Science.gov

Sample records for bacterial metal respiration

  1. New Insights into the Mechanism of Bacterial Metal Respiration

    SciTech Connect

    DiChristina, Thomas J.

    2004-04-17

    This project goal is to identify genes and gene products required for microbial metal reduction: reductive dissolution of iron; reductive dissolution of manganese; reductive precipitation of selenium; reductive precipitation of uranium; and reductive precipitation of technetium.

  2. Bacterial respiration of arsenic and selenium

    USGS Publications Warehouse

    Stolz, J.F.; Oremland, R.S.

    1999-01-01

    Oxyanions of arsenic and selenium can be used in microbial anaerobic respiration as terminal electron acceptors. The detection of arsenate and selenate respiring bacteria in numerous pristine and contaminated environments and their rapid appearance in enrichment culture suggest that they are widespread and metabolically active in nature. Although the bacterial species that have been isolated and characterized are still few in number, they are scattered throughout the bacterial domain and include Gram- positive bacteria, beta, gamma and epsilon Proteobacteria and the sole member of a deeply branching lineage of the bacteria, Chrysiogenes arsenatus. The oxidation of a number of organic substrates (i.e. acetate, lactate, pyruvate, glycerol, ethanol) or hydrogen can be coupled to the reduction of arsenate and selenate, but the actual donor used varies from species to species. Both periplasmic and membrane-associated arsenate and selenate reductases have been characterized. Although the number of subunits and molecular masses differs, they all contain molybdenum. The extent of the environmental impact on the transformation and mobilization of arsenic and selenium by microbial dissimilatory processes is only now being fully appreciated.

  3. Molecular Characterization of Bacterial Respiration on Minerals

    SciTech Connect

    Blake, Robert C.

    2013-04-26

    anomalous dispersion (MAD) phasing; 4. An acid-stable red cytochrome with a novel absorbance peak at 579 nm was purified from cell-free extracts of L. ferriphilum. Functional studies demonstrated that this cytochrome was an important component of the aerobic iron respiratory chain in this organism; 5. The specific adhesion of At. ferrooxidans to pyrite is mediated by an extracellular protein that was identified as aporusticyanin. The adhesion of At. ferrooxidans to minerals was characterized by high affinity binding that exhibited a high specificity for pyrite over other sulfide minerals. The principal biopolymer involved in this high-affinity adhesion to pyrite was isolated by mineral affinity chromatography and identified as aporusticyanin. The adhesion of purified aporusticyanin to minerals was observed to adhere to different mineral with a pattern of reactivity identical to that observed with the intact bacterium. Further, preincubation of pyrite with excess exogenous aporusticyanin served to inhibit the adherence of intact cells to the surface of the mineral, indicating that the protein and the cells adhered to the pyrite in a mutually exclusive manner. Taken together, these observations support a model where aporusticyanin located on the surface of the bacterial cell acts as a mineral-specific receptor for the initial adherence of At. ferrooxidans to solid pyrite; 6. The specific adhesion of L. ferriphilum to pyrite was mediated by a different acid-stable extracellular protein than aporusticyanin; and 7. A prototype integrating cavity absorption meter (ICAM) was assembled to determine whether this novel spectrophotometer could be used to study cellular respiration in situ.

  4. Antibiotic efficacy is linked to bacterial cellular respiration.

    PubMed

    Lobritz, Michael A; Belenky, Peter; Porter, Caroline B M; Gutierrez, Arnaud; Yang, Jason H; Schwarz, Eric G; Dwyer, Daniel J; Khalil, Ahmad S; Collins, James J

    2015-07-07

    Bacteriostatic and bactericidal antibiotic treatments result in two fundamentally different phenotypic outcomes--the inhibition of bacterial growth or, alternatively, cell death. Most antibiotics inhibit processes that are major consumers of cellular energy output, suggesting that antibiotic treatment may have important downstream consequences on bacterial metabolism. We hypothesized that the specific metabolic effects of bacteriostatic and bactericidal antibiotics contribute to their overall efficacy. We leveraged the opposing phenotypes of bacteriostatic and bactericidal drugs in combination to investigate their activity. Growth inhibition from bacteriostatic antibiotics was associated with suppressed cellular respiration whereas cell death from most bactericidal antibiotics was associated with accelerated respiration. In combination, suppression of cellular respiration by the bacteriostatic antibiotic was the dominant effect, blocking bactericidal killing. Global metabolic profiling of bacteriostatic antibiotic treatment revealed that accumulation of metabolites involved in specific drug target activity was linked to the buildup of energy metabolites that feed the electron transport chain. Inhibition of cellular respiration by knockout of the cytochrome oxidases was sufficient to attenuate bactericidal lethality whereas acceleration of basal respiration by genetically uncoupling ATP synthesis from electron transport resulted in potentiation of the killing effect of bactericidal antibiotics. This work identifies a link between antibiotic-induced cellular respiration and bactericidal lethality and demonstrates that bactericidal activity can be arrested by attenuated respiration and potentiated by accelerated respiration. Our data collectively show that antibiotics perturb the metabolic state of bacteria and that the metabolic state of bacteria impacts antibiotic efficacy.

