, growth curves of the bacteria revealed that ACRP (50 microg/mL) is bacteriostatic against gram negative salmonellae and bactericidal against gram positive bacilli. ACRP induced energy crises in bacterial cells, inhibited key carbohydrate metabolic enzymes such as phosphofructokinase in glycolysis, isocitrate dehydrogenase in TCA cycle, isocitrate lyase in glyoxylate cycle and fructose-1,6-bisphosphatase in gluconeogenesis. ACRP disturbed the homeostasis of cellular redox potential as well as reduced glutathione status, which is accompanied by an enhanced rate of lipid peroxidation. Annexin V-Cy3/CFDA dual staining clearly showed ACRP induced apoptosis-like death in bacterial cell population. Moreover, immunoblot analyses also indicated apoptosis-like death in ACRP treated bacterial cells, where activation of poly (ADP-ribose) polymerase-1 (PARP) and caspase-3 was noteworthy. It is concluded that metabolic impairment by ACRP in bacterial cells is primarily due to generation of reactive oxygen species and ACRP induced anti-bacterial effect is mediated by metabolic impairment leading to apoptosis-like death in bacterial cells.

  16. Synergistic Photothermal and Antibiotic Killing of Biofilm-Associated Staphylococcus aureus Using Targeted Antibiotic-Loaded Gold Nanoconstructs.

    PubMed

    Meeker, Daniel G; Jenkins, Samir V; Miller, Emily K; Beenken, Karen E; Loughran, Allister J; Powless, Amy; Muldoon, Timothy J; Galanzha, Ekaterina I; Zharov, Vladimir P; Smeltzer, Mark S; Chen, Jingyi

    2016-04-08

    Resistance to conventional antibiotics is a growing public health concern that is quickly outpacing the development of new antibiotics. This has led the Infectious Diseases Society of America (IDSA) to designate Enterococcus faecium , Staphylococcus aureus , Klebsiella pneumoniae , Acinetobacter baumannii , Pseudomonas aeruginosa , and Enterobacter species as "ESKAPE pathogens" on the basis of the rapidly decreasing availability of useful antibiotics. This emphasizes the urgent need for alternative therapeutic strategies to combat infections caused by these and other bacterial pathogens. In this study, we used Staphylococcus aureus ( S. aureus ) as a proof-of-principle ESKAPE pathogen to demonstrate that an appropriate antibiotic (daptomycin) can be incorporated into polydopamine-coated gold nanocages (AuNC@PDA) and that daptomycin-loaded AuNC@PDA can be conjugated to antibodies targeting a species-specific surface protein (staphylococcal protein A; Spa) as a means of achieving selective delivery of the nanoconstructs directly to the bacterial cell surface. Targeting specificity was confirmed by demonstrating a lack of binding to mammalian cells, reduced photothermal and antibiotic killing of the Spa-negative species Staphylococcus epidermidis , and reduced killing of S. aureus in the presence of unconjugated anti-Spa antibodies. We demonstrate that laser irradiation at levels within the current safety standard for use in humans can be used to achieve both a lethal photothermal effect and controlled release of the antibiotic, thus resulting in a degree of therapeutic synergy capable of eradicating viable S. aureus cells. The system was validated using planktonic bacterial cultures of both methicillin-sensitive and methicillin-resistant S. aureus strains and subsequently shown to be effective in the context of an established biofilm, thus indicating that this approach could be used to facilitate the effective treatment of intrinsically resistant biofilm infections.

  17. Killing spinors and related symmetries in six dimensions

    NASA Astrophysics Data System (ADS)

    Batista, Carlos

    2016-03-01

    Benefiting from the index spinorial formalism, the Killing spinor equation is integrated in six-dimensional spacetimes. The integrability conditions for the existence of a Killing spinor are worked out and the Killing spinors are classified into two algebraic types; in the first type the scalar curvature of the spacetime must be negative, while in the second type the spacetime must be an Einstein manifold. In addition, the equations that define Killing-Yano (KY) and closed conformal Killing-Yano (CCKY) tensors are expressed in the index notation and, as consequence, all nonvanishing KY and CCKY tensors that can be generated from a Killing spinor are made explicit.

  18. 9 CFR 113.209 - Rabies Vaccine, Killed Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Rabies Vaccine, Killed Virus. 113.209... Killed Virus Vaccines § 113.209 Rabies Vaccine, Killed Virus. Rabies Vaccine (Killed Virus) shall be..., safe, and immunogenic shall be used for preparing the production seed virus for vaccine production. All...

  19. 9 CFR 113.209 - Rabies Vaccine, Killed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Rabies Vaccine, Killed Virus. 113.209... Killed Virus Vaccines § 113.209 Rabies Vaccine, Killed Virus. Rabies Vaccine (Killed Virus) shall be..., safe, and immunogenic shall be used for preparing the production seed virus for vaccine production. All...

  20. 9 CFR 113.209 - Rabies Vaccine, Killed Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Rabies Vaccine, Killed Virus. 113.209... Killed Virus Vaccines § 113.209 Rabies Vaccine, Killed Virus. Rabies Vaccine (Killed Virus) shall be..., safe, and immunogenic shall be used for preparing the production seed virus for vaccine production. All...

  1. 9 CFR 113.209 - Rabies Vaccine, Killed Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Rabies Vaccine, Killed Virus. 113.209... Killed Virus Vaccines § 113.209 Rabies Vaccine, Killed Virus. Rabies Vaccine (Killed Virus) shall be..., safe, and immunogenic shall be used for preparing the production seed virus for vaccine production. All...

  2. Serum killing of Ureaplasma parvum shows serovar-determined susceptibility for normal individuals and common variable immuno-deficiency patients.

    PubMed

    Beeton, Michael L; Daha, Mohamed R; El-Shanawany, Tariq; Jolles, Stephen R; Kotecha, Sailesh; Spiller, O Brad

    2012-02-01

    Many Gram-negative bacteria, unlike Gram-positive, are directly lysed by complement. Ureaplasma can cause septic arthritis and meningitis in immunocompromised individuals and induce premature birth. Ureaplasma has no cell wall, cannot be Gram-stain classified and its serum susceptibility is unknown. Survival of Ureaplasma serovars (SV) 1, 3, 6 and 14 (collectively Ureaplasma parvum) were measured following incubation with normal or immunoglobulin-deficient patient serum (relative to heat-inactivated controls). Blocking monoclonal anti-C1q antibody and depletion of calcium, immunoglobulins, or lectins were used to determine the complement pathway responsible for killing. Eighty-three percent of normal sera killed SV1, 67% killed SV6 and 25% killed SV14; greater killing correlating to strong immunoblot identification of anti-Ureaplasma antibodies; killing was abrogated following ProteinA removal of IgG1. All normal sera killed SV3 in a C1q-dependent fashion, irrespective of immunoblot identification of anti-Ureaplasma antibodies; SV3 killing was unaffected by total IgG removal by ProteinG, where complement activity was retained. Only one of four common variable immunodeficient (CVID) patient sera failed to kill SV3, despite profound IgM and IgG deficiency for all; however, killing of SV3 and SV1 was restored with therapeutic intravenous immunoglobulin therapy. Only the classical complement pathway mediated Ureaplasma-cidal activity, sometimes in the absence of observable immunoblot reactive bands. Copyright © 2011 Elsevier GmbH. All rights reserved.

  3. Bacterial RNA induces myocyte cellular dysfunction through the activation of PKR

    PubMed Central

    Bleiblo, Farag; Michael, Paul; Brabant, Danielle; Ramana, Chilakamarti V.; Tai, TC; Saleh, Mazen; Parrillo, Joseph E.; Kumar, Anand

    2012-01-01

    Severe sepsis and the ensuing septic shock are serious life threatening conditions. These diseases are triggered by the host's over exuberant systemic response to the infecting pathogen. Several surveillance mechanisms have evolved to discriminate self from foreign RNA and accordingly trigger effective cellular responses to target the pathogenic threats. The RNA-dependent protein kinase (PKR) is a key component of the cytoplasmic RNA sensors involved in the recognition of viral double-stranded RNA (dsRNA). Here, we identify bacterial RNA as a distinct pathogenic pattern recognized by PKR. Our results indicate that natural RNA derived from bacteria directly binds to and activates PKR. We further show that bacterial RNA induces human cardiac myocyte apoptosis and identify the requirement for PKR in mediating this response. In addition to bacterial immunity, the results presented here may also have implications in cardiac pathophysiology. PMID:22833816

  4. Nafcillin Enhances Innate Immune-Mediated Killing of Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Sakoulas, George; Okumura, Cheryl Y.; Thienphrapa, Wdee; Olson, Joshua; Nonejuie, Poochit; Dam, Quang; Dhand, Abhay; Pogliano, Joseph; Yeaman, Michael R.; Hensler, Mary E.; Bayer, Arnold S.; Nizet, Victor

    2014-01-01

    Based on in vitro synergy studies, the addition of nafcillin to daptomycin was used to treat refractory methicillin-resistant Staphylococcus aureus (MRSA) bacteremia. Daptomycin is a de facto cationic antimicrobial peptide in vivo, with antistaphylococcal mechanisms reminiscent of innate host defense peptides (HDPs). In this study, the effects of nafcillin on HDP activity against MRSA were examined in vitro and in vivo. Exposures to β-lactam antimicrobials in general, and nafcillin in particular, significantly increased killing of S. aureus by selected HDPs from, keratinocytes, neutrophils and platelets. This finding correlated with enhanced killing of MRSA by whole blood, neutrophils and keratinocytes after growth in nafcillin. Finally, nafcillin pretreatment ex vivo reduced MRSA virulence in a murine subcutaneous infection model. Despite the lack of direct activity against MRSA, these studies show potent, consistent, and generalized nafcillin-mediated ‘sensitization’ to increased killing of MRSA by various components of the innate host response. The use of nafcillin as adjunctive therapy in MRSA bacteremia merits further study and should be considered in cases refractory to standard therapy. PMID:24297496

  5. [Killing effect of polymorphonuclear neutrophils on Trichomonas vaginalis].

    PubMed

    Zhao, Jian-Ling; Gao, Xing-Zheng; Qu, Ming

    2008-10-30

    To study the killing effect of polymorphonuclear neutrophils (PMNs) on Trichomonas vaginalis. The vaginal secretion from a patient with vaginitis was incubated in the liver infusion liquid medium to get T. vaginalis. One ml serum was collected from the patient and heated for 30 min at 56 degrees C to inactivate complement in serum, and was absorbed three times with the parasites at 0 degree C to make the serum free of antibodies. PMNs were separated from the patient's blood and purified with density gradient centrifugation and polymer accelerating sedimentation. NBT and safranin O were used to stain the sample. The interaction between PMNs and the parasites was observed under microscope. 300 trichomonads and 3x10(4) PMNs were incubated for 10, 20, 30, 40, 50, 60 minutes under the conditions of aerobic or anaerobic, with superoxide dismutase (SOD) and catalase (CAT) or without SOD and CAT, and with complement or without complement. They were then inoculated in solid medium for another five days under the anaerobic condition, and surviving organisms were enumerated. PMNs were observed to surround and kill a single trichomonad. In the petri-dish containing PMNs, the surviving rate of the parasites in anaerobic condition was 85%, only 3% in aerobic condition (P<0.01). SOD and CAT reduced the killing effect of PMNs, with a surviving rate of 98% and 94% respectively after 60 min incubation. Without SOD and CAT, the surviving rate is only 2% (P<0.05). PMNs in the serum without antibodies killed all the parasites, while the complement-inactivated serum fail to kill them. The trichomonacidal activity of PMNs relies on the presence of oxygen and complement in the serum of patient.

  6. Enhancement of the killing effect of low-temperature plasma on Streptococcus mutans by combined treatment with gold nanoparticles.

    PubMed

    Park, Sang Rye; Lee, Hyun Wook; Hong, Jin Woo; Lee, Hae June; Kim, Ji Young; Choi, Byul Bo-Ra; Kim, Gyoo Cheon; Jeon, Young Chan

    2014-08-08

    Recently, non-thermal atmospheric pressure plasma sources have been used for biomedical applications such as sterilization, cancer treatment, blood coagulation, and wound healing. Gold nanoparticles (gNPs) have unique optical properties and are useful for biomedical applications. Although low-temperature plasma has been shown to be effective in killing oral bacteria on agar plates, its bactericidal effect is negligible on the tooth surface. Therefore, we used 30-nm gNPs to enhance the killing effect of low-temperature plasma on human teeth. We tested the sterilizing effect of low-temperature plasma on Streptococcus mutans (S. mutans) strains. The survival rate was assessed by bacterial viability stains and colony-forming unit counts. Low-temperature plasma treatment alone was effective in killing S. mutans on slide glasses, as shown by the 5-log decrease in viability. However, plasma treatment of bacteria spotted onto tooth surface exhibited a 3-log reduction in viability. After gNPs were added to S. mutans, plasma treatment caused a 5-log reduction in viability, while gNPs alone did not show any bactericidal effect. The morphological changes in S. mutans caused by plasma treatment were examined by transmission electron microscopy, which showed that plasma treatment only perforated the cell walls, while the combination treatment with plasma and gold nanoparticles caused significant cell rupture, causing loss of intracellular components from many cells. This study demonstrates that low-temperature plasma treatment is effective in killing S. mutans and that its killing effect is further enhanced when used in combination with gNPs.

  7. Russian vaccines against especially dangerous bacterial pathogens

    PubMed Central

    Feodorova, Valentina A; Sayapina, Lidiya V; Corbel, Michael J; Motin, Vladimir L

    2014-01-01

    In response to the epidemiological situation, live attenuated or killed vaccines against anthrax, brucellosis, cholera, glanders, plague and tularemia were developed and used for immunization of at-risk populations in the Former Soviet Union. Certain of these vaccines have been updated and currently they are used on a selective basis, mainly for high risk occupations, in the Russian Federation. Except for anthrax and cholera these vaccines currently are the only licensed products available for protection against the most dangerous bacterial pathogens. Development of improved formulations and new products is ongoing. PMID:26038506

  8. 9 CFR 113.206 - Wart Vaccine, Killed Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Wart Vaccine, Killed Virus. 113.206... Killed Virus Vaccines § 113.206 Wart Vaccine, Killed Virus. Wart Vaccine, Killed Virus, shall be prepared... content as prescribed in § 113.200(f). (d) Potency and efficacy. The efficacy of wart vaccine has been...

  9. 9 CFR 113.206 - Wart Vaccine, Killed Virus.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Wart Vaccine, Killed Virus. 113.206... Killed Virus Vaccines § 113.206 Wart Vaccine, Killed Virus. Wart Vaccine, Killed Virus, shall be prepared... content as prescribed in § 113.200(f). (d) Potency and efficacy. The efficacy of wart vaccine has been...

  10. 9 CFR 113.206 - Wart Vaccine, Killed Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Wart Vaccine, Killed Virus. 113.206... Killed Virus Vaccines § 113.206 Wart Vaccine, Killed Virus. Wart Vaccine, Killed Virus, shall be prepared... content as prescribed in § 113.200(f). (d) Potency and efficacy. The efficacy of wart vaccine has been...

  11. 9 CFR 113.206 - Wart Vaccine, Killed Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Wart Vaccine, Killed Virus. 113.206... Killed Virus Vaccines § 113.206 Wart Vaccine, Killed Virus. Wart Vaccine, Killed Virus, shall be prepared... content as prescribed in § 113.200(f). (d) Potency and efficacy. The efficacy of wart vaccine has been...

  12. 9 CFR 113.206 - Wart Vaccine, Killed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Wart Vaccine, Killed Virus. 113.206... Killed Virus Vaccines § 113.206 Wart Vaccine, Killed Virus. Wart Vaccine, Killed Virus, shall be prepared... content as prescribed in § 113.200(f). (d) Potency and efficacy. The efficacy of wart vaccine has been...

  13. Targeting virulence: salmochelin modification tunes the antibacterial activity spectrum of β-lactams for pathogen-selective killing of Escherichia coli † †Electronic supplementary information (ESI) available: Tables of bacterial strains employed in this study, iron content of the antimicrobial activity medium, characterization of GlcEnt–Amp/Amx 7–10, GlcEnt-PEG3-N3 12–13, and BLAST search for iroN sequence. Figures of HPLC traces of MceC- and IroB-catalyzed glucosylation of Ent-PEG3-N3 11, optical absorption spectra of GlcEnt–Amp/Amx 7–10, additional antimicrobial activity assays, time-kill kinetics, competition assays for FepA and IroN recognition, mixed-species antimicrobial activity assays, Lcn2 effect on antibacterial activity of GlcEnt–Amp/Amx 7–10, and cytotoxicity assays against T84 cells. See DOI: 10.1039/c5sc00962f Click here for additional data file.

    PubMed Central

    Chairatana, Phoom; Zheng, Tengfei

    2015-01-01

    New antibiotics are required to treat bacterial infections and counteract the emergence of antibiotic resistance. Pathogen-specific antibiotics have several advantages over broad-spectrum drugs, which include minimal perturbation to the commensal microbiota. We present a strategy for targeting antibiotics to bacterial pathogens that utilises the salmochelin-mediated iron uptake machinery of Gram-negative Escherichia coli. Salmochelins are C-glucosylated derivatives of the siderophore enterobactin. The biosynthesis and utilisation of salmochelins are important for virulence because these siderophores allow pathogens to acquire iron and evade the enterobactin-scavenging host-defense protein lipocalin-2. Inspired by the salmochelins, we report the design and chemoenzymatic preparation of glucosylated enterobactin–β-lactam conjugates that harbour the antibiotics ampicillin (Amp) and amoxicillin (Amx), hereafter GlcEnt–Amp/Amx. The GlcEnt scaffolds are based on mono- and diglucosylated Ent where one catechol moiety is functionalized at the C5 position for antibiotic attachment. We demonstrate that GlcEnt–Amp/Amx provide up to 1000-fold enhanced antimicrobial activity against uropathogenic E. coli relative to the parent β-lactams. Moreover, GlcEnt–Amp/Amx based on a diglucosylated Ent (DGE) platform selectively kill uropathogenic E. coli that express the salmochelin receptor IroN in the presence of non-pathogenic E. coli and other bacterial strains that include the commensal microbe Lactobacillus rhamnosus GG. Moreover, GlcEnt–Amp/Amx evade the host-defense protein lipocalin-2, and exhibit low toxicity to mammalian cells. Our work establishes that siderophore–antibiotic conjugates provide a strategy for targeting virulence, narrowing the activity spectrum of antibiotics in clinical use, and achieving selective delivery of antibacterial cargos to pathogenic bacteria on the basis of siderophore receptor expression. PMID:28717471

  14. [Effects of different catch modes on soil enzyme activities and bacterial community in the rhizosphere of cucumber].

    PubMed

    Li, Min; Wu, Feng-zhi

    2014-12-01

    Effects of different catch modes on soil enzyme activities and bacterial community in the rhizosphere of cucumber (Cucumis sativus) were analyzed by conventional chemical method, PCR-denaturing gradient gel electrophoresis (DGGE) and real-time PCR methods. Pot experiment was carried out in the greenhouse for three consecutive years with cucumber as the main crop, and scallion (Allium fistulosum), wheat (Triticum aestivum) and oilseed rape (Brassica campestri) as catch crops. Results showed that, with the increase of crop planting times, soil urease, neutral phosphatase and invertase activities in the wheat treatment were significantly) higher than in the scallion and oilseed rape treatments, and these enzyme activities in the oilseed rape treatment were significantly higher than in the scallion treatment. PCR-DGGR analysis showed that cucumber rhizosphere bacterial community structures were different among treatments. Scallion and wheat treatments maintained relatively higher diversity indices of bacterial community structure. qPCR results showed that the abundance of soil bacterial community in the wheat treatment was significantly higher than in the scallion and oilseed rape treatments. In conclusion, different catch treatments affected soil enzyme activities and bacteria community and changed the soil environment. Wheat used as summer catch crop could maintain relatively higher soil enzyme activities, bacterial community diversity and abundance.

  15. Solubilization of municipal sewage waste activated sludge by novel lytic bacterial strains.

    PubMed

    Lakshmi, M Veera; Merrylin, J; Kavitha, S; Kumar, S Adish; Banu, J Rajesh; Yeom, Ick-Tae

    2014-02-01

    Extracellular polymeric substances (EPS) are an extracellular matrix found in sludge which plays a crucial role in flocculation by interacting with the organic solids. Therefore, to enhance pretreatment of sludge, EPS have to be removed. In this study, EPS were removed with a chemical extractant, NaOH, to enhance the bacterial pretreatment. A lysozyme secreting bacterial consortium was isolated from the waste activated sludge (WAS). The result of density gradient gel electrophoresis (DGGE) analysis revealed that the isolated consortium consists of two strains. The two novel strains isolated were named as Jerish03 (NCBI accession number KC597266) and Jerish 04 (NCBI accession number KC597267) and they belong to the genus Bacillus. Pretreatment with these novel strains enhances the efficiency of the aerobic digestion of sludge. Sludge treated with the lysozyme secreting bacterial consortium produced 29 % and 28.5 % increase in suspended solids (SS) reduction and chemical oxygen demand (COD) removal compared to the raw activated sludge (without pretreatment) during aerobic digestion. It is specified that these two novel strains had a high potential to enhance WAS degradation efficiency in aerobic digestion.

  16. Escherichia coli O157:H7 virulence factors differentially impact cattle and bison macrophage killing capacity.

    PubMed

    Schaut, Robert G; Loving, Crystal L; Sharma, Vijay K

    2018-03-26

    Enterohemorrhagic Escherichia coli O157:H7 colonizes the gastrointestinal tract of ruminants, including cattle and bison, which are reservoirs of these zoonotic disease-causing bacteria. Healthy animals colonized by E. coli O157:H7 do not experience clinical symptoms of the disease induced by E. coli O157:H7 infections in humans; however, a variety of host immunological factors may play a role in the amount and frequency of fecal shedding of E. coli O157:H7 by ruminant reservoirs. How gastrointestinal colonization by E. coli O157:H7 impacts these host animal immunological factors is unknown. Here, various isogenic mutant strains of a foodborne isolate of E. coli O157:H7 were used to evaluate bacterial killing capacity of macrophages of cattle and bison, the two ruminant species. Cattle macrophages demonstrated an enhanced ability to phagocytose and kill E. coli O157:H7 compared to bison macrophages, and killing ability was impacted by E. coli O157:H7 virulence gene expression. These findings suggest that the macrophage responses to E. coli O157:H7 might play a role in the variations observed in E. coli O157:H7 fecal shedding by ruminants in nature. Published by Elsevier Ltd.

