Sample records for bacterial mercury resistance

  1. Aerobic Mercury-resistant bacteria alter Mercury speciation and retention in the Tagus Estuary (Portugal).

    PubMed

    Figueiredo, Neusa L; Canário, João; O'Driscoll, Nelson J; Duarte, Aida; Carvalho, Cristina

    2016-02-01

    Aerobic mercury-resistant bacteria were isolated from the sediments of two highly mercury-polluted areas of the Tagus Estuary (Barreiro and Cala do Norte) and one natural reserve area (Alcochete) in order to test their capacity to transform mercury. Bacterial species were identified using 16S rRNA amplification and sequencing techniques and the results indicate the prevalence of Bacillus sp. Resistance patterns to mercurial compounds were established by the determination of minimal inhibitory concentrations. Representative Hg-resistant bacteria were further tested for transformation pathways (reduction, volatilization and methylation) in cultures containing mercury chloride. Bacterial Hg-methylation was carried out by Vibrio fluvialis, Bacillus megaterium and Serratia marcescens that transformed 2-8% of total mercury into methylmercury in 48h. In addition, most of the HgR bacterial isolates showed Hg(2+)-reduction andHg(0)-volatilization resulting 6-50% mercury loss from the culture media. In summary, the results obtained under controlled laboratory conditions indicate that aerobic Hg-resistant bacteria from the Tagus Estuary significantly affect both the methylation and reduction of mercury and may have a dual face by providing a pathway for pollution dispersion while forming methylmercury, which is highly toxic for living organisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Removal of Mercury from Chloralkali Electrolysis Wastewater by a Mercury-Resistant Pseudomonas putida Strain

    PubMed Central

    von Canstein, H.; Li, Y.; Timmis, K. N.; Deckwer, W.-D.; Wagner-Döbler, I.

    1999-01-01

    A mercury-resistant bacterial strain which is able to reduce ionic mercury to metallic mercury was used to remediate in laboratory columns mercury-containing wastewater produced during electrolytic production of chlorine. Factory effluents from several chloralkali plants in Europe were analyzed, and these effluents contained total mercury concentrations between 1.6 and 7.6 mg/liter and high chloride concentrations (up to 25 g/liter) and had pH values which were either acidic (pH 2.4) or alkaline (pH 13.0). A mercury-resistant bacterial strain, Pseudomonas putida Spi3, was isolated from polluted river sediments. Biofilms of P. putida Spi3 were grown on porous carrier material in laboratory column bioreactors. The bioreactors were continuously fed with sterile synthetic model wastewater or nonsterile, neutralized, aerated chloralkali wastewater. We found that sodium chloride concentrations up to 24 g/liter did not inhibit microbial mercury retention and that mercury concentrations up to 7 mg/liter could be treated with the bacterial biofilm with no loss of activity. When wastewater samples from three different chloralkali plants in Europe were used, levels of mercury retention efficiency between 90 and 98% were obtained. Thus, microbial mercury removal is a potential biological treatment for chloralkali electrolysis wastewater. PMID:10583977

  3. Bioremediation potential of a highly mercury resistant bacterial strain Sphingobium SA2 isolated from contaminated soil.

    PubMed

    Mahbub, Khandaker Rayhan; Krishnan, Kannan; Megharaj, Mallavarapu; Naidu, Ravi

    2016-02-01

    A mercury resistant bacterial strain, SA2, was isolated from soil contaminated with mercury. The 16S rRNA gene sequence of this isolate showed 99% sequence similarity to the genera Sphingobium and Sphingomonas of α-proteobacteria group. However, the isolate formed a distinct phyletic line with the genus Sphingobium suggesting the strain belongs to Sphingobium sp. Toxicity studies indicated resistance to high levels of mercury with estimated EC50 values 4.5 mg L(-1) and 44.15 mg L(-1) and MIC values 5.1 mg L(-1) and 48.48 mg L(-1) in minimal and rich media, respectively. The strain SA2 was able to volatilize mercury by producing mercuric reductase enzyme which makes it potential candidate for remediating mercury. ICP-QQQ-MS analysis of Hg supplemented culture solutions confirmed that almost 79% mercury in the culture suspension was volatilized in 6 h. A very small amount of mercury was observed to accumulate in cell pellets which was also evident according to ESEM-EDX analysis. The mercuric reductase gene merA was amplified and sequenced. The deduced amino acid sequence demonstrated sequence homology with α-proteobacteria and Ascomycota group. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Screening of mercury-resistant and indole-3-acetic acid producing bacterial-consortium for growth promotion of Cicer arietinum L.

    PubMed

    Amin, Aatif; Latif, Zakia

    2017-03-01

    Mercury resistant (Hg R ) bacteria were screened from industrial effluents and effluents-polluted rhizosphere soils near to districts Kasur and Sheikhupura, Pakistan. Out of 60 isolates, three bacterial strains, Bacillus sp. AZ-1, Bacillus cereus AZ-2, and Enterobacter cloacae AZ-3 showed Hg-resistance as 20 μg ml -1 of HgCl 2 and indole-3-acetic acid (IAA) production as 8-38 μg ml -1 . Biochemical and molecular characterization of selected bacteria was confirmed by 16S ribotyping. Mercury resistant genes merA, merB, and merE of mer operon in Bacillus spp. were checked by PCR amplification. The merE gene involved in the transportation of elemental mercury (Hg 0 ) via cell membrane was first time cloned into pHLV vector and transformed in C43(DE3) Escherichia coli cells. The recombinant plasmid (pHLMerE) was expressed and purified by nickel (Ni +2 ) affinity chromatography. Chromatographic techniques viz. thin layer chromatography (TLC), high performance liquid chromatography (HPLC), and Gas chromatography-mass spectrometry (GC-MS) confirmed the presence of Indole-3-acetic acid (IAA) in supernatant of selected bacteria. The strain E. cloacae AZ-3 detoxified 88% of mercury (Hg +2 ) from industrial effluent (p < 0.05) after immobilization in Na-alginate beads. Finally, Hg-resistant and IAA producing bacterial consortium of two strains, Bacillus sp. AZ-1 and E. cloacae AZ-3, inoculated in mercury amended soil with 20 μg ml -1 HgCl 2 resulted 80, 22, 64, 116, 50, 75, 30, and 100% increase as compared to control plants in seed germination, shoot and root length, shoot and root fresh weight, number of pods per plant, number of seeds and weight of seeds, respectively, of chickpea (Cicer arietinum L.) in pot experiments (p < 0.05). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Mercury capture into biogenic amorphous selenium nanospheres produced by mercury resistant Shewanella putrefaciens 200.

    PubMed

    Jiang, Shenghua; Ho, Cuong Tu; Lee, Ji-Hoon; Duong, Hieu Van; Han, Seunghee; Hur, Hor-Gil

    2012-05-01

    Shewanella putrefaciens 200, resistant to high concentration of Hg(II), was selected for co-removal of mercury and selenium from aqueous medium. Biogenic Hg(0) reduced from Hg(II) by S. putrefaciens 200 was captured into extracellular amorphous selenium nanospheres, resulting in the formation of stable HgSe nanoparticles. This bacterial reduction could be a new strategy for mercury removal from aquatic environments without secondary pollution of mercury methylation or Hg(0) volatilization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Heavy metals in liquid pig manure in light of bacterial antimicrobial resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoelzel, Christina S., E-mail: Christina.Hoelzel@wzw.tum.de; Mueller, Christa; Harms, Katrin S.

    Heavy metals are regularly found in liquid pig manure, and might interact with bacterial antimicrobial resistance. Concentrations of heavy metals were determined by atomic spectroscopic methods in 305 pig manure samples and were connected to the phenotypic resistance of Escherichia coli (n=613) against 29 antimicrobial drugs. Concentrations of heavy metals (/kg dry matter) were 0.08-5.30 mg cadmium, 1.1-32.0 mg chrome, 22.4-3387.6 mg copper, <2.0-26.7 mg lead, <0.01-0.11 mg mercury, 3.1-97.3 mg nickel and 93.0-8239.0 mg zinc. Associated with the detection of copper and zinc, resistance rates against {beta}-lactams were significantly elevated. By contrast, the presence of mercury was significantly associatedmore » with low antimicrobial resistance rates of Escherichia coli against {beta}-lactams, aminoglycosides and other antibiotics. Effects of subinhibitory concentrations of mercury on bacterial resistance against penicillins, cephalosporins, aminoglycosides and doxycycline were also demonstrated in a laboratory trial. Antimicrobial resistance in the porcine microflora might be increased by copper and zinc. By contrast, the occurrence of mercury in the environment might, due to co-toxicity, act counter-selective against antimicrobial resistant strains.« less

  7. Mercury remediation potential of a mercury resistant strain Sphingopyxis sp. SE2 isolated from contaminated soil.

    PubMed

    Mahbub, Khandaker Rayhan; Krishnan, Kannan; Naidu, Ravi; Megharaj, Mallavarapu

    2017-01-01

    A mercury resistant bacterial strain SE2 was isolated from contaminated soil. The 16s rRNA gene sequencing confirms the strain as Sphingopyxis belongs to the Sphingomonadaceae family of the α-Proteobacteria group. The isolate showed high resistance to mercury with estimated concentrations of Hg that caused 50% reduction in growth (EC 50 ) of 5.97 and 6.22mg/L and minimum inhibitory concentrations (MICs) of 32.19 and 34.95mg/L in minimal and rich media, respectively. The qualitative detection of volatilized mercury and the presence of mercuric reductase enzyme proved that the strain SE2 can potentially remediate mercury. ICP-QQQ-MS analysis of the remaining mercury in experimental broths indicated that a maximum of 44% mercury was volatilized within 6hr by live SE2 culture. Furthermore a small quantity (23%) of mercury was accumulated in live cell pellets. While no volatilization was caused by dead cells, sorption of mercury was confirmed. The mercuric reductase gene merA was amplified and sequenced. Homology was observed among the amino acid sequences of mercuric reductase enzyme of different organisms from α-Proteobacteria and ascomycota groups. Copyright © 2016. Published by Elsevier B.V.

  8. Mercury (II) removal by resistant bacterial isolates and mercuric (II) reductase activity in a new strain of Pseudomonas sp. B50A.

    PubMed

    Giovanella, Patricia; Cabral, Lucélia; Bento, Fátima Menezes; Gianello, Clesio; Camargo, Flávio Anastácio Oliveira

    2016-01-25

    This study aimed to isolate mercury resistant bacteria, determine the minimum inhibitory concentration for Hg, estimate mercury removal by selected isolates, explore the mer genes, and detect and characterize the activity of the enzyme mercuric (II) reductase produced by a new strain of Pseudomonas sp. B50A. The Hg removal capacity of the isolates was determined by incubating the isolates in Luria Bertani broth and the remaining mercury quantified by atomic absorption spectrophotometry. A PCR reaction was carried out to detect the merA gene and the mercury (II) reductase activity was determined in a spectrophotometer at 340 nm. Eight Gram-negative bacterial isolates were resistant to high mercury concentrations and capable of removing mercury, and of these, five were positive for the gene merA. The isolate Pseudomonas sp. B50A removed 86% of the mercury present in the culture medium and was chosen for further analysis of its enzyme activity. Mercuric (II) reductase activity was detected in the crude extract of this strain. This enzyme showed optimal activity at pH 8 and at temperatures between 37 °C and 45 °C. The ions NH4(+), Ba(2+), Sn(2+), Ni(2+) and Cd(2+) neither inhibited nor stimulated the enzyme activity but it decreased in the presence of the ions Ca(2+), Cu(+) and K(+). The isolate and the enzyme detected were effective in reducing Hg(II) to Hg(0), showing the potential to develop bioremediation technologies and processes to clean-up the environment and waste contaminated with mercury. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Bacterial Mercury Methylation At The Sediment-Water Interface Of Mercury Contaminated Sediments

    EPA Science Inventory

    Bench scale experiments were conducted to improve our understanding of bacterial mediation of mercury transformation (methylation), specifically those factors which govern the production of methyl mercury (MeHg) at the sediment-water interface. The greatest cause for concern re...

  10. Increase methylmercury accumulation in Arabidopsis thaliana expressing bacterial broad-spectrum mercury transporter MerE

    PubMed Central

    2013-01-01

    The bacterial merE gene derived from the Tn21 mer operon encodes a broad-spectrum mercury transporter that governs the transport of methylmercury and mercuric ions across bacterial cytoplasmic membranes, and this gene is a potential molecular tool for improving the efficiency of methylmercury phytoremediation. A transgenic Arabidopsis engineered to express MerE was constructed and the impact of expression of MerE on methylmercury accumulation was evaluated. The subcellular localization of transiently expressed GFP-tagged MerE was examined in Arabidopsis suspension-cultured cells. The GFP-MerE was found to localize to the plasma membrane and cytosol. The transgenic Arabidopsis expressing MerE accumulated significantly more methymercury and mercuric ions into plants than the wild-type Arabidopsis did. The transgenic plants expressing MerE was significantly more resistant to mercuric ions, but only showed more resistant to methylmercury compared with the wild type Arabidopsis. These results demonstrated that expression of the bacterial mercury transporter MerE promoted the transport and accumulation of methylmercury in transgenic Arabidopsis, which may be a useful method for improving plants to facilitate the phytoremediation of methylmercury pollution. PMID:24004544

  11. Detoxification of mercury pollutant leached from spent fluorescent lamps using bacterial strains.

    PubMed

    Al-Ghouti, Mohammad A; Abuqaoud, Reem H; Abu-Dieyeh, Mohammed H

    2016-03-01

    The spent fluorescent lamps (SFLs) are being classified as a hazardous waste due to having mercury as one of its main components. Mercury is considered the second most toxic heavy metal (arsenic is the first) with harmful effects on animal nervous system as it causes different neurological disorders. In this research, the mercury from phosphor powder was leached, then bioremediated using bacterial strains isolated from Qatari environment. Leaching of mercury was carried out with nitric and hydrochloric acid solutions using two approaches: leaching at ambient conditions and microwave-assisted leaching. The results obtained from this research showed that microwave-assisted leaching method was significantly better in leaching mercury than the acid leaching where the mercury leaching efficiency reached 76.4%. For mercury bio-uptake, twenty bacterial strains (previously isolated and purified from petroleum oil contaminated soils) were sub-cultured on Luria Bertani (LB) plates with mercury chloride to check the bacterial tolerance to mercury. Seven of these twenty strains showed a degree of tolerance to mercury. The bio-uptake capacities of the promising strains were investigated using the mercury leached from the fluorescent lamps. Three of the strains (Enterobacter helveticus, Citrobacter amalonaticus, and Cronobacter muytjensii) showed bio-uptake efficiency ranged from 28.8% to 63.6%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Increased Abundance of IncP-1β Plasmids and Mercury Resistance Genes in Mercury-Polluted River Sediments: First Discovery of IncP-1β Plasmids with a Complex mer Transposon as the Sole Accessory Element▿

    PubMed Central

    Smalla, Kornelia; Haines, Anthony S.; Jones, Karen; Krögerrecklenfort, Ellen; Heuer, Holger; Schloter, Michael; Thomas, Christopher M.

    2006-01-01

    Although it is generally assumed that mobile genetic elements facilitate the adaptation of microbial communities to environmental stresses, environmental data supporting this assumption are rare. In this study, river sediment samples taken from two mercury-polluted (A and B) and two nonpolluted or less-polluted (C and D) areas of the river Nura (Kazakhstan) were analyzed by PCR for the presence and abundance of mercury resistance genes and of broad-host-range plasmids. PCR-based detection revealed that mercury pollution corresponded to an increased abundance of mercury resistance genes and of IncP-1β replicon-specific sequences detected in total community DNA. The isolation of IncP-1β plasmids from contaminated sediments was attempted in order to determine whether they carry mercury resistance genes and thus contribute to an adaptation of bacterial populations to Hg pollution. We failed to detect IncP-1β plasmids in the genomic DNA of the cultured Hg-resistant bacterial isolates. However, without selection for mercury resistance, three different IncP-1β plasmids (pTP6, pTP7, and pTP8) were captured directly from contaminated sediment slurry in Cupriavidus necator JMP228 based on their ability to mobilize the IncQ plasmid pIE723. These plasmids hybridized with the merRTΔP probe and conferred Hg resistance to their host. A broad host range and high stability under conditions of nonselective growth were observed for pTP6 and pTP7. The full sequence of plasmid pTP6 was determined and revealed a backbone almost identical to that of the IncP-1β plasmids R751 and pB8. However, this is the first example of an IncP-1β plasmid which had acquired only a mercury resistance transposon but no antibiotic resistance or biodegradation genes. This transposon carries a rather complex set of mer genes and is inserted between Tra1 and Tra2. PMID:16980416

  13. Volatilization of mercury compounds by methylmercury-volatilizing bacteria in Minamata Bay sediment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, K.; Sakata, T.; Nakahara, H.

    1988-11-01

    Minamata Bay has been heavily polluted by high mercury concentrations which gave rise for a long time to methylmercury poisoning, Minamata disease (Kutsuna 1968; Irukayama 1977). The mercury still exists in the sediments of the Bay. The population of mercury-resistant bacteria in the sediments of Minamata Bay is larger than that in the sediments of other marine environments. The mercury-resistant bacteria isolated from a marine environment have been found to transform organic and inorganic mercury compounds into mercury vapor. The mercury-resistance confirmed in various bacterial genera has been shown to be plasmid-mediated volatilization. However, there has been little definitive informationmore » on the volatilization of organic mercury by the bacteria living in the mercury-polluted environment. It is important to know what bacterial transformations of mercury have been taking place and how the mercury-resistant bacteria may be playing a role in the mercury cycle in the marine environment of Minamata Bay. The object of the present study is to clarify the characteristics of the methylmercury-volatilizing bacteria in the sediments of Minamata Bay and of the volatilization of various mercury compounds by these bacteria.« less

  14. Evidence of mercury trapping in biofilm-EPS and mer operon-based volatilization of inorganic mercury in a marine bacterium Bacillus cereus BW-201B.

    PubMed

    Dash, Hirak R; Basu, Subham; Das, Surajit

    2017-04-01

    Biofilm-forming mercury-resistant marine bacterium Bacillus cereus BW-201B has been explored to evident that the bacterial biofilm-EPS (exopolymers) trap inorganic mercury but subsequently release EPS-bound mercury for induction of mer operon-mediated volatilization of inorganic mercury. The isolate was able to tolerate 50 ppm of mercury and forms biofilm in presence of mercury. mer operon-mediated volatilization was confirmed, and -SH was found to be the key functional group of bacterial EPS responsible for mercury binding. Biofilm-EPS-bound mercury was found to be internalized to the bacterial system as confirmed by reversible conformational change of -SH group and increased expression level of merA gene in a timescale experiment. Biofilm-EPS trapped Hg after 24 h of incubation, and by 96 h, the volatilization process reaches to its optimum confirming the internalization of EPS-bound mercury to the bacterial cells. Biofilm disintegration at the same time corroborates the results.

  15. Phytoremediation of Ionic and Methyl Mercury Pollution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meagher, Richard B.

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of humanmore » and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems.« less

  16. Analysis for the presence of determinants involved in the transport of mercury across bacterial membrane from polluted water bodies of India

    PubMed Central

    Jan, Arif Tasleem; Azam, Mudsser; Choi, Inho; Ali, Arif; Haq, Qazi Mohd. Rizwanul

    2016-01-01

    Mercury, which is ubiquitous and recalcitrant to biodegradation processes, threatens human health by escaping to the environment via various natural and anthropogenic activities. Non-biodegradability of mercury pollutants has necessitated the development and implementation of economic alternatives with promising potential to remove metals from the environment. Enhancement of microbial based remediation strategies through genetic engineering approaches provides one such alternative with a promising future. In this study, bacterial isolates inhabiting polluted sites were screened for tolerance to varying concentrations of mercuric chloride. Following identification, several Pseudomonas and Klebsiella species were found to exhibit the highest tolerance to both organic and inorganic mercury. Screened bacterial isolates were examined for their genetic make-up in terms of the presence of genes (merP and merT) involved in the transport of mercury across the membrane either alone or in combination to deal with the toxic mercury. Gene sequence analysis revealed that the merP gene showed 86–99% homology, while the merT gene showed >98% homology with previously reported sequences. By exploring the genes involved in imparting metal resistance to bacteria, this study will serve to highlight the credentials that are particularly advantageous for their practical application to remediation of mercury from the environment. PMID:26887227

  17. Phytoremediation of Ionic and Methyl Mercury Pollution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meagher, Richard B.

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of humanmore » and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems. Our current strategy is to engineer

  18. Characterization of the Metabolically Modified Heavy Metal-Resistant Cupriavidus metallidurans Strain MSR33 Generated for Mercury Bioremediation

    PubMed Central

    Rojas, Luis A.; Yáñez, Carolina; González, Myriam; Lobos, Soledad; Smalla, Kornelia; Seeger, Michael

    2011-01-01

    Background Mercury-polluted environments are often contaminated with other heavy metals. Therefore, bacteria with resistance to several heavy metals may be useful for bioremediation. Cupriavidus metallidurans CH34 is a model heavy metal-resistant bacterium, but possesses a low resistance to mercury compounds. Methodology/Principal Findings To improve inorganic and organic mercury resistance of strain CH34, the IncP-1β plasmid pTP6 that provides novel merB, merG genes and additional other mer genes was introduced into the bacterium by biparental mating. The transconjugant Cupriavidus metallidurans strain MSR33 was genetically and biochemically characterized. Strain MSR33 maintained stably the plasmid pTP6 over 70 generations under non-selective conditions. The organomercurial lyase protein MerB and the mercuric reductase MerA of strain MSR33 were synthesized in presence of Hg2+. The minimum inhibitory concentrations (mM) for strain MSR33 were: Hg2+, 0.12 and CH3Hg+, 0.08. The addition of Hg2+ (0.04 mM) at exponential phase had not an effect on the growth rate of strain MSR33. In contrast, after Hg2+ addition at exponential phase the parental strain CH34 showed an immediate cessation of cell growth. During exposure to Hg2+ no effects in the morphology of MSR33 cells were observed, whereas CH34 cells exposed to Hg2+ showed a fuzzy outer membrane. Bioremediation with strain MSR33 of two mercury-contaminated aqueous solutions was evaluated. Hg2+ (0.10 and 0.15 mM) was completely volatilized by strain MSR33 from the polluted waters in presence of thioglycolate (5 mM) after 2 h. Conclusions/Significance A broad-spectrum mercury-resistant strain MSR33 was generated by incorporation of plasmid pTP6 that was directly isolated from the environment into C. metallidurans CH34. Strain MSR33 is capable to remove mercury from polluted waters. This is the first study to use an IncP-1β plasmid directly isolated from the environment, to generate a novel and stable bacterial strain

  19. Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase.

    PubMed

    Ruiz, Oscar N; Alvarez, Derry; Gonzalez-Ruiz, Gloriene; Torres, Cesar

    2011-08-12

    The use of transgenic bacteria has been proposed as a suitable alternative for mercury remediation. Ideally, mercury would be sequestered by metal-scavenging agents inside transgenic bacteria for subsequent retrieval. So far, this approach has produced limited protection and accumulation. We report here the development of a transgenic system that effectively expresses metallothionein (mt-1) and polyphosphate kinase (ppk) genes in bacteria in order to provide high mercury resistance and accumulation. In this study, bacterial transformation with transcriptional and translational enhanced vectors designed for the expression of metallothionein and polyphosphate kinase provided high transgene transcript levels independent of the gene being expressed. Expression of polyphosphate kinase and metallothionein in transgenic bacteria provided high resistance to mercury, up to 80 μM and 120 μM, respectively. Here we show for the first time that metallothionein can be efficiently expressed in bacteria without being fused to a carrier protein to enhance mercury bioremediation. Cold vapor atomic absorption spectrometry analyzes revealed that the mt-1 transgenic bacteria accumulated up to 100.2 ± 17.6 μM of mercury from media containing 120 μM Hg. The extent of mercury remediation was such that the contaminated media remediated by the mt-1 transgenic bacteria supported the growth of untransformed bacteria. Cell aggregation, precipitation and color changes were visually observed in mt-1 and ppk transgenic bacteria when these cells were grown in high mercury concentrations. The transgenic bacterial system described in this study presents a viable technology for mercury bioremediation from liquid matrices because it provides high mercury resistance and accumulation while inhibiting elemental mercury volatilization. This is the first report that shows that metallothionein expression provides mercury resistance and accumulation in recombinant bacteria. The high accumulation of

  20. Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase

    PubMed Central

    2011-01-01

    Background The use of transgenic bacteria has been proposed as a suitable alternative for mercury remediation. Ideally, mercury would be sequestered by metal-scavenging agents inside transgenic bacteria for subsequent retrieval. So far, this approach has produced limited protection and accumulation. We report here the development of a transgenic system that effectively expresses metallothionein (mt-1) and polyphosphate kinase (ppk) genes in bacteria in order to provide high mercury resistance and accumulation. Results In this study, bacterial transformation with transcriptional and translational enhanced vectors designed for the expression of metallothionein and polyphosphate kinase provided high transgene transcript levels independent of the gene being expressed. Expression of polyphosphate kinase and metallothionein in transgenic bacteria provided high resistance to mercury, up to 80 μM and 120 μM, respectively. Here we show for the first time that metallothionein can be efficiently expressed in bacteria without being fused to a carrier protein to enhance mercury bioremediation. Cold vapor atomic absorption spectrometry analyzes revealed that the mt-1 transgenic bacteria accumulated up to 100.2 ± 17.6 μM of mercury from media containing 120 μM Hg. The extent of mercury remediation was such that the contaminated media remediated by the mt-1 transgenic bacteria supported the growth of untransformed bacteria. Cell aggregation, precipitation and color changes were visually observed in mt-1 and ppk transgenic bacteria when these cells were grown in high mercury concentrations. Conclusion The transgenic bacterial system described in this study presents a viable technology for mercury bioremediation from liquid matrices because it provides high mercury resistance and accumulation while inhibiting elemental mercury volatilization. This is the first report that shows that metallothionein expression provides mercury resistance and accumulation in recombinant bacteria

  1. Biodegradation of Phenylmercuric Acetate by Mercury-Resistant Bacteria

    PubMed Central

    Nelson, J. D.; Blair, W.; Brinckman, F. E.; Colwell, R. R.; Iverson, W. P.

    1973-01-01

    Selected cultures of mercury-resistant bacteria degrade the fungicide-slimicide phenylmercuric acetate. By means of a closed system incorporating a flameless atomic absorption spectrophotometer and a vapor phase chromatograph, it was demonstrated that elemental mercury vapor and benzene were products of phenylmercuric acetate degradation. PMID:4584577

  2. Phytoremediation of Ionic and Methyl Mercury Pollution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meagher, Richard B.

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of humanmore » and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems. Our current strategy is to engineer

  3. Formation of methyl mercury by bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamdy, M.K.; Noyes, O.R.

    1975-09-01

    Twenty-three Hg/sup 2 +/-resistant cultures were isolated from sediment of the Savannah River in Georgia; of these, 14 were gram-negative short rods belonging to the genera Escherichia and Enterobacter, six were gram-positive cocci (three Staphylococcus sp. and three Streptococcus sp.) and three were Bacillus sp. All the Escherichia, Enterobacter, and the Bacillus strain were more resistant to Hg/sup 2 +/ than the strains of staphylococci and streptococci. Adaptation using serial dilutions and concentration gradient agar plant techniques showed that it was possible to select a Hg/sup 2 +/-resistant strain from a parent culture identified as Enterobacter aerogenes. This culture resistedmore » 1200 ..mu..g of Hg/sup 2 +/ per ml of medium and produced methyl mercury from HgCl/sub 2/, but was unable to convert Hg/sup 2 +/ to volatile elemental mercury (Hg/sup 0/). Under constant aeration (i.e., submerged culture), slightly more methyl mercury was formed than in the absence of aeration. Production of methyl mercury was cyclic in nature and slightly decreased if DL-homocysteine was present in media, but increased with methylcobalamine. It is concluded that the bacterial production of methyl mercury may be a means of resistance and detoxification against mercurials in which inorganic Hg/sup 2 +/ is converted to organic form and secreted into the environment. 39 references, 5 figures, 3 tables.« less

  4. Formation of methyl mercury by bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamdy, M.K.; Noyes, O.R.

    1975-09-01

    Twenty-three Hg/sup 2 +/-resistant cultures were isolated from sediment of the Savannah River in Georgia; of these, 14 were gram-negative short rods belonging to the genera Escherichia and Enterobacter, six were gram-positive cocci (three Staphylococcus sp. and three Streptococcus sp.) and three were Bacillus sp. All the Escherichia, Enterobacter, and the Bacillus strain were more resistant to Hg/sup 2 +/ than the strains of staphylococci and streptococci. Adaptation using serial dilutions and concentration gradient agar plate techniques showed that it was possible to select a Hg/sup 2 +/-resistant strain from a parent culture identified as Enterobacter aerogenes. This culture resistedmore » 1,200 ..mu..g of Hg/sup 2 +/ per ml of medium and produced methyl mercury from HgCl/sub 2/, but was unable to convert Hg/sup 2 +/ to volatile elemental mercury (Hg/sup 0/). Under constant aeration (i.e., submerged culture), slightly more methyl mercury was formed than in the absence of aeration. Production of methyl mercury was cycle in nature and slightly decreased if DL-homocysteine was present in media, but increased with methylcobalamine. It is concluded that the bacterial production of methyl mercury may be a means of resistance and detoxification against mercurials in which inorganic Hg/sup 2 +/ is converted to organic form and secreted into the environment.« less

  5. Characterization and potential application in mercury bioremediation of highly mercury-resistant marine bacterium Bacillus thuringiensis PW-05.

    PubMed

    Dash, Hirak R; Mangwani, Neelam; Das, Surajit

    2014-02-01

    Bacillus thuringiensis PW-05 was isolated from the Odisha coast and was found to resist 50 ppm of Hg as HgCl2 as well as higher concentrations of CdCl2, ZnSO4, PbNO3 and Na2HAsO4. Resistance towards several antibiotics, viz amoxycillin, ampicillin, methicillin, azithromycin and cephradine (CV) was also observed. The mer operon possessed by most of the mercury-resistant bacteria was also found in this isolate. Atomic absorption spectroscopy revealed that the isolate can volatilize >90 % of inorganic mercury. It showed biofilm formation in the presence of 50 ppm HgCl2 and can produce exopolysaccharide under same conditions. The isolate was found to volatilize mercury efficiently under a wide range of environmental parameters, i.e. pH (7 to 8), temperature (25 °C to 40 °C) and salinity (5 to 25 ppt). merA gene expression has been confirmed by real-time reverse transcriptase PCR study. Fourier transform infrared study revealed that -SH and -COOH groups play a major role in the process of adaptation to Hg. Hence, this isolate B. thuringiensis PW-05 shows an interesting potential for bioremediation of mercury.

  6. Bioremediation of Mercury by Vibrio fluvialis Screened from Industrial Effluents.

    PubMed

    Saranya, Kailasam; Sundaramanickam, Arumugam; Shekhar, Sudhanshu; Swaminathan, Sankaran; Balasubramanian, Thangavel

    2017-01-01

    Thirty-one mercury-resistant bacterial strains were isolated from the effluent discharge sites of the SIPCOT industrial area. Among them, only one strain (CASKS5) was selected for further investigation due to its high minimum inhibitory concentration of mercury and low antibiotic susceptibility. In accordance with 16S ribosomal RNA gene sequences, the strain CASKS5 was identified as Vibrio fluvialis . The mercury-removal capacity of V. fluvialis was analyzed at four different concentrations (100, 150, 200, and 250  μ g/ml). Efficient bioremediation was observed at a level of 250  μ g/ml with the removal of 60% of mercury ions. The interesting outcome of this study was that the strain V. fluvialis had a high bioremediation efficiency but had a low antibiotic resistance. Hence, V. fluvialis could be successfully used as a strain for the ecofriendly removal of mercury.

  7. Bioremediation of Mercury by Vibrio fluvialis Screened from Industrial Effluents

    PubMed Central

    Saranya, Kailasam; Shekhar, Sudhanshu; Swaminathan, Sankaran; Balasubramanian, Thangavel

    2017-01-01

    Thirty-one mercury-resistant bacterial strains were isolated from the effluent discharge sites of the SIPCOT industrial area. Among them, only one strain (CASKS5) was selected for further investigation due to its high minimum inhibitory concentration of mercury and low antibiotic susceptibility. In accordance with 16S ribosomal RNA gene sequences, the strain CASKS5 was identified as Vibrio fluvialis. The mercury-removal capacity of V. fluvialis was analyzed at four different concentrations (100, 150, 200, and 250 μg/ml). Efficient bioremediation was observed at a level of 250 μg/ml with the removal of 60% of mercury ions. The interesting outcome of this study was that the strain V. fluvialis had a high bioremediation efficiency but had a low antibiotic resistance. Hence, V. fluvialis could be successfully used as a strain for the ecofriendly removal of mercury. PMID:28626761

  8. Bacterial strategies of resistance to antimicrobial peptides.

    PubMed

    Joo, Hwang-Soo; Fu, Chih-Iung; Otto, Michael

    2016-05-26

    Antimicrobial peptides (AMPs) are a key component of the host's innate immune system, targeting invasive and colonizing bacteria. For successful survival and colonization of the host, bacteria have a series of mechanisms to interfere with AMP activity, and AMP resistance is intimately connected with the virulence potential of bacterial pathogens. In particular, because AMPs are considered as potential novel antimicrobial drugs, it is vital to understand bacterial AMP resistance mechanisms. This review gives a comparative overview of Gram-positive and Gram-negative bacterial strategies of resistance to various AMPs, such as repulsion or sequestration by bacterial surface structures, alteration of membrane charge or fluidity, degradation and removal by efflux pumps.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. © 2016 The Author(s).

  9. Mercury-resistance and mercuric reductase activity in Chromobacterium, Erwinia, and Bacillus species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trevors, J.T.

    1987-06-01

    Mercury resistant bacteria have been the most extensively studied of all the metal-tolerant bacteria. Mercury resistance is usually mediated by two distinctly different enzymes encoded by plasmids. Mercuric reductase reduces Hg/sup 2 +/ to metallic mercury (Hg/sup 0/). Organomercurial lyases have a molecular weight of 20,000 to 40,000, are composed of 1 or 2 subunits and require the presence of thiol. Plasmic-encoded Hg/sup 2 +/ resistance and mercuric reductase activity have not been detected in many species of bacteria. A Chromobacterium, Erwinia and Bacillus species isolated from environmental samples were capable of growth in the presence of 50 ..mu..M HgCl/submore » 2/. Cell-free extracts of the 3 organisms exhibited mercuric reductase activity that oxidized NADPH in the presence of HgCl/sub 2/. Negligible oxidation of NADPH was observed in the absence of HgCl/sub 2/. The Chromobacterium sp. did not contain any plasmid DNA. This would suggest that Hg/sup 2 +/ resistance was carried on the chromosome in Chromobacterium. A single 3 Mdal plasmid in the Bacillus sp. was refractory to curing. The Erwinia sp. contained 3 plasmids which were also refractory to curing. The location of the resistance genes is unknown in the Bacillus and Erwinia isolates.« less

  10. Plasmid Frequency Fluctuations in Bacterial Populations from Chemically Stressed Soil Communities

    PubMed Central

    Wickham, Gene S.; Atlas, Ronald M.

    1988-01-01

    The frequency of plasmids in chemically stressed bacterial populations was investigated by individually adding various concentration of kanamycin, ampicillin, and mercuric chloride to soil samples. Viable bacterial populations were enumerated, soil respiration was monitored for up to 6 weeks as an indicator of physiological stress, and bacterial isolates from stressed and control soils were screened for the presence of plasmids. Low levels of the chemical stress factors did not for the most part significantly alter population viability, soil respiration, or plasmid frequency. Exposure to high stress levels of mercury and ampicillin, however, resulted in altered numbers of viable organisms, soil respiration, and plasmid frequency. Plasmid frequency increased in response to ampicillin exposure but was not significantly changed after exposure to kanamycin. In mercuric chloride-stressed soils, there was a decrease in plasmid frequency despite an increase in overall mercury resistance of the isolates, suggesting that mercury resistance in these populations is largely, if not completely, chromosome encoded. Chemical stress did not cause an increase in plasmid-mediated multiple resistance. A genetic response (change in plasmid frequency) was not found unless a physiological (phenotypic) response (change in viable cells and respiratory activity) was also observed. The results indicate that a change in plasmid frequency is dependent on both the amount and type of chemical stress. PMID:16347730

  11. Differential mercury volatilization by tobacco organs expressing a modified bacterial merA gene.

    PubMed

    He, Y K; Sun, J G; Feng, X Z; Czakó, M; Márton, L

    2001-09-01

    Mercury pollution is a major environmental problem accompanying industrial activities. Most of the mercury released ends up and retained in the soil as complexes of the toxic ionic mercury (Hg2+), which then can be converted by microbes into the even more toxic methylmercury which tends to bioaccumulate. Mercury detoxification of the soil can also occur by microbes converting the ionic mercury into the least toxic metallic mercury (Hg0) form, which then evaporates. The remediation potential of transgenic plants carrying the MerA gene from E. coli encoding mercuric ion reductase could be evaluated. A modified version of the gene, optimized for plant codon preferences (merApe9, Rugh et al. 1996), was introduced into tobacco by Agrobacterium-mediated leaf disk transformation. Transgenic seeds were resistant to HgCl2 at 50 microM, and some of them (10-20% ) could germinate on media containing as much as 350 microM HgCl2, while the control plants were fully inhibited or died on 50 microM HgCl2. The rate of elemental mercury evolution from Hg2+ (added as HgCl2) was 5-8 times higher for transgenic plants than the control. Mercury volatilization by isolated organs standardized for fresh weight was higher (up to 5 times) in the roots than in shoots or the leaves. The data suggest that it is the root system of the transgenic plants that volatilizes most of the reduced mercury (Hg0). It also suggests that much of the mercury need not enter the vascular system to be transported to the leaves for volatilization. Transgenic plants with the merApe9 gene may be used to mercury detoxification for environmental improvement in mercury-contaminated regions more efficiently than it had been predicted based on data on volatilization of whole plants via the upper parts only (Rugh et al. 1996).

  12. Bacterial cheating limits antibiotic resistance

    NASA Astrophysics Data System (ADS)

    Xiao Chao, Hui; Yurtsev, Eugene; Datta, Manoshi; Artemova, Tanya; Gore, Jeff

    2012-02-01

    The widespread use of antibiotics has led to the evolution of resistance in bacteria. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removing the antibiotic. The cooperative nature of this growth suggests that a cheater strain---which does not contribute to breaking down the antibiotic---may be able to take advantage of cells cooperatively inactivating the antibiotic. Here we find experimentally that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We observe stable coexistence between the two strains and find that a simple model successfully explains the behavior as a function of antibiotic concentration and cell density. We anticipate that our results will provide insight into the evolutionary origin of phenotypic diversity and cooperative behaviors.

  13. The potential for Probiotic Bacteria from milkfish intestine in reducing mercury metals in skimmed milk media

    NASA Astrophysics Data System (ADS)

    Dwyana, Zaraswati; Priosambodo, D.; Haedar, N.; Erviani, A. E.; Djabura, A. K.; Sukma, R.

    2018-03-01

    Mercury (Hg) is one of the heavy metals that is harmful to humans. The accumulation of mercury in the body is generally derived from food. Several types of bacteria from intestine of milkfish are known to reduce mercury concentration. People can take advantage of this bacterial ability by eating it through probiotic foods. This research conducted to figure out the potential for probiotic bacteria from milkfish intestine in reducing mercury. Isolation from probiotic bacteria from milkfish intestine conducted with grown the isolates in MRSA medium with addition of 1% CaCO3. Twelve isolate were obtained from milkfish intestine. Mercury resistance tested was performed by measuring cell density using a spectrophotometer at concentrations of 10, 15 and 20 ppm respectively in skim milk media. Probiotic tests (gastric acid, bile salts and antimicrobial activity) for MRSB media was also conducted. Results showed that seven isolate were resistant to mercury in all concentrations and potential as probiotics. All resistant isolate then tested for skim milk media with addition of 5, 10, 20 ppm mercury acetate respectively. Result showed that only one isolated was able to reduce the concentration of mercury (Hg) in all variations on concentration and potential as mercury reducer probiotic bacteria.

  14. Colourful parrot feathers resist bacterial degradation

    PubMed Central

    Burtt, Edward H.; Schroeder, Max R.; Smith, Lauren A.; Sroka, Jenna E.; McGraw, Kevin J.

    2011-01-01

    The brilliant red, orange and yellow colours of parrot feathers are the product of psittacofulvins, which are synthetic pigments known only from parrots. Recent evidence suggests that some pigments in bird feathers function not just as colour generators, but also preserve plumage integrity by increasing the resistance of feather keratin to bacterial degradation. We exposed a variety of colourful parrot feathers to feather-degrading Bacillus licheniformis and found that feathers with red psittacofulvins degraded at about the same rate as those with melanin and more slowly than white feathers, which lack pigments. Blue feathers, in which colour is based on the microstructural arrangement of keratin, air and melanin granules, and green feathers, which combine structural blue with yellow psittacofulvins, degraded at a rate similar to that of red and black feathers. These differences in resistance to bacterial degradation of differently coloured feathers suggest that colour patterns within the Psittaciformes may have evolved to resist bacterial degradation, in addition to their role in communication and camouflage. PMID:20926430

  15. Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene.

    PubMed Central

    Rugh, C L; Wilde, H D; Stack, N M; Thompson, D M; Summers, A O; Meagher, R B

    1996-01-01

    With global heavy metal contamination increasing, plants that can process heavy metals might provide efficient and ecologically sound approaches to sequestration and removal. Mercuric ion reductase, MerA, converts toxic Hg2+ to the less toxic, relatively inert metallic mercury (Hg0) The bacterial merA sequence is rich in CpG dinucleotides and has a highly skewed codon usage, both of which are particularly unfavorable to efficient expression in plants. We constructed a mutagenized merA sequence, merApe9, modifying the flanking region and 9% of the coding region and placing this sequence under control of plant regulatory elements. Transgenic Arabidopsis thaliana seeds expressing merApe9 germinated, and these seedlings grew, flowered, and set seed on medium containing HgCl2 concentrations of 25-100 microM (5-20 ppm), levels toxic to several controls. Transgenic merApe9 seedlings evolved considerable amounts of Hg0 relative to control plants. The rate of mercury evolution and the level of resistance were proportional to the steady-state mRNA level, confirming that resistance was due to expression of the MerApe9 enzyme. Plants and bacteria expressing merApe9 were also resistant to toxic levels of Au3+. These and other data suggest that there are potentially viable molecular genetic approaches to the phytoremediation of metal ion pollution. Images Fig. 2 Fig. 3 Fig. 4 PMID:8622910

  16. Biochemical basis of mercury remediation and bioaccumulation by Enterobacter sp. EMB21.

    PubMed

    Sinha, Arvind; Kumar, Sumit; Khare, Sunil Kumar

    2013-01-01

    The aims of this study were to isolate metal bioaccumulating bacterial strains and to study their applications in removal of environmental problematic heavy metals like mercury. Five bacterial strains belonging to genera Enterobacter, Bacillus, and Pseudomonas were isolated from oil-spilled soil. Among these, one of the strains Enterobacter sp. EMB21 showed mercury bioaccumulation inside the cells simultaneous to its bioremediation. The bioaccumulation of remediated mercury was confirmed by transmission electron microscopy and energy dispersive X-ray. The mercury-resistant loci in the Enterobacter sp. EMB21 cells were plasmid-mediated as confirmed by transformation of mercury-sensitive Escherichia coli DH5α by Enterobacter sp. EMB21 plasmid. Effect of different culture parameters viz-a-viz inoculum size, pH, carbon, and nitrogen source revealed that alkaline pH and presence of dextrose and yeast extract favored better remediation. The results indicated the usefulness of Enterobacter sp. EMB21 for the effective remediation of mercury in bioaccumulated form. The Enterobacter sp. EMB21 seems promising for heavy metal remediation wherein the remediated metal can be trapped inside the cells. The process can further be developed for the synthesis of valuable high-end functional alloy, nanoparticles, or metal conjugates from the metal being remediated.

  17. Cultivation of Hard-To-Culture Subsurface Mercury-Resistant Bacteria and Discovery of New merA Gene Sequences▿

    PubMed Central

    Rasmussen, L. D.; Zawadsky, C.; Binnerup, S. J.; Øregaard, G.; Sørensen, S. J.; Kroer, N.

    2008-01-01

    Mercury-resistant bacteria may be important players in mercury biogeochemistry. To assess the potential for mercury reduction by two subsurface microbial communities, resistant subpopulations and their merA genes were characterized by a combined molecular and cultivation-dependent approach. The cultivation method simulated natural conditions by using polycarbonate membranes as a growth support and a nonsterile soil slurry as a culture medium. Resistant bacteria were pregrown to microcolony-forming units (mCFU) before being plated on standard medium. Compared to direct plating, culturability was increased up to 2,800 times and numbers of mCFU were similar to the total number of mercury-resistant bacteria in the soils. Denaturing gradient gel electrophoresis analysis of DNA extracted from membranes suggested stimulation of growth of hard-to-culture bacteria during the preincubation. A total of 25 different 16S rRNA gene sequences were observed, including Alpha-, Beta-, and Gammaproteobacteria; Actinobacteria; Firmicutes; and Bacteroidetes. The diversity of isolates obtained by direct plating included eight different 16S rRNA gene sequences (Alpha- and Betaproteobacteria and Actinobacteria). Partial sequencing of merA of selected isolates led to the discovery of new merA sequences. With phylum-specific merA primers, PCR products were obtained for Alpha- and Betaproteobacteria and Actinobacteria but not for Bacteroidetes and Firmicutes. The similarity to known sequences ranged between 89 and 95%. One of the sequences did not result in a match in the BLAST search. The results illustrate the power of integrating advanced cultivation methodology with molecular techniques for the characterization of the diversity of mercury-resistant populations and assessing the potential for mercury reduction in contaminated environments. PMID:18441111

  18. Chlor-alkali plant contamination of Aussa River sediments induced a large Hg-resistant bacterial community

    NASA Astrophysics Data System (ADS)

    Baldi, Franco; Marchetto, Davide; Gallo, Michele; Fani, Renato; Maida, Isabel; Covelli, Stefano; Fajon, Vesna; Zizek, Suzana; Hines, Mark; Horvat, Milena

    2012-11-01

    A closed chlor-alkali plant (CAP) discharged Hg for decades into the Aussa River, which flows into Marano Lagoon, resulting in the large-scale pollution of the lagoon. In order to get information on the role of bacteria as mercury detoxifying agents, analyses of anions in the superficial part (0-1 cm) of sediments were conducted at four stations in the Aussa River. In addition, measurements of biopolymeric carbon (BPC) as a sum of the carbon equivalent of proteins (PRT), lipids (LIP), and carbohydrates (CHO) were performed to correlate with bacterial biomass such as the number of aerobic heterotrophic cultivable bacteria and their percentage of Hg-resistant bacteria. All these parameters were used to assess the bioavailable Hg fraction in sediments and the potential detoxification activity of bacteria. In addition, fifteen isolates were characterized by a combination of molecular techniques, which permitted their assignment into six different genera. Four out of fifteen were Gram negative with two strains of Stenotrophomonas maltophilia, one Enterobacter sp., and one strain of Brevibacterium frigoritolerans. The remaining strains (11) were Gram positive belonging to the genera Bacillus and Staphylococcus. We found merA genes in only a few isolates. Mercury volatilization from added HgCl2 and the presence of plasmids with the merA gene were also used to confirm Hg reductase activity. We found the highest number of aerobic heterotrophic Hg-resistant bacteria (one order magnitude higher) and the highest number of Hg-resistant species (11 species out of 15) at the confluence of the River Aussa and Banduzzi's channel, which transport Hg from the CAP, suggesting that Hg is strongly detoxified [reduced to Hg(0)] at this location.

  19. QTLs for Resistance to Major Rice Diseases Exacerbated by Global Warming: Brown Spot, Bacterial Seedling Rot, and Bacterial Grain Rot.

    PubMed

    Mizobuchi, Ritsuko; Fukuoka, Shuichi; Tsushima, Seiya; Yano, Masahiro; Sato, Hiroyuki

    2016-12-01

    In rice (Oryza sativa L.), damage from diseases such as brown spot, caused by Bipolaris oryzae, and bacterial seedling rot and bacterial grain rot, caused by Burkholderia glumae, has increased under global warming because the optimal temperature ranges for growth of these pathogens are relatively high (around 30 °C). Therefore, the need for cultivars carrying genes for resistance to these diseases is increasing to ensure sustainable rice production. In contrast to the situation for other important rice diseases such as blast and bacterial blight, no genes for complete resistance to brown spot, bacterial seedling rot or bacterial grain rot have yet been discovered. Thus, rice breeders have to use partial resistance, which is largely influenced by environmental conditions. Recent progress in molecular genetics and improvement of evaluation methods for disease resistance have facilitated detection of quantitative trait loci (QTLs) associated with resistance. In this review, we summarize the results of worldwide screening for cultivars with resistance to brown spot, bacterial seedling rot and bacterial grain rot and we discuss the identification of QTLs conferring resistance to these diseases in order to provide useful information for rice breeding programs.

  20. Diversity, community structure, and bioremediation potential of mercury-resistant marine bacteria of estuarine and coastal environments of Odisha, India.

    PubMed

    Dash, Hirak R; Das, Surajit

    2016-04-01

    Both point and non-point sources increase the pollution status of mercury and increase the population of mercury-resistant marine bacteria (MRMB). They can be targeted as the indicator organism to access marine mercury pollution, besides utilization in bioremediation. Thus, sediment and water samples were collected for 2 years (2010-2012) along Odisha coast of Bay of Bengal, India. Mercury content of the study sites varied from 0.47 to 0.99 ppb irrespective of the seasons of sampling. A strong positive correlation was observed between mercury content and MRMB population (P < 0.05) suggesting the utilization of these bacteria to assess the level of mercury pollution in the marine environment. Seventy-eight percent of the MRMB isolates were under the phylum Firmicutes, and 36 and 31% of them could resist mercury by mer operon-mediated volatilization and mercury biosorption, respectively. In addition, most of the isolates could resist a number of antibiotics and toxic metals. All the MRMB isolates possess the potential of growth and survival at cardinal pH (4-8), temperature (25-37 °C), and salinity (5-35 psu). Enterobacteria repetitive intergenic consensus (ERIC) and repetitive element palindromic PCR (REP-PCR) produced fingerprints corroborating the results of 16S rRNA gene sequencing. Fourier transform infrared (FTIR) spectral analysis also revealed strain-level speciation and phylogenetic relationships.

  1. Inheritance of bacterial spot resistance in Capsicum annuum var. annuum.

    PubMed

    Silva, L R A; Rodrigues, R; Pimenta, S; Correa, J W S; Araújo, M S B; Bento, C S; Sudré, C P

    2017-04-20

    Since 2008, Brazil is the largest consumer of agrochemicals, which increases production costs and risks of agricultural products, environment, and farmers' contamination. Sweet pepper, which is one of the main consumed vegetables in the country, is on top of the list of the most sprayed crops. The bacterial spot, caused by Xanthomonas spp, is one of the most damaging diseases of pepper crops. Genetic resistant consists of a suitable way of disease control, but development of durable resistant cultivars as well as understanding of plant-bacterium interaction is being a challenge for plant breeders and pathologists worldwide. Inheritance of disease resistance is often variable, depending on genetic background of the parents. The knowledge of the genetic base controlling such resistance is the first step in a breeding program aiming to develop new genotypes, bringing together resistance and other superior agronomic traits. This study reports the genetic basis of bacterial spot resistance in Capsicum annuum var. annuum using mean generation analysis from crosses between accessions UENF 2285 (susceptible) and UENF 1381 (resistant). The plants of each generation were grown in a greenhouse and leaflets were inoculated with bacterial strain ENA 4135 at 10 5 CFU/mL in 1.0 cm 2 of the mesophyll. Evaluations were performed using a scoring scale whose grades ranged from 1.0 (resistant) to 5.0 (susceptible), depending on symptom manifestation. Genetic control of bacterial spot has a quantitative aspect, with higher additive effect. The quantitative analysis showed that five genes were the minimum number controlling bacterial spot resistance. Additive effect was higher (6.06) than dominant (3.31) and explained 86.36% of total variation.

  2. Phytoremediation of Ionic and Methyl Mercury P

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meagher, Richard B.

    1999-06-01

    Our long-term goal is to enable highly productive plant species to extract, resist, detoxify, and/or sequester toxic heavy metal pollutants as an environmentally friendly alternative to physical remediation methods. We have focused this phytoremediation research on soil and water-borne ionic and methylmercury. Mercury pollution is a serious world-wide problem affecting the health of human and wild-life populations. Methylmercury, produced by native bacteria at mercury-contaminated wetland sites, is a particularly serious problem due to its extreme toxicity and efficient biomagnification in the food chain. We engineered several plant species (e.g., Arabidopsis, tobacco, canola, yellow poplar, rice) to express the bacterial genes,more » merB and/or merA, under the control of plant regulatory sequences. These transgenic plants acquired remarkable properties for mercury remediation. (1) Transgenic plants expressing merB (organomercury lyase) extract methylmercury from their growth substrate and degrade it to less toxic ionic mercury. They grow on concentrations of methylmercury that kill normal plants and accumulate low levels of ionic mercury. (2) Transgenic plants expressing merA (mercuric ion reductase) extract and electrochemically reduce toxic, reactive ionic mercury to much less toxic and volatile metallic mercury. This metal transformation is driven by the powerful photosynthetic reducing capacity of higher plants that generates excess NADPH using solar energy. MerA plants grow vigorously on levels of ionic mercury that kill control plants. Plants expressing both merB and merA degrade high levels of methylmercury and volatilize metallic mercury. These properties were shown to be genetically stable for several generations in the two plant species examined. Our work demonstrates that native trees, shrubs, and grasses can be engineered to remediate the most abundant toxic mercury pollutants. Building on these data our working hypothesis for the next grant period

  3. Bacterial community structure and abundances of antibiotic resistance genes in heavy metals contaminated agricultural soil.

    PubMed

    Zhang, Fengli; Zhao, Xiaoxue; Li, Qingbo; Liu, Jia; Ding, Jizhe; Wu, Huiying; Zhao, Zongsheng; Ba, Yue; Cheng, Xuemin; Cui, Liuxin; Li, Hongping; Zhu, Jingyuan

    2018-04-01

    Soil contamination with heavy metals is a worldwide problem especially in China. The interrelation of soil bacterial community structure, antibiotic resistance genes, and heavy metal contamination in soil is still unclear. Here, seven agricultural areas (G1-G7) with heavy metal contamination were sampled with different distances (741 to 2556 m) to the factory. Denaturing gradient gel electrophoresis (DGGE) and Shannon index were used to analyze bacterial community diversity. Real-time fluorescence quantitative PCR was used to detect the relative abundance of ARGs sul1, sul2, tetA, tetM, tetW, one mobile genetic elements (MGE) inti1. Results showed that all samples were polluted by Cadmium (Cd), and some of them were polluted by lead (Pb), mercury (Hg), arsenic (As), copper (Cu), and zinc (Zn). DGGE showed that the most abundant bacterial species were found in G7 with the lightest heavy metal contamination. The results of the principal component analysis and clustering analysis both showed that G7 could not be classified with other samples. The relative abundance of sul1 was correlated with Cu, Zn concentration. Gene sul2 are positively related with total phosphorus, and tetM was associated with organic matter. Total gene abundances and relative abundance of inti1 both correlated with organic matter. Redundancy analysis showed that Zn and sul2 were significantly related with bacterial community structure. Together, our results indicate a complex linkage between soil heavy metal concentration, bacterial community composition, and some global disseminated ARG abundance.

  4. Exploring the immediate and long-term impact on bacterial communities in soil amended with animal and urban organic waste fertilizers using pyrosequencing and screening for horizontal transfer of antibiotic resistance.

    PubMed

    Riber, Leise; Poulsen, Pernille H B; Al-Soud, Waleed A; Skov Hansen, Lea B; Bergmark, Lasse; Brejnrod, Asker; Norman, Anders; Hansen, Lars H; Magid, Jakob; Sørensen, Søren J

    2014-10-01

    We investigated immediate and long-term effects on bacterial populations of soil amended with cattle manure, sewage sludge or municipal solid waste compost in an ongoing agricultural field trial. Soils were sampled in weeks 0, 3, 9 and 29 after fertilizer application. Pseudomonas isolates were enumerated, and the impact on soil bacterial community structure was investigated using 16S rRNA amplicon pyrosequencing. Bacterial community structure at phylum level remained mostly unaffected. Actinobacteria, Proteobacteria and Chloroflexi were the most prevalent phyla significantly responding to sampling time. Seasonal changes seemed to prevail with decreasing bacterial richness in week 9 followed by a significant increase in week 29 (springtime). The Pseudomonas population richness seemed temporarily affected by fertilizer treatments, especially in sludge- and compost-amended soils. To explain these changes, prevalence of antibiotic- and mercury-resistant pseudomonads was investigated. Fertilizer amendment had a transient impact on the resistance profile of the soil community; abundance of resistant isolates decreased with time after fertilizer application, but persistent strains appeared multiresistant, also in unfertilized soil. Finally, the ability of a P. putida strain to take up resistance genes from indigenous soil bacteria by horizontal gene transfer was present only in week 0, indicating a temporary increase in prevalence of transferable antibiotic resistance genes. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  5. Bacterial Cheating Limits the Evolution of Antibiotic Resistance

    NASA Astrophysics Data System (ADS)

    Yurtsev, Eugene; Xiao Chao, Hui; Datta, Manoshi; Artemova, Tatiana; Gore, Jeff

    2012-02-01

    The emergence of antibiotic resistance in bacteria is a significant health concern. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removal of the antibiotic. The presence of a cooperative mechanism of resistance suggests that a cheater strain - which does not contribute to breaking down the antibiotic - may be able to take advantage of resistant cells. We find experimentally that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We use a simple model in conjunction with difference equations to explain the observed population dynamics as a function of cell density and antibiotic concentration. Our experimental difference equations resemble the logistic map, raising the possibility of oscillations or even chaotic dynamics.

  6. Developing live bacterial vaccines by selecting resistance to antibacterials

    USDA-ARS?s Scientific Manuscript database

    Four chemicals were used in this study to modify bacterial isolates through chemical-resistance strategy. All bacteria were able to develop high resistance to gossypol. However, none of the gossypol-resistant isolate was attenuated. Although majority of the proflavine hemisulfate-resistant isolates ...

  7. Phytoremediation of mercury in pristine and crude oil contaminated soils: Contributions of rhizobacteria and their host plants to mercury removal.

    PubMed

    Sorkhoh, N A; Ali, N; Al-Awadhi, H; Dashti, N; Al-Mailem, D M; Eliyas, M; Radwan, S S

    2010-11-01

    The rhizospheric soils of three tested legume crops: broad beans (Vicia faba), beans (Phaseolus vulgaris) and pea (Pisum sativum), and two nonlegume crops: cucumber (Cucumis sativus) and tomato, (Lycopersicon esculentum) contained considerable numbers (the magnitude of 10(5)g(-1) soil) of bacteria with the combined potential for hydrocarbon-utilization and mercury-resistance. Sequencing of the 16S rRNA coding genes of rhizobacteria associated with broad beans revealed that they were affiliated to Citrobacter freundii, Enterobacter aerogenes, Exiquobacterium aurantiacum, Pseudomonas veronii, Micrococcus luteus, Brevibacillus brevis, Arthrobacter sp. and Flavobacterium psychrophilum. These rhizobacteria were also diazotrophic, i.e. capable of N(2) fixation, which makes them self-sufficient regarding their nitrogen nutrition and thus suitable remediation agents in nitrogen-poor soils, such as the oily desert soil. The crude oil attenuation potential of the individual rhizobacteria was inhibited by HgCl(2), but about 50% or more of this potential was still maintained in the presence of up to 40 mgl(-1) HgCl(2). Rhizobacteria-free plants removed amounts of mercury from the surrounding media almost equivalent to those removed by the rhizospheric bacterial consortia in the absence of the plants. It was concluded that both the collector plants and their rhizospheric bacterial consortia contributed equivalently to mercury removal from soil. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Coupling two mercury resistance genes in Eastern cottonwood enhances the processing of organomercury.

    PubMed

    Lyyra, Satu; Meagher, Richard B; Kim, Tehryung; Heaton, Andrew; Montello, Paul; Balish, Rebecca S; Merkle, Scott A

    2007-03-01

    Eastern cottonwood (Populus deltoides Bartr. ex Marsh.) trees were engineered to express merA (mercuric ion reductase) and merB (organomercury lyase) transgenes in order to be used for the phytoremediation of mercury-contaminated soils. Earlier studies with Arabidopsis thaliana and Nicotiana tabacum showed that this gene combination resulted in more efficient detoxification of organomercurial compounds than did merB alone, but neither species is optimal for long-term field applications. Leaf discs from in vitro-grown merA, nptII (neomycin phosphotransferase) transgenic cottonwood plantlets were inoculated with Agrobacterium tumefaciens strain C58 carrying the merB and hygromycin resistance (hptII) genes. Polymerase chain reaction of shoots regenerated from the leaf discs under selection indicated an overall transformation frequency of 20%. Western blotting of leaves showed that MerA and MerB proteins were produced. In vitro-grown merA/merB plants were highly resistant to phenylmercuric acetate, and detoxified organic mercury compounds two to three times more rapidly than did controls, as shown by mercury volatilization assay. This indicates that these cottonwood trees are reasonable candidates for the remediation of organomercury-contaminated sites.

  9. A maize resistance gene functions against bacterial streak disease in rice.

    PubMed

    Zhao, Bingyu; Lin, Xinghua; Poland, Jesse; Trick, Harold; Leach, Jan; Hulbert, Scot

    2005-10-25

    Although cereal crops all belong to the grass family (Poacea), most of their diseases are specific to a particular species. Thus, a given cereal species is typically resistant to diseases of other grasses, and this nonhost resistance is generally stable. To determine the feasibility of transferring nonhost resistance genes (R genes) between distantly related grasses to control specific diseases, we identified a maize R gene that recognizes a rice pathogen, Xanthomonas oryzae pv. oryzicola, which causes bacterial streak disease. Bacterial streak is an important disease of rice in Asia, and no simply inherited sources of resistance have been identified in rice. Although X. o. pv. oryzicola does not cause disease on maize, we identified a maize gene, Rxo1, that conditions a resistance reaction to a diverse collection of pathogen strains. Surprisingly, Rxo1 also controls resistance to the unrelated pathogen Burkholderia andropogonis, which causes bacterial stripe of sorghum and maize. The same gene thus controls resistance reactions to both pathogens and nonpathogens of maize. Rxo1 has a nucleotide-binding site-leucine-rich repeat structure, similar to many previously identified R genes. Most importantly, Rxo1 functions after transfer as a transgene to rice, demonstrating the feasibility of nonhost R gene transfer between cereals and providing a valuable tool for controlling bacterial streak disease.

  10. [Bacterial drug resistance and etiology of non-complicated urinary tract infections].

    PubMed

    Chávez-Valencia, Venice; Gallegos-Nava, Selma; Arce-Salinas, C Alejandro

    2010-01-01

    Bacterial resistance to antibiotics is associated with morbidity, mortality, and an increase in cost. Our objective was to assess bacterial resistance from cultures of patients with non-complicated urinary tract infection (UTI). We analyzed antibiotic resistance using the VITEK-II system among patients attending the internal medicine unit with non-complicated UTI. 1,479 urine cultures were performed; we excluded: 98 due to contamination, 924 had no bacterial growth, and 57 had missing data. Among the 404 samples that were positive, 240 were found among out patients and 164 among hospitalized patients. E coli were the most frequent pathogen, followed by Enterococcus, and K pneumonia, in out patients; E coli, P aeruginosa, and fungal infections (23% of cases) in hospitalized patients. Samples with E coli among out patients displayed resistance of 50% to fluoroquinolones and 55% to sulfas. Among hospitalized patients, resistance was observed in 71 and 66% respectively. Resistance to P aeruginosa was 38% for amynoglucosides and carbapenems and 100% for piperacillin; Enterococcus had 50% for fluoroquinolones. E. coli is the most common pathogen among UTI patients. We must adapt guidelines to recommend antibiotics and design a comprehensive control program to reduce the high levels of bacterial antibiotic resistance among our population.

  11. Complex multiple antibiotic and mercury resistance region derived from the r-det of NR1 (R100).

    PubMed

    Partridge, Sally R; Hall, Ruth M

    2004-11-01

    The sequence of the 45.2-kb multidrug and mercury resistance region of pRMH760, a large plasmid from a clinical isolate of Klebsiella pneumoniae collected in 1997 in Australia, was completed. Most of the modules found in the resistance determinant (r-det), or Tn2670, region of NR1 (also known as R100), isolated from a Shigella flexneri strain in Japan in the late 1950s, were present in pRMH760 but in a different configuration. The location was also different, with the Tn2670-derived region flanked by the transposition module of Tn1696 and a mercury resistance module almost identical to one found in the plasmid pDU1358. This arrangement is consistent with a three-step process. First, the r-det was circularized via homologous recombination between the IS1 elements and reincorporated at a new location, possibly in a different plasmid, via homologous recombination between the 5'-conserved (5'-CS) or 3'-CS of the In34 integron in the r-det and the same region of a second class 1 integron in a Tn1696 relative. Subsequently, resolvase-mediated recombination between the res sites in the r-det and a second mercury resistance transposon removed one end of the Tn1696-like transposon and part of the second transposon. Other events occurring within the r-det-derived portion have also contributed to the formation of the pRMH760 resistance region. Tn2 or a close relative that includes the bla(TEM-1b) gene had moved into the Tn21 mercury resistance module with subsequent deletion of the adjacent sequence, and all four 38-bp inverted repeats corresponding to Tn21 family transposon termini have been interrupted by an IS4321-like element.

  12. Bacterial cheating limits the evolution of antibiotic resistance

    NASA Astrophysics Data System (ADS)

    Chao, Hui Xiao; Datta, Manoshi; Yurtsev, Eugene; Gore, Jeff

    2011-03-01

    The widespread use of antibiotics has led to the evolution of resistance in bacteria. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removing the antibiotic. The cooperative nature of this growth suggests that a cheater strain--which does not contribute to breaking down the antibiotic--may be able to take advantage of cells cooperatively inactivating the antibiotic. Here we experimentally find that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We observe stable coexistence between the two strains and find that a simple model successfully explains the behavior as a function of antibiotic concentration and cell density. We anticipate that our results will provide insight into the evolutionary origin of phenotypic diversity and cooperative behaviors found in nature.

  13. Molecular Mechanisms of Bacterial Mercury Transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Summers, Anne O.; Smith, Jeremy C.

    Hg is of special interest to DOE due to past intensive use in manufacture of nuclear weapons at the Oak Ridge Reservation (ORR). Because of its facile oxidation/reduction [Hg(II)/Hg(0)] chemistry, ability to bond to carbon [as in highly toxic methylmercury: MeHg(I)] and its unique physical properties [e.g., volatility of Hg(0)], Hg has a complex environmental cycle involving soils, sediments, waterways and the atmosphere and including biotic and abiotic chemical and physical transport and transformations. Understanding such processes well enough to design stewardship plans that minimize negative impacts in diverse ecological settings requires rich knowledge of the contributing abiotic and bioticmore » processes. Prokaryotes are major players in the global Hg cycle. Facultative and anaerobic bacteria can form MeHg(I) with consequent intoxication of wildlife and humans. Sustainable stewardship of Hg-contaminated sites requires eliminating not only MeHg(I) but also the Hg(II) substrate for methylation. Fortunately, a variety of mercury resistant (HgR) aerobic and facultative bacteria and archaea can do both things. Prokaryotes harboring narrow or broad Hg resistance (mer) loci detoxify Hg(II) or RHg(I), respectively, to relatively inert, less toxic, volatile Hg(0). HgR microbes are enriched in highly contaminated sites and extensive field data show they depress levels of MeHg >500-fold in such zones. So, enhancing the natural capacity of indigenous HgR microbes to remove Hg(II) and RHg(I) from soils, sediments and waterways is a logical component of a comprehensive plan for clean up and stewardship of contaminated sites.« less

  14. Bacterial Community Shift Drives Antibiotic Resistance Promotion during Drinking Water Chlorination.

    PubMed

    Jia, Shuyu; Shi, Peng; Hu, Qing; Li, Bing; Zhang, Tong; Zhang, Xu-Xiang

    2015-10-20

    For comprehensive insights into the effects of chlorination, a widely used disinfection technology, on bacterial community and antibiotic resistome in drinking water, this study applied high-throughput sequencing and metagenomic approaches to investigate the changing patterns of antibiotic resistance genes (ARGs) and bacterial community in a drinking water treatment and distribution system. At genus level, chlorination could effectively remove Methylophilus, Methylotenera, Limnobacter, and Polynucleobacter, while increase the relative abundance of Pseudomonas, Acidovorax, Sphingomonas, Pleomonas, and Undibacterium in the drinking water. A total of 151 ARGs within 15 types were detectable in the drinking water, and chlorination evidently increased their total relative abundance while reduced their diversity in the opportunistic bacteria (p < 0.05). Residual chlorine was identified as the key contributing factor driving the bacterial community shift and resistome alteration. As the dominant persistent ARGs in the treatment and distribution system, multidrug resistance genes (mainly encoding resistance-nodulation-cell division transportation system) and bacitracin resistance gene bacA were mainly carried by chlorine-resistant bacteria Pseudomonas and Acidovorax, which mainly contributed to the ARGs abundance increase. The strong correlation between bacterial community shift and antibiotic resistome alteration observed in this study may shed new light on the mechanism behind the chlorination effects on antibiotic resistance.

  15. A maize resistance gene functions against bacterial streak disease in rice

    PubMed Central

    Zhao, Bingyu; Lin, Xinghua; Poland, Jesse; Trick, Harold; Leach, Jan; Hulbert, Scot

    2005-01-01

    Although cereal crops all belong to the grass family (Poacea), most of their diseases are specific to a particular species. Thus, a given cereal species is typically resistant to diseases of other grasses, and this nonhost resistance is generally stable. To determine the feasibility of transferring nonhost resistance genes (R genes) between distantly related grasses to control specific diseases, we identified a maize R gene that recognizes a rice pathogen, Xanthomonas oryzae pv. oryzicola, which causes bacterial streak disease. Bacterial streak is an important disease of rice in Asia, and no simply inherited sources of resistance have been identified in rice. Although X. o. pv. oryzicola does not cause disease on maize, we identified a maize gene, Rxo1, that conditions a resistance reaction to a diverse collection of pathogen strains. Surprisingly, Rxo1 also controls resistance to the unrelated pathogen Burkholderia andropogonis, which causes bacterial stripe of sorghum and maize. The same gene thus controls resistance reactions to both pathogens and nonpathogens of maize. Rxo1 has a nucleotide-binding site-leucine-rich repeat structure, similar to many previously identified R genes. Most importantly, Rxo1 functions after transfer as a transgene to rice, demonstrating the feasibility of nonhost R gene transfer between cereals and providing a valuable tool for controlling bacterial streak disease. PMID:16230639

  16. PARAMETERS OF TREATED STAINLESS STEEL SURFACES IMPORTANT FOR RESISTANCE TO BACTERIAL CONTAMINATION

    EPA Science Inventory

    Use of materials that are resistant to bacterial contamination could enhance food safety during processing. Common finishing treatments of stainless steel surfaces used for components of poultry processing equipment were tested for resistance to bacterial attachment. Surface char...

  17. Mercury accumulation plant Cyrtomium macrophyllum and its potential for phytoremediation of mercury polluted sites.

    PubMed

    Xun, Yu; Feng, Liu; Li, Youdan; Dong, Haochen

    2017-12-01

    Cyrtomium macrophyllum naturally grown in 225.73 mg kg -1 of soil mercury in mining area was found to be a potential mercury accumulator plant with the translocation factor of 2.62 and the high mercury concentration of 36.44 mg kg -1 accumulated in its aerial parts. Pot experiments indicated that Cyrtomium macrophyllum could even grow in 500 mg kg -1 of soil mercury with observed inhibition on growth but no obvious toxic effects, and showed excellent mercury accumulation and translocation abilities with both translocation and bioconcentration factors greater than 1 when exposed to 200 mg kg -1 and lower soil mercury, indicating that it could be considered as a great mercury accumulating species. Furthermore, the leaf tissue of Cyrtomium macrophyllum showed high resistance to mercury stress because of both the increased superoxide dismutase activity and the accumulation of glutathione and proline induced by mercury stress, which favorited mercury translocation from the roots to the aerial parts, revealing the possible reason for Cyrtomium macrophyllum to tolerate high concentration of soil mercury. In sum, due to its excellent mercury accumulation and translocation abilities as well as its high resistance to mercury stress, the use of Cyrtomium macrophyllum should be a promising approach to remediating mercury polluted soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Alternatives to overcoming bacterial resistances: State-of-the-art.

    PubMed

    Rios, Alessandra C; Moutinho, Carla G; Pinto, Flávio C; Del Fiol, Fernando S; Jozala, Angela; Chaud, Marco V; Vila, Marta M D C; Teixeira, José A; Balcão, Victor M

    2016-10-01

    Worldwide, bacterial resistance to chemical antibiotics has reached such a high level that endangers public health. Presently, the adoption of alternative strategies that promote the elimination of resistant microbial strains from the environment is of utmost importance. This review discusses and analyses several (potential) alternative strategies to current chemical antibiotics. Bacteriophage (or phage) therapy, although not new, makes use of strictly lytic phage particles as an alternative, or a complement, in the antimicrobial treatment of bacterial infections. It is being rediscovered as a safe method, because these biological entities devoid of any metabolic machinery do not possess any affinity whatsoever to eukaryotic cells. Lysin therapy is also recognized as an innovative antimicrobial therapeutic option, since the topical administration of preparations containing purified recombinant lysins with amounts in the order of nanograms, in infections caused by Gram-positive bacteria, demonstrated a high therapeutic potential by causing immediate lysis of the target bacterial cells. Additionally, this therapy exhibits the potential to act synergistically when combined with certain chemical antibiotics already available on the market. Another potential alternative antimicrobial therapy is based on the use of antimicrobial peptides (AMPs), amphiphilic polypeptides that cause disruption of the bacterial membrane and can be used in the treatment of bacterial, fungal and viral infections, in the prevention of biofilm formation, and as antitumoral agents. Interestingly, bacteriocins are a common strategy of bacterial defense against other bacterial agents, eliminating the potential opponents of the former and increasing the number of available nutrients in the environment for their own growth. They can be applied in the food industry as biopreservatives and as probiotics, and also in fighting multi-resistant bacterial strains. The use of antibacterial antibodies

  19. Blood Mercury Levels of Zebra Finches Are Heritable: Implications for the Evolution of Mercury Resistance

    PubMed Central

    Buck, Kenton A.; Varian-Ramos, Claire W.; Cristol, Daniel A.; Swaddle, John P.

    2016-01-01

    Mercury is a ubiquitous metal contaminant that negatively impacts reproduction of wildlife and has many other sub-lethal effects. Songbirds are sensitive bioindicators of mercury toxicity and may suffer population declines as a result of mercury pollution. Current predictions of mercury accumulation and biomagnification often overlook possible genetic variation in mercury uptake and elimination within species and the potential for evolution in affected populations. We conducted a study of dietary mercury exposure in a model songbird species, maintaining a breeding population of zebra finches (Taeniopygia guttata) on standardized diets ranging from 0.0–2.4 μg/g methylmercury. We applied a quantitative genetics approach to examine patterns of variation and heritability of mercury accumulation within dietary treatments using a method of mixed effects modeling known as the 'animal model'. Significant variation in blood mercury accumulation existed within each treatment for birds exposed at the same dietary level; moreover, this variation was highly repeatable for individuals. We observed substantial genetic variation in blood mercury accumulation for birds exposed at intermediate dietary concentrations. Taken together, this is evidence that genetic variation for factors affecting blood mercury accumulation could be acted on by selection. If similar heritability for mercury accumulation exists in wild populations, selection could result in genetic differentiation for populations in contaminated locations, with possible consequences for mercury biomagnification in food webs. PMID:27668745

  20. Pilot Screening to Determine Antimicrobial Synergies in a Multidrug-Resistant Bacterial Strain Library

    PubMed Central

    Kim, Si-Hyun; Park, Chulmin; Chun, Hye-Sun; Choi, Jae-Ki; Lee, Hyo-Jin; Cho, Sung-Yeon; Park, Sun Hee; Choi, Su-Mi; Choi, Jung-Hyun; Yoo, Jin-Hong

    2016-01-01

    With the rise in multidrug-resistant (MDR) bacterial infections, there has been increasing interest in combinations of ≥2 antimicrobial agents with synergistic effects. We established an MDR bacterial strain library to screen for in vitro antimicrobial synergy by using a broth microdilution checkerboard method and high-throughput luciferase-based bacterial cell viability assay. In total, 39 MDR bacterial strains, including 23 carbapenem-resistant gram-negative bacteria, 9 vancomycin-intermediate Staphylococcus aureus, and 7 vancomycin-resistant Enterococcus faecalis, were used to screen for potential antimicrobial synergies. Synergies were more frequently identified with combinations of imipenem plus trimethoprim–sulfamethoxazole for carbapenem-resistant Acinetobacter baumannii in the library. To verify this finding, we tested 34 A. baumannii clinical isolates resistant to both imipenem and trimethoprim–sulfamethoxazole by the checkerboard method. The imipenem plus trimethoprim–sulfamethoxazole combination showed synergy in the treatment of 21 (62%) of the clinical isolates. The results indicate that pilot screening for antimicrobial synergy in the MDR bacterial strain library could be valuable in the selection of combination therapeutic regimens to treat MDR bacterial infections. Further studies are warranted to determine whether this screening system can be useful to screen for the combined effects of conventional antimicrobials and new-generation antimicrobials or nonantimicrobials. PMID:26974861

  1. Antibiotics and Bacterial Resistance in the 21st Century

    PubMed Central

    Fair, Richard J; Tor, Yitzhak

    2014-01-01

    Dangerous, antibiotic resistant bacteria have been observed with increasing frequency over the past several decades. In this review the factors that have been linked to this phenomenon are addressed. Profiles of bacterial species that are deemed to be particularly concerning at the present time are illustrated. Factors including economic impact, intrinsic and acquired drug resistance, morbidity and mortality rates, and means of infection are taken into account. Synchronously with the waxing of bacterial resistance there has been waning antibiotic development. The approaches that scientists are employing in the pursuit of new antibacterial agents are briefly described. The standings of established antibiotic classes as well as potentially emerging classes are assessed with an emphasis on molecules that have been clinically approved or are in advanced stages of development. Historical perspectives, mechanisms of action and resistance, spectrum of activity, and preeminent members of each class are discussed. PMID:25232278

  2. Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants.

    PubMed

    Das, Surajit; Dash, Hirak R; Chakraborty, Jaya

    2016-04-01

    Metal pollution is one of the most persistent and complex environmental issues, causing threat to the ecosystem and human health. On exposure to several toxic metals such as arsenic, cadmium, chromium, copper, lead, and mercury, several bacteria has evolved with many metal-resistant genes as a means of their adaptation. These genes can be further exploited for bioremediation of the metal-contaminated environments. Many operon-clustered metal-resistant genes such as cadB, chrA, copAB, pbrA, merA, and NiCoT have been reported in bacterial systems for cadmium, chromium, copper, lead, mercury, and nickel resistance and detoxification, respectively. The field of environmental bioremediation has been ameliorated by exploiting diverse bacterial detoxification genes. Genetic engineering integrated with bioremediation assists in manipulation of bacterial genome which can enhance toxic metal detoxification that is not usually performed by normal bacteria. These techniques include genetic engineering with single genes or operons, pathway construction, and alternations of the sequences of existing genes. However, numerous facets of bacterial novel metal-resistant genes are yet to be explored for application in microbial bioremediation practices. This review describes the role of bacteria and their adaptive mechanisms for toxic metal detoxification and restoration of contaminated sites.