  5. BACTERIAL RESPIRATION OF ARSENIC AND SELENIUM. (R826105)

    EPA Science Inventory

    Abstract

    Oxyanions of arsenic and selenium can be used in microbial anaerobic respiration as terminal electron acceptors. The detection of arsenate and selenate respiring bacteria in numerous pristine and contaminated environments and their rapid appearance in enrichme...

  6. Molecular AND logic gate based on bacterial anaerobic respiration.

    PubMed

    Arugula, Mary Anitha; Shroff, Namita; Katz, Evgeny; He, Zhen

    2012-10-21

    Enzyme coding genes that integrate information for anaerobic respiration in Shewanella oneidensis MR-1 were used as input for constructing an AND logic gate. The absence of one or both genes inhibited electrochemically-controlled anaerobic respiration, while wild type bacteria were capable of accepting electrons from an electrode for DMSO reduction.

  7. INFLUENCE OF THE PHYSICAL STATE OF THE BACTERIAL CELL MEMBRANE UPON THE RATE OF RESPIRATION.

    PubMed

    HENNEMAN, D H; UMBREIT, W W

    1964-06-01

    Henneman, Dorothy H. (Rutgers, The State University, New Brunswick, N.J.), and W. W. Umbreit. Influence of the physical state of the bacterial cell membrane upon the rate of respiration. J. Bacteriol. 87:1274-1280. 1964.-NaCl and KCl in concentrations of the order of 0.2 to 0.5 m inhibit the respiration of Escherichia coli B and other gram-negative organisms. Cell-free enzymes concerned in respiration and prepared from the same organisms are not inhibited by these salts, whereas these same enzymes tested in intact cells are. The physical state of the cell membrane appears to be a factor controlling its respiratory activity.

  8. Bacterial sorption of heavy metals

    SciTech Connect

    Mullen, M.D.; Wolf, D.C.; Ferris, F.G.; Beveridge, T.J.; Flemming, C.A.

    1989-01-01

    Four bacteria, Bacillus cereus, B. subtilis, Escherichia coli, and Pseudomonas aeruginosa, were examined for the ability to remove Ag{sup +}, Cd{sup 2+}, Cu{sup 2+}, and La{sup 3+} from solution by batch equilibration methods. Cd and Cu sorption over the concentration range 0.001 to 1 mM was described by Freundlich isotherms. At 1 mM concentrations of both Cd{sup 2+} and Cu{sup 2+}, P. aeruginosa and B. cereus were the most and least efficient at metal removal, respectively. Freundlich K constants indicated that E. coli was most efficient at Cd{sup 2+} removal and B. subtilis removed the most Cu{sup 2+}. Removal of Ag{sup +} from solution by bacteria was very efficient; an average of 89% of the total Ag{sup +} was removed from the 1 mM solution, whereas only 12, 29, and 27% of the total Cd{sup 2+}, Cu{sup 2+}, and La{sup 3+}, respectively, were sorbed from 1 mM solutions. Electron microscopy indicated that La{sup 3+} accumulated at the cell surface as needlelike, crystalline precipitates. Silver precipitated as discrete colloidal aggregates at the cell surface and occasionally in the cytoplasma. The results indicate that bacterial cells are capable of binding large quantities of different metals.