  17. Bacterial expression of human kynurenine 3-monooxygenase: Solubility, activity, purification☆

    PubMed Central

    Wilson, K.; Mole, D.J.; Binnie, M.; Homer, N.Z.M.; Zheng, X.; Yard, B.A.; Iredale, J.P.; Auer, M.; Webster, S.P.

    2014-01-01

    Kynurenine 3-monooxygenase (KMO) is an enzyme central to the kynurenine pathway of tryptophan metabolism. KMO has been implicated as a therapeutic target in several disease states, including Huntington’s disease. Recombinant human KMO protein production is challenging due to the presence of transmembrane domains, which localise KMO to the outer mitochondrial membrane and render KMO insoluble in many in vitro expression systems. Efficient bacterial expression of human KMO would accelerate drug development of KMO inhibitors but until now this has not been achieved. Here we report the first successful bacterial (Escherichia coli) expression of active FLAG™-tagged human KMO enzyme expressed in the soluble fraction and progress towards its purification. PMID:24316190

  18. Antistaphylococcal activity of DX-619 alone and in combination with vancomycin, teicoplanin, and linezolid assessed by time-kill synergy testing.

    PubMed

    Credito, Kim; Lin, Genrong; Appelbaum, Peter C

    2007-04-01

    Time-kill synergy studies testing in vitro activity of DX-619 alone and with added vancomycin, teicoplanin, or linezolid against 101 Staphylococcus aureus strains showed synergy between DX-619 and teicoplanin at 12 to 24 h in 72 strains and between DX-619 and vancomycin in 28 strains. No synergy was found with linezolid, and no antagonism was observed with any combination.

  19. The antimicrobial activity of honey against common equine wound bacterial isolates.

    PubMed

    Carnwath, R; Graham, E M; Reynolds, K; Pollock, P J

    2014-01-01

    Delayed healing associated with distal limb wounds is a particular problem in equine clinical practice. Recent studies in human beings and other species have demonstrated the beneficial wound healing properties of honey, and medical grade honey dressings are available commercially in equine practice. Equine clinicians are reported to source other non-medical grade honeys for the same purpose. This study aimed to assess the antimicrobial activity of a number of honey types against common equine wound bacterial pathogens. Twenty-nine honey products were sourced, including gamma-irradiated and non-irradiated commercial medical grade honeys, supermarket honeys, and honeys from local beekeepers. To exclude contaminated honeys from the project, all honeys were cultured aerobically for evidence of bacterial contamination. Aerobic bacteria or fungi were recovered from 18 products. The antimicrobial activity of the remaining 11 products was assessed against 10 wound bacteria, recovered from the wounds of horses, including methicillin resistant Staphylococcus aureus and Pseudomonas aeruginosa. Eight products were effective against all 10 bacterial isolates at concentrations varying from <2% to 16% (v/v). Overall, the Scottish Heather Honey was the best performing product, and inhibited the growth of all 10 bacterial isolates at concentrations ranging from <2% to 6% (v/v). Although Manuka has been the most studied honey to date, other sources may have valuable antimicrobial properties. Since some honeys were found to be contaminated with aerobic bacteria or fungi, non-sterile honeys may not be suitable for wound treatment. Further assessment of gamma-irradiated honeys from the best performing honeys would be useful. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Killing-Yano tensors of order n - 1

    NASA Astrophysics Data System (ADS)

    Batista, Carlos

    2014-08-01

    The properties of a Killing-Yano tensor of order n-1 in an n-dimensional manifold are investigated. The integrability conditions are worked out and all metrics admitting a Killing-Yano tensor of order n-1 are found. A connection between such tensors and a generalization of the concept of angular momentum is pointed out. A theorem on how to generate closed conformal Killing vectors using the symmetries of a manifold is proved and used to find all Killing-Yano tensors of order n-1 of a maximally symmetric space.

  1. Multisubstrate Isotope Labeling and Metagenomic Analysis of Active Soil Bacterial Communities

    PubMed Central

    Verastegui, Y.; Cheng, J.; Engel, K.; Kolczynski, D.; Mortimer, S.; Lavigne, J.; Montalibet, J.; Romantsov, T.; Hall, M.; McConkey, B. J.; Rose, D. R.; Tomashek, J. J.; Scott, B. R.

    2014-01-01

    ABSTRACT Soil microbial diversity represents the largest global reservoir of novel microorganisms and enzymes. In this study, we coupled functional metagenomics and DNA stable-isotope probing (DNA-SIP) using multiple plant-derived carbon substrates and diverse soils to characterize active soil bacterial communities and their glycoside hydrolase genes, which have value for industrial applications. We incubated samples from three disparate Canadian soils (tundra, temperate rainforest, and agricultural) with five native carbon (12C) or stable-isotope-labeled (13C) carbohydrates (glucose, cellobiose, xylose, arabinose, and cellulose). Indicator species analysis revealed high specificity and fidelity for many uncultured and unclassified bacterial taxa in the heavy DNA for all soils and substrates. Among characterized taxa, Actinomycetales (Salinibacterium), Rhizobiales (Devosia), Rhodospirillales (Telmatospirillum), and Caulobacterales (Phenylobacterium and Asticcacaulis) were bacterial indicator species for the heavy substrates and soils tested. Both Actinomycetales and Caulobacterales (Phenylobacterium) were associated with metabolism of cellulose, and Alphaproteobacteria were associated with the metabolism of arabinose; members of the order Rhizobiales were strongly associated with the metabolism of xylose. Annotated metagenomic data suggested diverse glycoside hydrolase gene representation within the pooled heavy DNA. By screening 2,876 cloned fragments derived from the 13C-labeled DNA isolated from soils incubated with cellulose, we demonstrate the power of combining DNA-SIP, multiple-displacement amplification (MDA), and functional metagenomics by efficiently isolating multiple clones with activity on carboxymethyl cellulose and fluorogenic proxy substrates for carbohydrate-active enzymes. PMID:25028422

  2. Enhanced killing of Acanthamoeba cysts with a plant peroxidase-hydrogen peroxide-halide antimicrobial system.

    PubMed

    Hughes, Reanne; Andrew, Peter W; Kilvington, Simon

    2003-05-01

    The activity of H(2)O(2) against the resistant cyst stage of the pathogenic free-living amoeba Acanthamoeba was enhanced by the addition of KI and either horseradish peroxidase or soybean peroxidase or, to a lesser degree, lactoperoxidase. This resulted in an increase in the cysticidal activity of 3% (wt/vol) H(2)O(2), and there was >3-log killing in 2 h, compared with the 6 h required for comparable results with the peroxide solution alone (P < 0.05). With 2% H(2)O(2), enhancement was observed at all time points (P < 0.05), and total killing of the cyst inoculum occurred at 4 h, compared with 6 h for the peroxide alone. The activity of sublethal 1% H(2)O(2) was enhanced to give 3-log killing after 8 h of exposure (P < 0.05). No enhancement was obtained when KCl or catalase was used as a substitute in the reaction mixtures. The H(2)O(2) was not neutralized in the enhanced system during the experiments. However, in the presence of a platinum disk used to neutralize H(2)O(2) in contact lens care systems, the enhanced 2% H(2)O(2) system gave 2.8-log killing after 6 h or total cyst killing by 8 h, and total neutralization of the H(2)O(2) occurred by 4 h. In contrast, 2% H(2)O(2) alone resulted in <0.8-log killing of cysts in the presence of the platinum disk due to rapid (<1 h) neutralization of the peroxide. Our observations could result in significant improvement in the efficacy of H(2)O(2) contact lens disinfection systems against Acanthamoeba cysts and prevention of acanthamoeba keratitis.

  3. PA-824 Kills Nonreplicating Mycobacterium tuberculosis by Intracellular NO Release

    PubMed Central

    Singh, Ramandeep; Manjunatha, Ujjini; Boshoff, Helena I. M.; Ha, Young Hwan; Niyomrattanakit, Pornwaratt; Ledwidge, Richard; Dowd, Cynthia S.; Lee, Ill Young; Kim, Pilho; Zhang, Liang; Kang, Sunhee; Keller, Thomas H.; Jiricek, Jan; Barry, Clifton E.

    2009-01-01

    Bicyclic nitroimidazoles, including PA-824, are exciting candidates for the treatment of tuberculosis. These prodrugs require intracellular activation for their biological function. We found that Rv3547 is a deazaflavin-dependent nitroreductase (Ddn) that converts PA-824 into three primary metabolites; the major one is the corresponding des-nitroimidazole (des-nitro). When derivatives of PA-824 were used, the amount of des-nitro metabolite formed was highly correlated with anaerobic killing of Mycobacterium tuberculosis (Mtb). Des-nitro metabolite formation generated reactive nitrogen species, including nitric oxide (NO), which are the major effectors of the anaerobic activity of these compounds. Furthermore, NO scavengers protected the bacilli from the lethal effects of the drug. Thus, these compounds may act as intracellular NO donors and could augment a killing mechanism intrinsic to the innate immune system. PMID:19039139

  4. A new class of synthetic retinoid antibiotics effective against bacterial persisters.

    PubMed

    Kim, Wooseong; Zhu, Wenpeng; Hendricks, Gabriel Lambert; Van Tyne, Daria; Steele, Andrew D; Keohane, Colleen E; Fricke, Nico; Conery, Annie L; Shen, Steven; Pan, Wen; Lee, Kiho; Rajamuthiah, Rajmohan; Fuchs, Beth Burgwyn; Vlahovska, Petia M; Wuest, William M; Gilmore, Michael S; Gao, Huajian; Ausubel, Frederick M; Mylonakis, Eleftherios

    2018-04-05

    A challenge in the treatment of Staphylococcus aureus infections is the high prevalence of methicillin-resistant S. aureus (MRSA) strains and the formation of non-growing, dormant 'persister' subpopulations that exhibit high levels of tolerance to antibiotics and have a role in chronic or recurrent infections. As conventional antibiotics are not effective in the treatment of infections caused by such bacteria, novel antibacterial therapeutics are urgently required. Here we used a Caenorhabditis elegans-MRSA infection screen to identify two synthetic retinoids, CD437 and CD1530, which kill both growing and persister MRSA cells by disrupting lipid bilayers. CD437 and CD1530 exhibit high killing rates, synergism with gentamicin, and a low probability of resistance selection. All-atom molecular dynamics simulations demonstrated that the ability of retinoids to penetrate and embed in lipid bilayers correlates with their bactericidal ability. An analogue of CD437 was found to retain anti-persister activity and show an improved cytotoxicity profile. Both CD437 and this analogue, alone or in combination with gentamicin, exhibit considerable efficacy in a mouse model of chronic MRSA infection. With further development and optimization, synthetic retinoids have the potential to become a new class of antimicrobials for the treatment of Gram-positive bacterial infections that are currently difficult to cure.

  5. A new class of synthetic retinoid antibiotics effective against bacterial persisters

    NASA Astrophysics Data System (ADS)

    Kim, Wooseong; Zhu, Wenpeng; Hendricks, Gabriel Lambert; van Tyne, Daria; Steele, Andrew D.; Keohane, Colleen E.; Fricke, Nico; Conery, Annie L.; Shen, Steven; Pan, Wen; Lee, Kiho; Rajamuthiah, Rajmohan; Fuchs, Beth Burgwyn; Vlahovska, Petia M.; Wuest, William M.; Gilmore, Michael S.; Gao, Huajian; Ausubel, Frederick M.; Mylonakis, Eleftherios

    2018-04-01

    A challenge in the treatment of Staphylococcus aureus infections is the high prevalence of methicillin-resistant S. aureus (MRSA) strains and the formation of non-growing, dormant ‘persister’ subpopulations that exhibit high levels of tolerance to antibiotics and have a role in chronic or recurrent infections. As conventional antibiotics are not effective in the treatment of infections caused by such bacteria, novel antibacterial therapeutics are urgently required. Here we used a Caenorhabditis elegans–MRSA infection screen to identify two synthetic retinoids, CD437 and CD1530, which kill both growing and persister MRSA cells by disrupting lipid bilayers. CD437 and CD1530 exhibit high killing rates, synergism with gentamicin, and a low probability of resistance selection. All-atom molecular dynamics simulations demonstrated that the ability of retinoids to penetrate and embed in lipid bilayers correlates with their bactericidal ability. An analogue of CD437 was found to retain anti-persister activity and show an improved cytotoxicity profile. Both CD437 and this analogue, alone or in combination with gentamicin, exhibit considerable efficacy in a mouse model of chronic MRSA infection. With further development and optimization, synthetic retinoids have the potential to become a new class of antimicrobials for the treatment of Gram-positive bacterial infections that are currently difficult to cure.

  6. Spacetime encodings. III. Second order Killing tensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brink, Jeandrew

    2010-01-15

    This paper explores the Petrov type D, stationary axisymmetric vacuum (SAV) spacetimes that were found by Carter to have separable Hamilton-Jacobi equations, and thus admit a second-order Killing tensor. The derivation of the spacetimes presented in this paper borrows from ideas about dynamical systems, and illustrates concepts that can be generalized to higher-order Killing tensors. The relationship between the components of the Killing equations and metric functions are given explicitly. The origin of the four separable coordinate systems found by Carter is explained and classified in terms of the analytic structure associated with the Killing equations. A geometric picture ofmore » what the orbital invariants may represent is built. Requiring that a SAV spacetime admits a second-order Killing tensor is very restrictive, selecting very few candidates from the group of all possible SAV spacetimes. This restriction arises due to the fact that the consistency conditions associated with the Killing equations require that the field variables obey a second-order differential equation, as opposed to a fourth-order differential equation that imposes the weaker condition that the spacetime be SAV. This paper introduces ideas that could lead to the explicit computation of more general orbital invariants in the form of higher-order Killing tensors.« less

  7. Resveratrol Antagonizes Antimicrobial Lethality and Stimulates Recovery of Bacterial Mutants

    PubMed Central

    Liu, Yuanli; Zhou, Jinan; Qu, Yilin; Yang, Xinguang; Shi, Guojing; Wang, Xiuhong; Hong, Yuzhi; Drlica, Karl; Zhao, Xilin

    2016-01-01

    Reactive oxygen species (ROS; superoxide, peroxide, and hydroxyl radical) are thought to contribute to the rapid bactericidal activity of diverse antimicrobial agents. The possibility has been raised that consumption of antioxidants in food may interfere with the lethal action of antimicrobials. Whether nutritional supplements containing antioxidant activity are also likely to interfere with antimicrobial lethality is unknown. To examine this possibility, resveratrol, a popular antioxidant dietary supplement, was added to cultures of Escherichia coli and Staphylococcus aureus that were then treated with antimicrobial and assayed for bacterial survival and the recovery of mutants resistant to an unrelated antimicrobial, rifampicin. Resveratrol, at concentrations likely to be present during human consumption, caused a 2- to 3-fold reduction in killing during a 2-hr treatment with moxifloxacin or kanamycin. At higher, but still subinhibitory concentrations, resveratrol reduced antimicrobial lethality by more than 3 orders of magnitude. Resveratrol also reduced the increase in reactive oxygen species (ROS) characteristic of treatment with quinolone (oxolinic acid). These data support the general idea that the lethal activity of some antimicrobials involves ROS. Surprisingly, subinhibitory concentrations of resveratrol promoted (2- to 6-fold) the recovery of rifampicin-resistant mutants arising from the action of ciprofloxacin, kanamycin, or daptomycin. This result is consistent with resveratrol reducing ROS to sublethal levels that are still mutagenic, while the absence of resveratrol allows ROS levels to high enough to kill mutagenized cells. Suppression of antimicrobial lethality and promotion of mutant recovery by resveratrol suggests that the antioxidant may contribute to the emergence of resistance to several antimicrobials, especially if new derivatives and/or formulations of resveratrol markedly increase bioavailability. PMID:27045517

  8. Comparative In Vitro Activity of Azlocillin, Ampicillin, Mezlocillin, Piperacillin, and Ticarcillin, Alone and in Combination with an Aminoglycoside

    PubMed Central

    White, G. Wesley; Malow, James B.; Zimelis, Victoria M.; Pahlavanzadeh, Hossein; Panwalker, Anand P.; Jackson, George Gee

    1979-01-01

    The in vitro activities of the newer semisynthetic penicillins azlocillin, mezlocillin, and piperacillin were compared with those of ampicillin and ticarcillin by using 290 clinical laboratory isolates. Piperacillin and mezlocillin were the most active against Escherichia coli, Proteus mirabilis, Klebsiella spp., and Enterobacter spp. When Pseudomonas aeruginosa was tested, piperacillin and azlocillin were more active than either mezlocillin or ticarcillin. Streptococcus pneumoniae and Haemophilus influenzae species were highly susceptible to all of the penicillins tested. Ticarcillin had relatively poor activity against enterococci. The rate of bacterial killing with multiples of the minimal inhibitory concentration of azlocillin, ampicillin, or ticarcillin was tested for E. coli, P. mirabilis, P. aeruginosa, and Klebsiella spp. Increasing concentrations increased the bactericidal effect. The effect of combining azlocillin, ampicillin, or ticarcillin with an aminoglycoside was studied by using both killing curves and checkerboards. The isobolograms constructed from the checkerboards showed a synergistic pattern for the organisms tested, which included E. coli, P. aeruginosa, Klebsiella spp., P. mirabilis, and enterococci. However, the rate of killing was increased by the combination only for P. aeruginosa and enterococci. PMID:111616

  9. Heat-Killed Lactobacillus salivarius and Lactobacillus johnsonii Reduce Liver Injury Induced by Alcohol In Vitro and In Vivo.

    PubMed

    Chuang, Cheng-Hung; Tsai, Cheng-Chih; Lin, En-Shyh; Huang, Chin-Shiu; Lin, Yun-Yu; Lan, Chuan-Ching; Huang, Chun-Chih

    2016-10-31

    The aim of the present study was to determine whether Lactobacillus salivarius (LS) and Lactobacillus johnsonii (LJ) prevent alcoholic liver damage in HepG2 cells and rat models of acute alcohol exposure. In this study, heat-killed LS and LJ were screened from 50 Lactobacillus strains induced by 100 mM alcohol in HepG2 cells. The severity of alcoholic liver injury was determined by measuring the levels of aspartate transaminase (AST), alanine transaminase (ALT), gamma-glutamyl transferase (γ-GT), lipid peroxidation, triglyceride (TG) and total cholesterol. Our results indicated that heat-killed LS and LJ reduced AST, ALT, γ-GT and malondialdehyde (MDA) levels and outperformed other bacterial strains in cell line studies. We further evaluated these findings by administering these strains to rats. Only LS was able to reduce serum AST levels, which it did by 26.2%. In addition LS significantly inhibited serum TG levels by 39.2%. However, both strains were unable to inhibit ALT levels. In summary, we demonstrated that heat-killed LS and LJ possess hepatoprotective properties induced by alcohol both in vitro and in vivo.

  10. Bacterial Abundance and Activity across Sites within Two Northern Wisconsin Sphagnum Bogs.

    PubMed

    Fisher; Graham; Graham

    1998-11-01

    Abstract Bacterial abundance, temperature, pH, and dissolved organic carbon (DOC) concentration were compared across surface sites within and between two northern Wisconsin Sphagnum peatlands over the summer seasons in 1995 and 1996. Sites of interest were the Sphagnum mat surface, the water-filled moat (lagg) at the bog margin, and the bog lake littoral zone. Significant differences in both bacterial populations and water chemistry were observed between sites. pH was highest in the lake and lowest in the mat at both bogs; the opposite was true for DOC. Large populations of bacteria were present in surface interstitial water from the mat; abundance in this site was consistently higher than in the moat or lake. Bacterial abundance also increased across sites of increasing DOC concentration and declining pH. Bacterial activities (rates of [3H]leucine incorporation) and growth in dilution cultures (with grazers removed) were also assessed in lake, moat, and mat sites. Results using these measures generally supported the trends observed in abundance, although high rates of [3H]leucine incorporation were recorded in the moat at one of the bogs. Our results indicate that bacterial populations in Sphagnum peatlands are not adversely affected by acidity, and that DOC may be more important than pH in determining bacterial abundance in these environments.

  11. Role of the σ 54 Activator Interacting Domain in Bacterial Transcription Initiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siegel, Alexander R.; Wemmer, David E.

    Bacterial sigma factors are subunits of RNA polymerase that direct the holoenzyme to specific sets of promoters in the genome and are a central element of regulating transcription. Most polymerase holoenzymes open the promoter and initiate transcription rapidly after binding. However, polymerase containing the members of the σ 54 family must be acted on by a transcriptional activator before DNA opening and initiation occur. A key domain in these transcriptional activators forms a hexameric AAA + ATPase that acts through conformational changes brought on by ATP hydrolysis. Contacts between the transcriptional activator and σ 54 are primarily made through anmore » N-terminal σ 54 activator interacting domain (AID). To better understand this mechanism of bacterial transcription initiation, we characterized the σ 54 AID by NMR spectroscopy and other biophysical methods and show that it is an intrinsically disordered domain in σ 54 alone. In this paper, we identified a minimal construct of the Aquifex aeolicus σ 54 AID that consists of two predicted helices and retains native-like binding affinity for the transcriptional activator NtrC1. Using the NtrC1 ATPase domain, bound with the non-hydrolyzable ATP analog ADP-beryllium fluoride, we studied the NtrC1–σ 54 AID complex using NMR spectroscopy. We show that the σ 54 AID becomes structured after associating with the core loops of the transcriptional activators in their ATP state and that the primary site of the interaction is the first predicted helix. Finally, understanding this complex, formed as the first step toward initiation, will help unravel the mechanism of σ 54 bacterial transcription initiation.« less

  12. Human intravenous immunoglobulin for experimental streptococcal toxic shock: bacterial clearance and modulation of inflammation.