  3. Epidemiology and antibiotic resistance of bacterial meningitis in Dapaong, northern Togo.

    PubMed

    Karou, Simplice D; Balaka, Abago; Bamoké, Mitiname; Tchelougou, Daméhan; Assih, Maléki; Anani, Kokou; Agbonoko, Kodjo; Simpore, Jacques; de Souza, Comlan

    2012-11-01

    To assess the seasonality of the bacterial meningitis and the antibiotic resistance of incriminated bacteria over the last three years in the northern Togo. From January 2007 to January 2010, 533 cerebrospinal fluids (CSF) samples were collected from patients suspected of meningitis in the Regional Hospital of Dapaong (northern Togo). After microscopic examination, samples were cultured for bacterial identification and antibiotic susceptibility. The study included 533 patients (306 male and 227 female) aged from 1 day to 55 years [average age (13.00±2.07) years]. Bacterial isolation and identification were attempted for 254/533 (47.65%) samples. The bacterial species identified were: Neisseria meningitidis A (N. meningitidis A) (58.27%), Neisseria meningitidis W135 (N. meningitidis W135) (7.09%), Streptococcus pneumoniae (S. pneumoniae) (26.77%), Haemophilus influenza B (H. influenza B) (6.30%) and Enterobacteriaceae (1.57%). The results indicated that bacterial meningitis occur from November to May with a peak in February for H. influenzae and S. pneumoniae and March for Neisseriaceae. The distribution of positive CSF with regards to the age showed that subjects between 6 and 12 years followed by subjects of 0 to 5 years were most affected with respective frequencies of 67.82% and 56.52% (P<0.001). Susceptibility tests revealed that bacteria have developed resistance to several antibiotics including aminosides (resistance rate >20% for both bacterial strains), macrolides (resistance rate > 30% for H. influenzae) quinolones (resistance rate >15% for H. influenzae and N. meningitidis W135). Over three years, the prevalence of S. pneumoniae significantly increased from 8.48% to 73.33% (P<0.001), while the changes in the prevalence of H. influenzae B were not statistically significant: 4.24%, vs. 8.89%, (P = 0.233). Our results indicate that data in African countries differ depending on geographical location in relation to the African meningitis belt. This underlines

  4. Bacterial recombination promotes the evolution of multi-drug-resistance in functionally diverse populations

    PubMed Central

    Perron, Gabriel G.; Lee, Alexander E. G.; Wang, Yun; Huang, Wei E.; Barraclough, Timothy G.

    2012-01-01

    Bacterial recombination is believed to be a major factor explaining the prevalence of multi-drug-resistance (MDR) among pathogenic bacteria. Despite extensive evidence for exchange of resistance genes from retrospective sequence analyses, experimental evidence for the evolutionary benefits of bacterial recombination is scarce. We compared the evolution of MDR between populations of Acinetobacter baylyi in which we manipulated both the recombination rate and the initial diversity of strains with resistance to single drugs. In populations lacking recombination, the initial presence of multiple strains resistant to different antibiotics inhibits the evolution of MDR. However, in populations with recombination, the inhibitory effect of standing diversity is alleviated and MDR evolves rapidly. Moreover, only the presence of DNA harbouring resistance genes promotes the evolution of resistance, ruling out other proposed benefits for recombination. Together, these results provide direct evidence for the fitness benefits of bacterial recombination and show that this occurs by mitigation of functional interference between genotypes resistant to single antibiotics. Although analogous to previously described mechanisms of clonal interference among alternative beneficial mutations, our results actually highlight a different mechanism by which interactions among co-occurring strains determine the benefits of recombination for bacterial evolution. PMID:22048956

  5. Antibiotic-resistant fecal bacteria, antibiotics, and mercury in surface waters of Oakland County, Michigan, 2005-2006

    USGS Publications Warehouse

    Fogarty, Lisa R.; Duris, Joseph W.; Crowley, Suzanne L.; Hardigan, Nicole

    2007-01-01

    Water samples collected from 20 stream sites in Oakland and Macomb Counties, Mich., were analyzed to learn more about the occurrence of cephalosporin-resistant Escherichia coli (E. coli) and vancomycin-resistant enterococci (VRE) and the co-occurrence of antibiotics and mercury in area streams. Fecal indicator bacteria concentrations exceeded the Michigan recreational water-quality standard of 300 E. coli colony forming units (CFU) per 100 milliliters of water in 19 of 35 stream-water samples collected in Oakland County. A gene commonly associated with enterococci from humans was detected in samples from Paint Creek at Rochester and Evans Ditch at Southfield, indicating that human fecal waste is a possible source of fecal contamination at these sites. E. coli resistant to the cephalosporin antibiotics (cefoxitin and/ or ceftriaxone) were found at all sites on at least one occasion. The highest percentages of E. coli isolates resistant to cefoxitin and ceftriaxone were 71 percent (Clinton River at Auburn Hills) and 19 percent (Sashabaw Creek near Drayton Plains), respectively. Cephalosporin-resistant E. coli was detected more frequently in samples from intensively urbanized or industrialized areas than in samples from less urbanized areas. VRE were not detected in any sample collected in this study. Multiple antibiotics (azithromycin, erythromycin, ofloxacin, sulfamethoxazole, and trimethoprim) were detected in water samples from the Clinton River at Auburn Hills, and tylosin (an antibiotic used in veterinary medicine and livestock production that belongs to the macrolide group, along with erythromycin) was detected in one water sample from Paint Creek at Rochester. Concentrations of total mercury were as high as 19.8 nanograms per liter (Evans Ditch at Southfield). There was no relation among percentage of antibiotic-resistant bacteria and measured concentrations of antibiotics or mercury in the water. Genetic elements capable of exchanging multiple antibiotic-resistance

  6. Photodynamic UVA-riboflavin bacterial elimination in antibiotic-resistant bacteria.

    PubMed

    Makdoumi, Karim; Bäckman, Anders

    2016-09-01

    To evaluate the bactericidal effect of clinical ultraviolet A (UVA) settings used in photoactivated chromophore for infectious keratitis (PACK)-collagen cross-linking (CXL) in antibiotic-resistant and non-resistant bacterial strains. Well-characterized bacterial strains from clinical isolates, without and with antibiotic resistance, were studied in a pairwise comparison. The evaluated pathogens were Staphylococcus epidermidis, Staphylococcus aureus, Pseudomonas aeruginosa, and Enterococcus faecalis. Bacteria were dispersed in PBS and diluted to a concentration of approximately 4 × 10 5 /ml. Riboflavin was added to a concentration of 0.01%. By spreading the solution on a microscope slide, a fluid film layer, with a thickness of around 400 mm, was formed and UVA exposure followed. Eight separate exposures were made for each strain (n = 8). The degree of elimination in resistant and non-resistant pathogens was compared. The bactericidal efficacy of exposure differed between the tested microorganisms, and the mean elimination ranged between 60 and 92%, being most extensive in both of the evaluated Pseudomonas strains and least in the E. faecalis strains. Similar reductions were seen in antibiotic-resistant and non-resistant strains, with the exception of S. aureus, in which the resistant strain metchicillin-resistant Staphylococcus aureus (MRSA) was eradicated in a greater extent than the non-resistant strain (P = 0.030). UVA-riboflavin settings used in PACK-CXL are effective in reducing both antibiotic-resistant and non-resistant bacteria. Antibiotic resistance does not appear to be protective against the photooxidative exposure. © 2016 Royal Australian and New Zealand College of Ophthalmologists.

  7. Bacterial resistance to antibodies: a model evolutionary study.

    PubMed

    Schulman, Lawrence S

    2017-03-21

    The tangled nature model of evolution (reviewed in the main text) is adapted for use in the study of antibody resistance acquired by horizontal gene transfer. Exchanges of DNA and the acquisition of resistant gene sequences are considered. For the parameters used, resistant strains rapidly proliferate and dominate, although initial intense antibiotic treatment can occasionally prevent this. Variation in genome distribution appears to be long tailed. If this is reflected in nature, the occurrence of resistant bacterial strains can be expected, as well as considerable variation in patient outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The effect of natural organic matter on the adsorption of mercury to bacterial cells

    NASA Astrophysics Data System (ADS)

    Dunham-Cheatham, Sarrah; Mishra, Bhoopesh; Myneni, Satish; Fein, Jeremy B.

    2015-02-01

    We investigated the ability of non-metabolizing Bacillus subtilis, Shewanella oneidensis MR-1, and Geobacter sulfurreducens bacterial species to adsorb mercury in the absence and presence of Suwanee River fulvic acid (FA). Bulk adsorption and X-ray absorption spectroscopy (XAS) experiments were conducted at three pH conditions, and the results indicate that the presence of FA decreases the extent of Hg adsorption to biomass under all of the pH conditions studied. Hg XAS results show that the presence of FA does not alter the binding environment of Hg adsorbed onto the biomass regardless of pH or FA concentration, indicating that ternary bacteria-Hg-FA complexes do not form to an appreciable extent under the experimental conditions, and that Hg binding on the bacteria is dominated by sulfhydryl binding. We used the experimental results to calculate apparent partition coefficients, Kd, for Hg under each experimental condition. The calculations yield similar coefficients for Hg onto each of the bacterial species studies, suggesting there is no significant difference in Hg partitioning between the three bacterial species. The calculations also indicate similar coefficients for Hg-bacteria and Hg-FA complexes. S XAS measurements confirm the presence of sulfhydryl sites on both the FA and bacterial cells, and demonstrate the presence of a wide range of S moieties on the FA in contrast to the bacterial biomass, whose S sites are dominated by thiols. Our results suggest that although FA can compete with bacterial binding sites for aqueous Hg, because of the relatively similar partition coefficients for the types of sorbents, the competition is not dominated by either bacteria or FA unless the concentration of one type of site greatly exceeds that of the other.

  9. Subcellular Targeting of Methylmercury Lyase Enhances Its Specific Activity for Organic Mercury Detoxification in Plants1

    PubMed Central

    Bizily, Scott P.; Kim, Tehryung; Kandasamy, Muthugapatti K.; Meagher, Richard B.

    2003-01-01

    Methylmercury is an environmental pollutant that biomagnifies in the aquatic food chain with severe consequences for humans and other animals. In an effort to remove this toxin in situ, we have been engineering plants that express the bacterial mercury resistance enzymes organomercurial lyase MerB and mercuric ion reductase MerA. In vivo kinetics experiments suggest that the diffusion of hydrophobic organic mercury to MerB limits the rate of the coupled reaction with MerA (Bizily et al., 2000). To optimize reaction kinetics for organic mercury compounds, the merB gene was engineered to target MerB for accumulation in the endoplasmic reticulum and for secretion to the cell wall. Plants expressing the targeted MerB proteins and cytoplasmic MerA are highly resistant to organic mercury and degrade organic mercury at 10 to 70 times higher specific activity than plants with the cytoplasmically distributed wild-type MerB enzyme. MerB protein in endoplasmic reticulum-targeted plants appears to accumulate in large vesicular structures that can be visualized in immunolabeled plant cells. These results suggest that the toxic effects of organic mercury are focused in microenvironments of the secretory pathway, that these hydrophobic compartments provide more favorable reaction conditions for MerB activity, and that moderate increases in targeted MerB expression will lead to significant gains in detoxification. In summary, to maximize phytoremediation efficiency of hydrophobic pollutants in plants, it may be beneficial to target enzymes to specific subcellular environments. PMID:12586871

  10. Overexpression of a bacterial mercury transporter MerT in Arabidopsis enhances mercury tolerance.

    PubMed

    Xu, Sheng; Sun, Bin; Wang, Rong; He, Jia; Xia, Bing; Xue, Yong; Wang, Ren

    2017-08-19

    The phytoremediation by using of green plants in the removal of environmental pollutant is an environment friendly, green technology that is cost effective and energetically inexpensive. By using Agrobacterium-mediated gene transfer, we generated transgenic Arabidopsis plants ectopically expressing mercuric transport protein gene (merT) from Pseudomonas alcaligenes. Compared with wild-type (WT) plants, overexpressing PamerT in Arabidopsis enhanced the tolerance to HgCl 2 . Further results showed that the enhanced total activities or corresponding transcripts of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT) and guaiacol peroxidase (POD) were observed in transgenic Arabidopsis under HgCl 2 stress. These results were confirmed by the alleviation of oxidative damage, as indicated by the decrease of thiobarbituric acid reactive substances (TBARS) contents and reactive oxygen species (ROS) accumulation. In addition, localization analysis of PaMerT in Arabidopsis protoplast showed that it is likely to be associated with vacuole. In all, PamerT increased mercury (Hg) tolerance in transgenic Arabidopsis, and decreased production of Hg-induced ROS, thereby protecting plants from oxidative damage. The present study has provided further evidence that bacterial MerT plays an important role in the plant tolerance to HgCl 2 and in reducing the production of ROS induced by HgCl 2 . Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Test for bacterial resistance build-up against plasma treatment

    NASA Astrophysics Data System (ADS)

    Zimmermann, J. L.; Shimizu, T.; Schmidt, H.-U.; Li, Y.-F.; Morfill, G. E.; Isbary, G.

    2012-07-01

    It is well known that the evolution of resistance of microorganisms to a range of different antibiotics presents a major problem in the control of infectious diseases. Accordingly, new bactericidal ‘agents’ are in great demand. Using a cold atmospheric pressure (CAP) plasma dispenser operated with ambient air, a more than five orders of magnitude inactivation or reduction of Methicillin-resistant Staphylococcus aureus (MRSA; resistant against a large number of the tested antibiotics) was obtained in less than 10 s. This makes CAP the most promising candidate for combating nosocomial (hospital-induced) infections. To test for the occurrence and development of bacterial resistance against such plasmas, experiments with Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Enterococcus mundtii) were performed. The aim was to determine quantitative limits for primary (naturally) or secondary (acquired) resistance against the plasma treatment. Our results show that E. coli and E. mundtii possess no primary resistance against the plasma treatment. By generating four generations of bacteria for every strain, where the survivors of the plasma treatment were used for the production of the next generation, a lower limit to secondary resistance was obtained. Our results indicate that CAP technology could contribute to the control of infections in hospitals, in outpatient care and in disaster situations, providing a new, fast and efficient broad-band disinfection technology that is not constrained by bacterial resistance mechanisms.

  12. Microbial pollution in wildlife: Linking agricultural manuring and bacterial antibiotic resistance in red-billed choughs.

    PubMed

    Blanco, Guillermo; Lemus, Jesús A; Grande, Javier

    2009-05-01

    The spread of pathogens in the environment due to human activities (pathogen pollution) may be involved in the emergence of many diseases in humans, livestock and wildlife. When manure from medicated livestock and urban effluents is spread onto agricultural land, both residues of antibiotics and bacteria carrying antibiotic resistance may be introduced into the environment. The transmission of bacterial resistance from livestock and humans to wildlife remains poorly understood even while wild animals may act as reservoirs of resistance that may be amplified and spread in the environment. We determined bacterial resistance to antibiotics in wildlife using the red-billed chough Pyrrhocorax pyrrhocorax as a potential bioindicator of soil health, and evaluated the role of agricultural manuring with waste of different origins in the acquisition and characteristics of such resistance. Agricultural manure was found to harbor high levels of bacterial resistance to multiple antibiotics. Choughs from areas where manure landspreading is a common agricultural practice harbor a high bacterial resistance to multiple antibiotics, resembling the resistance profile found in the waste (pig slurry and sewage sludge) used in each area. The transfer of bacterial resistance to wildlife should be considered as an important risk for environmental health when agricultural manuring involves fecal material containing multiresistant enteric bacteria including pathogens from livestock operations and urban areas. The assessment of bacterial resistance in wild animals may be valuable for the monitoring of environmental health and for the management of emergent infectious diseases influenced by the impact of different human activities in the environment.

  13. Antibiotic Capture by Bacterial Lipocalins Uncovers an Extracellular Mechanism of Intrinsic Antibiotic Resistance

    PubMed Central

    El-Halfawy, Omar M.; Klett, Javier; Ingram, Rebecca J.; Loutet, Slade A.; Murphy, Michael E. P.; Martín-Santamaría, Sonsoles

    2017-01-01

    ABSTRACT The potential for microbes to overcome antibiotics of different classes before they reach bacterial cells is largely unexplored. Here we show that a soluble bacterial lipocalin produced by Burkholderia cenocepacia upon exposure to sublethal antibiotic concentrations increases resistance to diverse antibiotics in vitro and in vivo. These phenotypes were recapitulated by heterologous expression in B. cenocepacia of lipocalin genes from Pseudomonas aeruginosa, Mycobacterium tuberculosis, and methicillin-resistant Staphylococcus aureus. Purified lipocalin bound different classes of bactericidal antibiotics and contributed to bacterial survival in vivo. Experimental and X-ray crystal structure-guided computational studies revealed that lipocalins counteract antibiotic action by capturing antibiotics in the extracellular space. We also demonstrated that fat-soluble vitamins prevent antibiotic capture by binding bacterial lipocalin with higher affinity than antibiotics. Therefore, bacterial lipocalins contribute to antimicrobial resistance by capturing diverse antibiotics in the extracellular space at the site of infection, which can be counteracted by known vitamins. PMID:28292982

  14. A network-based approach for resistance transmission in bacterial populations.

    PubMed

    Gehring, Ronette; Schumm, Phillip; Youssef, Mina; Scoglio, Caterina

    2010-01-07

    Horizontal transfer of mobile genetic elements (conjugation) is an important mechanism whereby resistance is spread through bacterial populations. The aim of our work is to develop a mathematical model that quantitatively describes this process, and to use this model to optimize antimicrobial dosage regimens to minimize resistance development. The bacterial population is conceptualized as a compartmental mathematical model to describe changes in susceptible, resistant, and transconjugant bacteria over time. This model is combined with a compartmental pharmacokinetic model to explore the effect of different plasma drug concentration profiles. An agent-based simulation tool is used to account for resistance transfer occurring when two bacteria are adjacent or in close proximity. In addition, a non-linear programming optimal control problem is introduced to minimize bacterial populations as well as the drug dose. Simulation and optimization results suggest that the rapid death of susceptible individuals in the population is pivotal in minimizing the number of transconjugants in a population. This supports the use of potent antimicrobials that rapidly kill susceptible individuals and development of dosage regimens that maintain effective antimicrobial drug concentrations for as long as needed to kill off the susceptible population. Suggestions are made for experiments to test the hypotheses generated by these simulations.

  15. Method and apparatus for monitoring mercury emissions

    DOEpatents

    Durham, Michael D.; Schlager, Richard J.; Sappey, Andrew D.; Sagan, Francis J.; Marmaro, Roger W.; Wilson, Kevin G.

    1997-01-01

    A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber.

  16. Newer systems for bacterial resistances to toxic heavy metals.

    PubMed Central

    Silver, S; Ji, G

    1994-01-01

    Bacterial plasmids contain specific genes for resistances to toxic heavy metal ions including Ag+, AsO2-, AsO4(3-), Cd2+, Co2+, CrO4(2-), Cu2+, Hg2+, Ni2+, Pb2+, Sb3+, and Zn2+. Recent progress with plasmid copper-resistance systems in Escherichia coli and Pseudomonas syringae show a system of four gene products, an inner membrane protein (PcoD), an outer membrane protein (PcoB), and two periplasmic Cu(2+)-binding proteins (PcoA and PcoC). Synthesis of this system is governed by two regulatory proteins (the membrane sensor PcoS and the soluble responder PcoR, probably a DNA-binding protein), homologous to other bacterial two-component regulatory systems. Chromosomally encoded Cu2+ P-type ATPases have recently been recognized in Enterococcus hirae and these are closely homologous to the bacterial cadmium efflux ATPase and the human copper-deficiency disease Menkes gene product. The Cd(2+)-efflux ATPase of gram-positive bacteria is a large P-type ATPase, homologous to the muscle Ca2+ ATPase and the Na+/K+ ATPases of animals. The arsenic-resistance system of gram-negative bacteria functions as an oxyanion efflux ATPase for arsenite and presumably antimonite. However, the structure of the arsenic ATPase is fundamentally different from that of P-type ATPases. The absence of the arsA gene (for the ATPase subunit) in gram-positive bacteria raises questions of energy-coupling for arsenite efflux. The ArsC protein product of the arsenic-resistance operons of both gram-positive and gram-negative bacteria is an intracellular enzyme that reduces arsenate [As(V)] to arsenite [As(III)], the substrate for the transport pump. Newly studied cation efflux systems for Cd2+, Zn2+, and Co2+ (Czc) or Co2+ and Ni2+ resistance (Cnr) lack ATPase motifs in their predicted polypeptide sequences. Therefore, not all plasmid-resistance systems that function through toxic ion efflux are ATPases. The first well-defined bacterial metallothionein was found in the cyanobacterium Synechococcus

  17. Molecular analysis of mercury-resistant Bacillus isolates from sediment of Minamata Bay, Japan.

    PubMed Central

    Nakamura, K; Silver, S

    1994-01-01

    Bacillus isolates from Minamata Bay sediment were selected for the ability to volatilize mercury from a range of organomercurials (including methylmercury). Chromosomal DNA from 74 of 78 such strains hybridized with the mer mercury resistance operon DNA from marine Bacillus sp. strain RC607 (Y. Wang, M. Moore, H. S. Levinson, S. Silver, C. Walsh, and I. Mahler, J. Bacteriol. 171:83-92, 1989). The most frequent classes with regard to restriction nuclease site maps of the mer operon for the new isolates were identical to or closely related to the mer determinant of strain RC607. PCR amplification analysis with primers designed from the strain RC607 mer operon gave products of precisely the predicted size with the 74 Minamata Bay isolates. Images PMID:7811095

  18. Method and apparatus for monitoring mercury emissions

    DOEpatents

    Durham, M.D.; Schlager, R.J.; Sappey, A.D.; Sagan, F.J.; Marmaro, R.W.; Wilson, K.G.

    1997-10-21

    A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber. 15 figs.

  19. The use of a mercury biosensor to evaluate the bioavailability of mercury-thiol complexes and mechanisms of mercury uptake in bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ndu, Udonna; Barkay, Tamar; Mason, Robert P.

    We discuss as mercury (Hg) biosensors are sensitive to only intracellular Hg, they are useful in the investigation of Hg uptake mechanisms and the effects of speciation on Hg bioavailability to microbes. In this study, bacterial biosensors were used to evaluate the roles that several transporters such as the glutathione, cystine/cysteine, and Mer transporters play in the uptake of Hg from Hg-thiol complexes by comparing uptake rates in strains with functioning transport systems to strains where these transporters had been knocked out by deletion of key genes. The Hg uptake into the biosensors was quantified based on the intracellular conversionmore » of inorganic mercury (Hg(II)) to elemental mercury (Hg(0)) by the enzyme MerA. It was found that uptake of Hg from Hg-cysteine (Hg(CYS) 2) and Hg-glutathione (Hg(GSH) 2) complexes occurred at the same rate as that of inorganic complexes of Hg(II) into Escherichia coli strains with and without intact Mer transport systems. However, higher rates of Hg uptake were observed in the strain with a functioning Mer transport system. These results demonstrate that thiol-bound Hg is bioavailable to E. coli and that this bioavailability is higher in Hg-resistant bacteria with a complete Mer system than in non-resistant strains. No difference in the uptake rate of Hg from Hg(GSH) 2 was observed in E. coli strains with or without functioning glutathione transport systems. There was also no difference in uptake rates between a wildtype Bacillus subtilis strain with a functioning cystine/cysteine transport system, and a mutant strain where this transport system had been knocked out. These results cast doubt on the viability of the hypothesis that the entire Hg-thiol complex is taken up into the cell by a thiol transporter. It is more likely that the Hg in the Hg-thiol complex is transferred to a transport protein on the cell membrane and is subsequently internalized.« less

  20. The use of a mercury biosensor to evaluate the bioavailability of mercury-thiol complexes and mechanisms of mercury uptake in bacteria

    DOE PAGES

    Ndu, Udonna; Barkay, Tamar; Mason, Robert P.; ...

    2015-09-15

    We discuss as mercury (Hg) biosensors are sensitive to only intracellular Hg, they are useful in the investigation of Hg uptake mechanisms and the effects of speciation on Hg bioavailability to microbes. In this study, bacterial biosensors were used to evaluate the roles that several transporters such as the glutathione, cystine/cysteine, and Mer transporters play in the uptake of Hg from Hg-thiol complexes by comparing uptake rates in strains with functioning transport systems to strains where these transporters had been knocked out by deletion of key genes. The Hg uptake into the biosensors was quantified based on the intracellular conversionmore » of inorganic mercury (Hg(II)) to elemental mercury (Hg(0)) by the enzyme MerA. It was found that uptake of Hg from Hg-cysteine (Hg(CYS) 2) and Hg-glutathione (Hg(GSH) 2) complexes occurred at the same rate as that of inorganic complexes of Hg(II) into Escherichia coli strains with and without intact Mer transport systems. However, higher rates of Hg uptake were observed in the strain with a functioning Mer transport system. These results demonstrate that thiol-bound Hg is bioavailable to E. coli and that this bioavailability is higher in Hg-resistant bacteria with a complete Mer system than in non-resistant strains. No difference in the uptake rate of Hg from Hg(GSH) 2 was observed in E. coli strains with or without functioning glutathione transport systems. There was also no difference in uptake rates between a wildtype Bacillus subtilis strain with a functioning cystine/cysteine transport system, and a mutant strain where this transport system had been knocked out. These results cast doubt on the viability of the hypothesis that the entire Hg-thiol complex is taken up into the cell by a thiol transporter. It is more likely that the Hg in the Hg-thiol complex is transferred to a transport protein on the cell membrane and is subsequently internalized.« less

  1. Bacterial Enzymes and Antibiotic Resistance- Oral Presentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maltz, Lauren

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure ofmore » the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β-lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes.« less

  2. Bilateral Comparison of Mercury and Gallium Fixed-Point Cells Using Standard Platinum Resistance Thermometer

    NASA Astrophysics Data System (ADS)

    Bojkovski, J.; Veliki, T.; Zvizdić, D.; Drnovšek, J.

    2011-08-01

    The objective of project EURAMET 1127 (Bilateral comparison of triple point of mercury and melting point of gallium) in the field of thermometry is to compare realization of a triple point of mercury (-38.8344 °C) and melting point of gallium (29.7646 °C) between the Slovenian national laboratory MIRS/UL-FE/LMK and the Croatian national laboratory HMI/FSB-LPM using a long-stem 25 Ω standard platinum resistance thermometer (SPRT). MIRS/UL/FE-LMK participated in a number of intercomparisons on the level of EURAMET. On the other hand, the HMI/LPM-FSB laboratory recently acquired new fixed-point cells which had to be evaluated in the process of intercomparisons. A quartz-sheathed SPRT has been selected and calibrated at HMI/LPM-FSB at the triple point of mercury, the melting point of gallium, and the water triple point. A second set of measurements was made at MIRS/UL/FE-LMK. After its return, the SPRT was again recalibrated at HMI/LPM-FSB. In the comparison, the W value of the SPRT has been used. Results of the bilateral intercomparison confirmed that the new gallium cell of the HMI/LPM-FSB has a value that is within uncertainty limits of both laboratories that participated in the exercise, while the mercury cell experienced problems. After further research, a small leakage in the mercury fixed-point cell has been found.

  3. Use of biogenic and abiotic elemental selenium nanospheres to sequester elemental mercury released from mercury contaminated museum specimens.

    PubMed

    Fellowes, J W; Pattrick, R A D; Green, D I; Dent, A; Lloyd, J R; Pearce, C I

    2011-05-30

    Mercuric chloride solutions have historically been used as pesticides to prevent bacterial, fungal and insect degradation of herbarium specimens. The University of Manchester museum herbarium contains over a million specimens from numerous collections, many preserved using HgCl(2) and its transformation to Hg(v)(0) represents a health risk to herbarium staff. Elevated mercury concentrations in work areas (∼ 1.7 μg m(-3)) are below advised safe levels (<25 μg m(-3)) but up to 90 μg m(-3) mercury vapour was measured in specimen boxes, representing a risk when accessing the samples. Mercury vapour release correlated strongly with temperature. Mercury salts were observed on botanical specimens at concentrations up to 2.85 wt% (bulk); XPS, SEM-EDS and XANES suggest the presence of residual HgCl(2) as well as cubic HgS and HgO. Bacterially derived, amorphous nanospheres of elemental selenium effectively sequestered the mercury vapour in the specimen boxes (up to 19 wt%), and analysis demonstrated that the Hg(v)(0) was oxidised by the selenium to form stable HgSe on the surface of the nanospheres. Biogenic Se(0) can be used to reduce Hg(v)(0) in long term, slow release environments. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. PSYCHROPHILIC PSEUDOMONAS SP. RESISTANT TO MERCURY FROM PAVLODAR, KAZAKHSTAN

    EPA Science Inventory

    As mercury circulates and deposits globally, the remediation of extensive mercury contamination surrounding a chloralkali plant in Pavlodar, Kazakhstan is critical. High-levels of mercury contamination exist within the confines of the plant, at nearby off-site waste storage and e...

  5. The role of sorption and bacteria in mercury partitioning and bioavailability in artificial sediments.

    PubMed

    Zhong, Huan; Wang, Wen-Xiong

    2009-03-01

    This study compared the relative importance of three types of sorption (organic matter-particle, mercury-organic matter and mercury-particle) in controlling the overall mercury partitioning and bioavailability in sediments. We found that all three types of sorption were important for both inorganic mercury (Hg) and methylated mercury (MeHg). Mercury-particle sorption was more important than mercury-fulvic acid (FA) sorption in increasing the mercury concentrations with increasing aging. Bioavailability (quantified by gut juice extraction from sipunculans) was mainly controlled by mercury-particle sorption, while FA-particle and mercury-FA sorption were not as important, especially for MeHg. Bacterial activity also increased the partitioning of Hg or MeHg in the sediments and was further facilitated by the presence of organic matter. The bioavailability of Hg or MeHg from sediments was only slightly influenced by bacterial activity. This study highlights the importance of sorption from various sources (especially mercury-particle sorption) as well as bacteria in controlling the partitioning and bioavailability of Hg or MeHg in sediments.

  6. Genetics and breeding of bacterial leaf spot resistance

    USDA-ARS?s Scientific Manuscript database

    Bacterial leaf spot (BLS) caused by the pathogen Xanthomonas campestris pv. vitians (Xcv) is a globally important disease of whole head and baby leaf lettuce that reduces crop yield and quality. Host resistance is the most feasible method to reduce disease losses. Screening Lactuca accessions has id...

  7. Cooperative Bacterial Growth Dynamics Predict the Evolution of Antibiotic Resistance

    NASA Astrophysics Data System (ADS)

    Artemova, Tatiana; Gerardin, Ylaine; Hsin-Jung Li, Sophia; Gore, Jeff

    2011-03-01

    Since the discovery of penicillin, antibiotics have been our primary weapon against bacterial infections. Unfortunately, bacteria can gain resistance to penicillin by acquiring the gene that encodes beta-lactamase, which inactivates the antibiotic. However, mutations in this gene are necessary to degrade the modern antibiotic cefotaxime. Understanding the conditions that favor the spread of these mutations is a challenge. Here we show that bacterial growth in beta-lactam antibiotics is cooperative and that the nature of this growth determines the conditions in which resistance evolves. Quantitative analysis of the growth dynamics predicts a peak in selection at very low antibiotic concentrations; competition between strains confirms this prediction. We also find significant selection at higher antibiotic concentrations, close to the minimum inhibitory concentrations of the strains. Our results argue that an understanding of the evolutionary forces that lead to antibiotic resistance requires a quantitative understanding of the evolution of cooperation in bacteria.

  8. Antimicrobial Resistance and Virulence: a Successful or Deleterious Association in the Bacterial World?

    PubMed Central

    Beceiro, Alejandro; Tomás, María

    2013-01-01

    SUMMARY Hosts and bacteria have coevolved over millions of years, during which pathogenic bacteria have modified their virulence mechanisms to adapt to host defense systems. Although the spread of pathogens has been hindered by the discovery and widespread use of antimicrobial agents, antimicrobial resistance has increased globally. The emergence of resistant bacteria has accelerated in recent years, mainly as a result of increased selective pressure. However, although antimicrobial resistance and bacterial virulence have developed on different timescales, they share some common characteristics. This review considers how bacterial virulence and fitness are affected by antibiotic resistance and also how the relationship between virulence and resistance is affected by different genetic mechanisms (e.g., coselection and compensatory mutations) and by the most prevalent global responses. The interplay between these factors and the associated biological costs depend on four main factors: the bacterial species involved, virulence and resistance mechanisms, the ecological niche, and the host. The development of new strategies involving new antimicrobials or nonantimicrobial compounds and of novel diagnostic methods that focus on high-risk clones and rapid tests to detect virulence markers may help to resolve the increasing problem of the association between virulence and resistance, which is becoming more beneficial for pathogenic bacteria. PMID:23554414

  9. Potential and use of bacterial small RNAs to combat drug resistance: a systematic review

    PubMed Central

    Liu, Xiaodong; Zhang, Lin; Wong, Sunny Hei; Chan, Matthew TV; Wu, William KK

    2017-01-01

    Background Over the decades, new antibacterial agents have been developed in an attempt to combat drug resistance, but they remain unsuccessful. Recently, a novel class of bacterial gene expression regulators, bacterial small RNAs (sRNAs), has received increasing attention toward their involvement in antibiotic resistance. This systematic review aimed to discuss the potential of these small molecules as antibacterial drug targets. Methods Two investigators performed a comprehensive search of MEDLINE, EmBase, and ISI Web of Knowledge from inception to October 2016, without restriction on language. We included all in vitro and in vivo studies investigating the role of bacterial sRNA in antibiotic resistance. Risk of bias of the included studies was assessed by a modified guideline of Systematic Review Center for Laboratory Animal Experimentation (SYRCLE). Results Initial search yielded 432 articles. After exclusion of non-original articles, 20 were included in this review. Of these, all studies examined bacterial-type strains only. There were neither relevant in vivo nor clinical studies. The SYRCLE scores ranged from to 5 to 7, with an average of 5.9. This implies a moderate risk of bias. sRNAs influenced the antibiotics susceptibility through modulation of gene expression relevant to efflux pumps, cell wall synthesis, and membrane proteins. Conclusion Preclinical studies on bacterial-type strains suggest that modulation of sRNAs could enhance bacterial susceptibility to antibiotics. Further studies on clinical isolates and in vivo models are needed to elucidate the therapeutic value of sRNA modulation on treatment of multidrug-resistant bacterial infection. PMID:29290689

  10. Using experimental evolution to explore natural patterns between bacterial motility and resistance to bacteriophages

    PubMed Central

    Koskella, Britt; Taylor, Tiffany B; Bates, Jennifer; Buckling, Angus

    2011-01-01

    Resistance of bacteria to phages may be gained by alteration of surface proteins to which phages bind, a mechanism that is likely to be costly as these molecules typically have critical functions such as movement or nutrient uptake. To address this potential trade-off, we combine a systematic study of natural bacteria and phage populations with an experimental evolution approach. We compare motility, growth rate and susceptibility to local phages for 80 bacteria isolated from horse chestnut leaves and, contrary to expectation, find no negative association between resistance to phages and bacterial motility or growth rate. However, because correlational patterns (and their absence) are open to numerous interpretations, we test for any causal association between resistance to phages and bacterial motility using experimental evolution of a subset of bacteria in both the presence and absence of naturally associated phages. Again, we find no clear link between the acquisition of resistance and bacterial motility, suggesting that for these natural bacterial populations, phage-mediated selection is unlikely to shape bacterial motility, a key fitness trait for many bacteria in the phyllosphere. The agreement between the observed natural pattern and the experimental evolution results presented here demonstrates the power of this combined approach for testing evolutionary trade-offs. PMID:21509046

  11. Novel Polymyxin Combination With Antineoplastic Mitotane Improved the Bacterial Killing Against Polymyxin-Resistant Multidrug-Resistant Gram-Negative Pathogens.

    PubMed

    Tran, Thien B; Wang, Jiping; Doi, Yohei; Velkov, Tony; Bergen, Phillip J; Li, Jian

    2018-01-01

    Due to limited new antibiotics, polymyxins are increasingly used to treat multidrug-resistant (MDR) Gram-negative bacteria, in particular carbapenem-resistant Acinetobacter baumannii , Pseudomonas aeruginosa , and Klebsiella pneumoniae . Unfortunately, polymyxin monotherapy has led to the emergence of resistance. Polymyxin combination therapy has been demonstrated to improve bacterial killing and prevent the emergence of resistance. From a preliminary screening of an FDA drug library, we identified antineoplastic mitotane as a potential candidate for combination therapy with polymyxin B against polymyxin-resistant Gram-negative bacteria. Here, we demonstrated that the combination of polymyxin B with mitotane enhances the in vitro antimicrobial activity of polymyxin B against 10 strains of A. baumannii , P. aeruginosa , and K. pneumoniae , including polymyxin-resistant MDR clinical isolates. Time-kill studies showed that the combination of polymyxin B (2 mg/L) and mitotane (4 mg/L) provided superior bacterial killing against all strains during the first 6 h of treatment, compared to monotherapies, and prevented regrowth and emergence of polymyxin resistance in the polymyxin-susceptible isolates. Electron microscopy imaging revealed that the combination potentially affected cell division in A. baumannii . The enhanced antimicrobial activity of the combination was confirmed in a mouse burn infection model against a polymyxin-resistant A. baumannii isolate. As mitotane is hydrophobic, it was very likely that the synergistic killing of the combination resulted from that polymyxin B permeabilized the outer membrane of the Gram-negative bacteria and allowed mitotane to enter bacterial cells and exert its antimicrobial effect. These results have important implications for repositioning non-antibiotic drugs for antimicrobial purposes, which may expedite the discovery of novel therapies to combat the rapid emergence of antibiotic resistance.

  12. Differential resistance of drinking water bacterial populations to monochloramine disinfection.

    PubMed

    Chiao, Tzu-Hsin; Clancy, Tara M; Pinto, Ameet; Xi, Chuanwu; Raskin, Lutgarde

    2014-04-01

    The impact of monochloramine disinfection on the complex bacterial community structure in drinking water systems was investigated using culture-dependent and culture-independent methods. Changes in viable bacterial diversity were monitored using culture-independent methods that distinguish between live and dead cells based on membrane integrity, providing a highly conservative measure of viability. Samples were collected from lab-scale and full-scale drinking water filters exposed to monochloramine for a range of contact times. Culture-independent detection of live cells was based on propidium monoazide (PMA) treatment to selectively remove DNA from membrane-compromised cells. Quantitative PCR (qPCR) and pyrosequencing of 16S rRNA genes was used to quantify the DNA of live bacteria and characterize the bacterial communities, respectively. The inactivation rate determined by the culture-independent PMA-qPCR method (1.5-log removal at 664 mg·min/L) was lower than the inactivation rate measured by the culture-based methods (4-log removal at 66 mg·min/L). Moreover, drastic changes in the live bacterial community structure were detected during monochloramine disinfection using PMA-pyrosequencing, while the community structure appeared to remain stable when pyrosequencing was performed on samples that were not subject to PMA treatment. Genera that increased in relative abundance during monochloramine treatment include Legionella, Escherichia, and Geobacter in the lab-scale system and Mycobacterium, Sphingomonas, and Coxiella in the full-scale system. These results demonstrate that bacterial populations in drinking water exhibit differential resistance to monochloramine, and that the disinfection process selects for resistant bacterial populations.

  13. Understanding institutional stakeholders’ perspectives on multidrug-resistant bacterial organism at the end of life: a qualitative study

    PubMed Central

    Heckel, Maria; Herbst, Franziska A; Adelhardt, Thomas; Tiedtke, Johanna M; Sturm, Alexander; Stiel, Stephanie; Ostgathe, Christoph

    2017-01-01

    Background Information lacks about institutional stakeholders’ perspectives on management approaches of multidrug-resistant bacterial organism in end-of-life situations. The term “institutional stakeholder” includes persons in leading positions with responsibility in hospitals’ multidrug-resistant bacterial organism management. They have great influence on how strategies on multidrug-resistant bacterial organism management approaches in institutions of the public health system are designed. This study targeted institutional stakeholders’ individual perspectives on multidrug-resistant bacterial organism colonization or infection and isolation measures at the end of life. Methods Between March and December 2014, institutional stakeholders of two study centers, a German palliative care unit and a geriatric ward, were queried in semistructured interviews. Interviews were audiotaped, transcribed verbatim, and analyzed qualitatively with the aid of the software MAXQDA for qualitative data analysis using principles of Grounded Theory. In addition, two external stakeholders were interviewed to enrich data. Results Key issues addressed by institutional stakeholders (N=18) were the relevance of multidrug-resistant bacterial organism in palliative and geriatric care, contradictions between hygiene principles and patients’ and family caregivers’ needs and divergence from standards, frame conditions, and reflections on standardization of multidrug-resistant bacterial organism end-of-life care procedures. Results show that institutional stakeholders face a dilemma between their responsibility in protecting third persons and ensuring patients’ quality of life. Until further empirical evidence establishes a clear multidrug-resistant bacterial organism management approach in end-of-life care, stakeholders suggest a case-based approach. Conclusion The institutional stakeholders’ perspectives and their suggestion of a case-based approach advance the development

  14. Understanding institutional stakeholders' perspectives on multidrug-resistant bacterial organism at the end of life: a qualitative study.

    PubMed

    Heckel, Maria; Herbst, Franziska A; Adelhardt, Thomas; Tiedtke, Johanna M; Sturm, Alexander; Stiel, Stephanie; Ostgathe, Christoph

    2017-01-01

    Information lacks about institutional stakeholders' perspectives on management approaches of multidrug-resistant bacterial organism in end-of-life situations. The term "institutional stakeholder" includes persons in leading positions with responsibility in hospitals' multidrug-resistant bacterial organism management. They have great influence on how strategies on multidrug-resistant bacterial organism management approaches in institutions of the public health system are designed. This study targeted institutional stakeholders' individual perspectives on multidrug-resistant bacterial organism colonization or infection and isolation measures at the end of life. Between March and December 2014, institutional stakeholders of two study centers, a German palliative care unit and a geriatric ward, were queried in semistructured interviews. Interviews were audiotaped, transcribed verbatim, and analyzed qualitatively with the aid of the software MAXQDA for qualitative data analysis using principles of Grounded Theory. In addition, two external stakeholders were interviewed to enrich data. Key issues addressed by institutional stakeholders (N=18) were the relevance of multidrug-resistant bacterial organism in palliative and geriatric care, contradictions between hygiene principles and patients' and family caregivers' needs and divergence from standards, frame conditions, and reflections on standardization of multidrug-resistant bacterial organism end-of-life care procedures. Results show that institutional stakeholders face a dilemma between their responsibility in protecting third persons and ensuring patients' quality of life. Until further empirical evidence establishes a clear multidrug-resistant bacterial organism management approach in end-of-life care, stakeholders suggest a case-based approach. The institutional stakeholders' perspectives and their suggestion of a case-based approach advance the development process of a patient-, family-, staff-, and institutional

  15. OCCURRENCE OF MERCURY-RESISTANT MICROORGANISMS IN MERCURY-CONTAMINATED SOILS AND SEDIMENTS IN PAVLODAR, KAZAKHSTAN

    EPA Science Inventory

    There is extensive mercury contamination of soil surrounding a chloralkali plant in Pavlodar, Kazakhstan that operated from 1970 to 1990. High-level mercury contamination exists within the confines of the plant, at nearby off-site waste storage and evaporation ponds, and in Balky...

  16. Inheritance of mercury tolerance in the aquatic oligochaete Tubifex tubifex.

    PubMed

    Vidal, Dora Elva; Horne, Alex John

    2003-09-01

    Resistance to contaminants is an important yet unmeasured factor in sediment toxicity tests. The rate at which mercury resistance develops and its genetic persistence in the oligochaete worm Tubifex tubifex were studied under laboratory conditions. Worms were raised for four generations under two different sediment treatments, one reference clean sediment, the other contaminated with mercury. Worms raised in mercury-contaminated sediment developed mercury tolerance that persisted even when the worms were raised for three subsequent generations in clean sediment. Mercury tolerance was determined by comparative water-only toxicity tests with mercury as the only stressor. Control worms had a mean lethal concentration (LC50) of 0.18 mg/L(-1). Worms exposed to high levels of mercury in sediment had high mercury tolerance with a mean LC50 of 1.40 mg/L(-1). When mercury-tolerant and control mercury-intolerant worms were crossed, their descendants also demonstrated mercury tolerance during lethal toxicity tests. The LC50 for worm descendants resulting from this cross was 1.39 mg/L(-1). Adaptation to mercury exposures occurred rapidly in this group of worms and appears to be due to both phenotypic and genotypic mechanisms. Development of contaminant resistance and adaptation may be common phenomena in aquatic benthic invertebrates, which should be considered during the design and interpretation of toxicity tests.

  17. Trojan Horse Antibiotics—A Novel Way to Circumvent Gram-Negative Bacterial Resistance?

    PubMed Central

    Tillotson, Glenn S.

    2016-01-01

    Antibiotic resistance has been emerged as a major global health problem. In particular, gram-negative species pose a significant clinical challenge as bacteria develop or acquire more resistance mechanisms. Often, these bacteria possess multiple resistance mechanisms, thus nullifying most of the major classes of drugs. Novel approaches to this issue are urgently required. However, the challenges of developing new agents are immense. Introducing novel agents is fraught with hurdles, thus adapting known antibiotic classes by altering their chemical structure could be a way forward. A chemical addition to existing antibiotics known as a siderophore could be a solution to the gram-negative resistance issue. Siderophore molecules rely on the bacterial innate need for iron ions and thus can utilize a Trojan Horse approach to gain access to the bacterial cell. The current approaches to using this potential method are reviewed. PMID:27773991

  18. Trojan Horse Antibiotics-A Novel Way to Circumvent Gram-Negative Bacterial Resistance?

    PubMed

    Tillotson, Glenn S

    2016-01-01

    Antibiotic resistance has been emerged as a major global health problem. In particular, gram-negative species pose a significant clinical challenge as bacteria develop or acquire more resistance mechanisms. Often, these bacteria possess multiple resistance mechanisms, thus nullifying most of the major classes of drugs. Novel approaches to this issue are urgently required. However, the challenges of developing new agents are immense. Introducing novel agents is fraught with hurdles, thus adapting known antibiotic classes by altering their chemical structure could be a way forward. A chemical addition to existing antibiotics known as a siderophore could be a solution to the gram-negative resistance issue. Siderophore molecules rely on the bacterial innate need for iron ions and thus can utilize a Trojan Horse approach to gain access to the bacterial cell. The current approaches to using this potential method are reviewed.

  19. Capsule Polysaccharide Mediates Bacterial Resistance to Antimicrobial Peptides

    PubMed Central

    Campos, Miguel A.; Vargas, Miguel A.; Regueiro, Verónica; Llompart, Catalina M.; Albertí, Sebastián; Bengoechea, José A.

    2004-01-01

    The innate immune system plays a critical role in the defense of areas exposed to microorganisms. There is an increasing body of evidence indicating that antimicrobial peptides and proteins (APs) are one of the most important weapons of this system and that they make up the protective front for the respiratory tract. On the other hand, it is known that pathogenic organisms have developed countermeasures to resist these agents such as reducing the net negative charge of the bacterial membranes. Here we report the characterization of a novel mechanism of resistance to APs that is dependent on the bacterial capsule polysaccharide (CPS). Klebsiella pneumoniae CPS mutant was more sensitive than the wild type to human neutrophil defensin 1, β-defensin 1, lactoferrin, protamine sulfate, and polymyxin B. K. pneumoniae lipopolysaccharide O antigen did not play an important role in AP resistance, and CPS was the only factor conferring protection against polymyxin B in strains lacking O antigen. In addition, we found a significant correlation between the amount of CPS expressed by a given strain and the resistance to polymyxin B. We also showed that K. pneumoniae CPS mutant bound more polymyxin B than the wild-type strain with a concomitant increased in the self-promoted pathway. Taken together, our results suggest that CPS protects bacteria by limiting the interaction of APs with the surface. Finally, we report that K. pneumoniae increased the amount of CPS and upregulated cps transcription when grown in the presence of polymyxin B and lactoferrin. PMID:15557634

  20. Prevalence and antimicrobial resistance pattern of bacterial meningitis in Egypt

    PubMed Central

    Shaban, Lamyaa; Siam, Rania

    2009-01-01

    Infectious diseases are the leading cause of morbidity and mortality in the developing world. In Egypt bacterial diseases constitute a great burden, with several particular bacteria sustaining the leading role of multiple serious infections. This article addresses profound bacterial agents causing a wide array of infections including but not limited to pneumonia and meningitis. The epidemiology of such infectious diseases and the prevalence of Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae are reviewed in the context of bacterial meningitis. We address prevalent serotypes in Egypt, antimicrobial resistance patterns and efficacy of vaccines to emphasize the importance of periodic surveillance for appropriate preventive and treatment strategies. PMID:19778428

  1. Exploring the links between antibiotic occurrence, antibiotic resistance, and bacterial communities in water supply reservoirs.

    PubMed

    Huerta, Belinda; Marti, Elisabet; Gros, Meritxell; López, Pilar; Pompêo, Marcelo; Armengol, Joan; Barceló, Damià; Balcázar, Jose Luis; Rodríguez-Mozaz, Sara; Marcé, Rafael

    2013-07-01

    Antibiotic resistance represents a growing global health concern due to the overuse and misuse of antibiotics. There is, however, little information about how the selective pressure of clinical antibiotic usage can affect environmental communities in aquatic ecosystems and which bacterial groups might be responsible for dissemination of antibiotic resistance genes (ARGs) into the environment. In this study, chemical and biological characterization of water and sediments from three water supply reservoirs subjected to a wide pollution gradient allowed to draw an accurate picture of the concentration of antibiotics and prevalence of ARGs, in order to evaluate the potential role of ARGs in shaping bacterial communities, and to identify the bacterial groups most probably carrying and disseminating ARGs. Results showed significant correlation between the presence of ARG conferring resistance to macrolides and the composition of bacterial communities, suggesting that antibiotic pollution and the spreading of ARG might play a role in the conformation of bacterial communities in reservoirs. Results also pointed out the bacterial groups Actinobacteria and Firmicutes as the ones probably carrying and disseminating ARGs. The potential effect of antibiotic pollution and the presence of ARGs on the composition of bacterial communities in lacustrine ecosystems prompt the fundamental question about potential effects on bacterial-related ecosystem services supplied by lakes and reservoirs. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Macrolide antibiotic interaction and resistance on the bacterial ribosome.

    PubMed

    Poehlsgaard, Jacob; Douthwaite, Stephen

    2003-02-01

    Our understanding of the fine structure of many antibiotic target sites has reached a new level of enlightenment in the last couple of years due to the advent, by X-ray crystallography, of high-resolution structures of the bacterial ribosome. Many classes of clinically useful antibiotics bind to the ribosome to inhibit bacterial protein synthesis. Macrolide, lincosamide and streptogramin B (MLSB) antibiotics form one of the largest groups, and bind to the same site on the 50S ribosomal subunit. Here, we review the molecular details of the ribosomal MLSB site to put into perspective the main points from a wealth of biochemical and genetic data that have been collected over several decades. The information is now available to understand, at atomic resolution, how macrolide antibiotics interact with their ribosomal target, how the target is altered to confer resistance, and in which directions we need to look if we are to rationally design better drugs to overcome the extant resistance mechanisms.

  3. Resistance, resilience and recovery: aquatic bacterial dynamics after water column disturbance.

    PubMed

    Shade, Ashley; Read, Jordan S; Welkie, David G; Kratz, Timothy K; Wu, Chin H; McMahon, Katherine D

    2011-10-01

    For lake microbes, water column mixing acts as a disturbance because it homogenizes thermal and chemical gradients known to define the distributions of microbial taxa. Our first objective was to isolate hypothesized drivers of lake bacterial response to water column mixing. To accomplish this, we designed an enclosure experiment with three treatments to independently test key biogeochemical changes induced by mixing: oxygen addition to the hypolimnion, nutrient addition to the epilimnion, and full water column mixing. We used molecular fingerprinting to observe bacterial community dynamics in the treatment and control enclosures, and in ambient lake water. We found that oxygen and nutrient amendments simulated the physical-chemical water column environment following mixing and resulted in similar bacterial communities to the mixing treatment, affirming that these were important drivers of community change. These results demonstrate that specific environmental changes can replicate broad disturbance effects on microbial communities. Our second objective was to characterize bacterial community stability by quantifying community resistance, recovery and resilience to an episodic disturbance. The communities in the nutrient and oxygen amendments changed quickly (had low resistance), but generally matched the control composition by the 10th day after treatment, exhibiting resilience. These results imply that aquatic bacterial assemblages are generally stable in the face of disturbance. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  4. Bacterial charity work leads to population-wide resistance.

    PubMed

    Lee, Henry H; Molla, Michael N; Cantor, Charles R; Collins, James J

    2010-09-02

    Bacteria show remarkable adaptability in the face of antibiotic therapeutics. Resistance alleles in drug target-specific sites and general stress responses have been identified in individual end-point isolates. Less is known, however, about the population dynamics during the development of antibiotic-resistant strains. Here we follow a continuous culture of Escherichia coli facing increasing levels of antibiotic and show that the vast majority of isolates are less resistant than the population as a whole. We find that the few highly resistant mutants improve the survival of the population's less resistant constituents, in part by producing indole, a signalling molecule generated by actively growing, unstressed cells. We show, through transcriptional profiling, that indole serves to turn on drug efflux pumps and oxidative-stress protective mechanisms. The indole production comes at a fitness cost to the highly resistant isolates, and whole-genome sequencing reveals that this bacterial altruism is made possible by drug-resistance mutations unrelated to indole production. This work establishes a population-based resistance mechanism constituting a form of kin selection whereby a small number of resistant mutants can, at some cost to themselves, provide protection to other, more vulnerable, cells, enhancing the survival capacity of the overall population in stressful environments.

  5. Mercury and halogens in coal--Their role in determining mercury emissions from coal combustion

    USGS Publications Warehouse

    Kolker, Allan; Quick, Jeffrey C.; Senior, Connie L.; Belkin, Harvey E.

    2012-01-01

    Mercury is a toxic pollutant. In its elemental form, gaseous mercury has a long residence time in the atmosphere, up to a year, allowing it to be transported long distances from emission sources. Mercury can be emitted from natural sources such as volcanoes, or from anthropogenic sources, such as coal-fired powerplants. In addition, all sources of mercury on the Earth's surface can re-emit it from land and sea back to the atmosphere, from which it is then redeposited. Mercury in the atmosphere is present in such low concentrations that it is not considered harmful. Once mercury enters the aquatic environment, however, it can undergo a series of biochemical transformations that convert a portion of the mercury originally present to methylmercury, a highly toxic organic form of mercury that accumulates in fish and birds. Many factors contribute to creation of methylmercury in aquatic ecosystems, including mercury availability, sediment and nutrient load, bacterial influence, and chemical conditions. In the United States, consumption of fish with high levels of methylmercury is the most common pathway for human exposure to mercury, leading the U.S. Environmental Protection Agency (EPA) to issue fish consumption advisories in every State. The EPA estimates that 50 percent of the mercury entering the atmosphere in the United States is emitted from coal-burning utility powerplants. An EPA rule, known as MATS (for Mercury and Air Toxics Standards), to reduce emissions of mercury and other toxic pollutants from powerplants, was signed in December 2011. The rule, which is currently under review, specifies limits for mercury and other toxic elements, such as arsenic, chromium, and nickel. MATS also places limits on emission of harmful acid gases, such as hydrochloric acid and hydrofluoric acid. These standards are the result of a 2010 detailed nationwide program by the EPA to sample stack emissions and thousands of shipments of coal to coal-burning powerplants. The United

  6. OCCURRENCE OF MICROORGANISMS RESISTANT TO MERCURY IN MERCURY CONTAMINATED SOILS AND SEDIMENTS IN PAVLODAR, KAZAKHSTAN

    EPA Science Inventory

    There is extensive mercury contamination of soil surrounding a chloralkali plant in Pavlodar, Kazakhstan that operated from 1970 to 1990. High-level mercury contamination exists within the confines of the plant, at nearby off-site waste storage and evaporation ponds, and in Balky...

  7. Effects of the soil microbial community on mobile proportions and speciation of mercury (Hg) in contaminated soil.

    PubMed

    Száková, Jiřina; Havlíčková, Jitka; Šípková, Adéla; Gabriel, Jiří; Švec, Karel; Baldrian, Petr; Sysalová, Jiřina; Coufalík, Pavel; Červenka, Rostislav; Zvěřina, Ondřej; Komárek, Josef; Tlustoš, Pavel

    2016-01-01

    The precise characterization of the behavior of individual microorganisms in the presence of increased mercury contents in soil is necessary for better elucidation of the fate of mercury in the soil environment. In our investigation, resistant bacterial strains isolated from two mercury contaminated soils, represented by Paenibacillus alginolyticus, Burkholderia glathei, Burkholderia sp., and Pseudomonas sp., were used. Two differently contaminated soils (0.5 and 7 mg kg(-1) total mercury) were chosen. Preliminary soil analysis showed the presence of methylmercury and phenylmercury with the higher soil mercury level. Modified rhizobox experiments were performed to assess the ability of mercury accumulating strains to deplete the mobile and mobilizable mercury portions in the soil by modification; microbial agar cultures were used rather than the plant root zone. A sequential extraction procedure was performed to release the following mercury fractions: water soluble, extracted in acidic conditions, bound to humic substances, elemental, and bound to complexes, HgS and residual. Inductively coupled plasma mass spectrometry (ICP-MS) and a single-purpose atomic absorption spectrometer (AMA-254) were applied for mercury determination in the samples and extracts. Gas chromatography coupled to atomic fluorescence spectrometry (GC-AFS) was used for the determination of organomercury compounds. The analysis of the microbial community at the end of the experiment showed a 42% abundance of Paenibacillus sp. followed by Acetivibrio sp., Brevibacillus sp., Cohnella sp., Lysinibacillus sp., and Clostridium sp. not exceeding 2% abundance. The results suggest importance of Paenibacillus sp. in Hg transformation processes. This genus should be tested for potential bioremediation use in further research.

  8. Promoter variants of Xa23 alleles affect bacterial blight resistance and evolutionary pattern

    PubMed Central

    Xu, Feifei; Tang, Yongchao; Gao, Ying

    2017-01-01

    Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is the most important bacterial disease in rice (Oryza sativa L.). Our previous studies have revealed that the bacterial blight resistance gene Xa23 from wild rice O. rufipogon Griff. confers the broadest-spectrum resistance against all the naturally occurring Xoo races. As a novel executor R gene, Xa23 is transcriptionally activated by the bacterial avirulence (Avr) protein AvrXa23 via binding to a 28-bp DNA element (EBEAvrXa23) in the promoter region. So far, the evolutionary mechanism of Xa23 remains to be illustrated. Here, a rice germplasm collection of 97 accessions, including 29 rice cultivars (indica and japonica) and 68 wild relatives, was used to analyze the evolution, phylogeographic relationship and association of Xa23 alleles with bacterial blight resistance. All the ~ 473 bp DNA fragments consisting of promoter and coding regions of Xa23 alleles in the germplasm accessions were PCR-amplified and sequenced, and nine single nucleotide polymorphisms (SNPs) were detected in the promoter regions (~131 bp sequence upstream from the start codon ATG) of Xa23/xa23 alleles while only two SNPs were found in the coding regions. The SNPs in the promoter regions formed 5 haplotypes (Pro-A, B, C, D, E) which showed no significant difference in geographic distribution among these 97 rice accessions. However, haplotype association analysis indicated that Pro-A is the most favored haplotype for bacterial blight resistance. Moreover, SNP changes among the 5 haplotypes mostly located in the EBE/ebe regions (EBEAvrXa23 and corresponding ebes located in promoters of xa23 alleles), confirming that the EBE region is the key factor to confer bacterial blight resistance by altering gene expression. Polymorphism analysis and neutral test implied that Xa23 had undergone a bottleneck effect, and selection process of Xa23 was not detected in cultivated rice. In addition, the Xa23 coding region was found highly

  9. Promoter variants of Xa23 alleles affect bacterial blight resistance and evolutionary pattern.

    PubMed

    Cui, Hua; Wang, Chunlian; Qin, Tengfei; Xu, Feifei; Tang, Yongchao; Gao, Ying; Zhao, Kaijun

    2017-01-01

    Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is the most important bacterial disease in rice (Oryza sativa L.). Our previous studies have revealed that the bacterial blight resistance gene Xa23 from wild rice O. rufipogon Griff. confers the broadest-spectrum resistance against all the naturally occurring Xoo races. As a novel executor R gene, Xa23 is transcriptionally activated by the bacterial avirulence (Avr) protein AvrXa23 via binding to a 28-bp DNA element (EBEAvrXa23) in the promoter region. So far, the evolutionary mechanism of Xa23 remains to be illustrated. Here, a rice germplasm collection of 97 accessions, including 29 rice cultivars (indica and japonica) and 68 wild relatives, was used to analyze the evolution, phylogeographic relationship and association of Xa23 alleles with bacterial blight resistance. All the ~ 473 bp DNA fragments consisting of promoter and coding regions of Xa23 alleles in the germplasm accessions were PCR-amplified and sequenced, and nine single nucleotide polymorphisms (SNPs) were detected in the promoter regions (~131 bp sequence upstream from the start codon ATG) of Xa23/xa23 alleles while only two SNPs were found in the coding regions. The SNPs in the promoter regions formed 5 haplotypes (Pro-A, B, C, D, E) which showed no significant difference in geographic distribution among these 97 rice accessions. However, haplotype association analysis indicated that Pro-A is the most favored haplotype for bacterial blight resistance. Moreover, SNP changes among the 5 haplotypes mostly located in the EBE/ebe regions (EBEAvrXa23 and corresponding ebes located in promoters of xa23 alleles), confirming that the EBE region is the key factor to confer bacterial blight resistance by altering gene expression. Polymorphism analysis and neutral test implied that Xa23 had undergone a bottleneck effect, and selection process of Xa23 was not detected in cultivated rice. In addition, the Xa23 coding region was found highly

  10. Modeling physiological resistance in bacterial biofilms.

    PubMed

    Cogan, N G; Cortez, Ricardo; Fauci, Lisa

    2005-07-01

    A mathematical model of the action of antimicrobial agents on bacterial biofilms is presented. The model includes the fluid dynamics in and around the biofilm, advective and diffusive transport of two chemical constituents and the mechanism of physiological resistance. Although the mathematical model applies in three dimensions, we present two-dimensional simulations for arbitrary biofilm domains and various dosing strategies. The model allows the prediction of the spatial evolution of bacterial population and chemical constituents as well as different dosing strategies based on the fluid motion. We find that the interaction between the nutrient and the antimicrobial agent can reproduce survival curves which are comparable to other model predictions as well as experimental results. The model predicts that exposing the biofilm to low concentration doses of antimicrobial agent for longer time is more effective than short time dosing with high antimicrobial agent concentration. The effects of flow reversal and the roughness of the fluid/biofilm are also investigated. We find that reversing the flow increases the effectiveness of dosing. In addition, we show that overall survival decreases with increasing surface roughness.

  11. Evolution of antibiotic resistance is linked to any genetic mechanism affecting bacterial duration of carriage

    PubMed Central

    Lehtinen, Sonja; Blanquart, François; Croucher, Nicholas J.; Turner, Paul; Lipsitch, Marc; Fraser, Christophe

    2017-01-01

    Understanding how changes in antibiotic consumption affect the prevalence of antibiotic resistance in bacterial pathogens is important for public health. In a number of bacterial species, including Streptococcus pneumoniae, the prevalence of resistance has remained relatively stable despite prolonged selection pressure from antibiotics. The evolutionary processes allowing the robust coexistence of antibiotic sensitive and resistant strains are not fully understood. While allelic diversity can be maintained at a locus by direct balancing selection, there is no evidence for such selection acting in the case of resistance. In this work, we propose a mechanism for maintaining coexistence at the resistance locus: linkage to a second locus that is under balancing selection and that modulates the fitness effect of resistance. We show that duration of carriage plays such a role, with long duration of carriage increasing the fitness advantage gained from resistance. We therefore predict that resistance will be more common in strains with a long duration of carriage and that mechanisms maintaining diversity in duration of carriage will also maintain diversity in antibiotic resistance. We test these predictions in S. pneumoniae and find that the duration of carriage of a serotype is indeed positively correlated with the prevalence of resistance in that serotype. These findings suggest heterogeneity in duration of carriage is a partial explanation for the coexistence of sensitive and resistant strains and that factors determining bacterial duration of carriage will also affect the prevalence of resistance. PMID:28096340

  12. [Pathogen distribution and bacterial resistance in children with severe community-acquired pneumonia].

    PubMed

    Lu, Yun-Yun; Luo, Rong; Fu, Zhou

    2017-09-01

    To investigate the distribution of pathogens and bacterial resistance in children with severe community-acquired pneumonia (CAP). A total of 522 children with severe CAP who were hospitalized in 2016 were enrolled as study subjects. According to their age, they were divided into infant group (402 infants aged 28 days to 1 year), young children group (73 children aged 1 to 3 years), preschool children group (35 children aged 3 to 6 years), and school-aged children group (12 children aged ≥6 years). According to the onset season, all children were divided into spring group (March to May, 120 children), summer group (June to August, 93 children), autumn group (September to November, 105 children), and winter group (December to February, 204 children). Sputum specimens from the deep airway were collected from all patients. The phoenix-100 automatic bacterial identification system was used for bacterial identification and drug sensitivity test. The direct immunofluorescence assay was used to detect seven common respiratory viruses. The quantitative real-time PCR was used to detect Mycoplasma pneumoniae (MP) and Chlamydia trachomatis (CT). Of all the 522 children with severe CAP, 419 (80.3%) were found to have pathogens, among whom 190 (45.3%) had mixed infection. A total of 681 strains of pathogens were identified, including 371 bacterial strains (54.5%), 259 viral strains (38.0%), 12 fungal strains (1.8%), 15 MP strains (2.2%), and 24 CT strains (3.5%). There were significant differences in the distribution of bacterial, viral, MP, and fungal infections between different age groups (P<0.05). There were significant differences in the incidence rate of viral infection between different season groups (P<0.05), with the highest incidence rate in winter. The drug-resistance rates of Streptococcus pneumoniae to erythromycin, tetracycline, and clindamycin reached above 85%, and the drug-resistance rates of Staphylococcus aureus to penicillin, erythromycin, and clindamycin

  13. Emergence of antibiotic resistance from multinucleated bacterial filaments

    PubMed Central

    Bos, Julia; Zhang, Qiucen; Vyawahare, Saurabh; Rogers, Elizabeth; Rosenberg, Susan M.; Austin, Robert H.

    2015-01-01

    Bacteria can rapidly evolve resistance to antibiotics via the SOS response, a state of high-activity DNA repair and mutagenesis. We explore here the first steps of this evolution in the bacterium Escherichia coli. Induction of the SOS response by the genotoxic antibiotic ciprofloxacin changes the E. coli rod shape into multichromosome-containing filaments. We show that at subminimal inhibitory concentrations of ciprofloxacin the bacterial filament divides asymmetrically repeatedly at the tip. Chromosome-containing buds are made that, if resistant, propagate nonfilamenting progeny with enhanced resistance to ciprofloxacin as the parent filament dies. We propose that the multinucleated filament creates an environmental niche where evolution can proceed via generation of improved mutant chromosomes due to the mutagenic SOS response and possible recombination of the new alleles between chromosomes. Our data provide a better understanding of the processes underlying the origin of resistance at the single-cell level and suggest an analogous role to the eukaryotic aneuploidy condition in cancer. PMID:25492931

  14. Bacterial resistance modifying tetrasaccharide agents from Ipomoea murucoides.

    PubMed

    Chérigo, Lilia; Pereda-Miranda, Rogelio; Gibbons, Simon

    2009-01-01

    As part of an ongoing project to identify oligosaccharides which modulate bacterial multidrug resistance, the CHCl(3)-soluble extract from flowers of a Mexican arborescent morning glory, Ipomoea murucoides, through preparative-scale recycling HPLC, yielded five lipophilic tetrasaccharide inhibitors of Staphylococcusaureus multidrug efflux pumps, murucoidins XII-XVI (1-5). The macrocyclic lactone-type structures for these linear hetero-tetraglycoside derivatives of jalapinolic acid were established by spectroscopic methods. These compounds were tested for in vitro antibacterial and resistance modifying activity against strains of Staphylococcus aureus possessing multidrug resistance efflux mechanisms. Only murucoidin XIV (3) displayed antimicrobial activity against SA-1199B (MIC 32microg/ml), a norfloxacin-resistant strain that over-expresses the NorA MDR efflux pump. The four microbiologically inactive (MIC>512microg/ml) tetrasaccharides increased norfloxacin susceptibility of this strain by 4-fold (8microg/ml from 32microg/ml) at concentrations of 25microg/ml, while murucoidin XIV (3) exerted the same potentiation effect at a concentration of 5microg/ml.

  15. Mesoporous Silica Nanoparticles-Encapsulated Agarose and Heparin as Anticoagulant and Resisting Bacterial Adhesion Coating for Biomedical Silicone.

    PubMed

    Wu, Fan; Xu, Tingting; Zhao, Guangyao; Meng, Shuangshuang; Wan, Mimi; Chi, Bo; Mao, Chun; Shen, Jian

    2017-05-30

    Silicone catheter has been widely used in peritoneal dialysis. The research missions of improving blood compatibility and the ability of resisting bacterial adhesion of silicone catheter have been implemented for the biomedical requirements. However, most of modification methods of surface modification were only able to develop the blood-contacting biomaterials with good hemocompatibility. It is difficult for the biomaterials to resist bacterial adhesion. Here, agarose was selected to resist bacterial adhesion, and heparin was chosen to improve hemocompatibility of materials. Both of them were loaded into mesoporous silica nanoparticles (MSNs), which were successfully modified on the silicone film surface via electrostatic interaction. Structures of the mesoporous coatings were characterized in detail by dynamic light scattering, transmission electron microscopy, Brunauer-Emmett-Teller surface area, thermogravimetric analysis, Fourier transform infrared spectroscopy, scanning electron microscope, and water contact angle. Platelet adhesion and aggregation, whole blood contact test, hemolysis and related morphology test of red blood cells, in vitro clotting time tests, and bacterial adhesion assay were performed to evaluate the anticoagulant effect and the ability of resisting bacterial adhesion of the modified silicone films. Results indicated that silicone films modified by MSNs had a good anticoagulant effect and could resist bacterial adhesion. The modified silicone films have potential as blood-contacting biomaterials that were attributed to their biomedical properties.

  16. Cooperation, competition and antibiotic resistance in bacterial colonies.

    PubMed

    Frost, Isabel; Smith, William P J; Mitri, Sara; Millan, Alvaro San; Davit, Yohan; Osborne, James M; Pitt-Francis, Joe M; MacLean, R Craig; Foster, Kevin R

    2018-06-01

    Bacteria commonly live in dense and genetically diverse communities associated with surfaces. In these communities, competition for resources and space is intense, and yet we understand little of how this affects the spread of antibiotic-resistant strains. Here, we study interactions between antibiotic-resistant and susceptible strains using in vitro competition experiments in the opportunistic pathogen Pseudomonas aeruginosa and in silico simulations. Selection for intracellular resistance to streptomycin is very strong in colonies, such that resistance is favoured at very low antibiotic doses. In contrast, selection for extracellular resistance to carbenicillin is weak in colonies, and high doses of antibiotic are required to select for resistance. Manipulating the density and spatial structure of colonies reveals that this difference is partly explained by the fact that the local degradation of carbenicillin by β-lactamase-secreting cells protects neighbouring sensitive cells from carbenicillin. In addition, we discover a second unexpected effect: the inducible elongation of cells in response to carbenicillin allows sensitive cells to better compete for the rapidly growing colony edge. These combined effects mean that antibiotic treatment can select against antibiotic-resistant strains, raising the possibility of treatment regimes that suppress sensitive strains while limiting the rise of antibiotic resistance. We argue that the detailed study of bacterial interactions will be fundamental to understanding and overcoming antibiotic resistance.

  17. Overexpression of BSR1 confers broad-spectrum resistance against two bacterial diseases and two major fungal diseases in rice

    PubMed Central

    Maeda, Satoru; Hayashi, Nagao; Sasaya, Takahide; Mori, Masaki

    2016-01-01

    Broad-spectrum disease resistance against two or more types of pathogen species is desirable for crop improvement. In rice, Xanthomonas oryzae pv. oryzae (Xoo), the causal bacteria of rice leaf blight, and Magnaporthe oryzae, the fungal pathogen causing rice blast, are two of the most devastating pathogens. We identified the rice BROAD-SPECTRUM RESISTANCE 1 (BSR1) gene for a BIK1-like receptor-like cytoplasmic kinase using the FOX hunting system, and demonstrated that BSR1-overexpressing (OX) rice showed strong resistance to the bacterial pathogen, Xoo and the fungal pathogen, M. oryzae. Here, we report that BSR1-OX rice showed extended resistance against two other different races of Xoo, and to at least one other race of M. oryzae. In addition, the rice showed resistance to another bacterial species, Burkholderia glumae, which causes bacterial seedling rot and bacterial grain rot, and to Cochliobolus miyabeanus, another fungal species causing brown spot. Furthermore, BSR1-OX rice showed slight resistance to rice stripe disease, a major viral disease caused by rice stripe virus. Thus, we demonstrated that BSR1-OX rice shows remarkable broad-spectrum resistance to at least two major bacterial species and two major fungal species, and slight resistance to one viral pathogen. PMID:27436950

  18. Overexpression of BSR1 confers broad-spectrum resistance against two bacterial diseases and two major fungal diseases in rice.

    PubMed

    Maeda, Satoru; Hayashi, Nagao; Sasaya, Takahide; Mori, Masaki

    2016-06-01

    Broad-spectrum disease resistance against two or more types of pathogen species is desirable for crop improvement. In rice, Xanthomonas oryzae pv. oryzae (Xoo), the causal bacteria of rice leaf blight, and Magnaporthe oryzae, the fungal pathogen causing rice blast, are two of the most devastating pathogens. We identified the rice BROAD-SPECTRUM RESISTANCE 1 (BSR1) gene for a BIK1-like receptor-like cytoplasmic kinase using the FOX hunting system, and demonstrated that BSR1-overexpressing (OX) rice showed strong resistance to the bacterial pathogen, Xoo and the fungal pathogen, M. oryzae. Here, we report that BSR1-OX rice showed extended resistance against two other different races of Xoo, and to at least one other race of M. oryzae. In addition, the rice showed resistance to another bacterial species, Burkholderia glumae, which causes bacterial seedling rot and bacterial grain rot, and to Cochliobolus miyabeanus, another fungal species causing brown spot. Furthermore, BSR1-OX rice showed slight resistance to rice stripe disease, a major viral disease caused by rice stripe virus. Thus, we demonstrated that BSR1-OX rice shows remarkable broad-spectrum resistance to at least two major bacterial species and two major fungal species, and slight resistance to one viral pathogen.

  19. Bacterial Etiology and Antibiotic Resistance Profile of Community-Acquired Urinary Tract Infections in a Cameroonian City.

    PubMed

    Nzalie, Rolf Nyah-Tuku; Gonsu, Hortense Kamga; Koulla-Shiro, Sinata

    2016-01-01

    Introduction. Community-acquired urinary tract infections (CAUTIs) are usually treated empirically. Geographical variations in etiologic agents and their antibiotic sensitivity patterns are common. Knowledge of antibiotic resistance trends is important for improving evidence-based recommendations for empirical treatment of UTIs. Our aim was to determine the major bacterial etiologies of CAUTIs and their antibiotic resistance patterns in a cosmopolitan area of Cameroon for comparison with prescription practices of local physicians. Methods. We performed a cross-sectional descriptive study at two main hospitals in Yaoundé, collecting a clean-catch mid-stream urine sample from 92 patients having a clinical diagnosis of UTI. The empirical antibiotherapy was noted, and identification of bacterial species was done on CLED agar; antibiotic susceptibility testing was performed using the Kirby-Bauer disc diffusion method. Results. A total of 55 patients had samples positive for a UTI. Ciprofloxacin and amoxicillin/clavulanic acid were the most empirically prescribed antibiotics (30.9% and 23.6%, resp.); bacterial isolates showed high prevalence of resistance to both compounds. Escherichia coli (50.9%) was the most common pathogen, followed by Klebsiella pneumoniae (16.4%). Prevalence of resistance for ciprofloxacin was higher compared to newer quinolones. Conclusions. E. coli and K. pneumoniae were the predominant bacterial etiologies; the prevalence of resistance to commonly prescribed antibiotics was high.

  20. Arabidopsis EF-Tu receptor enhances bacterial disease resistance in transgenic wheat.

    PubMed

    Schoonbeek, Henk-Jan; Wang, Hsi-Hua; Stefanato, Francesca L; Craze, Melanie; Bowden, Sarah; Wallington, Emma; Zipfel, Cyril; Ridout, Christopher J

    2015-04-01

    Perception of pathogen (or microbe)-associated molecular patterns (PAMPs/MAMPs) by pattern recognition receptors (PRRs) is a key component of plant innate immunity. The Arabidopsis PRR EF-Tu receptor (EFR) recognizes the bacterial PAMP elongation factor Tu (EF-Tu) and its derived peptide elf18. Previous work revealed that transgenic expression of AtEFR in Solanaceae confers elf18 responsiveness and broad-spectrum bacterial disease resistance. In this study, we developed a set of bioassays to study the activation of PAMP-triggered immunity (PTI) in wheat. We generated transgenic wheat (Triticum aestivum) plants expressing AtEFR driven by the constitutive rice actin promoter and tested their response to elf18. We show that transgenic expression of AtEFR in wheat confers recognition of elf18, as measured by the induction of immune marker genes and callose deposition. When challenged with the cereal bacterial pathogen Pseudomonas syringae pv. oryzae, transgenic EFR wheat lines had reduced lesion size and bacterial multiplication. These results demonstrate that AtEFR can be transferred successfully from dicot to monocot species, further revealing that immune signalling pathways are conserved across these distant phyla. As novel PRRs are identified, their transfer between plant families represents a useful strategy for enhancing resistance to pathogens in crops. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  1. Bacterial resistance to silver nanoparticles and how to overcome it

    NASA Astrophysics Data System (ADS)

    Panáček, Aleš; Kvítek, Libor; Smékalová, Monika; Večeřová, Renata; Kolář, Milan; Röderová, Magdalena; Dyčka, Filip; Šebela, Marek; Prucek, Robert; Tomanec, Ondřej; Zbořil, Radek

    2018-01-01

    Silver nanoparticles have already been successfully applied in various biomedical and antimicrobial technologies and products used in everyday life. Although bacterial resistance to antibiotics has been extensively discussed in the literature, the possible development of resistance to silver nanoparticles has not been fully explored. We report that the Gram-negative bacteria Escherichia coli 013, Pseudomonas aeruginosa CCM 3955 and E. coli CCM 3954 can develop resistance to silver nanoparticles after repeated exposure. The resistance stems from the production of the adhesive flagellum protein flagellin, which triggers the aggregation of the nanoparticles. This resistance evolves without any genetic changes; only phenotypic change is needed to reduce the nanoparticles' colloidal stability and thus eliminate their antibacterial activity. The resistance mechanism cannot be overcome by additional stabilization of silver nanoparticles using surfactants or polymers. It is, however, strongly suppressed by inhibiting flagellin production with pomegranate rind extract.

  2. Bacterial resistance to silver nanoparticles and how to overcome it.

    PubMed

    Panáček, Aleš; Kvítek, Libor; Smékalová, Monika; Večeřová, Renata; Kolář, Milan; Röderová, Magdalena; Dyčka, Filip; Šebela, Marek; Prucek, Robert; Tomanec, Ondřej; Zbořil, Radek

    2018-01-01

    Silver nanoparticles have already been successfully applied in various biomedical and antimicrobial technologies and products used in everyday life. Although bacterial resistance to antibiotics has been extensively discussed in the literature, the possible development of resistance to silver nanoparticles has not been fully explored. We report that the Gram-negative bacteria Escherichia coli 013, Pseudomonas aeruginosa CCM 3955 and E. coli CCM 3954 can develop resistance to silver nanoparticles after repeated exposure. The resistance stems from the production of the adhesive flagellum protein flagellin, which triggers the aggregation of the nanoparticles. This resistance evolves without any genetic changes; only phenotypic change is needed to reduce the nanoparticles' colloidal stability and thus eliminate their antibacterial activity. The resistance mechanism cannot be overcome by additional stabilization of silver nanoparticles using surfactants or polymers. It is, however, strongly suppressed by inhibiting flagellin production with pomegranate rind extract.

  3. Imipenem/cilastatin encapsulated polymeric nanoparticles for destroying carbapenem-resistant bacterial isolates.

    PubMed

    Shaaban, Mona I; Shaker, Mohamed A; Mady, Fatma M

    2017-04-11

    Carbapenem-resistance is an extremely growing medical threat in antibacterial therapy as the incurable resistant strains easily develop a multi-resistance action to other potent antimicrobial agents. Nonetheless, the protective delivery of current antibiotics using nano-carriers opens a tremendous approach in the antimicrobial therapy, allowing the nano-formulated antibiotics to beat these health threat pathogens. Herein, we encapsulated imipenem into biodegradable polymeric nanoparticles to destroy the imipenem-resistant bacteria and overcome the microbial adhesion and dissemination. Imipenem loaded poly Ɛ-caprolactone (PCL) and polylactide-co-glycolide (PLGA) nanocapsules were formulated using double emulsion evaporation method. The obtained nanocapsules were characterized for mean particle diameter, morphology, loading efficiency, and in vitro release. The in vitro antimicrobial and anti adhesion activities were evaluated against selected imipenem-resistant Klebsiella pneumoniae and Pseudomonas aeruginosa clinical isolates. The obtained results reveal that imipenem loaded PCL nano-formulation enhances the microbial susceptibility and antimicrobial activity of imipenem. The imipenem loaded PCL nanoparticles caused faster microbial killing within 2-3 h compared to the imipenem loaded PLGA and free drug. Successfully, PCL nanocapsules were able to protect imipenem from enzymatic degradation by resistant isolates and prevent the emergence of the resistant colonies, as it lowered the mutation prevention concentration of free imipenem by twofolds. Moreover, the imipenem loaded PCL eliminated bacterial attachment and the biofilm assembly of P. aeruginosa and K. pneumoniae planktonic bacteria by 74 and 78.4%, respectively. These promising results indicate that polymeric nanoparticles recover the efficacy of imipenem and can be considered as a new paradigm shift against multidrug-resistant isolates in treating severe bacterial infections.