  9. The Terminal Oxidase Cytochrome bd Promotes Sulfide-resistant Bacterial Respiration and Growth

    PubMed Central

    Forte, Elena; Borisov, Vitaliy B.; Falabella, Micol; Colaço, Henrique G.; Tinajero-Trejo, Mariana; Poole, Robert K.; Vicente, João B.; Sarti, Paolo; Giuffrè, Alessandro

    2016-01-01

    Hydrogen sulfide (H2S) impairs mitochondrial respiration by potently inhibiting the heme-copper cytochrome c oxidase. Since many prokaryotes, including Escherichia (E.) coli, generate H2S and encounter high H2S levels particularly in the human gut, herein we tested whether bacteria can sustain sulfide-resistant O2-dependent respiration. E. coli has three respiratory oxidases, the cyanide-sensitive heme-copper bo3 enzyme and two bd oxidases much less sensitive to cyanide. Working on the isolated enzymes, we found that, whereas the bo3 oxidase is inhibited by sulfide with half-maximal inhibitory concentration IC50 = 1.1 ± 0.1 μM, under identical experimental conditions both bd oxidases are insensitive to sulfide up to 58 μM. In E. coli respiratory mutants, both O2-consumption and aerobic growth proved to be severely impaired by sulfide when respiration was sustained by the bo3 oxidase alone, but unaffected by ≤200 μM sulfide when either bd enzyme acted as the only terminal oxidase. Accordingly, wild-type E. coli showed sulfide-insensitive respiration and growth under conditions favouring the expression of bd oxidases. In all tested conditions, cyanide mimicked the functional effect of sulfide on bacterial respiration. We conclude that bd oxidases promote sulfide-resistant O2-consumption and growth in E. coli and possibly other bacteria. The impact of this discovery is discussed. PMID:27030302

  10. The Terminal Oxidase Cytochrome bd Promotes Sulfide-resistant Bacterial Respiration and Growth.

    PubMed

    Forte, Elena; Borisov, Vitaliy B; Falabella, Micol; Colaço, Henrique G; Tinajero-Trejo, Mariana; Poole, Robert K; Vicente, João B; Sarti, Paolo; Giuffrè, Alessandro

    2016-03-31

    Hydrogen sulfide (H2S) impairs mitochondrial respiration by potently inhibiting the heme-copper cytochrome c oxidase. Since many prokaryotes, including Escherichia (E.) coli, generate H2S and encounter high H2S levels particularly in the human gut, herein we tested whether bacteria can sustain sulfide-resistant O2-dependent respiration. E. coli has three respiratory oxidases, the cyanide-sensitive heme-copper bo3 enzyme and two bd oxidases much less sensitive to cyanide. Working on the isolated enzymes, we found that, whereas the bo3 oxidase is inhibited by sulfide with half-maximal inhibitory concentration IC50 = 1.1 ± 0.1 μM, under identical experimental conditions both bd oxidases are insensitive to sulfide up to 58 μM. In E. coli respiratory mutants, both O2-consumption and aerobic growth proved to be severely impaired by sulfide when respiration was sustained by the bo3 oxidase alone, but unaffected by ≤200 μM sulfide when either bd enzyme acted as the only terminal oxidase. Accordingly, wild-type E. coli showed sulfide-insensitive respiration and growth under conditions favouring the expression of bd oxidases. In all tested conditions, cyanide mimicked the functional effect of sulfide on bacterial respiration. We conclude that bd oxidases promote sulfide-resistant O2-consumption and growth in E. coli and possibly other bacteria. The impact of this discovery is discussed.

  11. Soil respiration and bacterial structure and function after 17 years of a reciprocal soil transplant experiment

    DOE PAGES

    Bond-Lamberty, Benjamin; Bolton, Harvey; Fansler, Sarah J.; ...

    2016-03-02

    The effects of climate change on soil organic matter—its structure, microbial community, carbon storage, and respiration response—remain uncertain and widely debated. In addition, the effects of climate changes on ecosystem structure and function are often modulated or delayed, meaning that short-term experiments are not sufficient to characterize ecosystem responses. This study capitalized on a long-term reciprocal soil transplant experiment to examine the response of dryland soils to climate change. The two transplant sites were separated by 500 m of elevation on the same mountain slope in eastern Washington state, USA, and had similar plant species and soil types. We resampledmore » the original 1994 soil transplants and controls, measuring CO2 production, temperature response, enzyme activity, and bacterial community structure after 17 years. Over a laboratory incubation of 100 days, reciprocally transplanted soils respired roughly equal cumulative amounts of carbon as non-transplanted controls from the same site. Soils transplanted from the hot, dry, lower site to the cooler and wetter (difference of -5 °C monthly maximum air temperature, +50 mm yr-1precipitation) upper site exhibited almost no respiratory response to temperature (Q10 of 1.1), but soils originally from the upper, cooler site had generally higher respiration rates. The bacterial community structure of transplants did not differ significantly from that of untransplanted controls, however. Slight differences in local climate between the upper and lower Rattlesnake locations, simulated with environmental control chambers during the incubation, thus prompted significant differences in microbial activity, with no observed change to bacterial structure. Lastly, these results support the idea that environmental shifts can influence soil C through metabolic changes, and suggest that microbial populations responsible for soil heterotrophic respiration may be constrained in surprising ways, even