    PubMed

    Sriskandan, Shiranee; Ferguson, Melissa; Elliot, Victoria; Faulkner, Lee; Cohen, Jonathan

    2006-07-01

    Polyclonal human intravenous immunoglobulin (IVIG) has been advocated as an adjunct to therapy in severe invasive streptococcal toxic shock because of its ability to neutralize superantigen toxins. The aim of this study was to assess IVIG therapeutic efficacy in an experimental model of streptococcal toxic shock. To confirm the in vitro activity of IVIG against the Streptococcus pyogenes strain used in the study, IVIG was tested for superantigen neutralizing and bacterial opsonizing activity prior to in vivo studies. To evaluate the in vivo effects of IVIG in terms of microbiological outcome and disease severity in a superantigen-sensitive transgenic model of streptococcal shock, HLA-DQ transgenic mice were treated with IVIG either at the time of infection or after infection with S. pyogenes. Antibiotics were included in some studies. The IVIG preparation neutralized superantigenicity of S. pyogenes in vitro and enhanced bacterial killing in a whole blood assay. When given to mice at the time of S. pyogenes infection, IVIG neutralized circulating superantigens and reduced systemic inflammatory response. Remarkably, IVIG-enhanced systemic clearance of bacteria and enhanced neutrophil infiltrate into the infected tissues. However, when used in combination with penicillin and clindamycin in a delayed treatment setting, IVIG did not confer additional therapeutic benefit, in terms of inflammatory response, bacterial clearance or survival. IVIG monotherapy can confer benefit in experimental streptococcal shock, but extension of these findings to the clinical situation will require further evaluation.

  13. Influence of zinc on bacterial populations and their proteolytic enzyme activities in freshwater environments: a cross-site comparison.

    PubMed

    Rasmussen, Lauren; Olapade, Ola A

    2016-04-01

    Temporal responses of indigenous bacterial populations and proteolytic enzyme (i.e., aminopeptidase) activities in the bacterioplankton assemblages from 3 separate freshwater environments were examined after exposure to various zinc (Zn) concentrations under controlled microcosm conditions. Zn concentrations (ranging from 0 to 10 μmol/L) were added to water samples collected from the Kalamazoo River, Rice Creek, and Huron River and examined for bacterial abundance and aminopeptidase activities at various time intervals over a 48 h incubation period in the dark. The results showed that the Zn concentrations did not significantly influence total bacterial counts directly; however, aminopeptidase activities varied significantly to increasing zinc treatments over time. Also, analysis of variance and linear regression analyses revealed significant positive relationships between bacterial numbers and their hydrolytic enzyme activities, suggesting that both probably co-vary with increasing Zn concentrations in aquatic systems. The results from this study serve as additional evidence of the ecological role of Zn as an extracellular peptidase cofactor on the dynamics of bacterial assemblages in aquatic environments.

  14. Anti-leukemia activity of a bacterial toxin with natural specificity for LFA-1 on white blood cells

    PubMed Central

    Kachlany, Scott C.; Schwartz, Amy B.; Balashova, Nataliya V.; Hioe, Catarina E.; Tuen, Michael; Le, Amy; Kaur, Manpreet; Mei, Yongyi; Rao, Jia

    2009-01-01

    The oral bacterium, Aggregatibacter actinomycetemcomitans, produces a leukotoxin (LtxA) that is specific for white blood cells (WBCs) from humans and Old World primates by interacting with lymphocyte function antigen-1 (LFA-1) on susceptible cells. To determine if LtxA could be used as a therapeutic agent for the treatment of WBC diseases, we tested the in vitro and in vivo anti-leukemia activity of the toxin. LtxA kills human malignant WBC lines and primary leukemia cells from acute myeloid leukemia patients, but healthy peripheral blood mononuclear cells (PBMCs) are relatively resistant to LtxA-mediated cytotoxicity. Levels of LFA-1 on cell lines correlated with killing by LtxA and the toxin preferentially killed cells expressing the activated form of LFA-1. In a SCID mouse model for human leukemia, LtxA had potent therapeutic value resulting in long-term survival in LtxA-treated mice. Intravenous infusion of LtxA into a rhesus macaque resulted in a drop in WBC counts at early times post-infusion; however, red blood cells, platelets, hemoglobin and blood chemistry values remained unaffected. Thus, LtxA may be an effective and safe novel therapeutic agent for the treatment of hematologic malignancies. PMID:19747730

  15. Root and Rhizosphere Bacterial Phosphatase Activity Varies with Tree Species and Soil Phosphorus Availability in Puerto Rico Tropical Forest

    PubMed Central

    Cabugao, Kristine G.; Timm, Collin M.; Carrell, Alyssa A.; Childs, Joanne; Lu, Tse-Yuan S.; Pelletier, Dale A.; Weston, David J.; Norby, Richard J.

    2017-01-01

    Tropical forests generally occur on highly weathered soils that, in combination with the immobility of phosphorus (P), often result in soils lacking orthophosphate, the form of P most easily metabolized by plants and microbes. In these soils, mineralization of organic P can be the major source for orthophosphate. Both plants and microbes encode for phosphatases capable of mineralizing a range of organic P compounds. However, the activity of these enzymes depends on several edaphic factors including P availability, tree species, and microbial communities. Thus, phosphatase activity in both roots and the root microbial community constitute an important role in P mineralization and P nutrient dynamics that are not well studied in tropical forests. To relate phosphatase activity of roots and bacteria in tropical forests, we measured phosphatase activity in roots and bacterial isolates as well as bacterial community composition from the rhizosphere. Three forests in the Luquillo Mountains of Puerto Rico were selected to represent a range of soil P availability as measured using the resin P method. Within each site, a minimum of three tree species were chosen to sample. Root and bacterial phosphatase activity were both measured using a colorimetric assay with para-nitrophenyl phosphate as a substrate for the phosphomonoesterase enzyme. Both root and bacterial phosphatase were chiefly influenced by tree species. Though tree species was the only significant factor in root phosphatase activity, there was a negative trend between soil P availability and phosphatase activity in linear regressions of average root phosphatase and resin P. Permutational multivariate analysis of variance of bacterial community composition based on 16S amplicon sequencing indicated that bacterial composition was strongly controlled by soil P availability (p-value < 0.05). These results indicate that although root and bacterial phosphatase activity were influenced by tree species; bacterial

  16. Root and Rhizosphere Bacterial Phosphatase Activity Varies with Tree Species and Soil Phosphorus Availability in Puerto Rico Tropical Forest.

    PubMed

    Cabugao, Kristine G; Timm, Collin M; Carrell, Alyssa A; Childs, Joanne; Lu, Tse-Yuan S; Pelletier, Dale A; Weston, David J; Norby, Richard J

    2017-01-01

    Tropical forests generally occur on highly weathered soils that, in combination with the immobility of phosphorus (P), often result in soils lacking orthophosphate, the form of P most easily metabolized by plants and microbes. In these soils, mineralization of organic P can be the major source for orthophosphate. Both plants and microbes encode for phosphatases capable of mineralizing a range of organic P compounds. However, the activity of these enzymes depends on several edaphic factors including P availability, tree species, and microbial communities. Thus, phosphatase activity in both roots and the root microbial community constitute an important role in P mineralization and P nutrient dynamics that are not well studied in tropical forests. To relate phosphatase activity of roots and bacteria in tropical forests, we measured phosphatase activity in roots and bacterial isolates as well as bacterial community composition from the rhizosphere. Three forests in the Luquillo Mountains of Puerto Rico were selected to represent a range of soil P availability as measured using the resin P method. Within each site, a minimum of three tree species were chosen to sample. Root and bacterial phosphatase activity were both measured using a colorimetric assay with para-nitrophenyl phosphate as a substrate for the phosphomonoesterase enzyme. Both root and bacterial phosphatase were chiefly influenced by tree species. Though tree species was the only significant factor in root phosphatase activity, there was a negative trend between soil P availability and phosphatase activity in linear regressions of average root phosphatase and resin P. Permutational multivariate analysis of variance of bacterial community composition based on 16S amplicon sequencing indicated that bacterial composition was strongly controlled by soil P availability ( p -value < 0.05). These results indicate that although root and bacterial phosphatase activity were influenced by tree species; bacterial

  17. In vitro bacterial cytotoxicity of CNTs: reactive oxygen species mediate cell damage edges over direct physical puncturing.

    PubMed

    Rajavel, Krishnamoorthy; Gomathi, Rajkumar; Manian, Sellamuthu; Rajendra Kumar, Ramasamy Thangavelu

    2014-01-21

    Understanding the bacterial cytotoxicity of CNTs is important for a wide variety of applications in the biomedical, environmental, and health sectors. A majority of the earlier reports attributed the bactericidal cytotoxicity of CNTs to bacterial cell membrane damage by direct physical puncturing. Our results reveal that bacterial cell death via bacterial cell membrane damage is induced by reactive oxygen species (ROS) produced from CNTs and is not due to direct physical puncturing by CNTs. To understand the actual mechanism of bacterial killing, we elucidated the bacterial cytotoxicity of SWCNTs and MWCNTs against Gram-negative human pathogenic bacterial species Escherichia coli, Shigella sonnei, Klebsiella pneumoniae, and Pseudomonas aeruginosa and its amelioration upon functionalizing the CNTs with antioxidant tannic acid (TA). Interestingly, the bacterial cells treated with CNTs exhibited severe cell damage under laboratory (ambient) and sunlight irradiation conditions. However, CNTs showed no cytotoxicity to the bacterial cells when incubated in the dark. The quantitative assessments carried out by us made it explicit that CNTs are effective generators of ROS such as (1)O2, O2(•-), and (•)OH in an aqueous medium under both ambient and sunlight-irradiated conditions. Both naked and TA-functionalized CNTs showed negligible ROS production in the dark. Furthermore, strong correlations were obtained between ROS produced by CNTs and the bacterial cell mortality (with the correlation coefficient varying between 0.7618 and 0.9891) for all four tested pathogens. The absence of bactericidal cytotoxicity in both naked and functionalized CNTs in the dark reveals that the presence of ROS is the major factor responsible for the bactericidal action compared to direct physical puncturing. This understanding of the bactericidal activity of the irradiated CNTs, mediated through the generation of ROS, could be interesting for novel applications such as regulated ROS delivery

  18. Searching for new strategies against polymicrobial biofilm infections: guanylated polymethacrylates kill mixed fungal/bacterial biofilms.

    PubMed

    Qu, Yue; Locock, Katherine; Verma-Gaur, Jiyoti; Hay, Iain D; Meagher, Laurence; Traven, Ana

    2016-02-01

    Biofilm-related human infections have high mortality rates due to drug resistance. Cohabitation of diverse microbes in polymicrobial biofilms is common and these infections present additional challenges for treatment compared with monomicrobial biofilms. Here, we address this therapeutic gap by assessing the potential of a new class of antimicrobial agents, guanylated polymethacrylates, in the treatment of polymicrobial biofilms built by two prominent human pathogens, the fungus Candida albicans and the bacterium Staphylococcus aureus. We used imaging and quantitative methods to test the antibiofilm efficacy of guanylated polymethacrylates, a new class of drugs that structurally mimic antimicrobial peptides. We further compared guanylated polymethacrylates with first-line antistaphylococcal and anti-Candida agents used as combinatorial therapy against polymicrobial biofilms. Guanylated polymethacrylates were highly effective as a sole agent, killing both C. albicans and S. aureus when applied to established polymicrobial biofilms. Furthermore, they outperformed multiple combinations of current antimicrobial drugs, with one of the tested compounds killing 99.98% of S. aureus and 82.2% of C. albicans at a concentration of 128 mg/L. The extracellular biofilm matrix provided protection, increasing the MIC of the polymethacrylates by 2-4-fold when added to planktonic assays. Using the C. albicans bgl2ΔΔ mutant, we implicate matrix polysaccharide β-1,3 glucan in the mechanism of protection. Data for two structurally distinct polymers suggest that this mechanism could be minimized through chemical optimization of the polymer structure. Finally, we demonstrate that a potential application for these polymers is in antimicrobial lock therapy. Guanylated polymethacrylates are a promising lead for the development of an effective monotherapy against C. albicans/S. aureus polymicrobial biofilms. © The Author 2015. Published by Oxford University Press on behalf of the British

  19. Killing for Girls: Predation Play and Female Empowerment

    ERIC Educational Resources Information Center

    Bertozzi, Elena

    2012-01-01

    Predation games--games in which the player is actively encouraged and often required to hunt and kill in order to survive--have historically been the purview of male players. Females, though now much more involved in digital games than before, generally play games that stress traditionally feminine values such as socializing with others, shopping,…

  20. Repurposing Toremifene for Treatment of Oral Bacterial Infections.

    PubMed

    Gerits, Evelien; Defraine, Valerie; Vandamme, Katleen; De Cremer, Kaat; De Brucker, Katrijn; Thevissen, Karin; Cammue, Bruno P A; Beullens, Serge; Fauvart, Maarten; Verstraeten, Natalie; Michiels, Jan

    2017-03-01

    The spread of antibiotic resistance and the challenges associated with antiseptics such as chlorhexidine have necessitated a search for new antibacterial agents against oral bacterial pathogens. As a result of failing traditional approaches, drug repurposing has emerged as a novel paradigm to find new antibacterial agents. In this study, we examined the effects of the FDA-approved anticancer agent toremifene against the oral bacteria Porphyromonas gingivalis and Streptococcus mutans We found that the drug was able to inhibit the growth of both pathogens, as well as prevent biofilm formation, at concentrations ranging from 12.5 to 25 μM. Moreover, toremifene was shown to eradicate preformed biofilms at concentrations ranging from 25 to 50 μM. In addition, we found that toremifene prevents P. gingivalis and S. mutans biofilm formation on titanium surfaces. A time-kill study indicated that toremifene is bactericidal against S. mutans Macromolecular synthesis assays revealed that treatment with toremifene does not cause preferential inhibition of DNA, RNA, or protein synthesis pathways, indicating membrane-damaging activity. Biophysical studies using fluorescent probes and fluorescence microscopy further confirmed the membrane-damaging mode of action. Taken together, our results suggest that the anticancer agent toremifene is a suitable candidate for further investigation for the development of new treatment strategies for oral bacterial infections. Copyright © 2017 American Society for Microbiology.

  1. Polymyxin B in Combination with Enrofloxacin Exerts Synergistic Killing against Extensively Drug-Resistant Pseudomonas aeruginosa.

    PubMed

    Lin, Yu-Wei; Yu, Heidi H; Zhao, Jinxin; Han, Mei-Ling; Zhu, Yan; Akter, Jesmin; Wickremasinghe, Hasini; Walpola, Hasini; Wirth, Veronika; Rao, Gauri G; Forrest, Alan; Velkov, Tony; Li, Jian

    2018-06-01

    Polymyxins are increasingly used as a last-resort class of antibiotics against extensively drug-resistant (XDR) Gram-negative bacteria. However, resistance to polymyxins can emerge with monotherapy. As nephrotoxicity is the major dose-limiting factor for polymyxin monotherapy, dose escalation to suppress the emergence of polymyxin resistance is not a viable option. Therefore, novel approaches are needed to preserve this last-line class of antibiotics. This study aimed to investigate the antimicrobial synergy of polymyxin B combined with enrofloxacin against Pseudomonas aeruginosa Static time-kill studies were conducted over 24 h with polymyxin B (1 to 4 mg/liter) and enrofloxacin (1 to 4 mg/liter) alone or in combination. Additionally, in vitro one-compartment model (IVM) and hollow-fiber infection model (HFIM) experiments were performed against P. aeruginosa 12196. Polymyxin B and enrofloxacin in monotherapy were ineffective against all of the P. aeruginosa isolates examined, whereas polymyxin B-enrofloxacin in combination was synergistic against P. aeruginosa , with ≥2 to 4 log 10 kill at 24 h in the static time-kill studies. In both IVM and HFIM, the combination was synergistic, and the bacterial counting values were below the limit of quantification on day 5 in the HFIM. A population analysis profile indicated that the combination inhibited the emergence of polymyxin resistance in P. aeruginosa 12196. The mechanism-based modeling suggests that the synergistic killing is a result of the combination of mechanistic and subpopulation synergy. Overall, this is the first preclinical study to demonstrate that the polymyxin-enrofloxacin combination is of considerable utility for the treatment of XDR P. aeruginosa infections and warrants future clinical evaluations. Copyright © 2018 American Society for Microbiology.

  2. Bacterial expression of human kynurenine 3-monooxygenase: solubility, activity, purification.

    PubMed

    Wilson, K; Mole, D J; Binnie, M; Homer, N Z M; Zheng, X; Yard, B A; Iredale, J P; Auer, M; Webster, S P

    2014-03-01

    Kynurenine 3-monooxygenase (KMO) is an enzyme central to the kynurenine pathway of tryptophan metabolism. KMO has been implicated as a therapeutic target in several disease states, including Huntington's disease. Recombinant human KMO protein production is challenging due to the presence of transmembrane domains, which localise KMO to the outer mitochondrial membrane and render KMO insoluble in many in vitro expression systems. Efficient bacterial expression of human KMO would accelerate drug development of KMO inhibitors but until now this has not been achieved. Here we report the first successful bacterial (Escherichia coli) expression of active FLAG™-tagged human KMO enzyme expressed in the soluble fraction and progress towards its purification. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Antimicrobial peptides effectively kill a broad spectrum of Listeria monocytogenes and Staphylococcus aureus strains independently of origin, sub-type, or virulence factor expression.

    PubMed

    Gottlieb, Caroline Trebbien; Thomsen, Line Elnif; Ingmer, Hanne; Mygind, Per Holse; Kristensen, Hans-Henrik; Gram, Lone

    2008-11-26

    Host defense peptides (HDPs), or antimicrobial peptides (AMPs), are important components of the innate immune system that bacterial pathogens must overcome to establish an infection and HDPs have been suggested as novel antimicrobial therapeutics in treatment of infectious diseases. Hence it is important to determine the natural variation in susceptibility to HDPs to ensure a successful use in clinical treatment regimes. Strains of two human bacterial pathogens, Listeria monocytogenes and Staphylococcus aureus, were selected to cover a wide range of origin, sub-type, and phenotypic behavior. Strains within each species were equally sensitive to HDPs and oxidative stress representing important components of the innate immune defense system. Four non-human peptides (protamine, plectasin, novicidin, and novispirin G10) were similar in activity profile (MIC value spectrum) to the human beta-defensin 3 (HBD-3). All strains were inhibited by concentrations of hydrogen peroxide between 0.1% - 1.0%. Sub-selections of both species differed in expression of several virulence-related factors and in their ability to survive in human whole blood and kill the nematode virulence model Caenorhabditis elegans. For L. monocytogenes, proliferation in whole blood was paralleled by high invasion in Caco-2 cells and fast killing of C. elegans, however, no such pattern in phenotypic behavior was observed for S. aureus and none of the phenotypic differences were correlated to sensitivity to HDPs. Strains of L. monocytogenes and S. aureus were within each species equally sensitive to a range of HDPs despite variations in subtype, origin, and phenotypic behavior. Our results suggest that therapeutic use of HDPs will not be hampered by occurrence of naturally tolerant strains of the two species investigated in the present study.

  4. Activity of the de novo engineered antimicrobial peptide WLBU2 against Pseudomonas aeruginosa in human serum and whole blood: implications for systemic applications.

    PubMed

    Deslouches, Berthony; Islam, Kazi; Craigo, Jodi K; Paranjape, Shruti M; Montelaro, Ronald C; Mietzner, Timothy A

    2005-08-01

    Cationic amphipathic peptides have been extensively investigated as a potential source of new antimicrobials that can complement current antibiotic regimens in the face of emerging drug-resistant bacteria. However, the suppression of antimicrobial activity under certain biologically relevant conditions (e.g., serum and physiological salt concentrations) has hampered efforts to develop safe and effective antimicrobial peptides for clinical use. We have analyzed the activity and selectivity of the human peptide LL37 and the de novo engineered antimicrobial peptide WLBU2 in several biologically relevant conditions. The host-derived synthetic peptide LL37 displayed high activity against Pseudomonas aeruginosa but demonstrated staphylococcus-specific sensitivity to NaCl concentrations varying from 50 to 300 mM. Moreover, LL37 potency was variably suppressed in the presence of 1 to 6 mM Mg(2+) and Ca(2+) ions. In contrast, WLBU2 maintained its activity in NaCl and physiologic serum concentrations of Mg(2+) and Ca(2+). WLBU2 is able to kill P. aeruginosa (10(6) CFU/ml) in human serum, with a minimum bactericidal concentration of <9 microM. Conversely, LL37 is inactive in the presence of human serum. Bacterial killing kinetic assays in serum revealed that WLBU2 achieved complete bacterial killing in 20 min. Consistent with these results was the ability of WLBU2 (15 to 20 microM) to eradicate bacteria from ex vivo samples of whole blood. The selectivity of WLBU2 was further demonstrated by its ability to specifically eliminate P. aeruginosa in coculture with human monocytes or skin fibroblasts without detectable adverse effects to the host cells. Finally, WLBU2 displayed potent efficacy against P. aeruginosa in an intraperitoneal infection model using female Swiss Webster mice. These results establish a potential application of WLBU2 in the treatment of bacterial sepsis.

  5. Activity of the De Novo Engineered Antimicrobial Peptide WLBU2 against Pseudomonas aeruginosa in Human Serum and Whole Blood: Implications for Systemic Applications

    PubMed Central

    Deslouches, Berthony; Islam, Kazi; Craigo, Jodi K.; Paranjape, Shruti M.; Montelaro, Ronald C.; Mietzner, Timothy A.