  4. New Technologies for Rapid Bacterial Identification and Antibiotic Resistance Profiling.

    PubMed

    Kelley, Shana O

    2017-04-01

    Conventional approaches to bacterial identification and drug susceptibility testing typically rely on culture-based approaches that take 2 to 7 days to return results. The long turnaround times contribute to the spread of infectious disease, negative patient outcomes, and the misuse of antibiotics that can contribute to antibiotic resistance. To provide new solutions enabling faster bacterial analysis, a variety of approaches are under development that leverage single-cell analysis, microfluidic concentration and detection strategies, and ultrasensitive readout mechanisms. This review discusses recent advances in this area and the potential of new technologies to enable more effective management of infectious disease.

  5. Engineering tobacco to remove mercury from polluted soil.

    PubMed

    Chang, S; Wei, F; Yang, Y; Wang, A; Jin, Z; Li, J; He, Y; Shu, H

    2015-04-01

    Tobacco is an ideal plant for modification to remove mercury from soil. Although several transgenic tobacco strains have been developed, they either release elemental mercury directly into the air or are only capable of accumulating small quantities of mercury. In this study, we constructed two transgenic tobacco lines: Ntk-7 (a tobacco plant transformed with merT-merP-merB1-merB2-ppk) and Ntp-36 (tobacco transformed with merT-merP-merB1-merB2-pcs1). The genes merT, merP, merB1, and merB2 were obtained from the well-known mercury-resistant bacterium Pseudomonas K-62. Ppk is a gene that encodes polyphosphate kinase, a key enzyme for synthesizing polyphosphate in Enterobacter aerogenes. Pcs1 is a tobacco gene that encodes phytochelatin synthase, which is the key enzyme for phytochelatin synthesis. The genes were linked with LP4/2A, a sequence that encodes a well-known linker peptide. The results demonstrate that all foreign genes can be abundantly expressed. The mercury resistance of Ntk-7 and Ntp-36 was much higher than that of the wild type whether tested with organic mercury or with mercuric ions. The transformed plants can accumulate significantly more mercury than the wild type, and Ntp-36 can accumulate more mercury from soil than Ntk-7. In mercury-polluted soil, the mercury content in Ntp-36's root can reach up to 251 μg/g. This is the first report to indicate that engineered tobacco can not only accumulate mercury from soil but also retain this mercury within the plant. Ntp-36 has good prospects for application in bioremediation for mercury pollution.

  6. Mechanisms of action of systemic antibiotics used in periodontal treatment and mechanisms of bacterial resistance to these drugs

    PubMed Central

    SOARES, Geisla Mary Silva; FIGUEIREDO, Luciene Cristina; FAVERI, Marcelo; CORTELLI, Sheila Cavalca; DUARTE, Poliana Mendes; FERES, Magda

    2012-01-01

    Antibiotics are important adjuncts in the treatment of infectious diseases, including periodontitis. The most severe criticisms to the indiscriminate use of these drugs are their side effects and, especially, the development of bacterial resistance. The knowledge of the biological mechanisms involved with the antibiotic usage would help the medical and dental communities to overcome these two problems. Therefore, the aim of this manuscript was to review the mechanisms of action of the antibiotics most commonly used in the periodontal treatment (i.e. penicillin, tetracycline, macrolide and metronidazole) and the main mechanisms of bacterial resistance to these drugs. Antimicrobial resistance can be classified into three groups: intrinsic, mutational and acquired. Penicillin, tetracycline and erythromycin are broad-spectrum drugs, effective against gram-positive and gram-negative microorganisms. Bacterial resistance to penicillin may occur due to diminished permeability of the bacterial cell to the antibiotic; alteration of the penicillin-binding proteins, or production of β-lactamases. However, a very small proportion of the subgingival microbiota is resistant to penicillins. Bacteria become resistant to tetracyclines or macrolides by limiting their access to the cell, by altering the ribosome in order to prevent effective binding of the drug, or by producing tetracycline/macrolide-inactivating enzymes. Periodontal pathogens may become resistant to these drugs. Finally, metronidazole can be considered a prodrug in the sense that it requires metabolic activation by strict anaerobe microorganisms. Acquired resistance to this drug has rarely been reported. Due to these low rates of resistance and to its high activity against the gram-negative anaerobic bacterial species, metronidazole is a promising drug for treating periodontal infections. PMID:22858695

  7. The effect of aqueous speciation and cellular ligand binding on the biotransformation and bioavailability of methylmercury in mercury-resistant bacteria.

    PubMed

    Ndu, Udonna; Barkay, Tamar; Schartup, Amina Traore; Mason, Robert P; Reinfelder, John R

    2016-02-01

    Mercury resistant bacteria play a critical role in mercury biogeochemical cycling in that they convert methylmercury (MeHg) and inorganic mercury to elemental mercury, Hg(0). To date there are very few studies on the effects of speciation and bioavailability of MeHg in these organisms, and even fewer studies on the role that binding to cellular ligands plays on MeHg uptake. The objective of this study was to investigate the effects of thiol complexation on the uptake of MeHg by measuring the intracellular demethylation-reduction (transformation) of MeHg to Hg(0) in Hg-resistant bacteria. Short-term intracellular transformation of MeHg was quantified by monitoring the loss of volatile Hg(0) generated during incubations of bacteria containing the complete mer operon (including genes from putative mercury transporters) exposed to MeHg in minimal media compared to negative controls with non-mer or heat-killed cells. The results indicate that the complexes MeHgOH, MeHg-cysteine, and MeHg-glutathione are all bioavailable in these bacteria, and without the mer operon there is very little biological degradation of MeHg. In both Pseudomonas stutzeri and Escherichia coli, there was a pool of MeHg that was not transformed to elemental Hg(0), which was likely rendered unavailable to Mer enzymes by non-specific binding to cellular ligands. Since the rates of MeHg accumulation and transformation varied more between the two species of bacteria examined than among MeHg complexes, microbial bioavailability, and therefore microbial demethylation, of MeHg in aquatic systems likely depends more on the species of microorganism than on the types and relative concentrations of thiols or other MeHg ligands present.

  8. Mercury Methylation by Desulfovibrio desulfuricans ND132 in the Presence of Polysulfides

    PubMed Central

    Jay, Jenny Ayla; Murray, Karen J.; Gilmour, Cynthia C.; Mason, Robert P.; Morel, François M. M.; Roberts, A. Lynn; Hemond, Harold F.

    2002-01-01

    The extracellular speciation of mercury may control bacterial uptake and methylation. Mercury-polysulfide complexes have recently been shown to be prevalent in sulfidic waters containing zero-valent sulfur. Despite substantial increases in total dissolved mercury concentration, methylation rates in cultures of Desulfovibrio desulfuricans ND132 equilibrated with cinnabar did not increase in the presence of polysulfides, as expected due to the large size and charged nature of most of the complexes. In natural waters not at saturation with cinnabar, mercury-polysulfide complexes would be expected to shift the speciation of mercury from HgS0(aq) toward charged complexes, thereby decreasing methylation rates. PMID:12406773

  9. The Composition and Spatial Patterns of Bacterial Virulence Factors and Antibiotic Resistance Genes in 19 Wastewater Treatment Plants

    PubMed Central

    Zhang, Bing; Xia, Yu; Wen, Xianghua; Wang, Xiaohui; Yang, Yunfeng; Zhou, Jizhong; Zhang, Yu

    2016-01-01

    Bacterial pathogenicity and antibiotic resistance are of concern for environmental safety and public health. Accumulating evidence suggests that wastewater treatment plants (WWTPs) are as an important sink and source of pathogens and antibiotic resistance genes (ARGs). Virulence genes (encoding virulence factors) are good indicators for bacterial pathogenic potentials. To achieve a comprehensive understanding of bacterial pathogenic potentials and antibiotic resistance in WWTPs, bacterial virulence genes and ARGs in 19 WWTPs covering a majority of latitudinal zones of China were surveyed by using GeoChip 4.2. A total of 1610 genes covering 13 virulence factors and 1903 genes belonging to 11 ARG families were detected respectively. The bacterial virulence genes exhibited significant spatial distribution patterns of a latitudinal biodiversity gradient and a distance-decay relationship across China. Moreover, virulence genes tended to coexist with ARGs as shown by their strongly positive associations. In addition, key environmental factors shaping the overall virulence gene structure were identified. This study profiles the occurrence, composition and distribution of virulence genes and ARGs in current WWTPs in China, and uncovers spatial patterns and important environmental variables shaping their structure, which may provide the basis for further studies of bacterial virulence factors and antibiotic resistance in WWTPs. PMID:27907117

  10. Sterilization Resistance of Bacterial Spores Explained with Water Chemistry.

    PubMed

    Friedline, Anthony W; Zachariah, Malcolm M; Middaugh, Amy N; Garimella, Ravindranath; Vaishampayan, Parag A; Rice, Charles V

    2015-11-05

    Bacterial spores can survive for long periods without nutrients and in harsh environmental conditions. This survival is influenced by the structure of the spore, the presence of protective compounds, and water retention. These compounds, and the physical state of water in particular, allow some species of bacterial spores to survive sterilization schemes with hydrogen peroxide and UV light. The chemical nature of the spore core and its water has been a subject of some contention and the chemical environment of the water impacts resistance paradigms. Either the spore has a glassy core, where water is immobilized along with other core components, or the core is gel-like with mobile water diffusion. These properties affect the movement of peroxide and radical species, and hence resistance. Deuterium solid-state NMR experiments are useful for examining the nature of the water inside the spore. Previous work in our lab with spores of Bacillus subtilis indicate that, for spores, the core water is in a more immobilized state than expected for the gel-like core theory, suggesting a glassy core environment. Here, we report deuterium solid-state NMR observations of the water within UV- and peroxide-resistant spores from Bacillus pumilus SAFR-032. Variable-temperature NMR experiments indicate no change in the line shape after heating to 50 °C, but an overall decrease in signal after heating to 100 °C. These results show glass-like core dynamics within B. pumilus SAFR-032 that may be the potential source of its known UV-resistance properties. The observed NMR traits can be attributed to the presence of an exosporium containing additional labile deuterons that can aid in the deactivation of sterilizing agents.

  11. Imidazopyrazinones (IPYs): Non-Quinolone Bacterial Topoisomerase Inhibitors Showing Partial Cross-Resistance with Quinolones.

    PubMed

    Jeannot, Frédéric; Taillier, Thomas; Despeyroux, Pierre; Renard, Stéphane; Rey, Astrid; Mourez, Michaël; Poeverlein, Christoph; Khichane, Imène; Perrin, Marc-Antoine; Versluys, Stéphanie; Stavenger, Robert A; Huang, Jianzhong; Germe, Thomas; Maxwell, Anthony; Cao, Sha; Huseby, Douglas L; Hughes, Diarmaid; Bacqué, Eric

    2018-04-26

    In our quest for new antibiotics able to address the growing threat of multidrug resistant infections caused by Gram-negative bacteria, we have investigated an unprecedented series of non-quinolone bacterial topoisomerase inhibitors from the Sanofi patrimony, named IPYs for imidazopyrazinones, as part of the Innovative Medicines Initiative (IMI) European Gram Negative Antibacterial Engine (ENABLE) organization. Hybridization of these historical compounds with the quinazolinediones, a known series of topoisomerase inhibitors, led us to a novel series of tricyclic IPYs that demonstrated potential for broad spectrum activity, in vivo efficacy, and a good developability profile, although later profiling revealed a genotoxicity risk. Resistance studies revealed partial cross-resistance with fluoroquinolones (FQs) suggesting that IPYs bind to the same region of bacterial topoisomerases as FQs and interact with at least some of the keys residues involved in FQ binding.

  12. Mounting resistance of uropathogens to antimicrobial agents: A retrospective study in patients with chronic bacterial prostatitis relapse.

    PubMed

    Stamatiou, Konstantinos; Pierris, Nikolaos

    2017-07-01

    Despite recent progress in the management of chronic bacterial prostatitis (CBP), many cases relapse. Increased drug resistance patterns of responsible bacteria have been proposed as the most probable causative factor. Driven by the limited number of previous studies addressing this topic, we aimed to study whether antibiotic resistance increases in patients with CBP when relapse occurs. A secondary aim of this study was to determine the resistance patterns of responsible bacteria from patients with CBP. The study material consisted of bacterial isolates from urine and/or prostatic secretions obtained from patients with CBP. Bacterial identification was performed by using the Vitek 2 Compact system and susceptibility testing was performed by disc diffusion and/or the Vitek 2 system. Interpretation of susceptibility results was based on Clinical and Laboratory Standards Institute guidelines. A total of 253 samples from patients diagnosed with CBP for the first time (group A) and 137 samples from relapsing patients with a history of CBP and previous antibiotic treatment (group B) were analyzed. A significant reduction in bacterial resistance to the less used antibiotics (TMP-SMX, tetracyclines, aminoglycosides, penicillins, and macrolides) was noted. An increase in resistance to quinolones of many bacteria that cause CBP was also noted with the increase in resistance of enterococcus strains being alarming. Comparison of the resistance profile of CBP-responsible bacteria between samples from first-time-diagnosed patients and samples from relapsing patients revealed notable differences that could be attributed to previous antibiotic treatment.

  13. Antibiotic and heavy metal resistance in enterococci from coastal marine sediment.

    PubMed

    Vignaroli, Carla; Pasquaroli, Sonia; Citterio, Barbara; Di Cesare, Andrea; Mangiaterra, Gianmarco; Fattorini, Daniele; Biavasco, Francesca

    2018-06-01

    Sediment samples from three coastal sites - two beach resorts (Beach 1 and Beach 2 sites) and an area lying between an oil refinery and a river estuary (Estuarine site) - were analyzed for antibiotic- and heavy metal (HM)-resistant enterococci. A total of 123 enterococci, 36 E. faecium, 34 E. casseliflavus, 33 E. hirae, 5 E. faecalis, 3 E. durans, 3 E. gallinarum, and 9 Enterococcus spp, were recovered. Strains resistant to erythromycin, tetracycline and quinupristin/dalfopristin (Q/D) were recovered from all sites, whereas multidrug-resistant isolates were recovered only from "Beach 2" (14%) and "Estuarine" (3.7%). As regards HM resistance, the strains showed a high frequency (68%) of cadmium and/or copper resistance and uniform susceptibility to mercury. The prevalence of cadmium-resistant strains was significantly higher among erythromycin-resistant than among erythromycin-susceptible strains. A significant association between cadmium or copper resistance and Q/D resistance was also observed at "Estuarine" site. The levels of the two HMs in sediment from all sites were fairly low, ranging from 0.070 to 0.126 μg/g, for cadmium and from 1.00 to 7.64 μg/g for copper. Mercury was always undetectable. These findings are consistent with reports that low HM concentrations may contribute to co-selection of antibiotic-resistant bacterial strains, including enterococci. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Using Natural Products to Treat Resistant and Persistent Bacterial Infections

    NASA Astrophysics Data System (ADS)

    Deering, Robert W.

    Antimicrobial resistance is a growing threat to human health both worldwide and in the United States. Most concerning is the emergence of multi-drug resistant (MDR) bacterial pathogens, especially the 'ESKAPE' pathogens for which treatment options are dwindling. To complicate the problem, approvals of antibiotic drugs are extremely low and many research and development efforts in the pharmaceutical industry have ceased, leaving little certainty that critical new antibiotics are nearing the clinic. New antibiotics are needed to continue treating these evolving infections. In addition to antibiotics, approaches that aim to inhibit or prevent antimicrobial resistance could be useful. Also, studies that improve our understanding of bacterial pathophysiology could lead to new therapies for infectious disease. Natural products, especially those from the microbial world, have been invaluable as resources for new antibacterial compounds and as insights into bacterial physiology. The goal of this dissertation is to find new ways to treat resistant bacterial infections and learn more about the pathophysiology of these bacteria. Investigations of natural products to find molecules able to be used as new antibiotics or to modulate resistance and other parts of bacterial physiology are crucial aspects of the included studies. The first included study, which is reported in chapter two, details a chemical investigation of a marine Pseudoalteromonas sp. Purification efforts of the microbial metabolites were guided by testing against a resistance nodulation of cell division model of efflux pumps expressed in E. coli. These pumps play an important role in the resistance of MDR Gram negative pathogens such as Pseudomonas aeruginosa and Enterobacteriaceae. Through this process, 3,4-dibromopyrrole-2,5-dione was identified as a potent inhibitor of the RND efflux pumps and showed synergistic effects against the E. coli strain with common antibiotics including fluoroquinolones, beta

  15. THE BEHAVIOR OF MICROORGANISMS RESISTANT TO MERCURY FROM PAVLODAR, KAZAKHSTAN

    EPA Science Inventory

    There is extensive mercury contamination surrounding a chloralkali plant in Pavlodar, Kazakhstan that operated from 1970 to 1990. High-level mercury contamination exists within the confines of the plant, at nearby off-site waste storage and evaporation ponds, in Balkyldak Lake w...

  16. Modeling Mercury in Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Jeremy C; Parks, Jerry M

    2016-01-01

    Mercury (Hg) is a naturally occurring element that is released into the biosphere both by natural processes and anthropogenic activities. Although its reduced, elemental form Hg(0) is relatively non-toxic, other forms such as Hg2+ and, in particular, its methylated form, methylmercury, are toxic, with deleterious effects on both ecosystems and humans. Microorganisms play important roles in the transformation of mercury in the environment. Inorganic Hg2+ can be methylated by certain bacteria and archaea to form methylmercury. Conversely, bacteria also demethylate methylmercury and reduce Hg2+ to relatively inert Hg(0). Transformations and toxicity occur as a result of mercury interacting with variousmore » proteins. Clearly, then, understanding the toxic effects of mercury and its cycling in the environment requires characterization of these interactions. Computational approaches are ideally suited to studies of mercury in proteins because they can provide a detailed picture and circumvent issues associated with toxicity. Here we describe computational methods for investigating and characterizing how mercury binds to proteins, how inter- and intra-protein transfer of mercury is orchestrated in biological systems, and how chemical reactions in proteins transform the metal. We describe quantum chemical analyses of aqueous Hg(II), which reveal critical factors that determine ligand binding propensities. We then provide a perspective on how we used chemical reasoning to discover how microorganisms methylate mercury. We also highlight our combined computational and experimental studies of the proteins and enzymes of the mer operon, a suite of genes that confers mercury resistance in many bacteria. Lastly, we place work on mercury in proteins in the context of what is needed for a comprehensive multi-scale model of environmental mercury cycling.« less

  17. Phenotypic and molecular characterization of conjugative antibiotic resistance plasmids isolated from bacterial communities of activated sludge.

    PubMed

    Dröge, M; Pühler, A; Selbitschka, W

    2000-04-01

    In order to isolate antibiotic resistance plasmids from bacterial communities found in activated sludge, derivatives of the 3-chlorobenzoate-degrading strain Pseudomonas sp. B13, tagged with the green fluorescent protein as an identification marker, were used as recipients in filter crosses. Transconjugants were selected on agar plates containing 3-chlorobenzoate as the sole carbon source and the antibiotic tetracycline, streptomycin or spectinomycin, and were recovered at frequencies in the range of 10(-5) to 10(-8) per recipient. A total of 12 distinct plasmids, designated pB1-pB12, was identified. Their sizes ranged between 41 to 69 kb and they conferred various patterns of antibiotic resistance on their hosts. Two of the plasmids, pB10 and pB11, also mediated resistance to inorganic mercury. Seven of the 12 plasmids were identified as broad-host-range plasmids, displaying extremely high transfer frequencies in filter crosses, ranging from 10(-1) to 10(-2) per recipient cell. Ten of the 12 plasmids belonged to the IncP incompatibility group, based on replicon typing using IncP group-specific PCR primers. DNA sequencing of PCR amplification products further revealed that eight of the 12 plasmids belonged to the IncPbeta subgroup, whereas two plasmids were identified as IncPalpha plasmids. Analysis of the IncP-specific PCR products revealed considerable differences among the IncPbeta plasmids at the DNA sequence level. In order to characterize the gene "load" of the IncP plasmids, restriction fragments were cloned and their DNA sequences established. A remarkable diversity of putative proteins encoded by these fragments was identified. Besides transposases and proteins involved in antibiotic resistance, two putative DNA invertases belonging to the Din family, a methyltransferase of a type I restriction/modification system, a superoxide dismutase, parts of a putative efflux system belonging to the RND family, and proteins of unknown function were identified.

  18. 75 FR 33317 - Antibacterial Resistance and Diagnostic Device and Drug Development Research for Bacterial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-11

    ... Institute of Allergy and Infectious Diseases and the Infectious Diseases Society of America (IDSA) regarding... Diseases Society of America, regarding scientific issues in antibacterial drug resistance and product... discussion of the scale of the current bacterial resistance problem, (2) current understanding of the science...

  19. Preliminary evaluation of cavitation resistance of type 316LN stainless steel in mercury using a vibratory horn

    NASA Astrophysics Data System (ADS)

    Pawel, S. J.; Manneschmidt, E. T.

    2003-05-01

    Type 316LN stainless steel in a variety of conditions (annealed, cold-worked, surface-modified) was exposed to cavitation conditions in stagnant mercury using a vibratory horn. The test conditions included peak-to-peak displacement of the specimen surface of 25 μm at a frequency of 20 kHz and a mercury temperature in the range -5 to 80 °C. Following a brief incubation period in which little or no damage was observed, specimens of annealed 316LN exhibited increasing weight loss and surface roughening with increasing exposure times. Examination of test surfaces with the scanning electron microscope revealed primarily general/uniform wastage in all cases but, for long exposure times, a few randomly oriented 'pits' were also observed. Type 316LN that was 50% cold-worked was considerably more resistant to cavitation erosion damage than annealed material, but the surface modifications (CrN coating, metallic glass coating, laser treatment to form a diamond-like surface) provided little or no protection for the substrate. In addition, the cavitation erosion resistance of other materials - Inconel 718, Nitronic 60, and Stellite 3 - was also compared with that of 316LN for identical screening test conditions.

  20. Suppression of bacterial blight on mustard greens with host plant resistance and Acibenzolar-S-Methyl

    USDA-ARS?s Scientific Manuscript database

    Bacterial blight, caused by Pseudomonas cannabina pv. alisalensis, attacks the leaves of most brassica vegetables, including mustard greens (Brassica juncea). ‘Carolina Broadleaf,’ a new mustard cultivar, is resistant to bacterial blight. Acibenzolar-S-methyl (trade name Actigard) has been used to m...

  1. Combating multidrug-resistant Gram-negative bacterial infections.

    PubMed

    Xu, Ze-Qi; Flavin, Michael T; Flavin, John

    2014-02-01

    Multidrug-resistant (MDR) bacterial infections, especially those caused by Gram-negative pathogens, have emerged as one of the world's greatest health threats. The development of novel antibiotics to treat MDR Gram-negative bacteria has, however, stagnated over the last half century. This review provides an overview of recent R&D activities in the search for novel antibiotics against MDR Gram-negatives. It provides emphasis in three key areas. First, the article looks at new analogs of existing antibiotic molecules such as β-lactams, tetracyclines, and aminoglycoside as well as agents against novel bacterial targets such as aminoacyl-tRNA synthetase and peptide deformylase. Second, it also examines alternative strategies to conventional approaches including cationic antimicrobial peptides, siderophores, efflux pump inhibitors, therapeutic antibodies, and renewed interest in abandoned treatments or those with limited indications. Third, the authors aim to provide an update on the current clinical development status for each drug candidate. The traditional analog approach is insufficient to meet the formidable challenge brought forth by MDR superbugs. With the disappointing results of the genomics approach for delivering novel targets and drug candidates, alternative strategies to permeate the bacterial cell membrane, enhance influx, disrupt efflux, and target specific pathogens via therapeutic antibodies are attractive and promising. Coupled with incentivized business models, governmental policies, and a clarified regulatory pathway, it is hoped that the antibiotic pipeline will be filled with an effective armamentarium to safeguard global health.

  2. Multidrug-resistant gram-negative bacterial infections in a teaching hospital in Ghana.

    PubMed

    Agyepong, Nicholas; Govinden, Usha; Owusu-Ofori, Alex; Essack, Sabiha Yusuf

    2018-01-01

    Multidrug-resistant Gram-negative bacteria have emerged as major clinical and therapeutic dilemma in hospitals in Ghana.To describe the prevalence and profile of infections attributable to multidrug-resistant Gram-negative bacteria among patients at the Komfo Anokye Teaching Hospital in the Ashanti region of Ghana. Bacterial cultures were randomly selected from the microbiology laboratory from February to August, 2015. Bacterial identification and minimum inhibitory concentrations were conducted using standard microbiological techniques and the Vitek-2 automated system. Patient information was retrieved from the hospital data. Of the 200 isolates, consisting of K. pneumoniae , A. baumannii , P. aeruginosa , Enterobacter spp. , E. coli , Yersinia spp. , Proteus mirabilis , Pasteurella spp., Chromobacterium violaceum, Salmomella enterica , Vibrio spp. , Citrobacter koseri , Pantoea spp. , Serratia spp. , Providencia rettgeri Burkholderia cepacia , Aeromonas spp. , Cadecea lapagei and Sphingomonas paucimobilis , 101 (50.5%) and 99 (49.5%) recovered from male and female patients respectively The largest proportion of patients were from age-group ≥60 years (24.5%) followed by < 10 years (24.0%) and least 10-19 years (9.5%) with a mean patient age of 35.95 ± 27.11 (0.2-91) years. The decreasing order of specimen source was urine 97 (48.5%), wound swabs 47 (23.5%), sputum 22 (11.0%) bronchial lavage, nasal and pleural swabs 1 (0.50%). Urinary tract infection was diagnosed in 34.5% of patients, sepsis in 14.5%, wound infections (surgical and chronic wounds) in 11.0%, pulmonary tuberculosis in 9.0% and appendicitis, bacteremia and cystitis in 0.50%. The isolates showed high resistance to ampicillin (94.4%), trimethoprim/sulfamethoxazole (84.5%), cefuroxime (79.0%) and cefotaxime (71.3%) but low resistance to ertapenem (1.5%), meropenem (3%) and amikacin (11%). The average multi-drug resistance was 89.5%, and ranged from 53.8% in Enterobacter spp. to 100.0% in

  3. Treatment of acute bacterial rhinosinusitis caused by antimicrobial-resistant Streptococcus pneumoniae.

    PubMed

    Anon, Jack B

    2004-08-02

    Acute bacterial rhinosinusitis (ABRS) is a secondary bacterial infection of the nose and paranasal sinuses, usually preceded by a viral upper respiratory infection or allergy, with symptoms that have not improved after 10 days or that have worsened after 5 to 7 days. Streptococcus pneumoniae and Haemophilus influenzae are the most common causes of ABRS in adults. Increasing rates of antimicrobial resistance among S. pneumoniae and beta-lactamase production among H. influenzae are formidable challenges to the successful treatment of infections caused by these organisms. To this end, various formulations of amoxicillin-clavulanate have been developed, the most recent of which is pharmacokinetically enhanced and provides a total daily dose of 4,000 mg of amoxicillin and 250 mg of clavulanate. This formulation has been shown to be safe and effective in the treatment of infections caused by penicillin-resistant S. pneumoniae (minimum inhibitory concentration 2 microg/mL); the clavulanate component provides adequate coverage of beta-lactamase-producing pathogens.

  4. Bacterial lineages putatively associated with the dissemination of antibiotic resistance genes in a full-scale urban wastewater treatment plant.

    PubMed

    Narciso-da-Rocha, Carlos; Rocha, Jaqueline; Vaz-Moreira, Ivone; Lira, Felipe; Tamames, Javier; Henriques, Isabel; Martinez, José Luis; Manaia, Célia M

    2018-06-05

    Urban wastewater treatment plants (UWTPs) are reservoirs of antibiotic resistance. Wastewater treatment changes the bacterial community and inevitably impacts the fate of antibiotic resistant bacteria and antibiotic resistance genes (ARGs). Some bacterial groups are major carriers of ARGs and hence, their elimination during wastewater treatment may contribute to increasing resistance removal efficiency. This study, conducted at a full-scale UWTP, evaluated variations in the bacterial community and ARGs loads and explored possible associations among them. With that aim, the bacterial community composition (16S rRNA gene Illumina sequencing) and ARGs abundance (real-time PCR) were characterized in samples of raw wastewater (RWW), secondary effluent (sTWW), after UV disinfection (tTWW), and after a period of 3 days storage to monitoring possible bacterial regrowth (tTWW-RE). Culturable enterobacteria were also enumerated. Secondary treatment was associated with the most dramatic bacterial community variations and coincided with reductions of ~2 log-units in the ARGs abundance. In contrast, no significant changes in the bacterial community composition and ARGs abundance were observed after UV disinfection of sTWW. Nevertheless, after UV treatment, viability losses were indicated ~2 log-units reductions of culturable enterobacteria. The analysed ARGs (qnrS, bla CTX-M , bla OXA-A , bla TEM , bla SHV , sul1, sul2, and intI1) were strongly correlated with taxa more abundant in RWW than in the other types of water, and which associated with humans and animals, such as members of the families Campylobacteraceae, Comamonadaceae, Aeromonadaceae, Moraxellaceae, and Bacteroidaceae. Further knowledge of the dynamics of the bacterial community during wastewater treatment and its relationship with ARGs variations may contribute with information useful for wastewater treatment optimization, aiming at a more effective resistance control. Copyright © 2018 Elsevier Ltd. All rights

  5. Detecting Airborne Mercury by Use of Palladium Chloride

    NASA Technical Reports Server (NTRS)

    Ryan, Margaret; Shevade, Abhijit; Kisor, Adam; Homer, Margie; Jewell, April; Manatt, Kenneth; Torres, Julia; Soler, Jessica; Taylor, Charles

    2009-01-01

    Palladium chloride films have been found to be useful as alternatives to the gold films heretofore used to detect airborne elemental mercury at concentrations of the order of parts per billion (ppb). Somewhat more specifically, when suitably prepared palladium chloride films are exposed to parts-per-billion or larger concentrations of airborne mercury, their electrical resistances change by amounts large enough to be easily measurable. Because airborne mercury adversely affects health, it is desirable to be able to detect it with high sensitivity, especially in enclosed environments in which there is a risk of leakage of mercury from lamps or other equipment. The detection of mercury by use of gold films involves the formation of gold/mercury amalgam. Gold films offer adequate sensitivity for detection of airborne mercury and could easily be integrated into an electronic-nose system designed to operate in the temperature range of 23 to 28 C. Unfortunately, in order to regenerate a gold-film mercury sensor, one must heat it to a temperature of 200 C for several minutes in clean flowing air. In preparation for an experiment to demonstrate the present sensor concept, palladium chloride was deposited from an aqueous solution onto sets of gold electrodes and sintered in air to form a film. Then while using the gold electrodes to measure the electrical resistance of the films, the films were exposed, at a temperature of 25 C, to humidified air containing mercury at various concentrations from 0 to 35 ppb (see figure). The results of this and other experiments have been interpreted as signifying that sensors of this type can detect mercury in room-temperature air at concentrations of at least 2.5 ppb and can readily be regenerated at temperatures <40 C.

  6. A Synthetic Circuit for Mercury Bioremediation Using Self-Assembling Functional Amyloids.

    PubMed

    Tay, Pei Kun R; Nguyen, Peter Q; Joshi, Neel S

    2017-10-20

    Synthetic biology approaches to bioremediation are a key sustainable strategy to leverage the self-replicating and programmable aspects of biology for environmental stewardship. The increasing spread of anthropogenic mercury pollution into our habitats and food chains is a pressing concern. Here, we explore the use of programmed bacterial biofilms to aid in the sequestration of mercury. We demonstrate that by integrating a mercury-responsive promoter and an operon encoding a mercury-absorbing self-assembling extracellular protein nanofiber, we can engineer bacteria that can detect and sequester toxic Hg 2+ ions from the environment. This work paves the way for the development of on-demand biofilm living materials that can operate autonomously as heavy-metal absorbents.

  7. Gene silencing using the recessive rice bacterial blight resistance gene xa13 as a new paradigm in plant breeding.

    PubMed

    Li, Changyan; Wei, Jing; Lin, Yongjun; Chen, Hao

    2012-05-01

    Resistant germplasm resources are valuable for developing resistant varieties in agricultural production. However, recessive resistance genes are usually overlooked in hybrid breeding. Compared with dominant traits, however, they may confer resistance to different pathogenic races or pest biotypes with different mechanisms of action. The recessive rice bacterial blight resistance gene xa13, also involved in pollen development, has been cloned and its resistance mechanism has been recently characterized. This report describes the conversion of bacterial blight resistance mediated by the recessive xa13 gene into a dominant trait to facilitate its use in a breeding program. This was achieved by knockdown of the corresponding dominant allele Xa13 in transgenic rice using recently developed artificial microRNA technology. Tissue-specific promoters were used to exclude most of the expression of artificial microRNA in the anther to ensure that Xa13 functioned normally during pollen development. A battery of highly bacterial blight resistant transgenic plants with normal seed setting rates were acquired, indicating that highly specific gene silencing had been achieved. Our success with xa13 provides a paradigm that can be adapted to other recessive resistance genes.

  8. Cultivable Bacterial Microbiota of Northern Bobwhite (Colinus virginianus): A New Reservoir of Antimicrobial Resistance?

    PubMed Central

    Su, Hongwen; McKelvey, Jessica; Rollins, Dale; Zhang, Michael; Brightsmith, Donald J.; Derr, James; Zhang, Shuping

    2014-01-01

    The northern bobwhite (Colinus virginianus) is an ecologically and economically important avian species. At the present time, little is known about the microbial communities associated with these birds. As the first step to create a quail microbiology knowledge base, the current study conducted an inventory of cultivable quail tracheal, crop, cecal, and cloacal microbiota and associated antimicrobial resistance using a combined bacteriology and DNA sequencing approach. A total of 414 morphologically unique bacterial colonies were selected from nonselective aerobic and anaerobic cultures, as well as selective and enrichment cultures. Analysis of the first 500-bp 16S rRNA gene sequences in conjunction with biochemical identifications revealed 190 non-redundant species-level taxonomic units, representing 160 known bacterial species and 30 novel species. The bacterial species were classified into 4 phyla, 14 orders, 37 families, and 59 or more genera. Firmicutes was the most commonly encountered phylum (57%) followed by Actinobacteria (24%), Proteobacteria (17%) and Bacteroidetes (0.02%). Extensive diversity in the species composition of quail microbiota was observed among individual birds and anatomical locations. Quail microbiota harbored several opportunistic pathogens, such as E. coli and Ps. aeruginosa, as well as human commensal organisms, including Neisseria species. Phenotypic characterization of selected bacterial species demonstrated a high prevalence of resistance to the following classes of antimicrobials: phenicol, macrolide, lincosamide, quinolone, and sulphate. Data from the current investigation warrant further investigation on the source, transmission, pathology, and control of antimicrobial resistance in wild quail populations. PMID:24937705

  9. Increased mercury emissions from modern dental amalgams.

    PubMed

    Bengtsson, Ulf G; Hylander, Lars D

    2017-04-01

    All types of dental amalgams contain mercury, which partly is emitted as mercury vapor. All types of dental amalgams corrode after being placed in the oral cavity. Modern high copper amalgams exhibit two new traits of increased instability. Firstly, when subjected to wear/polishing, droplets rich in mercury are formed on the surface, showing that mercury is not being strongly bonded to the base or alloy metals. Secondly, high copper amalgams emit substantially larger amounts of mercury vapor than the low copper amalgams used before the 1970s. High copper amalgams has been developed with focus on mechanical strength and corrosion resistance, but has been sub-optimized in other aspects, resulting in increased instability and higher emission of mercury vapor. This has not been presented to policy makers and scientists. Both low and high copper amalgams undergo a transformation process for several years after placement, resulting in a substantial reduction in mercury content, but there exist no limit for maximum allowed emission of mercury from dental amalgams. These modern high copper amalgams are nowadays totally dominating the European, US and other markets, resulting in significant emissions of mercury, not considered when judging their suitability for dental restoration.

  10. A retrospective analysis of antimicrobial resistance in bacterial pathogens in an equine hospital (2012-2015).

    PubMed

    van Spijk, J N; Schmitt, S; Fürst, A E; Schoster, A

    2016-06-01

    Antimicrobial resistance has become an important concern in veterinary medicine. The aim of this study was to describe the rate of antimicrobial resistance in common equine pathogens and to determine the occurrence of multidrug-resistant isolates. A retrospective analysis of all susceptibility testing results from bacterial pathogens cultured from horses at the University of Zurich Equine Hospital (2012-2015) was performed. Strains exhibiting resistance to 3 or more antimicrobial categories were defined as multidrug-resistant. Susceptibility results from 303 bacterial pathogens were analyzed, most commonly Escherichia coli (60/303, 20%) and Staphylococcus aureus (40/303, 13%). High rates of acquired resistance against commonly used antimicrobials were found in most of the frequently isolated equine pathogens. The highest rate of multidrug resistance was found in isolates of Acinetobacter baumannii (23/24, 96%), followed by Enterobacter cloacae complex (24/28, 86%) and Escherichia coli (48/60, 80%). Overall, 60% of Escherichia coli isolates were phenotypically ESBL-producing and 68% of Staphylococcus spp. were phenotypically methicillin-resistant. High rates of acquired antimicrobial resistance towards commonly used antibiotics are concerning and underline the importance of individual bacteriological and antimicrobial susceptibility testing to guide antimicrobial therapy. Minimizing and optimizing antimicrobial therapy in horses is needed.

  11. The germin-like protein OsGLP2-1 enhances resistance to fungal blast and bacterial blight in rice.

    PubMed

    Liu, Qing; Yang, Jianyuan; Yan, Shijuan; Zhang, Shaohong; Zhao, Junliang; Wang, Wenjuan; Yang, Tifeng; Wang, Xiaofei; Mao, Xingxue; Dong, Jingfang; Zhu, Xiaoyuan; Liu, Bin

    2016-11-01

    This is the first report that GLP gene (OsGLP2-1) is involved in panicle blast and bacterial blight resistance in rice. In addition to its resistance to blast and bacterial blight, OsGLP2-1 has also been reported to co-localize with a QTLs for sheath blight resistance in rice. These suggest that the disease resistance provided by OsGLP2-1 is quantitative and broad spectrum. Its good resistance to these major diseases in rice makes it to be a promising target in rice breeding. Rice (Oryza sativa) blast caused by Magnaporthe oryzae and bacterial blight caused by Xanthomonas oryzae pv. oryzae are the two most destructive rice diseases worldwide. Germin-like protein (GLP) gene family is one of the important defense gene families which have been reported to be involved in disease resistance in plants. Although GLP proteins have been demonstrated to positively regulate leaf blast resistance in rice, their involvement in resistance to panicle blast and bacterial blight, has not been reported. In this study, we reported that one of the rice GLP genes, OsGLP2-1, was significantly induced by blast fungus. Overexpression of OsGLP2-1 quantitatively enhanced resistance to leaf blast, panicle blast and bacterial blight. The temporal and spatial expression analysis revealed that OsGLP2-1is highly expressed in leaves and panicles and sub-localized in the cell wall. Compared with empty vector transformed (control) plants, the OsGLP2-1 overexpressing plants exhibited higher levels of H 2 O 2 both before and after pathogen inoculation. Moreover, OsGLP2-1 was significantly induced by jasmonic acid (JA). Overexpression of OsGLP2-1 induced three well-characterized defense-related genes which are associated in JA-dependent pathway after pathogen infection. Higher endogenous level of JA was also identified in OsGLP2-1 overexpressing plants than in control plants both before and after pathogen inoculation. Together, these results suggest that OsGLP2-1 functions as a positive regulator to

  12. ANTIBIOTICS IN MANAGEMENT OF STAPHYLOCOCCAL ENDOCARDITIS—With Special Reference to Increasing Bacterial Resistance

    PubMed Central

    Levinson, David C.; Griffith, George C.; Pearson, Harold E.

    1951-01-01

    Eighteen patients with staphylococcal endocarditis were observed at the Los Angeles County Hospital over a 3-year period (1947-49, inclusive). Twelve died. Bacterial sensitivity studies were carried out in 15 of the cases, and there was resistance to penicillin in ten. Aureomycin was effective in two cases of Staphylococcus aureus endocarditis in which there was no response to penicillin therapy. In one case of Staphylococcus aureus endocarditis the organism was resistant to penicillin and developed increasing resistance to aureomycin. PMID:14812349

  13. Socioeconomic and Behavioral Factors Leading to Acquired Bacterial Resistance to Antibiotics in Developing Countries

    PubMed Central

    Okeke, Iruka N.; Lamikanra, Adebayo

    1999-01-01

    In developing countries, acquired bacterial resistance to antimicrobial agents is common in isolates from healthy persons and from persons with community-acquired infections. Complex socioeconomic and behavioral factors associated with antibiotic resistance, particularly regarding diarrheal and respiratory pathogens, in developing tropical countries, include misuse of antibiotics by health professionals, unskilled practitioners, and laypersons; poor drug quality; unhygienic conditions accounting for spread of resistant bacteria; and inadequate surveillance. PMID:10081668

  14. Bacterial Communities Differ among Drosophila melanogaster Populations and Affect Host Resistance against Parasitoids.

    PubMed

    Chaplinska, Mariia; Gerritsma, Sylvia; Dini-Andreote, Francisco; Falcao Salles, Joana; Wertheim, Bregje

    2016-01-01

    In Drosophila, diet is considered a prominent factor shaping the associated bacterial community. However, the host population background (e.g. genotype, geographical origin and founder effects) is a factor that may also exert a significant influence and is often overlooked. To test for population background effects, we characterized the bacterial communities in larvae of six genetically differentiated and geographically distant D. melanogaster lines collected from natural populations across Europe. The diet for these six lines had been identical for ca. 50 generations, thus any differences in the composition of the microbiome originates from the host populations. We also investigated whether induced shifts in the microbiome-in this case by controlled antibiotic administration-alters the hosts' resistance to parasitism. Our data revealed a clear signature of population background on the diversity and composition of D. melanogaster microbiome that differed across lines, even after hosts had been maintained at the same diet and laboratory conditions for over 4 years. In particular, the number of bacterial OTUs per line ranged from 8 to 39 OTUs. Each line harboured 2 to 28 unique OTUs, and OTUs that were highly abundant in some lines were entirely missing in others. Moreover, we found that the response to antibiotic treatment differed among the lines and significantly altered the host resistance to the parasitoid Asobara tabida in one of the six lines. Wolbachia, a widespread intracellular endosymbiont associated with parasitoid resistance, was lacking in this line, suggesting that other components of the Drosophila microbiome caused a change in host resistance. Collectively, our results revealed that lines that originate from different population backgrounds show significant differences in the established Drosophila microbiome, outpacing the long-term effect of diet. Perturbations on these naturally assembled microbiomes to some degree influenced the hosts' resistance

  15. Expert Opinion on Three Phage Therapy Related Topics: Bacterial Phage Resistance, Phage Training and Prophages in Bacterial Production Strains.

    PubMed

    Rohde, Christine; Resch, Grégory; Pirnay, Jean-Paul; Blasdel, Bob G; Debarbieux, Laurent; Gelman, Daniel; Górski, Andrzej; Hazan, Ronen; Huys, Isabelle; Kakabadze, Elene; Łobocka, Małgorzata; Maestri, Alice; Almeida, Gabriel Magno de Freitas; Makalatia, Khatuna; Malik, Danish J; Mašlaňová, Ivana; Merabishvili, Maia; Pantucek, Roman; Rose, Thomas; Štveráková, Dana; Van Raemdonck, Hilde; Verbeken, Gilbert; Chanishvili, Nina

    2018-04-05

    Phage therapy is increasingly put forward as a "new" potential tool in the fight against antibiotic resistant infections. During the "Centennial Celebration of Bacteriophage Research" conference in Tbilisi, Georgia on 26-29 June 2017, an international group of phage researchers committed to elaborate an expert opinion on three contentious phage therapy related issues that are hampering clinical progress in the field of phage therapy. This paper explores and discusses bacterial phage resistance, phage training and the presence of prophages in bacterial production strains while reviewing relevant research findings and experiences. Our purpose is to inform phage therapy stakeholders such as policy makers, officials of the competent authorities for medicines, phage researchers and phage producers, and members of the pharmaceutical industry. This brief also points out potential avenues for future phage therapy research and development as it specifically addresses those overarching questions that currently call for attention whenever phages go into purification processes for application.

  16. Expert Opinion on Three Phage Therapy Related Topics: Bacterial Phage Resistance, Phage Training and Prophages in Bacterial Production Strains

    PubMed Central

    Rohde, Christine; Resch, Grégory; Blasdel, Bob G.; Gelman, Daniel; Górski, Andrzej; Hazan, Ronen; Huys, Isabelle; Kakabadze, Elene; Łobocka, Małgorzata; Maestri, Alice; Makalatia, Khatuna; Malik, Danish J.; Mašlaňová, Ivana; Merabishvili, Maia; Rose, Thomas; Štveráková, Dana; Van Raemdonck, Hilde; Verbeken, Gilbert; Chanishvili, Nina

    2018-01-01

    Phage therapy is increasingly put forward as a “new” potential tool in the fight against antibiotic resistant infections. During the “Centennial Celebration of Bacteriophage Research” conference in Tbilisi, Georgia on 26–29 June 2017, an international group of phage researchers committed to elaborate an expert opinion on three contentious phage therapy related issues that are hampering clinical progress in the field of phage therapy. This paper explores and discusses bacterial phage resistance, phage training and the presence of prophages in bacterial production strains while reviewing relevant research findings and experiences. Our purpose is to inform phage therapy stakeholders such as policy makers, officials of the competent authorities for medicines, phage researchers and phage producers, and members of the pharmaceutical industry. This brief also points out potential avenues for future phage therapy research and development as it specifically addresses those overarching questions that currently call for attention whenever phages go into purification processes for application. PMID:29621199

  17. Clinical management of resistance evolution in a bacterial infection: A case study.

    PubMed

    Woods, Robert J; Read, Andrew F

    2015-10-10

    We report the case of a patient with a chronic bacterial infection that could not be cured. Drug treatment became progressively less effective due to antibiotic resistance, and the patient died, in effect from overwhelming evolution. Even though the evolution of drug resistance was recognized as a major threat, and the fundamentals of drug resistance evolution are well understood, it was impossible to make evidence-based decisions about the evolutionary risks associated with the various treatment options. We present this case to illustrate the urgent need for translational research in the evolutionary medicine of antibiotic resistance. © The Author(s) 2015. Published by Oxford University Press on behalf of the Foundation for Evolution, Medicine, and Public Health.

  18. An investigation of total bacterial communities, culturable antibiotic-resistant bacterial communities and integrons in the river water environments of Taipei city.

    PubMed

    Yang, Chu-Wen; Chang, Yi-Tang; Chao, Wei-Liang; Shiung, Iau-Iun; Lin, Han-Sheng; Chen, Hsuan; Ho, Szu-Han; Lu, Min-Jheng; Lee, Pin-Hsuan; Fan, Shao-Ning

    2014-07-30

    The intensive use of antibiotics may accelerate the development of antibiotic-resistant bacteria (ARB). The global geographical distribution of environmental ARB has been indicated by many studies. However, the ARB in the water environments of Taiwan has not been extensively investigated. The objective of this study was to investigate the communities of ARB in Huanghsi Stream, which presents a natural acidic (pH 4) water environment. Waishuanghsi Stream provides a neutral (pH 7) water environment and was thus also monitored to allow comparison. The plate counts of culturable bacteria in eight antibiotics indicate that the numbers of culturable carbenicillin- and vancomycin-resistant bacteria in both Huanghsi and Waishuanghsi Streams are greater than the numbers of culturable bacteria resistant to the other antibiotics tested. Using a 16S rDNA sequencing approach, both the antibiotic-resistant bacterial communities (culture-based) and the total bacterial communities (metagenome-based) in Waishuanghsi Stream exhibit a higher diversity than those in Huanghsi Stream were observed. Of the three classes of integron, only class I integrons were identified in Waishuanghsi Stream. Our results suggest that an acidic (pH 4) water environment may not only affect the community composition of antibiotic-resistant bacteria but also the horizontal gene transfer mediated by integrons. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Potential strategies for the eradication of multidrug-resistant Gram-negative bacterial infections.

    PubMed

    Huwaitat, Rawan; McCloskey, Alice P; Gilmore, Brendan F; Laverty, Garry

    2016-07-01

    Antimicrobial resistance is one of the leading threats to society. The increasing burden of multidrug-resistant Gram-negative infection is particularly concerning as such bacteria are demonstrating resistance to nearly all currently licensed therapies. Various strategies have been hypothesized to treat multidrug-resistant Gram-negative infections including: targeting the Gram-negative outer membrane; neutralization of lipopolysaccharide; inhibition of bacterial efflux pumps and prevention of protein folding. Silver and silver nanoparticles, fusogenic liposomes and nanotubes are potential strategies for extending the activity of licensed, Gram-positive selective, antibiotics to Gram-negatives. This may serve as a strategy to fill the current void in pharmaceutical development in the short term. This review outlines the most promising strategies that could be implemented to solve the threat of multidrug-resistant Gram-negative infections.

  20. Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Haiyan; Lin, Hui; Zheng, Wang

    2013-08-04

    Methylmercury is a neurotoxin that poses significant health risks to humans. Some anaerobic sulphate- and iron-reducing bacteria can methylate oxidized forms of mercury, generating methylmercury1-4. One strain of sulphate-reducing bacteria (Desulfovibrio desulfuricans ND132) can also methylate elemental mercury5. The prevalence of this trait among different bacterial strains and species remains unclear, however. Here, we compare the ability of two strains of the sulphate-reducing bacterium Desulfovibrio and one strain of the iron-reducing bacterium Geobacter to oxidise and methylate elemental mercury in a series of laboratory incubations. Experiments were carried out under dark, anaerobic conditions, in the presence of environmentally-relevant concentrations ofmore » elemental mercury. We report differences in the ability of these organisms to oxidise and methylate elemental mercury. In line with recent findings5, we show that Desulfovibrio desulfuricans ND132 can both oxidise and methylate elemental mercury. However, the rate of methylation of elemental mercury is only about one third the rate of methylation of oxidized mercury. We also show that Desulfovibrio alaskensis G20 can oxidise, but not methylate, elemental mercury. Geobacter sulfurreducens PCA is able to oxidise and methylate elemental mercury in the presence of cysteine. We suggest that the activity of methylating and non-methylating bacteria may together enhance the formation of methylmercury in anaerobic environments.« less

  1. Biofilm-mediated Antibiotic-resistant Oral Bacterial Infections: Mechanism and Combat Strategies.

    PubMed

    Kanwar, Indulata; Sah, Abhishek K; Suresh, Preeti K

    2017-01-01

    Oral diseases like dental caries and periodontal disease are directly associated with the capability of bacteria to form biofilm. Periodontal diseases have been associated to anaerobic Gram-negative bacteria forming a subgingival plaque (Porphyromonas gingivalis, Actinobacillus, Prevotella and Fusobacterium). Biofilm is a complex bacterial community that is highly resistant to antibiotics and human immunity. Biofilm communities are the causative agents of biological developments such as dental caries, periodontitis, peri-implantitis and causing periodontal tissue breakdown. The review recapitulates the latest advancements in treatment of clinical biofilm infections and scientific investigations, while these novel anti-biofilm strategies are still in nascent phases of development, efforts dedicated to these technologies could ultimately lead to anti-biofilm therapies that are superior to the current antibiotic treatment. This paper provides a review of the literature focusing on the studies on biofilm in the oral cavity, formation of dental plaque biofilm, drug resistance of bacterial biofilm and the antibiofilm approaches as biofilm preventive agents in dentistry, and their mechanism of biofilm inhibition. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Trade-offs with stability modulate innate and mutationally acquired drug-resistance in bacterial dihydrofolate reductase enzymes.

    PubMed

    Matange, Nishad; Bodkhe, Swapnil; Patel, Maitri; Shah, Pooja

    2018-06-05

    Structural stability is a major constraint on the evolution of protein sequences. However, under strong directional selection, mutations that confer novel phenotypes but compromise structural stability of proteins may be permissible. During the evolution of antibiotic resistance, mutations that confer drug resistance often have pleiotropic effects on the structure and function of antibiotic-target proteins, usually essential metabolic enzymes. In this study, we show that trimethoprim-resistant alleles of dihydrofolate reductase from Escherichia coli (EcDHFR) harbouring the Trp30Gly, Trp30Arg or Trp30Cys mutations are significantly less stable than the wild type making them prone to aggregation and proteolysis. This destabilization is associated with lower expression level resulting in a fitness cost and negative epistasis with other TMP-resistant mutations in EcDHFR. Using structure-based mutational analysis we show that perturbation of critical stabilizing hydrophobic interactions in wild type EcDHFR enzyme explains the phenotypes of Trp30 mutants. Surprisingly, though crucial for the stability of EcDHFR, significant sequence variation is found at this site among bacterial DHFRs. Mutational and computational analyses in EcDHFR as well as in DHFR enzymes from Staphylococcus aureus and Mycobacterium tuberculosis demonstrate that natural variation at this site and its interacting hydrophobic residues, modulates TMP-resistance in other bacterial DHFRs as well, and may explain the different susceptibilities of bacterial pathogens to trimethoprim. Our study demonstrates that trade-offs between structural stability and function can influence innate drug resistance as well as the potential for mutationally acquired drug resistance of an enzyme. ©2018 The Author(s).

  3. Mercury

    NASA Technical Reports Server (NTRS)

    Vilas, Faith (Editor); Chapman, Clark R. (Editor); Matthews, Mildred Shapley (Editor)

    1988-01-01

    Papers are presented on future observations of and missions to Mercury, the photometry and polarimetry of Mercury, the surface composition of Mercury from reflectance spectrophotometry, the Goldstone radar observations of Mercury, the radar observations of Mercury, the stratigraphy and geologic history of Mercury, the geomorphology of impact craters on Mercury, and the cratering record on Mercury and the origin of impacting objects. Consideration is also given to the tectonics of Mercury, the tectonic history of Mercury, Mercury's thermal history and the generation of its magnetic field, the rotational dynamics of Mercury and the state of its core, Mercury's magnetic field and interior, the magnetosphere of Mercury, and the Mercury atmosphere. Other papers are on the present bounds on the bulk composition of Mercury and the implications for planetary formation processes, the building stones of the planets, the origin and composition of Mercury, the formation of Mercury from planetesimals, and theoretical considerations on the strange density of Mercury.

  4. Reduction of rainbow trout spleen size by splenectomy does not alter resistance against bacterial cold water disease

    USDA-ARS?s Scientific Manuscript database

    In lower vertebrates, the contribution of the spleen to anti-bacterial immunity is poorly understood. Researchers have previously reported a phenotypic and genetic correlation between resistance to Flavobacterium psychrophilum, the causative agent of bacterial cold water disease (BCWD) and spleen so...

  5. Antimicrobial Resistance in Bacterial Poultry Pathogens: A Review

    PubMed Central

    Nhung, Nguyen Thi; Chansiripornchai, Niwat; Carrique-Mas, Juan J.

    2017-01-01

    Antimicrobial resistance (AMR) is a global health threat, and antimicrobial usage and AMR in animal production is one of its contributing sources. Poultry is one of the most widespread types of meat consumed worldwide. Poultry flocks are often raised under intensive conditions using large amounts of antimicrobials to prevent and to treat disease, as well as for growth promotion. Antimicrobial resistant poultry pathogens may result in treatment failure, leading to economic losses, but also be a source of resistant bacteria/genes (including zoonotic bacteria) that may represent a risk to human health. Here we reviewed data on AMR in 12 poultry pathogens, including avian pathogenic Escherichia coli (APEC), Salmonella Pullorum/Gallinarum, Pasteurella multocida, Avibacterium paragallinarum, Gallibacterium anatis, Ornitobacterium rhinotracheale (ORT), Bordetella avium, Clostridium perfringens, Mycoplasma spp., Erysipelothrix rhusiopathiae, and Riemerella anatipestifer. A number of studies have demonstrated increases in resistance over time for S. Pullorum/Gallinarum, M. gallisepticum, and G. anatis. Among Enterobacteriaceae, APEC isolates displayed considerably higher levels of AMR compared with S. Pullorum/Gallinarum, with prevalence of resistance over >80% for ampicillin, amoxicillin, tetracycline across studies. Among the Gram-negative, non-Enterobacteriaceae pathogens, ORT had the highest levels of phenotypic resistance with median levels of AMR against co-trimoxazole, enrofloxacin, gentamicin, amoxicillin, and ceftiofur all exceeding 50%. In contrast, levels of resistance among P. multocida isolates were less than 20% for all antimicrobials. The study highlights considerable disparities in methodologies, as well as in criteria for phenotypic antimicrobial susceptibility testing and result interpretation. It is necessary to increase efforts to harmonize testing practices, and to promote free access to data on AMR in order to improve treatment guidelines as well as to

  6. Mercury toxicity in the aquatic oligochaete Sparganophilus pearsei: I. Variation in resistance among populations.

    PubMed

    Vidal, D E; Horne, A J

    2003-08-01

    Mercury contamination has become a problem in many San Francisco Bay Area watersheds due to its elevated presence in sediments and aquatic organisms. The present study used laboratory lethal toxicity (LC50) tests to examine the mercury tolerance of aquatic oligochaete worms, Sparganophilus pearsei, from contaminated and uncontaminated areas. The oligochaetes were collected in the following fresh water reservoirs: Sandy Wool (reference area), San Pablo, Lake Anza, Lake Herman, and Guadalupe. These last four reservoirs were contaminated with levels of mercury that ranged from 1.5 to 2 mg/kg (wet weight). Mercury concentrations in sediment and tissue from Sandy Wool were below detection limits and worms from this site were the least tolerant of mercury in laboratory exposures (LC50 = 0.22 mg/L). Worms from the other, more contaminated, reservoirs contained elevated tissue mercury concentrations and were more tolerant in laboratory tests (LC50 = 1.48-2.19 mg/L). The present study demonstrates that different populations of the aquatic oligochaete S. pearsei have developed different tolerances to mercury depending on their previous history of exposure to mercury contamination.

  7. Passivation of carbon steel through mercury implantation

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.; Robinson, R. S.

    1981-01-01

    An experiment, in which carbon steel samples were implanted with mercury ions from a broad beam ion source and their corrosion characteristics in air were evaluated, is described. Mercury doses of a few mA min/square cm at energies of a few hundred electron volts are shown to effect significant improvements in the corrosion resistance of the treated surfaces. In a warm moist environment the onset of rusting was extended from 15 min. for an untreated sample to approximately 30 hrs. for one implanted at a dose of 33 mA min/square cm with 1000 eV mercury ions.

  8. Manila clams from Hg polluted sediments of Marano and Grado lagoons (Italy) harbor detoxifying Hg resistant bacteria in soft tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldi, Franco, E-mail: baldi@unive.it; Gallo, Michele; Marchetto, Davide

    2013-08-15

    A mechanism of mercury detoxification has been suggested by a previous study on Hg bioaccumulation in Manila clams (Ruditapes philippinarum) in the polluted Marano and Grado lagoons and in this study we demonstrate that this event could be partly related to the detoxifying activities of Hg-resistant bacteria (MRB) harbored in clam soft tissues. Therefore, natural clams were collected in six stations during two different periods (winter and spring) from Marano and Grado Lagoons. Siphons, gills and hepatopancreas from acclimatized clams were sterile dissected to isolate MRB. These anatomical parts were glass homogenized or used for whole, and they were lyingmore » on a solid medium containing 5 mg l{sup −1} HgCl{sub 2} and incubated at 30 °C. A total of fourteen bacterial strains were isolated and were identified by 16S rDNA sequencing and analysis, revealing that strains were representative of eight bacterial genera, four of which were Gram-positive (Enterococcus, Bacillus, Jeotgalicoccus and Staphylococcus) and other four were Gram-negative (Stenotrophomonas, Vibrio, Raoultella and Enterobacter). Plasmids and merA genes were found and their sequences determined. Fluorescence in situ hybridization (FISH) technique shows the presence of Firmicutes, Actinobacteria and Gammaproteobacteria by using different molecular probes in siphon and gills. Bacterial clumps inside clam flesh were observed and even a Gram-negative endosymbiont was disclosed by transmission electronic microscope inside clam cells. Bacteria harbored in cavities of soft tissue have mercury detoxifying activity. This feature was confirmed by the determination of mercuric reductase in glass-homogenized siphons and gills. -- Highlights: ► We isolated Gram-positive and Gram-negative Hg resistant strains from soft tissues of Ruditapes philippinarum. ► We identify 14 mercury resistant strains by 16S rRNA gene sequences. ► Bacteria in siphon and gill tissues of clams were observed by TEM and

  9. Bacterial Profile, Antibacterial Resistance Pattern, and Associated Factors from Women Attending Postnatal Health Service at University of Gondar Teaching Hospital, Northwest Ethiopia.

    PubMed

    Bitew Kifilie, Abebaw; Dagnew, Mulat; Tegenie, Birhanemeskel; Yeshitela, Biruk; Howe, Rawleigh; Abate, Ebba

    2018-01-01

    Surgical site infection is a vital cause of maternal mortality and morbidity, especially in resource-limited countries. The rise of antibiotic resistance bacterial infection poses a big threat to this vulnerable population. However, there is lack of studies around the study area. The purpose of this study was to identify bacterial profile, antibacterial resistance pattern, and associated factors among mothers attending postnatal care health service. Institutional based cross-sectional study was conducted on 107 study participants at University of Gondar Teaching Hospital from 1 January 2016 to 30 May 2016. Wound swab, aspirate, and biopsy were collected and performed for culture and drug resistance testing. Data were entered and analyzed by using SPSS version 20. Bivariate and multivariate logistic regression models were fitted to determine the associated factors for bacterial infection. Odds ratio (95% CI) was calculated to determine the strength of statistically significant associated factors. Bacterial growth was confirmed in 90 (84.1%) of 107 study participants suspected to have surgical site infection. The predominant bacterial isolates were S. aureus (41.6%), E. coli (19.8%), K. pneumoniae (13.9%), coagulase negative Staphylococcus (12.9%), and Enterobacter spp. (4%). The majority of isolates were resistant to ampicillin, amoxicillin, and tetracycline but susceptible to ceftriaxone and amikacin. Multidrug-resistant bacteria species were isolated. Using a procedure such as cesarean section and episiotomy for delivery and premature rapture of membrane had strong association with bacterial infection. The high prevalence of bacterial profile and isolation of multidrug-resistant bacteria pose a big threat to postnatal mothers and their children. Factors such as cesarean section, episiotomy for delivery, and premature rapture of membrane were predictors for bacterial infection. Therefore, there should be done a continuous surveillance as well as rational use of

  10. Pyramiding transgenes for multiple resistance in rice against bacterial blight, yellow stem borer and sheath blight.

    PubMed

    Datta, K; Baisakh, N; Thet, K Maung; Tu, J; Datta, S K

    2002-12-01

    Here we describe the development of transgene-pyramided stable elite rice lines resistant to disease and insect pests by conventional crossing of two transgenic parental lines transformed independently with different genes. The Xa21 gene (resistance to bacterial blight), the Bt fusion gene (for insect resistance) and the chitinase gene (for tolerance of sheath blight) were combined in a single rice line by reciprocal crossing of two transgenic homozygous IR72 lines. F4 plant lines carrying all the genes of interest stably were identified using molecular methods. The identified lines, when exposed to infection caused by Xanthomonas oryzae pv oryzae, showed resistance to bacterial blight. Neonate larval mortality rates of yellow stem borer ( Scirpophaga incertulas) in an insect bioassay of the same identified lines were 100%. The identified line pyramided with different genes to protect against yield loss showed high tolerance of sheath blight disease caused by Rhizoctonia solani.

  11. Non-antibiotic treatments for bacterial diseases in an era of progressive antibiotic resistance.

    PubMed

    Opal, Steven M

    2016-12-16

    The emergence of multi-drug resistant (MDR) microbial pathogens threatens the very foundation upon which standard antibacterial chemotherapy is based. We must consider non-antibiotic solutions to manage invasive bacterial infections. Transition from antibiotics to non-traditional treatments poses real clinical challenges that will not be easy to solve. Antibiotics will continue to reliably treat some infections (e.g., group A streptococci and Treponema pallidum) but will likely need adjuvant therapies or will need to be replaced for many bacterial infections in the future.

  12. Superconducting Mercury-Based Cuprate Films with a Zero-Resistance Transition Temperature of 124 Kelvin

    NASA Astrophysics Data System (ADS)

    Tsuei, C. C.; Gupta, A.; Trafas, G.; Mitzi, D.

    1994-03-01

    The synthesis of high-quality films of the recently discovered mercury-based cuprate films with high transition temperatures has been plagued by problems such as the air sensitivity of the cuprate precursor and the volatility of Hg and HgO. These processing difficulties have been circumvented by a technique of atomic-scale mixing of the HgO and cuprate precursors, use of a protective cap layer, and annealing in an appropriate Hg and O_2 environment. With this procedure, a zero-resistance transition temperature as high as 124 kelvin in c axis-oriented epitaxial HgBa_2CaCu_2O6+δ films has been achieved.

  13. Superconducting mercury-based cuprate films with a zero-resistance transition temperature of 124 Kelvin.

    PubMed

    Tsuei, C C; Gupta, A; Trafas, G; Mitzi, D

    1994-03-04

    The synthesis of high-quality films of the recently discovered mercury-based cuprate films with high transition temperatures has been plagued by problems such as the air sensitivity of the cuprate precursor and the volatility of Hg and HgO. These processing difficulties have been circumvented by a technique of atomic-scale mixing of the HgO and cuprate precursors, use of a protective cap layer, and annealing in an appropriate Hg and O(2) environment. With this procedure, a zero-resistance transition temperature as high as 124 kelvin in c axis-oriented epitaxial HgBa(2)CaCu(2)O(6+delta) films has been achieved.

  14. Bacterial plasmid-mediated quinolone resistance genes in aquatic environments in China

    PubMed Central

    Yan, Lei; Liu, Dan; Wang, Xin-Hua; Wang, Yunkun; Zhang, Bo; Wang, Mingyu; Xu, Hai

    2017-01-01

    Emerging antimicrobial resistance is a major threat to human’s health in the 21st century. Understanding and combating this issue requires a full and unbiased assessment of the current status on the prevalence of antimicrobial resistance genes and their correlation with each other and bacterial groups. In aquatic environments that are known reservoirs for antimicrobial resistance genes, we were able to reach this goal on plasmid-mediated quinolone resistance (PMQR) genes that lead to resistance to quinolones and possibly also to the co-emergence of resistance to β-lactams. Novel findings were made that qepA and aac-(6′)-Ib genes that were previously regarded as similarly abundant with qnr genes are now dominant among PMQR genes in aquatic environments. Further statistical analysis suggested that the correlation between PMQR and β-lactam resistance genes in the environment is still weak, that the correlations between antimicrobial resistance genes could be weakened by sufficient wastewater treatment, and that the prevalence of PMQR has been implicated in environmental, pathogenic, predatory, anaerobic, and more importantly, human symbiotic bacteria. This work provides a comprehensive analysis of PMQR genes in aquatic environments in Jinan, China, and provides information with which combat with the antimicrobial resistance problem may be fought. PMID:28094345

  15. The evolution of bacterial resistance against bacteriophages in the horse chestnut phyllosphere is general across both space and time.

    PubMed

    Koskella, Britt; Parr, Nicole

    2015-08-19

    Insight to the spatial and temporal scales of coevolution is key to predicting the outcome of host-parasite interactions and spread of disease. For bacteria infecting long-lived hosts, selection to overcome host defences is just one factor shaping the course of evolution; populations will also be competing with other microbial species and will themselves be facing infection by bacteriophage viruses. Here, we examine the temporal and spatial patterns of bacterial adaptation against natural phage populations from within leaves of horse chestnut trees. Using a time-shift experiment with both sympatric and allopatric phages from either contemporary or earlier points in the season, we demonstrate that bacterial resistance is higher against phages from the past, regardless of spatial sympatry or how much earlier in the season phages were collected. Similarly, we show that future bacterial hosts are more resistant to both sympatric and allopatric phages than contemporary bacterial hosts. Together, our results suggest the evolution of relatively general bacterial resistance against phages in nature and are contrasting to previously observed patterns of phage adaptation to bacteria from the same tree hosts over the same time frame, indicating a potential asymmetry in coevolutionary dynamics.

  16. The evolution of bacterial resistance against bacteriophages in the horse chestnut phyllosphere is general across both space and time

    PubMed Central

    Koskella, Britt; Parr, Nicole

    2015-01-01

    Insight to the spatial and temporal scales of coevolution is key to predicting the outcome of host–parasite interactions and spread of disease. For bacteria infecting long-lived hosts, selection to overcome host defences is just one factor shaping the course of evolution; populations will also be competing with other microbial species and will themselves be facing infection by bacteriophage viruses. Here, we examine the temporal and spatial patterns of bacterial adaptation against natural phage populations from within leaves of horse chestnut trees. Using a time-shift experiment with both sympatric and allopatric phages from either contemporary or earlier points in the season, we demonstrate that bacterial resistance is higher against phages from the past, regardless of spatial sympatry or how much earlier in the season phages were collected. Similarly, we show that future bacterial hosts are more resistant to both sympatric and allopatric phages than contemporary bacterial hosts. Together, our results suggest the evolution of relatively general bacterial resistance against phages in nature and are contrasting to previously observed patterns of phage adaptation to bacteria from the same tree hosts over the same time frame, indicating a potential asymmetry in coevolutionary dynamics. PMID:26150663

  17. Immunomodulators targeting MARCO expression improve resistance to postinfluenza bacterial pneumonia.

    PubMed

    Wu, Muzo; Gibbons, John G; DeLoid, Glen M; Bedugnis, Alice S; Thimmulappa, Rajesh K; Biswal, Shyam; Kobzik, Lester

    2017-07-01

    Downregulation of the alveolar macrophage (AM) receptor with collagenous structure (MARCO) leads to susceptibility to postinfluenza bacterial pneumonia, a major cause of morbidity and mortality. We sought to determine whether immunomodulation of MARCO could improve host defense and resistance to secondary bacterial pneumonia. RNAseq analysis identified a striking increase in MARCO expression between days 9 and 11 after influenza infection and indicated important roles for Akt and Nrf2 in MARCO recovery. In vitro, primary human AM-like monocyte-derived macrophages (AM-MDMs) and THP-1 macrophages were treated with IFNγ to model influenza effects. Activators of Nrf2 (sulforaphane) or Akt (SC79) caused increased MARCO expression and a MARCO-dependent improvement in phagocytosis in IFNγ-treated cells and improved survival in mice with postinfluenza pneumococcal pneumonia. Transcription factor analysis also indicated a role for transcription factor E-box (TFEB) in MARCO recovery. Overexpression of TFEB in THP-1 cells led to marked increases in MARCO. The ability of Akt activation to increase MARCO expression in IFNγ-treated AM-MDMs was abrogated in TFEB-knockdown cells, indicating Akt increases MARCO expression through TFEB. Increasing MARCO expression by targeting Nrf2 signaling or the Akt-TFEB-MARCO pathway are promising strategies to improve bacterial clearance and survival in postinfluenza bacterial pneumonia. Copyright © 2017 the American Physiological Society.

  18. Absence of bacterial resistance following repeat exposure to photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Pedigo, Lisa A.; Gibbs, Aaron J.; Scott, Robert J.; Street, Cale N.

    2009-06-01

    The prevalence of antibiotic resistant bacteria necessitates exploration of alternative approaches to treat hospital and community acquired infections. The aim of this study was to determine whether bacterial pathogens develop resistance to antimicrobial photodynamic therapy (aPDT) during repeated sub-lethal challenge. Antibiotic sensitive and resistant strains of S. aureus and antibiotic sensitive E. coli were subjected to repeat PDT treatments using a methylene blue photosensitizer formulation and 670 nm illumination from a non-thermal diode laser. Parameters were adjusted such that kills were <100% so that surviving colonies could be passaged for subsequent exposures. With each repeat, kills were compared to those using non-exposed cultures of the same strain. Oxacillin resistance was induced in S. aureus using a disc diffusion method. For each experiment, "virgin" and "repeat" cultures were exposed to methylene blue at 0.01% w/v and illuminated with an energy dose of 20.6 J/cm2. No significant difference in killing of E. coli (repeat vs. virgin culture) was observed through 11 repeat exposures. Similar results were seen using MSSA and MRSA, wherein kill rate did not significantly differ from control over 25 repeat exposures. In contrast, complete oxacillin resistance could be generated in S. aureus over a limited number of exposures. PDT is effective in the eradication of pathogens including antibiotic resistance strains. Furthermore, repeated sub-lethal exposure does not induce resistance to subsequent PDT treatments. The absence of resistance formation represents a significant advantage of PDT over traditional antibiotics.

  19. Understanding the Mechanism of Bacterial Biofilms Resistance to Antimicrobial Agents

    PubMed Central

    Singh, Shriti; Singh, Santosh Kumar; Chowdhury, Indrajit; Singh, Rajesh

    2017-01-01

    A biofilm is a group of microorganisms, that causes health problems for the patients with indwelling medical devices via attachment of cells to the surface matrix. It increases the resistance of a microorganism for antimicrobial agents and developed the human infection. Current strategies are removed or prevent the microbial colonies from the medical devices, which are attached to the surfaces. This will improve the clinical outcomes in favor of the patients suffering from serious infectious diseases. Moreover, the identification and inhibition of genes, which have the major role in biofilm formation, could be the effective approach for health care systems. In a current review article, we are highlighting the biofilm matrix and molecular mechanism of antimicrobial resistance in bacterial biofilms. PMID:28553416

  20. Ectopic activation of the rice NLR heteropair RGA4/RGA5 confers resistance to bacterial blight and bacterial leaf streak diseases.

    PubMed

    Hutin, Mathilde; Césari, Stella; Chalvon, Véronique; Michel, Corinne; Tran, Tuan Tu; Boch, Jens; Koebnik, Ralf; Szurek, Boris; Kroj, Thomas

    2016-10-01

    Bacterial blight (BB) and bacterial leaf streak (BLS) are important diseases in Oryza sativa caused by Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc), respectively. In both bacteria, transcription activator-like (TAL) effectors are major virulence determinants that act by transactivating host genes downstream of effector-binding elements (EBEs) bound in a sequence-specific manner. Resistance to Xoo is mostly related to the action of TAL effectors, either by polymorphisms that prevent the induction of susceptibility (S) genes or by executor (R) genes with EBEs embedded in their promoter, and that induce cell death and resistance. For Xoc, no resistance sources are known in rice. Here, we investigated whether the recognition of effectors by nucleotide binding and leucine-rich repeat domain immune receptors (NLRs), the most widespread resistance mechanism in plants, is also able to stop BB and BLS. In one instance, transgenic rice lines harboring the AVR1-CO39 effector gene from the rice blast fungus Magnaporthe oryzae, under the control of an inducible promoter, were challenged with transgenic Xoo and Xoc strains carrying a TAL effector designed to transactivate the inducible promoter. This induced AVR1-CO39 expression and triggered BB and BLS resistance when the corresponding Pi-CO39 resistance locus was present. In a second example, the transactivation of an auto-active NLR by Xoo-delivered designer TAL effectors resulted in BB resistance, demonstrating that NLR-triggered immune responses efficiently control Xoo. This forms the foundation for future BB and BLS disease control strategies, whereupon endogenous TAL effectors will target synthetic promoter regions of Avr or NLR executor genes. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  1. Antimicrobial utilization and bacterial resistance at three different hospitals.

    PubMed

    Vlahović-Palcevski, V; Morović, M; Palcevski, G; Betica-Radić, L

    2001-01-01

    It has been generally recognized that the prevalence of bacterial resistance among bacteria is an unavoidable consequence of antibiotic use and is positively linked to the overall use of antibacterial drugs. The purpose of this study was to investigate the extent of antimicrobial usage and to evaluate the antimicrobial resistance at three different hospital settings in Croatia: a clinical hospital, a general hospital and a specialized clinic for infectious diseases. In this survey the antimicrobial drug consumption and antimicrobial susceptibility test results were analyzed for the first 6 months of 1997 in three different hospitals in Croatia: the University Hospital Center (UHC), Rijeka, the Clinic for Infectious Diseases 'Dr Fran Mihaljević', Zagreb and the Dubrovnik General Hospital. The data were collected from corresponding hospital pharmacy records and microbiology laboratories. Antimicrobial drug utilization was expressed in number of defined daily doses (DDDs) per 100 bed days. High antimicrobial utilization and high resistance rates were found in all three hospitals. At the Clinic for Infectious Diseases, the most frequently used antimicrobials where those of narrow spectrum while at the UHC Rijeka and the Dubrovnik General Hospital the broad spectrum antimicrobials were mostly used. The highest antimicrobial consumption was noted at the Susak locality of the UHC, Rijeka, where the highest resistance rates of bacteria to antimicrobials were also found. Results of this observational study indicate that attempts should be made to reduce the influence of factors that may lead to emergent resistance. The most effective approach to the prevention of transmission of multidrug-resistant pathogens is preventing the initial emergence of resistance. A rational and strict antibiotic policy is thus of great importance for the optimal use of these agents.

  2. Prevalence of bacterial pathogens and their anti-microbial resistance in Tilapia and their pond water in Trinidad.

    PubMed

    Newaj-Fyzul, A; Mutani, A; Ramsubhag, A; Adesiyun, A

    2008-05-01

    In Trinidad, Tilapia (Oreonchromis spp.) is one of the most important fresh water food fish and the number of farms has been increasing annually. A study was conducted in the local tilapia industry to determine the microbial quality of pond water, prevalence of bacterial pathogens and their anti-microbial resistance using the disk diffusion method. Seventy-five apparently healthy fish and 15 pond water samples from three of the four commercial tilapia fish farms in the country were processed. The 202 bacterial isolates recovered from fish slurry and 88 from water, belonged to 13 and 16 genera respectively. The predominant bacteria from fish slurry were Pseudomonas spp. (60.0%), Aeromonas spp. (44.0%), Plesiomonas (41.3%) and Chromobacterium (36.0%) (P < 0.05; chi(2)) compared with isolates from pond water where Bacillus spp. (80.0%), Staphylococcus spp., Alcaligenes spp. and Aeromonas spp. (60.0%) were most prevalent (P < 0.05; chi(2)). Using eight anti-microbial agents, to test bacteria from five genera (Aeromonas, Chromobacterium, Enterobacter, Plesiomonas and Pseudomonas), 168 (97.1%) of 173 bacterial isolates from fish slurry exhibited resistance to one or more anti-microbial agents compared with 47 (90.4%) of 52 from water (P > 0.05; chi(2)). Resistance was high to ampicillin, 90.2% (158 of 173), erythromycin, 66.5% (115 of 173) and oxytetracycline, 52.6%, (91 of 173) but relatively low to chloramphenicol, 9.8% (17 of 173) and sulphamethoxazole/trimethoprim, 6.4% (11 of 173) (P < 0.05; chi(2)). For pond water isolates, the frequency of resistance across bacterial genera ranged from 75% (nine of 12) for Chromobacter spp. to 100% found amongst Enterobacter spp. (six of six), Plesiomonas spp. (nine of nine) and Pseudomonas spp. (eight of eight) (P < 0.05; chi(2)). Resistance was generally high to ampicillin, 78.8% (41 of 52), erythromycin, 51.9% (27 of 52) and oxytetracycline, 34.5% (18 of 52) but low to sulphamethoxazole/trimethoprim, 7.7% (four of 52) and

  3. Impact of biofilm formation and detachment on the transmission of bacterial antibiotic resistance in drinking water distribution systems.

