Sample records for bacterial lung pathogens

  1. Interaction of antimicrobial peptides with bacterial polysaccharides from lung pathogens.

    PubMed

    Herasimenka, Yury; Benincasa, Monica; Mattiuzzo, Maura; Cescutti, Paola; Gennaro, Renato; Rizzo, Roberto

    2005-07-01

    The interaction of two cathelicidin antimicrobial peptides, LL-37 and SMAP-29, with three bacterial polysaccharides, respectively, produced by Pseudomonas aeruginosa, Burkholderia cepacia and Klebsiella pneumoniae, was investigated to identify possible mechanisms adopted by lung pathogens to escape the action of innate immunity effectors. In vitro assays indicated that the antibacterial activity of both peptides was inhibited to a variable extent by the three polysaccharides. Circular dichroism experiments showed that these induced an alpha-helical conformation in the two peptides, with the polysaccharides from K. pneumoniae and B. cepacia showing, respectively, the highest and the lowest effect. Fluorescence measurements also indicated the presence of peptide-polysaccharide interactions. A model is proposed in which the binding of peptides to the polysaccharide molecules induces, at low polysaccharide to peptide ratios, a higher order of aggregation, due to peptide-peptide interactions. Overall, these results suggest that binding of the peptides by the polysaccharides produced by lung pathogens can contribute to the impairment of peptide-based innate defenses of airway surface.

  2. Animals devoid of pulmonary system as infection models in the study of lung bacterial pathogens

    PubMed Central

    López Hernández, Yamilé; Yero, Daniel; Pinos-Rodríguez, Juan M.; Gibert, Isidre

    2015-01-01

    Biological disease models can be difficult and costly to develop and use on a routine basis. Particularly, in vivo lung infection models performed to study lung pathologies use to be laborious, demand a great time and commonly are associated with ethical issues. When infections in experimental animals are used, they need to be refined, defined, and validated for their intended purpose. Therefore, alternative and easy to handle models of experimental infections are still needed to test the virulence of bacterial lung pathogens. Because non-mammalian models have less ethical and cost constraints as a subjects for experimentation, in some cases would be appropriated to include these models as valuable tools to explore host–pathogen interactions. Numerous scientific data have been argued to the more extensive use of several kinds of alternative models, such as, the vertebrate zebrafish (Danio rerio), and non-vertebrate insects and nematodes (e.g., Caenorhabditis elegans) in the study of diverse infectious agents that affect humans. Here, we review the use of these vertebrate and non-vertebrate models in the study of bacterial agents, which are considered the principal causes of lung injury. Curiously none of these animals have a respiratory system as in air-breathing vertebrates, where respiration takes place in lungs. Despite this fact, with the present review we sought to provide elements in favor of the use of these alternative animal models of infection to reveal the molecular signatures of host–pathogen interactions. PMID:25699030

  3. Update on host-pathogen interactions in cystic fibrosis lung disease.

    PubMed

    Hector, Andreas; Frey, Nina; Hartl, Dominik

    2016-12-01

    Bacterial and fungal infections are hallmarks of cystic fibrosis (CF) lung disease. In the era of long-term inhaled antibiotics and increasing CF patient survival, new "emerging" pathogens are detected in CF airways, yet their pathophysiological disease relevance remains largely controversial and incompletely defined. As a response to chronic microbial triggers, innate immune cells, particularly neutrophils, are continuously recruited into CF airways where they combat pathogens but also cause tissue injury through release of oxidants and proteases. The coordinated interplay between host immune cell activation and pathogens is essential for the outcome of CF lung disease. Here, we provide a concise overview and update on host-pathogen interactions in CF lung disease.

  4. Pathogen characteristics reveal novel antibacterial approaches for interstitial lung disease.

    PubMed

    Lu, Hai-Wen; Ji, Xiao-Bin; Liang, Shuo; Fan, Li-Chao; Bai, Jiu-Wu; Chen, Ke-Bing; Zhou, Yin; Li, Hui-Ping; Xu, Jin-Fu

    2014-12-01

    Interstitial lung disease (ILD) is a clinical disorder associated with changes of lung structure. Concurrent infection is a serious complication and one of the major factors that exacerbates ILD. Pathogen screening is a critical step in early diagnosis and proper treatment of ILD with secondary infection. Here we analyzed distribution and drug susceptibility of pathogens isolated from hospitalized ILD patients from January, 2007 to December, 2008 and compared them to bacterial drug resistance data in CHINET during the same period. The main specimens were from sputum culture, lavage fluid culture, lung biopsy tissue culture, and pleural effusion culture and bacterial or fungal cultures were performed on these specimens accordingly. Drug susceptibility was tested for positive bacterial cultures using disk diffusion (Kirby-Bauer method) and E Test strips in which results were determined based on the criteria of CLSI (2007). A total of 371 pathogen strains from ILD patients, including 306 bacterial strains and 65 fungal strains were isolated and cultured. Five main bacterial strains and their distribution were as follows: Klebsiella pneumoniae (31.7%), Pseudomonas aeruginosa (20.6%), Acinetobacter (12.7%), Enterobacter cloacae (8.2%), and Staphylococcus aureus (7.8%). The results showed that ILD patients who had anti-infection treatment tended to have Gram-negative bacteria, whether they acquired an infection in the hospital or elsewhere. Drug resistance screening indicated that aminoglycosides and carbapenems had lower antibiotic resistance rates. In addition, we found that the usage of immunosuppressants was associated with the increased infection rate and number of pathogens that were isolated. In conclusion, aminoglycosides and carbapenems may be selected as a priority for secondary infection to control ILD progression. Meanwhile, the use of anti-MRSA/MRCNS drugs may be considered for Staphylococcus infection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Immune response in the lungs following oral immunization with bacterial lysates of respiratory pathogens.

    PubMed Central

    Ruedl, C; Frühwirth, M; Wick, G; Wolf, H

    1994-01-01

    We have investigated the local immune response of the BALB/c mouse respiratory tract after oral immunization with a bacterial lysate of seven common respiratory pathogens. After two immunization on five consecutive days, we examined the immunoglobulin (immunoglobulin G [IgG], IgM, and IgA) secretion rates of cells isolated from the lungs and compared them with those of spleen cells of orally immunized and nonimmunized animals by using a new test system based on time-resolved fluorescence. The procedure followed the principle of the classical ELISPOT test with nitrocellulose-bottomed microtiter plates, but europium (Eu3+)-linked streptavidin rather than enzyme-conjugated streptavidin was used, with the advantage of quantifying secreted immunoglobulins instead of detecting single antibody-secreting cells. Lymphocytes isolated from the lungs of treated animals revealed significant increases in total and antigen-specific IgA synthesis compared with the rates of the controls, whereas IgG and IgM production rates showed no remarkable differences. In addition, the sera of treated mice revealed higher antigen-specific IgA titers but not increased IgM and IgG levels. We conclude that priming the gut-associated lymphoid tissue with bacterial antigens of pneumotropic microorganisms can elicit an enhanced IgA response in a distant mucosal effector site, such as the respiratory tract, according to the concept of a common mucosa-associated immune system. PMID:7496936

  6. Immune response in the lungs following oral immunization with bacterial lysates of respiratory pathogens.

    PubMed

    Ruedl, C; Frühwirth, M; Wick, G; Wolf, H

    1994-03-01

    We have investigated the local immune response of the BALB/c mouse respiratory tract after oral immunization with a bacterial lysate of seven common respiratory pathogens. After two immunization on five consecutive days, we examined the immunoglobulin (immunoglobulin G [IgG], IgM, and IgA) secretion rates of cells isolated from the lungs and compared them with those of spleen cells of orally immunized and nonimmunized animals by using a new test system based on time-resolved fluorescence. The procedure followed the principle of the classical ELISPOT test with nitrocellulose-bottomed microtiter plates, but europium (Eu3+)-linked streptavidin rather than enzyme-conjugated streptavidin was used, with the advantage of quantifying secreted immunoglobulins instead of detecting single antibody-secreting cells. Lymphocytes isolated from the lungs of treated animals revealed significant increases in total and antigen-specific IgA synthesis compared with the rates of the controls, whereas IgG and IgM production rates showed no remarkable differences. In addition, the sera of treated mice revealed higher antigen-specific IgA titers but not increased IgM and IgG levels. We conclude that priming the gut-associated lymphoid tissue with bacterial antigens of pneumotropic microorganisms can elicit an enhanced IgA response in a distant mucosal effector site, such as the respiratory tract, according to the concept of a common mucosa-associated immune system.

  7. [Preoperatiove Airway Bacterial Colonization: the Missing Link between Non-small Cell Lung Cancer Following Lobectomy and Postoperative Pneumonia?

    PubMed

    Gao, Ke; Lai, Yutian; Huang, Jian; Wang, Yifan; Wang, Xiaowei; Che, Guowei

    2017-04-20

    Surgical procedure is the main method of treating lung cancer. Meanwhile, postoperative pneumonia (POP) is the major cause of perioperative mortality in lung cancer surgery. The preoperative pathogenic airway bacterial colonization is an independent risk factor causing postoperative pulmonary complications (PPC). This cross-sectional study aimed to explore the relationship between preoperative pathogenic airway bacterial colonization and POP in lung cancer and to identify the high-risk factors of preoperative pathogenic airway bacterial colonization. A total of 125 patients with non-small cell lung cancer (NSCLC) underwent thoracic surgery in six hospitals of Chengdu between May 2015 and January 2016. Preoperative pathogenic airway bacterial colonization was detected in all patients via fiber bronchoscopy. Patients' PPC, high-risk factors, clinical characteristics, and the serum surfactant protein D (SP-D) level were also analyzed. The incidence of preoperative pathogenic airway bacterial colonization among NSCLC patients was 15.2% (19/125). Up to 22 strains were identified in the colonization positive group, with Gram-negative bacteria being dominant (86.36%, 19/22). High-risk factors of pathogenic airway bacterial colonization were age (≥75 yr) and smoking index (≥400 cigarettes/year). PPC incidence was significantly higher in the colonization-positive group (42.11%, 8/19) than that in the colonization-negative group (16.04%, 17/106)(P=0.021). POP incidence was significantly higher in the colonization-positive group (26.32%, 5/19) than that in the colonization-negative group (6.60%, 7/106)(P=0.019). The serum SP-D level of patients in the colonization-positive group was remarkably higher than that in the colonization-negative group [(31.25±6.09) vs (28.17±5.23)](P=0.023). The incidence of preoperative pathogenic airway bacterial colonization among NSCLC patients with POP was 41.67% (5/12). This value was 3.4 times higher than that among the patients without

  8. Bacterial Pathogens Associated with Community-acquired Pneumonia in Children Aged Below Five Years.

    PubMed

    Das, Anusmita; Patgiri, Saurav J; Saikia, Lahari; Dowerah, Pritikar; Nath, Reema

    2016-03-01

    To determine the spectrum of bacterial pathogens causing community-acquired pneumonia in children below 5 years of age. Children aged below 5 years satisfying the WHO criteria for pneumonia, severe pneumonia or very severe pneumonia, and with the presence of lung infiltrates on chest X-ray were enrolled. Two respiratory samples, one for culture and the other for PCR analysis, and a blood sample for culture were collected from every child. Of the 180 samples processed, bacterial pathogens were detected in 64.4%. Streptococcus pneumoniae and Hemophilus influenzae were most frequently detected. The performance of PCR analysis and culture were identical for the typical bacterial pathogens; atypical pathogens were detected by PCR analysis only. S. pneumoniae and H. influenza were the most commonly detected organisms from respiratory secretions of children with community acquired pneumonia.

  9. [Toll-like receptor in lung response to pathogens].

    PubMed

    Rivas-Santiago, Bruno; Juárez, Esmeralda

    2007-01-01

    Innate immunity plays a central role in antimicrobial defense. Advances in the understanding of pathogen recognition systems of innate cells have yielded the identification of Toll like receptors (TLR) as key elements of the lung defense mechanisms which is heavily exposed to a variety of stimuli. TLR recognition of several microbial compounds induces proinflammatory cytokines production whose contribution to the host may be either protective or detrimental. Human immune response diversity may explain the differences observed between patients facing bacterial, viral and fungal lung infections. New strategies designs that modify innate immune response may be useful to limit detrimental consequences of inflammatory processes in the lung.

  10. BACTERIAL WATERBORNE PATHOGENS

    EPA Science Inventory

    Bacterial pathogens are examples of classical etiological agents of waterborne disease. While these agents no longer serve as major threats to U.S. water supplies, they are still important pathogens in areas with substandard sanitation and poor water treatment facilities. In th...

  11. Consequences of organ choice in describing bacterial pathogen assemblages in a rodent population.

    PubMed

    Villette, P; Afonso, E; Couval, G; Levret, A; Galan, M; Tatard, C; Cosson, J F; Giraudoux, P

    2017-10-01

    High-throughput sequencing technologies now allow for rapid cost-effective surveys of multiple pathogens in many host species including rodents, but it is currently unclear if the organ chosen for screening influences the number and identity of bacteria detected. We used 16S rRNA amplicon sequencing to identify bacterial pathogens in the heart, liver, lungs, kidneys and spleen of 13 water voles (Arvicola terrestris) collected in Franche-Comté, France. We asked if bacterial pathogen assemblages within organs are similar and if all five organs are necessary to detect all of the bacteria present in an individual animal. We identified 24 bacteria representing 17 genera; average bacterial richness for each organ ranged from 1·5 ± 0·4 (mean ± standard error) to 2·5 ± 0·4 bacteria/organ and did not differ significantly between organs. The average bacterial richness when organ assemblages were pooled within animals was 4·7 ± 0·6 bacteria/animal; Operational Taxonomic Unit accumulation analysis indicates that all five organs are required to obtain this. Organ type influences bacterial assemblage composition in a systematic way (PERMANOVA, 999 permutations, pseudo-F 4,51 = 1·37, P = 0·001). Our results demonstrate that the number of organs sampled influences the ability to detect bacterial pathogens, which can inform sampling decisions in public health and wildlife ecology.

  12. Microbiology: Detection of Bacterial Pathogens and Their Occurrence.

    ERIC Educational Resources Information Center

    Reasoner, Donald J.

    1978-01-01

    Presents a literature review of bacterial pathogens that are related to water pollution, covering publications from 1976-77. This review includes: (1) bacterial pathogens in animals; and (2) detection and identification of waterborne bacterial pathogens. A list of 129 references is also presented. (HM)

  13. Rapid Communication: Subclinical bovine respiratory disease - loci and pathogens associated with lung lesions in feedlot cattle.

    PubMed

    Kiser, J N; Lawrence, T E; Neupane, M; Seabury, C M; Taylor, J F; Womack, J E; Neibergs, H L

    2017-06-01

    Bovine respiratory disease (BRD) is an economically important disease of feedlot cattle that is caused by viral and bacterial pathogen members of the BRD complex. Many cases of subclinical BRD go untreated and are not detected until slaughter, when lung lesions are identified. The objectives of this study were to identify which BRD pathogens were associated with the presence of lung lesions at harvest and to identify genomic loci that were associated with susceptibility to lung lesions as defined by consolidation of the lung and/or the presence of fibrin tissue. Steers from a Colorado feedlot ( = 920) were tested for the presence of viral and bacterial pathogens using deep pharyngeal and mid-nasal swabs collected on entry into the study. Pathogen profiles were compared between cattle with or without lung consolidation (LC), fibrin tissue in the lung (FT), a combination of LC and FT in the same lung (lung lesions [LL]), and hyperinflated lungs (HIF) at harvest. Genotyping was conducted using the Illumina BovineHD BeadChip. Genomewide association analyses (GWAA) were conducted using EMMAX (efficient mixed-model association eXpedited), and pseudoheritabilities were estimated. The pathogen profile comparisons revealed that LC ( = 0.01, odds ratio [OR] = 3.37) and LL cattle ( = 0.04, OR = 4.58) were more likely to be infected with bovine herpes virus-1 and that HIF cattle were more likely to be infected with spp. ( = 0.04, OR = 4.33). Pseudoheritability estimates were 0.25 for LC, 0.00 for FT, 0.28 for LL, and 0.13 for HIF. Because pseudoheritability for FT was estimated to be 0, GWAA results for FT were not reported. There were 4 QTL that were moderately associated ( < 1 × 10) with only LC, 2 that were associated with only LL, and 1 that was associated with LC and LL. Loci associated with HIF included 12 that were moderately associated and 3 that were strongly associated (uncorrected P < 5 × 10-7). A 24-kb region surrounding significant lead SNP was investigated to

  14. Pathogenic flora composition and overview of the trends used for bacterial pathogenicity identifications.

    PubMed

    Orji, Frank Anayo; Ugbogu, Ositadinma Chinyere; Ugbogu, Eziuche Amadike; Barbabosa-Pliego, Alberto; Monroy, Jose Cedillo; Elghandour, Mona M M Y; Salem, Abdelfattah Z M

    2018-05-05

    Over 250 species of resident flora in the class of bacteria are known to be associated with humans. These conventional flora compositions is often determined by factors which may not be limited to genetics, age, sex, stress and nutrition of humans. Man is constantly in contact with bacteria through media such as air, water, soil and food. This paper reviews the concept of bacterial pathogenesis from the sequential point of colonization to tissue injury. The paper in addition to examination of the factors which enhance virulence in bacterial pathogens also x-rayed the concept of pathogenicity islands and the next generation approaches or rather current trends/methods used in the bacterial pathogenicity investigations. In terms of pathogenicity which of course is the capacity to cause disease in animals, requires that the attacking bacterial strain is virulent, and has ability to bypass the host immune defensive mechanisms. In order to achieve or exhibit pathogenicity, the virulence factors required by microorganisms include capsule, pigments, enzymes, iron acquisition through siderophores. Bacterial Pathogenicity Islands as a distinct concept in bacterial pathogenesis are just loci on the chromosome or extra chromosomal units which are acquired by horizontal gene transfer within pathogens in a microbial community or biofilm. In the area of laboratory investigations, bacterial pathogenesis was initially carried out using culture dependent approaches, which can only detect about 1% of human and veterinary-important pathogens. However, in the recent paradigms shift, the use of proteomics, metagenomics, phylogenetic tree analyses, spooligotyping, and finger printing etc. have made it possible that 100% of the bacterial pathogens in nature can be extensively studied. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Bacterial reproductive pathogens of cats and dogs.

    PubMed

    Graham, Elizabeth M; Taylor, David J

    2012-05-01

    With the notable exception of Brucella canis, exogenous bacterial pathogens are uncommon causes of reproductive disease in cats and dogs. Most bacterial reproductive infections are endogenous, and predisposing factors for infection are important. This article reviews the etiology, pathogenesis, clinical presentation, diagnosis, treatment, and public health significance of bacterial reproductive pathogens in cats and dogs.

  16. Transcriptome landscape of a bacterial pathogen under plant immunity.

    PubMed

    Nobori, Tatsuya; Velásquez, André C; Wu, Jingni; Kvitko, Brian H; Kremer, James M; Wang, Yiming; He, Sheng Yang; Tsuda, Kenichi

    2018-03-27

    Plant pathogens can cause serious diseases that impact global agriculture. The plant innate immunity, when fully activated, can halt pathogen growth in plants. Despite extensive studies into the molecular and genetic bases of plant immunity against pathogens, the influence of plant immunity in global pathogen metabolism to restrict pathogen growth is poorly understood. Here, we developed RNA sequencing pipelines for analyzing bacterial transcriptomes in planta and determined high-resolution transcriptome patterns of the foliar bacterial pathogen Pseudomonas syringae in Arabidopsis thaliana with a total of 27 combinations of plant immunity mutants and bacterial strains. Bacterial transcriptomes were analyzed at 6 h post infection to capture early effects of plant immunity on bacterial processes and to avoid secondary effects caused by different bacterial population densities in planta We identified specific "immune-responsive" bacterial genes and processes, including those that are activated in susceptible plants and suppressed by plant immune activation. Expression patterns of immune-responsive bacterial genes at the early time point were tightly linked to later bacterial growth levels in different host genotypes. Moreover, we found that a bacterial iron acquisition pathway is commonly suppressed by multiple plant immune-signaling pathways. Overexpression of a P. syringae sigma factor gene involved in iron regulation and other processes partially countered bacterial growth restriction during the plant immune response triggered by AvrRpt2. Collectively, this study defines the effects of plant immunity on the transcriptome of a bacterial pathogen and sheds light on the enigmatic mechanisms of bacterial growth inhibition during the plant immune response.

  17. Stereological analysis of bacterial load and lung lesions in nonhuman primates (rhesus macaques) experimentally infected with Mycobacterium tuberculosis.

    PubMed

    Luciw, Paul A; Oslund, Karen L; Yang, Xiao-Wei; Adamson, Lourdes; Ravindran, Resmi; Canfield, Don R; Tarara, Ross; Hirst, Linda; Christensen, Miles; Lerche, Nicholas W; Offenstein, Heather; Lewinsohn, David; Ventimiglia, Frank; Brignolo, Laurie; Wisner, Erik R; Hyde, Dallas M

    2011-11-01

    Infection with Mycobacterium tuberculosis primarily produces a multifocal distribution of pulmonary granulomas in which the pathogen resides. Accordingly, quantitative assessment of the bacterial load and pathology is a substantial challenge in tuberculosis. Such assessments are critical for studies of the pathogenesis and for the development of vaccines and drugs in animal models of experimental M. tuberculosis infection. Stereology enables unbiased quantitation of three-dimensional objects from two-dimensional sections and thus is suited to quantify histological lesions. We have developed a protocol for stereological analysis of the lung in rhesus macaques inoculated with a pathogenic clinical strain of M. tuberculosis (Erdman strain). These animals exhibit a pattern of infection and tuberculosis similar to that of naturally infected humans. Conditions were optimized for collecting lung samples in a nonbiased, random manner. Bacterial load in these samples was assessed by a standard plating assay, and granulomas were graded and enumerated microscopically. Stereological analysis provided quantitative data that supported a significant correlation between bacterial load and lung granulomas. Thus this stereological approach enables a quantitative, statistically valid analysis of the impact of M. tuberculosis infection in the lung and will serve as an essential tool for objectively comparing the efficacy of drugs and vaccines.

  18. The Impact of Oxygen on Bacterial Enteric Pathogens.

    PubMed

    Wallace, N; Zani, A; Abrams, E; Sun, Y

    2016-01-01

    Bacterial enteric pathogens are responsible for a tremendous amount of foodborne illnesses every year through the consumption of contaminated food products. During their transit from contaminated food sources to the host gastrointestinal tract, these pathogens are exposed and must adapt to fluctuating oxygen levels to successfully colonize the host and cause diseases. However, the majority of enteric infection research has been conducted under aerobic conditions. To raise awareness of the importance in understanding the impact of oxygen, or lack of oxygen, on enteric pathogenesis, we describe in this review the metabolic and physiological responses of nine bacterial enteric pathogens exposed to environments with different oxygen levels. We further discuss the effects of oxygen levels on virulence regulation to establish potential connections between metabolic adaptations and bacterial pathogenesis. While not providing an exhaustive list of all bacterial pathogens, we highlight key differences and similarities among nine facultative anaerobic and microaerobic pathogens in this review to argue for a more in-depth understanding of the diverse impact oxygen levels have on enteric pathogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Bacterial Pathogens versus Autophagy: Implications for Therapeutic Interventions

    PubMed Central

    Kimmey, Jacqueline M.; Stallings, Christina L.

    2016-01-01

    Research in recent years has focused significantly on the role of selective macroautophagy in targeting intracellular pathogens for lysosomal degradation, a process termed xenophagy. In this review we evaluate the proposed roles for xenophagy in controlling bacterial infection, highlighting the concept that successful pathogens have evolved ways to subvert or exploit this defense, minimizing the actual effectiveness of xenophagy in innate immunity. Instead, studies in animal models have revealed that autophagy-associated proteins often function outside of xenophagy to influence bacterial pathogenesis. In light of current efforts to manipulate autophagy and the development of host-directed therapies to fight bacterial infections, we also discuss the implications stemming from the complicated relationship that exists between autophagy and bacterial pathogens. PMID:27866924

  20. M-CSF Mediates Host Defense during Bacterial Pneumonia by Promoting the Survival of Lung and Liver Mononuclear Phagocytes.

    PubMed

    Bettina, Alexandra; Zhang, Zhimin; Michels, Kathryn; Cagnina, R Elaine; Vincent, Isaah S; Burdick, Marie D; Kadl, Alexandra; Mehrad, Borna

    2016-06-15

    Gram-negative bacterial pneumonia is a common and dangerous infection with diminishing treatment options due to increasing antibiotic resistance among causal pathogens. The mononuclear phagocyte system is a heterogeneous group of leukocytes composed of tissue-resident macrophages, dendritic cells, and monocyte-derived cells that are critical in defense against pneumonia, but mechanisms that regulate their maintenance and function during infection are poorly defined. M-CSF has myriad effects on mononuclear phagocytes but its role in pneumonia is unknown. We therefore tested the hypothesis that M-CSF is required for mononuclear phagocyte-mediated host defenses during bacterial pneumonia in a murine model of infection. Genetic deletion or immunoneutralization of M-CSF resulted in reduced survival, increased bacterial burden, and greater lung injury. M-CSF was necessary for the expansion of lung mononuclear phagocytes during infection but did not affect the number of bone marrow or blood monocytes, proliferation of precursors, or recruitment of leukocytes to the lungs. In contrast, M-CSF was essential to survival and antimicrobial functions of both lung and liver mononuclear phagocytes during pneumonia, and its absence resulted in bacterial dissemination to the liver and hepatic necrosis. We conclude that M-CSF is critical to host defenses against bacterial pneumonia by mediating survival and antimicrobial functions of mononuclear phagocytes in the lungs and liver. Copyright © 2016 by The American Association of Immunologists, Inc.

  1. M-CSF mediates host defense during bacterial pneumonia by promoting the survival of lung and liver mononuclear phagocytes

    PubMed Central

    Bettina, Alexandra; Zhang, Zhimin; Michels, Kathryn; Cagnina, R. Elaine; Vincent, Isaah S.; Burdick, Marie D.; Kadl, Alexandra; Mehrad, Borna

    2016-01-01

    Gram-negative bacterial pneumonia is a common and dangerous infection with diminishing treatment options due to increasing antibiotic resistance among causal pathogens. The mononuclear phagocyte system is a heterogeneous group of leukocytes composed of tissue-resident macrophages, dendritic cells and monocyte-derived cells that are critical in defense against pneumonia, but mechanisms that regulate their maintenance and function during infection are poorly defined. Macrophage-colony stimulating factor (M-CSF) has myriad effects on mononuclear phagocytes but its role in pneumonia is unknown. We therefore tested the hypothesis that M-CSF is required for mononuclear phagocyte-mediated host defenses during bacterial pneumonia in a murine model of infection. Genetic deletion or immunoneutralization of M-CSF resulted in reduced survival, increased bacterial burden and greater lung injury. M-CSF was necessary for the expansion of lung mononuclear phagocytes during infection but did not affect the number of bone marrow or blood monocytes, the proliferation of precursors or the recruitment of leukocytes to the lungs. In contrast, M-CSF was essential to survival and anti-microbial functions of both lung and liver mononuclear phagocytes during pneumonia and its absence resulted in bacterial dissemination to the liver and hepatic necrosis. We conclude that M-CSF is critical to host defenses against bacterial pneumonia by mediating survival and anti-microbial functions of mononuclear phagocytes in the lungs and liver. PMID:27183631

  2. Metabolic pathways of Pseudomonas aeruginosa involved in competition with respiratory bacterial pathogens

    PubMed Central

    Beaume, Marie; Köhler, Thilo; Fontana, Thierry; Tognon, Mikael; Renzoni, Adriana; van Delden, Christian

    2015-01-01

    Background: Chronic airway infection by Pseudomonas aeruginosa considerably contributes to lung tissue destruction and impairment of pulmonary function in cystic-fibrosis (CF) patients. Complex interplays between P. aeruginosa and other co-colonizing pathogens including Staphylococcus aureus, Burkholderia sp., and Klebsiella pneumoniae may be crucial for pathogenesis and disease progression. Methods: We generated a library of PA14 transposon insertion mutants to identify P. aeruginosa genes required for exploitative and direct competitions with S. aureus, Burkholderia cenocepacia, and K. pneumoniae. Results: Whereas wild-type PA14 inhibited S. aureus growth, two transposon insertions located in pqsC and carB, resulted in reduced growth inhibition. PqsC is involved in the synthesis of 4-hydroxy-2-alkylquinolines (HAQs), a family of molecules having antibacterial properties, while carB is a key gene in pyrimidine biosynthesis. The carB mutant was also unable to grow in the presence of B. cepacia and K. pneumoniae but not Escherichia coli and S. epidermidis. We further identified a transposon insertion in purF, encoding a key enzyme of purine metabolism. This mutant displayed a severe growth deficiency in the presence of Gram-negative but not of Gram-positive bacteria. We identified a beneficial interaction in a bioA transposon mutant, unable to grow on rich medium. This growth defect could be restored either by addition of biotin or by co-culturing the mutant in the presence of K. pneumoniae or E. coli. Conclusion: Complex interactions take place between the various bacterial species colonizing CF-lungs. This work identified both detrimental and beneficial interactions occurring between P. aeruginosa and three other respiratory pathogens involving several major metabolic pathways. Manipulating these pathways could be used to interfere with bacterial interactions and influence the colonization by respiratory pathogens. PMID:25954256

  3. Xylella genomics and bacterial pathogenicity to plants.

    PubMed

    Dow, J M; Daniels, M J

    2000-12-01

    Xylella fastidiosa, a pathogen of citrus, is the first plant pathogenic bacterium for which the complete genome sequence has been published. Inspection of the sequence reveals high relatedness to many genes of other pathogens, notably Xanthomonas campestris. Based on this, we suggest that Xylella possesses certain easily testable properties that contribute to pathogenicity. We also present some general considerations for deriving information on pathogenicity from bacterial genomics. Copyright 2000 John Wiley & Sons, Ltd.

  4. Within-host evolution of bacterial pathogens

    PubMed Central

    Didelot, Xavier; Walker, A. Sarah; Peto, Tim E.; Crook, Derrick W.; Wilson, Daniel J.

    2016-01-01

    Whole genome sequencing has opened the way to investigating the dynamics and genomic evolution of bacterial pathogens during colonization and infection of humans. The application of this technology to the longitudinal study of adaptation in the infected host — in particular, the evolution of drug resistance and host adaptation in patients chronically infected with opportunistic pathogens — has revealed remarkable patterns of convergent evolution, pointing to an inherent repeatability of evolution. In this Review, we describe how these studies have advanced our understanding of the mechanisms and principles of within-host genome evolution, and we consider the consequences of findings such as a potent adaptive potential for pathogenicity. Finally, we discuss the possibility that genomics may be used in the future to predict the clinical progression of bacterial infections, and to suggest the best treatment option. PMID:26806595

  5. Within-host evolution of bacterial pathogens.

    PubMed

    Didelot, Xavier; Walker, A Sarah; Peto, Tim E; Crook, Derrick W; Wilson, Daniel J

    2016-03-01

    Whole-genome sequencing has opened the way for investigating the dynamics and genomic evolution of bacterial pathogens during the colonization and infection of humans. The application of this technology to the longitudinal study of adaptation in an infected host--in particular, the evolution of drug resistance and host adaptation in patients who are chronically infected with opportunistic pathogens--has revealed remarkable patterns of convergent evolution, suggestive of an inherent repeatability of evolution. In this Review, we describe how these studies have advanced our understanding of the mechanisms and principles of within-host genome evolution, and we consider the consequences of findings such as a potent adaptive potential for pathogenicity. Finally, we discuss the possibility that genomics may be used in the future to predict the clinical progression of bacterial infections and to suggest the best option for treatment.

  6. Exploiting Quorum Sensing To Confuse Bacterial Pathogens

    PubMed Central

    LaSarre, Breah

    2013-01-01

    SUMMARY Cell-cell communication, or quorum sensing, is a widespread phenomenon in bacteria that is used to coordinate gene expression among local populations. Its use by bacterial pathogens to regulate genes that promote invasion, defense, and spread has been particularly well documented. With the ongoing emergence of antibiotic-resistant pathogens, there is a current need for development of alternative therapeutic strategies. An antivirulence approach by which quorum sensing is impeded has caught on as a viable means to manipulate bacterial processes, especially pathogenic traits that are harmful to human and animal health and agricultural productivity. The identification and development of chemical compounds and enzymes that facilitate quorum-sensing inhibition (QSI) by targeting signaling molecules, signal biogenesis, or signal detection are reviewed here. Overall, the evidence suggests that QSI therapy may be efficacious against some, but not necessarily all, bacterial pathogens, and several failures and ongoing concerns that may steer future studies in productive directions are discussed. Nevertheless, various QSI successes have rightfully perpetuated excitement surrounding new potential therapies, and this review highlights promising QSI leads in disrupting pathogenesis in both plants and animals. PMID:23471618

  7. Cytosolic Access of Intracellular Bacterial Pathogens: The Shigella Paradigm.

    PubMed

    Mellouk, Nora; Enninga, Jost

    2016-01-01

    Shigella is a Gram-negative bacterial pathogen, which causes bacillary dysentery in humans. A crucial step of Shigella infection is its invasion of epithelial cells. Using a type III secretion system, Shigella injects several bacterial effectors ultimately leading to bacterial internalization within a vacuole. Then, Shigella escapes rapidly from the vacuole, it replicates within the cytosol and spreads from cell-to-cell. The molecular mechanism of vacuolar rupture used by Shigella has been studied in some detail during the recent years and new paradigms are emerging about the underlying molecular events. For decades, bacterial effector proteins were portrayed as main actors inducing vacuolar rupture. This includes the effector/translocators IpaB and IpaC. More recently, this has been challenged and an implication of the host cell in the process of vacuolar rupture has been put forward. This includes the bacterial subversion of host trafficking regulators, such as the Rab GTPase Rab11. The involvement of the host in determining bacterial vacuolar integrity has also been found for other bacterial pathogens, particularly for Salmonella. Here, we will discuss our current view of host factor and pathogen effector implications during Shigella vacuolar rupture and the steps leading to it.

  8. Contribution of Progranulin to Protective Lung Immunity During Bacterial Pneumonia.

    PubMed

    Zou, Shan; Luo, Qin; Song, Zhixin; Zhang, Liping; Xia, Yun; Xu, Huajian; Xiang, Yu; Yin, Yibing; Cao, Ju

    2017-06-01

    Progranulin (PGRN) is an important immunomodulatory factor in a variety of inflammatory diseases. However, its role in pulmonary immunity against bacterial infection remains unknown. Pneumonia was induced in PGRN-deficient and normal wild-type mice using Pseudomonas aeruginosa or Staphylococcus aureus, and we assessed the effects of PGRN on survival, bacterial burden, cytokine and chemokine production, and pulmonary leukocyte recruitment after bacterial pneumonia. Patients with community-acquired pneumonia displayed elevated PGRN levels. Likewise, mice with Gram-negative and Gram-positive pneumonia had increased PGRN production in the lung and circulation. Progranulin deficiency led to increased bacterial growth and dissemination accompanied by enhanced lung injury and mortality in bacterial pneumonia, which was associated with impaired recruitment of macrophages and neutrophils in the lung. The reduced number of pulmonary macrophages and neutrophils observed in PGRN-deficient mice was related to a reduction of CCL2 and CXCL1 in the lungs after bacterial pneumonia. Importantly, therapeutic administration of PGRN improved mortality in severe bacterial pneumonia. This study supports a novel role for PGRN in pulmonary immunity and suggests that treatment with PGRN may be a viable therapy for bacterial pneumonia. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  9. Cytosolic Access of Intracellular Bacterial Pathogens: The Shigella Paradigm

    PubMed Central

    Mellouk, Nora; Enninga, Jost

    2016-01-01

    Shigella is a Gram-negative bacterial pathogen, which causes bacillary dysentery in humans. A crucial step of Shigella infection is its invasion of epithelial cells. Using a type III secretion system, Shigella injects several bacterial effectors ultimately leading to bacterial internalization within a vacuole. Then, Shigella escapes rapidly from the vacuole, it replicates within the cytosol and spreads from cell-to-cell. The molecular mechanism of vacuolar rupture used by Shigella has been studied in some detail during the recent years and new paradigms are emerging about the underlying molecular events. For decades, bacterial effector proteins were portrayed as main actors inducing vacuolar rupture. This includes the effector/translocators IpaB and IpaC. More recently, this has been challenged and an implication of the host cell in the process of vacuolar rupture has been put forward. This includes the bacterial subversion of host trafficking regulators, such as the Rab GTPase Rab11. The involvement of the host in determining bacterial vacuolar integrity has also been found for other bacterial pathogens, particularly for Salmonella. Here, we will discuss our current view of host factor and pathogen effector implications during Shigella vacuolar rupture and the steps leading to it. PMID:27092296

  10. Molecular mechanisms of cell-cell spread of intracellular bacterial pathogens.

    PubMed

    Ireton, Keith

    2013-07-17

    Several bacterial pathogens, including Listeria monocytogenes, Shigella flexneri and Rickettsia spp., have evolved mechanisms to actively spread within human tissues. Spreading is initiated by the pathogen-induced recruitment of host filamentous (F)-actin. F-actin forms a tail behind the microbe, propelling it through the cytoplasm. The motile pathogen then encounters the host plasma membrane, forming a bacterium-containing protrusion that is engulfed by an adjacent cell. Over the past two decades, much progress has been made in elucidating mechanisms of F-actin tail formation. Listeria and Shigella produce tails of branched actin filaments by subverting the host Arp2/3 complex. By contrast, Rickettsia forms tails with linear actin filaments through a bacterial mimic of eukaryotic formins. Compared with F-actin tail formation, mechanisms controlling bacterial protrusions are less well understood. However, recent findings have highlighted the importance of pathogen manipulation of host cell-cell junctions in spread. Listeria produces a soluble protein that enhances bacterial protrusions by perturbing tight junctions. Shigella protrusions are engulfed through a clathrin-mediated pathway at 'tricellular junctions'--specialized membrane regions at the intersection of three epithelial cells. This review summarizes key past findings in pathogen spread, and focuses on recent developments in actin-based motility and the formation and internalization of bacterial protrusions.

  11. Ureaplasma Transmitted From Donor Lungs Is Pathogenic After Lung Transplantation.

    PubMed

    Fernandez, Ramiro; Ratliff, Amy; Crabb, Donna; Waites, Ken B; Bharat, Ankit

    2017-02-01

    Hyperammonemia is a highly fatal syndrome in lung recipients that is usually refractory to medical therapy. We recently reported that infection by a Mollicute, Ureaplasma, is causative for hyperammonemia and can be successfully treated with antimicrobial agents. However, it remains unknown whether the pathogenic strain of Ureaplasma is donor or recipient derived. Here we provide evidence that donor-derived Ureaplasma infection can be pathogenic. As such, we uncover a previously unknown lethal donor-derived opportunistic infection in lung recipients. Given the high mortality associated with hyperammonemia, strategies for routine donor screening or prophylaxis should be further evaluated in prospective studies. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  12. The impact of pan-resistant bacterial pathogens on survival after lung transplantation in cystic fibrosis: results from a single large referral centre.

    PubMed

    Dobbin, C; Maley, M; Harkness, J; Benn, R; Malouf, M; Glanville, A; Bye, P

    2004-04-01

    Reported actuarial one-year survival for patients with cystic fibrosis (CF) after lung transplant is 55-91%. Infection is the most common cause of early death. Colonization with Burkholderia cepacia complex is associated with reduced survival and international lung transplant referral guidelines support individual unit assessment policies for patients colonized with other pan-resistant bacteria. We examined local data on survival after transplant for CF to determine the impact of colonization with pan-resistant bacteria. A retrospective review of all CF patients from Royal Prince Alfred Hospital (RPAH), Sydney, who underwent lung transplantation at St Vincent's Hospital, Sydney, 1989-2002, was performed. Sixty-five patients were listed for lung transplantation with 54 (male: female=29:25) receiving transplants. Of the 11 patients (17%) who died on the waiting list, six were colonized with pan-resistant Pseudomonas aeruginosa. Thirty of the 54 transplanted patients had at least one pan-resistant organism before transplant. In 28 this included P. aeruginosa. Overall one-year survival was 92% with a median survival of 67 months. Overall survival for the pan-resistant group (N = 30) was not significantly different to survival in those with sensitive organisms (N = 24) (Logrank chi square = 1.6, P = 0.2). Three patients colonized with B. cepacia complex pre-transplant survive at 11, 40 and 60 months post-transplant. Infection contributed to 11 of the 18 post-transplant deaths, with pre-transplant-acquired bacterial pathogens responsible in two cases. Patients continued to acquire multiresistant bacteria post-transplantation. Lung transplant survival at St Vincent's Hospital for CF adults from RPAH compares favourably with international benchmarks. Importantly, colonization with pan-resistant bacteria pre-transplant did not appear to adversely affect survival post-transplant.

  13. Microbiological and pathological examination of fatal calf pneumonia cases induced by bacterial and viral respiratory pathogens.

    PubMed

    Szeredi, Levente; Jánosi, Szilárd; Pálfi, Vilmos

    2010-09-01

    The infectious origin of fatal cases of calf pneumonia was studied in 48 calves from 27 different herds on postmortem examination. Lung tissue samples were examined by pathological, histological, bacterial culture, virus isolation and immunohistochemical methods for the detection of viral and bacterial infections. Pneumonia was diagnosed in 47/48 cases and infectious agents were found in 40/47 (85%) of those cases. The presence of multiple respiratory pathogens in 23/40 (57.5%) cases indicated the complex origin of fatal calf pneumonia. The most important respiratory pathogens were Mannheimia-Pasteurella in 36/40 (90%) cases, followed by Arcanobacterium pyogenes in 16/40 (40%) cases, Mycoplasma bovis in 12/40 (30%) cases, and bovine respiratory syncytial virus in 4/40 (10%) cases. Histophilus somni was detected in 2/40 (5%) cases, while bovine herpesvirus-1, bovine viral diarrhoea virus and parainfluenza virus-3 were each found in 1/40 (2.5%) case. Mastadenovirus, bovine coronavirus, influenza A virus or Chlamydiaceae were not detected.

  14. Human Lung Fibroblasts Present Bacterial Antigens to Autologous Lung Th Cells.

    PubMed

    Hutton, Andrew J; Polak, Marta E; Spalluto, C Mirella; Wallington, Joshua C; Pickard, Chris; Staples, Karl J; Warner, Jane A; Wilkinson, Tom M A

    2017-01-01

    Lung fibroblasts are key structural cells that reside in the submucosa where they are in contact with large numbers of CD4 + Th cells. During severe viral infection and chronic inflammation, the submucosa is susceptible to bacterial invasion by lung microbiota such as nontypeable Haemophilus influenzae (NTHi). Given their proximity in tissue, we hypothesized that human lung fibroblasts play an important role in modulating Th cell responses to NTHi. We demonstrate that fibroblasts express the critical CD4 + T cell Ag-presentation molecule HLA-DR within the human lung, and that this expression can be recapitulated in vitro in response to IFN-γ. Furthermore, we observed that cultured lung fibroblasts could internalize live NTHi. Although unable to express CD80 and CD86 in response to stimulation, fibroblasts expressed the costimulatory molecules 4-1BBL, OX-40L, and CD70, all of which are related to memory T cell activation and maintenance. CD4 + T cells isolated from the lung were predominantly (mean 97.5%) CD45RO + memory cells. Finally, cultured fibroblasts activated IFN-γ and IL-17A cytokine production by autologous, NTHi-specific lung CD4 + T cells, and cytokine production was inhibited by a HLA-DR blocking Ab. These results indicate a novel role for human lung fibroblasts in contributing to responses against bacterial infection through activation of bacteria-specific CD4 + T cells. Copyright © 2016 by The American Association of Immunologists, Inc.

  15. Concurrent host-pathogen gene expression in the lungs of pigs challenged with Actinobacillus pleuropneumoniae.

    PubMed

    Brogaard, Louise; Klitgaard, Kirstine; Heegaard, Peter M H; Hansen, Mette Sif; Jensen, Tim Kåre; Skovgaard, Kerstin

    2015-05-28

    Actinobacillus pleuropneumoniae causes pleuropneumonia in pigs, a disease which is associated with high morbidity and mortality, as well as impaired animal welfare. To obtain in-depth understanding of this infection, the interplay between virulence factors of the pathogen and defense mechanisms of the porcine host needs to be elucidated. However, research has traditionally focused on either bacteriology or immunology; an unbiased picture of the transcriptional responses can be obtained by investigating both organisms in the same biological sample. Host and pathogen responses in pigs experimentally infected with A. pleuropneumoniae were analyzed by high-throughput RT-qPCR. This approach allowed concurrent analysis of selected genes encoding proteins known or hypothesized to be important in the acute phase of this infection. The expression of 17 bacterial and 31 porcine genes was quantified in lung samples obtained within the first 48 hours of infection. This provided novel insight into the early time course of bacterial genes involved in synthesis of pathogen-associated molecular patterns (lipopolysaccharide, peptidoglycan, lipoprotein) and genes involved in pattern recognition (TLR4, CD14, MD2, LBP, MYD88) in response to A. pleuropneumoniae. Significant up-regulation of proinflammatory cytokines such as IL1B, IL6, and IL8 was observed, correlating with protein levels, infection status and histopathological findings. Host genes encoding proteins involved in iron metabolism, as well as bacterial genes encoding exotoxins, proteins involved in adhesion, and iron acquisition were found to be differentially expressed according to disease progression. By applying laser capture microdissection, porcine expression of selected genes could be confirmed in the immediate surroundings of the invading pathogen. Microbial pathogenesis is the product of interactions between host and pathogen. Our results demonstrate the applicability of high-throughput RT-qPCR for the elucidation

  16. Emerging bacterial pathogens: the past and beyond.

    PubMed

    Vouga, M; Greub, G

    2016-01-01

    Since the 1950s, medical communities have been facing with emerging and reemerging infectious diseases, and emerging pathogens are now considered to be a major microbiologic public health threat. In this review, we focus on bacterial emerging diseases and explore factors involved in their emergence as well as future challenges. We identified 26 major emerging and reemerging infectious diseases of bacterial origin; most of them originated either from an animal and are considered to be zoonoses or from water sources. Major contributing factors in the emergence of these bacterial infections are: (1) development of new diagnostic tools, such as improvements in culture methods, development of molecular techniques and implementation of mass spectrometry in microbiology; (2) increase in human exposure to bacterial pathogens as a result of sociodemographic and environmental changes; and (3) emergence of more virulent bacterial strains and opportunistic infections, especially affecting immunocompromised populations. A precise definition of their implications in human disease is challenging and requires the comprehensive integration of microbiological, clinical and epidemiologic aspects as well as the use of experimental models. It is now urgent to allocate financial resources to gather international data to provide a better understanding of the clinical relevance of these waterborne and zoonotic emerging diseases. Copyright © 2015. Published by Elsevier Ltd.

  17. Plant-bacterial pathogen interactions mediated by type III effectors.

    PubMed

    Feng, Feng; Zhou, Jian-Min

    2012-08-01

    Effectors secreted by the bacterial type III system play a central role in the interaction between Gram-negative bacterial pathogens and their host plants. Recent advances in the effector studies have helped cementing several key concepts concerning bacterial pathogenesis, plant immunity, and plant-pathogen co-evolution. Type III effectors use a variety of biochemical mechanisms to target specific host proteins or DNA for pathogenesis. The identifications of their host targets led to the identification of novel components of plant innate immune system. Key modules of plant immune signaling pathways such as immune receptor complexes and MAPK cascades have emerged as a major battle ground for host-pathogen adaptation. These modules are attacked by multiple type III effectors, and some components of these modules have evolved to actively sense the effectors and trigger immunity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Thrombospondin-1 protects against pathogen-induced lung injury by limiting extracellular matrix proteolysis

    PubMed Central

    Qu, Yanyan; Olonisakin, Tolani; Bain, William; Zupetic, Jill; Brown, Rebecca; Hulver, Mei; Xiong, Zeyu; Shanks, Robert M.Q.; Bomberger, Jennifer M.; Cooper, Vaughn S.; Zegans, Michael E.; Han, Jongyoon; Pilewski, Joseph; Ray, Anuradha; Ray, Prabir; Lee, Janet S.

    2018-01-01

    Acute lung injury is characterized by excessive extracellular matrix proteolysis and neutrophilic inflammation. A major risk factor for lung injury is bacterial pneumonia. However, host factors that protect against pathogen-induced and host-sustained proteolytic injury following infection are poorly understood. Pseudomonas aeruginosa (PA) is a major cause of nosocomial pneumonia and secretes proteases to amplify tissue injury. We show that thrombospondin-1 (TSP-1), a matricellular glycoprotein released during inflammation, dose-dependently inhibits PA metalloendoprotease LasB, a virulence factor. TSP-1–deficient (Thbs1–/–) mice show reduced survival, impaired host defense, and increased lung permeability with exaggerated neutrophil activation following acute intrapulmonary PA infection. Administration of TSP-1 from platelets corrects the impaired host defense and aberrant injury in Thbs1–/– mice. Although TSP-1 is cleaved into 2 fragments by PA, TSP-1 substantially inhibits Pseudomonas elastolytic activity. Administration of LasB inhibitor, genetic disabling of the PA type II secretion system, or functional deletion of LasB improves host defense and neutrophilic inflammation in mice. Moreover, TSP-1 provides an additional line of defense by directly subduing host-derived proteolysis, with dose-dependent inhibition of neutrophil elastase from airway neutrophils of mechanically ventilated critically ill patients. Thus, a host matricellular protein provides dual levels of protection against pathogen-initiated and host-sustained proteolytic injury following microbial trigger. PMID:29415890

  19. Bacterial pathogens of the bovine respiratory disease complex.

    PubMed

    Griffin, Dee; Chengappa, M M; Kuszak, Jennifer; McVey, D Scott

    2010-07-01

    Pneumonia caused by the bacterial pathogens discussed in this article is the most significant cause of morbidity and mortality of the BRDC. Most of these infectious bacteria are not capable of inducing significant disease without the presence of other predisposing environmental factors, physiologic stressors, or concurrent infections. Mannheimia haemolytica is the most common and serious of these bacterial agents and is therefore also the most highly characterized. There are other important bacterial pathogens of BRD, such as Pasteurella multocida, Histophulus somni, and Mycoplasma bovis. Mixed infections with these organisms do occur. These pathogens have unique and common virulence factors but the resulting pneumonic lesions may be similar. Although the amount and quality of research associated with BRD has increased, vaccination and therapeutic practices are not fully successful. A greater understanding of the virulence mechanisms of the infecting bacteria and pathogenesis of pneumonia, as well as the characteristics of the organisms that allow tissue persistence, may lead to improved management, therapeutics, and vaccines. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Bacterial genome engineering and synthetic biology: combating pathogens.

    PubMed

    Krishnamurthy, Malathy; Moore, Richard T; Rajamani, Sathish; Panchal, Rekha G

    2016-11-04

    The emergence and prevalence of multidrug resistant (MDR) pathogenic bacteria poses a serious threat to human and animal health globally. Nosocomial infections and common ailments such as pneumonia, wound, urinary tract, and bloodstream infections are becoming more challenging to treat due to the rapid spread of MDR pathogenic bacteria. According to recent reports by the World Health Organization (WHO) and Centers for Disease Control and Prevention (CDC), there is an unprecedented increase in the occurrence of MDR infections worldwide. The rise in these infections has generated an economic strain worldwide, prompting the WHO to endorse a global action plan to improve awareness and understanding of antimicrobial resistance. This health crisis necessitates an immediate action to target the underlying mechanisms of drug resistance in bacteria. The advent of new bacterial genome engineering and synthetic biology (SB) tools is providing promising diagnostic and treatment plans to monitor and treat widespread recalcitrant bacterial infections. Key advances in genetic engineering approaches can successfully aid in targeting and editing pathogenic bacterial genomes for understanding and mitigating drug resistance mechanisms. In this review, we discuss the application of specific genome engineering and SB methods such as recombineering, clustered regularly interspaced short palindromic repeats (CRISPR), and bacterial cell-cell signaling mechanisms for pathogen targeting. The utility of these tools in developing antibacterial strategies such as novel antibiotic production, phage therapy, diagnostics and vaccine production to name a few, are also highlighted. The prevalent use of antibiotics and the spread of MDR bacteria raise the prospect of a post-antibiotic era, which underscores the need for developing novel therapeutics to target MDR pathogens. The development of enabling SB technologies offers promising solutions to deliver safe and effective antibacterial therapies.

  1. Evaluating bacterial pathogen DNA preservation in museum osteological collections

    PubMed Central

    Barnes, Ian; Thomas, Mark G

    2005-01-01

    Reports of bacterial pathogen DNA sequences obtained from archaeological bone specimens raise the possibility of greatly improving our understanding of the history of infectious diseases. However, the survival of pathogen DNA over long time periods is poorly characterized, and scepticism remains about the reliability of these data. In order to explore the survival of bacterial pathogen DNA in bone specimens, we analysed samples from 59 eighteenth and twentieth century individuals known to have been infected with either Mycobacterium tuberculosis or Treponema pallidum. No reproducible evidence of surviving pathogen DNA was obtained, despite the use of extraction and PCR-amplification methods determined to be highly sensitive. These data suggest that previous studies need to be interpreted with caution, and we propose that a much greater emphasis is placed on understanding how pathogen DNA survives in archaeological material, and how its presence can be properly verified and used. PMID:16608682

  2. Profile and Fate of Bacterial Pathogens in Sewage Treatment Plants Revealed by High-Throughput Metagenomic Approach.

    PubMed

    Li, Bing; Ju, Feng; Cai, Lin; Zhang, Tong

    2015-09-01

    The broad-spectrum profile of bacterial pathogens and their fate in sewage treatment plants (STPs) were investigated using high-throughput sequencing based metagenomic approach. This novel approach could provide a united platform to standardize bacterial pathogen detection and realize direct comparison among different samples. Totally, 113 bacterial pathogen species were detected in eight samples including influent, effluent, activated sludge (AS), biofilm, and anaerobic digestion sludge with the abundances ranging from 0.000095% to 4.89%. Among these 113 bacterial pathogens, 79 species were reported in STPs for the first time. Specially, compared to AS in bulk mixed liquor, more pathogen species and higher total abundance were detected in upper foaming layer of AS. This suggests that the foaming layer of AS might impose more threat to onsite workers and citizens in the surrounding areas of STPs because pathogens in foaming layer are easily transferred into air and cause possible infections. The high removal efficiency (98.0%) of total bacterial pathogens suggests that AS treatment process is effective to remove most bacterial pathogens. Remarkable similarities of bacterial pathogen compositions between influent and human gut indicated that bacterial pathogen profiles in influents could well reflect the average bacterial pathogen communities of urban resident guts within the STP catchment area.

  3. Looking Beyond Respiratory Cultures: Microbiome-Cytokine Signatures of Bacterial Pneumonia and Tracheobronchitis in Lung Transplant Recipients.

    PubMed

    Shankar, J; Nguyen, M H; Crespo, M M; Kwak, E J; Lucas, S K; McHugh, K J; Mounaud, S; Alcorn, J F; Pilewski, J M; Shigemura, N; Kolls, J K; Nierman, W C; Clancy, C J

    2016-06-01

    Bacterial pneumonia and tracheobronchitis are diagnosed frequently following lung transplantation. The diseases share clinical signs of inflammation and are often difficult to differentiate based on culture results. Microbiome and host immune-response signatures that distinguish between pneumonia and tracheobronchitis are undefined. Using a retrospective study design, we selected 49 bronchoalveolar lavage fluid samples from 16 lung transplant recipients associated with pneumonia (n = 8), tracheobronchitis (n = 12) or colonization without respiratory infection (n = 29). We ensured an even distribution of Pseudomonas aeruginosa or Staphylococcus aureus culture-positive samples across the groups. Bayesian regression analysis identified non-culture-based signatures comprising 16S ribosomal RNA microbiome profiles, cytokine levels and clinical variables that characterized the three diagnoses. Relative to samples associated with colonization, those from pneumonia had significantly lower microbial diversity, decreased levels of several bacterial genera and prominent multifunctional cytokine responses. In contrast, tracheobronchitis was characterized by high microbial diversity and multifunctional cytokine responses that differed from those of pneumonia-colonization comparisons. The dissimilar microbiomes and cytokine responses underlying bacterial pneumonia and tracheobronchitis following lung transplantation suggest that the diseases result from different pathogenic processes. Microbiomes and cytokine responses had complementary features, suggesting that they are closely interconnected in the pathogenesis of both diseases. © Copyright 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  4. Increased detection of mastitis pathogens by real-time PCR compared to bacterial culture.

    PubMed

    Keane, O M; Budd, K E; Flynn, J; McCoy, F

    2013-09-21

    Rapid and accurate identification of mastitis pathogens is important for disease control. Bacterial culture and isolate identification is considered the gold standard in mastitis diagnosis but is time consuming and results in many culture-negative samples. Identification of mastitis pathogens by PCR has been proposed as a fast and sensitive alternative to bacterial culture. The results of bacterial culture and PCR for the identification of the aetiological agent of clinical mastitis were compared. The pathogen identified by traditional culture methods was also detected by PCR in 98 per cent of cases indicating good agreement between the positive results of bacterial culture and PCR. A mastitis pathogen could not be recovered from approximately 30 per cent of samples by bacterial culture, however, an aetiological agent was identified by PCR in 79 per cent of these samples. Therefore, a mastitis pathogen was detected in significantly more milk samples by PCR than by bacterial culture (92 per cent and 70 per cent, respectively) although the clinical relevance of PCR-positive culture-negative results remains controversial. A mixed infection of two or more mastitis pathogens was also detected more commonly by PCR. Culture-negative samples due to undetected Staphylococcus aureus infections were rare. The use of PCR technology may assist in rapid mastitis diagnosis, however, accurate interpretation of PCR results in the absence of bacterial culture remains problematic.

  5. Analysis of bacterial communities and bacterial pathogens in a biogas plant by the combination of ethidium monoazide, PCR and Ion Torrent sequencing.

    PubMed

    Luo, Gang; Angelidaki, Irini

    2014-09-01

    The present study investigated the changes of bacterial community composition including bacterial pathogens along a biogas plant, i.e. from the influent, to the biogas reactor and to the post-digester. The effects of post-digestion temperature and time on the changes of bacterial community composition and bacterial pathogens were also studied. Microbial analysis was made by Ion Torrent sequencing of the PCR amplicons from ethidium monoazide treated samples, and ethidium monoazide was used to cleave DNA from dead cells and exclude it from PCR amplification. Both similarity and taxonomic analysis showed that the bacterial community composition in the influent was changed after anaerobic digestion. Firmicutes were dominant in all the samples, while Proteobacteria decreased in the biogas reactor compared with the influent. Variations of bacterial community composition in the biogas reactor with time were also observed. This could be attributed to varying composition of the influent. Batch experiments showed that the methane recovery from the digested residues (obtained from biogas reactor) was mainly related with post-digestion temperature. However, post-digestion time rather than temperature had a significant effect on the changes of bacterial community composition. The changes of bacterial community composition were also reflected in the changes of relative abundance of bacterial pathogens. The richness and relative abundance of bacterial pathogens were reduced after anaerobic digestion in the biogas reactor. It was found in batch experiments that bacterial pathogens showed the highest relative abundance and richness after 30 days' post-digestion. Streptococcus bovis was found in all the samples. Our results showed that special attention should be paid to the post-digestion since the increase in relative abundance of bacterial pathogens after post-digestion might reflect regrowth of bacterial pathogens and limit biosolids disposal vectors. Copyright © 2014 Elsevier

  6. Poisons, ruffles and rockets: bacterial pathogens and the host cell cytoskeleton.

    PubMed

    Steele-Mortimer, O; Knodler, L A; Finlay, B B

    2000-02-01

    The cytoskeleton of eukaryotic cells is affected by a number of bacterial and viral pathogens. In this review we consider three recurring themes of cytoskeletal involvement in bacterial pathogenesis: 1) the effect of bacterial toxins on actin-regulating small GTP-binding proteins; 2) the invasion of non-phagocytic cells by the bacterial induction of ruffles at the plasma membrane; 3) the formation of actin tails and pedestals by intracellular and extracellular bacteria, respectively. Considerable progress has been made recently in the characterization of these processes. It is becoming clear that bacterial pathogens have developed a variety of sophisticated mechanisms for utilizing the complex cytoskeletal system of host cells. These bacterially-induced processes are now providing unique insights into the regulation of fundamental eukaryotic mechanisms.

  7. Circadian Clearance of a Fungal Pathogen from the Lung Is Not Based on Cell-intrinsic Macrophage Rhythms.

    PubMed

    Chen, Shan; Fuller, Kevin K; Dunlap, Jay C; Loros, Jennifer J

    2018-02-01

    Circadian rhythms govern immune cell function, giving rise to time-of-day variation in the recognition and clearance of bacterial or viral pathogens; to date, however, no such regulation of the host-fungal interaction has been described. In this report, we use murine models to explore circadian control of either fungal-macrophage interactions in vitro or pathogen clearance from the lung in vivo. First, we show that expression of the important fungal pattern recognition receptor Dectin-1 ( clec7a), from either bone marrow-derived or peritoneum-derived macrophages, is not under circadian regulation at either the level of transcript or cell surface protein expression. Consistent with this finding, the phagocytic activity of macrophages in culture against spores of the pathogen Aspergillus fumigatus also did not vary over time. To account for the multiple cell types and processes that may be coordinated in a circadian fashion in vivo, we examined the clearance of A. fumigatus from the lungs of immunocompetent mice. Interestingly, animals inoculated at night demonstrated a 2-fold enhancement in clearance compared with animals inoculated in the morning. Taken together, our data suggest that while molecular recognition of fungi by immune cells may not be circadian, other processes in vivo may still allow for time-of-day differences in fungal clearance from the lung.

  8. Towards in vivo bacterial detection in human lung(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Choudhary, Tushar R.; Bradley, Mark; Duncan, Rory R.; Dhaliwal, Kevin

    2017-04-01

    Antibiotic resistance is a serious global concern. One way to tackle this problem is to develop new and sensitive approaches to diagnose bacterial infections and prevent unnecessary antibiotic use. With recent developments in optical molecular imaging, we are one step closer to in situ rapid detection of bacterial infections. We present here bespoke fluorescent probes for bacterial detection in ex vivo human lung tissue using fluorescence lifetime imaging microscopy (FLIM). Two in-house synthesised bespoke probes were used in this study to detect and differentiate between Gram positive and Gram negative bacterial strain using their fluorescence lifetime in the ex vivo human lung tissue. The average fluorescence lifetime of Gram positive probe (n=12) was 2.40 ± 0.25 ns and Gram negative (n=12) was 6.73 ± 0.49 ns. The human lung tissue (n=12) average fluorescence lifetime value was found to be 3.43 ± 0.19 ns. Furthermore we were also able to distinguish between dead or alive bacteria in ex vivo lung tissue based on difference in their lifetime. We have developped Fibre-FLIM methods to enable clinical translation within the Proteus Project (www.proteus.ac.uk).

  9. Genetic reprogramming of host cells by bacterial pathogens.

    PubMed

    Tran Van Nhieu, Guy; Arbibe, Laurence

    2009-10-29

    During the course of infection, pathogens often induce changes in gene expression in host cells and these changes can be long lasting and global or transient and of limited amplitude. Defining how, when, and why bacterial pathogens reprogram host cells represents an exciting challenge that opens up the opportunity to grasp the essence of pathogenesis and its molecular details.

  10. Manipulation of host membranes by the bacterial pathogens Listeria, Francisella, Shigella and Yersinia.

    PubMed

    Pizarro-Cerdá, Javier; Charbit, Alain; Enninga, Jost; Lafont, Frank; Cossart, Pascale

    2016-12-01

    Bacterial pathogens display an impressive arsenal of molecular mechanisms that allow survival in diverse host niches. Subversion of plasma membrane and cytoskeletal functions are common themes associated to infection by both extracellular and intracellular pathogens. Moreover, intracellular pathogens modify the structure/stability of their membrane-bound compartments and escape degradation from phagocytic or autophagic pathways. Here, we review the manipulation of host membranes by Listeria monocytogenes, Francisella tularensis, Shigella flexneri and Yersinia spp. These four bacterial model pathogens exemplify generalized strategies as well as specific features observed during bacterial infection processes. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Incidence of bacterial respiratory pathogens and their susceptibility to common antibacterial agents.

    PubMed Central

    Qadri, S. M.; Lee, G. C.; Ueno, Y.; Burdette, J. M.

    1993-01-01

    Although most respiratory tract infections are caused by viruses, bacterial pathogens are responsible for higher morbidity and mortality. Because virtually nothing is known about the etiology of bacterial respiratory pathogens in Saudi Arabia, this study examined the incidence of these organisms in 5426 patients over a 1-year period. Of the bacterial pathogens isolated from 904 patients, the most common organism was Hemophilus influenzae (31%), followed by pneumococci (22%), Pseudomonas aeruginosa (16%), and others (31%). Because the first two organisms accounted for more than 50% of isolates, their susceptibility to commonly used antibiotics was also reviewed. The results are presented here. PMID:8496993

  12. Bacterial pathogen manipulation of host membrane trafficking.

    PubMed

    Asrat, Seblewongel; de Jesús, Dennise A; Hempstead, Andrew D; Ramabhadran, Vinay; Isberg, Ralph R

    2014-01-01

    Pathogens use a vast number of strategies to alter host membrane dynamics. Targeting the host membrane machinery is important for the survival and pathogenesis of several extracellular, vacuolar, and cytosolic bacteria. Membrane manipulation promotes bacterial replication while suppressing host responses, allowing the bacterium to thrive in a hostile environment. This review provides a comprehensive summary of various strategies used by both extracellular and intracellular bacteria to hijack host membrane trafficking machinery. We start with mechanisms used by bacteria to alter the plasma membrane, delve into the hijacking of various vesicle trafficking pathways, and conclude by summarizing bacterial adaptation to host immune responses. Understanding bacterial manipulation of host membrane trafficking provides insights into bacterial pathogenesis and uncovers the molecular mechanisms behind various processes within a eukaryotic cell.

  13. Investigation of magnetic microdiscs for bacterial pathogen detection

    NASA Astrophysics Data System (ADS)

    Castillo-Torres, Keisha Y.; Garraud, Nicolas; Arnold, David P.; McLamore, Eric S.

    2016-05-01

    Despite strict regulations to control the presence of human pathogens in our food supply, recent foodborne outbreaks have heightened public concern about food safety and created urgency to improve methods for pathogen detection. Herein we explore a potentially portable, low-cost system that uses magnetic microdiscs for the detection of bacterial pathogens in liquid samples. The system operates by optically measuring the rotational dynamics of suspended magnetic microdiscs functionalized with pathogen-binding aptamers. The soft ferromagnetic (Ni80Fe20) microdiscs exhibit a closed magnetic spin arrangement (i.e. spin vortex) with zero magnetic stray field, leading to no disc agglomeration when in free suspension. With very high surface area for functionalization and volumes 10,000x larger than commonly used superparamagnetic nanoparticles, these 1.5-μm-diameter microdiscs are well suited for tagging, trapping, actuating, or interrogating bacterial targets. This work reports a wafer-level microfabrication process for fabrication of 600 million magnetic microdiscs per substrate and measurement of their rotational dynamics response. Additionally, the biofunctionalization of the microdiscs with DNA aptamers, subsequent binding to E. coli bacteria, and their magnetic manipulation is reported.

  14. Prevalence of gastrointestinal bacterial pathogens in a population of zoo animals.

    PubMed

    Stirling, J; Griffith, M; Blair, I; Cormican, M; Dooley, J S G; Goldsmith, C E; Glover, S G; Loughrey, A; Lowery, C J; Matsuda, M; McClurg, R; McCorry, K; McDowell, D; McMahon, A; Cherie Millar, B; Nagano, Y; Rao, J R; Rooney, P J; Smyth, M; Snelling, W J; Xu, J; Moore, J E

    2008-04-01

    Faecal prevalence of gastrointestinal bacterial pathogens, including Campylobacter, Escherichia coli O157:H7, Salmonella, Shigella, Yersinia, as well as Arcobacter, were examined in 317 faecal specimens from 44 animal species in Belfast Zoological Gardens, during July-September 2006. Thermophilic campylobacters including Campylobacter jejuni, Campylobacter coli and Campylobacter lari, were the most frequently isolated pathogens, where members of this genus were isolated from 11 animal species (11 of 44; 25%). Yersinia spp. were isolated from seven animal species (seven of 44; 15.9%) and included, Yersinia enterocolitica (five of seven isolates; 71.4%) and one isolate each of Yersinia frederiksenii and Yersinia kristensenii. Only one isolate of Salmonella was obtained throughout the entire study, which was an isolate of Salmonella dublin (O 1,9,12: H g, p), originating from tiger faeces after enrichment. None of the animal species found in public contact areas of the zoo were positive for any gastrointestinal bacterial pathogens. Also, water from the lake in the centre of the grounds, was examined for the same bacterial pathogens and was found to contain C. jejuni. This study is the first report on the isolation of a number of important bacterial pathogens from a variety of novel host species, C. jejuni from the red kangaroo (Macropus rufus), C. lari from a maned wolf (Chrysocyon brachyurus), Y. kristensenii from a vicugna (Vicugna vicugna) and Y. enterocolitica from a maned wolf and red panda (Ailurus fulgens). In conclusion, this study demonstrated that the faeces of animals in public contact areas of the zoo were not positive for the bacterial gastrointestinal pathogens examined. This is reassuring for the public health of visitors, particularly children, who enjoy this educational and recreational resource.

  15. Host-Pathogen Interactions and Chronic Lung Allograft Dysfunction.

    PubMed

    Belperio, John; Palmer, Scott M; Weigt, S Sam

    2017-09-01

    Lung transplantation is now considered to be a therapeutic option for patients with advanced-stage lung diseases. Unfortunately, due to post-transplant complications, both infectious and noninfectious, it is only a treatment and not a cure. Infections (e.g., bacterial, viral, and fungal) in the immunosuppressed lung transplant recipient are a common cause of mortality post transplant. Infections have more recently been explored as factors contributing to the risk of chronic lung allograft dysfunction (CLAD). Each major class of infection-(1) bacterial (Staphylococcus aureus and Pseudomonas aeruginosa); (2) viral (cytomegalovirus and community-acquired respiratory viruses); and (3) fungal (Aspergillus)-has been associated with the development of CLAD. Mechanistically, the microbe seems to be interacting with the allograft cells, stimulating the induction of chemokines, which recruit recipient leukocytes to the graft. The recipient leukocyte interactions with the microbe further up-regulate chemokines, amplifying the influx of allograft-infiltrating mononuclear cells. These events can promote recipient leukocytes to interact with the allograft, triggering an alloresponse and graft dysfunction. Overall, interactions between the microbe-allograft-host immune system alters chemokine production, which, in part, plays a role in the pathobiology of CLAD and mortality due to CLAD.

  16. Respiratory pathogens mediate the association between lung function and temperature in cystic fibrosis.

    PubMed

    Collaco, Joseph M; Raraigh, Karen S; Appel, Lawrence J; Cutting, Garry R

    2016-11-01

    Mean annual ambient temperature is a replicated environmental modifier of cystic fibrosis (CF) lung disease with warmer temperatures being associated with lower lung function. The mechanism of this relationship is not completely understood. However, Pseudomonas aeruginosa, a pathogen that infects the lungs of CF individuals and decreases lung function, also has a higher prevalence in individuals living in warmer climates. We therefore investigated the extent to which respiratory pathogens mediated the association between temperature and lung function. Thirteen respiratory pathogens observed on CF respiratory cultures were assessed in multistep fashion using clustered linear and logistic regression to determine if any mediated the association between temperature and lung function. Analysis was performed in the CF Twin-Sibling Study (n=1730; primary population); key findings were then evaluated in the U.S. CF Foundation Data Registry (n=15,174; replication population). In the primary population, three respiratory pathogens (P. aeruginosa, mucoid P. aeruginosa, and methicillin-resistant Staphylococcus aureus) mediated the association between temperature and lung function. P. aeruginosa accounted for 19% of the association (p=0.003), mucoid P. aeruginosa for 31% (p=0.001), and MRSA for 13% (p=0.023). The same three pathogens mediated association in the replication population (7%, p<0.001; 7%, p=0.002; and 4%, (p=0.002), respectively). Three important respiratory pathogens in CF mediate the association between lower lung function and warmer temperatures. These findings have implications for understanding regional variations in clinical outcomes, and interpreting results of epidemiologic studies and clinical trials that encompass regions with different ambient temperatures. Copyright © 2016 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  17. Recognition of bacterial plant pathogens: local, systemic and transgenerational immunity.

    PubMed

    Henry, Elizabeth; Yadeta, Koste A; Coaker, Gitta

    2013-09-01

    Bacterial pathogens can cause multiple plant diseases and plants rely on their innate immune system to recognize and actively respond to these microbes. The plant innate immune system comprises extracellular pattern recognition receptors that recognize conserved microbial patterns and intracellular nucleotide binding leucine-rich repeat (NLR) proteins that recognize specific bacterial effectors delivered into host cells. Plants lack the adaptive immune branch present in animals, but still afford flexibility to pathogen attack through systemic and transgenerational resistance. Here, we focus on current research in plant immune responses against bacterial pathogens. Recent studies shed light onto the activation and inactivation of pattern recognition receptors and systemic acquired resistance. New research has also uncovered additional layers of complexity surrounding NLR immune receptor activation, cooperation and sub-cellular localizations. Taken together, these recent advances bring us closer to understanding the web of molecular interactions responsible for coordinating defense responses and ultimately resistance. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  18. Hyperglycemia Impairs Neutrophil-Mediated Bacterial Clearance in Mice Infected with the Lyme Disease Pathogen.

    PubMed

    Javid, Ashkan; Zlotnikov, Nataliya; Pětrošová, Helena; Tang, Tian Tian; Zhang, Yang; Bansal, Anil K; Ebady, Rhodaba; Parikh, Maitry; Ahmed, Mijhgan; Sun, Chunxiang; Newbigging, Susan; Kim, Yae Ram; Santana Sosa, Marianna; Glogauer, Michael; Moriarty, Tara J

    2016-01-01

    Insulin-insufficient type 1 diabetes is associated with attenuated bactericidal function of neutrophils, which are key mediators of innate immune responses to microbes as well as pathological inflammatory processes. Neutrophils are central to immune responses to the Lyme pathogen Borrelia burgdorferi. The effect of hyperglycemia on host susceptibility to and outcomes of B. burgdorferi infection has not been examined. The present study investigated the impact of sustained obesity-independent hyperglycemia in mice on bacterial clearance, inflammatory pathology and neutrophil responses to B. burgdorferi. Hyperglycemia was associated with reduced arthritis incidence but more widespread tissue colonization and reduced clearance of bacterial DNA in multiple tissues including brain, heart, liver, lung and knee joint. B. burgdorferi uptake and killing were impaired in neutrophils isolated from hyperglycemic mice. Thus, attenuated neutrophil function in insulin-insufficient hyperglycemia was associated with reduced B. burgdorferi clearance in target organs. These data suggest that investigating the effects of comorbid conditions such as diabetes on outcomes of B. burgdorferi infections in humans may be warranted.

  19. Water relations in the interaction of foliar bacterial pathogens with plants.

    PubMed

    Beattie, Gwyn A

    2011-01-01

    This review examines the many ways in which water influences the relations between foliar bacterial pathogens and plants. As a limited resource in aerial plant tissues, water is subject to manipulation by both plants and pathogens. A model is emerging that suggests that plants actively promote localized desiccation at the infection site and thus restrict pathogen growth as one component of defense. Similarly, many foliar pathogens manipulate water relations as one component of pathogenesis. Nonvascular pathogens do this using effectors and other molecules to alter hormonal responses and enhance intercellular watersoaking, whereas vascular pathogens use many mechanisms to cause wilt. Because of water limitations on phyllosphere surfaces, bacterial colonists, including pathogens, benefit from the protective effects of cellular aggregation, synthesis of hygroscopic polymers, and uptake and production of osmoprotective compounds. Moreover, these bacteria employ tactics for scavenging and distributing water to overcome water-driven barriers to nutrient acquisition, movement, and signal exchange on plant surfaces. Copyright © 2011 by Annual Reviews. All rights reserved.

  20. The intrinsic resistome of bacterial pathogens

    PubMed Central

    Olivares, Jorge; Bernardini, Alejandra; Garcia-Leon, Guillermo; Corona, Fernando; B. Sanchez, Maria; Martinez, Jose L.

    2013-01-01

    Intrinsically resistant bacteria have emerged as a relevant health problem in the last years. Those bacterial species, several of them with an environmental origin, present naturally low-level susceptibility to several drugs. It has been proposed that intrinsic resistance is mainly the consequence of the impermeability of cellular envelopes, the activity of multidrug efflux pumps or the lack of appropriate targets for a given family of drugs. However, recently published articles indicate that the characteristic phenotype of susceptibility to antibiotics of a given bacterial species depends on the concerted activity of several elements, what has been named as intrinsic resistome. These determinants comprise not just classical resistance genes. Other elements, several of them involved in basic bacterial metabolic processes, are of relevance for the intrinsic resistance of bacterial pathogens. In the present review we analyze recent publications on the intrinsic resistomes of Escherichia coli and Pseudomonas aeruginosa. We present as well information on the role that global regulators of bacterial metabolism, as Crc from P. aeruginosa, may have on modulating bacterial susceptibility to antibiotics. Finally, we discuss the possibility of searching inhibitors of the intrinsic resistome in the aim of improving the activity of drugs currently in use for clinical practice. PMID:23641241

  1. The intrinsic resistome of bacterial pathogens.

    PubMed

    Olivares, Jorge; Bernardini, Alejandra; Garcia-Leon, Guillermo; Corona, Fernando; B Sanchez, Maria; Martinez, Jose L

    2013-01-01

    Intrinsically resistant bacteria have emerged as a relevant health problem in the last years. Those bacterial species, several of them with an environmental origin, present naturally low-level susceptibility to several drugs. It has been proposed that intrinsic resistance is mainly the consequence of the impermeability of cellular envelopes, the activity of multidrug efflux pumps or the lack of appropriate targets for a given family of drugs. However, recently published articles indicate that the characteristic phenotype of susceptibility to antibiotics of a given bacterial species depends on the concerted activity of several elements, what has been named as intrinsic resistome. These determinants comprise not just classical resistance genes. Other elements, several of them involved in basic bacterial metabolic processes, are of relevance for the intrinsic resistance of bacterial pathogens. In the present review we analyze recent publications on the intrinsic resistomes of Escherichia coli and Pseudomonas aeruginosa. We present as well information on the role that global regulators of bacterial metabolism, as Crc from P. aeruginosa, may have on modulating bacterial susceptibility to antibiotics. Finally, we discuss the possibility of searching inhibitors of the intrinsic resistome in the aim of improving the activity of drugs currently in use for clinical practice.

  2. Microbiome analysis reveals the abundance of bacterial pathogens in Rousettus leschenaultii guano

    PubMed Central

    Banskar, Sunil; Bhute, Shrikant S.; Suryavanshi, Mangesh V.; Punekar, Sachin; Shouche, Yogesh S.

    2016-01-01

    Bats are crucial for proper functioning of an ecosystem. They provide various important services to ecosystem and environment. While, bats are well-known carrier of pathogenic viruses, their possible role as a potential carrier of pathogenic bacteria is under-explored. Here, using culture-based approach, employing multiple bacteriological media, over thousand bacteria were cultivated and identified from Rousettus leschenaultii (a frugivorous bat species), the majority of which were from the family Enterobacteriaceae and putative pathogens. Next, pathogenic potential of most frequently cultivated component of microbiome i.e. Escherichia coli was assessed to identify its known pathotypes which revealed the presence of virulent factors in many cultivated E. coli isolates. Applying in-depth bacterial community analysis using high-throughput 16 S rRNA gene sequencing, a high inter-individual variation was observed among the studied guano samples. Interestingly, a higher diversity of bacterial communities was observed in decaying guano representative. The search against human pathogenic bacteria database at 97% identity, a small proportion of sequences were found associated to well-known human pathogens. The present study thus indicates that this bat species may carry potential bacterial pathogens and advice to study the effect of these pathogens on bats itself and the probable mode of transmission to humans and other animals. PMID:27845426

  3. Microbiome analysis reveals the abundance of bacterial pathogens in Rousettus leschenaultii guano.

    PubMed

    Banskar, Sunil; Bhute, Shrikant S; Suryavanshi, Mangesh V; Punekar, Sachin; Shouche, Yogesh S

    2016-11-15

    Bats are crucial for proper functioning of an ecosystem. They provide various important services to ecosystem and environment. While, bats are well-known carrier of pathogenic viruses, their possible role as a potential carrier of pathogenic bacteria is under-explored. Here, using culture-based approach, employing multiple bacteriological media, over thousand bacteria were cultivated and identified from Rousettus leschenaultii (a frugivorous bat species), the majority of which were from the family Enterobacteriaceae and putative pathogens. Next, pathogenic potential of most frequently cultivated component of microbiome i.e. Escherichia coli was assessed to identify its known pathotypes which revealed the presence of virulent factors in many cultivated E. coli isolates. Applying in-depth bacterial community analysis using high-throughput 16 S rRNA gene sequencing, a high inter-individual variation was observed among the studied guano samples. Interestingly, a higher diversity of bacterial communities was observed in decaying guano representative. The search against human pathogenic bacteria database at 97% identity, a small proportion of sequences were found associated to well-known human pathogens. The present study thus indicates that this bat species may carry potential bacterial pathogens and advice to study the effect of these pathogens on bats itself and the probable mode of transmission to humans and other animals.

  4. Metabolic host responses to infection by intracellular bacterial pathogens

    PubMed Central

    Eisenreich, Wolfgang; Heesemann, Jürgen; Rudel, Thomas; Goebel, Werner

    2013-01-01

    The interaction of bacterial pathogens with mammalian hosts leads to a variety of physiological responses of the interacting partners aimed at an adaptation to the new situation. These responses include multiple metabolic changes in the affected host cells which are most obvious when the pathogen replicates within host cells as in case of intracellular bacterial pathogens. While the pathogen tries to deprive nutrients from the host cell, the host cell in return takes various metabolic countermeasures against the nutrient theft. During this conflicting interaction, the pathogen triggers metabolic host cell responses by means of common cell envelope components and specific virulence-associated factors. These host reactions generally promote replication of the pathogen. There is growing evidence that pathogen-specific factors may interfere in different ways with the complex regulatory network that controls the carbon and nitrogen metabolism of mammalian cells. The host cell defense answers include general metabolic reactions, like the generation of oxygen- and/or nitrogen-reactive species, and more specific measures aimed to prevent access to essential nutrients for the respective pathogen. Accurate results on metabolic host cell responses are often hampered by the use of cancer cell lines that already exhibit various de-regulated reactions in the primary carbon metabolism. Hence, there is an urgent need for cellular models that more closely reflect the in vivo infection conditions. The exact knowledge of the metabolic host cell responses may provide new interesting concepts for antibacterial therapies. PMID:23847769

  5. Aspirin-triggered resolvin D1 is produced during self-resolving gram-negative bacterial pneumonia and regulates host immune responses for the resolution of lung inflammation.

    PubMed

    Abdulnour, R E; Sham, H P; Douda, D N; Colas, R A; Dalli, J; Bai, Y; Ai, X; Serhan, C N; Levy, B D

    2016-09-01

    Bacterial pneumonia is a leading cause of morbidity and mortality worldwide. Host responses to contain infection and mitigate pathogen-mediated lung inflammation are critical for pneumonia resolution. Aspirin-triggered resolvin D1 (AT-RvD1; 7S,8R,17R-trihydroxy-4Z,9E,11E,13Z,15E,19Z-docosahexaenoic acid) is a lipid mediator (LM) that displays organ-protective actions in sterile lung inflammation, and regulates pathogen-initiated cellular responses. Here, in a self-resolving murine model of Escherichia coli pneumonia, LM metabololipidomics performed on lungs obtained at baseline, 24, and 72 h after infection uncovered temporal regulation of endogenous AT-RvD1 production. Early treatment with exogenous AT-RvD1 (1 h post infection) enhanced clearance of E. coli and Pseudomonas aeruginosa in vivo, and lung macrophage phagocytosis of fluorescent bacterial particles ex vivo. Characterization of macrophage subsets in the alveolar compartment during pneumonia identified efferocytosis by infiltrating macrophages (CD11b(Hi) CD11c(Low)) and exudative macrophages (CD11b(Hi) CD11c(Hi)). AT-RvD1 increased efferocytosis by these cells ex vivo, and accelerated neutrophil clearance during pneumonia in vivo. These anti-bacterial and pro-resolving actions of AT-RvD1 were additive to antibiotic therapy. Taken together, these findings suggest that the pro-resolving actions of AT-RvD1 during pneumonia represent a novel host-directed therapeutic strategy to complement the current antibiotic-centered approach for combatting infections.

  6. Copper transport and trafficking at the host-bacterial pathogen interface.

    PubMed

    Fu, Yue; Chang, Feng-Ming James; Giedroc, David P

    2014-12-16

    CONSPECTUS: The human innate immune system has evolved the means to reduce the bioavailability of first-row late d-block transition metal ions to invading microbial pathogens in a process termed "nutritional immunity". Transition metals from Mn(II) to Zn(II) function as metalloenzyme cofactors in all living cells, and the successful pathogen is capable of mounting an adaptive response to mitigate the effects of host control of transition metal bioavailability. Emerging evidence suggests that Mn, Fe, and Zn are withheld from the pathogen in classically defined nutritional immunity, while Cu is used to kill invading microorganisms. This Account summarizes new molecular-level insights into copper trafficking across cell membranes from studies of a number of important bacterial pathogens and model organisms, including Escherichia coli, Salmonella species, Mycobacterium tuberculosis, and Streptococcus pneumoniae, to illustrate general principles of cellular copper resistance. Recent highlights of copper chemistry at the host-microbial pathogen interface include the first high resolution structures and functional characterization of a Cu(I)-effluxing P1B-ATPase, a new class of bacterial copper chaperone, a fungal Cu-only superoxide dismutase SOD5, and the discovery of a small molecule Cu-bound SOD mimetic. Successful harnessing by the pathogen of host-derived bactericidal Cu to reduce the bacterial load of reactive oxygen species (ROS) is an emerging theme; in addition, recent studies continue to emphasize the importance of short lifetime protein-protein interactions that orchestrate the channeling of Cu(I) from donor to target without dissociation into bulk solution; this, in turn, mitigates the off-pathway effects of Cu(I) toxicity in both the periplasm in Gram negative organisms and in the bacterial cytoplasm. It is unclear as yet, outside of the photosynthetic bacteria, whether Cu(I) is trafficked to other cellular destinations, for example, to cuproenzymes or other

  7. O Antigen Modulates Insect Vector Acquisition of the Bacterial Plant Pathogen Xylella fastidiosa

    PubMed Central

    Rapicavoli, Jeannette N.; Kinsinger, Nichola; Perring, Thomas M.; Backus, Elaine A.; Shugart, Holly J.; Walker, Sharon

    2015-01-01

    Hemipteran insect vectors transmit the majority of plant pathogens. Acquisition of pathogenic bacteria by these piercing/sucking insects requires intimate associations between the bacterial cells and insect surfaces. Lipopolysaccharide (LPS) is the predominant macromolecule displayed on the cell surface of Gram-negative bacteria and thus mediates bacterial interactions with the environment and potential hosts. We hypothesized that bacterial cell surface properties mediated by LPS would be important in modulating vector-pathogen interactions required for acquisition of the bacterial plant pathogen Xylella fastidiosa, the causative agent of Pierce's disease of grapevines. Utilizing a mutant that produces truncated O antigen (the terminal portion of the LPS molecule), we present results that link this LPS structural alteration to a significant decrease in the attachment of X. fastidiosa to blue-green sharpshooter foreguts. Scanning electron microscopy confirmed that this defect in initial attachment compromised subsequent biofilm formation within vector foreguts, thus impairing pathogen acquisition. We also establish a relationship between O antigen truncation and significant changes in the physiochemical properties of the cell, which in turn affect the dynamics of X. fastidiosa adhesion to the vector foregut. Lastly, we couple measurements of the physiochemical properties of the cell with hydrodynamic fluid shear rates to produce a Comsol model that predicts primary areas of bacterial colonization within blue-green sharpshooter foreguts, and we present experimental data that support the model. These results demonstrate that, in addition to reported protein adhesin-ligand interactions, O antigen is crucial for vector-pathogen interactions, specifically in the acquisition of this destructive agricultural pathogen. PMID:26386068

  8. Within-host evolution decreases virulence in an opportunistic bacterial pathogen.

    PubMed

    Mikonranta, Lauri; Mappes, Johanna; Laakso, Jouni; Ketola, Tarmo

    2015-08-19

    Pathogens evolve in a close antagonistic relationship with their hosts. The conventional theory proposes that evolution of virulence is highly dependent on the efficiency of direct host-to-host transmission. Many opportunistic pathogens, however, are not strictly dependent on the hosts due to their ability to reproduce in the free-living environment. Therefore it is likely that conflicting selection pressures for growth and survival outside versus within the host, rather than transmission potential, shape the evolution of virulence in opportunists. We tested the role of within-host selection in evolution of virulence by letting a pathogen Serratia marcescens db11 sequentially infect Drosophila melanogaster hosts and then compared the virulence to strains that evolved only in the outside-host environment. We found that the pathogen adapted to both Drosophila melanogaster host and novel outside-host environment, leading to rapid evolutionary changes in the bacterial life-history traits including motility, in vitro growth rate, biomass yield, and secretion of extracellular proteases. Most significantly, selection within the host led to decreased virulence without decreased bacterial load while the selection lines in the outside-host environment maintained the same level of virulence with ancestral bacteria. This experimental evidence supports the idea that increased virulence is not an inevitable consequence of within-host adaptation even when the epidemiological restrictions are removed. Evolution of attenuated virulence could occur because of immune evasion within the host. Alternatively, rapid fluctuation between outside-host and within-host environments, which is typical for the life cycle of opportunistic bacterial pathogens, could lead to trade-offs that lower pathogen virulence.

  9. [Rapid identification of meningitis due to bacterial pathogens].

    PubMed

    Ubukata, Kimiko

    2013-01-01

    We constructed a new real-time PCR method to detect causative pathogens in cerebrospinal fluid (CSF) from patient due to bacterial meningitis. The eight pathogens targeted in the PCR are Streptococcus pneumoniae, Haemophilus influenzae, Streptococcus agalactiae, Staphylococcus aurues, Neisseria meningitides, Listeria monocytogenes, Esherichia coli, and Mycoplasma pneumoniae. The total time from DNA extraction from CSF to PCR analysis was 1.5 hour. The pathogens were detected in 72% of the CSF samples (n=115) by real-time PCR, but in only 48% by culture, although the microorganisms were completely concordant. The detection rate of pathogens with PCR was significantly better than that with cultures in patients with antibiotic administration.In conclusion, detection with real-time PCR is useful for rapidly identifying the causative pathogens of meningitis and for examining the clinical course of chemotherapy.