  12. Soil respiration and bacterial structure and function after 17 years of a reciprocal soil transplant experiment

    SciTech Connect

    Bond-Lamberty, Benjamin; Bolton, Harvey; Fansler, Sarah J.; Heredia-Langner, Alejandro; Liu, Chongxuan; McCue, Lee Ann; Smith, Jeff L.; Bailey, Vanessa L.

    2016-03-02

    The effects of climate change on soil organic matter—its structure, microbial community, carbon storage, and respiration response—remain uncertain and widely debated. In addition, the effects of climate changes on ecosystem structure and function are often modulated or delayed, meaning that short-term experiments are not sufficient to characterize ecosystem responses. This study capitalized on a long-term reciprocal soil transplant experiment to examine the response of dryland soils to climate change. The two transplant sites were separated by 500 m of elevation on the same mountain slope in eastern Washington state, USA, and had similar plant species and soil types. We resampled the original 1994 soil transplants and controls, measuring CO2 production, temperature response, enzyme activity, and bacterial community structure after 17 years. Over a laboratory incubation of 100 days, reciprocally transplanted soils respired roughly equal cumulative amounts of carbon as non-transplanted controls from the same site. Soils transplanted from the hot, dry, lower site to the cooler and wetter (difference of -5 °C monthly maximum air temperature, +50 mm yr-1precipitation) upper site exhibited almost no respiratory response to temperature (Q10 of 1.1), but soils originally from the upper, cooler site had generally higher respiration rates. The bacterial community structure of transplants did not differ significantly from that of untransplanted controls, however. Slight differences in local climate between the upper and lower Rattlesnake locations, simulated with environmental control chambers during the incubation, thus prompted significant differences in microbial activity, with no observed change to bacterial structure. Lastly, these results support the idea that environmental shifts can influence soil C through metabolic changes, and suggest that microbial populations responsible for soil heterotrophic respiration may be constrained in

  13. Soil Respiration and Bacterial Structure and Function after 17 Years of a Reciprocal Soil Transplant Experiment.

    PubMed

    Bond-Lamberty, Ben; Bolton, Harvey; Fansler, Sarah; Heredia-Langner, Alejandro; Liu, Chongxuan; McCue, Lee Ann; Smith, Jeffrey; Bailey, Vanessa

    2016-01-01

    The effects of climate change on soil organic matter-its structure, microbial community, carbon storage, and respiration response-remain uncertain and widely debated. In addition, the effects of climate changes on ecosystem structure and function are often modulated or delayed, meaning that short-term experiments are not sufficient to characterize ecosystem responses. This study capitalized on a long-term reciprocal soil transplant experiment to examine the response of dryland soils to climate change. The two transplant sites were separated by 500 m of elevation on the same mountain slope in eastern Washington state, USA, and had similar plant species and soil types. We resampled the original 1994 soil transplants and controls, measuring CO2 production, temperature response, enzyme activity, and bacterial community structure after 17 years. Over a laboratory incubation of 100 days, reciprocally transplanted soils respired roughly equal cumulative amounts of carbon as non-transplanted controls from the same site. Soils transplanted from the hot, dry, lower site to the cooler and wetter (difference of -5°C monthly maximum air temperature, +50 mm yr-1 precipitation) upper site exhibited almost no respiratory response to temperature (Q10 of 1.1), but soils originally from the upper, cooler site had generally higher respiration rates. The bacterial community structure of transplants did not differ significantly from that of untransplanted controls, however. Slight differences in local climate between the upper and lower Rattlesnake locations, simulated with environmental control chambers during the incubation, thus prompted significant differences in microbial activity, with no observed change to bacterial structure. These results support the idea that environmental shifts can influence soil C through metabolic changes, and suggest that microbial populations responsible for soil heterotrophic respiration may be constrained in surprising ways, even as shorter- and

  14. Effect of heavy metals on bacterial transport

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Olson, M. S.