    PubMed

    Zhang, Junpeng; Li, Weiying; Chen, Jiping; Qi, Wanqi; Wang, Feng; Zhou, Yanyan

    2018-07-01

    There is growing awareness of the antibiotic-resistance crisis and its implications for public health among clinicians, researchers, politicians, and the public. We studied bacterial antibiotic resistance transition and the role of biofilms in a drinking water distribution system (DWDS). We tracked several different antibiotic resistant bacteria (ARB) with resistance to tetracycline, sulfamethoxazole, clindamycin, and norfloxacin for one year in a DWDS. The results indicated that the amount of ARB increased in tap water, presumably due to biofilm detachment. The effect of biofilm detachment on the transmission of antibiotic resistance from biofilms to tap water was explored by using a bacterial annular reactor. The percentage of ARB of inlet water, outlet water, and biofilms ranged from 0.26% to 9.85%, 1.08%-16.29%, and 0.52%-29.97%, respectively in a chlorinated system, and from 0.23% to 9.89%, 0.84%-16.84%, and 0.35%-17.77%, respectively, in a chloraminated system. The relative abundances of antibiotic resistance Acinetobacter, Sphingomonas, and Bradyrhizobium were higher in outlet water than in inlet water, as determined by high throughout sequencing. The amount of ARB percentage varied with the concentration of viable but non-culturable (VBNC) cells (r = 0.21, n = 160, P < 0.05) in biofilm, suggesting a higher antibiotic resistance mutation rate in VBNC cells. Our results suggest that biofilm detachment was promoted by disinfectant and affected the overall bacterial antibiotic resistance of microbes in tap water. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Bioavailable mercury cycling in polar snowpacks.

    PubMed

    Larose, Catherine; Dommergue, Aurélien; Marusczak, Nicolas; Coves, Jacques; Ferrari, Christophe P; Schneider, Dominique

    2011-03-15

    Polar regions are subject to contamination by mercury (Hg) transported from lower latitudes, severely impacting human and animal health. Atmospheric Mercury Depletion Events (AMDEs) are an episodic process by which Hg is transferred from the atmospheric reservoir to arctic snowpacks. The fate of Hg deposited during these events is the subject of numerous studies, but its speciation remains unclear, especially in terms of environmentally relevant forms such as bioavailable mercury (BioHg). Here, using a bacterial mer-lux biosensor, we report the fraction of newly deposited Hg at the surface and at the bottom of the snowpack that is bioavailable. Snow samples were collected over a two-month arctic field campaign in 2008. In surface snow, BioHg is related to atmospheric Hg deposition and snow fall events were shown to contribute to higher proportions of BioHg than AMDEs. Based on our data, AMDEs represent a potential source of 20 t.y(-1) of BioHg, while wet and dry deposition pathways may provide 135-225 t.y(-1) of BioHg to Arctic surfaces.

  5. Transgenic plants producing the bacterial pheromone N-acyl-homoserine lactone exhibit enhanced resistance to the bacterial phytopathogen Erwinia carotovora.

    PubMed

    Mäe, A; Montesano, M; Koiv, V; Palva, E T

    2001-09-01

    Bacterial pheromones, mainly different homoserine lactones, are central to a number of bacterial signaling processes, including those involved in plant pathogenicity. We previously demonstrated that N-oxoacyl-homoserine lactone (OHL) is essential for quorum sensing in the soft-rot phytopathogen Erwinia carotovora. In this pathogen, OHL controls the coordinate activation of genes encoding the main virulence determinants, extracellular plant cell wall degrading enzymes (PCWDEs), in a cell density-dependent manner. We suggest that E. carotovora employ quorum sensing to avoid the premature production of PCWDEs and subsequent activation of plant defense responses. To test whether modulating this sensory system would affect the outcome of a plant-pathogen interaction, we generated transgenic tobacco, producing OHL. This was accomplished by ectopic expression in tobacco of the E. carotovora gene expI, which is responsible for OHL biosynthesis. We show that expI-positive transgenic tobacco lines produced the active pheromone and partially complemented the avirulent phenotype of expI mutants. The OHL-producing tobacco lines exhibited enhanced resistance to infection by wild-type E. carotovora. The results were confirmed by exogenous addition of OHL to wild-type plants, which also resulted in increased resistance to E. carotovora.

  6. Antibiotic resistance genes and intI1 prevalence in a swine wastewater treatment plant and correlation with metal resistance, bacterial community and wastewater parameters.

    PubMed

    Yuan, Qing-Bin; Zhai, Yi-Fan; Mao, Bu-Yun; Hu, Nan

    2018-06-07

    The livestock wastewater treatment plant represents an important reservoir of antibiotic resistance determinants in the environment. The study explored the prevalence of five antibiotic resistance genes (ARGs, including sulI, tetA, qnrD, mphB and mcr-1) and class 1 integron (intI1) in a typical livestock wastewater treatment plant, and analyzed their integrated association with two metal resistance genes (copA and czcA), two pathogens genes (Staphylococcus and Campylobacter), bacterial community and wastewater properties. Results indicated that all investigated genes were detected in the plant. The treatment plant could not completely remove ARGs abundances, with up to 2.2 × 10 4 ~3.7 × 10 8 copies/L of them remaining in the effluent. Mcr-1 was further enriched by 27-fold in the subsequent pond. The correlation analysis showed that mphB significantly correlateed with tetA and intI. Mcr-1 strongly correlated with copA. MphB and intI significantly correlated with czcA. The correlations implied a potential co-selection risk of bacterial resistant to antibiotics and metals. Redundancy analyses indicated that qnrD and mcr-1 strongly correlated with 13 and 14 bacterial genera, respectively. Most ARGs positively correlated to wastewater nutrients, indicating that an efficient reduction of wastewater nutrients would contribute to the antibiotic resistance control. The study will provide useful implications on fates and reductions of ARGs in livestock facilities and receiving environments. Copyright © 2018. Published by Elsevier Inc.

  7. MESSENGER: Exploring Mercury's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Slavin, James A.; Krimigis, Stamatios M.; Acuna, Mario H.; Anderson, Brian J.; Baker, Daniel N.; Koehn, Patrick L.; Korth, Haje; Levi, Stefano; Mauk, Barry H.; Solomon, Sean C.; hide

    2005-01-01

    The MESSENGER mission to Mercury offers our first opportunity to explore this planet s miniature magnetosphere since the brief flybys of Mariner 10. Mercury s magnetosphere is unique in many respects. The magnetosphere of Mercury is among the smallest in the solar system; its magnetic field typically stands off the solar wind only - 1000 to 2000 km above the surface. For this reason there are no closed drift paths for energetic particles and, hence, no radiation belts. The characteristic time scales for wave propagation and convective transport are short and kinetic and fluid modes may be coupled. Magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere allowing solar wind ions to impact directly the regolith. Inductive currents in Mercury s interior may act to modify the solar wind interaction by resisting changes due to solar wind pressure variations. Indeed, observations of these induction effects may be an important source of information on the state of Mercury s interior. In addition, Mercury s magnetosphere is the only one with its defining magnetic flux tubes rooted in a planetary regolith as opposed to an atmosphere with a conductive ionospheric layer. This lack of an ionosphere is probably the underlying reason for the brevity of the very intense, but short-lived, - 1-2 min, substorm-like energetic particle events observed by Mariner 10 during its first traversal of Mercury s magnetic tail. Because of Mercury s proximity to the sun, 0.3 - 0.5 AU, this magnetosphere experiences the most extreme driving forces in the solar system. All of these factors are expected to produce complicated interactions involving the exchange and re-cycling of neutrals and ions between the solar wind, magnetosphere, and regolith. The electrodynamics of Mercury s magnetosphere are expected to be equally complex, with strong forcing by the solar wind, magnetic reconnection at the magnetopause and in the tail, and the pick-up of planetary ions all

  8. In vitro bacterial isolate susceptibility to empirically selected antimicrobials in 111 dogs with bacterial pneumonia.

    PubMed

    Proulx, Alexandre; Hume, Daniel Z; Drobatz, Kenneth J; Reineke, Erica L

    2014-01-01

    To determine the proportion of airway bacterial isolates resistant to both empirically selected and recently administered antimicrobials, and to assess the impact of inappropriate initial empiric antimicrobials selection on length of hospital stay and survival to discharge in dogs with bacterial pneumonia. Retrospective study. University veterinary teaching hospital. One hundred and eleven dogs with a clinical diagnosis of bacterial pneumonia that had aerobic bacterial culture and susceptibility testing performed from a tracheal wash sample. None. Overall, 26% (29/111) of the dogs had at least 1 bacterial isolate that was resistant to empirically selected antimicrobials. In dogs with a history of antimicrobial administration within the preceding 4 weeks, a high incidence (57.4%, 31/54) of in vitro bacterial resistance to those antimicrobials was found: 64.7% (11/17) in the community-acquired pneumonia group, 55.2% (16/29) in the aspiration pneumonia group, and 50.0% (4/8) in the other causes of bacterial pneumonia group. No statistically significant association was found between bacterial isolate resistance to empirically selected antimicrobials and length of hospital stay or mortality. The high proportion of in vitro airway bacterial resistance to empiric antimicrobials would suggest that airway sampling for bacterial culture and susceptibility testing may be helpful in guiding antimicrobial therapy and recently administered antimicrobials should be avoided when empirically selecting antimicrobials. Although no relationship was found between inappropriate initial empiric antimicrobial selection and length of hospital stay or mortality, future prospective studies using standardized airway-sampling techniques, treatment modalities, and stratification of disease severity based on objective values, such as arterial blood gas analysis in all dogs with pneumonia, would be needed to determine if a clinical effect of in vitro bacterial resistance to empirically

  9. Influence of Heat Treatment on Mercury Cavitation Resistance of Surface Hardened 316LN Stainless Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pawel, Steven J; Hsu, Julia

    2010-11-01

    The cavitation-erosion resistance of carburized 316LN stainless steel was significantly degraded but not destroyed by heat treatment in the temperature range 500-800 C. The heat treatments caused rejection of some carbon from the carburized layer into an amorphous film that formed on each specimen surface. Further, the heat treatments encouraged carbide precipitation and reduced hardness within the carburized layer, but the overall change did not reduce surface hardness fully to the level of untreated material. Heat treatments as short as 10 min at 650 C substantially reduced cavitation-erosion resistance in mercury, while heat treatments at 500 and 800 C weremore » found to be somewhat less detrimental. Overall, the results suggest that modest thermal excursions perhaps the result of a weld made at some distance to the carburized material or a brief stress relief treatment will not render the hardened layer completely ineffective but should be avoided to the greatest extent possible.« less

  10. Mercury Report-Children's exposure to elemental mercury

    MedlinePlus

    ... gov . Mercury Background Mercury Report Additional Resources Mercury Report - Children's Exposure to Elemental Mercury Recommend on Facebook ... I limit exposure to mercury? Why was the report written? Children attending a daycare in New Jersey ...

  11. Geochemical influences and mercury methylation of a dental wastewater microbiome

    PubMed Central

    Rani, Asha; Rockne, Karl J.; Drummond, James; Al-Hinai, Muntasar; Ranjan, Ravi

    2015-01-01

    The microbiome of dental clinic wastewater and its impact on mercury methylation remains largely unknown. Waste generated during dental procedures enters the sewer system and contributes a significant fraction of the total mercury (tHg) and methyl mercury (MeHg) load to wastewater treatment facilities. Investigating the influence of geochemical factors and microbiome structure is a critical step linking the methylating microorganisms in dental wastewater (DWW) ecosystems. DWW samples from a dental clinic were collected over eight weeks and analyzed for geochemical parameters, tHg, MeHg and bacterio-toxic heavy metals. We employed bacterial fingerprinting and pyrosequencing for microbiome analysis. High concentrations of tHg, MeHg and heavy metals were detected in DWW. The microbiome was dominated by Proteobacteria, Actinobacteria, Bacteroidetes, Chloroflexi and many unclassified bacteria. Significant correlations were found between the bacterial community, Hg levels and geochemical factors including pH and the predicted total amount (not fraction) of neutral Hg-sulfide species. The most prevalent known methylators included Desulfobulbus propionicus, Desulfovibrio desulfuricans, Desulfovibrio magneticus and Geobacter sulfurreducens. This study is the first to investigate the impact of high loads of Hg, MeHg and other heavy metals on the dental clinic wastewater microbiome, and illuminates the role of many known and unknown sulfate-reducing bacteria in Hg methylation. PMID:26271452

  12. Fitness and Recovery of Bacterial Communities and Antibiotic Resistance Genes in Urban Wastewaters Exposed to Classical Disinfection Treatments.

    PubMed

    Di Cesare, Andrea; Fontaneto, Diego; Doppelbauer, Julia; Corno, Gianluca

    2016-09-20

    Antibiotic resistance genes (ARGs) are increasingly appreciated to be important as micropollutants. Indirectly produced by human activities, they are released into the environment, as they are untargeted by conventional wastewater treatments. In order to understand the fate of ARGs and of other resistant forms (e.g., phenotypical adaptations) in urban wastewater treatment plants (WWTPs), we monitored three WWTPs with different disinfection processes (chlorine, peracetic acid (PAA), and ultraviolet light (UV)). We monitored WWTPs influx and pre- and postdisinfection effluent over 24 h, followed by incubation experiments lasting for 96 h. We measured bacterial abundance, size distribution and aggregational behavior, the proportion of intact (active) cells, and the abundances of four ARGs and of the mobile element integron1. While all the predisinfection treatments of all WWTPs removed the majority of bacteria and of associated ARGs, of the disinfection processes only PAA efficiently removed bacterial cells. However, the stress imposed by PAA selected for bacterial aggregates and, similarly to chlorine, stimulated the selection of ARGs during the incubation experiment. This suggests disinfections based on chemically aggressive destruction of bacterial cell structures can promote a residual microbial community that is more resistant to antibiotics and, given the altered aggregational behavior, to competitive stress in nature.

  13. Cultivation and qPCR Detection of Pathogenic and Antibiotic-Resistant Bacterial Establishment in Naive Broiler Houses.

    PubMed

    Brooks, J P; McLaughlin, M R; Adeli, A; Miles, D M

    2016-05-01

    Conventional commercial broiler production involves the rearing of more than 20,000 broilers in a single confined space for approximately 6.5 wk. This environment is known for harboring pathogens and antibiotic-resistant bacteria, but studies have focused on previously established houses with mature litter microbial populations. In the current study, a set of three naive houses were followed from inception through 11 broiler flocks and monitored for ambient climatic conditions, bacterial pathogens, and antibiotic resistance. Within the first 3 wk of the first flock cycle, 100% of litter samples were positive for and , whereas was cultivation negative but PCR positive. Antibiotic resistance genes were ubiquitously distributed throughout the litter within the first flock, approaching 10 to 10 genomic units g. Preflock litter levels were approximately 10 CFU g for heterotrophic plate count bacteria, whereas midflock levels were >10 colony forming units (CFU) g; other indicators demonstrated similar increases. The influence of intrahouse sample location was minor. In all likelihood, given that preflock levels were negative for pathogens and antibiotic resistance genes and 4 to 5 Log lower than flock levels for indicators, incoming birds most likely provided the colonizing microbiome, although other sources were not ruled out. Most bacterial groups experienced a cyclical pattern of litter contamination seen in other studies, whereas microbial stabilization required approximately four flocks. This study represents a first-of-its-kind view into the time required for bacterial pathogens and antibiotic resistance to colonize and establish in naive broiler houses. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Metal resistance sequences and transgenic plants

    DOEpatents

    Meagher, Richard Brian; Summers, Anne O.; Rugh, Clayton L.

    1999-10-12

    The present invention provides nucleic acid sequences encoding a metal ion resistance protein, which are expressible in plant cells. The metal resistance protein provides for the enzymatic reduction of metal ions including but not limited to divalent Cu, divalent mercury, trivalent gold, divalent cadmium, lead ions and monovalent silver ions. Transgenic plants which express these coding sequences exhibit increased resistance to metal ions in the environment as compared with plants which have not been so genetically modified. Transgenic plants with improved resistance to organometals including alkylmercury compounds, among others, are provided by the further inclusion of plant-expressible organometal lyase coding sequences, as specifically exemplified by the plant-expressible merB coding sequence. Furthermore, these transgenic plants which have been genetically modified to express the metal resistance coding sequences of the present invention can participate in the bioremediation of metal contamination via the enzymatic reduction of metal ions. Transgenic plants resistant to organometals can further mediate remediation of organic metal compounds, for example, alkylmetal compounds including but not limited to methyl mercury, methyl lead compounds, methyl cadmium and methyl arsenic compounds, in the environment by causing the freeing of mercuric or other metal ions and the reduction of the ionic mercury or other metal ions to the less toxic elemental mercury or other metals.

  15. Isolation and identification of Aeromonas caviae strain KS-1 as TBTC- and lead-resistant estuarine bacteria.

    PubMed

    Shamim, Kashif; Naik, Milind Mohan; Pandey, Anju; Dubey, Santosh Kumar

    2013-06-01

    Tributyltin chloride (TBTC)- and lead-resistant estuarine bacterium from Mandovi estuary, Goa, India was isolated and identified as Aeromonas caviae strain KS-1 based on biochemical characteristics and FAME analysis. It tolerates TBTC and lead up to 1.0 and 1.4 mM, respectively, in the minimal salt medium (MSM) supplemented with 0.4 % glucose. Scanning electron microscopy clearly revealed a unique morphological pattern in the form of long inter-connected chains of bacterial cells on exposure to 1 mM TBTC, whereas cells remained unaltered in presence of 1.4 mM Pb(NO₃)₂ but significant biosorption of lead (8 %) on the cell surface of this isolate was clearly revealed by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy. SDS-PAGE analysis of whole-cell proteins of this lead-resistant isolate interestingly demonstrated three lead-induced proteins with molecular mass of 15.7, 16.9 and 32.4 kDa, respectively, when bacterial cells were grown under the stress of 1.4 mM Pb (NO₃)₂. This clearly demonstrated their possible involvement exclusively in lead resistance. A. caviae strain KS-1 also showed tolerance to several other heavy metals, viz. zinc, cadmium, copper and mercury. Therefore, we can employ this TBTC and lead-resistant bacterial isolate for lead bioremediation and also for biomonitoring TBTC from lead and TBTC contaminated environment.

  16. Physiological model for the pharmacokinetics of methyl mercury in the growing rat.

    PubMed

    Farris, F F; Dedrick, R L; Allen, P V; Smith, J C

    1993-03-01

    We describe a physiological pharmacokinetic model for methyl mercury and its metabolite mercuric mercury in the growing rat. Demethylation appears to occur in both host tissues and gastrointestinal flora with elimination dominated by biliary secretion of inorganic mercury and by transport of methyl mercury into the gut lumen followed by substantial bacterial metabolism. Biliary transport of both organic and inorganic mercury is modeled in terms of the known secretion of glutathione from the hepatic pool. At 98 days following an oral tracer dose of 203Hg-labeled methyl mercury chloride, 65% of the administered dose had been recovered in the feces as inorganic mercury and 15% as organic mercury. Urinary excretion is a minor elimination route, accounting for less than 4% of the dose as methyl mercury and 1% of the dose as inorganic mercury. Irreversible incorporation of the mercurials into hair is a significant route of elimination. Ten percent of the administered dose was contained in the hair shed during the 98 days and over 12% of the dose (almost 90% of the body burden) remained in the hair at the end of that time period. Apparent ingestion of hair by the rats during grooming represents a novel form of toxin recirculation. Transport of both chemical species between blood and tissues is bidirectional and symmetric with relatively slow movement into and out of the brain. Transport mechanisms for both mercurial species are discussed in the context of capillary transport physiology and the blood-brain barrier to small molecules and proteins.

  17. Origin and Proliferation of Multiple-Drug Resistance in Bacterial Pathogens

    PubMed Central

    Chang, Hsiao-Han; Cohen, Ted; Grad, Yonatan H.; Hanage, William P.; O'Brien, Thomas F.

    2015-01-01

    SUMMARY Many studies report the high prevalence of multiply drug-resistant (MDR) strains. Because MDR infections are often significantly harder and more expensive to treat, they represent a growing public health threat. However, for different pathogens, different underlying mechanisms are traditionally used to explain these observations, and it is unclear whether each bacterial taxon has its own mechanism(s) for multidrug resistance or whether there are common mechanisms between distantly related pathogens. In this review, we provide a systematic overview of the causes of the excess of MDR infections and define testable predictions made by each hypothetical mechanism, including experimental, epidemiological, population genomic, and other tests of these hypotheses. Better understanding the cause(s) of the excess of MDR is the first step to rational design of more effective interventions to prevent the origin and/or proliferation of MDR. PMID:25652543

  18. Block Copolymer Nanoparticles Remove Biofilms of Drug-Resistant Gram-Positive Bacteria by Nanoscale Bacterial Debridement.

    PubMed

    Li, Jianghua; Zhang, Kaixi; Ruan, Lin; Chin, Seow Fong; Wickramasinghe, Nirmani; Liu, Hanbin; Ravikumar, Vikashini; Ren, Jinghua; Duan, Hongwei; Yang, Liang; Chan-Park, Mary B

    2018-06-26

    Biofilms and the rapid evolution of multidrug resistance complicate the treatment of bacterial infections. Antibiofilm agents such as metallic-inorganic nanoparticles or peptides act by exerting antibacterial effects and, hence, do not combat biofilms of antibiotics-resistant strains. In this Letter, we show that the block copolymer DA95B5, dextran- block-poly((3-acrylamidopropyl) trimethylammonium chloride (AMPTMA)- co-butyl methacrylate (BMA)), effectively removes preformed biofilms of various clinically relevant multidrug-resistant Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococci (VRE V583), and Enteroccocus faecalis (OG1RF). DA95B5 self-assembles into core-shell nanoparticles with a nonfouling dextran shell and a cationic core. These nanoparticles diffuse into biofilms and attach to bacteria but do not kill them; instead, they promote the gradual dispersal of biofilm bacteria, probably because the solubility of the bacteria-nanoparticle complex is enhanced by the nanoparticle dextran shell. DA95B5, when applied as a solution to a hydrogel pad dressing, shows excellent in vivo MRSA biofilm removal efficacy of 3.6 log reduction in a murine excisional wound model, which is significantly superior to that for vancomycin. Furthermore, DA95B5 has very low in vitro hemolysis and negligible in vivo acute toxicity. This new strategy for biofilm removal (nanoscale bacterial debridement) is orthogonal to conventional rapidly developing resistance traits in bacteria so that it is as effective toward resistant strains as it is toward sensitive strains and may have widespread applications.

  19. Lead-resistant Providencia alcalifaciens strain 2EA bioprecipitates Pb+2 as lead phosphate.

    PubMed

    Naik, M M; Khanolkar, D; Dubey, S K

    2013-02-01

    A lead-resistant bacteria isolated from soil contaminated with car battery waste were identified as Providencia alcalifaciens based on biochemical characteristics, FAME profile and 16S rRNA sequencing and designated as strain 2EA. It resists lead nitrate up to 0·0014 mol l(-1) by precipitating soluble lead as insoluble light brown solid. Scanning electron microscopy coupled with energy-dispersive X-ray spectrometric analysis (SEM-EDX) and X-ray diffraction spectroscopy (XRD) revealed extracellular light brown precipitate as lead orthophosphate mineral, that is, Pb(9) (PO(4))(6) catalysed by phosphatase enzyme. This lead-resistant bacterial strain also demonstrated tolerance to high levels of cadmium and mercury along with multiple antibiotic resistance. Providencia alcalifaciens strain 2EA could be used for bioremediation of lead-contaminated environmental sites, as it can efficiently precipitate lead as lead phosphate. © 2012 The Society for Applied Microbiology.

  20. Community-acquired methicillin-resistant Staphylococcus aureus: an emerging cause of acute bacterial parotitis.

    PubMed

    Nicolasora, Nelson P; Zacharek, Mark A; Malani, Anurag N

    2009-02-01

    Staphylococcus aureus has long been recognized as a cause of acute bacterial parotitis. A case of community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) parotitis is presented, highlighting the emergence of this increasingly important pathogen to cause a wide variety of infections. Also reviewed are the salient clinical and microbiologic features of this novel infection.

  1. Stepwise impact of urban wastewater treatment on the bacterial community structure, antibiotic contents, and prevalence of antimicrobial resistance.

    PubMed

    Wang, Mingyu; Shen, Weitao; Yan, Lei; Wang, Xin-Hua; Xu, Hai

    2017-12-01

    Bacteria, antibiotics, and antibiotic resistance determinants are key biological pollutants in aquatic systems, which may lead to bacterial infections or prevent the cure of bacterial infections. In this study, we investigated how the wastewater treatment processes in wastewater treatment plants (WWTPs) affect these pollutants. We found that the addition of oxygen, polyaluminum chloride (PAC), and polyacrylamide (PAM), as well as ultraviolet (UV) disinfection could significantly alter the bacterial communities in the water samples. An overall shift from Gram-negative bacteria to Gram-positive bacteria was observed throughout the wastewater treatment steps, but the overall bacterial biomass was not reduced in the WWTP samples. The antibiotic contents were reduced by the WWTP, but the size of the reduction and the step when antibiotic degradation occurred differed among antibiotics. Ciprofloxacin, sulfamethoxazole and erythromycin could be removed completely by the WWTP, whereas cephalexin could not. The removal of ciprofloxacin, cephalexin, and erythromycin occurred in the anaerobic digester, whereas the removal of sulfamethoxazole occurred after the addition of PAC and PAM, and UV disinfection. Antimicrobial resistance determinants were highly prevalent in all of the samples analyzed, except for those targeting vancomycin and colistin. However, wastewater treatment was ineffective at removing antimicrobial resistance determinants from wastewater. There were strong correlations between intI1, floR, sul1, and ermB, thereby suggesting the importance of integrons for the spread of these antimicrobial resistance genes. In general, this study comprised a stepwise analysis of the impact of WWTPs on three biological pollutants: bacteria, antibiotics, and antimicrobial resistance determinants, where our results suggest that the design of WWTPs needs to be improved to address the threats due to these pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Heavy-Metal and Antibiotic Resistance in the Bacterial Flora of Sediments of New York Bight

    PubMed Central

    Timoney, J. F.; Port, Jennifer; Giles, Janis; Spanier, J.

    1978-01-01

    The New York Bight extends seaward some 80 to 100 miles (ca. 129 to 161 km) from the Long Island and New Jersey shorelines to the edge of the continental shelf. Over 14 × 106 m3 of sewage sludge, dredge spoils, acid wastes, and cellar dirt are discharged into this area each year. Large populations of Bacillus sp. resistant to 20 μg of mercury per ml were observed in Bight sediments contaminated by these wastes. Resistant Bacillus populations were much greater in sediments containing high concentrations of Hg and other heavy metals than in sediments from areas further offshore where dumping has never been practiced and where heavy-metal concentrations were found to be low. Ampicillin resistance due mainly to β-lactamase production was significantly (P < 0.001) more frequent in Bacillus strains from sediments near the sewage sludge dump site than in similar Bacillus populations from control sediments. Bacillus strains with combined ampicillin and Hg resistances were almost six times as frequent at the sludge dump site as in control sediments. This observation suggests that genes for Hg resistance and β-lactamase production are simultaneously selected for in Bacillus and that heavy-metal contamination of an ecosystem can result in a selection pressure for antibiotic resistance in bacteria in that system. Also, Hg resistance was frequently linked with other heavy-metal resistances and, in a substantial proportion of Bacillus strains, involved reduction to volatile metallic Hg (Hg°). PMID:727779

  3. Field-aligned Currents at Mercury and Implications for Crustal Electrical Conductivity

    NASA Astrophysics Data System (ADS)

    Anderson, B. J.; Johnson, C. L.; Korth, H.; Winslow, R. M.; Slavin, J. A.; Solomon, S. C.; McNutt, R. L., Jr.

    2013-12-01

    Magnetic field data acquired in orbit about Mercury by the Magnetometer on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft are used to identify signatures of steady-state field-aligned or Birkeland currents in the northern polar region. These signatures allow us to determine the distribution, area, and total current typically flowing toward and away from the planet and closing at low altitudes. Results reveal that current flows downward on the dawn side and upward on the dusk side, a pattern corresponding to the Region-1 current system at Earth. Typical current densities are 10 to 20 nA/m2. The total current ranges from 10 kA under magnetically calm conditions to nearly 40 kA during disturbed periods. Both the current density and the total current are approximately two orders of magnitude lower than at Earth. The electric potential, consistent with dayside magnetopause magnetic reconnection, is estimated to be ~30 kV under typical conditions, implying that the net resistance to closure of the Birkeland currents is on the order of 1 ohm. At Earth this resistance is typically 0.02 ohms, and if the height-integrated low-altitude conductance were the same, the resistance at Mercury would be even lower than at Earth, ~0.01 ohms. The comparatively low current observed and the estimated high resistance are consistent with expectations that current closure at Mercury is markedly different than at Earth. We solve for the potential implied by the observed currents given closure through the planet. We consider crustal and mantle conductances consistent with experimental results for olivine, and we use a nominal present-day radial temperature profile for Mercury. Net potentials comparable to 30 kV require that the current closes radially through the crust and horizontally through the higher-conductivity mantle at depths of 50 to 400 km. The crust accounts for nearly all of the resistance to current flow, and the results are consistent

  4. Induction of Xa10-like Genes in Rice Cultivar Nipponbare Confers Disease Resistance to Rice Bacterial Blight.

    PubMed

    Wang, Jun; Tian, Dongsheng; Gu, Keyu; Yang, Xiaobei; Wang, Lanlan; Zeng, Xuan; Yin, Zhongchao

    2017-06-01

    Bacterial blight of rice, caused by Xanthomonas oryzae pv. oryzae, is one of the most destructive bacterial diseases throughout the major rice-growing regions in the world. The rice disease resistance (R) gene Xa10 confers race-specific disease resistance to X. oryzae pv. oryzae strains that deliver the corresponding transcription activator-like (TAL) effector AvrXa10. Upon bacterial infection, AvrXa10 binds specifically to the effector binding element in the promoter of the R gene and activates its expression. Xa10 encodes an executor R protein that triggers hypersensitive response and activates disease resistance. 'Nipponbare' rice carries two Xa10-like genes in its genome, of which one is the susceptible allele of the Xa23 gene, a Xa10-like TAL effector-dependent executor R gene isolated recently from 'CBB23' rice. However, the function of the two Xa10-like genes in disease resistance to X. oryzae pv. oryzae strains has not been investigated. Here, we designated the two Xa10-like genes as Xa10-Ni and Xa23-Ni and characterized their function for disease resistance to rice bacterial blight. Both Xa10-Ni and Xa23-Ni provided disease resistance to X. oryzae pv. oryzae strains that deliver the matching artificially designed TAL effectors (dTALE). Transgenic rice plants containing Xa10-Ni and Xa23-Ni under the Xa10 promoter provided specific disease resistance to X. oryzae pv. oryzae strains that deliver AvrXa10. Xa10-Ni and Xa23-Ni knock-out mutants abolished dTALE-dependent disease resistance to X. oryzae pv. oryzae. Heterologous expression of Xa10-Ni and Xa23-Ni in Nicotiana benthamiana triggered cell death. The 19-amino-acid residues at the N-terminal regions of XA10 or XA10-Ni are dispensable for their function in inducing cell death in N. benthamiana and the C-terminal regions of XA10, XA10-Ni, and XA23-Ni are interchangeable among each other without affecting their function. Like XA10, both XA10-Ni and XA23-Ni locate to the endoplasmic reticulum (ER) membrane

  5. Epidemiology of Antibiotic and Heavy Metal Resistance in Bacteria: Resistance Patterns in Staphylococci Isolated from Populations Not Known to be Exposed to Heavy Metals

    PubMed Central

    Groves, David J.; Young, Frank E.

    1975-01-01

    Staphylococci were isolated from clinical specimens obtained from patients not known to be exposed to abnormal levels of heavy metals. The antibiotic and heavy metal resistance patterns of these strains were determined by using a disk diffusion test and computer sorting. Though not absolute, an association of resistance to mercury and tetracycline in coagulase-negative strains was found, in contrast to resistance to copper and penicillin in coagulase-producing strains. A high degree of correlation was observed between the resistance to phenyl mercury and inorganic mercury, but no correlation was obtained between resistance to methylmercury and other metals. In general, strains resistant to many agents were usually coagulase negative. A possible mechanism and implications of these associations are considered. PMID:1147592

  6. Bacterial avirulence genes.

    PubMed

    Leach, J E; White, F F

    1996-01-01

    Although more than 30 bacterial avirulence genes have been cloned and characterized, the function of the gene products in the elictitation of resistance is unknown in all cases but one. The product of avrD from Pseudomonas syringae pv. glycinea likely functions indirectly to elicit resistance in soybean, that is, evidence suggests the gene product is an enzyme involved in elicitor production. In most if not all cases, bacterial avirulence gene function is dependent on interactions with the hypersensitive response and pathogenicity (hrp) genes. Many hrp genes are similar to genes involved in delivery of pathogenicity factors in mammalian bacterial pathogens. Thus, analogies between mammalian and plant pathogens may provide needed clues to elucidate how virulence gene products control induction of resistance.

  7. Mercury

    MedlinePlus

    Mercury is an element that is found in air, water and soil. It has several forms. Metallic mercury is a shiny, silver-white, odorless liquid. If ... with other elements to form powders or crystals. Mercury is in many products. Metallic mercury is used ...

  8. New insights in the bacterial spore resistance to extreme terrestrial and extraterrestrial factors

    NASA Astrophysics Data System (ADS)

    Moeller, Ralf; Horneck, Gerda; Reitz, Guenther

    Based on their unique resistance to various space parameters, Bacillus endospores are one of the model systems used for astrobiological studies. The extremely high resistance of bacterial endospores to environmental stress factors has intrigued researchers since long time and many characteristic spore features, especially those involved in the protection of spore DNA, have already been uncovered. The disclosure of the complete genomic sequence of Bacillus subtilis 168, one of the often used astrobiological model system, and the rapid development of tran-scriptional microarray techniques have opened new opportunities of gaining further insights in the enigma of spore resistance. Spores of B. subtilis were exposed to various extreme ter-restrial and extraterrestrial stressors to reach a better understanding of the DNA protection and repair strategies, which them to cope with the induced DNA damage. Following physical stress factors of environmental importance -either on Earth or in space -were selected for this thesis: (i) mono-and polychromatic UV radiation, (ii) ionizing radiation, (iii) exposure to ultrahigh vacuum; and (iv) high shock pressures simulating meteorite impacts. To reach a most comprehensive understanding of spore resistance to those harsh terrestrial or simulated extraterrestrial conditions, a standardized experimental protocol of the preparation and ana-lyzing methods was established including the determination of the following spore responses: (i) survival, (ii) induced mutations, (iii) DNA damage, (iv) role of different repair pathways by use of a set of repair deficient mutants, and (v) transcriptional responses during spore germi-nation by use of genome-wide transcriptome analyses and confirmation by RT-PCR. From this comprehensive set of data on spore resistance to a variety of environmental stress parameters a model of a "built-in" transcriptional program of bacterial spores in response to DNA damaging treatments to ensure DNA restoration

  9. Reengineering Antibiotics to Combat Bacterial Resistance: Click Chemistry [1,2,3]-Triazole Vancomycin Dimers with Potent Activity against MRSA and VRE.

    PubMed

    Silverman, Steven M; Moses, John E; Sharpless, K Barry

    2017-01-01

    Vancomycin has long been considered a drug of last resort. Its efficiency in treating multiple drug-resistant bacterial infections, particularly methicillin-resistant Staphylococcus aureus (MRSA), has had a profound effect on the treatment of life-threatening infections. However, the emergence of resistance to vancomycin is a cause for significant worldwide concern, prompting the urgent development of new effective treatments for antibiotic resistant bacterial infections. Harnessing the benefits of multivalency and cooperativity against vancomycin-resistant strains, we report a Click Chemistry approach towards reengineered vancomycin derivatives and the synthesis of a number of dimers with increased potency against MRSA and vancomycin resistant Enterococci (VRE; VanB). These semi-synthetic dimeric ligands were linked together with great efficiency using the powerful CuAAC reaction, demonstrating high levels of selectivity and purity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Long-range effect of cyanide on mercury methylation in a gold mining area in southern Ecuador.

    PubMed

    Guimaraes, Jean Remy Davée; Betancourt, Oscar; Miranda, Marcio Rodrigues; Barriga, Ramiro; Cueva, Edwin; Betancourt, Sebastián

    2011-11-01

    Small-scale gold mining in Portovelo-Zaruma, Southern Equador, performed by mercury amalgamation and cyanidation, yields 9-10 t of gold/annum, resulting in annual releases of around 0.65 t of inorganic mercury and 6000 t of sodium cyanide in the local river system. The release of sediments, cyanide, mercury, and other metals present in the ore such as lead, manganese and arsenic significantly reduces biodiversity downstream the processing plants and enriches metals in bottom sediments and biota. However, methylmercury concentrations in sediments downstream the mining area were recently found to be one order of magnitude lower than upstream or in small tributaries. In this study we investigated cyanide, bacterial activity in water and sediment and mercury methylation potentials in sediments along the Puyango river watershed, measured respectively by in-situ spectrophotometry and incubation with (3)H-leucine and (203)Hg(2+). Free cyanide was undetectable (<1 μg·L(-1)) upstream mining activities, reached 280 μg·L(-1) a few km downstream the processing plants area and was still detectable about 100 km downstream. At stations with detectable free cyanide in unfiltered water, 50% of it was dissolved and 50% associated to suspended particles. Bacterial activity and mercury methylation in sediment showed a similar spatial pattern, inverse to the one found for free cyanide in water, i.e. with significant values in pristine upstream sampling points (respectively 6.4 to 22 μgC·mg wet weight(-1)·h(-1) and 1.2 to 19% of total (203) Hg·gdry weight(-1)·day(-1)) and undetectable downstream the processing plants, returning to upstream values only in the most distant downstream stations. The data suggest that free cyanide oxidation was slower than would be expected from the high water turbulence, resulting in a long-range inhibition of bacterial activity and hence mercury methylation. The important mercury fluxes resultant from mining activities raise concerns about its

  11. Bacterial and archaeal resistance to ionizing radiation

    NASA Astrophysics Data System (ADS)

    Confalonieri, F.; Sommer, S.

    2011-01-01

    Organisms living in extreme environments must cope with large fluctuations of temperature, high levels of radiation and/or desiccation, conditions that can induce DNA damage ranging from base modifications to DNA double-strand breaks. The bacterium Deinococcus radiodurans is known for its resistance to extremely high doses of ionizing radiation and for its ability to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Recently, extreme ionizing radiation resistance was also generated by directed evolution of an apparently radiation-sensitive bacterial species, Escherichia coli. Radioresistant organisms are not only found among the Eubacteria but also among the Archaea that represent the third kingdom of life. They present a set of particular features that differentiate them from the Eubacteria and eukaryotes. Moreover, Archaea are often isolated from extreme environments where they live under severe conditions of temperature, pressure, pH, salts or toxic compounds that are lethal for the large majority of living organisms. Thus, Archaea offer the opportunity to understand how cells are able to cope with such harsh conditions. Among them, the halophilic archaeon Halobacterium sp and several Pyrococcus or Thermococcus species, such as Thermococcus gammatolerans, were also shown to display high level of radiation resistance. The dispersion, in the phylogenetic tree, of radioresistant prokaryotes suggests that they have independently acquired radioresistance. Different strategies were selected during evolution including several mechanisms of radiation byproduct detoxification and subtle cellular metabolism modifications to help cells recover from radiation-induced injuries, protection of proteins against oxidation, an efficient DNA repair tool box, an original pathway of DNA double-strand break repair, a condensed nucleoid that may prevent the dispersion of the DNA fragments and specific radiation-induced proteins involved in

  12. Microbiological stimulation of phytoremediation process using Salvinia natans to mercury contamined water

    NASA Astrophysics Data System (ADS)

    Filyarovskaya, Viktoriya; Sitarska, Magdalena; Traczewska, Teodora; Wolf, Mirela

    2017-11-01

    An alternative to traditional cleaning methods of heavy metals in the water environment is phytoremediation. They efficiency depends on used technological process conditions as well as plant species. One of the most dangerous metallic elements mercury plays a particular role, which is a trace element and a physiologically foreign in living organisms. Mercury has a high degree of toxicity with strong affinity to thiol groups. This may cause an adverse effect on the enzymatic processes and consequently inhibiting the physiological functions. Because of high risk for human health, water environment treatment from mercury is essential proecological action. Mercury removal studies were conducted using Salvinia natans pleustofit, sampled from its natural water environment. In the first step, epiphytic bacteria, which was resistant to high concentrations of mercury (0,6 mgHg/l), was isolated from the plant and than selected by the tiles gradient mthod. In the next step, the identification using molecular biology methods was made. In the following step plant Salvinia natans was exposure to high levels of mercury in the presence of the three isolated Pseudomonas strains with exceptional resistance characteristics to environmental factors. Has been found a positive bacteria effect on the plant condition because the selected strains belong to Pseudomonas species producing materials supporting plant growth. The use of microbial stimulation to phytoremediation by hyperaccumulator Salvinia natans can multiply the effectiveness of the process.

  13. Nuclear and cytoplasmic genome components of Solanum tuberosum + S. chacoense somatic hybrids and three SSR alleles related to bacterial wilt resistance.

    PubMed

    Chen, Lin; Guo, Xianpu; Xie, Conghua; He, Li; Cai, Xingkui; Tian, Lingli; Song, Botao; Liu, Jun

    2013-07-01

    The somatic hybrids were derived previously from protoplast fusion between Solanum tuberosum and S. chacoense to gain the bacterial wilt resistance from the wild species. The genome components analysis in the present research was to clarify the nuclear and cytoplasmic composition of the hybrids, to explore the molecular markers associated with the resistance, and provide information for better use of these hybrids in potato breeding. One hundred and eight nuclear SSR markers and five cytoplasmic specific primers polymorphic between the fusion parents were used to detect the genome components of 44 somatic hybrids. The bacterial wilt resistance was assessed thrice by inoculating the in vitro plants with a bacterial suspension of race 1. The disease index, relative disease index, and resistance level were assigned to each hybrid, which were further analyzed in relation to the molecular markers for elucidating the potential genetic base of the resistance. All of the 317 parental unique nuclear SSR alleles appeared in the somatic hybrids with some variations in the number of bands detected. Nearly 80 % of the hybrids randomly showed the chloroplast pattern of one parent, and most of the hybrids exhibited a fused mitochondrial DNA pattern. One hundred and nine specific SSR alleles of S. chacoense were analyzed for their relationship with the disease index of the hybrids, and three alleles were identified to be significantly associated with the resistance. Selection for the resistant SSR alleles of S. chacoense may increase the possibility of producing resistant pedigrees.

  14. Got Mercury?

    NASA Technical Reports Server (NTRS)

    Meyers, Valerie E.; McCoy, J. Torin; Garcia, Hector D.; James, John T.

    2009-01-01

    Many of the operational and payload lighting units used in various spacecraft contain elemental mercury. If these devices were damaged on-orbit, elemental mercury could be released into the cabin. Although there are plans to replace operational units with alternate light sources, such as LEDs, that do not contain mercury, mercury-containing lamps efficiently produce high quality illumination and may never be completely replaced on orbit. Therefore, exposure to elemental mercury during spaceflight will remain possible and represents a toxicological hazard. Elemental mercury is a liquid metal that vaporizes slowly at room temperature. However, it may be completely vaporized at the elevated operating temperatures of lamps. Although liquid mercury is not readily absorbed through the skin or digestive tract, mercury vapors are efficiently absorbed through the respiratory tract. Therefore, the amount of mercury in the vapor form must be estimated. For mercury releases from lamps that are not being operated, we utilized a study conducted by the New Jersey Department of Environmental Quality to calculate the amount of mercury vapor expected to form over a 2-week period. For longer missions and for mercury releases occurring when lamps are operating, we conservatively assumed complete volatilization of the available mercury. Because current spacecraft environmental control systems are unable to remove mercury vapors, both short-term and long-term exposures to mercury vapors are possible. Acute exposure to high concentrations of mercury vapors can cause irritation of the respiratory tract and behavioral symptoms, such as irritability and hyperactivity. Chronic exposure can result in damage to the nervous system (tremors, memory loss, insomnia, etc.) and kidneys (proteinurea). Therefore, the JSC Toxicology Group recommends that stringent safety controls and verifications (vibrational testing, etc.) be applied to any hardware that contains elemental mercury that could yield

  15. Transcriptome of American oysters, Crassostrea virginica, in response to bacterial challenge: insights into potential mechanisms of disease resistance.

    PubMed

    McDowell, Ian C; Nikapitiya, Chamilani; Aguiar, Derek; Lane, Christopher E; Istrail, Sorin; Gomez-Chiarri, Marta

    2014-01-01

    The American oyster Crassostrea virginica, an ecologically and economically important estuarine organism, can suffer high mortalities in areas in the Northeast United States due to Roseovarius Oyster Disease (ROD), caused by the gram-negative bacterial pathogen Roseovarius crassostreae. The goals of this research were to provide insights into: 1) the responses of American oysters to R. crassostreae, and 2) potential mechanisms of resistance or susceptibility to ROD. The responses of oysters to bacterial challenge were characterized by exposing oysters from ROD-resistant and susceptible families to R. crassostreae, followed by high-throughput sequencing of cDNA samples from various timepoints after disease challenge. Sequence data was assembled into a reference transcriptome and analyzed through differential gene expression and functional enrichment to uncover genes and processes potentially involved in responses to ROD in the American oyster. While susceptible oysters experienced constant levels of mortality when challenged with R. crassostreae, resistant oysters showed levels of mortality similar to non-challenged oysters. Oysters exposed to R. crassostreae showed differential expression of transcripts involved in immune recognition, signaling, protease inhibition, detoxification, and apoptosis. Transcripts involved in metabolism were enriched in susceptible oysters, suggesting that bacterial infection places a large metabolic demand on these oysters. Transcripts differentially expressed in resistant oysters in response to infection included the immune modulators IL-17 and arginase, as well as several genes involved in extracellular matrix remodeling. The identification of potential genes and processes responsible for defense against R. crassostreae in the American oyster provides insights into potential mechanisms of disease resistance.

  16. Transcriptome of American Oysters, Crassostrea virginica, in Response to Bacterial Challenge: Insights into Potential Mechanisms of Disease Resistance

    PubMed Central

    McDowell, Ian C.; Nikapitiya, Chamilani; Aguiar, Derek; Lane, Christopher E.; Istrail, Sorin; Gomez-Chiarri, Marta

    2014-01-01

    The American oyster Crassostrea virginica, an ecologically and economically important estuarine organism, can suffer high mortalities in areas in the Northeast United States due to Roseovarius Oyster Disease (ROD), caused by the gram-negative bacterial pathogen Roseovarius crassostreae. The goals of this research were to provide insights into: 1) the responses of American oysters to R. crassostreae, and 2) potential mechanisms of resistance or susceptibility to ROD. The responses of oysters to bacterial challenge were characterized by exposing oysters from ROD-resistant and susceptible families to R. crassostreae, followed by high-throughput sequencing of cDNA samples from various timepoints after disease challenge. Sequence data was assembled into a reference transcriptome and analyzed through differential gene expression and functional enrichment to uncover genes and processes potentially involved in responses to ROD in the American oyster. While susceptible oysters experienced constant levels of mortality when challenged with R. crassostreae, resistant oysters showed levels of mortality similar to non-challenged oysters. Oysters exposed to R. crassostreae showed differential expression of transcripts involved in immune recognition, signaling, protease inhibition, detoxification, and apoptosis. Transcripts involved in metabolism were enriched in susceptible oysters, suggesting that bacterial infection places a large metabolic demand on these oysters. Transcripts differentially expressed in resistant oysters in response to infection included the immune modulators IL-17 and arginase, as well as several genes involved in extracellular matrix remodeling. The identification of potential genes and processes responsible for defense against R. crassostreae in the American oyster provides insights into potential mechanisms of disease resistance. PMID:25122115

  17. Seasonal mercury transformation and surficial sediment detoxification by bacteria of Marano and Grado lagoons

    NASA Astrophysics Data System (ADS)

    Baldi, Franco; Gallo, Michele; Marchetto, Davide; Fani, Renato; Maida, Isabel; Horvat, Milena; Fajon, Vesna; Zizek, Suzana; Hines, Mark

    2012-11-01

    Marano and Grado lagoons are polluted by mercury from the Isonzo River and a chlor-alkali plant, yet despite this contamination, clam cultivation is one of the main activities in the region. Four stations (MA, MB, MC and GD) were chosen for clam seeding and surficial sediments were monitored in autumn, winter and summer to determine the Hg detoxifying role of bacteria. Biotransformation of Hg species in surficial sediments of Marano and Grado lagoons was investigated while taking into consideration the speciation of organic matter in the biochemical classes of PRT (proteins), CHO (carbohydrates) and LIP (lipids), water-washed cations and anions, bacterial biomass, Hg-resistant bacteria, some specific microbial activities such as sulfate reduction rates, Hg methylation rates, Hg-demethylation rates, and enzymatic ionic Hg reduction. MeHg in sediments was well correlated with PRT content, whereas total Hg in sediments correlated with numbers of Hg-resistant bacteria. Correlations of the latter with Hg-demethylation rates in autumn and winter suggested a direct role Hg-resistant bacteria in Hg detoxification by producing elemental Hg (Hg0) from ionic Hg and probably also from MeHg. MeHg-demethylation rates were ˜10 times higher than Hg methylation rates, were highest in summer and correlated with high sulfate reduction rates indicating that MeHg was probably degraded in summer by sulfate-reducing bacteria via an oxidative pathway. During the summer period, aerobic heterotrophic Hg-resistant bacteria decreased to <2% compared to 53% in winter. Four Hg-resistant bacterial strains were isolated, two Gram-positive (Staphylococcus and Bacillus) and two Gram-negative (Stenotrophomonas and Pseudomonas). Two were able to produce Hg0, but just one contained a merA gene; while other two strains did not produce Hg0 even though they were able to grow at 5 μg ml of HgCl2. Lagoon sediments support a strong sulfur cycle in summer that controls Hg methylation and demethylation

  18. Proteomics As a Tool for Studying Bacterial Virulence and Antimicrobial Resistance

    PubMed Central

    Pérez-Llarena, Francisco J.; Bou, Germán

    2016-01-01

    Proteomic studies have improved our understanding of the microbial world. The most recent advances in this field have helped us to explore aspects beyond genomics. For example, by studying proteins and their regulation, researchers now understand how some pathogenic bacteria have adapted to the lethal actions of antibiotics. Proteomics has also advanced our knowledge of mechanisms of bacterial virulence and some important aspects of how bacteria interact with human cells and, thus, of the pathogenesis of infectious diseases. This review article addresses these issues in some of the most important human pathogens. It also reports some applications of Matrix-Assisted Laser Desorption/Ionization-Time-Of-Flight (MALDI-TOF) mass spectrometry that may be important for the diagnosis of bacterial resistance in clinical laboratories in the future. The reported advances will enable new diagnostic and therapeutic strategies to be developed in the fight against some of the most lethal bacteria affecting humans. PMID:27065974

  19. Bacterial resistance of self-assembled surfaces using PPOm-b-PSBMAn zwitterionic copolymer - concomitant effects of surface topography and surface chemistry on attachment of live bacteria.

    PubMed

    Hsiao, Sheng-Wen; Venault, Antoine; Yang, Hui-Shan; Chang, Yung

    2014-06-01

    Three well-defined diblock copolymers made of poly(sulfobetaine methacrylate) (poly(SBMA)) and poly(propylene oxide) (PPO) groups were synthesized by atom transfer radical polymerization (ATRP) method. They were physically adsorbed onto three types of surfaces having different topography, including smooth flat surface, convex surface, and indented surface. Chemical state of surfaces was characterized by XPS while the various topographies were examined by SEM and AFM. Hydrophilicity of surfaces was dependent on both the surface chemistry and the surface topography, suggesting that orientation of copolymer brushes can be tuned in the design of surfaces aimed at resisting bacterial attachment. Escherichia coli, Staphylococcus epidermidis, Streptococcus mutans and Escherichia coli with green fluorescent protein (E. coli GFP) were used in bacterial tests to assess the resistance to bacterial attachment of poly(SBMA)-covered surfaces. Results highlighted a drastic improvement of resistance to bacterial adhesion with the increasing of poly(SBMA) to PPO ratio, as well as an important effect of surface topography. The chemical effect was directly related to the length of the hydrophilic moieties. When longer, more water could be entrapped, leading to improved anti-bacterial properties. The physical effect impacted on the orientation of the copolymer brushes, as well as on the surface contact area available. Convex surfaces as well as indented surfaces wafer presented the best resistance to bacterial adhesion. Indeed, bacterial attachment was more importantly reduced on these surfaces compared with smooth surfaces. It was explained by the non-orthogonal orientation of copolymer brushes, resulting in a more efficient surface coverage of zwitterionic molecules. This work suggests that not only the control of surface chemistry is essential in the preparation of surfaces resisting bacterial attachment, but also the control of surface topography and orientation of antifouling

  20. PHACOS, a functionalized bacterial polyester with bactericidal activity against methicillin-resistant Staphylococcus aureus

    PubMed Central

    Dinjaski, Nina; Fernández-Gutiérrez, Mar; Selvam, Shivaram; Parra-Ruiz, Francisco J.; Lehman, Susan M.; Román, Julio San; García, Ernesto; García, José L.; García, Andrés J.; Prieto, María Auxiliadora

    2013-01-01

    Biomaterial-associated infections represent a significant clinical problem, and treatment of these microbial infections is becoming troublesome due to the increasing number of antibiotic-resistant strains. Here, we report a naturally functionalized bacterial polyhydroxyalkanoate (PHACOS) with antibacterial properties. We demonstrate that PHACOS selectively and efficiently inhibits the growth of methicillin-resistant Staphylococcus aureus (MRSA) both in vitro and in vivo. This ability has been ascribed to the functionalized side chains containing thioester groups. Significantly less (3.2-fold) biofilm formation of S. aureus was detected on PHACOS compared to biofilms formed on control poly(3-hydroxyoctanoate-co-hydroxyhexanoate) and poly(ethylene terephthalate), but no differences were observed in bacterial adhesion among these polymers. PHACOS elicited minimal cytotoxic and inflammatory effects on murine macrophages and supported normal fibroblast adhesion. In vivo fluorescence imaging demonstrated minimal inflammation and excellent antibacterial activity for PHACOS compared to controls in an in vivo model of implant-associated infection. Additionally, reductions in neutrophils and macrophages in the vicinity of sterile PHACOS compared to sterile PHO implant were observed by immunohistochemistry. Moreover, a similar percentage of inflammatory cells was found in the tissue surrounding sterile PHACOS and S. aureus pre-colonized PHACOS implants, and these levels were significantly lower than S. aureus pre-colonized control polymers. These findings support a contact active surface mode of antibacterial action for PHACOS and establish this functionalized polyhydroxyalkanoate as an infection-resistant biomaterial. PMID:24094939

  1. Mercury study report to Congress. Volume 5. Health effects of mercury and mercury compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassett-Sipple, B.; Swartout, J.; Schoeny, R.

    1997-12-01

    This volume summarizes the available information on human health effects and animal data for hazard identification and dose-response assessment for three forms of mercury: elemental mercury, mercury chloride (inorganic mercury), and methylmercury (organic mercury). Effects are summarized by endpoint. The risk assessment evaluates carcinogenicity, mutagenicity, developmental toxicity and general systemic toxicity of these chemical species of mercury. Toxicokinetics (absorption, distribution, metabolism and excretion) are described for each of the three mercury species. Reference doses are calculated for inorganic and methylmercury; a reference concentrations for inhaled elemental mercury is provided. A quantitative analysis of factors contributing to variability and uncertainty inmore » the methylmercury RfD is provided in an appendix. Interactions and sensitive populations are described. the draft volume assesses ongoing research and research needs to reduce uncertainty surrounding adverse human health consequences of methylmercury exposure.« less

  2. Phytoremediation of Ionic and Methyl Mercury Pollution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meagher, Richard B.

    Our long-term objective is to enable highly productive plant species to extract, resist, detoxify, and/or sequester toxic organic and heavy metal pollutants by applying scientific strategies and technologies from a rapidly developing field called phytoremediation. The phytoremediation of toxic elemental and organic pollutants employs a variety of different approaches (Meagher, 2000). Our current specific objectives are to use transgenic plants to control the chemical species, electrochemical state, transport, and aboveground binding of mercury to (a) prevent methylmercury from entering the food-chain, (b) remove mercury from polluted sites, and (c) hyperaccumulate mercury in aboveground tissues for later harvest and waste disposal.more » Various parts of this strategy are being critically tested by examining different genes in model plants and field species and comparing the results to control plants, as we reviewed previously (Meagher et al., 2000; Rugh et al., 2000). A positive spin-off from this work on mercury has been a strategy for the phytoremediation of arsenic (Dhankher et al., 2002) and cadmium (Dhankher et al., 2003).« less

  3. Insights in Nanoparticle-Bacterium Interactions: New Frontiers to Bypass Bacterial Resistance to Antibiotics.

    PubMed

    Diab, Roudayna; Khameneh, Bahman; Joubert, Olivier; Duval, Raphael

    2015-01-01

    Nanotechnology has been revealed as a fundamental approach for antibiotics delivery. In this paper, recent findings demonstrating the superiority of nanocarried-antibiotics over "naked" ones and the ways by which nanoparticles can help to overwhelm bacterial drug resistance are reviewed. The second part of this paper sheds light on nanoparticle-bacterium interaction patterns. Finally, key factors affecting the effectiveness of nanoparticles interactions with bacteria are discussed.

  4. Prevalence of antibacterial resistant bacterial contaminants from mobile phones of hospital inpatients

    PubMed Central

    Vinod Kumar, B.; Hobani, Yahya Hasan; Abdulhaq, Ahmed; Jerah, Ahmed Ali; Hakami, Othman M.; Eltigani, Magdeldin; Bidwai, Anil K.

    2014-01-01

    Mobile phones contaminated with bacteria may act as fomites. Antibiotic resistant bacterial contamination of mobile phones of inpatients was studied. One hundred and six samples were collected from mobile phones of patients admitted in various hospitals in Jazan province of Saudi Arabia. Eighty-nine (83.9%) out of 106 mobile phones were found to be contaminated with bacteria. Fifty-two (49.0%) coagulase-negative Staphylococcus, 12 (11.3%) Staphylococcus aureus, 7 (6.6%) Enterobacter cloacae, 3 (2.83%) Pseudomonas stutzeri, 3 (2.83%) Sphingomonas paucimobilis, 2 (1.8%) Enterococcus faecalis and 10 (9.4%) aerobic spore bearers were isolated. All the isolated bacteria were found to be resistant to various antibiotics. Hence, regular disinfection of mobile phones of hospital inpatients is advised. PMID:25292217

  5. Prevalence of antibacterial resistant bacterial contaminants from mobile phones of hospital inpatients.

    PubMed

    Kumar, B Vinod; Hobani, Yahya Hasan; Abdulhaq, Ahmed; Jerah, Ahmed Ali; Hakami, Othman M; Eltigani, Magdeldin; Bidwai, Anil K

    2014-01-01

    Mobile phones contaminated with bacteria may act as fomites. Antibiotic resistant bacterial contamination of mobile phones of inpatients was studied. One hundred and six samples were collected from mobile phones of patients admitted in various hospitals in Jazan province of Saudi Arabia. Eighty-nine (83.9%) out of 106 mobile phones were found to be contaminated with bacteria. Fifty-two (49.0%) coagulase-negative Staphylococcus, 12 (11.3%) Staphylococcus aureus, 7 (6.6%) Enterobacter cloacae, 3 (2.83%) Pseudomonas stutzeri, 3 (2.83%) Sphingomonas paucimobilis, 2 (1.8%) Enterococcus faecalis and 10 (9.4%) aerobic spore bearers were isolated. All the isolated bacteria were found to be resistant to various antibiotics. Hence, regular disinfection of mobile phones of hospital inpatients is advised.

  6. Antibiotic resistance profile of bacterial isolates from animal farming aquatic environments and meats in a peri-urban community in Daejeon, Korea.

    PubMed

    Rho, Hyunjin; Shin, Bongjin; Lee, Okbok; Choi, Yu-Hyun; Rho, Jaerang; Lee, Jiyoung

    2012-05-01

    The increasing usage of antibiotics in the animal farming industry is an emerging worldwide problem contributing to the development of antibiotic resistance. The purpose of this work was to investigate the prevalence and antibiotic resistance profile of bacterial isolates collected from animal farming aquatic environments and meats in a peri-urban community in Daejeon, Korea. In an antibacterial susceptibility test, the bacterial isolates showed a high incidence of resistance (∼26.04%) to cefazolin, tetracycline, gentamycin, norfloxacin, erythromycin and vancomycin. The results from a test for multiple antibiotic resistance indicated that the isolates were displaying an approximately 5-fold increase in the incidence of multiple antibiotic resistance to combinations of two different antibiotics compared to combinations of three or more antibiotics. Most of the isolates showed multi-antibiotic resistance, and the resistance patterns were similar among the sampling groups. Sequencing data analysis of 16S rRNA showed that most of the resistant isolates appeared to be dominated by the classes Betaproteobacteria and Gammaproteobacteria, including the genera Delftia, Burkholderia, Escherichia, Enterobacter, Acinetobacter, Shigella and Pseudomonas.

  7. Structural Studies of Bacterial Enzymes and their Relation to Antibiotic Resistance Mechanisms - Final Paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maltz, Lauren

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure ofmore » the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β- lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes« less

  8. Removal of mercury (II), elemental mercury and arsenic from simulated flue gas by ammonium sulphide.

    PubMed

    Ning, Ping; Guo, Xiaolong; Wang, Xueqian; Wang, Ping; Ma, Yixing; Lan, Yi

    2015-01-01

    A tubular resistance furnace was used as a reactor to simulate mercury and arsenic in smelter flue gases by heating mercury and arsenic compounds. The flue gas containing Hg(2+), Hg(0) and As was treated with ammonium sulphide. The experiment was conducted to investigate the effects of varying the concentration of ammonium sulphide, the pH value of ammonium sulphide, the temperature of ammonium sulphide, the presence of SO2 and the presence of sulphite ion on removal efficiency. The prepared adsorption products were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy. The results showed that the optimal concentration of ammonium sulphide was 0.8 mol/L. The optimal pH value of ammonium sulphide was 10, and the optimal temperature of ammonium sulphide was 20°C.Under the optimum conditions, the removal efficiency of Hg(2+), Hg(0) and As could reach 99%, 88.8%, 98%, respectively. In addition, SO2 and sulphite ion could reduce the removal efficiency of mercury and arsenic from simulated flue gas.

  9. Phenotypic and genotypic bacterial antimicrobial resistance in liquid pig manure is variously associated with contents of tetracyclines and sulfonamides.

    PubMed

    Hölzel, C S; Harms, K S; Küchenhoff, H; Kunz, A; Müller, C; Meyer, K; Schwaiger, K; Bauer, J

    2010-05-01

    Antibiotic residues as well as antibiotic-resistant bacteria in environmental samples might pose a risk to human health. This study aimed to investigate the association between antibiotic residues and bacterial antimicrobial resistance in liquid pig manure used as fertilizer. Concentrations of tetracyclines (TETs) and sulfonamides (SULs) were determined by liquid chromatography-mass spectrometry in 305 pig manure samples; antibiotic contents were correlated to the phenotypic resistance of Escherichia coli (n = 613) and enterococci (n = 564) towards up to 24 antibiotics. In 121 samples, the concentration of the TET resistance genes tet(M), tet(O) and tet(B) was quantified by real-time-PCR. TETs were found in 54% of the samples. The median sum concentration of all investigated TETs in the positive samples was 0.73 mg kg(-1). SULs were found with a similar frequency (51%) and a median sum concentration of 0.15 mg kg(-1) in the positive samples. Associated with the detection of TETs and/or SULs, resistance rates were significantly elevated for several substances - some of them not used in farm animals, e.g. chloramphenicol and synercid. In addition, multiresistant isolates were found more often in samples containing antibiotics. Analysis of the resistance genes tet(M) and tet(O) already showed a significant increase in their concentrations - but not in tet(B) - in the lowest range of total TET concentration. Mean tet(M) concentrations increased by the factor of 4.5 in the TET concentration range of 0.1-1 mg kg(-1), compared to negative manure samples. Antibiotic contamination of manure seems to be associated with a variety of changes in bacterial resistance, calling for a prudent use of antibiotics in farm animals. This study provides an interdisciplinary approach to assess antimicrobial resistance by combining the microbiological analysis of bacterial resistance with high quality chemical analysis of antibiotic residues in a representative number of environmental

  10. Microbial community structure with trends in methylation gene diversity and abundance in mercury-contaminated rice paddy soils in Guizhou, China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vishnivetskaya, Tatiana A.; Hu, Haiyan; Van Nostrand, Joy D.

    In this paper, paddy soils from mercury (Hg)-contaminated rice fields in Guizhou, China were studied with respect to total mercury (THg) and methylmercury (MeHg) concentrations as well as Bacterial and Archaeal community composition. Total Hg (0.25–990 μg g –1) and MeHg (1.3–30.5 ng g –1) varied between samples. Pyrosequencing (454 FLX) of the hypervariable v1–v3 regions of the 16S rRNA genes showed that Proteobacteria, Actinobacteria, Chloroflexi, Acidobacteria, Euryarchaeota, and Crenarchaeota were dominant in all samples. The Bacterial α-diversity was higher in samples with relatively Low THg and MeHg and decreased with increasing THg and MeHg concentrations. In contrast, Archaeal α-diversitymore » increased with increasing of MeHg concentrations but did not correlate with changes in THg concentrations. Overall, the methylation gene hgcAB copy number increased with both increasing THg and MeHg concentrations. The microbial communities at High THg and High MeHg appear to be adapted by species that are both Hg resistant and carry hgcAB genes for MeHg production. The relatively high abundance of both sulfate-reducing δ- Proteobacteria and methanogenic Archaea, as well as their positive correlations with increasing THg and MeHg concentrations, suggests that these microorganisms are the primary Hg-methylators in the rice paddy soils in Guizhou, China.« less

  11. Microbial community structure with trends in methylation gene diversity and abundance in mercury-contaminated rice paddy soils in Guizhou, China

    DOE PAGES

    Vishnivetskaya, Tatiana A.; Hu, Haiyan; Van Nostrand, Joy D.; ...

    2018-03-05

    In this paper, paddy soils from mercury (Hg)-contaminated rice fields in Guizhou, China were studied with respect to total mercury (THg) and methylmercury (MeHg) concentrations as well as Bacterial and Archaeal community composition. Total Hg (0.25–990 μg g –1) and MeHg (1.3–30.5 ng g –1) varied between samples. Pyrosequencing (454 FLX) of the hypervariable v1–v3 regions of the 16S rRNA genes showed that Proteobacteria, Actinobacteria, Chloroflexi, Acidobacteria, Euryarchaeota, and Crenarchaeota were dominant in all samples. The Bacterial α-diversity was higher in samples with relatively Low THg and MeHg and decreased with increasing THg and MeHg concentrations. In contrast, Archaeal α-diversitymore » increased with increasing of MeHg concentrations but did not correlate with changes in THg concentrations. Overall, the methylation gene hgcAB copy number increased with both increasing THg and MeHg concentrations. The microbial communities at High THg and High MeHg appear to be adapted by species that are both Hg resistant and carry hgcAB genes for MeHg production. The relatively high abundance of both sulfate-reducing δ- Proteobacteria and methanogenic Archaea, as well as their positive correlations with increasing THg and MeHg concentrations, suggests that these microorganisms are the primary Hg-methylators in the rice paddy soils in Guizhou, China.« less

  12. Increasing antibiotic resistance in preservative-tolerant bacterial strains isolated from cosmetic products.

    PubMed

    Orús, Pilar; Gomez-Perez, Laura; Leranoz, Sonia; Berlanga, Mercedes

    2015-03-01

    To ensure the microbiological quality, consumer safety and organoleptic properties of cosmetic products, manufacturers need to comply with defined standards using several preservatives and disinfectants. A drawback regarding the use of these preservatives is the possibility of generating cross-insusceptibility to other disinfectants or preservatives, as well as cross resistance to antibiotics. Therefore, the objective of this study was to understand the adaptive mechanisms of Enterobacter gergoviae, Pseudomonas putida and Burkholderia cepacia that are involved in recurrent contamination in cosmetic products containing preservatives. Diminished susceptibility to formaldehyde-donors was detected in isolates but not to other preservatives commonly used in the cosmetics industry, although increasing resistance to different antibiotics (β-lactams, quinolones, rifampicin, and tetracycline) was demonstrated in these strains when compared with the wild-type strain. The outer membrane protein modifications and efflux mechanism activities responsible for the resistance trait were evaluated. The development of antibiotic-resistant microorganisms due to the selective pressure from preservatives included in cosmetic products could be a risk for the emergence and spread of bacterial resistance in the environment. Nevertheless, the large contribution of disinfection and preservation cannot be denied in cosmetic products. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  13. REVERSIBLE ACTIVATION FOR GERMINATION AND SUBSEQUENT CHANGES IN BACTERIAL SPORES1

    PubMed Central

    Lee, W. H.; Ordal, Z. John

    1963-01-01

    Lee, W. H. (University of Illinois, Urbana) and Z. John Ordal. Reversible activation for germination and subsequent changes in bacterial spores. J. Bacteriol. 85:207–217. 1963.—It was possible to isolate refractile spores of Bacillus megaterium, from a calcium dipicolinate germination solution, that were activated and would germinate spontaneously in distilled water. Some of the characteristics of the initial phases of bacterial spore germination were determined by studying these unstable activated spores. Activated spores of B. megaterium were resistant to stains and possessed a heat resistance intermediate between that of dormant and of germinated spores. The spontaneous germination of activated spores was inhibited by copper, iron, silver, or mercury salts, saturated o-phenanthroline, or solutions having a low pH value, but not by many common inhibitors. These inhibitions could be partially or completely reversed by the addition of sodium dipicolinate. The activated spores could be deactivated and made similar to dormant spores by treatment with acid. Analyses of the exudates from the variously treated spore suspensions revealed that whatever inhibited the germination of activated spores also inhibited the release of spore material. The composition of the germination exudates was different than that of extracts of dormant spores. Although heavy suspensions of activated spores gradually became swollen and dark when suspended in solutions of o-phenanthroline or at pH 4, the materials released resembled those found in extracts of dormant spores rather than those of normal germination exudates. Images PMID:16561987

  14. Bacterial diversity and antibiotic resistance in water habitats: searching the links with the human microbiome.

    PubMed

    Vaz-Moreira, Ivone; Nunes, Olga C; Manaia, Célia M

    2014-07-01

    Water is one of the most important bacterial habitats on Earth. As such, water represents also a major way of dissemination of bacteria between different environmental compartments. Human activities led to the creation of the so-called urban water cycle, comprising different sectors (waste, surface, drinking water), among which bacteria can hypothetically be exchanged. Therefore, bacteria can be mobilized between unclean water habitats (e.g. wastewater) and clean or pristine water environments (e.g. disinfected and spring drinking water) and eventually reach humans. In addition, bacteria can also transfer mobile genetic elements between different water types, other environments (e.g. soil) and humans. These processes may involve antibiotic resistant bacteria and antibiotic resistance genes. In this review, the hypothesis that some bacteria may share different water compartments and be also hosted by humans is discussed based on the comparison of the bacterial diversity in different types of water and with the human-associated microbiome. The role of such bacteria as potential disseminators of antibiotic resistance and the inference that currently only a small fraction of the clinically relevant antibiotic resistome may be known is discussed. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  15. Synergistic antimicrobial therapy using nanoparticles and antibiotics for the treatment of multidrug-resistant bacterial infection

    NASA Astrophysics Data System (ADS)

    Gupta, Akash; Saleh, Neveen M.; Das, Riddha; Landis, Ryan F.; Bigdeli, Arafeh; Motamedchaboki, Khatereh; Rosa Campos, Alexandre; Pomeroy, Kenneth; Mahmoudi, Morteza; Rotello, Vincent M.

    2017-06-01

    Infections caused by multidrug-resistant (MDR) bacteria pose a serious global burden of mortality, causing thousands of deaths each year. Antibiotic treatment of resistant infections further contributes to the rapidly increasing number of antibiotic-resistant species and strains. Synthetic macromolecules such as nanoparticles (NPs) exhibit broad-spectrum activity against MDR species, however lack of specificity towards bacteria relative to their mammalian hosts limits their widespread therapeutic application. Here, we demonstrate synergistic antimicrobial therapy using hydrophobically functionalized NPs and fluoroquinolone antibiotics for treatment of MDR bacterial strains. An 8-16-fold decrease in antibiotic dosage is achieved in presence of engineered NPs to combat MDR strains. This strategy demonstrates the potential of using NPs to ‘revive’ antibiotics that have been rendered ineffective due to the development of resistance by pathogenic bacteria.

  16. [Surveillance of healthcare associated infections, bacterial resistance and antibiotic consumption in high-complexity hospitals in Colombia, 2011].

    PubMed

    Villalobos, Andrea Patricia; Barrero, Liliana Isabel; Rivera, Sandra Milena; Ovalle, María Victoria; Valera, Danik

    2014-04-01

    Preventing healthcare associated infections, especially for resistant microorganisms, is a priority. In Colombia, the surveillance of such events was started through a national pilot study. To describe the epidemiology of device-associated infections, bacterial resistance and antibiotic consumption patterns in institutions with intensive care units (ICU), 2011. Descriptive observational study in 10 health institutions from three Colombian provinces: Antioquia, Valle del Cauca, and Bogotá. Surveillance protocols were designed and implemented by trained health professionals in each hospital. A web tool was designed for data reporting and analysis. Infection rates, device-use percentages and antibiotics defined daily dose (DDD) were calculated. Bacterial resistance phenotypes and profiles were reported and analyzed using Whonet 5.6. The most common event was bloodstream infection (rate > 4.8/1000 catheter-days) followed by ventilator-associated pneumonia (VAP) and catheter-related urinary tract infection, showing a wide variability among institutions. A high consumption of meropenem in the ICU (DDD 22.5/100 beds-day) was observed, as well as a high carbapenem resistance (> 11.6%) and a high frequency of third generation cephalosporins resistance (> 25.6%) in Enterobacteriaceae in ICUs and hospitalization wards. The percentage of methicillin-resistant Staphylococcus aureus was higher in hospitalization wards (34.3%). This is the first experience in measuring these events in Colombia. It is necessary to implement a national surveillance system aimed at guiding governmental and institutional actions oriented to infection prevention and control, to resistance management and to the promotion of antibiotics rational use, along with a follow-up and monitoring process.

  17. Haemophilus parasuis CpxRA two-component system confers bacterial tolerance to environmental stresses and macrolide resistance.

    PubMed

    Cao, Qi; Feng, Fenfen; Wang, Huan; Xu, Xiaojuan; Chen, Huanchun; Cai, Xuwang; Wang, Xiangru

    2018-01-01

    Haemophilus parasuis is an opportunistic pathogen localized in the upper respiratory tracts of pigs, its infection begins from bacterial survival under complex conditions, like hyperosmosis, oxidative stress, phagocytosis, and sometimes antibiotics as well. The two-component signal transduction (TCST) system serves as a common stimulus-response mechanism that allows microbes to sense and respond to diverse environmental conditions via a series of phosphorylation reactions. In this study, we investigated the role of TCST system CpxRA in H. parasuis in response to different environmental stimuli by constructing the ΔcpxA and ΔcpxR single deletion mutants as well as the ΔcpxRA double deletion mutant from H. parasuis serotype 4 isolate JS0135. We demonstrated that H. parasuis TCST system CpxRA confers bacterial tolerance to stresses and bactericidal antibiotics. The CpxR was found to play essential roles in mediating oxidative stress, osmotic stresses and alkaline pH stress tolerance, as well as macrolide resistance (i.e. erythromycin), but the CpxA deletion did not decrease bacterial resistance to abovementioned stresses. Moreover, we found via RT-qPCR approach that HAPS_RS00160 and HAPS_RS09425, both encoding multidrug efflux pumps, were significantly decreased in erythromycin challenged ΔcpxR and ΔcpxRA mutants compared with wild-type strain JS0135. These findings characterize the role of the TCST system CpxRA in H. parasuis conferring stress response tolerance and bactericidal resistance, which will deepen our understanding of the pathogenic mechanism in H. parasuis. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Identification and functional analysis of cassava DELLA proteins in plant disease resistance against cassava bacterial blight.

    PubMed

    Li, Xiaolin; Liu, Wen; Li, Bing; Liu, Guoyin; Wei, Yunxie; He, Chaozu; Shi, Haitao

    2018-03-01

    Gibberellin (GA) is an essential plant hormone in plant growth and development as well as various stress responses. DELLA proteins are important repressors of GA signal pathway. GA and DELLA have been extensively investigated in several model plants. However, the in vivo roles of GA and DELLA in cassava, one of the most important crops and energy crops in the tropical area, are unknown. In this study, systematic genome-wide analysis identified 4 MeDELLAs in cassava, as evidenced by the evolutionary tree, gene structures and motifs analyses. Gene expression analysis found that 4 MeDELLAs were commonly regulated by flg22 and Xanthomonas axonopodis pv manihotis (Xam). Through overexpression in Nicotiana benthamiana, we found that 4 MeDELLAs conferred improved disease resistance against cassava bacterial blight. Through virus-induced gene silencing (VIGS) in cassava, we found that MeDELLA-silenced plants exhibited decreased disease resistance, with less callose deposition and lower transcript levels of defense-related genes. This is the first study identifying MeDELLAs as positive regulators of disease resistance against cassava bacterial blight. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Evidence of major genes affecting resistance to bacterial cold water disease in rainbow trout using Bayesian methods of segregation analysis

    USDA-ARS?s Scientific Manuscript database

    Bacterial cold water disease (BCWD) causes significant economic loss in salmonid aquaculture. We previously detected genetic variation for BCWD resistance in our rainbow trout population, and a family-based selection program to improve resistance was initiated at the National Center for Cool and Col...

  20. Evidence of major genes affecting bacterial cold water disease resistance in rainbow trout using Bayesian methods of complex segregation analysis

    USDA-ARS?s Scientific Manuscript database

    Bacterial cold water disease (BCWD) causes significant economic loss in salmonid aquaculture. We previously detected genetic variation for BCWD resistance in our rainbow trout population, and a family-based selection program to improve resistance was initiated at the NCCCWA in 2005. The main objec...

  1. Nonviral Genome Editing Based on a Polymer-Derivatized CRISPR Nanocomplex for Targeting Bacterial Pathogens and Antibiotic Resistance.

    PubMed

    Kang, Yoo Kyung; Kwon, Kyu; Ryu, Jea Sung; Lee, Ha Neul; Park, Chankyu; Chung, Hyun Jung

    2017-04-19

    The overuse of antibiotics plays a major role in the emergence and spread of multidrug-resistant bacteria. A molecularly targeted, specific treatment method for bacterial pathogens can prevent this problem by reducing the selective pressure during microbial growth. Herein, we introduce a nonviral treatment strategy delivering genome editing material for targeting antibacterial resistance. We apply the CRISPR-Cas9 system, which has been recognized as an innovative tool for highly specific and efficient genome engineering in different organisms, as the delivery cargo. We utilize polymer-derivatized Cas9, by direct covalent modification of the protein with cationic polymer, for subsequent complexation with single-guide RNA targeting antibiotic resistance. We show that nanosized CRISPR complexes (= Cr-Nanocomplex) were successfully formed, while maintaining the functional activity of Cas9 endonuclease to induce double-strand DNA cleavage. We also demonstrate that the Cr-Nanocomplex designed to target mecA-the major gene involved in methicillin resistance-can be efficiently delivered into Methicillin-resistant Staphylococcus aureus (MRSA), and allow the editing of the bacterial genome with much higher efficiency compared to using native Cas9 complexes or conventional lipid-based formulations. The present study shows for the first time that a covalently modified CRISPR system allows nonviral, therapeutic genome editing, and can be potentially applied as a target specific antimicrobial.

  2. Role of hydroperoxide lyase in white-backed planthopper (Sogatella furcifera Horváth)-induced resistance to bacterial blight in rice, Oryza sativa L.

    PubMed

    Gomi, Kenji; Satoh, Masaru; Ozawa, Rika; Shinonaga, Yumi; Sanada, Sachiyo; Sasaki, Katsutomo; Matsumura, Masaya; Ohashi, Yuko; Kanno, Hiroo; Akimitsu, Kazuya; Takabayashi, Junji

    2010-01-01

    A pre-infestation of the white-backed planthopper (WBPH), Sogatella furcifera Horváth, conferred resistance to bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) in rice (Oryza sativa L.) under both laboratory and field conditions. The infestation of another planthopper species, the brown planthopper (BPH) Nilaparvata lugens Stål, did not significantly reduce the incidence of bacterial blight symptoms. A large-scale screening using a rice DNA microarray and quantitative RT-PCR revealed that WBPH infestation caused the upregulation of more defence-related genes than did BPH infestation. Hydroperoxide lyase 2 (OsHPL2), an enzyme for producing C(6) volatiles, was upregulated by WBPH infestation, but not by BPH infestation. One C(6) volatile, (E)-2-hexenal, accumulated in rice after WBPH infestation, but not after BPH infestation. A direct application of (E)-2-hexenal to a liquid culture of Xoo inhibited the growth of the bacterium. Furthermore, a vapour treatment of rice plants with (E)-2-hexenal induced resistance to bacterial blight. OsHPL2-overexpressing transgenic rice plants exhibited increased resistance to bacterial blight. Based on these data, we conclude that OsHPL2 and its derived (E)-2-hexenal play some role in WBPH-induced resistance in rice.