  10. Molecular assessment of bacterial pathogens - a contribution to drinking water safety.

    PubMed

    Brettar, Ingrid; Höfle, Manfred G

    2008-06-01

    Human bacterial pathogens are considered as an increasing threat to drinking water supplies worldwide because of the growing demand of high-quality drinking water and the decreasing quality and quantity of available raw water. Moreover, a negative impact of climate change on freshwater resources is expected. Recent advances in molecular detection technologies for bacterial pathogens in drinking water bear the promise in improving the safety of drinking water supplies by precise detection and identification of the pathogens. More importantly, the array of molecular approaches allows understanding details of infection routes of waterborne diseases, the effects of changes in drinking water treatment, and management of freshwater resources.

  11. [Influence of human gastrointestinal tract bacterial pathogens on host cell apoptosis].

    PubMed

    Wronowska, Weronika; Godlewska, Renata; Jagusztyn-Krynicka, Elzbieta Katarzyna

    2005-01-01

    Several pathogenic bacteria are able to trigger apoptosis in the host cell, but the mechanisms by which it occurs differ, and the resulting pathology can take different courses. Induction and/or blockage of programmed cell death upon infection is a result of complex interaction of bacterial proteins with cellular proteins involved in signal transduction and apoptosis. In this review we focus on pro/anti-apoptotic activities exhibited by two enteric pathogens Salmonella enterica, Yersinia spp. and gastric pathogen Helicobacter pylori. We present current knowledge on how interaction between mammalian and bacterial cell relates to the molecular pathways of apoptosis, and what is the role of apoptosis in pathogenesis.

  12. Pathogen espionage: multiple bacterial adrenergic sensors eavesdrop on host communication systems.

    PubMed

    Karavolos, Michail H; Winzer, Klaus; Williams, Paul; Khan, C M Anjam

    2013-02-01

    The interactions between bacterial pathogens and their eukaryotic hosts are vital in determining the outcome of infections. Bacterial pathogens employ molecular sensors to detect and facilitate adaptation to changes in their niche. The sensing of these extracellular signals enables the pathogen to navigate within mammalian hosts. Intercellular bacterial communication is facilitated by the production and sensing of autoinducer (AI) molecules via quorum sensing. More recently, AI-3 and the host neuroendocrine (NE) hormones adrenaline and noradrenaline were reported to display cross-talk for the activation of the same signalling pathways. Remarkably, there is increasing evidence to suggest that enteric bacteria sense and respond to the host NE stress hormones adrenaline and noradrenaline to modulate virulence. These responses can be inhibited by α and β-adrenergic receptor antagonists implying a bacterial receptor-based sensing and signalling cascade. In Escherichia coli O157:H7 and Salmonella, QseC has been proposed as the adrenergic receptor. Strikingly, there is an increasing body of evidence that not all the bacterial adrenergic responses require signalling through QseC. Here we provide additional hypotheses to reconcile these observations implicating the existence of alternative adrenergic receptors including BasS, QseE and CpxA and their associated signalling cascades with major roles in interkingdom communication. © 2012 Blackwell Publishing Ltd.

  13. An Epithelial Integrin Regulates the Amplitude of Protective Lung Interferon Responses against Multiple Respiratory Pathogens.

    PubMed

    Meliopoulos, Victoria A; Van de Velde, Lee-Ann; Van de Velde, Nicholas C; Karlsson, Erik A; Neale, Geoff; Vogel, Peter; Guy, Cliff; Sharma, Shalini; Duan, Susu; Surman, Sherri L; Jones, Bart G; Johnson, Michael D L; Bosio, Catharine; Jolly, Lisa; Jenkins, R Gisli; Hurwitz, Julia L; Rosch, Jason W; Sheppard, Dean; Thomas, Paul G; Murray, Peter J; Schultz-Cherry, Stacey

    2016-08-01

    The healthy lung maintains a steady state of immune readiness to rapidly respond to injury from invaders. Integrins are important for setting the parameters of this resting state, particularly the epithelial-restricted αVβ6 integrin, which is upregulated during injury. Once expressed, αVβ6 moderates acute lung injury (ALI) through as yet undefined molecular mechanisms. We show that the upregulation of β6 during influenza infection is involved in disease pathogenesis. β6-deficient mice (β6 KO) have increased survival during influenza infection likely due to the limited viral spread into the alveolar spaces leading to reduced ALI. Although the β6 KO have morphologically normal lungs, they harbor constitutively activated lung CD11b+ alveolar macrophages (AM) and elevated type I IFN signaling activity, which we traced to the loss of β6-activated transforming growth factor-β (TGF-β). Administration of exogenous TGF-β to β6 KO mice leads to reduced numbers of CD11b+ AMs, decreased type I IFN signaling activity and loss of the protective phenotype during influenza infection. Protection extended to other respiratory pathogens such as Sendai virus and bacterial pneumonia. Our studies demonstrate that the loss of one epithelial protein, αVβ6 integrin, can alter the lung microenvironment during both homeostasis and respiratory infection leading to reduced lung injury and improved survival.

  14. Microbial minimalism: genome reduction in bacterial pathogens.

    PubMed

    Moran, Nancy A

    2002-03-08

    When bacterial lineages make the transition from free-living or facultatively parasitic life cycles to permanent associations with hosts, they undergo a major loss of genes and DNA. Complete genome sequences are providing an understanding of how extreme genome reduction affects evolutionary directions and metabolic capabilities of obligate pathogens and symbionts.

  15. Direct detection of various pathogens by loop-mediated isothermal amplification assays on bacterial culture and bacterial colony.

    PubMed

    Yan, Muxia; Li, Weidong; Zhou, Zhenwen; Peng, Hongxia; Luo, Ziyan; Xu, Ling

    2017-01-01

    In this work, loop-mediated isothermal amplification based detection assay using bacterial culture and bacterial colony for various common pathogens direct detection had been established, evaluated and further applied. A total of five species of common pathogens and nine detection targets (tlh, tdh and trh for V. Parahaemolyticus, rfbE, stx1 and stx2 for E. coli, oprI for P. aeruginosa, invA for Salmonella and hylA for L. monocytogenes) were performed on bacterial culture and bacterial colony LAMP. To evaluate and optimize this assay, a total of 116 standard strains were included. Then, for each detected targets, 20 random selected strains were applied. Results were determined through both visual observation of the changed color by naked eye and electrophoresis, which increased the accuracy of survey. The minimum adding quantity of each primer had been confirmed, and the optimal amplification was obtained under 65 °C for 45 min with 25 μl reaction volume. The detection limit of bacterial culture LAMP and PCR assay were determined to be 10 2 and 10 4 or 10 5  CFU/reaction, respectively. No false positive amplification was observed when subjecting the bacterial -LAMP assay to 116 reference strains. This was the first report of colony-LAMP and culture-LAMP assay, which had been demonstrated to be a fast, reliable, cost-effective and simple method on detection of various common pathogens. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Diallylthiosulfinate (Allicin), a Volatile Antimicrobial from Garlic (Allium sativum), Kills Human Lung Pathogenic Bacteria, Including MDR Strains, as a Vapor.

    PubMed

    Reiter, Jana; Levina, Natalja; van der Linden, Mark; Gruhlke, Martin; Martin, Christian; Slusarenko, Alan J

    2017-10-12

    Garlic ( Allium sativum ) has potent antimicrobial activity due to allicin (diallylthiosulfinate) synthesized by enzyme catalysis in damaged garlic tissues. Allicin gives crushed garlic its characteristic odor and its volatility makes it potentially useful for combating lung infections. Allicin was synthesized (>98% pure) by oxidation of diallyl disulfide by H₂O₂ using formic acid as a catalyst and the growth inhibitory effect of allicin vapor and allicin in solution to clinical isolates of lung pathogenic bacteria from the genera Pseudomonas , Streptococcus , and Staphylococcus , including multi-drug resistant (MDR) strains, was demonstrated. Minimal inhibitory (MIC) and minimal bactericidal concentrations (MBC) were determined and compared to clinical antibiotics using standard European Committee on Antimicrobial Susceptibility Testing (EUCAST) procedures. The cytotoxicity of allicin to human lung and colon epithelial and murine fibroblast cells was tested in vitro and shown to be ameliorated by glutathione (GSH). Similarly, the sensitivity of rat precision-cut lung slices (PCLS) to allicin was decreased by raising the [GSH] to the approximate blood plasma level of 1 mM. Because allicin inhibited bacterial growth as a vapor, it could be used to combat bacterial lung infections via direct inhalation. Since there are no volatile antibiotics available to treat pulmonary infections, allicin, particularly at sublethal doses in combination with oral antibiotics, could make a valuable addition to currently available treatments.

  17. Encyclopedia of bacterial gene circuits whose presence or absence correlate with pathogenicity--a large-scale system analysis of decoded bacterial genomes.

    PubMed

    Shestov, Maksim; Ontañón, Santiago; Tozeren, Aydin

    2015-10-13

    Bacterial infections comprise a global health challenge as the incidences of antibiotic resistance increase. Pathogenic potential of bacteria has been shown to be context dependent, varying in response to environment and even within the strains of the same genus. We used the KEGG repository and extensive literature searches to identify among the 2527 bacterial genomes in the literature those implicated as pathogenic to the host, including those which show pathogenicity in a context dependent manner. Using data on the gene contents of these genomes, we identified sets of genes highly abundant in pathogenic but relatively absent in commensal strains and vice versa. In addition, we carried out genome comparison within a genus for the seventeen largest genera in our genome collection. We projected the resultant lists of ortholog genes onto KEGG bacterial pathways to identify clusters and circuits, which can be linked to either pathogenicity or synergy. Gene circuits relatively abundant in nonpathogenic bacteria often mediated biosynthesis of antibiotics. Other synergy-linked circuits reduced drug-induced toxicity. Pathogen-abundant gene circuits included modules in one-carbon folate, two-component system, type-3 secretion system, and peptidoglycan biosynthesis. Antibiotics-resistant bacterial strains possessed genes modulating phagocytosis, vesicle trafficking, cytoskeletal reorganization, and regulation of the inflammatory response. Our study also identified bacterial genera containing a circuit, elements of which were previously linked to Alzheimer's disease. Present study produces for the first time, a signature, in the form of a robust list of gene circuitry whose presence or absence could potentially define the pathogenicity of a microbiome. Extensive literature search substantiated a bulk majority of the commensal and pathogenic circuitry in our predicted list. Scanning microbiome libraries for these circuitry motifs will provide further insights into the complex

  18. O antigen modulates insect vector acquisition of the bacterial plant pathogen Xylella fastidiosa.

    PubMed

    Rapicavoli, Jeannette N; Kinsinger, Nichola; Perring, Thomas M; Backus, Elaine A; Shugart, Holly J; Walker, Sharon; Roper, M Caroline

    2015-12-01

    Hemipteran insect vectors transmit the majority of plant pathogens. Acquisition of pathogenic bacteria by these piercing/sucking insects requires intimate associations between the bacterial cells and insect surfaces. Lipopolysaccharide (LPS) is the predominant macromolecule displayed on the cell surface of Gram-negative bacteria and thus mediates bacterial interactions with the environment and potential hosts. We hypothesized that bacterial cell surface properties mediated by LPS would be important in modulating vector-pathogen interactions required for acquisition of the bacterial plant pathogen Xylella fastidiosa, the causative agent of Pierce's disease of grapevines. Utilizing a mutant that produces truncated O antigen (the terminal portion of the LPS molecule), we present results that link this LPS structural alteration to a significant decrease in the attachment of X. fastidiosa to blue-green sharpshooter foreguts. Scanning electron microscopy confirmed that this defect in initial attachment compromised subsequent biofilm formation within vector foreguts, thus impairing pathogen acquisition. We also establish a relationship between O antigen truncation and significant changes in the physiochemical properties of the cell, which in turn affect the dynamics of X. fastidiosa adhesion to the vector foregut. Lastly, we couple measurements of the physiochemical properties of the cell with hydrodynamic fluid shear rates to produce a Comsol model that predicts primary areas of bacterial colonization within blue-green sharpshooter foreguts, and we present experimental data that support the model. These results demonstrate that, in addition to reported protein adhesin-ligand interactions, O antigen is crucial for vector-pathogen interactions, specifically in the acquisition of this destructive agricultural pathogen. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. The Lung Microbiome, Immunity and the Pathogenesis of Chronic Lung Disease1

    PubMed Central

    O’Dwyer, David N.; Dickson, Robert P.; Moore, Bethany B.

    2016-01-01

    The development of culture-independent techniques for microbiological analysis has uncovered the previously unappreciated complexity of the bacterial microbiome at various anatomic sites. The microbiome of the lung has relatively less bacterial biomass when compared to the lower gastrointestinal tract yet displays considerable diversity. The composition of the lung microbiome is determined by elimination, immigration and relative growth within its communities. Chronic lung disease alters these factors. Many forms of chronic lung disease demonstrate exacerbations that drive disease progression and are poorly understood. Mounting evidence supports ways in which microbiota dysbiosis can influence host defense and immunity, and in turn may contribute to disease exacerbations. Thus, the key to understanding the pathogenesis of chronic lung disease may reside in deciphering the complex interactions between the host, pathogen and resident microbiota during stable disease and exacerbations. In this brief review we discuss new insights into these labyrinthine relationships. PMID:27260767

  20. Assessment of bacterial pathogens in fresh rainwater and airborne particulate matter using Real-Time PCR

    NASA Astrophysics Data System (ADS)

    Kaushik, Rajni; Balasubramanian, Rajasekhar

    2012-01-01

    Bacterial pathogens in airborne particulate matter (PM) and in rainwater (RW) were detected using a robust and sensitive Real-Time PCR method. Both RW and PM were collected simultaneously in the tropical atmosphere of Singapore, which were then subjected to analysis for the presence of selected bacterial pathogens and potential pathogen of health concern ( Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Aeromonas hydrophila). These pathogens were found to be prevalent in both PM and RW samples with E. coli being the most prevalent potential pathogen in both types of samples. The temporal distribution of these pathogens in PM and RW was found to be similar to each other. Using the proposed microbiological technique, the atmospheric deposition (dry and wet deposition) of bacterial pathogens to lakes and reservoirs can be studied in view of growing concerns about the outbreak of waterborne diseases.

  1. Systemic acquired tolerance to virulent bacterial pathogens in tomato.

    PubMed

    Block, Anna; Schmelz, Eric; O'Donnell, Phillip J; Jones, Jeffrey B; Klee, Harry J

    2005-07-01

    Recent studies on the interactions between plants and pathogenic microorganisms indicate that the processes of disease symptom development and pathogen growth can be uncoupled. Thus, in many instances, the symptoms associated with disease represent an active host response to the presence of a pathogen. These host responses are frequently mediated by phytohormones. For example, ethylene and salicylic acid (SA) mediate symptom development but do not influence bacterial growth in the interaction between tomato (Lycopersicon esculentum) and virulent Xanthomonas campestris pv vesicatoria (Xcv). It is not apparent why extensive tissue death is integral to a defense response if it does not have the effect of limiting pathogen proliferation. One possible function for this hormone-mediated response is to induce a systemic defense response. We therefore assessed the systemic responses of tomato to Xcv. SA- and ethylene-deficient transgenic lines were used to investigate the roles of these phytohormones in systemic signaling. Virulent and avirulent Xcv did induce a systemic response as evidenced by expression of defense-associated pathogenesis-related genes in an ethylene- and SA-dependent manner. This systemic response reduced cell death but not bacterial growth during subsequent challenge with virulent Xcv. This systemic acquired tolerance (SAT) consists of reduced tissue damage in response to secondary challenge with a virulent pathogen with no effect upon pathogen growth. SAT was associated with a rapid ethylene and pathogenesis-related gene induction upon challenge. SAT was also induced by infection with Pseudomonas syringae pv tomato. These data show that SAT resembles systemic acquired resistance without inhibition of pathogen growth.

  2. The Lung Microbiome, Immunity, and the Pathogenesis of Chronic Lung Disease.

    PubMed

    O'Dwyer, David N; Dickson, Robert P; Moore, Bethany B

    2016-06-15

    The development of culture-independent techniques for microbiological analysis has uncovered the previously unappreciated complexity of the bacterial microbiome at various anatomic sites. The microbiome of the lung has relatively less bacterial biomass when compared with the lower gastrointestinal tract yet displays considerable diversity. The composition of the lung microbiome is determined by elimination, immigration, and relative growth within its communities. Chronic lung disease alters these factors. Many forms of chronic lung disease demonstrate exacerbations that drive disease progression and are poorly understood. Mounting evidence supports ways in which microbiota dysbiosis can influence host defense and immunity, and in turn may contribute to disease exacerbations. Thus, the key to understanding the pathogenesis of chronic lung disease may reside in deciphering the complex interactions between the host, pathogen, and resident microbiota during stable disease and exacerbations. In this brief review we discuss new insights into these labyrinthine relationships. Copyright © 2016 by The American Association of Immunologists, Inc.

  3. Reduced Set of Virulence Genes Allows High Accuracy Prediction of Bacterial Pathogenicity in Humans

    PubMed Central

    Iraola, Gregorio; Vazquez, Gustavo; Spangenberg, Lucía; Naya, Hugo

    2012-01-01

    Although there have been great advances in understanding bacterial pathogenesis, there is still a lack of integrative information about what makes a bacterium a human pathogen. The advent of high-throughput sequencing technologies has dramatically increased the amount of completed bacterial genomes, for both known human pathogenic and non-pathogenic strains; this information is now available to investigate genetic features that determine pathogenic phenotypes in bacteria. In this work we determined presence/absence patterns of different virulence-related genes among more than finished bacterial genomes from both human pathogenic and non-pathogenic strains, belonging to different taxonomic groups (i.e: Actinobacteria, Gammaproteobacteria, Firmicutes, etc.). An accuracy of 95% using a cross-fold validation scheme with in-fold feature selection is obtained when classifying human pathogens and non-pathogens. A reduced subset of highly informative genes () is presented and applied to an external validation set. The statistical model was implemented in the BacFier v1.0 software (freely available at ), that displays not only the prediction (pathogen/non-pathogen) and an associated probability for pathogenicity, but also the presence/absence vector for the analyzed genes, so it is possible to decipher the subset of virulence genes responsible for the classification on the analyzed genome. Furthermore, we discuss the biological relevance for bacterial pathogenesis of the core set of genes, corresponding to eight functional categories, all with evident and documented association with the phenotypes of interest. Also, we analyze which functional categories of virulence genes were more distinctive for pathogenicity in each taxonomic group, which seems to be a completely new kind of information and could lead to important evolutionary conclusions. PMID:22916122

  4. Questions about the behaviour of bacterial pathogens in vivo.

    PubMed Central

    Smith, H

    2000-01-01

    Bacterial pathogens cause disease in man and animals. They have unique biological properties, which enable them to colonize mucous surfaces, penetrate them, grow in the environment of the host, inhibit or avoid host defences and damage the host. The bacterial products responsible for these five biological requirements are the determinants of pathogenicity (virulence determinants). Current knowledge comes from studies in vitro, but now interest is increasing in how bacteria behave and produce virulence determinants within the infected host. There are three aspects to elucidate: bacterial activities, the host factors that affect them and the metabolic interactions between the two. The first is relatively easy to accomplish and, recently, new methods for doing this have been devised. The second is not easy because of the complexity of the environment in vivo and its ever-changing face. Nevertheless, some information can be gained from the literature and by new methodology. The third aspect is very difficult to study effectively unless some events in vivo can be simulated in vitro. The objectives of the Discussion Meeting were to describe the new methods and to show how they, and conventional studies, are revealing the activities of bacterial pathogens in vivo. This paper sets the scene by raising some questions and suggesting, with examples, how they might be answered. Bacterial growth in vivo is the primary requirement for pathogenicity. Without growth, determinants of the other four requirements are not formed. Results from the new methods are underlining this point. The important questions are as follows. What is the pattern of a developing infection and the growth rates and population sizes of the bacteria at different stages? What nutrients are present in vivo and how do they change as infection progresses and relate to growth rates and population sizes? How are these nutrients metabolized and by what bacterial mechanisms? Which bacterial processes handle

  5. Probiotic E. coli Nissle 1917 biofilms on silicone substrates for bacterial interference against pathogen colonization.

    PubMed

    Chen, Quan; Zhu, Zhiling; Wang, Jun; Lopez, Analette I; Li, Siheng; Kumar, Amit; Yu, Fei; Chen, Haoqing; Cai, Chengzhi; Zhang, Lijuan

    2017-03-01

    Bacterial interference is an alternative strategy to fight against device-associated bacterial infections. Pursuing this strategy, a non-pathogenic bacterial biofilm is used as a live, protective barrier to fence off pathogen colonization. In this work, biofilms formed by probiotic Escherichia coli strain Nissle 1917 (EcN) are investigated for their potential for long-term bacterial interference against infections associated with silicone-based urinary catheters and indwelling catheters used in the digestive system, such as feeding tubes and voice prostheses. We have shown that EcN can form stable biofilms on silicone substrates, particularly those modified with a biphenyl mannoside derivative. These biofilms greatly reduced the colonization by pathogenic Enterococcus faecalis in Lysogeny broth (LB) for 11days. Bacterial interference is an alternative strategy to fight against device-associated bacterial infections. Pursuing this strategy, we use non-pathogenic bacteria to form a biofilm that serves as a live, protective barrier against pathogen colonization. Herein, we report the first use of preformed probiotic E. coli Nissle 1917 biofilms on the mannoside-presenting silicone substrates to prevent pathogen colonization. The biofilms serve as a live, protective barrier to fence off the pathogens, whereas current antimicrobial/antifouling coatings are subjected to gradual coverage by the biomass from the rapidly growing pathogens in a high-nutrient environment. It should be noted that E. coli Nissle 1917 is commercially available and has been used in many clinical trials. We also demonstrated that this probiotic strain performed significantly better than the non-commercial, genetically modified E. coli strain that we previously reported. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Autophagic clearance of bacterial pathogens: molecular recognition of intracellular microorganisms.

    PubMed

    Pareja, Maria Eugenia Mansilla; Colombo, Maria I

    2013-01-01

    Autophagy is involved in several physiological and pathological processes. One of the key roles of the autophagic pathway is to participate in the first line of defense against the invasion of pathogens, as part of the innate immune response. Targeting of intracellular bacteria by the autophagic machinery, either in the cytoplasm or within vacuolar compartments, helps to control bacterial proliferation in the host cell, controlling also the spreading of the infection. In this review we will describe the means used by diverse bacterial pathogens to survive intracellularly and how they are recognized by the autophagic molecular machinery, as well as the mechanisms used to avoid autophagic clearance.

  7. The disease complex of the gypsy moth. II. Aerobic bacterial pathogens

    Treesearch

    J.D. Podgwaite; R.W. Campbell

    1972-01-01

    Eighty-six pathogenic aerobic bacterial isolates from diseased gypsy moth larvae collected in both sparse and dense populations were characterized and identified as members of the families Bacillaceae, Enterobacteriaceae, Lactobacillaceae, Pseudomonadaceae, and Achromobacteraceae. The commonest pathogens were Streptococcus faecalis, Bacillus cereus, Bacillus...

  8. Host response to bovine respiratory pathogens.

    PubMed

    Czuprynski, Charles J

    2009-12-01

    Bovine respiratory disease (BRD) involves complex interactions amongst viral and bacterial pathogens that can lead to intense pulmonary inflammation (fibrinous pleuropneumonia). Viral infection greatly increases the susceptibility of cattle to secondary infection of the lung with bacterial pathogens like Mannheimia haemolytica and Histophilus somni. The underlying reason for this viral/bacterial synergism, and the manner in which cattle respond to the virulence strategies of the bacterial pathogens, is incompletely understood. Bovine herpesvirus type 1 (BHV-1) infection of bronchial epithelial cells in vitro enhances the binding of M. haemolytica and triggers release of inflammatory mediators that attract and enhance binding of neutrophils. An exotoxin (leukotoxin) released from M. haemolytica further stimulates release of inflammatory mediators and causes leukocyte death. Cattle infected with H. somni frequently display vasculitis. Exposure of bovine endothelial cells to H. somnii or its lipooligosaccharide (LOS) increases endothelium permeability, and makes the surface of the endothelial cells pro-coagulant. These processes are amplified in the presence of platelets. The above findings demonstrate that bovine respiratory pathogens (BHV-1, M. haemolytica and H. somni) interact with leukocytes and other cells (epithelial and endothelial cells) leading to the inflammation that characterizes BRD.

  9. The role and regulation of catalase in respiratory tract opportunistic bacterial pathogens.

    PubMed

    Eason, Mia M; Fan, Xin

    2014-09-01

    Respiratory tract bacterial pathogens are the etiologic agents of a variety of illnesses. The ability of these bacteria to cause disease is imparted through survival within the host and avoidance of pathogen clearance by the immune system. Respiratory tract pathogens are continually bombarded by reactive oxygen species (ROS), which may be produced by competing bacteria, normal metabolic function, or host immunological responses. In order to survive and proliferate, bacteria have adapted defense mechanisms to circumvent the effects of ROS. Bacteria employ the use of anti-oxidant enzymes, catalases and catalase-peroxidases, to relieve the effects of the oxidative stressors to which they are continually exposed. The decomposition of ROS has been shown to provide favorable conditions in which respiratory tract opportunistic bacterial pathogens such as Haemophilus influenzae, Mycobacterium tuberculosis, Legionella pneumophila, and Neisseria meningitidis are able to withstand exposure to highly reactive molecules and yet survive. Bacteria possessing mutations in the catalase gene have a decreased survival rate, yet may be able to compensate for the lack of catalatic activity if peroxidatic activity is present. An incomplete knowledge of the mechanisms by which catalase and catalase-peroxidases are regulated still persists, however, in some bacterial species, a regulatory factor known as OxyR has been shown to either up-regulate or down-regulate catalase gene expression. Yet, more research is still needed to increase the knowledge base in relation to this enzyme class. As with this review, we focus on major respiratory tract opportunistic bacterial pathogens in order to elucidate the function and regulation of catalases. The importance of the research could lead to the development of novel treatments against respiratory bacterial infections. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. The Arginine Decarboxylase Pathways of Host and Pathogen Interact to Impact Inflammatory Pathways in the Lung

    PubMed Central

    Dalluge, Joseph J.; Welchlin, Cole W.; Hughes, John; Han, Wei; Blackwell, Timothy S.; Laguna, Theresa A.; Williams, Bryan J.

    2014-01-01

    The arginine decarboxylase pathway, which converts arginine to agmatine, is present in both humans and most bacterial pathogens. In humans agmatine is a neurotransmitter with affinities towards α2-adrenoreceptors, serotonin receptors, and may inhibit nitric oxide synthase. In bacteria agmatine serves as a precursor to polyamine synthesis and was recently shown to enhance biofilm development in some strains of the respiratory pathogen Pseudomonas aeruginosa. We determined agmatine is at the center of a competing metabolism in the human lung during airways infections and is influenced by the metabolic phenotypes of the infecting pathogens. Ultra performance liquid chromatography with mass spectrometry detection was used to measure agmatine in human sputum samples from patients with cystic fibrosis, spent supernatant from clinical sputum isolates, and from bronchoalvelolar lavage fluid from mice infected with P. aeruginosa agmatine mutants. Agmatine in human sputum peaks during illness, decreased with treatment and is positively correlated with inflammatory cytokines. Analysis of the agmatine metabolic phenotype in clinical sputum isolates revealed most deplete agmatine when grown in its presence; however a minority appeared to generate large amounts of agmatine presumably driving sputum agmatine to high levels. Agmatine exposure to inflammatory cells and in mice demonstrated its role as a direct immune activator with effects on TNF-α production, likely through NF-κB activation. P. aeruginosa mutants for agmatine detection and metabolism were constructed and show the real-time evolution of host-derived agmatine in the airways during acute lung infection. These experiments also demonstrated pathogen agmatine production can upregulate the inflammatory response. As some clinical isolates have adapted to hypersecrete agmatine, these combined data would suggest agmatine is a novel target for immune modulation in the host-pathogen dynamic. PMID:25350753

  11. The arginine decarboxylase pathways of host and pathogen interact to impact inflammatory pathways in the lung.

    PubMed

    Paulson, Nick B; Gilbertsen, Adam J; Dalluge, Joseph J; Welchlin, Cole W; Hughes, John; Han, Wei; Blackwell, Timothy S; Laguna, Theresa A; Williams, Bryan J

    2014-01-01

    The arginine decarboxylase pathway, which converts arginine to agmatine, is present in both humans and most bacterial pathogens. In humans agmatine is a neurotransmitter with affinities towards α2-adrenoreceptors, serotonin receptors, and may inhibit nitric oxide synthase. In bacteria agmatine serves as a precursor to polyamine synthesis and was recently shown to enhance biofilm development in some strains of the respiratory pathogen Pseudomonas aeruginosa. We determined agmatine is at the center of a competing metabolism in the human lung during airways infections and is influenced by the metabolic phenotypes of the infecting pathogens. Ultra performance liquid chromatography with mass spectrometry detection was used to measure agmatine in human sputum samples from patients with cystic fibrosis, spent supernatant from clinical sputum isolates, and from bronchoalvelolar lavage fluid from mice infected with P. aeruginosa agmatine mutants. Agmatine in human sputum peaks during illness, decreased with treatment and is positively correlated with inflammatory cytokines. Analysis of the agmatine metabolic phenotype in clinical sputum isolates revealed most deplete agmatine when grown in its presence; however a minority appeared to generate large amounts of agmatine presumably driving sputum agmatine to high levels. Agmatine exposure to inflammatory cells and in mice demonstrated its role as a direct immune activator with effects on TNF-α production, likely through NF-κB activation. P. aeruginosa mutants for agmatine detection and metabolism were constructed and show the real-time evolution of host-derived agmatine in the airways during acute lung infection. These experiments also demonstrated pathogen agmatine production can upregulate the inflammatory response. As some clinical isolates have adapted to hypersecrete agmatine, these combined data would suggest agmatine is a novel target for immune modulation in the host-pathogen dynamic.

  12. Phages and the Evolution of Bacterial Pathogens: from Genomic Rearrangements to Lysogenic Conversion

    PubMed Central

    Brüssow, Harald; Canchaya, Carlos; Hardt, Wolf-Dietrich

    2004-01-01

    Comparative genomics demonstrated that the chromosomes from bacteria and their viruses (bacteriophages) are coevolving. This process is most evident for bacterial pathogens where the majority contain prophages or phage remnants integrated into the bacterial DNA. Many prophages from bacterial pathogens encode virulence factors. Two situations can be distinguished: Vibrio cholerae, Shiga toxin-producing Escherichia coli, Corynebacterium diphtheriae, and Clostridium botulinum depend on a specific prophage-encoded toxin for causing a specific disease, whereas Staphylococcus aureus, Streptococcus pyogenes, and Salmonella enterica serovar Typhimurium harbor a multitude of prophages and each phage-encoded virulence or fitness factor makes an incremental contribution to the fitness of the lysogen. These prophages behave like “swarms” of related prophages. Prophage diversification seems to be fueled by the frequent transfer of phage material by recombination with superinfecting phages, resident prophages, or occasional acquisition of other mobile DNA elements or bacterial chromosomal genes. Prophages also contribute to the diversification of the bacterial genome architecture. In many cases, they actually represent a large fraction of the strain-specific DNA sequences. In addition, they can serve as anchoring points for genome inversions. The current review presents the available genomics and biological data on prophages from bacterial pathogens in an evolutionary framework. PMID:15353570

  13. What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira

    PubMed Central

    Fouts, Derrick E.; Matthias, Michael A.; Adhikarla, Haritha; Adler, Ben; Amorim-Santos, Luciane; Berg, Douglas E.; Bulach, Dieter; Buschiazzo, Alejandro; Chang, Yung-Fu; Galloway, Renee L.; Haake, David A.; Haft, Daniel H.; Hartskeerl, Rudy; Ko, Albert I.; Levett, Paul N.; Matsunaga, James; Mechaly, Ariel E.; Monk, Jonathan M.; Nascimento, Ana L. T.; Nelson, Karen E.; Palsson, Bernhard; Peacock, Sharon J.; Picardeau, Mathieu; Ricaldi, Jessica N.; Thaipandungpanit, Janjira; Wunder, Elsio A.; Yang, X. Frank; Zhang, Jun-Jie; Vinetz, Joseph M.

    2016-01-01

    Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1) the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2) genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12) autotrophy as a bacterial virulence factor; 3) CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade’s refractoriness to gene targeting; 4) finding Leptospira pathogen-specific specialized protein secretion systems; 5) novel virulence-related genes/gene families such as the Virulence Modifying (VM) (PF07598 paralogs) proteins and pathogen-specific adhesins; 6) discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7) and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately pathogenic

  14. What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira.

    PubMed

    Fouts, Derrick E; Matthias, Michael A; Adhikarla, Haritha; Adler, Ben; Amorim-Santos, Luciane; Berg, Douglas E; Bulach, Dieter; Buschiazzo, Alejandro; Chang, Yung-Fu; Galloway, Renee L; Haake, David A; Haft, Daniel H; Hartskeerl, Rudy; Ko, Albert I; Levett, Paul N; Matsunaga, James; Mechaly, Ariel E; Monk, Jonathan M; Nascimento, Ana L T; Nelson, Karen E; Palsson, Bernhard; Peacock, Sharon J; Picardeau, Mathieu; Ricaldi, Jessica N; Thaipandungpanit, Janjira; Wunder, Elsio A; Yang, X Frank; Zhang, Jun-Jie; Vinetz, Joseph M

    2016-02-01

    Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1) the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2) genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12) autotrophy as a bacterial virulence factor; 3) CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade's refractoriness to gene targeting; 4) finding Leptospira pathogen-specific specialized protein secretion systems; 5) novel virulence-related genes/gene families such as the Virulence Modifying (VM) (PF07598 paralogs) proteins and pathogen-specific adhesins; 6) discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7) and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately pathogenic

  15. Water microbiology. Bacterial pathogens and water.

    PubMed

    Cabral, João P S

    2010-10-01

    Water is essential to life, but many people do not have access to clean and safe drinking water and many die of waterborne bacterial infections. In this review a general characterization of the most important bacterial diseases transmitted through water-cholera, typhoid fever and bacillary dysentery-is presented, focusing on the biology and ecology of the causal agents and on the diseases' characteristics and their life cycles in the environment. The importance of pathogenic Escherichia coli strains and emerging pathogens in drinking water-transmitted diseases is also briefly discussed. Microbiological water analysis is mainly based on the concept of fecal indicator bacteria. The main bacteria present in human and animal feces (focusing on their behavior in their hosts and in the environment) and the most important fecal indicator bacteria are presented and discussed (focusing on the advantages and limitations of their use as markers). Important sources of bacterial fecal pollution of environmental waters are also briefly indicated. In the last topic it is discussed which indicators of fecal pollution should be used in current drinking water microbiological analysis. It was concluded that safe drinking water for all is one of the major challenges of the 21st century and that microbiological control of drinking water should be the norm everywhere. Routine basic microbiological analysis of drinking water should be carried out by assaying the presence of Escherichia coli by culture methods. Whenever financial resources are available, fecal coliform determinations should be complemented with the quantification of enterococci. More studies are needed in order to check if ammonia is reliable for a preliminary screening for emergency fecal pollution outbreaks. Financial resources should be devoted to a better understanding of the ecology and behavior of human and animal fecal bacteria in environmental waters.

  16. Water Microbiology. Bacterial Pathogens and Water

    PubMed Central

    Cabral, João P. S.

    2010-01-01

    Water is essential to life, but many people do not have access to clean and safe drinking water and many die of waterborne bacterial infections. In this review a general characterization of the most important bacterial diseases transmitted through water—cholera, typhoid fever and bacillary dysentery—is presented, focusing on the biology and ecology of the causal agents and on the diseases’ characteristics and their life cycles in the environment. The importance of pathogenic Escherichia coli strains and emerging pathogens in drinking water-transmitted diseases is also briefly discussed. Microbiological water analysis is mainly based on the concept of fecal indicator bacteria. The main bacteria present in human and animal feces (focusing on their behavior in their hosts and in the environment) and the most important fecal indicator bacteria are presented and discussed (focusing on the advantages and limitations of their use as markers). Important sources of bacterial fecal pollution of environmental waters are also briefly indicated. In the last topic it is discussed which indicators of fecal pollution should be used in current drinking water microbiological analysis. It was concluded that safe drinking water for all is one of the major challenges of the 21st century and that microbiological control of drinking water should be the norm everywhere. Routine basic microbiological analysis of drinking water should be carried out by assaying the presence of Escherichia coli by culture methods. Whenever financial resources are available, fecal coliform determinations should be complemented with the quantification of enterococci. More studies are needed in order to check if ammonia is reliable for a preliminary screening for emergency fecal pollution outbreaks. Financial resources should be devoted to a better understanding of the ecology and behavior of human and animal fecal bacteria in environmental waters. PMID:21139855

  17. [Plasticity of bacterial genomes: pathogenicity islands and the locus of enterocyte effacement (LEE)].

    PubMed

    Kirsch, Petra; Jores, Jörg; Wieler, Lothar H

    2004-01-01

    Many bacterial virulence attributes, like toxins, adhesins, invasins, iron uptake systems, are encoded within specific regions of the bacterial genome. These in size varying regions are termed pathogenicity islands (PAIs) since they confer pathogenic properties to the respective micro-organism. Per definition PAIs are exclusively found in pathogenic strains and are often inserted near transfer-RNA genes. Nevertheless, non-pathogenic bacteria also possess foreign DNA elements that confer advantageous features, leading to improved fitness. These additional DNA elements as well as PAIs are termed genomic islands and were acquired during bacterial evolution. Significant G+C content deviation in pathogenicity islands with respect to the rest of the genome, the presence of direct repeat sequences at the flanking regions, the presence of integrase gene determinants as other mobility features,the particular insertion site (tRNA gene) as well as the observed genetic instability suggests that pathogenicity islands were acquired by horizontal gene transfer. PAIs are the fascinating proof of the plasticity of bacterial genomes. PAIs were originally described in human pathogenic Escherichia (E.) coli strains. In the meantime PAIs have been found in various pathogenic bacteria of humans, animals and even plants. The Locus of Enterocyte Effacement (LEE) is one particular widely distributed PAI of E coli. In addition, it also confers pathogenicity to the related species Citrobacter (C.) rodentium and Escherichia (E.) alvei. The LEE is an important virulence feature of several animal pathogens. It is an obligate PAI of all animal and human enteropathogenic E. coli (EPEC), and most enterohaemorrhegic E. coli (EHEC) also harbor the LEE. The LEE encodes a type III secretion system, an adhesion (intimin) that mediates the intimate contact between the bacterium and the epithelial cell, as well as various proteins which are secreted via the type III secretion system. The LEE encoded

  18. Detection of mastitis pathogens by analysis of volatile bacterial metabolites.

    PubMed

    Hettinga, K A; van Valenberg, H J F; Lam, T J G M; van Hooijdonk, A C M

    2008-10-01

    The ability to detect mastitis pathogens based on their volatile metabolites was studied. Milk samples from cows with clinical mastitis, caused by Staphylococcus aureus, coagulase-negative staphylococci, Streptococcus uberis, Streptococcus dysgalactiae, and Escherichia coli were collected. In addition, samples from cows without clinical mastitis and with low somatic cell count (SCC) were collected for comparison. All mastitis samples were examined by using classical microbiological methods, followed by headspace analysis for volatile metabolites. Milk from culture-negative samples contained a lower number and amount of volatile components compared with cows with clinical mastitis. Because of variability between samples within a group, comparisons between pathogens were not sufficient for classification of the samples by univariate statistics. Therefore, an artificial neural network was trained to classify the pathogen in the milk samples based on the bacterial metabolites. The trained network differentiated milk from uninfected and infected quarters very well. When comparing pathogens, Staph. aureus produced a very different pattern of volatile metabolites compared with the other samples. Samples with coagulase-negative staphylococci and E. coli had enough dissimilarity with the other pathogens, making it possible to separate these 2 pathogens from each other and from the other samples. The 2 streptococcus species did not show significant differences between each other but could be identified as a different group from the other pathogens. Five groups can thus be identified based on the volatile bacterial metabolites: Staph. aureus, coagulase-negative staphylococci, streptococci (Strep. uberis and Strep. dysgalactiae as one group), E. coli, and uninfected quarters.

  19. The FUN of identifying gene function in bacterial pathogens; insights from Salmonella functional genomics.

    PubMed

    Hammarlöf, Disa L; Canals, Rocío; Hinton, Jay C D

    2013-10-01

    The availability of thousands of genome sequences of bacterial pathogens poses a particular challenge because each genome contains hundreds of genes of unknown function (FUN). How can we easily discover which FUN genes encode important virulence factors? One solution is to combine two different functional genomic approaches. First, transcriptomics identifies bacterial FUN genes that show differential expression during the process of mammalian infection. Second, global mutagenesis identifies individual FUN genes that the pathogen requires to cause disease. The intersection of these datasets can reveal a small set of candidate genes most likely to encode novel virulence attributes. We demonstrate this approach with the Salmonella infection model, and propose that a similar strategy could be used for other bacterial pathogens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Plant immunity: a lesson from pathogenic bacterial effector proteins.

    PubMed

    Cui, Haitao; Xiang, Tingting; Zhou, Jian-Min

    2009-10-01

    Phytopathogenic bacteria inject an array of effector proteins into host cells to alter host physiology and assist the infection process. Some of these effectors can also trigger disease resistance as a result of recognition in the plant cell by cytoplasmic immune receptors. In addition to effector-triggered immunity, plants immunity can be triggered upon the detection of Pathogen/Microbe-Associated Molecular Patterns by surface-localized immune receptors. Recent progress indicates that many bacterial effector proteins use a variety of biochemical properties to directly attack key components of PAMP-triggered immunity and effector-triggered immunity, providing new insights into the molecular basis of plant innate immunity. Emerging evidence indicate that the evolution of disease resistance in plants is intimately linked to the mechanism by which bacterial effectors promote parasitism. This review focuses on how these studies have conceptually advanced our understanding of plant-pathogen interactions.

  1. Subverting Toll-Like Receptor Signaling by Bacterial Pathogens

    PubMed Central

    McGuire, Victoria A.; Arthur, J. Simon C.

    2015-01-01

    Pathogenic bacteria are detected by pattern-recognition receptors (PRRs) expressed on innate immune cells, which activate intracellular signal transduction pathways to elicit an immune response. Toll-like receptors are, perhaps, the most studied of the PRRs and can activate the mitogen-activated protein kinase (MAPK) and Nuclear Factor-κB (NF-κB) pathways. These pathways are critical for mounting an effective immune response. In order to evade detection and promote virulence, many pathogens subvert the host immune response by targeting components of these signal transduction pathways. This mini-review highlights the diverse mechanisms that bacterial pathogens have evolved to manipulate the innate immune response, with a particular focus on those that target MAPK and NF-κB signaling pathways. Understanding the elaborate strategies that pathogens employ to subvert the immune response not only highlights the importance of these proteins in mounting effective immune responses, but may also identify novel approaches for treatment or prevention of infection. PMID:26648936

  2. Therapeutic approach to respiratory infections in lung transplantation.

    PubMed

    Clajus, Carolina; Blasi, Francesco; Welte, Tobias; Greer, Mark; Fuehner, Thomas; Mantero, Marco

    2015-06-01

    Lung transplant recipients (LTRs) are at life-long risk for infections and disseminated diseases owing to their immunocompromised state. Besides organ failure and sepsis, infection can trigger acute and chronic graft rejection which increases mortality. Medical prophylaxis and treatment are based on comprehensive diagnostic work-up including previous history of infection and airway colonisation to reduce long-term complications and mortality. Common bacterial pathogens include Pseudomonas and Staphylococcus, whilst Aspergillus and Cytomegalovirus (CMV) are respectively the commonest fungal and viral pathogens. Clinical symptoms can be various in lung transplant recipients presenting an asymptomatic to severe progress. Regular control of infection parameters, daily lung function testing and lifelong follow-up in a specialist transplant centre are mandatory for early detection of bacterial, viral and fungal infections. After transplantation each patient receives intensive training with rules of conduct concerning preventive behaviour and to recognize early signs of post transplant complications. Early detection of infection and complications are important goals to reduce major complications after lung transplantation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Genome-based approaches to develop vaccines against bacterial pathogens.

    PubMed

    Serruto, Davide; Serino, Laura; Masignani, Vega; Pizza, Mariagrazia

    2009-05-26

    Bacterial infectious diseases remain the single most important threat to health worldwide. Although conventional vaccinology approaches were successful in conferring protection against several diseases, they failed to provide efficacious solutions against many others. The advent of whole-genome sequencing changed the way to think about vaccine development, enabling the targeting of possible vaccine candidates starting from the genomic information of a single bacterial isolate, with a process named reverse vaccinology. As the genomic era progressed, reverse vaccinology has evolved with a pan-genome approach and multi-strain genome analysis became fundamental for the design of universal vaccines. This review describes the applications of genome-based approaches in the development of new vaccines against bacterial pathogens.

  4. Electrochemical Biosensor for Rapid and Sensitive Detection of Magnetically Extracted Bacterial Pathogens

    PubMed Central

    Setterington, Emma B.; Alocilja, Evangelyn C.

    2012-01-01

    Biological defense and security applications demand rapid, sensitive detection of bacterial pathogens. This work presents a novel qualitative electrochemical detection technique which is applied to two representative bacterial pathogens, Bacillus cereus (as a surrogate for B. anthracis) and Escherichia coli O157:H7, resulting in detection limits of 40 CFU/mL and 6 CFU/mL, respectively, from pure culture. Cyclic voltammetry is combined with immunomagnetic separation in a rapid method requiring approximately 1 h for presumptive positive/negative results. An immunofunctionalized magnetic/polyaniline core/shell nano-particle (c/sNP) is employed to extract target cells from the sample solution and magnetically position them on a screen-printed carbon electrode (SPCE) sensor. The presence of target cells significantly inhibits current flow between the electrically active c/sNPs and SPCE. This method has the potential to be adapted for a wide variety of target organisms and sample matrices, and to become a fully portable system for routine monitoring or emergency detection of bacterial pathogens. PMID:25585629

  5. Detecting bacterial lung infections: in vivo evaluation of in vitro volatile fingerprints.

    PubMed

    Zhu, Jiangjiang; Bean, Heather D; Wargo, Matthew J; Leclair, Laurie W; Hill, Jane E

    2013-03-01

    The identification of bacteria by their volatilomes is of interest to many scientists and clinicians as it holds the promise of diagnosing infections in situ, particularly lung infections via breath analysis. While there are many studies reporting various bacterial volatile biomarkers or fingerprints using in vitro experiments, it has proven difficult to translate these data to in vivo breath analyses. Therefore, we aimed to create secondary electrospray ionization-mass spectrometry (SESI-MS) pathogen fingerprints directly from the breath of mice with lung infections. In this study we demonstrated that SESI-MS is capable of differentiating infected versus uninfected mice, P. aeruginosa-infected versus S. aureus-infected mice, as well as distinguish between infections caused by P. aeruginosa strains PAO1 versus FRD1, with statistical significance (p < 0.05). In addition, we compared in vitro and in vivo volatiles and observed that only 25-34% of peaks are shared between the in vitro and in vivo SESI-MS fingerprints. To the best of our knowledge, these are the first breath volatiles measured for P. aeruginosa PAO1, FRD1, and S. aureus RN450, and the first comparison of in vivo and in vitro volatile profiles from the same strains using the murine infection model.

  6. Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans

    PubMed Central

    Caza, Mélissa; Kronstad, James W.

    2013-01-01

    Iron is the most abundant transition metal in the human body and its bioavailability is stringently controlled. In particular, iron is tightly bound to host proteins such as transferrin to maintain homeostasis, to limit potential damage caused by iron toxicity under physiological conditions and to restrict access by pathogens. Therefore, iron acquisition during infection of a human host is a challenge that must be surmounted by every successful pathogenic microorganism. Iron is essential for bacterial and fungal physiological processes such as DNA replication, transcription, metabolism, and energy generation via respiration. Hence, pathogenic bacteria and fungi have developed sophisticated strategies to gain access to iron from host sources. Indeed, siderophore production and transport, iron acquisition from heme and host iron-containing proteins such as hemoglobin and transferrin, and reduction of ferric to ferrous iron with subsequent transport are all strategies found in bacterial and fungal pathogens of humans. This review focuses on a comparison of these strategies between bacterial and fungal pathogens in the context of virulence and the iron limitation that occurs in the human body as a mechanism of innate nutritional defense. PMID:24312900

  7. Clonality of Bacterial Pathogens Causing Hospital-Acquired Pneumonia.

    PubMed

    Pudová, V; Htoutou Sedláková, M; Kolář, M

    2016-09-01

    Hospital-acquired pneumonia (HAP) is one of the most serious complications in patients staying in intensive care units. This multicenter study of Czech patients with HAP aimed at assessing the clonality of bacterial pathogens causing the condition. Bacterial isolates were compared using pulsed-field gel electrophoresis. Included in this study were 330 patients hospitalized between May 1, 2013 and December 31, 2014 at departments of anesthesiology and intensive care medicine of four big hospitals in the Czech Republic. A total of 531 bacterial isolates were obtained, of which 267 were classified as etiological agents causing HAP. Similarity or identity was assessed in 231 bacterial isolates most frequently obtained from HAP patients. Over the study period, no significant clonal spread was noted. Most isolates were unique strains, and the included HAP cases may therefore be characterized as mostly endogenous. Yet there were differences in species and potential identical isolates between the participating centers. In three hospitals, Gram-negative bacteria (Enterobacteriaceae and Pseudomonas aeruginosa) prevailed as etiological agents, and Staphylococcus aureus was most prevalent in the fourth center.

  8. Viable bacterial population and persistence of foodborne pathogens on the pear carpoplane.

    PubMed

    Duvenage, Francois J; Duvenage, Stacey; Du Plessis, Erika M; Volschenk, Quinton; Korsten, Lise

    2017-03-01

    Knowledge on the culturable bacteria and foodborne pathogen presence on pears is important for understanding the impact of postharvest practices on food safety assurance. Pear fruit bacteria were investigated from the point of harvest, following chlorine drenching and after controlled atmosphere (CA) storage to assess the impact on natural bacterial populations and potential foodborne pathogens. Salmonella spp. and Listeria monocytogenes were detected on freshly harvested fruit in season one. During season one, chemical drenching and CA storage did not have a significant effect on the bacterial load of orchard pears, except for two farms where the populations were lower 'after CA storage'. During season two, bacterial populations of orchard pears from three of the four farms increased significantly following drenching; however, the bacterial load decreased 'after CA storage'. Bacteria isolated following enumeration included Enterobacteriaceae, Microbacteriaceae, Pseudomonadaceae and Bacillaceae, with richness decreasing 'after drench' and 'after CA storage'. Salmonella spp. and L. monocytogenes were not detected after postharvest practices. Postharvest practices resulted in decreased bacterial species richness. Understanding how postharvest practices have an impact on the viable bacterial populations of pear fruit will contribute to the development of crop-specific management systems for food safety assurance. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Development of Rare Bacterial Monosaccharide Analogs for Metabolic Glycan Labeling in Pathogenic Bacteria.

    PubMed

    Clark, Emily L; Emmadi, Madhu; Krupp, Katharine L; Podilapu, Ananda R; Helble, Jennifer D; Kulkarni, Suvarn S; Dube, Danielle H

    2016-12-16

    Bacterial glycans contain rare, exclusively bacterial monosaccharides that are frequently linked to pathogenesis and essentially absent from human cells. Therefore, bacterial glycans are intriguing molecular targets. However, systematic discovery of bacterial glycoproteins is hampered by the presence of rare deoxy amino sugars, which are refractory to traditional glycan-binding reagents. Thus, the development of chemical tools that label bacterial glycans is a crucial step toward discovering and targeting these biomolecules. Here, we explore the extent to which metabolic glycan labeling facilitates the studying and targeting of glycoproteins in a range of pathogenic and symbiotic bacterial strains. We began with an azide-containing analog of the naturally abundant monosaccharide N-acetylglucosamine and discovered that it is not broadly incorporated into bacterial glycans, thus revealing a need for additional azidosugar substrates to broaden the utility of metabolic glycan labeling in bacteria. Therefore, we designed and synthesized analogs of the rare deoxy amino d-sugars N-acetylfucosamine, bacillosamine, and 2,4-diacetamido-2,4,6-trideoxygalactose and established that these analogs are differentially incorporated into glycan-containing structures in a range of pathogenic and symbiotic bacterial species. Further application of these analogs will refine our knowledge of the glycan repertoire in diverse bacteria and may find utility in treating a variety of infectious diseases with selectivity.

  10. Effectiveness of Polyvalent Bacterial Lysate and Autovaccines Against Upper Respiratory Tract Bacterial Colonization by Potential Pathogens: A Randomized Study

    PubMed Central

    Zagólski, Olaf; Stręk, Paweł; Kasprowicz, Andrzej; Białecka, Anna

    2015-01-01

    Background Polyvalent bacterial lysate (PBL) is an oral immunostimulating vaccine consisting of bacterial standardized lysates obtained by lysis of different strains of bacteria. Autovaccines are individually prepared based on the results of smears obtained from the patient. Both types of vaccine can be used to treat an ongoing chronic infection. This study sought to determine which method is more effective against nasal colonization by potential respiratory tract pathogens. Material/Methods We enrolled 150 patients with aerobic Gram stain culture and count results indicating bacterial colonization of the nose and/or throat by potential pathogens. The participants were randomly assigned to each of the following groups: 1. administration of PBL, 2. administration of autovaccine, and 3. no intervention (controls). Results Reduction of the bacterial count in Streptococcus pneumoniae-colonized participants was significant after the autovaccine (p<0.001) and PBL (p<0.01). Reduction of the bacterial count of other β-hemolytic streptococcal strains after treatment with the autovaccine was significant (p<0.01) and was non-significant after PBL. In Haemophilus influenzae colonization, significant reduction in the bacterial count was noted in the PBL group (p<0.01). Methicillin-resistant Staphylococcus aureus colonization did not respond to either treatment. Conclusions The autovaccine is more effective than PBL for reducing bacterial count of Streptococcus pneumoniae and β-hemolytic streptococci, while PBL was more effective against Haemophilus influenzae colonization. PMID:26434686

  11. Prevalence of swine viral and bacterial pathogens in rodents and stray cats captured around pig farms in Korea.

    PubMed

    Truong, Quang Lam; Seo, Tae Won; Yoon, Byung-Il; Kim, Hyeon-Cheol; Han, Jeong Hee; Hahn, Tae-Wook

    2013-12-30

    In 2008, 102 rodents and 24 stray cats from the areas around 9 pig farms in northeast South Korea were used to determine the prevalence of the following selected swine pathogens: ten viral pathogens [porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), rotavirus, classical swine fever virus (CSFV), porcine circovirus type 2 (PCV2), encephalomyocarditis virus (EMCV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine parvovirus (PPV), pseudorabies virus (PRV) and Japanese encephalitis virus (JEV)] and four bacterial pathogens (Brucella, Leptospira, Salmonella and Lawsonia intracellularis). In total, 1,260 tissue samples from 102 rodents and 24 stray cats were examined by specific PCR and RT-PCR assays, including tissue samples of the brain, tonsils, lungs, heart, liver, kidneys, spleen, small intestine, large intestine and mesenteric lymph nodes. The percentages of PCR-positive rodents for the porcine pathogens were as follows: 63.7% for Leptospira, 39.2% for Brucella, 6.8% for Salmonella, 15.7% for L. intracellularis, 14.7% for PCV2 and 3.9% for EMCV. The percentages of PCR-positive stray cats for the swine pathogens were as follows: 62.5% for Leptospira, 25% for Brucella, 12.5% for Salmonella, 12.5% for L. intracellularis and 4.2% for PEDV. These results may be helpful for developing control measures to prevent the spread of infectious diseases of pigs.

  12. Dancing with the Stars: How Choreographed Bacterial Interactions Dictate Nososymbiocity and Give Rise to Keystone Pathogens, Accessory Pathogens, and Pathobionts.

    PubMed

    Hajishengallis, George; Lamont, Richard J

    2016-06-01

    Many diseases that originate on mucosal membranes ensue from the action of polymicrobial communities of indigenous organisms working in concert to disrupt homeostatic mechanisms. Multilevel physical and chemical communication systems among constituent organisms underlie polymicrobial synergy and dictate the community's pathogenic potential or nososymbiocity, that is, disease arising from living together with a susceptible host. Functional specialization of community participants, often originating from metabolic codependence, has given rise to several newly appreciated designations within the commensal-to-pathogen spectrum. Accessory pathogens, while inherently commensal in a particular microenvironment, nonetheless enhance the colonization or metabolic activity of pathogens. Keystone pathogens (bacterial drivers or alpha-bugs) exert their influence at low abundance by modulating both the composition and levels of community participants and by manipulating host responses. Pathobionts (or bacterial passengers) exploit disrupted host homeostasis to flourish and promote inflammatory disease. In this review we discuss how commensal or pathogenic properties of organisms are not intrinsic features, and have to be considered within the context of both the microbial community in which they reside and the host immune status. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. A Rab-centric perspective of bacterial pathogen-occupied vacuoles.

    PubMed

    Sherwood, Racquel Kim; Roy, Craig R

    2013-09-11

    The ability to create and maintain a specialized organelle that supports bacterial replication is an important virulence property for many intracellular pathogens. Living in a membrane-bound vacuole presents inherent challenges, including the need to remodel a plasma membrane-derived organelle into a novel structure that will expand and provide essential nutrients to support replication, while also having the vacuole avoid membrane transport pathways that target bacteria for destruction in lysosomes. It is clear that pathogenic bacteria use different strategies to accomplish these tasks. The dynamics by which host Rab GTPases associate with pathogen-occupied vacuoles provide insight into the mechanisms used by different bacteria to manipulate host membrane transport. In this review we highlight some of the strategies bacteria use to maintain a pathogen-occupied vacuole by focusing on the Rab proteins involved in biogenesis and maintenance of these novel organelles. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Hemocytes from Pediculus humanus humanus are hosts for human bacterial pathogens

    PubMed Central

    Coulaud, Pierre-Julien; Lepolard, Catherine; Bechah, Yassina; Berenger, Jean-Michel; Raoult, Didier; Ghigo, Eric

    2015-01-01

    Pediculus humanus humanus is an human ectoparasite which represents a serious public health threat because it is vector for pathogenic bacteria. It is important to understand and identify where bacteria reside in human body lice to define new strategies to counterstroke the capacity of vectorization of the bacterial pathogens by body lice. It is known that phagocytes from vertebrates can be hosts or reservoirs for several microbes. Therefore, we wondered if Pediculus humanus humanus phagocytes could hide pathogens. In this study, we characterized the phagocytes from Pediculus humanus humanus and evaluated their contribution as hosts for human pathogens such as Rickettsia prowazekii, Bartonella Quintana, and Acinetobacter baumannii. PMID:25688336

  15. Bacterial Serine/Threonine Protein Kinases in Host-Pathogen Interactions*

    PubMed Central

    Canova, Marc J.; Molle, Virginie

    2014-01-01

    In bacterial pathogenesis, monitoring and adapting to the dynamically changing environment in the host and an ability to disrupt host immune responses are critical. The virulence determinants of pathogenic bacteria include the sensor/signaling proteins of the serine/threonine protein kinase (STPK) family that have a dual role of sensing the environment and subverting specific host defense processes. STPKs can sense a wide range of signals and coordinate multiple cellular processes to mount an appropriate response. Here, we review some of the well studied bacterial STPKs that are essential virulence factors and that modify global host responses during infection. PMID:24554701

  16. Bacterial serine/threonine protein kinases in host-pathogen interactions.

    PubMed

    Canova, Marc J; Molle, Virginie

    2014-04-04

    In bacterial pathogenesis, monitoring and adapting to the dynamically changing environment in the host and an ability to disrupt host immune responses are critical. The virulence determinants of pathogenic bacteria include the sensor/signaling proteins of the serine/threonine protein kinase (STPK) family that have a dual role of sensing the environment and subverting specific host defense processes. STPKs can sense a wide range of signals and coordinate multiple cellular processes to mount an appropriate response. Here, we review some of the well studied bacterial STPKs that are essential virulence factors and that modify global host responses during infection.

  17. Bacteriophages for detection and control of bacterial pathogens in food and food-processing environment.

    PubMed

    Brovko, Lubov Y; Anany, Hany; Griffiths, Mansel W

    2012-01-01

    This chapter presents recent advances in bacteriophage research and their application in the area of food safety. Section 1 describes general facts on phage biology that are relevant to their application for control and detection of bacterial pathogens in food and environmental samples. Section 2 summarizes the recently acquired data on application of bacteriophages to control growth of bacterial pathogens and spoilage organisms in food and food-processing environment. Section 3 deals with application of bacteriophages for detection and identification of bacterial pathogens. Advantages of bacteriophage-based methods are presented and their shortcomings are discussed. The chapter is intended for food scientist and food product developers, and people in food inspection and health agencies with the ultimate goal to attract their attention to the new developing technology that has a tremendous potential in providing means for producing wholesome and safe food. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens

    PubMed Central

    Wittebole, Xavier; De Roock, Sophie; Opal, Steven M

    2014-01-01

    The seemingly inexorable spread of antibiotic resistance genes among microbial pathogens now threatens the long-term viability of our current antimicrobial therapy to treat severe bacterial infections such as sepsis. Antibiotic resistance is reaching a crisis situation in some bacterial pathogens where few therapeutic alternatives remain and pan-resistant strains are becoming more prevalent. Non-antibiotic therapies to treat bacterial infections are now under serious consideration and one possible option is the therapeutic use of specific phage particles that target bacterial pathogens. Bacteriophage therapy has essentially been re-discovered by modern medicine after widespread use of phage therapy in the pre-antibiotic era lost favor, at least in Western countries, after the introduction of antibiotics. We review the current therapeutic rationale and clinical experience with phage therapy as a treatment for invasive bacterial infection as novel alternative to antimicrobial chemotherapy. PMID:23973944

  19. Host-Directed Antimicrobial Drugs with Broad-Spectrum Efficacy against Intracellular Bacterial Pathogens

    PubMed Central

    Czyż, Daniel M.; Potluri, Lakshmi-Prasad; Jain-Gupta, Neeta; Riley, Sean P.; Martinez, Juan J.; Steck, Theodore L.; Crosson, Sean; Gabay, Joëlle E.

    2014-01-01

    ABSTRACT We sought a new approach to treating infections by intracellular bacteria, namely, by altering host cell functions that support their growth. We screened a library of 640 Food and Drug Administration (FDA)-approved compounds for agents that render THP-1 cells resistant to infection by four intracellular pathogens. We identified numerous drugs that are not antibiotics but were highly effective in inhibiting intracellular bacterial growth with limited toxicity to host cells. These compounds are likely to target three kinds of host functions: (i) G protein-coupled receptors, (ii) intracellular calcium signals, and (iii) membrane cholesterol distribution. The compounds that targeted G protein receptor signaling and calcium fluxes broadly inhibited Coxiella burnetii, Legionella pneumophila, Brucella abortus, and Rickettsia conorii, while those directed against cholesterol traffic strongly attenuated the intracellular growth of C. burnetii and L. pneumophila. These pathways probably support intracellular pathogen growth so that drugs that perturb them may be therapeutic candidates. Combining host- and pathogen-directed treatments is a strategy to decrease the emergence of drug-resistant intracellular bacterial pathogens. PMID:25073644

  20. Bithionol blocks pathogenicity of bacterial toxins, ricin, and Zika virus

    USDA-ARS?s Scientific Manuscript database

    Disease pathways form overlapping networks, and hub proteins represent attractive targets for broad-spectrum drugs. Using bacterial toxins as a proof of concept, we describe a new approach of discovering broad-spectrum therapies capable of inhibiting host proteins that mediate multiple pathogenic pa...

  1. Immune subversion by chromatin manipulation: a 'new face' of host-bacterial pathogen interaction.

    PubMed

    Arbibe, Laurence

    2008-08-01

    Bacterial pathogens have evolved various strategies to avoid immune surveillance, depending of their in vivo'lifestyle'. The identification of few bacterial effectors capable to enter the nucleus and modifying chromatin structure in host raises the fascinating questions of how pathogens modulate chromatin structure and why. Chromatin is a dynamic structure that maintains the stability and accessibility of the host DNA genome to the transcription machinery. This review describes the various strategies used by pathogens to interface with host chromatin. In some cases, chromatin injury can be a strategy to take control of major cellular functions, such as the cell cycle. In other cases, manipulation of chromatin structure at specific genomic locations by modulating epigenetic information provides a way for the pathogen to impose its own transcriptional signature onto host cells. This emerging field should strongly influence our understanding of chromatin regulation at interphase nucleus and may provide invaluable openings to the control of immune gene expression in inflammatory and infectious diseases.

  2. Kynetic resazurin assay (KRA) for bacterial quantification of foodborne pathogens

    NASA Astrophysics Data System (ADS)

    Arenas, Yaxal; Mandel, Arkady; Lilge, Lothar

    2012-03-01

    Fast detection of bacterial concentrations is important for the food industry and for healthcare. Early detection of infections and appropriate treatment is essential since, the delay of treatments for bacterial infections tends to be associated with higher mortality rates. In the food industry and in healthcare, standard procedures require the count of colony-forming units in order to quantify bacterial concentrations, however, this method is time consuming and reports require three days to be completed. An alternative is metabolic-colorimetric assays which provide time efficient in vitro bacterial concentrations. A colorimetric assay based on Resazurin was developed as a time kinetic assay (KRA) suitable for bacterial concentration measurements. An optimization was performed by finding excitation and emission wavelengths for fluorescent acquisition. A comparison of two non-related bacteria, foodborne pathogens Escherichia coli and Listeria monocytogenes, was performed in 96 well plates. A metabolic and clonogenic dependence was established for fluorescent kinetic signals.

  3. Rapid, portable, multiplexed detection of bacterial pathogens directly from clinical sample matrices

    DOE PAGES

    Phaneuf, Christopher R.; Mangadu, Betty Lou Bosano; Piccini, Matthew E.; ...

    2016-09-23

    Enteric and diarrheal diseases are a major cause of childhood illness and death in countries with developing economies. Each year, more than half of a million children under the age of five die from these diseases. We have developed a portable, microfluidic platform capable of simultaneous, multiplexed detection of several of the bacterial pathogens that cause these diseases. Furthermore, this platform can perform fast, sensitive immunoassays directly from relevant, complex clinical matrices such as stool without extensive sample cleanup or preparation. Using only 1 µL of sample per assay, we demonstrate simultaneous multiplexed detection of four bacterial pathogens implicated inmore » diarrheal and enteric diseases in less than 20 min.« less

  4. Rapid, portable, multiplexed detection of bacterial pathogens directly from clinical sample matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phaneuf, Christopher R.; Mangadu, Betty Lou Bosano; Piccini, Matthew E.

    Enteric and diarrheal diseases are a major cause of childhood illness and death in countries with developing economies. Each year, more than half of a million children under the age of five die from these diseases. We have developed a portable, microfluidic platform capable of simultaneous, multiplexed detection of several of the bacterial pathogens that cause these diseases. Furthermore, this platform can perform fast, sensitive immunoassays directly from relevant, complex clinical matrices such as stool without extensive sample cleanup or preparation. Using only 1 µL of sample per assay, we demonstrate simultaneous multiplexed detection of four bacterial pathogens implicated inmore » diarrheal and enteric diseases in less than 20 min.« less

  5. Fluorescence spectroscopy for rapid detection and classification of bacterial pathogens.

    PubMed

    Sohn, Miryeong; Himmelsbach, David S; Barton, Franklin E; Fedorka-Cray, Paula J

    2009-11-01

    This study deals with the rapid detection and differentiation of Escherichia coli, Salmonella, and Campylobacter, which are the most commonly identified commensal and pathogenic bacteria in foods, using fluorescence spectroscopy and multivariate analysis. Each bacterial sample cultured under controlled conditions was diluted in physiologic saline for analysis. Fluorescence spectra were collected over a range of 200-700 nm with 0.5 nm intervals on the PerkinElmer Fluorescence Spectrometer. The synchronous scan technique was employed to find the optimum excitation (lambda(ex)) and emission (lambda(em)) wavelengths for individual bacteria with the wavelength interval (Deltalambda) being varied from 10 to 200 nm. The synchronous spectra and two-dimensional plots showed two maximum lambda(ex) values at 225 nm and 280 nm and one maximum lambda(em) at 335-345 nm (lambda(em) = lambda(ex) + Deltalambda), which correspond to the lambda(ex) = 225 nm, Deltalambda = 110-120 nm, and lambda(ex) = 280 nm, Deltalambda = 60-65 nm. For all three bacterial genera, the same synchronous scan results were obtained. The emission spectra from the three bacteria groups were very similar, creating difficulty in classification. However, the application of principal component analysis (PCA) to the fluorescence spectra resulted in successful classification of the bacteria by their genus as well as determining their concentration. The detection limit was approximately 10(3)-10(4) cells/mL for each bacterial sample. These results demonstrated that fluorescence spectroscopy, when coupled with PCA processing, has the potential to detect and to classify bacterial pathogens in liquids. The methodology is rapid (>10 min), inexpensive, and requires minimal sample preparation compared to standard analytical methods for bacterial detection.

  6. Quantifying school officials' exposure to bacterial pathogens at graduation ceremonies using repeated observational measures.

    PubMed

    Bishai, David; Liu, Liang; Shiau, Stephanie; Wang, Harrison; Tsai, Cindy; Liao, Margaret; Prakash, Shivaani; Howard, Tracy

    2011-06-01

    The purpose of this study was to estimate the risk of acquiring pathogenic bacteria as a result of shaking hands at graduation ceremonies. School officials participating in graduation ceremonies at elementary, secondary, and postsecondary schools were recruited. Specimens were collected before and immediately following graduation. Cultures identified any pathogenic bacteria in each specimen. Subjects shook a total of 5,209 hands. Staphylococcus aureus was separately detected on one pregraduation right hand, one postgraduation right hand, and one postgraduation left hand. Nonpathogenic bacteria were collected in 93% of specimens. Pregraduation and postgraduation specimens were of different strains. We measured a risk of one new bacterial acquisition in a sample exposed to 5,209 handshakes yielding an overall estimate of 0.019 pathogens acquired per handshake. We conclude that a single handshake at a graduation offers only a small risk of bacterial pathogen acquisition.

  7. Importance of Soil Amendments: Survival of Bacterial Pathogens in Manure and Compost Used as Organic Fertilizers.

    PubMed

    Sharma, Manan; Reynnells, Russell

    2016-08-01

    Biological soil amendments (BSAs) such as manure and compost are frequently used as organic fertilizers to improve the physical and chemical properties of soils. However, BSAs have been known to be a reservoir for enteric bacterial pathogens such as enterohemorrhagic Escherichia coli (EHEC), Salmonella spp., and Listeria spp. There are numerous mechanisms by which manure may transfer pathogens to growing fruits and vegetables, and several outbreaks of infections have been linked to manure-related contamination of leafy greens. In the United States several commodity-specific guidelines and current and proposed federal rules exist to provide guidance on the application of BSAs as fertilizers to soils, some of which require an interval between the application of manure to soils and the harvest of fruits and vegetables. This review examines the survival, persistence, and regrowth/resuscitation of bacterial pathogens in manure, biosolids, and composts. Moisture, along with climate and the physicochemical properties of soil, manure, or compost, plays a significant role in the ability of pathogens to persist and resuscitate in amended soils. Adaptation of enteric bacterial pathogens to the nonhost environment of soils may also extend their persistence in manure- or compost-amended soils. The presence of antibiotic-resistance genes in soils may also be increased by manure application. Overall, BSAs applied as fertilizers to soils can support the survival and regrowth of pathogens. BSAs should be handled and applied in a manner that reduces the prevalence of pathogens in soils and the likelihood of transfer of food-borne pathogens to fruits and vegetables. This review will focus on two BSAs-raw manure and composted manure (and other feedstocks)-and predominantly on the survival of enteric bacterial pathogens in BSAs as applied to soils as organic fertilizers.

  8. Intra- and inter-species interactions within biofilms of important foodborne bacterial pathogens

    PubMed Central

    Giaouris, Efstathios; Heir, Even; Desvaux, Mickaël; Hébraud, Michel; Møretrø, Trond; Langsrud, Solveig; Doulgeraki, Agapi; Nychas, George-John; Kačániová, Miroslava; Czaczyk, Katarzyna; Ölmez, Hülya; Simões, Manuel

    2015-01-01

    A community-based sessile life style is the normal mode of growth and survival for many bacterial species. Under such conditions, cell-to-cell interactions are inevitable and ultimately lead to the establishment of dense, complex and highly structured biofilm populations encapsulated in a self-produced extracellular matrix and capable of coordinated and collective behavior. Remarkably, in food processing environments, a variety of different bacteria may attach to surfaces, survive, grow, and form biofilms. Salmonella enterica, Listeria monocytogenes, Escherichia coli, and Staphylococcus aureus are important bacterial pathogens commonly implicated in outbreaks of foodborne diseases, while all are known to be able to create biofilms on both abiotic and biotic surfaces. Particularly challenging is the attempt to understand the complexity of inter-bacterial interactions that can be encountered in such unwanted consortia, such as competitive and cooperative ones, together with their impact on the final outcome of these communities (e.g., maturation, physiology, antimicrobial resistance, virulence, dispersal). In this review, up-to-date data on both the intra- and inter-species interactions encountered in biofilms of these pathogens are presented. A better understanding of these interactions, both at molecular and biophysical levels, could lead to novel intervention strategies for controlling pathogenic biofilm formation in food processing environments and thus improve food safety. PMID:26347727

  9. Lung Biopersistence and in Vitro Dissolution Rate Predict the Pathogenic Potential of Synthetic Vitreous Fibers.

    PubMed

    Hesterberg, T W; Hart, G A

    2000-01-01

    Here we review the past decade of research on inorganic fiber toxicology, which demonstrates that fiber biopersistence and in vitro dissolution rate correlate well with fiber pathogenicity. Test fibers for these studies included eight synthetic vitreous fibers (SVFs)-refractory ceramic fiber (RCF1), four fiber glasses (FCs), rock wool, slag wool, HT stone wool-and two asbestos types (crocidolite and amosite). Fiber toxicology and biopersistence were investigated using rodents exposed by inhalation. To evaluate chronic inhalation toxicity, rodents were exposed nose-only to ∼ 100 fibers >20 µm in length (F > 20 µm)/cm(3), 6 h/day, 5 days/wk, for 2 yr (rats) or 1½ yr (hamsters). To evaluate lung biopersistence, rats were exposed nose-only for 5 days to fiber aerosol; lung burdens were then analyzed during 1 yr postexposure. In vitro dissolution rate was evaluated in a flow-through system using physiological solutions that mimic the inorganic components of extra- and intracellular lung fluids. The 10 test fibers encompassed a range of respiratory toxicities, from transient inflammation only to carcinogenesis. Lung clearance weighted half-times (WT½) for F > 20 µm were 6-15 days for stonewool, building insulation FCs, and slag wool; 50-80 days for rock wool, 2 special-application FCs, and RCFI; and >400 days for asbestos. WT½ correlated with pathogenicity: The rapidly clearing fibers were innocuous (insulation FCs, slag wool, and stonewool), but the more biopersistent fibers were fibrogenic (rock wool) or fibrogenic and carcinogenic (special-application FCs, RCFI, amosite and crocidolite asbestos). In vitro dissolution rates (k dis= ng/cm(2)/h) of the 10 fibers at pH 7.4 or 4.5 ranged from < 1 to >600. Fibers that dissolved rapidly in vitro also cleared quickly from the lung and induced only transient inflammation in the chronic studies. In contrast, fibers that dissolved slowly in vitro were biopersistent in the lung and tended to induce permanent pathogenicity

  10. [Pathogen distribution and bacterial resistance in children with severe community-acquired pneumonia].

    PubMed

    Lu, Yun-Yun; Luo, Rong; Fu, Zhou

    2017-09-01

    To investigate the distribution of pathogens and bacterial resistance in children with severe community-acquired pneumonia (CAP). A total of 522 children with severe CAP who were hospitalized in 2016 were enrolled as study subjects. According to their age, they were divided into infant group (402 infants aged 28 days to 1 year), young children group (73 children aged 1 to 3 years), preschool children group (35 children aged 3 to 6 years), and school-aged children group (12 children aged ≥6 years). According to the onset season, all children were divided into spring group (March to May, 120 children), summer group (June to August, 93 children), autumn group (September to November, 105 children), and winter group (December to February, 204 children). Sputum specimens from the deep airway were collected from all patients. The phoenix-100 automatic bacterial identification system was used for bacterial identification and drug sensitivity test. The direct immunofluorescence assay was used to detect seven common respiratory viruses. The quantitative real-time PCR was used to detect Mycoplasma pneumoniae (MP) and Chlamydia trachomatis (CT). Of all the 522 children with severe CAP, 419 (80.3%) were found to have pathogens, among whom 190 (45.3%) had mixed infection. A total of 681 strains of pathogens were identified, including 371 bacterial strains (54.5%), 259 viral strains (38.0%), 12 fungal strains (1.8%), 15 MP strains (2.2%), and 24 CT strains (3.5%). There were significant differences in the distribution of bacterial, viral, MP, and fungal infections between different age groups (P<0.05). There were significant differences in the incidence rate of viral infection between different season groups (P<0.05), with the highest incidence rate in winter. The drug-resistance rates of Streptococcus pneumoniae to erythromycin, tetracycline, and clindamycin reached above 85%, and the drug-resistance rates of Staphylococcus aureus to penicillin, erythromycin, and clindamycin

  11. Russian vaccines against especially dangerous bacterial pathogens

    PubMed Central

    Feodorova, Valentina A; Sayapina, Lidiya V; Corbel, Michael J; Motin, Vladimir L

    2014-01-01

    In response to the epidemiological situation, live attenuated or killed vaccines against anthrax, brucellosis, cholera, glanders, plague and tularemia were developed and used for immunization of at-risk populations in the Former Soviet Union. Certain of these vaccines have been updated and currently they are used on a selective basis, mainly for high risk occupations, in the Russian Federation. Except for anthrax and cholera these vaccines currently are the only licensed products available for protection against the most dangerous bacterial pathogens. Development of improved formulations and new products is ongoing. PMID:26038506

  12. Retrospective Analysis of Bacterial and Viral Co-Infections in Pneumocystis spp. Positive Lung Samples of Austrian Pigs with Pneumonia.

    PubMed

    Weissenbacher-Lang, Christiane; Kureljušić, Branislav; Nedorost, Nora; Matula, Bettina; Schießl, Wolfgang; Stixenberger, Daniela; Weissenböck, Herbert

    2016-01-01

    Aim of this study was the retrospective investigation of viral (porcine circovirus type 2 (PCV2), porcine reproductive and respiratory syndrome virus (PRRSV), torque teno sus virus type 1 and 2 (TTSuV1, TTSuV2)) and bacterial (Bordetella bronchiseptica (B. b.), Mycoplasma hyopneumoniae (M. h.), and Pasteurella multocida (P. m.)) co-infections in 110 Pneumocystis spp. positive lung samples of Austrian pigs with pneumonia. Fifty-one % were positive for PCV2, 7% for PRRSV, 22% for TTSuV1, 48% for TTSuV2, 6% for B. b., 29% for M. h., and 21% for P. m. In 38.2% only viral, in 3.6% only bacterial and in 40.0% both, viral and bacterial pathogens were detected. In 29.1% of the cases a co-infection with 1 pathogen, in 28.2% with 2, in 17.3% with 3, and in 7.3% with 4 different infectious agents were observed. The exposure to Pneumocystis significantly decreased the risk of a co-infection with PRRSV in weaning piglets; all other odds ratios were not significant. Four categories of results were compared: I = P. spp. + only viral co-infectants, II = P. spp. + both viral and bacterial co-infectants, III = P. spp. + only bacterial co-infectants, and IV = P. spp. single infection. The evaluation of all samples and the age class of the weaning piglets resulted in a predomination of the categories I and II. In contrast, the suckling piglets showed more samples of category I and IV. In the group of fattening pigs, category II predominated. Suckling piglets can be infected with P. spp. early in life. With increasing age this single infections can be complicated by co-infections with other respiratory diseases.

  13. [Immunization and bacterial pathogens in the oropharynx as risk factors for alopecia areata].

    PubMed

    Morales-Sánchez, M A; Domínguez-Gómez, M A; Jurado-Santa Cruz, F; Peralta-Pedrero, M L

    2010-06-01

    Alopecia areata is an autoimmune inflammatory disease affecting the hair follicles. Researchers are currently interested in whether the presence of bacterial pathogens and/or a history of immunization can trigger an autoimmune response in patients who are genetically predisposed. This study aimed to determine whether there is an association between the development of alopecia areata and throat carriage of bacterial pathogens or a history of immunization. Sixty-five men and women with alopecia areata and 65 control patients with other skin diseases were studied at the Dr Ladislao de la Pascua Dermatology Clinic between September 2008 and February 2009. The patients ranged in age from 18-59 years. Patients with scalp diseases were excluded from the control group. In all cases, the patient was questioned about immunizations received in the previous 6 months, and a throat swab was cultured. A history of immunization (odds ratio [OR], 3.3; 95% confidence interval [CI], 1.6-6.7; P=.001), the presence of bacterial pathogens in the oropharynx (OR, 2.6; 95% CI, 1.1-6.2; P=.033), and being a carrier of Streptococcus pyogenes (OR, 2.1; 95% CI, 1.7-2.5; P=.042) were risk factors for alopecia areata. Klebsiella pneumoniae, S. pyogenes, Pseudomonas aeruginosa, Streptococcus pneumoniae, Serratia marcescens and Escherichia coli were isolated from cultures. This is the first study to show an association between alopecia areata and throat carriage of bacterial pathogens or history of immunization, as risk factors for development of the disease. Given the characteristics of our study population, the association appears valid for patients with less than 25% hair loss and a course of disease under 1 year.

  14. Detection of Bacterial Meningitis Pathogens by PCR-Mass Spectrometry in Cerebrospinal Fluid.

    PubMed

    Jing-Zi, Piao; Zheng-Xin, He; Wei-Jun, Chen; Yong-Qiang, Jiang

    2018-06-01

    Acute bacterial meningitis remains a life-threatening infectious disease with considerable morbidity and mortality. DNA-based detection methods are an urgent requisite for meningitis-causing bacterial pathogens for the prevention of outbreaks and control of infections. We proposed a novel PCR-mass spectrometry (PCR-Mass) assay for the simultaneous detection of four meningitis-causing agents, Neisseria meningitidis, Streptococcus pneumoniae, Haemophilus influenzae, and Mycobacterium tuberculosis in the present study. A total of 138 cerebrospinal fluid (CSF) samples (including 56 CSF culture positive, 44 CSF culture negative, and 38 CSF control) were enrolled and analyzed by PCR/Mass. Results were compared to real-time PCR detection. These four targeting pathogens could be discriminated without cross-reaction by the accurate detection of the corresponding extension products with different masses. The limits of detection were 102 copies/reaction for S. pneumoniae, H. influenzae, and N. meningitidis and 103 for M. tuberculosis. The evaluation of the culture-positive CSF specimens from the meningitis patients provided an overall agreement rate of 85.7% with PCR-Mass and real-time PCR. The PCR-Mass was also able to detect the targeting pathogens from culture-negative CSF specimens from meningitis patients receiving early antibiotic treatment. PCR-Mass could be used for the molecular detection of bacterial meningitis and tuberculosis, especially when early antibiotic treatment has been administered to the suspected patients.

  15. Detection of respiratory bacterial pathogens causing atypical pneumonia by multiplex Lightmix® RT-PCR.

    PubMed

    Wagner, Karoline; Springer, Burkard; Imkamp, Frank; Opota, Onya; Greub, Gilbert; Keller, Peter M

    2018-04-01

    Pneumonia is a severe infectious disease. In addition to common viruses and bacterial pathogens (e.g. Streptococcus pneumoniae), fastidious respiratory pathogens like Chlamydia pneumoniae, Mycoplasma pneumoniae and Legionella spp. can cause severe atypical pneumonia. They do not respond to penicillin derivatives, which may cause failure of antibiotic empirical therapy. The same applies for infections with B. pertussis and B. parapertussis, the cause of pertussis disease, that may present atypically and need to be treated with macrolides. Moreover, these fastidious bacteria are difficult to identify by culture or serology, and therefore often remain undetected. Thus, rapid and accurate identification of bacterial pathogens causing atypical pneumonia is crucial. We performed a retrospective method evaluation study to evaluate the diagnostic performance of the new, commercially available Lightmix ® multiplex RT-PCR assay that detects these fastidious bacterial pathogens causing atypical pneumonia. In this retrospective study, 368 clinical respiratory specimens, obtained from patients suffering from atypical pneumonia that have been tested negative for the presence of common agents of pneumonia by culture and viral PCR, were investigated. These clinical specimens have been previously characterized by singleplex RT-PCR assays in our diagnostic laboratory and were used to evaluate the diagnostic performance of the respiratory multiplex Lightmix ® RT-PCR. The multiplex RT-PCR displayed a limit of detection between 5 and 10 DNA copies for different in-panel organisms and showed identical performance characteristics with respect to specificity and sensitivity as in-house singleplex RT-PCRs for pathogen detection. The Lightmix ® multiplex RT-PCR assay represents a low-cost, time-saving and accurate diagnostic tool with high throughput potential. The time-to-result using an automated DNA extraction device for respiratory specimens followed by multiplex RT-PCR detection was

  16. A bacterial siren song: intimate interactions between neutrophils and pathogenic Neisseria

    PubMed Central

    Criss, Alison K.; Seifert, H. Steven

    2012-01-01

    Preface Neisseria gonorrhoeae and Neisseria meningitidis are Gram-negative bacterial pathogens that are exquisitely adapted for growth at human mucosal surfaces and for efficient transmission between hosts. One factor that is essential to neisserial pathogenesis is the interaction between the bacteria and neutrophils, which are recruited in high numbers during infection. Although this vigorous host response could simply reflect effective immune recognition of the bacteria, there is mounting evidence that in fact these obligate human pathogens manipulate the innate immune response to promote infectious processes. This Review summarizes the mechanisms used by pathogenic neisseriae to resist and modulate the antimicrobial activities of neutrophils. It also details some of the major outstanding questions about the Neisseria–neutrophil relationship and proposes potential benefits of this relationship for the pathogen. PMID:22290508

  17. Antimicrobial inflammasomes: unified signalling against diverse bacterial pathogens.

    PubMed

    Eldridge, Matthew J G; Shenoy, Avinash R

    2015-02-01

    Inflammasomes - molecular platforms for caspase-1 activation - have emerged as common hubs for a number of pathways that detect and respond to bacterial pathogens. Caspase-1 activation results in the secretion of bioactive IL-1β and IL-18 and pyroptosis, and thus launches a systemic immune and inflammatory response. In this review we discuss signal transduction leading to 'canonical' and 'non-canonical' activation of caspase-1 through the involvement of upstream caspases. Recent studies have identified a growing number of regulatory networks involving guanylate binding proteins, protein kinases, ubiquitylation and necroptosis related pathways that modulate inflammasome responses and immunity to bacterial infection. By being able to respond to extracellular, vacuolar and cytosolic bacteria, their cytosolic toxins or ligands for cell surface receptors, inflammasomes have emerged as important sentinels of infection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Point detection of bacterial and viral pathogens using oral samples

    NASA Astrophysics Data System (ADS)

    Malamud, Daniel

    2008-04-01

    Oral samples, including saliva, offer an attractive alternative to serum or urine for diagnostic testing. This is particularly true for point-of-use detection systems. The various types of oral samples that have been reported in the literature are presented here along with the wide variety of analytes that have been measured in saliva and other oral samples. The paper focuses on utilizing point-detection of infectious disease agents, and presents work from our group on a rapid test for multiple bacterial and viral pathogens by monitoring a series of targets. It is thus possible in a single oral sample to identify multiple pathogens based on specific antigens, nucleic acids, and host antibodies to those pathogens. The value of such a technology for detecting agents of bioterrorism at remote sites is discussed.

  19. Interactions of Seedborne Bacterial Pathogens with Host and Non-Host Plants in Relation to Seed Infestation and Seedling Transmission

    PubMed Central

    Dutta, Bhabesh; Gitaitis, Ronald; Smith, Samuel; Langston, David

    2014-01-01

    The ability of seed-borne bacterial pathogens (Acidovorax citrulli, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, Xanthomonas euvesicatoria, and Pseudomonas syringae pv. glycinea) to infest seeds of host and non-host plants (watermelon, tomato, pepper, and soybean) and subsequent pathogen transmission to seedlings was investigated. A non-pathogenic, pigmented strain of Serratia marcescens was also included to assess a null-interacting situation with the same plant species. Flowers of host and non-host plants were inoculated with 1×106 colony forming units (CFUs)/flower for each bacterial species and allowed to develop into fruits or umbels (in case of onion). Seeds harvested from each host/non-host bacterial species combination were assayed for respective bacteria by plating on semi-selective media. Additionally, seedlots for each host/non-host bacterial species combination were also assayed for pathogen transmission by seedling grow-out (SGO) assays under greenhouse conditions. The mean percentage of seedlots infested with compatible and incompatible pathogens was 31.7 and 30.9% (by plating), respectively and they were not significantly different (P = 0.67). The percentage of seedlots infested with null-interacting bacterial species was 16.8% (by plating) and it was significantly lower than the infested lots generated with compatible and incompatible bacterial pathogens (P = 0.03). None of the seedlots with incompatible/null-interacting bacteria developed symptoms on seedlings; however, when seedlings were assayed for epiphytic bacterial presence, 19.5 and 9.4% of the lots were positive, respectively. These results indicate that the seeds of non-host plants can become infested with incompatible and null-interacting bacterial species through flower colonization and they can be transmitted via epiphytic colonization of seedlings. In addition, it was also observed that flowers and seeds of non-host plants can be colonized

  20. Bone marrow-derived cells participate in stromal remodeling of the lung following acute bacterial pneumonia in mice.

    PubMed

    Serikov, Vladimir B; Mikhaylov, Viatcheslav M; Krasnodembskay, Anna D; Matthay, Michael A

    2008-01-01

    Bone marrow-derived cells (BMDC) have been shown to graft injured tissues, differentiate in specialized cells, and participate in repair. The importance of these processes in acute lung bacterial inflammation and development of fibrosis is unknown. The goal of this study was to investigate the temporal sequence and lineage commitment of BMDC in mouse lungs injured by bacterial pneumonia. We transplanted GFP-tagged BMDC into 5-Gy-irradiated C57BL/6 mice. After 3 months of recovery, mice were subjected to LD(50) intratracheal instillation of live E. coli (controls received saline) which produced pneumonia and subsequent areas of fibrosis. Lungs were investigated by immunohistology for up to 6 months. At the peak of lung inflammation, the predominant influx of BMDC were GFP(+) leukocytes. Postinflammatory foci of lung fibrosis were evident after 1-2 months. The fibrotic foci in lung stroma contained clusters of GFP(+) CD45(+) cells, GFP(+) vimentin-positive cells, and GFP(+) collagen I-positive fibroblasts. GFP(+) endothelial or epithelial cells were not identified. These data suggest that following 5-Gy irradiation and acute bacterial pneumonia, BMDC may temporarily participate in lung postinflammatory repair and stromal remodeling without long-term engraftment as specialized endothelial or epithelial cells.

  1. Spontaneous bacterial and fungal infections in genetically engineered mice: Is Escherichia coli an emerging pathogen in laboratory mouse?