    2005-01-01

    Cationic amphipathic peptides have been extensively investigated as a potential source of new antimicrobials that can complement current antibiotic regimens in the face of emerging drug-resistant bacteria. However, the suppression of antimicrobial activity under certain biologically relevant conditions (e.g., serum and physiological salt concentrations) has hampered efforts to develop safe and effective antimicrobial peptides for clinical use. We have analyzed the activity and selectivity of the human peptide LL37 and the de novo engineered antimicrobial peptide WLBU2 in several biologically relevant conditions. The host-derived synthetic peptide LL37 displayed high activity against Pseudomonas aeruginosa but demonstrated staphylococcus-specific sensitivity to NaCl concentrations varying from 50 to 300 mM. Moreover, LL37 potency was variably suppressed in the presence of 1 to 6 mM Mg2+ and Ca2+ ions. In contrast, WLBU2 maintained its activity in NaCl and physiologic serum concentrations of Mg2+ and Ca2+. WLBU2 is able to kill P. aeruginosa (106 CFU/ml) in human serum, with a minimum bactericidal concentration of <9 μM. Conversely, LL37 is inactive in the presence of human serum. Bacterial killing kinetic assays in serum revealed that WLBU2 achieved complete bacterial killing in 20 min. Consistent with these results was the ability of WLBU2 (15 to 20 μM) to eradicate bacteria from ex vivo samples of whole blood. The selectivity of WLBU2 was further demonstrated by its ability to specifically eliminate P. aeruginosa in coculture with human monocytes or skin fibroblasts without detectable adverse effects to the host cells. Finally, WLBU2 displayed potent efficacy against P. aeruginosa in an intraperitoneal infection model using female Swiss Webster mice. These results establish a potential application of WLBU2 in the treatment of bacterial sepsis. PMID:16048927

  6. Flow and active mixing have a strong impact on bacterial growth dynamics in the proximal large intestine

    NASA Astrophysics Data System (ADS)

    Cremer, Jonas; Segota, Igor; Yang, Chih-Yu; Arnoldini, Markus; Groisman, Alex; Hwa, Terence

    2016-11-01

    More than half of fecal dry weight is bacterial mass with bacterial densities reaching up to 1012 cells per gram. Mostly, these bacteria grow in the proximal large intestine where lateral flow along the intestine is strong: flow can in principal lead to a washout of bacteria from the proximal large intestine. Active mixing by contractions of the intestinal wall together with bacterial growth might counteract such a washout and allow high bacterial densities to occur. As a step towards understanding bacterial growth in the presence of mixing and flow, we constructed an in-vitro setup where controlled wall-deformations of a channel emulate contractions. We investigate growth along the channel under a steady nutrient inflow. Depending on mixing and flow, we observe varying spatial gradients in bacterial density along the channel. Active mixing by deformations of the channel wall is shown to be crucial in maintaining a steady-state bacterial population in the presence of flow. The growth-dynamics is quantitatively captured by a simple mathematical model, with the effect of mixing described by an effective diffusion term. Based on this model, we discuss bacterial growth dynamics in the human large intestine using flow- and mixing-behavior having been observed for humans.

  7. Raping and making love are different concepts: so are killing and voluntary euthanasia.

    PubMed Central

    Davies, J

    1988-01-01

    The distinction between 'kill' and 'help to die' is argued by analogy with the distinction between 'rape' and 'make love to'. The difference is the consent of the receiver of the act, therefore 'kill' is the wrong word for an act of active voluntary euthanasia. The argument that doctors must not be allowed by law to perform active voluntary euthanasia because this would recognise an infringement of the sanctity of life ('the red light principle') is countered by comparing such doctors with the drivers of emergency vehicles, who are allowed to drive through red lights. PMID:3184136

  8. Elucidation of the pharmacokinetic/pharmacodynamic determinants of fosfomycin activity against Pseudomonas aeruginosa using a dynamic in vitro model.

    PubMed

    Bilal, Hajira; Peleg, Anton Y; McIntosh, Michelle P; Styles, Ian K; Hirsch, Elizabeth B; Landersdorfer, Cornelia B; Bergen, Phillip J

    2018-06-01

    To identify the fosfomycin pharmacokinetic (PK)/pharmacodynamic (PD) index (fT>MIC, fAUC/MIC or fCmax/MIC) most closely correlated with activity against Pseudomonas aeruginosa and determine the PK/PD target associated with various extents of bacterial killing and the prevention of emergence of resistance. Dose fractionation was conducted over 24 h in a dynamic one-compartment in vitro PK/PD model utilizing P. aeruginosa ATCC 27853 and two MDR clinical isolates (CR 1005 and CW 7). In total, 35 different dosing regimens were examined across the three strains. Microbiological response was examined by log changes and population analysis profiles. A Hill-type Emax model was fitted to the killing effect data (expressed as the log10 ratio of the area under the cfu/mL curve for treated regimens versus controls). Bacterial killing of no more than ∼3 log10 cfu/mL was achieved irrespective of regimen. The fAUC/MIC was the PK/PD index most closely correlated with efficacy (R2 = 0.80). The fAUC/MIC targets required to achieve 1 and 2 log10 reductions in the area under the cfu/mL curve relative to growth control were 489 and 1024, respectively. No regimen was able to suppress the emergence of resistance, and near-complete replacement of susceptible with resistant subpopulations occurred with virtually all regimens. Bacterial killing for fosfomycin against P. aeruginosa was most closely associated with the fAUC/MIC. Suppression of fosfomycin-resistant subpopulations could not be achieved even with fosfomycin exposures well above those that can be safely achieved clinically.

  9. Mesophilic Aeromonas sp. serogroup O:11 resistance to complement-mediated killing.

    PubMed Central

    Merino, S; Rubires, X; Aguilar, A; Albertí, S; Hernandez-Allés, S; Benedí, V J; Tomas, J M

    1996-01-01

    The complement activation by and resistance to complement-mediated killing of Aeromonas sp. strains from serogroup O:11 were investigated by using different wild-type strains (with an S-layer characteristic of this serogroup) and their isogenic mutants characterized for their surface components (S-layer and lipopolysaccharide [LPS]). All of the Aeromonas sp. serogroup O:11 wild-type strains are unable to activate complement, which suggested that the S-layer completely covered the LPS molecules. We found that the classical complement pathway is involved in serum killing of susceptible Aeromonas sp. mutant strains of serogroup O11, while the alternative complement pathway seems not to be involved, and that the complement activation seems to be independent of antibody. The smooth mutant strains devoid of the S-layer (S-layer isogenic mutants) or isogenic LPS mutant strains with a complete or rather complete LPS core (also without the S-layer) are able to activate complement but are resistant to complement-mediated killing. The reasons for this resistance are that C3b is rapidly degraded, and therefore the lytic membrane attack complex (C5b-9) is not formed. Isogenic LPS rough mutants with an incomplete LPS core are serum sensitive because they bind more C3b than the resistant strains, the C3b is not completely degraded, and therefore the lytic complex (C5b-9) is formed. PMID:8945581

  10. Sea bass Dicentrarchus labrax (L.) bacterial infection and confinement stress acts on F-type lectin (DlFBL) serum modulation.

    PubMed

    Parisi, M G; Benenati, G; Cammarata, M

    2015-11-01

    The F-lectin, a fucose-binding protein found from invertebrates to ectothermic vertebrates, is the last lectin family to be discovered. Here, we describe effects of two different types of stressors, bacterial infection and confinement stress, on the modulation of European sea bass Dicentrarchus labrax (L.) F-lectin (DlFBL), a well-characterized serum opsonin, using a specific antibody. The infection of the Vibrio alginolyticus bacterial strain increased the total haemagglutinating activity during the 16-day testing period. The DlFBL value showed an upward regulation on the first, second and last days and underwent a slight downward regulation 4 days post-challenge. In contrast, the effect of confinement and density stress showed a decrease in the plasma concentration of lectin, ranging from 50% to 60% compared with the control. The modulation of DlFBL is in line with the hypothesis that humoral lectins could be involved and recruited in the initial recognition step of the inflammation, which leads to agglutination, and the activation of mechanisms responsible for killing of the pathogens. © 2014 John Wiley & Sons Ltd.

  11. Momentum kill procedure can quickly control blowouts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, W.D.; Moore, P.

    1993-08-30

    The momentum kill method can help in quickly regaining control of a blowing well, providing the blowing well rate and fluid properties can be estimated reasonably. The momentum of the kill fluid counteracts and overcomes the flowing momentum of formation fluids. In other words, sufficient mud density pumped at a sufficient rate is directed into the flow stream to force the escaping fluid column back into the well bore. Sufficient kill fluid hydrostatic pressure must be stacked'' in the hole so that the well remains dead after the operation. The momentum kill is not a panacea for all blowouts. Anmore » assessment must be made of the potential problems unique to this method, and certain requirements must be met if the technique is to be successful. The paper discusses some of the considerations for evaluating the use of the momentum kill method.« less

  12. REVERSIBLE ACTIVATION FOR GERMINATION AND SUBSEQUENT CHANGES IN BACTERIAL SPORES1

    PubMed Central

    Lee, W. H.; Ordal, Z. John

    1963-01-01

    Lee, W. H. (University of Illinois, Urbana) and Z. John Ordal. Reversible activation for germination and subsequent changes in bacterial spores. J. Bacteriol. 85:207–217. 1963.—It was possible to isolate refractile spores of Bacillus megaterium, from a calcium dipicolinate germination solution, that were activated and would germinate spontaneously in distilled water. Some of the characteristics of the initial phases of bacterial spore germination were determined by studying these unstable activated spores. Activated spores of B. megaterium were resistant to stains and possessed a heat resistance intermediate between that of dormant and of germinated spores. The spontaneous germination of activated spores was inhibited by copper, iron, silver, or mercury salts, saturated o-phenanthroline, or solutions having a low pH value, but not by many common inhibitors. These inhibitions could be partially or completely reversed by the addition of sodium dipicolinate. The activated spores could be deactivated and made similar to dormant spores by treatment with acid. Analyses of the exudates from the variously treated spore suspensions revealed that whatever inhibited the germination of activated spores also inhibited the release of spore material. The composition of the germination exudates was different than that of extracts of dormant spores. Although heavy suspensions of activated spores gradually became swollen and dark when suspended in solutions of o-phenanthroline or at pH 4, the materials released resembled those found in extracts of dormant spores rather than those of normal germination exudates. Images PMID:16561987

  13. Human bactericidal/permeability-increasing protein and a recombinant NH2-terminal fragment cause killing of serum-resistant gram-negative bacteria in whole blood and inhibit tumor necrosis factor release induced by the bacteria.

    PubMed Central

    Weiss, J; Elsbach, P; Shu, C; Castillo, J; Grinna, L; Horwitz, A; Theofan, G

    1992-01-01

    The bactericidal/permeability-increasing protein (BPI) of neutrophils and BPI fragments neutralize the effects of isolated Gram-negative bacterial lipopolysaccharides both in vitro and in vivo. Since endotoxin most commonly enters the host as constituents of invading Gram-negative bacteria, we raised the question: Can BPI and its bioactive fragments also protect against whole bacteria? To determine whether the bactericidal and endotoxin-neutralizing activities of BPI/fragments are expressed when Gram-negative bacteria are introduced to the complex environment of whole blood we examined the effects of added BPI and proteolytically prepared and recombinant NH2-terminal fragments on: (a) the fate of serum-resistant encapsulated Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa that survive the antibacterial actions of whole blood and (b) the ability of these bacteria to trigger cytokine release. Added BPI in nanomolar concentrations killed each of three encapsulated strains of E. coli and in closely parallel fashion inhibited tumor necrosis factor (TNF) release. Holo-BPI and its NH2-terminal fragment were equipotent toward a rough LPS chemotype K1-encapsulated strain, but the fragment was substantially more potent than holo-BPI toward two encapsulated smooth LPS chemotype strains. TNF release induced by K. pneumoniae and P. aeruginosa was also inhibited by both holo-BPI and fragment but, at the protein concentrations tested, P. aeruginosa was killed only by the fragment and K. pneumoniae was not killed by either protein. The bactericidal action of BPI/fragment toward E. coli is inhibited by C7-depleted serum, but accelerated by normal serum, indicating that BPI, acting in synergy with late complement components, enhances extracellular killing of serum-resistant bacteria. Thus, BPI and an even more potent NH2-terminal fragment may protect against Gram-negative bacteria in the host by blocking bacterial proliferation as well as endotoxin

  14. Human bactericidal/permeability-increasing protein and a recombinant NH2-terminal fragment cause killing of serum-resistant gram-negative bacteria in whole blood and inhibit tumor necrosis factor release induced by the bacteria.

    PubMed

    Weiss, J; Elsbach, P; Shu, C; Castillo, J; Grinna, L; Horwitz, A; Theofan, G

    1992-09-01

    The bactericidal/permeability-increasing protein (BPI) of neutrophils and BPI fragments neutralize the effects of isolated Gram-negative bacterial lipopolysaccharides both in vitro and in vivo. Since endotoxin most commonly enters the host as constituents of invading Gram-negative bacteria, we raised the question: Can BPI and its bioactive fragments also protect against whole bacteria? To determine whether the bactericidal and endotoxin-neutralizing activities of BPI/fragments are expressed when Gram-negative bacteria are introduced to the complex environment of whole blood we examined the effects of added BPI and proteolytically prepared and recombinant NH2-terminal fragments on: (a) the fate of serum-resistant encapsulated Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa that survive the antibacterial actions of whole blood and (b) the ability of these bacteria to trigger cytokine release. Added BPI in nanomolar concentrations killed each of three encapsulated strains of E. coli and in closely parallel fashion inhibited tumor necrosis factor (TNF) release. Holo-BPI and its NH2-terminal fragment were equipotent toward a rough LPS chemotype K1-encapsulated strain, but the fragment was substantially more potent than holo-BPI toward two encapsulated smooth LPS chemotype strains. TNF release induced by K. pneumoniae and P. aeruginosa was also inhibited by both holo-BPI and fragment but, at the protein concentrations tested, P. aeruginosa was killed only by the fragment and K. pneumoniae was not killed by either protein. The bactericidal action of BPI/fragment toward E. coli is inhibited by C7-depleted serum, but accelerated by normal serum, indicating that BPI, acting in synergy with late complement components, enhances extracellular killing of serum-resistant bacteria. Thus, BPI and an even more potent NH2-terminal fragment may protect against Gram-negative bacteria in the host by blocking bacterial proliferation as well as endotoxin

  15. A kill curve for Phanerozoic marine species

    NASA Technical Reports Server (NTRS)

    Raup, D. M.

    1991-01-01

    A kill curve for Phanerozoic species is developed from an analysis of the stratigraphic ranges of 17,621 genera, as compiled by Sepkoski. The kill curve shows that a typical species' risk of extinction varies greatly, with most time intervals being characterized by very low risk. The mean extinction rate of 0.25/m.y. is thus a mixture of long periods of negligible extinction and occasional pulses of much higher rate. Because the kill curve is merely a description of the fossil record, it does not speak directly to the causes of extinction. The kill curve may be useful, however, to li inverted question markmit choices of extinction mechanisms.

  16. Symmetry operators of Killing spinors and superalgebras in AdS5

    NASA Astrophysics Data System (ADS)

    Ertem, Ümit

    2016-04-01

    We construct the first-order symmetry operators of Killing spinor equation in terms of odd Killing-Yano forms. By modifying the Schouten-Nijenhuis bracket of Killing-Yano forms, we show that the symmetry operators of Killing spinors close into an algebra in AdS5 spacetime. Since the symmetry operator algebra of Killing spinors corresponds to a Jacobi identity in extended Killing superalgebras, we investigate the possible extensions of Killing superalgebras to include higher-degree Killing-Yano forms. We found that there is a superalgebra extension but no Lie superalgebra extension of the Killing superalgebra constructed out of Killing spinors and odd Killing-Yano forms in AdS5 background.

  17. Bacterial components are the major contributors to the macrophage stimulating activity exhibited by extracts of common edible mushrooms.

    PubMed

    Tyler, Heather L; Haron, Mona H; Pugh, Nirmal D; Zhang, Jin; Jackson, Colin R; Pasco, David S

    2016-10-12

    Recent studies have indicated that a major contributor to the innate immune enhancing properties of some medicinal plants is derived from the cell wall components of bacteria colonizing these plants. The purpose of the current study was to assess if the bacteria present within edible and medicinal mushrooms substantially contribute to the innate immune stimulating potential of these mushrooms. Whole mushrooms from thirteen types of edible fungi and individual parts from Agaricus bisporus were analyzed for in vitro macrophage activation as well as bacterial lipopolysaccharides (LPS) content, cell load, and community composition. Substantial variation between samples was observed in macrophage activation (over 500-fold), total bacterial load (over 200-fold), and LPS content (over 10 million-fold). Both LPS content (ρ = 0.832, p < 0.0001) and total bacterial load (ρ = 0.701, p < 0.0001) correlated significantly with macrophage activation in the whole mushroom extracts. Extract activity was negated by treatment with NaOH, conditions that inactivate LPS and other bacterial components. Significant correlations between macrophage activation and total bacterial load (ρ = 0.723, p = 0.0001) and LPS content (ρ = 0.951, p < 0.0001) were also observed between different tissues of Agaricus bisporus. Pseudomonas and Flavobacterium were the most prevalent genera identified in the different tissue parts and these taxa were significantly correlated with in vitro macrophage activation (ρ = 0.697, p < 0.0001 and ρ = 0.659, p = 0.0001, respectively). These results indicate that components derived from mushroom associated bacteria contribute substantially to the innate immune enhancing activity exhibited by mushrooms and may result in similar therapeutic actions as reported for ingestion of bacterial preparations such as probiotics.

  18. Soil-Borne Bacterial Structure and Diversity Does Not Reflect Community Activity in Pampa Biome

    PubMed Central

    Lupatini, Manoeli; Suleiman, Afnan Khalil Ahmad; Jacques, Rodrigo Josemar Seminoti; Antoniolli, Zaida Inês; Kuramae, Eiko Eurya; de Oliveira Camargo, Flávio Anastácio; Roesch, Luiz Fernando Würdig

    2013-01-01

    The Pampa biome is considered one of the main hotspots of the world’s biodiversity and it is estimated that half of its original vegetation was removed and converted to agricultural land and tree plantations. Although an increasing amount of knowledge is being assembled regarding the response of soil bacterial communities to land use change, to the associated plant community and to soil properties, our understanding about how these interactions affect the microbial community from the Brazilian Pampa is still poor and incomplete. In this study, we hypothesized that the same soil type from the same geographic region but under distinct land use present dissimilar soil bacterial communities. To test this hypothesis, we assessed the soil bacterial communities from four land-uses within the same soil type by 454-pyrosequencing of 16S rRNA gene and by soil microbial activity analyzes. We found that the same soil type under different land uses harbor similar (but not equal) bacterial communities and the differences were controlled by many microbial taxa. No differences regarding diversity and richness between natural areas and areas under anthropogenic disturbance were detected. However, the measures of microbial activity did not converge with the 16S rRNA data supporting the idea that the coupling between functioning and composition of bacterial communities is not necessarily correlated. PMID:24146873

  19. Soil-borne bacterial structure and diversity does not reflect community activity in Pampa biome.

    PubMed

    Lupatini, Manoeli; Suleiman, Afnan Khalil Ahmad; Jacques, Rodrigo Josemar Seminoti; Antoniolli, Zaida Inês; Kuramae, Eiko Eurya; de Oliveira Camargo, Flávio Anastácio; Roesch, Luiz Fernando Würdig

    2013-01-01

    The Pampa biome is considered one of the main hotspots of the world's biodiversity and it is estimated that half of its original vegetation was removed and converted to agricultural land and tree plantations. Although an increasing amount of knowledge is being assembled regarding the response of soil bacterial communities to land use change, to the associated plant community and to soil properties, our understanding about how these interactions affect the microbial community from the Brazilian Pampa is still poor and incomplete. In this study, we hypothesized that the same soil type from the same geographic region but under distinct land use present dissimilar soil bacterial communities. To test this hypothesis, we assessed the soil bacterial communities from four land-uses within the same soil type by 454-pyrosequencing of 16S rRNA gene and by soil microbial activity analyzes. We found that the same soil type under different land uses harbor similar (but not equal) bacterial communities and the differences were controlled by many microbial taxa. No differences regarding diversity and richness between natural areas and areas under anthropogenic disturbance were detected. However, the measures of microbial activity did not converge with the 16S rRNA data supporting the idea that the coupling between functioning and composition of bacterial communities is not necessarily correlated.

  20. 9 CFR 113.210 - Feline Calicivirus Vaccine, Killed Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Feline Calicivirus Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.210 Feline Calicivirus Vaccine, Killed Virus. Feline Calicivirus Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed which...

  1. 9 CFR 113.203 - Feline Panleukopenia Vaccine, Killed Virus.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Feline Panleukopenia Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.203 Feline Panleukopenia Vaccine, Killed Virus. Feline Panleukopenia Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed which...

  2. 9 CFR 113.216 - Bovine Rhinotracheitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Bovine Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.216 Bovine Rhinotracheitis Vaccine, Killed Virus. Infectious Bovine Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  3. 9 CFR 113.203 - Feline Panleukopenia Vaccine, Killed Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Feline Panleukopenia Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.203 Feline Panleukopenia Vaccine, Killed Virus. Feline Panleukopenia Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed which...

  4. 9 CFR 113.216 - Bovine Rhinotracheitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Bovine Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.216 Bovine Rhinotracheitis Vaccine, Killed Virus. Infectious Bovine Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  5. 9 CFR 113.210 - Feline Calicivirus Vaccine, Killed Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Feline Calicivirus Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.210 Feline Calicivirus Vaccine, Killed Virus. Feline Calicivirus Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed which...

  6. 9 CFR 113.211 - Feline Rhinotracheitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Feline Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.211 Feline Rhinotracheitis Vaccine, Killed Virus. Feline Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  7. 9 CFR 113.203 - Feline Panleukopenia Vaccine, Killed Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Feline Panleukopenia Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.203 Feline Panleukopenia Vaccine, Killed Virus. Feline Panleukopenia Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed which...