  3. Mercury

    USGS Publications Warehouse

    Franson, J.C.

    1999-01-01

    Mercury has been used by humans for over 2,000 years and was associated with premature deaths of cinnabar (mercuric sulfide) miners as early as 700 B.C. More recent human poisonings have been related to agricultural and industrial uses of mercury. One of the best documented of these cases occurred in the 1950s in Minamata Bay, Japan, when mercury was discharged into the environment and accumulated in fish and shellfish used as human food. In addition to human poisonings, mercury poisoning or toxicosis has been identified in many other species.Mercury is sometimes used to recover gold from stream sediments, and it may pose hazards to wildlife if it is released to the environment during ore recovery. Fungicidal treatment of seeds with mercury was common in the 1950s and 1960s, but this agricultural practice has been largely halted in the Northern Hemisphere.

  4. Planet Mercury

    NASA Image and Video Library

    1999-06-12

    The first image of Mercury acquired by NASA's Mariner 10 in 1974. During its flight, Mariner 10's trajectory brought it behind the lighted hemisphere of Mercury, where this image was taken, in order to acquire important measurements with other instruments. This picture was acquired from a distance of 3,340,000 miles (5,380,000 km) from the surface of Mercury. The diameter of Mercury (3,031 miles; 4,878 km) is about 1/3 that of Earth. Images of Mercury were acquired in two steps, an inbound leg (images acquired before passing into Mercury's shadow) and an outbound leg (after exiting from Mercury's shadow). More than 2300 useful images of Mercury were taken, both moderate resolution (3-20 km/pixel) color and high resolution (better than 1 km/pixel) black and white coverage. http://photojournal.jpl.nasa.gov/catalog/PIA00437

  5. Planet Mercury

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Mariner 10's first image of Mercury acquired on March 24, 1974. During its flight, Mariner 10's trajectory brought it behind the lighted hemisphere of Mercury, where this image was taken, in order to acquire important measurements with other instruments.

    This picture was acquired from a distance of 3,340,000 miles (5,380,000 km) from the surface of Mercury. The diameter of Mercury (3,031 miles; 4,878 km) is about 1/3 that of Earth.

    Images of Mercury were acquired in two steps, an inbound leg (images acquired before passing into Mercury's shadow) and an outbound leg (after exiting from Mercury's shadow). More than 2300 useful images of Mercury were taken, both moderate resolution (3-20 km/pixel) color and high resolution (better than 1 km/pixel) black and white coverage.

  6. Synthesis and Characterization of Cefotaxime Conjugated Gold Nanoparticles and Their Use to Target Drug-Resistant CTX-M-Producing Bacterial Pathogens.

    PubMed

    Shaikh, Sibhghatulla; Rizvi, Syed Mohd Danish; Shakil, Shazi; Hussain, Talib; Alshammari, Thamir M; Ahmad, Waseem; Tabrez, Shams; Al-Qahtani, Mohammad H; Abuzenadah, Adel M

    2017-09-01

    Multidrug-resistance due to "β lactamases having the expanded spectrum" (ESBLs) in members of Enterobacteriaceae is a matter of continued clinical concern. CTX-M is among the most common ESBLs in Enterobacteriaceae family. In the present study, a nanoformulation of cefotaxime was prepared using gold nanoparticles to combat drug-resistance in ESBL producing strains. Here, two CTX-M-15 positive cefotaxime resistant bacterial strains (i.e., one Escherichia coli and one Klebsiella pneumoniae strain) were used for testing the efficacy of "cefotaxime loaded gold-nanoparticles." Bromelain was used for both reduction and capping in the process of synthesis of gold-nanoparticles. Thereafter, cefotaxime was conjugated onto it with the help of activator 1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide. For characterization of both unconjugated and cefotaxime conjugated gold nanoparticles; UV-Visible spectroscopy, Scanning, and Transmission type Electron Microscopy methods accompanied with Dynamic Light Scattering were used. We used agar diffusion method plus microbroth-dilution method for the estimation of the antibacterial-activity and determination of minimum inhibitory concentration or MIC values, respectively. MIC values of cefotaxime loaded gold nanoparticles against E. coli and K. pneumoniae were obtained as 1.009 and 2.018 mg/L, respectively. These bacterial strains were completely resistant to cefotaxime alone. These results reinforce the utility of conjugating an old unresponsive antibiotic with gold nanoparticles to restore its efficacy against otherwise resistant bacterial pathogens. J. Cell. Biochem. 118: 2802-2808, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Impact on Bacterial Resistance of Therapeutically Nonequivalent Generics: The Case of Piperacillin-Tazobactam

    PubMed Central

    Rodriguez, Carlos A.; Agudelo, Maria; Aguilar, Yudy A.; Zuluaga, Andres F.

    2016-01-01

    Previous studies have demonstrated that pharmaceutical equivalence and pharmacokinetic equivalence of generic antibiotics are necessary but not sufficient conditions to guarantee therapeutic equivalence (better called pharmacodynamic equivalence). In addition, there is scientific evidence suggesting a direct link between pharmacodynamic nonequivalence of generic vancomycin and promotion of resistance in Staphylococcus aureus. To find out if even subtle deviations from the expected pharmacodynamic behavior with respect to the innovator could favor resistance, we studied a generic product of piperacillin-tazobactam characterized by pharmaceutical and pharmacokinetic equivalence but a faulty fit of Hill’s Emax sigmoid model that could be interpreted as pharmacodynamic nonequivalence. We determined the impact in vivo of this generic product on the resistance of a mixed Escherichia coli population composed of ∼99% susceptible cells (ATCC 35218 strain) and a ∼1% isogenic resistant subpopulation that overproduces TEM-1 β-lactamase. After only 24 hours of treatment in the neutropenic murine thigh infection model, the generic amplified the resistant subpopulation up to 20-times compared with the innovator, following an inverted-U dose-response relationship. These findings highlight the critical role of therapeutic nonequivalence of generic antibiotics as a key factor contributing to the global problem of bacterial resistance. PMID:27191163

  8. Antimicrobial resistance, heavy metal resistance and integron content in bacteria isolated from a South African tilapia aquaculture system.

    PubMed

    Chenia, Hafizah Y; Jacobs, Anelet

    2017-11-21

    Antibacterial compounds and metals co-select for antimicrobial resistance when bacteria harbour resistance genes towards both types of compounds, facilitating the proliferation and evolution of antimicrobial and heavy metal resistance. Antimicrobial and heavy metal resistance indices of 42 Gram-negative bacteria from a tilapia aquaculture system were determined to identify possible correlations between these phenotypes. Agar dilution assays were carried out to determine susceptibility to cadmium, copper, lead, mercury, chromate and zinc, while susceptibility to 21 antimicrobial agents was investigated by disk diffusion assays. Presence of merA, the mercury resistance gene, was determined by dot-blot hybridizations and PCR. Association of mercury resistance with integrons and transposon Tn21 was also investigated by PCR. Isolates displayed a high frequency of antimicrobial (erythromycin: 100%; ampicillin: 85%; trimethoprim: 78%) and heavy metal (Zn2+: 95%; Cd2+: 91%) resistance. No correlation was established between heavy metal and multiple antibiotic resistance indices. Significant positive correlations were observed between heavy metal resistance profiles, indices, Cu2+ and Cr3+ resistance with erythromycin resistance. Significant positive correlations were observed between merA (24%)/Tn21 (24%) presence and heavy metal resistance profiles and indices; however, significant negative correlations were obtained between integron-associated qacE∆1 (43%) and sulI (26%) gene presence and heavy metal resistance indices. Heavy metal and antimicrobial agents co-select for resistance, with fish-associated, resistant bacteria demonstrating simultaneous heavy metal resistance. Thus, care should be taken when using anti-fouling heavy metals as feed additives in aquaculture facilities.

  9. Treatment of bacterial meningitis: an update.

    PubMed

    Shin, Seon Hee; Kim, Kwang Sik

    2012-10-01

    The introduction of protein conjugate vaccines for Haemophilus influenzae type b (Hib), Streptococcus pneumoniae (S. pneumoniae) and Neisseria meningitidis (N. menigitidis) has changed the epidemiology of bacterial meningitis. Bacterial meningitis continues to be an important cause of mortality and morbidity, and our incomplete knowledge of its pathogenesis and emergence of antimicrobial resistant bacteria contribute to such mortality and morbidity. An early empiric antibiotic treatment is critical for the management of patients with bacterial meningitis. This article gives an overview on optimal treatment strategies of bacterial meningitis, along with considerations of new insights on epidemiology, clinical and laboratory findings supportive of bacterial meningitis, chemoprophylaxis, selection of initial antimicrobial agents for suspected bacterial meningitis, antimicrobial resistance and utility of new antibiotics, status on anti-inflammatory agents and adjunctive therapy, and pathogenesis of bacterial meningitis. Prompt treatment of bacterial meningitis with an appropriate antibiotic is essential. Optimal antimicrobial treatment of bacterial meningitis requires bactericidal agents able to penetrate the blood-brain barrier (BBB), with efficacy in cerebrospinal fluid (CSF). Several new antibiotics have been introduced for the treatment of meningitis caused by resistant bacteria, but their use in human studies has been limited. More complete understanding of the microbial and host interactions that are involved in the pathogenesis of bacterial meningitis and associated neurologic sequelae is likely to help in developing new strategies for the prevention and therapy of bacterial meningitis.

  10. Marker-assisted selection for resistance to bacterial cold water disease in a commercial rainbow trout breeding population

    USDA-ARS?s Scientific Manuscript database

    Bacterial cold water disease (BCWD), caused by Flavobacterium psychrophilum, is an endemic and problematic disease in rainbow trout (Oncorhynchus mykiss) aquaculture. Previously, we have identified SNPs (single nucleotide polymorphisms) associated with BCWD resistance in rainbow trout. The objective...

  11. Mercury study report to Congress. Volume 4. Health effects of mercury and mercury compounds. Sab review draft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoeny, R.

    1996-06-01

    This volume of the draft Mercury Study Report to Congress summarizes the available information on human health effects and animal data for hazard identification and dose-response assessment for three forms of mercury: elemental mercury, mercury chloride (inorganic mercury), and methylmercury (organic mercury). Effects are summarized by endpoint. The risk assessment evaluates carcinogenicity, mutagenicity, developmental toxicity and general systemic toxicity of these chemical species of mercury. Toxicokinetics (absorption, distribution, metabolism and excretion) are described for each of the three mercury species. PBPK models are described, but not applied in risk assessment. Reference doses are calculated for inorganic and methylmercury; a referencemore » concentration for inhaled elemental mercury is provided. A quantitiative analysis of factors contributing to variability and uncertainty in the methylmercury RfD is provided in an appendix. Interations and sensitive populations are described.« less

  12. Bacterial Cysteine-Inducible Cysteine Resistance Systems

    PubMed Central

    Takumi, Kazuhiro

    2016-01-01

    ABSTRACT Cysteine donates sulfur to macromolecules and occurs naturally in many proteins. Because low concentrations of cysteine are cytotoxic, its intracellular concentration is stringently controlled. In bacteria, cysteine biosynthesis is regulated by feedback inhibition of the activities of serine acetyltransferase (SAT) and 3-phosphoglycerate dehydrogenase (3-PGDH) and is also regulated at the transcriptional level by inducing the cysteine regulon using the master regulator CysB. Here, we describe two novel cysteine-inducible systems that regulate the cysteine resistance of Pantoea ananatis, a member of the family Enterobacteriaceae that shows great potential for producing substances useful for biotechnological, medical, and industrial purposes. One locus, designated ccdA (formerly PAJ_0331), encodes a novel cysteine-inducible cysteine desulfhydrase (CD) that degrades cysteine, and its expression is controlled by the transcriptional regulator encoded by ccdR (formerly PAJ_0332 or ybaO), located just upstream of ccdA. The other locus, designated cefA (formerly PAJ_3026), encodes a novel cysteine-inducible cysteine efflux pump that is controlled by the transcriptional regulator cefR (formerly PAJ_3027), located just upstream of cefA. To our knowledge, this is the first example where the expression of CD and an efflux pump is regulated in response to cysteine and is directly involved in imparting resistance to excess levels of cysteine. We propose that ccdA and cefA function as safety valves that maintain homeostasis when the intra- or extracellular cysteine concentration fluctuates. Our findings contribute important insights into optimizing the production of cysteine and related biomaterials by P. ananatis. IMPORTANCE Because of its toxicity, the bacterial intracellular cysteine level is stringently regulated at biosynthesis. This work describes the identification and characterization of two novel cysteine-inducible systems that regulate, through degradation and

  13. Baby leaf lettuce germplasm enhancement: developing diverse populations with resistance to bacterial leaf spot caused by Xanthomonas campestris pv. vitians

    USDA-ARS?s Scientific Manuscript database

    Baby leaf lettuce cultivars with resistance to bacterial leaf spot (BLS) caused by Xanthomonas campestris pv. vitians (Xcv) are needed to reduce crop losses. The objectives of this research were to assess the genetic diversity for BLS resistance in baby leaf lettuce cultivars and to select early gen...

  14. The resistance patterns of normal ocular bacterial flora to 4 fluoroquinolone antibiotics.

    PubMed

    Park, Shin Hae; Lim, Jeong-A; Choi, Jun-Sub; Kim, Kyung-A; Joo, Choun-Ki

    2009-01-01

    The purposes of this study were to determine the normal ocular bacterial flora isolated from patients undergoing anterior segment surgery and to evaluate their in vitro susceptibility to ciprofloxacin, levofloxacin, gatifloxacin, and moxifloxacin. During January 2006 to December 2006, conjunctival swabs taken from 385 eyes were inoculated onto 5% blood agar plates. The isolated bacteria were classified by analysis of 16s ribosomal DNA sequencing. Disk diffusion testing was performed in accordance with Clinical and Laboratory Standards Institute Performance Standards. Three hundred sixty-three microorganisms were isolated in 291 samples from 385 eyes. Gram-positive species predominated (89.8%, 326 of the 363 isolates), and Staphylococcus epidermidis was the most frequently isolated organism, accounting for 60.6% (220 of the 363 isolates). For 293 gram-positive isolates, the prevalence rates of in vitro resistance to ciprofloxacin, levofloxacin, gatifloxacin, and moxifloxacin were 22.2% (65 isolates), 11.6% (34), 2.7% (8), and 5.1% (15), respectively. Two of the gram-negative isolates were resistant to only ciprofloxacin (5.4%, 2 of 37 isolates) and not to other fluoroquinolones. Of 62 ciprofloxacin-resistant, coagulase-negative staphylococci, 32 (51.6%) showed coresistance to levofloxacin. Seven organisms were resistant to all the fluoroquinolones. Fluoroquinolones have activity against normal aerobic flora of the ocular surface. Normal ocular flora, especially gram-positive species, has low resistance to the fourth-generation fluoroquinolones -- gatifloxacin and moxifloxacin.

  15. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1991-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  16. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1988-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  17. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1989-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  18. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, M.W.; George, W.A.

    1991-06-18

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figures.

  19. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, M.W.; George, W.A.

    1989-11-07

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figs.

  20. 49 CFR 173.164 - Mercury (metallic and articles containing mercury).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Mercury (metallic and articles containing mercury... Than Class 1 and Class 7 § 173.164 Mercury (metallic and articles containing mercury). (a) For transportation by aircraft, mercury must be packaged in packagings which meet the requirements of part 178 of...

  1. 49 CFR 173.164 - Mercury (metallic and articles containing mercury).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Mercury (metallic and articles containing mercury... Than Class 1 and Class 7 § 173.164 Mercury (metallic and articles containing mercury). (a) For transportation by aircraft, mercury must be packaged in packagings which meet the requirements of part 178 of...

  2. 49 CFR 173.164 - Mercury (metallic and articles containing mercury).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Mercury (metallic and articles containing mercury... Than Class 1 and Class 7 § 173.164 Mercury (metallic and articles containing mercury). (a) For transportation by aircraft, mercury must be packaged in packagings which meet the requirements of part 178 of...

  3. 49 CFR 173.164 - Mercury (metallic and articles containing mercury).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Mercury (metallic and articles containing mercury... Than Class 1 and Class 7 § 173.164 Mercury (metallic and articles containing mercury). (a) For transportation by aircraft, mercury must be packaged in packagings which meet the requirements of part 178 of...

  4. 49 CFR 173.164 - Mercury (metallic and articles containing mercury).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Mercury (metallic and articles containing mercury... Than Class 1 and Class 7 § 173.164 Mercury (metallic and articles containing mercury). (a) For transportation by aircraft, mercury must be packaged in packagings which meet the requirements of part 178 of...

  5. Broad-spectrum in vitro antibacterial activities of clay minerals against antibiotic-susceptible and antibiotic-resistant bacterial pathogens

    PubMed Central

    HAYDEL, SHELLEY E.; REMENIH, CHRISTINE M.; WILLIAMS, LYNDA B.

    2008-01-01

    SYNOPSIS Objectives The capacity to properly address the worldwide incidence of infectious diseases lies in the ability to detect, prevent, and effectively treat these infections. Therefore, identifying and analyzing inhibitory agents are worthwhile endeavors in an era when few new classes of effective antimicrobials have been developed. The use of geological nanomaterials to heal skin infections has been evident since the earliest recorded history, and specific clay minerals may prove valuable in the treatment of bacterial diseases, including infections for which there are no effective antibiotics, such as Buruli ulcer and multi-drug resistant infections. Methods We have subjected two iron-rich clay minerals, which have previously been used to treat Buruli ulcer patients, to broth culture testing of antibiotic-susceptible and -resistant pathogenic bacteria to assess the feasibility of using clay minerals as therapeutic agents. Results One specific mineral, CsAg02, demonstrated bactericidal activity against pathogenic Escherichia coli, extended-spectrum β-lactamase (ESBL) E. coli, S. enterica serovar Typhimurium, Pseudomonas aeruginosa, and Mycobacterium marinum and a combined bacteriostatic/bactericidal effect against Staphylococcus aureus, penicillin-resistant S. aureus (PRSA), methicillin-resistant S. aureus (MRSA), and Mycobacterium smegmatis, while another mineral with similar structure and bulk crystal chemistry, CsAr02, had no effect on or enhanced bacterial growth. The <0.2 μm fraction of CsAg02 and CsAg02 heated to 200°C or 550°C retained bactericidal activity, while cation-exchanged CsAg02 and CsAg02 heated to 900°C no longer killed E. coli. Conclusions Our results indicate that specific mineral products have intrinsic, heat-stable antibacterial properties, which could provide an inexpensive treatment against numerous human bacterial infections. PMID:18070832

  6. The intrinsic resistome of bacterial pathogens

    PubMed Central

    Olivares, Jorge; Bernardini, Alejandra; Garcia-Leon, Guillermo; Corona, Fernando; B. Sanchez, Maria; Martinez, Jose L.

    2013-01-01

    Intrinsically resistant bacteria have emerged as a relevant health problem in the last years. Those bacterial species, several of them with an environmental origin, present naturally low-level susceptibility to several drugs. It has been proposed that intrinsic resistance is mainly the consequence of the impermeability of cellular envelopes, the activity of multidrug efflux pumps or the lack of appropriate targets for a given family of drugs. However, recently published articles indicate that the characteristic phenotype of susceptibility to antibiotics of a given bacterial species depends on the concerted activity of several elements, what has been named as intrinsic resistome. These determinants comprise not just classical resistance genes. Other elements, several of them involved in basic bacterial metabolic processes, are of relevance for the intrinsic resistance of bacterial pathogens. In the present review we analyze recent publications on the intrinsic resistomes of Escherichia coli and Pseudomonas aeruginosa. We present as well information on the role that global regulators of bacterial metabolism, as Crc from P. aeruginosa, may have on modulating bacterial susceptibility to antibiotics. Finally, we discuss the possibility of searching inhibitors of the intrinsic resistome in the aim of improving the activity of drugs currently in use for clinical practice. PMID:23641241

  7. The intrinsic resistome of bacterial pathogens.

    PubMed

    Olivares, Jorge; Bernardini, Alejandra; Garcia-Leon, Guillermo; Corona, Fernando; B Sanchez, Maria; Martinez, Jose L

    2013-01-01

    Intrinsically resistant bacteria have emerged as a relevant health problem in the last years. Those bacterial species, several of them with an environmental origin, present naturally low-level susceptibility to several drugs. It has been proposed that intrinsic resistance is mainly the consequence of the impermeability of cellular envelopes, the activity of multidrug efflux pumps or the lack of appropriate targets for a given family of drugs. However, recently published articles indicate that the characteristic phenotype of susceptibility to antibiotics of a given bacterial species depends on the concerted activity of several elements, what has been named as intrinsic resistome. These determinants comprise not just classical resistance genes. Other elements, several of them involved in basic bacterial metabolic processes, are of relevance for the intrinsic resistance of bacterial pathogens. In the present review we analyze recent publications on the intrinsic resistomes of Escherichia coli and Pseudomonas aeruginosa. We present as well information on the role that global regulators of bacterial metabolism, as Crc from P. aeruginosa, may have on modulating bacterial susceptibility to antibiotics. Finally, we discuss the possibility of searching inhibitors of the intrinsic resistome in the aim of improving the activity of drugs currently in use for clinical practice.

  8. Methyl Mercury Production In Tropical Hydromorphic Soils: Impact Of Gold Mining.

    NASA Astrophysics Data System (ADS)

    Guedron, S.; Charlet, L.; Harris, J.; Grimaldi, M.; Cossa, D.

    2007-12-01

    Artisanal alluvial gold mining is important in many tropical developing countries and several million people are involved worldwide. The dominant use of mercury for gold amalgamation in this activity leads to mercury accumulation in soils, to sediment contamination and to methyl mercury (MMHg) bioaccumulation along the food chain. In this presentation we will present recent data on methyl mercury production in hydromorphic soils and tailing ponds from a former gold mining area located in French Guiana (South America). Comparison of specific fluxes between a pristine sub watershed and the contaminated watershed shows that former mining activities lead to a large enhancement of dissolved and particulate MMHg emissions at least by a factor of 4 and 6, respectively. MMHg production was identified in sediments from tailing ponds and in surrounding hydromorphic soils. Moreover, interstitial soil water and tailing pond water profiles sampled in an experimental tailing pond demonstrate the presence of a large MMHg production in the suboxic areas. Both tailing ponds and hydromorphic soils present geochemical conditions that are favorable to bacterial mercury methylation (high soil Hg content, high aqueous ferric iron and dissolved organic carbon concentrations). Although sulfate-reducing bacteria have been described as being the principal mercury methylating bacteria, the positive correlation between dissolved MMHg and ferrous iron concentrations argue for a significant role of iron-reducing bacteria. Identifications by sequencing fragments of 16S rRNA from total soil DNA support these interpretations. This study demonstrates that current and past artisanal gold mining in the tropics lead to methyl mercury production in contaminated areas. As artisanal activities are increasing with increasing gold prices, the bio- magnification of methyl mercury in fish presents an increasing threat to local populations whose diet relies on fish consumption.

  9. Mechanisms of Antibiotic Resistance

    PubMed Central

    Munita, Jose M.; Arias, Cesar A.

    2015-01-01

    Emergence of resistance among the most important bacterial pathogens is recognized as a major public health threat affecting humans worldwide. Multidrug-resistant organisms have emerged not only in the hospital environment but are now often identified in community settings, suggesting that reservoirs of antibiotic-resistant bacteria are present outside the hospital. The bacterial response to the antibiotic “attack” is the prime example of bacterial adaptation and the pinnacle of evolution. “Survival of the fittest” is a consequence of an immense genetic plasticity of bacterial pathogens that trigger specific responses that result in mutational adaptations, acquisition of genetic material or alteration of gene expression producing resistance to virtually all antibiotics currently available in clinical practice. Therefore, understanding the biochemical and genetic basis of resistance is of paramount importance to design strategies to curtail the emergence and spread of resistance and devise innovative therapeutic approaches against multidrug-resistant organisms. In this chapter, we will describe in detail the major mechanisms of antibiotic resistance encountered in clinical practice providing specific examples in relevant bacterial pathogens. PMID:27227291

  10. Association between Blood Mercury Level and Visceral Adiposity in Adults

    PubMed Central

    Park, Jong Suk; Ha, Kyoung Hwa; He, Ka

    2017-01-01

    Background Few studies have examined the association between mercury exposure and obesity. The aim of this study is to investigate the association between blood mercury concentrations and indices of obesity in adults. Methods A total of 200 healthy subjects, aged 30 to 64 years, who had no history of cardiovascular or malignant disease, were examined. Anthropometric and various biochemical profiles were measured. Visceral adipose tissue (VAT) was measured using dual-energy X-ray absorptiometry (DXA). Results All subjects were divided into three groups according to blood mercury concentrations. Compared with the subjects in the lowest tertile of mercury, those in the highest tertile were more likely to be male; were current alcohol drinkers and smokers; had a higher body mass index (BMI), waist circumference (WC), and VAT; had higher levels of blood pressure, fasting glucose, and insulin resistance; and consumed more fish. The blood mercury concentration was significantly associated with anthropometric parameters, showing relationships with BMI, WC, and VAT. After adjusting for multiple risk factors, the odds ratios (ORs) for high mercury concentration was significantly higher in the highest VAT tertile than in the lowest VAT tertile (OR, 2.66; 95% confidence interval, 1.05 to 6.62; P<0.05). Conclusion The blood mercury concentration was significantly associated with VAT in healthy adults. Further studies are warranted to confirm our findings. PMID:28029015

  11. Effects of methyl mercury exposure on pancreatic beta cell development and function.

    PubMed

    Schumacher, Lauren; Abbott, Louise C

    2017-01-01

    Methyl mercury is an environmental contaminant of worldwide concern. Since the discovery of methyl mercury exposure due to eating contaminated fish as the underlying cause of the Minamata disaster, the scientific community has known about the sensitivity of the developing central nervous system to mercury toxicity. Warnings are given to pregnant women and young children to limit consumption of foods containing methyl mercury to protect the embryonic, fetal and postnatally developing central nervous system. However, evidence also suggests that exposure to methyl mercury or various forms of inorganic mercury may also affect development and function of other organs. Numerous reports indicate a worldwide increase in diabetes, particularly type 2 diabetes. Quite recently, methyl mercury has been shown to have adverse effects on pancreatic beta (β) cell development and function, resulting in insulin resistance and hyperglycemia and may even lead to the development of diabetes. This review discusses possible mechanisms by which methyl mercury exposure may adversely affect pancreatic β cell development and function, and the role that methyl mercury exposure may have in the reported worldwide increase in diabetes, particularly type 2 diabetes. While additional information is needed regarding associations between mercury exposure and specific mechanisms of the pathogenesis of diabetes in the human population, methyl mercury's adverse effects on the body's natural sources of antioxidants suggest that one possible therapeutic strategy could involve supplementation with antioxidants. Thus, it is important that additional investigation be undertaken into the role of methyl mercury exposure and reduced pancreatic β cell function. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Resistance of different stocks and transferrin genotypes of coho salmon, Oncorhynchus kisutch, and steelhead trout, Salmo gairdneri, to bacterial kidney disease and vibriosis

    USGS Publications Warehouse

    Winter , Gary W.; Schreck, Carl B.; McIntyre, John D.

    1979-01-01

    Juvenile coho salmon and steelhead trout ofdifferentstocks and three transferrin genotypes(AA, AC, and CCl, all reared in identical or similar environments, were experimentally infected with Corynebacterium sp., the causative agent ofbacterial kidney disease, or with Vibrio anguillarum, the causative agent of vibriosis. Mortality due to the pathogens was compared among stocks within a species and among transferrin genotypes within a stock to determine whetherthere was a geneticbasis for resistance to disease. Differences in resistance to bacterial kidney disease among coho salmon stocks had a genetic basis. Stock susceptibility to vibriosis was strongly influenced by environmental factors. Coho salmon orsteelhead trout of one stock may be resistant to one disease but susceptible to another. The importance of transferrin genotype of coho salmon in resistance to bacterial kidney disease was stock specific; in stocks that showed differential resistance of genotypes, the AA was the most susceptible. No differencesin resistance to vibriosis were observed among transferrin genotypes.

  13. RNA-Seq analysis reveals insight into enhanced rice Xa7-mediated bacterial blight resistance at high temperature.

    PubMed

    Cohen, Stephen P; Liu, Hongxia; Argueso, Cristiana T; Pereira, Andy; Vera Cruz, Casiana; Verdier, Valerie; Leach, Jan E

    2017-01-01

    Plant disease is a major challenge to agriculture worldwide, and it is exacerbated by abiotic environmental factors. During some plant-pathogen interactions, heat stress allows pathogens to overcome host resistance, a phenomenon which could severely impact crop productivity considering the global warming trends associated with climate change. Despite the importance of this phenomenon, little is known about the underlying molecular mechanisms. To better understand host plant responses during simultaneous heat and pathogen stress, we conducted a transcriptomics experiment for rice plants (cultivar IRBB61) containing Xa7, a bacterial blight disease resistance (R) gene, that were infected with Xanthomonas oryzae, the bacterial blight pathogen of rice, during high temperature stress. Xa7-mediated resistance is unusual relative to resistance mediated by other R genes in that it functions better at high temperatures. Using RNA-Seq technology, we identified 8,499 differentially expressed genes as temperature responsive in rice cultivar IRBB61 experiencing susceptible and resistant interactions across three time points. Notably, genes in the plant hormone abscisic acid biosynthesis and response pathways were up-regulated by high temperature in both mock-treated plants and plants experiencing a susceptible interaction and were suppressed by high temperature in plants exhibiting Xa7-mediated resistance. Genes responsive to salicylic acid, an important plant hormone for disease resistance, were down-regulated by high temperature during both the susceptible and resistant interactions, suggesting that enhanced Xa7-mediated resistance at high temperature is not dependent on salicylic acid signaling. A DNA sequence motif similar to known abscisic acid-responsive cis-regulatory elements was identified in the promoter region upstream of genes up-regulated in susceptible but down-regulated in resistant interactions. The results of our study suggest that the plant hormone abscisic

  14. RNA-Seq analysis reveals insight into enhanced rice Xa7-mediated bacterial blight resistance at high temperature

    PubMed Central

    Argueso, Cristiana T.; Pereira, Andy; Vera Cruz, Casiana; Verdier, Valerie

    2017-01-01

    Plant disease is a major challenge to agriculture worldwide, and it is exacerbated by abiotic environmental factors. During some plant-pathogen interactions, heat stress allows pathogens to overcome host resistance, a phenomenon which could severely impact crop productivity considering the global warming trends associated with climate change. Despite the importance of this phenomenon, little is known about the underlying molecular mechanisms. To better understand host plant responses during simultaneous heat and pathogen stress, we conducted a transcriptomics experiment for rice plants (cultivar IRBB61) containing Xa7, a bacterial blight disease resistance (R) gene, that were infected with Xanthomonas oryzae, the bacterial blight pathogen of rice, during high temperature stress. Xa7-mediated resistance is unusual relative to resistance mediated by other R genes in that it functions better at high temperatures. Using RNA-Seq technology, we identified 8,499 differentially expressed genes as temperature responsive in rice cultivar IRBB61 experiencing susceptible and resistant interactions across three time points. Notably, genes in the plant hormone abscisic acid biosynthesis and response pathways were up-regulated by high temperature in both mock-treated plants and plants experiencing a susceptible interaction and were suppressed by high temperature in plants exhibiting Xa7-mediated resistance. Genes responsive to salicylic acid, an important plant hormone for disease resistance, were down-regulated by high temperature during both the susceptible and resistant interactions, suggesting that enhanced Xa7-mediated resistance at high temperature is not dependent on salicylic acid signaling. A DNA sequence motif similar to known abscisic acid-responsive cis-regulatory elements was identified in the promoter region upstream of genes up-regulated in susceptible but down-regulated in resistant interactions. The results of our study suggest that the plant hormone abscisic

  15. Bacterial meningitis - principles of antimicrobial treatment.

    PubMed

    Jawień, Miroslaw; Garlicki, Aleksander M

    2013-01-01

    Bacterial meningitis is associated with significant morbidity and mortality despite the availability of effective antimicrobial therapy. The management approach to patients with suspected or proven bacterial meningitis includes emergent cerebrospinal fluid analysis and initiation of appropriate antimicrobial and adjunctive therapies. The choice of empirical antimicrobial therapy is based on the patient's age and underlying disease status; once the infecting pathogen is isolated, antimicrobial therapy can be modified for optimal treatment. Successful treatment of bacterial meningitis requires the knowledge on epidemiology including prevalence of antimicrobial resistant pathogens, pathogenesis of meningitis, pharmacokinetics and pharmacodynamics of antimicrobial agents. The emergence of antibiotic-resistant bacterial strains in recent years has necessitated the development of new strategies for empiric antimicrobial therapy for bacterial meningitis.

  16. Temporal and multiple quantitative trait loci analyses of resistance to bacterial wilt in tomato permit the resolution of linked loci.

    PubMed

    Mangin, B; Thoquet, P; Olivier, J; Grimsley, N H

    1999-03-01

    Ralstonia solanacearum is a soil-borne bacterium that causes the serious disease known as bacterial wilt in many plant species. In tomato, several QTL controlling resistance have been found, but in different studies, markers spanning a large region of chromosome 6 showed strong association with the resistance. By using two different approaches to analyze the data from a field test F3 population, we show that at least two separate loci approximately 30 cM apart on this chromosome are most likely involved in the resistance. First, a temporal analysis of the progression of symptoms reveals a distal locus early in the development of the disease. As the disease progresses, the maximum LOD peak observed shifts toward the proximal end of the chromosome, obscuring the distal locus. Second, although classical interval mapping could only detect the presence of one locus, a statistical "two-QTL model" test, specifically adapted for the resolution of linked QTL, strongly supported the hypothesis for the presence of two loci. These results are discussed in the context of current molecular knowledge about disease resistance genes on chromosome 6 and observations made by tomato breeders during the production of bacterial wilt-resistant varieties.

  17. Temporal and multiple quantitative trait loci analyses of resistance to bacterial wilt in tomato permit the resolution of linked loci.

    PubMed Central

    Mangin, B; Thoquet, P; Olivier, J; Grimsley, N H

    1999-01-01

    Ralstonia solanacearum is a soil-borne bacterium that causes the serious disease known as bacterial wilt in many plant species. In tomato, several QTL controlling resistance have been found, but in different studies, markers spanning a large region of chromosome 6 showed strong association with the resistance. By using two different approaches to analyze the data from a field test F3 population, we show that at least two separate loci approximately 30 cM apart on this chromosome are most likely involved in the resistance. First, a temporal analysis of the progression of symptoms reveals a distal locus early in the development of the disease. As the disease progresses, the maximum LOD peak observed shifts toward the proximal end of the chromosome, obscuring the distal locus. Second, although classical interval mapping could only detect the presence of one locus, a statistical "two-QTL model" test, specifically adapted for the resolution of linked QTL, strongly supported the hypothesis for the presence of two loci. These results are discussed in the context of current molecular knowledge about disease resistance genes on chromosome 6 and observations made by tomato breeders during the production of bacterial wilt-resistant varieties. PMID:10049932

  18. TaCPK2-A, a calcium-dependent protein kinase gene that is required for wheat powdery mildew resistance enhances bacterial blight resistance in transgenic rice.

    PubMed

    Geng, Shuaifeng; Li, Aili; Tang, Lichuan; Yin, Lingjie; Wu, Liang; Lei, Cailin; Guo, Xiuping; Zhang, Xin; Jiang, Guanghuai; Zhai, Wenxue; Wei, Yuming; Zheng, Youliang; Lan, Xiujin; Mao, Long

    2013-08-01

    Calcium-dependent protein kinases (CPKs) are important Ca2+ signalling components involved in complex immune and stress signalling networks; but the knowledge of CPK gene functions in the hexaploid wheat is limited. Previously, TaCPK2 was shown to be inducible by powdery mildew (Blumeria graminis tritici, Bgt) infection in wheat. Here, its functions in disease resistance are characterized further. This study shows the presence of defence-response and cold-response cis-elements on the promoters of the A subgenome homoeologue (TaCPK2-A) and D subgenome homoeologue (TaCPK2-D), respectively. Their expression patterns were then confirmed by quantitative real-time PCR (qRT-PCR) using genome-specific primers, where TaCPK2-A was induced by Bgt treatment while TaCPK2-D mainly responded to cold treatment. Downregulation of TaCPK2-A by virus-induced gene silencing (VIGS) causes loss of resistance to Bgt in resistant wheat lines, indicating that TaCPK2-A is required for powdery mildew resistance. Furthermore, overexpression of TaCPK2-A in rice enhanced bacterial blight (Xanthomonas oryzae pv. oryzae, Xoo) resistance. qRT-PCR analysis showed that overexpression of TaCPK2-A in rice promoted the expression of OsWRKY45-1, a transcription factor involved in both fungal and bacterial resistance by regulating jasmonic acid and salicylic acid signalling genes. The opposite effect was found in wheat TaCPK2-A VIGS plants, where the homologue of OsWRKY45-1 was significantly repressed. These data suggest that modulation of WRKY45-1 and associated defence-response genes by CPK2 genes may be the common mechanism for multiple disease resistance in grass species, which may have undergone subfunctionalization in promoters before the formation of hexaploid wheat.

  19. TaCPK2-A, a calcium-dependent protein kinase gene that is required for wheat powdery mildew resistance enhances bacterial blight resistance in transgenic rice

    PubMed Central

    Geng, Shuaifeng; Li, Aili; Tang, Lichuan; Lan, Xiujin; Mao, Long

    2013-01-01

    Calcium-dependent protein kinases (CPKs) are important Ca2+ signalling components involved in complex immune and stress signalling networks; but the knowledge of CPK gene functions in the hexaploid wheat is limited. Previously, TaCPK2 was shown to be inducible by powdery mildew (Blumeria graminis tritici, Bgt) infection in wheat. Here, its functions in disease resistance are characterized further. This study shows the presence of defence-response and cold-response cis-elements on the promoters of the A subgenome homoeologue (TaCPK2-A) and D subgenome homoeologue (TaCPK2-D), respectively. Their expression patterns were then confirmed by quantitative real-time PCR (qRT-PCR) using genome-specific primers, where TaCPK2-A was induced by Bgt treatment while TaCPK2-D mainly responded to cold treatment. Downregulation of TaCPK2-A by virus-induced gene silencing (VIGS) causes loss of resistance to Bgt in resistant wheat lines, indicating that TaCPK2-A is required for powdery mildew resistance. Furthermore, overexpression of TaCPK2-A in rice enhanced bacterial blight (Xanthomonas oryzae pv. oryzae, Xoo) resistance. qRT-PCR analysis showed that overexpression of TaCPK2-A in rice promoted the expression of OsWRKY45-1, a transcription factor involved in both fungal and bacterial resistance by regulating jasmonic acid and salicylic acid signalling genes. The opposite effect was found in wheat TaCPK2-A VIGS plants, where the homologue of OsWRKY45-1 was significantly repressed. These data suggest that modulation of WRKY45-1 and associated defence-response genes by CPK2 genes may be the common mechanism for multiple disease resistance in grass species, which may have undergone subfunctionalization in promoters before the formation of hexaploid wheat. PMID:23918959

  20. [Successful treatment of a necrotizing, multi-resistant bacterial pyoderma in a python with cold plasma therapy].

    PubMed

    Klinger, Christoph; Dengler, Berrett; Bauer, Thomas; Mueller, Ralf S

    2018-02-01

    A 4-year-old ball python was presented 3 weeks after multiple bite wounds from a prey rat with large skin lesions, a concurrent deep bacterial pyoderma and clinical signs for septicemia, including neurolo -gical symptoms. Affected tissue separated from the underlying muscular layer revealing parts of the muscles. Clinical examination and cyto -logy was consistent with bacterial pyoderma; septicemia was an additional tentative clinical diagnosis. Empirical lincomycin and marbo -floxacin (bacterial culture revealed a multi-resistant Stenotrophomonas maltophilia susceptible to fluoroquinolones) treatment improved the patient's general condition but skin wounds deteriorated to multifocal eschars with intracellular rods. Further diagnostics were limited for financial reasons, euthanasia was considered. Cold atmospheric pressure plasma (CAPP) therapy was performed six times in 4 weeks. Within 1 week, inflammatory symptoms resolved. Re-epithelialization was completed few weeks later. In the following year, the snake sloughed three times without any signs of dysecdysis. CAPP therapy may offer a viable treatment option for bacterial (especially multiresistant) pyoderma and necrotizing dermatitis in snakes. Schattauer GmbH.

  1. Mercury

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.; Scott, E. R. D.

    2003-12-01

    Mercury is an important part of the solar system puzzle, yet we know less about it than any other planet, except Pluto. Mercury is the smallest of the terrestrial planets (0.05 Earth masses) and the closest to the Sun. Its relatively high density (5.4 g cm -3) indicates that it has a large metallic core (˜3/4 of the planet's radius) compared to its silicate mantle and crust. The existence of a magnetic field implies that the metallic core is still partly molten. The surface is heavily cratered like the highlands of the Moon, but some areas are smooth and less cratered, possibly like the lunar maria (but not as dark). Its surface composition, as explained in the next section, appears to be low in FeO (only ˜3 wt.%), which implies that either its crust is anorthositic (Jeanloz et al., 1995) or its mantle is similarly low in FeO ( Robinson and Taylor, 2001).The proximity of Mercury to the Sun is particularly important. In one somewhat outmoded view of how the solar system formed, Mercury was assembled in the hottest region close to the Sun so that virtually all of the iron was in the metallic state, rather than oxidized to FeO (e.g., Lewis, 1972, 1974). If correct, Mercury ought to have relatively a low content of FeO. This hypothesis also predicts that Mercury should have high concentrations of refractory elements, such as calcium, aluminum, and thorium, and low concentrations of volatile elements, such as sodium and potassium, compared to the other terrestrial planets.Alternative hypotheses tell a much more nomadic and dramatic story of Mercury's birth. In one alternative view, wandering planetesimals that might have come from as far away as Mars or the inner asteroid belt accreted to form Mercury (Wetherill, 1994). This model predicts higher FeO and volatile elements than does the high-temperature model, and similar compositions among the terrestrial planets. The accretion process might have been accompanied by a monumental impact that stripped away much of the

  2. Design, synthesis and biological evaluation of novel aryldiketo acids with enhanced antibacterial activity against multidrug resistant bacterial strains.

    PubMed

    Cvijetić, Ilija N; Verbić, Tatjana Ž; Ernesto de Resende, Pedro; Stapleton, Paul; Gibbons, Simon; Juranić, Ivan O; Drakulić, Branko J; Zloh, Mire

    2018-01-01

    Antimicrobial resistance (AMR) is a major health problem worldwide, because of ability of bacteria, fungi and viruses to evade known therapeutic agents used in treatment of infections. Aryldiketo acids (ADK) have shown antimicrobial activity against several resistant strains including Gram-positive Staphylococcus aureus bacteria. Our previous studies revealed that ADK analogues having bulky alkyl group in ortho position on a phenyl ring have up to ten times better activity than norfloxacin against the same strains. Rational modifications of analogues by introduction of hydrophobic substituents on the aromatic ring has led to more than tenfold increase in antibacterial activity against multidrug resistant Gram positive strains. To elucidate a potential mechanism of action for this potentially novel class of antimicrobials, several bacterial enzymes were identified as putative targets according to literature data and pharmacophoric similarity searches for potent ADK analogues. Among the seven bacterial targets chosen, the strongest favorable binding interactions were observed between most active analogue and S. aureus dehydrosqualene synthase and DNA gyrase. Furthermore, the docking results in combination with literature data suggest that these novel molecules could also target several other bacterial enzymes, including prenyl-transferases and methionine aminopeptidase. These results and our statistically significant 3D QSAR model could be used to guide the further design of more potent derivatives as well as in virtual screening for novel antibacterial agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. RAV transcription factors are essential for disease resistance against cassava bacterial blight via activation of melatonin biosynthesis genes.

    PubMed

    Wei, Yunxie; Chang, Yanli; Zeng, Hongqiu; Liu, Guoyin; He, Chaozu; Shi, Haitao

    2018-01-01

    With 1 AP2 domain and 1 B3 domain, 7 MeRAVs in apetala2/ethylene response factor (AP2/ERF) gene family have been identified in cassava. However, the in vivo roles of these remain unknown. Gene expression assays showed that the transcripts of MeRAVs were commonly regulated after Xanthomonas axonopodis pv manihotis (Xam) and MeRAVs were specifically located in plant cell nuclei. Through virus-induced gene silencing (VIGS) in cassava, we found that MeRAV1 and MeRAV2 are essential for plant disease resistance against cassava bacterial blight, as shown by the bacterial propagation of Xam in plant leaves. Through VIGS in cassava leaves and overexpression in cassava leave protoplasts, we found that MeRAV1 and MeRAV2 positively regulated melatonin biosynthesis genes and the endogenous melatonin level. Further investigation showed that MeRAV1 and MeRAV2 are direct transcriptional activators of 3 melatonin biosynthesis genes in cassava, as evidenced by chromatin immunoprecipitation-PCR in cassava leaf protoplasts and electrophoretic mobility shift assay. Moreover, cassava melatonin biosynthesis genes also positively regulated plant disease resistance. Taken together, this study identified MeRAV1 and MeRAV2 as common and upstream transcription factors of melatonin synthesis genes in cassava and revealed a model of MeRAV1 and MeRAV2-melatonin biosynthesis genes-melatonin level in plant disease resistance against cassava bacterial blight. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Sequence-Specific Targeting of Bacterial Resistance Genes Increases Antibiotic Efficacy

    PubMed Central

    Wong, Michael; Daly, Seth M.; Greenberg, David E.; Toprak, Erdal

    2016-01-01

    The lack of effective and well-tolerated therapies against antibiotic-resistant bacteria is a global public health problem leading to prolonged treatment and increased mortality. To improve the efficacy of existing antibiotic compounds, we introduce a new method for strategically inducing antibiotic hypersensitivity in pathogenic bacteria. Following the systematic verification that the AcrAB-TolC efflux system is one of the major determinants of the intrinsic antibiotic resistance levels in Escherichia coli, we have developed a short antisense oligomer designed to inhibit the expression of acrA and increase antibiotic susceptibility in E. coli. By employing this strategy, we can inhibit E. coli growth using 2- to 40-fold lower antibiotic doses, depending on the antibiotic compound utilized. The sensitizing effect of the antisense oligomer is highly specific to the targeted gene’s sequence, which is conserved in several bacterial genera, and the oligomer does not have any detectable toxicity against human cells. Finally, we demonstrate that antisense oligomers improve the efficacy of antibiotic combinations, allowing the combined use of even antagonistic antibiotic pairs that are typically not favored due to their reduced activities. PMID:27631336

  5. Mercury and Your Health

    MedlinePlus

    ... the Risk of Exposure to Mercury Learn About Mercury What is Mercury What is Metallic mercury? Toxicological Profile ToxFAQs Mercury Resources CDC’s National Biomonitoring Program Factsheet on Mercury ...

  6. Experimental Infection and Clearance of Coccidian Parasites in Mercury-Exposed Zebra Finches.

    PubMed

    Ebers Smith, Jessica H; Cristol, Daniel A; Swaddle, John P

    2018-01-01

    Mercury is a globally distributed, persistent environmental contaminant that affects the health of many taxa. It can suppress the immune system, which often plays a role in defense against parasites. However, there have been few investigations of whether mercury affects the abilities of animals to resist parasitic infection. Here, we exposed zebra finches to a lifetime dietary exposure of methylmercury (1.2 μg/g wet weight) and experimentally infected them with coccidian parasites to examine the effect of methylmercury exposure on parasitic infection. The mercury-exposed birds did not have an altered immune response (heterophil:lymphocyte ratio) nor a reduced ability to clear the infection. However, mercury-exposed birds tended to have higher parasite loads at the time when we expected the greatest immune response (2-3 weeks post-infection). Although mercury did not greatly influence the infection-course of this parasite in captivity, responses may be more accentuated in the wild where birds face additional immune challenges.

  7. Mixed biofilm formation by Shiga toxin-producing Escherichia coli and Salmonella enterica serovar Typhimurium enhanced bacterial resistance to sanitization due to extracellular polymeric substances.

    PubMed

    Wang, Rong; Kalchayanand, Norasak; Schmidt, John W; Harhay, Dayna M

    2013-09-01

    Shiga toxin-producing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium are important foodborne pathogens capable of forming single-species biofilms or coexisting in multispecies biofilm communities. Bacterial biofilm cells are usually more resistant to sanitization than their planktonic counterparts, so these foodborne pathogens in biofilms pose a serious food safety concern. We investigated how the coexistence of E. coli O157:H7 and Salmonella Typhimurium strains would affect bacterial planktonic growth competition and mixed biofilm composition. Furthermore, we also investigated how mixed biofilm formation would affect bacterial resistance to common sanitizers. Salmonella Typhimurium strains were able to outcompete E. coli strains in the planktonic growth phase; however, mixed biofilm development was highly dependent upon companion strain properties in terms of the expression of bacterial extracellular polymeric substances (EPS), including curli fimbriae and exopolysaccharide cellulose. The EPS-producing strains with higher biofilm-forming abilities were able to establish themselves in mixed biofilms more efficiently. In comparison to single-strain biofilms, Salmonella or E. coli strains with negative EPS expression obtained significantly enhanced resistance to sanitization by forming mixed biofilms with an EPS-producing companion strain of the other species. These observations indicate that the bacterial EPS components not only enhance the sanitizer resistance of the EPS-producing strains but also render protections to their companion strains, regardless of species, in mixed biofilms. Our study highlights the potential risk of cross-contamination by multispecies biofilms in food safety and the need for increased attention to proper sanitization practices in food processing facilities.

  8. Variations in the Degree of d-Alanylation of Teichoic Acids in Lactococcus lactis Alter Resistance to Cationic Antimicrobials but Have No Effect on Bacterial Surface Hydrophobicity and Charge▿

    PubMed Central

    Giaouris, Efstathios; Briandet, Romain; Meyrand, Mickael; Courtin, Pascal; Chapot-Chartier, Marie-Pierre

    2008-01-01

    An increase of the degree of d-alanylation of teichoic acids in Lactococcus lactis resulted in a significant increase of bacterial resistance toward the cationic antimicrobials nisin and lysozyme, whereas the absence of d-alanylation led to a decreased resistance toward the same compounds. In contrast, the same variations of the d-alanylation degree did not modify bacterial cell surface charge and hydrophobicity. Bacterial adhesion to polystyrene and glass surfaces was not modified either. PMID:18539809

  9. Predicting mercury in mallard ducklings from mercury in chorioallantoic membranes

    USGS Publications Warehouse

    Heinz, G.H.; Hoffman, D.J.

    2003-01-01

    Methylmercury has been suspected as a cause of impaired reproduction in wild birds, but the confounding effects of other environmental stressors has made it difficult to determine how much mercury in the eggs of these wild species is harmful. Even when a sample egg can be collected from the nest of a wild bird and the mercury concentration in that egg compared to the laboratory-derived thresholds for reproductive impairment, additional information on the mercury levels in other eggs from that nest would be helpful in determining whether harmful levels of mercury were present in the clutch. The measurement of mercury levels in chorioallantoic membranes offers a possible way to estimate how much mercury was in a chick that hatched from an egg, and also in the whole fresh egg itself. While an embryo is developing, wastes are collected in a sac called the chorioallantoic membranes, which often remain inside the eggshell and can be collected for contaminant analysis. We fed methylmercury to captive mallards to generate a broad range of mercury levels in eggs, allowed the eggs to hatch normally, and then compared mercury concentrations in the hatchling versus the chorioallantoic membranes left behind in the eggshell. When the data from eggs laid by mercury- treated females were expressed as common logarithms, a linear equation was created by which the concentration of mercury in a duckling could be predicted from the concentration of mercury in the chorioallantoic membranes from the same egg. Therefore, if it were not possible to collect a sample egg from a clutch of wild bird eggs, the collection of the chorioallantoic membranes could be substituted, and the mercury predicted to be in the chick or whole egg could be compared to the thresholds of mercury that have been shown to cause harm in controlled feeding studies with pheasants, chickens, and mallards.

  10. Mercury poisoning

    MedlinePlus

    ... of the lungs Medicine to remove mercury and heavy metals from the body INORGANIC MERCURY For inorganic mercury ... chap 98. Theobald JL, Mycyk MB. Iron and heavy metals. In: Walls RM, Hockberger RS, Gausche-Hill M, ...

  11. Risk factors for drug-resistant bacterial pneumonia in older patients hospitalized with pneumonia in a Chinese population.

    PubMed

    Ma, H M; Ip, Margaret; Woo, Jean; Hui, David S C; Lui, Grace C Y; Lee, Nelson L S; Chan, Paul K S; Rainer, T H

    2013-09-01

    The relationship between healthcare-associated pneumonia (HCAP) and resistant bacteria is unclear. The aim of this study was to identify the risk factors for pneumonia caused by drug-resistant bacteria (DRB). A prospective cohort study was conducted at a tertiary teaching hospital in Hong Kong. Consecutive older patients (aged ≥65 years) were hospitalized with pneumonia from January 2004 to June 2005. DRB comprised methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, extended-spectrum β-lactamase (ESBL) producing Enterobacteriaceae and Acinetobacter baumannii. The entire cohort consisted of 1176 older patients. Of 472 (40.1%) patients with etiological diagnosis established, bacterial pneumonia was found in 354 (30.1%) cases. DRB were isolated in 48 patients: P. aeruginosa (41), MRSA (5) and ESBL producing enteric bacilli (3). Co-infection with P. aeruginosa and MRSA was found in one patient. The prevalence of DRB in culture-positive pneumonia was 20.1% (48/239). Patients with DRB were more likely to have limitation in activities of daily living, bronchiectasis, dementia, severe pneumonia, recent hospitalization and recent antibiotic use. Logistic regression revealed that bronchiectasis [relative risk (RR) 14.12, P = 0.002], recent hospitalization (RR 4.89, P < 0.001) and severe pneumonia (RR 2.42, P = 0.010) were independent predictors of drug-resistant bacterial pneumonia. Recent hospitalization is the only risk factor for HCAP which is shown to be associated with DRB. Nursing home residence is not a risk factor. The concept of HCAP may not be totally applicable in Hong Kong where the prevalence of drug-resistant pathogens in pneumonia is low.

  12. Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato

    PubMed Central

    Tai, Thomas H.; Dahlbeck, Douglas; Clark, Eszter T.; Gajiwala, Paresh; Pasion, Romela; Whalen, Maureen C.; Stall, Robert E.; Staskawicz, Brian J.

    1999-01-01

    The Bs2 resistance gene of pepper specifically recognizes and confers resistance to strains of Xanthomonas campestris pv. vesicatoria that contain the corresponding bacterial avirulence gene, avrBs2. The involvement of avrBs2 in pathogen fitness and its prevalence in many X. campestris pathovars suggests that the Bs2 gene may be durable in the field and provide resistance when introduced into other plant species. Employing a positional cloning strategy, the Bs2 locus was isolated and the gene was identified by coexpression with avrBs2 in an Agrobacterium-mediated transient assay. A single candidate gene, predicted to encode motifs characteristic of the nucleotide binding site–leucine-rich repeat class of resistance genes, was identified. This gene specifically controlled the hypersensitive response when transiently expressed in susceptible pepper and tomato lines and in a nonhost species, Nicotiana benthamiana, and was designated as Bs2. Functional expression of Bs2 in stable transgenic tomatoes supports its use as a source of resistance in other Solanaceous plant species. PMID:10570214

  13. Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato.

    PubMed

    Tai, T H; Dahlbeck, D; Clark, E T; Gajiwala, P; Pasion, R; Whalen, M C; Stall, R E; Staskawicz, B J

    1999-11-23

    The Bs2 resistance gene of pepper specifically recognizes and confers resistance to strains of Xanthomonas campestris pv. vesicatoria that contain the corresponding bacterial avirulence gene, avrBs2. The involvement of avrBs2 in pathogen fitness and its prevalence in many X. campestris pathovars suggests that the Bs2 gene may be durable in the field and provide resistance when introduced into other plant species. Employing a positional cloning strategy, the Bs2 locus was isolated and the gene was identified by coexpression with avrBs2 in an Agrobacterium-mediated transient assay. A single candidate gene, predicted to encode motifs characteristic of the nucleotide binding site-leucine-rich repeat class of resistance genes, was identified. This gene specifically controlled the hypersensitive response when transiently expressed in susceptible pepper and tomato lines and in a nonhost species, Nicotiana benthamiana, and was designated as Bs2. Functional expression of Bs2 in stable transgenic tomatoes supports its use as a source of resistance in other Solanaceous plant species.

  14. Resistance of Bacteria to Biocides.

    PubMed

    Maillard, Jean-Yves

    2018-04-01

    Biocides and formulated biocides are used worldwide for an increasing number of applications despite tightening regulations in Europe and in the United States. One concern is that such intense usage of biocides could lead to increased bacterial resistance to a product and cross-resistance to unrelated antimicrobials including chemotherapeutic antibiotics. Evidence to justify such a concern comes mostly from the use of health care-relevant bacterial isolates, although the number of studies of the resistance characteristics of veterinary isolates to biocides have increased the past few years. One problem remains the definition of "resistance" and how to measure resistance to a biocide. This has yet to be addressed globally, although the measurement of resistance is becoming more pressing, with regulators both in Europe and in the United States demanding that manufacturers provide evidence that their biocidal products will not impact on bacterial resistance. Alongside in vitro evidence of potential antimicrobial cross-resistance following biocide exposure, our understanding of the mechanisms of bacterial resistance and, more recently, our understanding of the effect of biocides to induce a mechanism(s) of resistance in bacteria has improved. This article aims to provide an understanding of the development of antimicrobial resistance in bacteria following a biocide exposure. The sections provide evidence of the occurrence of bacterial resistance and its mechanisms of action and debate how to measure bacterial resistance to biocides. Examples pertinent to the veterinary field are used where appropriate.

  15. Interactions of Antibiotics and Methanolic Crude Extracts of Afzelia Africana (Smith.) Against Drug Resistance Bacterial Isolates

    PubMed Central

    Aiyegoro, Olayinka; Adewusi, Adekanmi; Oyedemi, Sunday; Akinpelu, David; Okoh, Anthony

    2011-01-01

    Infection due to multidrug resistance pathogens is difficult to manage due to bacterial virulence factors and because of a relatively limited choice of antimicrobial agents. Thus, it is imperative to discover fresh antimicrobials or new practices that are effective for the treatment of infectious diseases caused by drug-resistant microorganisms. The objective of this experiment is to investigate for synergistic outcomes when crude methanolic extract of the stem bark of Afzelia africana and antibiotics were combined against a panel of antibiotic resistant bacterial strains that have been implicated in infections. Standard microbiological protocols were used to determine the minimum inhibitory concentrations (MICs) of the extract and antibiotics, as well as to investigate the effect of combinations of the methanolic extract of A. africana stem bark and selected antibiotics using the time-kill assay method. The extract of Afzelia africana exhibited antibacterial activities against both Gram-negative and Gram-positive bacteria made up of environmental and standard strains at a screening concentration of 5 mg/mL. The MICs of the crude extracts and the antibiotics varied between 1 μg/mL and 5.0 mg/mL. Overall, synergistic response constituted about 63.79% of all manner of combinations of extract and antibiotics against all test organisms; antagonism was not detected among the 176 tests carried out. The extract from A. africana stem bark showed potentials of synergy in combination with antibiotics against strains of pathogenic bacteria. The detection of synergy between the extract and antibiotics demonstrates the potential of this plant as a source of antibiotic resistance modulating compounds. PMID:21845091

  16. Mercury in traditional medicines: Is cinnabar toxicologically similar to common mercurials?

    PubMed Central

    Liu, Jie; Shi, Jing-Zheng; Yu, Li-Mei; Goyer, Robert A.; Waalkes, Michael P.

    2009-01-01

    Mercury is a major toxic metal ranking top in the Toxic Substances List. Cinnabar (contains mercury sulfide) has been used in traditional medicines for thousands years as an ingredient in various remedies, and 40 cinnabar-containing traditional medicines are still used today. Little is known about toxicology profiles or toxicokinetics of cinnabar and cinnabar-containing traditional medicines, and the high mercury content in these Chinese medicines raises justifiably escalations of public concern. This minireview searched the available database of cinnabar, compared cinnabar with common mercurials, such as mercury vapor, inorganic mercury, and organic mercury, and discusses differences in their bioavailability, disposition, and toxicity. The analysis showed that cinnabar is insoluble and poorly absorbed from the gastrointestinal tract. Absorbed mercury from cinnabar is mainly accumulated in kidney, resembling the disposition pattern of inorganic mercury. Heating cinnabar results in release of mercury vapor, which in turn can produce toxicity similar to inhalation of these vapors. The doses of cinnabar required to produce neurotoxicity are thousands 1000 times higher than methyl mercury. Following long-term use of cinnabar, renal dysfunction may occur. Dimercaprol and succimer are effective chelation therapies for general mercury intoxication including cinnabar. Pharmacology studies of cinnabar suggest sedative and hypnotic effects, but the therapeutic basis of cinnabar is still not clear. In summary, cinnabar is chemically inert with a relatively low toxic potential when taken orally. In risk assessment, cinnabar is less toxic than many other forms of mercury, but the rationale for its inclusion in traditional Chinese medicines remains to be fully justified. PMID:18445765

  17. Catalysts for oxidation of mercury in flue gas

    DOEpatents

    Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA

    2010-08-17

    Two new classes of catalysts for the removal of heavy metal contaminants, especially mercury (Hg) from effluent gases. Both of these classes of catalysts are excellent absorbers of HCl and Cl.sub.2 present in effluent gases. This adsorption of oxidizing agents aids in the oxidation of heavy metal contaminants. The catalysts remove mercury by oxidizing the Hg into mercury (II) moieties. For one class of catalysts, the active component is selected from the group consisting of iridium (Ir) and iridum-platinum (Ir/Pt) alloys. The Ir and Ir/Pt alloy catalysts are especially corrosion resistant. For the other class of catalyst, the active component is partially combusted coal or "Thief" carbon impregnated with Cl.sub.2. Untreated Thief carbon catalyst can be self-activating in the presence of effluent gas streams. The Thief carbon catalyst is disposable by means of capture from the effluent gas stream in a particulate collection device (PCD).

  18. The drinking water treatment process as a potential source of affecting the bacterial antibiotic resistance.

    PubMed

    Bai, Xiaohui; Ma, Xiaolin; Xu, Fengming; Li, Jing; Zhang, Hang; Xiao, Xiang

    2015-11-15

    Two waterworks, with source water derived from the Huangpu or Yangtze River in Shanghai, were investigated, and the effluents were plate-screened for antibiotic-resistant bacteria (ARB) using five antibiotics: ampicillin (AMP), kanamycin (KAN), rifampicin (RFP), chloramphenicol (CM) and streptomycin (STR). The influence of water treatment procedures on the bacterial antibiotic resistance rate and the changes that bacteria underwent when exposed to the five antibiotics at concentration levels ranging from 1 to 100 μg/mL were studied. Multi-drug resistance was also analyzed using drug sensitivity tests. The results indicated that bacteria derived from water treatment plant effluent that used the Huangpu River rather than the Yangtze River as source water exhibited higher antibiotic resistance rates against AMP, STR, RFP and CM but lower antibiotic resistance rates against KAN. When the antibiotic concentration levels ranged from 1 to 10 μg/mL, the antibiotic resistance rates of the bacteria in the water increased as water treatment progressed. Biological activated carbon (BAC) filtration played a key role in increasing the antibiotic resistance rate of bacteria. Chloramine disinfection can enhance antibiotic resistance. Among the isolated ARB, 75% were resistant to multiple antibiotics. Ozone oxidation, BAC filtration and chloramine disinfection can greatly affect the relative abundance of bacteria in the community. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Impact of restricted amoxicillin/clavulanic acid use on Escherichia coli resistance--antibiotic DU90% profiles with bacterial resistance rates: a visual presentation.

    PubMed

    Mimica Matanovic, Suzana; Bergman, Ulf; Vukovic, Dubravka; Wettermark, Björn; Vlahovic-Palcevski, Vera

    2010-10-01

    High use of amoxicillin/clavulanic acid (AMC) at the University Hospital Osijek (Croatia) contributed to high rates of resistance in Enterobacteriaceae, in particular Escherichia coli (50%). Thus, in order to decrease bacterial resistance, AMC use was restricted. We present results of the restriction on resistance amongst antibiotics accounting for 90% of antibiotic use [drug utilisation 90% (DU90%)]. Data were analysed on antibiotic use and microbiological susceptibility of E. coli during two 9-month periods, before and after the restriction of AMC use. Drug use was presented as numbers of defined daily doses (DDDs) and DDDs/100 bed-days. Resistance of E. coli to antibiotics was presented as percentages of isolated strains in the DU90% segment. Use of AMC was 16 DDDs/100 bed-days or 30% of all antibiotics before the intervention. Use of AMC fell to 2 DDDs/100 bed-days or 4% after the intervention, and resistance of E. coli fell from 37% to 11%. In conclusion, restricted use of AMC resulted in a significant decrease of E. coli resistance. DU90% resistance profiles are simple and useful tools in highlighting problems in antibiotic use and resistance but may also be useful in long-term follow-up of antibiotic policy. Copyright 2010 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  20. Pipecolic acid enhances resistance to bacterial infection and primes salicylic acid and nicotine accumulation in tobacco

    PubMed Central

    Vogel-Adghough, Drissia; Stahl, Elia; Návarová, Hana; Zeier, Jürgen

    2013-01-01

    Distinct amino acid metabolic pathways constitute integral parts of the plant immune system. We have recently identified pipecolic acid (Pip), a lysine-derived non-protein amino acid, as a critical regulator of systemic acquired resistance (SAR) and basal immunity to bacterial infection in Arabidopsis thaliana. In Arabidopsis, Pip acts as an endogenous mediator of defense amplification and priming. For instance, Pip conditions plants for effective biosynthesis of the phenolic defense signal salicylic acid (SA), accumulation of the phytoalexin camalexin, and expression of defense-related genes. Here, we show that tobacco plants respond to leaf infection by the compatible bacterial pathogen Pseudomonas syringae pv tabaci (Pstb) with a significant accumulation of several amino acids, including Lys, branched-chain, aromatic, and amide group amino acids. Moreover, Pstb strongly triggers, alongside the biosynthesis of SA and increases in the defensive alkaloid nicotine, the production of the Lys catabolites Pip and α-aminoadipic acid. Exogenous application of Pip to tobacco plants provides significant protection to infection by adapted Pstb or by non-adapted, hypersensitive cell death-inducing P. syringae pv maculicola. Pip thereby primes tobacco for rapid and strong accumulation of SA and nicotine following bacterial infection. Thus, our study indicates that the role of Pip as an amplifier of immune responses is conserved between members of the rosid and asterid groups of eudicot plants and suggests a broad practical applicability for Pip as a natural enhancer of plant disease resistance. PMID:24025239

  1. Induction of soybean resistance to bacterial pustule disease (Xanthomonas axonopodis pv. glycines) by rhizobacteria and organic material treatment

    NASA Astrophysics Data System (ADS)

    Khaeruni, A.; Johan, E. A.; Wijayanto, T.; Taufik, M.; Syafar, A. A. R.; Kade Sutariati, G. A.

    2018-02-01

    This study aimed to evaluate the role of different formulations and types of organic matter in improving yield and resistance of soybean plants to bacterial pustule disease. The study was prepared based on a randomized block design with a factorial pattern. The first factor was the application of rhizobacterial formulation (biofresh), ie F0 = without the application of rhizobacteria, F1 = application of biofresh in solid formulation, and F2 = application of biofresh in liquid formulation. The second factor was the application of organic materials, namely B1 = compost of soybean litter + cow dung, B2 = compost of rice straw + cow dung, B3 = compost of soybean litter + rice straw + cow dung. Observation of disease severity and soybean yield was conducted on five sample plants in each treatment. The results showed that the treatment of biological agent biofresh in solid formulation combined with compos of soybean litter, was the best treatment in increasing plant resistance to bacterial pustule disease and seed weight. Plant resistance induction occurred systemically characterized by salicylic acid increase of 0.3 mg and peroxidase increase of 0.07 unit / mL in the sample plants.

  2. Resistance of bacterial biofilms formed on stainless steel surface to disinfecting agent.

    PubMed

    Królasik, Joanna; Zakowska, Zofia; Krepska, Milena; Klimek, Leszek

    2010-01-01

    The natural ability of microorganisms for adhesion and biofilm formation on various surfaces is one of the factors causing the inefficiency of a disinfection agent, despite its proven activity in vitro. The aim of the study was to determine the effectiveness of disinfecting substances on bacterial biofilms formed on stainless steel surface. A universally applied disinfecting agent was used in the tests. Bacterial strains: Listeria innocua, Pseudomonas putida, Micrococcus luteus, Staphylococcus hominis strains, were isolated from food contact surfaces, after a cleaning and disinfection process. The disinfecting agent was a commercially available acid specimen based on hydrogen peroxide and peroxyacetic acid, the substance that was designed for food industry usage. Model tests were carried out on biofilm formed on stainless steel (type 304, no 4 finish). Biofilms were recorded by electron scanning microscope. The disinfecting agent in usable concentration, 0.5% and during 10 minutes was ineffective for biofilms. The reduction of cells in biofilms was only 1-2 logarithmic cycles. The use of the agent in higher concentration--1% for 30 minutes caused reduction of cell number by around 5 logarithmic cycles only in the case of one microorganism, M. luteus. For other types: L. innocua, P. putida, S. hominis, the requirements placed on disinfecting agents were not fulfilled. The results of experiments proved that bacterial biofilms are resistant to the disinfectant applied in its operational parameters. Disinfecting effectiveness was achieved after twofold increase of the agent's concentration.

  3. MERCURY RESEARCH STRATEGY.

    EPA Science Inventory

    The USEPA's ORD is pleased to announce the availability of its Mercury Research Strategy. This strategy guides ORD's mercury research program and covers the FY2001-2005 time frame. ORD will use it to prepare a multi-year mercury research implementation plan in 2001. The Mercury R...

  4. Bacterial fitness shapes the population dynamics of antibiotic-resistant and -susceptible bacteria in a model of combined antibiotic and anti-virulence treatment

    PubMed Central

    Ternent, Lucy; Dyson, Rosemary J.; Krachler, Anne-Marie; Jabbari, Sara

    2015-01-01

    Bacterial resistance to antibiotic treatment is a huge concern: introduction of any new antibiotic is shortly followed by the emergence of resistant bacterial isolates in the clinic. This issue is compounded by a severe lack of new antibiotics reaching the market. The significant rise in clinical resistance to antibiotics is especially problematic in nosocomial infections, where already vulnerable patients may fail to respond to treatment, causing even greater health concern. A recent focus has been on the development of anti-virulence drugs as a second line of defence in the treatment of antibiotic-resistant infections. This treatment, which weakens bacteria by reducing their virulence rather than killing them, should allow infections to be cleared through the body׳s natural defence mechanisms. In this way there should be little to no selective pressure exerted on the organism and, as such, a predominantly resistant population should be less likely to emerge. However, before the likelihood of resistance to these novel drugs emerging can be predicted, we must first establish whether such drugs can actually be effective. Many believe that anti-virulence drugs would not be powerful enough to clear existing infections, restricting their potential application to prophylaxis. We have developed a mathematical model that provides a theoretical framework to reveal the circumstances under which anti-virulence drugs may or may not be successful. We demonstrate that by harnessing and combining the advantages of antibiotics with those provided by anti-virulence drugs, given infection-specific parameters, it is possible to identify treatment strategies that would efficiently clear bacterial infections, while preventing the emergence of antibiotic-resistant subpopulations. Our findings strongly support the continuation of research into anti-virulence drugs and demonstrate that their applicability may reach beyond infection prevention. PMID:25701634

  5. Stoichiometry of mercury-thiol complexes on bacterial cell envelopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Bhoopesh; Shoenfelt, Elizabeth; Yu, Qiang

    We have examined the speciation of Hg(II) complexed with intact cell suspensions (1013 cells L- 1) of Bacillus subtilis, a common gram-positive soil bacterium, Shewanella oneidensis MR-1, a facultative gram-negative aquatic organism, and Geobacter sulfurreducens, a gram-negative anaerobic bacterium capable of Hg-methylation at Hg(II) loadings spanning four orders of magnitude (120 nM to 350 μM) at pH 5.5 (± 0.2). The coordination environments of Hg on bacterial cells were analyzed using synchrotron based X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy at the Hg LIII edge. The abundance of thiols on intact cells wasmore » determined by a fluorescence-spectroscopy based method using a soluble bromobimane, monobromo(trimethylammonio)bimane (qBBr) to block thiol sites, and potentiometric titrations of biomass with and without qBBr treatment. The chemical forms of S on intact bacterial cells were determined using S k-edge XANES spectroscopy.« less

  6. Exposure of the grass shrimp, Palaemonetes pugio, to antimicrobial compounds affects associated Vibrio bacterial density and development of antibiotic resistance.

    PubMed

    DeLorenzo, M E; Brooker, J; Chung, K W; Kelly, M; Martinez, J; Moore, J G; Thomas, M

    2016-04-01

    Antimicrobial compounds are widespread, emerging contaminants in the aquatic environment and may threaten ecosystem and human health. This study characterized effects of antimicrobial compounds common to human and veterinary medicine, aquaculture, and consumer personal care products [erythromycin (ERY), sulfamethoxazole (SMX), oxytetracycline (OTC), and triclosan (TCS)] in the grass shrimp Palaemonetes pugio. The effects of antimicrobial treatments on grass shrimp mortality and lipid peroxidation activity were measured. The effects of antimicrobial treatments on the bacterial community of the shrimp were then assessed by measuring Vibrio density and testing bacterial isolates for antibiotic resistance. TCS (0.33 mg/L) increased shrimp mortality by 37% and increased lipid peroxidation activity by 63%. A mixture of 0.33 mg/L TCS and 60 mg/L SMX caused a 47% increase in shrimp mortality and an 88% increase in lipid peroxidation activity. Exposure to SMX (30 mg/L or 60 mg/L) alone and to a mixture of SMX/ERY/OTC did not significantly affect shrimp survival or lipid peroxidation activity. Shrimp exposure to 0.33 mg/L TCS increased Vibrio density 350% as compared to the control whereas SMX, the SMX/TCS mixture, and the mixture of SMX/ERY/OTC decreased Vibrio density 78-94%. Increased Vibrio antibiotic resistance was observed for all shrimp antimicrobial treatments except for the mixture of SMX/ERY/OTC. Approximately 87% of grass shrimp Vibrio isolates displayed resistance to TCS in the control treatment suggesting a high level of TCS resistance in environmental Vibrio populations. The presence of TCS in coastal waters may preferentially increase the resistance and abundance of pathogenic bacteria. These results indicate the need for further study into the potential interactions between antimicrobials, aquatic organisms, and associated bacterial communities. © 2014 Wiley Periodicals, Inc.

  7. Prevalence of Antibiotic Resistance Genes and Bacterial Community Composition in a River Influenced by a Wastewater Treatment Plant

    PubMed Central

    Marti, Elisabet; Jofre, Juan; Balcazar, Jose Luis

    2013-01-01

    Antibiotic resistance represents a global health problem, requiring better understanding of the ecology of antibiotic resistance genes (ARGs), their selection and their spread in the environment. Antibiotics are constantly released to the environment through wastewater treatment plant (WWTP) effluents. We investigated, therefore, the effect of these discharges on the prevalence of ARGs and bacterial community composition in biofilm and sediment samples of a receiving river. We used culture-independent approaches such as quantitative PCR to determine the prevalence of eleven ARGs and 16S rRNA gene-based pyrosequencing to examine the composition of bacterial communities. Concentration of antibiotics in WWTP influent and effluent were also determined. ARGs such as qnrS, bla TEM, bla CTX-M, bla SHV, erm(B), sul(I), sul(II), tet(O) and tet(W) were detected in all biofilm and sediment samples analyzed. Moreover, we observed a significant increase in the relative abundance of ARGs in biofilm samples collected downstream of the WWTP discharge. We also found significant differences with respect to community structure and composition between upstream and downstream samples. Therefore, our results indicate that WWTP discharges may contribute to the spread of ARGs into the environment and may also impact on the bacterial communities of the receiving river. PMID:24205347

  8. Fate of tetracycline, sulfonamide and fluoroquinolone resistance genes and the changes in bacterial diversity during composting of swine manure.

    PubMed

    Selvam, Ammaiyappan; Xu, Delin; Zhao, Zhenyong; Wong, Jonathan W C

    2012-12-01

    This study monitored the abundance of antibiotic resistant genes (ARGs) and the bacterial diversity during composting of swine manure spiked with chlortetracycline, sulfadiazine and ciprofloxacin at two different levels and a control without antibiotics. Resistance genes of tetracycline (tetQ, tetW, tetC, tetG, tetZ and tetY), sulfonamide (sul1, sul2, dfrA1 and dfrA7) and fluoroquinolone (gyrA and parC) represented 0.02-1.91%, 0.67-10.28% and 0.00005-0.0002%, respectively, of the total 16S rDNA copies in the initial composting mass. After 28-42 days of composting, these ARGs, except parC, were undetectable in the composting mass indicating that composting is a potential method of manure management. Polymerase chain reaction-denaturing gradient gel electrophoresis analysis of bacterial 16S rDNA of the composting mass indicated that the addition of antibiotics up to 100, 20 and 20mg/kg of chlortetracycline, sulfadiazine and ciprofloxacin, respectively, elicited only a transient perturbation and the bacterial diversity was restored in due course of composting. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability

    PubMed Central

    Ruiz, Oscar N.; Alvarez, Derry; Torres, Cesar; Roman, Laura; Daniell, Henry

    2015-01-01

    Summary Genetic engineering to enhance mercury phytoremediation has been accomplished by expression of the merAB genes that protects the cell by converting Hg[II] into Hg[0] which volatilizes from the cell. A drawback of this approach is that toxic Hg is released back into the environment. A better phytoremediation strategy would be to accumulate mercury inside plants for subsequent retrieval. We report here the development of a transplastomic approach to express the mouse metallothionein gene (mt1) and accumulate mercury in high concentrations within plant cells. Real-time PCR analysis showed that up to 1284 copies of the mt1 gene were found per cell when compared with 1326 copies of the 16S rrn gene, thereby attaining homoplasmy. Past studies in chloroplast transformation used qualitative Southern blots to evaluate indirectly transgene copy number, whereas we used real-time PCR for the first time to establish homoplasmy and estimate transgene copy number and transcript levels. The mt1 transcript levels were very high with 183 000 copies per ng of RNA or 41% the abundance of the 16S rrn transcripts. The transplastomic lines were resistant up to 20 μm mercury and maintained high chlorophyll content and biomass. Although the transgenic plants accumulated high concentrations of mercury in all tissues, leaves accumulated up to 106 ng, indicating active phytoremediation and translocation of mercury. Such accumulation of mercury in plant tissues facilitates proper disposal or recycling. This study reports, for the first time, the use of metallothioniens in plants for mercury phytoremediation. Chloroplast genetic engineering approach is useful to express metal-scavenging proteins for phytoremediation. PMID:21518240

  10. Incorporation of Bacterial Blight Resistance Genes Into Lowland Rice Cultivar Through Marker-Assisted Backcross Breeding.

    PubMed

    Pradhan, Sharat Kumar; Nayak, Deepak Kumar; Pandit, Elssa; Behera, Lambodar; Anandan, Annamalai; Mukherjee, Arup Kumar; Lenka, Srikanta; Barik, Durga Prasad

    2016-07-01

    Bacterial blight (BB) of rice caused by Xanthomonas oryzae pv. oryzae is a major disease of rice in many rice growing countries. Pyramided lines carrying two BB resistance gene combinations (Xa21+xa13 and Xa21+xa5) were developed in a lowland cultivar Jalmagna background through backcross breeding by integrating molecular markers. In each backcross generation, markers closely linked to the disease resistance genes were used to select plants possessing the target genes. Background selection was continued in those plants carrying resistant genes until BC(3) generation. Plants having the maximum contribution from the recurrent parent genome were selected in each generation and hybridized with the recipient parent. The BB-pyramided line having the maximum recipient parent genome recovery of 95% was selected among BC3F1 plants and selfed to isolate homozygous BC(3)F(2) plants with different combinations of BB resistance genes. Twenty pyramided lines with two resistance gene combinations exhibited high levels of tolerance against the BB pathogen. In order to confirm the resistance, the pyramided lines were inoculated with different X. oryzae pv. oryzae strains of Odisha for bioassay. The genotypes with combination of two BB resistance genes conferred high levels of resistance to the predominant X. oryzae pv. oryzae isolates prevalent in the region. The pyramided lines showed similarity with the recipient parent with respect to major agro-morphologic traits.

  11. Selective concentration for ciprofloxacin resistance in Escherichia coli grown in complex aquatic bacterial biofilms.