    PubMed

    Benga, Laurentiu; Benten, W Peter M; Engelhardt, Eva; Gougoula, Christina; Sager, Martin

    2015-01-01

    The impact of particular microbes on genetically engineered mice depends on the genotype and the environment. Infections resulting in clinical disease have an obvious impact on animal welfare and experimentation. In this study, we investigated the bacterial and fungal aetiology of spontaneous clinical disease of infectious origin among the genetically engineered mice from our institution in relation to their genotype. A total of 63 mice belonging to 33 different mice strains, from severe immunodeficient to wild-type, were found to display infections as the primary cause leading to their euthanasia. The necropsies revealed abscesses localized subcutaneously as well as in the kidney, preputial glands, seminal vesicles, in the uterus, umbilicus or in the lung. In addition, pneumonia, endometritis and septicaemia cases were recorded. Escherichia coli was involved in 21 of 44 (47.72%) of the lesions of bacterial origin, whereas [Pasteurella] pneumotropica was isolated from 19 of 44 (43.18%) cases. The infections with the two agents mentioned above included three cases of mixed infection with both pathogens. Staphylococcus aureus was considered responsible for five of 44 (11.36%) cases whereas Enterobacter cloacae was found to cause lesions in two of 44 (4.54%) mice. Overall, 16 of the 44 (36.36%) cases of bacterial aetiology affected genetically engineered mice without any explicit immunodeficiency or wild-type strains. The remaining 19 cases of interstitial pneumonia were caused by Pneumocystis murina. In conclusion, the susceptibility of genetically modified mice to opportunistic infections has to be regarded with precaution, regardless of the type of genetic modification performed. Beside the classical opportunists, such as [Pasteurella] pneumotropica and Staphylococcus aureus, Escherichia coli should as well be closely monitored to evaluate whether it represents an emerging pathogen in the laboratory mouse.

  2. Lung Abscess in a Patient With VAP: A Rare Case of Lung Infection Complicated by Two Pathogens

    PubMed Central

    Mystakelli, Christina; Gourgiotis, Stavros; Aravosita, Paraskevi; Seretis, Charalampos; Kanna, Efthymia; Aloizos, Stavros

    2013-01-01

    Ventilator-associated pneumonia (VAP) is defined as pneumonia occurring in a patient after intubation with an endotracheal tube or tracheostomy tube lasting for 48 hours or more. We describe a case of 75-year-old male who initially presented with pneumonia of the right basis with accompanying plevritis. The patient was intubated and his condition was complicated with a VAP infection while he developed a lung abscess. The antibiotic therapy was based on susceptibility bronchial secretions isolated acinetobacter baumannii and klebsiella pneumoniae; these pathogens were also isolated from the drained abscess. The patient was discharged in good health. The interest of this case is recommended in the existence of two responsible pathogens, the paucity of the development of lung abscess in a patient with VAP, and the successful treatment of the patient with the combination of controlled drainage of the abscess and appropriate antibiotic therapy. PMID:23390479

  3. Infection of an Insect Vector with a Bacterial Plant Pathogen Increases Its Propensity for Dispersal

    PubMed Central

    Coy, Monique R.; Stelinski, Lukasz L.; Pelz-Stelinski, Kirsten S.

    2015-01-01

    The spread of vector-transmitted pathogens relies on complex interactions between host, vector and pathogen. In sessile plant pathosystems, the spread of a pathogen highly depends on the movement and mobility of the vector. However, questions remain as to whether and how pathogen-induced vector manipulations may affect the spread of a plant pathogen. Here we report for the first time that infection with a bacterial plant pathogen increases the probability of vector dispersal, and that such movement of vectors is likely manipulated by a bacterial plant pathogen. We investigated how Candidatus Liberibacter asiaticus (CLas) affects dispersal behavior, flight capacity, and the sexual attraction of its vector, the Asian citrus psyllid (Diaphorina citri Kuwayama). CLas is the putative causal agent of huanglongbing (HLB), which is a disease that threatens the viability of commercial citrus production worldwide. When D. citri developed on CLas-infected plants, short distance dispersal of male D. citri was greater compared to counterparts reared on uninfected plants. Flight by CLas-infected D. citri was initiated earlier and long flight events were more common than by uninfected psyllids, as measured by a flight mill apparatus. Additionally, CLas titers were higher among psyllids that performed long flights than psyllid that performed short flights. Finally, attractiveness of female D. citri that developed on infected plants to male conspecifics increased proportionally with increasing CLas bacterial titers measured within female psyllids. Our study indicates that the phytopathogen, CLas, may manipulate movement and mate selection behavior of their vectors, which is a possible evolved mechanism to promote their own spread. These results have global implications for both current HLB models of disease spread and control strategies. PMID:26083763

  4. Bacterial genomics reveal the complex epidemiology of an emerging pathogen in arctic and boreal ungulates

    USGS Publications Warehouse

    Forde, Taya L.; Orsel, Karin; Zadoks, Ruth N.; Biek, Roman; Adams, Layne G.; Checkley, Sylvia L.; Davison, Tracy; De Buck, Jeroen; Dumond, Mathieu; Elkin, Brett T.; Finnegan, Laura; Macbeth, Bryan J.; Nelson, Cait; Niptanatiak, Amanda; Sather, Shane; Schwantje, Helen M.; van der Meer, Frank; Kutz, Susan J.

    2016-01-01

    Northern ecosystems are currently experiencing unprecedented ecological change, largely driven by a rapidly changing climate. Pathogen range expansion, and emergence and altered patterns of infectious disease, are increasingly reported in wildlife at high latitudes. Understanding the causes and consequences of shifting pathogen diversity and host-pathogen interactions in these ecosystems is important for wildlife conservation, and for indigenous populations that depend on wildlife. Among the key questions are whether disease events are associated with endemic or recently introduced pathogens, and whether emerging strains are spreading throughout the region. In this study, we used a phylogenomic approach to address these questions of pathogen endemicity and spread for Erysipelothrix rhusiopathiae, an opportunistic multi-host bacterial pathogen associated with recent mortalities in arctic and boreal ungulate populations in North America. We isolated E. rhusiopathiae from carcasses associated with large-scale die-offs of muskoxen in the Canadian Arctic Archipelago, and from contemporaneous mortality events and/or population declines among muskoxen in northwestern Alaska and caribou and moose in western Canada. Bacterial genomic diversity differed markedly among these locations; minimal divergence was present among isolates from muskoxen in the Canadian Arctic, while in caribou and moose populations, strains from highly divergent clades were isolated from the same location, or even from within a single carcass. These results indicate that mortalities among northern ungulates are not associated with a single emerging strain of E. rhusiopathiae, and that alternate hypotheses need to be explored. Our study illustrates the value and limitations of bacterial genomic data for discriminating between ecological hypotheses of disease emergence, and highlights the importance of studying emerging pathogens within the broader context of environmental and host factors.

  5. Nested PCR Assay for Eight Pathogens: A Rapid Tool for Diagnosis of Bacterial Meningitis.

    PubMed

    Bhagchandani, Sharda P; Kubade, Sushant; Nikhare, Priyanka P; Manke, Sonali; Chandak, Nitin H; Kabra, Dinesh; Baheti, Neeraj N; Agrawal, Vijay S; Sarda, Pankaj; Mahajan, Parikshit; Ganjre, Ashish; Purohit, Hemant J; Singh, Lokendra; Taori, Girdhar M; Daginawala, Hatim F; Kashyap, Rajpal S

    2016-02-01

    Bacterial meningitis is a dreadful infectious disease with a high mortality and morbidity if remained undiagnosed. Traditional diagnostic methods for bacterial meningitis pose a challenge in accurate identification of pathogen, making prognosis difficult. The present study is therefore aimed to design and evaluate a specific and sensitive nested 16S rDNA genus-based polymerase chain reaction (PCR) assay using clinical cerebrospinal fluid (CSF) for rapid diagnosis of eight pathogens causing the disease. The present work was dedicated to development of an in-house genus specific 16S rDNA nested PCR covering pathogens of eight genera responsible for causing bacterial meningitis using newly designed as well as literature based primers for respective genus. A total 150 suspected meningitis CSF obtained from the patients admitted to Central India Institute of Medical Sciences (CIIMS), India during the period from August 2011 to May 2014, were used to evaluate clinical sensitivity and clinical specificity of optimized PCR assays. The analytical sensitivity and specificity of our newly designed genus-specific 16S rDNA PCR were found to be ≥92%. With such a high sensitivity and specificity, our in-house nested PCR was able to give 100% sensitivity in clinically confirmed positive cases and 100% specificity in clinically confirmed negative cases indicating its applicability in clinical diagnosis. Our in-house nested PCR system therefore can diagnose the accurate pathogen causing bacterial meningitis and therefore be useful in selecting a specific treatment line to minimize morbidity. Results are obtained within 24 h and high sensitivity makes this nested PCR assay a rapid and accurate diagnostic tool compared to traditional culture-based methods.

  6. Donor-to-host transmission of bacterial and fungal infections in lung transplantation.

    PubMed

    Ruiz, I; Gavaldà, J; Monforte, V; Len, O; Román, A; Bravo, C; Ferrer, A; Tenorio, L; Román, F; Maestre, J; Molina, I; Morell, F; Pahissa, A

    2006-01-01

    The purpose of this study was to evaluate the incidence and etiology of bacterial and fungal infection or contamination in lung allograft donors and to assess donor-to-host transmission of these infections. Recipients who survived more than 24 h and their respective donors were evaluated. The overall incidence of donor infection was 52% (103 out of 197 donors). Types of donor infection included isolated contamination of preservation fluids (n = 30, 29.1%), graft colonization (n = 65, 63.1%) and bacteremia (n = 8, 7.8%). Donor-to-host transmission of bacterial or fungal infection occurred in 15 lung allograft recipients, 7.6% of lung transplants performed. Among these cases, 2 were due to donor bacteremia and 13 to colonization of the graft. Twenty-five percent of donors with bacteremia and 14.1% of colonized grafts were responsible for transmitting infection. Excluding the five cases without an effective prophylactic regimen, prophylaxis failure occurred in 11 out of 197 procedures (5.58%). Donor-to-host transmission of infection is a frequent event after lung transplantation. Fatal consequences can be avoided with an appropriate prophylactic antibiotic regimen that must be modified according to the microorganisms isolated from cultures of samples obtained from donors, grafts, preservation fluids and recipients.

  7. AUTOMATED BIOCHEMICAL IDENTIFICATION OF BACTERIAL FISH PATHOGENS USING THE ABBOTT QUANTUM II

    EPA Science Inventory

    The Quantum II, originally designed by Abbott Diagnostics for automated rapid identification of members of Enterobacteriaceae, was adapted for the identification of bacterial fish pathogens. he instrument operates as a spectrophotometer at a wavelength of 492.600 nm. ample cartri...

  8. [Enterococcus faecium lung abscess: one case report and literature review].

    PubMed

    Fang, Xiang-Qun; Liu, You-Ning

    2010-02-01

    to study the diagnosis and treatment of enterococcus faecium lung abscess. a retrospective analysis of one case of Enterococcus faecium lung abscess and literature review was conducted. this patient suffered from cough and sputum over 6 months and complicated with hemoptysis over 3 months. Pulmonary embolism and lung cancer were suspected initially. After 2 times of CT-guided percutaneous transthoracic needle aspiration biopsy the diagnosis of pneumonia was made in other hospitals. However, the consolidation in the lung progressed and cavity appeared although antibiotic therapy was conducted. After admission to our hospital, CT-guided percutaneous transthoracic needle aspiration biopsy was made and the lung tissue was sent for bacterial culture. Enterococcus faecium was cultured and it was susceptible to vancomycin, teicoplanin and linezolid. The disease improved significantly after treatment with these 3 antibiotics in turn. In addition, 13 cases of enterococcus pneumonia or lung abscess were reviewed, including 3 cases of enterococcus faecium lung abscess. enterococcus faecium is rarely a pathogen for lung abscess. The diagnosis of enterococcus faecium lung abscess could be confirmed by lung biopsy and bacterial culture of lung tissue which could also provide the susceptibility of antibiotics and guide the antibiotic therapy.

  9. Bacterial infection and acute lung injury in hamsters.

    PubMed

    Seidenfeld, J J; Mullins, R C; Fowler, S R; Johanson, W G

    1986-07-01

    Bacterial pneumonia is a common complication of lung injury that can be an important determinant of outcome. We studied experimental lung injury produced in hamsters by injecting 20 mg/kg paraquat (PQ) intraperitoneally; control animals received saline vehicle. Three days later, Pseudomonas aeruginosa (PAO1), 10(8) organisms in 0.25 ml, or saline, 0.25 ml, was inoculated intratracheally. Lung and systemic antibacterial defenses were studied at death 24 h later. Paraquat alone produced focal interstitial pneumonitis and neutrophilic alveolitis, and resulted in a 12% (3 of 26) mortality. PAO1 alone caused focal pneumonias and no deaths. Animals receiving both agents (PAO1/PQ) had extensive diffuse alveolar damage characterized by alveolar hemorrhage, edema, influx of neutrophils, and vasculitis; 50% (16 of 32) died within 96 h of PQ injection. Mean lung counts of PAO1 at death were 7.6 X 10(4) colony forming units/g in PAO1 and 2.8 X 10(7) in PAO1/PQ animals (p less than 0.05). PAO1 colony counts in liver were increased nearly 100-fold in PAO1/PQ animals (p less than 0.05). Half-time of clearance of P. aeruginosa from the blood was prolonged in PAO1 and in PAO1/PQ animals (p less than 0.05) but not in PQ animals. Phagocytosis of Staphylococcus aureus by leukocytes lavaged from the lung was not impaired in any group compared with that in control animals, but intracellular killing was impaired in PAO1 and PAO1/PQ but not in PQ animals. Paraquat injury impairs lung antibacterial defenses by uncertain mechanisms. Superinfection of PQ-injured lungs by PAO1 appears responsible for defects in intrapulmonary and systemic antibacterial defenses.

  10. Ozone disinfection of home nebulizers effectively kills common cystic fibrosis bacterial pathogens.

    PubMed

    Towle, Dana; Baker, Vanisha; Schramm, Craig; O'Brien, Matthew; Collins, Melanie S; Feinn, Richard; Murray, Thomas S

    2018-05-01

    The Cystic Fibrosis Foundation (CFF) recommends routine nebulizer disinfection for patients but compliance is challenging due to the heavy burden of home care. SoClean® is a user friendly ozone based home disinfection device currently for home respiratory equipment. The objective of this study was to determine whether SoClean® has potential as a disinfection device for families with CF by killing CF associated bacteria without altering nebulizer output. Ozone based disinfection effectively kills bacterial pathogens inoculated to home nebulizer equipment without gross changes in nebulizer function. Common bacterial pathogens associated with CF were inoculated onto the PariLC® jet nebulizer and bacterial recovery compared with or without varied ozone exposure. In separate experiments, nebulizer output was estimated after repeated ozone exposure by weighing the nebulizer. Ozone disinfection was time dependent with a 5 min infusion time and 120 min dwell time effectively killing >99.99% bacteria tested including Pseudomonas aeruginosa and Staphylococcus aureus. Over 250 h of repeat ozone exposure did not alter nebulizer output. This suggests SoClean® has potential as a user-friendly disinfection technique for home respiratory equipment. © 2018 Wiley Periodicals, Inc.

  11. Elucidation of Bacterial Pneumonia-Causing Pathogens in Patients with Respiratory Viral Infection.

    PubMed

    Jung, Hwa Sik; Kang, Byung Ju; Ra, Seung Won; Seo, Kwang Won; Jegal, Yangjin; Jun, Jae Bum; Jung, Jiwon; Jeong, Joseph; Jeon, Hee Jeong; Ahn, Jae Sung; Lee, Taehoon; Ahn, Jong Joon

    2017-10-01

    Bacterial pneumonia occurring after respiratory viral infection is common. However, the predominant bacterial species causing pneumonia secondary to respiratory viral infections other than influenza remain unknown. The purpose of this study was to know whether the pathogens causing post-viral bacterial pneumonia vary according to the type of respiratory virus. Study subjects were 5,298 patients, who underwent multiplex real-time polymerase chain reaction for simultaneous detection of respiratory viruses, among who visited the emergency department or outpatient clinic with respiratory symptoms at Ulsan University Hospital between April 2013 and March 2016. The patients' medical records were retrospectively reviewed. A total of 251 clinically significant bacteria were identified in 233 patients with post-viral bacterial pneumonia. Mycoplasma pneumoniae was the most frequent bacterium in patients aged <16 years, regardless of the preceding virus type (p=0.630). In patients aged ≥16 years, the isolated bacteria varied according to the preceding virus type. The major results were as follows (p<0.001): pneumonia in patients with influenza virus (type A/B), rhinovirus, and human metapneumovirus infections was caused by similar bacteria, and the findings indicated that Staphylococcus aureus pneumonia was very common in these patients. In contrast, coronavirus, parainfluenza virus, and respiratory syncytial virus infections were associated with pneumonia caused by gram-negative bacteria. The pathogens causing post-viral bacterial pneumonia vary according to the type of preceding respiratory virus. This information could help in selecting empirical antibiotics in patients with post-viral pneumonia. Copyright©2017. The Korean Academy of Tuberculosis and Respiratory Diseases

  12. Elucidation of Bacterial Pneumonia-Causing Pathogens in Patients with Respiratory Viral Infection

    PubMed Central

    Jung, Hwa Sik; Kang, Byung Ju; Ra, Seung Won; Seo, Kwang Won; Jegal, Yangjin; Jun, Jae-Bum; Jung, Jiwon; Jeong, Joseph; Jeon, Hee-Jeong; Ahn, Jae-Sung

    2017-01-01

    Background Bacterial pneumonia occurring after respiratory viral infection is common. However, the predominant bacterial species causing pneumonia secondary to respiratory viral infections other than influenza remain unknown. The purpose of this study was to know whether the pathogens causing post-viral bacterial pneumonia vary according to the type of respiratory virus. Methods Study subjects were 5,298 patients, who underwent multiplex real-time polymerase chain reaction for simultaneous detection of respiratory viruses, among who visited the emergency department or outpatient clinic with respiratory symptoms at Ulsan University Hospital between April 2013 and March 2016. The patients' medical records were retrospectively reviewed. Results A total of 251 clinically significant bacteria were identified in 233 patients with post-viral bacterial pneumonia. Mycoplasma pneumoniae was the most frequent bacterium in patients aged <16 years, regardless of the preceding virus type (p=0.630). In patients aged ≥16 years, the isolated bacteria varied according to the preceding virus type. The major results were as follows (p<0.001): pneumonia in patients with influenza virus (type A/B), rhinovirus, and human metapneumovirus infections was caused by similar bacteria, and the findings indicated that Staphylococcus aureus pneumonia was very common in these patients. In contrast, coronavirus, parainfluenza virus, and respiratory syncytial virus infections were associated with pneumonia caused by gram-negative bacteria. Conclusion The pathogens causing post-viral bacterial pneumonia vary according to the type of preceding respiratory virus. This information could help in selecting empirical antibiotics in patients with post-viral pneumonia. PMID:28905531

  13. Relationship between lactobacilli and opportunistic bacterial pathogens associated with vaginitis.

    PubMed

    Razzak, Mohammad Sabri A; Al-Charrakh, Alaa H; Al-Greitty, Bara Hamid

    2011-04-01

    Vaginitis, is an infectious inflammation of the vaginal mucosa, which sometimes involves the vulva. The balance of the vaginal flora is maintained by the Lactobacilli and its protective and probiotic role in treating and preventing vaginal infection by producing antagonizing compounds which are regarded as safe for humans. The aim of this study was to evaluate the protective role of Lactobacilli against common bacterial opportunistic pathogens in vaginitis and study the effects of some antibiotics on Lactobacilli isolates. In this study (110) vaginal swabs were obtained from women suffering from vaginitis who admitted to Babylon Hospital of Maternity and Paediatrics in Babylon province, Iraq. The study involved the role of intrauterine device among married women with vaginitis and also involved isolation of opportunistic bacterial isolates among pregnant and non pregnant women. This study also involved studying probiotic role of Lactobacilli by production of some defense factors like hydrogen peroxide, bacteriocin, and lactic acid. Results revealed that a total of 130 bacterial isolates were obtained. Intrauterine device was a predisposing factor for vaginitis. The most common opportunistic bacterial isolates were Staphylococcus aureus, Escherichia coli, Streptococcus agalactiae, and Klebsiella pneumoniae. All Lactobacilli were hydrogen peroxide producers while some isolates were bacteriocin producers that inhibited some of opportunistic pathogens (S. aureus, E. coli). Lactobacilli were sensitive to erythromycin while 93.3% of them were resistant to ciprofloxacin and (40%, 53.3%) of them were resistant to amoxicillin and gentamycin respectively. Results revealed that there was an inverse relationship between Lactobacilli presence and organisms causing vaginitis. This may be attributed to the production of defense factors by Lactobacilli. The types of antibiotics used to treat vaginitis must be very selective in order not to kill the beneficial bacteria

  14. Relationship between lactobacilli and opportunistic bacterial pathogens associated with vaginitis

    PubMed Central

    Razzak, Mohammad Sabri A.; Al-Charrakh, Alaa H.; AL-Greitty, Bara Hamid

    2011-01-01

    Background: Vaginitis, is an infectious inflammation of the vaginal mucosa, which sometimes involves the vulva. The balance of the vaginal flora is maintained by the Lactobacilli and its protective and probiotic role in treating and preventing vaginal infection by producing antagonizing compounds which are regarded as safe for humans. Aim: The aim of this study was to evaluate the protective role of Lactobacilli against common bacterial opportunistic pathogens in vaginitis and study the effects of some antibiotics on Lactobacilli isolates. Materials and Methods: In this study (110) vaginal swabs were obtained from women suffering from vaginitis who admitted to Babylon Hospital of Maternity and Paediatrics in Babylon province, Iraq. The study involved the role of intrauterine device among married women with vaginitis and also involved isolation of opportunistic bacterial isolates among pregnant and non pregnant women. This study also involved studying probiotic role of Lactobacilli by production of some defense factors like hydrogen peroxide, bacteriocin, and lactic acid. Results: Results revealed that a total of 130 bacterial isolates were obtained. Intrauterine device was a predisposing factor for vaginitis. The most common opportunistic bacterial isolates were Staphylococcus aureus, Escherichia coli, Streptococcus agalactiae, and Klebsiella pneumoniae. All Lactobacilli were hydrogen peroxide producers while some isolates were bacteriocin producers that inhibited some of opportunistic pathogens (S. aureus, E. coli). Lactobacilli were sensitive to erythromycin while 93.3% of them were resistant to ciprofloxacin and (40%, 53.3%) of them were resistant to amoxicillin and gentamycin respectively. Results revealed that there was an inverse relationship between Lactobacilli presence and organisms causing vaginitis. This may be attributed to the production of defense factors by Lactobacilli. Conclusion: The types of antibiotics used to treat vaginitis must be very

  15. Bacterial-like PPP protein phosphatases: novel sequence alterations in pathogenic eukaryotes and peculiar features of bacterial sequence similarity.

    PubMed

    Kerk, David; Uhrig, R Glen; Moorhead, Greg B

    2013-01-01

    Reversible phosphorylation is a widespread modification affecting the great majority of eukaryotic cellular proteins, and whose effects influence nearly every cellular function. Protein phosphatases are increasingly recognized as exquisitely regulated contributors to these changes. The PPP (phosphoprotein phosphatase) family comprises enzymes, which catalyze dephosphorylation at serine and threonine residues. Nearly a decade ago, "bacterial-like" enzymes were recognized with similarity to proteins from various bacterial sources: SLPs (Shewanella-like phosphatases), RLPHs (Rhizobiales-like phosphatases), and ALPHs (ApaH-like phosphatases). A recent article from our laboratory appearing in Plant Physiology characterizes their extensive organismal distribution, abundance in plant species, predicted subcellular localization, motif organization, and sequence evolution. One salient observation is the distinct evolutionary trajectory followed by SLP genes and proteins in photosynthetic eukaryotes vs. animal and plant pathogens derived from photosynthetic ancestors. We present here a closer look at sequence data that emphasizes the distinctiveness of pathogen SLP proteins and that suggests that they might represent novel drug targets. A second observation in our original report was the high degree of similarity between the bacterial-like PPPs of eukaryotes and closely related proteins of the "eukaryotic-like" phyla Myxococcales and Planctomycetes. We here reflect on the possible implications of these observations and their importance for future research.

  16. Clinical and pathogenic analysis of 507 children with bacterial meningitis in Beijing, 2010-2014.

    PubMed

    Guo, Ling-Yun; Zhang, Zhi-Xiao; Wang, Xi; Zhang, Ping-Ping; Shi, Wei; Yao, Kai-Hu; Liu, Lin-Lin; Liu, Gang; Yang, Yong-Hong

    2016-09-01

    To explore the clinical characteristics and analyze the pathogens of bacterial meningitis in children. Bacterial meningitis cases occurring from January 2010 through December 2014 at Beijing Children's Hospital were reviewed retrospectively. The records of all patients, including data on clinical features and laboratory information, were obtained and analyzed. In total, the cases of 507 pediatric patients seen over a 5-year period were analyzed; 220 of these cases were etiologically confirmed. These patients were classified into four age groups: 29 days to 1 year (n=373, 73.6%), 1-3 years (n=61, 12.0%), 3-6 years (n=41, 8.1%), and >6 years (n=32, 6.3%). The main pathogens identified in this study were Streptococcus pneumoniae (n=73, 33.2%), Escherichia coli (n=24, 10.9%), Enterococcus (n=22, 10.0%), and group B Streptococcus (n=18, 8.2%). All Gram-positive bacteria were sensitive to vancomycin and linezolid. All Gram-negative bacteria were sensitive to meropenem. The total non-susceptibility rate of S. pneumoniae to penicillin was 47.6% (20/42). The resistance rates to ceftriaxone, cefepime, and ceftazidime were 75% (9/12), 55.6% (5/9), and 40% (4/10), respectively. The main pathogen of bacterial meningitis in this study was S. pneumoniae. The antibiotic resistance rates among children with bacterial meningitis are of serious concern. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  17. Detection of bacterial pathogens including potential new species in human head lice from Mali.

    PubMed

    Amanzougaghene, Nadia; Fenollar, Florence; Sangaré, Abdoul Karim; Sissoko, Mahamadou S; Doumbo, Ogobara K; Raoult, Didier; Mediannikov, Oleg

    2017-01-01

    In poor African countries, where no medical and biological facilities are available, the identification of potential emerging pathogens of concern at an early stage is challenging. Head lice, Pediculus humanus capitis, have a short life, feed only on human blood and do not transmit pathogens to their progeny. They are, therefore, a perfect tool for the xenodiagnosis of current or recent human infection. This study assessed the occurrence of bacterial pathogens from head lice collected in two rural villages from Mali, where a high frequency of head lice infestation had previously been reported, using molecular methods. Results show that all 600 head lice, collected from 117 individuals, belonged to clade E, specific to West Africa. Bartonella quintana, the causative agent of trench fever, was identified in three of the 600 (0.5%) head lice studied. Our study also shows, for the first time, the presence of the DNA of two pathogenic bacteria, namely Coxiella burnetii (5.1%) and Rickettsia aeschlimannii (0.6%), detected in human head lice, as well as the DNA of potential new species from the Anaplasma and Ehrlichia genera of unknown pathogenicity. The finding of several Malian head lice infected with B. quintana, C. burnetii, R. aeschlimannii, Anaplasma and Ehrlichia is alarming and highlights the need for active survey programs to define the public health consequences of the detection of these emerging bacterial pathogens in human head lice.

  18. Quorum sensing and Bacterial Pathogenicity: From Molecules to Disease

    PubMed Central

    Deep, Antariksh; Chaudhary, Uma; Gupta, Varsha

    2011-01-01

    Quorum sensing in prokaryotic biology refers to the ability of a bacterium to sense information from other cells in the population when they reach a critical concentration (i.e. a Quorum) and communicate with them. The “language” used for this intercellular communication is based on small, self-generated signal molecules called as autoinducers. Quorum sensing is thought to afford pathogenic bacteriaa mechanism to minimize host immune responses by delaying theproduction of tissue-damaging virulence factors until sufficientbacteria have amassed and are prepared to overwhelm host defensemechanisms and establish infection. Quorum sensing systems are studied in a large number of gram-negative bacterial species belonging to α, β, and γ subclasses of proteobacteria. Among the pathogenic bacteria, Pseudomonas aeruginosa is perhaps the best understood in terms of the virulence factors regulated and the role the Quorum sensing plays in pathogenicity. Presently, Quorum sensing is considered as a potential novel target for antimicrobial therapy to control multi/all drug-resistant infections. This paper reviews Quorum sensing in gram positive and gram negative bacteria and its role in biofilm formation. PMID:21701655

  19. Recent Developments in Copper and Zinc Homeostasis in Bacterial Pathogens

    PubMed Central

    Braymer, Joseph J.; Giedroc, David P.

    2014-01-01

    Copper and zinc homeostasis systems in pathogenic bacteria are required to resist host efforts to manipulate the availability and toxicity of these metal ions. Central to this microbial adaptive response is the involvement of metal-trafficking and -sensing proteins that ultimately exercise control of metal speciation in the cell. Cu- and Zn-specific metalloregulatory proteins regulate the transcription of metal-responsive genes while metallochaperones and related proteins ensure that these metals are appropriately buffered by the intracellular milieu and delivered to correct intracellular targets. In this review, we summarize recent findings on how bacterial pathogens mount a metal-specific response to derail host efforts to win the “fight over metals.” PMID:24463765

  20. Estimation of decay rates for fecal indicator bacteria and bacterial pathogens in agricultural field-applied manure

    EPA Science Inventory

    Field-applied manure is an important source of pathogenic exposure in surface water bodies for humans and ecological receptors. We analyzed the persistence and decay of fecal indicator bacteria and bacterial pathogens from three sources (cattle, poultry, swine) for agricultural f...

  1. Defense reactions of bean genotypes to bacterial pathogens in controlled conditions

    NASA Astrophysics Data System (ADS)

    Uysal, B.; Bastas, K. K.

    2018-03-01

    This study was focused on the role of antioxidant enzymes and total protein in imparting resistance against common bacterial blight caused by Xanthomonas axonopodis pv. phaseoli (Xap) and halo blight caused by Pseudomonas syringae pv. phaseolicola (Psp) in bean. Activities of Ascorbate peroxidase (APX), Catalase (CAT) and total protein were studied in resistant and susceptible bean genotypes. Five-day-old seedlings were inoculated with a bacterial suspension (108 CFU ml-1) and harvested at different time intervals (0, 12, 24 and 36 up to 72 h) under controlled growing conditions and assayed for antioxidant enzymes and total protein. Temporal increase of CAT, APX enzymes activities showed maximum activity at 12 h after both pathogens inoculation (hpi) in resistant cultivar, whereas in susceptible it increased at 72 h after both pathogens inoculation for CAT and 12, 24 h for APX enzymes. Maximum total protein activities were observed at 12 h and 24 h respectively after Xap, Psp inoculation (hpi) in resistant and maximum activities were observed at 24 h and 72 h respectively after Xap, Psp inoculation (hpi) in susceptible. Increase of antioxidant enzyme and total protein activities might be an important component in the defense strategy of resistance and susceptible bean genotypes against the bacterial infection. These findings suggest that disease protection is proportional to the amount of enhanced CAT, APX enzyme and total protein activity.

  2. An Overview of the Control of Bacterial Pathogens in Cattle Manure

    PubMed Central

    Manyi-Loh, Christy E.; Mamphweli, Sampson N.; Meyer, Edson L.; Makaka, Golden; Simon, Michael; Okoh, Anthony I.

    2016-01-01

    Cattle manure harbors microbial constituents that make it a potential source of pollution in the environment and infections in humans. Knowledge of, and microbial assessment of, manure is crucial in a bid to prevent public health and environmental hazards through the development of better management practices and policies that should govern manure handling. Physical, chemical and biological methods to reduce pathogen population in manure do exist, but are faced with challenges such as cost, odor pollution, green house gas emission, etc. Consequently, anaerobic digestion of animal manure is currently one of the most widely used treatment method that can help to salvage the above-mentioned adverse effects and in addition, produces biogas that can serve as an alternative/complementary source of energy. However, this method has to be monitored closely as it could be fraught with challenges during operation, caused by the inherent characteristics of the manure. In addition, to further reduce bacterial pathogens to a significant level, anaerobic digestion can be combined with other methods such as thermal, aerobic and physical methods. In this paper, we review the bacterial composition of cattle manure as well as methods engaged in the control of pathogenic microbes present in manure and recommendations that need to be respected and implemented in order to prevent microbial contamination of the environment, animals and humans. PMID:27571092

  3. Bacterial lung sepsis in patients with febrile neutropenia.

    PubMed

    Lanoix, Jean-Philippe; Schmit, Jean-Luc; Douadi, Youcef

    2012-05-01

    This review provides an update on microbiological and therapeutic data in febrile neutropenic patients in general and those with bacterial lung sepsis in particular. Although the Infectious Diseases Society of America updated its guidelines on febrile neutropenia in 2010, changing epidemiological factors and the spread of new drug resistance constitutes challenges for initial treatment of this condition. Lung sepsis stands out because of the frequent absence of microbiological identification. We review the use of newly available, novel, broad-spectrum antibiotics (linezolid, tigecycline, daptomycin, etc.) in this indication. Although the incidence of Gram-negative infections in neutropenic fever is leveling off, there is a worrying increase in resistance. New drugs are available but not well studied in febrile neutropenia; daptomycin and tigecycline should not be used in suspected lung sepsis in these patients. New diagnostic tools (such as the procalcitonin assay and the LightCycler SeptiFast assay, Roche Molecular Systems) appear to be unhelpful in febrile neutropenia, although more data on fungal sepsis are required. There are no specific features of the treatment of pneumonia or septic shock in neutropenic fever, but both conditions increase the mortality rate.

  4. Survival of the Fittest: How Bacterial Pathogens Utilize Bile To Enhance Infection

    PubMed Central

    Sistrunk, Jeticia R.; Nickerson, Kourtney P.; Chanin, Rachael B.; Rasko, David A.

    2016-01-01

    SUMMARY Bacterial pathogens have coevolved with humans in order to efficiently infect, replicate within, and be transmitted to new hosts to ensure survival and a continual infection cycle. For enteric pathogens, the ability to adapt to numerous host factors under the harsh conditions of the gastrointestinal tract is critical for establishing infection. One such host factor readily encountered by enteric bacteria is bile, an innately antimicrobial detergent-like compound essential for digestion and nutrient absorption. Not only have enteric pathogens evolved to resist the bactericidal conditions of bile, but these bacteria also utilize bile as a signal to enhance virulence regulation for efficient infection. This review provides a comprehensive and up-to-date analysis of bile-related research with enteric pathogens. From common responses to the unique expression of specific virulence factors, each pathogen has overcome significant challenges to establish infection in the gastrointestinal tract. Utilization of bile as a signal to modulate virulence factor expression has led to important insights for our understanding of virulence mechanisms for many pathogens. Further research on enteric pathogens exposed to this in vivo signal will benefit therapeutic and vaccine development and ultimately enhance our success at combating such elite pathogens. PMID:27464994

  5. Pneumonia relevant to lung transplantation and pathogen distribution.

    PubMed

    He, Xuan; Dai, Hua-Ping; Chen, Qi-Rui; Miao, Jin-Bai; Sun, Bing; Bao, Na; Hu, Bin; Li, Hui; Wu, An-Shi; Ban, Cheng-Jun; Ge, Su-Juan; Wang, Chen; Hou, Sheng-Cai

    2013-01-01

    Pneumonia is the most common cause of morbidity and mortality in lung transplant (LT) recipients. The aim of the present study was to evaluate the incidence, etiology, risk factors and prognosis of pneumonia in LT recipients. The LT cohort consisted of 28 recipients receiving LT in Beijing Chao-Yang Hospital from August 2005 to April 2011. Data collected included demographic data, underlying disorders, time and type of transplant, follow-up information, date of last follow-up, and patient status. A retrospective analysis was made of observational data that were prospectively collected. Twenty-two patients of 28 LT recipients had 47 episodes of pneumonia throughout the study period. Thirtyeight episodes of pneumonia in 19 recipients occurred post-LT with a median follow-up of 257.5 days (1-2104 days), the incidence of pneumonia was 192.4 episodes per 100 LT/year and its median time of onset was 100.5 days (0-946 days) post-transplantation. Bacteria, virus and fungi accounted for 62%, 16% and 15% of the microbial pathogens, respectively. The most frequent were Pseudomonas aeruginosa (20%), cytomegalovirus (CMV) (15%), and Aspergillus fumigatus (10%). A total of 29% (11/38) of pneumonias occurred in the first month post-LT, and then the incidence decreased gradually. The incidence of CMV pneumonia was 25% (7/28) with a median time of 97 days (10-971 days). More than one bacterial infection and CMV infection were independent risk factors for aspergillus infection. The incidence of pulmonary tuberculosis (TB) was 18% (5/28), and the history of TB was a risk factor for TB relapse. There were 58% (7/12) of recipients who died of infection, and 71% (5/7) of these died in the first year after LT. Pneumonia is still a major cause of morbidity and mortality in LT recipients. The most frequent microorganisms were Pseudomonas aeruginosa, CMV, and Aspergillus fumigates. The incidence of CMV pneumonia decreases with a delayed median time of onset. More than one incidence of

  6. Pulmonary disposition of tilmicosin in foals and in vitro activity against Rhodococcus equi and other common equine bacterial pathogens.

    PubMed

    Womble, A; Giguère, S; Murthy, Y V S N; Cox, C; Obare, E

    2006-12-01

    The objectives of this study were to determine the serum and pulmonary disposition of tilmicosin in foals and to investigate the in vitro activity of the drug against Rhodococcus equi and other common bacterial pathogens of horses. A single dose of a new fatty acid salt formulation of tilmicosin (10 mg/kg of body weight) was administered to seven healthy 5- to 8-week-old foals by the intramuscular route. Concentrations of tilmicosin were measured in serum, lung tissue, pulmonary epithelial lining fluid (PELF), bronchoalveolar lavage (BAL) cells, and blood neutrophils. Mean peak tilmicosin concentrations were significantly different between sampling sites with highest concentrations measured in blood neutrophils (66.01+/-15.97 microg/mL) followed by BAL cells (20.1+/-5.1 microg/mL), PELF (2.91+/-1.15 microg/mL), lung tissue (1.90+/-0.65 microg/mL), and serum (0.19+/-0.09 microg/mL). Harmonic mean terminal half-life in lung tissue (193.3 h) was significantly longer than that of PELF (73.3 h), bronchoalveolar cells (62.2 h), neutrophils (47.9 h), and serum (18.4 h). The MIC90 of 56 R. equi isolates was 32 microg/mL. Tilmicosin was active in vitro against most streptococci, Staphylococcus spp., Actinobacillus spp., and Pasteurella spp. The drug was not active against Enterococcus spp., Pseudomonas spp., and Enterobacteriaceae.

  7. Nociceptor sensory neurons suppress neutrophil and γδ T cell responses in bacterial lung infections and lethal pneumonia.

    PubMed

    Baral, Pankaj; Umans, Benjamin D; Li, Lu; Wallrapp, Antonia; Bist, Meghna; Kirschbaum, Talia; Wei, Yibing; Zhou, Yan; Kuchroo, Vijay K; Burkett, Patrick R; Yipp, Bryan G; Liberles, Stephen D; Chiu, Isaac M

    2018-05-01

    Lung-innervating nociceptor sensory neurons detect noxious or harmful stimuli and consequently protect organisms by mediating coughing, pain, and bronchoconstriction. However, the role of sensory neurons in pulmonary host defense is unclear. Here, we found that TRPV1 + nociceptors suppressed protective immunity against lethal Staphylococcus aureus pneumonia. Targeted TRPV1 + -neuron ablation increased survival, cytokine induction, and lung bacterial clearance. Nociceptors suppressed the recruitment and surveillance of neutrophils, and altered lung γδ T cell numbers, which are necessary for immunity. Vagal ganglia TRPV1 + afferents mediated immunosuppression through release of the neuropeptide calcitonin gene-related peptide (CGRP). Targeting neuroimmunological signaling may be an effective approach to treat lung infections and bacterial pneumonia.

  8. Antibiotic management of lung infections in cystic fibrosis. II. Nontuberculous mycobacteria, anaerobic bacteria, and fungi.

    PubMed

    Chmiel, James F; Aksamit, Timothy R; Chotirmall, Sanjay H; Dasenbrook, Elliott C; Elborn, J Stuart; LiPuma, John J; Ranganathan, Sarath C; Waters, Valerie J; Ratjen, Felix A

    2014-10-01

    Airway infections are a key component of cystic fibrosis (CF) lung disease. Whereas the approach to common pathogens such as Pseudomonas aeruginosa is guided by a significant body of evidence, other infections often pose a considerable challenge to treating physicians. In Part I of this series on the antibiotic management of difficult lung infections, we discussed bacterial organisms including methicillin-resistant Staphylococcus aureus, gram-negative bacterial infections, and treatment of multiple bacterial pathogens. Here, we summarize the approach to infections with nontuberculous mycobacteria, anaerobic bacteria, and fungi. Nontuberculous mycobacteria can significantly impact the course of lung disease in patients with CF, but differentiation between colonization and infection is difficult clinically as coinfection with other micro-organisms is common. Treatment consists of different classes of antibiotics, varies in intensity, and is best guided by a team of specialized clinicians and microbiologists. The ability of anaerobic bacteria to contribute to CF lung disease is less clear, even though clinical relevance has been reported in individual patients. Anaerobes detected in CF sputum are often resistant to multiple drugs, and treatment has not yet been shown to positively affect patient outcome. Fungi have gained significant interest as potential CF pathogens. Although the role of Candida is largely unclear, there is mounting evidence that Scedosporium species and Aspergillus fumigatus, beyond the classical presentation of allergic bronchopulmonary aspergillosis, can be relevant in patients with CF and treatment should be considered. At present, however there remains limited information on how best to select patients who could benefit from antifungal therapy.

  9. Antibiotic Management of Lung Infections in Cystic Fibrosis. II. Nontuberculous Mycobacteria, Anaerobic Bacteria, and Fungi

    PubMed Central

    Aksamit, Timothy R.; Chotirmall, Sanjay H.; Dasenbrook, Elliott C.; Elborn, J. Stuart; LiPuma, John J.; Ranganathan, Sarath C.; Waters, Valerie J.; Ratjen, Felix A.

    2014-01-01

    Airway infections are a key component of cystic fibrosis (CF) lung disease. Whereas the approach to common pathogens such as Pseudomonas aeruginosa is guided by a significant body of evidence, other infections often pose a considerable challenge to treating physicians. In Part I of this series on the antibiotic management of difficult lung infections, we discussed bacterial organisms including methicillin-resistant Staphylococcus aureus, gram-negative bacterial infections, and treatment of multiple bacterial pathogens. Here, we summarize the approach to infections with nontuberculous mycobacteria, anaerobic bacteria, and fungi. Nontuberculous mycobacteria can significantly impact the course of lung disease in patients with CF, but differentiation between colonization and infection is difficult clinically as coinfection with other micro-organisms is common. Treatment consists of different classes of antibiotics, varies in intensity, and is best guided by a team of specialized clinicians and microbiologists. The ability of anaerobic bacteria to contribute to CF lung disease is less clear, even though clinical relevance has been reported in individual patients. Anaerobes detected in CF sputum are often resistant to multiple drugs, and treatment has not yet been shown to positively affect patient outcome. Fungi have gained significant interest as potential CF pathogens. Although the role of Candida is largely unclear, there is mounting evidence that Scedosporium species and Aspergillus fumigatus, beyond the classical presentation of allergic bronchopulmonary aspergillosis, can be relevant in patients with CF and treatment should be considered. At present, however there remains limited information on how best to select patients who could benefit from antifungal therapy. PMID:25167882

  10. Is your lunch salad safe to eat? Occurrence of bacterial pathogens and potential for pathogen growth in pre-packed ready-to-eat mixed-ingredient salads.

    PubMed

    Söderqvist, Karin

    2017-01-01

    As part of a trend toward healthy convenience foods, ready-to-eat (RTE) mixed-ingredient salads have become popular products among consumers. A mixed-ingredient salad contains combinations of raw ( e.g . leafy vegetables and tomatoes) and processed ( e.g . chicken, salmon, ham, pasta and couscous) ingredients. Contamination of leafy vegetables can occur during any step in the production chain and, since there is no step that kills pathogens, a completely safe final product can never be guaranteed. Meat ingredients, for example poultry meat and ham, are generally heat-treated before preparation, but may be contaminated after this treatment, e.g . when diced or sliced. When several ingredients are mixed together, cross-contamination may occur. Preparation of mixed-ingredient salads requires human handling, which presents an additional risk of bacterial contamination. With high-protein ingredients, e.g . cooked meat, the mixed-ingredient salad represents an excellent substrate for bacterial growth. This article reviews current knowledge regarding human bacterial pathogen prevalence in mixed-ingredient salads and the potential for pathogen growth in this product during storage.

  11. Is your lunch salad safe to eat? Occurrence of bacterial pathogens and potential for pathogen growth in pre-packed ready-to-eat mixed-ingredient salads

    PubMed Central

    Söderqvist, Karin

    2017-01-01

    ABSTRACT As part of a trend toward healthy convenience foods, ready-to-eat (RTE) mixed-ingredient salads have become popular products among consumers. A mixed-ingredient salad contains combinations of raw (e.g. leafy vegetables and tomatoes) and processed (e.g. chicken, salmon, ham, pasta and couscous) ingredients. Contamination of leafy vegetables can occur during any step in the production chain and, since there is no step that kills pathogens, a completely safe final product can never be guaranteed. Meat ingredients, for example poultry meat and ham, are generally heat-treated before preparation, but may be contaminated after this treatment, e.g. when diced or sliced. When several ingredients are mixed together, cross-contamination may occur. Preparation of mixed-ingredient salads requires human handling, which presents an additional risk of bacterial contamination. With high-protein ingredients, e.g. cooked meat, the mixed-ingredient salad represents an excellent substrate for bacterial growth. This article reviews current knowledge regarding human bacterial pathogen prevalence in mixed-ingredient salads and the potential for pathogen growth in this product during storage. PMID:29230273

  12. Longitudinal profiling of the lung microbiome in the AERIS study demonstrates repeatability of bacterial and eosinophilic COPD exacerbations

    PubMed Central

    Lambert, Christophe; Clarke, Stuart C; Kim, Viktoriya L; Magid-Slav, Michal; Miller, Bruce E; Patel, Ruchi; Sathe, Ganesh; Simola, Daniel F; Sung, Ruby; Tal-Singer, Ruth; Tuck, Andrew C; Van Horn, Stephanie; Weynants, Vincent; Williams, Nicholas P; Devaster, Jeanne-Marie; Wilkinson, Tom M A

    2018-01-01

    Background Alterations in the composition of the lung microbiome associated with adverse clinical outcomes, known as dysbiosis, have been implicated with disease severity and exacerbations in COPD. Objective To characterise longitudinal changes in the lung microbiome in the AERIS study (Acute Exacerbation and Respiratory InfectionS in COPD) and their relationship with associated COPD outcomes. Methods We surveyed 584 sputum samples from 101 patients with COPD to analyse the lung microbiome at both stable and exacerbation time points over 1 year using high-throughput sequencing of the 16S ribosomal RNA gene. We incorporated additional lung microbiology, blood markers and in-depth clinical assessments to classify COPD phenotypes. Results The stability of the lung microbiome over time was more likely to be decreased in exacerbations and within individuals with higher exacerbation frequencies. Analysis of exacerbation phenotypes using a Markov chain model revealed that bacterial and eosinophilic exacerbations were more likely to be repeated in subsequent exacerbations within a subject, whereas viral exacerbations were not more likely to be repeated. We also confirmed the association of bacterial genera, including Haemophilus and Moraxella, with disease severity, exacerbation events and bronchiectasis. Conclusions Subtypes of COPD have distinct bacterial compositions and stabilities over time. Some exacerbation subtypes have non-random probabilities of repeating those subtypes in the future. This study provides insights pertaining to the identification of bacterial targets in the lung and biomarkers to classify COPD subtypes and to determine appropriate treatments for the patient. Trial registration number Results, NCT01360398. PMID:29386298

  13. Detection of bacterial pathogens including potential new species in human head lice from Mali

    PubMed Central

    Amanzougaghene, Nadia; Fenollar, Florence; Sangaré, Abdoul Karim; Sissoko, Mahamadou S.; Doumbo, Ogobara K.; Raoult, Didier

    2017-01-01

    In poor African countries, where no medical and biological facilities are available, the identification of potential emerging pathogens of concern at an early stage is challenging. Head lice, Pediculus humanus capitis, have a short life, feed only on human blood and do not transmit pathogens to their progeny. They are, therefore, a perfect tool for the xenodiagnosis of current or recent human infection. This study assessed the occurrence of bacterial pathogens from head lice collected in two rural villages from Mali, where a high frequency of head lice infestation had previously been reported, using molecular methods. Results show that all 600 head lice, collected from 117 individuals, belonged to clade E, specific to West Africa. Bartonella quintana, the causative agent of trench fever, was identified in three of the 600 (0.5%) head lice studied. Our study also shows, for the first time, the presence of the DNA of two pathogenic bacteria, namely Coxiella burnetii (5.1%) and Rickettsia aeschlimannii (0.6%), detected in human head lice, as well as the DNA of potential new species from the Anaplasma and Ehrlichia genera of unknown pathogenicity. The finding of several Malian head lice infected with B. quintana, C. burnetii, R. aeschlimannii, Anaplasma and Ehrlichia is alarming and highlights the need for active survey programs to define the public health consequences of the detection of these emerging bacterial pathogens in human head lice. PMID:28931077

  14. Bacterial and viral pathogen spectra of acute respiratory infections in under-5 children in hospital settings in Dhaka city

    PubMed Central

    Bhuyan, Golam Sarower; Hossain, Mohammad Amir; Sarker, Suprovath Kumar; Rahat, Asifuzzaman; Islam, Md Tarikul; Haque, Tanjina Noor; Begum, Noorjahan; Qadri, Syeda Kashfi; Muraduzzaman, A. K. M.; Islam, Nafisa Nawal; Islam, Mohammad Sazzadul; Sultana, Nusrat; Jony, Manjur Hossain Khan; Khanam, Farhana; Mowla, Golam; Matin, Abdul; Begum, Firoza; Shirin, Tahmina; Ahmed, Dilruba; Saha, Narayan; Qadri, Firdausi

    2017-01-01

    The study aimed to examine for the first time the spectra of viral and bacterial pathogens along with the antibiotic susceptibility of the isolated bacteria in under-5 children with acute respiratory infections (ARIs) in hospital settings of Dhaka, Bangladesh. Nasal swabs were collected from 200 under-five children hospitalized with clinical signs of ARIs. Nasal swabs from 30 asymptomatic children were also collected. Screening of viral pathogens targeted ten respiratory viruses using RT-qPCR. Bacterial pathogens were identified by bacteriological culture methods and antimicrobial susceptibility of the isolates was determined following CLSI guidelines. About 82.5% (n = 165) of specimens were positive for pathogens. Of 165 infected cases, 3% (n = 6) had only single bacterial pathogens, whereas 43.5% (n = 87) cases had only single viral pathogens. The remaining 36% (n = 72) cases had coinfections. In symptomatic cases, human rhinovirus was detected as the predominant virus (31.5%), followed by RSV (31%), HMPV (13%), HBoV (11%), HPIV-3 (10.5%), and adenovirus (7%). Streptococcus pneumoniae was the most frequently isolated bacterial pathogen (9%), whereas Klebsiella pneumaniae, Streptococcus spp., Enterobacter agglomerans, and Haemophilus influenzae were 5.5%, 5%, 2%, and 1.5%, respectively. Of 15 multidrug-resistant bacteria, a Klebsiella pneumoniae isolate and an Enterobacter agglomerans isolate exhibited resistance against more than 10 different antibiotics. Both ARI incidence and predominant pathogen detection rates were higher during post-monsoon and winter, peaking in September. Pathogen detection rates and coinfection incidence in less than 1-year group were significantly higher (P = 0.0034 and 0.049, respectively) than in 1–5 years age group. Pathogen detection rate (43%) in asymptomatic cases was significantly lower compared to symptomatic group (P<0.0001). Human rhinovirus, HPIV-3, adenovirus, Streptococcus pneumonia, and Klebsiella pneumaniae had

  15. Analysis of apple (Malus) responses to bacterial pathogens using an oligo microarray

    USDA-ARS?s Scientific Manuscript database

    Fire blight is a devastating disease of apple (Malus x domestica) caused by the bacterial pathogen Erwinia amylovora (Ea). When infiltrated into host leaves, Ea induces reactions similar to a hypersensitive response (HR). Type III (T3SS) associated effectors, especially DspA/E, are suspected to ha...

  16. Pathogenic Leptospira species express surface-exposed proteins belonging to the bacterial immunoglobulin superfamily

    PubMed Central

    Matsunaga, James; Barocchi, Michele A.; Croda, Julio; Young, Tracy A.; Sanchez, Yolanda; Siqueira, Isadora; Bolin, Carole A.; Reis, Mitermayer G.; Riley, Lee W.; Haake, David A.; Ko, Albert I.

    2005-01-01

    Summary Proteins with bacterial immunoglobulin-like (Big) domains, such as the Yersinia pseudotuberculosis invasin and Escherichia coli intimin, are surface-expressed proteins that mediate host mammalian cell invasion or attachment. Here, we report the identification and characterization of a new family of Big domain proteins, referred to as Lig (leptospiral Ig-like) proteins, in pathogenic Leptospira. Screening of L. interrogans and L. kirschneri expression libraries with sera from leptospirosis patients identified 13 lambda phage clones that encode tandem repeats of the 90 amino acid Big domain. Two lig genes, designated ligA and ligB, and one pseudo-gene, ligC, were identified. The ligA and ligB genes encode amino-terminal lipoprotein signal peptides followed by 10 or 11 Big domain repeats and, in the case of ligB, a unique carboxy-terminal non-repeat domain. The organization of ligC is similar to that of ligB but contains mutations that disrupt the reading frame. The lig sequences are present in pathogenic but not saprophytic Leptospira species. LigA and LigB are expressed by a variety of virulent leptospiral strains. Loss of Lig protein and RNA transcript expression is correlated with the observed loss of virulence during culture attenuation of pathogenic strains. High-pressure freeze substitution followed by immunocytochemical electron microscopy confirmed that the Lig proteins were localized to the bacterial surface. Immunoblot studies with patient sera found that the Lig proteins are a major antigen recognized during the acute host infection. These observations demonstrate that the Lig proteins are a newly identified surface protein of pathogenic Leptospira, which by analogy to other bacterial immunoglobulin superfamily virulence factors, may play a role in host cell attachment and invasion during leptospiral pathogenesis. PMID:12890019

  17. Pathogenic Leptospira species express surface-exposed proteins belonging to the bacterial immunoglobulin superfamily.

    PubMed

    Matsunaga, James; Barocchi, Michele A; Croda, Julio; Young, Tracy A; Sanchez, Yolanda; Siqueira, Isadora; Bolin, Carole A; Reis, Mitermayer G; Riley, Lee W; Haake, David A; Ko, Albert I

    2003-08-01

    Proteins with bacterial immunoglobulin-like (Big) domains, such as the Yersinia pseudotuberculosis invasin and Escherichia coli intimin, are surface-expressed proteins that mediate host mammalian cell invasion or attachment. Here, we report the identification and characterization of a new family of Big domain proteins, referred to as Lig (leptospiral Ig-like) proteins, in pathogenic Leptospira. Screening of L. interrogans and L. kirschneri expression libraries with sera from leptospirosis patients identified 13 lambda phage clones that encode tandem repeats of the 90 amino acid Big domain. Two lig genes, designated ligA and ligB, and one pseudogene, ligC, were identified. The ligA and ligB genes encode amino-terminal lipoprotein signal peptides followed by 10 or 11 Big domain repeats and, in the case of ligB, a unique carboxy-terminal non-repeat domain. The organization of ligC is similar to that of ligB but contains mutations that disrupt the reading frame. The lig sequences are present in pathogenic but not saprophytic Leptospira species. LigA and LigB are expressed by a variety of virulent leptospiral strains. Loss of Lig protein and RNA transcript expression is correlated with the observed loss of virulence during culture attenuation of pathogenic strains. High-pressure freeze substitution followed by immunocytochemical electron microscopy confirmed that the Lig proteins were localized to the bacterial surface. Immunoblot studies with patient sera found that the Lig proteins are a major antigen recognized during the acute host infection. These observations demonstrate that the Lig proteins are a newly identified surface protein of pathogenic Leptospira, which by analogy to other bacterial immunoglobulin superfamily virulence factors, may play a role in host cell attachment and invasion during leptospiral pathogenesis.

  18. The innate immune rheostat: influence on lung inflammatory disease and secondary bacterial pneumonia.

    PubMed

    Hussell, Tracy; Cavanagh, Mary M

    2009-08-01

    The activity of innate immunity is not simply dictated by the presence of an antigen but also by the balance between negative regulatory and immune potentiator pathways. Even in the absence of antigen, innate immunity can 'inflame' if negative regulators are absent. This resting state is adaptable and dictated by environmental influences, host genetics and past infection history. A return to homoeostasis post inflammation may therefore not leave the tissue in an identical state to that prior to the inflammatory event. This adaptability makes us all unique and also explains the variable outcome experienced by a diverse population to the same inflammatory stimulus. Using murine models we have identified that influenza virus causes a long-term modification of the lung microenvironment by a de-sensitization to bacterial products and an increase in the myeloid negative regulator CD200R (CD200 receptor). These two events prevent subsequent inflammatory damage while the lung is healing, but also they may predispose to bacterial colonization of the lower respiratory tract should regulatory mechanisms overshoot. In the extreme, this leads to bacterial pneumonia, sepsis and death. A deeper understanding of the consequences arising from innate immune cell alteration during influenza infection and the subsequent development of bacterial complications has important implications for future drug development.

  19. Antimicrobial Resistance in Bacterial Poultry Pathogens: A Review

    PubMed Central

    Nhung, Nguyen Thi; Chansiripornchai, Niwat; Carrique-Mas, Juan J.

    2017-01-01

    monitor the evolution of AMR in poultry bacterial pathogens. PMID:28848739

  20. Analysis of bacterial metagenomes from the Southwestern Gulf of Mexico for pathogens detection.

    PubMed

    Escobedo-Hinojosa, Wendy; Pardo-López, Liliana

    2017-07-31

    Little is known about the diversity of bacteria in the Southwestern Gulf of Mexico. The aim of the study illustrated in this perspective was to search for the presence of bacterial pathogens in this ecosystem, using metagenomic data recently generated by the Mexican research group known as the Gulf of Mexico Research Consortium. Several genera of bacteria annotated as pathogens were detected in water and sediment marine samples. As expected, native and ubiquitous pathogenic bacteria genera such as Burkolderia, Halomonas, Pseudomonas, Shewanella and Vibrio were highly represented. Surprisingly, non-native genera of public health concern were also detected, including Borrelia, Ehrlichia, Leptospira, Mycobacterium, Mycoplasma, Salmonella, Staphylococcus, Streptococcus and Treponema. While there are no previous metagenomics studies of this environment, the potential influences of natural, anthropogenic and ecological factors on the diversity of putative pathogenic bacteria found in it are reviewed. The taxonomic annotation herein reported provides a starting point for an improved understanding of bacterial biodiversity in the Southwestern Gulf of Mexico. It also represents a useful tool in public health as it may help identify infectious diseases associated with exposure to marine water and ingestion of fish or shellfish, and thus may be useful in predicting and preventing waterborne disease outbreaks. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Vector-Borne Bacterial Plant Pathogens: Interactions with Hemipteran Insects and Plants

    PubMed Central

    Perilla-Henao, Laura M.; Casteel, Clare L.

    2016-01-01

    Hemipteran insects are devastating pests of crops due to their wide host range, rapid reproduction, and ability to transmit numerous plant-infecting pathogens as vectors. While the field of plant–virus–vector interactions has flourished in recent years, plant–bacteria–vector interactions remain poorly understood. Leafhoppers and psyllids are by far the most important vectors of bacterial pathogens, yet there are still significant gaps in our understanding of their feeding behavior, salivary secretions, and plant responses as compared to important viral vectors, such as whiteflies and aphids. Even with an incomplete understanding of plant–bacteria–vector interactions, some common themes have emerged: (1) all known vector-borne bacteria share the ability to propagate in the plant and insect host; (2) particular hemipteran families appear to be incapable of transmitting vector-borne bacteria; (3) all known vector-borne bacteria have highly reduced genomes and coding capacity, resulting in host-dependence; and (4) vector-borne bacteria encode proteins that are essential for colonization of specific hosts, though only a few types of proteins have been investigated. Here, we review the current knowledge on important vector-borne bacterial pathogens, including Xylella fastidiosa, Spiroplasma spp., Liberibacter spp., and ‘Candidatus Phytoplasma spp.’. We then highlight recent approaches used in the study of vector-borne bacteria. Finally, we discuss the application of this knowledge for control and future directions that will need to be addressed in the field of vector–plant–bacteria interactions. PMID:27555855

  2. An overview of bacterial nomenclature with special reference to plant pathogens.

    PubMed

    Young, J M

    2008-12-01

    The nomenclature of plant pathogenic bacteria is regulated by the International Code of Nomenclature of Prokaryotes and the International Standards for Naming Pathovars of Phytopathogenic Bacteria. The object of these regulations is to ensure that nomenclature is unambiguous, with correct designations in genera and species and, for many plant pathogens, in infrasubspecies as pathovars. Failure to apply these regulations or to apply them carelessly introduces confusion and misunderstanding over the intended identity of particular pathogens. In this review, bacterial nomenclature is introduced in the context of general communication, with a brief history of the origins of modern bacterial nomenclature. A critical overview of the Code pays most attention to those Rules that are relevant to naming new taxa and new combinations, with comments on common misunderstandings. There follows an account of the application of infrasubspecies, specifically of pathovars as regulated by the Standards for Naming Pathovars. Both the Code and Standards, written almost 30 years ago in response to the exigencies of the time, could be revised to improve clarity. It is not possible for either the Code or the Standards to give formal guidance to the process of translation of pathovars, governed by the Standards, to higher taxonomic ranks, governed by the Code. If the introduction of ambiguity of names is to be avoided in making such translations, then it is the responsibility of individual bacteriologists to consider carefully the nomenclatural implications and outcomes of their proposals.

  3. Hyperglycemia impedes lung bacterial clearance in a murine model of cystic fibrosis-related diabetes

    PubMed Central

    Hunt, William R.; Zughaier, Susu M.; Guentert, Dana E.; Shenep, Melissa A.; Koval, Michael; McCarty, Nael A.

    2013-01-01

    Cystic fibrosis-related diabetes (CFRD) is the most common comorbidity associated with cystic fibrosis (CF), impacting more than half of patients over age 30. CFRD is clinically significant, portending accelerated decline in lung function, more frequent pulmonary exacerbations, and increased mortality. Despite the profound morbidity associated with CFRD, little is known about the underlying CFRD-related pulmonary pathology. Our aim was to develop a murine model of CFRD to explore the hypothesis that elevated glucose in CFRD is associated with reduced lung bacterial clearance. A diabetic phenotype was induced in gut-corrected CF transmembrane conductance regulator (CFTR) knockout mice (CFKO) and their CFTR-expressing wild-type littermates (WT) utilizing streptozotocin. Mice were subsequently challenged with an intratracheal inoculation of Pseudomonas aeruginosa (PAO1) (75 μl of 1–5 × 106 cfu/ml) for 18 h. Bronchoalveolar lavage fluid was collected for glucose concentration and cell counts. A portion of the lung was homogenized and cultured as a measure of the remaining viable PAO1 inoculum. Diabetic mice had increased airway glucose compared with nondiabetic mice. The ability to clear bacteria from the lung was significantly reduced in diabetic WT mice and control CFKO mice. Critically, bacterial clearance by diabetic CFKO mice was significantly more diminished compared with nondiabetic CFKO mice, despite an even more robust recruitment of neutrophils to the airways. This finding that CFRD mice boast an exaggerated, but less effective, inflammatory cell response to intratracheal PAO1 challenge presents a novel and useful murine model to help identify therapeutic strategies that promote bacterial clearance in CFRD. PMID:24097557

  4. Modulation of Intestinal Paracellular Transport by Bacterial Pathogens.

    PubMed

    Roxas, Jennifer Lising; Viswanathan, V K

    2018-03-25

    The passive and regulated movement of ions, solutes, and water via spaces between cells of the epithelial monolayer plays a critical role in the normal intestinal functioning. This paracellular pathway displays a high level of structural and functional specialization, with the membrane-spanning complexes of the tight junctions, adherens junctions, and desmosomes ensuring its integrity. Tight junction proteins, like occludin, tricellulin, and the claudin family isoforms, play prominent roles as barriers to unrestricted paracellular transport. The past decade has witnessed major advances in our understanding of the architecture and function of epithelial tight junctions. While it has been long appreciated that microbes, notably bacterial and viral pathogens, target and disrupt junctional complexes and alter paracellular permeability, the precise mechanisms remain to be defined. Notably, renewed efforts will be required to interpret the available data on pathogen-mediated barrier disruption in the context of the most recent findings on tight junction structure and function. While much of the focus has been on pathogen-induced dysregulation of junctional complexes, commensal microbiota and their products may influence paracellular permeability and contribute to the normal physiology of the gut. Finally, microbes and their products have become important tools in exploring host systems, including the junctional properties of epithelial cells. © 2018 American Physiological Society. Compr Physiol 8:823-842, 2018. Copyright © 2018 American Physiological Society. All rights reserved.

  5. Thienopyrimidine-type compounds protect Arabidopsis plants against the hemibiotrophic fungal pathogen Colletotrichum higginsianum and bacterial pathogen Pseudomonas syringae pv. maculicola.

    PubMed

    Narusaka, Mari; Narusaka, Yoshihiro

    2017-03-04

    Plant activators activate systemic acquired resistance-like defense responses or induced systemic resistance, and thus protect plants from pathogens. We screened a chemical library composed of structurally diverse small molecules. We isolated six plant immune-inducing thienopyrimidine-type compounds and their analogous compounds. It was observed that the core structure of thienopyrimidine plays a role in induced resistance in plants. Furthermore, we highlight the protective effect of thienopyrimidine-type compounds against both hemibiotrophic fungal pathogen, Colletotrichum higginsianum, and bacterial pathogen, Pseudomonas syringae pv. maculicola, in Arabidopsis thaliana. We suggest that thienopyrimidine-type compounds could be potential lead compounds as novel plant activators, and can be useful and effective agrochemicals against various plant diseases.

  6. Antibacterial activity of plant extracts on foodborne bacterial pathogens and food spoilage bacteria

    USDA-ARS?s Scientific Manuscript database

    Bacterial foodborne diseases are caused by consumption of foods contaminated with bacteria and/or their toxins. In this study, we evaluated antibacterial properties of twelve different extracts including turmeric, lemon and different kinds of teas against four major pathogenic foodborne bacteria inc...

  7. Microbiological food safety issues in Brazil: bacterial pathogens.

    PubMed

    Gomes, Bruna Carrer; Franco, Bernadette Dora Gombossy de Melo; De Martinis, Elaine Cristina Pereira

    2013-03-01

    The globalization of food supply impacts patterns of foodborne disease outbreaks worldwide, and consumers are having increased concern about microbiological food safety. In this sense, the assessment of epidemiological data of foodborne diseases in different countries has not only local impact, but it can also be of general interest, especially in the case of major global producers and exporters of several agricultural food products, such as Brazil. In this review, the most common agents of foodborne illnesses registered in Brazil will be presented, compiled mainly from official databases made available to the public. In addition, some representative examples of studies on foodborne bacterial pathogens commonly found in Brazilian foods are provided.

  8. Diverse mechanisms of metaeffector activity in an intracellular bacterial pathogen, Legionella pneumophila.

    PubMed

    Urbanus, Malene L; Quaile, Andrew T; Stogios, Peter J; Morar, Mariya; Rao, Chitong; Di Leo, Rosa; Evdokimova, Elena; Lam, Mandy; Oatway, Christina; Cuff, Marianne E; Osipiuk, Jerzy; Michalska, Karolina; Nocek, Boguslaw P; Taipale, Mikko; Savchenko, Alexei; Ensminger, Alexander W

    2016-12-16

    Pathogens deliver complex arsenals of translocated effector proteins to host cells during infection, but the extent to which these proteins are regulated once inside the eukaryotic cell remains poorly defined. Among all bacterial pathogens, Legionella pneumophila maintains the largest known set of translocated substrates, delivering over 300 proteins to the host cell via its Type IVB, Icm/Dot translocation system. Backed by a few notable examples of effector-effector regulation in L. pneumophila, we sought to define the extent of this phenomenon through a systematic analysis of effector-effector functional interaction. We used Saccharomyces cerevisiae, an established proxy for the eukaryotic host, to query > 108,000 pairwise genetic interactions between two compatible expression libraries of ~330 L. pneumophila-translocated substrates. While capturing all known examples of effector-effector suppression, we identify fourteen novel translocated substrates that suppress the activity of other bacterial effectors and one pair with synergistic activities. In at least nine instances, this regulation is direct-a hallmark of an emerging class of proteins called metaeffectors, or "effectors of effectors". Through detailed structural and functional analysis, we show that metaeffector activity derives from a diverse range of mechanisms, shapes evolution, and can be used to reveal important aspects of each cognate effector's function. Metaeffectors, along with other, indirect, forms of effector-effector modulation, may be a common feature of many intracellular pathogens-with unrealized potential to inform our understanding of how pathogens regulate their interactions with the host cell. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  9. PathogenFinder--distinguishing friend from foe using bacterial whole genome sequence data.

    PubMed

    Cosentino, Salvatore; Voldby Larsen, Mette; Møller Aarestrup, Frank; Lund, Ole

    2013-01-01

    Although the majority of bacteria are harmless or even beneficial to their host, others are highly virulent and can cause serious diseases, and even death. Due to the constantly decreasing cost of high-throughput sequencing there are now many completely sequenced genomes available from both human pathogenic and innocuous strains. The data can be used to identify gene families that correlate with pathogenicity and to develop tools to predict the pathogenicity of newly sequenced strains, investigations that previously were mainly done by means of more expensive and time consuming experimental approaches. We describe PathogenFinder (http://cge.cbs.dtu.dk/services/PathogenFinder/), a web-server for the prediction of bacterial pathogenicity by analysing the input proteome, genome, or raw reads provided by the user. The method relies on groups of proteins, created without regard to their annotated function or known involvement in pathogenicity. The method has been built to work with all taxonomic groups of bacteria and using the entire training-set, achieved an accuracy of 88.6% on an independent test-set, by correctly classifying 398 out of 449 completely sequenced bacteria. The approach here proposed is not biased on sets of genes known to be associated with pathogenicity, thus the approach could aid the discovery of novel pathogenicity factors. Furthermore the pathogenicity prediction web-server could be used to isolate the potential pathogenic features of both known and unknown strains.

  10. Effects of Lactobacillus rhamnosus and Lactobacillus acidophilus on bacterial vaginal pathogens.

    PubMed

    Bertuccini, Lucia; Russo, Rosario; Iosi, Francesca; Superti, Fabiana

    2017-06-01

    The human vagina is colonized by a variety of microbes. Lactobacilli are the most common, mainly in healthy women; however, the microbiota composition can change rapidly, leading to infection or to a state in which potential pathogenic microorganisms co-exist with other commensals. In premenopausal women, urogenital infections, such as bacterial vaginosis and aerobic vaginitis, remain an important health problem. Treatment of these infections involves different kind of antibiotics; however, the recurrence rate remains high, and it must be also underlined that antibiotics are unable to spontaneously restore normal flora characterized by an abundant community of Lactobacilli. The main limitation is the inability to offer a long-term defensive barrier, thus facilitating relapses and recurrences. We report here the antimicrobial activities of two commercially existing Lactobacillus strains, Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus GLA-14 strains and their combination (Respecta® probiotic blend) against four different pathogens responsible for both bacterial vaginosis ( Gardenerella vaginalis and Atopobium vaginae) and aerobic vaginitis ( Staphylococcus aureus and Escherichia coli) by co-culturing assay. The probiotic combination, even if resulting in a different microbicidal activity against the different strains tested, demonstrated the efficacy of combined Lactobacillus strain treatment.

  11. Effects of Lactobacillus rhamnosus and Lactobacillus acidophilus on bacterial vaginal pathogens

    PubMed Central

    Bertuccini, Lucia; Russo, Rosario; Iosi, Francesca; Superti, Fabiana

    2017-01-01

    The human vagina is colonized by a variety of microbes. Lactobacilli are the most common, mainly in healthy women; however, the microbiota composition can change rapidly, leading to infection or to a state in which potential pathogenic microorganisms co-exist with other commensals. In premenopausal women, urogenital infections, such as bacterial vaginosis and aerobic vaginitis, remain an important health problem. Treatment of these infections involves different kind of antibiotics; however, the recurrence rate remains high, and it must be also underlined that antibiotics are unable to spontaneously restore normal flora characterized by an abundant community of Lactobacilli. The main limitation is the inability to offer a long-term defensive barrier, thus facilitating relapses and recurrences. We report here the antimicrobial activities of two commercially existing Lactobacillus strains, Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus GLA-14 strains and their combination (Respecta® probiotic blend) against four different pathogens responsible for both bacterial vaginosis (Gardenerella vaginalis and Atopobium vaginae) and aerobic vaginitis (Staphylococcus aureus and Escherichia coli) by co-culturing assay. The probiotic combination, even if resulting in a different microbicidal activity against the different strains tested, demonstrated the efficacy of combined Lactobacillus strain treatment. PMID:28580872

  12. 16S rDNA-based metagenomic analysis of dental plaque and lung bacteria in patients with severe acute exacerbations of chronic obstructive pulmonary disease.

    PubMed

    Tan, L; Wang, H; Li, C; Pan, Y

    2014-12-01

    Acute exacerbations of chronic obstructive pulmonary disease (AE-COPD) are leading causes of mortality in hospital intensive care units. We sought to determine whether dental plaque biofilms might harbor pathogenic bacteria that can eventually cause lung infections in patients with severe AE-COPD. Paired samples of subgingival plaque biofilm and tracheal aspirate were collected from 53 patients with severe AE-COPD. Total bacterial DNA was extracted from each sample individually for polymerase chain reaction amplification and/or generation of bacterial 16S rDNA sequences and cDNA libraries. We used a metagenomic approach, based on bacterial 16S rDNA sequences, to compare the distribution of species present in dental plaque and lung. Analysis of 1060 sequences (20 clones per patient) revealed a wide range of aerobic, anaerobic, pathogenic, opportunistic, novel and uncultivable bacterial species. Species indistinguishable between the paired subgingival plaque and tracheal aspirate samples (97-100% similarity in 16S rDNA sequence) were dental plaque pathogens (Aggregatibacter actinomycetemcomitans, Capnocytophaga sputigena, Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola) and lung pathogens (Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa and Streptococcus pneumoniae). Real-time polymerase chain reaction of 16S rDNA indicated lower levels of Pseudomonas aeruginosa and Porphyromonas gingivalis colonizing the dental plaques compared with the paired tracheal aspirate samples. These results support the hypothesis that dental bacteria may contribute to the pathology of severe AE-COPD. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Occurrence and antibacterial susceptibility pattern of bacterial pathogens isolated from diarrheal patients in Pakistan.

    PubMed

    Rasool, Muhammad H; Siddique, Abu B; Saqalein, Muhammad; Asghar, Muhammad J; Zahoor, Muhammad A; Aslam, Bilal; Shafiq, Humerah B; Nisar, Muhammad A

    2016-03-01

    To determine the occurrence of bacterial pathogens responsible for diarrhea and to engender information regarding the effectiveness of commonly used antibiotic against diarrhea. This cross-sectional study was conducted between April and July 2014. Samples were collected from the Divisional Headquarter and Allied Hospital, Faisalabad, Pakistan. The differential and selective media were used to isolate bacterial pathogens, which were identified through cultural characteristics, microscopy, and biochemical tests. Disc diffusion assay was carried out using Muller Hinton agar medium, and minimum inhibitory concentration was determined using broth dilution method against isolated pathogens. One hundred and forty-one (100%) samples were positive for some bacteria. Frequency of occurrence was Bacillus cereus (B. cereus) (66%), Escherichia coli (E.coli) (48.5%), Salmonella typhi (S. Typhi) (27.7%), Pseudomonas aeruginosa (P. aeruginosa) (8.5%), and Staphylococcus aureus (S. aureus) (4.3%). Single pathogen was detected in 20 (14.2%) samples whereas combinations were found in 121 (85.8%) samples. Bacillus cereus and E.coli were the most frequently detected pathogens followed by the S. Typhi, P. aeruginosa, and Staph. aureus. The percentage occurrence of isolated pathogens was 31% in B. cereus, 31% in E. coli, 18% in S. Typhi, 5% in P. aeruginosa, and 3% in Staph. aureus. Pseudomonas aeruginosa showed resistance against Amoxicillin and Cefotaxime, whereas S. aureus was found resistant against Cefotaxime. Statistical analysis using one way Analysis of Variance revealed that Ofloxacin and Gentamicin had significant (p less than 0.05) differences against all isolates as compared with other antibiotics used in this study.

  14. Anti-Pseudomonas aeruginosa IgY antibodies augment bacterial clearance in a murine pneumonia model.

    PubMed

    Thomsen, K; Christophersen, L; Bjarnsholt, T; Jensen, P Ø; Moser, C; Høiby, N

    2016-03-01

    Oral prophylactic therapy by gargling with pathogen-specific egg yolk immunoglobulins (IgY) may reduce the initial airway colonization with Pseudomonas aeruginosa in cystic fibrosis (CF) patients. IgY antibodies impart passive immunization and we investigated the effects of anti-P. aeruginosa IgY antibodies on bacterial eradication in a murine pneumonia model. P. aeruginosa pneumonia was established in Balb/c mice and the effects of prophylactic IgY administration on lung bacteriology, clinical parameters and subsequent inflammation were compared to controls. Prophylactic administration of IgY antibodies targeting P. aeruginosa significantly reduced the bacterial burden by 2-log 24h post-infection compared to controls and was accompanied by significantly reduced clinical symptom scores and successive inflammatory cytokine profile indicative of diminished lung inflammation. Passive immunization by anti-P. aeruginosa IgY therapy facilitates promptly bacterial clearance and moderates inflammation in P. aeruginosa lung infection and may serve as an adjunct to antibiotics in reducing early colonization. Copyright © 2015. Published by Elsevier B.V.

  15. Development of a single-tube loop-mediated isothermal amplification assay for detection of four pathogens of bacterial meningitis.

    PubMed

    Huy, Nguyen Tien; Hang, Le Thi Thuy; Boamah, Daniel; Lan, Nguyen Thi Phuong; Van Thanh, Phan; Watanabe, Kiwao; Huong, Vu Thi Thu; Kikuchi, Mihoko; Ariyoshi, Koya; Morita, Kouichi; Hirayama, Kenji

    2012-12-01

    Several loop-mediated isothermal amplification (LAMP) assays have been developed to detect common causative pathogens of bacterial meningitis (BM). However, no LAMP assay is reported to detect Streptococcus agalactiae and Streptococcus suis, which are also among common pathogens of BM. Moreover, it is laborious and expensive by performing multiple reactions for each sample to detect bacterial pathogen. Thus, we aimed to design and develop a single-tube LAMP assay capable of detecting multiple bacterial species, based on the nucleotide sequences of the 16S rRNA genes of the bacteria. The nucleotide sequences of the 16S rRNA genes of main pathogens involved in BM were aligned to identify conserved regions, which were further used to design broad range specific LAMP assay primers. We successfully designed a set of broad range specific LAMP assay primers for simultaneous detection of four species including Staphylococcus aureus, Streptococcus pneumoniae, S. suis and S. agalactiae. The broad range LAMP assay was highly specific without cross-reactivity with other bacteria including Haemophilus influenzae, Neisseria meningitidis and Escherichia coli. The sensitivity of our LAMP assay was 100-1000 times higher compared with the conventional PCR assay. The bacterial species could be identified after digestion of the LAMP products with restriction endonuclease DdeI and HaeIII. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  16. Extraction of Total Nucleic Acids From Ticks for the Detection of Bacterial and Viral Pathogens

    PubMed Central

    Crowder, Chris D.; Rounds, Megan A.; Phillipson, Curtis A.; Picuri, John M.; Matthews, Heather E.; Halverson, Justina; Schutzer, Steven E.; Ecker, David J.; Eshoo, Mark W.

    2010-01-01

    Ticks harbor numerous bacterial, protozoal, and viral pathogens that can cause serious infections in humans and domestic animals. Active surveillance of the tick vector can provide insight into the frequency and distribution of important pathogens in the environment. Nucleic-acid based detection of tick-borne bacterial, protozoan, and viral pathogens requires the extraction of both DNA and RNA (total nucleic acids) from ticks. Traditional methods for nucleic acid extraction are limited to extraction of either DNA or the RNA from a sample. Here we present a simple bead-beating based protocol for extraction of DNA and RNA from a single tick and show detection of Borrelia burgdorferi and Powassan virus from individual, infected Ixodes scapularis ticks. We determined expected yields for total nucleic acids by this protocol for a variety of adult tick species. The method is applicable to a variety of arthropod vectors, including fleas and mosquitoes, and was partially automated on a liquid handling robot. PMID:20180313

  17. Microbiome in the pathogenesis of cystic fibrosis and lung transplant-related disease.

    PubMed

    Cribbs, Sushma K; Beck, James M

    2017-01-01

    Significant advances in culture-independent methods have expanded our knowledge about the diversity of the lung microbial environment. Complex microorganisms and microbial communities can now be identified in the distal airways in a variety of respiratory diseases, including cystic fibrosis (CF) and the posttransplantation lung. Although there are significant methodologic concerns about sampling the lung microbiome, several studies have now shown that the microbiome of the lower respiratory tract is distinct from the upper airway. CF is a disease characterized by chronic airway infections that lead to significant morbidity and mortality. Traditional culture-dependent methods have identified a select group of pathogens that cause exacerbations in CF, but studies using bacterial 16S rRNA gene-based microarrays have shown that the CF microbiome is an intricate and dynamic bacterial ecosystem, which influences both host immune health and disease pathogenesis. These microbial communities can shift with external influences, including antibiotic exposure. In addition, there have been a number of studies suggesting a link between the gut microbiome and respiratory health in CF. Compared with CF, there is significantly less knowledge about the microbiome of the transplanted lung. Risk factors for bronchiolitis obliterans syndrome, one of the leading causes of death, include microbial infections. Lung transplant patients have a unique lung microbiome that is different than the pretransplanted microbiome and changes with time. Understanding the host-pathogen interactions in these diseases may suggest targeted therapies and improve long-term survival in these patients. Published by Elsevier Inc.

  18. Rapid pathogen detection with bacterial-assembled magnetic mesoporous silica.

    PubMed

    Lee, Soo Youn; Lee, Jiho; Lee, Hye Sun; Chang, Jeong Ho

    2014-03-15

    We report rapid and accurate pathogen detection by coupling with high efficiency magnetic separation of pathogen by Ni(2+)-heterogeneous magnetic mesoporous silica (Ni-HMMS) and real time-polymerase chain reaction (RT-PCR) technique. Ni-HMMS was developed with a significant incorporation of Fe particles within the silica mesopores by programmed thermal hydrogen reaction and functionalized with Ni(2+) ion on the surface by the wet impregnation process. High abundant Ni(2+) ions on the Ni-HMMS surface were able to assemble with cell wall component protein NikA (nickel-binding membrane protein), which contains several pathogenic bacteria including Escherichia coli O157:H7. NikA protein expression experiment showed the outstanding separation rate of the nikA gene-overexpressed E. coli (pSY-Nik) when comparing with wild-type E. coli (44.5 ± 13%) or not over-expressed E. coli (pSY-Nik) (53.2 ± 2.7%). Moreover, Ni-HMMS showed lower obstacle effect by large reaction volume (10 mL) than spherical core/shell-type silica magnetic nanoparticles functionalized with Ni(2+) (ca. 40 nm-diameters). Finally, the Ni-HMMS was successfully assessed to separate pathogenic E. coli O157:H7 and applied to direct and rapid RT-PCR to quantitative detection at ultralow concentration (1 Log10 cfu mL(-1)) in the real samples (milk and Staphylococcus aureus culture broth) without bacterial amplification and DNA extraction step. © 2013 Elsevier B.V. All rights reserved.

  19. General and specialized media routinely employed for primary isolation of bacterial pathogens of fishes

    USGS Publications Warehouse

    Starliper, C.E.

    2008-01-01

    There are a number of significant diseases among cultured and free-ranging freshwater fishes that have a bacterial etiology; these represent a variety of gram-negative and gram-positive genera. Confirmatory diagnosis of these diseases involves primary isolation of the causative bacterium on bacteriologic media. Frequently used "general" bacteriologic media simply provide the essential nutrients for growth. For most of the major pathogens, however, there are differential and/or selective media that facilitate primary recovery. Some specialized media are available as "ready-to-use" from suppliers, while others must be prepared. Differential media employ various types of indicator systems, such as pH indicators, that allow diagnosticians to observe assimilation of selected substrates. An advantage to the use of differential media for primary isolation is that they hasten bacterial characterization by yielding the appropriate positive or negative result for a particular substrate, often leading to a presumptive identification. Selective media also incorporate agent(s) that inhibit the growth of contaminants typically encountered with samples from aquatic environments. Media that incorporate differential and/or selective components are ideally based on characters that are unique to the targeted bacterium, and their use can reduce the time associated with diagnosis and facilitate early intervention in affected fish populations. In this review, the concepts of general and differential/selective bacteriologic media and their use and development for fish pathogens are discussed. The media routinely employed for primary isolation of the significant bacterial pathogens of fishes are presented. ?? Wildlife Disease Association 2008.

  20. Phage-based biomolecular filter for the capture of bacterial pathogens in liquid streams

    NASA Astrophysics Data System (ADS)

    Du, Songtao; Chen, I.-Hsuan; Horikawa, Shin; Lu, Xu; Liu, Yuzhe; Wikle, Howard C.; Suh, Sang Jin; Chin, Bryan A.

    2017-05-01

    This paper investigates a phage-based biomolecular filter that enables the evaluation of large volumes of liquids for the presence of small quantities of bacterial pathogens. The filter is a planar arrangement of phage-coated, strip-shaped magnetoelastic (ME) biosensors (4 mm × 0.8 mm × 0.03 mm), magnetically coupled to a filter frame structure, through which a liquid of interest flows. This "phage filter" is designed to capture specific bacterial pathogens and allow non-specific debris to pass, eliminating the common clogging issue in conventional bead filters. ANSYS Maxwell was used to simulate the magnetic field pattern required to hold ME biosensors densely and to optimize the frame design. Based on the simulation results, a phage filter structure was constructed, and a proof-in-concept experiment was conducted where a Salmonella solution of known concentration were passed through the filter, and the number of captured Salmonella was quantified by plate counting.

  1. Comparison of Pathogen Eradication Rate and Safety of Anti-Bacterial Agents for Bronchitis: A Network Meta-Analysis.

    PubMed

    Wang, Jinghua; Xu, Haiyang; Wang, Dunwei; Li, Mingxian

    2017-10-01

    A large number of population in both developing and developed countries are affected by bronchitis, among all the factors, bacterial infection was considered as a critical cause of acute exacerbations of chronic bronchitis. Although several anti-bacterial agents were proved to have the effect of alleviating bronchitis, their relative efficacies and potential side effects remained not clear. We are keen to compare the pathogen eradication rate and safety of anti-bacterial agents for bronchitis. Relevant studies were searched in multiple sources and data were extracted from eligible studies. Then conventional meta-analysis and network meta-analysis (NMA) were conducted to determine the relative efficacy and safety of bronchitis medications. The efficacy of bronchitis medications was determined by using the outcome of pathogen eradication, including total pathogen eradication, pathogen eradication of Haemophilus influenzae, pathogen eradication of Moraxella catarrhalis, and pathogen eradication of Streptococcus pneumoniae. In addition, safety was assessed by using the outcome of adverse effects and diarrhoea. A 27 RCTs with 9,414 participants were included in the study. Among the medications, gatifloxacin and moxifloxacin exhibited better performance than clarithromycin with respect to pathogen eradication of H. influenzae (OR = 21.37, CI: 1.22-541.28; OR = 7.43, CI: 1.79-30.50). Clarithromycin, gemifloxacin, levofloxacin, moxifloxacin, and telithromycin appeared to be more preferable than amoxicillin + clavulanate and azithromycin with respect to diarrhoea (all OR <1). The surface under the cumulative ranking curve (SUCRA) results suggested that gemifloxacin and levofloxacin had a relatively high ranking in total pathogen eradication, whereas amoxicillin + clavulanate and azithromycin exhibited relatively lower ranking with respect to adverse effects and diarrhoea. Gemifloxacin and levofloxacin are more preferable than others for lowering respiratory

  2. Mechanisms of Disease: Host-Pathogen Interactions between Burkholderia Species and Lung Epithelial Cells

    PubMed Central

    David, Jonathan; Bell, Rachel E.; Clark, Graeme C.

    2015-01-01

    Members of the Burkholderia species can cause a range of severe, often fatal, respiratory diseases. A variety of in vitro models of infection have been developed in an attempt to elucidate the mechanism by which Burkholderia spp. gain entry to and interact with the body. The majority of studies have tended to focus on the interaction of bacteria with phagocytic cells with a paucity of information available with regard to the lung epithelium. However, the lung epithelium is becoming more widely recognized as an important player in innate immunity and the early response to infections. Here we review the complex relationship between Burkholderia species and epithelial cells with an emphasis on the most pathogenic species, Burkholderia pseudomallei and Burkholderia mallei. The current gaps in knowledge in our understanding are highlighted along with the epithelial host-pathogen interactions that offer potential opportunities for therapeutic intervention. PMID:26636042

  3. A transient expression assay for the in planta efficacy screening of an antimicrobial peptide against grapevine bacterial pathogens.