  8. 9 CFR 113.216 - Bovine Rhinotracheitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Bovine Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.216 Bovine Rhinotracheitis Vaccine, Killed Virus. Infectious Bovine Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  9. 9 CFR 113.210 - Feline Calicivirus Vaccine, Killed Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Feline Calicivirus Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.210 Feline Calicivirus Vaccine, Killed Virus. Feline Calicivirus Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed which...

  10. 9 CFR 113.211 - Feline Rhinotracheitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Feline Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.211 Feline Rhinotracheitis Vaccine, Killed Virus. Feline Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  11. 9 CFR 113.210 - Feline Calicivirus Vaccine, Killed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Feline Calicivirus Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.210 Feline Calicivirus Vaccine, Killed Virus. Feline Calicivirus Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed which...

  12. 9 CFR 113.203 - Feline Panleukopenia Vaccine, Killed Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Feline Panleukopenia Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.203 Feline Panleukopenia Vaccine, Killed Virus. Feline Panleukopenia Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed which...

  13. 9 CFR 113.211 - Feline Rhinotracheitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Feline Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.211 Feline Rhinotracheitis Vaccine, Killed Virus. Feline Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  14. 9 CFR 113.216 - Bovine Rhinotracheitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Bovine Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.216 Bovine Rhinotracheitis Vaccine, Killed Virus. Infectious Bovine Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  15. 9 CFR 113.211 - Feline Rhinotracheitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Feline Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.211 Feline Rhinotracheitis Vaccine, Killed Virus. Feline Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  16. 9 CFR 113.216 - Bovine Rhinotracheitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Bovine Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.216 Bovine Rhinotracheitis Vaccine, Killed Virus. Infectious Bovine Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  17. 9 CFR 113.203 - Feline Panleukopenia Vaccine, Killed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Feline Panleukopenia Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.203 Feline Panleukopenia Vaccine, Killed Virus. Feline Panleukopenia Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed which...

  18. 9 CFR 113.210 - Feline Calicivirus Vaccine, Killed Virus.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Feline Calicivirus Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.210 Feline Calicivirus Vaccine, Killed Virus. Feline Calicivirus Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed which...

  19. 9 CFR 113.211 - Feline Rhinotracheitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Feline Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.211 Feline Rhinotracheitis Vaccine, Killed Virus. Feline Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  20. Radiolabel ratio method for measuring pulmonary clearance of intratracheal bacterial challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaForce, F.M.; Boose, D.S.

    Calculation of bacterial clearance is a fundamental step in any study of in situ lung antibacterial defenses. A method is described whereby about 85% of a radiolabeled bacterial inoculum was consistently introduced into the bronchopulmonary tree of a mouse by the intratracheal route. Mice were then killed 1 and 4 hours later; their lungs were removed aseptically and homogenized, and viable bacteria and radiolabel counts were determined. Radiolabel counts fell slowly, and more than 80% of the original radiolabel was still present in homogenized lung samples from animals sacrificed 4 hours after challenge. Bacteria/isotope ratios for the bacterial inoculum andmore » homogenized lung samples from animals sacrificed immediately after challenge were very similar. Bacterial clearance values were the same whether computed from bacterial counts alone or according to a radiolabel ratio method whereby the change in the bacteria/isotope ratio in ground lung aliquots was divided by a similar ratio from bacteria used to inoculate animals. Some contamination resulted from oral streptococci being swept into the bronchopulmonary free during the aspiration process. This contamination was not a problem when penicillin was incorporated into the agar and penicillin-resistant strains were used for the bacterial challenges.« less

  1. Birkhoff theorem and conformal Killing-Yano tensors

    NASA Astrophysics Data System (ADS)

    Ferrando, Joan Josep; Sáez, Juan Antonio

    2015-06-01

    We analyze the main geometric conditions imposed by the hypothesis of the Jebsen-Birkhoff theorem. We show that the result (existence of an additional Killing vector) does not necessarily require a three-dimensional isometry group on two-dimensional orbits but only the existence of a conformal Killing-Yano tensor. In this approach the (additional) isometry appears as the known invariant Killing vector that the -metrics admit.

  2. Antibacterial activity of antipsychotic agents, their association with lipid nanocapsules and its impact on the properties of the nanocarriers and on antibacterial activity.

    PubMed

    Nehme, Hassan; Saulnier, Patrick; Ramadan, Alyaa A; Cassisa, Viviane; Guillet, Catherine; Eveillard, Matthieu; Umerska, Anita

    2018-01-01

    Bacterial antibiotic resistance is an emerging public health problem worldwide; therefore, new therapeutic strategies are needed. Many studies have described antipsychotic compounds that present antibacterial activity. Hence, the aims of this study were to evaluate the in vitro antibacterial activity of antipsychotics belonging to different chemical families, to assess the influence of their association with lipid nanocapsules (LNCs) on their antimicrobial activity as well as drug release and to study the uptake of LNCs by bacterial cells. Antibacterial activity was evaluated against Gram-positive Staphylococcus aureus and Gram negative Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii by minimum inhibitory concentration (MIC) assay, and the capability of killing tested microorganisms was evaluated by time kill assay. LNCs were prepared by phase inversion method, and the antipsychotic agents were incorporated using pre-loading and post-loading strategies. Only phenothiazines and thioxanthenes showed antibacterial activity, which was independent of antibiotic-resistance patterns. Loading the nanocarriers with the drugs affected the properties of the former, particularly their zeta potential. The release rate depended on the drug and its concentration-a maximum of released drug of less than 40% over 24 hours was observed for promazine. The influence of the drug associations on the antibacterial properties was concentration-dependent since, at low concentrations (high nanocarrier/drug ratio), the activity was lost, probably due to the high affinity of the drug to nanocarriers and slow release rate, whereas at higher concentrations, the activity was well maintained for the majority of the drugs. Chlorpromazine and thioridazine increased the uptake of the LNCs by bacteria compared with blank LNCs, even below the minimum inhibitory concentration.

  3. Application of bacterial cytological profiling to crude natural product extracts reveals the antibacterial arsenal of Bacillus subtilis.

    PubMed

    Nonejuie, Poochit; Trial, Rachelle M; Newton, Gerald L; Lamsa, Anne; Ranmali Perera, Varahenage; Aguilar, Julieta; Liu, Wei-Ting; Dorrestein, Pieter C; Pogliano, Joe; Pogliano, Kit

    2016-05-01

    Although most clinically used antibiotics are derived from natural products, identifying new antibacterial molecules from natural product extracts is difficult due to the complexity of these extracts and the limited tools to correlate biological activity with specific molecules. Here, we show that bacterial cytological profiling (BCP) provides a rapid method for mechanism of action determination on plates and in complex natural product extracts and for activity-guided purification. We prepared an extract from Bacillus subtilis 3610 that killed the Escherichia coli lptD mutant and used BCP to observe two types of bioactivities in the unfractionated extract: inhibition of translation and permeablization of the cytoplasmic membrane. We used BCP to guide purification of the molecules responsible for each activity, identifying the translation inhibitors bacillaene and bacillaene B (glycosylated bacillaene) and demonstrating that two molecules contribute to cell permeabilitization, the bacteriocin subtilosin and the cyclic peptide sporulation killing factor. Our results suggest that bacillaene mediates translational arrest, and show that bacillaene B has a minimum inhibitory concentration 10 × higher than unmodified bacillaene. Finally, we show that BCP can be used to screen strains on an agar plate without the need for extract preparation, greatly saving time and improving throughput. Thus, BCP simplifies the isolation of novel natural products, by identifying strains, crude extracts and fractions with interesting bioactivities even when multiple activities are present, allowing investigators to focus labor-intensive steps on those with desired activities.

  4. Application of bacterial cytological profiling to crude natural product extracts reveals the antibacterial arsenal of Bacillus subtilis

    PubMed Central

    Nonejuie, Poochit; Trial, Rachelle M.; Newton, Gerald L.; Lamsa, Anne; Perera, Varahenage Ranmali; Aguilar, Julieta; Liu, Wei-Ting; Dorrestein, Pieter C.; Pogliano, Joe; Pogliano, Kit

    2016-01-01

    Although most clinically used antibiotics are derived from natural products, identifying new antibacterial molecules from natural product extracts is difficult due to the complexity of these extracts and the limited tools to correlate biological activity with specific molecules. Here, we show that bacterial cytological profiling (BCP) provides a rapid method for mechanism of action determination on plates and in complex natural product extracts and for activity-guided purification. We prepared an extract from Bacillus subtilis 3610 that killed the Escherichia coli lptD mutant and used BCP to observe two types of bioactivities in the unfractionated extract: inhibition of translation and permeablization of the cytoplasmic membrane. We used BCP to guide purification of the molecules responsible for each activity, identifying the translation inhibitors bacillaene and bacillaene B (glycosylated bacillaene) and demonstrating that two molecules contribute to cell permeabilitization, the bacteriocin subtilosin and the cyclic peptide sporulation killing factor. Our results suggest that bacillaene mediates translational arrest, and show that bacillaene B has a minimum inhibitory concentration 10 × higher than unmodified bacillaene. Finally, we show that BCP can be used to screen strains on an agar plate without the need for extract preparation, greatly saving time and improving throughput. Thus, BCP simplifies the isolation of novel natural products, by identifying strains, crude extracts and fractions with interesting bioactivities even when multiple activities are present, allowing investigators to focus labor-intensive steps on those with desired activities. PMID:26648120

  5. Stem bark extract and fraction of Persea americana (Mill.) exhibits bactericidal activities against strains of bacillus cereus associated with food poisoning.

    PubMed

    Akinpelu, David A; Aiyegoro, Olayinka A; Akinpelu, Oluseun F; Okoh, Anthony I

    2014-12-30

    The study investigates the in vitro antibacterial potentials of stem bark extracts of Persea americana on strains of Bacillus cereus implicated in food poisoning. The crude stem bark extracts and butanolic fraction at a concentration of 25 mg/mL and 10 mg/mL, respectively, exhibited antibacterial activities against test isolates. The zones of inhibition exhibited by the crude extract and the fraction ranged between 10 mm and 26 mm, while the minimum inhibitory concentration values ranged between 0.78 and 5.00 mg/mL. The minimum bactericidal concentrations ranged between 3.12 mg/mL-12.5 mg/mL and 1.25-10 mg/mL for the extract and the fraction, respectively. The butanolic fraction killed 91.49% of the test isolates at a concentration of 2× MIC after 60 min of contact time, while a 100% killing was achieved after the test bacterial cells were exposed to the butanolic fraction at a concentration of 3× MIC after 90 min contact time. Intracellular protein and potassium ion leaked out of the test bacterial cells when exposed to certain concentrations of the fraction; this is an indication of bacterial cell wall disruptions by the extract's butanolic fraction and, thus, caused a biocidal effect on the cells, as evident in the killing rate test results.

  6. Antibody-targeted interleukin 2 stimulates T-cell killing of autologous tumor cells.

    PubMed Central

    Gillies, S D; Reilly, E B; Lo, K M; Reisfeld, R A

    1992-01-01

    A genetically engineered fusion protein consisting of a chimeric anti-ganglioside GD2 antibody (ch14.18) and interleukin 2 (IL2) was tested for its ability to enhance the killing of autologous GD2-expressing melanoma target cells by a tumor-infiltrating lymphocyte line (660 TIL). The fusion of IL2 to the carboxyl terminus of the immunoglobulin heavy chain did not reduce IL2 activity as measured in a standard proliferation assay using either mouse or human T-cell lines. Antigen-binding activity was greater than that of the native chimeric antibody. The ability of resting 660 TIL cells to kill their autologous GD2-positive target cells was enhanced if the target cells were first coated with the fusion protein. This stimulation of killing was greater than that of uncoated cells in the presence of equivalent or higher concentrations of free IL2. Such antibody-cytokine fusion proteins may prove useful in targeting the biological effect of IL2 and other cytokines to tumor cells and in this way stimulate their immune destruction. Images PMID:1741398

  7. An analysis of the effectiveness of heat-killed lactic acid bacteria in alleviating allergic diseases.

    PubMed

    Sashihara, T; Sueki, N; Ikegami, S

    2006-08-01

    Allergic diseases are reported to be caused by a skew in the balance between T helper type 1 and 2 cells. Because some lactic acid bacteria have been shown to stimulate IL-12 (p70) production, which in turn shifts the balance between the T helper type 1 and 2 cell response from the latter to the former, they have the potential to either prevent or ameliorate disease conditions or both. They have therefore been extensively studied in the recent past for their probiotic activities. Nevertheless, much less information is available concerning the microbial factors that determine the strain-dependent ability to affect the production of cytokines. The objectives of our study were first to select potentially probiotic lactobacilli that strongly stimulate cytokine production in vitro, and then to determine whether the selected Lactobacillus strains could suppress antigen-specific IgE production in vivo by using allergic model animals. Finally, our investigation was extended to analyze which bacterial components were responsible for the observed biological activity. Twenty strains of heat-killed lactobacilli isolated from humans were screened for their stimulatory activity for the production of IL-12 (p70) by murine splenocytes in vitro. The results showed that some strains of Lactobacillus plantarum and Lactobacillus gasseri had a higher stimulatory activity for IL-12 (p70) production than the other lactobacilli tested; however, this effect was strain dependent rather than species dependent. Oral administration of the heat-killed strains that showed higher stimulatory activity for IL-12 (p70) production tended to reduce the serum antigen-specific IgE levels in ovalbumin-sensitized BALB/c mice compared with the controls. Among the lactobacilli tested, L. gasseri OLL2809 showed the highest activity in reducing the level of antigen-specific IgE. Furthermore, the stimulatory activity for IL-12 (p70) production was found to be reduced after treating the lactobacilli with N

  8. 78 FR 43063 - Drawbridge Operation Regulations; Arthur Kill, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-19

    ... Regulations; Arthur Kill, NY AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation from regulations... governing the operation of the Arthur Kill AK Railroad Bridge across Arthur Kill, mile 11.6, between Staten...) 366-9826. SUPPLEMENTARY INFORMATION: The AK Railroad Bridge, across Arthur Kill, mile 11.6, between...

  9. Age and sex composition of seals killed by polar bears in the eastern Beaufort Sea.

    PubMed

    Pilfold, Nicholas W; Derocher, Andrew E; Stirling, Ian; Richardson, Evan; Andriashek, Dennis

    2012-01-01

    Polar bears (Ursus maritimus) of the Beaufort Sea enter hyperphagia in spring and gain fat reserves to survive periods of low prey availability. We collected information on seals killed by polar bears (n=650) and hunting attempts on ringed seal (Pusa hispida) lairs (n=1396) observed from a helicopter during polar bear mark-recapture studies in the eastern Beaufort Sea in spring in 1985-2011. We investigated how temporal shifts in ringed seal reproduction affect kill composition and the intraspecific vulnerabilities of ringed seals to polar bear predation. Polar bears primarily preyed on ringed seals (90.2%) while bearded seals (Erignathus barbatus) only comprised 9.8% of the kills, but 33% of the biomass. Adults comprised 43.6% (150/344) of the ringed seals killed, while their pups comprised 38.4% (132/344). Juvenile ringed seals were killed at the lowest proportion, comprising 18.0% (62/344) of the ringed seal kills. The proportion of ringed seal pups was highest between 2007-2011, in association with high ringed seal productivity. Half of the adult ringed seal kills were ≥ 21 years (60/121), and kill rates of adults increased following the peak of parturition. Determination of sex from DNA revealed that polar bears killed adult male and adult female ringed seals equally (0.50, n=78). The number of hunting attempts at ringed seal subnivean lair sites was positively correlated with the number of pup kills (r(2) =0.30, P=0.04), but was not correlated with the number of adult kills (P=0.37). Results are consistent with decadal trends in ringed seal productivity, with low numbers of pups killed by polar bears in spring in years of low pup productivity, and conversely when pup productivity was high. Vulnerability of adult ringed seals to predation increased in relation to reproductive activities and age, but not gender.

  10. Functional drug screening reveals anticonvulsants as enhancers of mTOR-independent autophagic killing of Mycobacterium tuberculosis through inositol depletion

    PubMed Central

    Schiebler, Mark; Brown, Karen; Hegyi, Krisztina; Newton, Sandra M; Renna, Maurizio; Hepburn, Lucy; Klapholz, Catherine; Coulter, Sarah; Obregón-Henao, Andres; Henao Tamayo, Marcela; Basaraba, Randall; Kampmann, Beate; Henry, Katherine M; Burgon, Joseph; Renshaw, Stephen A; Fleming, Angeleen; Kay, Robert R; Anderson, Karen E; Hawkins, Phillip T; Ordway, Diane J; Rubinsztein, David C; Floto, Rodrigo Andres

    2015-01-01

    Mycobacterium tuberculosis (MTB) remains a major challenge to global health made worse by the spread of multidrug resistance. We therefore examined whether stimulating intracellular killing of mycobacteria through pharmacological enhancement of macroautophagy might provide a novel therapeutic strategy. Despite the resistance of MTB to killing by basal autophagy, cell-based screening of FDA-approved drugs revealed two anticonvulsants, carbamazepine and valproic acid, that were able to stimulate autophagic killing of intracellular M. tuberculosis within primary human macrophages at concentrations achievable in humans. Using a zebrafish model, we show that carbamazepine can stimulate autophagy in vivo and enhance clearance of M. marinum, while in mice infected with a highly virulent multidrug-resistant MTB strain, carbamazepine treatment reduced bacterial burden, improved lung pathology and stimulated adaptive immunity. We show that carbamazepine induces antimicrobial autophagy through a novel, evolutionarily conserved, mTOR-independent pathway controlled by cellular depletion of myo-inositol. While strain-specific differences in susceptibility to in vivo carbamazepine treatment may exist, autophagy enhancement by repurposed drugs provides an easily implementable potential therapy for the treatment of multidrug-resistant mycobacterial infection. PMID:25535254

  11. Functional drug screening reveals anticonvulsants as enhancers of mTOR-independent autophagic killing of Mycobacterium tuberculosis through inositol depletion.

    PubMed

    Schiebler, Mark; Brown, Karen; Hegyi, Krisztina; Newton, Sandra M; Renna, Maurizio; Hepburn, Lucy; Klapholz, Catherine; Coulter, Sarah; Obregón-Henao, Andres; Henao Tamayo, Marcela; Basaraba, Randall; Kampmann, Beate; Henry, Katherine M; Burgon, Joseph; Renshaw, Stephen A; Fleming, Angeleen; Kay, Robert R; Anderson, Karen E; Hawkins, Phillip T; Ordway, Diane J; Rubinsztein, David C; Floto, Rodrigo Andres

    2015-02-01

    Mycobacterium tuberculosis (MTB) remains a major challenge to global health made worse by the spread of multidrug resistance. We therefore examined whether stimulating intracellular killing of mycobacteria through pharmacological enhancement of macroautophagy might provide a novel therapeutic strategy. Despite the resistance of MTB to killing by basal autophagy, cell-based screening of FDA-approved drugs revealed two anticonvulsants, carbamazepine and valproic acid, that were able to stimulate autophagic killing of intracellular M. tuberculosis within primary human macrophages at concentrations achievable in humans. Using a zebrafish model, we show that carbamazepine can stimulate autophagy in vivo and enhance clearance of M. marinum, while in mice infected with a highly virulent multidrug-resistant MTB strain, carbamazepine treatment reduced bacterial burden, improved lung pathology and stimulated adaptive immunity. We show that carbamazepine induces antimicrobial autophagy through a novel, evolutionarily conserved, mTOR-independent pathway controlled by cellular depletion of myo-inositol. While strain-specific differences in susceptibility to in vivo carbamazepine treatment may exist, autophagy enhancement by repurposed drugs provides an easily implementable potential therapy for the treatment of multidrug-resistant mycobacterial infection. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.

  12. Safety of the recombinant cholera toxin B subunit, killed whole-cell (rBS-WC) oral cholera vaccine in pregnancy.

    PubMed

    Hashim, Ramadhan; Khatib, Ahmed M; Enwere, Godwin; Park, Jin Kyung; Reyburn, Rita; Ali, Mohammad; Chang, Na Yoon; Kim, Deok Ryun; Ley, Benedikt; Thriemer, Kamala; Lopez, Anna Lena; Clemens, John D; Deen, Jacqueline L; Shin, Sunheang; Schaetti, Christian; Hutubessy, Raymond; Aguado, Maria Teresa; Kieny, Marie Paule; Sack, David; Obaro, Stephen; Shaame, Attiye J; Ali, Said M; Saleh, Abdul A; von Seidlein, Lorenz; Jiddawi, Mohamed S

    2012-01-01

    Mass vaccinations are a main strategy in the deployment of oral cholera vaccines. Campaigns avoid giving vaccine to pregnant women because of the absence of safety data of the killed whole-cell oral cholera (rBS-WC) vaccine. Balancing this concern is the known higher risk of cholera and of complications of pregnancy should cholera occur in these women, as well as the lack of expected adverse events from a killed oral bacterial vaccine. From January to February 2009, a mass rBS-WC vaccination campaign of persons over two years of age was conducted in an urban and a rural area (population 51,151) in Zanzibar. Pregnant women were advised not to participate in the campaign. More than nine months after the last dose of the vaccine was administered, we visited all women between 15 and 50 years of age living in the study area. The outcome of pregnancies that were inadvertently exposed to at least one oral cholera vaccine dose and those that were not exposed was evaluated. 13,736 (94%) of the target women in the study site were interviewed. 1,151 (79%) of the 1,453 deliveries in 2009 occurred during the period when foetal exposure to the vaccine could have occurred. 955 (83%) out of these 1,151 mothers had not been vaccinated; the remaining 196 (17%) mothers had received at least one dose of the oral cholera vaccine. There were no statistically significant differences in the odds ratios for birth outcomes among the exposed and unexposed pregnancies. We found no statistically significant evidence of a harmful effect of gestational exposure to the rBS-WC vaccine. These findings, along with the absence of a rational basis for expecting a risk from this killed oral bacterial vaccine, are reassuring but the study had insufficient power to detect infrequent events. ClinicalTrials.gov NCT00709410.