    2010-12-01

    Adsorption of metals onto bacteria and soil takes place as stormwater runoff infiltrates into the subsurface. Changes in both bacterial surfaces and soil elemental content have been observed, and may alter the attachment of bacteria to soil surfaces. In this study, scanning electron microscopy (SEM) and Energy Dispersive X-ray Spectrometry (EDS) analyses were performed on soil samples equilibrated with synthetic stormwater amended with copper, lead and zinc. The results demonstrate the presence of copper and zinc on soil surfaces. To investigate bacterial attachment behavior, sets of batch sorption experiments were conducted on Escherichia Coli (E. coli) under different chemical conditions by varying solution compositions (nutrient solution vs synthetic stormwater). The adsorption data is best described using theoretical linear isotherms. The equilibrium coefficient (Kd) of E. coli is higher in synthetic stormwater than in nutrient solution without heavy metals. The adsorption of heavy metals onto bacterial surfaces significantly decreases their negative surface charge as determined via zeta potential measurements (-17.0±5.96mv for E. coli equilibrated with synthetic stormwater vs -21.6±5.45mv for E. coli equilibrated with nutrient solution), indicating that bacterial attachment may increase due to the attachment of metals onto bacterial surfaces and their subsequent change in surface charge. The attachment efficiency (α) of bacteria was also calculated and compared for both solution chemistries. Bacterial attachment efficiency (α) in synthetic stormwater is 0.997, which is twice as high as that in nutrient solution(α 0.465). The ratio of bacterial diameter : collector diameter suggests minimal soil straining during bacterial transport. Results suggest that the presence of metals in synthetic stormwater leads to an increase in bacterial attachment to soil surfaces. In terms of designing stormwater infiltration basins, the presence of heavy metals seems to

  15. Physiological and electrochemical effects of different electron acceptors on bacterial anode respiration in bioelectrochemical systems.

    PubMed

    Yang, Yonggang; Xiang, Yinbo; Xia, Chunyu; Wu, Wei-Min; Sun, Guoping; Xu, Meiying

    2014-07-01

    To understand the interactions between bacterial electrode respiration and the other ambient bacterial electron acceptor reductions, alternative electron acceptors (nitrate, Fe2O3, fumarate, azo dye MB17) were added singly or multiply into Shewanella decolorationis microbial fuel cells (MFCs). All the added electron acceptors were reduced simultaneously with current generation. Adding nitrate or MB17 resulted in more rapid cell growth, higher flavin concentration and higher biofilm metabolic viability, but lower columbic efficiency (CE) and normalized energy recovery (NER) while the CE and NER were enhanced by Fe2O3 or fumarate. The added electron acceptors also significantly influenced the cyclic voltammetry profile of anode biofilm probably via altering the cytochrome c expression. The highest power density was observed in MFCs added with MB17 due to the electron shuttle role of the naphthols from MB17 reduction. The results provided important information for MFCs applied in practical environments where contains various electron acceptors.

  16. Bacterial adaptation of respiration from oxic to microoxic and anoxic conditions: redox control.

    PubMed

    Bueno, Emilio; Mesa, Socorro; Bedmar, Eulogio J; Richardson, David J; Delgado, Maria J

    2012-04-15

    Under a shortage of oxygen, bacterial growth can be faced mainly by two ATP-generating mechanisms: (i) by synthesis of specific high-affinity terminal oxidases that allow bacteria to use traces of oxygen or (ii) by utilizing other substrates as final electron acceptors such as nitrate, which can be reduced to dinitrogen gas through denitrification or to ammonium. This bacterial respiratory shift from oxic to microoxic and anoxic conditions requires a regulatory strategy which ensures that cells can sense and respond to changes in oxygen tension and to the availability of other electron acceptors. Bacteria can sense oxygen by direct interaction of this molecule with a membrane protein receptor (e.g., FixL) or by interaction with a cytoplasmic transcriptional factor (e.g., Fnr). A third type of oxygen perception is based on sensing changes in redox state of molecules within the cell. Redox-responsive regulatory systems (e.g., ArcBA, RegBA/PrrBA, RoxSR, RegSR, ActSR, ResDE, and Rex) integrate the response to multiple signals (e.g., ubiquinone, menaquinone, redox active cysteine, electron transport to terminal oxidases, and NAD/NADH) and activate or repress target genes to coordinate the adaptation of bacterial respiration from oxic to anoxic conditions. Here, we provide a compilation of the current knowledge about proteins and regulatory networks involved in the redox control of the respiratory adaptation of different bacterial species to microxic and anoxic environments.