    PubMed

    Visser, M; Stephan, D; Jaynes, J M; Burger, J T

    2012-06-01

    Natural and synthetic antimicrobial peptides (AMPs) are of increasing interest as potential resistance conferring elements in plants against pathogen infection. The efficacy of AMPs against pathogens is prescreened by in vitro assays, and promising AMP candidates are introduced as transgenes into plants. As in vitro and in planta environments differ, a prescreening procedure of the AMP efficacy in the plant environment is desired. Here, we report the efficacy of the purified synthetic peptide D4E1 against the grapevine-infecting bacterial pathogens Agrobacterium vitis and Xylophilus ampelinus in vitro and describe for the first time an in planta prescreening procedure based on transiently expressed D4E1. The antimicrobial effect of D4E1 against Ag. vitis and X. ampelinus was shown by a reduction in colony-forming units in vitro in a traditional plate-based assay and by a reduction in bacterial titres in planta as measured by quantitative real-time PCR (qPCR) in grapevine leaves transiently expressing D4E1. A statistically significant reduction in titre was shown for X. ampelinus, but for Ag. vitis, a significant reduction in titre was only observed in a subset of plants. The titres of both grapevine-infecting bacterial pathogens were reduced in an in vitro assay and for X. ampelinus in an in planta assay by D4E1 application. This widens the applicability of D4E1 as a potential resistance-enhancing element to additional pathogens and in a novel plant species. D4E1 is a promising candidate to confer enhanced resistance against the two tested grapevine bacterial pathogens, and the applied transient expression system proved to be a valuable tool for prescreening of D4E1 efficacy in an in planta environment. The described prescreening procedure can be used for other AMPs and might be adapted to other plant species and pathogens before the expensive and tedious development of stably transgenic lines is started. © 2012 The Authors. Letters in Applied Microbiology © 2012

  4. Ligand-free palladium-mediated site-specific protein labeling inside gram-negative bacterial pathogens.

    PubMed

    Li, Jie; Lin, Shixian; Wang, Jie; Jia, Shang; Yang, Maiyun; Hao, Ziyang; Zhang, Xiaoyu; Chen, Peng R

    2013-05-15

    Palladium, a key transition metal in advancing modern organic synthesis, mediates diverse chemical conversions including many carbon-carbon bond formation reactions between organic compounds. However, expanding palladium chemistry for conjugation of biomolecules such as proteins, particularly within their native cellular context, is still in its infancy. Here we report the site-specific protein labeling inside pathogenic Gram-negative bacterial cells via a ligand-free palladium-mediated cross-coupling reaction. Two rationally designed pyrrolysine analogues bearing an aliphatic alkyne or an iodophenyl handle were first encoded in different enteric bacteria, which offered two facial handles for palladium-mediated Sonogashira coupling reaction on proteins within these pathogens. A GFP-based bioorthogonal reaction screening system was then developed, allowing evaluation of both the efficiency and the biocompatibilty of various palladium reagents in promoting protein-small molecule conjugation. The identified simple compound-Pd(NO3)2 exhibited high efficiency and biocompatibility for site-specific labeling of proteins in vitro and inside living E. coli cells. This Pd-mediated protein coupling method was further utilized to label and visualize a Type-III Secretion (T3S) toxin-OspF in Shigella cells. Our strategy may be generally applicable for imaging and tracking various virulence proteins within Gram-negative bacterial pathogens.

  5. Origin and Proliferation of Multiple-Drug Resistance in Bacterial Pathogens

    PubMed Central

    Chang, Hsiao-Han; Cohen, Ted; Grad, Yonatan H.; Hanage, William P.; O'Brien, Thomas F.

    2015-01-01

    SUMMARY Many studies report the high prevalence of multiply drug-resistant (MDR) strains. Because MDR infections are often significantly harder and more expensive to treat, they represent a growing public health threat. However, for different pathogens, different underlying mechanisms are traditionally used to explain these observations, and it is unclear whether each bacterial taxon has its own mechanism(s) for multidrug resistance or whether there are common mechanisms between distantly related pathogens. In this review, we provide a systematic overview of the causes of the excess of MDR infections and define testable predictions made by each hypothetical mechanism, including experimental, epidemiological, population genomic, and other tests of these hypotheses. Better understanding the cause(s) of the excess of MDR is the first step to rational design of more effective interventions to prevent the origin and/or proliferation of MDR. PMID:25652543

  6. Phytosterols Play a Key Role in Plant Innate Immunity against Bacterial Pathogens by Regulating Nutrient Efflux into the Apoplast1[C][W][OA

    PubMed Central

    Wang, Keri; Senthil-Kumar, Muthappa; Ryu, Choong-Min; Kang, Li; Mysore, Kirankumar S.

    2012-01-01

    Bacterial pathogens colonize a host plant by growing between the cells by utilizing the nutrients present in apoplastic space. While successful pathogens manipulate the plant cell membrane to retrieve more nutrients from the cell, the counteracting plant defense mechanism against nonhost pathogens to restrict the nutrient efflux into the apoplast is not clear. To identify the genes involved in nonhost resistance against bacterial pathogens, we developed a virus-induced gene-silencing-based fast-forward genetics screen in Nicotiana benthamiana. Silencing of N. benthamiana SQUALENE SYNTHASE, a key gene in phytosterol biosynthesis, not only compromised nonhost resistance to few pathovars of Pseudomonas syringae and Xanthomonas campestris, but also enhanced the growth of the host pathogen P. syringae pv tabaci by increasing nutrient efflux into the apoplast. An Arabidopsis (Arabidopsis thaliana) sterol methyltransferase mutant (sterol methyltransferase2) involved in sterol biosynthesis also compromised plant innate immunity against bacterial pathogens. The Arabidopsis cytochrome P450 CYP710A1, which encodes C22-sterol desaturase that converts β-sitosterol to stigmasterol, was dramatically induced upon inoculation with nonhost pathogens. An Arabidopsis Atcyp710A1 null mutant compromised both nonhost and basal resistance while overexpressors of AtCYP710A1 enhanced resistance to host pathogens. Our data implicate the involvement of sterols in plant innate immunity against bacterial infections by regulating nutrient efflux into the apoplast. PMID:22298683

  7. Chromium in stainless steel welding fume suppresses lung defense responses against bacterial infection in rats.

    PubMed

    Antonini, James M; Roberts, Jenny R

    2007-04-01

    Pulmonary infections have been reported to be increased in welders. Previous animal studies have indicated that manual metal arc, stainless steel welding fume (MMA-SS) increased susceptibility to lung infections. MMA-SS is composed of a complex of metals (e.g., iron, chromium, nickel). The objective was to determine which metal component of MMA-SS welding fume alters lung defense responses. At Day 0, rats were intratracheally instilled one time with saline or MMA-SS at a concentration of 2 mg/rat. Additional rats were treated with the metal constituents, Fe(2)O(3), NiO, or Cr(2)Na(2)O(7) alone or in combination, at concentrations that are present in the dose used for MMA-SS treatment. At Day 3, rats were intratracheally inoculated with 5 x 10(3) Listeria monocytogenes. At Days 6, 8 and 10, homogenized left lungs were cultured, and colony-forming units were counted after an overnight incubation to assess pulmonary bacterial clearance. At Day 3 (prior to infection) and at Days 6, 8 and 10, right lungs were lavaged to recover cells and fluid from the airspaces to measure lung injury, inflammation, and cytokine secretion. The production of reactive oxygen species by phagocytes recovered from the lungs was measured. Exposure to MMA-SS, soluble Cr, or the mixture of all three metals before infection significantly increased bacterial lung burden and tissue damage when compared to control. Animals treated with NiO or Fe(2)O(3) did not differ from control. Animals pre-treated with soluble Cr had alterations in inflammation and in the production of different cytokines (TNFalpha, IL-6, IL-2, and IL-12) involved in lung immune responses. This study indicates that soluble Cr present in MMA-SS is likely the primary component responsible for the suppression of lung defense responses associated with stainless steel welding fumes.

  8. The Metabolic Sensor GPR43 Receptor Plays a Role in the Control of Klebsiella pneumoniae Infection in the Lung

    PubMed Central

    Galvão, Izabela; Tavares, Luciana P.; Corrêa, Renan O.; Fachi, José Luís; Rocha, Vitor Melo; Rungue, Marcela; Garcia, Cristiana C.; Cassali, Geovanni; Ferreira, Caroline M.; Martins, Flaviano S.; Oliveira, Sergio C.; Mackay, Charles R.; Teixeira, Mauro M.; Vinolo, Marco Aurélio R.; Vieira, Angélica T.

    2018-01-01

    Pneumonia is one of the leading causes of death and mortality worldwide. The inflammatory responses that follow respiratory infections are protective leading to pathogen clearance but can also be deleterious if unregulated. The microbiota is known to be an important protective barrier against infections, mediating both direct inhibitory effects against the potential pathogen and also regulating the immune responses contributing to a proper clearance of the pathogen and return to homeostasis. GPR43 is one receptor for acetate, a microbiota metabolite shown to induce and to regulate important immune functions. Here, we addressed the role of GPR43 signaling during pulmonary bacterial infections. We have shown for the first time that the absence of GPR43 leads to increased susceptibility to Klebsiella pneumoniae infection, which was associated to both uncontrolled proliferation of bacteria and to increased inflammatory response. Mechanistically, we showed that GPR43 expression especially in neutrophils and alveolar macrophages is important for bacterial phagocytosis and killing. In addition, treatment with the GPR43 ligand, acetate, is protective during bacterial lung infection. This was associated to reduction in the number of bacteria in the airways and to the control of the inflammatory responses. Altogether, GPR43 plays an important role in the “gut–lung axis” as a sensor of the host gut microbiota activity through acetate binding promoting a proper immune response in the lungs. PMID:29515566

  9. Simvastatin attenuates stroke-induced splenic atrophy and lung susceptibility to spontaneous bacterial infection in mice

    PubMed Central

    Jin, Rong; Zhu, Xiaolei; Liu, Lin; Nanda, Anil; Granger, D Neil; Li, Guohong

    2013-01-01

    Background and Purpose Statins are widely used in the primary and secondary prevention of ischemic stroke, but their effects on stroke-induced immunodeppression and post-stroke infections are elusive. We investigated effects of simvastatin treatment on stroke-induced splenic atrophy and lung susceptibility to bacterial infection in acute experimental stroke in mice. Methods Ischemic stroke was induced by transient occlusion of middle cerebral artery (MCAO) followed by reperfusion. In some experiments, splenectomies were performed 2 weeks prior to MCAO. Animals were randomly assigned to sham and MCAO groups treated subcutaneously with vehicle or simvastatin (20 mg/kg/day). Brain infarction, neurological function, brain interferon-γ expression, splenic atrophy and apoptosis, and lung infection were examined. Results Simvastatin reduced stroke-induced spleen atrophy and splenic apoptosis via increased mitochrondrial anti-apoptotic Bcl-2 expression and decreased pro-apoptotic Bax translocation from cytosol into mitochondria. Splenectomy reduced brain interferon-γ (3d) and infarct size (5d) after stroke and these effects were reversed by adoptive transfer of splenocytes. Simvastatin inhibited brain interferon-γ (3d) and reduced infarct volume and neurological deficits (5d) after stroke, and these protective effects were observed not only in naïve stroke mice but also in splenectomied stroke mice adoptively transferred with splenocytes. Simvastatin also decreased the stroke-associated lung susceptibility to spontaneous bacterial infection. Conclusions Results provide the first direct experimental evidence that simvastatin ameliorates stroke-induced peripheral immunodepression by attenuating spleen atrophy and lung bacterial infection. These findings contribute to a better understanding of beneficial effects of statins in the treatment of stroke. PMID:23391769

  10. Atorvastatin along with imipenem attenuates acute lung injury in sepsis through decrease in inflammatory mediators and bacterial load.

    PubMed

    Choudhury, Soumen; Kandasamy, Kannan; Maruti, Bhojane Somnath; Addison, M Pule; Kasa, Jaya Kiran; Darzi, Sazad A; Singh, Thakur Uttam; Parida, Subhashree; Dash, Jeevan Ranjan; Singh, Vishakha; Mishra, Santosh Kumar

    2015-10-15

    Lung is one of the vital organs which is affected during the sequential development of multi-organ dysfunction in sepsis. The purpose of the present study was to examine whether combined treatment with atorvastatin and imipenem could attenuate sepsis-induced lung injury in mice. Sepsis was induced by caecal ligation and puncture. Lung injury was assessed by the presence of lung edema, increased vascular permeability, increased inflammatory cell infiltration and cytokine levels in broncho-alveolar lavage fluid (BALF). Treatment with atorvastatin along with imipenem reduced the lung bacterial load and pro-inflammatory cytokines (IL-1β and TNFα) level in BALF. The markers of pulmonary edema such as microvascular leakage and wet-dry weight ratio were also attenuated. This was further confirmed by the reduced activity of MPO and ICAM-1 mRNA expression, indicating the lesser infiltration and adhesion of inflammatory cells to the lungs. Again, expression of mRNA and protein level of iNOS in lungs was also reduced in the combined treatment group. Based on the above findings it can be concluded that, combined treatment with atorvastatin and imipenem dampened the inflammatory response and reduced the bacterial load, thus seems to have promising therapeutic potential in sepsis-induced lung injury in mice. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Neutrophil extracellular traps are pathogenic in primary graft dysfunction after lung transplantation.

    PubMed

    Sayah, David M; Mallavia, Beñat; Liu, Fengchun; Ortiz-Muñoz, Guadalupe; Caudrillier, Axelle; DerHovanessian, Ariss; Ross, David J; Lynch, Joseph P; Saggar, Rajan; Ardehali, Abbas; Ware, Lorraine B; Christie, Jason D; Belperio, John A; Looney, Mark R

    2015-02-15

    Primary graft dysfunction (PGD) causes early mortality after lung transplantation and may contribute to late graft failure. No effective treatments exist. The pathogenesis of PGD is unclear, although both neutrophils and activated platelets have been implicated. We hypothesized that neutrophil extracellular traps (NETs) contribute to lung injury in PGD in a platelet-dependent manner. To study NETs in experimental models of PGD and in lung transplant patients. Two experimental murine PGD models were studied: hilar clamp and orthotopic lung transplantation after prolonged cold ischemia (OLT-PCI). NETs were assessed by immunofluorescence microscopy and ELISA. Platelet activation was inhibited with aspirin, and NETs were disrupted with DNaseI. NETs were also measured in bronchoalveolar lavage fluid and plasma from lung transplant patients with and without PGD. NETs were increased after either hilar clamp or OLT-PCI compared with surgical control subjects. Activation and intrapulmonary accumulation of platelets were increased in OLT-PCI, and platelet inhibition reduced NETs and lung injury, and improved oxygenation. Disruption of NETs by intrabronchial administration of DNaseI also reduced lung injury and improved oxygenation. In bronchoalveolar lavage fluid from human lung transplant recipients, NETs were more abundant in patients with PGD. NETs accumulate in the lung in both experimental and clinical PGD. In experimental PGD, NET formation is platelet-dependent, and disruption of NETs with DNaseI reduces lung injury. These data are the first description of a pathogenic role for NETs in solid organ transplantation and suggest that NETs are a promising therapeutic target in PGD.

  12. Neutrophil Extracellular Traps Are Pathogenic in Primary Graft Dysfunction after Lung Transplantation

    PubMed Central

    Mallavia, Beñat; Liu, Fengchun; Ortiz-Muñoz, Guadalupe; Caudrillier, Axelle; DerHovanessian, Ariss; Ross, David J.; Lynch III, Joseph P.; Saggar, Rajan; Ardehali, Abbas; Ware, Lorraine B.; Christie, Jason D.; Belperio, John A.; Looney, Mark R.

    2015-01-01

    Rationale: Primary graft dysfunction (PGD) causes early mortality after lung transplantation and may contribute to late graft failure. No effective treatments exist. The pathogenesis of PGD is unclear, although both neutrophils and activated platelets have been implicated. We hypothesized that neutrophil extracellular traps (NETs) contribute to lung injury in PGD in a platelet-dependent manner. Objectives: To study NETs in experimental models of PGD and in lung transplant patients. Methods: Two experimental murine PGD models were studied: hilar clamp and orthotopic lung transplantation after prolonged cold ischemia (OLT-PCI). NETs were assessed by immunofluorescence microscopy and ELISA. Platelet activation was inhibited with aspirin, and NETs were disrupted with DNaseI. NETs were also measured in bronchoalveolar lavage fluid and plasma from lung transplant patients with and without PGD. Measurements and Main Results: NETs were increased after either hilar clamp or OLT-PCI compared with surgical control subjects. Activation and intrapulmonary accumulation of platelets were increased in OLT-PCI, and platelet inhibition reduced NETs and lung injury, and improved oxygenation. Disruption of NETs by intrabronchial administration of DNaseI also reduced lung injury and improved oxygenation. In bronchoalveolar lavage fluid from human lung transplant recipients, NETs were more abundant in patients with PGD. Conclusions: NETs accumulate in the lung in both experimental and clinical PGD. In experimental PGD, NET formation is platelet-dependent, and disruption of NETs with DNaseI reduces lung injury. These data are the first description of a pathogenic role for NETs in solid organ transplantation and suggest that NETs are a promising therapeutic target in PGD. PMID:25485813

  13. National Institute of Allergy and Infectious Disease (NIAID) Funding for Studies of Hospital-Associated Bacterial Pathogens: Are Funds Proportionate to Burden of Disease?

    PubMed

    Kwon, Seunghyug; Schweizer, Marin L; Perencevich, Eli N

    2012-01-26

    Hospital-associated infections (HAIs) are associated with a considerable burden of disease and direct costs greater than $17 billion. The pathogens that cause the majority of serious HAIs are Enterococcus faecium, Staphylococcus aureus, Clostridium difficile, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species, referred as ESCKAPE. We aimed to determine the amount of funding the National Institute of Health (NIH) National Institute of Allergy and Infectious Diseases (NIAID) allocates to research on antimicrobial resistant pathogens, particularly ESCKAPE pathogens. The NIH Research Portfolio Online Reporting Tools (RePORT) database was used to identify NIAID antimicrobial resistance research grants funded in 2007-2009 using the terms "antibiotic resistance," "antimicrobial resistance," and "hospital-associated infection." Funding for antimicrobial resistance grants has increased from 2007-2009. Antimicrobial resistance funding for bacterial pathogens has seen a smaller increase than non-bacterial pathogens. The total funding for all ESKCAPE pathogens was $ 22,005,943 in 2007, $ 30,810,153 in 2008 and $ 49,801,227 in 2009. S. aureus grants received $ 29,193,264 in FY2009, the highest funding amount of all the ESCKAPE pathogens. Based on 2009 funding data, approximately $1,565 of research money was spent per S. aureus related death and $750 of was spent per C. difficile related death. Although the funding for ESCKAPE pathogens has increased from 2007 to 2009, funding levels for antimicrobial resistant bacteria-related grants is still lower than funding for antimicrobial resistant non-bacterial pathogens. Efforts may be needed to improve research funding for resistant-bacterial pathogens, particularly as their clinical burden increases.

  14. Spaceflight and Simulated Microgravity Increases Virulence of the Known Bacterial Pathogen S. Marcescens

    NASA Technical Reports Server (NTRS)

    Clemens-Grisham, Rachel Andrea; Bhattacharya, Sharmila; Wade, William

    2016-01-01

    After spaceflight, the number of immune cells is reduced in humans. In other research models, including Drosophila, not only is there a reduction in the number of plasmatocytes, but expression of immune-related genes is also changed after spaceflight. These observations suggest that the immune system is compromised after exposure to microgravity. It has also been reported that there is a change in virulence of some bacterial pathogens after spaceflight. We recently observed that samples of gram-negative S. marcescens retrieved from spaceflight is more virulent than ground controls, as determined by reduced survival and increased bacterial growth in the host. We were able to repeat this finding of increased virulence after exposure to simulated microgravity using the rotating wall vessel, a ground based analog to microgravity. With the ground and spaceflight samples, we looked at involvement of the Toll and Imd pathways in the Drosophila host in fighting infection by ground and spaceflight samples. We observed that Imd-pathway mutants were more susceptible to infection by the ground bacterial samples, which aligns with the known role of this pathway in fighting infections by gram-negative bacteria. When the Imd-pathway mutants were infected with the spaceflight sample, however, they exhibited the same susceptibility as seen with the ground control bacteria. Interestingly, all mutant flies show the same susceptibility to the spaceflight bacterial sample as do wild type flies. This suggests that neither humoral immunity pathway is effectively able to counter the increased pathogenicity of the space-flown S. marcescens bacteria.

  15. Antibacterial screening of traditional herbal plants and standard antibiotics against some human bacterial pathogens.

    PubMed

    Awan, Uzma Azeem; Andleeb, Saiqa; Kiyani, Ayesha; Zafar, Atiya; Shafique, Irsa; Riaz, Nazia; Azhar, Muhammad Tehseen; Uddin, Hafeez

    2013-11-01

    Chloroformic and isoamyl alcohol extracts of Cinnnamomum zylanicum, Cuminum cyminum, Curcuma long Linn, Trachyspermum ammi and selected standard antibiotics were investigated for their in vitro antibacterial activity against six human bacterial pathogens. The antibacterial activity was evaluated and based on the zone of inhibition using agar disc diffusion method. The tested bacterial strains were Streptococcus pyogenes, Staphylococcus epidermidis, Klebsiella pneumonia, Staphylococcus aurues, Serratia marcesnces, and Pseudomonas aeruginosa. Ciprofloxacin showed highly significant action against K. pneumonia and S. epidermidis while Ampicillin and Amoxicillin indicated lowest antibacterial activity against tested pathogens. Among the plants chloroform and isoamyl alcohol extracts of C. cyminum, S. aromaticum and C. long Linn had significant effect against P. aeruginosa, S. marcesnces and S. pyogenes. Comparison of antibacterial activity of medicinal herbs and standard antibiotics was also recorded via activity index. Used medicinal plants have various phytochemicals which reasonably justify their use as antibacterial agent.

  16. Suppression in lung defense responses after bacterial infection in rats pretreated with different welding fumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonini, James M.; Taylor, Michael D.; Millecchia, Lyndell

    2004-11-01

    Epidemiology suggests that inhalation of welding fumes increases the susceptibility to lung infection. The effects of chemically distinct welding fumes on lung defense responses after bacterial infection were compared. Fume was collected during gas metal arc (GMA) or flux-covered manual metal arc (MMA) welding using two consumable electrodes: stainless steel (SS) or mild steel (MS). The fumes were separated into water-soluble and -insoluble fractions. The GMA-SS and GMA-MS fumes were found to be relatively insoluble, whereas the MMA-SS was highly water soluble, with the soluble fraction comprised of 87% Cr and 11% Mn. On day 0, male Sprague-Dawley rats weremore » intratracheally instilled with saline (vehicle control) or the different welding fumes (0.1 or 2 mg/rat). At day 3, the rats were intratracheally inoculated with 5 x 10{sup 3} Listeria monocytogenes. On days 6, 8, and 10, left lungs were removed, homogenized, cultured overnight, and colony-forming units were counted to assess pulmonary bacterial clearance. Bronchoalveolar lavage (BAL) was performed on right lungs to recover phagocytes and BAL fluid to measure the production of nitric oxide (NO) and immunomodulatory cytokines, including tumor necrosis factor-{alpha} (TNF-{alpha}), interleukin (IL)-2, IL-6, and IL-10. In contrast to the GMA-SS, GMA-MS, and saline groups, pretreatment with the highly water soluble MMA-SS fume caused significant body weight loss, extensive lung damage, and a dramatic reduction in pulmonary clearance of L. monocytogenes after infection. NO concentrations in BAL fluid and lung immunostaining of inducible NO synthase were dramatically increased in rats pretreated with MMA-SS before and after infection. MMA-SS treatment caused a significant decrease in IL-2 and significant increases in TNF-{alpha}, IL-6, and IL-10 after infection. In conclusion, pretreatment with MMA-SS increased production of NO and proinflammatory cytokines (TNF-{alpha} and IL-6) after infection, which are

  17. Suppression in lung defense responses after bacterial infection in rats pretreated with different welding fumes.

    PubMed

    Antonini, James M; Taylor, Michael D; Millecchia, Lyndell; Bebout, Alicia R; Roberts, Jenny R

    2004-11-01

    Epidemiology suggests that inhalation of welding fumes increases the susceptibility to lung infection. The effects of chemically distinct welding fumes on lung defense responses after bacterial infection were compared. Fume was collected during gas metal arc (GMA) or flux-covered manual metal arc (MMA) welding using two consumable electrodes: stainless steel (SS) or mild steel (MS). The fumes were separated into water-soluble and -insoluble fractions. The GMA-SS and GMA-MS fumes were found to be relatively insoluble, whereas the MMA-SS was highly water soluble, with the soluble fraction comprised of 87% Cr and 11% Mn. On day 0, male Sprague-Dawley rats were intratracheally instilled with saline (vehicle control) or the different welding fumes (0.1 or 2 mg/rat). At day 3, the rats were intratracheally inoculated with 5 x 10(3) Listeria monocytogenes. On days 6, 8, and 10, left lungs were removed, homogenized, cultured overnight, and colony-forming units were counted to assess pulmonary bacterial clearance. Bronchoalveolar lavage (BAL) was performed on right lungs to recover phagocytes and BAL fluid to measure the production of nitric oxide (NO) and immunomodulatory cytokines, including tumor necrosis factor-alpha (TNF-alpha), interleukin (IL)-2, IL-6, and IL-10. In contrast to the GMA-SS, GMA-MS, and saline groups, pretreatment with the highly water soluble MMA-SS fume caused significant body weight loss, extensive lung damage, and a dramatic reduction in pulmonary clearance of L. monocytogenes after infection. NO concentrations in BAL fluid and lung immunostaining of inducible NO synthase were dramatically increased in rats pretreated with MMA-SS before and after infection. MMA-SS treatment caused a significant decrease in IL-2 and significant increases in TNF-alpha, IL-6, and IL-10 after infection. In conclusion, pretreatment with MMA-SS increased production of NO and proinflammatory cytokines (TNF-alpha and IL-6) after infection, which are likely responsible for

  18. A retrospective analysis of antimicrobial resistance in bacterial pathogens in an equine hospital (2012-2015).

    PubMed

    van Spijk, J N; Schmitt, S; Fürst, A E; Schoster, A

    2016-06-01

    Antimicrobial resistance has become an important concern in veterinary medicine. The aim of this study was to describe the rate of antimicrobial resistance in common equine pathogens and to determine the occurrence of multidrug-resistant isolates. A retrospective analysis of all susceptibility testing results from bacterial pathogens cultured from horses at the University of Zurich Equine Hospital (2012-2015) was performed. Strains exhibiting resistance to 3 or more antimicrobial categories were defined as multidrug-resistant. Susceptibility results from 303 bacterial pathogens were analyzed, most commonly Escherichia coli (60/303, 20%) and Staphylococcus aureus (40/303, 13%). High rates of acquired resistance against commonly used antimicrobials were found in most of the frequently isolated equine pathogens. The highest rate of multidrug resistance was found in isolates of Acinetobacter baumannii (23/24, 96%), followed by Enterobacter cloacae complex (24/28, 86%) and Escherichia coli (48/60, 80%). Overall, 60% of Escherichia coli isolates were phenotypically ESBL-producing and 68% of Staphylococcus spp. were phenotypically methicillin-resistant. High rates of acquired antimicrobial resistance towards commonly used antibiotics are concerning and underline the importance of individual bacteriological and antimicrobial susceptibility testing to guide antimicrobial therapy. Minimizing and optimizing antimicrobial therapy in horses is needed.

  19. Novel aptamer-linked nanoconjugate approach for detection of waterborne bacterial pathogens: an update

    NASA Astrophysics Data System (ADS)

    Singh, Gulshan; Manohar, Murli; Adegoke, Anthony Ayodeji; Stenström, Thor Axel; Shanker, Rishi

    2017-01-01

    The lack of microbiologically safe water in underdeveloped nations is the prime cause of infectious disease outbreaks. The need for the specific identification and detection of microorganisms encourages the development of advanced, rapid, sensitive and highly specific methods for the monitoring of pathogens and management of potential risk to human health. The rapid molecular assays based on detection of specific molecular signatures offer advantages over conventional methods in terms of specificity and sensitivity but require complex instrumentation and skilled personnel. Nanotechnology is an emerging area and provides a robust approach for the identification of pathogenic microorganism utilizing the peculiar properties of nanomaterials, i.e. small size (1-100 nm) and large surface area. This emerging technology promises to fulfill the urgent need of a novel strategy to enhance the bacterial identification and quantitation in the environment. In this context, the peculiar properties of gold nanoparticles, their plasmonic shifts, and changes in magnetic properties have been utilized for the simple and cost-effective detection of bacterial nucleic acids, antigens and toxins with quite improved sensitivity. One of the promising leads to develop an advance detection method might be the coupling of nucleic acid aptamers (capable of interacting specifically with bacteria, protozoa, and viruses) with nanomaterials. Such aptamer-nano conjugate can be used for the specific recognition of infectious agents in different environmental matrices. This review summarizes the application of nanotechnology in the area of pathogen detection and discusses the prospects of coupling nucleic acid aptamers with nanoparticles for the specific detection of targeted pathogens.

  20. Influenza viral neuraminidase primes bacterial coinfection through TGF-β-mediated expression of host cell receptors.

    PubMed

    Li, Ning; Ren, Aihui; Wang, Xiaoshuang; Fan, Xin; Zhao, Yong; Gao, George F; Cleary, Patrick; Wang, Beinan

    2015-01-06

    Influenza infection predisposes the host to secondary bacterial pneumonia, which is a major cause of mortality during influenza epidemics. The molecular mechanisms underlying the bacterial coinfection remain elusive. Neuraminidase (NA) of influenza A virus (IAV) enhances bacterial adherence and also activates TGF-β. Because TGF-β can up-regulate host adhesion molecules such as fibronectin and integrins for bacterial binding, we hypothesized that activated TGF-β during IAV infection contributes to secondary bacterial infection by up-regulating these host adhesion molecules. Flow cytometric analyses of a human lung epithelial cell line indicated that the expression of fibronectin and α5 integrin was up-regulated after IAV infection or treatment with recombinant NA and was reversed through the inhibition of TGF-β signaling. IAV-promoted adherence of group A Streptococcus (GAS) and other coinfective pathogens that require fibronectin for binding was prevented significantly by the inhibition of TGF-β. However, IAV did not promote the adherence of Lactococcus lactis unless this bacterium expressed the fibronectin-binding protein of GAS. Mouse experiments showed that IAV infection enhanced GAS colonization in the lungs of wild-type animals but not in the lungs of mice deficient in TGF-β signaling. Taken together, these results reveal a previously unrecognized mechanism: IAV NA enhances the expression of cellular adhesins through the activation of TGF-β, leading to increased bacterial loading in the lungs. Our results suggest that TGF-β and cellular adhesins may be potential pharmaceutical targets for the prevention of coinfection.

  1. Baby bottle steam sterilizers disinfect home nebulizers inoculated with bacterial respiratory pathogens.

    PubMed

    Towle, Dana; Callan, Deborah A; Farrel, Patricia A; Egan, Marie E; Murray, Thomas S

    2013-09-01

    Contaminated nebulizers are a potential source of bacterial infection but no single method is universally accepted for disinfection. We hypothesized that baby-bottle steam sterilizers effectively disinfect home nebulizers. Home nebulizers were inoculated with the common CF respiratory pathogens methicillin resistant Staphylococcus aureus, Burkholderia cepacia, Haemophilus influenzae, mucoid and non mucoid Pseudomonas aeruginosa, and Stenotrophomonas maltophilia. The nebulizers were swabbed for bacterial growth, treated with either the AVENT (Philips), the NUK Quick & Ready (Gerber) or DRY-POD (Camera Baby) baby bottle steam sterilizer and reswabbed for bacterial growth. All steam sterilizers were effective at disinfecting all home nebulizers. Viable bacteria were not recovered from any inoculated site after steam treatment, under any conditions tested. Steam treatment is an effective disinfection method. Additional studies are needed to confirm whether these results are applicable to the clinical setting. Copyright © 2012 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  2. Fluorocycline TP-271 Is Potent against Complicated Community-Acquired Bacterial Pneumonia Pathogens

    PubMed Central

    Fyfe, Corey; O’Brien, William; Hackel, Meredith; Minyard, Mary Beth; Waites, Ken B.; Dubois, Jacques; Murphy, Timothy M.; Slee, Andrew M.; Weiss, William J.; Sutcliffe, Joyce A.

    2017-01-01

    ABSTRACT TP-271 is a novel, fully synthetic fluorocycline antibiotic in clinical development for the treatment of respiratory infections caused by susceptible and multidrug-resistant pathogens. TP-271 was active in MIC assays against key community respiratory Gram-positive and Gram-negative pathogens, including Streptococcus pneumoniae (MIC90 = 0.03 µg/ml), methicillin-sensitive Staphylococcus aureus (MSSA; MIC90 = 0.25 µg/ml), methicillin-resistant S. aureus (MRSA; MIC90 = 0.12 µg/ml), Streptococcus pyogenes (MIC90 = 0.03 µg/ml), Haemophilus influenzae (MIC90 = 0.12 µg/ml), and Moraxella catarrhalis (MIC90 ≤0.016 µg/ml). TP-271 showed activity (MIC90 = 0.12 µg/ml) against community-acquired MRSA expressing Panton-Valentine leukocidin (PVL). MIC90 values against Mycoplasma pneumoniae, Legionella pneumophila, and Chlamydia pneumoniae were 0.004, 1, and 4 µg/ml, respectively. TP-271 was efficacious in neutropenic and immunocompetent animal pneumonia models, generally showing, compared to the burden at the start of dosing, ~2 to 5 log10 CFU reductions against MRSA, S. pneumoniae, and H. influenzae infections when given intravenously (i.v.) and ~1 to 4 log10 CFU reductions when given orally (p.o.). TP-271 was potent against key community-acquired bacterial pneumonia (CABP) pathogens and was minimally affected, or unaffected, by tetracycline-specific resistance mechanisms and fluoroquinolone or macrolide drug resistance phenotypes. IMPORTANCE Rising resistance rates for macrolides, fluoroquinolones, and β-lactams in the most common pathogens associated with community-acquired bacterial pneumonia (CABP) are of concern, especially for cases of moderate to severe infections in vulnerable populations such as the very young and the elderly. New antibiotics that are active against multidrug-resistant Streptococcus pneumoniae and Staphylococcus aureus are needed for use in the empirical treatment of the most severe forms of this disease. TP-271 is a promising

  3. Bacteriocin from Bacillus subtilis as a novel drug against diabetic foot ulcer bacterial pathogens

    PubMed Central

    Joseph, Baby; Dhas, Berlina; Hena, Vimalin; Raj, Justin

    2013-01-01

    Objective To isolate and identify Bacillus subtilis (B. subtilis) from soil and to characterize and partially purify the bacteriocin. To evaluate the antimicrobial activity against four diabetic foot ulcer bacterial pathogens. Methods Genotypic identification was done based on Bergey's manual of systemic bacteriology. Antimicrobial susceptibility test was done by Kirby-Bauer disc diffusion method. Colonies were identified by colony morphology and biochemical characterization and also compared with MTCC 121 strain. Further identification was done by 16S rRNA sequencing. Inhibitory activities of partially purified bacteriocin on all the DFU isolates were done by agar well diffusion method. The strain was identified to produce bacteriocin by stab overlay assay. Bacteriocin was extracted by organic solvent extraction using chloroform, further purified by HPLC and physical, and chemical characterization was performed. Results The four isolates showed high level of resistance to amoxyclav and sensitivity to ciprofloxacin. HPLC purification revealed that the extracts are bacteriocin. The phylogenetic tree analysis results showed that the isolate was 99% related to B. subtilis BSF01. The results reveled activity to all the four isolates and high level of activity was seen in case of Klebsiella sp. Conclusions Partially purified bacteriocin was found to have antimicrobial activity against the four diabetic foot ulcer bacterial pathogens, which can thus be applied as a better drug molecule on further studies. The strain B. subtilis are found to be safe for use and these antimicrobial peptides can be used as an antimicrobial in humans to treat DFU bacterial pathogens. PMID:24093784

  4. Bacteriocin from Bacillus subtilis as a novel drug against diabetic foot ulcer bacterial pathogens.

    PubMed

    Joseph, Baby; Dhas, Berlina; Hena, Vimalin; Raj, Justin

    2013-12-01

    To isolate and identify Bacillus subtilis (B. subtilis) from soil and to characterize and partially purify the bacteriocin. To evaluate the antimicrobial activity against four diabetic foot ulcer bacterial pathogens. Genotypic identification was done based on Bergey's manual of systemic bacteriology. Antimicrobial susceptibility test was done by Kirby-Bauer disc diffusion method. Colonies were identified by colony morphology and biochemical characterization and also compared with MTCC 121 strain. Further identification was done by 16S rRNA sequencing. Inhibitory activities of partially purified bacteriocin on all the DFU isolates were done by agar well diffusion method. The strain was identified to produce bacteriocin by stab overlay assay. Bacteriocin was extracted by organic solvent extraction using chloroform, further purified by HPLC and physical, and chemical characterization was performed. The four isolates showed high level of resistance to amoxyclav and sensitivity to ciprofloxacin. HPLC purification revealed that the extracts are bacteriocin. The phylogenetic tree analysis results showed that the isolate was 99% related to B. subtilis BSF01. The results reveled activity to all the four isolates and high level of activity was seen in case of Klebsiella sp. Partially purified bacteriocin was found to have antimicrobial activity against the four diabetic foot ulcer bacterial pathogens, which can thus be applied as a better drug molecule on further studies. The strain B. subtilis are found to be safe for use and these antimicrobial peptides can be used as an antimicrobial in humans to treat DFU bacterial pathogens. Copyright © 2013 Asian Pacific Tropical Biomedical Magazine. Published by Elsevier B.V. All rights reserved.

  5. Enteric bacterial pathogen detection in southern sea otters (Enhydra lutris nereis) is associated with coastal urbanization and freshwater runoff

    PubMed Central

    Miller, Melissa A.; Byrne, Barbara A.; Jang, Spencer S.; Dodd, Erin M.; Dorfmeier, Elene; Harris, Michael D.; Ames, Jack; Paradies, David; Worcester, Karen; Jessup, David A.; Miller, Woutrina A.

    2009-01-01

    Although protected for nearly a century, California’s sea otters have been slow to recover, in part due to exposure to fecally-associated protozoal pathogens like Toxoplasma gondii and Sarcocystis neurona. However, potential impacts from exposure to fecal bacteria have not been systematically explored. Using selective media, we examined feces from live and dead sea otters from California for specific enteric bacterial pathogens (Campylobacter, Salmonella, Clostridium perfringens, C. difficile and Escherichia coli O157:H7), and pathogens endemic to the marine environment (Vibrio cholerae, V. parahaemolyticus and Plesiomonas shigelloides). We evaluated statistical associations between detection of these pathogens in otter feces and demographic or environmental risk factors for otter exposure, and found that dead otters were more likely to test positive for C. perfringens, Campylobacter and V. parahaemolyticus than were live otters. Otters from more urbanized coastlines and areas with high freshwater runoff (near outflows of rivers or streams) were more likely to test positive for one or more of these bacterial pathogens. Other risk factors for bacterial detection in otters included male gender and fecal samples collected during the rainy season when surface runoff is maximal. Similar risk factors were reported in prior studies of pathogen exposure for California otters and their invertebrate prey, suggesting that land-sea transfer and/or facilitation of pathogen survival in degraded coastal marine habitat may be impacting sea otter recovery. Because otters and humans share many of the same foods, our findings may also have implications for human health. PMID:19720009

  6. How Bacterial Pathogens Eat Host Lipids: Implications for the Development of Fatty Acid Synthesis Therapeutics*

    PubMed Central

    Yao, Jiangwei; Rock, Charles O.

    2015-01-01

    Bacterial type II fatty acid synthesis (FASII) is a target for the development of novel therapeutics. Bacteria incorporate extracellular fatty acids into membrane lipids, raising the question of whether pathogens use host fatty acids to bypass FASII and defeat FASII therapeutics. Some pathogens suppress FASII when exogenous fatty acids are present to bypass FASII therapeutics. FASII inhibition cannot be bypassed in many bacteria because essential fatty acids cannot be obtained from the host. FASII antibiotics may not be effective against all bacteria, but a broad spectrum of Gram-negative and -positive pathogens can be effectively treated with FASII inhibitors. PMID:25648887

  7. Antimicrobial activities of Streptomyces pulcher, S. canescens and S. citreofluorescens against fungal and bacterial pathogens of tomato in vitro.

    PubMed

    el-Abyad, M S; el-Sayed, M A; el-Shanshoury, A R; el-Sabbagh, S M

    1996-01-01

    Thirty-seven actinomycete species isolated from fertile cultivated soils in Egypt were screened for the production of antimicrobial compounds against a variety of test organisms. Most of the isolates exhibited antimicrobial activities against Gram-positive, Gram-negative, and acid-fast bacteria, yeasts and filamentous fungi, with special attention to fungal and bacterial pathogens of tomato. On starch-nitrate agar, 14 strains were active against Fusarium oxysporum f.sp. lycopersici (the cause of Fusarium wilt), 18 against Verticillium albo-atrum (the cause of Verticillium wilt), and 18 against Alternaria solani (the cause of early blight). In liquid media, 14 isolates antagonized Pseudomonas solanacearum (the cause of bacterial wilt) and 20 antagonized Clavibacter michiganensis ssp. michiganensis (the cause of bacterial canker). The most active antagonists of the pathogenic microorganisms studied were found to be Streptomyces pulcher, S. canescens (syn. S. albidoflavus) and S. citreofluorescens (syn. S. anulatus). The antagonistic activities of S. pulcher and S. canescens against pathogenic fungi were assessed on solid media, and those of S. pulcher and S. citreofluorescens against pathogenic bacteria in liquid media under shaking conditions. The optimum culture conditions were determined.

  8. Comparison of direct-plating and broth-enrichment culture methods for detection of potential bacterial pathogens in respiratory secretions.

    PubMed

    Kaur, Ravinder; Wischmeyer, Jareth; Morris, Matthew; Pichichero, Michael E

    2017-11-01

    We compared the recovery of potential respiratory bacterial pathogens and normal flora from nasopharyngeal specimens collected from children during health and at the onset of acute otitis media (AOM) by selective direct-plating and overnight broth-enrichment. Overall, 3442 nasal wash (NW) samples collected from young children were analysed from a 10-year prospective study. NWs were cultured by (1) direct-plating to TSAII/5 % sheep blood agar and chocolate agar plates and (2) overnight broth-enrichment in BacT/ALERT SA-broth followed by plating. Standard microbiology techniques were applied to identify three dominant respiratory bacterial pathogens: Streptococcus pneumoniae (Spn), Haemophilus influenzae (Hflu) and Moraxella catarrhalis (Mcat) as well as two common nasal flora, Staphylococcus aureus (SA) and alpha-haemolytic Streptococci (AHS).Results/Key findings. Direct-plating of NW resulted in isolation of Spn from 37.8 %, Hflu from 13.6 % and Mcat from 33.2 % of samples. In comparison, overnight broth-enrichment isolated fewer Spn (30.1 %), Hflu (6.2 %) and Mcat (16.2 %) (P<0.001-0.0001). Broth-enrichment resulted in significant increased isolation of SA (6.0 %) and AHS (30.1 %) (P<0.0001). Competition between bacterial species in broth when both species were detected by direct-plating was assessed, and it was found that SA and AHS out-competed other species during broth-enrichment when samples were collected from healthy children but not during AOM. In middle ear fluids (MEF) at the onset of AOM, broth-enrichment resulted in higher recovery of Spn (+10.4 %, P<0.001), Hflu (+4.4 %, P=0.39) and Mcat (+13.5 %, <0.001). Broth-enrichment significantly reduces the accurate detection of bacterial respiratory pathogens and increases identification of SA and AHS in NW. Broth-enrichment improves detection of bacterial respiratory pathogens in MEF samples.

  9. Identification of causative pathogens in mouse eyes with bacterial keratitis by sequence analysis of 16S rDNA libraries

    PubMed Central

    Song, Hong-Yan; Qiu, Bao-Feng; Liu, Chun; Zhu, Shun-Xing; Wang, Sheng-Cun; Miao, Jin; Jing, Jing; Shao, Yi-Xiang

    2014-01-01

    The clone library method using PCR amplification of the 16S ribosomal RNA (rRNA) gene was used to identify pathogens from corneal scrapings of C57BL/6-corneal opacity (B6-Co) mice with bacterial keratitis. All 10 samples from the eyes with bacterial keratitis showed positive PCR results. All 10 samples from the normal cornea showed negative PCR results. In all 10 PCR-positive samples, the predominant and second most predominant species accounted for 20.9 to 40.6% and 14.7 to 26.1%, respectively, of each clone library. The predominant species were Staphylococcus lentus, Pseudomonas aeruginosa, and Staphylococcus epidermidis. The microbiota analysis detected a diverse group of microbiota in the eyes of B6-Co mice with bacterial keratitis and showed that the causative pathogens could be determined based on percentages of bacterial species in the clone libraries. The bacterial species detected in this study were mostly in accordance with results of studies on clinical bacterial keratitis in human eyes. Based on the results of our previous studies and this study, the B6-Co mouse should be considered a favorable model for studying bacterial keratitis. PMID:25312507

  10. Fungi in the cystic fibrosis lung: bystanders or pathogens?

    PubMed

    Chotirmall, Sanjay H; McElvaney, Noel G

    2014-07-01

    Improvement to the life expectancy of people with cystic fibrosis (PWCF) brings about novel challenges including the need for evaluation of the role of fungi in the cystic fibrosis (CF) lung. To determine if such organisms represent bystanders or pathogens affecting clinical outcomes we review the existing knowledge from a clinical, biochemical, inflammatory and immunological perspective. The prevalence and importance of fungi in the CF airway has likely been underestimated with the most frequently isolated filamentous fungi being Aspergillus fumigatus and Scedosporium apiospermum and the major yeast Candida albicans. Developing non-culture based microbiological methods for fungal detection has improved both our classification and understanding of their clinical consequences including localized, allergic and systemic infections. Cross-kingdom interaction between bacteria and fungi are discussed as is the role of biofilms further affecting clinical outcome. A combination of host and pathogen-derived factors determines if a particular fungus represents a commensal, colonizer or pathogen in the setting of CF. The underlying immune state, disease severity and treatment burden represent key host variables whilst fungal type, form, chronicity and virulence including the ability to evade immune recognition determines the pathogenic potential of a specific fungus at a particular point in time. Further research in this emerging field is warranted to fully elucidate the spectrum of disease conferred by the presence of fungi in the CF airway and the indications for therapeutic interventions. Copyright © 2014. Published by Elsevier Ltd.

  11. Multiplicity of Mathematical Modeling Strategies to Search for Molecular and Cellular Insights into Bacteria Lung Infection

    PubMed Central

    Cantone, Martina; Santos, Guido; Wentker, Pia; Lai, Xin; Vera, Julio

    2017-01-01

    Even today two bacterial lung infections, namely pneumonia and tuberculosis, are among the 10 most frequent causes of death worldwide. These infections still lack effective treatments in many developing countries and in immunocompromised populations like infants, elderly people and transplanted patients. The interaction between bacteria and the host is a complex system of interlinked intercellular and the intracellular processes, enriched in regulatory structures like positive and negative feedback loops. Severe pathological condition can emerge when the immune system of the host fails to neutralize the infection. This failure can result in systemic spreading of pathogens or overwhelming immune response followed by a systemic inflammatory response. Mathematical modeling is a promising tool to dissect the complexity underlying pathogenesis of bacterial lung infection at the molecular, cellular and tissue levels, and also at the interfaces among levels. In this article, we introduce mathematical and computational modeling frameworks that can be used for investigating molecular and cellular mechanisms underlying bacterial lung infection. Then, we compile and discuss published results on the modeling of regulatory pathways and cell populations relevant for lung infection and inflammation. Finally, we discuss how to make use of this multiplicity of modeling approaches to open new avenues in the search of the molecular and cellular mechanisms underlying bacterial infection in the lung. PMID:28912729

  12. Multiplicity of Mathematical Modeling Strategies to Search for Molecular and Cellular Insights into Bacteria Lung Infection.

    PubMed

    Cantone, Martina; Santos, Guido; Wentker, Pia; Lai, Xin; Vera, Julio

    2017-01-01

    Even today two bacterial lung infections, namely pneumonia and tuberculosis, are among the 10 most frequent causes of death worldwide. These infections still lack effective treatments in many developing countries and in immunocompromised populations like infants, elderly people and transplanted patients. The interaction between bacteria and the host is a complex system of interlinked intercellular and the intracellular processes, enriched in regulatory structures like positive and negative feedback loops. Severe pathological condition can emerge when the immune system of the host fails to neutralize the infection. This failure can result in systemic spreading of pathogens or overwhelming immune response followed by a systemic inflammatory response. Mathematical modeling is a promising tool to dissect the complexity underlying pathogenesis of bacterial lung infection at the molecular, cellular and tissue levels, and also at the interfaces among levels. In this article, we introduce mathematical and computational modeling frameworks that can be used for investigating molecular and cellular mechanisms underlying bacterial lung infection. Then, we compile and discuss published results on the modeling of regulatory pathways and cell populations relevant for lung infection and inflammation. Finally, we discuss how to make use of this multiplicity of modeling approaches to open new avenues in the search of the molecular and cellular mechanisms underlying bacterial infection in the lung.

  13. Dynamics of fecal indicator bacteria, bacterial pathogen genes, and organic wastewater contaminants in the Little Calumet River: Portage Burns Waterway, Indiana

    USGS Publications Warehouse

    Haack, Sheridan K.; Duris, Joseph W.

    2013-01-01

    Little information exists on the co-occurrence of fecal indicator bacteria (FIB), bacterial pathogens, and organic wastewater-associated chemicals (OWCs) within Great Lakes tributaries. Fifteen watershed sites and one beach site adjacent to the Little Calumet River–Portage Burns Waterway (LCRPBW) on Lake Michigan were tested on four dates for pH, dissolved oxygen, specific conductance, chloride, color, ammonia- and nitrate-nitrogen, soluble phosphorus, sulfate, turbidity, and atrazine; for concentrations of FIB; and for genes indicating the presence of human-pathogenic enterococci (ENT) and of Shiga-toxin producing Escherichia coli (EC) from various animal sources. Nineteen samples were also tested for 60 OWCs. Half of the watershed samples met EC recreational water quality standards; none met ENT standards. Human-wastewater-associated OWC detections were correlated with human-influence indicators such as population/km2, chloride concentrations, and the presence of WWTP effluents, but EC and ENT concentrations were not. Bacterial pathogen genes indicated rural human and several potential animal sources. OWCs of human or ecosystem health concern (musk fragrances AHTN and HHCB, alkylphenols, carbamazepine) and 3 bacterial pathogen genes were detected at the mouth of the LCRPBW, but no such OWCs and only 1 pathogen gene were detected at the beach. The LCRPBW has significant potential to deliver FIB, potential bacterial pathogens, and OWCs of human or ecosystem health concern to the nearshore of Lake Michigan, under conditions enhancing nearshore transport of the river plume. Nearshore mixing of lake and river water, and the lack of relationship between OWCs and FIB or pathogen genes, pose numerous challenges for watershed and nearshore assessment and remediation.

  14. The Sit-and-Wait Hypothesis in Bacterial Pathogens: A Theoretical Study of Durability and Virulence.

    PubMed

    Wang, Liang; Liu, Zhanzhong; Dai, Shiyun; Yan, Jiawei; Wise, Michael J

    2017-01-01

    The intriguing sit-and-wait hypothesis predicts that bacterial durability in the external environment is positively correlated with their virulence. Since its first proposal in 1987, the hypothesis has been spurring debates in terms of its validity in the field of bacterial virulence. As a special case of the vector-borne transmission versus virulence tradeoff, where vector is now replaced by environmental longevity, there are only sporadic studies over the last three decades showing that environmental durability is possibly linked with virulence. However, no systematic study of these works is currently available and epidemiological analysis has not been updated for the sit-and-wait hypothesis since the publication of Walther and Ewald's (2004) review. In this article, we put experimental evidence, epidemiological data and theoretical analysis together to support the sit-and-wait hypothesis. According to the epidemiological data in terms of gain and loss of virulence (+/-) and durability (+/-) phenotypes, we classify bacteria into four groups, which are: sit-and-wait pathogens (++), vector-borne pathogens (+-), obligate-intracellular bacteria (--), and free-living bacteria (-+). After that, we dive into the abundant bacterial proteomic data with the assistance of bioinformatics techniques in order to investigate the two factors at molecular level thanks to the fast development of high-throughput sequencing technology. Sequences of durability-related genes sourced from Gene Ontology and UniProt databases and virulence factors collected from Virulence Factor Database are used to search 20 corresponding bacterial proteomes in batch mode for homologous sequences via the HMMER software package. Statistical analysis only identified a modest, and not statistically significant correlation between mortality and survival time for eight non-vector-borne bacteria with sit-and-wait potentials. Meanwhile, through between-group comparisons, bacteria with higher host-mortality are

  15. The Sit-and-Wait Hypothesis in Bacterial Pathogens: A Theoretical Study of Durability and Virulence

    PubMed Central

    Wang, Liang; Liu, Zhanzhong; Dai, Shiyun; Yan, Jiawei; Wise, Michael J.

    2017-01-01

    The intriguing sit-and-wait hypothesis predicts that bacterial durability in the external environment is positively correlated with their virulence. Since its first proposal in 1987, the hypothesis has been spurring debates in terms of its validity in the field of bacterial virulence. As a special case of the vector-borne transmission versus virulence tradeoff, where vector is now replaced by environmental longevity, there are only sporadic studies over the last three decades showing that environmental durability is possibly linked with virulence. However, no systematic study of these works is currently available and epidemiological analysis has not been updated for the sit-and-wait hypothesis since the publication of Walther and Ewald’s (2004) review. In this article, we put experimental evidence, epidemiological data and theoretical analysis together to support the sit-and-wait hypothesis. According to the epidemiological data in terms of gain and loss of virulence (+/-) and durability (+/-) phenotypes, we classify bacteria into four groups, which are: sit-and-wait pathogens (++), vector-borne pathogens (+-), obligate-intracellular bacteria (--), and free-living bacteria (-+). After that, we dive into the abundant bacterial proteomic data with the assistance of bioinformatics techniques in order to investigate the two factors at molecular level thanks to the fast development of high-throughput sequencing technology. Sequences of durability-related genes sourced from Gene Ontology and UniProt databases and virulence factors collected from Virulence Factor Database are used to search 20 corresponding bacterial proteomes in batch mode for homologous sequences via the HMMER software package. Statistical analysis only identified a modest, and not statistically significant correlation between mortality and survival time for eight non-vector-borne bacteria with sit-and-wait potentials. Meanwhile, through between-group comparisons, bacteria with higher host

  16. Role of viral and bacterial pathogens in causing pneumonia among Western Australian children: a case–control study protocol

    PubMed Central

    Bhuiyan, Mejbah Uddin; Snelling, Thomas L; West, Rachel; Lang, Jurissa; Rahman, Tasmina; Borland, Meredith L; Thornton, Ruth; Kirkham, Lea-Ann; Sikazwe, Chisha; Martin, Andrew C; Richmond, Peter C; Smith, David W; Jaffe, Adam; Blyth, Christopher C

    2018-01-01

    Introduction Pneumonia is the leading cause of childhood morbidity and mortality globally. Introduction of the conjugate Haemophilus influenzae B and multivalent pneumococcal vaccines in developed countries including Australia has significantly reduced the overall burden of bacterial pneumonia. With the availability of molecular diagnostics, viruses are frequently detected in children with pneumonia either as primary pathogens or predispose to secondary bacterial infection. Many respiratory pathogens that are known to cause pneumonia are also identified in asymptomatic children, so the true contribution of these pathogens to childhood community-acquired pneumonia (CAP) remains unclear. Since the introduction of pneumococcal vaccines, very few comprehensive studies from developed countries have attempted to determine the bacterial and viral aetiology of pneumonia. We aim to determine the contribution of bacteria and viruses to childhood CAP to inform further development of effective diagnosis, treatment and preventive strategies. Methods and analysis We are conducting a prospective case–control study (PneumoWA) where cases are children with radiologically confirmed pneumonia admitted to Princess Margaret Hospital for Children (PMH) and controls are healthy children identified from PMH outpatient clinics and from local community immunisation clinics. The case–control ratio is 1:1 with 250 children to be recruited in each arm. Nasopharyngeal swabs are collected from both cases and controls to detect the presence of viruses and bacteria by PCR; pathogen load will be assessed by quantitative PCR. The prevalence of pathogens detected in cases and controls will be compared, the OR of detection and population attributable fraction to CAP for each pathogen will be determined; relationships between pathogen load and disease status and severity will be explored. Ethics and dissemination This study has been approved by the human research ethics committees of PMH, Perth

  17. Insights into the Emergent Bacterial Pathogen Cronobacter spp., Generated by Multilocus Sequence Typing and Analysis

    PubMed Central

    Joseph, Susan; Forsythe, Stephen J.

    2012-01-01

    Cronobacter spp. (previously known as Enterobacter sakazakii) is a bacterial pathogen affecting all age groups, with particularly severe clinical complications in neonates and infants. One recognized route of infection being the consumption of contaminated infant formula. As a recently recognized bacterial pathogen of considerable importance and regulatory control, appropriate detection, and identification schemes are required. The application of multilocus sequence typing (MLST) and analysis (MLSA) of the seven alleles atpD, fusA, glnS, gltB, gyrB, infB, and ppsA (concatenated length 3036 base pairs) has led to considerable advances in our understanding of the genus. This approach is supported by both the reliability of DNA sequencing over subjective phenotyping and the establishment of a MLST database which has open access and is also curated; http://www.pubMLST.org/cronobacter. MLST has been used to describe the diversity of the newly recognized genus, instrumental in the formal recognition of new Cronobacter species (C. universalis and C. condimenti) and revealed the high clonality of strains and the association of clonal complex 4 with neonatal meningitis cases. Clearly the MLST approach has considerable benefits over the use of non-DNA sequence based methods of analysis for newly emergent bacterial pathogens. The application of MLST and MLSA has dramatically enabled us to better understand this opportunistic bacterium which can cause irreparable damage to a newborn baby’s brain, and has contributed to improved control measures to protect neonatal health. PMID:23189075

  18. Global analysis of gene expression reveals mRNA superinduction is required for the inducible immune response to a bacterial pathogen

    PubMed Central

    Barry, Kevin C; Ingolia, Nicholas T; Vance, Russell E

    2017-01-01

    The inducible innate immune response to infection requires a concerted process of gene expression that is regulated at multiple levels. Most global analyses of the innate immune response have focused on transcription induced by defined immunostimulatory ligands, such as lipopolysaccharide. However, the response to pathogens involves additional complexity, as pathogens interfere with virtually every step of gene expression. How cells respond to pathogen-mediated disruption of gene expression to nevertheless initiate protective responses remains unclear. We previously discovered that a pathogen-mediated blockade of host protein synthesis provokes the production of specific pro-inflammatory cytokines. It remains unclear how these cytokines are produced despite the global pathogen-induced block of translation. We addressed this question by using parallel RNAseq and ribosome profiling to characterize the response of macrophages to infection with the intracellular bacterial pathogen Legionella pneumophila. Our results reveal that mRNA superinduction is required for the inducible immune response to a bacterial pathogen. DOI: http://dx.doi.org/10.7554/eLife.22707.001 PMID:28383283

  19. Airway fungal colonization compromises the immune system allowing bacterial pneumonia to prevail.

    PubMed

    Roux, Damien; Gaudry, Stéphane; Khoy-Ear, Linda; Aloulou, Meryem; Phillips-Houlbracq, Mathilde; Bex, Julie; Skurnik, David; Denamur, Erick; Monteiro, Renato C; Dreyfuss, Didier; Ricard, Jean-Damien

    2013-09-01

    To study the correlation between fungal colonization and bacterial pneumonia and to test the effect of antifungal treatments on the development of bacterial pneumonia in colonized rats. Experimental animal investigation. University research laboratory. Pathogen-free male Wistar rats weighing 250-275 g. Rats were colonized by intratracheal instillation of Candida albicans. Fungal clearance from the lungs and immune response were measured. Both colonized and noncolonized animals were secondarily instilled with different bacterial species (Pseudomonas aeruginosa, Escherichia coli, or Staphylococcus aureus). Bacterial phagocytosis by alveolar macrophages was evaluated in the presence of interferon-gamma, the main cytokine produced during fungal colonization. The effect of antifungal treatments on fungal colonization and its immune response were assessed. The prevalence of P. aeruginosa pneumonia was compared in antifungal treated and control colonized rats. C. albicans was slowly cleared and induced a Th1-Th17 immune response with very high interferon-gamma concentrations. Airway fungal colonization favored the development of bacterial pneumonia. Interferon-gamma was able to inhibit the phagocytosis of unopsonized bacteria by alveolar macrophages. Antifungal treatment decreased airway fungal colonization, lung interferon-gamma levels and, consequently, the prevalence of subsequent bacterial pneumonia. C. albicans airway colonization elicited a Th1-Th17 immune response that favored the development of bacterial pneumonia via the inhibition of bacterial phagocytosis by alveolar macrophages. Antifungal treatment decreased the risk of bacterial pneumonia in colonized rats.

  20. Diverse mechanisms of metaeffector activity in an intracellular bacterial pathogen, Legionella pneumophila

    DOE PAGES

    Urbanus, Malene L.; Quaile, Andrew T.; Stogios, Peter J.; ...

    2016-12-16

    Pathogens deliver complex arsenals of translocated effector proteins to host cells during infection, but the extent to which these proteins are regulated once inside the eukaryotic cell remains poorly defined. Among all bacterial pathogens, Legionella pneumophila maintains the largest known set of translocated substrates, delivering over 300 proteins to the host cell via its Type IVB, Icm/Dot translocation system. Backed by a few notable examples of effector–effector regulation in L. pneumophila, we sought to define the extent of this phenomenon through a systematic analysis of effector–effector functional interaction. We used Saccharomyces cerevisiae, an established proxy for the eukaryotic host, tomore » query > 108,000 pairwise genetic interactions between two compatible expression libraries of ~330 L. pneumophila–translocated substrates. While capturing all known examples of effector–effector suppression, we identify fourteen novel translocated substrates that suppress the activity of other bacterial effectors and one pair with synergistic activities. In at least nine instances, this regulation is direct—a hallmark of an emerging class of proteins called metaeffectors, or “effectors of effectors”. Through detailed structural and functional analysis, we show that metaeffector activity derives from a diverse range of mechanisms, shapes evolution, and can be used to reveal important aspects of each cognate effector's function. Here, metaeffectors, along with other, indirect, forms of effector–effector modulation, may be a common feature of many intracellular pathogens—with unrealized potential to inform our understanding of how pathogens regulate their interactions with the host cell.« less

  1. A Bacterial Pathogen uses Distinct Type III Secretion Systems to Alternate between Host Kingdom

    USDA-ARS?s Scientific Manuscript database

    Gram-negative bacterial pathogens of eukaryotes often secrete proteins directly into host cells via a needle-like protein channel called a ‘type III secretion system’ (T3SS). Bacteria that are adapted to either animal or plant hosts use phylogenetically distinct T3SSs for secreting proteins. Here, ...

  2. Characterization of bacterial pathogens in rural and urban irrigation water.

    PubMed

    Aijuka, Matthew; Charimba, George; Hugo, Celia J; Buys, Elna M

    2015-03-01

    The study aimed to compare the bacteriological quality of an urban and rural irrigation water source. Bacterial counts, characterization, identification and diversity of aerobic bacteria were determined. Escherichia coli isolated from both sites was subjected to antibiotic susceptibility testing, virulence gene (Stx1/Stx2 and eae) determination and (GTG)5 Rep-PCR fingerprinting. Low mean monthly counts for aerobic spore formers, anaerobic spore formers and Staphylococcus aureus were noted although occasional spikes were observed. The most prevalent bacterial species at both sites were Bacillus spp., E. coli and Enterobacter spp. In addition, E. coli and Bacillus spp. were most prevalent in winter and summer respectively. Resistance to at least one antibiotic was 84% (rural) and 83% (urban). Highest resistance at both sites was to cephalothin and ampicillin. Prevalence of E. coli possessing at least one virulence gene (Stx1/Stx2 and eae) was 15% (rural) and 42% (urban). All (rural) and 80% (urban) of E. coli possessing virulence genes showed antibiotic resistance. Complete genetic relatedness (100%) was shown by 47% of rural and 67% of urban E. coli isolates. Results from this study show that surface irrigation water sources regardless of geographical location and surrounding land-use practices can be reservoirs of similar bacterial pathogens.

  3. Evaluation of the diagnostic value of fluorescent in situ hybridization in a rat model of bacterial pneumonia.

    PubMed

    Atieh, Thérèse; Audoly, Gilles; Hraiech, Sami; Lepidi, Hubert; Roch, Antoine; Rolain, Jean-Marc; Raoult, Didier; Papazian, Laurent; Brégeon, Fabienne

    2013-08-01

    In severe nosocomial pneumonia, the pathogenic responsibility of bacteria isolated from airways is far from certain, and a lung biopsy is sometimes performed. However, detection and identification of pathogens are frequently unachieved. Here, we developed a protocol for direct visualization of bacteria within the lung tissue using fluorescent in situ hybridization (FISH) in a rat model of Acinetobacter baumannii pneumonia. The reference positive diagnosis of bacterial pneumonia was the presence of pathological signs of pneumonia associated with the proof of bacteria or bacterial PCR products into the parenchyma. By analysis of 122 sets of slices from 26 rats and using the eubacterial probe EUB-338, our results show that FISH reached a sensitivity and a diagnostic accuracy higher than that of optic microscopy (sensitivity: 96% versus 55.4% and diagnostic accuracy: 96.7% versus 66.4%), whereas both approaches had 100% specificity. FISH could be useful especially on negative biopsies from patients with suspected infectious pneumonia. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. SIGIRR, a negative regulator of TLR/IL-1R signalling promotes Microbiota dependent resistance to colonization by enteric bacterial pathogens.

    PubMed

    Sham, Ho Pan; Yu, Emily Yi Shan; Gulen, Muhammet F; Bhinder, Ganive; Stahl, Martin; Chan, Justin M; Brewster, Lara; Morampudi, Vijay; Gibson, Deanna L; Hughes, Michael R; McNagny, Kelly M; Li, Xiaoxia; Vallance, Bruce A

    2013-01-01

    Enteric bacterial pathogens such as enterohemorrhagic E. coli (EHEC) and Salmonella Typhimurium target the intestinal epithelial cells (IEC) lining the mammalian gastrointestinal tract. Despite expressing innate Toll-like receptors (TLRs), IEC are innately hypo-responsive to most bacterial products. This is thought to prevent maladaptive inflammatory responses against commensal bacteria, but it also limits antimicrobial responses by IEC to invading bacterial pathogens, potentially increasing host susceptibility to infection. One reason for the innate hypo-responsiveness of IEC is their expression of Single Ig IL-1 Related Receptor (SIGIRR), a negative regulator of interleukin (IL)-1 and TLR signaling. To address whether SIGIRR expression and the innate hypo-responsiveness of IEC impacts on enteric host defense, Sigirr deficient (-/-) mice were infected with the EHEC related pathogen Citrobacter rodentium. Sigirr -/- mice responded with accelerated IEC proliferation and strong pro-inflammatory and antimicrobial responses but surprisingly, Sigirr -/- mice proved dramatically more susceptible to infection than wildtype mice. Through haematopoietic transplantation studies, it was determined that SIGIRR expression by non-haematopoietic cells (putative IEC) regulated these responses. Moreover, the exaggerated responses were found to be primarily dependent on IL-1R signaling. Whilst exploring the basis for their susceptibility, Sigirr -/- mice were found to be unusually susceptible to intestinal Salmonella Typhimurium colonization, developing enterocolitis without the typical requirement for antibiotic based removal of competing commensal microbes. Strikingly, the exaggerated antimicrobial responses seen in Sigirr -/- mice were found to cause a rapid and dramatic loss of commensal microbes from the infected intestine. This depletion appears to reduce the ability of the microbiota to compete for space and nutrients (colonization resistance) with the invading pathogens

  5. Nitrate, nitrite and nitric oxide reductases: from the last universal common ancestor to modern bacterial pathogens

    PubMed Central

    Vázquez-Torres, Andrés; Bäumler, Andreas

    2016-01-01

    The electrochemical gradient that ensues from the enzymatic activity of cytochromes such as nitrate reductase, nitric oxide reductase, and quinol oxidase contributes to the bioenergetics of the bacterial cell. Reduction of nitrogen oxides by bacterial pathogens can, however, be uncoupled from proton translocation and biosynthesis of ATP or NH4+, but still linked to quinol and NADH oxidation. Ancestral nitric oxide reductases, as well as cytochrome coxidases and quinol bo oxidases evolved from the former, are capable of binding and detoxifying nitric oxide to nitrous oxide. The NO-metabolizing activity associated with these cytochromes can be a sizable source of antinitrosative defense in bacteria during their associations with host cells. Nitrosylation of terminal cytochromes arrests respiration, reprograms bacterial metabolism, stimulates antioxidant defenses and alters antibiotic cytotoxicity. Collectively, the bioenergetics and regulation of redox homeostasis that accompanies the utilization of nitrogen oxides and detoxification of nitric oxide by cytochromes of the electron transport chain increases fitness of many Gram-positive and –negative pathogens during their associations with invertebrate and vertebrate hosts. PMID:26426528

  6. Regulation of transcription by eukaryotic-like serine-threonine kinases and phosphatases in Gram-positive bacterial pathogens

    PubMed Central

    Wright, David P; Ulijasz, Andrew T

    2014-01-01

    Bacterial eukaryotic-like serine threonine kinases (eSTKs) and serine threonine phosphatases (eSTPs) have emerged as important signaling elements that are indispensable for pathogenesis. Differing considerably from their histidine kinase counterparts, few eSTK genes are encoded within the average bacterial genome, and their targets are pleiotropic in nature instead of exclusive. The growing list of important eSTK/P substrates includes proteins involved in translation, cell division, peptidoglycan synthesis, antibiotic tolerance, resistance to innate immunity and control of virulence factors. Recently it has come to light that eSTK/Ps also directly modulate transcriptional machinery in many microbial pathogens. This novel form of regulation is now emerging as an additional means by which bacteria can alter their transcriptomes in response to host-specific environmental stimuli. Here we focus on the ability of eSTKs and eSTPs in Gram-positive bacterial pathogens to directly modulate transcription, the known mechanistic outcomes of these modifications, and their roles as an added layer of complexity in controlling targeted RNA synthesis to enhance virulence potential. PMID:25603430

  7. Cultivation and qPCR Detection of Pathogenic and Antibiotic-Resistant Bacterial Establishment in Naive Broiler Houses.

    PubMed

    Brooks, J P; McLaughlin, M R; Adeli, A; Miles, D M

    2016-05-01

    Conventional commercial broiler production involves the rearing of more than 20,000 broilers in a single confined space for approximately 6.5 wk. This environment is known for harboring pathogens and antibiotic-resistant bacteria, but studies have focused on previously established houses with mature litter microbial populations. In the current study, a set of three naive houses were followed from inception through 11 broiler flocks and monitored for ambient climatic conditions, bacterial pathogens, and antibiotic resistance. Within the first 3 wk of the first flock cycle, 100% of litter samples were positive for and , whereas was cultivation negative but PCR positive. Antibiotic resistance genes were ubiquitously distributed throughout the litter within the first flock, approaching 10 to 10 genomic units g. Preflock litter levels were approximately 10 CFU g for heterotrophic plate count bacteria, whereas midflock levels were >10 colony forming units (CFU) g; other indicators demonstrated similar increases. The influence of intrahouse sample location was minor. In all likelihood, given that preflock levels were negative for pathogens and antibiotic resistance genes and 4 to 5 Log lower than flock levels for indicators, incoming birds most likely provided the colonizing microbiome, although other sources were not ruled out. Most bacterial groups experienced a cyclical pattern of litter contamination seen in other studies, whereas microbial stabilization required approximately four flocks. This study represents a first-of-its-kind view into the time required for bacterial pathogens and antibiotic resistance to colonize and establish in naive broiler houses. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Lung Macrophages “Digest” Carbon Nanotubes Using a Superoxide/Peroxynitrite Oxidative Pathway

    PubMed Central

    2015-01-01

    In contrast to short-lived neutrophils, macrophages display persistent presence in the lung of animals after pulmonary exposure to carbon nanotubes. While effective in the clearance of bacterial pathogens and injured host cells, the ability of macrophages to “digest” carbonaceous nanoparticles has not been documented. Here, we used chemical, biochemical, and cell and animal models and demonstrated oxidative biodegradation of oxidatively functionalized single-walled carbon nanotubes via superoxide/NO* → peroxynitrite-driven oxidative pathways of activated macrophages facilitating clearance of nanoparticles from the lung. PMID:24871084

  9. Bacterial Pathogens and Community Composition in Advanced Sewage Treatment Systems Revealed by Metagenomics Analysis Based on High-Throughput Sequencing

    PubMed Central

    Lu, Xin; Zhang, Xu-Xiang; Wang, Zhu; Huang, Kailong; Wang, Yuan; Liang, Weigang; Tan, Yunfei; Liu, Bo; Tang, Junying

    2015-01-01

    This study used 454 pyrosequencing, Illumina high-throughput sequencing and metagenomic analysis to investigate bacterial pathogens and their potential virulence in a sewage treatment plant (STP) applying both conventional and advanced treatment processes. Pyrosequencing and Illumina sequencing consistently demonstrated that Arcobacter genus occupied over 43.42% of total abundance of potential pathogens in the STP. At species level, potential pathogens Arcobacter butzleri, Aeromonas hydrophila and Klebsiella pneumonia dominated in raw sewage, which was also confirmed by quantitative real time PCR. Illumina sequencing also revealed prevalence of various types of pathogenicity islands and virulence proteins in the STP. Most of the potential pathogens and virulence factors were eliminated in the STP, and the removal efficiency mainly depended on oxidation ditch. Compared with sand filtration, magnetic resin seemed to have higher removals in most of the potential pathogens and virulence factors. However, presence of the residual A. butzleri in the final effluent still deserves more concerns. The findings indicate that sewage acts as an important source of environmental pathogens, but STPs can effectively control their spread in the environment. Joint use of the high-throughput sequencing technologies is considered a reliable method for deep and comprehensive overview of environmental bacterial virulence. PMID:25938416

  10. Phage-protease-peptide: a novel trifecta enabling multiplex detection of viable bacterial pathogens.

    PubMed

    Alcaine, S D; Tilton, L; Serrano, M A C; Wang, M; Vachet, R W; Nugen, S R

    2015-10-01

    Bacteriophages represent rapid, readily targeted, and easily produced molecular probes for the detection of bacterial pathogens. Molecular biology techniques have allowed researchers to make significant advances in the bioengineering of bacteriophage to further improve speed and sensitivity of detection. Despite their host specificity, bacteriophages have not been meaningfully leveraged in multiplex detection of bacterial pathogens. We propose a proof-of-principal phage-based scheme to enable multiplex detection. Our scheme involves bioengineering bacteriophage to carry a gene for a specific protease, which is expressed during infection of the target cell. Upon lysis, the protease is released to cleave a reporter peptide, and the signal detected. Here we demonstrate the successful (i) modification of T7 bacteriophage to carry tobacco etch virus (TEV) protease; (ii) expression of TEV protease by Escherichia coli following infection by our modified T7, an average of 2000 units of protease per phage are produced during infection; and (iii) proof-of-principle detection of E. coli in 3 h after a primary enrichment via TEV protease activity using a fluorescent peptide and using a designed target peptide for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis (MALDI-TOF MS) analysis. This proof-of-principle can be translated to other phage-protease-peptide combinations to enable multiplex bacterial detection and readily adopted on multiple platforms, like MALDI-TOF MS or fluorescent readers, commonly found in labs.

  11. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment.

    PubMed

    Davin-Regli, Anne; Pagès, Jean-Marie

    2015-01-01

    Enterobacter aerogenes and E. cloacae have been reported as important opportunistic and multiresistant bacterial pathogens for humans during the last three decades in hospital wards. These Gram-negative bacteria have been largely described during several outbreaks of hospital-acquired infections in Europe and particularly in France. The dissemination of Enterobacter sp. is associated with the presence of redundant regulatory cascades that efficiently control the membrane permeability ensuring the bacterial protection and the expression of detoxifying enzymes involved in antibiotic degradation/inactivation. In addition, these bacterial species are able to acquire numerous genetic mobile elements that strongly contribute to antibiotic resistance. Moreover, this particular fitness help them to colonize several environments and hosts and rapidly and efficiently adapt their metabolism and physiology to external conditions and environmental stresses. Enterobacter is a versatile bacterium able to promptly respond to the antibiotic treatment in the colonized patient. The balance of the prevalence, E. aerogenes versus E. cloacae, in the reported hospital infections during the last period, questions about the horizontal transmission of mobile elements containing antibiotic resistance genes, e.g., the efficacy of the exchange of resistance genes Klebsiella pneumoniae to Enterobacter sp. It is also important to mention the possible role of antibiotic use in the treatment of bacterial infectious diseases in this E. aerogenes/E. cloacae evolution.

  12. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment

    PubMed Central

    Davin-Regli, Anne; Pagès, Jean-Marie

    2015-01-01

    Enterobacter aerogenes and E. cloacae have been reported as important opportunistic and multiresistant bacterial pathogens for humans during the last three decades in hospital wards. These Gram-negative bacteria have been largely described during several outbreaks of hospital-acquired infections in Europe and particularly in France. The dissemination of Enterobacter sp. is associated with the presence of redundant regulatory cascades that efficiently control the membrane permeability ensuring the bacterial protection and the expression of detoxifying enzymes involved in antibiotic degradation/inactivation. In addition, these bacterial species are able to acquire numerous genetic mobile elements that strongly contribute to antibiotic resistance. Moreover, this particular fitness help them to colonize several environments and hosts and rapidly and efficiently adapt their metabolism and physiology to external conditions and environmental stresses. Enterobacter is a versatile bacterium able to promptly respond to the antibiotic treatment in the colonized patient. The balance of the prevalence, E. aerogenes versus E. cloacae, in the reported hospital infections during the last period, questions about the horizontal transmission of mobile elements containing antibiotic resistance genes, e.g., the efficacy of the exchange of resistance genes Klebsiella pneumoniae to Enterobacter sp. It is also important to mention the possible role of antibiotic use in the treatment of bacterial infectious diseases in this E. aerogenes/E. cloacae evolution. PMID:26042091

  13. Detection of human bacterial pathogens in ticks collected from Louisiana black bears (Ursus americanus luteolus)

    PubMed Central

    Leydet, Brian F.; Liang, Fang-Ting

    2013-01-01

    There are 4 major human-biting tick species in the northeastern United States, which include: Amblyomma americanum, Amblyomma maculatum, Dermacentor variabilis, and Ixodes scapularis. The black bear is a large mammal that has been shown to be parasitized by all the aforementioned ticks. We investigated the bacterial infections in ticks collected from Louisiana black bears (Ursus americanus subspecies luteolus). Eighty-six ticks were collected from 17 black bears in Louisiana from June 2010 to March 2011. All 4 common human-biting tick species were represented. Each tick was subjected to polymerase chain reaction (PCR) targeting select bacterial pathogens and symbionts. Bacterial DNA was detected in 62% of ticks (n=53). Rickettsia parkeri, the causative agent of an emerging spotted fever group rickettsiosis, was identified in 66% of A. maculatum, 28% of D. variabilis, and 11% of I. scapularis. The Lyme disease bacterium, Borrelia burgdorferi, was detected in 2 I. scapularis, while one Am. americanum was positive for Borrelia bissettii, a putative human pathogen. The rickettsial endosymbionts Candidatus Rickettsia andeanae, rickettsial endosymbiont of I. scapularis, and Rickettsia amblyommii were detected in their common tick hosts at 21%, 39%, and 60%, respectively. All ticks were PCR-negative for Anaplasma phagocytophilum, Ehrlichia spp., and Babesia microti. This is the first reported detection of R. parkeri in vector ticks in Louisiana; we also report the novel association of R. parkeri with I. scapularis. Detection of both R. parkeri and Bo. burgdorferi in their respective vectors in Louisiana demands further investigation to determine potential for human exposure to these pathogens. PMID:23415850

  14. Virulence and pathogen multiplication: a serial passage experiment in the hypervirulent bacterial insect-pathogen Xenorhabdus nematophila.

    PubMed

    Chapuis, Élodie; Pagès, Sylvie; Emelianoff, Vanya; Givaudan, Alain; Ferdy, Jean-Baptiste

    2011-01-31

    The trade-off hypothesis proposes that the evolution of pathogens' virulence is shaped by a link between virulence and contagiousness. This link is often assumed to come from the fact that pathogens are contagious only if they can reach high parasitic load in the infected host. In this paper we present an experimental test of the hypothesis that selection on fast replication can affect virulence. In a serial passage experiment, we selected 80 lines of the bacterial insect-pathogen Xenorhabdus nematophila to multiply fast in an artificial culture medium. This selection resulted in shortened lag phase in our selected bacteria. We then injected these bacteria into insects and observed an increase in virulence. This could be taken as a sign that virulence in Xenorhabdus is linked to fast multiplication. But we found, among the selected lineages, either no link or a positive correlation between lag duration and virulence: the most virulent bacteria were the last to start multiplying. We then surveyed phenotypes that are under the control of the flhDC super regulon, which has been shown to be involved in Xenorhabdus virulence. We found that, in one treatment, the flhDC regulon has evolved rapidly, but that the changes we observed were not connected to virulence. All together, these results indicate that virulence is, in Xenorhabdus as in many other pathogens, a multifactorial trait. Being able to grow fast is one way to be virulent. But other ways exist which renders the evolution of virulence hard to predict.

  15. Transport of selected bacterial pathogens in agricultural soil and quartz sand.

    PubMed

    Schinner, Tim; Letzner, Adrian; Liedtke, Stefan; Castro, Felipe D; Eydelnant, Irwin A; Tufenkji, Nathalie

    2010-02-01

    The protection of groundwater supplies from microbial contamination necessitates a solid understanding of the key factors controlling the migration and retention of pathogenic organisms through the subsurface environment. The transport behavior of five waterborne pathogens was examined using laboratory-scale columns packed with clean quartz at two solution ionic strengths (10 mM and 30 mM). Escherichia coli O157:H7 and Yersinia enterocolitica were selected as representative Gram-negative pathogens, Enterococcus faecalis was selected as a representative Gram-positive organism, and two cyanobacteria (Microcystis aeruginosa and Anabaena flos-aquae) were also studied. The five organisms exhibit differing attachment efficiencies to the quartz sand. The surface (zeta) potential of the microorganisms was characterized over a broad range of pH values (2-8) at two ionic strengths (10 mM and 30 mM). These measurements are used to evaluate the observed attachment behavior within the context of the DLVO theory of colloidal stability. To better understand the possible link between bacterial transport in model quartz sand systems and natural soil matrices, additional experiments were conducted with two of the selected organisms using columns packed with loamy sand obtained from an agricultural field. This investigation highlights the need for further characterization of waterborne pathogen surface properties and transport behavior over a broader range of environmentally relevant conditions. Copyright 2008 Elsevier Ltd. All rights reserved.

  16. A unified method to process biosolids samples for the recovery of bacterial, viral, and helminths pathogens.

    PubMed

    Alum, Absar; Rock, Channah; Abbaszadegan, Morteza

    2014-01-01

    For land application, biosolids are classified as Class A or Class B based on the levels of bacterial, viral, and helminths pathogens in residual biosolids. The current EPA methods for the detection of these groups of pathogens in biosolids include discrete steps. Therefore, a separate sample is processed independently to quantify the number of each group of the pathogens in biosolids. The aim of the study was to develop a unified method for simultaneous processing of a single biosolids sample to recover bacterial, viral, and helminths pathogens. At the first stage for developing a simultaneous method, nine eluents were compared for their efficiency to recover viruses from a 100 gm spiked biosolids sample. In the second stage, the three top performing eluents were thoroughly evaluated for the recovery of bacteria, viruses, and helminthes. For all three groups of pathogens, the glycine-based eluent provided higher recovery than the beef extract-based eluent. Additional experiments were performed to optimize performance of glycine-based eluent under various procedural factors such as, solids to eluent ratio, stir time, and centrifugation conditions. Last, the new method was directly compared with the EPA methods for the recovery of the three groups of pathogens spiked in duplicate samples of biosolids collected from different sources. For viruses, the new method yielded up to 10% higher recoveries than the EPA method. For bacteria and helminths, recoveries were 74% and 83% by the new method compared to 34% and 68% by the EPA method, respectively. The unified sample processing method significantly reduces the time required for processing biosolids samples for different groups of pathogens; it is less impacted by the intrinsic variability of samples, while providing higher yields (P = 0.05) and greater consistency than the current EPA methods.

  17. Diet and Environment Shape Fecal Bacterial Microbiota Composition and Enteric Pathogen Load of Grizzly Bears

    PubMed Central

    Schwab, Clarissa; Cristescu, Bogdan; Northrup, Joseph M.; Stenhouse, Gordon B.; Gänzle, Michael

    2011-01-01

    Background Diet and environment impact the composition of mammalian intestinal microbiota; dietary or health disturbances trigger alterations in intestinal microbiota composition and render the host susceptible to enteric pathogens. To date no long term monitoring data exist on the fecal microbiota and pathogen load of carnivores either in natural environments or in captivity. This study investigates fecal microbiota composition and the presence of pathogenic Escherichia coli and toxigenic clostridia in wild and captive grizzly bears (Ursus arctos) and relates these to food resources consumed by bears. Methodology/Principal Findings Feces were obtained from animals of two wild populations and from two captive animals during an active bear season. Wild animals consumed a diverse diet composed of plant material, animal prey and insects. Captive animals were fed a regular granulated diet with a supplement of fruits and vegetables. Bacterial populations were analyzed using quantitative PCR. Fecal microbiota composition fluctuated in wild and in captive animals. The abundance of Clostridium clusters I and XI, and of C. perfringens correlated to regular diet protein intake. Enteroaggregative E. coli were consistently present in all populations. The C. sordellii phospholipase C was identified in three samples of wild animals and for the first time in Ursids. Conclusion This is the first longitudinal study monitoring the fecal microbiota of wild carnivores and comparing it to that of captive individuals of the same species. Location and diet affected fecal bacterial populations as well as the presence of enteric pathogens. PMID:22194798

  18. Diet and environment shape fecal bacterial microbiota composition and enteric pathogen load of grizzly bears.

    PubMed

    Schwab, Clarissa; Cristescu, Bogdan; Northrup, Joseph M; Stenhouse, Gordon B; Gänzle, Michael

    2011-01-01

    Diet and environment impact the composition of mammalian intestinal microbiota; dietary or health disturbances trigger alterations in intestinal microbiota composition and render the host susceptible to enteric pathogens. To date no long term monitoring data exist on the fecal microbiota and pathogen load of carnivores either in natural environments or in captivity. This study investigates fecal microbiota composition and the presence of pathogenic Escherichia coli and toxigenic clostridia in wild and captive grizzly bears (Ursus arctos) and relates these to food resources consumed by bears. Feces were obtained from animals of two wild populations and from two captive animals during an active bear season. Wild animals consumed a diverse diet composed of plant material, animal prey and insects. Captive animals were fed a regular granulated diet with a supplement of fruits and vegetables. Bacterial populations were analyzed using quantitative PCR. Fecal microbiota composition fluctuated in wild and in captive animals. The abundance of Clostridium clusters I and XI, and of C. perfringens correlated to regular diet protein intake. Enteroaggregative E. coli were consistently present in all populations. The C. sordellii phospholipase C was identified in three samples of wild animals and for the first time in Ursids. This is the first longitudinal study monitoring the fecal microbiota of wild carnivores and comparing it to that of captive individuals of the same species. Location and diet affected fecal bacterial populations as well as the presence of enteric pathogens.

  19. Comparison of individual and pooled sampling methods for detecting bacterial pathogens of fish

    USGS Publications Warehouse

    Mumford, Sonia; Patterson, Chris; Evered, J.; Brunson, Ray; Levine, J.; Winton, J.

    2005-01-01

    Examination of finfish populations for viral and bacterial pathogens is an important component of fish disease control programs worldwide. Two methods are commonly used for collecting tissue samples for bacteriological culture, the currently accepted standards for detection of bacterial fish pathogens. The method specified in the Office International des Epizooties Manual of Diagnostic Tests for Aquatic Animals permits combining renal and splenic tissues from as many as 5 fish into pooled samples. The American Fisheries Society (AFS) Blue Book/US Fish and Wildlife Service (USFWS) Inspection Manual specifies the use of a bacteriological loop for collecting samples from the kidney of individual fish. An alternative would be to more fully utilize the pooled samples taken for virology. If implemented, this approach would provide substantial savings in labor and materials. To compare the relative performance of the AFS/USFWS method and this alternative approach, cultures of Yersinia ruckeri were used to establish low-level infections in groups of rainbow trout (Oncorhynchus mykiss) that were sampled by both methods. Yersinia ruckeri was cultured from 22 of 37 groups by at least 1 method. The loop method yielded 18 positive groups, with 1 group positive in the loop samples but negative in the pooled samples. The pooled samples produced 21 positive groups, with 4 groups positive in the pooled samples but negative in the loop samples. There was statistically significant agreement (Spearman coefficient 0.80, P < 0.001) in the relative ability of the 2 sampling methods to permit detection of low-level bacterial infections of rainbow trout.

  20. Peroxidasin contributes to lung host defense by direct binding and killing of gram-negative bacteria.

    PubMed

    Shi, Ruizheng; Cao, Zehong; Li, Hong; Graw, Jochen; Zhang, Guogang; Thannickal, Victor J; Cheng, Guangjie

    2018-05-01

    Innate immune recognition is classically mediated by the interaction of host pattern-recognition receptors and pathogen-associated molecular patterns; this triggers a series of downstream signaling events that facilitate killing and elimination of invading pathogens. In this report, we provide the first evidence that peroxidasin (PXDN; also known as vascular peroxidase-1) directly binds to gram-negative bacteria and mediates bactericidal activity, thus, contributing to lung host defense. PXDN contains five leucine-rich repeats and four immunoglobulin domains, which allows for its interaction with lipopolysaccharide, a membrane component of gram-negative bacteria. Bactericidal activity of PXDN is mediated via its capacity to generate hypohalous acids. Deficiency of PXDN results in a failure to eradicate Pseudomonas aeruginosa and increased mortality in a murine model of Pseudomonas lung infection. These observations indicate that PXDN mediates previously unrecognized host defense functions against gram-negative bacterial pathogens.

  1. Isolation and identification of bacterial pathogen from mastitis milk in Central Java Indonesia

    NASA Astrophysics Data System (ADS)

    Harjanti, D. W.; Ciptaningtyas, R.; Wahyono, F.; Setiatin, ET

    2018-01-01

    Mastitis is a multi-etiologic disease of the mammary gland characterized mainly by reduction in milk production and milk quality due to intramammary infection by pathogenic bacteria. Nearly 83% of lactating dairy cows in Indonesia are infected with mastitis in various inflammation degrees. This study was conducted to isolate and identify the pathogen in milk collected from mastitis-infected dairy cows. The study was carried out in ten smallholder dairy farms in Central Java Indonesia based on animal examination, California mastitis test, isolation bacterial pathogens, Gram staining, Catalase and Coagulase test, and identification of bacteria species using Vitek. Bacteriological examination of milk samples revealed 15 isolates where Streptococcus was predominant species (73.3%) and the coagulase negative Staphylococcus species was identified at the least bacteria (26.7%). The Streptococcus bacteria found were Streptococcus uberis (2 isolates), Streptococcus sanguinis(6 isolates), Streptococcus dysgalactiaessp dysgalactiae(1 isolate) , Streptococcus mitis (1 isolate) and Streptococcus agalactiae (1 isolate). The Staphylococcus isolates comprising of Staphylococcus simulans (1 isolate) and Staphylococcus chromogens (3 isolates). Contamination of raw milkwith pathogenic bacteria can cause outbreaks of human disease (milk borne disease). Thus, proper milk processing method that couldinhibit the growth or kill these pathogenic bacteria is important to ensure the safety of milk and milk products.