  13. Probing Kill Mechanisms and Tuning Energetic Biocides

    DTIC Science & Technology

    2018-02-01

    Satcher, J. H., Jr.; Poco, J. F. Nanostructured Energetic Materials Using Sol−Gel Methodologies . J. Non -Cryst. Solids 2001, 285, 338−345. (16) Seo, H...customary unit. 2" " Abstract This project focuses on developing a methodology to accurately assess the time- temperature-kill relationships for spores...Task 1: Develop experimental protocol Task 2: Characterize Time-Temperature killing relationship Task 3: Determine kill mechanisms Task 4: Expose

  14. Honor Killing: Where Pride Defeats Reason.

    PubMed

    Kanchan, Tanuj; Tandon, Abhishek; Krishan, Kewal

    2016-12-01

    Honor killings are graceless and ferocious murders by chauvinists with an antediluvian mind. These are categorized separately because these killings are committed for the prime reason of satisfying the ego of the people whom the victim trusts and always looks up to for support and protection. It is for this sole reason that honor killings demand strict and stern punishment, not only for the person who committed the murder but also for any person who contributed or was party to the act. A positive change can occur with stricter legislation and changes in the ethos of the society we live in today.

  15. Advancements in dynamic kill calculations for blowout wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kouba, G.E.; MacDougall, G.R.; Schumacher, B.W.

    1993-09-01

    This paper addresses the development, interpretation, and use of dynamic kill equations. To this end, three simple calculation techniques are developed for determining the minimum dynamic kill rate. Two techniques contain only single-phase calculations and are independent of reservoir inflow performance. Despite these limitations, these two methods are useful for bracketing the minimum flow rates necessary to kill a blowing well. For the third technique, a simplified mechanistic multiphase-flow model is used to determine a most-probable minimum kill rate.

  16. Casp8p41 generated by HIV protease kills CD4 T cells through direct Bak activation

    PubMed Central

    Sainski, Amy M.; Dai, Haiming; Natesampillai, Sekar; Pang, Yuan-Ping; Bren, Gary D.; Cummins, Nathan W.; Correia, Cristina; Meng, X. Wei; Tarara, James E.; Ramirez-Alvarado, Marina; Katzmann, David J.; Ochsenbauer, Christina; Kappes, John C.

    2014-01-01

    Previous studies have shown that human immunodeficiency virus (HIV) protease cleaves procaspase 8 to a fragment, termed Casp8p41, that lacks caspase activity but nonetheless contributes to T cell apoptosis. Herein, we show that Casp8p41 contains a domain that interacts with the BH3-binding groove of pro-apoptotic Bak to cause Bak oligomerization, Bak-mediated membrane permeabilization, and cell death. Levels of active Bak are higher in HIV-infected T cells that express Casp8p41. Conversely, targeted mutations in the Bak-interacting domain diminish Bak binding and Casp8p41-mediated cell death. Similar mutations in procaspase 8 impair the ability of HIV to kill infected T cells. These observations support a novel paradigm in which HIV converts a normal cellular constituent into a direct activator that functions like a BH3-only protein. PMID:25246614

  17. Cathelicidins Inhibit Escherichia coli–Induced TLR2 and TLR4 Activation in a Viability-Dependent Manner

    PubMed Central

    Coorens, Maarten; Schneider, Viktoria A. F.; Meijerink, Marjolein; Wells, Jerry M.; Scheenstra, Maaike R.

    2017-01-01

    Activation of the immune system needs to be tightly regulated to provide protection against infections and, at the same time, to prevent excessive inflammation to limit collateral damage to the host. This tight regulation includes regulating the activation of TLRs, which are key players in the recognition of invading microbes. A group of short cationic antimicrobial peptides, called cathelicidins, have previously been shown to modulate TLR activation by synthetic or purified TLR ligands and may play an important role in the regulation of inflammation during infections. However, little is known about how these cathelicidins affect TLR activation in the context of complete and viable bacteria. In this article, we show that chicken cathelicidin-2 kills Escherichia coli in an immunogenically silent fashion. Our results show that chicken cathelicidin-2 kills E. coli by permeabilizing the bacterial inner membrane and subsequently binds the outer membrane–derived lipoproteins and LPS to inhibit TLR2 and TLR4 activation, respectively. In addition, other cathelicidins, including human, mouse, pig, and dog cathelicidins, which lack antimicrobial activity under cell culture conditions, only inhibit macrophage activation by nonviable E. coli. In total, this study shows that cathelicidins do not affect immune activation by viable bacteria and only inhibit inflammation when bacterial viability is lost. Therefore, cathelicidins provide a novel mechanism by which the immune system can discriminate between viable and nonviable Gram-negative bacteria to tune the immune response, thereby limiting collateral damage to the host and the risk for sepsis. PMID:28710255

  18. Investigation of bacterial resistance to the immune system response: cepacian depolymerisation by reactive oxygen species.

    PubMed

    Cuzzi, Bruno; Cescutti, Paola; Furlanis, Linda; Lagatolla, Cristina; Sturiale, Luisa; Garozzo, Domenico; Rizzo, Roberto

    2012-08-01

    Reactive oxygen species (ROS) are part of the weapons used by the immune system to kill and degrade infecting microorganisms. Bacteria can produce macromolecules, such as polysaccharides, that are able to scavenge ROS. Species belonging to the Burkholderia cepacia complex are involved in serious lung infection in cystic fibrosis patients and produce a characteristic polysaccharide, cepacian. The interaction between ROS and bacterial polysaccharides was first investigated by killing experiments, where bacteria cells were incubated with sodium hypochlorite (NaClO) with and without prior incubation with cepacian. The results showed that the polysaccharide had a protective effect towards bacterial cells. Cepacian was then treated with different concentrations of NaClO and the course of reactions was followed by means of capillary viscometry. The degradation products were characterised by size-exclusion chromatography, NMR and mass spectrometry. The results showed that hypochlorite depolymerised cepacian, removed side chains and O-acetyl groups, but did not cleave the glycosidic bond between glucuronic acid and rhamnose. The structure of some oligomers produced by NaClO oxidation is reported.

  19. Bioprospecting saline gradient of a Wildlife Sanctuary for bacterial diversity and antimicrobial activities.

    PubMed

    DeLuca, Mara; King, Riley; Morsy, Mustafa

    2017-08-11

    Antibiotic-resistant bacteria are becoming a global crisis, causing death of thousands of people and significant economic impact. The discovery of novel antibiotics is crucial to saving lives and reducing healthcare costs. To address the antibiotic-resistant crisis, in collaboration the Small World Initiative, which aims to crowdsource novel antibiotic discovery, this study aimed to identify antimicrobial producing bacteria and bacterial diversity in the soil of the Stimpson Wildlife Sanctuary, an inland area with a soil salt gradient. Approximately 4500 bacterial colonies were screened for antimicrobial activity and roughly 100 bacteria were identified as antimicrobial producers, which belong to Entrococcaceae (74%), Yersiniaceae (19%), and unidentified families (7%). Several bacterial isolates showed production of broad spectrum inhibitory compounds, while others were more specific to certain pathogens. The data obtained from the current study provide a resource for further characterization of the soil bacteria with antimicrobial activity, with an aim to discover novel ones. The study showed no correlation between soil salt level and the presence of bacteria with antimicrobial activities. However, most of the identified antimicrobial producing bacteria do not belong to actinomycetes, the most common phyla of antibiotic producing bacteria and this could potentially lead to the discovery of novel antibiotics.

  20. Azurophil Granule Proteins Constitute the Major Mycobactericidal Proteins in Human Neutrophils and Enhance the Killing of Mycobacteria in Macrophages

    PubMed Central

    Jena, Prajna; Mohanty, Soumitra; Mohanty, Tirthankar; Kallert, Stephanie; Morgelin, Matthias; Lindstrøm, Thomas; Borregaard, Niels; Stenger, Steffen

    2012-01-01

    Pathogenic mycobacteria reside in, and are in turn controlled by, macrophages. However, emerging data suggest that neutrophils also play a critical role in innate immunity to tuberculosis, presumably by their different antibacterial granule proteins. In this study, we purified neutrophil azurophil and specific granules and systematically analyzed the antimycobacterial activity of some purified azurophil and specific granule proteins against M. smegmatis, M. bovis-BCG and M. tuberculosis H37Rv. Using gel overlay and colony forming unit assays we showed that the defensin-depleted azurophil granule proteins (AZP) were more active against mycobacteria compared to other granule proteins and cytosolic proteins. The proteins showing antimycobacterial activity were identified by MALDI-TOF mass spectrometry. Electron microscopic studies demonstrate that the AZP disintegrate bacterial cell membrane resulting in killing of mycobacteria. Exogenous addition of AZP to murine macrophage RAW 264.7, THP-1 and peripheral blood monocyte-derived macrophages significantly reduced the intracellular survival of mycobacteria without exhibiting cytotoxic activity on macrophages. Immunofluorescence studies showed that macrophages actively endocytose neutrophil granular proteins. Treatment with AZP resulted in increase in co-localization of BCG containing phagosomes with lysosomes but not in increase of autophagy. These data demonstrate that neutrophil azurophil proteins may play an important role in controlling intracellular survival of mycobacteria in macrophages. PMID:23251364

  1. A study on the ability of quaternary ammonium groups attached to a polyurethane foam wound dressing to inhibit bacterial attachment and biofilm formation.

    PubMed

    Tran, Phat L; Hamood, Abdul N; de Souza, Anselm; Schultz, Gregory; Liesenfeld, Bernd; Mehta, Dilip; Reid, Ted W

    2015-01-01

    Bacterial infection of acute and chronic wounds impedes wound healing significantly. Part of this impediment is the ability of bacterial pathogens to grow in wound dressings. In this study, we examined the effectiveness of a polyurethane (PU) foam wound dressings coated with poly diallyl-dimethylammonium chloride (pDADMAC-PU) to inhibit the growth and biofilm development by three main wound pathogens, Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii, within the wound dressing. pDADMAC-PU inhibited the growth of all three pathogens. Time-kill curves were conducted both with and without serum to determine the killing kinetic of pDADMAC-PU. pDADMAC-PU killed S. aureus, A. baumannii, and P. aeruginosa. The effect of pDADMAC-PU on biofilm development was analyzed quantitatively and qualitatively. Quantitative analysis, colony-forming unit assay, revealed that pDADMAC-PU dressing produced more than eight log reduction in biofilm formation by each pathogen. Visualization of the biofilms by either confocal laser scanning microscopy or scanning electron microscopy confirmed these findings. In addition, it was found that the pDADMAC-PU-treated foam totally inhibited migration of bacteria through the foam for all three bacterial strains. These results suggest that pDADMAC-PU is an effective wound dressing that inhibits the growth of wound pathogens both within the wound and in the wound dressing. © 2014 by the Wound Healing Society.

  2. Silver nanoparticle-doped zirconia capillaries for enhanced bacterial filtration.

    PubMed

    Wehling, Julia; Köser, Jan; Lindner, Patrick; Lüder, Christian; Beutel, Sascha; Kroll, Stephen; Rezwan, Kurosch

    2015-03-01

    Membrane clogging and biofilm formation are the most serious problems during water filtration. Silver nanoparticle (Agnano) coatings on filtration membranes can prevent bacterial adhesion and the initiation of biofilm formation. In this study, Agnano are immobilized via direct reduction on porous zirconia capillary membranes to generate a nanocomposite material combining the advantages of ceramics being chemically, thermally and mechanically stable with nanosilver, an efficient broadband bactericide for water decontamination. The filtration of bacterial suspensions of the fecal contaminant Escherichia coli reveals highly efficient bacterial retention capacities of the capillaries of 8 log reduction values, fulfilling the requirements on safe drinking water according to the U.S. Environmental Protection Agency. Maximum bacterial loading capacities of the capillary membranes are determined to be 3×10(9)bacterialcells/750mm(2) capillary surface until back flushing is recommendable. The immobilized Agnano remain accessible and exhibit strong bactericidal properties by killing retained bacteria up to maximum bacterial loads of 6×10(8)bacterialcells/750mm(2) capillary surface and the regenerated membranes regain filtration efficiencies of 95-100%. Silver release is moderate as only 0.8% of the initial silver loading is leached during a three-day filtration experiment leading to average silver contaminant levels of 100μg/L. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Regulatory cascade and biological activity of Beauveria bassiana oosporein that limits bacterial growth after host death

    PubMed Central

    Fan, Yanhua; Liu, Xi; Keyhani, Nemat O.; Tang, Guirong; Pei, Yan; Zhang, Wenwen; Tong, Sheng

    2017-01-01

    The regulatory network and biological functions of the fungal secondary metabolite oosporein have remained obscure. Beauveria bassiana has evolved the ability to parasitize insects and outcompete microbial challengers for assimilation of host nutrients. A novel zinc finger transcription factor, BbSmr1 (B. bassiana secondary metabolite regulator 1), was identified in a screen for oosporein overproduction. Deletion of Bbsmr1 resulted in up-regulation of the oosporein biosynthetic gene cluster (OpS genes) and constitutive oosporein production. Oosporein production was abolished in double mutants of Bbsmr1 and a second transcription factor, OpS3, within the oosporein gene cluster (ΔBbsmr1ΔOpS3), indicating that BbSmr1 acts as a negative regulator of OpS3 expression. Real-time quantitative PCR and a GFP promoter fusion construct of OpS1, the oosporein polyketide synthase, indicated that OpS1 is expressed mainly in insect cadavers at 24–48 h after death. Bacterial colony analysis in B. bassiana-infected insect hosts revealed increasing counts until host death, with a dramatic decrease (∼90%) after death that correlated with oosporein production. In vitro studies verified the inhibitory activity of oosporein against bacteria derived from insect cadavers. These results suggest that oosporein acts as an antimicrobial compound to limit microbial competition on B. bassiana-killed hosts, allowing the fungus to maximally use host nutrients to grow and sporulate on infected cadavers. PMID:28193896

  4. Regulatory cascade and biological activity of Beauveria bassiana oosporein that limits bacterial growth after host death.

    PubMed

    Fan, Yanhua; Liu, Xi; Keyhani, Nemat O; Tang, Guirong; Pei, Yan; Zhang, Wenwen; Tong, Sheng

    2017-02-28

    The regulatory network and biological functions of the fungal secondary metabolite oosporein have remained obscure. Beauveria bassiana has evolved the ability to parasitize insects and outcompete microbial challengers for assimilation of host nutrients. A novel zinc finger transcription factor, BbSmr1 ( B. bassiana secondary metabolite regulator 1), was identified in a screen for oosporein overproduction. Deletion of Bbsmr1 resulted in up-regulation of the oosporein biosynthetic gene cluster ( OpS genes) and constitutive oosporein production. Oosporein production was abolished in double mutants of Bbsmr1 and a second transcription factor, OpS3 , within the oosporein gene cluster ( ΔBbsmr1ΔOpS3 ), indicating that BbSmr1 acts as a negative regulator of OpS3 expression. Real-time quantitative PCR and a GFP promoter fusion construct of OpS1 , the oosporein polyketide synthase, indicated that OpS1 is expressed mainly in insect cadavers at 24-48 h after death. Bacterial colony analysis in B. bassiana -infected insect hosts revealed increasing counts until host death, with a dramatic decrease (∼90%) after death that correlated with oosporein production. In vitro studies verified the inhibitory activity of oosporein against bacteria derived from insect cadavers. These results suggest that oosporein acts as an antimicrobial compound to limit microbial competition on B. bassiana -killed hosts, allowing the fungus to maximally use host nutrients to grow and sporulate on infected cadavers.

  5. Adaptation of the neutral bacterial comet assay to assess antimicrobial-mediated DNA double-strand breaks in Escherichia coli

    PubMed Central

    SOLANKY, DIPESH; HAYDEL, SHELLEY E.

    2012-01-01

    This study aimed to determine the mechanism of action of a natural antibacterial clay mineral mixture, designated CB, by investigating the induction of DNA double-strand breaks (DSBs) in Escherichia coli. To quantify DNA damage upon exposure to soluble antimicrobial compounds, we modified a bacterial neutral comet assay, which primarily associates the general length of an electrophoresed chromosome, or comet, with the degree of DSB-associated DNA damage. To appropriately account for antimicrobial-mediated strand fragmentation, suitable control reactions consisting of exposures to water, ethanol, kanamycin, and bleomycin were developed and optimized for the assay. Bacterial exposure to the CB clay resulted in significantly longer comet lengths, compared to water and kanamycin exposures, suggesting that the induction of DNA DSBs contributes to the killing activity of this antibacterial clay mineral mixture. The comet assay protocol described herein provides a general technique for evaluating soluble antimicrobial-derived DNA damage and for comparing DNA fragmentation between experimental and control assays. PMID:22940101

  6. Bacterial Pili exploit integrin machinery to promote immune activation and efficient blood-brain barrier penetration

    PubMed Central

    Banerjee, Anirban; Kim, Brandon J.; Carmona, Ellese M.; Cutting, Andrew S.; Gurney, Michael A.; Carlos, Chris; Feuer, Ralph; Prasadarao, Nemani V.; Doran, Kelly S.

    2011-01-01

    Group B Streptococcus (GBS) is the leading cause of meningitis in newborn infants. Bacterial cell surface appendages, known as pili, have been recently described in streptococcal pathogens, including GBS. The pilus tip adhesin, PilA, contributes to GBS adherence to blood-brain barrier (BBB) endothelium; however, the host receptor and the contribution of PilA in central nervous system (CNS) disease pathogenesis are unknown. Here we show that PilA binds collagen, which promotes GBS interaction with the α2β1 integrin resulting in activation of host chemokine expression and neutrophil recruitment during infection. Mice infected with the PilA-deficient mutant exhibit delayed mortality, a decrease in neutrophil infiltration and bacterial CNS dissemination. We find that PilA-mediated virulence is dependent on neutrophil influx as neutrophil depletion results in a decrease in BBB permeability and GBS–BBB penetration. Our results suggest that the bacterial pilus, specifically the PilA adhesin, has a dual role in immune activation and bacterial entry into the CNS. PMID:21897373

  7. Impact of environmental factors on couplings between bacterial community composition and ectoenzymatic activities in a lacustrine ecosystem.

    PubMed

    Boucher, Delphine; Debroas, Didier

    2009-10-01

    This study examined the effects of temporal changes in bacterial community composition (BCC) and environmental factors on potential ectoenzymatic activities (alpha-glucosidase, beta-glucosidase, alkaline phosphatase and leucine aminopeptidase) in a lacustrine ecosystem (Sep reservoir, France). BCC was assessed by terminal restriction fragment length polymorphism. Physical parameters, and inorganic and organic nutrient concentrations (dissolved carbohydrates and proteins) were measured in lakes and tributaries. According to the multivariate statistics (redundancy analysis), physical and chemical factors explained the largest part of leucine aminopeptidase activity, whereas the temporal changes of other ectoenzymatic activities were partly dependent on the variations in the BCC. In particular, the occurrence of occasional bacterial populations seemed to explain a lot of the variation in rates and patterns of polymer hydrolysis. The relation observed in this study between the bacterial structure and activity is discussed within the framework of biodiversity-ecosystem functioning.

  8. Road-Killed Animals as Resources for Ecological Studies.

    ERIC Educational Resources Information Center

    Adams, Clark E.

    1983-01-01

    Summarizes 19 literature sources identifying road-killed vertebrates and frequency of kill by numbers. Examples of how these animals can be incorporated into curricula (integrating biology, society, people, and values) are given, followed by an illustrated example of how a road-killed raccoon's skull demonstrated a human/wildlife interaction prior…

  9. Decreased Killing Activity of Micafungin Against Candida guilliermondii, Candida lusitaniae, and Candida kefyr in the Presence of Human Serum.

    PubMed

    Saleh, Qasem; Kovács, Renátó; Kardos, Gábor; Gesztelyi, Rudolf; Kardos, Tamás; Bozó, Aliz; Majoros, László

    2017-09-01

    Currently, echinocandins are first-line drugs for treatment of invasive candidiasis. However, data on how serum influences killing activity of echinocandins against uncommon Candida species are limited. Therefore, the killing activity of micafungin in RPMI-1640 and in 50% serum was compared against Candida guilliermondii, Candida lusitaniae, and Candida kefyr. Minimum inhibitory concentration (MIC) ranges in RPMI-1640 were 0.5-1, 0.12-0.25, and 0.06-0.12 mg/L, respectively. In 50% serum, MICs increased 32- to 256-fold. In RPMI-1640 ≥ 0.25, ≥4, and 32 mg/L micafungin was fungicidal against all four C. kefyr (≤4.04 hours), two of three C. lusitaniae (≤16.10 hours), and two of three C. guilliermondii (≤12.30 hours), respectively. In 50% serum, all three species grew at ≤4 mg/L. Micafungin at 16-32 mg/L was fungicidal against all C. kefyr isolates (≤3.03 hours) and at 32 mg/L was fungistatic against one of three C. lusitaniae isolates. Two C. lusitaniae isolates and all three C. guilliermondii grew at all tested concentrations. Adding human serum to susceptibility test media drew attention to loss of fungicidal or fungistatic activity of micafungin in the presence of serum proteins, which is not predicted by MICs in case of C. kefyr and C. lusitaniae in RPMI-1640. Our results strongly suggest that micafungin and probably other echinocandins should be used with caution against rare Candida species.