    PubMed

    Kraupner, Nadine; Ebmeyer, Stefan; Bengtsson-Palme, Johan; Fick, Jerker; Kristiansson, Erik; Flach, Carl-Fredrik; Larsson, D G Joakim

    2018-04-25

    There is concern that antibiotics in the environment can select for and enrich bacteria carrying acquired antibiotic resistance genes, thus increasing the potential of those genes to emerge in a clinical context. A critical question for understanding and managing such risks is what levels of antibiotics are needed to select for resistance in complex bacterial communities. Here, we address this question by examining the phenotypic and genotypic profiles of aquatic communities exposed to ciprofloxacin, also evaluating the within-species selection of resistant E. coli in complex communities. The taxonomic composition was significantly altered at ciprofloxacin exposure concentrations down to 1 μg/L. Shotgun metagenomic analysis indicated that mobile quinolone resistance determinants (qnrD, qnrS and qnrB) were enriched as a direct consequence of ciprofloxacin exposure from 1 μg/L or higher. Only at 5-10 μg/L resistant E.coli increased relative to their sensitive counterparts. These resistant E. coli predominantly harbored non-transferrable, chromosomal triple mutations (gyrA S83 L, D87N and parC S80I), which confer high-level resistance. In a controlled experimental setup such as this, we interpret effects on taxonomic composition and enrichment of mobile quinolone resistance genes as relevant indicators of risk. Hence, the lowest observed effect concentration for resistance selection in complex communities by ciprofloxacin was 1 μg/L and the corresponding no observed effect concentration 0.1 μg/L. These findings can be used to define and implement discharge or surface water limits to reduce risks for selection of antibiotic resistance in the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Abundance of antibiotic resistance genes and bacterial community composition in wild freshwater fish species.

    PubMed

    Marti, Elisabet; Huerta, Belinda; Rodríguez-Mozaz, Sara; Barceló, Damià; Marcé, Rafael; Balcázar, Jose Luis

    2018-04-01

    This study was aimed to determine the abundance of four antibiotic resistance genes (bla TEM , ermB, qnrS and sulI), as well as bacterial community composition associated with the intestinal mucus of wild freshwater fish species collected from the Foix and La Llosa del Cavall reservoirs, which represent ecosystems with high and low anthropogenic disturbance, respectively. Water and sediments from these reservoirs were also collected and analyzed to determine the pollution level by antibiotics. The bla TEM gene was only detected in brown trout and Ebro barbel, which were collected from La Llosa del Cavall reservoir. In contrast, the sulI and qnrS genes were only detected in common carp, which were collected from the Foix reservoir. Although the ermB gene was also detected in common carp, the values were below the limit of quantification. Likewise, water and sediment samples from the Foix reservoir had higher concentrations and more classes of antibiotics than those from La Llosa del Cavall. Pyrosequencing analysis of 16S rRNA genes revealed significant differences in bacterial communities associated with the intestinal mucus of fish species. Therefore, these findings suggest that anthropogenic activities are not only increasing the pollution of aquatic environments, but also contributing to the emergence and spread of antibiotic resistance in organisms that inhabit such environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Method for removal and stabilization of mercury in mercury-containing gas streams

    DOEpatents

    Broderick, Thomas E.

    2005-09-13

    The present invention is directed to a process and apparatus for removing and stabilizing mercury from mercury-containing gas streams. A gas stream containing vapor phase elemental and/or speciated mercury is contacted with reagent, such as an oxygen-containing oxidant, in a liquid environment to form a mercury-containing precipitate. The mercury-containing precipitate is kept or placed in solution and reacts with one or more additional reagents to form a solid, stable mercury-containing compound.

  14. Bacterial prostatitis.

    PubMed

    Gill, Bradley C; Shoskes, Daniel A

    2016-02-01

    The review provides the infectious disease community with a urologic perspective on bacterial prostatitis. Specifically, the article briefly reviews the categorization of prostatitis by type and provides a distillation of new findings published on bacterial prostatitis over the past year. It also highlights key points from the established literature. Cross-sectional prostate imaging is becoming more common and may lead to more incidental diagnoses of acute bacterial prostatitis. As drug resistance remains problematic in this condition, the reemergence of older antibiotics such as fosfomycin, has proven beneficial. With regard to chronic bacterial prostatitis, no clear clinical risk factors emerged in a large epidemiological study. However, bacterial biofilm formation has been associated with more severe cases. Surgery has a limited role in bacterial prostatitis and should be reserved for draining of a prostatic abscess or the removal of infected prostatic stones. Prostatitis remains a common and bothersome clinical condition. Antibiotic therapy remains the basis of treatment for both acute and chronic bacterial prostatitis. Further research into improving prostatitis treatment is indicated.

  15. Dry deposition of gaseous oxidized mercury in Western Maryland.

    PubMed

    Castro, Mark S; Moore, Chris; Sherwell, John; Brooks, Steve B

    2012-02-15

    The purpose of this study was to directly measure the dry deposition of gaseous oxidized mercury (GOM) in western Maryland. Annual estimates were made using passive ion-exchange surrogate surfaces and a resistance model. Surrogate surfaces were deployed for seventeen weekly sampling periods between September 2009 and October 2010. Dry deposition rates from surrogate surfaces ranged from 80 to 1512 pgm(-2)h(-1). GOM dry deposition rates were strongly correlated (r(2)=0.75) with the weekly average atmospheric GOM concentrations, which ranged from 2.3 to 34.1 pgm(-3). Dry deposition of GOM could be predicted from the ambient air concentrations of GOM using this equation: GOM dry deposition (pgm(-2)h(-1))=43.2 × GOM concentration-80.3. Dry deposition velocities computed using GOM concentrations and surrogate surface GOM dry deposition rates, ranged from 0.2 to 1.7 cms(-1). Modeled dry deposition rates were highly correlated (r(2)=0.80) with surrogate surface dry deposition rates. Using the overall weekly average surrogate surface dry deposition rate (369 ± 340 pg m(-2)h(-1)), we estimated an annual GOM dry deposition rate of 3.2 μg m(-2)year(-1). Using the resistance model, we estimated an annual GOM dry deposition rate of 3.5 μg m(-2)year(-1). Our annual GOM dry deposition rates were similar to the dry deposition (3.3 μg m(-2)h(-1)) of gaseous elemental mercury (GEM) at our site. In addition, annual GOM dry deposition was approximately 1/2 of the average annual wet deposition of total mercury (7.7 ± 1.9 μg m(-2)year(-1)) at our site. Total annual mercury deposition from dry deposition of GOM and GEM and wet deposition was approximately 14.4 μg m(-2)year(-1), which was similar to the average annual litterfall deposition (15 ± 2.1 μg m(-2)year(-1)) of mercury, which was also measured at our site. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Mercury-impacted scrap metal: Source and nature of the mercury.

    PubMed

    Finster, Molly E; Raymond, Michelle R; Scofield, Marcienne A; Smith, Karen P

    2015-09-15

    The reuse and recycling of industrial solid wastes such as scrap metal is supported and encouraged both internationally and domestically, especially when such wastes can be used as substitutes for raw material. However, scrap metal processing facilities, such as mini-mills, have been identified as a source of mercury (Hg) emissions in the United States. This research aims to better define some of the key issues related to the source and nature of mercury in the scrap metal waste stream. Overall, it is difficult to pinpoint the key mercury sources feeding into scrap metal recycling facilities, quantify their associated mercury concentrations, or determine which chemical forms are most significant. Potential sources of mercury in scrap metal include mercury switches from discarded vehicles, electronic-based scrap from household appliances and related industrial systems, and Hg-impacted scrap metal from the oil and gas industry. The form of mercury associated with scrap metal varies and depends on the source type. The specific amount of mercury that can be adsorbed and retained by steel appears to be a function of both metallurgical and environmental factors. In general, the longer the steel is in contact with a fluid or condensate that contains measurable concentrations of elemental mercury, the greater the potential for mercury accumulation in that steel. Most mercury compounds are thermally unstable at elevated temperatures (i.e., above 350 °C). As such, the mercury associated with impacted scrap is expected to be volatilized out of the metal when it is heated during processing (e.g., shredding or torch cutting) or melted in a furnace. This release of fugitive gas (Hg vapor) and particulates, as well as Hg-impacted bag-house dust and control filters, could potentially pose an occupational exposure risk to workers at a scrap metal processing facility. Thus, identifying and characterizing the key sources of Hg-impacted scrap, and understanding the nature and extent

  17. Mercury contamination extraction

    DOEpatents

    Fuhrmann, Mark [Silver Spring, MD; Heiser, John [Bayport, NY; Kalb, Paul [Wading River, NY

    2009-09-15

    Mercury is removed from contaminated waste by firstly applying a sulfur reagent to the waste. Mercury in the waste is then permitted to migrate to the reagent and is stabilized in a mercury sulfide compound. The stable compound may then be removed from the waste which itself remains in situ following mercury removal therefrom.

  18. Different impacts of manure and chemical fertilizers on bacterial community structure and antibiotic resistance genes in arable soils.

    PubMed

    Liu, Peng; Jia, Shuyu; He, Xiwei; Zhang, Xuxiang; Ye, Lin

    2017-12-01

    Both manure and chemical fertilizers are widely used in modern agriculture. However, the impacts of different fertilizers on bacterial community structure and antibiotic resistance genes (ARGs) in arable soils still remain unclear. In this study, high-throughput sequencing and quantitative PCR were employed to investigate the bacterial community structure, ARGs and mobile genetic elements (MGEs) influenced by the application of different fertilizers, including chemical fertilizers, piggery manure and straw ash. The results showed that the application of fertilizers could significantly change the soil bacterial community and the abundance of Gaiella under phylum Actinobacteria was significantly reduced from 12.9% in unfertilized soil to 4.1%-7.4% in fertilized soil (P < 0.05). It was also found that the application of manure could cause a transient effect on soil resistome composition and the relative abundance of ARGs increased from 7.37 ppm to 32.10 ppm. The abundance of aminoglycoside, sulfonamide and tetracycline resistance genes greatly increased after manure fertilization and then gradually returned to normal levels with the decay of some intestinal bacteria carrying ARGs. In contrast, the application of chemical fertilizers and straw ash significantly changed the bacterial community structure but exerted little effect on soil resistome. Overall, the results of this study illustrated the different effects of different fertilizers on the soil resistome and revealed that the changes of soil resistome induced by manure application mainly resulted from alteration of bacteria community rather than the horizontal gene transfer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Global Trends in Mercury Management

    PubMed Central

    Choi, Kyunghee

    2012-01-01

    The United Nations Environmental Program Governing Council has regulated mercury as a global pollutant since 2001 and has been preparing the mercury convention, which will have a strongly binding force through Global Mercury Assessment, Global Mercury Partnership Activities, and establishment of the Open-Ended Working Group on Mercury. The European Union maintains an inclusive strategy on risks and contamination of mercury, and has executed the Mercury Export Ban Act since December in 2010. The US Environmental Protection Agency established the Mercury Action Plan (1998) and the Mercury Roadmap (2006) and has proposed systematic mercury management methods to reduce the health risks posed by mercury exposure. Japan, which experienced Minamata disease, aims vigorously at perfection in mercury management in several ways. In Korea, the Ministry of Environment established the Comprehensive Plan and Countermeasures for Mercury Management to prepare for the mercury convention and to reduce risks of mercury to protect public health. PMID:23230466

  20. Mercury Project

    NASA Image and Video Library

    1959-04-27

    Astronaut L. Gordon Cooper, Jr., one of the original seven astronauts for Mercury Project selected by NASA on April 27, 1959. The MA-9 mission, boosted by the Mercury-Atlas launch vehicle, was the last flight of the Mercury Project. The Faith 7 spacecraft orbited the Earth 22 times in 1-1/2 days.

  1. Bacterial Prostatitis: Bacterial Virulence, Clinical Outcomes, and New Directions.

    PubMed

    Krieger, John N; Thumbikat, Praveen

    2016-02-01

    Four prostatitis syndromes are recognized clinically: acute bacterial prostatitis, chronic bacterial prostatitis, chronic prostatitis/chronic pelvic pain syndrome, and asymptomatic prostatitis. Because Escherichia coli represents the most common cause of bacterial prostatitis, we investigated the importance of bacterial virulence factors and antimicrobial resistance in E. coli strains causing prostatitis and the potential association of these characteristics with clinical outcomes. A structured literature review revealed that we have limited understanding of the virulence-associated characteristics of E. coli causing acute prostatitis. Therefore, we completed a comprehensive microbiological and molecular investigation of a unique strain collection isolated from healthy young men. We also considered new data from an animal model system suggesting certain E. coli might prove important in the etiology of chronic prostatitis/chronic pelvic pain syndrome. Our human data suggest that E. coli needs multiple pathogenicity-associated traits to overcome anatomic and immune responses in healthy young men without urological risk factors. The phylogenetic background and accumulation of an exceptional repertoire of extraintestinal pathogenic virulence-associated genes indicate that these E. coli strains belong to a highly virulent subset of uropathogenic variants. In contrast, antibiotic resistance confers little added advantage to E. coli strains in these healthy outpatients. Our animal model data also suggest that certain pathogenic E. coli may be important in the etiology of chronic prostatitis/chronic pelvic pain syndrome through mechanisms that are dependent on the host genetic background and the virulence of the bacterial strain.

  2. Got Mercury?

    NASA Technical Reports Server (NTRS)

    Meyers, Valerie; James, John T.; McCoy, Torin; Garcia, Hector

    2010-01-01

    Many lamps used in various spacecraft contain elemental mercury, which is efficiently absorbed through the lungs as a vapor. The liquid metal vaporizes slowly at room temperature, but may be completely vaporized when lamps are operating. Because current spacecraft environmental control systems are unable to remove mercury vapors, we considered short-term and long-term exposures. Using an existing study, we estimated mercury vapor releases from lamps that are not in operation during missions lasting less than or equal to 30 days; whereas we conservatively assumed complete vaporization from lamps that are operating or being used during missions lasing more than 30 days. Based on mercury toxicity, the Johnson Space Center's Toxicology Group recommends stringent safety controls and verifications for any hardware containing elemental mercury that could yield airborne mercury vapor concentrations greater than 0.1 mg/m3 in the total spacecraft atmosphere for exposures lasting less than or equal to 30 days, or concentrations greater than 0.01 mg/m3 for exposures lasting more than 30 days.

  3. Characterization of the binding capacity of mercurial species in Lactobacillus strains.

    PubMed

    Alcántara, Cristina; Jadán-Piedra, Carlos; Vélez, Dinoraz; Devesa, Vicenta; Zúñiga, Manuel; Monedero, Vicente

    2017-12-01

    Metal sequestration by bacteria has been proposed as a strategy to counteract metal contamination in foodstuffs. Lactobacilli can interact with metals, although studies with important foodborne metals such as inorganic [Hg(II)] or organic (CH 3 Hg) mercury are lacking. Lactobacilli were evaluated for their potential to bind these contaminants and the nature of the interaction was assessed by the use of metal competitors, chemical and enzymatical treatments, and mutants affected in the cell wall structure. Lactobacillus strains efficiently bound Hg(II) and CH 3 Hg. Mercury binding by Lactobacillus casei BL23 was independent of cell viability. In BL23, both forms of mercury were cell wall bound. Their interaction was not inhibited by cations and it was resistant to chelating agents and protein digestion. Lactobacillus casei mutants affected in genes involved in the modulation of the negative charge of the cell wall anionic polymer lipoteichoic acid showed increased mercury biosorption. In these mutants, mercury toxicity was enhanced compared to wild-type bacteria. These data suggest that lipoteichoic acid itself or the physicochemical characteristics that it confers to the cell wall play a major role in mercury complexation. This is the first example of the biosorption of Hg(II) and CH 3 Hg in lactobacilli and it represents a first step towards their possible use as agents for diminishing mercury bioaccessibility from food at the gastrointestinal tract. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Interactions Between QTL SAP6 and SU91 on Resistance to Common Bacterial Blight in Red Kidney Bean and Pinto Bean Populations

    USDA-ARS?s Scientific Manuscript database

    Resistance to common bacterial blight in common bean is a complex trait that is quantitatively inherited. We examined the interaction between two independent QTL, SAP6 and SU91, which condition resistance to CBB.The QTL were studied in a pinto bean F2 population a cross between Othello (sap6 sap6 //...

  5. Bacterial disease management: challenges, experience, innovation and future prospects: Challenges in Bacterial Molecular Plant Pathology.

    PubMed

    Sundin, George W; Castiblanco, Luisa F; Yuan, Xiaochen; Zeng, Quan; Yang, Ching-Hong

    2016-12-01

    Plant diseases caused by bacterial pathogens place major constraints on crop production and cause significant annual losses on a global scale. The attainment of consistent effective management of these diseases can be extremely difficult, and management potential is often affected by grower reliance on highly disease-susceptible cultivars because of consumer preferences, and by environmental conditions favouring pathogen development. New and emerging bacterial disease problems (e.g. zebra chip of potato) and established problems in new geographical regions (e.g. bacterial canker of kiwifruit in New Zealand) grab the headlines, but the list of bacterial disease problems with few effective management options is long. The ever-increasing global human population requires the continued stable production of a safe food supply with greater yields because of the shrinking areas of arable land. One major facet in the maintenance of the sustainability of crop production systems with predictable yields involves the identification and deployment of sustainable disease management solutions for bacterial diseases. In addition, the identification of novel management tactics has also come to the fore because of the increasing evolution of resistance to existing bactericides. A number of central research foci, involving basic research to identify critical pathogen targets for control, novel methodologies and methods of delivery, are emerging that will provide a strong basis for bacterial disease management into the future. Near-term solutions are desperately needed. Are there replacement materials for existing bactericides that can provide effective disease management under field conditions? Experience should inform the future. With prior knowledge of bactericide resistance issues evolving in pathogens, how will this affect the deployment of newer compounds and biological controls? Knowledge is critical. A comprehensive understanding of bacterial pathosystems is required to not

  6. Metagenomic analysis of bacterial community composition and antibiotic resistance genes in a wastewater treatment plant and its receiving surface water.

    PubMed

    Tang, Junying; Bu, Yuanqing; Zhang, Xu-Xiang; Huang, Kailong; He, Xiwei; Ye, Lin; Shan, Zhengjun; Ren, Hongqiang

    2016-10-01

    The presence of pathogenic bacteria and the dissemination of antibiotic resistance genes (ARGs) may pose big risks to the rivers that receive the effluent from municipal wastewater treatment plants (WWTPs). In this study, we investigated the changes of bacterial community and ARGs along treatment processes of one WWTP, and examined the effects of the effluent discharge on the bacterial community and ARGs in the receiving river. Pyrosequencing was applied to reveal bacterial community composition including potential bacterial pathogen, and Illumina high-throughput sequencing was used for profiling ARGs. The results showed that the WWTP had good removal efficiency on potential pathogenic bacteria (especially Arcobacter butzleri) and ARGs. Moreover, the bacterial communities of downstream and upstream of the river showed no significant difference. However, the increase in the abundance of potential pathogens and ARGs at effluent outfall was observed, indicating that WWTP effluent might contribute to the dissemination of potential pathogenic bacteria and ARGs in the receiving river. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Mercury mobilization and speciation linked to bacterial iron oxide and sulfate reduction: A column study to mimic reactive transfer in an anoxic aquifer.

    PubMed

    Hellal, Jennifer; Guédron, Stéphane; Huguet, Lucie; Schäfer, Jörg; Laperche, Valérie; Joulian, Catherine; Lanceleur, Laurent; Burnol, André; Ghestem, Jean-Philippe; Garrido, Francis; Battaglia-Brunet, Fabienne

    2015-09-01

    Mercury (Hg) mobility and speciation in subsurface aquifers is directly linked to its surrounding geochemical and microbial environment. The role of bacteria on Hg speciation (i.e., methylation, demethylation and reduction) is well documented, however little data is available on their impact on Hg mobility. The aim of this study was to test if (i) Hg mobility is due to either direct iron oxide reduction by iron reducing bacteria (IRB) or indirect iron reduction by sulfide produced by sulfate reducing bacteria (SRB), and (ii) to investigate its subsequent fate and speciation. Experiments were carried out in an original column setup combining geochemical and microbiological approaches that mimic an aquifer including an interface of iron-rich and iron depleted zones. Two identical glass columns containing iron oxides spiked with Hg(II) were submitted to (i) direct iron reduction by IRB and (ii) to indirect iron reduction by sulfides produced by SRB. Results show that in both columns Hg was leached and methylated during the height of bacterial activity. In the column where IRB are dominant, Hg methylation and leaching from the column was directly correlated to bacterial iron reduction (i.e., Fe(II) release). In opposition, when SRB are dominant, produced sulfide induced indirect iron oxide reduction and rapid adsorption of leached Hg (or produced methylmercury) on neoformed iron sulfides (e.g., Mackinawite) or its precipitation as HgS. At the end of the SRB column experiment, when iron-oxide reduction was complete, filtered Hg and Fe concentrations increased at the outlet suggesting a leaching of Hg bound to FeS colloids that may be a dominant mechanism of Hg transport in aquifer environments. These experimental results highlight different biogeochemical mechanisms that can occur in stratified sub-surface aquifers where bacterial activities play a major role on Hg mobility and changes in speciation. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Development and validation of a clinical risk score for predicting drug-resistant bacterial pneumonia in older Chinese patients.

    PubMed

    Ma, Hon Ming; Ip, Margaret; Woo, Jean; Hui, David S C

    2014-05-01

    Health care-associated pneumonia (HCAP) and drug-resistant bacterial pneumonia may not share identical risk factors. We have shown that bronchiectasis, recent hospitalization and severe pneumonia (confusion, blood urea level, respiratory rate, low blood pressure and 65 year old (CURB-65) score ≥ 3) were independent predictors of pneumonia caused by potentially drug-resistant (PDR) pathogens. This study aimed to develop and validate a clinical risk score for predicting drug-resistant bacterial pneumonia in older patients. We derived a risk score by assigning a weighting to each of these risk factors as follows: 14, bronchiectasis; 5, recent hospitalization; 2, severe pneumonia. A 0.5 point was defined for the presence of other risk factors for HCAP. We compared the areas under the receiver-operating characteristics curve (AUROC) of our risk score and the HCAP definition in predicting PDR pathogens in two cohorts of older patients hospitalized with non-nosocomial pneumonia. The derivation and validation cohorts consisted of 354 and 96 patients with bacterial pneumonia, respectively. PDR pathogens were isolated in 48 and 21 patients in the derivation and validation cohorts, respectively. The AUROCs of our risk score and the HCAP definition were 0.751 and 0.650, respectively, in the derivation cohort, and were 0.782 and 0.671, respectively, in the validation cohort. The differences between our risk score and the HCAP definition reached statistical significance. A score ≥ 2.5 had the best balance between sensitivity and specificity. Our risk score outperformed the HCAP definition to predict pneumonia caused by PDR pathogens. A history of bronchiectasis or recent hospitalization is the major indication of starting empirical broad-spectrum antibiotics. © 2014 Asian Pacific Society of Respirology.

  9. Genome-wide association studies identify 25 genetic loci associated with resistance to Bacterial Cold Water Disease in rainbow trout

    USDA-ARS?s Scientific Manuscript database

    Bacterial cold water disease (BCWD) causes significant mortality and economic losses in salmonids aquaculture. In previous studies we have identified moderate-large effect QTL for BCWD resistance in rainbow trout (Oncorhynchus mykiss). However, the recent availability of a high density SNP array and...

  10. Development of practical diagnostic methods for monitoring rice bacterial panicle blight disease and evaluation of rice germplasm for resistance

    USDA-ARS?s Scientific Manuscript database

    A study was initiated to understand Burkholderia glumae, the major causal agent for bacterial panicle blight disease of rice; to develop practical diagnostic methods for monitoring the disease; and to evaluate rice germplasm for resistance. Burkholderia glumae was frequently isolated from infected p...

  11. Development of practical diagnostic methods for monitoring rice bacterial panicle blight disease and evaluation of rice germplasm for resistance

    USDA-ARS?s Scientific Manuscript database

    A study was initiated to understand Burkholderia glumae (major causal agent for bacterial panicle blight disease of rice) to develop practical diagnostic methods for monitoring the disease; and to evaluate rice germplasm for resistance. B. glumae was frequently isolated from symptomatic panicles on...

  12. Hidden Selection of Bacterial Resistance to Fluoroquinolones In Vivo: The Case of Legionella pneumophila and Humans

    PubMed Central

    Shadoud, Lubana; Almahmoud, Iyad; Jarraud, Sophie; Etienne, Jérôme; Larrat, Sylvie; Schwebel, Carole; Timsit, Jean-François; Schneider, Dominique; Maurin, Max

    2015-01-01

    Background Infectious diseases are the leading cause of human morbidity and mortality worldwide. One dramatic issue is the emergence of microbial resistance to antibiotics which is a major public health concern. Surprisingly however, such in vivo adaptive ability has not been reported yet for many intracellular human bacterial pathogens such as Legionella pneumophila. Methods We examined 82 unrelated patients with Legionnaire's disease from which 139 respiratory specimens were sampled during hospitalization and antibiotic therapy. We both developed a real time PCR assay and used deep-sequencing approaches to detect antibiotic resistance mutations in L. pneumophila and follow their selection and fate in these samples. Findings We identified the in vivo selection of fluoroquinolone resistance mutations in L. pneumophila in two infected patients treated with these antibiotics. By investigating the mutational dynamics in patients, we showed that antibiotic resistance occurred during hospitalization most likely after fluoroquinolone treatment. Interpretation In vivo selection of antibiotic resistances in L. pneumophila may be associated with treatment failures and poor prognosis. This hidden resistance must be carefully considered in the therapeutic management of legionellosis patients and in the control of the gradual loss of effectiveness of antibiotics. PMID:26501115

  13. Hidden Selection of Bacterial Resistance to Fluoroquinolones In Vivo: The Case of Legionella pneumophila and Humans.

    PubMed

    Shadoud, Lubana; Almahmoud, Iyad; Jarraud, Sophie; Etienne, Jérôme; Larrat, Sylvie; Schwebel, Carole; Timsit, Jean-François; Schneider, Dominique; Maurin, Max

    2015-09-01

    Infectious diseases are the leading cause of human morbidity and mortality worldwide. One dramatic issue is the emergence of microbial resistance to antibiotics which is a major public health concern. Surprisingly however, such in vivo adaptive ability has not been reported yet for many intracellular human bacterial pathogens such as Legionella pneumophila. We examined 82 unrelated patients with Legionnaire's disease from which 139 respiratory specimens were sampled during hospitalization and antibiotic therapy. We both developed a real time PCR assay and used deep-sequencing approaches to detect antibiotic resistance mutations in L. pneumophila and follow their selection and fate in these samples. We identified the in vivo selection of fluoroquinolone resistance mutations in L. pneumophila in two infected patients treated with these antibiotics. By investigating the mutational dynamics in patients, we showed that antibiotic resistance occurred during hospitalization most likely after fluoroquinolone treatment. In vivo selection of antibiotic resistances in L. pneumophila may be associated with treatment failures and poor prognosis. This hidden resistance must be carefully considered in the therapeutic management of legionellosis patients and in the control of the gradual loss of effectiveness of antibiotics.

  14. Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition

    USGS Publications Warehouse

    Harris, R.C.; Rudd, J.W.M.; Amyot, M.; Babiarz, Christopher L.; Beaty, K.G.; Blanchfield, P.J.; Bodaly, R.A.; Branfireun, B.A.; Gilmour, C.C.; Graydon, J.A.; Heyes, A.; Hintelmann, H.; Hurley, J.P.; Kelly, C.A.; Krabbenhoft, D.P.; Lindberg, S.E.; Mason, R.P.; Paterson, M.J.; Podemski, C.L.; Robinson, A.; Sandilands, K.A.; Southworthn, G.R.; St. Louis, V.L.; Tate, M.T.

    2007-01-01

    Methylmercury contamination of fisheries from centuries of industrial atmospheric emissions negatively impacts humans and wild-life worldwide. The response of fish methylmercury concentrations to changes in mercury deposition has been difficult to establish because sediments/soils contain large pools of historical contamination, and many factors in addition to deposition affect fish mercury. To test directly the response of fish contamination to changing mercury deposition, we conducted a whole-ecosystem experiment, increasing the mercury load to a lake and its watershed by the addition of enriched stable mercury isotopes. The isotopes allowed us to distinguish between experimentally applied mercury and mercury already present in the ecosystem and to examine bioaccumulation of mercury deposited to different parts of the watershed. Fish methylmercury concentrations responded rapidly to changes in mercury deposition over the first 3 years of study. Essentially all of the increase in fish methylmercury concentrations came from mercury deposited directly to the lake surface. In contrast, <1% of the mercury isotope deposited to the watershed was exported to the lake. Steady state was not reached within 3 years. Lake mercury isotope concentrations were still rising in lake biota, and watershed mercury isotope exports to the lake were increasing slowly. Therefore, we predict that mercury emissions reductions will yield rapid (years) reductions in fish methylmercury concentrations and will yield concomitant reductions in risk. However, a full response will be delayed by the gradual export of mercury stored in watersheds. The rate of response will vary among lakes depending on the relative surface areas of water and watershed. ?? 2007 by The National Academy of Sciences of the USA.

  15. [Spontaneous bacterial peritonitis].

    PubMed

    Velkey, Bálint; Vitális, Eszter; Vitális, Zsuzsanna

    2017-01-01

    Spontaneous bacterial peritonitis occurs most commonly in cirrhotic patients with ascites. Pathogens get into the circulation by intestinal translocation and colonize in peritoneal fluid. Diagnosis of spontaneous bacterial peritonitis is based on elevated polymorphonuclear leukocyte count in the ascites (>0,25 G/L). Ascites culture is often negative but aids to get information about antibiotic sensitivity in positive cases. Treatment in stable patient can be intravenous then orally administrated ciprofloxacin or amoxicillin/clavulanic acid, while in severe cases intravenous III. generation cephalosporin. Nosocomial spontaneous bacterial peritonitis often caused by Gram-positive bacteria and multi-resistant pathogens can also be expected thus carbapenem should be the choice of the empiric treatment. Antibiotic prophylaxis should be considered. Norfloxacin is used most commonly, but changes are expected due to increase in quinolone resistance. As a primary prophylaxis, a short-term antibiotic treatment is recommended after gastrointestinal bleeding for 5 days, while long-term prophylaxis is for patients with low ascites protein, and advanced disease (400 mg/day). Secondary prophylaxis is recommended for all patients recovered from spontaneous bacterial peritonitis. Due to increasing antibiotic use of antibiotics prophylaxis is debated to some degree. Orv. Hetil., 2017, 158(2), 50-57.

  16. Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability.

    PubMed

    Ruiz, Oscar N; Alvarez, Derry; Torres, Cesar; Roman, Laura; Daniell, Henry

    2011-06-01

    Genetic engineering to enhance mercury phytoremediation has been accomplished by expression of the merAB genes that protects the cell by converting Hg[II] into Hg[0] which volatilizes from the cell. A drawback of this approach is that toxic Hg is released back into the environment. A better phytoremediation strategy would be to accumulate mercury inside plants for subsequent retrieval. We report here the development of a transplastomic approach to express the mouse metallothionein gene (mt1) and accumulate mercury in high concentrations within plant cells. Real-time PCR analysis showed that up to 1284 copies of the mt1 gene were found per cell when compared with 1326 copies of the 16S rrn gene, thereby attaining homoplasmy. Past studies in chloroplast transformation used qualitative Southern blots to evaluate indirectly transgene copy number, whereas we used real-time PCR for the first time to establish homoplasmy and estimate transgene copy number and transcript levels. The mt1 transcript levels were very high with 183,000 copies per ng of RNA or 41% the abundance of the 16S rrn transcripts. The transplastomic lines were resistant up to 20 μm mercury and maintained high chlorophyll content and biomass. Although the transgenic plants accumulated high concentrations of mercury in all tissues, leaves accumulated up to 106 ng, indicating active phytoremediation and translocation of mercury. Such accumulation of mercury in plant tissues facilitates proper disposal or recycling. This study reports, for the first time, the use of metallothioneins in plants for mercury phytoremediation. Chloroplast genetic engineering approach is useful to express metal-scavenging proteins for phytoremediation. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  17. Peru Mercury Inventory 2006

    USGS Publications Warehouse

    Brooks, William E.; Sandoval, Esteban; Yepez, Miguel A.; Howard, Howell

    2007-01-01

    In 2004, a specific need for data on mercury use in South America was indicated by the United Nations Environmental Programme-Chemicals (UNEP-Chemicals) at a workshop on regional mercury pollution that took place in Buenos Aires, Argentina. Mercury has long been mined and used in South America for artisanal gold mining and imported for chlor-alkali production, dental amalgam, and other uses. The U.S. Geological Survey (USGS) provides information on domestic and international mercury production, trade, prices, sources, and recycling in its annual Minerals Yearbook mercury chapter. Therefore, in response to UNEP-Chemicals, the USGS, in collaboration with the Economic Section of the U.S. Embassy, Lima, has herein compiled data on Peru's exports, imports, and byproduct production of mercury. Peru was selected for this inventory because it has a 2000-year history of mercury production and use, and continues today as an important source of mercury for the global market, as a byproduct from its gold mines. Peru is a regional distributor of imported mercury and user of mercury for artisanal gold mining and chlor-alkali production. Peruvian customs data showed that 22 metric tons (t) of byproduct mercury was exported to the United States in 2006. Transshipped mercury was exported to Brazil (1 t), Colombia (1 t), and Guyana (1 t). Mercury was imported from the United States (54 t), Spain (19 t), and Kyrgyzstan (8 t) in 2006 and was used for artisanal gold mining, chlor-alkali production, dental amalgam, or transshipment to other countries in the region. Site visits and interviews provided information on the use and disposition of mercury for artisanal gold mining and other uses. Peru also imports mercury-containing batteries, electronics and computers, fluorescent lamps, and thermometers. In 2006, Peru imported approximately 1,900 t of a wide variety of fluorescent lamps; however, the mercury contained in these lamps, a minimum of approximately 76 kilograms (kg), and in

  18. Identification of single nucleotide polymorphism markers associated with bacterial cold water disease resistance and spleen size in rainbow trout

    USDA-ARS?s Scientific Manuscript database

    Bacterial cold water disease (BCWD) is one of the frequent causes of elevated mortality in salmonid aquaculture. Previously, we identified and validated microsatellites associated with QTL (quantitative trait loci) for BCWD resistance and spleen size in rainbow trout. The objective of this study was...

  19. Identification of single nucleotide polymorphism markers associated with bacterial cold water disease resistance and spleen size in rainbow trout

    USDA-ARS?s Scientific Manuscript database

    Bacterial cold water disease (BCWD) is one of the frequent causes of elevated mortality in salmonid aquaculture. Previously, we identified and validated microsatellite markers associated with QTL (quantitative trait loci) for BCWD resistance and spleen size in rainbow trout. The objective of this st...

  20. Novel Bacterial Topoisomerase Inhibitors with Potent Broad-Spectrum Activity against Drug-Resistant Bacteria.

    PubMed

    Charrier, Cédric; Salisbury, Anne-Marie; Savage, Victoria J; Duffy, Thomas; Moyo, Emmanuel; Chaffer-Malam, Nathan; Ooi, Nicola; Newman, Rebecca; Cheung, Jonathan; Metzger, Richard; McGarry, David; Pichowicz, Mark; Sigerson, Ralph; Cooper, Ian R; Nelson, Gary; Butler, Hayley S; Craighead, Mark; Ratcliffe, Andrew J; Best, Stuart A; Stokes, Neil R

    2017-05-01

    The novel bacterial topoisomerase inhibitor class is an investigational type of antibacterial inhibitor of DNA gyrase and topoisomerase IV that does not have cross-resistance with the quinolones. Here, we report the evaluation of the in vitro properties of a new series of this type of small molecule. Exemplar compounds selectively and potently inhibited the catalytic activities of Escherichia coli DNA gyrase and topoisomerase IV but did not block the DNA breakage-reunion step. Compounds showed broad-spectrum inhibitory activity against a wide range of Gram-positive and Gram-negative pathogens, including biodefence microorganisms and Mycobacterium tuberculosis No cross-resistance with fluoroquinolone-resistant Staphylococcus aureus and E. coli isolates was observed. Measured MIC 90 values were 4 and 8 μg/ml against a panel of contemporary multidrug-resistant isolates of Acinetobacter baumannii and E. coli , respectively. In addition, representative compounds exhibited greater antibacterial potency than the quinolones against obligate anaerobic species. Spontaneous mutation rates were low, with frequencies of resistance typically <10 -8 against E. coli and A. baumannii at concentrations equivalent to 4-fold the MIC. Compound-resistant E. coli mutants that were isolated following serial passage were characterized by whole-genome sequencing and carried a single Arg38Leu amino acid substitution in the GyrA subunit of DNA gyrase. Preliminary in vitro safety data indicate that the series shows a promising therapeutic index and potential for low human ether-a-go-go-related gene (hERG) inhibition (50% inhibitory concentration [IC 50 ], >100 μM). In summary, the compounds' distinct mechanism of action relative to the fluoroquinolones, whole-cell potency, low potential for resistance development, and favorable in vitro safety profile warrant their continued investigation as potential broad-spectrum antibacterial agents. Copyright © 2017 American Society for Microbiology.

  1. Modeling Mercury

    NASA Astrophysics Data System (ADS)

    Burger, M. H.; Killen, R. M.; M, N.; Sarantos, M.; Crider, D. H.; Vervak, R. J.

    2009-04-01

    Mercury has a tenuous exosphere created by the combined effects of solar radiation and micrometeoroid bombardment on the surface and the interaction of the solar wind with Mercury's magnetic field and surface. Observations of this exosphere provide essential data necessary for understanding the composition and evolution of Mercury's surface, as well as the interaction between Mercury's magnetosphere with the solar wind. The sodium component of the exosphere has been well observed from the ground (see review by Killen et al., 2007). These observations have revealed a highly variable and inhomogeneous exosphere with emission often peaking in the polar regions. Radiation acceleration drives exospheric escape producing a sodium tail pointing away from the sun which has been detected up to 1400 Mercury radii from the planet (Potter et al. 2002; Baumgardner et al. 2008). Calcium has also been observed in Mercury's exosphere showing a distribution distinct from sodium, although also variable (Killen et al. 2005). During the first two encounters with Mercury by MESSENGER, observations of the exosphere were made by the UltraViolet and Visible Spectrometer (UVVS) channel of the Mercury Atmospheric and Surface Composition Spectrometer (MASCS). Sodium and calcium emission were detected during both flybys, and magnesium was detected for the first time in Mercury's exosphere during the second flyby. The spatial distributions of these species showed significant, unexpected differences which suggest differences in the mechanisms responsible for releasing them from the surface. We present a Monte-Carlo model of sodium, magnesium, and calcium in Mercury's exosphere. The important source mechanisms for ejecting these species from the surface are sputtering by solar wind ions, photon-stimulated desorption, and micrometeoroid impact vaporization. Thermal desorption on the dayside does not supply enough energy to significantly populate the exosphere, although it does play a role in

  2. Indicators: Sediment Mercury

    EPA Pesticide Factsheets

    Sediment mercury is mercury that has become embedded into the bottom substrates of aquatic ecosystems. Mercury is a common pollutant of aquatic ecosystems and it can have a substantial impact on both human and wildlife health.

  3. Atmospheric mercury in Changbai Mountain area, northeastern China II. The distribution of reactive gaseous mercury and particulate mercury and mercury deposition fluxes.

    PubMed

    Wan, Qi; Feng, Xinbin; Lu, Julia; Zheng, Wei; Song, Xinjie; Li, Ping; Han, Shijie; Xu, Hao

    2009-08-01

    Reactive gaseous mercury (RGM) and particulate mercury (Hgp) concentrations in ambient air from a remote site at Changbai Mountain area in northeastern China were intermittently monitored from August 2005 to July 2006 totaling 93 days representing fall, winter-spring and summer season, respectively. Rainwater and snow samples were collected during a whole year, and total mercury (THg) in rain samples were used to calculate wet depositional flux. A throughfall method and a model method were used to estimate dry depositional flux. Results showed mean concentrations of RGM and Hgp are 65 and 77 pg m(-3). Compared to background concentrations of atmospheric mercury species in Northern Hemisphere, RGM and Hgp are significantly elevated in Changbai area. Large values for standard deviation indicated fast reactivity and a low residence time for these mercury species. Seasonal variability is also important, with lower mercury levels in summer compared to other seasons, which is attributed to scavenging by rainfall and low local mercury emissions in summer. THg concentrations ranged from 11.5 to 15.9 ng L(-1) in rainwater samples and 14.9-18.6 ng L(-1) in throughfall samples. Wet depositional flux in Changbai area is calculated to be 8.4 microg m(-2) a(-1), and dry deposition flux is estimated to be 16.5 microg m(-2) a(-1) according to a throughfall method and 20.2 microg m(-2) a(-1) using a model method.

  4. Spatially Oscillating Activity and Microbial Succession of Mercury-Reducing Biofilms in a Technical-Scale Bioremediation System

    PubMed Central

    von Canstein, Harald; Li, Ying; Leonhäuser, Johannes; Haase, Elke; Felske, Andreas; Deckwer, Wolf-Dieter; Wagner-Döbler, Irene

    2002-01-01

    Mercury-contaminated chemical wastewater of a mercury cell chloralkali plant was cleaned on site by a technical-scale bioremediation system. Microbial mercury reduction of soluble Hg(II) to precipitating Hg(0) decreased the mercury load of the wastewater during its flow through the bioremediation system by up to 99%. The system consisted of a packed-bed bioreactor, where most of the wastewater's mercury load was retained, and an activated carbon filter, where residual mercury was removed from the bioreactor effluent by both physical adsorption and biological reduction. In response to the oscillation of the mercury concentration in the bioreactor inflow, the zone of maximum mercury reduction oscillated regularly between the lower and the upper bioreactor horizons or the carbon filter. At low mercury concentrations, maximum mercury reduction occurred near the inflow at the bottom of the bioreactor. At high concentrations, the zone of maximum activity moved to the upper horizons. The composition of the bioreactor and carbon filter biofilms was investigated by 16S-23S ribosomal DNA intergenic spacer polymorphism analysis. Analysis of spatial biofilm variation showed an increasing microbial diversity along a gradient of decreasing mercury concentrations. Temporal analysis of the bioreactor community revealed a stable abundance of two prevalent strains and a succession of several invading mercury-resistant strains which was driven by the selection pressure of high mercury concentrations. In the activated carbon filter, a lower selection pressure permitted a steady increase in diversity during 240 days of operation and the establishment of one mercury-sensitive invader. PMID:11916716

  5. Urinary mercury in people living near point sources of mercury emissions.

    PubMed

    Barregard, Lars; Horvat, Milena; Mazzolai, Barbara; Sällsten, Gerd; Gibicar, Darija; Fajon, Vesna; Dibona, Sergio; Munthe, John; Wängberg, Ingvar; Haeger Eugensson, Marie

    2006-09-01

    As part of the European Mercury Emissions from Chlor Alkali Plants (EMECAP) project, we tested the hypothesis that contamination of ambient air with mercury around chlor alkali plants using mercury cells would increase the internal dose of mercury in people living close to the plants. Mercury in urine (U-Hg) was determined in 225 individuals living near a Swedish or an Italian chlor alkali plant, and in 256 age- and sex-matched individuals from two reference areas. Other factors possibly affecting mercury exposure were examined. Emissions and concentrations of total gaseous mercury (TGM) around the plants were measured and modeled. No increase in U-Hg could be demonstrated in the populations living close to the plants. This was the case also when the comparison was restricted to subjects with no dental amalgam and low fish consumption. The emissions of mercury to air doubled the background level, but contributed only about 2 ng/m(3) to long-term averages in the residential areas. The median U-Hg levels in subjects with dental amalgam were 1.2 microg/g creatinine (micro/gC) in Italy and 0.6 microg/gC in Sweden. In individuals without dental amalgam, the medians were 0.9 microg/gC and 0.2 microg/gC, respectively. The number of amalgam fillings, as well as chewing, fish consumption, and female sex were associated with higher U-Hg. The difference between the countries is probably due to higher fish consumption in Italy, demethylated methyl mercury (MeHg) being partly excreted in urine. Post hoc power calculations showed that if the background mercury exposure is low it may be possible to demonstrate an increase in U-Hg of as little as about 10 ng/m(3) as a contribution to ambient mercury from a point source.

  6. Toward a Unified Understanding of Mercury and Methylated Mercury from the World's Oceans

    NASA Astrophysics Data System (ADS)

    McNutt, M. K.; Krabbenhoft, D. P.; Landing, W. M.; Sunderland, E. M.

    2012-12-01

    Marine fish and shellfish are the main source of toxic methylmercury exposure for humans. As recently as decade ago, very limited aqueous methylated mercury data were available from marine settings, resulting in a generally poor understanding of the processes controlling mercury in pelagic marine food webs. Recent oceanographic cruises have significantly improved availability of reliable measurements of methylated mercury and total mercury in seawater. This presentation will focus on vertical seawater profiles collected to depths 1000 m from three recent sampling efforts in collaboration with the CLIVAR Repeat Hydrography Program sponsored by NOAA including: 1) the northeastern Pacific (P16N cruise from Honolulu, Hawaii to Kodiak, Alaska); (2) the southern Indian Ocean (I5 cruise from Cape Town, South Africa, to Fremantle, Australia); and, (3) the Southern Ocean cruise (S4P from McMurdo, Antarctica, to Punta Arenas, Chile). Analytical results presented were all derived from the USGS Mercury Research Lab (http://wi.water.usgs.gov/mercury-lab). Supporting data derived from these cruises on water mass ages, nutrients, carbon and dissolved oxygen provide an opportunity to develop a stronger understanding of the biogeochemical factors controlling oceanic distributions of mercury and methylated mercury. Whole-water, median total mercury, and methylated mercury concentrations for the northern Pacific, southern Indian, and Southern Ocean were 1.10, 0.80, and 1.65 pM, , and 0.11, 0.08, and 0.32 pM, respectively. For all three oceans, vertical profiles of total mercury generally show the lowest concentrations in the surface mixed layer, and concentration maxima at the 700-1000 m depths. Surface depletion of total mercury is attributed to photo-chemical reduction and evasion of gaseous elemental mercury as well as scavenging by settling particulate matter, the main vector of transport to the subsurface ocean. Methylated mercury in all the ocean profiles reveal distinct mid

  7. The Texarkana mercury incident.

    PubMed

    Lowry, L K; Rountree, P P; Levin, J L; Collins, S; Anger, W K

    1999-10-01

    In November 1997, 2 teenagers allegedly removed a large amount of metallic mercury from an abandoned sign plant and distributed the material among friends. One teenager developed symptoms and admitted playing with mercury to his physician. His blood mercury was elevated. In February 1998, faculty from the University of Texas Health Center at Tyler conducted an investigation that included in-depth evaluations on 10 patients with urine mercury concentrations up to 100 micrograms/L. Exposure pathways and timelines were reconstructed from records assembled by the Arkansas State Health Department epidemiologist. Mercury contamination was found among teenagers, children, and adults who came in contact with the metal. Biomarkers of exposure documented reduction in mercury concentrations after these persons were removed from their homes and sources of mercury. Neurobehavioral assessment, including assessment of tremor, failed to establish a relationship between mercury exposure and performance.

  8. Formulation of carbapenems loaded gold nanoparticles to combat multi-antibiotic bacterial resistance: In vitro antibacterial study.

    PubMed

    Shaker, Mohamed A; Shaaban, Mona I

    2017-06-15

    Despite the fact that carbapenems (powerful β-lactams antibiotics) were able to fight serious infectious diseases, nowadays the spread of carbapenems-resistant bacteria is considered the main challenge in antibacterial therapy. In this study, we focused on evaluating the surface conjugation of carbapenems (imipenem and meropenem) with gold nanoparticles as a delivering strategy to specifically and safely maximize their therapeutic efficacy while destroying the developing resistance of the pathogens. Different particle size formulae (35, 70 and 200nm) were prepared by citrate reduction method. The prepared nanoparticles were functionalized with imipenem (Ipm) or meropenem (Mem) and physico-chemically characterized for loading efficiency, particle size, morphology, and in-vitro release. The antibacterial efficacy was also evaluated against carbapenems resistant Gram-negative bacteria isolated from infected human, through measuring the minimum inhibitory concentration and antibiotic kill test. All the obtained gold nanoparticles showed a distinct nano-size with loading efficiency up to 72% and 74% for Ipm and Mem, respectively. The conjugation and physico-chemical stability of the formulated carbapenems were confirmed by FTIR and X-RPD. Diffusion driven release behavior was observed for both Ipm and Mem from all of the loaded gold nanoparticles. For both Ipm and Mem, formula with 35nm diameter showed the most significant enhancement in antibacterial activity against all the selected isolates including Klebsiella pneumoniae, Proteus mirabilis and Acinteobacter baumanii. Ipm loaded Gold nanoparticles demonstrated decrease in the MIC of Ipm down to four folds, whereas, Mem loaded gold nanoparticles showed decrease in the MIC of Mem down to three folds on the tested bacterial isolates. Based on these results, the formulation of carbapenems-loaded gold nanoparticles demonstrated to be a promising nano-size delivery vehicle for improving the therapeutic activity and

  9. Bacterial communities adapted to higher external resistance can reduce the onset potential of anode in microbial fuel cells.

    PubMed

    Suzuki, Kei; Kato, Yutaka; Yui, Arashi; Yamamoto, Shuji; Ando, Syota; Rubaba, Owen; Tashiro, Yosuke; Futamata, Hiroyuki

    2018-05-01

    We investigated how bacterial communities adapted to external resistances and exhibited the performance of electricity production in microbial fuel cells (MFCs) with external resistance of 10 Ω (LR-MFC) and 1000 Ω (HR-MFC). The HR-MFC exhibited better performance than the LR-MFC. The power densities of the LR-MFC and the HR-MFC were 5.2 ± 1.6 mW m -2 and 28 ± 9.6 mW m -2 after day 197, respectively. Low-scan cyclic voltammetry analyses indicated that the onset potential of the HR-MFC was more negative than that of the LR-MFC, suggesting that the higher external resistance led to enrichment of the highly current producing bacteria on the anode surface. All clones of Geobacter retrieved from the LR-MFC and the HR-MFC were members of the Geobacter metallireducens clade. Although the population density of Geobacter decreased from days 366-427 in the HR-MFC, the current density was almost maintained. Multidimensional scaling analyses based on denaturing gradient gel electrophoresis profiles indicated that the dynamics of the biofilm and anolytic communities changed synchronously in the two MFCs, but the dynamics of the bacterial communities in the LR-MFC and the HR-MFC were different from each other, reflecting different processes in adaptation to the different external resistances. The results suggest that the microbial community structure was formed by adapting to higher external resistance, exhibiting more negative onset potential and higher performance of the HR-MFC through collaborating with anode-respiring bacteria and fermenters. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Validation of linked QTL for bacterial cold water disease resistance and spleen size on rainbow trout chromosome Omy19

    USDA-ARS?s Scientific Manuscript database

    Bacterial cold water disease (BCWD) is caused by infection with Flavobacterium psychrophilum, and results in significant economic losses in salmonid aquaculture. Previously, we identified a major QTL for BCWD resistance and a QTL for spleen size (SPLW = spleen weight and SPLI = spleen index) in naï...

  11. Characterization of hypersensitive resistance to bacterial spot race T3 (Xanthomonas perforans) from tomato accession PI 128216.

    PubMed

    Robbins, Matthew D; Darrigues, Audrey; Sim, Sung-Chur; Masud, Mohammed Abu Taher; Francis, David M

    2009-09-01

    Bacterial spot of tomato is caused by four species of Xanthomonas. The accession PI 128216 (Solanum pimpinellifolium) displays a hypersensitive reaction (HR) to race T3 strains (predominantely Xanthomonas perforans). We developed an inbred backcross (IBC) population (BC(2)S(5), 178 families) derived from PI 128216 and OH88119 (S. lycopersicum) as the susceptible recurrent parent for simultaneous introgression and genetic analysis of the HR response. These IBC families were evaluated in the greenhouse for HR to race T3 strain Xcv761. The IBC population was genotyped with molecular markers distributed throughout the genome in order to identify candidate loci conferring resistance. We treated the IBC population as a hypothesis forming generation to guide validation in subsequent crosses. Nonparametric analysis identified an association between HR and markers clustered on chromosome 11 (P < 0.05 to 0.0001) and chromosome 6 (0.04 > P > 0.002). Further analysis of the IBC population suggested that markers on chromosome 6 and 11 failed to assort independently, a phenomenon known as gametic phase disequilibrium. Therefore, to validate marker-trait linkages, resistant IBC plants were crossed with OH88119 and BC(3)F(2) progeny were evaluated for HR in the greenhouse. In these subsequent populations, the HR response was associated with the chromosome 11 markers (P < 0.0002) but not with the markers on chromosome 6 (P > 0.25). Independent F(2) families were developed by crossing resistant IBC lines to OH8245, OH88119, and OH7530. These populations were genotyped, organized into classes based on chromosome 11 markers, and evaluated for resistance in the field. The PI 128216 locus on chromosome 11 provided resistance that was dependent on gene dosage and genetic background. These results define a single locus, Rx-4, from PI 128216, which provides resistance to bacterial spot race T3, has additive gene action, and is located on chromosome 11.

  12. [Profile of bacterial resistance in pediatric urinary tract infections in 2014].

    PubMed

    Flammang, A; Morello, R; Vergnaud, M; Brouard, J; Eckart, P

    2017-03-01

    In pediatric units, bacteria-producing extended-spectrum-betalactamase (ESBL) have an increasing prevalence among bacteria causing febrile urinary tract infections (UTIs). The purpose of this study was to evaluate the epidemiology of bacteria resistance patterns observed in UTIs, in order to assess the current antibiotic treatment protocols. This study is based upon a single-center retrospective chart review of the cytobacteriological urine cultures performed in UTIs between 1 January and 31 December 2014, in the medical pediatric unit of the Caen University Hospital. Out of the total of 219 cases of UTI, 26.9% were recurrences of UTI, 18.3% were infections in infants less than 3 months old, 21% of the patients suffered from underlying uropathy, and 16.4% of the patients had recently been exposed to antibiotics. In 80.3% of the cases, Escherichia coli was found, while Enterococcus faecalis was found in 5.6%. The antibiograms proved that 33.5% of the bacteria were sensitive. Half of E. coli were resistant to ampicillin, 4.9% to cefixime, 4.9% to ceftriaxone, 1.1% to gentamicin, and 27.8% to trimethoprim-sulfamethoxazole. Nine E. coli and one Enterobacter cloacae produced ESBL, accounting for 4.6% of the UTIs. We did not find any bacteria-producing high-level cephalosporinase. Cefixime resistance was statistically linked to ongoing antibiotic treatment (OR=5.98; 95% CI [1.44; 24.91], P=0.014) and underlying uropathy (OR=6.24; 95% CI [1.47; 26.42], P=0.013). Ceftriaxone resistance was statistically related to ongoing antibiotic treatment (OR=6.93; 95% CI [1.45; 33.13], P=0.015). These results argue in favor of maintaining intravenous ceftriaxone for probabilistic ambulatory treatment. However, in case of hospitalization, cefotaxime can replace ceftriaxone, due to its lower ecological impact. Moreover, it is necessary to continue monitoring bacterial resistance and regularly review our treatment protocols. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Mercury Project

    NASA Image and Video Library

    1961-01-01

    Ham, a three-year-old chimpanzee, in the spacesuit he would wear for the second Mercury- Redstone (MR-2) suborbital test flight in January, 1961. NASA used chimpanzees and other primates to test the Mercury capsule before launching the fisrt American astronaut, Alan Shepard, in May 1961. The Mercury capsule rode atop a modified Redstone rocket, developed by Dr. Wernher von Braun and the German Rocket Team in Huntsville, Alabama.

  14. Mercury's exosphere: observations during MESSENGER's First Mercury flyby.

    PubMed

    McClintock, William E; Bradley, E Todd; Vervack, Ronald J; Killen, Rosemary M; Sprague, Ann L; Izenberg, Noam R; Solomon, Sean C

    2008-07-04

    During MESSENGER's first Mercury flyby, the Mercury Atmospheric and Surface Composition Spectrometer measured Mercury's exospheric emissions, including those from the antisunward sodium tail, calcium and sodium close to the planet, and hydrogen at high altitudes on the dayside. Spatial variations indicate that multiple source and loss processes generate and maintain the exosphere. Energetic processes connected to the solar wind and magnetospheric interaction with the planet likely played an important role in determining the distributions of exospheric species during the flyby.

  15. Olive-pomace harbors bacteria with the potential for hydrocarbon-biodegradation, nitrogen-fixation and mercury-resistance: promising material for waste-oil-bioremediation.

    PubMed

    Dashti, Narjes; Ali, Nedaa; Khanafer, Majida; Al-Awadhi, Husain; Sorkhoh, Naser; Radwan, Samir

    2015-05-15

    Olive-pomace, a waste by-product of olive oil industry, took up >40% of its weight crude oil. Meanwhile, this material harbored a rich and diverse hydrocarbonoclastic bacterial population in the magnitude of 10(6) to 10(7) cells g(-1). Using this material for bioaugmentation of batch cultures in crude oil-containing mineral medium, resulted in the consumption of 12.9, 21.5, 28.3, and 43% oil after 2, 4, 6 and 8 months, respectively. Similar oil-consumption values, namely 11.0, 29.3, 34.7 and 43.9%, respectively, were recorded when a NaNO3-free medium was used instead of the complete medium. Hydrocarbonoclastic bacteria involved in those bioremediation processes, as characterized by their 16S rRNA-gene sequences, belonged to the genera Agrococcus, Pseudomonas, Cellulosimicrobium, Streptococcus, Sinorhizobium, Olivibacter, Ochrobactrum, Rhizobium, Pleomorphomonas, Azoarcus, Starkeya and others. Many of the bacterial species belonging to those genera were diazotrophic; they proved to contain the nifH-genes in their genomes. Still other bacterial species could tolerate the heavy metal mercury. The dynamic changes of the proportions of various species during 8 months of incubation were recorded. The culture-independent, phylogenetic analysis of the bacterioflora gave lists different from those recorded by the culture-dependent method. Nevertheless, those lists comprised among others, several genera known for their hydrocarbonoclastic potential, e.g. Pseudomonas, Mycobacterium, Sphingobium, and Citrobacter. It was concluded that olive-pomace could be applied in oil-remediation, not only as a physical sorbent, but also for bioaugmentation purposes as a biological source of hydrocarbonoclastic bacteria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Mercury bioremediation by mercury accumulating Enterobacter sp. cells and its alginate immobilized application.

    PubMed

    Sinha, Arvind; Khare, Sunil Kumar

    2012-02-01

    The effective microbial remediation of the mercury necessitates the mercury to be trapped within the cells without being recycled back to the environment. The study describes a mercury bioaccumulating strain of Enterobacter sp., which remediated mercury from the medium simultaneous to its growth. The transmission electron micrographs and electron dispersive X-ray analysis revealed the accumulation of remediated mercury as nano-size particles in the cytoplasm as well as on the cell wall. The Enterobacter sp. in the present work was able to accumulate mercury, without being engineered in its native form. The possibility of recovering the accumulated mercury from the cells is also indicated. The applicability of the alginate immobilized cells in removing mercury from synthetic and complex industrial effluent in a batch mode was amply demonstrated. The initial load of 7.3 mg l(-1) mercury in the industrial effluent was completely removed in 72 h. The cells immobilized in calcium alginate were similarly effective in the complete removal of 5 mg l(-1) HgCl(2) of mercury from the synthetic effluent in less than 72 h. The immobilized cells could be reused for multiple cycles.

  17. Biosorption of mercury by the inactivated cells of Pseudomonas aeruginosa PU21 (Rip64)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, J.S.; Hong, J.

    1994-10-01

    Biomass of a mercury-resistance strain Pseudomonas aeruginosa PU21 (Rip64) and hydrogen-form cation exchange resin (AG 50W-X8) were investigated for their ability to adsorb mercury. The maximum adsorption capacity was approximately 180 mg Hg/g dry cell in deionized water and 400 mg Hg/g dry cell in sodium phosphate solution of pH 7.4, higher than the maximum mercury uptake capacity in the cation exchange resin. The mercury selectivity of the biomass over sodium ions was evaluated when 50 mM and 150 mM of Na[sup +] were present. Biosorption of mercury was also examined in sodium phosphate solution and phosphate-buffered saline solution containingmore » 50 mM and 150 mM of Na[sup +], respectively. It was found that the presence of Na[sup +] did not severely affect the biosorption of Hg[sup 2+], indicating a high mercury selectivity of the biomass over sodium ions. In contrast, the mercury uptake by the ion exchange resin was strongly inhibited by high sodium concentrations. The mercury biosorption was most favorable in sodium phosphate solution (pH 7.4), with a more than twofold increase in the maximum mercury uptake capacity. The pH was found to affect the adsorption of Hg[sup 2+] by the biomass and the optimal pH value was approximately 7.4. The adsorption of mercury on the biomass and the ion exchange resin appeared to follow the Langmuir or Freundlich adsorption isotherms.« less

  18. Mercury Surveillance Program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Background on mercury exposure is presented including forms, sources, permissible exposure limits, and physiological effects. The purpose of the Mercury Surveillance Program at LeRC is outlined, and the specifics of the Medical Surveillance Program for Mercury Exposure at LeRC are discussed.

  19. Performance of Mercury Triple-Point Cells Made in Brazil

    NASA Astrophysics Data System (ADS)

    Petkovic, S. G.; Santiago, J. F. N.; Filho, R. R.; Teixeira, R. N.; Santos, P. R. F.

    2003-09-01

    Fixed-points cells are primary standards in ITS-90. They contain reference material with a purity of 99.999 % or more. The gallium in a melting-point cell, for example, can reach a purity of 99.99999 %. This level of purity is not easy to obtain. However, substances like water and mercury can be purified by means of distillation and chemical procedures. This paper presents the results of mercury triple-point cells made in Brazil that were directly compared to a mercury triple-point cell of 99.999% purity. This reference cell, made by Isotech (England), was previously compared to cells from CENAM (Mexico) and NRC (Canada) and the maximum deviation found was approximately 0.4 mK. The purification stage started with a sample of mercury 99.3 % pure, and the repeated use of both mechanical and chemical processes led to a purification grade considered good enough for calibration of standard platinum resistance thermometers. The purification procedures, the method of construction of the cell, the laboratory facilities, the comparison results and the budget of uncertainties are described in this paper. All of the cells tested have a triple-point temperature within 0.25 mK of the triple-point temperature of the Inmetro reference cell.

  20. Association of Atopobium vaginae, a recently described metronidazole resistant anaerobe, with bacterial vaginosis

    PubMed Central

    Ferris, Michael J; Masztal, Alicia; Aldridge, Kenneth E; Fortenberry, J Dennis; Fidel, Paul L; Martin, David H

    2004-01-01

    Background Bacterial vaginosis (BV) is a polymicrobial syndrome characterized by a change in vaginal flora away from predominantly Lactobacillus species. The cause of BV is unknown, but the condition has been implicated in diverse medical outcomes. The bacterium Atopobium vaginae has been recognized only recently. It is not readily identified by commercial diagnostic kits. Its clinical significance is unknown but it has recently been isolated from a tuboovarian abcess. Methods Nucleotide sequencing of PCR amplified 16S rRNA gene segments, that were separated into bands within lanes on polyacrylamide gels by denaturing gradient gel electrophoresis (DGGE), was used to examine bacterial vaginal flora in 46 patients clinically described as having normal (Lactobacillus spp. predominant; Nugent score ≤ 3) and abnormal flora (Nugent score ≥ 4). These women ranged in age from 14 to 48 and 82% were African American. Results The DGGE banding patterns of normal and BV-positive patients were recognizably distinct. Those of normal patients contained 1 to 4 bands that were focused in the centre region of the gel lane, while those of BV positive patients contained bands that were not all focused in the center region of the gel lane. More detailed analysis of patterns revealed that bands identified as Atopobium vaginae were present in a majority (12/22) of BV positive patients, while corresponding bands were rare (2/24) in normal patients. (P < 0.001) Two A. vaginae isolates were cultivated from two patients whose DGGE analyses indicated the presence of this organism. Two A. vaginae 16S rRNA gene sequences were identified among the clinical isolates. The same two sequences were obtained from DGGE bands of the corresponding vaginal flora. The sequences differed by one nucleotide over the short (~300 bp) segment used for DGGE analysis and migrated to slightly different points in denaturing gradient gels. Both isolates were strict anaerobes and highly metronidazole resistant

  1. Distribution of total mercury and methyl mercury in water, sediment, and fish from South Florida estuaries

    USGS Publications Warehouse

    Kannan, K.; Smith, R.G.; Lee, R.F.; Windom, H.L.; Heitmuller, P.T.; Macauley, J.M.; Summers, J.K.

    1998-01-01

    Concentrations of total mercury and methyl mercury were determined in sediment and fish collected from estuarine waters of Florida to understand their distribution and partitioning. Total mercury concentrations in sediments ranged from 1 to 219 ng/g dry wt. Methyl mercury accounted for, on average, 0.77% of total mercury in sediment. Methyl mercury concentrations were not correlated with total mercury or organic carbon content in sediments. The concentrations of total mercury in fish muscle were between 0.03 and 2.22 (mean: 0.31) ??g/g, wet wt, with methyl mercury contributing 83% of total mercury. Methyl mercury concentrations in fish muscle were directly proportional to total mercury concentrations. The relationship of total and methyl mercury concentrations in fish to those of sediments from corresponding locations was fish-species dependent, in addition to several abiotic factors. Among fish species analyzed, hardhead catfish, gafftopsail catfish, and sand seatrout contained the highest concentrations of mercury. Filtered water samples from canals and creeks that discharge into the Florida Bay showed mercury concentrations of 3-7.4 ng/L, with methyl mercury accounting for <0.03-52% of the total mercury. Consumption of fish containing 0.31 ??g mercury/g wet wt, the mean concentration found in this study, at rates greater than 70 g/day, was estimated to be hazardous to human health.

  2. Mercury Sodium Tail

    NASA Image and Video Library

    2015-04-16

    This image from NASA MESSENGER spacecraft is stitched together from thousands of observations made over the past 4 years by the MASCS/UVVS instrument, which measures sunlight scattered off of Mercury tenuous atmosphere. Scattered sunlight gives the sodium a bright orange glow. This scattering process also gives sodium atoms a push - this "radiation pressure" is strong enough, during parts of Mercury's year, to strip the atmosphere and give Mercury a long glowing tail. Someone standing on Mercury's nightside at the right time of year would see a faint orange similar to a city sky illuminated by sodium lamps! Instrument: Mercury Atmospheric and Surface Composition Spectrometer (MASCS)/Ultraviolet and Visible Spectrometer (UVVS) http://photojournal.jpl.nasa.gov/catalog/PIA19418

  3. Mercury Project

    NASA Image and Video Library

    1959-01-01

    Dr. Wernher von Braun, Director of the Army Ballistic Missile Agency's (ABMA) Development Operations Division, poses with the original Mercury astronauts in ABMA's Fabrication Laboratory during a 1959 visit. Inspecting Mercury-Redstone hardware are from left to right, Alan Shepard, Donald Deke Slayton, Virgil Gus Grissom, von Braun, Gordon Cooper, Wally Schirra, John Glenn, and Scott Carpenter. Project Mercury officially began October 7, 1958 as the United States' first manned space program.

  4. A mercury transport and fate model (LM2-mercury) for mass budget assessment of mercury cycling in Lake Michigan

    EPA Science Inventory

    LM2-Mercury, a mercury mass balance model, was developed to simulate and evaluate the transport, fate, and biogeochemical transformations of mercury in Lake Michigan. The model simulates total suspended solids (TSS), disolved organic carbon (DOC), and total, elemental, divalent, ...

  5. Bacterial fatty acid metabolism in modern antibiotic discovery.

    PubMed

    Yao, Jiangwei; Rock, Charles O

    2017-11-01

    Bacterial fatty acid synthesis is essential for many pathogens and different from the mammalian counterpart. These features make bacterial fatty acid synthesis a desirable target for antibiotic discovery. The structural divergence of the conserved enzymes and the presence of different isozymes catalyzing the same reactions in the pathway make bacterial fatty acid synthesis a narrow spectrum target rather than the traditional broad spectrum target. Furthermore, bacterial fatty acid synthesis inhibitors are single-targeting, rather than multi-targeting like traditional monotherapeutic, broad-spectrum antibiotics. The single-targeting nature of bacterial fatty acid synthesis inhibitors makes overcoming fast-developing, target-based resistance a necessary consideration for antibiotic development. Target-based resistance can be overcome through multi-targeting inhibitors, a cocktail of single-targeting inhibitors, or by making the single targeting inhibitor sufficiently high affinity through a pathogen selective approach such that target-based mutants are still susceptible to therapeutic concentrations of drug. Many of the pathogens requiring new antibiotic treatment options encode for essential bacterial fatty acid synthesis enzymes. This review will evaluate the most promising targets in bacterial fatty acid metabolism for antibiotic therapeutics development and review the potential and challenges in advancing each of these targets to the clinic and circumventing target-based resistance. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. 40 CFR Table 6 to Subpart IIIii of... - Examples of Techniques for Equipment Problem Identification, Leak Detection and Mercury Vapor

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... inspections b. Portable mercury vapor analyzer—ultraviolet light absorption detector A sample of gas is drawn... detector A sample of gas is drawn through a detection cell containing a gold film detector. Elemental mercury amalgamates with the gold film, changing the resistance of the detector in proportion to the...

  7. 40 CFR Table 6 to Subpart IIIii of... - Examples of Techniques for Equipment Problem Identification, Leak Detection and Mercury Vapor

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... inspections b. Portable mercury vapor analyzer—ultraviolet light absorption detector A sample of gas is drawn... detector A sample of gas is drawn through a detection cell containing a gold film detector. Elemental mercury amalgamates with the gold film, changing the resistance of the detector in proportion to the...

  8. Mercury Emission Measurement in Coal-Fired Boilers by Continuous Mercury Monitor and Ontario Hydro Method

    NASA Astrophysics Data System (ADS)

    Zhu, Yanqun; Zhou, Jinsong; He, Sheng; Cai, Xiaoshu; Hu, Changxin; Zheng, Jianming; Zhang, Le; Luo, Zhongyang; Cen, Kefa

    2007-06-01

    The mercury emission control approach attaches more importance. The accurate measurement of mercury speciation is a first step. Because OH method (accepted method) can't provide the real-time data and 2-week time for results attained, it's high time to seek on line mercury continuous emission monitors(Hg-CEM). Firstly, the gaseous elemental and oxidized mercury were conducted to measure using OH and CEM method under normal operation conditions of PC boiler after ESP, the results between two methods show good consistency. Secondly, through ESP, gaseous oxidized mercury decrease a little and particulate mercury reduce a little bit, but the elemental mercury is just the opposite. Besides, the WFGD system achieved to gaseous oxidized mercury removal of 53.4%, gaseous overall mercury and elemental mercury are 37.1% and 22.1%, respectively.

  9. Investigating Atmospheric Mercury with the U.S. Geological Survey Mobile Mercury Laboratory

    USGS Publications Warehouse

    Kolker, Allan

    2007-01-01

    Atmospheric mercury is thought to be an important source of mercury present in fish, resulting in numerous local, statewide, tribal, and province-wide fish consumption advisories in the United States and Canada (U.S. Environmental Protection Agency, 2007a). To understand how mercury occurs in the atmosphere and its potential to be transferred from the atmosphere to the biosphere, the U.S. Geological Survey (USGS) has been investigating sources and forms of atmospheric mercury, especially in locations where the amount of mercury deposited from precipitation is above average.

  10. Bacterial Adaptation to Antibiotics through Regulatory RNAs.

    PubMed

    Felden, Brice; Cattoir, Vincent

    2018-05-01

    The extensive use of antibiotics has resulted in a situation where multidrug-resistant pathogens have become a severe menace to human health worldwide. A deeper understanding of the principles used by pathogens to adapt to, respond to, and resist antibiotics would pave the road to the discovery of drugs with novel mechanisms. For bacteria, antibiotics represent clinically relevant stresses that induce protective responses. The recent implication of regulatory RNAs (small RNAs [sRNAs]) in antibiotic response and resistance in several bacterial pathogens suggests that they should be considered innovative drug targets. This minireview discusses sRNA-mediated mechanisms exploited by bacterial pathogens to fight against antibiotics. A critical discussion of the newest findings in the field is provided, with emphasis on the implication of sRNAs in major mechanisms leading to antibiotic resistance, including drug uptake, active drug efflux, drug target modifications, biofilms, cell walls, and lipopolysaccharide (LPS) biosynthesis. Of interest is the lack of knowledge about sRNAs implicated in Gram-positive compared to Gram-negative bacterial resistance. Copyright © 2018 American Society for Microbiology.

  11. Mercury cycling in terrestrial watersheds

    USGS Publications Warehouse

    Shanley, James B.; Bishop, Kevin; Banks, Michael S.

    2012-01-01

    This chapter discusses mercury cycling in the terrestrial landscape, including inputs from the atmosphere, accumulation in soils and vegetation, outputs in streamflow and volatilization, and effects of land disturbance. Mercury mobility in the terrestrial landscape is strongly controlled by organic matter. About 90% of the atmospheric mercury input is retained in vegetation and organic matter in soils, causing a buildup of legacy mercury. Some mercury is volatilized back to the atmosphere, but most export of mercury from watersheds occurs by streamflow. Stream mercury export is episodic, in association with dissolved and particulate organic carbon, as stormflow and snowmelt flush organic-rich shallow soil horizons. The terrestrial landscape is thus a major source of mercury to downstream aquatic environments, where mercury is methylated and enters the aquatic food web. With ample organic matter and sulfur, methylmercury forms in uplands as well—in wetlands, riparian zones, and other anoxic sites. Watershed features (topography, land cover type, and soil drainage class) are often more important than atmospheric mercury deposition in controlling the amount of stream mercury and methylmercury export. While reductions in atmospheric mercury deposition may rapidly benefit lakes, the terrestrial landscape will respond only over decades, because of the large stock and slow turnover of legacy mercury. We conclude with a discussion of future scenarios and the challenge of managing terrestrial mercury.

  12. Mercury in municipal solid wastes and New Jersey mercury prevention and reduction program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erdogan, H.; Stevenson, E.

    1994-12-31

    Mercury is a very toxic heavy metal which accumulates in the brain causing neurological damages involving psychasthenic and vegetative syndrome. At high exposure levels it causes behavioral and personality changes, loss of memory and insomnia. Long-term exposure or exposure during pregnancy to mercury or mercury compounds can permanently damage the kidney and fetus. In addition to potential effects on human health, mercury poisoning can also affect other living organisms. Mercury is different than other heavy metals. It consistently biomagnifies and bioaccumulates within the aquatic food chain. Global sources of mercury release are both natural and anthropogenic. Natural sources include volatilizationmore » of gaseous-mercury iron soils ana rocks, volcanic releases, evaporation from the ocean and other water bodies. Anthropogenic sources are fuel and coal combustion, mining, smelting, manufacturing activities, disposal of sludge, pesticides, animal and food waste, and incineration of municipal solid waste. Worldwide combustion of municipal solid waste is the second largest source of atmospheric emission of mercury. In New Jersey, incineration of solid waste is the largest source of atmospheric emission of mercury. The New Jersey Department of Environmental Protection and Energy (NJDEPE) has developed a comprehensive program to control and prevent emission of mercury resulting from combustion municipal solid waste.« less

  13. Biomarkers of mercury exposure at a mercury recycling facility in Ukraine.

    PubMed

    Gibb, Herman Jones; Kozlov, Kostj; Buckley, Jessie Poulin; Centeno, Jose; Jurgenson, Vera; Kolker, Allan; Conko, Kathryn; Landa, Edward; Panov, Boris; Panov, Yuri; Xu, Hanna

    2008-08-01

    This study evaluates biomarkers of occupational mercury exposure among workers at a mercury recycling operation in Gorlovka, Ukraine. The 29 study participants were divided into three occupational categories for analysis: (1) those who worked in the mercury recycling operation (Group A, n = 8), (2) those who worked at the facility but not in the yard where the recycling was done (Group B, n = 14), and (3) those who did not work at the facility (Group C, n = 7). Urine, blood, hair, and nail samples were collected from the participants, and a questionnaire was administered to obtain data on age, gender, occupational history, smoking, alcohol consumption, fish consumption, tattoos, dental amalgams, home heating system, education, source of drinking water, and family employment in the former mercury mine/smelter located on the site of the recycling facility. Each factor was tested in a univariate regression with total mercury in urine, blood, hair, and nails. Median biomarker concentrations were 4.04 microg/g-Cr (urine), 2.58 microg/L (blood), 3.95 microg/g (hair), and 1.16 microg/g (nails). Occupational category was significantly correlated (p < 0.001) with both blood and urinary mercury concentrations but not with hair or nail mercury. Four individuals had urinary mercury concentrations in a range previously found to be associated with subtle neurological and subjective symptoms (e.g., fatigue, loss of appetite, irritability), and one worker had a urinary mercury concentration in a range associated with a high probability of neurological effects and proteinuria. Comparison of results by occupational category found that workers directly involved with the recycling operation had the highest blood and urinary mercury levels. Those who worked at the facility but were not directly involved with the recycling operation had higher levels than those who did not work at the facility.

  14. Biomarkers of mercury exposure at a mercury recycling facility in Ukraine

    USGS Publications Warehouse

    Gibb, H.J.; Kozlov, K.; Buckley, J.P.; Centeno, J.; Jurgenson, V.; Kolker, A.; Conko, K.; Landa, E.; Panov, B.; Panov, Y.; Xu, H.

    2008-01-01

    This study evaluates biomarkers of occupational mercury exposure among workers at a mercury recycling operation in Gorlovka, Ukraine. The 29 study participants were divided into three occupational categories for analysis: (1) those who worked in the mercury recycling operation (Group A, n = 8), (2) those who worked at the facility but not in the yard where the recycling was done (Group B, n = 14), and (3) those who did not work at the facility (Group C, n = 7). Urine, blood, hair, and nail samples were collected from the participants, and a questionnaire was administered to obtain data on age, gender, occupational history, smoking, alcohol consumption, fish consumption, tattoos, dental amalgams, home heating system, education, source of drinking water, and family employment in the former mercury mine/smelter located on the site of the recycling facility. Each factor was tested in a univariate regression with total mercury in urine, blood, hair, and nails. Median biomarker concentrations were 4.04 ??g/g-Cr (urine), 2.58 ??g/L (blood), 3.95 ??g/g (hair), and 1.16 ??g/g (nails). Occupational category was significantly correlated (p < 0.001) with both blood and urinary mercury concentrations but not with hair or nail mercury. Four individuals had urinary mercury concentrations in a range previously found to be associated with subtle neurological and subjective symptoms (e.g., fatigue, loss of appetite, irritability), and one worker had a urinary mercury concentration in a range associated with a high probability of neurological effects and proteinuria. Comparison of results by occupational category found that workers directly involved with the recycling operation had the highest blood and urinary mercury levels. Those who worked at the facility but were not directly involved with the recycling operation had higher levels than those who did not work at the facility. Copyright ?? 2008 JOEH, LLC.

  15. Molecular Mapping of High Resistance to Bacterial Leaf Spot in Lettuce PI 358001-1.

    PubMed

    Wang, Yunwen; Lu, Huangjun; Hu, Jinguo

    2016-11-01

    Lettuce (Lactuca sativa L.) is a diploid (2n = 18) with a genome size of 2,600 Mbp, and belongs to the family Compositae. Bacterial leaf spot (BLS), caused by Xanthomonas campestris pv. vitians, is a major disease of lettuce worldwide. Leaf lettuce PI 358001-1 has been characterized as an accession highly resistant to BLS and has white seed. In order to understand inheritance of the high resistance in this germplasm line, an F 3 population consisting of 163 families was developed from the cross PI 358001-1 × 'Tall Guzmaine' (a susceptible Romaine lettuce variety with black seed). The segregation ratio of reaction to disease by seedling inoculation with X. campestris pv. vitians L7 strain in the F 3 families was shown to be 32:82:48 homozygous resistant/heterozygous/homozygous susceptible, fitting to 1:2:1 (n = 162, χ 2 = 3.19, P = 0.20). The segregation ratio of seed color by checking F 2 plants was 122:41 black/white, fitting to 3:1 (n = 163, χ 2 = 0.002, P = 0.96). The results indicated that both BLS resistance and seed color were inherited as a dominant gene mode. A genetic linkage map based on 124 randomly selected F 2 plants was developed to enable molecular mapping of the BLS resistance and the seed color trait. In total, 199 markers, comprising 176 amplified fragment length polymorphisms, 16 simple-sequence repeats, 5 resistant gene candidate markers, and 2 cleaved amplified polymorphic sequences (CAPS) markers were assigned to six linkage groups. The dominant resistance gene to BLS (Xcvr) was mapped on linkage group 2 and the gene locus y for seed color was identified on linkage group 5. Due to the nature of a single gene inheritance, the high-resistance gene should be readily transferred to adapted lettuce cultivars to battle against the devastating disease of lettuce.