  2. Pseudomonas aeruginosa proteolytically alters the interleukin 22-dependent lung mucosal defense.

    PubMed

    Guillon, Antoine; Brea, Deborah; Morello, Eric; Tang, Aihua; Jouan, Youenn; Ramphal, Reuben; Korkmaz, Brice; Perez-Cruz, Magdiel; Trottein, Francois; O'Callaghan, Richard J; Gosset, Philippe; Si-Tahar, Mustapha

    2017-08-18

    The IL-22 signaling pathway is critical for regulating mucosal defense and limiting bacterial dissemination. IL-22 is unusual among interleukins because it does not directly regulate the function of conventional immune cells, but instead targets cells at outer body barriers, such as respiratory epithelial cells. Consequently, IL-22 signaling participates in the maintenance of the lung mucosal barrier by controlling cell proliferation and tissue repair, and enhancing the production of specific chemokines and anti-microbial peptides. Pseudomonas aeruginosa is a major pathogen of ventilator-associated pneumonia and causes considerable lung tissue damage. A feature underlying the pathogenicity of this bacterium is its capacity to persist and develop in the host, particularly in the clinical context of nosocomial lung infections. We aimed to investigate the ability of P. auruginosa to disrupt immune-epithelial cells cross-talk. We found that P. aeruginosa escapes the host mucosal defenses by degrading IL-22, leading to severe inhibition of IL-22-mediated immune responses. We demonstrated in vitro that, protease IV, a type 2 secretion system-dependent serine protease, is responsible for the degradation of IL-22 by P. aeruginosa. Moreover, the major anti-proteases molecules present in the lungs were unable to inhibit protease IV enzymatic activity. In addition, tracheal aspirates of patients infected by P. aeruginosa contain protease IV activity which further results in IL-22 degradation. This so far undescribed cleavage of IL-22 by a bacterial protease is likely to be an immune-evasion strategy that contributes to P. aeruginosa-triggered respiratory infections.

  3. Characterization of the bacterial stem blight pathogen of alfalfa, Pseudomonas syringae pv. syringae ALF3

    USDA-ARS?s Scientific Manuscript database

    Bacterial stem blight of alfalfa occurs sporadically in the central and western U.S. Yield losses of up to 50% of the first harvest can occur with some cultivars. Developing resistant cultivars is hampered by lack of information on the pathogen and a standard test for evaluating plant germplasm. Bac...

  4. Factors related to occurrence and distribution of selected bacterial and protozoan pathogens in Pennsylvania streams

    USGS Publications Warehouse

    Duris, Joseph W.; Reif, Andrew G.; Donna A. Crouse,; Isaacs, Natasha M.

    2013-01-01

    The occurrence and distribution of fecal indicator bacteria (FIB) and bacterial and protozoan pathogens are controlled by diverse factors. To investigate these factors in Pennsylvania streams, 217 samples were collected quarterly from a 27-station water-quality monitoring network from July 2007 through August 2009. Samples were analyzed for concentrations of Escherichia coli (EC) and enterococci (ENT) indicator bacteria, concentrations of Cryptosporidium oocysts and Giardia cysts, and the presence of four genes related to pathogenic types of EC (eaeA, stx2, stx1, rfbO157) plus three microbial source tracking (MST) gene markers that are also associated with pathogenic ENT and EC (esp, LTIIa, STII). Water samples were concurrently analyzed for basic water chemistry, physical measures of water quality, nutrients, metals, and a suite of 79 organic compounds that included hormones, pharmaceuticals, and antibiotics. For each sample location, stream discharge was measured by using standardized methods at the time of sample collection, and ancillary sample site information, such as land use and geological characteristics, was compiled. Samples exceeding recreational water quality criteria were more likely to contain all measured pathogen genes but notCryptosporidium or Giardia (oo)cysts. FIB and Giardia density and frequency of eaeA gene occurrence were significantly related to season. When discharge at a sampling location was high (>75th percentile of daily mean discharge), there were greater densities of FIB and Giardia, and the stx2, rfbO157, STII, and esp genes were found more frequently than at other discharge conditions. Giardia occurrence was likely related to nonpoint sources, which are highly influential during seasonal overland transport resulting from snowmelt and elevated precipitation in late winter and spring in Pennsylvania. When MST markers of human, swine, or bovine origin were present, samples more frequently carried the eaeA, stx2

  5. Etiology and outcome of community-acquired lung abscess.

    PubMed

    Takayanagi, Noboru; Kagiyama, Naho; Ishiguro, Takashi; Tokunaga, Daidou; Sugita, Yutaka

    2010-01-01

    Anaerobes are the first and Streptococcus species the second most common cause of community-acquired lung abscess (CALA) in the West. The etiologic pathogens of this disease have changed in Taiwan, with Klebsiella pneumoniae being reported as the most common cause of CALA. To determine the etiologies of community-acquired lung abscess. We retrospectively reviewed the records of 205 Japanese adult patients with CALA to evaluate etiologies and outcomes. We used not only traditional microbiological investigations but also percutaneous ultrasonography-guided transthoracic needle aspiration and protected specimen brushes. Of these 205 patients, 122 had documented bacteriological results, with 189 bacterial species isolated. Pure aerobic, mixed aerobic and anaerobic, and pure anaerobic bacteria were isolated in 90 (73.8%), 17 (13.9%), and 15 (12.3%) patients, respectively. The four most common etiologic pathogens were Streptococcus species (59.8%), anaerobes (26.2%), Gemella species (9.8%), and K. pneumoniae (8.2%). Streptococcus mitis was the most common among the Streptococcus species. Mean duration of antibiotic administration was 26 days. Six patients (2.9%, 3 with actinomycosis and 3 with nocardiosis) were treated with antibiotics for 76-189 days. Two patients with anaerobic lung abscess died. The first and second most common etiologic pathogens of CALA in our hospital were Streptococcus species and anaerobes, respectively. The etiologies in our study differ from those in Taiwan and are similar to those in the West with the exception that Streptococcus species were the most common etiologic pathogens in our study whereas anaerobes are the most frequent etiologic pathogens in Western countries. S. mitis and Gemella species are important etiologic pathogens as well. The identification of Actinomyces and Nocardia is important in order to define the adequate duration of antibiotic administration. Copyright 2010 S. Karger AG, Basel.

  6. A household LOC device for online monitoring bacterial pathogens in drinking water with green design concept.

    PubMed

    Zhao, Xinyan; Dong, Tao

    2013-01-01

    Bacterial waterborne pathogens often threaten the water safety of the drinking water system. In order to protect the health of home users, a household lab-on-a-chip (LOC) device was developed for online monitoring bacterial pathogens in drinking water, which are in accord with green design concept. The chip integrated counter-flow micromixers, a T-junction droplet generator and time-delay channels (TD-Cs), which can mix water sample and reactants into droplets in air flow and incubate the droplets in the LOC for about 18 hours before observation. The detection module was simplified into a transparent observation chamber, from which the home users can evaluate the qualitative result by naked eyes. The liquid waste generated by the LOC system was sterilized and absorbed by quicklime powders. No secondary pollution was found. The preliminary test of the prototype system met its design requirements.

  7. Molecular analysis of bacterial communities and detection of potential pathogens in a recirculating aquaculture system for Scophthalmus maximus and Solea senegalensis.

    PubMed

    Martins, Patrícia; Cleary, Daniel F R; Pires, Ana C C; Rodrigues, Ana Maria; Quintino, Victor; Calado, Ricardo; Gomes, Newton C M

    2013-01-01

    The present study combined a DGGE and barcoded 16S rRNA pyrosequencing approach to assess bacterial composition in the water of a recirculating aquaculture system (RAS) with a shallow raceway system (SRS) for turbot (Scophthalmus maximus) and sole (Solea senegalensis). Barcoded pyrosequencing results were also used to determine the potential pathogen load in the RAS studied. Samples were collected from the water supply pipeline (Sup), fish production tanks (Pro), sedimentation filter (Sed), biofilter tank (Bio), and protein skimmer (Ozo; also used as an ozone reaction chamber) of twin RAS operating in parallel (one for each fish species). Our results revealed pronounced differences in bacterial community composition between turbot and sole RAS, suggesting that in the systems studied there is a strong species-specific effect on water bacterial communities. Proteobacteria was the most abundant phylum in the water supply and all RAS compartments. Other important taxonomic groups included the phylum Bacteriodetes. The saltwater supplied displayed a markedly lower richness and appeared to have very little influence on bacterial composition. The following potentially pathogenic species were detected: Photobacterium damselae in turbot (all compartments), Tenacibaculum discolor in turbot and sole (all compartments), Tenacibaculum soleae in turbot (all compartments) and sole (Pro, Sed and Bio), and Serratia marcescens in turbot (Sup, Sed, Bio and Ozo) and sole (only Sed) RAS. Despite the presence of these pathogens, no symptomatic fish were observed. Although we were able to identify potential pathogens, this approach should be employed with caution when monitoring aquaculture systems, as the required phylogenetic resolution for reliable identification of pathogens may not always be possible to achieve when employing 16S rRNA gene fragments.

  8. Molecular Analysis of Bacterial Communities and Detection of Potential Pathogens in a Recirculating Aquaculture System for Scophthalmus maximus and Solea senegalensis

    PubMed Central

    Martins, Patrícia; Cleary, Daniel F. R.; Pires, Ana C. C.; Rodrigues, Ana Maria; Quintino, Victor; Calado, Ricardo; Gomes, Newton C. M.

    2013-01-01

    The present study combined a DGGE and barcoded 16S rRNA pyrosequencing approach to assess bacterial composition in the water of a recirculating aquaculture system (RAS) with a shallow raceway system (SRS) for turbot (Scophthalmus maximus) and sole (Solea senegalensis). Barcoded pyrosequencing results were also used to determine the potential pathogen load in the RAS studied. Samples were collected from the water supply pipeline (Sup), fish production tanks (Pro), sedimentation filter (Sed), biofilter tank (Bio), and protein skimmer (Ozo; also used as an ozone reaction chamber) of twin RAS operating in parallel (one for each fish species). Our results revealed pronounced differences in bacterial community composition between turbot and sole RAS, suggesting that in the systems studied there is a strong species-specific effect on water bacterial communities. Proteobacteria was the most abundant phylum in the water supply and all RAS compartments. Other important taxonomic groups included the phylum Bacteriodetes. The saltwater supplied displayed a markedly lower richness and appeared to have very little influence on bacterial composition. The following potentially pathogenic species were detected: Photobacterium damselae in turbot (all compartments), Tenacibaculum discolor in turbot and sole (all compartments), Tenacibaculum soleae in turbot (all compartments) and sole (Pro, Sed and Bio), and Serratia marcescens in turbot (Sup, Sed, Bio and Ozo) and sole (only Sed) RAS. Despite the presence of these pathogens, no symptomatic fish were observed. Although we were able to identify potential pathogens, this approach should be employed with caution when monitoring aquaculture systems, as the required phylogenetic resolution for reliable identification of pathogens may not always be possible to achieve when employing 16S rRNA gene fragments. PMID:24278329

  9. [New insight into bacterial zoonotic pathogens posing health hazards to humans].

    PubMed

    Ciszewski, Marcin; Czekaj, Tomasz; Szewczyk, Eligia Maria

    2014-01-01

    This article presents the problem of evolutionary changes of zoonotic pathogens responsible for human diseases. Everyone is exposed to the risk of zoonotic infection, particularly employees having direct contact with animals, i.e. veterinarians, breeders, butchers and workers of animal products' processing industry. The article focuses on pathogens monitored by the European Centre for Disease Prevention and Control (ECDC), which has been collecting statistical data on zoonoses from all European Union countries for 19 years and publishing collected data in annual epidemiological reports. Currently, the most important 11 pathogens responsible for causing human zoonotic diseases are being monitored, of which seven are bacteria: Salmonella spp., Campylobacter spp., Listeria monocytogenes, Mycobacterium bovis, Brucella spp., Coxiella burnetti and Verotoxin-producing E. coli (VTEC)/Shiga-like toxin producing E. coli (STEC). As particularly important are considered foodborne pathogens. The article also includes new emerging zoonotic bacteria, which are not currently monitored by ECDC but might pose a serious epidemiological problem in a foreseeable future: Streptococcus iniae, S. suis, S. dysgalactiae and staphylococci: Staphylococcus intermedius, S. pseudintermedius. Those species have just crossed the animal-human interspecies barrier. The exact mechanism of this phenomenon remains unknown, it is connected, however, with genetic variability, capability to survive in changing environment. These abilities derive from DNA rearrangement and horizontal gene transfer between bacterial cells. Substantial increase in the number of scientific publications on this subject, observed over the last few years, illustrates the importance of the problem.

  10. Pathogens of Bovine Respiratory Disease in North American Feedlots Conferring Multidrug Resistance via Integrative Conjugative Elements

    PubMed Central

    Klima, Cassidy L.; Zaheer, Rahat; Cook, Shaun R.; Booker, Calvin W.; Hendrick, Steve

    2014-01-01

    In this study, we determined the prevalence of bovine respiratory disease (BRD)-associated viral and bacterial pathogens in cattle and characterized the genetic profiles, antimicrobial susceptibilities, and nature of antimicrobial resistance determinants in collected bacteria. Nasopharyngeal swab and lung tissue samples from 68 BRD mortalities in Alberta, Canada (n = 42), Texas (n = 6), and Nebraska (n = 20) were screened using PCR for bovine viral diarrhea virus (BVDV), bovine respiratory syncytial virus, bovine herpesvirus 1, parainfluenza type 3 virus, Mycoplasma bovis, Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni. Excepting bovine herpesvirus 1, all agents were detected. M. haemolytica (91%) and BVDV (69%) were the most prevalent, with cooccurrence in 63% of the cattle. Isolates of M. haemolytica (n = 55), P. multocida (n = 8), and H. somni (n = 10) from lungs were also collected. Among M. haemolytica isolates, a clonal subpopulation (n = 8) was obtained from a Nebraskan feedlot. All three bacterial pathogens exhibited a high rate of antimicrobial resistance, with 45% exhibiting resistance to three or more antimicrobials. M. haemolytica (n = 18), P. multocida (n = 3), and H. somni (n = 3) from Texas and Nebraska possessed integrative conjugative elements (ICE) that conferred resistance for up to seven different antimicrobial classes. ICE were shown to be transferred via conjugation from P. multocida to Escherichia coli and from M. haemolytica and H. somni to P. multocida. ICE-mediated multidrug-resistant profiles of bacterial BRD pathogens could be a major detriment to many of the therapeutic antimicrobial strategies currently used to control BRD. PMID:24478472

  11. Pathogens of bovine respiratory disease in North American feedlots conferring multidrug resistance via integrative conjugative elements.

    PubMed

    Klima, Cassidy L; Zaheer, Rahat; Cook, Shaun R; Booker, Calvin W; Hendrick, Steve; Alexander, Trevor W; McAllister, Tim A

    2014-02-01

    In this study, we determined the prevalence of bovine respiratory disease (BRD)-associated viral and bacterial pathogens in cattle and characterized the genetic profiles, antimicrobial susceptibilities, and nature of antimicrobial resistance determinants in collected bacteria. Nasopharyngeal swab and lung tissue samples from 68 BRD mortalities in Alberta, Canada (n = 42), Texas (n = 6), and Nebraska (n = 20) were screened using PCR for bovine viral diarrhea virus (BVDV), bovine respiratory syncytial virus, bovine herpesvirus 1, parainfluenza type 3 virus, Mycoplasma bovis, Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni. Excepting bovine herpesvirus 1, all agents were detected. M. haemolytica (91%) and BVDV (69%) were the most prevalent, with cooccurrence in 63% of the cattle. Isolates of M. haemolytica (n = 55), P. multocida (n = 8), and H. somni (n = 10) from lungs were also collected. Among M. haemolytica isolates, a clonal subpopulation (n = 8) was obtained from a Nebraskan feedlot. All three bacterial pathogens exhibited a high rate of antimicrobial resistance, with 45% exhibiting resistance to three or more antimicrobials. M. haemolytica (n = 18), P. multocida (n = 3), and H. somni (n = 3) from Texas and Nebraska possessed integrative conjugative elements (ICE) that conferred resistance for up to seven different antimicrobial classes. ICE were shown to be transferred via conjugation from P. multocida to Escherichia coli and from M. haemolytica and H. somni to P. multocida. ICE-mediated multidrug-resistant profiles of bacterial BRD pathogens could be a major detriment to many of the therapeutic antimicrobial strategies currently used to control BRD.

  12. Bacterial infections after pediatric heart transplantation: Epidemiology, risk factors and outcomes.

    PubMed

    Rostad, Christina A; Wehrheim, Karla; Kirklin, James K; Naftel, David; Pruitt, Elizabeth; Hoffman, Timothy M; L'Ecuyer, Thomas; Berkowitz, Katie; Mahle, William T; Scheel, Janet N

    2017-09-01

    Bacterial infections represent a major cause of morbidity and mortality in heart transplant recipients. However, data describing the epidemiology and outcomes of these infections in children are limited. We analyzed the Pediatric Heart Transplant Study database of patients transplanted between 1993 and 2014 to determine the etiologies, risk factors and outcomes of children with bacterial infections post-heart transplantation. Of 4,458 primary transplants in the database, there were 4,815 infections that required hospitalization or intravenous therapy, 2,047 (42.51%) of which were bacterial. The risk of bacterial infection was highest in the first month post-transplant, and the bloodstream was the most common site (24.82%). In the early post-transplant period (<30 days post-transplant), coagulase-negative staphylococci were the most common pathogens (16.97%), followed by Enterobacter sp (11.99%) and Pseudomonas sp (11.62%). In the late post-transplant period, community-acquired pathogens Streptococcus pneumoniae (6.27%) and Haemophilus influenzae (2.82%) were also commonly identified. Patients' characteristics independently associated with acquisition of bacterial infection included younger age (p < 0.0001) and ventilator (p < 0.0001) or extracorporeal membrane oxygenation (p = 0.03) use at time of transplant. Overall mortality post-bacterial infection was 33.78%, and previous cardiac surgery (p < 0.001) and multiple sites of infection (p = 0.004) were independent predictors of death. Bacteria were the most common causes of severe infections in pediatric heart transplant recipients and were associated with high mortality rates. The risk of acquiring a bacterial infection was highest in the first month post-transplant, and a large proportion of the infections were caused by multidrug-resistant pathogens. Copyright © 2017 International Society for the Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  13. Importance of soil amendments: survival of bacterial pathogens in manure and compost used as organic fertizliers

    USDA-ARS?s Scientific Manuscript database

    Biological soil amendments (BSA’s) like manure and compost are frequently used as organic fertilizers to soils to improve its physical and chemical properties. However, BSAs have been known to be a reservoir for enteric bacterial pathogens like enterohemorrhagic E. coli, Salmonella spp, and Listeri...

  14. Liquid based formulations of bacteriophages for the management of waterborne bacterial pathogens in water microcosms.

    PubMed

    Ahiwale, Sangeeta; Tagunde, Sujata; Khopkar, Sushama; Karni, Mrudula; Gajbhiye, Milind; Kapadnis, Balasaheb

    2013-11-01

    Water resources are contaminated by life-threatening multidrug resistant pathogenic bacteria. Unfortunately, these pathogenic bacteria do not respond to the traditional water purification methods. Therefore, there is a need of environmentally friendly strategies to overcome the problems associated with the antimicrobial resistant bacterial pathogens. In the present study, highly potent lytic phages against multidrug-resistant Salmonella enterica serovar Paratyphi B, Pseudomonas aeruginosa and Klebsiella pneumoniae were isolated from the Pavana river water. They belonged to the Podoviridae and Siphoviridae families. These phages were purified and enriched in the laboratory. Monovalent formulations of phiSPB, BVPaP-3 and KPP phages were prepared in three different liquids viz., phage broth, saline and distilled water. The phages were stable for almost 8-10 months in the phage broth at 4 degrees C. The stability of the phages in saline and distilled water was 5-6 months at 4 degrees C. All of the phages were stable only for 4-6 months in the phage broth at 30 degrees C. The monovalent phage formulation of psiSPB was applied at MOI < 1, as disinfectant against an exponential and stationary phase cells of Salmonella enterica serovar Paratyphi B in various water microcosms. The results indicated that there was almost 80 % reduction in the log phase cells of Salmonella serovar Paratyphi B in 24 h. In stationary phase cells, the reduction was comparatively less within same period. At the same time, there was concomitant increase in the phage population by 80% in all the microcosms indicating that psiSPB phage is highly potent in killing pathogen in water. Results strongly support that the formulation of psiSPB in the phage broth in monovalent form could be used as an effective biological disinfectant for preventing transmission of water-borne bacterial pathogens, including antimicrobial resistant ones.

  15. Antibacterial Activity of Polyphenolic Fraction of Kombucha Against Enteric Bacterial Pathogens.

    PubMed

    Bhattacharya, Debanjana; Bhattacharya, Semantee; Patra, Madhu Manti; Chakravorty, Somnath; Sarkar, Soumyadev; Chakraborty, Writachit; Koley, Hemanta; Gachhui, Ratan

    2016-12-01

    The emergence of multi-drug-resistant enteric pathogens has prompted the scientist community to explore the therapeutic potentials of traditional foods and beverages. The present study was undertaken to investigate the efficacy of Kombucha, a fermented beverage of sugared black tea, against enterotoxigenic Escherichia coli, Vibrio cholerae, Shigella flexneri and Salmonella Typhimurium followed by the identification of the antibacterial components present in Kombucha. The antibacterial activity was evaluated by determining the inhibition zone diameter, minimal inhibitory concentration and minimal bactericidal concentration. Kombucha fermented for 14 days showed maximum activity against the bacterial strains. Its ethyl acetate extract was found to be the most effective upon sequential solvent extraction of the 14-day Kombucha. This potent ethyl acetate extract was then subjected to thin layer chromatography for further purification of antibacterial ingredients which led to the isolation of an active polyphenolic fraction. Catechin and isorhamnetin were detected as the major antibacterial compounds present in this polyphenolic fraction of Kombucha by High Performance Liquid Chromatography. Catechin, one of the primary antibacterial polyphenols in tea was also found to be present in Kombucha. But isorhamnetin is not reported to be present in tea, which may thereby suggest the role of fermentation process of black tea for its production in Kombucha. To the best of our knowledge, this is the first report on the presence of isorhamnetin in Kombucha. The overall study suggests that Kombucha can be used as a potent antibacterial agent against entero-pathogenic bacterial infections, which mainly is attributed to its polyphenolic content.

  16. Comparative Genomic and Phenotypic Characterization of Pathogenic and Non-Pathogenic Strains of Xanthomonas arboricola Reveals Insights into the Infection Process of Bacterial Spot Disease of Stone Fruits

    PubMed Central

    Garita-Cambronero, Jerson; Palacio-Bielsa, Ana; López, María M.

    2016-01-01

    Xanthomonas arboricola pv. pruni is the causal agent of bacterial spot disease of stone fruits, a quarantinable pathogen in several areas worldwide, including the European Union. In order to develop efficient control methods for this disease, it is necessary to improve the understanding of the key determinants associated with host restriction, colonization and the development of pathogenesis. After an initial characterization, by multilocus sequence analysis, of 15 strains of X. arboricola isolated from Prunus, one strain did not group into the pathovar pruni or into other pathovars of this species and therefore it was identified and defined as a X. arboricola pv. pruni look-a-like. This non-pathogenic strain and two typical strains of X. arboricola pv. pruni were selected for a whole genome and phenotype comparative analysis in features associated with the pathogenesis process in Xanthomonas. Comparative analysis among these bacterial strains isolated from Prunus spp. and the inclusion of 15 publicly available genome sequences from other pathogenic and non-pathogenic strains of X. arboricola revealed variations in the phenotype associated with variations in the profiles of TonB-dependent transporters, sensors of the two-component regulatory system, methyl accepting chemotaxis proteins, components of the flagella and the type IV pilus, as well as in the repertoire of cell-wall degrading enzymes and the components of the type III secretion system and related effectors. These variations provide a global overview of those mechanisms that could be associated with the development of bacterial spot disease. Additionally, it pointed out some features that might influence the host specificity and the variable virulence observed in X. arboricola. PMID:27571391

  17. Legacy effects of anaerobic soil disinfestation on soil bacterial community composition and production of pathogen-suppressing volatiles

    PubMed Central

    van Agtmaal, Maaike; van Os, Gera J.; Hol, W.H. Gera; Hundscheid, Maria P.J.; Runia, Willemien T.; Hordijk, Cornelis A.; de Boer, Wietse

    2015-01-01

    There is increasing evidence that microbial volatiles (VOCs) play an important role in natural suppression of soil-borne diseases, but little is known on the factors that influence production of suppressing VOCs. In the current study we examined whether a stress-induced change in soil microbial community composition would affect the production by soils of VOCs suppressing the plant-pathogenic oomycete Pythium. Using pyrosequencing of 16S ribosomal gene fragments we compared the composition of bacterial communities in sandy soils that had been exposed to anaerobic disinfestation (AD), a treatment used to kill harmful soil organisms, with the composition in untreated soils. Three months after the AD treatment had been finished, there was still a clear legacy effect of the former anaerobic stress on bacterial community composition with a strong increase in relative abundance of the phylum Bacteroidetes and a significant decrease of the phyla Acidobacteria, Planctomycetes, Nitrospirae, Chloroflexi, and Chlorobi. This change in bacterial community composition coincided with loss of production of Pythium suppressing soil volatiles (VOCs) and of suppression of Pythium impacts on Hyacinth root development. One year later, the composition of the bacterial community in the AD soils was reflecting that of the untreated soils. In addition, both production of Pythium-suppressing VOCs and suppression of Pythium in Hyacinth bioassays had returned to the levels of the untreated soil. GC/MS analysis identified several VOCs, among which compounds known to be antifungal, that were produced in the untreated soils but not in the AD soils. These compounds were again produced 15 months after the AD treatment. Our data indicate that soils exposed to a drastic stress can temporarily lose pathogen suppressive characteristics and that both loss and return of these suppressive characteristics coincides with shifts in the soil bacterial community composition. Our data are supporting the

  18. Short term memory of Caenorhabditis elegans against bacterial pathogens involves CREB transcription factor.

    PubMed

    Prithika, Udayakumar; Vikneswari, Ramaraj; Balamurugan, Krishnaswamy

    2017-04-01

    One of the key issues pertaining to the control of memory is to respond to a consistently changing environment or microbial niche present in it. Human cyclic AMP response element binding protein (CREB) transcription factor which plays a crucial role in memory has a homolog in C. elegans, crh-1. crh-1 appears to influence memory processes to certain extent by habituation of the host to a particular environment. The discrimination between the pathogen and a non-pathogen is essential for C. elegans in a microbial niche which determines its survival. Training the nematodes in the presence of a virulent pathogen (S. aureus) and an opportunistic pathogen (P. mirabilis) separately exhibits a different behavioural paradigm. This appears to be dependent on the CREB transcription factor. Here we show that C. elegans homolog crh-1 helps in memory response for a short term against the interacting pathogens. Following conditioning of the nematodes to S. aureus and P. mirabilis, the wild type nematodes exhibited a positive response towards the respective pathogens which diminished slowly after 2h. By contrast, the crh-1 deficient nematodes had a defective memory post conditioning. The molecular data reinforces the importance of crh-1 gene in retaining the memory of nematode. Our results also suggest that involvement of neurotransmitters play a crucial role in modulating the memory of the nematode with the assistance of CREB. Therefore, we elucidate that CREB is responsible for the short term memory response in C. elegans against bacterial pathogens. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Rapid and direct detection of Invivo kinetics of pathogenic bacterial infection from mouse blood and urine.

    PubMed

    Gopal, Judy; Lee, Chia-Hsun; Wu, Hui-Fen

    2012-06-06

    This study demonstrates the first use of matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) to trace the Invivo infection kinetics of the well known deadly pathogen Staphylococcus aureus in Swiss albino mice. The growth curve of the bacteria from the point of injection (200μL of bacterial suspension (10(8)cfu/mL)) into the mouse blood till mortality (death) was periodically analyzed using the plate counting method and MALDI-MS. Bacterial counts of 10(3)cfu/mL were observed in the log phase of the growth curve in the blood and 10(2)cfu/mL were observed in the urine samples. Death occurred in the log phase of the growth curve, where the bacterial counts showed steady increase. In other cases, the bacteria counts started decreasing after 48h and by 96h the bacteria got totally eliminated from the mouse and these mice survived. Direct MALDI-MS was not feasible for tracking the bacteria in the infected blood. However, ionic liquid 1-Butyl-3-methylimidazolium tetrafluoroborate was successful in enabling bacterial detection amidst the strong blood peaks. But, in the case of the urine analysis, it was observed that direct MALDI-MS was adequate to enable detection. The results obtained prove the efficacy of MALDI-MS for analyzing pathogenic bacteria in clinical samples. This article is part of a Special Issue entitled: Proteomics: The clinical link. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Inactivation of bacterial pathogenic load in compost against vermicompost of organic solid waste aiming to achieve sanitation goals: A review.

    PubMed

    Soobhany, Nuhaa; Mohee, Romeela; Garg, Vinod Kumar

    2017-06-01

    Waste management strategies for organic residues, such as composting and vermicomposting, have been implemented in some developed and developing countries to solve the problem of organic solid waste (OSW). Yet, these biological treatment technologies do not always result in good quality compost or vermicompost with regards to sanitation capacity owing to the presence of bacterial pathogenic substances in objectionable concentrations. The presence of pathogens in soil conditioners poses a potential health hazard and their occurrence is of particular significance in composts and/or vermicomposts produced from organic materials. Past and present researches demonstrated a high-degree of agreement that various pathogens survive after the composting of certain OSW but whether similar changes in bacterial pathogenic loads arise during vermitechnology has not been thoroughly elucidated. This review garners information regarding the status of various pathogenic bacteria which survived or diffused after the composting process compared to the status of these pathogens after the vermicomposting of OSW with the aim of achieving sanitation goals. This work is also indispensable for the specification of compost quality guidelines concerning pathogen loads which would be specific to treatment technology. It was hypothesized that vermicomposting process for OSW can be efficacious in sustaining the existence of pathogenic organisms most specifically; human pathogens under safety levels. In summary, earthworms can be regarded as a way of obliterating pathogenic bacteria from OSW in a manner equivalent to earthworm gut transit mechanism which classifies vermicomposting as a promising sanitation technique in comparison to composting processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A Bacterial Pathogen Targets a Host Rab-Family GTPase Defense Pathway with a GAP.

    PubMed

    Spanò, Stefania; Gao, Xiang; Hannemann, Sebastian; Lara-Tejero, María; Galán, Jorge E

    2016-02-10

    Cell-autonomous defense mechanisms are potent strategies that protect individual cells against intracellular pathogens. The Rab-family GTPase Rab32 was previously shown to restrict the intracellular human pathogen Salmonella Typhi, but its potential broader role in antimicrobial defense remains unknown. We show that Rab32 represents a general cell-autonomous, antimicrobial defense that is counteracted by two Salmonella effectors. Mice lacking Rab-32 or its nucleotide exchange factor BLOC-3 are permissive to S. Typhi infection and exhibit increased susceptibility to S. Typhimurium. S. Typhimurium counters this defense pathway by delivering two type III secretion effectors, SopD2, a Rab32 GAP, and GtgE, a specific Rab32 protease. An S. Typhimurium mutant strain lacking these two effectors exhibits markedly reduced virulence, which is fully restored in BLOC-3-deficient mice. These results demonstrate that a cell-autonomous, Rab32-dependent host defense pathway plays a central role in the defense against vacuolar pathogens and describe a mechanism evolved by a bacterial pathogen to counter it. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Bacterial avirulence genes.

    PubMed

    Leach, J E; White, F F

    1996-01-01

    Although more than 30 bacterial avirulence genes have been cloned and characterized, the function of the gene products in the elictitation of resistance is unknown in all cases but one. The product of avrD from Pseudomonas syringae pv. glycinea likely functions indirectly to elicit resistance in soybean, that is, evidence suggests the gene product is an enzyme involved in elicitor production. In most if not all cases, bacterial avirulence gene function is dependent on interactions with the hypersensitive response and pathogenicity (hrp) genes. Many hrp genes are similar to genes involved in delivery of pathogenicity factors in mammalian bacterial pathogens. Thus, analogies between mammalian and plant pathogens may provide needed clues to elucidate how virulence gene products control induction of resistance.

  3. Comparative and bioinformatics analyses of pathogenic bacterial secretomes identified by mass spectrometry in Burkholderia species.

    PubMed

    Nguyen, Thao Thi; Chon, Tae-Soo; Kim, Jaehan; Seo, Young-Su; Heo, Muyoung

    2017-07-01

    Secreted proteins (secretomes) play crucial roles during bacterial pathogenesis in both plant and human hosts. The identification and characterization of secretomes in the two plant pathogens Burkholderia glumae BGR1 and B. gladioli BSR3, which cause diseases in rice such as seedling blight, panicle blight, and grain rot, are important steps to not only understand the disease-causing mechanisms but also find remedies for the diseases. Here, we identified two datasets of secretomes in B. glumae BGR1 and B. gladioli BSR3, which consist of 118 and 111 proteins, respectively, using mass spectrometry approach and literature curation. Next, we characterized the functional properties, potential secretion pathways and sequence information properties of secretomes of two plant pathogens in a comparative analysis by various computational approaches. The ratio of potential non-classically secreted proteins (NCSPs) to classically secreted proteins (CSPs) in B. glumae BGR1 was greater than that in B. gladioli BSR3. For CSPs, the putative hydrophobic regions (PHRs) which are essential for secretion process of CSPs were screened in detail at their N-terminal sequences using hidden Markov model (HMM)-based method. Total 31 pairs of homologous proteins in two bacterial secretomes were indicated based on the global alignment (identity ≥ 70%). Our results may facilitate the understanding of the species-specific features of secretomes in two plant pathogenic Burkholderia species.

  4. Decay Of Bacterial Pathogens, Fecal Indicators, And Real-Time Quantitative PCR Genetic Markers In Manure-Amended Soils

    EPA Science Inventory

    This study examined persistence and decay of bacterial pathogens, fecal indicator bacteria (FIB), and emerging real-time quantitative PCR (qPCR) genetic markers for rapid detection of fecal pollution in manure-amended agricultural soils. Known concentrations of transformed green...

  5. Decay Of Bacterial Pathogen, Fecal Indicators, And Real-Time Quantitative PCR Genetic Markers In Manure Amended Soils

    EPA Science Inventory

    This study examined persistence and decay of bacterial pathogens, fecal indicator bacteria, and emerging real-time quantitative PCR (qPCR) genetic markers for rapid detection of fecal pollution in manre-amended agricultural soils. Known concentrations of transformed green fluore...

  6. Are Bacterial Volatile Compounds Poisonous Odors to a Fungal Pathogen Botrytis cinerea, Alarm Signals to Arabidopsis Seedlings for Eliciting Induced Resistance, or Both?

    PubMed Central

    Sharifi, Rouhallah; Ryu, Choong-Min

    2016-01-01

    Biological control (biocontrol) agents act on plants via numerous mechanisms, and can be used to protect plants from pathogens. Biocontrol agents can act directly as pathogen antagonists or competitors or indirectly to promote plant induced systemic resistance (ISR). Whether a biocontrol agent acts directly or indirectly depends on the specific strain and the pathosystem type. We reported previously that bacterial volatile organic compounds (VOCs) are determinants for eliciting plant ISR. Emerging data suggest that bacterial VOCs also can directly inhibit fungal and plant growth. The aim of the current study was to differentiate direct and indirect mechanisms of bacterial VOC effects against Botrytis cinerea infection of Arabidopsis. Volatile emissions from Bacillus subtilis GB03 successfully protected Arabidopsis seedlings against B. cinerea. First, we investigated the direct effects of bacterial VOCs on symptom development and different phenological stages of B. cinerea including spore germination, mycelial attachment to the leaf surface, mycelial growth, and sporulation in vitro and in planta. Volatile emissions inhibited hyphal growth in a dose-dependent manner in vitro, and interfered with fungal attachment on the hydrophobic leaf surface. Second, the optimized bacterial concentration that did not directly inhibit fungal growth successfully protected Arabidopsis from fungal infection, which indicates that bacterial VOC-elicited plant ISR has a more important role in biocontrol than direct inhibition of fungal growth on Arabidopsis. We performed qRT-PCR to investigate the priming of the defense-related genes PR1, PDF1.2, and ChiB at 0, 12, 24, and 36 h post-infection and 14 days after the start of plant exposure to bacterial VOCs. The results indicate that bacterial VOCs potentiate expression of PR1 and PDF1.2 but not ChiB, which stimulates SA- and JA-dependent signaling pathways in plant ISR and protects plants against pathogen colonization. This study

  7. Host-pathogen interplay at primary infection sites in pigs challenged with Actinobacillus pleuropneumoniae.

    PubMed

    Sassu, Elena L; Frömbling, Janna; Duvigneau, J Catharina; Miller, Ingrid; Müllebner, Andrea; Gutiérrez, Ana M; Grunert, Tom; Patzl, Martina; Saalmüller, Armin; von Altrock, Alexandra; Menzel, Anne; Ganter, Martin; Spergser, Joachim; Hewicker-Trautwein, Marion; Verspohl, Jutta; Ehling-Schulz, Monika; Hennig-Pauka, Isabel

    2017-02-28

    Actinobacillus (A.) pleuropneumoniae is the causative agent of porcine pleuropneumonia and causes significant losses in the pig industry worldwide. Early host immune response is crucial for further progression of the disease. A. pleuropneumoniae is either rapidly eliminated by the immune system or switches to a long-term persistent form. To gain insight into the host-pathogen interaction during the early stages of infection, pigs were inoculated intratracheally with A. pleuropneumoniae serotype 2 and humanely euthanized eight hours after infection. Gene expression studies of inflammatory cytokines and the acute phase proteins haptoglobin, serum amyloid A and C-reactive protein were carried out by RT-qPCR from the lung, liver, tonsils and salivary gland. In addition, the concentration of cytokines and acute phase proteins were measured by quantitative immunoassays in bronchoalveolar lavage fluid, serum and saliva. In parallel to the analyses of host response, the impact of the host on the bacterial pathogen was assessed on a metabolic level. For the latter, Fourier-Transform Infrared (FTIR-) spectroscopy was employed. Significant cytokine and acute phase protein gene expression was detected in the lung and the salivary gland however this was not observed in the tonsils. In parallel to the analyses of host response, the impact of the host on the bacterial pathogen was assessed on a metabolic level. For the latter investigations, Fourier-Transform Infrared (FTIR-) spectroscopy was employed. The bacteria isolated from the upper and lower respiratory tract showed distinct IR spectral patterns reflecting the organ-specific acute phase response of the host. In summary, this study implies a metabolic adaptation of A. pleuropneumoniae to the porcine upper respiratory tract already during early infection, which might indicate a first step towards the persistence of A. pleuropneumoniae. Not only in lung, but also in the salivary gland an increased inflammatory gene expression

  8. Reemergence of Lower-Airway Microbiota in Lung Transplant Patients with Cystic Fibrosis.

    PubMed

    Syed, Saad A; Whelan, Fiona J; Waddell, Barbara; Rabin, Harvey R; Parkins, Michael D; Surette, Michael G

    2016-12-01

    Chronic lung infections are a hallmark of cystic fibrosis; they are responsible for progressive airway destruction and ultimately lead to respiratory death or the requirement for life-saving bilateral lung transplant. Furthermore, recurrent isolation of airway pathogens such as Pseudomonas aeruginosa in the allograft after transplant is associated with adverse outcomes, including bronchiolitis obliterans syndrome and acute infections. Little information exists on the impact of bilateral lung transplant on the lower-airway microbiota. To compare, at a microbiome and single-pathogen level (P. aeruginosa), the bacterial communities in pre- and post-transplant samples. We retrospectively accessed our biobank of sputum samples and sputum-derived bacterial pathogens for patients who had matched samples, including those who were clinically stable before transplant, those who had a pulmonary exacerbation before transplant, and those who had pulmonary exacerbation after transplant. We used 16S ribosomal RNA gene sequencing to characterize the lower-airway microbiome of 14 adult transplant patients with cystic fibrosis. Genotyping and phenotyping of P. aeruginosa isolates from 12 of these patients with matched isolates was performed. Although α-diversity (richness and evenness) of patient microbiomes was similar before and after transplant, β- diversity (core microbiome composition) measures stratified patients evenly into two groups with more similar and more dissimilar communities. P. aeruginosa strains isolated before transplant were found to reemerge in 11 of 12 patients; however, phenotypic variation was observed. These findings indicate that recolonization by P. aeruginosa after transplant is almost always strain specific, suggesting a within-host source. The polymicrobial colonization of the airways after transplant does not always reflect the pretransplant sputum microbiota.

  9. Drivers of bacterial genomes plasticity and roles they play in pathogen virulence, persistence and drug resistance.

    PubMed

    Patel, Seema

    2016-11-01

    Despite the advent of next-generation sequencing (NGS) technologies, sophisticated data analysis and drug development efforts, bacterial drug resistance persists and is escalating in magnitude. To better control the pathogens, a thorough understanding of their genomic architecture and dynamics is vital. Bacterial genome is extremely complex, a mosaic of numerous co-operating and antagonizing components, altruistic and self-interested entities, behavior of which are predictable and conserved to some extent, yet largely dictated by an array of variables. In this regard, mobile genetic elements (MGE), DNA repair systems, post-segregation killing systems, toxin-antitoxin (TA) systems, restriction-modification (RM) systems etc. are dominant agents and horizontal gene transfer (HGT), gene redundancy, epigenetics, phase and antigenic variation etc. processes shape the genome. By illegitimate recombinations, deletions, insertions, duplications, amplifications, inversions, conversions, translocations, modification of intergenic regions and other alterations, bacterial genome is modified to tackle stressors like drugs, and host immune effectors. Over the years, thousands of studies have investigated this aspect and mammoth amount of insights have been accumulated. This review strives to distillate the existing information, formulate hypotheses and to suggest directions, that might contribute towards improved mitigation of the vicious pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. STAT1-Regulated Lung MDSC-like Cells Produce IL-10 and Efferocytose Apoptotic Neutrophils With Relevance In Resolution of Bacterial Pneumonia

    PubMed Central

    Poe, Stephanie L.; Arora, Meenakshi; Oriss, Timothy B.; Yarlagadda, Manohar; Isse, Kumiko; Khare, Anupriya; Levy, David E.; Lee, Janet S.; Mallampalli, Rama; Ray, Anuradha; Ray, Prabir

    2012-01-01

    Bacterial pneumonia remains a significant burden worldwide. Although an inflammatory response in the lung is required to fight the causative agent, persistent tissue-resident neutrophils in non-resolving pneumonia can induce collateral tissue damage and precipitate acute lung injury. However, little is known about mechanisms orchestrated in the lung tissue that remove apoptotic neutrophils to restore tissue homeostasis. In mice infected with Klebsiella pneumoniae, a bacterium commonly associated with hospital-acquired pneumonia, we show that interleukin-10 is essential for resolution of lung inflammation and recovery of mice after infection. Although IL-10−/− mice cleared bacteria, they displayed increased morbidity with progressive weight loss and persistent lung inflammation in the later phase after infection. A source of tissue IL-10 was found to be resident CD11b+Gr1intF4/80+ cells resembling myeloid-derived suppressor cells that appeared with a delayed kinetics after infection. These cells efficiently efferocytosed apoptotic neutrophils, which was aided by IL-10. The lung neutrophil burden was attenuated in infected STAT1−/− mice with concomitant increase in the frequency of the MDSC-like cells and lung IL-10 levels. Thus, inhibiting STAT1 in combination with antibiotics may be a novel therapeutic strategy to address inefficient resolution of bacterial pneumonia. PMID:22785228

  11. Preclinical Investigations Reveal the Broad-Spectrum Neutralizing Activity of Peptide Pep19-2.5 on Bacterial Pathogenicity Factors

    PubMed Central

    Sánchez-Gómez, Susana; Martinez de Tejada, Guillermo; Dömming, Sabine; Brandenburg, Julius; Kaconis, Yani; Hornef, Mathias; Dupont, Aline; Marwitz, Sebastian; Goldmann, Torsten; Ernst, Martin; Gutsmann, Thomas; Schürholz, Tobias

    2013-01-01

    Bacterial infections are known to cause severe health-threatening conditions, including sepsis. All attempts to get this disease under control failed in the past, and especially in times of increasing antibiotic resistance, this leads to one of the most urgent medical challenges of our times. We designed a peptide to bind with high affinity to endotoxins, one of the most potent pathogenicity factors involved in triggering sepsis. The peptide Pep19-2.5 reveals high endotoxin neutralization efficiency in vitro, and here, we demonstrate its antiseptic/anti-inflammatory effects in vivo in the mouse models of endotoxemia, bacteremia, and cecal ligation and puncture, as well as in an ex vivo model of human tissue. Furthermore, we show that Pep19-2.5 can bind and neutralize not only endotoxins but also other bacterial pathogenicity factors, such as those from the Gram-positive bacterium Staphylococcus aureus. This broad neutralization efficiency and the additive action of the peptide with common antibiotics makes it an exceptionally appropriate drug candidate against bacterial sepsis and also offers multiple other medication opportunities. PMID:23318793

  12. Divergent pro-inflammatory profile of human dendritic cells in response to commensal and pathogenic bacteria associated with the airway microbiota.

    PubMed

    Larsen, Jeppe Madura; Steen-Jensen, Daniel Bisgaard; Laursen, Janne Marie; Søndergaard, Jonas Nørskov; Musavian, Hanieh Sadat; Butt, Tariq Mahmood; Brix, Susanne

    2012-01-01

    Recent studies using culture-independent methods have characterized the human airway microbiota and report microbial communities distinct from other body sites. Changes in these airway bacterial communities appear to be associated with inflammatory lung disease, yet the pro-inflammatory properties of individual bacterial species are unknown. In this study, we compared the immune stimulatory capacity on human monocyte-derived dendritic cells (DCs) of selected airway commensal and pathogenic bacteria predominantly associated with lungs of asthma or COPD patients (pathogenic Haemophillus spp. and Moraxella spp.), healthy lungs (commensal Prevotella spp.) or both (commensal Veillonella spp. and Actinomyces spp.). All bacteria were found to induce activation of DCs as demonstrated by similar induction of CD83, CD40 and CD86 surface expression. However, asthma and COPD-associated pathogenic bacteria provoked a 3-5 fold higher production of IL-23, IL-12p70 and IL-10 cytokines compared to the commensal bacteria. Based on the differential cytokine production profiles, the studied airway bacteria could be segregated into three groups (Haemophilus spp. and Moraxella spp. vs. Prevotella spp. and Veillonella spp. vs. Actinomyces spp.) reflecting their pro-inflammatory effects on DCs. Co-culture experiments found that Prevotella spp. were able to reduce Haemophillus influenzae-induced IL-12p70 in DCs, whereas no effect was observed on IL-23 and IL-10 production. This study demonstrates intrinsic differences in DC stimulating properties of bacteria associated with the airway microbiota.

  13. Divergent Pro-Inflammatory Profile of Human Dendritic Cells in Response to Commensal and Pathogenic Bacteria Associated with the Airway Microbiota

    PubMed Central

    Larsen, Jeppe Madura; Steen-Jensen, Daniel Bisgaard; Laursen, Janne Marie; Søndergaard, Jonas Nørskov; Musavian, Hanieh Sadat; Butt, Tariq Mahmood; Brix, Susanne

    2012-01-01

    Recent studies using culture-independent methods have characterized the human airway microbiota and report microbial communities distinct from other body sites. Changes in these airway bacterial communities appear to be associated with inflammatory lung disease, yet the pro-inflammatory properties of individual bacterial species are unknown. In this study, we compared the immune stimulatory capacity on human monocyte-derived dendritic cells (DCs) of selected airway commensal and pathogenic bacteria predominantly associated with lungs of asthma or COPD patients (pathogenic Haemophillus spp. and Moraxella spp.), healthy lungs (commensal Prevotella spp.) or both (commensal Veillonella spp. and Actinomyces spp.). All bacteria were found to induce activation of DCs as demonstrated by similar induction of CD83, CD40 and CD86 surface expression. However, asthma and COPD-associated pathogenic bacteria provoked a 3–5 fold higher production of IL-23, IL-12p70 and IL-10 cytokines compared to the commensal bacteria. Based on the differential cytokine production profiles, the studied airway bacteria could be segregated into three groups (Haemophilus spp. and Moraxella spp. vs. Prevotella spp. and Veillonella spp. vs. Actinomyces spp.) reflecting their pro-inflammatory effects on DCs. Co-culture experiments found that Prevotella spp. were able to reduce Haemophillus influenzae-induced IL-12p70 in DCs, whereas no effect was observed on IL-23 and IL-10 production. This study demonstrates intrinsic differences in DC stimulating properties of bacteria associated with the airway microbiota. PMID:22363778

  14. Large scale genomic analysis shows no evidence for pathogen adaptation between the blood and cerebrospinal fluid niches during bacterial meningitis

    PubMed Central

    Lees, John A.; Kremer, Philip H. C.; Manso, Ana S.; Croucher, Nicholas J.; Ferwerda, Bart; Serón, Mercedes Valls; Oggioni, Marco R.; Parkhill, Julian; Brouwer, Matthijs C.; van der Ende, Arie; van de Beek, Diederik

    2017-01-01

    Recent studies have provided evidence for rapid pathogen genome diversification, some of which could potentially affect the course of disease. We have previously described such variation seen between isolates infecting the blood and cerebrospinal fluid (CSF) of a single patient during a case of bacterial meningitis. Here, we performed whole-genome sequencing of paired isolates from the blood and CSF of 869 meningitis patients to determine whether such variation frequently occurs between these two niches in cases of bacterial meningitis. Using a combination of reference-free variant calling approaches, we show that no genetic adaptation occurs in either invaded niche during bacterial meningitis for two major pathogen species, Streptococcus pneumoniae and Neisseria meningitidis. This study therefore shows that the bacteria capable of causing meningitis are already able to do this upon entering the blood, and no further sequence change is necessary to cross the blood–brain barrier. Our findings place the focus back on bacterial evolution between nasopharyngeal carriage and invasion, or diversity of the host, as likely mechanisms for determining invasiveness. PMID:28348877

  15. Factor H-IgG Chimeric Proteins as a Therapeutic Approach against the Gram-Positive Bacterial Pathogen Streptococcus pyogenes.

    PubMed

    Blom, Anna M; Magda, Michal; Kohl, Lisa; Shaughnessy, Jutamas; Lambris, John D; Ram, Sanjay; Ermert, David

    2017-12-01

    Bacteria can cause life-threatening infections, such as pneumonia, meningitis, or sepsis. Antibiotic therapy is a mainstay of treatment, although antimicrobial resistance has drastically increased over the years. Unfortunately, safe and effective vaccines against most pathogens have not yet been approved, and thus developing alternative treatments is important. We analyzed the efficiency of factor H (FH)6-7/Fc, a novel antibacterial immunotherapeutic protein against the Gram-positive bacterium Streptococcus pyogenes This protein is composed of two domains of complement inhibitor human FH (FH complement control protein modules 6 and 7) that bind to S. pyogenes , linked to the Fc region of IgG (FH6-7/Fc). FH6-7/Fc has previously been shown to enhance complement-dependent killing of, and facilitate bacterial clearance in, animal models of the Gram-negative pathogens Haemophilus influenzae and Neisseria meningitidis We hypothesized that activation of complement by FH6-7/Fc on the surface of Gram-positive bacteria such as S. pyogenes will enable professional phagocytes to eliminate the pathogen. We found that FH6-7/Fc alleviated S. pyogenes- induced sepsis in a transgenic mouse model expressing human FH ( S. pyogenes binds FH in a human-specific manner). Furthermore, FH6-7/Fc, which binds to protein H and selected M proteins, displaced FH from the bacterial surface, enhanced alternative pathway activation, and reduced bacterial blood burden by opsonophagocytosis in a C3-dependent manner in an ex vivo human whole-blood model. In conclusion, FH-Fc chimeric proteins could serve as adjunctive treatments against multidrug-resistant bacterial infections. Copyright © 2017 by The American Association of Immunologists, Inc.

  16. Chemical communication in the gut: Effects of microbiota-generated metabolites on gastrointestinal bacterial pathogens.

    PubMed

    Vogt, Stefanie L; Peña-Díaz, Jorge; Finlay, B Brett

    2015-08-01

    Gastrointestinal pathogens must overcome many obstacles in order to successfully colonize a host, not the least of which is the presence of the gut microbiota, the trillions of commensal microorganisms inhabiting mammals' digestive tracts, and their products. It is well established that a healthy gut microbiota provides its host with protection from numerous pathogens, including Salmonella species, Clostridium difficile, diarrheagenic Escherichia coli, and Vibrio cholerae. Conversely, pathogenic bacteria have evolved mechanisms to establish an infection and thrive in the face of fierce competition from the microbiota for space and nutrients. Here, we review the evidence that gut microbiota-generated metabolites play a key role in determining the outcome of infection by bacterial pathogens. By consuming and transforming dietary and host-produced metabolites, as well as secreting primary and secondary metabolites of their own, the microbiota define the chemical environment of the gut and often determine specific host responses. Although most gut microbiota-produced metabolites are currently uncharacterized, several well-studied molecules made or modified by the microbiota are known to affect the growth and virulence of pathogens, including short-chain fatty acids, succinate, mucin O-glycans, molecular hydrogen, secondary bile acids, and the AI-2 quorum sensing autoinducer. We also discuss challenges and possible approaches to further study of the chemical interplay between microbiota and gastrointestinal pathogens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Development of a panel of recombinase polymerase amplification assays for detection of common bacterial urinary tract infection pathogens.

    PubMed

    Raja, B; Goux, H J; Marapadaga, A; Rajagopalan, S; Kourentzi, K; Willson, R C

    2017-08-01

    To develop and evaluate the performance of a panel of isothermal real-time recombinase polymerase amplification (RPA) assays for detection of common bacterial urinary tract infection (UTI) pathogens. The panel included RPAs for Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa and Enterococcus faecalis. All five RPAs required reaction times of under 12 min to reach their lower limit of detection of 100 genomes per reaction or less, and did not cross-react with high concentrations of nontarget bacterial genomic DNA. In a 50-sample retrospective clinical study, the five-RPA assay panel was found to have a specificity of 100% (95% CI, 78-100%) and a sensitivity of 89% (95% CI, 75-96%) for UTI detection. The analytical and clinical validity of RPA for the rapid and sensitive detection of common UTI pathogens was established. Rapid identification of the causative pathogens of UTIs can be valuable in preventing serious complications by helping avoid the empirical treatment necessitated by traditional urine culture's 48-72-h turnaround time. The routine and widespread use of RPA to supplement or replace culture-based methods could profoundly impact UTI management and the emergence of multidrug-resistant pathogens. © 2017 The Society for Applied Microbiology.

  18. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations

    PubMed Central

    Law, Jodi Woan-Fei; Ab Mutalib, Nurul-Syakima; Chan, Kok-Gan; Lee, Learn-Han

    2015-01-01

    The incidence of foodborne diseases has increased over the years and resulted in major public health problem globally. Foodborne pathogens can be found in various foods and it is important to detect foodborne pathogens to provide safe food supply and to prevent foodborne diseases. The conventional methods used to detect foodborne pathogen are time consuming and laborious. Hence, a variety of methods have been developed for rapid detection of foodborne pathogens as it is required in many food analyses. Rapid detection methods can be categorized into nucleic acid-based, biosensor-based and immunological-based methods. This review emphasizes on the principles and application of recent rapid methods for the detection of foodborne bacterial pathogens. Detection methods included are simple polymerase chain reaction (PCR), multiplex PCR, real-time PCR, nucleic acid sequence-based amplification (NASBA), loop-mediated isothermal amplification (LAMP) and oligonucleotide DNA microarray which classified as nucleic acid-based methods; optical, electrochemical and mass-based biosensors which classified as biosensor-based methods; enzyme-linked immunosorbent assay (ELISA) and lateral flow immunoassay which classified as immunological-based methods. In general, rapid detection methods are generally time-efficient, sensitive, specific and labor-saving. The developments of rapid detection methods are vital in prevention and treatment of foodborne diseases. PMID:25628612

  19. Virulence factors of the human opportunistic pathogen Serratia marcescens identified by in vivo screening

    PubMed Central

    Kurz, C.Léopold; Chauvet, Sophie; Andrès, Emmanuel; Aurouze, Marianne; Vallet, Isabelle; Michel, Gérard P.F.; Uh, Mitch; Celli, Jean; Filloux, Alain; de Bentzmann, Sophie; Steinmetz, Ivo; Hoffmann, Jules A.; Finlay, B.Brett; Gorvel, Jean-Pierre; Ferrandon, Dominique; Ewbank, Jonathan J.

    2003-01-01

    The human opportunistic pathogen Serratia marcescens is a bacterium with a broad host range, and represents a growing problem for public health. Serratia marcescens kills Caenorhabditis elegans after colonizing the nematode’s intestine. We used C.elegans to screen a bank of transposon-induced S.marcescens mutants and isolated 23 clones with an attenuated virulence. Nine of the selected bacterial clones also showed a reduced virulence in an insect model of infection. Of these, three exhibited a reduced cytotoxicity in vitro, and among them one was also markedly attenuated in its virulence in a murine lung infection model. For 21 of the 23 mutants, the transposon insertion site was identified. This revealed that among the genes necessary for full in vivo virulence are those that function in lipopolysaccharide (LPS) biosynthesis, iron uptake and hemolysin produc tion. Using this system we also identified novel conserved virulence factors required for Pseudomonas aeruginosa pathogenicity. This study extends the utility of C.elegans as an in vivo model for the study of bacterial virulence and advances the molecular understanding of S.marcescens pathogenicity. PMID:12660152

  20. Rapid detection of Mannheimia haemolytica in lung tissues of sheep and from bacterial culture.

    PubMed

    Kumar, Jyoti; Dixit, Shivendra Kumar; Kumar, Rajiv

    2015-09-01

    This study was aimed to detect Mannheimia haemolytica in lung tissues of sheep and from a bacterial culture. M. haemolytica is one of the most important and well-established etiological agents of pneumonia in sheep and other ruminants throughout the world. Accurate diagnosis of M. haemolytica primarily relies on bacteriological examination, biochemical characteristics and, biotyping and serotyping of the isolates. In an effort to facilitate rapid M. haemolytica detection, polymerase chain reaction assay targeting Pasteurella haemolytica serotype-1 specific antigens (PHSSA), Rpt2 and 12S ribosomal RNA (rRNA) genes were used to detect M. haemolytica directly from lung tissues and from bacterial culture. A total of 12 archived lung tissues from sheep that died of pneumonia on an organized farm were used. A multiplex polymerase chain reaction (mPCR) based on two-amplicons targeted PHSSA and Rpt2 genes of M. haemolytica were used for identification of M. haemolytica isolates in culture from the lung samples. All the 12 lung tissue samples were tested for the presence M. haemolytica by PHSSA and Rpt2 genes based PCR and its confirmation by sequencing of the amplicons. All the 12 lung tissue samples tested for the presence of PHSSA and Rpt2 genes of M. haemolytica by mPCR were found to be positive. Amplification of 12S rRNA gene fragment as internal amplification control was obtained with each mPCR reaction performed from DNA extracted directly from lung tissue samples. All the M. haemolytica were also positive for mPCR. No amplified DNA bands were observed for negative control reactions. All the three nucleotide sequences were deposited in NCBI GenBank (Accession No. KJ534629, KJ534630 and KJ534631). Sequencing of the amplified products revealed the identity of 99-100%, with published sequence of PHSSA and Rpt2 genes of M. haemolytica available in the NCBI database. Sheep specific mitochondrial 12S rRNA gene sequence also revealed the identity of 98% with published

  1. Gram Stains: A Resource for Retrospective Analysis of Bacterial Pathogens in Clinical Studies

    PubMed Central

    Srinivasan, Usha; Ponnaluri, Sreelatha; Villareal, Lisa; Gillespie, Brenda; Wen, Ai; Miles, Arianna; Bucholz, Brigette; Marrs, Carl F.; Iyer, Ram K.; Misra, Dawn; Foxman, Betsy

    2012-01-01

    We demonstrate the feasibility of using qPCR on DNA extracted from vaginal Gram stain slides to estimate the presence and relative abundance of specific bacterial pathogens. We first tested Gram stained slides spiked with a mix of 108 cfu/ml of Escherichia coli and 105 cfu/ml of Lactobacillus acidophilus. Primers were designed for amplification of total and species-specific bacterial DNA based on 16S ribosomal gene regions. Sample DNA was pre-amplified with nearly full length 16S rDNA ribosomal gene fragment, followed by quantitative PCR with genera and species-specific 16S rDNA primers. Pre-amplification PCR increased the bacterial amounts; relative proportions of Escherichia coli and Lactobacillus recovered from spiked slides remained unchanged. We applied this method to forty two archived Gram stained slides available from a clinical trial of cerclage in pregnant women at high risk of preterm birth. We found a high correlation between Nugent scores based on bacterial morphology of Lactobacillus, Gardenerella and Mobiluncus and amounts of quantitative PCR estimated genus specific DNA (rrn copies) from Gram stained slides. Testing of a convenience sample of eight paired vaginal swabs and Gram stains freshly collected from healthy women found similar qPCR generated estimates of Lactobacillus proportions from Gram stained slides and vaginal swabs. Archived Gram stained slides collected from large scale epidemiologic and clinical studies represent a valuable, untapped resource for research on the composition of bacterial communities that colonize human mucosal surfaces. PMID:23071487

  2. Gram stains: a resource for retrospective analysis of bacterial pathogens in clinical studies.

    PubMed

    Srinivasan, Usha; Ponnaluri, Sreelatha; Villareal, Lisa; Gillespie, Brenda; Wen, Ai; Miles, Arianna; Bucholz, Brigette; Marrs, Carl F; Iyer, Ram K; Misra, Dawn; Foxman, Betsy

    2012-01-01

    We demonstrate the feasibility of using qPCR on DNA extracted from vaginal Gram stain slides to estimate the presence and relative abundance of specific bacterial pathogens. We first tested Gram stained slides spiked with a mix of 10(8) cfu/ml of Escherichia coli and 10(5) cfu/ml of Lactobacillus acidophilus. Primers were designed for amplification of total and species-specific bacterial DNA based on 16S ribosomal gene regions. Sample DNA was pre-amplified with nearly full length 16S rDNA ribosomal gene fragment, followed by quantitative PCR with genera and species-specific 16S rDNA primers. Pre-amplification PCR increased the bacterial amounts; relative proportions of Escherichia coli and Lactobacillus recovered from spiked slides remained unchanged. We applied this method to forty two archived Gram stained slides available from a clinical trial of cerclage in pregnant women at high risk of preterm birth. We found a high correlation between Nugent scores based on bacterial morphology of Lactobacillus, Gardenerella and Mobiluncus and amounts of quantitative PCR estimated genus specific DNA (rrn copies) from Gram stained slides. Testing of a convenience sample of eight paired vaginal swabs and Gram stains freshly collected from healthy women found similar qPCR generated estimates of Lactobacillus proportions from Gram stained slides and vaginal swabs. Archived Gram stained slides collected from large scale epidemiologic and clinical studies represent a valuable, untapped resource for research on the composition of bacterial communities that colonize human mucosal surfaces.

  3. A polymicrobial perspective of pulmonary infections exposes an enigmatic pathogen in cystic fibrosis patients.

    PubMed

    Sibley, Christopher D; Parkins, Michael D; Rabin, Harvey R; Duan, Kangmin; Norgaard, Jens C; Surette, Michael G

    2008-09-30

    Lung disease is the leading cause of morbidity and mortality in cystic fibrosis (CF) patients. A modest number of bacterial pathogens have been correlated with pulmonary function decline; however, microbiological and molecular evidence suggests that CF airway infection is polymicrobial. To obtain a more complete assessment of the microbial community composition and dynamics, we undertook a longitudinal study by using culture-independent and microbiological approaches. In the process, we demonstrated that within complex and dynamic communities, the Streptococcus milleri group (SMG) can establish chronic pulmonary infections and at the onset of 39% of acute pulmonary exacerbations, SMG is the numerically dominant pathogen. We report the comprehensive polymicrobial community dynamics of a CF lung infection in a clinically relevant context. If a given organism, such as Pseudomonas aeruginosa, becomes resistant to antibiotic therapy, an alternative treatment avenue may mediate the desired clinical response by effectively managing the composition of the microbial community.

  4. Transmission of Bacterial Zoonotic Pathogens between Pets and Humans: The Role of Pet Food.

    PubMed

    Lambertini, Elisabetta; Buchanan, Robert L; Narrod, Clare; Pradhan, Abani K

    2016-01-01

    Recent Salmonella outbreaks associated with dry pet food and treats raised the level of concern for these products as vehicle of pathogen exposure for both pets and their owners. The need to characterize the microbiological and risk profiles of this class of products is currently not supported by sufficient specific data. This systematic review summarizes existing data on the main variables needed to support an ingredients-to-consumer quantitative risk model to (1) describe the microbial ecology of bacterial pathogens in the dry pet food production chain, (2) estimate pet exposure to pathogens through dry food consumption, and (3) assess human exposure and illness incidence due to contact with pet food and pets in the household. Risk models populated with the data here summarized will provide a tool to quantitatively address the emerging public health concerns associated with pet food and the effectiveness of mitigation measures. Results of such models can provide a basis for improvements in production processes, risk communication to consumers, and regulatory action.

  5. Gene regulation mediates host specificity of a bacterial pathogen.

    PubMed

    Killiny, Nabil; Almeida, Rodrigo P P

    2011-12-01

    Many bacterial plant pathogens have a gene-for-gene relationship that determines host specificity. However, there are pathogens such as the xylem-limited bacterium Xylella fastidiosa that do not carry genes considered essential for the gene-for-gene model, such as those coding for a type III secretion system and effector molecules. Nevertheless, X. fastidiosa subspecies are host specific. A comparison of symptom development and host colonization after infection of plants with several mutant strains in two hosts, grapevines and almonds, indicated that X. fastidiosa virulence mechanisms are similar in those plants. Thus, we tested if modification of gene regulation patterns, by affecting the production of a cell-cell signalling molecule (DSF), impacted host specificity in X. fastidiosa. Results show that disruption of the rpfF locus, required for DSF synthesis, in a strain incapable of causing disease in grapevines, leads to symptom development in that host. These data are indicative that the core machinery required for the colonization of grapevines is present in that strain, and that changes in gene regulation alone can lead X. fastidiosa to exploit a novel host. The study of the evolution and mechanisms of host specificity mediated by gene regulation at the genome level could lead to important insights on the emergence of new diseases. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  6. Prevention of Lung Carcinogenesis by Suppressing Pathogenic CD4 T Cells

    DTIC Science & Technology

    2017-05-01

    intestinal inflammation by reducing TH17 cells and preserving group 3 innate lymphoid cells . Nat Med, 2016. 22(3): p. 319-23.   ...stable population of YFP+  cells  similar  to  innate  IL‐17–producing  cells  (e.g., γδ T  cells ) during acute infection (Fig.2) , which is in sharp contrast...AWARD NUMBER: W81XWH-16-1-0100 TITLE: Prevention of Lung Carcinogenesis by Suppressing Pathogenic CD4 T Cells PRINCIPAL INVESTIGATOR: Seon Hee

  7. Common themes in microbial pathogenicity revisited.

    PubMed Central

    Finlay, B B; Falkow, S

    1997-01-01

    Bacterial pathogens employ a number of genetic strategies to cause infection and, occasionally, disease in their hosts. Many of these virulence factors and their regulatory elements can be divided into a smaller number of groups based on the conservation of similar mechanisms. These common themes are found throughout bacterial virulence factors. For example, there are only a few general types of toxins, despite a large number of host targets. Similarly, there are only a few conserved ways to build the bacterial pilus and nonpilus adhesins used by pathogens to adhere to host substrates. Bacterial entry into host cells (invasion) is a complex mechanism. However, several common invasion themes exist in diverse microorganisms. Similarly, once inside a host cell, pathogens have a limited number of ways to ensure their survival, whether remaining within a host vacuole or by escaping into the cytoplasm. Avoidance of the host immune defenses is key to the success of a pathogen. Several common themes again are employed, including antigenic variation, camouflage by binding host molecules, and enzymatic degradation of host immune components. Most virulence factors are found on the bacterial surface or secreted into their immediate environment, yet virulence factors operate through a relatively small number of microbial secretion systems. The expression of bacterial pathogenicity is dependent upon complex regulatory circuits. However, pathogens use only a small number of biochemical families to express distinct functional factors at the appropriate time that causes infection. Finally, virulence factors maintained on mobile genetic elements and pathogenicity islands ensure that new strains of pathogens evolve constantly. Comprehension of these common themes in microbial pathogenicity is critical to the understanding and study of bacterial virulence mechanisms and to the development of new "anti-virulence" agents, which are so desperately needed to replace antibiotics. PMID

  8. Evidence and Role for Bacterial Mucin Degradation in Cystic Fibrosis Airway Disease

    PubMed Central

    Flynn, Jeffrey M.; Niccum, David; Dunitz, Jordan M.

    2016-01-01

    Chronic lung infections in cystic fibrosis (CF) patients are composed of complex microbial communities that incite persistent inflammation and airway damage. Despite the high density of bacteria that colonize the lower airways, nutrient sources that sustain bacterial growth in vivo, and how those nutrients are derived, are not well characterized. In this study, we examined the possibility that mucins serve as an important carbon reservoir for the CF lung microbiota. While Pseudomonas aeruginosa was unable to efficiently utilize mucins in isolation, we found that anaerobic, mucin-fermenting bacteria could stimulate the robust growth of CF pathogens when provided intact mucins as a sole carbon source. 16S rRNA sequencing and enrichment culturing of sputum also identified that mucin-degrading anaerobes are ubiquitous in the airways of CF patients. The collective fermentative metabolism of these mucin-degrading communities in vitro generated amino acids and short chain fatty acids (propionate and acetate) during growth on mucin, and the same metabolites were also found in abundance within expectorated sputum. The significance of these findings was supported by in vivo P. aeruginosa gene expression, which revealed a heightened expression of genes required for the catabolism of propionate. Given that propionate is exclusively derived from bacterial fermentation, these data provide evidence for an important role of mucin fermenting bacteria in the carbon flux of the lower airways. More specifically, microorganisms typically defined as commensals may contribute to airway disease by degrading mucins, in turn providing nutrients for pathogens otherwise unable to efficiently obtain carbon in the lung. PMID:27548479

  9. Bacterial pneumonia as an influenza complication.

    PubMed

    Martin-Loeches, Ignacio; van Someren Gréve, Frank; Schultz, Marcus J

    2017-04-01

    The pathogenesis and impact of coinfection, in particular bacterial coinfection, in influenza are incompletely understood. This review summarizes results from studies on bacterial coinfection in the recent pandemic influenza outbreak. Systemic immune mechanisms play a key role in the development of coinfection based on the complexity of the interaction of the host and the viral and bacterial pathogens. Several studies were performed to determine the point prevalence of bacterial coinfection in influenza. Coinfection in influenza is frequent in critically ill patients with Streptococcus pneumoniae being the most frequent bacterial pathogen and higher rates of potentially resistant pathogens over the years. Bacterial pneumonia is certainly an influenza complication. The recent epidemiology findings have helped to partially resolve the contribution of different pathogens. Immunosuppression is a risk factor for bacterial coinfection in influenza, and the epidemiology of coinfection has changed over the years during the last influenza pandemic, and these recent findings should be taken into account during present outbreaks.

  10. Lung needle biopsy

    MedlinePlus

    ... may be due to any of the following: Bacterial, viral, or fungal lung infection Cancerous cells ( lung cancer , mesothelioma) Pneumonia Risks Sometimes, a collapsed lung ( pneumothorax ) occurs after ...

  11. Evaluation of the Seeplex® Meningitis ACE Detection kit for the detection of 12 common bacterial and viral pathogens of acute meningitis.

    PubMed

    Shin, So Youn; Kwon, Kye Chul; Park, Jong Woo; Kim, Ji Myung; Shin, So Young; Koo, Sun Hoe

    2012-01-01

    Bacterial meningitis is an infectious disease with high rates of mortality and high frequency of severe sequelae. Early identification of causative bacterial and viral pathogens is important for prompt and proper treatment of meningitis and for prevention of life-threatening clinical outcomes. In the present study, we evaluated the value of the Seeplex Meningitis ACE Detection kit (Seegene Inc., Korea), a newly developed multiplex PCR kit employing dual priming oligonucleotide methods, for diagnosing acute meningitis. Analytical sensitivity of the kit was studied using reference strains for each pathogen targeted by the kit, while it's analytical specificity was studied using the human genome DNA and 58 clinically well-identified reference strains. For clinical validation experiment, we used 27 control cerebrospinal fluid (CSF) samples and 78 clinical CSF samples collected from patients at the time of diagnosis of acute meningitis. The lower detection limits ranged from 10(1) copies/µL to 5×10(1) copies/µL for the 12 viral and bacterial pathogens targeted. No cross-reaction was observed. In the validation study, high detection rate of 56.4% was obtained. None of the control samples tested positive, i.e., false-positive results were absent. The Seeplex Meningitis ACE Detection kit showed high sensitivity, specificity, and detection rate for the identification of pathogens in clinical CSF samples. This kit may be useful for rapid identification of important acute meningitis-causing pathogens.

  12. Evaluation of the Seeplex® Meningitis ACE Detection Kit for the Detection of 12 Common Bacterial and Viral Pathogens of Acute Meningitis

    PubMed Central

    Shin, So Youn; Kwon, Kye Chul; Park, Jong Woo; Kim, Ji Myung; Shin, So Young

    2012-01-01

    Background Bacterial meningitis is an infectious disease with high rates of mortality and high frequency of severe sequelae. Early identification of causative bacterial and viral pathogens is important for prompt and proper treatment of meningitis and for prevention of life-threatening clinical outcomes. In the present study, we evaluated the value of the Seeplex Meningitis ACE Detection kit (Seegene Inc., Korea), a newly developed multiplex PCR kit employing dual priming oligonucleotide methods, for diagnosing acute meningitis. Methods Analytical sensitivity of the kit was studied using reference strains for each pathogen targeted by the kit, while it's analytical specificity was studied using the human genome DNA and 58 clinically well-identified reference strains. For clinical validation experiment, we used 27 control cerebrospinal fluid (CSF) samples and 78 clinical CSF samples collected from patients at the time of diagnosis of acute meningitis. Results The lower detection limits ranged from 101 copies/µL to 5×101 copies/µL for the 12 viral and bacterial pathogens targeted. No cross-reaction was observed. In the validation study, high detection rate of 56.4% was obtained. None of the control samples tested positive, i.e., false-positive results were absent. Conclusions The Seeplex Meningitis ACE Detection kit showed high sensitivity, specificity, and detection rate for the identification of pathogens in clinical CSF samples. This kit may be useful for rapid identification of important acute meningitis-causing pathogens. PMID:22259778

  13. The Effect of Antibiotic Exposure and Specimen Volume on the Detection of Bacterial Pathogens in Children With Pneumonia.

    PubMed

    Driscoll, Amanda J; Deloria Knoll, Maria; Hammitt, Laura L; Baggett, Henry C; Brooks, W Abdullah; Feikin, Daniel R; Kotloff, Karen L; Levine, Orin S; Madhi, Shabir A; O'Brien, Katherine L; Scott, J Anthony G; Thea, Donald M; Howie, Stephen R C; Adrian, Peter V; Ahmed, Dilruba; DeLuca, Andrea N; Ebruke, Bernard E; Gitahi, Caroline; Higdon, Melissa M; Kaewpan, Anek; Karani, Angela; Karron, Ruth A; Mazumder, Razib; McLellan, Jessica; Moore, David P; Mwananyanda, Lawrence; Park, Daniel E; Prosperi, Christine; Rhodes, Julia; Saifullah, Md; Seidenberg, Phil; Sow, Samba O; Tamboura, Boubou; Zeger, Scott L; Murdoch, David R

    2017-06-15

    Antibiotic exposure and specimen volume are known to affect pathogen detection by culture. Here we assess their effects on bacterial pathogen detection by both culture and polymerase chain reaction (PCR) in children. PERCH (Pneumonia Etiology Research for Child Health) is a case-control study of pneumonia in children aged 1-59 months investigating pathogens in blood, nasopharyngeal/oropharyngeal (NP/OP) swabs, and induced sputum by culture and PCR. Antibiotic exposure was ascertained by serum bioassay, and for cases, by a record of antibiotic treatment prior to specimen collection. Inoculated blood culture bottles were weighed to estimate volume. Antibiotic exposure ranged by specimen type from 43.5% to 81.7% in 4223 cases and was detected in 2.3% of 4863 controls. Antibiotics were associated with a 45% reduction in blood culture yield and approximately 20% reduction in yield from induced sputum culture. Reduction in yield of Streptococcus pneumoniae from NP culture was approximately 30% in cases and approximately 32% in controls. Several bacteria had significant but marginal reductions (by 5%-7%) in detection by PCR in NP/OP swabs from both cases and controls, with the exception of S. pneumoniae in exposed controls, which was detected 25% less frequently compared to nonexposed controls. Bacterial detection in induced sputum by PCR decreased 7% for exposed compared to nonexposed cases. For every additional 1 mL of blood culture specimen collected, microbial yield increased 0.51% (95% confidence interval, 0.47%-0.54%), from 2% when volume was ≤1 mL to approximately 6% for ≥3 mL. Antibiotic exposure and blood culture volume affect detection of bacterial pathogens in children with pneumonia and should be accounted for in studies of etiology and in clinical management. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  14. Population structure of the bacterial pathogen Xylella fastidiosa among street trees in Washington D.C.

    PubMed

    Harris, Jordan Lee; Balci, Yilmaz

    2015-01-01

    Bacterial leaf scorch, associated with the bacterial pathogen Xylella fastidiosa, is a widely established and problematic disease of landscape ornamentals in Washington D.C. A multi-locus sequence typing analysis was performed using 10 housekeeping loci for X. fastidiosa strains in order to better understand the epidemiology of leaf scorch disease in this municipal environment. Samples were collected from 7 different tree species located throughout the District of Columbia, consisting of 101 samples of symptomatic and asymptomatic foliage from 84 different trees. Five strains of the bacteria were identified. Consistent with prior data, these strains were host specific, with only one strain associated with members of the red oak family, one strain associated with American elm, one strain associated with American sycamore, and two strains associated with mulberry. Strains found for asymptomatic foliage were the same as strains from the symptomatic foliage on individual trees. Cross transmission of the strains was not observed at sites with multiple species of infected trees within an approx. 25 m radius of one another. X. fastidiosa strain specificity observed for each genus of tree suggests a highly specialized host-pathogen relationship.

  15. Population Structure of the Bacterial Pathogen Xylella fastidiosa among Street Trees in Washington D.C.

    PubMed Central

    Harris, Jordan Lee; Balci, Yilmaz

    2015-01-01

    Bacterial leaf scorch, associated with the bacterial pathogen Xylella fastidiosa, is a widely established and problematic disease of landscape ornamentals in Washington D.C. A multi-locus sequence typing analysis was performed using 10 housekeeping loci for X. fastidiosa strains in order to better understand the epidemiology of leaf scorch disease in this municipal environment. Samples were collected from 7 different tree species located throughout the District of Columbia, consisting of 101 samples of symptomatic and asymptomatic foliage from 84 different trees. Five strains of the bacteria were identified. Consistent with prior data, these strains were host specific, with only one strain associated with members of the red oak family, one strain associated with American elm, one strain associated with American sycamore, and two strains associated with mulberry. Strains found for asymptomatic foliage were the same as strains from the symptomatic foliage on individual trees. Cross transmission of the strains was not observed at sites with multiple species of infected trees within an approx. 25 m radius of one another. X. fastidiosa strain specificity observed for each genus of tree suggests a highly specialized host-pathogen relationship. PMID:25815838

  16. Molecular epidemiological survey of bacterial and parasitic pathogens in hard ticks from eastern China.

    PubMed

    Liu, Xiang-Ye; Gong, Xiang-Yao; Zheng, Chen; Song, Qi-Yuan; Chen, Ting; Wang, Jing; Zheng, Jie; Deng, Hong-Kuan; Zheng, Kui-Yang

    2017-03-01

    Ticks are able to transmit various pathogens-viruses, bacteria, and parasites-to their host during feeding. Several molecular epidemiological surveys have been performed to evaluate the risk of tick-borne pathogens in China, but little is known about pathogens circulating in ticks from eastern China. Therefore, this study aimed to investigate the presence of bacteria and parasites in ticks collected from Xuzhou, a 11258km 2 region in eastern China. In the present study, ticks were collected from domestic goats and grasses in urban districts of Xuzhou region from June 2015 to July 2016. After tick species identification, the presence of tick-borne bacterial and parasitic pathogens, including Anaplasma phagocytophilum, Borrelia burgdorferi, Rickettsia sp., Bartonella sp., Babesia sp., and Theileria sp., was established via conventional or nested polymerase chain reaction assays (PCR) and sequence analysis. Finally, a total of 500 questing adult ticks, identified as Haemaphysalis longicornis, were investigated. Among them, 28/500 tick samples (5.6%) were infected with A. phagocytophilum, and 23/500 (4.6%) with Theileria luwenshuni, whereas co-infection with these pathogens was detected in only 1/51 (2%) of all infected ticks. In conclusion, H. longicornis is the dominant tick species in the Xuzhou region and plays an important role in zoonotic pathogen transmission. Both local residents and animals are at a significant risk of exposure to anaplasmosis and theileriosis, due to the high rates of A. phagocytophilum and T. luwenshuni tick infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Inactivation of selected bacterial pathogens in dairy cattle manure by mesophilic anaerobic digestion (balloon type digester).

    PubMed

    Manyi-Loh, Christy E; Mamphweli, Sampson N; Meyer, Edson L; Okoh, Anthony I; Makaka, Golden; Simon, Michael

    2014-07-14

    Anaerobic digestion of animal manure in biogas digesters has shown promise as a technology in reducing the microbial load to safe and recommended levels. We sought to treat dairy manure obtained from the Fort Hare Dairy Farm by investigating the survival rates of bacterial pathogens, through a total viable plate count method, before, during and after mesophilic anaerobic digestion. Different microbiological media were inoculated with different serial dilutions of manure samples that were withdrawn from the biogas digester at 3, 7 and 14 day intervals to determine the viable cells. Data obtained indicated that the pathogens of public health importance were 90%-99% reduced in the order: Campylobacter sp. (18 days) < Escherichia coli sp. (62 days) < Salmonella sp. (133 days) from a viable count of 10.1 × 103, 3.6 × 105, 7.4 × 103 to concentrations below the detection limit (DL = 102 cfu/g manure), respectively. This disparity in survival rates may be influenced by the inherent characteristics of these bacteria, available nutrients as well as the stages of the anaerobic digestion process. In addition, the highest p-value i.e., 0.957 for E. coli showed the statistical significance of its model and the strongest correlation between its reductions with days of digestion. In conclusion, the results demonstrated that the specific bacterial pathogens in manure can be considerably reduced through anaerobic digestion after 133 days.

  18. The Opportunistic Pathogen Serratia marcescens Utilizes Type VI Secretion To Target Bacterial Competitors ▿†

    PubMed Central

    Murdoch, Sarah L.; Trunk, Katharina; English, Grant; Fritsch, Maximilian J.; Pourkarimi, Ehsan; Coulthurst, Sarah J.

    2011-01-01

    The type VI secretion system (T6SS) is the most recently described and least understood of the protein secretion systems of Gram-negative bacteria. It is widely distributed and has been implicated in the virulence of various pathogens, but its mechanism and exact mode of action remain to be defined. Additionally there have been several very recent reports that some T6SSs can target bacteria rather than eukaryotic cells. Serratia marcescens is an opportunistic enteric pathogen, a class of bacteria responsible for a significant proportion of hospital-acquired infections. We describe the identification of a functional T6SS in S. marcescens strain Db10, the first report of type VI secretion by an opportunist enteric bacterium. The T6SS of S. marcescens Db10 is active, with secretion of Hcp to the culture medium readily detected, and is expressed constitutively under normal growth conditions from a large transcriptional unit. Expression of the T6SS genes did not appear to be dependent on the integrity of the T6SS. The S. marcescens Db10 T6SS is not required for virulence in three nonmammalian virulence models. It does, however, exhibit dramatic antibacterial killing activity against several other bacterial species and is required for S. marcescens to persist in a mixed culture with another opportunist pathogen, Enterobacter cloacae. Importantly, this antibacterial killing activity is highly strain specific, with the S. marcescens Db10 T6SS being highly effective against another strain of S. marcescens with a very similar and active T6SS. We conclude that type VI secretion plays a crucial role in the competitiveness, and thus indirectly the virulence, of S. marcescens and other opportunistic bacterial pathogens. PMID:21890705

  19. Amoeba host-Legionella synchronization of amino acid auxotrophy and its role in bacterial adaptation and pathogenic evolution

    PubMed Central

    Price, Christopher T. D.; Richards, Ashley M.; Von Dwingelo, Juanita E.; Samara, Hala A.; Kwaik, Yousef Abu

    2013-01-01

    Summary Legionella pneumophila, the causative agent of Legionnaires’ disease, invades and proliferates within a diverse range of free-living amoeba in the environment but upon transmission to humans the bacteria hijack alveolar macrophages. Intracellular proliferation of L. pneumophila in two evolutionarily distant hosts is facilitated by bacterial exploitation of conserved host processes that are targeted by bacterial protein effectors injected into the host cell. A key aspect of microbe-host interaction is microbial extraction of nutrients from the host but understanding of this is still limited. AnkB functions as a nutritional virulence factor and promotes host proteasomal degradation of polyubiquitinated proteins generating gratuitous levels of limiting host cellular amino acids. L. pneumophila is auxotrophic for several amino acids including cysteine, which is a metabolically preferred source of carbon and energy during intracellular proliferation, but is limiting in both amoebae and humans. We propose that synchronization of bacterial amino acids auxotrophy with the host is a driving force in pathogenic evolution and nutritional adaptation of L. pneumophila and other intracellular bacteria to life within the host cell. Understanding microbial strategies of nutrient generation and acquisition in the host will provide novel antimicrobial strategies to disrupt pathogen access to essential sources of carbon and energy. PMID:24112119

  20. Suitability of partial 16S ribosomal RNA gene sequence analysis for the identification of dangerous bacterial pathogens.

    PubMed

    Ruppitsch, W; Stöger, A; Indra, A; Grif, K; Schabereiter-Gurtner, C; Hirschl, A; Allerberger, F

    2007-03-01

    In a bioterrorism event a rapid tool is needed to identify relevant dangerous bacteria. The aim of the study was to assess the usefulness of partial 16S rRNA gene sequence analysis and the suitability of diverse databases for identifying dangerous bacterial pathogens. For rapid identification purposes a 500-bp fragment of the 16S rRNA gene of 28 isolates comprising Bacillus anthracis, Brucella melitensis, Burkholderia mallei, Burkholderia pseudomallei, Francisella tularensis, Yersinia pestis, and eight genus-related and unrelated control strains was amplified and sequenced. The obtained sequence data were submitted to three public and two commercial sequence databases for species identification. The most frequent reason for incorrect identification was the lack of the respective 16S rRNA gene sequences in the database. Sequence analysis of a 500-bp 16S rDNA fragment allows the rapid identification of dangerous bacterial species. However, for discrimination of closely related species sequencing of the entire 16S rRNA gene, additional sequencing of the 23S rRNA gene or sequencing of the 16S-23S rRNA intergenic spacer is essential. This work provides comprehensive information on the suitability of partial 16S rDNA analysis and diverse databases for rapid and accurate identification of dangerous bacterial pathogens.

  1. Bacterial and viral pathogens detected in sea turtles stranded along the coast of Tuscany, Italy.

    PubMed

    Fichi, G; Cardeti, G; Cersini, A; Mancusi, C; Guarducci, M; Di Guardo, G; Terracciano, G

    2016-03-15

    During 2014, six loggerhead turtles, Caretta caretta and one green turtle, Chelonia mydas, found stranded on the Tuscany coast of Italy, were examined for the presence of specific bacterial and viral agents, along with their role as carriers of fish and human pathogens. Thirteen different species of bacteria, 10 Gram negative and 3 Gram positive, were identified. Among them, two strains of Vibrio parahaemolyticus and one strain of Lactococcus garviae were recovered and confirmed by specific PCR protocols. No trh and tdh genes were detected in V. parahaemolyticus. The first isolation of L. garviae and the first detection of Betanodavirus in sea turtles indicate the possibility for sea turtles to act as carriers of fish pathogens. Furthermore, the isolation of two strains of V. parahaemolyticus highlights the possible role of these animals in human pathogens' diffusion. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Galleria mellonella as an in vivo model for assessing the protective activity of probiotics against gastrointestinal bacterial pathogens.

    PubMed

    Scalfaro, Concetta; Iacobino, Angelo; Nardis, Chiara; Franciosa, Giovanna

    2017-04-01

    The antagonistic activity against gastrointestinal bacterial pathogens is an important property of probiotic bacteria and a desirable feature for pre-selection of novel strains with probiotic potential. Pre-screening of candidate probiotics for antibacterial activity should be based on in vitro and in vivo tests. This study investigated whether the protective activity of probiotic bacteria against gastrointestinal bacterial pathogens can be evaluated using Galleria mellonella larvae as an in vivo model. Larvae were pre-inoculated with either of two widely used probiotic bacteria, Lactobacillus rhamnosus GG or Clostridium butyricum Miyairi 588, and then challenged with Salmonella enterica Typhimurium, enteropathogenic Escherichia coli or Listeria monocytogenes. Survival rates increased in the probiotic pretreated larvae compared with control larvae inoculated with pathogens only. The hemocyte density increased as well in the probiotic pretreated larvae, indicating that both probiotics induce an immune response in the larvae. The antibacterial activity of probiotics against the pathogens was also assayed by an in vitro agar spot test: results were partially consistent with those obtained by the G. mellonella protection assay. The results obtained, as a whole, suggest that G. mellonella larvae are a potentially useful in vivo model that can complement in vitro assays for pre-screening of candidate probiotics. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Apoptosis, Toll-like, RIG-I-like and NOD-like Receptors Are Pathways Jointly Induced by Diverse Respiratory Bacterial and Viral Pathogens

    PubMed Central

    Martínez, Isidoro; Oliveros, Juan C.; Cuesta, Isabel; de la Barrera, Jorge; Ausina, Vicente; Casals, Cristina; de Lorenzo, Alba; García, Ernesto; García-Fojeda, Belén; Garmendia, Junkal; González-Nicolau, Mar; Lacoma, Alicia; Menéndez, Margarita; Moranta, David; Nieto, Amelia; Ortín, Juan; Pérez-González, Alicia; Prat, Cristina; Ramos-Sevillano, Elisa; Regueiro, Verónica; Rodriguez-Frandsen, Ariel; Solís, Dolores; Yuste, José; Bengoechea, José A.; Melero, José A.