  10. Igg Subclasses Targeting the Flagella of Salmonella enterica Serovar Typhimurium Can Mediate Phagocytosis and Bacterial Killing

    PubMed Central

    Goh, Yun Shan; Armour, Kathryn L; Clark, Michael R; Grant, Andrew J; Mastroeni, Pietro

    2016-01-01

    Invasive non-typhoidal Salmonella are a common cause of invasive disease in immuno-compromised individuals and in children. Multi-drug resistance poses challenges to disease control, with a critical need for effective vaccines. Flagellin is an attractive vaccine candidate due to surface exposure and high epitope copy number, but its potential as a target for opsonophacytic antibodies is unclear. We examined the effect of targeting flagella with different classes of IgG on the interaction between Salmonella Typhimurium and a human phagocyte-like cell line, THP-1. We tagged the FliC flagellar protein with a foreign CD52 mimotope (TSSPSAD) and bacteria were opsonized with a panel of humanised CD52 antibodies with the same antigen-binding V-region, but different constant regions. We found that IgG binding to flagella increases bacterial phagocytosis and reduces viable intracellular bacterial numbers. Opsonisation with IgG3, followed by IgG1, IgG4, and IgG2, resulted in the highest level of bacterial uptake and in the highest reduction in the intracellular load of viable bacteria. Taken together, our data provide proof-of-principle evidence that targeting flagella with antibodies can increase the antibacterial function of host cells, with IgG3 being the most potent subclass. These data will assist the rational design of urgently needed, optimised vaccines against iNTS disease. PMID:27366588

  11. Biocontrol of Sugarcane Smut Disease by Interference of Fungal Sexual Mating and Hyphal Growth Using a Bacterial Isolate.

    PubMed

    Liu, Shiyin; Lin, Nuoqiao; Chen, Yumei; Liang, Zhibin; Liao, Lisheng; Lv, Mingfa; Chen, Yufan; Tang, Yingxin; He, Fei; Chen, Shaohua; Zhou, Jianuan; Zhang, Lianhui

    2017-01-01

    Sugarcane smut is a fungal disease caused by Sporisorium scitamineum , which can cause severe economic losses in sugarcane industry. The infection depends on the mating of bipolar sporida to form a dikaryon and develops into hyphae to penetrate the meristematic tissue of sugarcane. In this study, we set to isolate bacterial strains capable of blocking the fungal mating and evaluate their potential in control of sugarcane smut disease. A bacterial isolate ST4 from rhizosphere displayed potent inhibitory activity against the mating of S. scitamineum bipolar sporida and was selected for further study. Phylogenetic analyses and biochemical characterization showed that the isolate was most similar to Pseudomonas guariconensis . Methanol extracts from minimum and potato dextrose agar (PDA) agar medium, on which strain ST4 has grown, showed strong inhibitory activity on the sexual mating of S. scitamineum sporida, without killing the haploid cells MAT-1 or MAT-2. Further analysis showed that only glucose, but not sucrose, maltose, and fructose, could support strain ST4 to produce antagonistic chemicals. Consistent with the above findings, greenhouse trials showed that addition of 2% glucose to the bacterial inoculum significantly increased the strain ST4 biocontrol efficiency against sugarcane smut disease by 77% than the inoculum without glucose. The results from this study depict a new strategy to screen for biocontrol agents for control and prevention of the sugarcane smut disease.

  12. Phytoplankton and bacterial community structures and their interaction during red-tide phenomena

    NASA Astrophysics Data System (ADS)

    Ismail, Mona Mohamed; Ibrahim, Hassan Abd Allah

    2017-09-01

    Phytoplankton and bacteria diversity were studied before, during and after red tide phenomena during spring season 2015 in the Eastern Harbour (E.H.) of Alexandria, Egypt. Fifty five species of phytoplankton were identified and represented different distinct classes "Bacillariophyceae; Dinophyceae, Chlorophyceae, Cyanophyceae and Eugelenophyceae". Also, Diatom formed the most dominant group. The average number of the phytoplankton density varied from 4.8 × 104 to 1.1 × 106 cell l-1 during the study period and Skeletonema costatum was the agent causing the red tide. The existence percentages of bacteria ranged from 2.6 to 17.9% on all media tested. The bacterial isolates on the nutrient agar medium represented the highest existence with a total percentage of 43.6%, followed by MSA medium (25.7%), while the lowest percentage was for the AA medium at 7.8%. However, twelve isolates were selected as representative for bacterial community during study interval. Based on the morphological, biochemical, physiological and enzymatic characteristics, the bacterial strains were described. Depending on the 16S rDNA gene sequence, three common antagonists were aligned as: Vibrio toranzoniae strain Vb 10.8, Ruegeria pelagia strain NBRC 102038 and Psychrobacter adeliensis strain DSM 15333. The interaction between these bacteria and S. costatum was studied. The growth of S. costatum was significantly lower whenever each bacterium was present as compared to axenic culture. More specifically, 30% (v/v) of the all tested bacteria showed the strongest algicidal activities, as all S. costatum cells were killed after two days. 10% of R. pelagia and P. adeliensis also showed significant algicidal activities within six days.

  13. Bacterial Community Composition and Extracellular Enzyme Activity in Temperate Streambed Sediment during Drying and Rewetting

    PubMed Central

    Pohlon, Elisabeth; Ochoa Fandino, Adriana; Marxsen, Jürgen

    2013-01-01

    Droughts are among the most important disturbance events for stream ecosystems; they not only affect stream hydrology but also the stream biota. Although desiccation of streams is common in Mediterranean regions, phases of dryness in headwaters have been observed more often and for longer periods in extended temperate regions, including Central Europe, reflecting global climate change and enhanced water withdrawal. The effects of desiccation and rewetting on the bacterial community composition and extracellular enzyme activity, a key process in the carbon flow of streams and rivers, were investigated in a typical Central European stream, the Breitenbach (Hesse, Germany). Wet streambed sediment is an important habitat in streams. It was sampled and exposed in the laboratory to different drying scenarios (fast, intermediate, slow) for 13 weeks, followed by rewetting of the sediment from the fast drying scenario via a sediment core perfusion technique for 2 weeks. Bacterial community structure was analyzed using CARD-FISH and TGGE, and extracellular enzyme activity was assessed using fluorogenic model substrates. During desiccation the bacterial community composition shifted toward composition in soil, exhibiting increasing proportions of Actinobacteria and Alphaproteobacteria and decreasing proportions of Bacteroidetes and Betaproteobacteria. Simultaneously the activities of extracellular enzymes decreased, most pronounced with aminopeptidases and less pronounced with enzymes involved in the degradation of polymeric carbohydrates. After rewetting, the general ecosystem functioning, with respect to extracellular enzyme activity, recovered after 10 to 14 days. However, the bacterial community composition had not yet achieved its original composition as in unaffected sediments within this time. Thus, whether the bacterial community eventually recovers completely after these events remains unknown. Perhaps this community undergoes permanent changes, especially after

  14. Antistaphylococcal Activity of DX-619 Alone and in Combination with Vancomycin, Teicoplanin, and Linezolid Assessed by Time-Kill Synergy Testing▿ †

    PubMed Central

    Credito, Kim; Lin, Genrong; Appelbaum, Peter C.

    2007-01-01

    Time-kill synergy studies testing in vitro activity of DX-619 alone and with added vancomycin, teicoplanin, or linezolid against 101 Staphylococcus aureus strains showed synergy between DX-619 and teicoplanin at 12 to 24 h in 72 strains and between DX-619 and vancomycin in 28 strains. No synergy was found with linezolid, and no antagonism was observed with any combination. PMID:17261625

  15. An in vitro time-kill assessment of linezolid and anaerobic bacteria.

    PubMed

    Yagi, Betty H; Zurenko, Gary E

    2003-02-01

    Linezolid is a novel oxazolidinone antibacterial agent active against staphylococci (including methicillin-resistant strains), enterococci (including vancomycin-resistant strains), streptococci (including penicillin-intermediate and -resistant Streptococcus pneumoniae), and other aerobic and facultative bacteria. The agent has also demonstrated activity against a broad spectrum of Gram-positive and Gram-negative anaerobic bacteria. Previous time-kill assessments have shown linezolid to be generally bacteriostatic against staphylococci and enterococci, and bactericidal against streptococci. In this study, an anaerobic glovebox technique was employed to conduct time-kill assessments for four strains of anaerobic Gram-positive, and seven strains of anaerobic Gram-negative bacteria. The time-kill experiment was performed using Anaerobe Broth medium. The drugs were tested at four-fold the minimum inhibitory concentration (MIC), or at the higher concentration of 8mg/L for linezolid, 2mg/L for clindamycin, and 8mg/L for metronidazole. Samples for viable count were taken at 0, 6, and 24h, and plated using the Bioscience International Autospiral DW. Exposure of samples to the aerobic environment during plating was held to less than 30min. Plates were counted after a 48h anaerobic incubation (37 degrees C). The species tested included Bacteroides fragilis (2), B. distasonis, B. thetaiotaomicron, Fusobacterium nucleatum, F. varium, Prevotella melaninogenica, Clostridium perfringens, Eubacterium lentum and Peptostreptococcus anaerobius (2). The activity of linezolid was compared to that of metronidazole and clindamycin, two standard anti-anaerobe agents. As expected, the control agents were very active in these assays. Metronidazole yielded log(10)CFU/mL reductions of 3.0 or greater for nine of ten strains; clindamycin yielded log(10)CFU/mL reductions of 2.0 or greater for six of 11 strains, and 3.0 or greater for three strains. Linezolid also produced significant in vitro

  16. Bacterial Standing Stock, Activity, and Carbon Production during Formation and Growth of Sea Ice in the Weddell Sea, Antarctica.

    PubMed

    Grossmann, S; Dieckmann, G S

    1994-08-01

    Bacterial response to formation and growth of sea ice was investigated during autumn in the northeastern Weddell Sea. Changes in standing stock, activity, and carbon production of bacteria were determined in successive stages of ice development. During initial ice formation, concentrations of bacterial cells, in the order of 1 x 10 to 3 x 10 liter, were not enhanced within the ice matrix. This suggests that physical enrichment of bacteria by ice crystals is not effective. Due to low concentrations of phytoplankton in the water column during freezing, incorporation of bacteria into newly formed ice via attachment to algal cells or aggregates was not recorded in this study. As soon as the ice had formed, the general metabolic activity of bacterial populations was strongly suppressed. Furthermore, the ratio of [H]leucine incorporation into proteins to [H]thymidine incorporation into DNA changed during ice growth. In thick pack ice, bacterial activity recovered and growth rates up to 0.6 day indicated actively dividing populations. However, biomass-specific utilization of organic compounds remained lower than in open water. Bacterial concentrations of up to 2.8 x 10 cells liter along with considerably enlarged cell volumes accumulated within thick pack ice, suggesting reduced mortality rates of bacteria within the small brine pores. In the course of ice development, bacterial carbon production increased from about 0.01 to 0.4 mug of C liter h. In thick ice, bacterial secondary production exceeded primary production of microalgae.

  17. Cytotoxic T cells use mechanical force to potentiate target cell killing

    PubMed Central

    Basu, Roshni; Whitlock, Benjamin M.; Husson, Julien; Le Floc’h, Audrey; Jin, Weiyang; Oyler-Yaniv, Alon; Dotiwala, Farokh; Giannone, Gregory; Hivroz, Claire; Biais, Nicolas; Lieberman, Judy; Kam, Lance C.; Huse, Morgan

    2016-01-01

    SUMMARY The immunological synapse formed between a cytotoxic T lymphocyte (CTL) and an infected or transformed target cell is a physically active structure capable of exerting mechanical force. Here, we investigated whether synaptic forces promote the destruction of target cells. CTLs kill by secreting toxic proteases and the pore forming protein perforin into the synapse. Biophysical experiments revealed a striking correlation between the magnitude of force exertion across the synapse and the speed of perforin pore formation on the target cell, implying that force potentiates cytotoxicity by enhancing perforin activity. Consistent with this interpretation, we found that increasing target cell tension augmented pore formation by perforin and killing by CTLs. Our data also indicate that CTLs coordinate perforin release and force exertion in space and time. These results reveal an unappreciated physical dimension to lymphocyte function and demonstrate that cells use mechanical forces to control the activity of outgoing chemical signals. PMID:26924577

  18. Cytotoxic T Cells Use Mechanical Force to Potentiate Target Cell Killing.

    PubMed

    Basu, Roshni; Whitlock, Benjamin M; Husson, Julien; Le Floc'h, Audrey; Jin, Weiyang; Oyler-Yaniv, Alon; Dotiwala, Farokh; Giannone, Gregory; Hivroz, Claire; Biais, Nicolas; Lieberman, Judy; Kam, Lance C; Huse, Morgan

    2016-03-24

    The immunological synapse formed between a cytotoxic T lymphocyte (CTL) and an infected or transformed target cell is a physically active structure capable of exerting mechanical force. Here, we investigated whether synaptic forces promote the destruction of target cells. CTLs kill by secreting toxic proteases and the pore forming protein perforin into the synapse. Biophysical experiments revealed a striking correlation between the magnitude of force exertion across the synapse and the speed of perforin pore formation on the target cell, implying that force potentiates cytotoxicity by enhancing perforin activity. Consistent with this interpretation, we found that increasing target cell tension augmented pore formation by perforin and killing by CTLs. Our data also indicate that CTLs coordinate perforin release and force exertion in space and time. These results reveal an unappreciated physical dimension to lymphocyte function and demonstrate that cells use mechanical forces to control the activity of outgoing chemical signals. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. A Common Fold Mediates Vertebrate Defense and Bacterial Attack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosado, Carlos J.; Buckle, Ashley M.; Law, Ruby H.P.

    2008-10-02

    Proteins containing membrane attack complex/perforin (MACPF) domains play important roles in vertebrate immunity, embryonic development, and neural-cell migration. In vertebrates, the ninth component of complement and perforin form oligomeric pores that lyse bacteria and kill virus-infected cells, respectively. However, the mechanism of MACPF function is unknown. We determined the crystal structure of a bacterial MACPF protein, Plu-MACPF from Photorhabdus luminescens, to 2.0 angstrom resolution. The MACPF domain reveals structural similarity with poreforming cholesterol-dependent cytolysins (CDCs) from Gram-positive bacteria. This suggests that lytic MACPF proteins may use a CDC-like mechanism to form pores and disrupt cell membranes. Sequence similarity between bacterialmore » and vertebrate MACPF domains suggests that the fold of the CDCs, a family of proteins important for bacterial pathogenesis, is probably used by vertebrates for defense against infection.« less

  20. Cultivation of a bacterial consortium with the potential to degrade total petroleum hydrocarbon using waste activated sludge.

    PubMed

    Sivakumar, S; Song, Y C; Kim, S H; Jang, S H

    2015-11-01

    Waste activated sludge was aerobically treated to demonstrate multiple uses such as cultivating an oil degrading bacterial consortium; studying the influence of a bulking agent (peat moss) and total petroleum hydrocarbon concentration on bacterial growth and producing a soil conditioner using waste activated sludge. After 30 days of incubation, the concentration of oil-degrading bacteria was 4.3 x 10(8) CFU g(-1) and 4.5 x 10(8) CFU g(-1) for 5 and 10 g of total petroleum hydrocarbon, respectively, in a mixture of waste activated sludge (1 kg) and peat moss (0.1 kg). This accounts for approximately 88.4 and 91.1%, respectively, of the total heterotrophic bacteria (total-HB). The addition of bulking agent enhanced total-HB population and total petroleum hydrocarbon-degrading bacterial population. Over 90% of total petroleum hydrocarbon degradation was achieved by the mixture of waste activated sludge, bulking agent and total petroleum hydrocarbon. The results of physico-chemical parameters of the compost (waste activated sludge with and without added peat moss compost) and a substantial reduction in E. coli showed that the use of this final product did not exhibit risk when used as soil conditioner. Finally, the present study demonstrated that cultivation of total petroleum hydrocarbon-degrading bacterial consortium and production of compost from waste activated sludge by aerobic treatment was feasible.

  1. Control of Rhagoletis indifferents using Thiamethoxam and Spinosad baits under external fly pressure and its relation to rapidity of kill and residual bait activity

    USDA-ARS?s Scientific Manuscript database

    Control of western cherry fruit fly (Rhagoletis indifferens Curran) using thiamethoxam in sucrose bait and spinosad bait in cherry orchards under external fly pressure and its relation to rapidity of kill and residual bait activity were studied in Washington and Utah in 2010 and 2011. Thiamethoxam ...

  2. HIF1α-dependent glycolysis promotes macrophage functional activities in protecting against bacterial and fungal infection.

    PubMed

    Li, Chunxiao; Wang, Yu; Li, Yan; Yu, Qing; Jin, Xi; Wang, Xiao; Jia, Anna; Hu, Ying; Han, Linian; Wang, Jian; Yang, Hui; Yan, Dapeng; Bi, Yujing; Liu, Guangwei

    2018-02-26

    Macrophages are important innate immune defense system cells in the fight against bacterial and fungal pathogenic infections. They exhibit significant plasticity, particularly with their ability to undergo functional differentiation. Additionally, HIF1α is critically involved in the functional differentiation of macrophages during inflammation. However, the role of macrophage HIF1α in protecting against different pathogenic infections remains unclear. In this study, we investigated and compared the roles of HIF1α in different macrophage functional effects of bacterial and fungal infections in vitro and in vivo. We found that bacterial and fungal infections produced similar effects on macrophage functional differentiation. HIF1α deficiency inhibited pro-inflammatory macrophage functional activities when cells were stimulated with LPS or curdlan in vitro or when mice were infected with L. monocytogenes or C. albicans in vivo, thus decreasing pro-inflammatory TNFα and IL-6 secretion associated with pathogenic microorganism survival. Alteration of glycolytic pathway activation was required for the functional differentiation of pro-inflammatory macrophages in protecting against bacterial and fungal infections. Thus, the HIF1α-dependent glycolytic pathway is essential for pro-inflammatory macrophage functional differentiation in protecting against bacterial and fungal infections.

  3. Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces.

    PubMed

    Pogodin, Sergey; Hasan, Jafar; Baulin, Vladimir A; Webb, Hayden K; Truong, Vi Khanh; Phong Nguyen, The Hong; Boshkovikj, Veselin; Fluke, Christopher J; Watson, Gregory S; Watson, Jolanta A; Crawford, Russell J; Ivanova, Elena P

    2013-02-19

    The nanopattern on the surface of Clanger cicada (Psaltoda claripennis) wings represents the first example of a new class of biomaterials that can kill bacteria on contact based solely on their physical surface structure. The wings provide a model for the development of novel functional surfaces that possess an increased resistance to bacterial contamination and infection. We propose a biophysical model of the interactions between bacterial cells and cicada wing surface structures, and show that mechanical properties, in particular cell rigidity, are key factors in determining bacterial resistance/sensitivity to the bactericidal nature of the wing surface. We confirmed this experimentally by decreasing the rigidity of surface-resistant strains through microwave irradiation of the cells, which renders them susceptible to the wing effects. Our findings demonstrate the potential benefits of incorporating cicada wing nanopatterns into the design of antibacterial nanomaterials. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Diversity and biological activities of the bacterial community associated with the marine sponge Phorbas tenacior (Porifera, Demospongiae).

    PubMed

    Dupont, S; Carré-Mlouka, A; Descarrega, F; Ereskovsky, A; Longeon, A; Mouray, E; Florent, I; Bourguet-Kondracki, M L

    2014-01-01

    The diversity of the cultivable microbiota of the marine sponge Phorbas tenacior frequently found in the Mediterranean Sea was investigated, and its potential as a source of antimicrobial, antioxidant and antiplasmodial compounds was evaluated. The cultivable bacterial community was studied by isolation, cultivation and 16S rRNA gene sequencing. Twenty-three bacterial strains were isolated and identified in the Proteobacteria (α or γ classes) and Actinobacteria phyla. Furthermore, three different bacterial morphotypes localized extracellularly within the sponge tissues were revealed by microscopic observations. Bacterial strains were assigned to seven different genera, namely Vibrio, Photobacterium, Shewanella, Pseudomonas, Ruegeria, Pseudovibrio and Citricoccus. The strains affiliated to the same genus were differentiated according to their genetic dissimilarities using random amplified polymorphic DNA (RAPD) analyses. Eleven bacterial strains were selected for evaluation of their bioactivities. Three isolates Pseudovibrio P1Ma4, Vibrio P1MaNal1 and Citricoccus P1S7 revealed antimicrobial activity; Citricoccus P1S7 and Vibrio P1MaNal1 isolates also exhibited antiplasmodial activity, while two Vibrio isolates P1Ma8 and P1Ma5 displayed antioxidant activity. These data confirmed the importance of Proteobacteria and Actinobacteria associated with marine sponges as a reservoir of bioactive compounds. This study presents the first report on the diversity of the cultivable bacteria associated with the marine sponge Phorbas tenacior, frequently found in the Mediterranean Sea. Evaluation of the antiplasmodial, antimicrobial and antioxidant activities of the isolates has been investigated and allowed to select bacterial strains, confirming the importance of Proteobacteria and Actinobacteria as sources of bioactive compounds. © 2013 The Society for Applied Microbiology.

  5. 7 CFR 29.1018 - Fire-killed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Fire-killed. 29.1018 Section 29.1018 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1018 Fire-killed. Any leaf of which 5 percent or more of its surface has a set green...