  16. Mercury Flow Through the Mercury-Containing Lamp Sector of the Economy of the United States

    USGS Publications Warehouse

    Goonan, Thomas G.

    2006-01-01

    Introduction: This Scientific Investigations Report examines the flow of mercury through the mercury-containing lamp sector of the U.S. economy in 2001 from lamp manufacture through disposal or recycling. Mercury-containing lamps illuminate commercial and industrial buildings, outdoor areas, and residences. Mercury is an essential component in fluorescent lamps and high-intensity discharge lamps (high-pressure sodium, mercury-vapor, and metal halide). A typical fluorescent lamp is composed of a phosphor-coated glass tube with electrodes located at either end. Only a very small amount of the mercury is in vapor form. The remainder of the mercury is in the form of either liquid mercury metal or solid mercury oxide (mercury oxidizes over the life of the lamp). When voltage is applied, the electrodes energize the mercury vapor and cause it to emit ultraviolet energy. The phosphor coating absorbs the ultraviolet energy, which causes the phosphor to fluoresce and emit visible light. Mercury-containing lamps provide more lumens per watt than incandescent lamps and, as a result, require from three to four times less energy to operate. Mercury is persistent and toxic within the environment. Mercury-containing lamps are of environmental concern because they are widely distributed throughout the environment and are easily broken in handling. The magnitude of lamp sector mercury emissions, estimated to be 2.9 metric tons per year (t/yr), is small compared with the estimated mercury losses of the U.S. coal-burning and chlor-alkali industries, which are about 70 t/yr and about 90 t/yr, respectively.

  17. Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells

    NASA Astrophysics Data System (ADS)

    Sanyasi, Sridhar; Majhi, Rakesh Kumar; Kumar, Satish; Mishra, Mitali; Ghosh, Arnab; Suar, Mrutyunjay; Satyam, Parlapalli Venkata; Mohapatra, Harapriya; Goswami, Chandan; Goswami, Luna

    2016-04-01

    Development of effective anti-microbial therapeutics has been hindered by the emergence of bacterial strains with multi-drug resistance and biofilm formation capabilities. In this article, we report an efficient green synthesis of silver nanoparticle (AgNP) by in situ reduction and capping with a semi-synthetic polysaccharide-based biopolymer (carboxymethyl tamarind polysaccharide). The CMT-capped AgNPs were characterized by UV, DLS, FE-SEM, EDX and HR-TEM. These AgNPs have average particle size of ~20-40 nm, and show long time stability, indicated by their unchanged SPR and Zeta-potential values. These AgNPs inhibit growth and biofilm formation of both Gram positive (B. subtilis) and Gram negative (E. coli and Salmonella typhimurium) bacterial strains even at concentrations much lower than the minimum inhibitory concentration (MIC) breakpoints of antibiotics, but show reduced or no cytotoxicity against mammalian cells. These AgNPs alter expression and positioning of bacterial cytoskeletal proteins FtsZ and FtsA. CMT-capped AgNPs can effectively block growth of several clinical isolates and MDR strains representing different genera and resistant towards multiple antibiotics belonging to different classes. We propose that the CMT-capped AgNPs can have potential bio-medical application against multi-drug-resistant microbes with minimal cytotoxicity towards mammalian cells.

  18. Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells

    PubMed Central

    Sanyasi, Sridhar; Majhi, Rakesh Kumar; Kumar, Satish; Mishra, Mitali; Ghosh, Arnab; Suar, Mrutyunjay; Satyam, Parlapalli Venkata; Mohapatra, Harapriya; Goswami, Chandan; Goswami, Luna

    2016-01-01

    Development of effective anti-microbial therapeutics has been hindered by the emergence of bacterial strains with multi-drug resistance and biofilm formation capabilities. In this article, we report an efficient green synthesis of silver nanoparticle (AgNP) by in situ reduction and capping with a semi-synthetic polysaccharide-based biopolymer (carboxymethyl tamarind polysaccharide). The CMT-capped AgNPs were characterized by UV, DLS, FE-SEM, EDX and HR-TEM. These AgNPs have average particle size of ~20–40 nm, and show long time stability, indicated by their unchanged SPR and Zeta-potential values. These AgNPs inhibit growth and biofilm formation of both Gram positive (B. subtilis) and Gram negative (E. coli and Salmonella typhimurium) bacterial strains even at concentrations much lower than the minimum inhibitory concentration (MIC) breakpoints of antibiotics, but show reduced or no cytotoxicity against mammalian cells. These AgNPs alter expression and positioning of bacterial cytoskeletal proteins FtsZ and FtsA. CMT-capped AgNPs can effectively block growth of several clinical isolates and MDR strains representing different genera and resistant towards multiple antibiotics belonging to different classes. We propose that the CMT-capped AgNPs can have potential bio-medical application against multi-drug-resistant microbes with minimal cytotoxicity towards mammalian cells. PMID:27125749

  19. Quantification of Gaseous Elemental Mercury Dry Deposition to Environmental Surfaces using Mercury Stable Isotopes in a Controlled Environment

    NASA Astrophysics Data System (ADS)

    Rutter, A. P.; Schauer, J. J.; Shafer, M. M.; Olson, M.; Robinson, M.; Vanderveer, P.; Creswell, J. E.; Parman, A.; Mallek, J.; Gorski, P.

    2009-12-01

    atmospheric turbulence and wind speed. GEM enriched in stable isotope 198 (GEM-198) was released into the room from source at elevated but environmentally relevant concentrations of GEM-198 for several days. Uptake of GEM-198 from deciduous and conifer trees, grass turf, 3 types of soil, sand, concrete, asphalt, and adsorbent coated deposition coupons were quantified over several days. Exposures were conducted between 10oC and 30oC, in dark and light conditions. Mercury was recovered from the samples using acidic digestions and surface leaches, and then analyzed for the content of GEM-198 by high resolution ICPMS. Experimental results demonstrated that uptake by White Ash, White Spruce, and Kentucky bluegrass were significantly higher than uptakes measured for two Wisconsin soils, peat, sand, concrete and asphalt at all of the conditions studied. Deposition resistances for surface transfer processes for were calculated for each of the substrates across the conditions studied for use in atmospheric model simulations.

  20. Geochemistry of selected mercury mine-tailings in the Parkfield Mercury District, California

    USGS Publications Warehouse

    Rytuba, James J.; Kotlyar, Boris B.; Wilkerson, Gregg; Olson, Jerry

    2001-01-01

    The Parkfield mercury district is located in the southern part of the California Coast Range mercury mineral belt and contains three silica-carbonate-type mercury deposits that have had significant mercury production. Mercury was first produced in the district in 1873, but the main period of production occurred from 1915-1922. Total production from the district is about 5,000 flasks of mercury (a flask equals 76 pounds of mercury) with most production coming from the Patriquin mine (1,875 flasks), and somewhat less from the King (1,600 flasks) and Dawson (1,470 flasks) mines. Several other small prospects and mines occur in the district but only minor production has come from them. In 1969, Phelan Sulphur Company carried out mineral exploration at the King mine and announced the discovery of 55,000 tons of mercury ore with an average grade of 5.2 pounds per ton. The King mine is located on federal land administered by the U.S. Bureau of Land Management. Several other parcels of federal land are present adjacent to other mines and prospects in the Parkfield district. An environmental assessment of mine sites on and adjacent to federal land was carried out to determine the amount of mercury and other trace metals present in mine wastes and in sediments from streams impacted by past mining.

  1. Retention of mercury by salmon

    USGS Publications Warehouse

    Amend, Donald F.

    1970-01-01

    Consuming fish that have been exposed repeatedly to mercury derivatives is a potential public health hazard because fish can accumulate and retain mercury in their tissues (Rucker, 1968). Concern has been expressed in the United States because mercurials have been used extensively in industry and as prophylactic and therapeutic agents in fish hatcheries. Rucker and Amend (1969) showed that yearling rainbow trout (Salmo gairdneri) and chinook salmon (Oncorhynchus tshawytscha) exposed to mercurials accumulated excessive amounts of mercury in many tissues. Further, Rucker and Amend (1969) concluded that wild fish that ate mercury-contaminated fish also could contain high mercury levels. Although mercury was eliminated from most tissues within several months, substantial levels remained in the kidney for more than 33 weeks after the last exposure. Since high levels of mercury can be retained in the kidney for an undetermined time, it is possible that returning adult salmon exposed to mercurials as juveniles could constitute a potential hazard to public health. The purpose of this study was to determine whether such fish contained high residual levels of mercury.

  2. Spatial variation of mercury bioaccumulation in bats of Canada linked to atmospheric mercury deposition.

    PubMed

    Chételat, John; Hickey, M Brian C; Poulain, Alexandre J; Dastoor, Ashu; Ryjkov, Andrei; McAlpine, Donald; Vanderwolf, Karen; Jung, Thomas S; Hale, Lesley; Cooke, Emma L L; Hobson, Dave; Jonasson, Kristin; Kaupas, Laura; McCarthy, Sara; McClelland, Christine; Morningstar, Derek; Norquay, Kaleigh J O; Novy, Richard; Player, Delanie; Redford, Tony; Simard, Anouk; Stamler, Samantha; Webber, Quinn M R; Yumvihoze, Emmanuel; Zanuttig, Michelle

    2018-06-01

    Wildlife are exposed to neurotoxic mercury at locations distant from anthropogenic emission sources because of long-range atmospheric transport of this metal. In this study, mercury bioaccumulation in insectivorous bat species (Mammalia: Chiroptera) was investigated on a broad geographic scale in Canada. Fur was analyzed (n=1178) for total mercury from 43 locations spanning 20° latitude and 77° longitude. Total mercury and methylmercury concentrations in fur were positively correlated with concentrations in internal tissues (brain, liver, kidney) for a small subset (n=21) of little brown bats (Myotis lucifugus) and big brown bats (Eptesicus fuscus), validating the use of fur to indicate internal mercury exposure. Brain methylmercury concentrations were approximately 10% of total mercury concentrations in fur. Three bat species were mainly collected (little brown bats, big brown bats, and northern long-eared bats [M. septentrionalis]), with little brown bats having lower total mercury concentrations in their fur than the other two species at sites where both species were sampled. On average, juvenile bats had lower total mercury concentrations than adults but no differences were found between males and females of a species. Combining our dataset with previously published data for eastern Canada, median total mercury concentrations in fur of little brown bats ranged from 0.88-12.78μg/g among 11 provinces and territories. Highest concentrations were found in eastern Canada where bats are most endangered from introduced disease. Model estimates of atmospheric mercury deposition indicated that eastern Canada was exposed to greater mercury deposition than central and western sites. Further, mean total mercury concentrations in fur of adult little brown bats were positively correlated with site-specific estimates of atmospheric mercury deposition. This study provides the largest geographic coverage of mercury measurements in bats to date and indicates that atmospheric

  3. Addition of transcription activator-like effector binding sites to a pathogen strain-specific rice bacterial blight resistance gene makes it effective against additional strains and against bacterial leaf streak.

    PubMed

    Hummel, Aaron W; Doyle, Erin L; Bogdanove, Adam J

    2012-09-01

    Xanthomonas transcription activator-like (TAL) effectors promote disease in plants by binding to and activating host susceptibility genes. Plants counter with TAL effector-activated executor resistance genes, which cause host cell death and block disease progression. We asked whether the functional specificity of an executor gene could be broadened by adding different TAL effector binding elements (EBEs) to it. We added six EBEs to the rice Xa27 gene, which confers resistance to strains of the bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) that deliver the TAL effector AvrXa27. The EBEs correspond to three other effectors from Xoo strain PXO99(A) and three from strain BLS256 of the bacterial leaf streak pathogen Xanthomonas oryzae pv. oryzicola (Xoc). Stable integration into rice produced healthy lines exhibiting gene activation by each TAL effector, and resistance to PXO99(A) , a PXO99(A) derivative lacking AvrXa27, and BLS256, as well as two other Xoo and 10 Xoc strains virulent toward wildtype Xa27 plants. Transcripts initiated primarily at a common site. Sequences in the EBEs were found to occur nonrandomly in rice promoters, suggesting an overlap with endogenous regulatory sequences. Thus, executor gene specificity can be broadened by adding EBEs, but caution is warranted because of the possible coincident introduction of endogenous regulatory elements. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  4. Single and combined effects of microplastics and mercury on juveniles of the European seabass (Dicentrarchus labrax): Changes in behavioural responses and reduction of swimming velocity and resistance time.

    PubMed

    Barboza, Luís Gabriel Antão; Vieira, Luís Russo; Guilhermino, Lúcia

    2018-05-01

    Microplastics and mercury are environmental pollutants of great concern. The main goal of the present study was to investigate the effects of these pollutants, both individually and in binary mixtures, on the swimming performance of juvenile European seabass, Dicentrarchus labrax. Microplastics alone, mercury alone and all the mixtures caused significant reduction of the swimming velocity and resistance time of fish. Moreover, changes in behavioural responses including lethargic and erratic swimming behaviour were observed. These results highlight that fish behavioural responses can be used as sensitive endpoint to establish the effects of contamination by microplastics and also emphasizes the need to assess the combined effects of microplastics and other environmental contaminants, with special attention to the effects on behavioural responses in fish and other aquatic species. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. [Amalgam. IV. Metabolism of mercury].

    PubMed

    Gladys, S; van Meerbeek, B; Vanherle, G; Lambrechts, P

    1993-04-01

    After absorption in the body by four ways, each type of mercury undergoes a specific metabolism. Elementary mercury as mercury vapour becomes rapidly oxidized to Hg2+ and, afterwards, is metabolized as an inorganic mercurial compound. From the blood circulation mercury reaches target organs like the kidneys, the central nervous system, the liver and the hypophysis, in which mercury accumulates. The retention time varies by organ and is longest in the brain. Mercury is mainly eliminated with urine and faeces, to a lesser degree with transpiration and mother's milk and sometimes by respiration.

  6. Establishing Statistical Equivalence of Data from Different Sampling Approaches for Assessment of Bacterial Phenotypic Antimicrobial Resistance

    PubMed Central

    2018-01-01

    ABSTRACT To assess phenotypic bacterial antimicrobial resistance (AMR) in different strata (e.g., host populations, environmental areas, manure, or sewage effluents) for epidemiological purposes, isolates of target bacteria can be obtained from a stratum using various sample types. Also, different sample processing methods can be applied. The MIC of each target antimicrobial drug for each isolate is measured. Statistical equivalence testing of the MIC data for the isolates allows evaluation of whether different sample types or sample processing methods yield equivalent estimates of the bacterial antimicrobial susceptibility in the stratum. We demonstrate this approach on the antimicrobial susceptibility estimates for (i) nontyphoidal Salmonella spp. from ground or trimmed meat versus cecal content samples of cattle in processing plants in 2013-2014 and (ii) nontyphoidal Salmonella spp. from urine, fecal, and blood human samples in 2015 (U.S. National Antimicrobial Resistance Monitoring System data). We found that the sample types for cattle yielded nonequivalent susceptibility estimates for several antimicrobial drug classes and thus may gauge distinct subpopulations of salmonellae. The quinolone and fluoroquinolone susceptibility estimates for nontyphoidal salmonellae from human blood are nonequivalent to those from urine or feces, conjecturally due to the fluoroquinolone (ciprofloxacin) use to treat infections caused by nontyphoidal salmonellae. We also demonstrate statistical equivalence testing for comparing sample processing methods for fecal samples (culturing one versus multiple aliquots per sample) to assess AMR in fecal Escherichia coli. These methods yield equivalent results, except for tetracyclines. Importantly, statistical equivalence testing provides the MIC difference at which the data from two sample types or sample processing methods differ statistically. Data users (e.g., microbiologists and epidemiologists) may then interpret practical relevance

  7. Establishing Statistical Equivalence of Data from Different Sampling Approaches for Assessment of Bacterial Phenotypic Antimicrobial Resistance.

    PubMed

    Shakeri, Heman; Volkova, Victoriya; Wen, Xuesong; Deters, Andrea; Cull, Charley; Drouillard, James; Müller, Christian; Moradijamei, Behnaz; Jaberi-Douraki, Majid

    2018-05-01

    To assess phenotypic bacterial antimicrobial resistance (AMR) in different strata (e.g., host populations, environmental areas, manure, or sewage effluents) for epidemiological purposes, isolates of target bacteria can be obtained from a stratum using various sample types. Also, different sample processing methods can be applied. The MIC of each target antimicrobial drug for each isolate is measured. Statistical equivalence testing of the MIC data for the isolates allows evaluation of whether different sample types or sample processing methods yield equivalent estimates of the bacterial antimicrobial susceptibility in the stratum. We demonstrate this approach on the antimicrobial susceptibility estimates for (i) nontyphoidal Salmonella spp. from ground or trimmed meat versus cecal content samples of cattle in processing plants in 2013-2014 and (ii) nontyphoidal Salmonella spp. from urine, fecal, and blood human samples in 2015 (U.S. National Antimicrobial Resistance Monitoring System data). We found that the sample types for cattle yielded nonequivalent susceptibility estimates for several antimicrobial drug classes and thus may gauge distinct subpopulations of salmonellae. The quinolone and fluoroquinolone susceptibility estimates for nontyphoidal salmonellae from human blood are nonequivalent to those from urine or feces, conjecturally due to the fluoroquinolone (ciprofloxacin) use to treat infections caused by nontyphoidal salmonellae. We also demonstrate statistical equivalence testing for comparing sample processing methods for fecal samples (culturing one versus multiple aliquots per sample) to assess AMR in fecal Escherichia coli These methods yield equivalent results, except for tetracyclines. Importantly, statistical equivalence testing provides the MIC difference at which the data from two sample types or sample processing methods differ statistically. Data users (e.g., microbiologists and epidemiologists) may then interpret practical relevance of the

  8. Method development estimating ambient mercury concentration from monitored mercury wet deposition

    NASA Astrophysics Data System (ADS)

    Chen, S. M.; Qiu, X.; Zhang, L.; Yang, F.; Blanchard, P.

    2013-05-01

    Speciated atmospheric mercury data have recently been monitored at multiple locations in North America; but the spatial coverage is far less than the long-established mercury wet deposition network. The present study describes a first attempt linking ambient concentration with wet deposition using Beta distribution fitting of a ratio estimate. The mean, median, mode, standard deviation, and skewness of the fitted Beta distribution parameters were generated using data collected in 2009 at 11 monitoring stations. Comparing the normalized histogram and the fitted density function, the empirical and fitted Beta distribution of the ratio shows a close fit. The estimated ambient mercury concentration was further partitioned into reactive gaseous mercury and particulate bound mercury using linear regression model developed by Amos et al. (2012). The method presented here can be used to roughly estimate mercury ambient concentration at locations and/or times where such measurement is not available but where wet deposition is monitored.

  9. Determination of mercurous chloride and total mercury in mercury ores

    USGS Publications Warehouse

    Fahey, J.J.

    1937-01-01

    A method for the determination of mercurous chloride and total mercury on the same sample is described. The mercury minerals are volatilized in a glass tube and brought into intimate contact with granulated sodium carbonate. The chlorine is fixed as sodium chloride, determined with silver nitrate, and computed to mercurous chloride. The mercury is collected on a previously weighed gold coil and weighed.

  10. Sensitivity of Mixed Populations of Staphylococcus aureus and Escherichia coli to Mercurials

    PubMed Central

    Stutzenberger, F. J.; Bennett, E. O.

    1965-01-01

    Staphylococcus aureus was found to have a higher resistance to merbromin and mercuric chloride in the presence of Escherichia coli. The protective effect of the gram-negative organism on S. aureus was due to the production of extracellular glutathione and hydrogen sulfide and to an unequal distribution of the inhibitor between the two species. S. aureus did not significantly influence the resistance of E. coli to mercurials. PMID:14339264

  11. Probing Prokaryotic Social Behaviors with Bacterial “Lobster Traps”

    PubMed Central

    Connell, Jodi L.; Wessel, Aimee K.; Parsek, Matthew R.; Ellington, Andrew D.; Whiteley, Marvin; Shear, Jason B.

    2010-01-01

    Bacteria are social organisms that display distinct behaviors/phenotypes when present in groups. These behaviors include the abilities to construct antibiotic-resistant sessile biofilm communities and to communicate with small signaling molecules (quorum sensing [QS]). Our understanding of biofilms and QS arises primarily from in vitro studies of bacterial communities containing large numbers of cells, often greater than 108 bacteria; however, in nature, bacteria often reside in dense clusters (aggregates) consisting of significantly fewer cells. Indeed, bacterial clusters containing 101 to 105 cells are important for transmission of many bacterial pathogens. Here, we describe a versatile strategy for conducting mechanistic studies to interrogate the molecular processes controlling antibiotic resistance and QS-mediated virulence factor production in high-density bacterial clusters. This strategy involves enclosing a single bacterium within three-dimensional picoliter-scale microcavities (referred to as bacterial “lobster traps”) defined by walls that are permeable to nutrients, waste products, and other bioactive small molecules. Within these traps, bacteria divide normally into extremely dense (1012 cells/ml) clonal populations with final population sizes similar to that observed in naturally occurring bacterial clusters. Using these traps, we provide strong evidence that within low-cell-number/high-density bacterial clusters, QS is modulated not only by bacterial density but also by population size and flow rate of the surrounding medium. We also demonstrate that antibiotic resistance develops as cell density increases, with as few as ~150 confined bacteria exhibiting an antibiotic-resistant phenotype similar to biofilm bacteria. Together, these findings provide key insights into clinically relevant phenotypes in low-cell-number/high-density bacterial populations. PMID:21060734

  12. Bioremediation of mercury: not properly exploited in contaminated soils!

    PubMed

    Mahbub, Khandaker Rayhan; Bahar, Md Mezbaul; Labbate, Maurizio; Krishnan, Kannan; Andrews, Stuart; Naidu, Ravi; Megharaj, Mallavarapu

    2017-02-01

    Contamination of land and water caused by heavy metal mercury (Hg) poses a serious threat to biota worldwide. The seriousness of toxicity of this neurotoxin is characterized by its ability to augment in food chains and bind to thiol groups in living tissue. Therefore, different remediation approaches have been implemented to rehabilitate Hg-contaminated sites. Bioremediation is considered as cheaper and greener technology than the conventional physico-chemical means. Large-scale use of Hg-volatilizing bacteria are used to clean up Hg-contaminated waters, but there is no such approach to remediate Hg-contaminated soils. This review focuses on recent uses of Hg-resistant bacteria in bioremediation of mercury-contaminated sites, limitation and advantages of this approach, and identifies the gaps in existing research.

  13. Imipenem-resistant Gram-negative bacterial isolates carried by persons upon medical examination in Korea.

    PubMed

    Kim, So Yeon; Shin, Sang Yop; Rhee, Ji-Young; Ko, Kwan Soo

    2017-08-01

    Carbapenem-resistant Gram-negative bacteria (CR-GNB) have emerged and disseminated worldwide, become a great concern worldwide including Korea. The prevalence of fecal carriage of imipenem-resistant Gram-negative bacteria (IR-GNB) in persons in Korea was investigated. Stool samples were collected from 300 persons upon medical examination. Samples were screened for IR-GNB by using MacConkey agar with 2 μl/ml imipenem. Species were identified by 16S rRNA gene sequence analysis, and antimicrobial susceptibility was determined by the broth microdilution method. In total, 82 IR-GNB bacterial isolates were obtained from 79 (26.3%) out of 300 healthy persons. Multilocus sequence typing analysis showed very high diversity among IR P. aeruginosa, S. maltophilia, and E. cloacae isolates, and pulsed-field gel electrophoresis revealed five main pulsotypes of IR P. mirabilis. As for the presence of metallo-β-lactamases (MBLs), only one IMP-25-producing S. marcescens isolate was identified. Although only one carbapenemase-producing isolate was identified, the high colonization rates with IR-GNB isolates in this study is notable because carriers may be a reservoir for the dissemination of resistant pathogens within the community as well as in health care institutions.

  14. Bacteriophages and Bacterial Plant Diseases

    PubMed Central

    Buttimer, Colin; McAuliffe, Olivia; Ross, R. P.; Hill, Colin; O’Mahony, Jim; Coffey, Aidan

    2017-01-01

    Losses in crop yields due to disease need to be reduced in order to meet increasing global food demands associated with growth in the human population. There is a well-recognized need to develop new environmentally friendly control strategies to combat bacterial crop disease. Current control measures involving the use of traditional chemicals or antibiotics are losing their efficacy due to the natural development of bacterial resistance to these agents. In addition, there is an increasing awareness that their use is environmentally unfriendly. Bacteriophages, the viruses of bacteria, have received increased research interest in recent years as a realistic environmentally friendly means of controlling bacterial diseases. Their use presents a viable control measure for a number of destructive bacterial crop diseases, with some phage-based products already becoming available on the market. Phage biocontrol possesses advantages over chemical controls in that tailor-made phage cocktails can be adapted to target specific disease-causing bacteria. Unlike chemical control measures, phage mixtures can be easily adapted for bacterial resistance which may develop over time. In this review, we will examine the progress and challenges for phage-based disease biocontrol in food crops. PMID:28163700

  15. A new risk factor for neonatal vancomycin-resistant Enterococcus colonisation: bacterial probiotics.

    PubMed

    Topcuoglu, Sevilay; Gursoy, Tugba; Ovalı, Fahri; Serce, Ozge; Karatekin, Guner

    2015-08-01

    Vancomycin-resistant Enterococcus (VRE) colonisation can be controlled with strict adherence to infection control measures. We describe a VRE outbreak coincident with bacterial probiotic trial. Relationship between probiotic and VRE colonisation, and other possible risk factors were investigated. Two hundred and ten infants with gestational age less than 32 weeks had been randomised for a trial with probiotic preparation containing Lactobacillus casei, Lactobacillus rhamnosus, Lactobacillus plantarum, Bifidobacterium lactis, fructooligosaccharide, galactooligosaccharide, colostrums and lactoferrin (NBL probiotic ATP®; Nobel, Istanbul, Turkey) between February 2012 and August 2013 when a VRE outbreak also took place. The existence of a relationship between this probiotic preparation and VRE colonisation was investigated. The begining and end of the outbreak were coincident with the beginning and end of the probiotic trial. Demographic and clinical features of neonates did not differ between VRE colonised (n = 94) and non-colonised infants (n = 116) except for vancomycin (p = 0.012) and probiotic (p < 0.001) use. Probiotic and vancomycin exposure were significant risk factors for VRE colonisation. The acquisition and transfer of resistance genes of bacteria may be mediated by probiotics. Therefore, the safety of probiotics is a concern and should be investigated further.

  16. Development of breeding lines with three pyramided resistance genes that confer broad-spectrum bacterial blight resistance and their molecular analysis in rice.

    PubMed

    Suh, Jung-Pil; Jeung, Ji-Ung; Noh, Tae-Hwan; Cho, Young-Chan; Park, So-Hyun; Park, Hyun-Su; Shin, Mun-Sik; Kim, Chung-Kon; Jena, Kshirod K

    2013-02-08

    The development of resistant cultivars has been the most effective and economical strategy to control bacterial leaf blight (BB) disease of rice caused by Xanthomonas oryzae pv. oryzae (Xoo). Molecular markers have made it possible to identify and pyramid valuable genes of agronomic importance in resistance rice breeding. In this study, three resistance genes (Xa4 + xa5 + Xa21) were transferred from an indica donor (IRBB57), using a marker-assisted backcrossing (MAB) breeding strategy, into a BB-susceptible elite japonica rice cultivar, Mangeumbyeo, which is high yielding with good grain quality. Our analysis led to the development of three elite advanced backcross breeding lines (ABL) with three resistance genes by foreground and phenotypic selection in a japonica genetic background without linkage drag. The background genome recovery of the ABL expressed more than 92.1% using genome-wide SSR marker analysis. The pathogenicity assays of three resistance-gene-derived ABL were conducted under glasshouse conditions with the 18 isolates of Xoo prevalent in Korea. The ABL exhibited very small lesion lengths, indicating a hypersensitive reaction to all 18 isolates of Xoo, with agronomic and grain quality traits similar to those of the recurrent parent. Pyramiding the resistance genes Xa4, xa5 and Xa21 provided a higher resistance to Xoo than the introduction of the individual resistance genes. Additionally, the combination of two dominant and one recessive BB resistance gene did not express any negative effect on agronomic traits in the ABL. The strategy of simultaneous foreground and phenotypic selection to introduce multiple R genes is very useful to reduce the cost and the time required for the isolation of desirable recombinants with target resistance genes in rice. The resistance-gene-derived ABL have practical breeding value without a yield penalty by providing broad-spectrum resistance against most of the existing isolates of BB in South Korea and will

  17. Methyl mercury, but not inorganic mercury, associated with higher blood pressure during pregnancy.

    PubMed

    Wells, Ellen M; Herbstman, Julie B; Lin, Yu Hong; Hibbeln, Joseph R; Halden, Rolf U; Witter, Frank R; Goldman, Lynn R

    2017-04-01

    Prior studies addressing associations between mercury and blood pressure have produced inconsistent findings; some of this may result from measuring total instead of speciated mercury. This cross-sectional study of 263 pregnant women assessed total mercury, speciated mercury, selenium, and n-3 polyunsaturated fatty acids in umbilical cord blood and blood pressure during labor and delivery. Models with a) total mercury or b) methyl and inorganic mercury were evaluated. Regression models adjusted for maternal age, race/ethnicity, prepregnancy body mass index, neighborhood income, parity, smoking, n-3 fatty acids and selenium. Geometric mean total, methyl, and inorganic mercury concentrations were 1.40µg/L (95% confidence interval: 1.29, 1.52); 0.95µg/L (0.84, 1.07); and 0.13µg/L (0.10, 0.17), respectively. Elevated systolic BP, diastolic BP, and pulse pressure were found, respectively, in 11.4%, 6.8%, and 19.8% of mothers. In adjusted multivariable models, a one-tertile increase of methyl mercury was associated with 2.83mmHg (0.17, 5.50) higher systolic blood pressure and 2.99mmHg (0.91, 5.08) higher pulse pressure. In the same models, an increase of one tertile of inorganic mercury was associated with -1.18mmHg (-3.72, 1.35) lower systolic blood pressure and -2.51mmHg (-4.49, -0.53) lower pulse pressure. No associations were observed with diastolic pressure. There was a non-significant trend of higher total mercury with higher systolic blood pressure. We observed a significant association of higher methyl mercury with higher systolic and pulse pressure, yet higher inorganic mercury was significantly associated with lower pulse pressure. These results should be confirmed with larger, longitudinal studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Prevalence of antibiotic resistance genes in bacterial communities associated with Cladophora glomerata mats along the nearshore of Lake Ontario.

    PubMed

    Ibsen, Michael; Fernando, Dinesh M; Kumar, Ayush; Kirkwood, Andrea E

    2017-05-01

    The alga Cladophora glomerata can erupt in nuisance blooms throughout the lower Great Lakes. Since bacterial abundance increases with the emergence and decay of Cladophora, we investigated the prevalence of antibiotic resistance (ABR) in Cladophora-associated bacterial communities up-gradient and down-gradient from a large sewage treatment plant (STP) on Lake Ontario. Although STPs are well-known sources of ABR, we also expected detectable ABR from up-gradient wetland communities, since they receive surface run-off from urban and agricultural sources. Statistically significant differences in aquatic bacterial abundance and ABR were found between down-gradient beach samples and up-gradient coastal wetland samples (ANOVA, Holm-Sidak test, p < 0.05). Decaying and free-floating Cladophora sampled near the STP had the highest bacterial densities overall, including on ampicillin- and vancomycin-treated plates. However, quantitative polymerase chain reaction analysis of the ABR genes ampC, tetA, tetB, and vanA from environmental communities showed a different pattern. Some of the highest ABR gene levels occurred at the 2 coastal wetland sites (vanA). Overall, bacterial ABR profiles from environmental samples were distinguishable between living and decaying Cladophora, inferring that Cladophora may control bacterial ABR depending on its life-cycle stage. Our results also show how spatially and temporally dynamic ABR is in nearshore aquatic bacteria, which warrants further research.

  19. Formation of soluble mercury oxide coatings: Transformation of elemental mercury in soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Carrie L.; Watson, David B.; Lester, Brian P.

    2015-09-21

    In this study, the impact of mercury (Hg) on human and ecological health has been known for decades. Although a treaty signed in 2013 by 147 nations regulates future large-scale mercury emissions, legacy Hg contamination exists worldwide and small-scale releases will continue. The fate of elemental mercury, Hg(0), lost to the subsurface and its potential chemical transformation that can lead to changes in speciation and mobility are poorly understood. Here, we show that Hg(0) beads interact with soil or manganese oxide solids and X-ray spectroscopic analysis indicates that the soluble mercury coatings are HgO. Dissolution studies show that, after reactingmore » with a composite soil, >20 times more Hg is released into water from the coated beads than from a pure liquid mercury bead. An even larger, >700 times, release occurs from coated Hg(0) beads that have been reacted with manganese oxide, suggesting that manganese oxides are involved in the transformation of the Hg(0) beads and creation of the soluble mercury coatings. Although the coatings may inhibit Hg(0) evaporation, the high solubility of the coatings can enhance Hg(II) migration away from the Hg(0)-spill site and result in potential changes in mercury speciation in the soil and increased mercury mobility.« less

  20. The inheritance of resistance to bacterial leaf spot of lettuce caused by Xanthomonas campestris pv. vitians in three lettuce cultivars

    USDA-ARS?s Scientific Manuscript database

    Lettuce yields can be reduced by the disease bacterial leaf spot (BLS) caused by the pathogen Xanthomonas campestris pv. vitians (Xcv) and host resistance is the most feasible method to reduce disease losses. The cultivars La Brillante, Pavane, and Little Gem express an incompatible host-pathogen in...

  1. Detecting Airborne Mercury by Use of Polymer/Carbon Films

    NASA Technical Reports Server (NTRS)

    Shevade, Abhijit; Ryan, Margaret; Homer, Margie; Kisor, Adam; Jewell, April; Yen, Shiao-Pin; Manatt, Kenneth; Blanco, Mario; Goddard, William

    2009-01-01

    Films made of certain polymer/carbon composites have been found to be potentially useful as sensing films for detecting airborne elemental mercury at concentrations on the order of tens of parts per billion or more. That is to say, when the polymer/carbon composite films are exposed to air containing mercury vapor, their electrical resistances decrease by measurable amounts. Because airborne mercury is a health hazard, it is desirable to detect it with great sensitivity, especially in enclosed environments in which there is a risk of a mercury leak from lamps or other equipment. The present effort to develop polymerbased mercury-vapor sensors complements the work reported in NASA Tech Briefs Detecting Airborne Mercury by Use of Palladium Chloride (NPO- 44955), Vol. 33, No. 7 (July 2009), page 48 and De tecting Airborne Mer cury by Use of Gold Nanowires (NPO-44787), Vol. 33, No. 7 (July 2009), page 49. Like those previously reported efforts, the present effort is motivated partly by a need to enable operation and/or regeneration of sensors under relatively mild conditions more specifically, at temperatures closer to room temperature than to the elevated temperatures (greater than 100 C ) needed for regeneration of sensors based on noble-metal films. The present polymer/carbon films are made from two polymers, denoted EYN1 and EYN2 (see Figure 1), both of which are derivatives of poly-4-vinyl pyridine with amine functional groups. Composites of these polymers with 10 to 15 weight percent of carbon were prepared and solution-deposited onto the JPL ElectronicNose sensor substrates for testing. Preliminary test results showed that the resulting sensor films gave measurable indications of airborne mercury at concentrations on the order of tens of parts per billion (ppb) or more. The operating temperature range for the sensing films was 28 to 40 C and that the sensor films regenerated spontaneously, without heating above operating temperature (see Figure 2).

  2. [The role of heavy metals and their derivatives in the selection of antibiotics resistant gram-negative rods (author's transl)].

    PubMed

    Joly, B; Cluzel, R

    1975-01-01

    The authors have studied 116 Gram-negative strains, 27 of which were sensitive to antibiotics and 89 showed multiple resistance. The MIC of mercury chloride, mercuric nitrate and of an aqueous solution of mercuresceine were much higher in the case of the sensitive strains. The transfer of resistance to mercury, which has been achieved in 56% of cases, was always accompanied by transfer of resistance to the antibiotics. The MIC of phenylmercury borate, mercurothiolic acid and other heavy metals (such as: cobaltous nitrate, silver nitrate, cadmium nitrate, nickel nitrate, zinc nitrate, copper sulphate and sodium arsenate) are approximatively the same for all strains. The normal concentrations of mercury in nature are lower than the rate of microbial selection. But in areas of accumulation, particularly in biological chains or in hospitals, the mercury compounds could play a part in the selection of antibiotic resistant Gram-negative bacteria.

  3. Effect of Ampicillin, Streptomycin, Penicillin and Tetracycline on Metal Resistant and Non-Resistant Staphylococcus aureus

    PubMed Central

    Chudobova, Dagmar; Dostalova, Simona; Blazkova, Iva; Michalek, Petr; Ruttkay-Nedecky, Branislav; Sklenar, Matej; Nejdl, Lukas; Kudr, Jiri; Gumulec, Jaromir; Tmejova, Katerina; Konecna, Marie; Vaculovicova, Marketa; Hynek, David; Masarik, Michal; Kynicky, Jindrich; Kizek, Rene; Adam, Vojtech

    2014-01-01

    There is an arising and concerning issue in the field of bacterial resistance, which is confirmed by the number of deaths associated with drug-resistant bacterial infections. The aim of this study was to compare the effects of antibiotics on Staphylococcus aureus non-resistant strain and strains resistant to cadmium or lead ions. Metal resistant strains were created by the gradual addition of 2 mM solution of metal ions (cadmium or lead) to the S. aureus culture. An increasing antimicrobial effect of ampicillin, streptomycin, penicillin and tetracycline (0, 10, 25, 50, 75, 150, 225 and 300 µM) on the resistant strains was observed using a method of growth curves. A significant growth inhibition (compared to control) of cadmium resistant cells was observed in the presence of all the four different antibiotics. On the other hand, the addition of streptomycin and ampicillin did not inhibit the growth of lead resistant strain. Other antibiotics were still toxic to the bacterial cells. Significant differences in the morphology of cell walls were indicated by changes in the cell shape. Our data show that the presence of metal ions in the urban environment may contribute to the development of bacterial strain resistance to other substances including antibiotics, which would have an impact on public health. PMID:24651395

  4. Epidemiology and Resistance Patterns of Bacterial and Fungal Colonization of Biliary Plastic Stents: A Prospective Cohort Study

    PubMed Central

    Lübbert, Christoph; Wendt, Karolin; Feisthammel, Jürgen; Moter, Annette; Lippmann, Norman; Busch, Thilo; Mössner, Joachim; Hoffmeister, Albrecht; Rodloff, Arne C.

    2016-01-01

    Background Plastic stents used for the treatment of biliary obstruction will become occluded over time due to microbial colonization and formation of biofilms. Treatment of stent-associated cholangitis is often not effective because of inappropriate use of antimicrobial agents or antimicrobial resistance. We aimed to assess the current bacterial and fungal etiology of stent-associated biofilms, with particular emphasis on antimicrobial resistance. Methods Patients with biliary strictures requiring endoscopic stent placement were prospectively enrolled. After the retrieval of stents, biofilms were disrupted by sonication, microorganisms were cultured, and isolates were identified by matrix-associated laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry and/or biochemical typing. Finally, minimum inhibitory concentrations (MICs) were determined for various antimicrobial agents. Selected stents were further analyzed by fluorescence in situ hybridization (FISH). Results Among 120 patients (62.5% males, median age 64 years) with biliary strictures (35% malignant, 65% benign), 113 double pigtail polyurethane and 100 straight polyethylene stents were analyzed after a median indwelling time of 63 days (range, 1–1274 days). The stent occlusion rate was 11.5% and 13%, respectively, being associated with a significantly increased risk of cholangitis (38.5% vs. 9.1%, P<0.001). Ninety-five different bacterial and 13 fungal species were detected; polymicrobial colonization predominated (95.8% vs. 4.2%, P<0.001). Enterococci (79.3%), Enterobacteriaceae (73.7%), and Candida spp. (55.9%) were the leading pathogens. Candida species were more frequent in patients previously receiving prolonged antibiotic therapy (63% vs. 46.7%, P = 0.023). Vancomycin-resistant enterococci accounted for 13.7%, extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae with co-resistance to ciprofloxacin accounted for 13.9%, and azole-resistant Candida spp. accounted for

  5. Epidemiology and Resistance Patterns of Bacterial and Fungal Colonization of Biliary Plastic Stents: A Prospective Cohort Study.

    PubMed

    Lübbert, Christoph; Wendt, Karolin; Feisthammel, Jürgen; Moter, Annette; Lippmann, Norman; Busch, Thilo; Mössner, Joachim; Hoffmeister, Albrecht; Rodloff, Arne C

    2016-01-01

    Plastic stents used for the treatment of biliary obstruction will become occluded over time due to microbial colonization and formation of biofilms. Treatment of stent-associated cholangitis is often not effective because of inappropriate use of antimicrobial agents or antimicrobial resistance. We aimed to assess the current bacterial and fungal etiology of stent-associated biofilms, with particular emphasis on antimicrobial resistance. Patients with biliary strictures requiring endoscopic stent placement were prospectively enrolled. After the retrieval of stents, biofilms were disrupted by sonication, microorganisms were cultured, and isolates were identified by matrix-associated laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry and/or biochemical typing. Finally, minimum inhibitory concentrations (MICs) were determined for various antimicrobial agents. Selected stents were further analyzed by fluorescence in situ hybridization (FISH). Among 120 patients (62.5% males, median age 64 years) with biliary strictures (35% malignant, 65% benign), 113 double pigtail polyurethane and 100 straight polyethylene stents were analyzed after a median indwelling time of 63 days (range, 1-1274 days). The stent occlusion rate was 11.5% and 13%, respectively, being associated with a significantly increased risk of cholangitis (38.5% vs. 9.1%, P<0.001). Ninety-five different bacterial and 13 fungal species were detected; polymicrobial colonization predominated (95.8% vs. 4.2%, P<0.001). Enterococci (79.3%), Enterobacteriaceae (73.7%), and Candida spp. (55.9%) were the leading pathogens. Candida species were more frequent in patients previously receiving prolonged antibiotic therapy (63% vs. 46.7%, P = 0.023). Vancomycin-resistant enterococci accounted for 13.7%, extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae with co-resistance to ciprofloxacin accounted for 13.9%, and azole-resistant Candida spp. accounted for 32.9% of the respective

  6. To Mercury dynamics

    NASA Astrophysics Data System (ADS)

    Barkin, Yu. V.; Ferrandiz, J. M.

    Present significance of the study of rotation of Mercury considered as a core-mantle system arises from planned Mercury missions. New high accurate data on Mercury's structure and its physical fields are expected from BepiColombo mission (Anselmi et al., 2001). Investigation of resonant rotation of Mercury, begun by Colombo G. (1966), will play here main part. New approaches to the study of Mercury dynamics and the construction of analytical theory of its resonant rotation are suggested. Within these approaches Mercury is considered as a system of two non-spherical interacting bodies: a core and a mantle. The mantle of Mercury is considered as non-spherical, rigid (or elastic) layer. Inner shell is a liquid core, which occupies a large ellipsoidal cavity of Mercury. This Mercury system moves in the gravitational field of the Sun in resonant traslatory-rotary regime of the resonance 3:2. We take into account only the second harmonic of the force function of the Sun and Mercury. For the study of Mercury rotation we have been used specially designed canonical equations of motion in Andoyer and Poincare variables (Barkin, Ferrandiz, 2001), more convenient for the application of mentioned methods. Approximate observational and some theoretical evaluations of the two main coefficients of Mercury gravitational field J_2 and C22 are known. From observational data of Mariner-10 mission were obtained some first evaluations of these coefficients: J_2 =(8± 6)\\cdot 10-5(Esposito et al., 1977); J_2 =(6± 2)\\cdot 10-5and C22 =(1.0± 0.5)\\cdot 10-5(Anderson et al., 1987). Some theoretical evaluation of ratio of these coefficients has been obtained on the base of study of periodic motions of the system of two non-spherical gravitating bodies (Barkin, 1976). Corresponding values of coefficients consist: J_2 =8\\cdot 10-5and C22 =0.33\\cdot 10-5. We have no data about non-sphericity of inner core of Mercury. Planned missions to Mercury (BepiColombo and Messenger) promise to

  7. Similar effects of QTL Haplotypes for Bacterial Cold Water Disease resistance across two generations in a commercial rainbow trout breeding population

    USDA-ARS?s Scientific Manuscript database

    Previously we have demonstrated that genomic selection (GS) for bacterial cold water disease (BCWD) resistance can double the accuracy of traditional pedigree-based selection in a commercial rainbow trout breeding population. The objective of this study was to evaluate the effectiveness of marker ...

  8. Synergistic and Additive Effect of Oregano Essential Oil and Biological Silver Nanoparticles against Multidrug-Resistant Bacterial Strains

    PubMed Central

    Scandorieiro, Sara; de Camargo, Larissa C.; Lancheros, Cesar A. C.; Yamada-Ogatta, Sueli F.; Nakamura, Celso V.; de Oliveira, Admilton G.; Andrade, Célia G. T. J.; Duran, Nelson; Nakazato, Gerson; Kobayashi, Renata K. T.

    2016-01-01

    Bacterial resistance to conventional antibiotics has become a clinical and public health problem, making therapeutic decisions more challenging. Plant compounds and nanodrugs have been proposed as potential antimicrobial alternatives. Studies have shown that oregano (Origanum vulgare) essential oil (OEO) and silver nanoparticles have potent antibacterial activity, also against multidrug-resistant strains; however, the strong organoleptic characteristics of OEO and the development of resistance to these metal nanoparticles can limit their use. This study evaluated the antibacterial effect of a two-drug combination of biologically synthesized silver nanoparticles (bio-AgNP), produced by Fusarium oxysporum, and OEO against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. OEO and bio-AgNP showed bactericidal effects against all 17 strains tested, with minimal inhibitory concentrations (MIC) ranging from 0.298 to 1.193 mg/mL and 62.5 to 250 μM, respectively. Time-kill curves indicated that OEO acted rapidly (within 10 min), while the metallic nanoparticles took 4 h to kill Gram-negative bacteria and 24 h to kill Gram-positive bacteria. The combination of the two compounds resulted in a synergistic or additive effect, reducing their MIC values and reducing the time of action compared to bio-AgNP used alone, i.e., 20 min for Gram-negative bacteria and 7 h for Gram-positive bacteria. Scanning electron microscopy (SEM) revealed similar morphological alterations in Staphylococcus aureus (non-methicillin-resistant S. aureus, non-MRSA) cells exposed to three different treatments (OEO, bio-AgNP and combination of the two), which appeared cell surface blebbing. Individual and combined treatments showed reduction in cell density and decrease in exopolysaccharide matrix compared to untreated bacterial cells. It indicated that this composition have an antimicrobial activity against S. aureus by disrupting cells. Both compounds showed very low

  9. Synergistic and Additive Effect of Oregano Essential Oil and Biological Silver Nanoparticles against Multidrug-Resistant Bacterial Strains.

    PubMed

    Scandorieiro, Sara; de Camargo, Larissa C; Lancheros, Cesar A C; Yamada-Ogatta, Sueli F; Nakamura, Celso V; de Oliveira, Admilton G; Andrade, Célia G T J; Duran, Nelson; Nakazato, Gerson; Kobayashi, Renata K T

    2016-01-01

    Bacterial resistance to conventional antibiotics has become a clinical and public health problem, making therapeutic decisions more challenging. Plant compounds and nanodrugs have been proposed as potential antimicrobial alternatives. Studies have shown that oregano (Origanum vulgare) essential oil (OEO) and silver nanoparticles have potent antibacterial activity, also against multidrug-resistant strains; however, the strong organoleptic characteristics of OEO and the development of resistance to these metal nanoparticles can limit their use. This study evaluated the antibacterial effect of a two-drug combination of biologically synthesized silver nanoparticles (bio-AgNP), produced by Fusarium oxysporum, and OEO against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. OEO and bio-AgNP showed bactericidal effects against all 17 strains tested, with minimal inhibitory concentrations (MIC) ranging from 0.298 to 1.193 mg/mL and 62.5 to 250 μM, respectively. Time-kill curves indicated that OEO acted rapidly (within 10 min), while the metallic nanoparticles took 4 h to kill Gram-negative bacteria and 24 h to kill Gram-positive bacteria. The combination of the two compounds resulted in a synergistic or additive effect, reducing their MIC values and reducing the time of action compared to bio-AgNP used alone, i.e., 20 min for Gram-negative bacteria and 7 h for Gram-positive bacteria. Scanning electron microscopy (SEM) revealed similar morphological alterations in Staphylococcus aureus (non-methicillin-resistant S. aureus, non-MRSA) cells exposed to three different treatments (OEO, bio-AgNP and combination of the two), which appeared cell surface blebbing. Individual and combined treatments showed reduction in cell density and decrease in exopolysaccharide matrix compared to untreated bacterial cells. It indicated that this composition have an antimicrobial activity against S. aureus by disrupting cells. Both compounds showed very low

  10. Effect of Seed Treatment by Cold Plasma on the Resistance of Tomato to Ralstonia solanacearum (Bacterial Wilt)

    PubMed Central

    Jiang, Jiafeng; Lu, Yufang; Li, Jiangang; Li, Ling; He, Xin; Shao, Hanliang; Dong, Yuanhua

    2014-01-01

    This study investigated the effect of cold plasma seed treatment on tomato bacterial wilt, caused by Ralstonia solanacearum (R. solanacearum), and the regulation of resistance mechanisms. The effect of cold plasma of 80W on seed germination, plant growth, nutrient uptake, disease severity, hydrogen peroxide (H2O2) concentration and activities of peroxidase (POD; EC 1.11.1.7), polyphenol oxidase (PPO; EC 1.10.3.2) and phenylalanine ammonia lyase (PAL; EC 4.3.1.5) were examined in tomato plants. Plasma treatment increased tomato resistance to R. solanacearum with an efficacy of 25.0%. Plasma treatment significantly increased both germination and plant growth in comparison with the control treatment, and plasma-treated plants absorbed more calcium and boron than the controls. In addition, H2O2 levels in treated plants rose faster and reached a higher peak, at 2.579 µM gFW−1, 140% greater than that of the control. Activities of POD (421.3 U gFW−1), PPO (508.8 U gFW−1) and PAL (707.3 U gFW−1) were also greater in the treated plants than in the controls (103.0 U gFW−1, 166.0 U gFW−1 and 309.4 U gFW−1, respectively). These results suggest that plasma treatment affects the regulation of plant growth, H2O2 concentration, and POD, PPO and PAL activity in tomato, resulting in an improved resistance to R. solanacearum. Consequently, cold plasma seed treatment has the potential to control tomato bacterial wilt caused by R. solanacearum. PMID:24840508

  11. Fatigue properties of type 316LN stainless steel in air and mercury

    NASA Astrophysics Data System (ADS)

    Strizak, J. P.; Tian, H.; Liaw, P. K.; Mansur, L. K.

    2005-08-01

    An extensive fatigue testing program on 316LN stainless steel was recently carried out to support the design of the mercury target container for the spallation neutron source (SNS) that is currently under construction at the Oak Ridge National Laboratory in the United States. The major objective was to determine the effects of mercury on fatigue behavior. The S- N fatigue behavior of 316LN stainless steel is characterized by a family of bilinear fatigue curves which are dependent on frequency, environment, mean stress and cold work. Generally, fatigue life increases with decreasing stress and levels off in the high cycle region to an endurance limit below which the material will not fail. For fully reversed loading as well as tensile mean stress loading conditions mercury had no effect on endurance limit. However, at higher stresses a synergistic relationship between mercury and cyclic loading frequency was observed at low frequencies. As expected, fatigue life decreased with decreasing frequency, but the response was more pronounced in mercury compared with air. As a result of liquid metal embrittlement (LME), fracture surfaces of specimens tested in mercury showed widespread brittle intergranular cracking as opposed to typical transgranular cracking for specimens tested in air. For fully reversed loading (zero mean stress) the effect of mercury disappeared as frequency increased to 10 Hz. For mean stress conditions with R-ratios of 0.1 and 0.3, LME was still evident at 10 Hz, but at 700 Hz the effect of mercury had disappeared ( R = 0.1). Further, for higher R-ratios (0.5 and 0.75) fatigue curves for 10 Hz showed no environmental effect. Finally, cold working (20%) increased tensile strength and hardness, and improved fatigue resistance. Fatigue behavior at 10 and 700 Hz was similar and no environmental effect was observed.

  12. Amoxicillin/clavulanate (Augmentin) resistant Escherichia coli in bacterial peritonitis after abdominal surgery--clinical outcome in ICU patients.

    PubMed

    Rahnama'i, M S; Wagenvoort, J H T; van der Linden, C J

    2009-05-01

    Bacterial resistance to antimicrobial agents is of great concern to clinicians. Patient outcome after infection is mainly dependent on the sensitivity of the bacterium to the agent used. We retrospectively studied 89 postoperative intensive care unit (ICU) patients with proven Escherichia coli peritonitis and investigated the clinical consequences of the E. coli resistance to amoxicillin/clavulanate. Significantly increased mortality, days of ventilation and ICU stay were noted in the co-amoxicillin/clavulanate resistant group. Furthermore, our results demonstrate that the sensitivity of E. coli to amoxicillin/clavulanate in the postoperative ICU setting has decreased in recent years. We can conclude that the current antibiotic regimen for the empirical treatment of ICU patients with peritonitis, as used in our hospital, needs to be changed. A switch, for instance, to ceftriaxone (Rocephin) in combination with metronidazole and gentamicin, instead of the present regimen of amoxicillin/clavulanate in combination with gentamicin, seems preferable.

  13. Mercury Quick Facts: Health Effects of Mercury Exposure

    MedlinePlus

    ... up in tiny cracks and spaces in your house. • • Mercury can vaporize (evaporate) into the air in your house. The vapor cannot be seen or smelled. • • Mercury ... up in tiny cracks and spaces in your house. • • Can vaporize (evaporate) into the air in your ...

  14. Urinary tract infections and bacterial prostatitis in men.

    PubMed

    Wagenlehner, Florian M E; Weidner, Wolfgang; Pilatz, Adrian; Naber, Kurt G

    2014-02-01

    The purpose of this review is to highlight advances in research on urinary tract infections (UTIs) and bacterial prostatitis in men in the preceding year. The antiseptic properties of the prostate secretions might be an important factor for prevention of recurrency. Risk factors for UTI in men include prostate enlargement and urological interventions, such as transrectal prostate biopsy. Preventive treatment of prostate enlargement has been demonstrated to reduce frequency of UTI. Ensuing infections after prostate biopsy, such as UTI and bacterial prostatitis, are increasing due to increasing rates of fluoroquinolone resistance. The increasing global antibiotic resistance also significantly affects management of UTI in men, and therefore calls for alternative strategies.Apart from prevention of complicating factors leading to UTI, a more thorough understanding of the pathophysiology may play a more important role in the future, to define new targets for treatment. Interesting results that might interfere with the intracellular mucosal bacterial load in the bladder wall have been found in the last years. UTI in men and bacterial prostatitis are currently underrepresented in the medical literature. Increasing antibacterial resistance calls for novel strategies in the prevention and management of UTI and bacterial prostatitis in men.

  15. Polymicrobial Gardnerella biofilm resists repeated intravaginal antiseptic treatment in a subset of women with bacterial vaginosis: a preliminary report.

    PubMed

    Swidsinski, Alexander; Loening-Baucke, Vera; Swidsinski, Sonja; Verstraelen, Hans

    2015-03-01

    Bacterial vaginosis is a recalcitrant polymicrobial biofilm infection that often resists standard antibiotic treatment. We therefore considered repeated treatment with octenidine, a local antiseptic that has previously been shown to be highly effective in several biofilm-associated infections. Twenty-four patients with recurrent BV were treated with a 7-day course of octenidine (octenidine dihydrochloride spray application with the commercial product Octenisept). In case of treatment failure or relapse within 6 months, patients were re-treated with a 28-day course of octenidine. In case of recurrence within 6 months after the second treatment course, patients were treated again with a 28-day course followed by weekly applications for 2 months. Treatment effect was evaluated by assessment of the presence of the biofilm on voided vaginal epithelial cells through fluorescence in situ hybridisation. The initial cure rate following a 7-day course of octenidine was as high as 87.5%. The 6-month relapse rate was, however, as high as 66.6%. Repeated treatment for 28 days led to an overall cure rate of 75.0%; however, it was also associated with emergence of complete resistance to octenidine in a subset of women. The overall cure rate after three treatment courses with 1-year follow-up was 62.5 %, with 37.5 % of the patients showing complete resistance to octenidine. Our preliminary results showed that octenidine dihydrochloride was initially highly effective, but the efficacy of repeated and prolonged treatment dropped quickly as challenge with the antiseptic rapidly led to bacterial resistance in a considerable subset of women.

  16. Mercury Exposure and Heart Diseases

    PubMed Central

    Genchi, Giuseppe; Sinicropi, Maria Stefania; Carocci, Alessia; Lauria, Graziantonio; Catalano, Alessia

    2017-01-01

    Environmental contamination has exposed humans to various metal agents, including mercury. It has been determined that mercury is not only harmful to the health of vulnerable populations such as pregnant women and children, but is also toxic to ordinary adults in various ways. For many years, mercury was used in a wide variety of human activities. Nowadays, the exposure to this metal from both natural and artificial sources is significantly increasing. Recent studies suggest that chronic exposure, even to low concentration levels of mercury, can cause cardiovascular, reproductive, and developmental toxicity, neurotoxicity, nephrotoxicity, immunotoxicity, and carcinogenicity. Possible biological effects of mercury, including the relationship between mercury toxicity and diseases of the cardiovascular system, such as hypertension, coronary heart disease, and myocardial infarction, are being studied. As heart rhythm and function are under autonomic nervous system control, it has been hypothesized that the neurotoxic effects of mercury might also impact cardiac autonomic function. Mercury exposure could have a long-lasting effect on cardiac parasympathetic activity and some evidence has shown that mercury exposure might affect heart rate variability, particularly early exposures in children. The mechanism by which mercury produces toxic effects on the cardiovascular system is not fully elucidated, but this mechanism is believed to involve an increase in oxidative stress. The exposure to mercury increases the production of free radicals, potentially because of the role of mercury in the Fenton reaction and a reduction in the activity of antioxidant enzymes, such as glutathione peroxidase. In this review we report an overview on the toxicity of mercury and focus our attention on the toxic effects on the cardiovascular system. PMID:28085104

  17. Mercury Exposure and Heart Diseases.

    PubMed

    Genchi, Giuseppe; Sinicropi, Maria Stefania; Carocci, Alessia; Lauria, Graziantonio; Catalano, Alessia

    2017-01-12

    Environmental contamination has exposed humans to various metal agents, including mercury. It has been determined that mercury is not only harmful to the health of vulnerable populations such as pregnant women and children, but is also toxic to ordinary adults in various ways. For many years, mercury was used in a wide variety of human activities. Nowadays, the exposure to this metal from both natural and artificial sources is significantly increasing. Recent studies suggest that chronic exposure, even to low concentration levels of mercury, can cause cardiovascular, reproductive, and developmental toxicity, neurotoxicity, nephrotoxicity, immunotoxicity, and carcinogenicity. Possible biological effects of mercury, including the relationship between mercury toxicity and diseases of the cardiovascular system, such as hypertension, coronary heart disease, and myocardial infarction, are being studied. As heart rhythm and function are under autonomic nervous system control, it has been hypothesized that the neurotoxic effects of mercury might also impact cardiac autonomic function. Mercury exposure could have a long-lasting effect on cardiac parasympathetic activity and some evidence has shown that mercury exposure might affect heart rate variability, particularly early exposures in children. The mechanism by which mercury produces toxic effects on the cardiovascular system is not fully elucidated, but this mechanism is believed to involve an increase in oxidative stress. The exposure to mercury increases the production of free radicals, potentially because of the role of mercury in the Fenton reaction and a reduction in the activity of antioxidant enzymes, such as glutathione peroxidase. In this review we report an overview on the toxicity of mercury and focus our attention on the toxic effects on the cardiovascular system.

  18. Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater.

    PubMed

    Kamika, Ilunga; Momba, Maggy N B

    2013-02-06

    Heavy-metals exert considerable stress on the environment worldwide. This study assessed the resistance to and bioremediation of heavy-metals by selected protozoan and bacterial species in highly polluted industrial-wastewater. Specific variables (i.e. chemical oxygen demand, pH, dissolved oxygen) and the growth/die-off-rates of test organisms were measured using standard methods. Heavy-metal removals were determined in biomass and supernatant by the Inductively Couple Plasma Optical Emission Spectrometer. A parallel experiment was performed with dead microbial cells to assess the biosorption ability of test isolates. The results revealed that the industrial-wastewater samples were highly polluted with heavy-metal concentrations exceeding by far the maximum limits (in mg/l) of 0.05-Co, 0.2-Ni, 0.1-Mn, 0.1-V, 0.01-Pb, 0.01-Cu, 0.1-Zn and 0.005-Cd, prescribed by the UN-FAO. Industrial-wastewater had no major effects on Pseudomonas putida, Bacillus licheniformis and Peranema sp. (growth rates up to 1.81, 1.45 and 1.43 d-1, respectively) compared to other test isolates. This was also revealed with significant COD increases (p < 0.05) in culture media inoculated with living bacterial isolates (over 100%) compared to protozoan isolates (up to 24% increase). Living Pseudomonas putida demonstrated the highest removal rates of heavy metals (Co-71%, Ni-51%, Mn-45%, V-83%, Pb-96%, Ti-100% and Cu-49%) followed by Bacillus licheniformis (Al-23% and Zn-53%) and Peranema sp. (Cd-42%). None of the dead cells were able to remove more than 25% of the heavy metals. Bacterial isolates contained the genes copC, chrB, cnrA3 and nccA encoding the resistance to Cu, Cr, Co-Ni and Cd-Ni-Co, respectively. Protozoan isolates contained only the genes encoding Cu and Cr resistance (copC and chrB genes). Peranema sp. was the only protozoan isolate which had an additional resistant gene cnrA3 encoding Co-Ni resistance. Significant differences (p < 0.05) observed between dead and living microbial

  19. Biofilm is a Major Virulence Determinant in Bacterial Colonization of Chronic Skin Ulcers Independently from the Multidrug Resistant Phenotype

    PubMed Central

    Di Domenico, Enea Gino; Farulla, Ilaria; Prignano, Grazia; Gallo, Maria Teresa; Vespaziani, Matteo; Cavallo, Ilaria; Sperduti, Isabella; Pontone, Martina; Bordignon, Valentina; Cilli, Laura; De Santis, Alessandra; Di Salvo, Fabiola; Pimpinelli, Fulvia; Lesnoni La Parola, Ilaria; Toma, Luigi; Ensoli, Fabrizio

    2017-01-01

    Bacterial biofilm is a major factor in delayed wound healing and high levels of biofilm production have been repeatedly described in multidrug resistant organisms (MDROs). Nevertheless, a quantitative correlation between biofilm production and the profile of antimicrobial drug resistance in delayed wound healing remains to be determined. Microbial identification, antibiotic susceptibility and biofilm production were assessed in 135 clinical isolates from 87 patients. Gram-negative bacteria were the most represented microorganisms (60.8%) with MDROs accounting for 31.8% of the total isolates. Assessment of biofilm production revealed that 80% of the strains were able to form biofilm. A comparable level of biofilm production was found with both MDRO and not-MDRO with no significant differences between groups. All the methicillin-resistant Staphylococcus aureus (MRSA) and 80% of Pseudomonas aeruginosa MDR strains were found as moderate/high biofilm producers. Conversely, less than 17% of Klebsiella pneumoniae extended-spectrum beta-lactamase (ESBL), Escherichia coli-ESBL and Acinetobacter baumannii were moderate/high biofilm producers. Notably, those strains classified as non-biofilm producers, were always associated with biofilm producer bacteria in polymicrobial colonization. This study shows that biofilm producers were present in all chronic skin ulcers, suggesting that biofilm represents a key virulence determinant in promoting bacterial persistence and chronicity of ulcerative lesions independently from the MDRO phenotype. PMID:28513576

  20. Carbon nanotubes as anti-bacterial agents.

    PubMed

    Mocan, Teodora; Matea, Cristian T; Pop, Teodora; Mosteanu, Ofelia; Buzoianu, Anca Dana; Suciu, Soimita; Puia, Cosmin; Zdrehus, Claudiu; Iancu, Cornel; Mocan, Lucian

    2017-10-01

    Multidrug-resistant bacterial infections that have evolved via natural selection have increased alarmingly at a global level. Thus, there is a strong need for the development of novel antibiotics for the treatment of these infections. Functionalized carbon nanotubes through their unique properties hold great promise in the fight against multidrug-resistant bacterial infections. This new family of nanovectors for therapeutic delivery proved to be innovative and efficient for the transport and cellular translocation of therapeutic molecules. The current review examines the latest progress in the antibacterial activity of carbon nanotubes and their composites.

  1. Vancomycin-Resistant Enterococci and Bacterial Community Structure following a Sewage Spill into an Aquatic Environment

    PubMed Central

    Young, Suzanne; Nayak, Bina; Sun, Shan; Badgley, Brian D.; Rohr, Jason R.

    2016-01-01

    ABSTRACT Sewage spills can release antibiotic-resistant bacteria into surface waters, contributing to environmental reservoirs and potentially impacting human health. Vancomycin-resistant enterococci (VRE) are nosocomial pathogens that have been detected in environmental habitats, including soil, water, and beach sands, as well as wildlife feces. However, VRE harboring vanA genes that confer high-level resistance have infrequently been found outside clinical settings in the United States. This study found culturable Enterococcus faecium harboring the vanA gene in water and sediment for up to 3 days after a sewage spill, and the quantitative PCR (qPCR) signal for vanA persisted for an additional week. Culturable levels of enterococci in water exceeded recreational water guidelines for 2 weeks following the spill, declining about five orders of magnitude in sediments and two orders of magnitude in the water column over 6 weeks. Analysis of bacterial taxa via 16S rRNA gene sequencing showed changes in community structure through time following the sewage spill in sediment and water. The spread of opportunistic pathogens harboring high-level vancomycin resistance genes beyond hospitals and into the broader community and associated habitats is a potential threat to public health, requiring further studies that examine the persistence, occurrence, and survival of VRE in different environmental matrices. IMPORTANCE Vancomycin-resistant enterococci (VRE) are harmful bacteria that are resistant to the powerful antibiotic vancomycin, which is used as a last resort against many infections. This study followed the release of VRE in a major sewage spill and their persistence over time. Such events can act as a means of spreading vancomycin-resistant bacteria in the environment, which can eventually impact human health. PMID:27422829

  2. Mercury contamination of aquatic ecosystems

    USGS Publications Warehouse

    Krabbenhoft, David P.; Rickert, David A.

    1995-01-01

    Mercury has been well known as an environmental pollutant for several decades. As early as the 1950's it was established that emissions of mercury to the environment could have serious effects on human health. These early studies demonstrated that fish and other wildlife from various ecosystems commonly attain mercury levels of toxicological concern when directly affected by mercury-containing emissions from human-related activities. Human health concerns arise when fish and wildlife from these ecosystems are consumed by humans. During the past decade, a new trend has emerged with regard to mercury pollution. Investigations initiated in the late 1980's in the northern-tier states of the U.S., Canada, and Nordic countries found that fish, mainly from nutrient-poor lakes and often in very remote areas, commonly have high levels of mercury. More recent fish sampling surveys in other regions of the U.S. have shown widespread mercury contamination in streams, wet-lands, reservoirs, and lakes. To date, 33 states have issued fish consumption advisories because of mercury contamination. These continental to global scale occurrences of mercury contamination cannot be linked to individual emissions of mercury, but instead are due to widespread air pollution. When scientists measure mercury levels in air and surface water, however, the observed levels are extraordinarily low. In fact, scientists have to take extreme precautions to avoid direct contact with water samples or sample containers, to avert sample contamination (Fig 3). Herein lies an apparent discrepancy: Why do fish from some remote areas have elevated mercury concentrations, when contamination levels in the environment are so low?

  3. Inhibition of bacterial growth by iron oxide nanoparticles with and without attached drug: Have we conquered the antibiotic resistance problem?

    NASA Astrophysics Data System (ADS)

    Armijo, Leisha M.; Jain, Priyanka; Malagodi, Angelina; Fornelli, F. Zuly; Hayat, Allison; Rivera, Antonio C.; French, Michael; Smyth, Hugh D. C.; Osiński, Marek

    2015-03-01

    Pseudomonas aeruginosa is among the top three leading causative opportunistic human pathogens, possessing one of the largest bacterial genomes and an exceptionally large proportion of regulatory genes therein. It has been known for more than a decade that the size and complexity of the P. aeruginosa genome is responsible for the adaptability and resilience of the bacteria to include its ability to resist many disinfectants and antibiotics. We have investigated the susceptibility of P. aeruginosa bacterial biofilms to iron oxide (magnetite) nanoparticles (NPs) with and without attached drug (tobramycin). We also characterized the susceptibility of zero-valent iron NPs, which are known to inactivate microbes. The particles, having an average diameter of 16 nm were capped with natural alginate, thus doubling the hydrodynamic size. Nanoparticle-drug conjugates were produced via cross-linking drug and alginate functional groups. Drug conjugates were investigated in the interest of determining dosage, during these dosage-curve experiments, NPs unbound to drug were tested in cultures as a negative control. Surprisingly, we found that the iron oxide NPs inhibited bacterial growth, and thus, biofilm formation without the addition of antibiotic drug. The inhibitory dosages of iron oxide NPs were investigated and the minimum inhibitory concentrations are presented. These findings suggest that NP-drug conjugates may overcome the antibiotic drug resistance common in P. aeruginosa infections.

  4. Bioaccumulation of mercury in benthic communities of a river ecosystem affected by mercury mining.

    PubMed

    Zizek, Suzana; Horvat, Milena; Gibicar, Darija; Fajon, Vesna; Toman, Mihael J

    2007-05-15

    The presence of mercury in the river Idrijca (Slovenia) is mainly due to 500 years of mercury mining in this region. In order to understand the cycling of mercury in the Idrijca ecosystem it is crucial to investigate the role of biota. This study is part of an ongoing investigation of mercury biogeochemistry in the river Idrijca, focusing on the accumulation and speciation of mercury in the lower levels of the food chain, namely filamentous algae, periphyton and macroinvertebrates. Mercury analysis and speciation in the biota and in water were performed during the spring, summer and autumn seasons at four locations on the river, representing different degrees of mercury contamination. Total (THg) and methyl mercury (MeHg) were measured. The results showed that the highest THg concentrations in biota correlate well with THg levels in sediments and water. The level of MeHg is spatially and seasonally variable, showing higher values at the most contaminated sites during the summer and autumn periods. The percentage of Hg as MeHg increases with the trophic level from water (0.1-0.8%), algae (0.5-1.3%), periphyton (1.6-8.8%) to macroinvertebrates (0.1-100%), which indicates active transformation, accumulation and magnification of mercury in the benthic organism of this heavily contaminated torrential river.

  5. Mercury Phase II Study - Mercury Behavior across the High-Level Waste Evaporator System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C. J.; Crawford, C. L.; Jackson, D. G.

    2016-06-17

    The Mercury Program team’s effort continues to develop more fundamental information concerning mercury behavior across the liquid waste facilities and unit operations. Previously, the team examined the mercury chemistry across salt processing, including the Actinide Removal Process/Modular Caustic Side Solvent Extraction Unit (ARP/MCU), and the Defense Waste Processing Facility (DWPF) flowsheets. This report documents the data and understanding of mercury across the high level waste 2H and 3H evaporator systems.

  6. Understanding the mercury reduction issue: the impact of mercury on the environment and human health.

    PubMed

    Kao, Richard T; Dault, Scott; Pichay, Teresa

    2004-07-01

    Mercury has been used in both medicine and dentistry for centuries. Recent media attention regarding the increased levels of mercury in dietary fish, high levels of mercury in air emissions, and conjecture that certain diseases may be caused by mercury exposure has increased public awareness of the potential adverse health effects of high doses of mercury. Dentistry has been criticized for its continued use of mercury in dental amalgam for both public health and environmental reasons. To address these concerns, dental professionals should understand the impact of the various levels and types of mercury on the environment and human health. Mercury is unique in its ability to form amalgams with other metals. Dental amalgam--consisting of silver, copper, tin, and mercury--has been used as a safe, stable, and cost-effective restorative material for more than 150 years. As a result of this use, the dental profession has been confronted by the public on two separate health issues concerning the mercury content in amalgam. The first issue is whether the mercury amalgamated with the various metals to create dental restorations poses a health issue for patients. The second is whether the scraps associated with amalgam placement and the removal of amalgam restorations poses environmental hazards which may eventually have an impact on human health. Despite the lack of scientific evidence for such hazards, there is growing pressure for the dental profession to address these health issues. In this article, the toxicology of mercury will be reviewed and the impact of amalgam on health and the environment will be examined.

  7. Chemical Form Matters: Differential Accumulation of Mercury Following Inorganic and Organic Mercury Exposures in Zebrafish Larvae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korbas, Malgorzata; MacDonald, Tracy C.; Pickering, Ingrid J.

    2013-04-08

    Mercury, one of the most toxic elements, exists in various chemical forms each with different toxicities and health implications. Some methylated mercury forms, one of which exists in fish and other seafood products, pose a potential threat, especially during embryonic and early postnatal development. Despite global concerns, little is known about the mechanisms underlying transport and toxicity of different mercury species. To investigate the impact of different mercury chemical forms on vertebrate development, we have successfully combined the zebrafish, a well-established developmental biology model system, with synchrotron-based X-ray fluorescence imaging. Our work revealed substantial differences in tissue-specific accumulation patterns ofmore » mercury in zebrafish larvae exposed to four different mercury formulations in water. Methylmercury species not only resulted in overall higher mercury burdens but also targeted different cells and tissues than their inorganic counterparts, thus revealing a significant role of speciation in cellular and molecular targeting and mercury sequestration. For methylmercury species, the highest mercury concentrations were in the eye lens epithelial cells, independent of the formulation ligand (chloride versus L-cysteine). For inorganic mercury species, in absence of L-cysteine, the olfactory epithelium and kidney accumulated the greatest amounts of mercury. However, with L-cysteine present in the treatment solution, mercuric bis-L-cysteineate species dominated the treatment, significantly decreasing uptake. Our results clearly demonstrate that the common differentiation between organic and inorganic mercury is not sufficient to determine the toxicity of various mercury species.« less

  8. Association analysis of bacterial leaf spot resistance and SNP markers derived from expressed sequence tags (ESTs) in lettuce (Lactuca sativa L.)

    USDA-ARS?s Scientific Manuscript database

    Bacterial leaf spot of lettuce, caused by Xanthomonas campestris pv. vitians, is a devastating disease of lettuce worldwide. Since there are no chemicals available for effective control of the disease, host-plant resistance is highly desirable to protect lettuce production. A total of 179 lettuce ge...

  9. Prevalence of antibiotic resistance genes in the bacterial flora of integrated fish farming environments of Pakistan and Tanzania.

    PubMed

    Shah, Syed Q A; Colquhoun, Duncan J; Nikuli, Hamisi L; Sørum, Henning

    2012-08-21

    The use of a wide variety of antimicrobials in human and veterinary medicine, including aquaculture, has led to the emergence of antibiotic resistant pathogens. In the present study, bacteria from water, sediments, and fish were collected from fish farms in Pakistan and Tanzania with no recorded history of antibiotic use. The isolates were screened for the presence of resistance genes against various antimicrobials used in aquaculture and animal husbandry. Resistant isolates selected by disk diffusion and genotyped by Southern hybridization were further screened by polymerase chain reaction (PCR) and amplicon sequencing. The prominent resistance genes identified encoded tetracycline [tetA(A) and tetA(G)], trimethoprim [dfrA1, dfrA5, dfrA7, dfrA12, and dfrA15], amoxicillin [bla(TEM)], streptomycin [strA-strB], chloramphenicol [cat-1], and erythromycin resistance [mefA]. The int1 gene was found in more than 30% of the bacterial isolates in association with gene cassettes. MAR indices ranged from 0.2 to 1. The bla(NDM-1) gene was not identified in ertapenem resistant isolates. It is hypothesized that integrated fish farming practices utilizing domestic farm and poultry waste along with antibiotic residues from animal husbandry may have contributed to a pool of resistance genes in the aquaculture systems studied.

  10. Mercury poisoning in wildlife

    USGS Publications Warehouse

    Heinz, G.H.; Fairbrother, Anne; Locke, Louis N.; Hoff, Gerald L.

    1996-01-01

    Mercury is an intriguing contaminant because it has complex chemical properties, a wide range of harmful effects, and an infinite persistence in the environment. Die-offs of wildlife due to mercury have occurred in many countries, especially before mercury seed dressings were banned. Today, most mercury problems are associated with aquatic environments. Methylmercury, the most toxic chemical form, attacks many organ systems, but damage to the central nervous system is most severe. Harmful wet-weight concentrations of mercury, as methylmercury, in the tissues of adult birds and mammals range from about 8-30 ppm in the brain, 20-60 ppm in liver, 20-60 ppm in kidney, and 15-30 ppm in muscle. Young animals may be more sensitive.

  11. The Bacterial Mobile Resistome Transfer Network Connecting the Animal and Human Microbiomes.

    PubMed

    Hu, Yongfei; Yang, Xi; Li, Jing; Lv, Na; Liu, Fei; Wu, Jun; Lin, Ivan Y C; Wu, Na; Weimer, Bart C; Gao, George F; Liu, Yulan; Zhu, Baoli

    2016-11-15

    Horizontally acquired antibiotic resistance genes (ARGs) in bacteria are highly mobile and have been ranked as principal risk resistance determinants. However, the transfer network of the mobile resistome and the forces driving mobile ARG transfer are largely unknown. Here, we present the whole profile of the mobile resistome in 23,425 bacterial genomes and explore the effects of phylogeny and ecology on the recent transfer (≥99% nucleotide identity) of mobile ARGs. We found that mobile ARGs are mainly present in four bacterial phyla and are significantly enriched in Proteobacteria The recent mobile ARG transfer network, which comprises 703 bacterial species and 16,859 species pairs, is shaped by the bacterial phylogeny, while an ecological barrier also exists, especially when interrogating bacteria colonizing different human body sites. Phylogeny is still a driving force for the transfer of mobile ARGs between farm animals and the human gut, and, interestingly, the mobile ARGs that are shared between the human and animal gut microbiomes are also harbored by diverse human pathogens. Taking these results together, we suggest that phylogeny and ecology are complementary in shaping the bacterial mobile resistome and exert synergistic effects on the development of antibiotic resistance in human pathogens. The development of antibiotic resistance threatens our modern medical achievements. The dissemination of antibiotic resistance can be largely attributed to the transfer of bacterial mobile antibiotic resistance genes (ARGs). Revealing the transfer network of these genes in bacteria and the forces driving the gene flow is of great importance for controlling and predicting the emergence of antibiotic resistance in the clinic. Here, by analyzing tens of thousands of bacterial genomes and millions of human and animal gut bacterial genes, we reveal that the transfer of mobile ARGs is mainly controlled by bacterial phylogeny but under ecological constraints. We also found

  12. The Bacterial Mobile Resistome Transfer Network Connecting the Animal and Human Microbiomes

    PubMed Central

    Hu, Yongfei; Yang, Xi; Li, Jing; Lv, Na; Liu, Fei; Wu, Jun; Lin, Ivan Y. C.; Wu, Na; Gao, George F.