    2017-01-01

    Lower respiratory tract infections are among the top five leading causes of human death. Fighting these infections is therefore a world health priority. Searching for induced alterations in host gene expression shared by several relevant respiratory pathogens represents an alternative to identify new targets for wide-range host-oriented therapeutics. With this aim, alveolar macrophages were independently infected with three unrelated bacterial (Streptococcus pneumoniae, Klebsiella pneumoniae, and Staphylococcus aureus) and two dissimilar viral (respiratory syncytial virus and influenza A virus) respiratory pathogens, all of them highly relevant for human health. Cells were also activated with bacterial lipopolysaccharide (LPS) as a prototypical pathogen-associated molecular pattern. Patterns of differentially expressed cellular genes shared by the indicated pathogens were searched by microarray analysis. Most of the commonly up-regulated host genes were related to the innate immune response and/or apoptosis, with Toll-like, RIG-I-like and NOD-like receptors among the top 10 signaling pathways with over-expressed genes. These results identify new potential broad-spectrum targets to fight the important human infections caused by the bacteria and viruses studied here. PMID:28298903

  4. Bacterial 'immunity' against bacteriophages.

    PubMed

    Abedon, Stephen T

    2012-01-01

    Vertebrate animals possess multiple anti-pathogen defenses. Individual mechanisms usually are differentiated into those that are immunologically adaptive vs. more "primitive" anti-pathogen phenomena described as innate responses. Here I frame defenses used by bacteria against bacteriophages as analogous to these animal immune functions. Included are numerous anti-phage defenses in addition to the adaptive immunity associated with CRISPR/cas systems. As these other anti-pathogen mechanisms are non-adaptive they can be described as making up an innate bacterial immunity. This exercise was undertaken in light of the recent excitement over the discovery that CRISPR/cas systems can serve, as noted, as a form of bacterial adaptive immunity. The broader goal, however, is to gain novel insight into bacterial defenses against phages by fitting these mechanisms into considerations of how multicellular organisms also defend themselves against pathogens. This commentary can be viewed in addition as a bid toward integrating these numerous bacterial anti-phage defenses into a more unified immunology.

  5. The role of multispecies social interactions in shaping Pseudomonas aeruginosa pathogenicity in the cystic fibrosis lung.

    PubMed

    O'Brien, Siobhán; Fothergill, Joanne L

    2017-08-15

    Pseudomonas aeruginosa is a major pathogen in the lungs of cystic fibrosis (CF) patients. However, it is now recognised that a diverse microbial community exists in the airways comprising aerobic and anaerobic bacteria as well as fungi and viruses. This rich soup of microorganisms provides ample opportunity for interspecies interactions, particularly when considering secreted compounds. Here, we discuss how P. aeruginosa-secreted products can have community-wide effects, with the potential to ultimately shape microbial community dynamics within the lung. We focus on three well-studied traits associated with worsening clinical outcome in CF: phenazines, siderophores and biofilm formation, and discuss how secretions can shape interactions between P. aeruginosa and other commonly encountered members of the lung microbiome: Staphylococcus aureus, the Burkholderia cepacia complex, Candida albicans and Aspergillus fumigatus. These interactions may shape the evolutionary trajectory of P. aeruginosa while providing new opportunities for therapeutic exploitation of the CF lung microbiome. © FEMS 2017.

  6. The role of multispecies social interactions in shaping Pseudomonas aeruginosa pathogenicity in the cystic fibrosis lung

    PubMed Central

    Fothergill, Joanne L.

    2017-01-01

    Abstract Pseudomonas aeruginosa is a major pathogen in the lungs of cystic fibrosis (CF) patients. However, it is now recognised that a diverse microbial community exists in the airways comprising aerobic and anaerobic bacteria as well as fungi and viruses. This rich soup of microorganisms provides ample opportunity for interspecies interactions, particularly when considering secreted compounds. Here, we discuss how P. aeruginosa-secreted products can have community-wide effects, with the potential to ultimately shape microbial community dynamics within the lung. We focus on three well-studied traits associated with worsening clinical outcome in CF: phenazines, siderophores and biofilm formation, and discuss how secretions can shape interactions between P. aeruginosa and other commonly encountered members of the lung microbiome: Staphylococcus aureus, the Burkholderia cepacia complex, Candida albicans and Aspergillus fumigatus. These interactions may shape the evolutionary trajectory of P. aeruginosa while providing new opportunities for therapeutic exploitation of the CF lung microbiome. PMID:28859314

  7. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands.

    PubMed

    Vercoe, Reuben B; Chang, James T; Dy, Ron L; Taylor, Corinda; Gristwood, Tamzin; Clulow, James S; Richter, Corinna; Przybilski, Rita; Pitman, Andrew R; Fineran, Peter C

    2013-04-01

    In prokaryotes, clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated (Cas) proteins constitute a defence system against bacteriophages and plasmids. CRISPR/Cas systems acquire short spacer sequences from foreign genetic elements and incorporate these into their CRISPR arrays, generating a memory of past invaders. Defence is provided by short non-coding RNAs that guide Cas proteins to cleave complementary nucleic acids. While most spacers are acquired from phages and plasmids, there are examples of spacers that match genes elsewhere in the host bacterial chromosome. In Pectobacterium atrosepticum the type I-F CRISPR/Cas system has acquired a self-complementary spacer that perfectly matches a protospacer target in a horizontally acquired island (HAI2) involved in plant pathogenicity. Given the paucity of experimental data about CRISPR/Cas-mediated chromosomal targeting, we examined this process by developing a tightly controlled system. Chromosomal targeting was highly toxic via targeting of DNA and resulted in growth inhibition and cellular filamentation. The toxic phenotype was avoided by mutations in the cas operon, the CRISPR repeats, the protospacer target, and protospacer-adjacent motif (PAM) beside the target. Indeed, the natural self-targeting spacer was non-toxic due to a single nucleotide mutation adjacent to the target in the PAM sequence. Furthermore, we show that chromosomal targeting can result in large-scale genomic alterations, including the remodelling or deletion of entire pre-existing pathogenicity islands. These features can be engineered for the targeted deletion of large regions of bacterial chromosomes. In conclusion, in DNA-targeting CRISPR/Cas systems, chromosomal interference is deleterious by causing DNA damage and providing a strong selective pressure for genome alterations, which may have consequences for bacterial evolution and pathogenicity.

  8. Chlorhexidine digluconate effects on planktonic growth and biofilm formation in some field isolates of animal bacterial pathogens.

    PubMed

    Ebrahimi, Azizollah; Hemati, Majid; Habibian Dehkordi, Saeed; Bahadoran, Shahab; Khoshnood, Sheida; Khubani, Shahin; Dokht Faraj, Mahdi; Hakimi Alni, Reza

    2014-05-01

    To study chlorhexidine digluconate disinfectant effects on planktonic growth and biofilm formation in some bacterial field isolates from animals. The current study investigated chlorhexidine digluconate effects on planktonic growth and biofilm formation in some field isolates of veterinary bacterial pathogens. Forty clinical isolates of Escherichia coli, Salmonella serotypes, Staphylococcus. aureus and Streptococcus agalactiae (10 isolates for each) were examined for chlorhexidine digluconate effects on biofilm formation and planktonic growth using microtiter plates. In all of the examined strains in the presence of chlorhexidine digluconate, biofilm development and planktonic growth were affected at the same concentrations of the disinfectant. Chlorhexidine digluconate inhibited the planktonic growth of different bacterial species at sub-MICs. But they were able to induce biofilm development of the E. coli, Salmonella spp., S. aureus and Str. agalactiae strains. Bacterial resistance against chlorhexidine is increasing. Sub-MIC doses of chlorhexidine digluconate can stimulate the formation of biofilm strains.

  9. Volatile Compounds Emitted by Pseudomonas aeruginosa Stimulate Growth of the Fungal Pathogen Aspergillus fumigatus.

    PubMed

    Briard, Benoit; Heddergott, Christoph; Latgé, Jean-Paul

    2016-03-15

    Chronic lung infections with opportunistic bacterial and fungal pathogens are a major cause of morbidity and mortality especially in patients with cystic fibrosis. Pseudomonas aeruginosa is the most frequently colonizing bacterium in these patients, and it is often found in association with the filamentous fungus Aspergillus fumigatus. P. aeruginosa is known to inhibit the growth of A. fumigatus in situations of direct contact, suggesting the existence of interspecies communication that may influence disease outcome. Our study shows that the lung pathogens P. aeruginosa and A. fumigatus can interact at a distance via volatile-mediated communication and expands our understanding of interspecific signaling in microbial communities. Microbiota studies have shown that pathogens cannot be studied individually anymore and that the establishment and progression of a specific disease are due not to a single microbial species but are the result of the activity of many species living together. To date, the interaction between members of the human microbiota has been analyzed in situations of direct contact or liquid-mediated contact between organisms. This study showed unexpectedly that human opportunistic pathogens can interact at a distance after sensing volatiles emitted by another microbial species. This finding will open a new research avenue for the understanding of microbial communities. Copyright © 2016 Briard et al.

  10. Simultaneous Detection of 13 Key Bacterial Respiratory Pathogens by Combination of Multiplex PCR and Capillary Electrophoresis.

    PubMed

    Jiang, Lu Xi; Ren, Hong Yu; Zhou, Hai Jian; Zhao, Si Hong; Hou, Bo Yan; Yan, Jian Ping; Qin, Tian; Chen, Yu

    2017-08-01

    Lower respiratory tract infections continue to pose a significant threat to human health. It is important to accurately and rapidly detect respiratory bacteria. To compensate for the limits of current respiratory bacteria detection methods, we developed a combination of multiplex polymerase chain reaction (PCR) and capillary electrophoresis (MPCE) assay to detect thirteen bacterial pathogens responsible for lower respiratory tract infections, including Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Mycoplasma pneumoniae, Legionella spp., Bordetella pertussis, Mycobacterium tuberculosis complex, Corynebacterium diphtheriae, and Streptococcus pyogenes. Three multiplex PCR reactions were built, and the products were analyzed by capillary electrophoresis using the high-throughput DNA analyzer. The specificity of the MPCE assay was examined and the detection limit was evaluated using DNA samples from each bacterial strain and the simulative samples of each strain. This assay was further evaluated using 152 clinical specimens and compared with real-time PCR reactions. For this assay, three nested-multiplex-PCRs were used to detect these clinical specimens. The detection limits of the MPCE assay for the 13 pathogens were very low and ranged from 10-7 to 10-2 ng/μL. Furthermore, analysis of the 152 clinical specimens yielded a specificity ranging from 96.5%-100.0%, and a sensitivity of 100.0% for the 13 pathogens. This study revealed that the MPCE assay is a rapid, reliable, and high-throughput method with high specificity and sensitivity. This assay has great potential in the molecular epidemiological survey of respiratory pathogens. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  11. Isolation of hydroquinone (benzene-1,4-diol) metabolite from halotolerant Bacillus methylotrophicus MHC10 and its inhibitory activity towards bacterial pathogens.

    PubMed

    Jeyanthi, Venkadapathi; Anbu, Periasamy; Vairamani, Mariappanadar; Velusamy, Palaniyandi

    2016-03-01

    A halotolerant bacterial isolate-MHC10 with broad spectrum antibacterial activity against clinical pathogens was isolated from saltpans located in Tuticorin and Chennai (India). 16S rRNA gene analysis of MHC10 revealed close similarity to that of Bacillus methylotrophicus. The culture conditions of B. methylotrophicus MHC10 strain were optimized for antibacterial production using different carbon and nitrogen sources, as well as varying temperature, pH, sodium chloride (NaCl) concentrations and incubation periods. The maximum antibacterial activity of B. methylotrophicus MHC10 was attained when ZMB was optimized with 1 % (w/v) glucose, 0.1 % (w/v) soybean meal which corresponded to a C/N ratio of 38.83, temperature at 37 °C, pH 7.0 and 8 % NaCl. The activity remained stable between 72 and 96 h and then drastically decreased after 96 h. Solvent extraction followed by chromatographic purification steps led to the isolation of hydroquinone (benzene-1,4-diol). The structure of the purified compound was elucidated based on FTIR, (1)H NMR, and (13)C NMR spectroscopy. The compound exhibited efficient antibacterial activity against both Gram-positive and Gram-negative bacterial pathogens. The minimum inhibitory concentration (MIC) for Gram-positive pathogens ranged from 15.625 to 62.5 µg/mL(-1), while it was between 7.81 and 250 µg/mL(-1) for Gram-negative bacterial pathogens. This is the first report of hydroquinone produced by halotolerant B. methylotrophicus exhibiting promising antibacterial activity.

  12. Degradable polyphosphoester-based silver-loaded nanoparticles as therapeutics for bacterial lung infections

    NASA Astrophysics Data System (ADS)

    Zhang, Fuwu; Smolen, Justin A.; Zhang, Shiyi; Li, Richen; Shah, Parth N.; Cho, Sangho; Wang, Hai; Raymond, Jeffery E.; Cannon, Carolyn L.; Wooley, Karen L.

    2015-01-01

    In this study, a new type of degradable polyphosphoester-based polymeric nanoparticle, capable of carrying silver cations via interactions with alkyne groups, has been developed as a potentially effective and safe treatment for lung infections. It was found that up to 15% (w/w) silver loading into the nanoparticles could be achieved, consuming most of the pendant alkyne groups along the backbone, as revealed by Raman spectroscopy. The well-defined Ag-loaded nanoparticles released silver in a controlled and sustained manner over 5 days, and displayed enhanced in vitro antibacterial activities against cystic fibrosis-associated pathogens and decreased cytotoxicity to human bronchial epithelial cells, in comparison to silver acetate.In this study, a new type of degradable polyphosphoester-based polymeric nanoparticle, capable of carrying silver cations via interactions with alkyne groups, has been developed as a potentially effective and safe treatment for lung infections. It was found that up to 15% (w/w) silver loading into the nanoparticles could be achieved, consuming most of the pendant alkyne groups along the backbone, as revealed by Raman spectroscopy. The well-defined Ag-loaded nanoparticles released silver in a controlled and sustained manner over 5 days, and displayed enhanced in vitro antibacterial activities against cystic fibrosis-associated pathogens and decreased cytotoxicity to human bronchial epithelial cells, in comparison to silver acetate. Electronic supplementary information (ESI) available: Materials, experimental details, and characterization. See DOI: 10.1039/c4nr07103d

  13. The Immune Interplay between the Host and the Pathogen in Aspergillus fumigatus Lung Infection

    PubMed Central

    Sales-Campos, Helioswilton; Tonani, Ludmilla; Cardoso, Cristina Ribeiro Barros; Kress, Márcia Regina Von Zeska

    2013-01-01

    The interplay between Aspergillus fumigatus and the host immune response in lung infection has been subject of studies over the last years due to its importance in immunocompromised patients. The multifactorial virulence factors of A. fumigatus are related to the fungus biological characteristics, for example, structure, ability to grow and adapt to high temperatures and stress conditions, besides capability of evading the immune system and causing damage to the host. In this context, the fungus recognition by the host innate immunity occurs when the pathogen disrupts the natural and chemical barriers followed by the activation of acquired immunity. It seems clear that a Th1 response has a protective role, whereas Th2 reactions are often associated with higher fungal burden, and Th17 response is still controversial. Furthermore, a fine regulation of the effector immunity is required to avoid excessive tissue damage associated with fungal clearance, and this role could be attributed to regulatory T cells. Finally, in this work we reviewed the aspects involved in the complex interplay between the host immune response and the pathogen virulence factors, highlighting the immunological issues and the importance of its better understanding to the development of novel therapeutic approaches for invasive lung aspergillosis. PMID:23984400

  14. Microplastics as a vector for the transport of the bacterial fish pathogen species Aeromonas salmonicida.

    PubMed

    Viršek, Manca Kovač; Lovšin, Marija Nika; Koren, Špela; Kržan, Andrej; Peterlin, Monika

    2017-12-15

    Microplastics is widespread in the marine environment where it can cause numerous negative effects. It can provide space for the growth of organisms and serves as a vector for the long distance transfer of marine microorganisms. In this study, we examined the sea surface concentrations of microplastics in the North Adriatic and characterized bacterial communities living on the microplastics. DNA from microplastics particles was isolated by three different methods, followed by PCR amplification of 16S rDNA, clone libraries preparation and phylogenetic analysis. 28 bacterial species were identified on the microplastics particles including Aeromonas spp. and hydrocarbon-degrading bacterial species. Based on the 16S rDNA sequences the pathogenic fish bacteria Aeromonas salmonicida was identified for the first time on microplastics. Because A. salmonicida is responsible for illnesses in fish, it is crucial to get answers if and how microplastics pollution is responsible for spreading of diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Molecular evidence for bacterial and protozoan pathogens in hard ticks from Romania.

    PubMed

    Ionita, Mariana; Mitrea, Ioan Liviu; Pfister, Kurt; Hamel, Dietmar; Silaghi, Cornelia

    2013-09-01

    The aim of the present study was to provide a preliminary insight into the diversity of tick-borne pathogens circulating at the domestic host-tick interface in Romania. For this, feeding and questing ticks were analyzed by real-time polymerase chain reaction (PCR) for the presence of Anaplasma phagocytophilum, Anaplasma platys, Ehrlichia canis, Borrelia burgdorferi sensu latu, and by PCR and subsequent sequencing for Rickettsia spp., Babesia spp. and Theileria spp. A total of 382 ticks, encompassing 5 species from 4 genera, were collected in April-July 2010 from different areas of Romania; of them, 40 were questing ticks and the remainder was collected from naturally infested cattle, sheep, goats, horses or dogs. Tick species analyzed included Ixodes ricinus, Dermacentor marginatus, Hyalomma marginatum, Rhipicephalus bursa, and Rhipicephalus sanguineus. Four rickettsiae of the spotted fever group of zoonotic concern were identified for the first time in Romania: Rickettsia monacensis and Rickettsia helvetica in I. ricinus, and Rickettsia slovaca and Rickettsia raoultii in D. marginatus. Other zoonotic pathogens such as A. phagocytophilum, Borrelia afzelii, and Babesia microti were found in I. ricinus. Pathogens of veterinary importance were also identified, including Theileria equi in H. marginatum, Babesia occultans in D. marginatus and H. marginatum, Theileria orientalis/sergenti/buffeli-group in I. ricinus and in H. marginatum and E. canis in R. sanguineus. These findings show a wide distribution of very diverse bacterial and protozoan pathogens at the domestic host-tick interface in Romania, with the potential of causing both animal and human diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. The chicken as a natural model for extraintestinal infections caused by avian pathogenic Escherichia coli (APEC).

    PubMed

    Antão, Esther-Maria; Glodde, Susanne; Li, Ganwu; Sharifi, Reza; Homeier, Timo; Laturnus, Claudia; Diehl, Ines; Bethe, Astrid; Philipp, Hans-C; Preisinger, Rudolf; Wieler, Lothar H; Ewers, Christa

    2008-01-01

    E. coli infections in avian species have become an economic threat to the poultry industry worldwide. Several factors have been associated with the virulence of E. coli in avian hosts, but no specific virulence gene has been identified as being entirely responsible for the pathogenicity of avian pathogenic E. coli (APEC). Needless to say, the chicken would serve as the best model organism for unravelling the pathogenic mechanisms of APEC, an extraintestinal pathogen. Five-week-old white leghorn SPF chickens were infected intra-tracheally with a well characterized APEC field strain IMT5155 (O2:K1:H5) using different doses corresponding to the respective models of infection established, that is, the lung colonization model allowing re-isolation of bacteria only from the lung but not from other internal organs, and the systemic infection model. These two models represent the crucial steps in the pathogenesis of APEC infections, including the colonization of the lung epithelium and the spread of bacteria throughout the bloodstream. The read-out system includes a clinical score, pathomorphological changes and bacterial load determination. The lung colonization model has been established and described for the first time in this study, in addition to a comprehensive account of a systemic infection model which enables the study of severe extraintestinal pathogenic E. coli (ExPEC) infections. These in vivo models enable the application of various molecular approaches to study host-pathogen interactions more closely. The most important application of such genetic manipulation techniques is the identification of genes required for extraintestinal virulence, as well as host genes involved in immunity in vivo. The knowledge obtained from these studies serves the dual purpose of shedding light on the nature of virulence itself, as well as providing a route for rational attenuation of the pathogen for vaccine construction, a measure by which extraintestinal infections, including

  17. Respiratory pathogens in Québec dairy calves and their relationship with clinical status, lung consolidation, and average daily gain.

    PubMed

    Francoz, D; Buczinski, S; Bélanger, A M; Forté, G; Labrecque, O; Tremblay, D; Wellemans, V; Dubuc, J

    2015-01-01

    Bovine respiratory disease (BRD) is 1 of the 2 most important causes of morbidity and mortality in dairy calves. Surprisingly, field data are scant concerning the prevalence of respiratory pathogens involved in BRD in preweaned dairy calves, especially in small herds. To identify the main respiratory pathogens isolated from calves in Québec dairy herds with a high incidence of BRD, and to determine if there is an association between the presence of these pathogens and clinical signs of pneumonia, lung consolidation, or average daily gain. Cross-sectional study using a convenience sample of 95 preweaned dairy calves from 11 dairy herds. At enrollment, calves were weighed, clinically examined, swabbed (nasal and nasopharyngeal), and lung ultrasonography was performed. One month later, all calves were reweighed. Twenty-two calves had clinical BRD and 49 had ultrasonographic evidence of lung consolidation. Pasteurella multocida, Mannheimia haemolytica, and Histophilus somni were isolated in 54, 17, and 12 calves, respectively. Mycoplasma bovis was identified by PCR testing or culture in 19 calves, and 78 calves were found to be positive for Mycoplasma spp. Bovine coronavirus was detected in 38 calves and bovine respiratory syncytial virus in 1. Only the presence of M. bovis was associated with higher odds of clinical signs, lung consolidation, and lower average daily gain. Results suggested that nasopharyngeal carriage of M. bovis was detrimental to health and growth of dairy calves in small herds with a high incidence of BRD. Copyright © 2015 by the American College of Veterinary Internal Medicine.

  18. Multiplex PCR detection of problematic pathogens of clinically heterogeneous bacterial vaginosis in Bulgarian women

    PubMed

    Tosheva-Daskalova, Konstantsa; Strateva, Tanya Vasileva; Mitov, Ivan Gergov; Gergova, Raina Tzvetanova

    2017-11-13

    Background/aim: This study aimed to investigate the correlation between the prevalence of problematic pathogens and the clinical status of women with bacterial vaginosis (BV). Materials and methods: Gardnerella vaginalis, Atopobium vaginae, and Mobiluncus spp. were detected using a multiplex PCR assay, and their role in the infection of Bulgarian women with clinically heterogeneous BV was evaluated. Results: The predominant BV-associated pathogen identified was G. vaginalis with an incidence of 98.39%, followed by A. vaginae (68.05%) and Mobiluncus spp. at 17.01%. The coexistence of A. vaginae and G. vaginalis was more common in women with discharge (in 72.04%) and in patients with chronic recurrent BV than among asymptomatic or newly diagnosed BV cases (P < 0.05). Mobiluncus spp. was detected mostly in coinfections, in association with Trichomonas vaginalis. The coinfections were predominantly related to recurrent BV and with complications (P < 0.05). Conclusion: This is the first study about the correlation between problematic pathogens and clinically heterogeneous BV in Bulgarian women. High frequency of infection with key BV-related pathogens was observed in childbearing women. The incidence was shown to often correlate with coexistent T. vaginalis, with severity of infection, and with complicated and recurrent BV after unsuccessful treatments. Screening should be considered in reproductive health programs.

  19. Diagnostic value of sTREM-1 in bronchoalveolar lavage fluid in ICU patients with bacterial lung infections: a bivariate meta-analysis.

    PubMed

    Shi, Jia-Xin; Li, Jia-Shu; Hu, Rong; Li, Chun-Hua; Wen, Yan; Zheng, Hong; Zhang, Feng; Li, Qin

    2013-01-01

    The serum soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) is a useful biomarker in differentiating bacterial infections from others. However, the diagnostic value of sTREM-1 in bronchoalveolar lavage fluid (BALF) in lung infections has not been well established. We performed a meta-analysis to assess the accuracy of sTREM-1 in BALF for diagnosis of bacterial lung infections in intensive care unit (ICU) patients. We searched PUBMED, EMBASE and Web of Knowledge (from January 1966 to October 2012) databases for relevant studies that reported diagnostic accuracy data of BALF sTREM-1 in the diagnosis of bacterial lung infections in ICU patients. Pooled sensitivity, specificity, and positive and negative likelihood ratios were calculated by a bivariate regression analysis. Measures of accuracy and Q point value (Q*) were calculated using summary receiver operating characteristic (SROC) curve. The potential between-studies heterogeneity was explored by subgroup analysis. Nine studies were included in the present meta-analysis. Overall, the prevalence was 50.6%; the sensitivity was 0.87 (95% confidence interval (CI), 0.72-0.95); the specificity was 0.79 (95% CI, 0.56-0.92); the positive likelihood ratio (PLR) was 4.18 (95% CI, 1.78-9.86); the negative likelihood ratio (NLR) was 0.16 (95% CI, 0.07-0.36), and the diagnostic odds ratio (DOR) was 25.60 (95% CI, 7.28-89.93). The area under the SROC curve was 0.91 (95% CI, 0.88-0.93), with a Q* of 0.83. Subgroup analysis showed that the assay method and cutoff value influenced the diagnostic accuracy of sTREM-1. BALF sTREM-1 is a useful biomarker of bacterial lung infections in ICU patients. Further studies are needed to confirm the optimized cutoff value.

  20. The RNA-binding protein tristetraprolin schedules apoptosis of pathogen-engaged neutrophils during bacterial infection

    PubMed Central

    Ebner, Florian; Ivin, Masa; Kratochvill, Franz; Gratz, Nina; Villunger, Andreas; Sixt, Michael

    2017-01-01

    Protective responses against pathogens require a rapid mobilization of resting neutrophils and the timely removal of activated ones. Neutrophils are exceptionally short-lived leukocytes, yet it remains unclear whether the lifespan of pathogen-engaged neutrophils is regulated differently from that in the circulating steady-state pool. Here, we have found that under homeostatic conditions, the mRNA-destabilizing protein tristetraprolin (TTP) regulates apoptosis and the numbers of activated infiltrating murine neutrophils but not neutrophil cellularity. Activated TTP-deficient neutrophils exhibited decreased apoptosis and enhanced accumulation at the infection site. In the context of myeloid-specific deletion of Ttp, the potentiation of neutrophil deployment protected mice against lethal soft tissue infection with Streptococcus pyogenes and prevented bacterial dissemination. Neutrophil transcriptome analysis revealed that decreased apoptosis of TTP-deficient neutrophils was specifically associated with elevated expression of myeloid cell leukemia 1 (Mcl1) but not other antiapoptotic B cell leukemia/lymphoma 2 (Bcl2) family members. Higher Mcl1 expression resulted from stabilization of Mcl1 mRNA in the absence of TTP. The low apoptosis rate of infiltrating TTP-deficient neutrophils was comparable to that of transgenic Mcl1-overexpressing neutrophils. Our study demonstrates that posttranscriptional gene regulation by TTP schedules the termination of the antimicrobial engagement of neutrophils. The balancing role of TTP comes at the cost of an increased risk of bacterial infections. PMID:28504646

  1. Presence of pathogenic Escherichia coli is correlated with bacterial community diversity and composition on pre-harvest cattle hides.

    PubMed

    Chopyk, Jessica; Moore, Ryan M; DiSpirito, Zachary; Stromberg, Zachary R; Lewis, Gentry L; Renter, David G; Cernicchiaro, Natalia; Moxley, Rodney A; Wommack, K Eric

    2016-03-22

    Since 1982, specific serotypes of Shiga toxin-producing Escherichia coli (STEC) have been recognized as significant foodborne pathogens acquired from contaminated beef and, more recently, other food products. Cattle are the major reservoir hosts of these organisms, and while there have been advancements in food safety practices and industry standards, STEC still remains prevalent within beef cattle operations with cattle hides implicated as major sources of carcass contamination. To investigate whether the composition of hide-specific microbial communities are associated with STEC prevalence, 16S ribosomal RNA (rRNA) bacterial community profiles were obtained from hide and fecal samples collected from a large commercial feedlot over a 3-month period. These community data were examined amidst an extensive collection of prevalence data on a subgroup of STEC that cause illness in humans, referred to as enterohemorrhagic E. coli (EHEC). Fecal 16S rRNA gene OTUs (operational taxonomic units) were subtracted from the OTUs found within each hide 16S rRNA amplicon library to identify hide-specific bacterial populations. Comparative analysis of alpha diversity revealed a significant correlation between low bacterial diversity and samples positive for the presence of E. coli O157:H7 and/or the non-O157 groups: O26, O111, O103, O121, O45, and O145. This trend occurred regardless of diversity metric or fecal OTU presence. The number of EHEC serogroups present in the samples had a compounding effect on the inverse relationship between pathogen presence and bacterial diversity. Beta diversity data showed differences in bacterial community composition between samples containing O157 and non-O157 populations, with certain OTUs demonstrating significant changes in relative abundance. The cumulative prevalence of the targeted EHEC serogroups was correlated with low bacterial community diversity on pre-harvest cattle hides. Understanding the relationship between indigenous hide

  2. Nanoparticle targeting of Gram-positive and Gram-negative bacteria for magnetic-based separations of bacterial pathogens

    NASA Astrophysics Data System (ADS)

    Lu, Hoang D.; Yang, Shirley S.; Wilson, Brian K.; McManus, Simon A.; Chen, Christopher V. H.-H.; Prud'homme, Robert K.

    2017-04-01

    Antimicrobial resistance is a healthcare problem of increasing significance, and there is increasing interest in developing new tools to address bacterial infections. Bacteria-targeting nanoparticles hold promise to improve drug efficacy, compliance, and safety. In addition, nanoparticles can also be used for novel applications, such as bacterial imaging or bioseperations. We here present the use of a scalable block-copolymer-directed self-assembly process, Flash NanoPrecipitation, to form zinc(II)-bis(dipicolylamine) modified nanoparticles that bind to both Gram-positive and Gram-negative bacteria with specificity. Particles have tunable surface ligand densities that change particle avidity and binding efficacy. A variety of materials can be encapsulated into the core of the particles, such as optical dyes or iron oxide colloids, to produce imageable and magnetically active bacterial targeting constructs. As a proof-of-concept, these particles are used to bind and separate bacteria from solution in a magnetic column. Magnetic manipulation and separation would translate to a platform for pathogen identification or removal. These magnetic and targeted nanoparticles enable new methods to address bacterial infections.

  3. Inactivation of Selected Bacterial Pathogens in Dairy Cattle Manure by Mesophilic Anaerobic Digestion (Balloon Type Digester)

    PubMed Central

    Manyi-Loh, Christy E.; Mamphweli, Sampson N.; Meyer, Edson L.; Okoh, Anthony I.; Makaka, Golden; Simon, Michael

    2014-01-01

    Anaerobic digestion of animal manure in biogas digesters has shown promise as a technology in reducing the microbial load to safe and recommended levels. We sought to treat dairy manure obtained from the Fort Hare Dairy Farm by investigating the survival rates of bacterial pathogens, through a total viable plate count method, before, during and after mesophilic anaerobic digestion. Different microbiological media were inoculated with different serial dilutions of manure samples that were withdrawn from the biogas digester at 3, 7 and 14 day intervals to determine the viable cells. Data obtained indicated that the pathogens of public health importance were 90%–99% reduced in the order: Campylobacter sp. (18 days) < Escherichia coli sp. (62 days) < Salmonella sp. (133 days) from a viable count of 10.1 × 103, 3.6 × 105, 7.4 × 103 to concentrations below the detection limit (DL = 102 cfu/g manure), respectively. This disparity in survival rates may be influenced by the inherent characteristics of these bacteria, available nutrients as well as the stages of the anaerobic digestion process. In addition, the highest p-value i.e., 0.957 for E. coli showed the statistical significance of its model and the strongest correlation between its reductions with days of digestion. In conclusion, the results demonstrated that the specific bacterial pathogens in manure can be considerably reduced through anaerobic digestion after 133 days. PMID:25026086

  4. Iron acquisition in the cystic fibrosis lung and potential for novel therapeutic strategies

    PubMed Central

    Tyrrell, Jean

    2016-01-01

    Iron acquisition is vital to microbial survival and is implicated in the virulence of many of the pathogens that reside in the cystic fibrosis (CF) lung. The multifaceted nature of iron acquisition by both bacterial and fungal pathogens encompasses a range of conserved and species-specific mechanisms, including secretion of iron-binding siderophores, utilization of siderophores from other species, release of iron from host iron-binding proteins and haemoproteins, and ferrous iron uptake. Pathogens adapt and deploy specific systems depending on iron availability, bioavailability of the iron pool, stage of infection and presence of competing pathogens. Understanding the dynamics of pathogen iron acquisition has the potential to unveil new avenues for therapeutic intervention to treat both acute and chronic CF infections. Here, we examine the range of strategies utilized by the primary CF pathogens to acquire iron and discuss the different approaches to targeting iron acquisition systems as an antimicrobial strategy. PMID:26643057

  5. Chlorhexidine Digluconate Effects on Planktonic Growth and Biofilm Formation in Some Field Isolates of Animal Bacterial Pathogens

    PubMed Central

    Ebrahimi, Azizollah; Hemati, Majid; Habibian Dehkordi, Saeed; Bahadoran, Shahab; Khoshnood, Sheida; Khubani, Shahin; Dokht Faraj, Mahdi; Hakimi Alni, Reza

    2014-01-01

    Background: To study chlorhexidine digluconate disinfectant effects on planktonic growth and biofilm formation in some bacterial field isolates from animals. Objectives: The current study investigated chlorhexidine digluconate effects on planktonic growth and biofilm formation in some field isolates of veterinary bacterial pathogens. Materials and Methods: Forty clinical isolates of Escherichia coli, Salmonella serotypes, Staphylococcus. aureus and Streptococcus agalactiae (10 isolates for each) were examined for chlorhexidine digluconate effects on biofilm formation and planktonic growth using microtiter plates. In all of the examined strains in the presence of chlorhexidine digluconate, biofilm development and planktonic growth were affected at the same concentrations of the disinfectant. Results: Chlorhexidine digluconate inhibited the planktonic growth of different bacterial species at sub-MICs. But they were able to induce biofilm development of the E. coli, Salmonella spp., S. aureus and Str. agalactiae strains. Conclusions: Bacterial resistance against chlorhexidine is increasing. Sub-MIC doses of chlorhexidine digluconate can stimulate the formation of biofilm strains. PMID:24872940

  6. Energetics of pathogenic bacteria and opportunities for drug development.

    PubMed

    Cook, Gregory M; Greening, Chris; Hards, Kiel; Berney, Michael

    2014-01-01

    The emergence and spread of drug-resistant pathogens and our inability to develop new antimicrobials to overcome resistance has inspired scientists to consider new targets for drug development. Cellular bioenergetics is an area showing promise for the development of new antimicrobials, particularly in the discovery of new anti-tuberculosis drugs where several new compounds have entered clinical trials. In this review, we have examined the bioenergetics of various bacterial pathogens, highlighting the versatility of electron donor and acceptor utilisation and the modularity of electron transport chain components in bacteria. In addition to re-examining classical concepts, we explore new literature that reveals the intricacies of pathogen energetics, for example, how Salmonella enterica and Campylobacter jejuni exploit host and microbiota to derive powerful electron donors and sinks; the strategies Mycobacterium tuberculosis and Pseudomonas aeruginosa use to persist in lung tissues; and the importance of sodium energetics and electron bifurcation in the chemiosmotic anaerobe Fusobacterium nucleatum. A combination of physiological, biochemical, and pharmacological data suggests that, in addition to the clinically-approved target F1Fo-ATP synthase, NADH dehydrogenase type II, succinate dehydrogenase, hydrogenase, cytochrome bd oxidase, and menaquinone biosynthesis pathways are particularly promising next-generation drug targets. The realisation of cellular energetics as a rich target space for the development of new antimicrobials will be dependent upon gaining increased understanding of the energetic processes utilised by pathogens in host environments and the ability to design bacterial-specific inhibitors of these processes. © 2014 Elsevier Ltd All rights reserved.

  7. Host-pathogen interactions: A cholera surveillance system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Aaron T.

    2016-02-22

    Bacterial pathogen-secreted proteases may play a key role in inhibiting a potentially widespread host-pathogen interaction. Activity-based protein profiling enabled the identification of a major Vibrio cholerae serine protease that limits the ability of a host-derived intestinal lectin to bind to the bacterial pathogen in vivo.

  8. Lung pathology in response to repeated exposure to Staphylococcus aureus in congenic residual function cystic fibrosis mice does not increase in response to decreased CFTR levels or increased bacterial load.

    PubMed

    Davidson, Donald J; Webb, Sheila; Teague, Peter; Govan, John R W; Dorin, Julia R

    2004-01-01

    To establish the role of defects in murine Cftr in the susceptibility to Staphylococcus aureus lung disease using mouse models of cystic fibrosis (CF), congenic or inbred strains. We describe the histopathological analyses of CF mice repeatedly exposed by aerosolisation to a CF isolate of S. aureus, using residual function Cftr mice and compound heterozygotes generated by intercrossing these with Cftr 'null' mice, all congenic on the C57Bl6/N background. We demonstrate that mice congenic on the C57Bl/6 background develop significantly more severe lung pathology than non-CF littermates in response to repeated exposure to the most frequent early CF lung pathogen S. aureus. Furthermore, reducing the level of Cftr by half in compound heterozygote mice does not impact upon disease severity, even in response to an increased bacterial dose. These results are consistent with an airway clearance defect, or abnormal inflammatory response secondary to Cftr mutation. These studies confirm the primary role for Cftr mutation in the development of this lung phenotype. In addition, these results demonstrate that a further 50% decrease in residual wild-type Cftr mRNA levels in this model does not impact the severity of the histopathological response to S. aureus, suggesting a critical threshold level for functional CFTR. Copyright 2004 S. Karger AG, Basel

  9. A novel multiplex PCR assay for simultaneous detection of nine clinically significant bacterial pathogens associated with bovine mastitis.

    PubMed

    Ashraf, Aqeela; Imran, Muhammad; Yaqub, Tahir; Tayyab, Muhammad; Shehzad, Wasim; Thomson, Peter C

    2017-06-01

    For rapid and simultaneous detection of nine bovine mastitic pathogens, a sensitive and specific multiplex PCR assay was developed. The assay was standardized using reference strains and validated on mastitic milk cultures which were identified to species level based on 16S rRNA sequencing. Multiplex PCR assay also efficiently detected the target bacterial strains directly from milk. The detection limit of the assay was up to 50 pg for DNA isolated from pure cultures and 10 4  CFU/ml for spiked milk samples. As estimated by latent class analysis, the assay was sensitive up to 88% and specific up to 98% for targeted mastitic pathogens, compared with the bacterial culture method and the 16S rRNA sequence analysis. This novel molecular assay could be useful for monitoring and maintaining the bovine udder health, ensuring the bacteriological safety of milk, and conducting epidemiological studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Amoeba host-Legionella synchronization of amino acid auxotrophy and its role in bacterial adaptation and pathogenic evolution.

    PubMed

    Price, Christopher T D; Richards, Ashley M; Von Dwingelo, Juanita E; Samara, Hala A; Abu Kwaik, Yousef

    2014-02-01

    Legionella pneumophila, the causative agent of Legionnaires' disease, invades and proliferates within a diverse range of free-living amoeba in the environment, but upon transmission to humans, the bacteria hijack alveolar macrophages. Intracellular proliferation of L. pneumophila in two evolutionarily distant hosts is facilitated by bacterial exploitation of conserved host processes that are targeted by bacterial protein effectors injected into the host cell. A key aspect of microbe-host interaction is microbial extraction of nutrients from the host, but understanding of this is still limited. AnkB functions as a nutritional virulence factor and promotes host proteasomal degradation of polyubiquitinated proteins generating gratuitous levels of limiting host cellular amino acids. Legionella pneumophila is auxotrophic for several amino acids including cysteine, which is a metabolically preferred source of carbon and energy during intracellular proliferation, but is limiting in both amoebae and humans. We propose that synchronization of bacterial amino acids auxotrophy with the host is a driving force in pathogenic evolution and nutritional adaptation of L. pneumophila and other intracellular bacteria to life within the host cell. Understanding microbial strategies of nutrient generation and acquisition in the host will provide novel antimicrobial strategies to disrupt pathogen access to essential sources of carbon and energy. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. Investigation of environmental drivers of antimicrobial resistance in foodborne bacterial pathogens in antibiotic-free, all natural, pastured poultry flocks.

    USDA-ARS?s Scientific Manuscript database

    Question: In the absence of antibiotic use within pastured poultry production, what are potential environmental variables that drive the antimicrobial sensitivity patterns of bacterial foodborne pathogens isolated from these flocks? Purpose: The objective of this study is to examine environmental f...

  12. Cytotoxic Chromosomal Targeting by CRISPR/Cas Systems Can Reshape Bacterial Genomes and Expel or Remodel Pathogenicity Islands

    PubMed Central

    Vercoe, Reuben B.; Chang, James T.; Dy, Ron L.; Taylor, Corinda; Gristwood, Tamzin; Clulow, James S.; Richter, Corinna; Przybilski, Rita; Pitman, Andrew R.; Fineran, Peter C.

    2013-01-01

    In prokaryotes, clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated (Cas) proteins constitute a defence system against bacteriophages and plasmids. CRISPR/Cas systems acquire short spacer sequences from foreign genetic elements and incorporate these into their CRISPR arrays, generating a memory of past invaders. Defence is provided by short non-coding RNAs that guide Cas proteins to cleave complementary nucleic acids. While most spacers are acquired from phages and plasmids, there are examples of spacers that match genes elsewhere in the host bacterial chromosome. In Pectobacterium atrosepticum the type I-F CRISPR/Cas system has acquired a self-complementary spacer that perfectly matches a protospacer target in a horizontally acquired island (HAI2) involved in plant pathogenicity. Given the paucity of experimental data about CRISPR/Cas–mediated chromosomal targeting, we examined this process by developing a tightly controlled system. Chromosomal targeting was highly toxic via targeting of DNA and resulted in growth inhibition and cellular filamentation. The toxic phenotype was avoided by mutations in the cas operon, the CRISPR repeats, the protospacer target, and protospacer-adjacent motif (PAM) beside the target. Indeed, the natural self-targeting spacer was non-toxic due to a single nucleotide mutation adjacent to the target in the PAM sequence. Furthermore, we show that chromosomal targeting can result in large-scale genomic alterations, including the remodelling or deletion of entire pre-existing pathogenicity islands. These features can be engineered for the targeted deletion of large regions of bacterial chromosomes. In conclusion, in DNA–targeting CRISPR/Cas systems, chromosomal interference is deleterious by causing DNA damage and providing a strong selective pressure for genome alterations, which may have consequences for bacterial evolution and pathogenicity. PMID:23637624

  13. Antibacterial efficacy of the seed extracts of Melia azedarach against some hospital isolated human pathogenic bacterial strains

    PubMed Central

    Khan, Abdul Viqar; Ahmed, Qamar Uddin; Mir, M Ramzan; Shukla, Indu; Khan, Athar Ali

    2011-01-01

    Objective To investigate the antibacterial potential of the polar and non-polar extracts of the seeds of Melia azedarach (M. azedarach) L. (Meliaceae) against eighteen hospital isolated human pathogenic bacterial strains. Methods Petrol, benzene, ethyl acetate, methanol, and aqueous extracts at five different concentrations (1, 2, 5, 10 and 15 mg/mL) were evaluated. Disk diffusion method was followed to evaluate the antibacterial efficacy. Results All extracts of the seeds demonstrated significant antibacterial activity against tested pathogens. Among all extracts, ethyl acetate extract revealed the highest inhibition comparatively. The present study also favored the traditional uses reported earlier. Conclusions Results of this study strongly confirm that the seed extracts of M. azedarach could be effective antibiotics, both in controlling gram-positive and gram-negative human pathogenic infections. PMID:23569812

  14. Respiratory infections and acute lung injury in systemic illness.

    PubMed

    Skerrett, S J; Niederman, M S; Fein, A M

    1989-12-01

    We have discussed the relationship between systemic illness, infection, and lung disease. As we have seen, patients with a wide variety of disease states, including advanced age, diabetes mellitus, alcoholism, collagen vascular disease, cancer, heart failure, and organ transplantation are potentially at increased risk for pneumonia because of disease-related impairments in host defenses. In addition, two virtually ubiquitous conditions in hospitalized patients, malnutrition and therapeutic interventions (especially with common medications), frequently add to the risk of airway invasion by bacterial pathogens. Systemic illness not only makes lung infection more common, but may adversely affect outcome and resolution, as well as determine the clinical presentation of pneumonia. In one particular population, the intubated and mechanically ventilated patient, the risk of infection is particularly high, and nosocomial pneumonia is a major cause of mortality. To the extent that the host response itself leads to the symptoms and signs of infection, systemically ill individuals may have subtle clinical features when serious bacterial invasion is present. Many components of the host defense system can become abnormal with serious illness, but a common mechanism that ties many systemic diseases to pneumonia is an alteration in airway epithelial cell receptivity for bacteria, namely, bacterial adherence, a process that mediates airway colonization, the first pathogenetic step on the road to pneumonia. The impetus for understanding how serious illness promotes lung infection is that once these mechanisms are identified, potential preventative strategies to minimize infection risk in the individual with systemic disease may be developed. The relationship among systemic illness, the lung, and infection also exists in a different direction: infection of a systemic nature (the septic syndrome) can lead to disease in the lung (ARDS). We have described the features of the septic

  15. Bacterial detection: from microscope to smartphone.

    PubMed

    Gopinath, Subash C B; Tang, Thean-Hock; Chen, Yeng; Citartan, Marimuthu; Lakshmipriya, Thangavel

    2014-10-15

    The ubiquitous nature of bacteria enables them to survive in a wide variety of environments. Hence, the rise of various pathogenic species that are harmful to human health raises the need for the development of accurate sensing systems. Sensing systems are necessary for diagnosis and epidemiological control of pathogenic organism, especially in the food-borne pathogen and sanitary water treatment facility' bacterial populations. Bacterial sensing for the purpose of diagnosis can function in three ways: bacterial morphological visualization, specific detection of bacterial component and whole cell detection. This paper provides an overview of the currently available bacterial detection systems that ranges from microscopic observation to state-of-the-art smartphone-based detection. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. PilY1 Promotes Legionella pneumophila Infection of Human Lung Tissue Explants and Contributes to Bacterial Adhesion, Host Cell Invasion, and Twitching Motility.

    PubMed

    Hoppe, Julia; Ünal, Can M; Thiem, Stefanie; Grimpe, Louisa; Goldmann, Torsten; Gaßler, Nikolaus; Richter, Matthias; Shevchuk, Olga; Steinert, Michael

    2017-01-01

    Legionnaires' disease is an acute fibrinopurulent pneumonia. During infection Legionella pneumophila adheres to the alveolar lining and replicates intracellularly within recruited macrophages. Here we provide a sequence and domain composition analysis of the L. pneumophila PilY1 protein, which has a high homology to PilY1 of Pseudomonas aeruginosa . PilY1 proteins of both pathogens contain a von Willebrand factor A (vWFa) and a C-terminal PilY domain. Using cellular fractionation, we assigned the L. pneumophila PilY1 as an outer membrane protein that is only expressed during the transmissive stationary growth phase. PilY1 contributes to infection of human lung tissue explants (HLTEs). A detailed analysis using THP-1 macrophages and A549 lung epithelial cells revealed that this contribution is due to multiple effects depending on host cell type. Deletion of PilY1 resulted in a lower replication rate in THP-1 macrophages but not in A549 cells. Further on, adhesion to THP-1 macrophages and A549 epithelial cells was decreased. Additionally, the invasion into non-phagocytic A549 epithelial cells was drastically reduced when PilY1 was absent. Complementation variants of a PilY1-negative mutant revealed that the C-terminal PilY domain is essential for restoring the wild type phenotype in adhesion, while the putatively mechanosensitive vWFa domain facilitates invasion into non-phagocytic cells. Since PilY1 also promotes twitching motility of L. pneumophila , we discuss the putative contribution of this newly described virulence factor for bacterial dissemination within infected lung tissue.

  17. Evaluation of bacterial pathogen diversity, abundance and health risks in urban recreational water by amplicon next-generation sequencing and quantitative PCR.

    PubMed

    Cui, Qijia; Fang, Tingting; Huang, Yong; Dong, Peiyan; Wang, Hui

    2017-07-01

    The microbial quality of urban recreational water is of great concern to public health. The monitoring of indicator organisms and several pathogens alone is not sufficient to accurately and comprehensively identify microbial risks. To assess the levels of bacterial pathogens and health risks in urban recreational water, we analyzed pathogen diversity and quantified four pathogens in 46 water samples collected from waterbodies in Beijing Olympic Forest Park in one year. The pathogen diversity revealed by 16S rRNA gene targeted next-generation sequencing (NGS) showed that 16 of 40 genera and 13 of 76 reference species were present. The most abundant species were Acinetobacter johnsonii, Mycobacterium avium and Aeromonas spp. Quantitative polymerase chain reaction (qPCR) of Escherichia coli (uidA), Aeromonas (aerA), M. avium (16S rRNA), Pseudomonas aeruginosa (oaa) and Salmonella (invA) showed that the aerA genes were the most abundant, occurring in all samples with concentrations of 10 4-6 genome copies/100mL, followed by oaa, invA and M. avium. In total, 34.8% of the samples harbored all genes, indicating the prevalence of these pathogens in this recreational waterbody. Based on the qPCR results, a quantitative microbial risk assessment (QMRA) showed that the annual infection risks of Salmonella, M. avium and P. aeruginosa in five activities were mostly greater than the U.S. EPA risk limit for recreational contacts, and children playing with water may be exposed to the greatest infection risk. Our findings provide a comprehensive understanding of bacterial pathogen diversity and pathogen abundance in urban recreational water by applying both NGS and qPCR. Copyright © 2016. Published by Elsevier B.V.

  18. Epidemiology of bacterial pathogens associated with infectious diarrhea in Djibouti.

    PubMed Central

    Mikhail, I A; Fox, E; Haberberger, R L; Ahmed, M H; Abbatte, E A

    1990-01-01

    During a survey examining the causes of diarrhea in the East African country of Djibouti, 140 bacterial pathogens were recovered from 209 diarrheal and 100 control stools. The following pathogens were isolated at comparable frequencies from both diarrheal and control stools: enteroadherent Escherichia coli (EAEC) (10.6 versus 13%), enterotoxigenic E. coli (ETEC) (11 versus 10%), enteropathogenic E. coli (EPEC) (7.7 versus 12%), Salmonella spp. (2.9 versus 3%), and Campylobacter jejuni-C. coli (3.3 versus 5%). Surprisingly, the EAEC strains isolated did not correspond to well-recognized EPEC serogroups. No Yersinia spp., enteroinvasive E. coli, or enterohemorrhagic E. coli were isolated during the course of this study. Only the following two genera were recovered from diarrheal stools exclusively: Shigella spp. (7.7%) and Aeromonas hydrophila group organisms (3.3%). Shigella flexneri was the most common Shigella species isolated. Patients with Shigella species were of a higher average age than were controls (27 versus 13 years), while subjects with Campylobacter or Salmonella species belonged to younger age groups (2.6 and 1.6 years, respectively). Salmonella cases were more often in females. Shigella diarrhea was associated with fecal blood or mucus and leukocytes. ETEC was not associated with nausea or vomiting. Anorexia, weight loss, and fever were associated with the isolation of Salmonella and Aeromonas species. EAEC, ETEC, EPEC, and Shigella species were resistant to most drugs used for treating diarrhea in Africa, while the antibiotic most active against all bacteria tested was norfloxacin. We conclude that in Djibouti in 1989, Shigella and Aeromonas species must be considered as potential pathogens whenever they are isolated from diarrheal stools and that norfloxacin should be considered the drug of choice in adults for treating severe shigellosis and for diarrhea prophylaxis in travelers. PMID:2351738

  19. Sinus surgery can improve quality of life, lung infections, and lung function in patients with primary ciliary dyskinesia.

    PubMed

    Alanin, Mikkel Christian; Aanaes, Kasper; Høiby, Niels; Pressler, Tania; Skov, Marianne; Nielsen, Kim Gjerum; Johansen, Helle Krogh; von Buchwald, Christian

    2017-03-01

    Chronic rhinosinusitis (CRS) and bacterial sinusitis are ubiquitous in patients with primary ciliary dyskinesia (PCD). From the sinuses, Pseudomonas aeruginosa can infect the lungs. We studied the effect of endoscopic sinus surgery (ESS) on symptoms of CRS and lower airway infections in PCD patients in a prospective single-arm intervention study of ESS with adjuvant therapy using nasal irrigation with saline, topical nasal steroids, and 2 weeks of systemic antibiotics. Additional treatment with local colistin for 6 months was instigated when P. aeruginosa was cultured at ESS. Twenty-four PCD patients underwent ESS to search for an infectious focus (n = 10), due to severe symptoms of CRS (n = 8), or both (n = 6). Bacteria were cultured from sinus samples in 21 patients (88%), and simultaneous sinus and lung colonization with identical pathogens were observed in 13 patients (62%). Four patients with preoperative P. aeruginosa lung colonization (25%) had no regrowth during follow-up; 2 of these had P. aeruginosa sinusitis. Sinonasal symptoms were improved 12 months after ESS and we observed a trend toward better lung function after ESS. We demonstrated an improvement in CRS-related symptoms after ESS and adjuvant therapy. In selected PCD patients, the suggested regimen may postpone chronic lung infection with P. aeruginosa and stabilize lung function. © 2016 ARS-AAOA, LLC.

  20. A Bacteriophage Capsid Protein Is an Inhibitor of a Conserved Transcription Terminator of Various Bacterial Pathogens.

    PubMed

    Ghosh, Gairika; Reddy, Jayavardhana; Sambhare, Susmit; Sen, Ranjan

    2018-01-01

    Rho is a hexameric molecular motor that functions as a conserved transcription terminator in the majority of bacterial species and is a potential drug target. Psu is a bacteriophage P4 capsid protein that inhibits Escherichia coli Rho by obstructing its ATPase and translocase activities. In this study, we explored the anti-Rho activity of Psu for Rho proteins from different pathogens. Sequence alignment and homology modeling of Rho proteins from pathogenic bacteria revealed the conserved nature of the Psu-interacting regions in all these proteins. We chose Rho proteins from various pathogens, including Mycobacterium smegmatis , Mycobacterium bovis , Mycobacterium tuberculosis , Xanthomonas campestris , Xanthomonas oryzae , Corynebacterium glutamicum , Vibrio cholerae , Salmonella enterica , and Pseudomonas syringae The purified recombinant Rho proteins of these organisms showed variable rates of ATP hydrolysis on poly(rC) as the substrate and were capable of releasing RNA from the E. coli transcription elongation complexes. Psu was capable of inhibiting these two functions of all these Rho proteins. In vivo pulldown assays revealed direct binding of Psu with many of these Rho proteins. In vivo expression of psu induced killing of M. smegmatis , M. bovis , X. campestris , and E. coli expressing S. enterica Rho indicating Psu-induced inhibition of Rho proteins of these strains under physiological conditions. We propose that the "universal" inhibitory function of the Psu protein against the Rho proteins from both Gram-negative and Gram-positive bacteria could be useful for designing peptides with antimicrobial functions and that these peptides could contribute to synergistic antibiotic treatment of the pathogens by compromising the Rho functions. IMPORTANCE Bacteriophage-derived protein factors modulating different bacterial processes could be converted into unique antimicrobial agents. Bacteriophage P4 capsid protein Psu is an inhibitor of the E. coli transcription

  1. Synthetic analogs of bacterial quorum sensors

    DOEpatents

    Iyer, Rashi [Los Alamos, NM; Ganguly, Kumkum [Los Alamos, NM; Silks, Louis A [Los Alamos, NM

    2011-12-06

    Bacterial quorum-sensing molecule analogs having the following structures: ##STR00001## and methods of reducing bacterial pathogenicity, comprising providing a biological system comprising pathogenic bacteria which produce natural quorum-sensing molecule; providing a synthetic bacterial quorum-sensing molecule having the above structures and introducing the synthetic quorum-sensing molecule into the biological system comprising pathogenic bacteria. Further is provided a method of targeted delivery of an antibiotic, comprising providing a synthetic quorum-sensing molecule; chemically linking the synthetic quorum-sensing molecule to an antibiotic to produce a quorum-sensing molecule-antibiotic conjugate; and introducing the conjugate into a biological system comprising pathogenic bacteria susceptible to the antibiotic.

  2. Synthetic analogs of bacterial quorum sensors

    DOEpatents

    Iyer, Rashi S.; Ganguly, Kumkum; Silks, Louis A.

    2013-01-08

    Bacterial quorum-sensing molecule analogs having the following structures: ##STR00001## and methods of reducing bacterial pathogenicity, comprising providing a biological system comprising pathogenic bacteria which produce natural quorum-sensing molecule; providing a synthetic bacterial quorum-sensing molecule having the above structures and introducing the synthetic quorum-sensing molecule into the biological system comprising pathogenic bacteria. Further is provided a method of targeted delivery of an antibiotic, comprising providing a synthetic quorum-sensing molecule; chemically linking the synthetic quorum-sensing molecule to an antibiotic to produce a quorum-sensing molecule-antibiotic conjugate; and introducing the conjugate into a biological system comprising pathogenic bacteria susceptible to the antibiotic.

  3. Bacterial community dynamics in a cooling tower with emphasis on pathogenic bacteria and Legionella species using universal and genus-specific deep sequencing.

    PubMed

    Pereira, Rui P A; Peplies, Jörg; Höfle, Manfred G; Brettar, Ingrid

    2017-10-01

    Cooling towers are the major source of outbreaks of legionellosis in Europe and worldwide. These outbreaks are mostly associated with Legionella species, primarily L. pneumophila, and its surveillance in cooling tower environments is of high relevance to public health. In this study, a combined NGS-based approach was used to study the whole bacterial community, specific waterborne and water-based bacterial pathogens, especially Legionella species, targeting the 16S rRNA gene. This approach was applied to water from a cooling tower obtained by monthly sampling during two years. The studied cooling tower was an open circuit cooling tower with lamellar cooling situated in Braunschweig, Germany. A highly diverse bacterial community was observed with 808 genera including 25 potentially pathogenic taxa using universal 16S rRNA primers. Sphingomonas and Legionella were the most abundant pathogenic genera. By applying genus-specific primers for Legionella, a diverse community with 85 phylotypes, and a representative core community with substantial temporal heterogeneity was observed. A high percentage of sequences (65%) could not be affiliated to an acknowledged species. L. pneumophila was part of the core community and the most abundant Legionella species reinforcing the importance of cooling towers as its environmental reservoir. Major temperature shifts (>10 °C) were the key environmental factor triggering the reduction or dominance of the Legionella species in the Legionella community dynamics. In addition, interventions by chlorine dioxide had a strong impact on the Legionella community composition but not on the whole bacterial community. Overall, the presented results demonstrated the value of a combined NGS approach for the molecular monitoring and surveillance of health related pathogens in man-made freshwater systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Bacterial DNA induces pulmonary damage via TLR-9 through cross-talk with neutrophils.

    PubMed

    Itagaki, Kiyoshi; Adibnia, Yasaman; Sun, Shiqin; Zhao, Cong; Sursal, Tolga; Chen, Yu; Junger, Wolfgang; Hauser, Carl J

    2011-12-01

    Bacterial DNA (bDNA) contains hypomethylated "CpG" repeats that can be recognized by Toll-like receptor 9 (TLR-9) as a pathogen-associated molecular pattern. The ability of bDNA to initiate lung injury via TLR-9 has been inferred on the basis of studies using artificial CpG DNA. But the role of authentic bDNA in lung injury is still unknown. Moreover, the mechanisms by which CpG DNA species can lead to pulmonary injury are unknown, although neutrophils (PMNs) are thought to play a key role in the genesis of septic acute lung injury. We evaluated the effects of bDNA on PMN-endothelial cell (EC) interactions thought critical for initiation of acute lung injury. Using a biocapacitance system to monitor real-time changes in endothelial permeability, we demonstrate here that bDNA causes EC permeability in a dose-dependent manner uniquely in the presence of PMNs. These permeability changes are inhibited by chloroquine, suggesting TLR-9 dependency. When PMNs were preincubated with bDNA and applied to ECs or when bDNA was applied to ECs without PMNs, no permeability changes were detected. To study the underlying mechanisms, we evaluated the effects of bDNA on PMN-EC adherence. Bacterial DNA significantly increased PMN adherence to ECs in association with upregulated adhesion molecules in both cell types. Taken together, our results strongly support the conclusion that bDNA can initiate lung injury by stimulating PMN-EC adhesive interactions predisposing to endothelial permeability. Bacterial DNA stimulation of TLR-9 appears to promote enhanced gene expression of adhesion molecules in both cell types. This leads to PMN-EC cross-talk, which is required for injury to occur.

  5. Microbial colonization and lung function in adolescents with cystic fibrosis.

    PubMed

    Hector, Andreas; Kirn, Tobias; Ralhan, Anjali; Graepler-Mainka, Ute; Berenbrinker, Sina; Riethmueller, Joachim; Hogardt, Michael; Wagner, Marlies; Pfleger, Andreas; Autenrieth, Ingo; Kappler, Matthias; Griese, Matthias; Eber, Ernst; Martus, Peter; Hartl, Dominik

    2016-05-01

    With intensified antibiotic therapy and longer survival, patients with cystic fibrosis (CF) are colonized with a more complex pattern of bacteria and fungi. However, the clinical relevance of these emerging pathogens for lung function remains poorly defined. The aim of this study was to assess the association of bacterial and fungal colonization patterns with lung function in adolescent patients with CF. Microbial colonization patterns and lung function parameters were assessed in 770 adolescent European (German/Austrian) CF patients in a retrospective study (median follow-up time: 10years). Colonization with Pseudomonas aeruginosa and MRSA were most strongly associated with loss of lung function, while mainly colonization with Haemophilus influenzae was associated with preserved lung function. Aspergillus fumigatus was the only species that was associated with an increased risk for infection with P. aeruginosa. Microbial interaction analysis revealed three distinct microbial clusters within the longitudinal course of CF lung disease. Collectively, this study identified potentially protective and harmful microbial colonization patterns in adolescent CF patients. Further studies in different patient cohorts are required to evaluate these microbial patterns and to assess their clinical relevance. Copyright © 2016 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  6. Bacterial Pathogen Emergence Requires More than Direct Contact with a Novel Passerine Host

    PubMed Central

    Hill, Geoffrey E.; Josefson, Chloe C.; Armbruster, Jonathan W.

    2018-01-01

    ABSTRACT While direct contact may sometimes be sufficient to allow a pathogen to jump into a new host species, in other cases, fortuitously adaptive mutations that arise in the original donor host are also necessary. Viruses have been the focus of most host shift studies, so less is known about the importance of ecological versus evolutionary processes to successful bacterial host shifts. Here we tested whether direct contact with the novel host was sufficient to enable the mid-1990s jump of the bacterium Mycoplasma gallisepticum from domestic poultry to house finches (Haemorhous mexicanus). We experimentally inoculated house finches with two genetically distinct M. gallisepticum strains obtained either from poultry (Rlow) or from house finches (HF1995) during an epizootic outbreak. All 15 house finches inoculated with HF1995 became infected, whereas Rlow successfully infected 12 of 15 (80%) inoculated house finches. Comparisons among infected birds showed that, relative to HF1995, Rlow achieved substantially lower bacterial loads in the host respiratory mucosa and was cleared faster. Furthermore, Rlow-infected finches were less likely to develop clinical symptoms than HF1995-infected birds and, when they did, displayed milder conjunctivitis. The lower infection success of Rlow relative to HF1995 was not, however, due to a heightened host antibody response to Rlow. Taken together, our results indicate that contact between infected poultry and house finches was not, by itself, sufficient to explain the jump of M. gallisepticum to house finches. Instead, mutations arising in the original poultry host would have been necessary for successful pathogen emergence in the novel finch host. PMID:29311238

  7. Genomic survey of pathogenicity determinants and VNTR markers in the cassava bacterial pathogen Xanthomonas axonopodis pv. Manihotis strain CIO151.

    PubMed

    Arrieta-Ortiz, Mario L; Rodríguez-R, Luis M; Pérez-Quintero, Álvaro L; Poulin, Lucie; Díaz, Ana C; Arias Rojas, Nathalia; Trujillo, Cesar; Restrepo Benavides, Mariana; Bart, Rebecca; Boch, Jens; Boureau, Tristan; Darrasse, Armelle; David, Perrine; Dugé de Bernonville, Thomas; Fontanilla, Paula; Gagnevin, Lionel; Guérin, Fabien; Jacques, Marie-Agnès; Lauber, Emmanuelle; Lefeuvre, Pierre; Medina, Cesar; Medina, Edgar; Montenegro, Nathaly; Muñoz Bodnar, Alejandra; Noël, Laurent D; Ortiz Quiñones, Juan F; Osorio, Daniela; Pardo, Carolina; Patil, Prabhu B; Poussier, Stéphane; Pruvost, Olivier; Robène-Soustrade, Isabelle; Ryan, Robert P; Tabima, Javier; Urrego Morales, Oscar G; Vernière, Christian; Carrere, Sébastien; Verdier, Valérie; Szurek, Boris; Restrepo, Silvia; López, Camilo; Koebnik, Ralf; Bernal, Adriana

    2013-01-01

    Xanthomonas axonopodis pv. manihotis (Xam) is the causal agent of bacterial blight of cassava, which is among the main components of human diet in Africa and South America. Current information about the molecular pathogenicity factors involved in the infection process of this organism is limited. Previous studies in other bacteria in this genus suggest that advanced draft genome sequences are valuable resources for molecular studies on their interaction with plants and could provide valuable tools for diagnostics and detection. Here we have generated the first manually annotated high-quality draft genome sequence of Xam strain CIO151. Its genomic structure is similar to that of other xanthomonads, especially Xanthomonas euvesicatoria and Xanthomonas citri pv. citri species. Several putative pathogenicity factors were identified, including type III effectors, cell wall-degrading enzymes and clusters encoding protein secretion systems. Specific characteristics in this genome include changes in the xanthomonadin cluster that could explain the lack of typical yellow color in all strains of this pathovar and the presence of 50 regions in the genome with atypical nucleotide composition. The genome sequence was used to predict and evaluate 22 variable number of tandem repeat (VNTR) loci that were subsequently demonstrated as polymorphic in representative Xam strains. Our results demonstrate that Xanthomonas axonopodis pv. manihotis strain CIO151 possesses ten clusters of pathogenicity factors conserved within the genus Xanthomonas. We report 126 genes that are potentially unique to Xam, as well as potential horizontal transfer events in the history of the genome. The relation of these regions with virulence and pathogenicity could explain several aspects of the biology of this pathogen, including its ability to colonize both vascular and non-vascular tissues of cassava plants. A set of 16 robust, polymorphic VNTR loci will be useful to develop a multi-locus VNTR analysis

  8. Genomic Survey of Pathogenicity Determinants and VNTR Markers in the Cassava Bacterial Pathogen Xanthomonas axonopodis pv. Manihotis Strain CIO151

    PubMed Central

    Arrieta-Ortiz, Mario L.; Rodríguez-R, Luis M.; Pérez-Quintero, Álvaro L.; Poulin, Lucie; Díaz, Ana C.; Arias Rojas, Nathalia; Trujillo, Cesar; Restrepo Benavides, Mariana; Bart, Rebecca; Boch, Jens; Boureau, Tristan; Darrasse, Armelle; David, Perrine; Dugé de Bernonville, Thomas; Fontanilla, Paula; Gagnevin, Lionel; Guérin, Fabien; Jacques, Marie-Agnès; Lauber, Emmanuelle; Lefeuvre, Pierre; Medina, Cesar; Medina, Edgar; Montenegro, Nathaly; Muñoz Bodnar, Alejandra; Noël, Laurent D.; Ortiz Quiñones, Juan F.; Osorio, Daniela; Pardo, Carolina; Patil, Prabhu B.; Poussier, Stéphane; Pruvost, Olivier; Robène-Soustrade, Isabelle; Ryan, Robert P.; Tabima, Javier; Urrego Morales, Oscar G.; Vernière, Christian; Carrere, Sébastien; Verdier, Valérie; Szurek, Boris; Restrepo, Silvia; López, Camilo

    2013-01-01

    Xanthomonas axonopodis pv. manihotis (Xam) is the causal agent of bacterial blight of cassava, which is among the main components of human diet in Africa and South America. Current information about the molecular pathogenicity factors involved in the infection process of this organism is limited. Previous studies in other bacteria in this genus suggest that advanced draft genome sequences are valuable resources for molecular studies on their interaction with plants and could provide valuable tools for diagnostics and detection. Here we have generated the first manually annotated high-quality draft genome sequence of Xam strain CIO151. Its genomic structure is similar to that of other xanthomonads, especially Xanthomonas euvesicatoria and Xanthomonas citri pv. citri species. Several putative pathogenicity factors were identified, including type III effectors, cell wall-degrading enzymes and clusters encoding protein secretion systems. Specific characteristics in this genome include changes in the xanthomonadin cluster that could explain the lack of typical yellow color in all strains of this pathovar and the presence of 50 regions in the genome with atypical nucleotide composition. The genome sequence was used to predict and evaluate 22 variable number of tandem repeat (VNTR) loci that were subsequently demonstrated as polymorphic in representative Xam strains. Our results demonstrate that Xanthomonas axonopodis pv. manihotis strain CIO151 possesses ten clusters of pathogenicity factors conserved within the genus Xanthomonas. We report 126 genes that are potentially unique to Xam, as well as potential horizontal transfer events in the history of the genome. The relation of these regions with virulence and pathogenicity could explain several aspects of the biology of this pathogen, including its ability to colonize both vascular and non-vascular tissues of cassava plants. A set of 16 robust, polymorphic VNTR loci will be useful to develop a multi-locus VNTR analysis

  9. Effects of Benzalkonium Chloride on Planktonic Growth and Biofilm Formation by Animal Bacterial Pathogens

    PubMed Central

    Ebrahimi, Azizollah; Hemati, Majid; Shabanpour, Ziba; Habibian Dehkordi, Saeed; Bahadoran, Shahab; Lotfalian, Sharareh; Khubani, Shahin

    2015-01-01

    Background: Resistance toward quaternary ammonium compounds (QACs) is widespread among a diverse range of microorganisms and is facilitated by several mechanisms such as biofilm formation. Objectives: In this study, the effects of benzalkonium chloride on planktonic growth and biofilm formation by some field isolates of animal bacterial pathogens were investigated. Materials and Methods: Forty clinical isolates of Escherichia coli, Salmonella serotypes, Staphylococcus aureus and Streptococcus agalactiae (10 isolates of each) were examined for effects of benzalkonium chloride on biofilm formation and planktonic growth using microtiter plates. For all the examined strains in the presence of benzalkonium chloride, biofilm development and planktonic growth were affected at the same concentrations of disinfectant. Results: The means of strains growth increase after the minimal inhibitory concentration (MIC) were significant in all the bacteria (except for E. coli in 1/32 and S. agalactiae in of 1/8 MIC). Biofilm formation increased with decrease of antiseptics concentration; a significant increase was found in all the samples. The most turbidity related to S. aureus and the least to Salmonella. Conclusions: Bacterial resistance against quaternary ammonium compounds is increasing which can increase the bacterial biofilm formation. PMID:25793094

  10. Zoonotic bacterial meningitis in human adults.

    PubMed

    van Samkar, Anusha; Brouwer, Matthijs C; van der Ende, Arie; van de Beek, Diederik

    2016-09-13

    To describe the epidemiology, etiology, clinical characteristics, treatment, outcome, and prevention of zoonotic bacterial meningitis in human adults. We identified 16 zoonotic bacteria causing meningitis in adults. Zoonotic bacterial meningitis is uncommon compared to bacterial meningitis caused by human pathogens, and the incidence has a strong regional distribution. Zoonotic bacterial meningitis is mainly associated with animal contact, consumption of animal products, and an immunocompromised state of the patient. In a high proportion of zoonotic bacterial meningitis cases, CSF analysis showed only a mildly elevated leukocyte count. The recommended antibiotic therapy differs per pathogen, and the overall mortality is low. Zoonotic bacterial meningitis is uncommon but is associated with specific complications. The suspicion should be raised in patients with bacterial meningitis who have recreational or professional contact with animals and in patients living in regions endemic for specific zoonotic pathogens. An immunocompromised state is associated with a worse prognosis. Identification of risk factors and underlying disease is necessary to improve treatment. © 2016 American Academy of Neurology.

  11. Broad activity of diphenyleneiodonium analogues against Mycobacterium tuberculosis, malaria parasites and bacterial pathogens.

    PubMed

    Nguyen, Nghi; Wilson, Danny W; Nagalingam, Gayathri; Triccas, James A; Schneider, Elena K; Li, Jian; Velkov, Tony; Baell, Jonathan

    2018-03-25

    In this study, a structure-activity relationship (SAR) compound series based on the NDH-2 inhibitor diphenyleneiodonium (DPI) was synthesised. Compounds were evaluated primarily for in vitro efficacy against Gram-positive and Gram-negative bacteria, commonly responsible for nosocomial and community acquired infections. In addition, we also assessed the activity of these compounds against Mycobacterium tuberculosis (Tuberculosis) and Plasmodium spp. (Malaria). This led to the discovery of highly potent compounds active against bacterial pathogens and malaria parasites in the low nanomolar range, several of which were significantly less toxic to mammalian cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. The Burkholderia cepacia rpoE gene is not involved in exopolysaccharide production and onion pathogenicity.

    PubMed

    Devescovi, Giulia; Venturi, Vittorio

    2006-03-01

    Burkholderia cepacia was originally described as the causative agent of bacterial rot of onions, and it has now emerged as an important opportunistic pathogen causing severe chronic lung infections in patients having cystic fibrosis. Burkholderia cepacia is now classified into nine very closely related species (previously designated as genomovars), all of which have been isolated from both environmental and clinical sources and are collectively known as the B. cepacia complex. The alternative extracytoplasmic function sigma factor, sigmaE, has been determined in several bacterial species as making substantial contributions to bacterial survival under stress conditions. Here, we report the identification and characterization of the rpoE gene, encoding sigmaE, of B. cepacia. It is highly similar to sigmaE of other bacteria, including Escherichia coli and Pseudomonas aeruginosa. Studies using an rpoE knockout mutant of B. cepacia revealed that many stress adaptations, including osmotic, oxidative, desiccation, carbon, and nitrogen stress, were independent of sigmaE. Similarly, biofilm formation; production of exopolysaccharides, N-acyl homoserine lactones, and several exoenzymes; and onion pathogenicity were not affected by the absence of sigmaE. In contrast, sigmaE contributed to the adaptation to heat stress and phosphate starvation.

  13. Evolution of bacterial virulence.

    PubMed

    Diard, Médéric; Hardt, Wolf-Dietrich

    2017-09-01

    Bacterial virulence is highly dynamic and context-dependent. For this reason, it is challenging to predict how molecular changes affect the growth of a pathogen in a host and its spread in host population. Two schools of thought have taken quite different directions to decipher the underlying principles of bacterial virulence. While molecular infection biology is focusing on the basic mechanisms of the pathogen-host interaction, evolution biology takes virulence as one of several parameters affecting pathogen spread in a host population. We review both approaches and discuss how they can complement each other in order to obtain a comprehensive understanding of bacterial virulence, its emergence, maintenance and evolution. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Frontiers for research on the ecology of plant-pathogenic bacteria: fundamentals for sustainability: Challenges in Bacterial Molecular Plant Pathology.

    PubMed

    Morris, Cindy E; Barny, Marie-Anne; Berge, Odile; Kinkel, Linda L; Lacroix, Christelle

    2017-02-01

    Methods to ensure the health of crops owe their efficacy to the extent to which we understand the ecology and biology of environmental microorganisms and the conditions under which their interactions with plants lead to losses in crop quality or yield. However, in the pursuit of this knowledge, notions of the ecology of plant-pathogenic microorganisms have been reduced to a plant-centric and agro-centric focus. With increasing global change, i.e. changes that encompass not only climate, but also biodiversity, the geographical distribution of biomes, human demographic and socio-economic adaptations and land use, new plant health problems will emerge via a range of processes influenced by these changes. Hence, knowledge of the ecology of plant pathogens will play an increasingly important role in the anticipation and response to disease emergence. Here, we present our opinion on the major challenges facing the study of the ecology of plant-pathogenic bacteria. We argue that the discovery of markedly novel insights into the ecology of plant-pathogenic bacteria is most likely to happen within a framework of more extensive scales of space, time and biotic interactions than those that currently guide much of the research on these bacteria. This will set a context that is more propitious for the discovery of unsuspected drivers of the survival and diversification of plant-pathogenic bacteria and of the factors most critical for disease emergence, and will set the foundation for new approaches to the sustainable management of plant health. We describe the contextual background of, justification for and specific research questions with regard to the following challenges: Development of terminology to describe plant-bacterial relationships in terms of bacterial fitness. Definition of the full scope of the environments in which plant-pathogenic bacteria reside or survive. Delineation of pertinent phylogenetic contours of plant-pathogenic bacteria and naming of strains

  15. Anti-bacterial antibody and T cell responses in bronchiectasis are differentially associated with lung colonization and disease.

    PubMed

    Jaat, Fathia G; Hasan, Sajidah F; Perry, Audrey; Cookson, Sharon; Murali, Santosh; Perry, John D; Lanyon, Clare V; De Soyza, Anthony; Todryk, Stephen M

    2018-05-30

    As a way to determine markers of infection or disease informing disease management, and to reveal disease-associated immune mechanisms, this study sought to measure antibody and T cell responses against key lung pathogens and to relate these to patients' microbial colonization status, exacerbation history and lung function, in Bronchiectasis (BR) and Chronic Obstructive Pulmonary Disease (COPD). One hundred nineteen patients with stable BR, 58 with COPD and 28 healthy volunteers were recruited and spirometry was performed. Bacterial lysates were used to measure specific antibody responses by ELISA and T cells by ELIspot. Cytokine secretion by lysate-stimulated T cells was measured by multiplex cytokine assay whilst activation phenotype was measured by flow cytometry. Typical colonization profiles were observed in BR and COPD, dominated by P.aeruginosa, H.influenzae, S.pneumoniae and M.catarrhalis. Colonization frequency was greater in BR, showing association with increased antibody responses against P.aeruginosa compared to COPD and HV, and with sensitivity of 73% and specificity of 95%. Interferon-gamma T cell responses against P.aeruginosa and S.pneumoniae were reduced in BR and COPD, whilst reactive T cells in BR had similar markers of homing and senescence compared to healthy volunteers. Exacerbation frequency in BR was associated with increased antibodies against P. aeruginosa, M.catarrhalis and S.maltophilia. T cell responses against H.influenzae showed positive correlation with FEV 1 % (r = 0.201, p = 0.033) and negative correlation with Bronchiectasis Severity Index (r = - 0.287, p = 0.0035). Our findings suggest a difference in antibody and T cell immunity in BR, with antibody being a marker of exposure and disease in BR for P.aeruginosa, M.catarrhalis and H.influenzae, and T cells a marker of reduced disease for H.influenzae.

  16. Gold Nanoparticles: An Efficient Antimicrobial Agent against Enteric Bacterial Human Pathogen

    PubMed Central

    Shamaila, Shahzadi; Zafar, Noshin; Riaz, Saira; Sharif, Rehana; Nazir, Jawad; Naseem, Shahzad

    2016-01-01

    Enteric bacterial human pathogens, i.e., Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Klebsiella pneumoniae, are the major cause of diarrheal infections in children and adults. Their structure badly affects the human immune system. It is important to explore new antibacterial agents instead of antibiotics for treatment. This project is an attempt to explain how gold nanoparticles affect these bacteria. We investigated the important role of the mean particle size, and the inhibition of a bacterium is dose-dependent. Ultra Violet (UV)-visible spectroscopy revealed the size of chemically synthesized gold nanoparticle as 6–40 nm. Atomic force microscopy (AFM) analysis confirmed the size and X-ray diffractometry (XRD) analysis determined the polycrystalline nature of gold nanoparticles. The present findings explained how gold nanoparticles lyse Gram-negative and Gram-positive bacteria. PMID:28335198

  17. Pathogen-specific risk of chronic gastrointestinal disorders following bacterial causes of foodborne illness

    PubMed Central

    2013-01-01

    Background The US CDC estimates over 2 million foodborne illnesses are annually caused by 4 major enteropathogens: non-typhoid Salmonella spp., Campylobacter spp., Shigella spp. and Yersinia enterocoltica. While data suggest a number of costly and morbid chronic sequelae associated with these infections, pathogen-specific risk estimates are lacking. We utilized a US Department of Defense medical encounter database to evaluate the risk of several gastrointestinal disorders following select foodborne infections. Methods We identified subjects with acute gastroenteritis between 1998 to 2009 attributed to Salmonella (nontyphoidal) spp., Shigella spp., Campylobacter spp. or Yersinia enterocolitica and matched each with up to 4 unexposed subjects. Medical history was analyzed for the duration of military service time (or a minimum of 1 year) to assess for incident chronic gastrointestinal disorders. Relative risks were calculated using modified Poisson regression while controlling for the effect of covariates. Results A total of 1,753 pathogen-specific gastroenteritis cases (Campylobacter: 738, Salmonella: 624, Shigella: 376, Yersinia: 17) were identified and followed for a median of 3.8 years. The incidence (per 100,000 person-years) of PI sequelae among exposed was as follows: irritable bowel syndrome (IBS), 3.0; dyspepsia, 1.8; constipation, 3.9; gastroesophageal reflux disease (GERD), 9.7. In multivariate analyses, we found pathogen-specific increased risk of IBS, dyspepsia, constipation and GERD. Conclusions These data confirm previous studies demonstrating risk of chronic gastrointestinal sequelae following bacterial enteric infections and highlight additional preventable burden of disease which may inform better food security policies and practices, and prompt further research into pathogenic mechanisms. PMID:23510245

  18. Pathogenic Link Between Postextubation Pneumonia and Ventilator-Associated Pneumonia: An Experimental Study.

    PubMed

    Rezoagli, Emanuele; Zanella, Alberto; Cressoni, Massimo; De Marchi, Lorenzo; Kolobow, Theodor; Berra, Lorenzo

    2017-04-01

    The presence of an endotracheal tube is the main cause for developing ventilator-associated pneumonia (VAP), but pneumonia can still develop in hospitalized patients after endotracheal tube removal (postextubation pneumonia [PEP]). We hypothesized that short-term intubation (24 hours) can play a role in the pathogenesis of PEP. To test such hypothesis, we initially evaluated the occurrence of lung colonization and VAP in sheep that were intubated and mechanically ventilated for 24 hours. Subsequently, we assessed the incidence of lung colonization and PEP at 48 hours after extubation in sheep previously ventilated for 24 hours. To simulate intubated intensive care unit patients placed in semirecumbent position, 14 sheep were intubated and mechanically ventilated with the head elevated 30° above horizontal. Seven of them were euthanized after 24 hours (Control Group), whereas the remaining were euthanized after being awaken, extubated, and left spontaneously breathing for 48 hours after extubation (Awake Group). Criteria of clinical diagnosis of pneumonia were tested. Microbiological evaluation was performed on autopsy in all sheep. Only 1 sheep in the Control Group met the criteria of VAP after 24 hours of mechanical ventilation. However, heavy pathogenic bacteria colonization of trachea, bronchi, and lungs (range, 10-10 colony-forming unit [CFU]/g) was reported in 4 of 7 sheep (57%). In the Awake Group, 1 sheep was diagnosed with VAP and 3 developed PEP within 48 hours after extubation (42%), with 1 euthanized at 30 hours because of respiratory failure. On autopsy, 5 sheep (71%) confirmed pathogenic bacterial growth in the lower respiratory tract (range, 10-10 CFU/g). Twenty-four hours of intubation and mechanical ventilation in semirecumbent position leads to significant pathogenic colonization of the lower airways, which can promote the development of PEP. Strategies directed to prevent pathogenic microbiological colonization before and after mechanical

  19. USGS/EPA collection protocol for bacterial pathogens in soil

    USGS Publications Warehouse

    Griffin, Dale W.; Shaefer, F.L.; Charlena Bowling,; Dino Mattorano,; Tonya Nichols,; Erin Silvestri,

    2014-01-01

    This Sample Collection Procedure (SCP) describes the activities and considerations for the collection of bacterial pathogens from representative surface soil samples (0-5 cm). This sampling depth can be reached without the use of a drill rig, direct-push technology, or other mechanized equipment. This procedure can be used in most soil types but is limited to sampling at or near the ground surface. This protocol has components for two different types of sampling applications: (1) typical sampling, when there is no suspicion of contamination (e.g., surveillance or background studies); and (2) in response to known or suspected accidental contamination (e.g., the presence of animal carcasses). This protocol does not cover sampling in response to a suspected bioterrorist or intentional release event. Surface material is removed to the required depth (0-5 cm) and clean trowel or 50 ml sample tube is used to collect the sample. Sample containers are sealed, bagged, and shipped to the laboratory for analysis. Associated documentation, including a Field Data Log and Chain-of-Custody are also included in this document.

  20. Parallel evolution of a type IV secretion system in radiating lineages of the host-restricted bacterial pathogen Bartonella.

    PubMed

    Engel, Philipp; Salzburger, Walter; Liesch, Marius; Chang, Chao-Chin; Maruyama, Soichi; Lanz, Christa; Calteau, Alexandra; Lajus, Aurélie; Médigue, Claudine; Schuster, Stephan C; Dehio, Christoph

    2011-02-10

    Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens

  1. Chronic Mycobacterium abscessus infection and lung function decline in cystic fibrosis.

    PubMed

    Esther, Charles R; Esserman, Denise A; Gilligan, Peter; Kerr, Alan; Noone, Peadar G

    2010-03-01

    Although nontuberculous mycobacteria (NTM) are recognized pathogens in cystic fibrosis (CF), associations with clinical outcomes remain unclear. Microbiological data was obtained from 1216 CF patients over 8years (481+/-55patients/year). Relationships to clinical outcomes were examined in the subset (n=271, 203+/-23 patients/year) with longitudinal data. Five hundred thirty-six of 4862 (11%) acid-fast bacilli (AFB) cultures grew NTM, with Mycobacterium abscessus (n=298, 55.6%) and Mycobacterium avium complex (n=190, 35.4%) most common. Associated bacterial cultures grew Stenotrophomonas or Aspergillus species more often when NTM were isolated (18.2% vs. 8.4% and 13.9% vs. 7.2%, respectively, p<0.01). After controlling for confounders, patients with chronic M. abscessus infection had greater rates of lung function decline than those with no NTM infection (-2.52 vs. -1.64% predicted FEV(1)/year, p<0.05). NTM infection is common in CF and associated with particular pathogens. Chronic M. abscessus infection is associated with increased lung function decline. Copyright (c) 2009 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  2. Hide, Keep Quiet, and Keep Low: Properties That Make Aspergillus fumigatus a Successful Lung Pathogen

    PubMed Central

    Escobar, Natalia; Ordonez, Soledad R.; Wösten, Han A. B.; Haas, Pieter-Jan A.; de Cock, Hans; Haagsman, Henk P.

    2016-01-01

    Representatives of the genus Aspergillus are opportunistic fungal pathogens. Their conidia can reach the alveoli by inhalation and can give rise to infections in immunocompromised individuals. Aspergillus fumigatus is the causal agent of invasive aspergillosis in nearly 90% of the cases. It is not yet well-established what makes this fungus more pathogenic than other aspergilli such as A. niger. Here, we show that A. fumigatus and A. niger conidia adhere with similar efficiency to lung epithelial A549 cells but A. fumigatus conidia internalized 17% more efficiently. Conidia of both aspergilli were taken up in phagolysosomes 8 h after the challenge. These organelles only acidified in the case of A. niger, which is probably due to the type of melanin coating of the conidia. Viability of both types of conidia was not affected after uptake in the phagolysosomes. Germination of A. fumigatus and A. niger conidia in the presence of epithelial cells was delayed when compared to conidia in the medium. However, germination of A. niger conidia was still higher than that of A. fumigatus 10 h after exposure to A549 cells. Remarkably, A. fumigatus hyphae grew mainly parallel to the epithelium, while growth direction of A. niger hyphae was predominantly perpendicular to the plane of the cells. Neutrophils reduced germination and hyphal growth of A. niger, but not of A fumigatus, in presence of epithelial cells. Taken together, efficient internalization, delayed germination, and hyphal growth parallel to the epithelium gives a new insight into what could be the causes for the success of A. fumigatus compared to A. niger as an opportunistic pathogen in the lung. PMID:27092115

  3. The importance of the viable but non-culturable state in human bacterial pathogens

    PubMed Central

    Li, Laam; Mendis, Nilmini; Trigui, Hana; Oliver, James D.; Faucher, Sebastien P.

    2014-01-01

    Many bacterial species have been found to exist in a viable but non-culturable (VBNC) state since its discovery in 1982. VBNC cells are characterized by a loss of culturability on routine agar, which impairs their detection by conventional plate count techniques. This leads to an underestimation of total viable cells in environmental or clinical samples, and thus poses a risk to public health. In this review, we present recent findings on the VBNC state of human bacterial pathogens. The characteristics of VBNC cells, including the similarities and differences to viable, culturable cells and dead cells, and different detection methods are discussed. Exposure to various stresses can induce the VBNC state, and VBNC cells may be resuscitated back to culturable cells under suitable stimuli. The conditions that trigger the induction of the VBNC state and resuscitation from it are summarized and the mechanisms underlying these two processes are discussed. Last but not least, the significance of VBNC cells and their potential influence on human health are also reviewed. PMID:24917854

  4. Axially substituted silicon(IV) phthalocyanine and its quaternized derivative as photosensitizers towards tumor cells and bacterial pathogens.

    PubMed

    Ömeroğlu, İpek; Kaya, Esra Nur; Göksel, Meltem; Kussovski, Vesselin; Mantareva, Vanya; Durmuş, Mahmut

    2017-10-15

    Axially di-(alpha,alpha-diphenyl-4-pyridylmethoxy) silicon(IV) phthalocyanine (3) and its quaternized derivative (3Q) were synthesized and tested as photosensitizers against tumor and bacterial cells. These new phthalocyanines were characterized by elemental analysis, and different spectroscopic methods such as FT-IR, UV-Vis, MALDI-TOF and 1 H NMR. The photophysical properties such as absorption and fluorescence, and the photochemical properties such as singlet oxygen generation of both phthalocyanines were investigated in solutions. The obtained values were compared to the values obtained with unsubstituted silicon(IV) phthalocyanine dichloride (SiPcCl 2 ). The addition of two di-(alpha,alpha-diphenyl-4-pyridylmethanol) groups as axial ligands showed an improvement of the photophysical and photochemical properties and an increasement of the singlet oxygen quantum yield (Φ Δ ) from 0.15 to 0.33 was determined. The photodynamic efficacy of synthesized photosensitizers (3 and 3Q) were evaluated with promising photocytotoxicity (17% cell survival for 3 and 28% for 3Q) against the cervical cancer cell line (HeLa). The photodynamic inactivation of pathogenic bacterial strains Streptococcus mutans, Staphylococcus aureus, and Pseudomonas aeruginosa suggested a high susceptibility with quaternized derivative (3Q). The both Gram-positive bacterial strains were fully photoinactivated with 11μM 3Q and mild light dose 50J.cm -2 . In case of P. aeruginosa the effect was negligible for concentrations up to 22μM 3Q and light dose 100J.cm -2 . The results suggested that the novel axially substituted silicon(IV) phthalocyanines have promising characteristic as photosensitizer towards tumor cells. The quaternized derivative 3Q has high potential for photoinactivation of pathogenic bacterial species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Whole Genome Sequence Analysis of Pig Respiratory Bacterial Pathogens with Elevated Minimum Inhibitory Concentrations for Macrolides.