  6. Dietary heat-killed Lactobacillus brevis SBC8803 promotes voluntary wheel-running and affects sleep rhythms in mice.

    PubMed

    Miyazaki, Koyomi; Itoh, Nanako; Yamamoto, Saori; Higo-Yamamoto, Sayaka; Nakakita, Yasukazu; Kaneda, Hirotaka; Shigyo, Tatsuro; Oishi, Katsutaka

    2014-08-28

    We previously reported that heat-killed Lactobacillus brevis SBC8803 enhances appetite via changes in autonomic neurotransmission. Here we assessed whether a diet supplemented with heat-killed SBC8803 affects circadian locomotor rhythmicity and sleep architecture. Daily total activity gradually increased in mice over 4 weeks and supplementation with heat-killed SBC8803 significantly intensified the increase, which reached saturation at 25 days. Electroencephalography revealed that SBC8803 supplementation significantly reduced the total amount of time spent in non-rapid eye movement (NREM) sleep and increased the amount of time spent being awake during the latter half of the nighttime, but tended to increase the total amount of time spent in NREM sleep during the daytime. Dietary supplementation with SBC8803 can extend the duration of activity during the nighttime and of sleep during the daytime. Daily voluntary wheel-running and sleep rhythmicity become intensified when heat-killed SBC8803 is added to the diet. Dietary heat-killed SBC8803 can modulate circadian locomotion and sleep rhythms, which might benefit individuals with circadian rhythms that have been disrupted by stress or ageing. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Cytotoxic Killing and Immune Evasion by Repair

    NASA Astrophysics Data System (ADS)

    Chan, Cliburn; George, Andrew J. T.; Stark, Jaroslav

    2007-07-01

    The interaction between the immune system and pathogens is a complex one, with pathogens constantly developing new ways of evading destruction by the immune system. The immune system's task is made even harder when the pathogen in question is an intra-cellular one (such as a virus or certain bacteria) and it is necessary to kill the infected host cell in order to eliminate the pathogen. This causes damage to the host, and such killing therefore needs to be carefully controlled, particularly in tissues with poor regenerative potential, or those involved in the immune response itself. Host cells therefore possess repair mechanisms which can counteract killing by immune cells. These in turn can be subverted by pathogens which up-regulate the resistance of infected cells to killing. In this paper, we explore the hypothesis that this repair process plays an important role in determining the efficacy of evasion and escape from immune control. We model a situation where cytotoxic T lymphocytes (CTL) and natural killer (NK) cells kill pathogen-infected and tumour cells by directed secretion of preformed granules containing perforin and granzymes. Resistance to such killing can be conferred by the expression of serine protease inhibitors (serpins). These are utilized by several virally infected and tumour cells, as well as playing a role in the protection of host bystander, immune and immuneprivileged cells. We build a simple stochastic model of cytotoxic killing, where serpins can neutralize granzymes stoichiometrically by forming an irreversible complex, and the survival of the cell is determined by the balance between serpin depletion and replenishment, which in its simplest form is equivalent to the well known shot noise process. We use existing analytical results for this process, and additional simulations to analyse the effects of repair on cytotoxic killing. We then extend the model to the case of a replicating target cell population, which gives a branching process

  8. Absence of bacterial resistance following repeat exposure to photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Pedigo, Lisa A.; Gibbs, Aaron J.; Scott, Robert J.; Street, Cale N.

    2009-06-01

    The prevalence of antibiotic resistant bacteria necessitates exploration of alternative approaches to treat hospital and community acquired infections. The aim of this study was to determine whether bacterial pathogens develop resistance to antimicrobial photodynamic therapy (aPDT) during repeated sub-lethal challenge. Antibiotic sensitive and resistant strains of S. aureus and antibiotic sensitive E. coli were subjected to repeat PDT treatments using a methylene blue photosensitizer formulation and 670 nm illumination from a non-thermal diode laser. Parameters were adjusted such that kills were <100% so that surviving colonies could be passaged for subsequent exposures. With each repeat, kills were compared to those using non-exposed cultures of the same strain. Oxacillin resistance was induced in S. aureus using a disc diffusion method. For each experiment, "virgin" and "repeat" cultures were exposed to methylene blue at 0.01% w/v and illuminated with an energy dose of 20.6 J/cm2. No significant difference in killing of E. coli (repeat vs. virgin culture) was observed through 11 repeat exposures. Similar results were seen using MSSA and MRSA, wherein kill rate did not significantly differ from control over 25 repeat exposures. In contrast, complete oxacillin resistance could be generated in S. aureus over a limited number of exposures. PDT is effective in the eradication of pathogens including antibiotic resistance strains. Furthermore, repeated sub-lethal exposure does not induce resistance to subsequent PDT treatments. The absence of resistance formation represents a significant advantage of PDT over traditional antibiotics.

  9. Assessment of pollution impact on biological activity and structure of seabed bacterial communities in the Port of Livorno (Italy).

    PubMed

    Iannelli, Renato; Bianchi, Veronica; Macci, Cristina; Peruzzi, Eleonora; Chiellini, Carolina; Petroni, Giulio; Masciandaro, Grazia

    2012-06-01

    The main objective of this study was to assess the impact of pollution on seabed bacterial diversity, structure and activity in the Port of Livorno. Samples of seabed sediments taken from five selected sites within the port were subjected to chemical analyses, enzymatic activity detection, bacterial count and biomolecular analysis. Five different statistics were used to correlate the level of contamination with the detected biological indicators. The results showed that the port is mainly contaminated by variable levels of petroleum hydrocarbons and heavy metals, which affect the structure and activity of the bacterial population. Irrespective of pollution levels, the bacterial diversity did not diverge significantly among the assessed sites and samples, and no dominance was observed. The type of impact of hydrocarbons and heavy metals was controversial, thus enforcing the supposition that the structure of the bacterial community is mainly driven by the levels of nutrients. The combined use of chemical and biological essays resulted in an in-depth observation and analysis of the existing links between pollution macro-indicators and biological response of seabed bacterial communities. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Experimental Study on Inactivation of Bacterial Endotoxin by Using Dielectric Barrier Discharge

    NASA Astrophysics Data System (ADS)

    Shi, Xingmin; Li, Yaxi; Zhang, Guanjun; Ma, Yue; Shao, Xianjun

    2011-12-01

    The low-temperature plasma (LTP) generated by dielectric barrier discharge (DBD) was used to sterilize the E.coli endotoxin, which is usually difficult to kill by traditional methods. Three different concentrations of bacterial endotoxin (1 EU/mL, 0.5 EU/mL and 0.25 EU/mL) were treated by LTP for different time (20 s, 40 s and 60 s). Tachypleus amebocyte lysate (TAL) method was employed to detect the concentration variation of bacterial endotoxin before and after the plasma treatment, and endotoxic shock mice model was used to evaluate the inactivation effects of LTP on endotoxin for further study. Experimental results demonstrated that, DBD plasma can inactivate the bacterial endotoxin quickly and effectively, and when the LTP treatment time was increased, the concentrations of bacterial endotoxin decreased gradually (after 60 s plasma treatment, its inactivation effect was beyond the Chinese pharmacopoeia standard), and the average survival time of mice gradually extended. The possible inactivation mechanisms are proposed to be related to reactive oxygen species (ROSs).

  11. Prevention and cure of systemic Escherichia coli K1 infection by modification of the bacterial phenotype.

    PubMed

    Mushtaq, Naseem; Redpath, Maria B; Luzio, J Paul; Taylor, Peter W

    2004-05-01

    Escherichia coli is a common cause of meningitis and sepsis in the newborn infant, and the large majority of isolates from these infections produce a polysialic acid (PSA) capsular polysaccharide, the K1 antigen, that protects the bacterial cell from immune attack. We determined whether a capsule-depolymerizing enzyme, by removing this protective barrier, could alter the outcome of systemic infection in an animal model. Bacteriophage-derived endosialidase E (endoE) selectively degrades the PSA capsule on the surface of E. coli K1 strains. Intraperitoneal administration of small quantities of recombinant endoE (20 micro g) to 3-day-old rats, colonized with a virulent strain of K1, prevented bacteremia and death from systemic infection. The enzyme had no effect on the viability of E. coli strains but sensitized strains expressing PSA to killing by the complement system. This study demonstrates the potential therapeutic efficacy of agents that cure infections by modification of the bacterial phenotype rather than by killing or inhibition of growth of the pathogen.

  12. Disconnect of microbial structure and function: enzyme activities and bacterial communities in nascent stream corridors.

    PubMed

    Frossard, Aline; Gerull, Linda; Mutz, Michael; Gessner, Mark O

    2012-03-01

    A fundamental issue in microbial and general ecology is the question to what extent environmental conditions dictate the structure of communities and the linkages with functional properties of ecosystems (that is, ecosystem function). We approached this question by taking advantage of environmental gradients established in soil and sediments of small stream corridors in a recently created, early successional catchment. Specifically, we determined spatial and temporal patterns of bacterial community structure and their linkages with potential microbial enzyme activities along the hydrological flow paths of the catchment. Soil and sediments were sampled in a total of 15 sites on four occasions spread throughout a year. Denaturing gradient gel electrophoresis (DGGE) was used to characterize bacterial communities, and substrate analogs linked to fluorescent molecules served to track 10 different enzymes as specific measures of ecosystem function. Potential enzyme activities varied little among sites, despite contrasting environmental conditions, especially in terms of water availability. Temporal changes, in contrast, were pronounced and remarkably variable among the enzymes tested. This suggests much greater importance of temporal dynamics than spatial heterogeneity in affecting specific ecosystem functions. Most strikingly, bacterial community structure revealed neither temporal nor spatial patterns. The resulting disconnect between bacterial community structure and potential enzyme activities indicates high functional redundancy within microbial communities even in the physically and biologically simplified stream corridors of early successional landscapes.

  13. Disturbance opens recruitment sites for bacterial colonization in activated sludge.

    PubMed

    Vuono, David C; Munakata-Marr, Junko; Spear, John R; Drewes, Jörg E

    2016-01-01

    Little is known about the role of immigration in shaping bacterial communities or the factors that may dictate success or failure of colonization by bacteria from regional species pools. To address these knowledge gaps, the influence of bacterial colonization into an ecosystem (activated sludge bioreactor) was measured through a disturbance gradient (successive decreases in the parameter solids retention time) relative to stable operational conditions. Through a DNA sequencing approach, we show that the most abundant bacteria within the immigrant community have a greater probability of colonizing the receiving ecosystem, but mostly as low abundance community members. Only during the disturbance do some of these bacterial populations significantly increase in abundance beyond background levels and in few cases become dominant community members post-disturbance. Two mechanisms facilitate the enhanced enrichment of immigrant populations during disturbance: (i) the availability of resources left unconsumed by established species and (ii) the increased availability of niche space for colonizers to establish and displace resident populations. Thus, as a disturbance decreases local diversity, recruitment sites become available to promote colonization. This work advances our understanding of microbial resource management and diversity maintenance in complex ecosystems. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Bacterial activity in sea ice and open water of the Weddell Sea, Antarctica: A microautoradiographic study.

    PubMed

    Grossmann, S

    1994-07-01

    Metabolic activity of bacteria was investigated in open water, newly forming sea ice, and successive stages of pack ice in the Weddell Sea. Microautoradiography, using [(3)H]leucine as substrate, was compared with incorporation rates of [(3)H]leucine into proteins. Relation of [(3)H]leucine incorporation to the biomass of active bacteria provides information about changes of specific metabolic activity of cells. During a phytoplankton bloom in an ice-free, stratified water column, total numbers of bacteria in the euphotic zone averaged 2.3 × 10(5) ml(-1), but only about 13% showed activity via leucine uptake. Growth rate of the active bacteria was estimated as 0.3-0.4 days(-1). Total cell concentration of bacteria in 400 m depth was 6.6 × 10(4) ml(-1). Nearly 50% of these cells were active, although biomass production and specific growth rate were only about one-tenth that of the surface populations. When sea ice was forming in high concentrations of phytoplankton, bacterial biomass in the newly formed ice was 49.1 ng C ml(-1), exceeding that in open water by about one order of magnitude. Attachment of large bacteria to algal cells seems to cause their enrichment in the new ice, since specific bacterial activity was reduced during ice formation, and enrichment of bacteria was not observed when ice formed at low algal concentration. During growth of pack ice, biomass of bacteria increased within the brine channel system. Specific activity was still reduced at these later stages of ice development, and percentages of active cells were as low as 3-5%. In old, thick pack ice, bacterial activity was high and about 30% of cells were active. However, biomass-specific activity of bacteria remained significantly lower than that in open water. It is concluded that bacterial assemblages different to those of open water developed within the ice and were dominated by bacteria with lower average metabolic activity than those of ice-free water.

  15. Biodegradable polymeric micelle-encapsulated doxorubicin suppresses tumor metastasis by killing circulating tumor cells

    NASA Astrophysics Data System (ADS)

    Deng, Senyi; Wu, Qinjie; Zhao, Yuwei; Zheng, Xin; Wu, Ni; Pang, Jing; Li, Xuejing; Bi, Cheng; Liu, Xinyu; Yang, Li; Liu, Lei; Su, Weijun; Wei, Yuquan; Gong, Changyang

    2015-03-01

    Circulating tumor cells (CTCs) play a crucial role in tumor metastasis, but it is rare for any chemotherapy regimen to focus on killing CTCs. Herein, we describe doxorubicin (Dox) micelles that showed anti-metastatic activity by killing CTCs. Dox micelles with a small particle size and high encapsulation efficiency were obtained using a pH-induced self-assembly method. Compared with free Dox, Dox micelles exhibited improved cytotoxicity, apoptosis induction, and cellular uptake. In addition, Dox micelles showed a sustained release behavior in vitro, and in a transgenic zebrafish model, Dox micelles exhibited a longer circulation time and lower extravasation from blood vessels into surrounding tissues. Anti-tumor and anti-metastatic activities of Dox micelles were investigated in transgenic zebrafish and mouse models. In transgenic zebrafish, Dox micelles inhibited tumor growth and prolonged the survival of tumor-bearing zebrafish. Furthermore, Dox micelles suppressed tumor metastasis by killing CTCs. In addition, improved anti-tumor and anti-metastatic activities were also confirmed in mouse tumor models, where immunofluorescent staining of tumors indicated that Dox micelles induced more apoptosis and showed fewer proliferation-positive cells. There were decreased side effects in transgenic zebrafish and mice after administration of Dox micelles. In conclusion, Dox micelles showed stronger anti-tumor and anti-metastatic activities and decreased side effects both in vitro and in vivo, which may have potential applications in cancer therapy.

  16. An Acidic Microenvironment Increases NK Cell Killing of Cryptococcus neoformans and Cryptococcus gattii by Enhancing Perforin Degranulation

    PubMed Central

    Islam, Anowara; Li, Shu Shun; Oykhman, Paul; Timm-McCann, Martina; Huston, Shaunna M.; Stack, Danuta; Xiang, Richard F.; Kelly, Margaret M.; Mody, Christopher H.

    2013-01-01

    Cryptococcus gattii and Cryptococcus neoformans are encapsulated yeasts that can produce a solid tumor-like mass or cryptococcoma. Analogous to malignant tumors, the microenvironment deep within a cryptococcoma is acidic, which presents unique challenges to host defense. Analogous to malignant cells, NK cells kill Cryptococcus. Thus, as in tumor defense, NK cells must kill yeast cells across a gradient from physiologic pH to less than 6 in the center of the cryptococcoma. As acidic pH inhibits anti-tumor activities of NK cells, we sought to determine if there was a similar reduction in the anticryptococcal activity of NK cells. Surprisingly, we found that both primary human NK cells and the human NK cell line, YT, have preserved or even enhanced killing of Cryptococcus in acidic, compared to physiological, pH. Studies to explore the mechanism of enhanced killing revealed that acidic pH does not increase the effector to target ratio, binding of cytolytic cells to Cryptococcus, or the active perforin content in effector cells. By contrast, perforin degranulation was greater at acidic pH, and increased degranulation was preceded by enhanced ERK1/2 phosphorylation, which is essential for killing. Moreover, using a replication defective ras1 knockout strain of Cryptococcus increased degranulation occurred during more rapid replication of the organisms. Finally, NK cells were found intimately associated with C. gattii within the cryptococcoma of a fatal infection. These results suggest that NK cells have amplified signaling, degranulation, and greater killing at low pH and when the organisms are replicating quickly, which would help maintain microbicidal host defense despite an acidic microenvironment. PMID:23853583

  17. Bacterial Activity at −2 to −20°C in Arctic Wintertime Sea Ice

    PubMed Central

    Junge, Karen; Eicken, Hajo; Deming, Jody W.

    2004-01-01

    Arctic wintertime sea-ice cores, characterized by a temperature gradient of −2 to −20°C, were investigated to better understand constraints on bacterial abundance, activity, and diversity at subzero temperatures. With the fluorescent stains 4′,6′-diamidino-2-phenylindole 2HCl (DAPI) (for DNA) and 5-cyano-2,3-ditoyl tetrazolium chloride (CTC) (for O2-based respiration), the abundances of total, particle-associated (>3-μm), free-living, and actively respiring bacteria were determined for ice-core samples melted at their in situ temperatures (−2 to −20°C) and at the corresponding salinities of their brine inclusions (38 to 209 ppt). Fluorescence in situ hybridization was applied to determine the proportions of Bacteria, Cytophaga-Flavobacteria-Bacteroides (CFB), and Archaea. Microtome-prepared ice sections also were examined microscopically under in situ conditions to evaluate bacterial abundance (by DAPI staining) and particle associations within the brine-inclusion network of the ice. For both melted and intact ice sections, more than 50% of cells were found to be associated with particles or surfaces (sediment grains, detritus, and ice-crystal boundaries). CTC-active bacteria (0.5 to 4% of the total) and cells detectable by rRNA probes (18 to 86% of the total) were found in all ice samples, including the coldest (−20°C), where virtually all active cells were particle associated. The percentage of active bacteria associated with particles increased with decreasing temperature, as did the percentages of CFB (16 to 82% of Bacteria) and Archaea (0.0 to 3.4% of total cells). These results, combined with correlation analyses between bacterial variables and measures of particulate matter in the ice as well as the increase in CFB at lower temperatures, confirm the importance of particle or surface association to bacterial activity at subzero temperatures. Measuring activity down to −20°C adds to the concept that liquid inclusions in frozen environments

  18. In vivo killing of Staphylococcus aureus using a light-activated antimicrobial agent

    PubMed Central

    2009-01-01

    Background The widespread problem of antibiotic resistance in pathogens such as Staphylococcus aureus has prompted the search for new antimicrobial approaches. In this study we report for the first time the use of a light-activated antimicrobial agent, methylene blue, to kill an epidemic methicillin-resistant Staphylococcus aureus (EMRSA-16) strain in two mouse wound models. Results Following irradiation of wounds with 360 J/cm2 of laser light (670 nm) in the presence of 100 μg/ml of methylene blue, a 25-fold reduction in the number of viable EMRSA was seen. This was independent of the increase in temperature of the wounds associated with the treatment. Histological examination of the wounds revealed no difference between the photodynamic therapy (PDT)-treated wounds and the untreated wounds, all of which showed the same degree of inflammatory infiltration at 24 hours. Conclusion The results of this study demonstrate that PDT is effective at reducing the total number of viable EMRSA in a wound. This approach has promise as a means of treating wound infections caused by antibiotic-resistant microbes as well as for the elimination of such organisms from carriage sites. PMID:19193212

  19. The bacterial community of entomophilic nematodes and host beetles.

    PubMed

    Koneru, Sneha L; Salinas, Heilly; Flores, Gilberto E; Hong, Ray L

    2016-05-01

    Insects form the most species-rich lineage of Eukaryotes and each is a potential host for organisms from multiple phyla, including fungi, protozoa, mites, bacteria and nematodes. In particular, beetles are known to be associated with distinct bacterial communities and entomophilic nematodes. While entomopathogenic nematodes require symbiotic bacteria to kill and reproduce inside their insect hosts, the microbial ecology that facilitates other types of nematode-insect associations is largely unknown. To illuminate detailed patterns of the tritrophic beetle-nematode-bacteria relationship, we surveyed the nematode infestation profiles of scarab beetles in the greater Los Angeles area over a five-year period and found distinct nematode infestation patterns for certain beetle hosts. Over a single season, we characterized the bacterial communities of beetles and their associated nematodes using high-throughput sequencing of the 16S rRNA gene. We found significant differences in bacterial community composition among the five prevalent beetle host species, independent of geographical origin. Anaerobes Synergistaceae and sulphate-reducing Desulfovibrionaceae were most abundant in Amblonoxia beetles, while Enterobacteriaceae and Lachnospiraceae were common in Cyclocephala beetles. Unlike entomopathogenic nematodes that carry bacterial symbionts, insect-associated nematodes do not alter the beetles' native bacterial communities, nor do their microbiomes differ according to nematode or beetle host species. The conservation of Diplogastrid nematodes associations with Melolonthinae beetles and sulphate-reducing bacteria suggests a possible link between beetle-bacterial communities and their associated nematodes. Our results establish a starting point towards understanding the dynamic interactions between soil macroinvertebrates and their microbiota in a highly accessible urban environment. © 2016 John Wiley & Sons Ltd.

  20. Impacts of cerium oxide nanoparticles on bacterial community in activated sludge.

    PubMed

    Kamika, I; Tekere, M

    2017-12-01

    Rapidly developing industry raises concerns about the environmental impacts of nanoparticles, but the effects of inorganic nanoparticles on bacterial community in wastewater treatment remain unclear. The present research assessed the impact of cerium oxide nanoparticles (nCeO) on the microbiome of activated sludge system. The results showed that 18,330 over 28,201 reads generated from control samples were assigned to Proteobacteria while 5527 reads (19.6%), 3260 reads (11.567%), and 719 reads (2.55%) were assigned to unclassified_Bacteria, Firmicutes and Actinobacteria, respectively. When stressed with nCeO 2 NPs, a decrease on reads was noted with 53, 48, 27.7 and 24% assigned to Proteobacteria. Gammaproteobacteria (80.57%) was found to be the most predominant Proteobacteria. The impact of nCeO 2 NPs was also observed on pollutants removal as only 1.83 and 35.15% of phosphate and nitrate could be removed in the bioreactor stressed with 40 mg-nCeO 2 -NPs/L. This was confirmed by a drastic reduction of activities for enzymes catalysing denitrification (NaR and NiR) and degradation of polyphosphate (ADK and PPK). ADK appeared to be the most affected enzyme with activity decrease reaching over 90% when stressed with 10 mg-nCeO 2 /L. Furthermore, bacterial diversity was not significantly different whereas their species richness showed significant difference between control and treated samples. A large number of reads from control samples could not be classified down to the lower taxonomic level "genera" suggesting hitherto vast untapped microbial diversity. The denitrification related genera including Trichococcus and Acinetobacter were found to alternatively dominating treated samples highlighting those nCeO 2 NPs could enhance the growth of some bacterial species while inhibiting those of others. Nevertheless, the study indicates that nCeO 2 NPs in wastewater at very high concentrations may have some adverse effects on activated sludge process as they inhibit the