  17. Effect of humic substance photodegradation on bacterial growth and respiration in lake water

    USGS Publications Warehouse

    Anesio, A.M.; Graneli, W.; Aiken, G.R.; Kieber, D.J.; Mopper, K.

    2005-01-01

    This study addresses how humic substance (HS) chemical composition and photoreactivity affect bacterial growth, respiration, and growth efficiency (BGE) in lake water. Aqueous solutions of HSs from diverse aquatic environments representing different dissolved organic matter sources (autochthonous and allochthonous) were exposed to artificial solar UV radiation. These solutions were added to lake water passed through a 0.7-??m-pore-size filter (containing grazer-free lake bacteria) followed by dark incubation for 5, 43, and 65 h. For the 5-h incubation, several irradiated HSs inhibited bacterial carbon production (BCP) and this inhibition was highly correlated with H 2O2 photoproduction. The H2O2 decayed in the dark, and after 43 h, nearly all irradiated HSs enhanced BCP (average 39% increase relative to nonirradiated controls, standard error = 7.5%, n = 16). UV exposure of HSs also increased bacterial respiration (by ???18%, standard error = 5%, n = 4), but less than BCP, resulting in an average increase in BGE of 32% (standard error = 10%, n = 4). Photoenhancement of BCP did not correlate to HS bulk properties (i.e., elemental and chemical composition). However, when the photoenhancement of BCP was normalized to absorbance, several trends with HS origin and extraction method emerged. Absorbance-normalized hydrophilic acid and humic acid samples showed greater enhancement of BCP than hydrophobic acid and fulvic acid samples. Furthermore, absorbance-normalized autochthonous samples showed ???10-fold greater enhancement of BCP than allochthonous-dominated samples, indicating that the former are more efficient photoproducers of biological substrates. Copyright ?? 2005, American Society for Microbiology. All Rights Reserved.

  18. Bacterial Diversity, Sediment Age and Organic Respiration in the Marine Sedimentary Environment

    NASA Astrophysics Data System (ADS)

    Walsh, E. A.; Kirkpatrick, J. B.; Pockalny, R. A.; Sauvage, J.; Sogin, M. L.; D'Hondt, S.

    2014-12-01

    Subseafloor sediment hosts to a large1, taxonomically rich2 and metabolically diverse3 microbial ecosystem. However, the factors that control microbial diversity in subseafloor sediment have rarely been explored. Here we show that subseafloor bacterial richness varies directly with sediment age and net rate of organic-fueled respiration. We examined three open-ocean sites (in the Bering Sea and equatorial Pacific) and one continental margin site (Indian Ocean), with sediment depths to 404 meters below seafloor. At all locations, taxonomic richness decreases exponentially with increasing sediment age. Richness declines most rapidly for a few hundred thousand years after sediment deposition. This profile generally matches the canonical relationship between rates of organic oxidation and sediment age 4. To examine the potential link between organic oxidation and taxonomic richness we used pore-water chemical profiles to quantify net rates of organic respiration at the three open-ocean sites (the chemical profiles of the ocean-margin site are not in diffusive steady state). Taxonomic richness and total rate of organic-fueled respiration are highest at the high productivity Bering Sea site and lower at the moderate productivity equatorial Pacific sites. At each of these sites, organic-fueled respiration rate and taxonomic richness are highest at the surface and decline together as sediment depth and age increase. To our knowledge, this is the first evidence that taxonomic richness is closely linked to organic-fueled respiration rate and sediment age in subseafloor sediment. References1. Kallmeyer, J., Pockalny, R., Adhikari, R. R., Smith, D. C. & D'Hondt, S. Proceedings of the National Academy of Sciences, doi:10.1073/pnas.1203849109 (2012). 2. Inagaki, F. et al. Proceedings of the National Academy of Sciences 103, 2815-2820 (2006). 3. D'Hondt, S. et al. Science 306, 2216-2221, doi:10.1126/science.1101155 (2004). 4. Middelburg, J. J. Geochimica et Cosmochimica Acta 53

  19. Effects of sieving, drying and rewetting upon soil bacterial community structure and respiration rates.

    PubMed

    Thomson, Bruce C; Ostle, Nick J; McNamara, Niall P; Whiteley, Andrew S; Griffiths, Robert I