    PubMed

    Dayao, Denise Ann Estarez; Seddon, Jennifer M; Gibson, Justine S; Blackall, Patrick J; Turni, Conny

    2016-10-01

    Macrolides are often used to treat and control bacterial pathogens causing respiratory disease in pigs. This study analyzed the whole genome sequences of one clinical isolate of Actinobacillus pleuropneumoniae, Haemophilus parasuis, Pasteurella multocida, and Bordetella bronchiseptica, all isolated from Australian pigs to identify the mechanism underlying the elevated minimum inhibitory concentrations (MICs) for erythromycin, tilmicosin, or tulathromycin. The H. parasuis assembled genome had a nucleotide transition at position 2059 (A to G) in the six copies of the 23S rRNA gene. This mutation has previously been associated with macrolide resistance but this is the first reported mechanism associated with elevated macrolide MICs in H. parasuis. There was no known macrolide resistance mechanism identified in the other three bacterial genomes. However, strA and sul2, aminoglycoside and sulfonamide resistance genes, respectively, were detected in one contiguous sequence (contig 1) of A. pleuropneumoniae assembled genome. This contig was identical to plasmids previously identified in Pasteurellaceae. This study has provided one possible explanation of elevated MICs to macrolides in H. parasuis. Further studies are necessary to clarify the mechanism causing the unexplained macrolide resistance in other Australian pig respiratory pathogens including the role of efflux systems, which were detected in all analyzed genomes.

  6. Next-generation sequencing identification of pathogenic bacterial genes and their relationship with fecal indicator bacteria in different water sources in the Kathmandu Valley, Nepal.

    PubMed

    Ghaju Shrestha, Rajani; Tanaka, Yasuhiro; Malla, Bikash; Bhandari, Dinesh; Tandukar, Sarmila; Inoue, Daisuke; Sei, Kazunari; Sherchand, Jeevan B; Haramoto, Eiji

    2017-12-01

    Bacteriological analysis of drinking water leads to detection of only conventional fecal indicator bacteria. This study aimed to explore and characterize bacterial diversity, to understand the extent of pathogenic bacterial contamination, and to examine the relationship between pathogenic bacteria and fecal indicator bacteria in different water sources in the Kathmandu Valley, Nepal. Sixteen water samples were collected from shallow dug wells (n=12), a deep tube well (n=1), a spring (n=1), and rivers (n=2) in September 2014 for 16S rRNA gene next-generation sequencing. A total of 525 genera were identified, of which 81 genera were classified as possible pathogenic bacteria. Acinetobacter, Arcobacter, and Clostridium were detected with a relatively higher abundance (>0.1% of total bacterial genes) in 16, 13, and 5 of the 16 samples, respectively, and the highest abundance ratio of Acinetobacter (85.14%) was obtained in the deep tube well sample. Furthermore, the bla OXA23-like genes of Acinetobacter were detected using SYBR Green-based quantitative PCR in 13 (35%) of 37 water samples, including the 16 samples that were analyzed for next-generation sequencing, with concentrations ranging 5.3-7.5logcopies/100mL. There was no sufficient correlation found between fecal indicator bacteria, such as Escherichia coli and total coliforms, and potential pathogenic bacteria, as well as the bla OXA23-like gene of Acinetobacter. These results suggest the limitation of using conventional fecal indicator bacteria in evaluating the pathogenic bacteria contamination of different water sources in the Kathmandu Valley. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Using lytic bacteriophages to eliminate or significantly reduce contamination of food by foodborne bacterial pathogens.

    PubMed

    Sulakvelidze, Alexander

    2013-10-01

    Bacteriophages (also called 'phages') are viruses that kill bacteria. They are arguably the oldest (3 billion years old, by some estimates) and most ubiquitous (total number estimated to be 10(30) -10(32) ) known organisms on Earth. Phages play a key role in maintaining microbial balance in every ecosystem where bacteria exist, and they are part of the normal microflora of all fresh, unprocessed foods. Interest in various practical applications of bacteriophages has been gaining momentum recently, with perhaps the most attention focused on using them to improve food safety. That approach, called 'phage biocontrol', typically includes three main types of applications: (i) using phages to treat domesticated livestock in order to reduce their intestinal colonization with, and shedding of, specific bacterial pathogens; (ii) treatments for decontaminating inanimate surfaces in food-processing facilities and other food establishments, so that foods processed on those surfaces are not cross-contaminated with the targeted pathogens; and (iii) post-harvest treatments involving direct applications of phages onto the harvested foods. This mini-review primarily focuses on the last type of intervention, which has been gaining the most momentum recently. Indeed, the results of recent studies dealing with improving food safety, and several recent regulatory approvals of various commercial phage preparations developed for post-harvest food safety applications, strongly support the idea that lytic phages may provide a safe, environmentally-friendly, and effective approach for significantly reducing contamination of various foods with foodborne bacterial pathogens. However, some important technical and nontechnical problems may need to be addressed before phage biocontrol protocols can become an integral part of routine food safety intervention strategies implemented by food industries in the USA. © 2013 Society of Chemical Industry.

  8. Relationship with original pathogen in recurrence of acute otitis media after completion of amoxicillin/clavulanate: bacterial relapse or new pathogen.

    PubMed

    Kaur, Ravinder; Casey, Janet R; Pichichero, Michael E

    2013-11-01

    We sought to determine whether recurrent acute otitis media (rAOM) occurring within 30 days of amoxicillin/clavulanate treatment was caused by bacterial relapse or new pathogens. Pneumococcal conjugate vaccinated children, age 6-36 months, enrolled in a prospective, longitudinal study experiencing rAOM<1 month after completing amoxicillin/clavulanate therapy were studied. AOM episodes occurred between June 2006 and November 2012. Multilocus sequence typing was used to genotype isolates. Sixty-six children were in the study cohort; 63 otopathogens were recovered from middle ear fluid after tympanocentesis. Nontypeable Haemophilus influenzae (NTHi) accounted for 47% of initial AOMs versus 15% by Streptococcus pneumoniae (Spn), P<0.0001. NTHi accounted for 42% of rAOM versus 24% by Spn (P value=0.04). NTHi was the main otopathogen that caused true bacteriologic relapses (77%). β-lactamase-producing NTHi and penicillin nonsusceptible Spn were not more common in rAOM than initial AOM infections. Among 21 paired (initial and rAOM events) NTHi isolates genotyped, 13 (61.9%) were the same organism; 1 of 9 (11.1%) of paired Spn isolates was the same (P value=0.017). rAOM occurring within a week of stopping amoxicillin/clavulanate was a different pathogen in 21% of cases, 8-14 days later in 33%, 15-21 days in 41% and 22-30 days in 57% (P=0.04). In amoxicillin/clavulanate-treated children, NTHi was the main otopathogen that caused true bacteriologic relapses. New pathogens causing rAOM versus persistence of the initial pathogen significantly increased week to week. Neither relapses nor new infections were caused more frequently by β-lactamase producing NTHi or penicillin nonsusceptible Spn.

  9. A human pathogenic bacterial infection model using the two-spotted cricket, Gryllus bimaculatus.

    PubMed

    Kochi, Yuto; Miyashita, Atsushi; Tsuchiya, Kohsuke; Mitsuyama, Masao; Sekimizu, Kazuhisa; Kaito, Chikara

    2016-08-01

    Invertebrate animal species that can withstand temperatures as high as 37°C, the human body temperature, are limited. In the present study, we utilized the two-spotted cricket, Gryllus bimaculatus, which lives in tropical and subtropical regions, as an animal model of human pathogenic bacterial infection. Injection of Pseudomonas aeruginosa or Staphylococcus aureus into the hemolymph killed crickets. Injected P. aeruginosa or S. aureus proliferated in the hemolymph until the cricket died. The ability of these pathogenic bacteria to kill the crickets was blocked by the administration of antibiotics. S. aureus gene-knockout mutants of virulence factors, including cvfA, agr and srtA, exhibited decreased killing ability compared with the parent strain. The dose at which 50% of crickets were killed by P. aeruginosa or S. aureus was not decreased at 37°C compared with that at 27°C. Injection of Listeria monocytogenes, which upregulates toxin expression at 37°C, killed crickets, and the dose at which 50% of crickets were killed was decreased at 37°C compared with that at 27°C. These findings suggest that the two-spotted cricket is a useful model animal for evaluating the virulence properties of various human pathogenic bacteria at variable temperature including 37°C. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. The Role of Thin Aggregative Fimbriae on Pathogenic Bacterial Transport Through Porous Media

    NASA Astrophysics Data System (ADS)

    Salvucci, A. E.; Fuka, D. R.; Marjerison, R. D.; Hay, A. G.; Zhang, W.; Caballero, L. A.; Zevi, Y.; Richards, B. K.; Steenhuis, T. S.

    2008-05-01

    Pathogenic bacteria, such as Escherichia coli and Salmonella sp., are responsible for many deaths worldwide every year. Their survival in the natural environment is enhanced by the production of biofilms, which provide a resistance to environmental stresses. However, it remains unclear how these biofilms affect the bacterias' ability to move through the soil matrix and potentially contaminate groundwater or water from drainage systems. In this presentation, we discuss the role of thin aggregative fimbriae (curli), a key biofilm component, on transport through porous media. An experiment was performed consisting of 96 sand columns created using a deep-well microtiter plate. We used well-characterized strains of E. coli, one with the ability to form curli and one without. Pulsing the E. coli strains through the sand column, mimicking natural leaching processes, showed less transport, by greater retention, in the strains that produce curli versus those strains that do not. In addition, when cultured in conditions unfavorable to curli production, transport between strains did not differ significantly. These preliminary results indicate that curli, and to a larger extent biofilms, could be an important component influencing the transport of bacterial strains through the soil matrix. This determination of pathogens' ability to move through the environment, as related to how well they form biofilms, will facilitate a better understanding of the fate of pathogenic bacteria in the environment.

  11. Bacterial Prostatitis: Bacterial Virulence, Clinical Outcomes, and New Directions.

    PubMed

    Krieger, John N; Thumbikat, Praveen

    2016-02-01

    Four prostatitis syndromes are recognized clinically: acute bacterial prostatitis, chronic bacterial prostatitis, chronic prostatitis/chronic pelvic pain syndrome, and asymptomatic prostatitis. Because Escherichia coli represents the most common cause of bacterial prostatitis, we investigated the importance of bacterial virulence factors and antimicrobial resistance in E. coli strains causing prostatitis and the potential association of these characteristics with clinical outcomes. A structured literature review revealed that we have limited understanding of the virulence-associated characteristics of E. coli causing acute prostatitis. Therefore, we completed a comprehensive microbiological and molecular investigation of a unique strain collection isolated from healthy young men. We also considered new data from an animal model system suggesting certain E. coli might prove important in the etiology of chronic prostatitis/chronic pelvic pain syndrome. Our human data suggest that E. coli needs multiple pathogenicity-associated traits to overcome anatomic and immune responses in healthy young men without urological risk factors. The phylogenetic background and accumulation of an exceptional repertoire of extraintestinal pathogenic virulence-associated genes indicate that these E. coli strains belong to a highly virulent subset of uropathogenic variants. In contrast, antibiotic resistance confers little added advantage to E. coli strains in these healthy outpatients. Our animal model data also suggest that certain pathogenic E. coli may be important in the etiology of chronic prostatitis/chronic pelvic pain syndrome through mechanisms that are dependent on the host genetic background and the virulence of the bacterial strain.

  12. Polymicrobial airway bacterial communities in adult bronchiectasis patients

    PubMed Central

    2014-01-01

    Background Chronic airway infection contributes to the underlying pathogenesis of non-cystic fibrosis bronchiectasis (NCFBr). In contrast to other chronic airway infections, associated with COPD and CF bronchiectasis, where polymicrobial communities have been implicated in lung damage due to the vicious circle of recurrent bacterial infections and inflammation, there is sparse information on the composition of bacterial communities in NCFBr. Seventy consecutive patients were recruited from an outpatient adult NCFBr clinic. Bacterial communities in sputum samples were analysed by culture and pyrosequencing approaches. Bacterial sequences were analysed using partial least square discrimination analyses to investigate trends in community composition and identify those taxa that contribute most to community variation. Results The lower airway in NCFBr is dominated by three bacterial taxa Pasteurellaceae, Streptococcaceae and Pseudomonadaceae. Moreover, the bacterial community is much more diverse than indicated by culture and contains significant numbers of other genera including anaerobic Prevotellaceae, Veillonellaceae and Actinomycetaceae. We found particular taxa are correlated with different clinical states, 27 taxa were associated with acute exacerbations, whereas 11 taxa correlated with stable clinical states. We were unable to demonstrate a significant effect of antibiotic therapy, gender, or lung function on the diversity of the bacterial community. However, presence of clinically significant culturable taxa; particularly Pseudomonas aeruginosa and Haemophilus influenzae correlated with a significant change in the diversity of the bacterial community in the lung. Conclusions We have demonstrated that acute exacerbations, the frequency of exacerbation and episodes of clinical stability are correlated, in some patients, with a significantly different bacterial community structure, that are associated with a presence of particular taxa in the NCFBr lung. Moreover

  13. Molecular Mechanisms of Bacterial Pathogenicity

    NASA Astrophysics Data System (ADS)

    Fuchs, Thilo Martin

    Cautious optimism has arisen over recent decades with respect to the long struggle against bacteria, viruses, and parasites. This has been offset, however, by a fatal complacency stemming from previous successes such as the development of antimicrobial drugs, the eradication of smallpox, and global immunization programs. Infectious diseases nevertheless remain the world's leading cause of death, killing at least 17 million persons annually [61]. Diarrheal diseases caused by Vibrio cholerae or Shigella dysenteriae kill about 3 million persons every year, most of them young children: Another 4 million die of tuberculosis or tetanus. Outbreaks of diphtheria in Eastern Europe threatens the population with a disease that had previously seemed to be overcome. Efforts to control infectious diseases more comprehensively are undermined not only by socioeconomic conditions but also by the nature of the pathogenic organisms itself; some isolates of Staphylococcus aureus and Enterobacter have become so resistant to drugs by horizontal gene transfer that they are almost untreatable. In addition, the mechanism of genetic variability helps pathogens to evade the human immune system, thus compromising the development of powerful vaccines. Therefore detailed knowledge of the molecular mechanisms of microbial pathogenicity is absolutely necessary to develop new strategies against infectious diseases and thus to lower their impact on human health and social development.

  14. Specific detection of common pathogens of acute bacterial meningitis using an internally controlled tetraplex-PCR assay.

    PubMed

    Farahani, Hamidreza; Ghaznavi-Rad, Ehsanollah; Mondanizadeh, Mahdieh; MirabSamiee, Siamak; Khansarinejad, Behzad

    2016-08-01

    Accurate and timely diagnosis of acute bacterial meningitis is critical for antimicrobial treatment of patients. Although PCR-based methods have been widely used for the diagnosis of acute meningitis caused by bacterial pathogens, the main disadvantage of these methods is their high cost. This disadvantage has hampered the widespread use of molecular assays in many developing countries. The application of multiplex assays and "in-house" protocols are two main approaches that can reduce the overall cost of a molecular test. In the present study, an internally controlled tetraplex-PCR was developed and validated for the specific detection of Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae in cerebrospinal fluid (CSF) samples. The analysis of a panel of other human pathogens showed no cross-reactivity in the assay. The analytical sensitivity of the in-house assay was 792.3 copies/ml, when all three bacteria were presentin the specimens. This value was calculated as 444.5, 283.7, 127.8 copies/ml when only S. pneumoniae, N. meningitidis and H. influenzae, respectively, were present. To demonstrate the diagnostic performance of the assay, a total of 150 archival CSF samples were tested and compared with a commercial multiplex real-time PCR kit. A diagnostic sensitivity of 92.8% and a specificity of 95.1% were determined for the present tetraplex-PCR assay. The results indicate that the established method is sensitive, specific and cost-effective, and can be used particularly in situations where the high cost of commercial kits prevents the use of molecular methods for the diagnosis of bacterial meningitis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Practical benefits of knowing the enemy: Modern molecular tools for diagnosing the etiology of bacterial diseases and understanding the taxonomy and diversity of plant pathogenic bacteria

    USDA-ARS?s Scientific Manuscript database

    Knowing the identity of bacterial plant pathogens is essential to strategic and sustainable disease management. However, such identifications are linked to bacterial taxonomy, a complicated and changing discipline that depends on methods and information that often are not used by those who are diagn...

  16. Abundances and profiles of antibiotic resistance genes as well as co-occurrences with human bacterial pathogens in ship ballast tank sediments from a shipyard in Jiangsu Province, China.

    PubMed

    Lv, Baoyi; Cui, Yuxue; Tian, Wen; Li, Jing; Xie, Bing; Yin, Fang

    2018-08-15

    Ship ballasting operations may transfer harmful aquatic organisms across global ocean. This study aims to reveal the occurrences and abundances of antibiotic resistance genes (ARGs) and human bacterial pathogens (HBPs) in ballast tank sediments. Nine samples were collected and respectively analyzed by real-time quantitative PCR and high-throughput sequencing technologies. Ten ARGs (aadA1, blaCTX-M, blaTEM, ermB, mefA, strB, sul1, sul2, tetM, and tetQ) and the Class-I integron gene (intI1) were highly prevalent (10 5 -10 9 gene copies/g) in ballast tank sediments. The sul1 was the most abundant ARG with the concentration of 10 8 -10 9 copies/g and intI1 was much more abundant than the ARGs in ballast tank sediments. The strong positive correlations between intI1 and ARGs (blaCTX-M, sul1, sul2 and tetM) indicated the potential spread of ARGs via horizontal gene transfer. In ballast tank sediments, 44 bacterial species were identified as HBPs and accounted for 0.13-21.46% of the total bacterial population although the three indicator pathogenic microbes (Vibrio cholerae, Escherichia coli, and Enterococci) proposed by the International Maritime Organization were not detected. Pseudomonas pseudoalcaligenes, Enterococcus hirae, Shigella sonnei and Bacillus anthracis were the dominant pathogens in ballast tank sediments. Zn and P in sediments had positive effects on the ARGs. Network analysis results indicated that sul1 and sul2 genes existed in several bacterial pathogens. Ballast tank sediments could be regarded as a carrier for the migration of ARGs. It is important to manage ballast tank sediments reasonably in order to prevent the dissemination of ARGs and bacterial pathogens. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. In Vitro Activity of Delafloxacin against Contemporary Bacterial Pathogens from the United States and Europe, 2014

    PubMed Central

    Pfaller, M. A.; Sader, H. S.; Rhomberg, P. R.

    2017-01-01

    ABSTRACT The in vitro activities of delafloxacin and comparator antimicrobial agents against 6,485 bacterial isolates collected from medical centers in Europe and the United States in 2014 were tested. Delafloxacin was the most potent agent tested against methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-resistant S. aureus, Streptococcus pneumoniae, viridans group streptococci, and beta-hemolytic streptococci and had activity similar to that of ciprofloxacin and levofloxacin against certain members of the Enterobacteriaceae. Overall, the broadest coverage of the tested pathogens (Gram-positive cocci and Gram-negative bacilli) was observed with meropenem and tigecycline in both Europe and the United States. Delafloxacin was shown to be active against organisms that may be encountered in acute bacterial skin and skin structure infections, respiratory infections, and urinary tract infections. PMID:28167542

  18. In Vitro Activity of Delafloxacin against Contemporary Bacterial Pathogens from the United States and Europe, 2014.

    PubMed

    Pfaller, M A; Sader, H S; Rhomberg, P R; Flamm, R K

    2017-04-01

    The in vitro activities of delafloxacin and comparator antimicrobial agents against 6,485 bacterial isolates collected from medical centers in Europe and the United States in 2014 were tested. Delafloxacin was the most potent agent tested against methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-resistant S. aureus , Streptococcus pneumoniae , viridans group streptococci, and beta-hemolytic streptococci and had activity similar to that of ciprofloxacin and levofloxacin against certain members of the Enterobacteriaceae Overall, the broadest coverage of the tested pathogens (Gram-positive cocci and Gram-negative bacilli) was observed with meropenem and tigecycline in both Europe and the United States. Delafloxacin was shown to be active against organisms that may be encountered in acute bacterial skin and skin structure infections, respiratory infections, and urinary tract infections. Copyright © 2017 Pfaller et al.

  19. Acute bacterial and viral meningitis.

    PubMed

    Bartt, Russell

    2012-12-01

    Most cases of acute meningitis are infectious and result from a potentially wide range of bacterial and viral pathogens. The organized approach to the patient with suspected meningitis enables the prompt administration of antibiotics, possibly corticosteroids, and diagnostic testing with neuroimaging and spinal fluid analysis. Acute meningitis is infectious in most cases and caused by a potentially wide range of bacterial and viral pathogens. Shifts in the epidemiology of bacterial pathogens have been influenced by changes in vaccines and their implementation. Seasonal and environmental changes influence the likely viral and rickettsial pathogens. The organized approach to the patient with suspected meningitis enables the prompt administration of antibiotics, possibly corticosteroids, and diagnostic testing with neuroimaging and spinal fluid analysis. Pertinent testing and treatment can vary with the clinical presentation, season, and possible exposures. This article reviews the epidemiology, clinical presentation, diagnosis, and treatment of acute meningitis.

  20. Molecular survey of neglected bacterial pathogens reveals an abundant diversity of species and genotypes in ticks collected from animal hosts across Romania.

    PubMed

    Andersson, Martin O; Tolf, Conny; Tamba, Paula; Stefanache, Mircea; Radbea, Gabriel; Frangoulidis, Dimitrios; Tomaso, Herbert; Waldenström, Jonas; Dobler, Gerhard; Chitimia-Dobler, Lidia

    2018-03-20

    Ticks are transmitting a wide range of bacterial pathogens that cause substantial morbidity and mortality in domestic animals. The full pathogen burden transmitted by tick vectors is incompletely studied in many geographical areas, and extensive studies are required to fully understand the diversity and distribution of pathogens transmitted by ticks. We sampled 824 ticks of 11 species collected in 19 counties in Romania. Ticks were collected mainly from dogs, but also from other domestic and wild animals, and were subjected to molecular screening for pathogens. Rickettsia spp. was the most commonly detected pathogen, occurring in 10.6% (87/824) of ticks. Several species were detected: Rickettsia helvetica, R. raoultii, R. massiliae, R. monacensis, R. slovaca and R. aeschlimannii. A single occurrence of the zoonotic bacterium Bartonella vinsonii berkhoffii was detected in a tick collected from a dog. Anaplasma phagocytophilum occurred in four samples, and sequences similar to Anaplasma marginale/ovis were abundant in ticks from ruminants. In addition, molecular screening showed that ticks from dogs were carrying an Ehrlichia species identical to the HF strain as well as the enigmatic zoonotic pathogen "Candidatus Neoehrlichia mikurensis". An organism similar to E. chaffeensis or E. muris was detected in an Ixodes ricinus collected from a fox. We describe an abundant diversity of bacterial tick-borne pathogens in ticks collected from animal hosts in Romania, both on the level of species and genotypes/strains within these species. Several findings were novel for Romania, including Bartonella vinsonii subsp. berkhoffii that causes bacteremia and endocarditis in dogs. "Candidatus Neoehrlichia mikurensis" was detected in a tick collected from a dog. Previously, a single case of infection in a dog was diagnosed in Germany. The results warrant further studies on the consequences of tick-borne pathogens in domestic animals in Romania.

  1. Comprehensive analysis of immune, extracellular matrices and pathogens profile in lung granulomatosis of unexplained etiology.

    PubMed

    da Costa Souza, Paola; Dondo, Patrícia Suemi; Souza, Gabriela; Lopes, Deborah; Moscardi, Marcel; de Miranda Martinho, Vinicius; de Mattos Lourenço, Rodolfo Daniel; Prieto, Tabatha; Balancin, Marcelo Luiz; Assato, Aline Kawassaki; Teodoro, Walcy Rosolia; Rodrigues, Silvia; Lima, Mariana; Castellano, Maria Vera; Coletta, Ester; Parra, Edwin Roger; Capelozzi, Vera Luiza

    2018-05-01

    This study analyzed the type 1 and type 2T helper (Th1/Th2) cytokines (including interleukins), immune cellular, matrix profile, and pathogens in granulomas with unexplained etiology compared to those with infectious and noninfectious etiology. Surgical lung biopsies from 108 patients were retrospectively reviewed. Histochemistry, immunohistochemistry, immunofluorescence, morphometry and polymerase chain reaction were used, respectively, to evaluate total collagen and elastin fibers, collagen I and III, immune cells, cytokines, matrix metalloproteinase-9, myofibroblasts, and multiple usual and unusual pathogens. No relevant polymerase chain reaction expression was found in unexplained granulomas. A significant difference was found between the absolute number of eosinophils, macrophages, and lymphocytes within granulomas compared to uninvolved lung tissue. Granulomas with unexplained etiology (UEG) presented increased number of eosinophils and high expression of interleukins (ILs) IL-4/IL-5 and transforming growth factor-β. In sarcoidosis, CD4/CD8 cell number was significantly higher within and outside granulomas, respectively; the opposite was detected in hypersensitivity pneumonitis. Again, a significant difference was found between the high number of myofibroblasts and matrix metalloproteinase-9 in UEG, hypersensitivity pneumonitis, and sarcoidosis compared to granulomas of tuberculosis. Granulomas of paracoccidioisis exhibited increased type I collagen and elastic fibers. Th1 immune cellular profile was similar among granulomas with unexplained, infectious, and noninfectious etiology. In contrast, modulation of Th2 and matrix remodeling was associated with more fibroelastogenesis and scarring of lung tissue in UEG compared to infectious and noninfectious. We concluded that IL-4/IL-5 and transforming growth factor-β might be used as surrogate markers of early fibrosis, reducing the need for genotyping, and promise therapeutic target in unexplained granulomas

  2. Trimeric autotransporter adhesins contribute to Actinobacillus pleuropneumoniae pathogenicity in mice and regulate bacterial gene expression during interactions between bacteria and porcine primary alveolar macrophages.

    PubMed

    Qin, Wanhai; Wang, Lei; Zhai, Ruidong; Ma, Qiuyue; Liu, Jianfang; Bao, Chuntong; Zhang, Hu; Sun, Changjiang; Feng, Xin; Gu, Jingmin; Du, Chongtao; Han, Wenyu; Langford, P R; Lei, Liancheng

    2016-01-01

    Actinobacillus pleuropneumoniae is an important pathogen that causes respiratory disease in pigs. Trimeric autotransporter adhesin (TAA) is a recently discovered bacterial virulence factor that mediates bacterial adhesion and colonization. Two TAA coding genes have been found in the genome of A. pleuropneumoniae strain 5b L20, but whether they contribute to bacterial pathogenicity is unclear. In this study, we used homologous recombination to construct a double-gene deletion mutant, ΔTAA, in which both TAA coding genes were deleted and used it in in vivo and in vitro studies to confirm that TAAs participate in bacterial auto-aggregation, biofilm formation, cell adhesion and virulence in mice. A microarray analysis was used to determine whether TAAs can regulate other A. pleuropneumoniae genes during interactions with porcine primary alveolar macrophages. The results showed that deletion of both TAA coding genes up-regulated 36 genes, including ene1514, hofB and tbpB2, and simultaneously down-regulated 36 genes, including lgt, murF and ftsY. These data illustrate that TAAs help to maintain full bacterial virulence both directly, through their bioactivity, and indirectly by regulating the bacterial type II and IV secretion systems and regulating the synthesis or secretion of virulence factors. This study not only enhances our understanding of the role of TAAs but also has significance for those studying A. pleuropneumoniae pathogenesis.

  3. Surveillance bronchoscopy in children during the first year after lung transplantation: Is it worth it?

    PubMed

    Benden, C; Harpur-Sinclair, O; Ranasinghe, A S; Hartley, J C; Elliott, M J; Aurora, P

    2007-01-01

    Since January 2002, routine surveillance bronchoscopy with bronchoalveolar lavage (BAL) and transbronchial biopsy has been performed in all paediatric recipients of lung and heart-lung transplants at the Great Ormond Street Hospital for Children, London, UK, using a newly revised treatment protocol. To report the prevalence of rejection and bacterial, viral or fungal pathogens in asymptomatic children and compare this with the prevalence in children with symptoms. The study population included all paediatric patients undergoing single lung transplantation (SLTx), double lung transplantation (DLTx) or heart-lung transplantation between January 2002 and December 2005. Surveillance bronchoscopies were performed at 1 week, and 1, 3, 6 and 12 months after transplant. Bronchoscopies were classified according to whether subjects had symptoms, defined as the presence of cough, sputum production, dyspnoea, malaise, decrease in lung function or chest radiograph changes. Results of biopsies and BAL were collected, and procedural complications recorded. 23 lung-transplant operations were performed, 12 DLTx, 10 heart-lung transplants and 1 SLTx (15 female patients). The median (range) age of patients was 14.0 (4.9-17.3) years. 17 patients had cystic fibrosis. 95 surveillance bronchoscopies were performed. Rejection (> or =A2) was diagnosed in 4% of biopsies of asymptomatic recipients, and in 12% of biopsies of recipients with symptoms. Potential pathogens were detected in 29% of asymptomatic patients and in 69% of patients with symptoms. The overall diagnostic yield was 35% for asymptomatic children, and 85% for children with symptoms (p < 0.001). The complication rate for bronchoscopies was 3.2%. Many children have silent rejection or subclinical infection in the first year after lung transplantation. Routine surveillance bronchoscopy allows detection and targeted treatment of these complications.

  4. Bacteriophage-Based Pathogen Detection

    NASA Astrophysics Data System (ADS)

    Ripp, Steven

    Considered the most abundant organism on Earth, at a population approaching 1031, bacteriophage, or phage for short, mediate interactions with myriad bacterial hosts that has for decades been exploited in phage typing schemes for signature identification of clinical, food-borne, and water-borne pathogens. With over 5,000 phage being morphologically characterized and grouped as to susceptible host, there exists an enormous cache of bacterial-specific sensors that has more recently been incorporated into novel bio-recognition assays with heightened sensitivity, specificity, and speed. These assays take many forms, ranging from straightforward visualization of labeled phage as they attach to their specific bacterial hosts to reporter phage that genetically deposit trackable signals within their bacterial hosts to the detection of progeny phage or other uniquely identifiable elements released from infected host cells. A comprehensive review of these and other phage-based detection assays, as directed towards the detection and monitoring of bacterial pathogens, will be provided in this chapter.

  5. Occurrence and Persistence of Bacterial Pathogens and Indicator Organisms in Beach Sand along the California Coast

    PubMed Central

    Yamahara, Kevan M.; Sassoubre, Lauren M.; Goodwin, Kelly D.

    2012-01-01

    This report documents the presence of fecal indicators and bacterial pathogens in sand at 53 California marine beaches using both culture-dependent and -independent (PCR and quantitative PCR [QPCR]) methods. Fecal indicator bacteria were widespread in California beach sand, with Escherichia coli and enterococci detected at 68% and 94% of the beaches surveyed, respectively. Somatic coliphages and a Bacteroidales human-specific fecal marker were detected at 43% and 13% of the beaches, respectively. Dry sand samples from almost 30% of the beaches contained at least one of the following pathogens: Salmonella spp., Campylobacter spp., Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus (MRSA), which were detected at 15%, 13%, 14%, and 3% of tested beaches, respectively. Fecal indicators and pathogens were poorly correlated to one another and to land cover. Sands were dry at the time of collection, and those with relatively high moisture tended to have higher concentrations or a more frequent occurrence of both indicators and pathogens. Using culture-dependent assays, fecal indicators decayed faster than pathogens in microcosm experiments using unaltered beach sand seeded with sewage and assessed by culture-dependent assays. The following order of persistence was observed (listed from most to least persistent): Campylobacter > Salmonella > somatic coliphages > enterococci > E. coli > F+ phages. In contrast, pathogens decayed faster than fecal indicators in culture-independent assays: enterococci > Bacteroidales human-specific marker > Salmonella > Campylobacter. Microcosm experiments demonstrated that both indicators and pathogens were mobilized by wetting with seawater. Decay rates measured by QPCR were lower than those measured with culture-dependent methods. Enterococcal persistence and possible growth were observed for wetted microcosms relative to unwetted controls. PMID:22247142

  6. Bacterial disease management: challenges, experience, innovation and future prospects: Challenges in Bacterial Molecular Plant Pathology.

    PubMed

    Sundin, George W; Castiblanco, Luisa F; Yuan, Xiaochen; Zeng, Quan; Yang, Ching-Hong

    2016-12-01

    Plant diseases caused by bacterial pathogens place major constraints on crop production and cause significant annual losses on a global scale. The attainment of consistent effective management of these diseases can be extremely difficult, and management potential is often affected by grower reliance on highly disease-susceptible cultivars because of consumer preferences, and by environmental conditions favouring pathogen development. New and emerging bacterial disease problems (e.g. zebra chip of potato) and established problems in new geographical regions (e.g. bacterial canker of kiwifruit in New Zealand) grab the headlines, but the list of bacterial disease problems with few effective management options is long. The ever-increasing global human population requires the continued stable production of a safe food supply with greater yields because of the shrinking areas of arable land. One major facet in the maintenance of the sustainability of crop production systems with predictable yields involves the identification and deployment of sustainable disease management solutions for bacterial diseases. In addition, the identification of novel management tactics has also come to the fore because of the increasing evolution of resistance to existing bactericides. A number of central research foci, involving basic research to identify critical pathogen targets for control, novel methodologies and methods of delivery, are emerging that will provide a strong basis for bacterial disease management into the future. Near-term solutions are desperately needed. Are there replacement materials for existing bactericides that can provide effective disease management under field conditions? Experience should inform the future. With prior knowledge of bactericide resistance issues evolving in pathogens, how will this affect the deployment of newer compounds and biological controls? Knowledge is critical. A comprehensive understanding of bacterial pathosystems is required to not

  7. Localization of adhesins on the surface of a pathogenic bacterial envelope through atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Arnal, L.; Longo, G.; Stupar, P.; Castez, M. F.; Cattelan, N.; Salvarezza, R. C.; Yantorno, O. M.; Kasas, S.; Vela, M. E.

    2015-10-01

    Bacterial adhesion is the first and a significant step in establishing infection. This adhesion normally occurs in the presence of flow of fluids. Therefore, bacterial adhesins must be able to provide high strength interactions with their target surface in order to maintain the adhered bacteria under hydromechanical stressing conditions. In the case of B. pertussis, a Gram-negative bacterium responsible for pertussis, a highly contagious human respiratory tract infection, an important protein participating in the adhesion process is a 220 kDa adhesin named filamentous haemagglutinin (FHA), an outer membrane and also secreted protein that contains recognition domains to adhere to ciliated respiratory epithelial cells and macrophages. In this work, we obtained information on the cell-surface localization and distribution of the B. pertussis adhesin FHA using an antibody-functionalized AFM tip. Through the analysis of specific molecular recognition events we built a map of the spatial distribution of the adhesin which revealed a non-homogeneous pattern. Moreover, our experiments showed a force induced reorganization of the adhesin on the surface of the cells, which could explain a reinforced adhesive response under external forces. This single-molecule information contributes to the understanding of basic molecular mechanisms used by bacterial pathogens to cause infectious disease and to gain insights into the structural features by which adhesins can act as force sensors under mechanical shear conditions.Bacterial adhesion is the first and a significant step in establishing infection. This adhesion normally occurs in the presence of flow of fluids. Therefore, bacterial adhesins must be able to provide high strength interactions with their target surface in order to maintain the adhered bacteria under hydromechanical stressing conditions. In the case of B. pertussis, a Gram-negative bacterium responsible for pertussis, a highly contagious human respiratory tract

  8. Vaccines for viral and bacterial pathogens causing acute gastroenteritis: Part II: Vaccines for Shigella, Salmonella, enterotoxigenic E. coli (ETEC) enterohemorragic E. coli (EHEC) and Campylobacter jejuni

    PubMed Central

    O’Ryan, Miguel; Vidal, Roberto; del Canto, Felipe; Carlos Salazar, Juan; Montero, David

    2015-01-01

    In Part II we discuss the following bacterial pathogens: Shigella, Salmonella (non-typhoidal), diarrheogenic E. coli (enterotoxigenic and enterohemorragic) and Campylobacter jejuni. In contrast to the enteric viruses and Vibrio cholerae discussed in Part I of this series, for the bacterial pathogens described here there is only one licensed vaccine, developed primarily for Vibrio cholerae and which provides moderate protection against enterotoxigenic E. coli (ETEC) (Dukoral®), as well as a few additional candidates in advanced stages of development for ETEC and one candidate for Shigella spp. Numerous vaccine candidates in earlier stages of development are discussed. PMID:25715096

  9. Future challenges in the elimination of bacterial meningitis.

    PubMed

    Bottomley, Matthew J; Serruto, Davide; Sáfadi, Marco Aurélio Palazzi; Klugman, Keith P

    2012-05-30

    Despite the widespread implementation of several effective vaccines over the past few decades, bacterial meningitis caused by Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis and Group B Streptococcus (GBS) still results in unacceptably high levels of human mortality and morbidity. A residual disease burden due to bacterial meningitis is also apparent due to a number of persistent or emerging pathogens, including Mycobacterium tuberculosis, Escherichia coli, Staphylococcus aureus, Salmonella spp. and Streptococcus suis. Here, we review the current status of bacterial meningitis caused by these pathogens, highlighting how past and present vaccination programs have attempted to counter these pathogens. We discuss how improved pathogen surveillance, implementation of current vaccines, and development of novel vaccines may be expected to further reduce bacterial meningitis and related diseases in the future. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. An optimized, fast-to-perform mouse lung infection model with the human pathogen Chlamydia trachomatis for in vivo screening of antibiotics, vaccine candidates and modified host-pathogen interactions.

    PubMed

    Dutow, Pavel; Wask, Lea; Bothe, Miriam; Fehlhaber, Beate; Laudeley, Robert; Rheinheimer, Claudia; Yang, Zhangsheng; Zhong, Guangming; Glage, Silke; Klos, Andreas

    2016-03-01

    Chlamydia trachomatis causes sexually transmitted diseases with infertility, pelvic inflammatory disease and neonatal pneumonia as complications. The duration of urogenital mouse models with the strict mouse pathogen C. muridarum addressing vaginal shedding, pathological changes of the upper genital tract or infertility is rather long. Moreover, vaginal C. trachomatis application usually does not lead to the complications feared in women. A fast-to-perform mouse model is urgently needed to analyze new antibiotics, vaccine candidates, immune responses (in gene knockout animals) or mutants of C. trachomatis. To complement the valuable urogenital model with a much faster and quantifiable screening method, we established an optimized lung infection model for the human intracellular bacterium C. trachomatis serovar D (and L2) in immunocompetent C57BL/6J mice. We demonstrated its usefulness by sensitive determination of antibiotic effects characterizing advantages and limitations achievable by early or delayed short tetracycline treatment and single-dose azithromycin application. Moreover, we achieved partial acquired protection in reinfection with serovar D indicating usability for vaccine studies, and showed a different course of disease in absence of complement factor C3. Sensitive monitoring parameters were survival rate, body weight, clinical score, bacterial load, histological score, the granulocyte marker myeloperoxidase, IFN-γ, TNF-α, MCP-1 and IL-6. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Recurrent bacterial meningitis by three different pathogens in an isolated asplenic child.

    PubMed

    Uchida, Yoshiko; Matsubara, Kousaku; Wada, Tamaki; Oishi, Kazunori; Morio, Tomohiro; Takada, Hidetoshi; Iwata, Aya; Yura, Kazuo; Kamimura, Katsunori; Nigami, Hiroyuki; Fukaya, Takashi

    2012-08-01

    Isolated congenital asplenia (ICA) is a rare condition at risk for overwhelming infection. When complicated by invasive infection, the mortality remains high, at greater than 60%. We describe a girl with ICA who developed recurrent meningitis by three different pathogens. The first, meningitis by Escherichia coli, occurred 4 days after premature birth. The other two pathogens were serotype 6B Streptococcus pneumoniae and Haemophilus influenzae type b (Hib), at 18 and 25 months of age, respectively. The patient was successfully treated with prompt antimicrobial therapy in all episodes. Serum anti-polyribosylribitol phosphate (PRP) and anti-6B-type pneumococcal antibodies were below the levels for protective activity after natural infections. Although anti-PRP antibody was significantly increased after Hib vaccination, two (6B and 19F) of seven serotype-specific pneumococcal antibodies were not elevated to protective levels after the second 7-valent pneumococcal conjugate vaccine (PCV7). We, therefore, added a third PCV7. To our knowledge, this is the first neonatal ICA patient with invasive infection and the first case of bacterial meningitis occurring three times. Our findings indicate that monitoring of immune responses after natural infections and vaccinations, and reevaluations of vaccine schedule, are important for ICA patients to prevent subsequent invasive infections.

  12. Effect of dissolved oxygen on two bacterial pathogens examined using ATR-FTIR spectroscopy, microelectrophoresis, and potentiometric titration.

    PubMed

    Castro, Felipe D; Sedman, Jacqueline; Ismail, Ashraf A; Asadishad, Bahareh; Tufenkji, Nathalie

    2010-06-01

    The effects of dissolved oxygen tension during bacterial growth and acclimation on the cell surface properties and biochemical composition of the bacterial pathogens Escherichia coli O157:H7 and Yersinia enterocolitica are characterized. Three experimental techniques are used in an effort to understand the influence of bacterial growth and acclimation conditions on cell surface charge and the composition of the bacterial cell: (i) electrophoretic mobility measurements; (ii) potentiometric titration; and (iii) ATR-FTIR spectroscopy. Potentiometric titration data analyzed using chemical speciation software are related to measured electrophoretic mobilities at the pH of interest. Titration of bacterial cells is used to identify the major proton-active functional groups and the overall concentration of these cell surface ligands at the cell membrane. Analysis of titration data shows notable differences between strains and conditions, confirming the appropriateness of this tool for an overall charge characterization. ATR-FTIR spectroscopy of whole cells is used to further characterize the bacterial biochemical composition and macromolecular structures that might be involved in the development of the net surficial charge of the organisms examined. The evaluation of the integrated intensities of HPO(2)(-) and carbohydrate absorption bands in the IR spectra reveals clear differences between growth protocols. Taken together, the three techniques seem to indicate that the dissolved oxygen tension during cell growth or acclimation can noticeably influence the expression of cell surface molecules and the measurable cell surface charge, though in a strain-dependent fashion.

  13. Neutrophilic NLRP3 inflammasome-dependent IL-1β secretion regulates the γδT17 cell response in respiratory bacterial infections.

    PubMed

    Hassane, M; Demon, D; Soulard, D; Fontaine, J; Keller, L E; Patin, E C; Porte, R; Prinz, I; Ryffel, B; Kadioglu, A; Veening, J-W; Sirard, J-C; Faveeuw, C; Lamkanfi, M; Trottein, F; Paget, C

    2017-07-01

    Traditionally regarded as simple foot soldiers of the innate immune response limited to the eradication of pathogens, neutrophils recently emerged as more complex cells endowed with a set of immunoregulatory functions. Using a model of invasive pneumococcal disease, we highlighted an unexpected key role for neutrophils as accessory cells in innate interleukin (IL)-17A production by lung resident Vγ6Vδ1 + T cells via nucleotide-binding oligomerization domain receptor, pyrin-containing 3 (NLRP3) inflammasome-dependent IL-1β secretion. In vivo activation of the NLRP3 inflammasome in neutrophils required both host-derived and bacterial-derived signals. Elaborately, it relies on (i) alveolar macrophage-secreted TNF-α for priming and (ii) subsequent exposure to bacterial pneumolysin for activation. Interestingly, this mechanism can be translated to human neutrophils. Our work revealed the cellular and molecular dynamic events leading to γδT17 cell activation, and highlighted for the first time the existence of a fully functional NLRP3 inflammasome in lung neutrophils. This immune axis thus regulates the development of a protective host response to respiratory bacterial infections.

  14. [Management of Lung Abscess].

    PubMed

    Marra, A; Hillejan, L; Ukena, D

    2015-10-01

    A lung abscess is an infectious pulmonary disease characterised by the presence of a pus-filled cavity within the lung parenchyma. The content of an abscess often drains into the airways spontaneously, leading to an air-fluid level visible on chest X-rays and CT scans. Primary lung abscesses occur in patients who are prone to aspiration or in otherwise healthy individuals; secondary lung abscesses typically develop in association with a stenosing lung neoplasm or a systemic disease that compromises immune defences, such as AIDS, or after organ transplantation. The organisms found in abscesses caused by aspiration pneumonia reflect the resident flora of the oropharynx. The most commonly isolated organisms are anaerobic bacteria (Prevotella, Bacteroides, Fusobacterium, Peptostreptococcus) or streptococci; in alcoholics with poor oral hygiene, the spectrum of pathogens includes Staphylococcus aureus, Streptococcus pyogenes and Actinomyces. Chest radiography and computed tomography (CT) are mandatory procedures in the diagnostic algorithm. Standard treatment for a lung abscess consists of systemic antibiotic therapy, which is based on the anticipated or proven bacterial spectrum of the abscess. In most cases, primary abscesses are successfully treated by calculated empiric antibiotic therapy, with an estimated lethality rate of less than 10 %. Secondary abscesses, despite targeted antimicrobial therapy, are associated with a poor prognosis, which depends on the patient's general condition and underlying disease; lethality is as high as 75 %. Negative prognostic factors are old age, severe comorbidities, immunosuppression, bronchial obstruction, and neoplasms. Surgical intervention due to failure of conservative treatment is required in only 10 % of patients, with a success rate of up to 90 % and postoperative mortality rates ranging between 0 and 33 %. Treatment success after endoscopic or percutaneous drainage is achieved in 73 to 100 % of cases, with an

  15. Virulence Factor Targeting of the Bacterial Pathogen Staphylococcus aureus for Vaccine and Therapeutics

    PubMed Central

    Kane, Trevor L.; Carothers, Katelyn E.; Lee, Shaun W.

    2018-01-01

    Background Staphylococcus aureus is a major bacterial pathogen capable of causing a range of infections in humans from gastrointestinal disease, skin and soft tissue infections, to severe outcomes such as sepsis. Staphylococcal infections in humans can be frequent and recurring, with treatments becoming less effective due to the growing persistence of antibiotic resistant S. aureus strains. Due to the prevalence of antibiotic resistance, and the current limitations on antibiotic development, an active and highly promising avenue of research has been to develop strategies to specifically inhibit the activity of virulence factors produced S. aureus as an alternative means to treat disease. Objective In this review we specifically highlight several major virulence factors produced by S. aureus for which recent advances in antivirulence approaches may hold promise as an alternative means to treating diseases caused by this pathogen. Strategies to inhibit virulence factors can range from small molecule inhibitors, to antibodies, to mutant and toxoid forms of the virulence proteins. Conclusion The major prevalence of antibiotic resistant strains of S. aureus combined with the lack of new antibiotic discoveries highlight the need for vigorous research into alternative strategies to combat diseases caused by this highly successful pathogen. Current efforts to develop specific antivirulence strategies, vaccine approaches, and alternative therapies for treating severe disease caused by S. aureus have the potential to stem the tide against the limitations that we face in the post-antibiotic era. PMID:27894236

  16. Host-pathogen interactions and bacterial survival under phage fluctuations

    NASA Astrophysics Data System (ADS)

    Skanata, Antun; Kussell, Edo

    Environmental changes can have profound effects on ecosystems, leading to drastic outcomes such as extinction and desertification. Quantifying, predicting, and ultimately preventing those transitions is a key problem in the field. Our previous work in microbial systems has shown that fluctuations in environments drive transitions to alternate evolutionary optima, which can be either smooth or abrupt. The long term growth rate, an analog of free energy for population dynamics, has been used to distinguish under what conditions those transitions will occur. Our framework, which uses the mean field approximation to compute the long term growth rate in fluctuating environments, is uniquely positioned to treat more complex dependencies that allow coexistence among species sharing resources or infected by common pathogens. Here we present a simple model of a bacterial community subjected to fluctuating phage infections that outlines the regimes where species diversity results in long-term stability. We identify prevalent, but often counter-intuitive, strategies that bacteria use to protect against infection, and find a new general principle in the evolution of phage resistance. Our results, which predict the transition regimes, have implications for a broad range of ecological models.

  17. Nucleic Acid-Based Detection and Identification of Bacterial and Fungal Plant Pathogens - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kingsley, Mark T.

    2001-03-13

    The threat to American interests from terrorists is not limited to attacks against humans. Terrorists might seek to inflict damage to the U.S. economy by attacking our agricultural sector. Infection of commodity crops by bacterial or fungal crop pathogens could adversely impact U.S. agriculture, either directly from damage to crops or indirectly from damage to our ability to export crops suspected of contamination. Recognizing a terrorist attack against U.S. agriculture, to be able to prosecute the terrorists, is among the responsibilities of the members of Hazardous Material Response Unit (HMRU) of the Federal Bureau of Investigation (FBI). Nucleic acid analysismore » of plant pathogen strains by the use of polymerase chain reaction (PCR) amplification techniques is a powerful method for determining the exact identity of pathogens, as well as their possible region of origin. This type of analysis, however, requires that PCR assays be developed specific to each particular pathogen strain, and analysis protocols developed that are specific to the particular instrument used for detection. The objectives of the work described here were threefold: 1) to assess the potential terrorist threat to U.S. agricultural crops, 2) to determine whether suitable assays exist to monitor that threat, and 3) where assays are needed for priority plant pathogen threats, to modify or develop those assays for use by specialists at the HMRU. The assessment of potential threat to U.S. commodity crops and the availability of assays for those threats were described in detail in the Technical Requirements Document (9) and will be summarized in this report. This report addresses development of specific assays identified in the Technical Requirements Document, and offers recommendations for future development to ensure that HMRU specialists will be prepared with the PCR assays they need to protect against the threat of economic terrorism.« less

  18. Nucleic Acid-Based Detection and Identification of Bacterial and Fungal Plant Pathogens - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kingsley, Mark T

    2001-03-13

    The threat to American interests from terrorists is not limited to attacks against humans. Terrorists might seek to inflict damage to the U.S. economy by attacking our agricultural sector. Infection of commodity crops by bacterial or fungal crop pathogens could adversely impact U.S. agriculture, either directly from damage to crops or indirectly from damage to our ability to export crops suspected of contamination. Recognizing a terrorist attack against U.S. agriculture, to be able to prosecute the terrorists, is among the responsibilities of the members of Hazardous Material Response Unit (HMRU) of the Federal Bureau of Investigation (FBI). Nucleic acid analysismore » of plant pathogen strains by the use of polymerase chain reaction (PCR) amplification techniques is a powerful method for determining the exact identity of pathogens, as well as their possible region of origin. This type of analysis, however, requires that PCR assays be developed specific to each particular pathogen strain, an d analysis protocols developed that are specific to the particular instrument used for detection. The objectives of the work described here were threefold: (1) to assess the potential terrorist threat to U.S. agricultural crops, (2) to determine whether suitable assays exist to monitor that threat, and (3) where assays are needed for priority plant pathogen threats, to modify or develop those assays for use by specialists at the HMRU. The assessment of potential threat to U.S. commodity crops and the availability of assays for those threats were described in detail in the Technical Requirements Document (9) and will be summarized in this report. This report addresses development of specific assays identified in the Technical Requirements Document, and offers recommendations for future development to ensure that HMRU specialists will be prepared with the PCR assays they need to protect against the threat of economic terrorism.« less

  19. Seasonality of acquisition of respiratory bacterial pathogens in young children with cystic fibrosis.

    PubMed

    Psoter, Kevin J; De Roos, Anneclaire J; Wakefield, Jon; Mayer, Jonathan D; Rosenfeld, Margaret

    2017-06-09

    Seasonal variations are often observed for respiratory tract infections; however, limited information is available regarding seasonal patterns of acquisition of common cystic fibrosis (CF)-related respiratory pathogens. We previously reported differential seasonal acquisition of Pseudomonas aeruginosa in young children with CF and no such variation for methicillin-susceptible Staphylococcus aureus acquisition. The purpose of this study was to describe and compare the seasonal incidence of acquisition of other respiratory bacterial pathogens in young children with CF. We conducted a retrospective study to describe and compare the seasonal incidence of methicillin-resistant Staphylococcus aureus (MRSA), Stenotrophomonas maltophilia, Achromobacter xylosoxidans, and Haemophilus influenzae acquisition in young CF patients residing in the U.S. using the Cystic Fibrosis Foundation National Patient Registry, 2003-2009. Log-linear overdispersed Poisson regression was used to evaluate seasonal acquisition of each of these pathogens. A total of 4552 children met inclusion criteria. During follow-up 910 (20%), 1161 (26%), 228 (5%), and 2148 (47%) children acquired MRSA, S. maltophilia, A. xylosoxidans and H. influenzae, respectively. Compared to winter season, MRSA was less frequently acquired in spring (Incidence Rate Ratio [IRR]: 0.79; 95% Confidence Interval [CI]: 0.65, 0.96) and summer (IRR: 0.69; 95% CI: 0.57, 0.84) seasons. Similarly, a lower rate of A. xylosoxidans acquisition was observed in spring (IRR: 0.59; 95% CI: 0.39, 0.89). For H. influenzae, summer (IRR: 0.88; 95% CI: 0.78, 0.99) and autumn (IRR: 0.78; 95% CI: 0.69, 0.88) seasons were associated with lower acquisition rates compared to winter. No seasonal variation was observed for S. maltophilia acquisition. Acquisition of CF-related respiratory pathogens displays seasonal variation in young children with CF, with the highest rate of acquisition for most pathogens occurring in the winter. Investigation of

  20. Cladophora (Chlorophyta) spp. Harbor Human Bacterial Pathogens in Nearshore Water of Lake Michigan†

    PubMed Central

    Ishii, Satoshi; Yan, Tao; Shively, Dawn A.; Byappanahalli, Muruleedhara N.; Whitman, Richard L.; Sadowsky, Michael J.

    2006-01-01

    Cladophora glomerata, a macrophytic green alga, is commonly found in the Great Lakes, and significant accumulations occur along shorelines during the summer months. Recently, Cladophora has been shown to harbor high densities of the fecal indicator bacteria Escherichia coli and enterococci. Cladophora may also harbor human pathogens; however, until now, no studies to address this question have been performed. In the present study, we determined whether attached Cladophora, obtained from the Lake Michigan and Burns Ditch (Little Calumet River, Indiana) sides of a breakwater during the summers of 2004 and 2005, harbored the bacterial pathogens Shiga toxin-producing Escherichia coli (STEC), Salmonella, Shigella, and Campylobacter. The presence of potential pathogens and numbers of organisms were determined by using cultural methods and by using conventional PCR, most-probable-number PCR (MPN-PCR), and quantitative PCR (QPCR) performed with genus- and toxin-specific primers and probes. While Shigella and STEC were detected in 100% and 25%, respectively, of the algal samples obtained near Burns Ditch in 2004, the same pathogens were not detected in samples collected in 2005. MPN-PCR and QPCR allowed enumeration of Salmonella in 40 to 80% of the ditch- and lakeside samples, respectively, and the densities were up to 1.6 × 103 cells per g Cladophora. Similarly, these PCR methods allowed enumeration of up to 5.4 × 102 Campylobacter cells/g Cladophora in 60 to 100% of lake- and ditchside samples. The Campylobacter densities were significantly higher (P < 0.05) in the lakeside Cladophora samples than in the ditchside Cladophora samples. DNA fingerprint analyses indicated that genotypically identical Salmonella isolates were associated with geographically and temporally distinct Cladophora samples. However, Campylobacter isolates were genetically diverse. Since animal hosts are thought to be the primary habitat for Campylobacter and Salmonella species, our results suggest

  1. Cladophora (Chlorophyta) spp. harbor human bacterial pathogens in nearshore water of Lake Michigan.

    PubMed

    Ishii, Satoshi; Yan, Tao; Shively, Dawn A; Byappanahalli, Muruleedhara N; Whitman, Richard L; Sadowsky, Michael J

    2006-07-01

    Cladophora glomerata, a macrophytic green alga, is commonly found in the Great Lakes, and significant accumulations occur along shorelines during the summer months. Recently, Cladophora has been shown to harbor high densities of the fecal indicator bacteria Escherichia coli and enterococci. Cladophora may also harbor human pathogens; however, until now, no studies to address this question have been performed. In the present study, we determined whether attached Cladophora, obtained from the Lake Michigan and Burns Ditch (Little Calumet River, Indiana) sides of a breakwater during the summers of 2004 and 2005, harbored the bacterial pathogens Shiga toxin-producing Escherichia coli (STEC), Salmonella, Shigella, and Campylobacter. The presence of potential pathogens and numbers of organisms were determined by using cultural methods and by using conventional PCR, most-probable-number PCR (MPN-PCR), and quantitative PCR (QPCR) performed with genus- and toxin-specific primers and probes. While Shigella and STEC were detected in 100% and 25%, respectively, of the algal samples obtained near Burns Ditch in 2004, the same pathogens were not detected in samples collected in 2005. MPN-PCR and QPCR allowed enumeration of Salmonella in 40 to 80% of the ditch- and lakeside samples, respectively, and the densities were up to 1.6 x 10(3) cells per g Cladophora. Similarly, these PCR methods allowed enumeration of up to 5.4 x 10(2) Campylobacter cells/g Cladophora in 60 to 100% of lake- and ditchside samples. The Campylobacter densities were significantly higher (P < 0.05) in the lakeside Cladophora samples than in the ditchside Cladophora samples. DNA fingerprint analyses indicated that genotypically identical Salmonella isolates were associated with geographically and temporally distinct Cladophora samples. However, Campylobacter isolates were genetically diverse. Since animal hosts are thought to be the primary habitat for Campylobacter and Salmonella species, our results suggest

  2. Detection of pathogens in Boidae and Pythonidae with and without respiratory disease.

    PubMed

    Schmidt, V; Marschang, R E; Abbas, M D; Ball, I; Szabo, I; Helmuth, R; Plenz, B; Spergser, J; Pees, M

    2013-03-02

    Respiratory diseases in boid snakes are common in captivity, but little information is available on their aetiology. This study was carried out to determine the occurrence of lung associated pathogens in boid snakes with and without respiratory signs and/or pneumonia. In total, 80 boid snakes of the families Boidae (n = 30) and Pythonidae (n = 50) from 48 private and zoo collections were included in this survey. Husbandry conditions were evaluated using a detailed questionnaire. All snakes were examined clinically and grouped into snakes with or without respiratory signs. Tracheal wash samples from all snakes were examined bacteriologically as well as virologically. All snakes were euthanased, and a complete pathological examination was performed. Respiratory signs and pneumonia were detected more often in pythons than in boas. An acute catarrhal pneumonia was diagnosed more often in snakes without respiratory signs than in snakes with respiratory signs, which revealed fibrinous and fibrous pneumonia. Poor husbandry conditions are an important trigger for the development of respiratory signs and pneumonia. Different bacterial pathogens were isolated in almost all snakes with pneumonia, with Salmonella species being the most common. Ferlavirus (formerly known as ophidian paramyxovirus)-RNA was detected only in pythons. Inclusion body disease was rarely seen in pythons but often in boas. Adenovirus and Mycoplasma were other pathogens that were diagnosed in single snakes with pneumonia. In living boid snakes with respiratory signs, tracheal wash samples were found to be a useful diagnostic tool for the detection of viral and bacterial pathogens.

  3. Bacterial meningitis - principles of antimicrobial treatment.

    PubMed

    Jawień, Miroslaw; Garlicki, Aleksander M

    2013-01-01

    Bacterial meningitis is associated with significant morbidity and mortality despite the availability of effective antimicrobial therapy. The management approach to patients with suspected or proven bacterial meningitis includes emergent cerebrospinal fluid analysis and initiation of appropriate antimicrobial and adjunctive therapies. The choice of empirical antimicrobial therapy is based on the patient's age and underlying disease status; once the infecting pathogen is isolated, antimicrobial therapy can be modified for optimal treatment. Successful treatment of bacterial meningitis requires the knowledge on epidemiology including prevalence of antimicrobial resistant pathogens, pathogenesis of meningitis, pharmacokinetics and pharmacodynamics of antimicrobial agents. The emergence of antibiotic-resistant bacterial strains in recent years has necessitated the development of new strategies for empiric antimicrobial therapy for bacterial meningitis.

  4. Nuclear factor 45 of tongue sole (Cynoglossus semilaevis): evidence for functional differentiation between two isoforms in immune defense against viral and bacterial pathogens.

    PubMed

    Chi, Heng; Hu, Yong-hua; Xiao, Zhi-zhong; Sun, Li

    2014-02-01

    Nuclear factor 45 (NF45) is known to play an important role in regulating interleukin-2 expression in mammals. The function of fish NF45 is largely unknown. In a previous study, we reported the identification of a NF45 (named CsNF45) from half smooth tongue sole (Cynoglossus semilaevis). In the present study, we identified an isoform of CsNF45 (named CsNF45i) from half smooth tongue sole and examined its biological properties in comparison with CsNF45. We found that CsNF45i is a truncated version of CsNF45 and lacks the N-terminal 38 residues of CsNF45. Genetic analysis showed that the CsNF45 gene consists of 14 exons and 13 introns, and that CsNF45 and CsNF45i are the products of alternative splicing. Constitutive expression of CsNF45 and CsNF45i occurred in multiple tissues but differed in patterns. Experimental infection with viral and bacterial pathogens upregulated the expression of both isoforms but to different degrees, with potent induction of CsNF45 being induced by bacterial pathogen, while dramatic induction of CsNF45i being induced by viral pathogen. Transient transfection analysis showed that both isoforms were localized in the nucleus and able to stimulate the activity of IL-2 promoter to comparable extents. To examine their in vivo effects, the two isoforms were overexpressed in tongue sole. Subsequent analysis showed that following viral and bacterial infection, the viral loads in CsNF45i-overexpressing fish were significantly lower than those in CsNF45-overexpressing fish, whereas the bacterial loads in CsNF45-overexpressing fish were significantly lower than those in CsNF45i-overexpressing fish. These results indicate that both CsNF45 and CsNF45i possess immunoregulatory properties, however, the two isoforms most likely participate in different aspects of host immune defense that target different pathogens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Serosurvey for Zoonotic Viral and Bacterial Pathogens Among Slaughtered Livestock in Egypt

    PubMed Central

    Horton, Katherine C.; Wasfy, Momtaz; Samaha, Hamed; Abdel-Rahman, Bassem; Safwat, Sameh; Abdel Fadeel, Moustafa; Mohareb, Emad; Dueger, Erica

    2015-01-01

    Introduction Zoonotic diseases are an important cause of human morbidity and mortality. Animal populations at locations with high risk of transmission of zoonotic pathogens offer an opportunity to study viral and bacterial pathogens of veterinary and public health concern. Methods Blood samples were collected from domestic and imported livestock slaughtered at the Muneeb abattoir in central Egypt in 2009. Samples were collected from cattle (n = 161), buffalo (n = 153), sheep (n = 174), and camels (n = 10). Samples were tested for antibodies against Leptospira spp. by a microscopy agglutination test, Coxiella burnetii by enzyme immunoassay, Brucella spp. by standard tube agglutination, and Rift Valley Fever virus (RVFV), Crimean–Congo hemorrhagic fever virus (CCHFV), sandfly fever Sicilian virus (SFSV), and sandfly fever Naples virus (SFNV) by enzyme-linked immunosorbent assay. Results Antibodies against Leptospira spp. were identified in 64 (40%) cattle, 45 (29%) buffalo, 71 (41%) sheep, and five (50%) camels; antibodies against C. burnetii in six (4%) buffalo, 14 (8%) sheep, and seven (70%) camels; and antibodies against Brucella spp. in 12 (8%) cattle, one (1%) buffalo, seven (4%) sheep, and one (10%) camel. Antibodies against RVFV were detected in two (1%) cattle and five (3%) buffalo, and antibodies against CCHFV in one (1%) cow. No antibodies against SFSV or SFNV were detected in any species. Discussion Results indicate that livestock have been exposed to a number of pathogens, although care must be taken with interpretation. It is not possible to determine whether antibodies against Leptospira spp. and RVFV in cattle and buffalo are due to prior vaccination or natural exposure. Similarly, antibodies identified in animals less than 6 months of age may be maternal antibodies transferred through colostrum rather than evidence of prior exposure. Results provide baseline evidence to indicate that surveillance within animal populations may be a useful tool to

  6. Adhesion of bacterial pathogens to soil colloidal particles: influences of cell type, natural organic matter, and solution chemistry.

    PubMed

    Zhao, Wenqiang; Walker, Sharon L; Huang, Qiaoyun; Cai, Peng

    2014-04-15

    Bacterial adhesion to granular soil particles is well studied; however, pathogen interactions with naturally occurring colloidal particles (<2 μm) in soil has not been investigated. This study was developed to identify the interaction mechanisms between model bacterial pathogens and soil colloids as a function of cell type, natural organic matter (NOM), and solution chemistry. Specifically, batch adhesion experiments were conducted using NOM-present, NOM-stripped soil colloids, Streptococcus suis SC05 and Escherichia coli WH09 over a wide range of solution pH (4.0-9.0) and ionic strength (IS, 1-100 mM KCl). Cell characterization techniques, Freundlich isotherm, and Derjaguin-Landau-Verwey-Overbeek (DLVO) theory (sphere-sphere model) were utilized to quantitatively determine the interactions between cells and colloids. The adhesion coefficients (Kf) of S. suis SC05 to NOM-present and NOM-stripped soil colloids were significantly higher than E. coli WH09, respectively. Similarly, Kf values of S. suis SC05 and E. coli WH09 adhesion to NOM-stripped soil colloids were greater than those colloids with NOM-present, respectively, suggesting NOM inhibits bacterial adhesion. Cell adhesion to soil colloids declined with increasing pH and enhanced with rising IS (1-50 mM). Interaction energy calculations indicate these adhesion trends can be explained by DLVO-type forces, with S. suis SC05 and E. coli WH09 being weakly adhered in shallow secondary energy minima via polymer bridging and charge heterogeneity. S. suis SC05 adhesion decreased at higher IS 100 mM, which is attributed to the change of hydrophobic effect and steric repulsion resulted from the greater presence of extracellular polymeric substances (EPS) on S. suis SC05 surface as compared to E. coli WH09. Hence, pathogen adhesion to the colloidal material is determined by a combination of DLVO, charge heterogeneity, hydrophobic and polymer interactions as a function of solution chemistry. Copyright © 2014 Elsevier

  7. Parallel Evolution of a Type IV Secretion System in Radiating Lineages of the Host-Restricted Bacterial Pathogen Bartonella

    PubMed Central

    Engel, Philipp; Salzburger, Walter; Liesch, Marius; Chang, Chao-Chin; Maruyama, Soichi; Lanz, Christa; Calteau, Alexandra; Lajus, Aurélie; Médigue, Claudine; Schuster, Stephan C.; Dehio, Christoph

    2011-01-01

    Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens

  8. Evaluation of an Internally Controlled Multiplex Tth Endonuclease Cleavage Loop-Mediated Isothermal Amplification (TEC-LAMP) Assay for the Detection of Bacterial Meningitis Pathogens.

    PubMed

    Higgins, Owen; Clancy, Eoin; Cormican, Martin; Boo, Teck Wee; Cunney, Robert; Smith, Terry J

    2018-02-09

    Bacterial meningitis infection is a leading global health concern for which rapid and accurate diagnosis is essential to reduce associated morbidity and mortality. Loop-mediated isothermal amplification (LAMP) offers an effective low-cost diagnostic approach; however, multiplex LAMP is difficult to achieve, limiting its application. We have developed novel real-time multiplex LAMP technology, TEC-LAMP, using Tth endonuclease IV and a unique LAMP primer/probe. This study evaluates the analytical specificity, limit of detection (LOD) and clinical application of an internally controlled multiplex TEC-LAMP assay for detection of leading bacterial meningitis pathogens: Streptococcus pneumoniae , Neisseria meningitidis and Haemophilus influenzae . Analytical specificities were established by testing 168 bacterial strains, and LODs were determined using Probit analysis. The TEC-LAMP assay was 100% specific, with LODs for S. pneumoniae , N. meningitidis and H. influenzae of 39.5, 17.3 and 25.9 genome copies per reaction, respectively. Clinical performance was evaluated by testing 65 archived PCR-positive samples. Compared to singleplex real-time PCR, the multiplex TEC-LAMP assay demonstrated diagnostic sensitivity and specificity of 92.3% and 100%, respectively. This is the first report of a single-tube internally controlled multiplex LAMP assay for bacterial meningitis pathogen detection, and the first report of Tth endonuclease IV incorporation into nucleic acid amplification diagnostic technology.

  9. The efficacy of different anti-microbial metals at preventing the formation of, and eradicating bacterial biofilms of pathogenic indicator strains.

    PubMed

    Gugala, Natalie; Lemire, Joe A; Turner, Raymond J

    2017-06-01

    The emergence of multidrug-resistant pathogens and the prevalence of biofilm-related infections have generated a demand for alternative anti-microbial therapies. Metals have not been explored in adequate detail for their capacity to combat infectious disease. Metal compounds can now be found in textiles, medical devices and disinfectants-yet, we know little about their efficacy against specific pathogens. To help fill this knowledge gap, we report on the anti-microbial and antibiofilm activity of seven metals: silver, copper, titanium, gallium, nickel, aluminum and zinc against three bacterial strains, Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. To evaluate the capacity of metal ions to prevent the growth of, and eradicate biofilms and planktonic cells, bacterial cultures were inoculated in the Calgary Biofilm Device (minimal biofilm eradication concentration) in the presence of the metal salts. Copper, gallium and titanium were capable of preventing planktonic and biofilm growth, and eradicating established biofilms of all tested strains. Further, we observed that the efficacies of the other tested metal salts displayed variable efficacy against the tested strains. Further, contrary to the enhanced resistance anticipated from bacterial biofilms, particular metal salts were observed to be more effective against biofilm communities versus planktonic cells. In this study, we have demonstrated that the identity of the bacterial strain must be considered before treatment with a particular metal ion. Consequent to the use of metal ions as anti-microbial agents to fight multidrug-resistant and biofilm-related infections increases, we must aim for more selective deployment in a given infectious setting.

  10. The Bacterial Pathogen Xylella fastidiosa Affects the Leaf Ionome of Plant Hosts during Infection

    PubMed Central

    De La Fuente, Leonardo; Parker, Jennifer K.; Oliver, Jonathan E.; Granger, Shea; Brannen, Phillip M.; van Santen, Edzard; Cobine, Paul A.

    2013-01-01

    Xylella fastidiosa is a plant pathogenic bacterium that lives inside the host xylem vessels, where it forms biofilm believed to be responsible for disrupting the passage of water and nutrients. Here, Nicotiana tabacum was infected with X. fastidiosa, and the spatial and temporal changes in the whole-leaf ionome (i.e. the mineral and trace element composition) were measured as the host plant transitioned from healthy to diseased physiological status. The elemental composition of leaves was used as an indicator of the physiological changes in the host at a specific time and relative position during plant development. Bacterial infection was found to cause significant increases in concentrations of calcium prior to the appearance of symptoms and decreases in concentrations of phosphorous after symptoms appeared. Field-collected leaves from multiple varieties of grape, blueberry, and pecan plants grown in different locations over a four-year period in the Southeastern US showed the same alterations in Ca and P. This descriptive ionomics approach characterizes the existence of a mineral element-based response to X. fastidiosa using a model system suitable for further manipulation to uncover additional details of the role of mineral elements during plant-pathogen interactions. This is the first report on the dynamics of changes in the ionome of the host plant throughout the process of infection by a pathogen. PMID:23667547

  11. Bacterial community structure in experimental methanogenic bioreactors and search for pathogenic clostridia as community members.

    PubMed

    Dohrmann, Anja B; Baumert, Susann; Klingebiel, Lars; Weiland, Peter; Tebbe, Christoph C

    2011-03-01

    Microbial conversion of organic waste or harvested plant material into biogas has become an attractive technology for energy production. Biogas is produced in reactors under anaerobic conditions by a consortium of microorganisms which commonly include bacteria of the genus Clostridium. Since the genus Clostridium also harbors some highly pathogenic members in its phylogenetic cluster I, there has been some concern that an unintended growth of such pathogens might occur during the fermentation process. Therefore this study aimed to follow how process parameters affect the diversity of Bacteria in general, and the diversity of Clostridium cluster I members in particular. The development of both communities was followed in model biogas reactors from start-up during stable methanogenic conditions. The biogas reactors were run with either cattle or pig manures as substrates, and both were operated at mesophilic and thermophilic conditions. The structural diversity was analyzed independent of cultivation using a PCR-based detection of 16S rRNA genes and genetic profiling by single-strand conformation polymorphism (SSCP). Genetic profiles indicated that both bacterial and clostridial communities evolved in parallel, and the community structures were highly influenced by both substrate and temperature. Sequence analysis of 16S rRNA genes recovered from prominent bands from SSCP profiles representing Clostridia detected no pathogenic species. Thus, this study gave no indication that pathogenic clostridia would be enriched as dominant community members in biogas reactors fed with manure.

  12. Characteristic features of intracellular pathogenic Leptospira in infected murine macrophages.

    PubMed

    Toma, Claudia; Okura, Nobuhiko; Takayama, Chitoshi; Suzuki, Toshihiko

    2011-11-01

    Leptospira interrogans is a spirochaete responsible for a zoonotic disease known as leptospirosis. Leptospires are able to penetrate the abraded skin and mucous membranes and rapidly disseminate to target organs such as the liver, lungs and kidneys. How this pathogen escape from innate immune cells and spread to target organs remains poorly understood. In this paper, the intracellular trafficking undertaken by non-pathogenic Leptospira biflexa and pathogenic L. interrogans in mouse bone marrow-derived macrophages was compared. The delayed in the clearance of L. interrogans was observed. Furthermore, the acquisition of lysosomal markers by L. interrogans-containing phagosomes lagged behind that of L. biflexa-containing phagosomes, and although bone marrow-derived macrophages could degrade L. biflexa as well as L. interrogans, a population of L. interrogans was able to survive and replicate. Intact leptospires were found within vacuoles at 24 h post infection, suggesting that bacterial replication occurs within a membrane-bound compartment. In contrast, L. biflexa were completely degraded at 24 h post infection. Furthermore, L. interrogans but not L. biflexa, were released to the extracellular milieu. These results suggest that pathogenic leptospires are able to survive, replicate and exit from mouse macrophages, enabling their eventual spread to target organs. © 2011 Blackwell Publishing Ltd.

  13. A Multiplex PCR/LDR Assay for Simultaneous Detection and Identification of the NIAID Category B Bacterial Food and Water-borne Pathogens

    PubMed Central

    Rundell, Mark S.; Pingle, Maneesh; Das, Sanchita; Hussain, Aashiq; Ocheretina, Oksana; Charles, Macarthur; Larone, Davise H.; Spitzer, Eric D.; Golightly, Linnie; Barany, Francis

    2014-01-01

    Enteric pathogens that cause gastroenteritis remain a major global health concern. The goal of this study was to develop a multiplex PCR/LDR assay for the detection of all NIAID category B bacterial food and water-borne pathogens directly from stool specimens. To validate the PCR/LDR assay, clinical isolates of Campylobacter spp., Vibrio spp., Shigella spp., Salmonella spp., Listeria monocytogenes, Yersinia enterocolitica, and diarrheagenic Escherichia coli were tested. The sensitivity and specificity of the assay was assessed using a large number of seeded culture-negative stool specimens and a smaller set of clinical specimens from Haiti. The overall sensitivity ranged from 91 to 100% (median 100%) depending on the species. For the majority of organisms the sensitivity was 100%. The overall specificity based on initial testing ranged from 98% to 100% depending on the species. After additional testing of discordant samples the lowest specificity was 99.4%. PCR/LDR detected additional category B agents (particularly diarrheagenic E. coli) in 11/40 specimens from Haiti that were culture-positive for V. cholerae and in approximately 1% of routine culture-negative stool specimens from a hospital in New York. This study demonstrated the ability of the PCR/LDR assay to detect a large comprehensive panel of category B enteric bacterial pathogens as well as mixed infections. This type of assay has the potential to provide earlier warnings of possible public health threats and more accurate surveillance of food and water-borne pathogens. PMID:24709368

  14. The Lung Microbiome After Lung Transplantation

    PubMed Central

    Becker, Julia B.; Poroyko, Valeriy

    2014-01-01

    Summary Lung transplantation survival remains significantly impacted by infections and the development of chronic rejection manifesting as bronchiolitis obliterans syndrome (BOS). Traditional microbiologic data has provided insight into the role of infections in BOS. Now, new non-culture-based techniques have been developed to characterize the entire population of microbes resident on the surfaces of the body, also known as the human microbiome. Early studies have identified that lung transplant patients have a different lung microbiome and have demonstrated the important finding that the transplant lung microbiome changes over time. Furthermore, both unique bacterial populations and longitudinal changes in the lung microbiome have now been suggested to play a role in the development of BOS. In the future, this technology will need to be combined with functional assays and assessment of the immune responses in the lung to help further explain the microbiome’s role in the failing lung allograft. PMID:24601662

  15. A Review of Phage Therapy against Bacterial Pathogens of Aquatic and Terrestrial Organisms.

    PubMed

    Doss, Janis; Culbertson, Kayla; Hahn, Delilah; Camacho, Joanna; Barekzi, Nazir

    2017-03-18

    Since the discovery of bacteriophage in the early 1900s, there have been numerous attempts to exploit their innate ability to kill bacteria. The purpose of this report is to review current findings and new developments in phage therapy with an emphasis on bacterial diseases of marine organisms, humans, and plants. The body of evidence includes data from studies investigating bacteriophage in marine and land environments as modern antimicrobial agents against harmful bacteria. The goal of this paper is to present an overview of the topic of phage therapy, the use of phage-derived protein therapy, and the hosts that bacteriophage are currently being used against, with an emphasis on the uses of bacteriophage against marine, human, animal and plant pathogens.

  16. The response of the host microcirculation to bacterial sepsis: does the pathogen matter?

    PubMed

    Legrand, Matthieu; Klijn, Eva; Payen, Didier; Ince, Can

    2010-02-01

    Sepsis results from the interaction between a host and an invading pathogen. The microcirculatory dysfunction is now considered central in the development of the often deadly multiple organ dysfunction syndrome in septic shock patients. The microcirculatory flow shutdown and flow shunting leading to oxygen demand and supply mismatch at the cellular level and the local activation of inflammatory pathways resulting from the leukocyte-endothelium interactions are both features of the sepsis-induced microcirculatory dysfunction. Although the host response through the inflammatory and immunologic response appears to be critical, there are also evidences that Gram-positive and Gram-negative bacteria can exert different effects at the microcirculatory level. In this review we discuss available data on the potential bacterial-specific microcirculatory alterations observed during sepsis.

  17. Role of quorum sensing in bacterial infections

    PubMed Central

    Castillo-Juárez, Israel; Maeda, Toshinari; Mandujano-Tinoco, Edna Ayerim; Tomás, María; Pérez-Eretza, Berenice; García-Contreras, Silvia Julieta; Wood, Thomas K; García-Contreras, Rodolfo

    2015-01-01

    Quorum sensing (QS) is cell communication that is widely used by bacterial pathogens to coordinate the expression of several collective traits, including the production of multiple virulence factors, biofilm formation, and swarming motility once a population threshold is reached. Several lines of evidence indicate that QS enhances virulence of bacterial pathogens in animal models as well as in human infections; however, its relative importance for bacterial pathogenesis is still incomplete. In this review, we discuss the present evidence from in vitro and in vivo experiments in animal models, as well as from clinical studies, that link QS systems with human infections. We focus on two major QS bacterial models, the opportunistic Gram negative bacteria Pseudomonas aeruginosa and the Gram positive Staphylococcus aureus, which are also two of the main agents responsible of nosocomial and wound infections. In addition, QS communication systems in other bacterial, eukaryotic pathogens, and even immune and cancer cells are also reviewed, and finally, the new approaches proposed to combat bacterial infections by the attenuation of their QS communication systems and virulence are also discussed. PMID:26244150

  18. Serum Procalcitonin for Differential Diagnosis of Acute Exacerbation and Bacterial Pneumonia in Patients With Interstitial Lung Disease.

    PubMed

    Sim, Jae Kyeom; Oh, Jee Youn; Lee, Eun Joo; Hur, Gyu Young; Lee, Seung Heon; Lee, Sung Yong; Lee, Sang Yeub; Kim, Je Hyeong; Shin, Chol; Shim, Jae Jeong; In, Kwang Ho; Kang, Kyung Ho; Min, Kyung Hoon

    2016-05-01

    Acute exacerbation and bacterial pneumonia are major life-threatening conditions in patients with interstitial lung disease (ILD). The rapid recognition of these 2 different conditions is important for their proper treatment. An elevated procalcitonin (PCT) level is commonly detected in patients with bacterial infections. This study assessed the usefulness of the serum PCT level as a biomarker for the differential diagnosis of acute exacerbation and bacterial pneumonia in patients with ILD. In this prospective observational study, we enrolled patients with ILD who had experienced recently progressive dyspnea and exhibited new infiltrations on chest radiographs. We classified these patients into an acute exacerbation group and a bacterial pneumonia group and compared their baseline characteristics and laboratory parameters, including the PCT level. Of 21 patients with ILD, 9 patients had bacterial pneumonia. Both the groups showed similar baseline characteristics. The bacterial pneumonia group demonstrated a high PCT level. The PCT level in the acute exacerbation group was significantly lower than that in the bacterial pneumonia group (0.05 versus 0.91ng/mL, respectively; P < 0.001). Other parameters, such as the C-reactive protein level, leukocyte count and body temperature, were also lower in the acute exacerbation group. At a cutoff value of 0.1ng/mL, the sensitivity, specificity and negative predictive values of the serum PCT level were 88.9%, 100.0% and 92.3%, respectively. These findings suggest that the serum PCT level is useful in the differential diagnosis of acute exacerbation and bacterial pneumonia in patients with ILD. Copyright © 2016 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  19. Structured literature review of responses of cattle to viral and bacterial pathogens causing bovine respiratory disease complex.

    PubMed

    Grissett, G P; White, B J; Larson, R L

    2015-01-01

    Bovine respiratory disease (BRD) is an economically important disease of cattle and continues to be an intensely studied topic. However, literature summarizing the time between pathogen exposure and clinical signs, shedding, and seroconversion is minimal. A structured literature review of the published literature was performed to determine cattle responses (time from pathogen exposure to clinical signs, shedding, and seroconversion) in challenge models using common BRD viral and bacterial pathogens. After review a descriptive analysis of published studies using common BRD pathogen challenge studies was performed. Inclusion criteria were single pathogen challenge studies with no treatment or vaccination evaluating outcomes of interest: clinical signs, shedding, and seroconversion. Pathogens of interest included: bovine viral diarrhea virus (BVDV), bovine herpesvirus type 1 (BHV-1), parainfluenza-3 virus, bovine respiratory syncytial virus, Mannheimia haemolytica, Mycoplasma bovis, Pastuerella multocida, and Histophilus somni. Thirty-five studies and 64 trials were included for analysis. The median days to the resolution of clinical signs after BVDV challenge was 15 and shedding was not detected on day 12 postchallenge. Resolution of BHV-1 shedding resolved on day 12 and clinical signs on day 12 postchallenge. Bovine respiratory syncytial virus ceased shedding on day 9 and median time to resolution of clinical signs was on day 12 postchallenge. M. haemolytica resolved clinical signs 8 days postchallenge. This literature review and descriptive analysis can serve as a resource to assist in designing challenge model studies and potentially aid in estimation of duration of clinical disease and shedding after natural pathogen exposure. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  20. Host pathogen relations: exploring animal models for fungal pathogens.

    PubMed

    Harwood, Catherine G; Rao, Reeta P

    2014-06-30

    Pathogenic fungi cause superficial infections but pose a significant public health risk when infections spread to deeper tissues, such as the lung. Within the last three decades, fungi have been identified as the leading cause of nosocomial infections making them the focus of research. This review outlines the model systems such as the mouse, zebrafish larvae, flies, and nematodes, as well as ex vivo and in vitro systems available to study common fungal pathogens.

  1. Lung phenotype of juvenile and adult cystic fibrosis transmembrane conductance regulator-knockout ferrets.

    PubMed

    Sun, Xingshen; Olivier, Alicia K; Liang, Bo; Yi, Yaling; Sui, Hongshu; Evans, Turan I A; Zhang, Yulong; Zhou, Weihong; Tyler, Scott R; Fisher, John T; Keiser, Nicholas W; Liu, Xiaoming; Yan, Ziying; Song, Yi; Goeken, J Adam; Kinyon, Joann M; Fligg, Danielle; Wang, Xiaoyan; Xie, Weiliang; Lynch, Thomas J; Kaminsky, Paul M; Stewart, Zoe A; Pope, R Marshall; Frana, Timothy; Meyerholz, David K; Parekh, Kalpaj; Engelhardt, John F

    2014-03-01

    Chronic bacterial lung infections in cystic fibrosis (CF) are caused by defects in the CF transmembrane conductance regulator chloride channel. Previously, we described that newborn CF transmembrane conductance regulator-knockout ferrets rapidly develop lung infections within the first week of life. Here, we report a more slowly progressing lung bacterial colonization phenotype observed in juvenile to adult CF ferrets reared on a layered antibiotic regimen. Even on antibiotics, CF ferrets were still very susceptible to bacterial lung infection. The severity of lung histopathology ranged from mild to severe, and variably included mucus obstruction of the airways and submucosal glands, air trapping, atelectasis, bronchopneumonia, and interstitial pneumonia. In all CF lungs, significant numbers of bacteria were detected and impaired tracheal mucociliary clearance was observed. Although Streptococcus, Staphylococcus, and Enterococcus were observed most frequently in the lungs of CF animals, each animal displayed a predominant bacterial species that accounted for over 50% of the culturable bacteria, with no one bacterial taxon predominating in all animals. Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry fingerprinting was used to quantify lung bacteria in 10 CF animals and demonstrated Streptococcus, Staphylococcus, Enterococcus, or Escherichia as the most abundant genera. Interestingly, there was significant overlap in the types of bacteria observed in the lung and intestine of a given CF animal, including bacterial taxa unique to the lung and gut of each CF animal analyzed. These findings demonstrate that CF ferrets develop lung disease during the juvenile and adult stages that is similar to patients with CF, and suggest that enteric bacterial flora may seed the lung of CF ferrets.

  2. Lung Phenotype of Juvenile and Adult Cystic Fibrosis Transmembrane Conductance Regulator–Knockout Ferrets

    PubMed Central

    Sun, Xingshen; Olivier, Alicia K.; Liang, Bo; Yi, Yaling; Sui, Hongshu; Evans, Turan I. A.; Zhang, Yulong; Zhou, Weihong; Tyler, Scott R.; Fisher, John T.; Keiser, Nicholas W.; Liu, Xiaoming; Yan, Ziying; Song, Yi; Goeken, J. Adam; Kinyon, Joann M.; Fligg, Danielle; Wang, Xiaoyan; Xie, Weiliang; Lynch, Thomas J.; Kaminsky, Paul M.; Stewart, Zoe A.; Pope, R. Marshall; Frana, Timothy; Meyerholz, David K.; Parekh, Kalpaj

    2014-01-01

    Chronic bacterial lung infections in cystic fibrosis (CF) are caused by defects in the CF transmembrane conductance regulator chloride channel. Previously, we described that newborn CF transmembrane conductance regulator–knockout ferrets rapidly develop lung infections within the first week of life. Here, we report a more slowly progressing lung bacterial colonization phenotype observed in juvenile to adult CF ferrets reared on a layered antibiotic regimen. Even on antibiotics, CF ferrets were still very susceptible to bacterial lung infection. The severity of lung histopathology ranged from mild to severe, and variably included mucus obstruction of the airways and submucosal glands, air trapping, atelectasis, bronchopneumonia, and interstitial pneumonia. In all CF lungs, significant numbers of bacteria were detected and impaired tracheal mucociliary clearance was observed. Although Streptococcus, Staphylococcus, and Enterococcus were observed most frequently in the lungs of CF animals, each animal displayed a predominant bacterial species that accounted for over 50% of the culturable bacteria, with no one bacterial taxon predominating in all animals. Matrix-assisted laser desorption–ionization time-of-flight mass spectrometry fingerprinting was used to quantify lung bacteria in 10 CF animals and demonstrated Streptococcus, Staphylococcus, Enterococcus, or Escherichia as the most abundant genera. Interestingly, there was significant overlap in the types of bacteria observed in the lung and intestine of a given CF animal, including bacterial taxa unique to the lung and gut of each CF animal analyzed. These findings demonstrate that CF ferrets develop lung disease during the juvenile and adult stages that is similar to patients with CF, and suggest that enteric bacterial flora may seed the lung of CF ferrets. PMID:24074402

  3. Characterization of bacterial knot disease caused by Pseudomonas savastanoi pv. savastanoi on pomegranate (Punica granatum L.) trees: a new host of the pathogen.

    PubMed

    Bozkurt, I A; Soylu, S; Mirik, M; Ulubas Serce, C; Baysal, Ö

    2014-11-01

    This study aimed to isolate and identify the causal organism causing hyperplastic outgrowths (knots) on stems and branches of pomegranate trees in the Eastern Mediterranean region of Turkey. Bacterial colonies were isolated from young knots on plates containing selective nutrient media. Biochemical tests, fatty acid analysis and PCR were performed to identify possible causal disease agent. Representative isolates were identified as Pseudomonas.pv.savastanoi (Psv) using biochemical tests, fatty acid profiling and PCR. Following inoculation of pomegranate plants (cv. hicaz) with bacterial suspensions, 25 of 54 bacterial isolates caused typical knots at the site of inoculation. PCR analysis, using specific primer for Psv, generated a single amplicon from all isolates. The similarity of the sequence of Turkish pomegranate isolate was 99% similar to the corresponding gene sequences of Psv in the databases. Based on symptoms, biochemical, molecular, pathogenicity tests and sequence analyses, the disease agent of knots observed on the pomegranate trees is Psv. To the best of our knowledge, this research has revealed pomegranate as a natural host of Psv, which extends the list of host plant species affected by the pathogen in the world and Turkey. Pomegranate trees were affected by the disease with outgrowths (galls or knot) disease. Currently, there is no published study on disease agent(s) causing the galls or knots on pomegranate trees in worldwide. Bacterial colonies were isolated from young knots. The causal agent of the knot Pseudomonas savastanoi pv.savastanoi (Psv) was identified based on symptoms, biochemical, molecular methods, pathogenicity tests and sequence analysis. To the best of our knowledge, this is the first report of Psv on pomegranate as a natural host, which extends the growing list of plant species affected by this bacterium in the world and Turkey. © 2014 The Society for Applied Microbiology.

  4. Radiolabel ratio method for measuring pulmonary clearance of intratracheal bacterial challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaForce, F.M.; Boose, D.S.