    2016-01-01

    ABSTRACT Horizontally acquired antibiotic resistance genes (ARGs) in bacteria are highly mobile and have been ranked as principal risk resistance determinants. However, the transfer network of the mobile resistome and the forces driving mobile ARG transfer are largely unknown. Here, we present the whole profile of the mobile resistome in 23,425 bacterial genomes and explore the effects of phylogeny and ecology on the recent transfer (≥99% nucleotide identity) of mobile ARGs. We found that mobile ARGs are mainly present in four bacterial phyla and are significantly enriched in Proteobacteria. The recent mobile ARG transfer network, which comprises 703 bacterial species and 16,859 species pairs, is shaped by the bacterial phylogeny, while an ecological barrier also exists, especially when interrogating bacteria colonizing different human body sites. Phylogeny is still a driving force for the transfer of mobile ARGs between farm animals and the human gut, and, interestingly, the mobile ARGs that are shared between the human and animal gut microbiomes are also harbored by diverse human pathogens. Taking these results together, we suggest that phylogeny and ecology are complementary in shaping the bacterial mobile resistome and exert synergistic effects on the development of antibiotic resistance in human pathogens. IMPORTANCE The development of antibiotic resistance threatens our modern medical achievements. The dissemination of antibiotic resistance can be largely attributed to the transfer of bacterial mobile antibiotic resistance genes (ARGs). Revealing the transfer network of these genes in bacteria and the forces driving the gene flow is of great importance for controlling and predicting the emergence of antibiotic resistance in the clinic. Here, by analyzing tens of thousands of bacterial genomes and millions of human and animal gut bacterial genes, we reveal that the transfer of mobile ARGs is mainly controlled by bacterial phylogeny but under ecological

  13. Antimicrobial drug resistance in Staphylococcus aureus isolated from cattle in Brazil.

    PubMed

    Pereira, M S; Siqueira-Júnior, J P

    1995-06-01

    Isolates of Staphylococcus aureus obtained from apparently healthy cattle in the State of Paraiba, Brazil were characterized in relation to resistance to 21 antimicrobial agents. Among the 46 isolates obtained, resistance to penicillin was most frequent, followed by resistance to cadmium, streptomycin, arsenate, tetracycline, mercury, erythromycin and kanamycin/neomycin. All isolates were susceptible to fusidic acid, ethidium bromide, cetrimide, chloramphenicol, benzalkonium chloride, doxycycline, gentamicin, methicillin, minocycline, novobiocin, rifamycin, tylosin and vancomycin. Only six isolates were susceptible to all the drugs tested. With respect to the antibiotics, multi-resistant isolates were uncommon. These results are probably a consequence of the peculiarities of local drug usage pressures. In relation to metal ions, resistance to mercury was rare while resistance to arsenate was relatively frequent, which contrasts with the situation for human Staph. aureus strains. After treatment with ethidium bromide, elimination of resistance to penicillin, tetracycline, streptomycin, erythromycin and cadmium was observed, which was consistent with the genetic determinants being plasmid-borne.

  14. Drivers of bacterial genomes plasticity and roles they play in pathogen virulence, persistence and drug resistance.

    PubMed

    Patel, Seema

    2016-11-01

    Despite the advent of next-generation sequencing (NGS) technologies, sophisticated data analysis and drug development efforts, bacterial drug resistance persists and is escalating in magnitude. To better control the pathogens, a thorough understanding of their genomic architecture and dynamics is vital. Bacterial genome is extremely complex, a mosaic of numerous co-operating and antagonizing components, altruistic and self-interested entities, behavior of which are predictable and conserved to some extent, yet largely dictated by an array of variables. In this regard, mobile genetic elements (MGE), DNA repair systems, post-segregation killing systems, toxin-antitoxin (TA) systems, restriction-modification (RM) systems etc. are dominant agents and horizontal gene transfer (HGT), gene redundancy, epigenetics, phase and antigenic variation etc. processes shape the genome. By illegitimate recombinations, deletions, insertions, duplications, amplifications, inversions, conversions, translocations, modification of intergenic regions and other alterations, bacterial genome is modified to tackle stressors like drugs, and host immune effectors. Over the years, thousands of studies have investigated this aspect and mammoth amount of insights have been accumulated. This review strives to distillate the existing information, formulate hypotheses and to suggest directions, that might contribute towards improved mitigation of the vicious pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The animal food supplement sepiolite promotes a direct horizontal transfer of antibiotic resistance plasmids between bacterial species.

    PubMed

    Rodríguez-Beltrán, Jerónimo; Rodríguez-Rojas, Alexandro; Yubero, Elva; Blázquez, Jesús

    2013-06-01

    Animal fodder is routinely complemented with antibiotics together with other food supplements to improve growth. For instance, sepiolite is currently used as a dietary coadjuvant in animal feed, as it increases animal growth parameters and improves meat and derived final product quality. This type of food additive has so far been considered innocuous for the development and spread of antibiotic resistance. In this study, we demonstrate that sepiolite promotes the direct horizontal transfer of antibiotic resistance plasmids between bacterial species. The conditions needed for plasmid transfer (sepiolite and friction forces) occur in the digestive tracts of farm animals, which routinely receive sepiolite as a food additive. Furthermore, this effect may be aggravated by the use of antibiotics supplied as growth promoters.

  16. Mercury Project

    NASA Image and Video Library

    1959-04-27

    Astronaut Virgil I. "Gus" Grissom, one of the original seven astronauts for Mercury Project selected by NASA on April 27, 1959. The MR-4 mission, boosted by the Mercury-Redstone vehicle, made the second marned suborbital flight. The capsule, Liberty Bell 7, sank into the sea after the splashdown.

  17. Mercury Project

    NASA Image and Video Library

    1963-09-09

    Astronaut Alan B. Shepard, one of the original seven astronauts for Mercury Project selected by NASA on April 27, 1959. The Freedom 7 spacecraft boosted by Mercury-Redstone vehicle for the MR-3 mission made the first marned suborbital flight and Astronaut Shepard became the first American in space.

  18. Nanoparticle Approaches against Bacterial Infections

    PubMed Central

    Gao, Weiwei; Thamphiwatana, Soracha; Angsantikul, Pavimol; Zhang, Liangfang

    2014-01-01

    Despite the wide success of antibiotics, the treatment of bacterial infection still faces significant challenges, particularly the emergence of antibiotic resistance. As a result, nanoparticle drug delivery platforms including liposomes, polymeric nanoparticles, dendrimers, and various inorganic nanoparticles have been increasingly exploited to enhance the therapeutic effectiveness of existing antibiotics. This review focuses on areas where nanoparticle approaches hold significant potential to advance the treatment of bacterial infection. These areas include targeted antibiotic delivery, environmentally responsive antibiotic delivery, combinatorial antibiotic delivery, nanoparticle-enabled antibacterial vaccination, and nanoparticle-based bacterial detection. In each area we highlight the innovative antimicrobial nanoparticle platforms and review their progress made against bacterial infections. PMID:25044325

  19. Measuring mercury in coastal fog water

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-04-01

    Mercury, a heavy metal neurotoxin, accumulates in sea life, in some cases reaching levels that make seafood unsafe for humans to eat. How mercury gets into aquatic organisms is debated, but part of the pathway could include mercury carried in precipitation, including rain, snow, and fog. The contribution of mercury in fog water in particular is not well known, especially in foggy coastal areas such as coastal California. To learn more, Weiss-Penzias et al. measured total mercury and monomethyl mercury concentrations in fog water and rainwater samples taken from four locations around Monterey Bay, California, during spring and summer 2011. They found that the mean monomethyl mercury concentrations in their fog water samples were about 34 times higher than the mean concentrations in their rainwater samples. Therefore, the authors believe that fog is an important, previously unrecognized source of mercury to coastal ecosystems. They also explored potential sources of mercury, finding that biotically formed monomethyl mercury from oceanic upwelling may contribute to monomethyl mercury in fog. (Geophysical Research Letters, doi:10.1029/2011GL050324, 2012)

  20. Getting Mercury out of Schools.

    ERIC Educational Resources Information Center

    1999

    This guide was prepared while working with many Massachusetts schools to remove items that contain mercury and to find suitable alternatives. It contains fact sheets on: mercury in science laboratories and classrooms, mercury in school buildings and maintenance areas, mercury in the medical office and in medical technology classrooms in vocational…

  1. Substorms on Mercury?

    NASA Technical Reports Server (NTRS)

    Siscoe, G. L.; Ness, N. F.; Yeates, C. M.

    1974-01-01

    Qualitative similarities between some of the variations in the Mercury encounter data and variations in the corresponding regions of the earth's magnetosphere during substorms are pointed out. The Mariner 10 data on Mercury show a strong interaction between the solar wind and the plant similar to a scaled down version of that for the earth's magnetosphere. Some of the features observed in the night side Mercury magnetosphere suggest time dependent processes occurring there.

  2. N-Acyl-Homoserine Lactone Primes Plants for Cell Wall Reinforcement and Induces Resistance to Bacterial Pathogens via the Salicylic Acid/Oxylipin Pathway[C][W][OPEN

    PubMed Central

    Schenk, Sebastian T.; Hernández-Reyes, Casandra; Samans, Birgit; Stein, Elke; Neumann, Christina; Schikora, Marek; Reichelt, Michael; Mithöfer, Axel; Becker, Annette; Kogel, Karl-Heinz; Schikora, Adam

    2014-01-01

    The ability of plants to monitor their surroundings, for instance the perception of bacteria, is of crucial importance. The perception of microorganism-derived molecules and their effector proteins is the best understood of these monitoring processes. In addition, plants perceive bacterial quorum sensing (QS) molecules used for cell-to-cell communication between bacteria. Here, we propose a mechanism for how N-acyl-homoserine lactones (AHLs), a group of QS molecules, influence host defense and fortify resistance in Arabidopsis thaliana against bacterial pathogens. N-3-oxo-tetradecanoyl-l-homoserine lactone (oxo-C14-HSL) primed plants for enhanced callose deposition, accumulation of phenolic compounds, and lignification of cell walls. Moreover, increased levels of oxylipins and salicylic acid favored closure of stomata in response to Pseudomonas syringae infection. The AHL-induced resistance seems to differ from the systemic acquired and the induced systemic resistances, providing new insight into inter-kingdom communication. Consistent with the observation that short-chain AHLs, unlike oxo-C14-HSL, promote plant growth, treatments with C6-HSL, oxo-C10-HSL, or oxo-C14-HSL resulted in different transcriptional profiles in Arabidopsis. Understanding the priming induced by bacterial QS molecules augments our knowledge of plant reactions to bacteria and suggests strategies for using beneficial bacteria in plant protection. PMID:24963057

  3. Development and characterization of a stable adhesive bond between a poly(dimethylsiloxane) catheter material and a bacterial biofilm resistant acrylate polymer coating

    PubMed Central

    Tyler, Bonnie J.; Hook, Andrew; Pelster, Andreas; Williams, Paul; Alexander, Morgan; Arlinghaus, Heinrich F.

    2017-01-01

    Catheter associated urinary tract infections are the most common health related infections worldwide, contributing significantly to patient morbidity and mortality and increased health care costs. To reduce the incidence of these infections, new materials that resist bacterial biofilm formation are needed. A composite catheter material, consisting of bulk poly(dimethylsiloxane) (PDMS) coated with a novel bacterial biofilm resistant polyacrylate [ethylene glycol dicyclopentenyl ether acrylate (EGDPEA)-co-di(ethyleneglycol) methyl ether methacrylate (DEGMA)], has been proposed. The coated material shows excellent bacterial resistance when compared to commercial catheter materials, but delamination of the EGDPEA-co-DEGMA coatings under mechanical stress presents a challenge. In this work, the use of oxygen plasma treatment to improve the wettability and reactivity of the PDMS catheter material and improve adhesion with the EGDPEA-co-DEGMA coating has been investigated. Argon cluster three dimensional-imaging time-of-flight secondary ion mass spectrometry (ToF-SIMS) has been used to probe the buried adhesive interface between the EGDPEA-co-DEGMA coating and the treated PDMS. ToF-SIMS analysis was performed in both dry and frozen-hydrated states, and the results were compared to mechanical tests. From the ToF-SIMS data, the authors have been able to observe the presence of PDMS, silicates, salt particles, cracks, and water at the adhesive interface. In the dry catheters, low molecular weight PDMS oligomers at the interface were associated with poor adhesion. When hydrated, the hydrophilic silicates attracted water to the interface and led to easy delamination of the coating. The best adhesion results, under hydrated conditions, were obtained using a combination of 5 min O2 plasma treatment and silane primers. Cryo-ToF-SIMS analysis of the hydrated catheter material showed that the bond between the primed PDMS catheter and the EGDPEA-co-DEGMA coating was stable in the

  4. Synergistic antibacterial effect of silver and ebselen against multidrug-resistant Gram-negative bacterial infections.

    PubMed

    Zou, Lili; Lu, Jun; Wang, Jun; Ren, Xiaoyuan; Zhang, Lanlan; Gao, Yu; Rottenberg, Martin E; Holmgren, Arne

    2017-08-01

    Multidrug-resistant (MDR) Gram-negative bacteria account for a majority of fatal infections, and development of new antibiotic principles and drugs is therefore of outstanding importance. Here, we report that five most clinically difficult-to-treat MDR Gram-negative bacteria are highly sensitive to a synergistic combination of silver and ebselen. In contrast, silver has no synergistic toxicity with ebselen on mammalian cells. The silver and ebselen combination causes a rapid depletion of glutathione and inhibition of the thioredoxin system in bacteria. Silver ions were identified as strong inhibitors of Escherichia coli thioredoxin and thioredoxin reductase, which are required for ribonucleotide reductase and DNA synthesis and defense against oxidative stress. The bactericidal efficacy of silver and ebselen was further verified in the treatment of mild and acute MDR E. coli peritonitis in mice. These results demonstrate that thiol-dependent redox systems in bacteria can be targeted in the design of new antibacterial drugs. The silver and ebselen combination offers a proof of concept in targeting essential bacterial systems and might be developed for novel efficient treatments against MDR Gram-negative bacterial infections. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  5. Environmental Mercury and Its Toxic Effects

    PubMed Central

    Rice, Kevin M.; Walker, Ernest M.; Wu, Miaozong; Gillette, Chris

    2014-01-01

    Mercury exists naturally and as a man-made contaminant. The release of processed mercury can lead to a progressive increase in the amount of atmospheric mercury, which enters the atmospheric-soil-water distribution cycles where it can remain in circulation for years. Mercury poisoning is the result of exposure to mercury or mercury compounds resulting in various toxic effects depend on its chemical form and route of exposure. The major route of human exposure to methylmercury (MeHg) is largely through eating contaminated fish, seafood, and wildlife which have been exposed to mercury through ingestion of contaminated lower organisms. MeHg toxicity is associated with nervous system damage in adults and impaired neurological development in infants and children. Ingested mercury may undergo bioaccumulation leading to progressive increases in body burdens. This review addresses the systemic pathophysiology of individual organ systems associated with mercury poisoning. Mercury has profound cellular, cardiovascular, hematological, pulmonary, renal, immunological, neurological, endocrine, reproductive, and embryonic toxicological effects. PMID:24744824

  6. Preservation of samples for dissolved mercury

    USGS Publications Warehouse

    Hamlin, S.N.

    1989-01-01

    Water samples for dissolved mercury requires special treatment because of the high chemical mobility and volatility of this element. Widespread use of mercury and its compounds has provided many avenues for contamination of water. Two laboratory tests were done to determine the relative permeabilities of glass and plastic sample bottles to mercury vapor. Plastic containers were confirmed to be quite permeable to airborne mercury, glass containers were virtually impermeable. Methods of preservation include the use of various combinations of acids, oxidants, and complexing agents. The combination of nitric acid and potassium dichromate successfully preserved mercury in a large variety of concentrations and dissolved forms. Because this acid-oxidant preservative acts as a sink for airborne mercury and plastic containers are permeable to mercury vapor, glass bottles are preferred for sample collection. To maintain a healthy work environment and minimize the potential for contamination of water samples, mercury and its compounds are isolated from the atmosphere while in storage. Concurrently, a program to monitor environmental levels of mercury vapor in areas of potential contamination is needed to define the extent of mercury contamination and to assess the effectiveness of mercury clean-up procedures.Water samples for dissolved mercury require special treatment because of the high chemical mobility and volatility of this element. Widespread use of mercury and its compounds has provided many avenues for contamination of water. Two laboratory tests were done to determine the relative permeabilities of glass and plastic sample bottles to mercury vapor. Plastic containers were confirmed to be quite permeable to airborne mercury, glass containers were virtually impermeable. Methods of preservation include the use of various combinations of acids, oxidants, and complexing agents. The combination of nitric acid and potassium dichromate successfully preserved mercury in a

  7. Mercury Project

    NASA Image and Video Library

    1961-01-31

    A three-year-old chimpanzee, named Ham, in the biopack couch for the MR-2 suborbital test flight. On January 31, 1961, a Mercury-Redstone launch from Cape Canaveral carried the chimpanzee "Ham" over 640 kilometers down range in an arching trajectory that reached a peak of 254 kilometers above the Earth. The mission was successful and Ham performed his lever-pulling task well in response to the flashing light. NASA used chimpanzees and other primates to test the Mercury Capsule before launching the first American astronaut Alan Shepard in May 1961. The successful flight and recovery confirmed the soundness of the Mercury-Redstone systems.

  8. Mercury Project

    NASA Image and Video Library

    1961-01-01

    A three-year-old chimpanzee, named Ham, in the biopack couch for the MR-2 suborbital test flight. On January 31, 1961, a Mercury-Redstone launch from Cape Canaveral carried the chimpanzee "Ham" over 640 kilometers down range in an arching trajectory that reached a peak of 254 kilometers above the Earth. The mission was successful and Ham performed his lever-pulling task well in response to the flashing light. NASA used chimpanzees and other primates to test the Mercury Capsule before launching the first American astronaut Alan Shepard in May 1961. The successful flight and recovery confirmed the soundness of the Mercury-Redstone systems.

  9. Plasmid-determined resistance to tellurium compounds.

    PubMed Central

    Summers, A O; Jacoby, G A

    1977-01-01

    Transferable plasmids in gram-negative bacteria that confer resistance to potassium tellurite or tellurate were found. This re-istance was distinct from resistance to mercury, silver, or arsenic compounds and was unrelated to antibiotic resistance. In Escherichia coli, plasmids determine a 100-fold increase in the minimal inhibitory concentration for tellurite and a 10-fold increase in tellurate resistance. Many, but not all, of the plasmids belong to incompatibility group S. In Pseudomonas aeruginosa, tellurium resistance is specifically associated with incompatibility group P-2 and involves a 5- to 10-fold increase in tellurite or tellurate resistance. Images PMID:401494

  10. Mercury Project

    NASA Image and Video Library

    1961-03-24

    The Mercury-Redstone Booster Development vehicle (MR-BD) lifts off from Cape Canaveral March 24, 1961. This test flight evaluated changes incorporated in the booster designed to reduce vehicle oscillations and vibrations. The Mercury-Redstone launch vehicle was developed by Dr. Wernher von Braun and the rocket team in Huntsville, Alabama.

  11. Mercury Project

    NASA Image and Video Library

    1959-04-27

    Astronaut Walter M. "Wally" Schirra, one of the original seven astronauts for Mercury Project selected by NASA on April 27, 1959. The MA-8 (Mercury-Atlas) mission with Sigma 7 spacecraft was the third marned orbital flight by the United States, and made the six orbits in 9-1/4 hours.

  12. Mercury in mercury(II)-spiked soils is highly susceptible to plant bioaccumulation.

    PubMed

    Hlodák, Michal; Urík, Martin; Matúš, Peter; Kořenková, Lucia

    2016-01-01

    Heavy metal phytotoxicity assessments usually use soluble metal compounds in spiked soils to evaluate metal bioaccumulation, growth inhibition and adverse effects on physiological parameters. However, exampling mercury phytotoxicity for barley (Hordeum vulgare) this paper highlights unsuitability of this experimental approach. Mercury(II) in spiked soils is extremely bioavailable, and there experimentally determined bioaccumulation is significantly higher compared to reported mercury bioaccumulation efficiency from soils collected from mercury-polluted areas. Our results indicate this is not affected by soil sorption capacity, thus soil ageing and formation of more stable mercuric complexes with soil fractions is necessary for reasonable metal phytotoxicity assessments.

  13. Mercury poisoning dentistry: high-level indoor air mercury contamination at selected dental sites.

    PubMed

    Khwaja, Mahmood A; Abbasi, Maryam Shabbir

    2014-01-01

    Mercury (Hg), also known as quick silver, is an essential constituent of dental amalgam. It is a toxic substance of global concern. Children are more at risk from mercury poisoning which affects their neurological development and brain. In the past, a number of studies at dental sites in many countries have been carried out and reported. The present report briefly describes and discusses our recent investigations carried out at 34 dental sites (teaching institutions, hospitals and private clinics) in Pakistan. It is evident from the data that at many sites the indoor mercury vapor levels exceed far above the permissible limit recommended for safe physical and mental health. At these sites, public in general and the medical, paramedical staff and vulnerable population in particular, are at most serious risk to health resulting from exposure to toxic and hazardous mercury. To minimize such risk, some of the recommendations are, best in-house environmental practices for occupational health and safety, mercury contaminated waste reduction at source, mercury specific legislation and ratification of Minamata convention on mercury by Pakistan and other world governments at the earliest time possible.

  14. [Mercury (and...) through the centuries].

    PubMed

    Kłys, Małgorzata

    2010-01-01

    Mercury has a long history, fascinating in its many aspects. Through the centuries--from ancient times to the present day--the metal in its various forms, also known under the name "quicksilver", accompanied the man and was used for diversified purposes. Today, mercury is employed in manufacturing thermometers, barometers, vacuum pumps and explosives. It is also used in silver and gold mining processes. Mercury compounds play a significant role in dentistry, pharmaceutical industry and crop protection. The contemporary use of mercury markedly decreases, but historically speaking, the archives abound in materials that document facts and events occurring over generations and the immense intellectual effort aiming at discovering the true properties and mechanisms of mercury activity. Mercury toxicity, manifested in destruction of biological membranes and binding of the element with proteins, what disturbs biochemical processes occurring in the body, was discovered only after many centuries of the metal exerting its effect on the lives of individuals and communities. For centuries, mercury was present in the work of alchemists, who searched for the universal essence or quintessence and the so-called philosopher's stone. In the early modern era, between the 16th and 19th centuries, mercury was used to manufacture mirrors. Mercury compounds were employed as a medication against syphilis, which plagued mankind for more than four hundred years--from the Middle Ages till mid 20th century, when the discovery of penicillin became the turning point. This extremely toxic therapy resulted in much suffering, individual tragedies, chronic poisonings leading to fatalities and dramatic sudden deaths. In the last fifty years, there even occurred attempts of mentally imbalanced individuals at injecting themselves with metallic mercury, also as a performance-enhancing drug. Instances of mass mercury poisoning occurred many times in the past in consequence of eating food products

  15. Mercury intracellular partitioning and chelation in a salt marsh plant, Halimione portulacoides (L.) Aellen: strategies underlying tolerance in environmental exposure.

    PubMed

    Válega, M; Lima, A I G; Figueira, E M A P; Pereira, E; Pardal, M A; Duarte, A C

    2009-01-01

    In the presence of metal stress, plants can resort to a series of tolerance mechanisms. Therefore field studies should be undertaken in order to evaluate the real role of these mechanisms in stress coping. The aim of this paper was to clarify the biochemical processes behind mercury tolerance in Halimione portulacoides (L.) Aellen (Caryophyllales: Chenopodiaceae) collected in a mercury contaminated salt marsh. Different fractions of mercury were separated: buffer-soluble (mainly cytosolic) and insoluble mercury (mainly associated with membranes and cell walls). The amounts in each fraction of metal were compared and related to metal distribution within plant organs. Protein-mercury complexes were isolated and analysed for their thiol content in order to assess wether the tolerance of this salt marsh plant was associated with the induction of metal chelation by phytochelatins. Overall, the mercury tolerance strategies of the plant are likely to involve root cell wall immobilization as a major mechanism of metal resistance, rather than metal chelation in the cytosolic fraction. Nevertheless, phytochelatins were demonstrated to chelate mercury under environmental exposure.

  16. Occurrence and transport of total mercury and methyl mercury in the Sacramento River Basin, California

    USGS Publications Warehouse

    Domagalski, Joseph L.

    1999-01-01

    Mercury poses a water-quality problem for California's Sacramento River, a large river with a mean annual discharge of over 650 m3/s. This river discharges into the San Francisco Bay, and numerous fish species of the bay and river contain mercury levels high enough to affect human health if consumed. Two possible sources of mercury are the mercury mines in the Coast Ranges and the gold mines in the Sierra Nevada. Mercury was once mined in the Coast Ranges, west of the Sacramento River, and used to process gold in the Sierra Nevada, east of the river. The mineralogy of the Coast Ranges mercury deposits is mainly cinnabar (HgS), but elemental mercury was used to process gold in the Sierra Nevada. Residual mercury from mineral processing in the Sierra Nevada is mainly in elemental form or in association with oxide particles or organic matter and is biologically available. Recent bed-sediment sampling, at sites below large reservoirs, showed elevated levels of total mercury (median concentration 0.28 ??g/g) in every large river (the Feather, Yuba, Bear, and American rivers) draining the Sierra Nevada gold region. Monthly sampling for mercury in unfiltered water shows relatively low concentrations during the nonrainy season in samples collected throughout the Sacramento River Basin, but significantly higher concentrations following storm-water runoff. Measured concentrations, following storm-water runoff, frequently exceeded the state of California standards for the protection of aquatic life. Results from the first year of a 2-year program of sampling for methyl mercury in unfiltered water showed similar median concentrations (0.1 ng/l) at all sampling locations, but with apparent high seasonal concentrations measured during autumn and winter. Methyl mercury concentrations were not significantly higher in rice field runoff water, even though rice production involves the creation of seasonal wetlands: higher rates of methylation are known to occur in stagnant wetland

  17. Mercury mass flow in iron and steel production process and its implications for mercury emission control.

    PubMed

    Wang, Fengyang; Wang, Shuxiao; Zhang, Lei; Yang, Hai; Gao, Wei; Wu, Qingru; Hao, Jiming

    2016-05-01

    The iron and steel production process is one of the predominant anthropogenic sources of atmospheric mercury emissions worldwide. In this study, field tests were conducted to study mercury emission characteristics and mass flows at two iron and steel plants in China. It was found that low-sulfur flue gas from sintering machines could contribute up to 41% of the total atmospheric mercury emissions, and desulfurization devices could remarkably help reduce the emissions. Coal gas burning accounted for 17%-49% of the total mercury emissions, and therefore the mercury control of coal gas burning, specifically for the power plant burning coal gas to generate electricity, was significantly important. The emissions from limestone and dolomite production and electric furnaces can contribute 29.3% and 4.2% of the total mercury emissions from iron and steel production. More attention should be paid to mercury emissions from these two processes. Blast furnace dust accounted for 27%-36% of the total mercury output for the whole iron and steel production process. The recycling of blast furnace dust could greatly increase the atmospheric mercury emissions and should not be conducted. The mercury emission factors for the coke oven, sintering machine and blast furnace were 0.039-0.047gHg/ton steel, and for the electric furnace it was 0.021gHg/ton steel. The predominant emission species was oxidized mercury, accounting for 59%-73% of total mercury emissions to air. Copyright © 2016. Published by Elsevier B.V.

  18. GEOCHEMICAL FACTORS GOVERNING METHYL MERCURY PRODUCTION IN MERCURY CONTAMINATED SEDIMENTS

    EPA Science Inventory

    Bench scale experiments were conducted to improve our understanding of aquatic mercury transformation processes (biotic and abiotic), specifically those factors which govern the production of methyl mercury (MeHg) in sedimentary environments. The greatest cause for concern regar...

  19. Mercury Project

    NASA Image and Video Library

    1959-04-27

    Astronaut John H. Glenn, one of the original seven astronauts for Mercury Project selected by NASA on April 27, 1959. The MA-6 mission, boosted by the Mercury-Atlas vehicle, was the first manned orbital launch by the United States, and carried Astronaut Glenn aboard the Friendship 7 spacecraft to orbit the Earth.

  20. Vancomycin-Resistant Enterococci and Bacterial Community Structure following a Sewage Spill into an Aquatic Environment.

    PubMed

    Young, Suzanne; Nayak, Bina; Sun, Shan; Badgley, Brian D; Rohr, Jason R; Harwood, Valerie J

    2016-09-15

    Sewage spills can release antibiotic-resistant bacteria into surface waters, contributing to environmental reservoirs and potentially impacting human health. Vancomycin-resistant enterococci (VRE) are nosocomial pathogens that have been detected in environmental habitats, including soil, water, and beach sands, as well as wildlife feces. However, VRE harboring vanA genes that confer high-level resistance have infrequently been found outside clinical settings in the United States. This study found culturable Enterococcus faecium harboring the vanA gene in water and sediment for up to 3 days after a sewage spill, and the quantitative PCR (qPCR) signal for vanA persisted for an additional week. Culturable levels of enterococci in water exceeded recreational water guidelines for 2 weeks following the spill, declining about five orders of magnitude in sediments and two orders of magnitude in the water column over 6 weeks. Analysis of bacterial taxa via 16S rRNA gene sequencing showed changes in community structure through time following the sewage spill in sediment and water. The spread of opportunistic pathogens harboring high-level vancomycin resistance genes beyond hospitals and into the broader community and associated habitats is a potential threat to public health, requiring further studies that examine the persistence, occurrence, and survival of VRE in different environmental matrices. Vancomycin-resistant enterococci (VRE) are harmful bacteria that are resistant to the powerful antibiotic vancomycin, which is used as a last resort against many infections. This study followed the release of VRE in a major sewage spill and their persistence over time. Such events can act as a means of spreading vancomycin-resistant bacteria in the environment, which can eventually impact human health. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. JV Task 96 - Phase 2 - Investigating the Importance of the Mercury-Selenium Interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicholas Ralston; Laura Raymond

    2008-03-01

    In order to improve the understanding of the mercury issue, it is vital to study mercury's effects on selenium physiology. While mercury present in the environment or food sources may pose health risks, the protective effects of selenium have not been adequately considered in establishing regulatory policy. Numerous studies report that vulnerability to mercury toxicity is inversely proportional to selenium status or level. However, selenium status has not been considered in the development of the reference dosage levels for mercury exposure. Experimental animals fed low-selenium diets are far more vulnerable to mercury toxicity than animals fed normal selenium, and animalsmore » fed selenium-rich diets are even more resistant. Selenium-dependent enzymes in brain and endocrine tissues can be impaired by excessive mercury exposure, apparently because mercury has an extremely high binding affinity for selenium. When selenium becomes bound to mercury, it is unable to participate in the metabolic cycling of selenoprotein synthesis. Because of mercury-dependent impairments of selenoprotein synthesis, various antioxidant and regulatory functions in brain biochemistry are compromised. This report details a 2-year multiclient-funded research program designed to examine the interactions between mercury and selenium in animal models. The studies explored the effects of dietary intakes of toxic amounts of methylmercury and the protective effects of the normal dietary range of selenium in counteracting mercury toxicity. This study finds that the amounts of selenium present in ocean fish are sufficient to protect against far larger quantities of methylmercury than those present in typical seafoods. Toxic effects of methylmercury exposure were not directly proportional to mercury concentrations in blood, brain, or any other tissues. Instead, mercury toxicity was proportional to molar ratios of mercury relative to selenium. In order to accurately assess risk associated with

  2. The southwestern alaska mercury belt and its relationship to the circum-pacific metallogenic mercury province

    USGS Publications Warehouse

    Gray, J.E.; Gent, C.A.; Snee, L.W.

    2000-01-01

    A belt of small but numerous mercury deposits extends for about 500 km in the Kuskokwim River region of southwestern Alaska. The southwestern Alaska mercury belt is part of widespread mercury deposits of the circumPacific region that are similar to other mercury deposits throughout the world because they are epithermal with formation temperatures of about 200??C, the ore is dominantly cinnabar with Hg-Sb-As??Au geochemistry, and mineralized forms include vein, vein breccias, stockworks, replacements, and disseminations. The southwestern Alaska mercury belt has produced about 1,400 t of mercury, which is small on an international scale. However, additional mercury deposits are likely to be discovered because the terrain is topographically low with significant vegetation cover. Anomalous concentrations of gold in cinnabar ore suggest that gold deposits are possible in higher temperature environments below some of the Alaska mercury deposits. We correlate mineralization of the southwestern Alaska mercury deposits with Late Cretaceous and early Tertiary igneous activity. Our 40Ar/39Ar ages of 70??3 Ma from hydrothermal sericites in the mercury deposits indicate a temporal association of igneous activity and mineralization. Furthermore, we suggest that our geological and geochemical data from the mercury deposits indicate that ore fluids were generated primarily in surrounding sedimentary wall rocks when they were cut by Late Cretaceous and early Tertiary intrusions. In our ore genesis model, igneous activity provided the heat to initiate dehydration reactions and expel fluids from hydrous minerals and formational waters in the surrounding sedimentary wall rocks, causing thermal convection and hydrothermal fluid flow through permeable rocks and along fractures and faults. Our isotopic data from sulfide and alteration minerals of the mercury deposits indicate that ore fluids were derived from multiple sources, with most ore fluids originating from the sedimentary wall

  3. Xenobiotic metal-induced autoimmunity: mercury and silver differentially induce antinucleolar autoantibody production in susceptible H-2s, H-2q and H-2f mice

    PubMed Central

    Hansson, M; Abedi-Valugerdi, M

    2003-01-01

    Xenobiotic-metals such as mercury (Hg) and silver (Ag) induce an H-2 linked antinucleolar autoantibody (ANolA) production in susceptible mice. The mechanism for induction of ANolA synthesis is not well understood. However, it has been suggested that both metals interact with nucleolar proteins and reveal cryptic self-peptides to nontolerant autoreactive T cells, which in turn stimulate specific autoreactive B cells. In this study, we considered this suggestion and asked if mercury and silver display, if not identical, similar cryptic self-peptides, they would induce comparable ANolA responses in H-2 susceptible mice. We analysed the development of ANolA production in mercury- and/or silver-treated mice of H-2s, H-2q and H-2f genotypes. We found that while mercury stimulated ANolA synthesis in all strains tested, silver induced ANolA responses of lower magnitudes in only H-2s and H-2q mice, but not in H-2f mice. Resistance to silver in H-2f mice was independent of the dosage/time-period of silver-treatment and non-H-2 genes. Further studies showed that F1 hybrid crosses between silver-susceptible A.SW (H-2s) and -resistant A.CA (H-2f) mice were resistant to silver, but not mercury with regard to ANolA production. Additionally, the magnitudes of mercury-induced ANolA responses in the F1 hybrids were lower than those of their parental strains. The above differential ANolA responses to mercury and silver can be explained by various factors, including the different display of nucleolar cryptic peptides by these xenobiotics, determinant capture and coexistence of different MHC molecules. Our findings also suggest that the ability of a xenobiotic metal merely to create cryptic self-peptides may not be sufficient for the induction of an ANolA response. PMID:12605692

  4. Similar genetic architecture with shared and unique quantitative trait loci for bacterial cold water disease resistance in two rainbow trout breeding populations

    USDA-ARS?s Scientific Manuscript database

    Bacterial cold water disease (BCWD) causes significant mortality and economic losses in salmonid aquaculture. In previous studies, we identified moderate-large effect QTL for BCWD resistance in rainbow trout (Oncorhynchus mykiss). However, the recent availability of a 57K SNP array and a genome phys...

  5. A bacterial view of the periodic table: genes and proteins for toxic inorganic ions.

    PubMed

    Silver, Simon; Phung, Le T

    2005-12-01

    Essentially all bacteria have genes for toxic metal ion resistances and these include those for Ag+, AsO2-, AsO4(3-), Cd2+ Co2+, CrO4(2-), Cu2+, Hg2+, Ni2+, Pb2+, TeO3(2-), Tl+ and Zn2+. The largest group of resistance systems functions by energy-dependent efflux of toxic ions. Fewer involve enzymatic transformations (oxidation, reduction, methylation, and demethylation) or metal-binding proteins (for example, metallothionein SmtA, chaperone CopZ and periplasmic silver binding protein SilE). Some of the efflux resistance systems are ATPases and others are chemiosmotic ion/proton exchangers. For example, Cd2+-efflux pumps of bacteria are either inner membrane P-type ATPases or three polypeptide RND chemiosmotic complexes consisting of an inner membrane pump, a periplasmic-bridging protein and an outer membrane channel. In addition to the best studied three-polypeptide chemiosmotic system, Czc (Cd2+, Zn2+, and Co2), others are known that efflux Ag+, Cu+, Ni2+, and Zn2+. Resistance to inorganic mercury, Hg2+ (and to organomercurials, such as CH3Hg+ and phenylmercury) involve a series of metal-binding and membrane transport proteins as well as the enzymes mercuric reductase and organomercurial lyase, which overall convert more toxic to less toxic forms. Arsenic resistance and metabolizing systems occur in three patterns, the widely-found ars operon that is present in most bacterial genomes and many plasmids, the more recently recognized arr genes for the periplasmic arsenate reductase that functions in anaerobic respiration as a terminal electron acceptor, and the aso genes for the periplasmic arsenite oxidase that functions as an initial electron donor in aerobic resistance to arsenite.

  6. Mercury in Your Environment

    EPA Pesticide Factsheets

    Basic information about mercury, how it gets in the air, how people are exposed to it and health effects associated with exposure; what EPA and other organizations are doing to limit exposures; what citizens should know to minimize exposures and to reduce mercury in the environment; and information about products that contain mercury.

  7. Activity of Norspermidine on Bacterial Biofilms of Multidrug-Resistant Clinical Isolates Associated with Persistent Extremity Wound Infections.

    PubMed

    Cardile, Anthony P; Woodbury, Ronald L; Sanchez, Carlos J; Becerra, Sandra C; Garcia, Rebecca A; Mende, Katrin; Wenke, Joseph C; Akers, Kevin S

    2017-01-01

    Biofilm formation is a major virulence factor for numerous pathogenic bacteria and is cited as a central event in the pathogenesis of chronic human infections, which is in large part due to excessive extracellular matrix secretion and metabolic changes that occur within the biofilm rendering them highly tolerant to antimicrobial treatments. Polyamines, including norspermidine, play central roles in bacterial biofilm development, but have also recently been shown to inhibit biofilm formation in select strains of various pathogenic bacteria. The aim of this study was to evaluate in vitro the biofilm dispersive and inhibitory activities of norspermidine against multidrug-resistant clinical isolates of Acinetobacter baumannii(n = 4), Klebsiella pneumoniae (n = 3), Pseudomonas aeruginosa (n = 5) and Staphylococcus aureus (n = 4) associated with chronic extremity wound infections using the semi-quantitative 96-well plate method and confocal laser microscopy. In addition to the antibiofilm activity, biocompatibility of norspermidine was also evaluated by measuring toxicity in vitro to human cell lines and whole porcine tissue explants using MTT viability assay and histological analysis. Norspermidine (5-20 mM) had variable dispersive and inhibitory activity on biofilms which was dependent on both the strain and species. Of the clinical bacterial species evaluated herein, A. baumannii isolates were the most sensitive to the effect of norspermidine, which was in part due to the inhibitory effects of norspermidine on bacterial motility and expression of genes involved in the production of homoserine lactones and quorum sensing molecules both essential for biofilm formation. Importantly, exposure of cell lines and whole tissues to norspermidine for prolonged periods of time (≥24 h) was observed to reduce viability and alter tissue histology in a time and concentration dependent manner, with 20 mM exposure having the greatest negative effects on both tissues and individual

  8. Atmospheric mercury speciation and mercury in snow over time at Alert, Canada

    NASA Astrophysics Data System (ADS)

    Steffen, A.; Bottenheim, J.; Cole, A.; Ebinghaus, R.; Lawson, G.; Leaitch, W. R.

    2014-03-01

    Ten years of atmospheric mercury speciation data and 14 years of mercury in snow data from Alert, Nunavut, Canada, are examined. The speciation data, collected from 2002 to 2011, includes gaseous elemental mercury (GEM), particulate mercury (PHg) and reactive gaseous mercury (RGM). During the winter-spring period of atmospheric mercury depletion events (AMDEs), when GEM is close to being completely depleted from the air, the concentration of both PHg and RGM rise significantly. During this period, the median concentrations for PHg is 28.2 pgm-3 and RGM is 23.9 pgm-3, from March to June, in comparison to the annual median concentrations of 11.3 and 3.2 pgm-3 for PHg and RGM, respectively. In each of the ten years of sampling, the concentration of PHg increases steadily from January through March and is higher than the concentration of RGM. This pattern begins to change in April when the levels of PHg peak and RGM begin to increase. In May, the high PHg and low RGM concentration regime observed in the early spring undergoes a transition to a regime with higher RGM and much lower PHg concentrations. The higher RGM concentration continues into June. The transition is driven by the atmospheric conditions of air temperature and particle availability. Firstly, a high ratio of the concentrations of PHg to RGM is reported at low temperatures which suggests that oxidized gaseous mercury partitions to available particles to form PHg. Prior to the transition, the median air temperature is -24.8 °C and after the transition the median air temperature is -5.8 °C. Secondly, the high PHg concentrations occur in the spring when high particle concentrations are present. The high particle concentrations are principally due to Arctic haze and sea salts. In the snow, the concentrations of mercury peak in May for all years. Springtime deposition of total mercury to the snow at Alert peaks in May when atmospheric conditions favour higher levels of RGM. Therefore, the conditions in the

  9. Performance Assessment of the Mercury Laser Altimeter on MESSENGER from Mercury Orbit

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Cavanaugh, John F.; Neumann, Gregory A.; Mazarico, Edward M.

    2009-01-01

    The Mercury Laser Altimeter (MLA) is one of seven instruments on the MErcury Surface, Space ENvironment GEochemistry, and Ranging (MESSENGER) spacecraft,a mission in NASA's Discovery Program. MESSENGER was launched on August 3, 2004, and entered into orbit about Mercury on March 29, 2011. As of June 30, 2011 MLA started to collect science Measurements on March 29, 2011. As of June 30, 2011 MLA had accumulated about 3 million laser ranging measurements to the Mercury surface through one Mercury year, i.e ., one complete cycle of the spacecraft thermal environment. The average MLA laser output-pulse energy remained steady despite the harsh thermal environment, in which the laser bench temperature changed by as much as 15 C over a 35 min operating period . The laser beam-collimating telescope experienced a 30 C temperature swing over the same period, and the thermal cycling repeated every 12 hours. Nonetheless, MLA receiver optics appeared to be aligned and in focus throughout these temperature excursions. The maximum ranging distance of MLA was 1500 km at near-zero laser-beam incidence angle (and emission angle) and 600 km at 60 deg incidence angle. The MLA instrument performance in Mercury orbit has been consistent with the performance demonstrated during MESSENGER's Mercury flybys in January and October 2008 and during pre-launch testing. In addition to range measurements, MLA data are being used to estimate the surface reflectance of Mercury at 1064 nm wavelength, including regions of permanent shadow on the floors of polar craters. MLA also provides a measurement of the surface reflectance of sunlight at 1064 nm wavelength by its noise counters, for which output is a monotonic function of the background light.

  10. EDITORIAL: Mercury-free discharges for lighting

    NASA Astrophysics Data System (ADS)

    Haverlag, M.

    2007-07-01

    This special Cluster of articles in Journal of Physics D: Applied Physics covers the subject of mercury-free discharges that are being investigated by different light source researchers, as an alternative to existing mercury-containing lamps. The main driving force to move away from mercury-containing discharge light sources is connected to the environmentally unfriendly nature of mercury. After inhalation or direct contact, severe mercury exposure can lead to damage to human brain cells, the kidneys, the liver and the nervous system. For this reason, the use of mercury in products is becoming more and more restricted by different governmental bodies. In the lighting industry, however, many products still make use of mercury, for different reasons. The main reason is that mercury-containing products are, in most cases, more efficient than mercury-free products. For a realistic comparison of the environmental impact, the mercury-contamination due to electricity production must be taken into account, which depends on the type of fuel being used. For an average European fuel-mix, the amount of mercury that is released into the environment is around 29 μg kWh-1. This means that a typical 30 W TL lamp during a lifetime of 20,000 hours will release a total of about 20 mg mercury due to electricity production, which exceeds the total mercury dose in the lamp (more and more of which is being recycled) by a factor of 5-10 for a modern TL lamp. This illustrates that, quite apart from other environmental arguments like increased CO2 production, mercury-free alternatives that use more energy can in fact be detrimental for the total mercury pollution over the lifetime of the lamp. For this reason, the lighting industry has concentrated on lowering the mercury content in lamps as long as no efficient alternatives exist. Nevertheless, new initiatives for HID lamps and fluorescent lamps with more or less equal efficiency are underway, and a number of them are described in this

  11. Economic implications of mercury exposure in the context of the global mercury treaty: Hair mercury levels and estimated lost economic productivity in selected developing countries.

    PubMed

    Trasande, Leonardo; DiGangi, Joseph; Evers, David C; Petrlik, Jindrich; Buck, David G; Šamánek, Jan; Beeler, Bjorn; Turnquist, Madeline A; Regan, Kevin

    2016-12-01

    Several developing countries have limited or no information about exposures near anthropogenic mercury sources and no studies have quantified costs of mercury pollution or economic benefits to mercury pollution prevention in these countries. In this study, we present data on mercury concentrations in human hair from subpopulations in developing countries most likely to benefit from the implementation of the Minamata Convention on Mercury. These data are then used to estimate economic costs of mercury exposure in these communities. Hair samples were collected from sites located in 15 countries. We used a linear dose-response relationship that previously identified a 0.18 IQ point decrement per part per million (ppm) increase in hair mercury, and modeled a base case scenario assuming a reference level of 1 ppm, and a second scenario assuming no reference level. We then estimated the corresponding increases in intellectual disability and lost Disability-Adjusted Life Years (DALY). A total of 236 participants provided hair samples for analysis, with an estimated population at risk of mercury exposure near the 15 sites of 11,302,582. Average mercury levels were in the range of 0.48 ppm-4.60 ppm, and 61% of all participants had hair mercury concentrations greater than 1 ppm, the level that approximately corresponds to the USA EPA reference dose. An additional 1310 cases of intellectual disability attributable to mercury exposure were identified annually (4110 assuming no reference level), resulting in 16,501 lost DALYs (51,809 assuming no reference level). A total of $77.4 million in lost economic productivity was estimated assuming a 1 ppm reference level and $130 million if no reference level was used. We conclude that significant mercury exposures occur in developing and transition country communities near sources named in the Minamata Convention, and our estimates suggest that a large economic burden could be avoided by timely implementation of measures to

  12. Mercury in the environment

    NASA Technical Reports Server (NTRS)

    Fulkerson, W.; Lyon, W. S.; Shults, W. D.; Wallace, R. A.

    1972-01-01

    Problems in assessing mercury concentrations in environmental materials are discussed. Data for situations involving air, water, rocks, soils, sediments, sludges, fossil fuels, plants, animals, foods, and man are drawn together and briefly evaluated. Details are provided regarding the toxicity of mercury along with tentative standards and guidelines for mercury in air, drinking water, and food.

  13. The low-degree shape of Mercury

    NASA Astrophysics Data System (ADS)

    Perry, Mark E.; Neumann, Gregory A.; Phillips, Roger J.; Barnouin, Olivier S.; Ernst, Carolyn M.; Kahan, Daniel S.; Solomon, Sean C.; Zuber, Maria T.; Smith, David E.; Hauck, Steven A.; Peale, Stanton J.; Margot, Jean-Luc; Mazarico, Erwan; Johnson, Catherine L.; Gaskell, Robert W.; Roberts, James H.; McNutt, Ralph L.; Oberst, Juergen

    2015-09-01

    The shape of Mercury, particularly when combined with its geoid, provides clues to the planet's internal structure, thermal evolution, and rotational history. Elevation measurements of the northern hemisphere acquired by the Mercury Laser Altimeter on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft, combined with 378 occultations of radio signals from the spacecraft in the planet's southern hemisphere, reveal the low-degree shape of Mercury. Mercury's mean radius is 2439.36 ± 0.02 km, and there is a 0.14 km offset between the planet's centers of mass and figure. Mercury is oblate, with a polar radius 1.65 km less than the mean equatorial radius. The difference between the semimajor and semiminor equatorial axes is 1.25 km, with the long axis oriented 15° west of Mercury's dynamically defined principal axis. Mercury's geoid is also oblate and elongated, but it deviates from a sphere by a factor of 10 less than Mercury's shape, implying compensation of elevation variations on a global scale.

  14. Mercury content of Illinois soils

    USGS Publications Warehouse

    Dreher, G.B.; Follmer, L.R.

    2004-01-01

    For a survey of Illinois soils, 101 cores had been collected and analyzed to determine the current and background elemental compositions of Illinois soils. Mercury and other elements were determined in six samples per core, including a surface sample from each core. The mean mercury content in the surface samples was 33 ?? 20 ??g/kg soil, and the background content was 20 ?? 9 ??g/kg. The most probable sources of mercury in these soils were the parent material, and wet and dry deposition of Hg0 and Hg2+ derived from coal-burning power plants, other industrial plants, and medical and municipal waste incinerators. Mercury-bearing sewage sludge or other fertilizers applied to agricultural fields could have been the local sources of mercury. Although the mercury content correlated with organic carbon content or clay content in individual cores, when all the data were considered, there was no strong correlation between mercury and either the organic carbon or the clay-size content.

  15. Comparison of the structural basis for thermal stability between archaeal and bacterial proteins.

    PubMed

    Ding, Yanrui; Cai, Yujie; Han, Yonggang; Zhao, Bingqiang

    2012-01-01

    In this study, the structural basis for thermal stability in archaeal and bacterial proteins was investigated. There were many common factors that confer resistance to high temperature in both archaeal and bacterial proteins. These factors include increases in the Lys content, the bends and blanks of secondary structure, the Glu content of salt bridge; decreases in the number of main-side chain hydrogen bond and exposed surface area, and changes in the bends and blanks of amino acids. Certainly, the utilization of charged amino acids to form salt bridges is a primary factor. In both heat-resistant archaeal and bacterial proteins, most Glu and Asp participate in the formation of salt bridges. Other factors may influence either archaeal or bacterial protein thermostability, which includes the more frequent occurrence of shorter 3(10)-helices and increased hydrophobicity in heat-resistant archaeal proteins. However, there were increases in average helix length, the Glu content in salt bridges, temperature factors and decreases in the number of main-side chain hydrogen bonds, uncharged-uncharged hydrogen bonds, hydrophobicity, and buried and exposed polar surface area in heat-resistant bacterial proteins. Evidently, there are few similarities and many disparities between the heat-resistant mechanisms of archaeal and bacterial proteins.

  16. Endoscopic management of massive mercury ingestion

    PubMed Central

    Zag, Levente; Berkes, Gábor; Takács, Irma F; Szepes, Attila; Szabó, István

    2017-01-01

    Abstract Rationale: Ingestion of a massive amount of metallic mercury was thought to be harmless until the last century. After that, in a number of cases, mercury ingestion has been associated with appendicitis, impaired liver function, memory deficits, aspiration leading to pneumonitis and acute renal failure. Treatment includes gastric lavage, giving laxatives and chelating agents, but rapid removal of metallic mercury with gastroscopy has not been used. Patient concerns: An 18-year-old man was admitted to our emergency department after drinking 1000 g of metallic mercury as a suicide attempt. Diagnosis: Except from mild umbilical tenderness, he had no other symptoms. Radiography showed a metallic density in the area of the stomach. Intervention: Gastroscopy was performed to remove the mercury. One large pool and several small droplets of mercury were removed from the stomach. Outcomes: Blood and urine mercury levels of the patient remained low during hospitalization. No symptoms of mercury intoxication developed during the follow-up period. Lessons: Massive mercury ingestion may cause several symptoms, which can be prevented with prompt treatment. We used endoscopy to remove the mercury, which shortened the exposure time and minimized the risk of aspiration. This is the first case where endoscopy was used for the management of mercury ingestion. PMID:28562544

  17. The secondary release of mercury in coal fly ash-based flue-gas mercury removal technology.

    PubMed

    He, Jingfeng; Duan, Chenlong; Lei, Mingzhe; Zhu, Xuemei

    2016-01-01

    The secondary release of mercury from coal fly ash is a negative by-product from coal-fired power plants, and requires effective control to reduce environmental pollution. Analysing particle size distribution and composition of the coal fly ash produced by different mercury removing technologies indicates that the particles are generally less than 0.5 mm in size and are composed mainly of SiO2, Al2O3, and Fe2O3. The relationships between mercury concentration in the coal fly ash, its particle size, and loss of ignition were studied using different mercury removing approaches. The research indicates that the coal fly ash's mercury levels are significantly higher after injecting activated carbon or brominating activated carbon when compared to regular cooperating-pollution control technology. This is particularly true for particle size ranges of >0.125, 0.075-0.125, and 0.05-0.075 mm. Leaching experiments revealed the secondary release of mercury in discarded coal fly ash. The concentration of mercury in the coal fly ash increases as the quantity of injecting activated carbon or brominating activated carbon increases. The leached concentrations of mercury increase as the particle size of the coal fly ash increases. Therefore, the secondary release of mercury can be controlled by adding suitable activated carbon or brominating activated carbon when disposing of coal fly ash. Adding CaBr2 before coal combustion in the boiler also helps control the secondary release of mercury, by increasing the Hg(2+) concentration in the leachate. This work provides a theoretical foundation for controlling and removing mercury in coal fly ash disposal.

  18. SIGIRR, a negative regulator of TLR/IL-1R signalling promotes Microbiota dependent resistance to colonization by enteric bacterial pathogens.

    PubMed

    Sham, Ho Pan; Yu, Emily Yi Shan; Gulen, Muhammet F; Bhinder, Ganive; Stahl, Martin; Chan, Justin M; Brewster, Lara; Morampudi, Vijay; Gibson, Deanna L; Hughes, Michael R; McNagny, Kelly M; Li, Xiaoxia; Vallance, Bruce A

    2013-01-01

    Enteric bacterial pathogens such as enterohemorrhagic E. coli (EHEC) and Salmonella Typhimurium target the intestinal epithelial cells (IEC) lining the mammalian gastrointestinal tract. Despite expressing innate Toll-like receptors (TLRs), IEC are innately hypo-responsive to most bacterial products. This is thought to prevent maladaptive inflammatory responses against commensal bacteria, but it also limits antimicrobial responses by IEC to invading bacterial pathogens, potentially increasing host susceptibility to infection. One reason for the innate hypo-responsiveness of IEC is their expression of Single Ig IL-1 Related Receptor (SIGIRR), a negative regulator of interleukin (IL)-1 and TLR signaling. To address whether SIGIRR expression and the innate hypo-responsiveness of IEC impacts on enteric host defense, Sigirr deficient (-/-) mice were infected with the EHEC related pathogen Citrobacter rodentium. Sigirr -/- mice responded with accelerated IEC proliferation and strong pro-inflammatory and antimicrobial responses but surprisingly, Sigirr -/- mice proved dramatically more susceptible to infection than wildtype mice. Through haematopoietic transplantation studies, it was determined that SIGIRR expression by non-haematopoietic cells (putative IEC) regulated these responses. Moreover, the exaggerated responses were found to be primarily dependent on IL-1R signaling. Whilst exploring the basis for their susceptibility, Sigirr -/- mice were found to be unusually susceptible to intestinal Salmonella Typhimurium colonization, developing enterocolitis without the typical requirement for antibiotic based removal of competing commensal microbes. Strikingly, the exaggerated antimicrobial responses seen in Sigirr -/- mice were found to cause a rapid and dramatic loss of commensal microbes from the infected intestine. This depletion appears to reduce the ability of the microbiota to compete for space and nutrients (colonization resistance) with the invading pathogens

  19. Understanding atmospheric mercury speciation and mercury in snow over time at Alert, Canada

    NASA Astrophysics Data System (ADS)

    Steffen, A.; Bottenheim, J.; Cole, A.; Ebinghaus, R.; Lawson, G.; Leaitch, W. R.

    2013-06-01

    Ten years of atmospheric mercury speciation data and 14 yr of mercury in snow data from Alert, Nunavut, Canada are examined. The speciation data, collected from 2002 to 2011, includes gaseous elemental mercury (GEM), particulate mercury (PHg) and reactive gaseous mercury (RGM). During the winter-spring period of atmospheric mercury depletion events (AMDEs), when GEM is close to being completely depleted from the air, the concentrations of PHg and RGM rise significantly. During this period, the median concentrations for PHg is 28.2 pg m-3 and RGM is 23.9 pg m-3 from March to June in comparison to the annual median concentrations of 11.3 and 3.2 -3 for PHg and RGM, respectively. In each of the ten years of sampling, PHg increases steadily from January through March and is higher than RGM. This pattern begins to change in April with very high levels of PHg and increasing RGM. In May, RGM transitions to be significantly higher than PHg and continues into June whereas PHg sharply drops down. The transition is thought to be driven by a combination of air temperature and particle availability. Firstly, the ratio of PHg to RGM is favoured by low temperatures suggesting that oxidized mercury may partition to available particles to form PHg. Prior to the transition, the median air temperature is -24.8 °C and after the transition the median air temperature is -5.8 °C. Secondly, high aerosol levels in the spring are a strong driver for the high PHg concentrations. In February through April, partitioning of oxidized mercury to produce PHg was favoured by increased concentrations of particles that are principally the result of Arctic Haze and some sea salts. In the snow, the concentrations of mercury peak in May for all years. The highest deposition of mercury to the snow in the spring at Alert is during and after the transition of PHg to RGM in the atmosphere.

  20. Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater

    PubMed Central

    2013-01-01

    Background Heavy-metals exert considerable stress on the environment worldwide. This study assessed the resistance to and bioremediation of heavy-metals by selected protozoan and bacterial species in highly polluted industrial-wastewater. Specific variables (i.e. chemical oxygen demand, pH, dissolved oxygen) and the growth/die-off-rates of test organisms were measured using standard methods. Heavy-metal removals were determined in biomass and supernatant by the Inductively Couple Plasma Optical Emission Spectrometer. A parallel experiment was performed with dead microbial cells to assess the biosorption ability of test isolates. Results The results revealed that the industrial-wastewater samples were highly polluted with heavy-metal concentrations exceeding by far the maximum limits (in mg/l) of 0.05-Co, 0.2-Ni, 0.1-Mn, 0.1-V, 0.01-Pb, 0.01-Cu, 0.1-Zn and 0.005-Cd, prescribed by the UN-FAO. Industrial-wastewater had no major effects on Pseudomonas putida, Bacillus licheniformis and Peranema sp. (growth rates up to 1.81, 1.45 and 1.43 d-1, respectively) compared to other test isolates. This was also revealed with significant COD increases (p < 0.05) in culture media inoculated with living bacterial isolates (over 100%) compared to protozoan isolates (up to 24% increase). Living Pseudomonas putida demonstrated the highest removal rates of heavy metals (Co-71%, Ni-51%, Mn-45%, V-83%, Pb-96%, Ti-100% and Cu-49%) followed by Bacillus licheniformis (Al-23% and Zn-53%) and Peranema sp. (Cd-42%). None of the dead cells were able to remove more than 25% of the heavy metals. Bacterial isolates contained the genes copC, chrB, cnrA3 and nccA encoding the resistance to Cu, Cr, Co-Ni and Cd-Ni-Co, respectively. Protozoan isolates contained only the genes encoding Cu and Cr resistance (copC and chrB genes). Peranema sp. was the only protozoan isolate which had an additional resistant gene cnrA3 encoding Co-Ni resistance. Conclusion Significant differences (p < 0

  1. Enhanced Disease Susceptibility1 Mediates Pathogen Resistance and Virulence Function of a Bacterial Effector in Soybean1[C][W][OPEN

    PubMed Central

    Wang, Jialin; Shine, M.B.; Gao, Qing-Ming; Navarre, Duroy; Jiang, Wei; Liu, Chunyan; Chen, Qingshan; Hu, Guohua; Kachroo, Aardra

    2014-01-01

    Enhanced disease susceptibility1 (EDS1) and phytoalexin deficient4 (PAD4) are well-known regulators of both basal and resistance (R) protein-mediated plant defense. We identified two EDS1-like (GmEDS1a/GmEDS1b) proteins and one PAD4-like (GmPAD4) protein that are required for resistance signaling in soybean (Glycine max). Consistent with their significant structural conservation to Arabidopsis (Arabidopsis thaliana) counterparts, constitutive expression of GmEDS1 or GmPAD4 complemented the pathogen resistance defects of Arabidopsis eds1 and pad4 mutants, respectively. Interestingly, however, the GmEDS1 and GmPAD4 did not complement pathogen-inducible salicylic acid accumulation in the eds1/pad4 mutants. Furthermore, the GmEDS1a/GmEDS1b proteins were unable to complement the turnip crinkle virus coat protein-mediated activation of the Arabidopsis R protein Hypersensitive reaction to Turnip crinkle virus (HRT), even though both interacted with HRT. Silencing GmEDS1a/GmEDS1b or GmPAD4 reduced basal and pathogen-inducible salicylic acid accumulation and enhanced soybean susceptibility to virulent pathogens. The GmEDS1a/GmEDS1b and GmPAD4 genes were also required for Resistance to Pseudomonas syringae pv glycinea2 (Rpg2)-mediated resistance to Pseudomonas syringae. Notably, the GmEDS1a/GmEDS1b proteins interacted with the cognate bacterial effector AvrA1 and were required for its virulence function in rpg2 plants. Together, these results show that despite significant structural similarities, conserved defense signaling components from diverse plants can differ in their functionalities. In addition, we demonstrate a role for GmEDS1 in regulating the virulence function of a bacterial effector. PMID:24872380

  2. Groundwater Modeling Of Mercury Pollution At A Former Mercury Cell Chlor Alkali Facility In Pavoldar, Kazakhstan

    EPA Science Inventory

    In Kazakhstan, there is a serious case of mercury pollution near the city of Pavlodar from an old mercury cell chlor-alkali plant. The soil, sediment, and water is severly contaminated with mercury and mercury compounds as a result of the industrial activity of this chemical pla...

  3. Process for low mercury coal

    DOEpatents

    Merriam, Norman W.; Grimes, R. William; Tweed, Robert E.

    1995-01-01

    A process for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal.

  4. Multi-model study of mercury dispersion in the atmosphere: vertical and interhemispheric distribution of mercury species

    NASA Astrophysics Data System (ADS)

    Bieser, Johannes; Slemr, Franz; Ambrose, Jesse; Brenninkmeijer, Carl; Brooks, Steve; Dastoor, Ashu; DeSimone, Francesco; Ebinghaus, Ralf; Gencarelli, Christian N.; Geyer, Beate; Gratz, Lynne E.; Hedgecock, Ian M.; Jaffe, Daniel; Kelley, Paul; Lin, Che-Jen; Jaegle, Lyatt; Matthias, Volker; Ryjkov, Andrei; Selin, Noelle E.; Song, Shaojie; Travnikov, Oleg; Weigelt, Andreas; Luke, Winston; Ren, Xinrong; Zahn, Andreas; Yang, Xin; Zhu, Yun; Pirrone, Nicola

    2017-06-01

    Atmospheric chemistry and transport of mercury play a key role in the global mercury cycle. However, there are still considerable knowledge gaps concerning the fate of mercury in the atmosphere. This is the second part of a model intercomparison study investigating the impact of atmospheric chemistry and emissions on mercury in the atmosphere. While the first study focused on ground-based observations of mercury concentration and deposition, here we investigate the vertical and interhemispheric distribution and speciation of mercury from the planetary boundary layer to the lower stratosphere. So far, there have been few model studies investigating the vertical distribution of mercury, mostly focusing on single aircraft campaigns. Here, we present a first comprehensive analysis based on various aircraft observations in Europe, North America, and on intercontinental flights. The investigated models proved to be able to reproduce the distribution of total and elemental mercury concentrations in the troposphere including interhemispheric trends. One key aspect of the study is the investigation of mercury oxidation in the troposphere. We found that different chemistry schemes were better at reproducing observed oxidized mercury patterns depending on altitude. High concentrations of oxidized mercury in the upper troposphere could be reproduced with oxidation by bromine while elevated concentrations in the lower troposphere were better reproduced by OH and ozone chemistry. However, the results were not always conclusive as the physical and chemical parameterizations in the chemistry transport models also proved to have a substantial impact on model results.

  5. Isolation and characterization of multiple drug resistance bacterial pathogens from waste water in hospital and non-hospital environments, Northwest Ethiopia

    PubMed Central

    2014-01-01

    Background The importance of bacterial isolates from waste water environment as a reservoir of antibiotic resistance and a potential source of novel resistance genes to clinical pathogens is underestimated. This study is aimed at to isolate and characterize public health important bacteria from waste water in hospital and non- hospital environments and evaluate the distribution of multiple drug resistance bacteria in the study area. Methods A cross-sectional study was conducted at Gondar from January-June 2012. The hospital waste water was taken from different sections of the Gondar University Teaching Hospital. Non- hospital environment samples were taken at different sites of the university campuses, Gondar College of Teachers education, and soft drink factory in Gondar. Samples were aseptically collected, transported and processed with in two hours following standard procedure. Identified organisms were assessed for different antibiotics following Kirby-Bauer disk diffusion method. All data was registered and entered in to SPSS version 16 computer program. P-values less than 0.05 were taken as statistically significant. Result A total of 60 waste water samples were processed for the presence of drug resistance pathogens. Among the total samples 113 bacterial isolates were recovered and of these 65 (57.5%) were from hospital environment and 48 (42.5%) were from non-hospital environment. The most frequently identified bacterium was Klebsiella spp. 30 (26.6%) followed by Pseudomonas spp. 19(16.8%), E. coli (11.5%) and Citrobacter spp (11.5%), and Staphylococcus aureus (8.2%). The over all prevalence of multiple drug resistance (MDR) in this study was 79/113 (69.9%). MDR in hospital environment was found to be 53/68 (81.5%) while in non hospital environment was found to be 26/48 (54.2%). Conclusions Multiple drug resistance to the commonly used antibiotics is high in the study area. The contamination of waste water by antibiotics or other pollutants lead to the rise

  6. Isolation and characterization of multiple drug resistance bacterial pathogens from waste water in hospital and non-hospital environments, Northwest Ethiopia.

    PubMed

    Moges, Feleke; Endris, Mengistu; Belyhun, Yeshambel; Worku, Walelegn

    2014-04-05

    The importance of bacterial isolates from waste water environment as a reservoir of antibiotic resistance and a potential source of novel resistance genes to clinical pathogens is underestimated. This study is aimed at to isolate and characterize public health important bacteria from waste water in hospital and non- hospital environments and evaluate the distribution of multiple drug resistance bacteria in the study area. A cross-sectional study was conducted at Gondar from January-June 2012. The hospital waste water was taken from different sections of the Gondar University Teaching Hospital. Non- hospital environment samples were taken at different sites of the university campuses, Gondar College of Teachers education, and soft drink factory in Gondar. Samples were aseptically collected, transported and processed with in two hours following standard procedure. Identified organisms were assessed for different antibiotics following Kirby-Bauer disk diffusion method. All data was registered and entered in to SPSS version 16 computer program. P-values less than 0.05 were taken as statistically significant. A total of 60 waste water samples were processed for the presence of drug resistance pathogens. Among the total samples 113 bacterial isolates were recovered and of these 65 (57.5%) were from hospital environment and 48 (42.5%) were from non-hospital environment. The most frequently identified bacterium was Klebsiella spp. 30 (26.6%) followed by Pseudomonas spp. 19(16.8%), E. coli (11.5%) and Citrobacter spp (11.5%), and Staphylococcus aureus (8.2%). The over all prevalence of multiple drug resistance (MDR) in this study was 79/113 (69.9%). MDR in hospital environment was found to be 53/68 (81.5%) while in non hospital environment was found to be 26/48 (54.2%). Multiple drug resistance to the commonly used antibiotics is high in the study area. The contamination of waste water by antibiotics or other pollutants lead to the rise of resistance due to selection

  7. Interplay Between Antibiotic Resistance and Virulence During Disease Promoted by Multidrug-Resistant Bacteria

    PubMed Central

    Geisinger, Edward

    2017-01-01

    Abstract Diseases caused by antibiotic-resistant bacteria in hospitals are the outcome of complex relationships between several dynamic factors, including bacterial pathogenicity, the fitness costs of resistance in the human host, and selective forces resulting from interventions such as antibiotic therapy. The emergence and fate of mutations that drive antibiotic resistance are governed by these interactions. In this review, we will examine how different forms of antibiotic resistance modulate bacterial fitness and virulence potential, thus influencing the ability of pathogens to evolve in the context of nosocomial infections. We will focus on 3 important multidrug-resistant pathogens that are notoriously problematic in hospitals: Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus. An understanding of how antibiotic resistance mutations shape the pathobiology of multidrug-resistant infections has the potential to drive novel strategies that can control the development and spread of drug resistance. PMID:28375515

  8. MESSENGER Departs Mercury

    NASA Image and Video Library

    2008-01-30

    After NASA MESSENGER spacecraft completed its successful flyby of Mercury, the Narrow Angle Camera NAC, part of the Mercury Dual Imaging System MDIS, took these images of the receding planet. This is a frame from an animation.

  9. Attempt to develop live attenuated bacterial vaccines by selecting resistance to gossypol, proflavine hemisulfate, novobiocin, or ciprofloxacin.

    PubMed

    Pridgeon, Julia W; Klesius, Phillip H; Yildirim-Aksoy, Mediha

    2013-04-26

    In an attempt to develop attenuated bacteria as potential live vaccines, four chemicals (gossypol, proflavine hemisulfate, novobiocin, and ciprofloxacin) were used to modify the following four genera of bacteria through chemical-resistance strategy: (1) Aeromonas hydrophila (9 isolates); (2) Edwardsiella tarda (9 isolates); (3) Streptococcus iniae (9 isolates); and (4) S. agalactiae (11 isolates). All bacteria used in this study were able to develop high resistance to gossypol. However, only some bacteria were able to develop resistance to proflavine hemisulfate, novobiocin, or ciprofloxacin. When the virulence of resistant bacteria was tested in tilapia or catfish, none of the gossypol-resistant isolate was attenuated, whereas majority of the proflavine hemisulfate-resistant isolates were attenuated. However, all proflavine hemisulfate-attenuated bacteria failed to provide significant protection to fish. Eight novobiocin- or ciprofloxacin-resistant Gram-positive bacteria (S. agalactiae and S. inaie) were found to be attenuated. However, none of them offered protection higher than 70%. Of seven attenuated novobiocin- or ciprofloxacin-resistant Gram-negative isolates (A. hydrophila and E. tarda), only one (novobiocin-resistant E. tarda 30305) was found to safe and highly efficacious. When E. tarda 30305-novo vaccinated Nile tilapia were challenged by its virulent E. tarda 30305, relative percent of survival of vaccinated fish at 14- and 28-days post vaccination (dpv) was 100% and 92%, respectively. Similarly, E. tarda 30305-novo offered 100% protection to channel catfish against challenges with virulent parent isolate E. tarda 30305 at both 14- and 28-dpv. Our results suggest that the development of live attenuated bacterial vaccines that are safe and efficacious is challenging, although it is feasible. Published by Elsevier Ltd.

  10. Besifloxacin ophthalmic suspension, 0.6%: a novel topical fluoroquinolone for bacterial conjunctivitis.

    PubMed

    O'Brien, Terrence P

    2012-06-01

    Acute bacterial conjunctivitis, the most common cause of conjunctivitis, is responsible for approximately 1% of all primary-care consultations. Of the topical ophthalmic antibiotics used to treat acute bacterial conjunctivitis, fluoroquinolones are especially useful because they possess a broad antibacterial spectrum, are bactericidal in action, are generally well tolerated, and have been less prone to development of bacterial resistance. Besifloxacin, the latest advanced fluoroquinolone approved for treating bacterial conjunctivitis, is the first fluoroquinolone developed specifically for topical ophthalmic use. It has a C-8 chlorine substituent and is known as a chloro-fluoroquinolone. Besifloxacin possesses relatively balanced dual-targeting activity against bacterial topoisomerase IV and DNA gyrase (topoisomerse II), two essential enzymes involved in bacterial DNA replication, leading to increased potency and decreased likelihood of bacterial resistance developing to besifloxacin. Microbiological data suggest a relatively high potency and rapid bactericidal activity for besifloxacin against common ocular pathogens, including bacteria resistant to other fluoroquinolones, especially resistant staphylococcal species. Randomized, double-masked, controlled clinical studies demonstrated the clinical efficacy of besifloxacin ophthalmic suspension 0.6% administered three-times daily for 5 days to be superior to the vehicle alone and similar to moxifloxacin ophthalmic solution 0.5% for bacterial conjunctivitis. In addition, besifloxacin ophthalmic suspension 0.6% administered two-times daily for 3 days was clinically more effective than the vehicle alone for bacterial conjunctivitis. Besifloxacin has also been shown in preclinical animal studies to be potentially effective for the "off-label" treatment of infections following ocular surgery, prophylaxis of endophthalmitis, and the treatment of bacterial keratitis. Taken together, clinical and preclinical animal studies

  11. 76 FR 13851 - National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ...This action proposes amendments to the national emission standards for hazardous air pollutants (NESHAP) for mercury emissions from mercury cell chlor-alkali plants (Mercury Cell NESHAP). On June 11, 2008, EPA proposed amendments to this NESHAP in response to a petition for reconsideration filed by the Natural Resources Defense Council (NRDC). This action is a supplement to the June 11, 2008, proposal. Specifically, this action proposes two options for amending the NESHAP for mercury emissions from mercury cell chlor-alkali plants. The first option would require the elimination of mercury emissions and thus encourage the conversion to non-mercury technology. The second option would require the measures proposed in 2008. These measures, which included significant improvements in the work practices to reduce fugitive emissions from the cell room, would result in near-zero levels of mercury emissions while still allowing the mercury cell facilities to continue to operate. We are specifically requesting comment on which of these options is more appropriate, and may finalize either option or a combination of elements from them. In addition, this action proposes several amendments that would apply regardless of which option we select. These proposed amendments are provisions of the existing NESHAP that would apply to periods of startup, shutdown, and malfunction (SSM), and corrections to compliance errors in the currently effective rule.

  12. Method and apparatus for sampling atmospheric mercury

    DOEpatents

    Trujillo, Patricio E.; Campbell, Evan E.; Eutsler, Bernard C.

    1976-01-20

    A method of simultaneously sampling particulate mercury, organic mercurial vapors, and metallic mercury vapor in the working and occupational environment and determining the amount of mercury derived from each such source in the sampled air. A known volume of air is passed through a sampling tube containing a filter for particulate mercury collection, a first adsorber for the selective adsorption of organic mercurial vapors, and a second adsorber for the adsorption of metallic mercury vapor. Carbon black molecular sieves are particularly useful as the selective adsorber for organic mercurial vapors. The amount of mercury adsorbed or collected in each section of the sampling tube is readily quantitatively determined by flameless atomic absorption spectrophotometry.

  13. Aminomethyl Spectinomycins as Novel Therapeutics for Drug Resistant Respiratory Tract and Sexually Transmitted Bacterial Infections

    PubMed Central

    Madhura, Dora B.; Shcherbakov, Dimitri; Zheng, Zhong; Liu, Jiuyu; Abdelrahman, Yasser M.; Singh, Aman P.; Duscha, Stefan; Rathi, Chetan; Lee, Robin B.; Belland, Robert J.; Meibohm, Bernd; Rosch, Jason W.; Böttger, Erik C.; Lee, Richard E.

    2015-01-01

    The antibiotic spectinomycin is a potent inhibitor of bacterial protein synthesis with a unique mechanism of action and an excellent safety index, but it lacks antibacterial activity against most clinically important pathogens. A novel series of N-benzyl substituted 3'-(R)- 3'-aminomethyl-3'-hydroxy spectinomycins was developed based on a computational analysis of the aminomethyl spectinomycin binding site and structure guided synthesis. These compounds had ribosomal inhibition values comparable to spectinomycin but showed increased potency against common respiratory tract pathogens Streptococcus pneumoniae, Haemophilus influenzae, Legionella pneumophila, and Moraxella catarrhalis as well as the sexually transmitted bacteria Neisseria gonorrhoeae and Chlamydia trachomatis. Non-ribosome binding 3'-(S) isomers of the leads demonstrated weak inhibitory activity in in vitro protein translation assays and poor antibacterial activity, indicating that the antibacterial activity of the series remains on target. In addition to improved antibacterial potency, compounds also demonstrated no mammalian cytotoxicity, improved microsomal stability, and favorable pharmacokinetic properties in rats. The lead compound from the series, compound 1, exhibited excellent chemical stability, which was superior to spectinomycin and had no significant interaction with a panel of human receptors and drug metabolism enzymes suggesting low potential for adverse reactions or drug-drug interactions in vivo. Compound 1 was active in vitro against a panel of penicillin, macrolide, and cephalosporin resistant S. pneumoniae clinical isolates and cured mice of fatal pneumococcal pneumonia and sepsis at a dose of 5 mg/kg. Together, these studies indicate N-benzyl aminomethyl spectinomycins possess suitable properties for further development as novel antibacterial agents to treat drug resistant respiratory tract and sexually transmitted bacterial infections. PMID:25995221

  14. Ecosystem conceptual model- Mercury

    USGS Publications Warehouse

    Alpers, Charles N.; Eagles-Smith, Collin A.; Foe, Chris; Klasing, Susan; Marvin-DiPasquale, Mark C.; Slotton, Darell G.; Windham-Myers, Lisamarie

    2008-01-01

    Mercury has been identified as an important contaminant in the Delta, based on elevated concentrations of methylmercury (a toxic, organic form that readily bioaccumulates) in fish and wildlife. There are health risks associated with human exposure to methylmercury by consumption of sport fish, particularly top predators such as bass species. Original mercury sources were upstream tributaries where historical mining of mercury in the Coast Ranges and gold in the Sierra Nevada and Klamath-Trinity Mountains caused contamination of water and sediment on a regional scale. Remediation of abandoned mine sites may reduce local sources in these watersheds, but much of the mercury contamination occurs in sediments stored in the riverbeds, floodplains, and the Bay- Delta, where scouring of Gold-Rush-era sediment represents an ongoing source.Conversion of inorganic mercury to toxic methylmercury occurs in anaerobic environments including some wetlands. Wetland restoration managers must be cognizant of potential effects on mercury cycling so that the problem is not exacerbated. Recent research suggests that wettingdrying cycles can contribute to mercury methylation. For example, high marshes (inundated only during the highest tides for several days per month) tend to have higher methylmercury concentrations in water, sediment, and biota compared with low marshes, which do not dry out completely during the tidal cycle. Seasonally inundated flood plains are another environment experiencing wetting and drying where methylmercury concentrations are typically elevated. Stream restoration efforts using gravel injection or other reworking of coarse sediment in most watersheds of the Central Valley involve tailings from historical gold mining that are likely to contain elevated mercury in associated fines. Habitat restoration projects, particularly those involving wetlands, may cause increases in methylmercury exposure in the watershed. This possibility should be evaluated.The DRERIP

  15. Wildfires threaten mercury stocks in northern soils

    USGS Publications Warehouse

    Turetsky, M.R.; Harden, J.W.; Friedli, H.R.; Flannigan, M.; Payne, N.; Crock, J.; Radke, L.

    2006-01-01

    With climate change rapidly affecting northern forests and wetlands, mercury reserves once protected in cold, wet soils are being exposed to burning, likely triggering large releases of mercury to the atmosphere. We quantify organic soil mercury stocks and burn areas across western, boreal Canada for use in fire emission models that explore controls of burn area, consumption severity, and fuel loading on atmospheric mercury emissions. Though renowned as hotspots for the accumulation of mercury and its transformation to the toxic methylmercury, boreal wetlands might soon transition to hotspots for atmospheric mercury emissions. Estimates of circumboreal mercury emissions from this study are 15-fold greater than estimates that do not account for mercury stored in peat soils. Ongoing and projected increases in boreal wildfire activity due to climate change will increase atmospheric mercury emissions, contributing to the anthropogenic alteration of the global mercury cycle and exacerbating mercury toxicities for northern food chains. Copyright 2006 by the American Geophysical Union.

  16. Mercury Project

    NASA Image and Video Library

    1963-05-16

    The recovery operation of the Faith 7 spacecraft after the completion of the 1-1/2 day orbital flight (MA-9 mission) with Astronaut Gordon Cooper. Navy frogmen attach the flotation collar to the spacecraft. The MA-9 mission was the last flight of the Mercury Project and launched on May 15, 1963 boosted by The Mercury-Atlas launch vehicle.

  17. Mercury Project

    NASA Image and Video Library

    1962-02-20

    Astronaut John Glenn enters the Mercury spacecraft, Friendship 7, prior to the launch of MA-6 on February 20, 1961 and became the first American who orbited the Earth. The MA-6 mission was the first manned orbital flight boosted by the Mercury-Atlas vehicle, a modified Atlas ICBM (Intercontinental Ballistic Missile), lasted for five hours, and orbited the Earth three times.

  18. Process for low mercury coal

    DOEpatents

    Merriam, N.W.; Grimes, R.W.; Tweed, R.E.

    1995-04-04

    A process is described for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal. 4 figures.

  19. Methods for dispensing mercury into devices

    DOEpatents

    Grossman, Mark W.; George, William A.

    1987-04-28

    A process for dispensing mercury into devices which requires mercury. Mercury is first electrolytically separated from either HgO or Hg.sub.2 Cl.sub.2 and plated onto a cathode wire. The cathode wire is then placed into a device requiring mercury.

  20. Inheritance of high levels of resistance to common bacterial blight caused by Xanthomonas Axonopodis pv. Phaseoli in common bean (Phaseolus vulgaris L.)

    USDA-ARS?s Scientific Manuscript database

    Common bacterial blight caused by the pathogen Xanthomonas axonopodis pv. phaseoli (Xap) is an important biotic factor limiting common bean (Phaseolus vulgaris L.) production. A few interspecific bean breeding lines such as VAX 6 exhibit a high level of resistance to a wide range of Xap strains repr...