    2010-10-01

    Soil microcosm studies often require some form of soil homogenisation, such as sieving, to provide a representative sample. Frequently, soils are also homogenised following drying and are then rewetted, yet little research has been done to understand how these methods impact upon microbial communities. Here we compared the molecular diversity and functional responses of intact cores from a Scottish grassland soil with homogenised samples prepared by drying, sieving and rewetting or freshly sieving wet soils. Results showed that there was no significant difference in total soil CO(2)-C efflux between the freshly sieved and intact core treatments, however, respiration was significantly higher in the dried and rewetted microcosms. Molecular fingerprinting (T-RFLP) of bacterial communities at two different time-points showed that both homogenisation methods significantly altered bacterial community structure with the largest differences being observed after drying and rewetting. Assessments of responsive taxa in each treatment showed that intact cores were dominated by Acidobacterial peaks whereas an increased relative abundance of Alphaproteobacterial terminal restriction fragments were apparent in both homogenised treatments. However, the shift in community structure was not as large in the freshly sieved soil. Our findings suggest that if soil homogenisation must be performed, then fresh sieving of wet soil is preferable to drying and rewetting in approximating the bacterial diversity and functioning of intact cores.

  20. Metallization of bacterial cellulose for electrical and electronic device manufacture

    DOEpatents

    Evans, Barbara R.; O'Neill, Hugh M.; Jansen, Valerie Malyvanh; Woodward, Jonathan

    2011-06-07

    A method for the deposition of metals in bacterial cellulose and for the employment of the metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The method for impregnating bacterial cellulose with a metal comprises placing a bacterial cellulose matrix in a solution of a metal salt such that the metal salt is reduced to metallic form and the metal precipitates in or on the matrix. The method for the construction of a fuel cell comprises placing a hydrated bacterial cellulose support structure in a solution of a metal salt such that the metal precipitates in or on the support structure, inserting contact wires into two pieces of the metal impregnated support structure, placing the two pieces of metal impregnated support structure on opposite sides of a layer of hydrated bacterial cellulose, and dehydrating the three layer structure to create a fuel cell.

  1. Metallization of bacterial cellulose for electrical and electronic device manufacture

    DOEpatents

    Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN; Jansen, Valerie Malyvanh [Memphis, TN; Woodward, Jonathan [Knoxville, TN

    2010-09-28

    A method for the deposition of metals in bacterial cellulose and for the employment of the metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The method for impregnating bacterial cellulose with a metal comprises placing a bacterial cellulose matrix in a solution of a metal salt such that the metal salt is reduced to metallic form and the metal precipitates in or on the matrix. The method for the construction of a fuel cell comprises placing a hydrated bacterial cellulose support structure in a solution of a metal salt such that the metal precipitates in or on the support structure, inserting contact wires into two pieces of the metal impregnated support structure, placing the two pieces of metal impregnated support structure on opposite sides of a layer of hydrated bacterial cellulose, and dehydrating the three layer structure to create a fuel cell.

  2. Bacterial Adaptation of Respiration from Oxic to Microoxic and Anoxic Conditions: Redox Control

    PubMed Central

    Bueno, Emilio; Mesa, Socorro; Bedmar, Eulogio J.; Richardson, David J.

    2012-01-01

    Abstract Under a shortage of oxygen, bacterial growth can be faced mainly by two ATP-generating mechanisms: (i) by synthesis of specific high-affinity terminal oxidases that allow bacteria to use traces of oxygen or (ii) by utilizing other substrates as final electron acceptors such as nitrate, which can be reduced to dinitrogen gas through denitrification or to ammonium. This bacterial respiratory shift from oxic to microoxic and anoxic conditions requires a regulatory strategy which ensures that cells can sense and respond to changes in oxygen tension and to the availability of other electron acceptors. Bacteria can sense oxygen by direct interaction of this molecule with a membrane protein receptor (e.g., FixL) or by interaction with a cytoplasmic transcriptional factor (e.g., Fnr). A third type of oxygen perception is based on sensing changes in redox state of molecules within the cell. Redox-responsive regulatory systems (e.g., ArcBA, RegBA/PrrBA, RoxSR, RegSR, ActSR, ResDE, and Rex) integrate the response to multiple signals (e.g., ubiquinone, menaquinone, redox active cysteine, electron transport to terminal oxidases, and NAD/NADH) and activate or repress target genes to coordinate the adaptation of bacterial respiration from oxic to anoxic conditions. Here, we provide a compilation of the current knowledge about proteins and regulatory networks involved in the redox control of the respiratory adaptation of different bacterial species to microxic and anoxic environments. Antioxid. Redox Signal. 16, 819–852. PMID:22098259

  3. The impact of dissolved organic carbon and bacterial respiration on pCO2 in experimental sea ice

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Kotovitch, M.; Kaartokallio, H.; Moreau, S.; Tison, J.-L.; Kattner, G.; Dieckmann, G.; Thomas, D. N.; Delille, B.