    Calculation of bacterial clearance is a fundamental step in any study of in situ lung antibacterial defenses. A method is described whereby about 85% of a radiolabeled bacterial inoculum was consistently introduced into the bronchopulmonary tree of a mouse by the intratracheal route. Mice were then killed 1 and 4 hours later; their lungs were removed aseptically and homogenized, and viable bacteria and radiolabel counts were determined. Radiolabel counts fell slowly, and more than 80% of the original radiolabel was still present in homogenized lung samples from animals sacrificed 4 hours after challenge. Bacteria/isotope ratios for the bacterial inoculum andmore » homogenized lung samples from animals sacrificed immediately after challenge were very similar. Bacterial clearance values were the same whether computed from bacterial counts alone or according to a radiolabel ratio method whereby the change in the bacteria/isotope ratio in ground lung aliquots was divided by a similar ratio from bacteria used to inoculate animals. Some contamination resulted from oral streptococci being swept into the bronchopulmonary free during the aspiration process. This contamination was not a problem when penicillin was incorporated into the agar and penicillin-resistant strains were used for the bacterial challenges.« less

  5. Potential role of Saudi red propolis in alleviating lung damage induced by methicillin resistant Staphylococcus aureus virulence in rats.

    PubMed

    Saddiq, Amna Ali; Mohamed, Azza Mostafa

    2016-07-01

    The aim of this study was to explore the protective impact of aqueous extract of Saudi red propolis against rat lung damage induced by the pathogenic bacteria namely methicillin resistant Staphylococcus aureus (MRSA) ATCC 6538 strain. Infected rats were received a single intraperitoneal (i.p.) injection of bacterial suspension at a dose of 1 X 10(6) CFU / 100g body weight. Results showed that oral administration of an aqueous extract of propolis (50mg/100g body weight) daily for two weeks to infected rats simultaneously with bacterial infection, effectively ameliorated the alteration of oxidative stress biomarker, malondialdehyde (MDA), as well as the antioxidant markers, glutathione peroxidase (GPx) and superoxide dismutase (SOD), in lungs of infected rats compared with infected untreated ones. Also, the used propolis extract successfully modulated the alterations in proinflammatory mediators, tumor necrosis factor-α (TNF- α) and vascular endothelial growth factor (VEGF) in serum. In addition, the propolis extract successfully modulated the oxidative DNA damage and the apoptosis biomarker, caspase 3, in lungs of S aureus infected rats compared with infected untreated animals. The biochemical results were supported by histo-pathological observation of lung tissues. In conclusion, the beneficial prophylactic role of the aqueous extract of Saudi red propolis against lung damage induced by methicillin resistant S aureus may be related to the antioxidant, anti-inflammatory, immunomodulatory and antiapoptosis of its active constituents.

  6. Children with asthma by school age display aberrant immune responses to pathogenic airway bacteria as infants.

    PubMed

    Larsen, Jeppe Madura; Brix, Susanne; Thysen, Anna Hammerich; Birch, Sune; Rasmussen, Morten Arendt; Bisgaard, Hans

    2014-04-01

    Asthma is a highly prevalent chronic lung disease that commonly originates in early childhood. Colonization of neonatal airways with the pathogenic bacterial strains Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus pneumoniae is associated with increased risk of later childhood asthma. We hypothesized that children with asthma have an abnormal immune response to pathogenic bacteria in infancy. We aimed to assess the bacterial immune response in asymptomatic infants and the association with later development of asthma by age 7 years. The Copenhagen Prospective Studies on Asthma in Childhood birth cohort was followed prospectively, and asthma was diagnosed at age 7 years. The immune response to H influenzae, M catarrhalis, and S pneumoniae was analyzed in 292 infants using PBMCs isolated and stored since the age of 6 months. The immune response was assessed based on the pattern of cytokines produced and T-cell activation. The immune response to pathogenic bacteria was different in infants with asthma by 7 years of age (P = .0007). In particular, prospective asthmatic subjects had aberrant production of IL-5 (P = .008), IL-13 (P = .057), IL-17 (P = .001), and IL-10 (P = .028), whereas there were no differences in T-cell activation or peripheral T-cell composition. Children with asthma by school age exhibited an aberrant immune response to pathogenic bacteria in infancy. We propose that an abnormal immune response to pathogenic bacteria colonizing the airways in early life might lead to chronic airway inflammation and childhood asthma. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  7. Broad-spectrum in vitro antibacterial activities of clay minerals against antibiotic-susceptible and antibiotic-resistant bacterial pathogens

    PubMed Central

    HAYDEL, SHELLEY E.; REMENIH, CHRISTINE M.; WILLIAMS, LYNDA B.

    2008-01-01

    SYNOPSIS Objectives The capacity to properly address the worldwide incidence of infectious diseases lies in the ability to detect, prevent, and effectively treat these infections. Therefore, identifying and analyzing inhibitory agents are worthwhile endeavors in an era when few new classes of effective antimicrobials have been developed. The use of geological nanomaterials to heal skin infections has been evident since the earliest recorded history, and specific clay minerals may prove valuable in the treatment of bacterial diseases, including infections for which there are no effective antibiotics, such as Buruli ulcer and multi-drug resistant infections. Methods We have subjected two iron-rich clay minerals, which have previously been used to treat Buruli ulcer patients, to broth culture testing of antibiotic-susceptible and -resistant pathogenic bacteria to assess the feasibility of using clay minerals as therapeutic agents. Results One specific mineral, CsAg02, demonstrated bactericidal activity against pathogenic Escherichia coli, extended-spectrum β-lactamase (ESBL) E. coli, S. enterica serovar Typhimurium, Pseudomonas aeruginosa, and Mycobacterium marinum and a combined bacteriostatic/bactericidal effect against Staphylococcus aureus, penicillin-resistant S. aureus (PRSA), methicillin-resistant S. aureus (MRSA), and Mycobacterium smegmatis, while another mineral with similar structure and bulk crystal chemistry, CsAr02, had no effect on or enhanced bacterial growth. The <0.2 μm fraction of CsAg02 and CsAg02 heated to 200°C or 550°C retained bactericidal activity, while cation-exchanged CsAg02 and CsAg02 heated to 900°C no longer killed E. coli. Conclusions Our results indicate that specific mineral products have intrinsic, heat-stable antibacterial properties, which could provide an inexpensive treatment against numerous human bacterial infections. PMID:18070832

  8. An operon for production of bioactive gibberellin A4 phytohormone with wide distribution in the bacterial rice leaf streak pathogen Xanthomonas oryzae pv. oryzicola

    PubMed Central

    Nagel, Raimund; Turrini, Paula C. G.; Nett, Ryan S.; Leach, Jan E.; Verdier, Valérie; Van Sluys, Marie-Anne; Peters, Reuben J.

    2016-01-01

    Summary Phytopathogens have developed elaborate mechanisms to attenuate the defense response of their host plants, including convergent evolution of complex pathways for production of the gibberellin (GA) phytohormones, which were actually first isolated from the rice fungal pathogen Gibberella fujikuroi. The rice bacterial pathogen Xanthomonas oryzae pv. oryzicola (Xoc) has been demonstrated to contain a biosynthetic operon with cyclases capable of producing the universal GA precursor ent-kaurene. Genetic (knock-out) studies indicate that the derived diterpenoid serves as a virulence factor for this rice leaf streak pathogen, serving to reduce the jasmonic acid (JA) mediated defense response.Here the function of the remaining genes in the Xoc operon are elucidated and the distribution of the operon in X. oryzae investigated in over 100 isolates.The Xoc operon leads to production of the bioactive GA4, an additional step beyond production of the penultimate precursor GA9 mediated by the homologous operons recently characterized from rhizobia. Moreover, this GA biosynthetic operon was found to be widespread in Xoc (>90%), but absent in the other major oryzae pathovar.These results indicate selective pressure for production of GA4 in the distinct lifestyle of Xoc, and the importance of GA to both fungal and bacterial pathogens of rice. PMID:28134995

  9. Relationship of periodontal clinical parameters with bacterial composition in human dental plaque.

    PubMed

    Fujinaka, Hidetake; Takeshita, Toru; Sato, Hirayuki; Yamamoto, Tetsuji; Nakamura, Junji; Hase, Tadashi; Yamashita, Yoshihisa

    2013-06-01

    More than 600 bacterial species have been identified in the oral cavity, but only a limited number of species show a strong association with periodontitis. The purpose of the present study was to provide a comprehensive outline of the microbiota in dental plaque related to periodontal status. Dental plaque from 90 subjects was sampled, and the subjects were clustered based on bacterial composition using the terminal restriction fragment length polymorphism of 16S rRNA genes. Here, we evaluated (1) periodontal clinical parameters between clusters; (2) the correlation of subgingival bacterial composition with supragingival bacterial composition; and (3) the association between bacterial interspecies in dental plaque using a graphical Gaussian model. Cluster 1 (C1) having high prevalence of pathogenic bacteria in subgingival plaque showed increasing values of the parameters. The values of the parameters in Cluster 2a (C2a) having high prevalence of non-pathogenic bacteria were markedly lower than those in C1. A cluster having low prevalence of non-pathogenic bacteria in supragingival plaque showed increasing values of the parameters. The bacterial patterns between subgingival plaque and supragingival plaque were significantly correlated. Chief pathogens, such as Porphyromonas gingivalis, formed a network with other pathogenic species in C1, whereas a network of non-pathogenic species, such as Rothia sp. and Lautropia sp., tended to compete with a network of pathogenic species in C2a. Periodontal status relates to non-pathogenic species as well as to pathogenic species, suggesting that the bacterial interspecies connection affects dental plaque virulence.

  10. Evaluation of an Internally Controlled Multiplex Tth Endonuclease Cleavage Loop-Mediated Isothermal Amplification (TEC-LAMP) Assay for the Detection of Bacterial Meningitis Pathogens

    PubMed Central

    Clancy, Eoin; Cormican, Martin; Boo, Teck Wee; Cunney, Robert

    2018-01-01

    Bacterial meningitis infection is a leading global health concern for which rapid and accurate diagnosis is essential to reduce associated morbidity and mortality. Loop-mediated isothermal amplification (LAMP) offers an effective low-cost diagnostic approach; however, multiplex LAMP is difficult to achieve, limiting its application. We have developed novel real-time multiplex LAMP technology, TEC-LAMP, using Tth endonuclease IV and a unique LAMP primer/probe. This study evaluates the analytical specificity, limit of detection (LOD) and clinical application of an internally controlled multiplex TEC-LAMP assay for detection of leading bacterial meningitis pathogens: Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae. Analytical specificities were established by testing 168 bacterial strains, and LODs were determined using Probit analysis. The TEC-LAMP assay was 100% specific, with LODs for S. pneumoniae, N. meningitidis and H. influenzae of 39.5, 17.3 and 25.9 genome copies per reaction, respectively. Clinical performance was evaluated by testing 65 archived PCR-positive samples. Compared to singleplex real-time PCR, the multiplex TEC-LAMP assay demonstrated diagnostic sensitivity and specificity of 92.3% and 100%, respectively. This is the first report of a single-tube internally controlled multiplex LAMP assay for bacterial meningitis pathogen detection, and the first report of Tth endonuclease IV incorporation into nucleic acid amplification diagnostic technology. PMID:29425124

  11. First characterization of bacterial pathogen, Vibrio alginolyticus, for Porites andrewsi White syndrome in the South China Sea.

    PubMed

    Zhenyu, Xie; Shaowen, Ke; Chaoqun, Hu; Zhixiong, Zhu; Shifeng, Wang; Yongcan, Zhou

    2013-01-01

    White syndrome, a term for scleractinian coral disease with progressive tissue loss, is known to cause depressed growth and increased morality of coral reefs in the major oceans around the world, and the occurrence of this disease has been frequently reported in the past few decades. Investigations during April to September in both 2010 and 2011 identified widespread Porites andrewsi White syndrome (PAWS) in Xisha Archipelago, South China Sea. However, the causes and etiology of PAWS have been unknown. A transmission experiment was performed on P. andrewsi in the Qilianyu Subgroup (QLY). The results showed that there was a significant (P ≤ 0.05) difference between test and control groups after 28 days if the invalid replicates were excluded. Rates of tissue loss ranged from 0.90-10.76 cm(2) d(-1) with a mean of 5.40 ± 3.34 cm(2) d(-1) (mean ± SD). Bacterial strains were isolated from the PAWS corals at the disease outbreak sites in QLY of the Xisha Archipelago, South China Sea, and included in laboratory-based infection trials to satisfy Koch's postulates for establishing causality. Following exposure to bacterial concentrations of 10(5) cells mL(-1), the infected colonies exhibited similar signs to those observed in the field. Using phylogenetic 16S rRNA gene analysis, classical phenotypic trait comparison, Biolog automatic identification system, MALDI-TOF mass spectrometry and MALDI Biotyper method, two pathogenic strains were identified as Vibrio alginolyticus . This is the first report of V. alginolyticus as a pathogenic agent of PAWS in the South China Sea. Our results point out an urgent need to develop sensitive detection methods for V. alginolyticus virulence strains and robust diagnostics for coral disease caused by this and Vibrio pathogenic bacterium in the South China Sea.

  12. First Characterization of Bacterial Pathogen, Vibrio alginolyticus, for Porites andrewsi White Syndrome in the South China Sea

    PubMed Central

    Chaoqun, Hu; Zhixiong, Zhu; Shifeng, Wang; Yongcan, Zhou

    2013-01-01

    Background White syndrome, a term for scleractinian coral disease with progressive tissue loss, is known to cause depressed growth and increased morality of coral reefs in the major oceans around the world, and the occurrence of this disease has been frequently reported in the past few decades. Investigations during April to September in both 2010 and 2011 identified widespread Porites andrewsi White syndrome (PAWS) in Xisha Archipelago, South China Sea. However, the causes and etiology of PAWS have been unknown. Methodology/Principal Findings A transmission experiment was performed on P . andrewsi in the Qilianyu Subgroup (QLY). The results showed that there was a significant (P ≤ 0.05) difference between test and control groups after 28 days if the invalid replicates were excluded. Rates of tissue loss ranged from 0.90-10.76 cm2 d-1 with a mean of 5.40 ± 3.34 cm2 d-1 (mean ± SD). Bacterial strains were isolated from the PAWS corals at the disease outbreak sites in QLY of the Xisha Archipelago, South China Sea, and included in laboratory-based infection trials to satisfy Koch’s postulates for establishing causality. Following exposure to bacterial concentrations of 105 cells mL-1, the infected colonies exhibited similar signs to those observed in the field. Using phylogenetic 16S rRNA gene analysis, classical phenotypic trait comparison, Biolog automatic identification system, MALDI-TOF mass spectrometry and MALDI Biotyper method, two pathogenic strains were identified as Vibrio alginolyticus . Conclusion/Significance This is the first report of V . alginolyticus as a pathogenic agent of PAWS in the South China Sea. Our results point out an urgent need to develop sensitive detection methods for V . alginolyticus virulence strains and robust diagnostics for coral disease caused by this and Vibrio pathogenic bacterium in the South China Sea. PMID:24086529

  13. Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean.

    PubMed

    Whalen, M C; Innes, R W; Bent, A F; Staskawicz, B J

    1991-01-01

    To develop a model system for molecular genetic analysis of plant-pathogen interactions, we studied the interaction between Arabidopsis thaliana and the bacterial pathogen Pseudomonas syringae pv tomato (Pst). Pst strains were found to be virulent or avirulent on specific Arabidopsis ecotypes, and single ecotypes were resistant to some Pst strains and susceptible to others. In many plant-pathogen interactions, disease resistance is controlled by the simultaneous presence of single plant resistance genes and single pathogen avirulence genes. Therefore, we tested whether avirulence genes in Pst controlled induction of resistance in Arabidopsis. Cosmids that determine avirulence were isolated from Pst genomic libraries, and the Pst avirulence locus avrRpt2 was defined. This allowed us to construct pathogens that differed only by the presence or absence of a single putative avirulence gene. We found that Arabidopsis ecotype Col-0 was susceptible to Pst strain DC3000 but resistant to the same strain carrying avrRpt2, suggesting that a single locus in Col-0 determines resistance. As a first step toward genetically mapping the postulated resistance locus, an ecotype susceptible to infection by DC3000 carrying avrRpt2 was identified. The avrRpt2 locus from Pst was also moved into virulent strains of the soybean pathogen P. syringae pv glycinea to test whether this locus could determine avirulence on soybean. The resulting strains induced a resistant response in a cultivar-specific manner, suggesting that similar resistance mechanisms may function in Arabidopsis and soybean.

  14. Alveolar Type II Epithelial Cells Contribute to the Anti-Influenza A Virus Response in the Lung by Integrating Pathogen- and Microenvironment-Derived Signals.

    PubMed

    Stegemann-Koniszewski, S; Jeron, Andreas; Gereke, Marcus; Geffers, Robert; Kröger, Andrea; Gunzer, Matthias; Bruder, Dunja

    2016-05-03

    Influenza A virus (IAV) periodically causes substantial morbidity and mortality in the human population. In the lower lung, the primary targets for IAV replication are type II alveolar epithelial cells (AECII), which are increasingly recognized for their immunological potential. So far, little is known about their reaction to IAV and their contribution to respiratory antiviral immunity in vivo Therefore, we characterized the AECII response during early IAV infection by analyzing transcriptional regulation in cells sorted from the lungs of infected mice. We detected rapid and extensive regulation of gene expression in AECII following in vivo IAV infection. The comparison to transcriptional regulation in lung tissue revealed a strong contribution of AECII to the respiratory response. IAV infection triggered the expression of a plethora of antiviral factors and immune mediators in AECII with a high prevalence for interferon-stimulated genes. Functional pathway analyses revealed high activity in pathogen recognition, immune cell recruitment, and antigen presentation. Ultimately, our analyses of transcriptional regulation in AECII and lung tissue as well as interferon I/III levels and cell recruitment indicated AECII to integrate signals provided by direct pathogen recognition and surrounding cells. Ex vivo analysis of AECII proved a powerful tool to increase our understanding of their role in respiratory immune responses, and our results clearly show that AECII need to be considered a part of the surveillance and effector system of the lower respiratory tract. In order to confront the health hazard posed by IAV, we need to complete our understanding of its pathogenesis. AECII are primary targets for IAV replication in the lung, and while we are beginning to understand their importance for respiratory immunity, the in vivo AECII response during IAV infection has not been analyzed. In contrast to studies addressing the response of AECII infected with IAV ex vivo, we have

  15. Cladophora (Chlorophyta) spp. harbor human bacterial pathogens in nearshore water of Lake Michigan

    USGS Publications Warehouse

    Ishii, S.; Yan, T.; Shively, D.A.; Byappanahalli, M.N.; Whitman, R.L.; Sadowsky, M.J.

    2006-01-01

    Cladophora glomerata, a macrophytic green alga, is commonly found in the Great Lakes, and significant accumulations occur along shorelines during the summer months. Recently, Cladophora has been shown to harbor high densities of the fecal indicator bacteria Escherichia coli and enterococci. Cladophora may also harbor human pathogens; however, until now, no studies to address this question have been performed. In the present study, we determined whether attachedCladophora, obtained from the Lake Michigan and Burns Ditch (Little Calumet River, Indiana) sides of a breakwater during the summers of 2004 and 2005, harbored the bacterial pathogens Shiga toxin-producing Escherichia coli (STEC),Salmonella, Shigella, and Campylobacter. The presence of potential pathogens and numbers of organisms were determined by using cultural methods and by using conventional PCR, most-probable-number PCR (MPN-PCR), and quantitative PCR (QPCR) performed with genus- and toxin-specific primers and probes. WhileShigella and STEC were detected in 100% and 25%, respectively, of the algal samples obtained near Burns Ditch in 2004, the same pathogens were not detected in samples collected in 2005. MPN-PCR and QPCR allowed enumeration of Salmonella in 40 to 80% of the ditch- and lakeside samples, respectively, and the densities were up to 1.6 × 103 cells per g Cladophora. Similarly, these PCR methods allowed enumeration of up to 5.4 × 102 Campylobacter cells/gCladophora in 60 to 100% of lake- and ditchside samples. The Campylobacterdensities were significantly higher (P < 0.05) in the lakeside Cladophora samples than in the ditchside Cladophora samples. DNA fingerprint analyses indicated that genotypically identical Salmonella isolates were associated with geographically and temporally distinct Cladophora samples. However, Campylobacter isolates were genetically diverse. Since animal hosts are thought to be the primary habitat for

  16. Prevalence of bacterial pathogens and their anti-microbial resistance in Tilapia and their pond water in Trinidad.

    PubMed

    Newaj-Fyzul, A; Mutani, A; Ramsubhag, A; Adesiyun, A

    2008-05-01

    In Trinidad, Tilapia (Oreonchromis spp.) is one of the most important fresh water food fish and the number of farms has been increasing annually. A study was conducted in the local tilapia industry to determine the microbial quality of pond water, prevalence of bacterial pathogens and their anti-microbial resistance using the disk diffusion method. Seventy-five apparently healthy fish and 15 pond water samples from three of the four commercial tilapia fish farms in the country were processed. The 202 bacterial isolates recovered from fish slurry and 88 from water, belonged to 13 and 16 genera respectively. The predominant bacteria from fish slurry were Pseudomonas spp. (60.0%), Aeromonas spp. (44.0%), Plesiomonas (41.3%) and Chromobacterium (36.0%) (P < 0.05; chi(2)) compared with isolates from pond water where Bacillus spp. (80.0%), Staphylococcus spp., Alcaligenes spp. and Aeromonas spp. (60.0%) were most prevalent (P < 0.05; chi(2)). Using eight anti-microbial agents, to test bacteria from five genera (Aeromonas, Chromobacterium, Enterobacter, Plesiomonas and Pseudomonas), 168 (97.1%) of 173 bacterial isolates from fish slurry exhibited resistance to one or more anti-microbial agents compared with 47 (90.4%) of 52 from water (P > 0.05; chi(2)). Resistance was high to ampicillin, 90.2% (158 of 173), erythromycin, 66.5% (115 of 173) and oxytetracycline, 52.6%, (91 of 173) but relatively low to chloramphenicol, 9.8% (17 of 173) and sulphamethoxazole/trimethoprim, 6.4% (11 of 173) (P < 0.05; chi(2)). For pond water isolates, the frequency of resistance across bacterial genera ranged from 75% (nine of 12) for Chromobacter spp. to 100% found amongst Enterobacter spp. (six of six), Plesiomonas spp. (nine of nine) and Pseudomonas spp. (eight of eight) (P < 0.05; chi(2)). Resistance was generally high to ampicillin, 78.8% (41 of 52), erythromycin, 51.9% (27 of 52) and oxytetracycline, 34.5% (18 of 52) but low to sulphamethoxazole/trimethoprim, 7.7% (four of 52) and

  17. Bacterial Seed Endophytes of Domesticated Cucurbits Antagonize Fungal and Oomycete Pathogens Including Powdery Mildew.

    PubMed

    Khalaf, Eman M; Raizada, Manish N

    2018-01-01

    The cucurbit vegetables, including cucumbers, melons and pumpkins, have been cultivated for thousands of years without fungicides. However, their seed germination stage is prone to be infected by soil-borne fungal and oomycete pathogens. Endophytes are symbionts that reside inside plant tissues including seeds. Seed endophytes are founders of the juvenile plant microbiome and can promote host defense at seed germination and later stages. We previously isolated 169 bacterial endophytes associated with seeds of diverse cultivated cucurbits. We hypothesized that these endophytes can antagonize major fungal and oomycete pathogens. Here we tested the endophytes for in vitro antagonism (dual culture assays) against important soil-borne pathogens ( Rhizoctonia solani , Fusarium graminearum , Phytophthora capsici , Pythium aphanideratum ). The endophytes were also assayed in planta (leaf disk and detached leaf bioassays) for antagonism against a foliar pathogen of global importance, Podosphaera fuliginea , the causative agent of cucurbit powdery mildew. The endophytes were further tested in vitro for secretion of volatile organic compounds (VOCs) known to induce plant defense. Extracellular ribonuclease activity was also tested, as a subset of pathogenesis-related (PR) proteins of plant hosts implicated in suppression of fungal pathogens, displays ribonuclease activity. An unexpected majority of the endophytes (70%, 118/169) exhibited antagonism to the five phytopathogens, of which 68% (50/73) of in vitro antagonists belong to the genera Bacillus and Paenibacillus . All Lactococcus and Pantoea endophytes exhibited anti-oomycete activity. However, amongst the most effective inoculants against Podosphaera fuliginea were Pediococcus and Pantoea endophytes. Interestingly, 67% (113/169) of endophytes emitted host defense inducing VOCs (acetoin/diacetyl) and 62% (104/169) secreted extracellular ribonucleases in vitro , respectively. These results show that seeds of cultivated

  18. Bacterial Seed Endophytes of Domesticated Cucurbits Antagonize Fungal and Oomycete Pathogens Including Powdery Mildew

    PubMed Central

    Khalaf, Eman M.; Raizada, Manish N.

    2018-01-01

    The cucurbit vegetables, including cucumbers, melons and pumpkins, have been cultivated for thousands of years without fungicides. However, their seed germination stage is prone to be infected by soil-borne fungal and oomycete pathogens. Endophytes are symbionts that reside inside plant tissues including seeds. Seed endophytes are founders of the juvenile plant microbiome and can promote host defense at seed germination and later stages. We previously isolated 169 bacterial endophytes associated with seeds of diverse cultivated cucurbits. We hypothesized that these endophytes can antagonize major fungal and oomycete pathogens. Here we tested the endophytes for in vitro antagonism (dual culture assays) against important soil-borne pathogens (Rhizoctonia solani, Fusarium graminearum, Phytophthora capsici, Pythium aphanidermatum). The endophytes were also assayed in planta (leaf disk and detached leaf bioassays) for antagonism against a foliar pathogen of global importance, Podosphaera fuliginea, the causative agent of cucurbit powdery mildew. The endophytes were further tested in vitro for secretion of volatile organic compounds (VOCs) known to induce plant defense. Extracellular ribonuclease activity was also tested, as a subset of pathogenesis-related (PR) proteins of plant hosts implicated in suppression of fungal pathogens, displays ribonuclease activity. An unexpected majority of the endophytes (70%, 118/169) exhibited antagonism to the five phytopathogens, of which 68% (50/73) of in vitro antagonists belong to the genera Bacillus and Paenibacillus. All Lactococcus and Pantoea endophytes exhibited anti-oomycete activity. However, amongst the most effective inoculants against Podosphaera fuliginea were Pediococcus and Pantoea endophytes. Interestingly, 67% (113/169) of endophytes emitted host defense inducing VOCs (acetoin/diacetyl) and 62% (104/169) secreted extracellular ribonucleases in vitro, respectively. These results show that seeds of cultivated cucurbits

  19. A multiplex PCR/LDR assay for simultaneous detection and identification of the NIAID category B bacterial food and water-borne pathogens.

    PubMed

    Rundell, Mark S; Pingle, Maneesh; Das, Sanchita; Hussain, Aashiq; Ocheretina, Oksana; Charles, Macarthur; Larone, Davise H; Spitzer, Eric D; Golightly, Linnie; Barany, Francis

    2014-06-01

    Enteric pathogens that cause gastroenteritis remain a major global health concern. The goal of this study was to develop a multiplex PCR/ligation detection reaction (LDR) assay for the detection of all NIAID category B bacterial food and water-borne pathogens directly from stool specimens. To validate the PCR/LDR assay, clinical isolates of Campylobacter spp., Vibrio spp., Shigella spp., Salmonella spp., Listeria monocytogenes, Yersinia enterocolitica, and diarrheagenic Escherichia coli were tested. The sensitivity and specificity of the assay were assessed using a large number of seeded culture-negative stool specimens and a smaller set of clinical specimens from Haiti. The overall sensitivity ranged from 91% to 100% (median 100%) depending on the species. For the majority of organisms, the sensitivity was 100%. The overall specificity based on initial testing ranged from 98% to 100% depending on the species. After additional testing of discordant samples, the lowest specificity was 99.4%. PCR/LDR detected additional category B agents (particularly diarrheagenic E. coli) in 11/40 specimens from Haiti that were culture-positive for V. cholerae and in approximately 1% of routine culture-negative stool specimens from a hospital in New York. This study demonstrated the ability of the PCR/LDR assay to detect a large comprehensive panel of category B enteric bacterial pathogens as well as mixed infections. This type of assay has the potential to provide earlier warnings of possible public health threats and more accurate surveillance of food and water-borne pathogens. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. DgcA, a diguanylate cyclase from Xanthomonas oryzae pv. oryzae regulates bacterial pathogenicity on rice

    PubMed Central

    Su, Jianmei; Zou, Xia; Huang, Liangbo; Bai, Tenglong; Liu, Shu; Yuan, Meng; Chou, Shan-Ho; He, Ya-Wen; Wang, Haihong; He, Jin

    2016-01-01

    Xanthomonas oryzae pv. oryzae (Xoo) is the causal agent of rice blight disease as well as a serious phytopathogen worldwide. It is also one of the model organisms for studying bacteria-plant interactions. Current progress in bacterial signal transduction pathways has identified cyclic di-GMP as a major second messenger molecule in controlling Xanthomonas pathogenicity. However, it still remains largely unclear how c-di-GMP regulates the secretion of bacterial virulence factors in Xoo. In this study, we focused on the important roles played by DgcA (XOO3988), one of our previously identified diguanylate cyclases in Xoo, through further investigating the phenotypes of several dgcA-related mutants, namely, the dgcA-knockout mutant ΔdgcA, the dgcA overexpression strain OdgcA, the dgcA complemented strain CdgcA and the wild-type strain. The results showed that dgcA negatively affected virulence, EPS production, bacterial autoaggregation and motility, but positively triggered biofilm formation via modulating the intracellular c-di-GMP levels. RNA-seq data further identified 349 differentially expressed genes controlled by DgcA, providing a foundation for a more solid understanding of the signal transduction pathways in Xoo. Collectively, the present study highlights DgcA as a major regulator of Xoo virulence, and can serve as a potential target for preventing rice blight diseases. PMID:27193392

  1. [Bacterial biofilm as a cause of urinary tract infection--pathogens, methods of prevention and eradication].

    PubMed

    Ostrowska, Kinga; Strzelczyk, Aleksandra; Różalski, Antoni; Stączek, Paweł

    2013-10-25

    Urinary tract infections (UTI) are one of the common chronic and recurrent bacterial infections. Uropathogens which are able to form biofilm constitute a major etiological factor in UTI, especially among elder patients who are subject to long-term catheterization. It is caused by the capacity of the microorganisms for efficient and permanent colonization of tissues and also adhesion to diverse polymers used for urological catheter production such as propylene, polystyrene, silicone, polyvinyl chloride or silicone coated latex. Antibiotic therapy is the most common treatment for UTI. Fluoroquinolones, nitrofurans, beta-lactams, aminoglycosides, trimethoprim and sulfonamides are used predominantly. However, the biofilm due to its complex structure constitutes an effective barrier to the antibiotics used in the treatment of urinary tract infections. In addition, the growing number of multidrug resistant strains limits the usage of many of the currently available chemotherapeutic agents. Therefore, it seems important to search for new methods of treatment such as coating of catheters with non-pathogenic E. coli strains, the design of vaccines against fimbrial adhesive proteins of the bacterial cells or the use of bacteriophages.

  2. Chronic obstructive pulmonary disease and asthma-associated Proteobacteria, but not commensal Prevotella spp., promote Toll-like receptor 2-independent lung inflammation and pathology.

    PubMed

    Larsen, Jeppe M; Musavian, Hanieh S; Butt, Tariq M; Ingvorsen, Camilla; Thysen, Anna H; Brix, Susanne

    2015-02-01

    Recent studies of healthy human airways have revealed colonization by a distinct commensal bacterial microbiota containing Gram-negative Prevotella spp. However, the immunological properties of these bacteria in the respiratory system remain unknown. Here we compare the innate respiratory immune response to three Gram-negative commensal Prevotella strains (Prevotella melaninogenica, Prevotella nanceiensis and Prevotella salivae) and three Gram-negative pathogenic Proteobacteria known to colonize lungs of patients with chronic obstructive pulmonary disease (COPD) and asthma (Haemophilus influenzae B, non-typeable Haemophilus influenzae and Moraxella catarrhalis). The commensal Prevotella spp. and pathogenic Proteobacteria were found to exhibit intrinsic differences in innate inflammatory capacities on murine lung cells in vitro. In vivo in mice, non-typeable H. influenzae induced severe Toll-like receptor 2 (TLR2)-independent COPD-like inflammation characterized by predominant airway neutrophilia, expression of a neutrophilic cytokine/chemokine profile in lung tissue, and lung immunopathology. In comparison, P. nanceiensis induced a diminished neutrophilic airway inflammation and no detectable lung pathology. Interestingly, the inflammatory airway response to the Gram-negative bacteria P. nanceiensis was completely TLR2-dependent. These findings demonstrate weak inflammatory properties of Gram-negative airway commensal Prevotella spp. that may make colonization by these bacteria tolerable by the respiratory immune system. © 2014 John Wiley & Sons Ltd.

  3. Chronic obstructive pulmonary disease and asthma-associated Proteobacteria, but not commensal Prevotella spp., promote Toll-like receptor 2-independent lung inflammation and pathology

    PubMed Central

    Larsen, Jeppe M; Musavian, Hanieh S; Butt, Tariq M; Ingvorsen, Camilla; Thysen, Anna H; Brix, Susanne

    2015-01-01

    Recent studies of healthy human airways have revealed colonization by a distinct commensal bacterial microbiota containing Gram-negative Prevotella spp. However, the immunological properties of these bacteria in the respiratory system remain unknown. Here we compare the innate respiratory immune response to three Gram-negative commensal Prevotella strains (Prevotella melaninogenica, Prevotella nanceiensis and Prevotella salivae) and three Gram-negative pathogenic Proteobacteria known to colonize lungs of patients with chronic obstructive pulmonary disease (COPD) and asthma (Haemophilus influenzae B, non-typeable Haemophilus influenzae and Moraxella catarrhalis). The commensal Prevotella spp. and pathogenic Proteobacteria were found to exhibit intrinsic differences in innate inflammatory capacities on murine lung cells in vitro. In vivo in mice, non-typeable H. influenzae induced severe Toll-like receptor 2 (TLR2)-independent COPD-like inflammation characterized by predominant airway neutrophilia, expression of a neutrophilic cytokine/chemokine profile in lung tissue, and lung immunopathology. In comparison, P. nanceiensis induced a diminished neutrophilic airway inflammation and no detectable lung pathology. Interestingly, the inflammatory airway response to the Gram-negative bacteria P. nanceiensis was completely TLR2-dependent. These findings demonstrate weak inflammatory properties of Gram-negative airway commensal Prevotella spp. that may make colonization by these bacteria tolerable by the respiratory immune system. PMID:25179236

  4. Bacteriophage remediation of bacterial pathogens in aquaculture: a review of the technology

    PubMed Central

    Richards, Gary P

    2014-01-01

    Bacteriophages have been proposed as an alternative to antibiotic usage and several studies on their application in aquaculture have been reported. This review highlights progress to date on phage therapies for the following fish and shellfish diseases and associated pathogens: hemorrhagic septicemia (Aeromonas hydrophila) in loaches, furunculosis (Aeromonas salmonicida) in trout and salmon, edwardsiellosis (Edwardsiella tarda) in eel, columnaris disease (Flavobacterium columnare) in catfish, rainbow trout fry syndrome or cold water disease (Flavobacterium psychrophilum) in trout and salmon, lactococcosis (Lactococcus spp.) in yellowtail, ulcerative skin lesions (Pseudomonas aeruginosa) in freshwater catfish, bacterial hemorrhagic ascites disease (Pseudomonas plecoglossicida) in ayu fish, streptococcosis (Streptococcus iniae) in flounder, and luminescent vibriosis (Vibrio harveyi) in shrimp. Information is reviewed on phage specificity, host resistance, routes of administration, and dosing of fish and shellfish. Limitations in phage research are described and recommended guidelines are provided for conducting future phage studies involving fish and shellfish. PMID:26713223

  5. Risk factors for community-acquired bacterial meningitis.

    PubMed

    Lundbo, Lene Fogt; Benfield, Thomas

    2017-06-01

    Bacterial meningitis is a significant burden of disease and mortality in all age groups worldwide despite the development of effective conjugated vaccines. The pathogenesis of bacterial meningitis is based on complex and incompletely understood host-pathogen interactions. Some of these are pathogen-specific, while some are shared between different bacteria. We searched the database PubMed to identify host risk factors for bacterial meningitis caused by the pathogens Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae type b, because they are three most common causative bacteria beyond the neonatal period. We describe a number of risk factors; including socioeconomic factors, age, genetic variation of the host and underlying medical conditions associated with increased susceptibility to invasive bacterial infections in both children and adults. As conjugated vaccines are available for these infections, it is of utmost importance to identify high risk patients to be able to prevent invasive disease.

  6. Inhibition of cathelicidin activity by bacterial exopolysaccharides.

    PubMed

    Foschiatti, Michela; Cescutti, Paola; Tossi, Alessandro; Rizzo, Roberto

    2009-06-01

    The interaction of bacterial exopolysaccharides, produced by opportunistic lung pathogens, with antimicrobial peptides of the innate primate immune system was investigated. The exopolysaccharides were produced by Pseudomonas aeruginosa, Inquilinus limosus and clinical isolates of the Burkholderia cepacia complex, bacteria that are all involved in lung infections of cystic fibrosis patients. The effects of the biological activities of three orthologous cathelicidins from Homo sapiens sapiens, Pongo pygmaeus (orangutan) and Presbitys obscurus (dusky leaf monkey) were examined. Inhibition of the antimicrobial activity of peptides was assessed using minimum inhibitory concentration assays on a reference Escherichia coli strain in the presence and absence of exopolysaccharides, whereas complex formation between peptides and exopolysaccharides was investigated by means of circular dichroism, fluorescence spectroscopy and atomic force microscopy. Biological assays revealed that the higher the negative charge of exopolysaccharides the stronger was their inhibiting effect. Spectroscopic studies indicated the formation of molecular complexes of varying stability between peptides and exopolysaccharides, explaining the inhibition. Atomic force microscopy provided a direct visualization of the molecular complexes. A model is proposed where peptides with an alpha-helical conformation interact with exopolysaccharides through electrostatic and other non-covalent interactions.

  7. Messing with Bacterial Quorum Sensing

    PubMed Central

    González, Juan E.; Keshavan, Neela D.

    2006-01-01

    Quorum sensing is widely recognized as an efficient mechanism to regulate expression of specific genes responsible for communal behavior in bacteria. Several bacterial phenotypes essential for the successful establishment of symbiotic, pathogenic, or commensal relationships with eukaryotic hosts, including motility, exopolysaccharide production, biofilm formation, and toxin production, are often regulated by quorum sensing. Interestingly, eukaryotes produce quorum-sensing-interfering (QSI) compounds that have a positive or negative influence on the bacterial signaling network. This eukaryotic interference could result in further fine-tuning of bacterial quorum sensing. Furthermore, recent work involving the synthesis of structural homologs to the various quorum-sensing signal molecules has resulted in the development of additional QSI compounds that could be used to control pathogenic bacteria. The creation of transgenic plants that express bacterial quorum-sensing genes is yet another strategy to interfere with bacterial behavior. Further investigation on the manipulation of quorum-sensing systems could provide us with powerful tools against harmful bacteria. PMID:17158701

  8. Pharmacodynamic and pharmacokinetic profiling of delafloxacin in a murine lung model against community-acquired respiratory tract pathogens.

    PubMed

    Thabit, Abrar K; Crandon, Jared L; Nicolau, David P

    2016-11-01

    Increasing antimicrobial resistance in community-acquired pneumonia (CAP) pathogens has contributed to infection-related morbidity and mortality. Delafloxacin is a novel fluoroquinolone with broad-spectrum activity against Gram-positive and -negative organisms, including Streptococcus pneumoniae and methicillin-resistant Staphylococcus aureus (MRSA). This study aimed to define the pharmacodynamic profile of delafloxacin against CAP pathogens using a neutropenic murine lung infection model. Five S. pneumoniae, 2 methicillin-susceptible S. aureus (MSSA), 2 MRSA and 2 Klebsiella pneumoniae isolates were studied. Delafloxacin doses varied from 0.5 mg/kg/day to 640 mg/kg/day and were given as once-daily to every 3 h regimens over the 24-h treatment period. Efficacy was measured as the change in log 10 CFU at 24 h compared with 0-h controls. Plasma and bronchopulmonary pharmacokinetic studies were conducted. Delafloxacin demonstrated potent in vitro and in vivo activity. Delafloxacin demonstrated high penetration into the lung compartment, as epithelial lining fluid concentrations were substantially higher than free drug in plasma. The ratio of the area under the free drug concentration-time curve to the minimum inhibitory concentration of the infecting organism (fAUC/MIC) was the parameter that best correlated with the efficacy of the drug, and the magnitude required to achieve 1 log 10 CFU reduction was 31.8, 24.7, 0.4 and 9.6 for S. pneumoniae, MRSA, MSSA and K. pneumoniae, respectively. The observed in vivo efficacy of delafloxacin was supported by the high pulmonary disposition of the compound. The results derived from this pre-clinical lung model support the continued investigation of delafloxacin for the treatment of community-acquired lower respiratory tract infections. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  9. Novel bacterial pathogen Acaricomes phytoseiuli causes severe disease symptoms and histopathological changes in the predatory mite Phytoseiulus persimilis (Acari, Phytoseiidae).

    PubMed

    Schütte, Conny; Gols, Rieta; Kleespies, Regina G; Poitevin, Olivier; Dicke, Marcel

    2008-06-01

    were not observed in control predators that were exposed to sterile water. The present data prove that A. phytoseiuli can infect the predatory mite P. persimilis and induce the NR-syndrome and characteristic histopathological changes in adult female P. persimilis. This is the first record of a bacterial pathogen in a phytoseiid mite and the first description of pathogenic effects of a bacterial species in the genus Acaricomes.

  10. Comparison of fecal indicators with pathogenic bacteria and rotavirus in groundwater

    PubMed Central

    Ferguson, Andrew S.; Layton, Alice C.; Mailloux, Brian J; Culligan, Patricia J.; Williams, Daniel E.; Smartt, Abby E.; Sayler, Gary S.; Feighery, John; McKay, Larry; Knappett, Peter S.K.; Alexandrova, Ekaterina; Arbit, Talia; Emch, Michael; Escamilla, Veronica; Ahmed, Kazi Matin; Alam, Md. Jahangir; Streatfield, P. Kim; Yunus, Mohammad; van Geen, Alexander

    2012-01-01

    Groundwater is routinely analyzed for fecal indicators but direct comparisons of fecal indicators to the presence of bacterial and viral pathogens are rare. This study was conducted in rural Bangladesh where the human population density is high, sanitation is poor, and groundwater pumped from shallow tubewells is often contaminated with fecal bacteria. Five indicator microorganisms (E. coli, total coliform, F+RNA coliphage, Bacteroides and human-associated Bacteroides) and various environmental parameters were compared to the direct detection of waterborne pathogens by quantitative PCR in groundwater pumped from 50 tubewells. Rotavirus was detected in groundwater filtrate from the largest proportion of tubewells (40%), followed by Shigella (10%), Vibrio (10%), and pathogenic E. coli (8%). Spearman rank correlations and sensitivity-specificity calculations indicate that some, but not all, combinations of indicators and environmental parameters can predict the presence of pathogens. Culture-dependent fecal indicator bacteria measured on a single date did not predict total bacterial pathogens, but annually averaged monthly measurements of culturable E. coli did improve prediction for total bacterial pathogens. A qPCR-based E. coli assay was the best indicator for the bacterial pathogens. F+RNA coliphage were neither correlated nor sufficiently sensitive towards rotavirus, but were predictive of bacterial pathogens. Since groundwater cannot be excluded as a significant source of diarrheal disease in Bangladesh and neighboring countries with similar characteristics, the need to develop more effective methods for screening tubewells with respect to microbial contamination is necessary. PMID:22705866

  11. Comparative metabolomic analysis highlights the involvement of sugars and glycerol in melatonin-mediated innate immunity against bacterial pathogen in Arabidopsis

    PubMed Central

    Qian, Yongqiang; Tan, Dun-Xian; Reiter, Russel J.; Shi, Haitao

    2015-01-01

    Melatonin is an important secondary messenger in plant innate immunity against the bacterial pathogen Pseudomonas syringe pv. tomato (Pst) DC3000 in the salicylic acid (SA)- and nitric oxide (NO)-dependent pathway. However, the metabolic homeostasis in melatonin-mediated innate immunity is unknown. In this study, comparative metabolomic analysis found that the endogenous levels of both soluble sugars (fructose, glucose, melibose, sucrose, maltose, galatose, tagatofuranose and turanose) and glycerol were commonly increased after both melatonin treatment and Pst DC3000 infection in Arabidopsis. Further studies showed that exogenous pre-treatment with fructose, glucose, sucrose, or glycerol increased innate immunity against Pst DC3000 infection in wild type (Col-0) Arabidopsis plants, but largely alleviated their effects on the innate immunity in SA-deficient NahG plants and NO-deficient mutants. This indicated that SA and NO are also essential for sugars and glycerol-mediated disease resistance. Moreover, exogenous fructose, glucose, sucrose and glycerol pre-treatments remarkably increased endogenous NO level, but had no significant effect on the endogenous melatonin level. Taken together, this study highlights the involvement of sugars and glycerol in melatonin-mediated innate immunity against bacterial pathogen in SA and NO-dependent pathway in Arabidopsis. PMID:26508076

  12. Mevalonate 5-diphosphate mediates ATP binding to the mevalonate diphosphate decarboxylase from the bacterial pathogen Enterococcus faecalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chun-Liang; Mermoud, James C.; Paul, Lake N.

    The mevalonate pathway produces isopentenyl diphosphate (IPP), a building block for polyisoprenoid synthesis, and is a crucial pathway for growth of the human bacterial pathogen Enterococcus faecalis. The final enzyme in this pathway, mevalonate diphosphate decarboxylase (MDD), acts on mevalonate diphosphate (MVAPP) to produce IPP while consuming ATP. This essential enzyme has been suggested as a therapeutic target for the treatment of drug-resistant bacterial infections. Here, we report functional and structural studies on the mevalonate diphosphate decarboxylase from E. faecalis (MDDEF). The MDDEF crystal structure in complex with ATP (MDDEF–ATP) revealed that the phosphate-binding loop (amino acids 97–105) is notmore » involved in ATP binding and that the phosphate tail of ATP in this structure is in an outward-facing position pointing away from the active site. This suggested that binding of MDDEF to MVAPP is necessary to guide ATP into a catalytically favorable position. Enzymology experiments show that the MDDEF performs a sequential ordered bi-substrate reaction with MVAPP as the first substrate, consistent with the isothermal titration calorimetry (ITC) experiments. On the basis of ITC results, we propose that this initial prerequisite binding of MVAPP enhances ATP binding. In summary, our findings reveal a substrate-induced substrate-binding event that occurs during the MDDEF-catalyzed reaction. The disengagement of the phosphate-binding loop concomitant with the alternative ATP-binding configuration may provide the structural basis for antimicrobial design against these pathogenic enterococci.« less

  13. Enhanced Disease Susceptibility1 Mediates Pathogen Resistance and Virulence Function of a Bacterial Effector in Soybean1[C][W][OPEN

    PubMed Central

    Wang, Jialin; Shine, M.B.; Gao, Qing-Ming; Navarre, Duroy; Jiang, Wei; Liu, Chunyan; Chen, Qingshan; Hu, Guohua; Kachroo, Aardra

    2014-01-01

    Enhanced disease susceptibility1 (EDS1) and phytoalexin deficient4 (PAD4) are well-known regulators of both basal and resistance (R) protein-mediated plant defense. We identified two EDS1-like (GmEDS1a/GmEDS1b) proteins and one PAD4-like (GmPAD4) protein that are required for resistance signaling in soybean (Glycine max). Consistent with their significant structural conservation to Arabidopsis (Arabidopsis thaliana) counterparts, constitutive expression of GmEDS1 or GmPAD4 complemented the pathogen resistance defects of Arabidopsis eds1 and pad4 mutants, respectively. Interestingly, however, the GmEDS1 and GmPAD4 did not complement pathogen-inducible salicylic acid accumulation in the eds1/pad4 mutants. Furthermore, the GmEDS1a/GmEDS1b proteins were unable to complement the turnip crinkle virus coat protein-mediated activation of the Arabidopsis R protein Hypersensitive reaction to Turnip crinkle virus (HRT), even though both interacted with HRT. Silencing GmEDS1a/GmEDS1b or GmPAD4 reduced basal and pathogen-inducible salicylic acid accumulation and enhanced soybean susceptibility to virulent pathogens. The GmEDS1a/GmEDS1b and GmPAD4 genes were also required for Resistance to Pseudomonas syringae pv glycinea2 (Rpg2)-mediated resistance to Pseudomonas syringae. Notably, the GmEDS1a/GmEDS1b proteins interacted with the cognate bacterial effector AvrA1 and were required for its virulence function in rpg2 plants. Together, these results show that despite significant structural similarities, conserved defense signaling components from diverse plants can differ in their functionalities. In addition, we demonstrate a role for GmEDS1 in regulating the virulence function of a bacterial effector. PMID:24872380

  14. Effects of Bacillus amyloliquefaciens FZB42 on Lettuce Growth and Health under Pathogen Pressure and Its Impact on the Rhizosphere Bacterial Community

    PubMed Central

    Rändler, Manuela; Schmid, Michael; Junge, Helmut; Borriss, Rainer; Hartmann, Anton; Grosch, Rita

    2013-01-01

    The soil-borne pathogen Rhizoctonia solani is responsible for crop losses on a wide range of important crops worldwide. The lack of effective control strategies and the increasing demand for organically grown food has stimulated research on biological control. The aim of the present study was to evaluate the rhizosphere competence of the commercially available inoculant Bacillus amyloliquefaciens FZB42 on lettuce growth and health together with its impact on the indigenous rhizosphere bacterial community in field and pot experiments. Results of both experiments demonstrated that FZB42 is able to effectively colonize the rhizosphere (7.45 to 6.61 Log 10 CFU g−1 root dry mass) within the growth period of lettuce in the field. The disease severity (DS) of bottom rot on lettuce was significantly reduced from severe symptoms with DS category 5 to slight symptom expression with DS category 3 on average through treatment of young plants with FZB42 before and after planting. The 16S rRNA gene based fingerprinting method terminal restriction fragment length polymorphism (T-RFLP) showed that the treatment with FZB42 did not have a major impact on the indigenous rhizosphere bacterial community. However, the bacterial community showed a clear temporal shift. The results also indicated that the pathogen R. solani AG1-IB affects the rhizosphere microbial community after inoculation. Thus, we revealed that the inoculant FZB42 could establish itself successfully in the rhizosphere without showing any durable effect on the rhizosphere bacterial community. PMID:23935892

  15. Dendritic cells modulate lung response to Pseudomonas aeruginosa in a murine model of sepsis-induced immune dysfunction.

    PubMed

    Pène, Frédéric; Zuber, Benjamin; Courtine, Emilie; Rousseau, Christophe; Ouaaz, Fatah; Toubiana, Julie; Tazi, Asmaa; Mira, Jean-Paul; Chiche, Jean-Daniel

    2008-12-15

    Host infection by pathogens triggers an innate immune response leading to a systemic inflammatory response, often followed by an immune dysfunction which can favor the emergence of secondary infections. Dendritic cells (DCs) link innate and adaptive immunity and may be centrally involved in the regulation of sepsis-induced immune dysfunction. We assessed the contribution of DCs to lung defense in a murine model of sublethal polymicrobial sepsis (cecal ligature and puncture, CLP). In this model, bone marrow-derived DCs (BMDCs) retained an immature phenotype, associated with decreased capacity of IL-12p70 release and impaired priming of T cell lymphocytes. Eight days after CLP surgery, we induced a secondary pulmonary infection through intratracheal instillation of 5 x 10(6) CFUs of Pseudomonas aeruginosa. Whereas all sham-operated mice survived, 80% of post-CLP mice died after secondary pneumonia. Post-CLP mice exhibited marked lung damage with early recruitment of neutrophils, cytokine imbalance with decreased IL-12p70 production, and increased IL-10 release, but no defective bacterial lung clearance, while systemic bacterial dissemination was almost constant. Concomitant intrapulmonary administration of exogenous BMDCs into post-CLP mice challenged with P. aeruginosa dramatically improved survival. BMDCs did not improve bacterial lung clearance, but delayed neutrophil recruitment, strongly attenuated the early peak of TNF-alpha and restored an adequate Il-12p70/IL-10 balance in post-CLP mice. Thus, adoptive transfer of BMDCs reversed sepsis-induced immune dysfunction in a relevant model of secondary P. aeruginosa pneumonia. Unexpectedly, the mechanism of action of BMDCs did not involve enhanced antibacterial activity, but occurred by dampening the pulmonary inflammatory response.

  16. An operon for production of bioactive gibberellin A4 phytohormone with wide distribution in the bacterial rice leaf streak pathogen Xanthomonas oryzae pv. oryzicola.

    PubMed

    Nagel, Raimund; Turrini, Paula C G; Nett, Ryan S; Leach, Jan E; Verdier, Valérie; Van Sluys, Marie-Anne; Peters, Reuben J

    2017-05-01

    Phytopathogens have developed elaborate mechanisms to attenuate the defense response of their host plants, including convergent evolution of complex pathways for production of the GA phytohormones, which were actually first isolated from the rice fungal pathogen Gibberella fujikuroi. The rice bacterial pathogen Xanthomonas oryzae pv. oryzicola (Xoc) has been demonstrated to contain a biosynthetic operon with cyclases capable of producing the universal GA precursor ent-kaurene. Genetic (knock-out) studies indicate that the derived diterpenoid serves as a virulence factor for this rice leaf streak pathogen, serving to reduce the jasmonic acid-mediated defense response. Here the functions of the remaining genes in the Xoc operon are elucidated and the distribution of the operon in X. oryzae is investigated in over 100 isolates. The Xoc operon leads to production of the bioactive GA 4 , an additional step beyond production of the penultimate precursor GA 9 mediated by the homologous operons recently characterized from rhizobia. Moreover, this GA biosynthetic operon was found to be widespread in Xoc (> 90%), but absent in the other major X. oryzae pathovar. These results indicate selective pressure for production of GA 4 in the distinct lifestyle of Xoc, and the importance of GA to both fungal and bacterial pathogens of rice. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  17. Adenoid Reservoir for Pathogenic Biofilm Bacteria▿

    PubMed Central

    Nistico, L.; Kreft, R.; Gieseke, A.; Coticchia, J. M.; Burrows, A.; Khampang, P.; Liu, Y.; Kerschner, J. E.; Post, J. C.; Lonergan, S.; Sampath, R.; Hu, F. Z.; Ehrlich, G. D.; Stoodley, P.; Hall-Stoodley, L.

    2011-01-01

    Biofilms of pathogenic bacteria are present on the middle ear mucosa of children with chronic otitis media (COM) and may contribute to the persistence of pathogens and the recalcitrance of COM to antibiotic treatment. Controlled studies indicate that adenoidectomy is effective in the treatment of COM, suggesting that the adenoids may act as a reservoir for COM pathogens. To investigate the bacterial community in the adenoid, samples were obtained from 35 children undergoing adenoidectomy for chronic OM or obstructive sleep apnea. We used a novel, culture-independent molecular diagnostic methodology, followed by confocal microscopy, to investigate the in situ distribution and organization of pathogens in the adenoids to determine whether pathogenic bacteria exhibited criteria characteristic of biofilms. The Ibis T5000 Universal Biosensor System was used to interrogate the extent of the microbial diversity within adenoid biopsy specimens. Using a suite of 16 broad-range bacterial primers, we demonstrated that adenoids from both diagnostic groups were colonized with polymicrobial biofilms. Haemophilus influenzae was present in more adenoids from the COM group (P = 0.005), but there was no significant difference between the two patient groups for Streptococcus pneumoniae or Staphylococcus aureus. Fluorescence in situ hybridization, lectin binding, and the use of antibodies specific for host epithelial cells demonstrated that pathogens were aggregated, surrounded by a carbohydrate matrix, and localized on and within the epithelial cell surface, which is consistent with criteria for bacterial biofilms. PMID:21307211

  18. Microfluidic system for the identification of bacterial pathogens causing urinary tract infections

    NASA Astrophysics Data System (ADS)

    Becker, Holger; Hlawatsch, Nadine; Haraldsson, Tommy; van der Wijngaart, Wouter; Lind, Anders; Malhotra-Kumar, Surbi; Turlej-Rogacka, Agata; Goossens, Herman

    2015-03-01

    Urinary tract infections (UTIs) are among the most common bacterial infections and pose a significant healthcare burden. The growing trend in antibiotic resistance makes it mandatory to develop diagnostic kits which allow not only the determination of a pathogen but also the antibiotic resistances. We have developed a microfluidic cartridge which takes a direct urine sample, extracts the DNA, performs an amplification using batch-PCR and flows the sample over a microarray which is printed into a microchannel for fluorescence detection. The cartridge is injection-molded out of COP and contains a set of two-component injection-molded rotary valves to switch between input and to isolate the PCR chamber during thermocycling. The hybridization probes were spotted directly onto a functionalized section of the outlet microchannel. We have been able to successfully perform PCR of E.coli in urine in this chip and perform a fluorescence detection of PCR products. An upgraded design of the cartridge contains the buffers and reagents in blisters stored on the chip.

  19. Selenazolinium Salts as "Small Molecule Catalysts" with High Potency against ESKAPE Bacterial Pathogens.

    PubMed

    Witek, Karolina; Nasim, Muhammad Jawad; Bischoff, Markus; Gaupp, Rosmarie; Arsenyan, Pavel; Vasiljeva, Jelena; Marć, Małgorzata Anna; Olejarz, Agnieszka; Latacz, Gniewomir; Kieć-Kononowicz, Katarzyna; Handzlik, Jadwiga; Jacob, Claus

    2017-12-08

    In view of the pressing need to identify new antibacterial agents able to combat multidrug-resistant bacteria, we investigated a series of fused selenazolinium derivatives ( 1 - 8 ) regarding their in vitro antimicrobial activities against 25 ESKAPE-pathogen strains. Ebselen was used as reference compound. Most of the selenocompounds demonstrated an excellent in vitro activity against all S. aureus strains, with activities comparable to or even exceeding the one of ebselen. In contrast to ebselen, some selenazolinium derivatives ( 1 , 3 , and 7 ) even displayed significant actions against all Gram-negative pathogens tested. The 3-bromo-2-(1-hydroxy-1-methylethyl)[1,2]selenazolo[2,3- a ]pyridinium chloride ( 1 ) was particularly active (minimum inhibitory concentrations, MICs: 0.31-1.24 µg/mL for MRSA, and 0.31-2.48 µg/mL for Gram-negative bacteria) and devoid of any significant mutagenicity in the Ames assay. Our preliminary mechanistic studies in cell culture indicated that their mode of action is likely to be associated with an alteration of intracellular levels of glutathione and cysteine thiols of different proteins in the bacterial cells, hence supporting the idea that such compounds interact with the intracellular thiolstat. This alteration of pivotal cysteine residues is most likely the result of a direct or catalytic oxidative modification of such residues by the highly reactive selenium species (RSeS) employed.

  20. Coxiella burnetii, a hidden pathogen in interstitial lung disease?

    PubMed

    Melenotte, Cléa; Izaaryene, Jalal-Jean; Gomez, Carine; Delord, Marion; Prudent, Elsa; Lepidi, Hubert; Mediannikov, Oleg; Lacoste, Marion; Djossou, Felix; Mania, Alexandre; Bernard, Noelle; Huchot, Eric; Mège, Jean-Louis; Brégeon, Fabienne; Raoult, Didier

    2018-04-06

    We report 7 patients with interstitial lung disease (ILD) on CT-scan reviewing. C. burnetii was diagnosed in situ in one lung biopsy performed. All patients had advanced interstitial lung fibrosis and persistent C. burnetii infection. Q fever may be a cofactor of ILD, especially in endemic areas.

  1. Bacterial and parasitic diseases of parrots.

    PubMed

    Doneley, Robert J T

    2009-09-01

    As wild-caught birds become increasingly rare in aviculture, there is a corresponding decline in the incidence of bacterial and parasitic problems and an increase in the recognition of the importance of maintaining health through better nutrition and husbandry. Nevertheless, the relatively close confines of captivity mean an increased pathogen load in the environment in which companion and aviary parrots live. This increased pathogen load leads to greater exposure of these birds to bacteria and parasites, and consequently a greater risk of infection and disease. This article discusses bacterial and parasitic infections in companion and aviary parrots. It includes the origins, pathogens, diagnosis, treatment, and some of the associated risk factors.

  2. Influence of lung CT changes in chronic obstructive pulmonary disease (COPD) on the human lung microbiome

    PubMed Central

    Schloter-Hai, Brigitte; Kublik, Susanne; Granitsiotis, Michael S.; Boschetto, Piera; Stendardo, Mariarita; Barta, Imre; Dome, Balazs; Deleuze, Jean-François; Boland, Anne; Müller-Quernheim, Joachim; Prasse, Antje; Welte, Tobias; Hohlfeld, Jens; Subramanian, Deepak; Parr, David; Gut, Ivo Glynne; Greulich, Timm; Koczulla, Andreas Rembert; Nowinski, Adam; Gorecka, Dorota; Singh, Dave; Gupta, Sumit; Brightling, Christopher E.; Hoffmann, Harald; Frankenberger, Marion; Hofer, Thomas P.; Burggraf, Dorothe; Heiss-Neumann, Marion; Ziegler-Heitbrock, Loems; Schloter, Michael; zu Castell, Wolfgang

    2017-01-01

    Background Changes in microbial community composition in the lung of patients suffering from moderate to severe COPD have been well documented. However, knowledge about specific microbiome structures in the human lung associated with CT defined abnormalities is limited. Methods Bacterial community composition derived from brush samples from lungs of 16 patients suffering from different CT defined subtypes of COPD and 9 healthy subjects was analyzed using a cultivation independent barcoding approach applying 454-pyrosequencing of 16S rRNA gene fragment amplicons. Results We could show that bacterial community composition in patients with changes in CT (either airway or emphysema type changes, designated as severe subtypes) was different from community composition in lungs of patients without visible changes in CT as well as from healthy subjects (designated as mild COPD subtype and control group) (PC1, Padj = 0.002). Higher abundance of Prevotella in samples from patients with mild COPD subtype and from controls and of Streptococcus in the severe subtype cases mainly contributed to the separation of bacterial communities of subjects. No significant effects of treatment with inhaled glucocorticoids on bacterial community composition were detected within COPD cases with and without abnormalities in CT in PCoA. Co-occurrence analysis suggests the presence of networks of co-occurring bacteria. Four communities of positively correlated bacteria were revealed. The microbial communities can clearly be distinguished by their associations with the CT defined disease phenotype. Conclusion Our findings indicate that CT detectable structural changes in the lung of COPD patients, which we termed severe subtypes, are associated with alterations in bacterial communities, which may induce further changes in the interaction between microbes and host cells. This might result in a changed interplay with the host immune system. PMID:28704452

  3. Influence of lung CT changes in chronic obstructive pulmonary disease (COPD) on the human lung microbiome.

    PubMed

    Engel, Marion; Endesfelder, David; Schloter-Hai, Brigitte; Kublik, Susanne; Granitsiotis, Michael S; Boschetto, Piera; Stendardo, Mariarita; Barta, Imre; Dome, Balazs; Deleuze, Jean-François; Boland, Anne; Müller-Quernheim, Joachim; Prasse, Antje; Welte, Tobias; Hohlfeld, Jens; Subramanian, Deepak; Parr, David; Gut, Ivo Glynne; Greulich, Timm; Koczulla, Andreas Rembert; Nowinski, Adam; Gorecka, Dorota; Singh, Dave; Gupta, Sumit; Brightling, Christopher E; Hoffmann, Harald; Frankenberger, Marion; Hofer, Thomas P; Burggraf, Dorothe; Heiss-Neumann, Marion; Ziegler-Heitbrock, Loems; Schloter, Michael; Zu Castell, Wolfgang

    2017-01-01

    Changes in microbial community composition in the lung of patients suffering from moderate to severe COPD have been well documented. However, knowledge about specific microbiome structures in the human lung associated with CT defined abnormalities is limited. Bacterial community composition derived from brush samples from lungs of 16 patients suffering from different CT defined subtypes of COPD and 9 healthy subjects was analyzed using a cultivation independent barcoding approach applying 454-pyrosequencing of 16S rRNA gene fragment amplicons. We could show that bacterial community composition in patients with changes in CT (either airway or emphysema type changes, designated as severe subtypes) was different from community composition in lungs of patients without visible changes in CT as well as from healthy subjects (designated as mild COPD subtype and control group) (PC1, Padj = 0.002). Higher abundance of Prevotella in samples from patients with mild COPD subtype and from controls and of Streptococcus in the severe subtype cases mainly contributed to the separation of bacterial communities of subjects. No significant effects of treatment with inhaled glucocorticoids on bacterial community composition were detected within COPD cases with and without abnormalities in CT in PCoA. Co-occurrence analysis suggests the presence of networks of co-occurring bacteria. Four communities of positively correlated bacteria were revealed. The microbial communities can clearly be distinguished by their associations with the CT defined disease phenotype. Our findings indicate that CT detectable structural changes in the lung of COPD patients, which we termed severe subtypes, are associated with alterations in bacterial communities, which may induce further changes in the interaction between microbes and host cells. This might result in a changed interplay with the host immune system.

  4. Comparison of fecal indicators with pathogenic bacteria and rotavirus in groundwater.

    PubMed

    Ferguson, Andrew S; Layton, Alice C; Mailloux, Brian J; Culligan, Patricia J; Williams, Daniel E; Smartt, Abby E; Sayler, Gary S; Feighery, John; McKay, Larry D; Knappett, Peter S K; Alexandrova, Ekaterina; Arbit, Talia; Emch, Michael; Escamilla, Veronica; Ahmed, Kazi Matin; Alam, Md Jahangir; Streatfield, P Kim; Yunus, Mohammad; van Geen, Alexander

    2012-08-01

    Groundwater is routinely analyzed for fecal indicators but direct comparisons of fecal indicators to the presence of bacterial and viral pathogens are rare. This study was conducted in rural Bangladesh where the human population density is high, sanitation is poor, and groundwater pumped from shallow tubewells is often contaminated with fecal bacteria. Five indicator microorganisms (E. coli, total coliform, F+RNA coliphage, Bacteroides and human-associated Bacteroides) and various environmental parameters were compared to the direct detection of waterborne pathogens by quantitative PCR in groundwater pumped from 50 tubewells. Rotavirus was detected in groundwater filtrate from the largest proportion of tubewells (40%), followed by Shigella (10%), Vibrio (10%), and pathogenic E. coli (8%). Spearman rank correlations and sensitivity-specificity calculations indicate that some, but not all, combinations of indicators and environmental parameters can predict the presence of pathogens. Culture-dependent fecal indicator bacteria measured on a single date did not predict total bacterial pathogens, but annually averaged monthly measurements of culturable E. coli did improve prediction for total bacterial pathogens. A qPCR-based E. coli assay was the best indicator for the bacterial pathogens. F+RNA coliphage were neither correlated nor sufficiently sensitive towards rotavirus, but were predictive of bacterial pathogens. Since groundwater cannot be excluded as a significant source of diarrheal disease in Bangladesh and neighboring countries with similar characteristics, the need to develop more effective methods for screening tubewells with respect to microbial contamination is necessary. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. [Spontaneous bacterial peritonitis].

    PubMed

    Velkey, Bálint; Vitális, Eszter; Vitális, Zsuzsanna

    2017-01-01

    Spontaneous bacterial peritonitis occurs most commonly in cirrhotic patients with ascites. Pathogens get into the circulation by intestinal translocation and colonize in peritoneal fluid. Diagnosis of spontaneous bacterial peritonitis is based on elevated polymorphonuclear leukocyte count in the ascites (>0,25 G/L). Ascites culture is often negative but aids to get information about antibiotic sensitivity in positive cases. Treatment in stable patient can be intravenous then orally administrated ciprofloxacin or amoxicillin/clavulanic acid, while in severe cases intravenous III. generation cephalosporin. Nosocomial spontaneous bacterial peritonitis often caused by Gram-positive bacteria and multi-resistant pathogens can also be expected thus carbapenem should be the choice of the empiric treatment. Antibiotic prophylaxis should be considered. Norfloxacin is used most commonly, but changes are expected due to increase in quinolone resistance. As a primary prophylaxis, a short-term antibiotic treatment is recommended after gastrointestinal bleeding for 5 days, while long-term prophylaxis is for patients with low ascites protein, and advanced disease (400 mg/day). Secondary prophylaxis is recommended for all patients recovered from spontaneous bacterial peritonitis. Due to increasing antibiotic use of antibiotics prophylaxis is debated to some degree. Orv. Hetil., 2017, 158(2), 50-57.

  6. RecA: a universal drug target in pathogenic bacteria.

    PubMed

    Pavlopoulou, Athanasia

    2018-01-01

    The spread of bacterial infectious diseases due to the development of resistance to antibiotic drugs in pathogenic bacteria is an emerging global concern. Therefore, the efficacious management and prevention of bacterial infections are major public health challenges. RecA is a pleiotropic recombinase protein that has been demonstrated to be implicated strongly in the bacterial drug resistance, survival and pathogenicity. In this minireview, RecA's role in the development of antibiotic resistance and its potential as an antimicrobial drug target are discussed.

  7. Centrality in the host-pathogen interactome is associated with pathogen fitness during infection.

    PubMed

    Crua Asensio, Núria; Muñoz Giner, Elisabet; de Groot, Natalia Sánchez; Torrent Burgas, Marc

    2017-01-16

    To perform their functions proteins must interact with each other, but how these interactions influence bacterial infection remains elusive. Here we demonstrate that connectivity in the host-pathogen interactome is directly related to pathogen fitness during infection. Using Y. pestis as a model organism, we show that the centrality-lethality rule holds for pathogen fitness during infection but only when the host-pathogen interactome is considered. Our results suggest that the importance of pathogen proteins during infection is directly related to their number of interactions with the host. We also show that pathogen proteins causing an extensive rewiring of the host interactome have a higher impact in pathogen fitness during infection. Hence, we conclude that hubs in the host-pathogen interactome should be explored as promising targets for antimicrobial drug design.

  8. Centrality in the host-pathogen interactome is associated with pathogen fitness during infection

    NASA Astrophysics Data System (ADS)

    Crua Asensio, Núria; Muñoz Giner, Elisabet; de Groot, Natalia Sánchez; Torrent Burgas, Marc

    2017-01-01

    To perform their functions proteins must interact with each other, but how these interactions influence bacterial infection remains elusive. Here we demonstrate that connectivity in the host-pathogen interactome is directly related to pathogen fitness during infection. Using Y. pestis as a model organism, we show that the centrality-lethality rule holds for pathogen fitness during infection but only when the host-pathogen interactome is considered. Our results suggest that the importance of pathogen proteins during infection is directly related to their number of interactions with the host. We also show that pathogen proteins causing an extensive rewiring of the host interactome have a higher impact in pathogen fitness during infection. Hence, we conclude that hubs in the host-pathogen interactome should be explored as promising targets for antimicrobial drug design.

  9. Prediction of molecular mimicry candidates in human pathogenic bacteria.

    PubMed

    Doxey, Andrew C; McConkey, Brendan J

    2013-08-15

    Molecular mimicry of host proteins is a common strategy adopted by bacterial pathogens to interfere with and exploit host processes. Despite the availability of pathogen genomes, few studies have attempted to predict virulence-associated mimicry relationships directly from genomic sequences. Here, we analyzed the proteomes of 62 pathogenic and 66 non-pathogenic bacterial species, and screened for the top pathogen-specific or pathogen-enriched sequence similarities to human proteins. The screen identified approximately 100 potential mimicry relationships including well-characterized examples among the top-scoring hits (e.g., RalF, internalin, yopH, and others), with about 1/3 of predicted relationships supported by existing literature. Examination of homology to virulence factors, statistically enriched functions, and comparison with literature indicated that the detected mimics target key host structures (e.g., extracellular matrix, ECM) and pathways (e.g., cell adhesion, lipid metabolism, and immune signaling). The top-scoring and most widespread mimicry pattern detected among pathogens consisted of elevated sequence similarities to ECM proteins including collagens and leucine-rich repeat proteins. Unexpectedly, analysis of the pathogen counterparts of these proteins revealed that they have evolved independently in different species of bacterial pathogens from separate repeat amplifications. Thus, our analysis provides evidence for two classes of mimics: complex proteins such as enzymes that have been acquired by eukaryote-to-pathogen horizontal transfer, and simpler repeat proteins that have independently evolved to mimic the host ECM. Ultimately, computational detection of pathogen-specific and pathogen-enriched similarities to host proteins provides insights into potentially novel mimicry-mediated virulence mechanisms of pathogenic bacteria.

  10. Prediction of molecular mimicry candidates in human pathogenic bacteria

    PubMed Central

    Doxey, Andrew C; McConkey, Brendan J

    2013-01-01

    Molecular mimicry of host proteins is a common strategy adopted by bacterial pathogens to interfere with and exploit host processes. Despite the availability of pathogen genomes, few studies have attempted to predict virulence-associated mimicry relationships directly from genomic sequences. Here, we analyzed the proteomes of 62 pathogenic and 66 non-pathogenic bacterial species, and screened for the top pathogen-specific or pathogen-enriched sequence similarities to human proteins. The screen identified approximately 100 potential mimicry relationships including well-characterized examples among the top-scoring hits (e.g., RalF, internalin, yopH, and others), with about 1/3 of predicted relationships supported by existing literature. Examination of homology to virulence factors, statistically enriched functions, and comparison with literature indicated that the detected mimics target key host structures (e.g., extracellular matrix, ECM) and pathways (e.g., cell adhesion, lipid metabolism, and immune signaling). The top-scoring and most widespread mimicry pattern detected among pathogens consisted of elevated sequence similarities to ECM proteins including collagens and leucine-rich repeat proteins. Unexpectedly, analysis of the pathogen counterparts of these proteins revealed that they have evolved independently in different species of bacterial pathogens from separate repeat amplifications. Thus, our analysis provides evidence for two classes of mimics: complex proteins such as enzymes that have been acquired by eukaryote-to-pathogen horizontal transfer, and simpler repeat proteins that have independently evolved to mimic the host ECM. Ultimately, computational detection of pathogen-specific and pathogen-enriched similarities to host proteins provides insights into potentially novel mimicry-mediated virulence mechanisms of pathogenic bacteria. PMID:23715053

  11. Loofah sponges as reservoirs and vehicles in the transmission of potentially pathogenic bacterial species to human skin.

    PubMed Central

    Bottone, E J; Perez, A A; Oeser, J L

    1994-01-01

    Loofah sponges are natural products used as exfoliative beauty aids. As a consequence of tracing a case of Pseudomonas aeruginosa folliculitis to a contaminated loofah sponge, we assessed the role of loofah sponges in supporting the growth of a wide variety of bacterial species. Our data show growth enhancement of sterile loofah fragments for numerous gram-negative (Pseudomonas, Xanthomonas, and Klebsiella) and gram-positive (Enterococcus and group B Streptococcus) species of human and environmental origin. Furthermore, hydrated new, unused loofah sponges undergo a shift in bacterial flora from sparse colonies of Bacillus spp. and Staphylococcus epidermidis to a predominantly gram-negative flora. The growth-promoting potential of loofah sponges (and other exfoliatives) can be further augmented by desquamated epithelial cells entrapped in the loofah fibrous matrix. Therefore, as loofah sponges (and other exfoliatives) can serve as a reservoir and a vehicle for the transmission of potentially pathogenic species to the human skin, we recommend their decontamination with hypochlorite (10%) bleach at regular intervals. Images PMID:8150959

  12. Loofah sponges as reservoirs and vehicles in the transmission of potentially pathogenic bacterial species to human skin.

    PubMed

    Bottone, E J; Perez, A A; Oeser, J L

    1994-02-01

    Loofah sponges are natural products used as exfoliative beauty aids. As a consequence of tracing a case of Pseudomonas aeruginosa folliculitis to a contaminated loofah sponge, we assessed the role of loofah sponges in supporting the growth of a wide variety of bacterial species. Our data show growth enhancement of sterile loofah fragments for numerous gram-negative (Pseudomonas, Xanthomonas, and Klebsiella) and gram-positive (Enterococcus and group B Streptococcus) species of human and environmental origin. Furthermore, hydrated new, unused loofah sponges undergo a shift in bacterial flora from sparse colonies of Bacillus spp. and Staphylococcus epidermidis to a predominantly gram-negative flora. The growth-promoting potential of loofah sponges (and other exfoliatives) can be further augmented by desquamated epithelial cells entrapped in the loofah fibrous matrix. Therefore, as loofah sponges (and other exfoliatives) can serve as a reservoir and a vehicle for the transmission of potentially pathogenic species to the human skin, we recommend their decontamination with hypochlorite (10%) bleach at regular intervals.

  13. Understanding the Pathogenicity of Burkholderia contaminans, an Emerging Pathogen in Cystic Fibrosis.

    PubMed

    Nunvar, Jaroslav; Kalferstova, Lucie; Bloodworth, Ruhi A M; Kolar, Michal; Degrossi, Jose; Lubovich, Silvina; Cardona, Silvia T; Drevinek, Pavel

    2016-01-01

    Several bacterial species from the Burkholderia cepacia complex (Bcc) are feared opportunistic pathogens that lead to debilitating lung infections with a high risk of developing fatal septicemia in cystic fibrosis (CF) patients. However, the pathogenic potential of other Bcc species is yet unknown. To elucidate clinical relevance of Burkholderia contaminans, a species frequently isolated from CF respiratory samples in Ibero-American countries, we aimed to identify its key virulence factors possibly linked with an unfavorable clinical outcome. We performed a genome-wide comparative analysis of two isolates of B. contaminans ST872 from sputum and blood culture of a female CF patient in Argentina. RNA-seq data showed significant changes in expression for quorum sensing-regulated virulence factors and motility and chemotaxis. Furthermore, we detected expression changes in a recently described low-oxygen-activated (lxa) locus which encodes stress-related proteins, and for two clusters responsible for the biosynthesis of antifungal and hemolytic compounds pyrrolnitrin and occidiofungin. Based on phenotypic assays that confirmed changes in motility and in proteolytic, hemolytic and antifungal activities, we were able to distinguish two phenotypes of B. contaminans that coexisted in the host and entered her bloodstream. Whole genome sequencing revealed that the sputum and bloodstream isolates (each representing a distinct phenotype) differed by over 1,400 mutations as a result of a mismatch repair-deficient hypermutable state of the sputum isolate. The inferred lack of purifying selection against nonsynonymous mutations and the high rate of pseudogenization in the derived isolate indicated limited evolutionary pressure during evolution in the nutrient-rich, stable CF sputum environment. The present study is the first to examine the genomic and transcriptomic differences between longitudinal isolates of B. contaminans. Detected activity of a number of putative virulence

  14. 'Drugs from bugs': bacterial effector proteins as promising biological (immune-) therapeutics.

    PubMed

    Rüter, Christian; Hardwidge, Philip R

    2014-02-01

    Immune system malfunctions cause many of the most severe human diseases. The immune system has evolved primarily to control bacterial, viral, fungal, and parasitic infections. In turn, over millions of years of coevolution, microbial pathogens have evolved various mechanisms to control and modulate the host immune system for their own benefit and survival. For example, many bacterial pathogens use virulence proteins to modulate and exploit target cell mechanisms. Our understanding of these bacterial strategies opens novel possibilities to exploit 'microbial knowledge' to control excessive immune reactions. Gaining access to strategies of microbial pathogens could lead to potentially huge benefits for the therapy of inflammatory diseases. Most work on bacterial pathogen effector proteins has the long-term aim of neutralizing the infectious capabilities of the pathogen. However, attenuated pathogens and microbial products have been used for over a century with overwhelming success in the form of vaccines to induce specific immune responses that protect against the respective infectious diseases. In this review, we focus on bacterial effector and virulence proteins capable of modulating and suppressing distinct signaling pathways with potentially desirable immune-modulating effects for treating unrelated inflammatory diseases. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  15. Bacterial and protozoal pathogens found in ticks collected from humans in Corum province of Turkey

    PubMed Central

    Karasartova, Djursun; Gureser, Ayse Semra; Gokce, Tuncay; Celebi, Bekir; Yapar, Derya; Keskin, Adem; Celik, Selim; Ece, Yasemin; Erenler, Ali Kemal; Usluca, Selma; Mumcuoglu, Kosta Y.

    2018-01-01

    Background Tick-borne diseases are increasing all over the word, including Turkey. The aim of this study was to determine the bacterial and protozoan vector-borne pathogens in ticks infesting humans in the Corum province of Turkey. Methodology/Principal findings From March to November 2014 a total of 322 ticks were collected from patients who attended the local hospitals with tick bites. Ticks were screened by real time-PCR and PCR, and obtained amplicons were sequenced. The dedected tick was belonging to the genus Hyalomma, Haemaphysalis, Rhipicephalus, Dermacentor and Ixodes. A total of 17 microorganism species were identified in ticks. The most prevalent Rickettsia spp. were: R. aeschlimannii (19.5%), R. slovaca (4.5%), R. raoultii (2.2%), R. hoogstraalii (1.9%), R. sibirica subsp. mongolitimonae (1.2%), R. monacensis (0.31%), and Rickettsia spp. (1.2%). In addition, the following pathogens were identified: Borrelia afzelii (0.31%), Anaplasma spp. (0.31%), Ehrlichia spp. (0.93%), Babesia microti (0.93%), Babesia ovis (0.31%), Babesia occultans (3.4%), Theileria spp. (1.6%), Hepatozoon felis (0.31%), Hepatozoon canis (0.31%), and Hemolivia mauritanica (2.1%). All samples were negative for Francisella tularensis, Coxiella burnetii, Bartonella spp., Toxoplasma gondii and Leishmania spp. Conclusions/Significance Ticks in Corum carry a large variety of human and zoonotic pathogens that were detected not only in known vectors, but showed a wider vector diversity. There is an increase in the prevalence of ticks infected with the spotted fever group and lymphangitis-associated rickettsiosis, while Ehrlichia spp. and Anaplasma spp. were reported for the first time from this region. B. microti was detected for the first time in Hyalomma marginatum infesting humans. The detection of B. occultans, B. ovis, Hepatozoon spp., Theileria spp. and Hemolivia mauritanica indicate the importance of these ticks as vectors of pathogens of veterinary importance, therefore patients with

  16. Bacterial and protozoal pathogens found in ticks collected from humans in Corum province of Turkey.

    PubMed

    Karasartova, Djursun; Gureser, Ayse Semra; Gokce, Tuncay; Celebi, Bekir; Yapar, Derya; Keskin, Adem; Celik, Selim; Ece, Yasemin; Erenler, Ali Kemal; Usluca, Selma; Mumcuoglu, Kosta Y; Taylan-Ozkan, Aysegul

    2018-04-01

    Tick-borne diseases are increasing all over the word, including Turkey. The aim of this study was to determine the bacterial and protozoan vector-borne pathogens in ticks infesting humans in the Corum province of Turkey. From March to November 2014 a total of 322 ticks were collected from patients who attended the local hospitals with tick bites. Ticks were screened by real time-PCR and PCR, and obtained amplicons were sequenced. The dedected tick was belonging to the genus Hyalomma, Haemaphysalis, Rhipicephalus, Dermacentor and Ixodes. A total of 17 microorganism species were identified in ticks. The most prevalent Rickettsia spp. were: R. aeschlimannii (19.5%), R. slovaca (4.5%), R. raoultii (2.2%), R. hoogstraalii (1.9%), R. sibirica subsp. mongolitimonae (1.2%), R. monacensis (0.31%), and Rickettsia spp. (1.2%). In addition, the following pathogens were identified: Borrelia afzelii (0.31%), Anaplasma spp. (0.31%), Ehrlichia spp. (0.93%), Babesia microti (0.93%), Babesia ovis (0.31%), Babesia occultans (3.4%), Theileria spp. (1.6%), Hepatozoon felis (0.31%), Hepatozoon canis (0.31%), and Hemolivia mauritanica (2.1%). All samples were negative for Francisella tularensis, Coxiella burnetii, Bartonella spp., Toxoplasma gondii and Leishmania spp. Ticks in Corum carry a large variety of human and zoonotic pathogens that were detected not only in known vectors, but showed a wider vector diversity. There is an increase in the prevalence of ticks infected with the spotted fever group and lymphangitis-associated rickettsiosis, while Ehrlichia spp. and Anaplasma spp. were reported for the first time from this region. B. microti was detected for the first time in Hyalomma marginatum infesting humans. The detection of B. occultans, B. ovis, Hepatozoon spp., Theileria spp. and Hemolivia mauritanica indicate the importance of these ticks as vectors of pathogens of veterinary importance, therefore patients with a tick infestation should be followed for a variety of pathogens

  17. Microbiota in Exhaled Breath Condensate and the Lung.

    PubMed

    Glendinning, Laura; Wright, Steven; Tennant, Peter; Gill, Andrew C; Collie, David; McLachlan, Gerry

    2017-06-15

    The lung microbiota is commonly sampled using relatively invasive bronchoscopic procedures. Exhaled breath condensate (EBC) collection potentially offers a less invasive alternative for lung microbiota sampling. We compared lung microbiota samples retrieved by protected specimen brushings (PSB) and exhaled breath condensate collection. We also sought to assess whether aerosolized antibiotic treatment would influence the lung microbiota and whether this change could be detected in EBC. EBC was collected from 6 conscious sheep and then from the same anesthetized sheep during mechanical ventilation. Following the latter EBC collection, PSB samples were collected from separate sites within each sheep lung. On the subsequent day, each sheep was then treated with nebulized colistimethate sodium. Two days after nebulization, EBC and PSB samples were again collected. Bacterial DNA was quantified using 16S rRNA gene quantitative PCR. The V2-V3 region of the 16S rRNA gene was amplified by PCR and sequenced using Illumina MiSeq. Quality control and operational taxonomic unit (OTU) clustering were performed with mothur. The EBC samples contained significantly less bacterial DNA than the PSB samples. The EBC samples from anesthetized animals clustered separately by their bacterial community compositions in comparison to the PSB samples, and 37 bacterial OTUs were identified as differentially abundant between the two sample types. Despite only low concentrations of colistin being detected in bronchoalveolar lavage fluid, PSB samples were found to differ by their bacterial compositions before and after colistimethate sodium treatment. Our findings indicate that microbiota in EBC samples and PSB samples are not equivalent. IMPORTANCE Sampling of the lung microbiota usually necessitates performing bronchoscopic procedures that involve a hospital visit for human participants and the use of trained staff. The inconvenience and perceived discomfort of participating in this kind of

  18. Functional properties of peanut fractions on the growth of probiotics and foodborne bacterial pathogens.

    PubMed

    Peng, Mengfei; Bitsko, Elizabeth; Biswas, Debabrata

    2015-03-01

    Various compounds found in peanut (Arachis hypogaea) have been shown to provide multiple benefits to human health and may influence the growth of a broad range of gut bacteria. In this study, we investigated the effects of peanut white kernel and peanut skin on 3 strains of Lactobacillus and 3 major foodborne enteric bacterial pathogens. Significant (P < 0.05) growth stimulation of Lactobacillus casei and Lactobacillus rhamnosus was observed in the presence of 0.5% peanut flour (PF) made from peanut white kernel, whereas 0.5% peanut skin extract (PSE) exerted the inhibitory effect on the growth of these beneficial microbes. We also found that within 72 h, PF inhibited growth of enterohemorrhagic Escherichia coli O157:H7 (EHEC), while PSE significantly (P < 0.05) inhibited Listeria monocytogenes but promoted the growth of both EHEC and Salmonella Typhimurium. The cell adhesion and invasion abilities of 3 pathogens to the host cells were also significantly (P < 0.05) reduced by 0.5% PF and 0.5% PSE. These results suggest that peanut white kernel might assist in improving human gut flora as well as reducing EHEC, whereas the beneficial effects of peanut skins require further research and investigation. © 2015 Institute of Food Technologists®

  19. Bacterial Pathogens Induce Abscess Formation by CD4+ T-Cell Activation via the CD28–B7-2 Costimulatory Pathway

    PubMed Central

    Tzianabos, Arthur O.; Chandraker, Anil; Kalka-Moll, Wiltrud; Stingele, Francesca; Dong, Victor M.; Finberg, Robert W.; Peach, Robert; Sayegh, Mohamed H.

    2000-01-01

    Abscesses are a classic host response to infection by many pathogenic bacteria. The immunopathogenesis of this tissue response to infection has not been fully elucidated. Previous studies have suggested that T cells are involved in the pathologic process, but the role of these cells remains unclear. To delineate the mechanism by which T cells mediate abscess formation associated with intra-abdominal sepsis, the role of T-cell activation and the contribution of antigen-presenting cells via CD28-B7 costimulation were investigated. T cells activated in vitro by zwitterionic bacterial polysaccharides (Zps) known to induce abscess formation required CD28-B7 costimulation and, when adoptively transferred to the peritoneal cavity of naïve rats, promoted abscess formation. Blockade of T-cell activation via the CD28-B7 pathway in animals with CTLA4Ig prevented abscess formation following challenge with different bacterial pathogens, including Staphylococcus aureus, Bacteroides fragilis, and a combination of Enterococcus faecium and Bacteroides distasonis. In contrast, these animals had an increased abscess rate following in vivo T-cell activation via CD28 signaling. Abscess formation in vivo and T-cell activation in vitro required costimulation by B7-2 but not B7-1. These results demonstrate that abscess formation by pathogenic bacteria is under the control of a common effector mechanism that requires T-cell activation via the CD28–B7-2 pathway. PMID:11083777

  20. Non-pathogenic microflora of a spring water with regenerative properties.

    PubMed

    Nicoletti, Giovanni; Corbella, Marta; Jaber, Omar; Marone, Piero; Scevola, Daniele; Faga, Angela

    2015-11-01

    The Comano spring water (Comano, Italy) has been demonstrated to improve skin regeneration, not only by increasing keratinocyte proliferation and migration, but also by modulating the regenerated collagen and elastic fibers in the dermis. However, such biological properties may not be entirely explained by its mineral composition only. As the non-pathogenic bacterial populations have demonstrated an active role in different biological processes, the potential presence of non-pathogenic bacterial species within the Comano spring water was investigated in order to identify any possible correlation between these bacterial populations and the demonstrated biological properties of this water. The water was collected at the spring using an aseptic procedure and multiple cultures were carried out. A total of 9 different strains were isolated, which were Aeromonas hydrophila , Brevundimonas vesicularis , Chromobacterium violaceum , Citrobacter youngae , Empedobacter brevis , Pantoea agglomerans , Pseudomonas putida , Pseudomonas stutzeri and Streptococcus mitis . All the isolated bacterial strains, although showing a rare potential virulence, demonstrated peculiar and favorable metabolic attitudes in controlling environmental pollution. The therapeutical effects of certain spring waters are currently being proven as correlated not only to their peculiar mineral composition, but also to the complex activity of their resident non-pathogenic bacterial populations. Although the present study provided only preliminary data, some of the non-pathogenic bacterial populations that were identified in the Comano spring water are likely to produce molecular mediators with a role in the wound healing process that, thus far, remain unknown. Numerous other unknown bacterial species, comprehensively termed DNA-rich 'dark matter', are likely to contribute to the Comano water regenerative properties as well. Therefore, the non-pathogenic bacterial populations of the Comano spring water are