    2016-02-01

    Previous observations have shown that the partial pressure of carbon dioxide (pCO2) in sea ice brines is generally higher in Arctic sea ice compared to those from the Antarctic sea ice, especially in winter and early spring. We hypothesized that these differences result from the higher dissolved organic carbon (DOC) content in Arctic seawater: Higher concentrations of DOC in seawater would be reflected in a greater DOC incorporation into sea ice, enhancing bacterial respiration, which in turn would increase the pCO2 in the ice. To verify this hypothesis, we performed an experiment using two series of mesocosms: one was filled with seawater (SW) and the other one with seawater with an addition of filtered humic-rich river water (SWR). The addition of river water increased the DOC concentration of the water from a median of 142 μmol Lwater-1 in SW to 249 μmol Lwater-1 in SWR. Sea ice was grown in these mesocosms under the same physical conditions over 19 days. Microalgae and protists were absent, and only bacterial activity has been detected. We measured the DOC concentration, bacterial respiration, total alkalinity and pCO2 in sea ice and the underlying seawater, and we calculated the changes in dissolved inorganic carbon (DIC) in both media. We found that bacterial respiration in ice was higher in SWR: median bacterial respiration was 25 nmol C Lice-1 h-1 compared to 10 nmol C Lice-1 h-1 in SW. pCO2 in ice was also higher in SWR with a median of 430 ppm compared to 356 ppm in SW. However, the differences in pCO2 were larger within the ice interiors than at the surfaces or the bottom layers of the ice, where exchanges at the air-ice and ice-water interfaces might have reduced the differences. In addition, we used a model to simulate the differences of pCO2 and DIC based on bacterial respiration. The model simulations support the experimental findings and further suggest that bacterial growth efficiency in the ice might approach 0.15 and 0.2. It is thus credible

  4. Pharmaceuticals suppress algal growth and microbial respiration and alter bacterial communities in stream biofilms.

    PubMed

    Rosi-Marshall, Emma J; Kincaid, Dustin W; Bechtold, Heather A; Royer, Todd V; Rojas, Miguel; Kelly, John J

    2013-04-01

    Pharmaceutical and personal care products are ubiquitous in surface waters but their effects on aquatic biofilms and associated ecosystem properties are not well understood. We measured in situ responses of stream biofilms to six common pharmaceutical compounds (caffeine, cimetidine, ciprofloxacin, diphenhydramine, metformin, ranitidine, and a mixture of each) by deploying pharmaceutical-diffusing substrates in streams in Indiana, Maryland, and New York. Results were consistent across seasons and geographic locations. On average, algal biomass was suppressed by 22%, 4%, 22%, and 18% relative to controls by caffeine, ciprofloxacin, diphenhydramine, and the mixed treatment, respectively. Biofilm respiration was significantly suppressed by caffeine (53%), cimetidine (51%), ciprofloxacin (91%), diphenhydramine (63%), and the mixed treatment (40%). In autumn in New York, photosynthesis was also significantly suppressed by diphenhydramine (99%) and the mixed treatment (88%). Pyrosequencing of 16S rRNA genes was used to examine the effects of caffeine and diphenhydramine on biofilm bacterial community composition at the three sites. Relative to the controls, diphenhydramine exposure significantly altered bacterial community composition and resulted in significant relative increases in Pseudomonas sp. and decreases in Flavobacterium sp. in all three streams. These ubiquitous pharmaceuticals, alone or in combination, influenced stream biofilms, which could have consequences for higher trophic levels and important ecosystem processes.

  5. Human lysozyme possesses novel antimicrobial peptides within its N-terminal domain that target bacterial respiration.

    PubMed

    Ibrahim, Hisham R; Imazato, Kenta; Ono, Hajime

    2011-09-28

    Human milk lysozyme is thought to be a key defense factor in protecting the gastrointestinal tract of newborns against bacterial infection. Recently, evidence was found that pepsin, under conditions relevant to the newborn stomach, cleaves chicken lysozyme (cLZ) at specific loops to generate five antimicrobial peptide motifs. This study explores the antimicrobial role of the corresponding peptides of human lysozyme (hLZ), the actual protein in breast milk. Five peptide motifs of hLZ, one helix-loop-helix (HLH), its two helices (H1 and H2), and two helix-sheet motifs, H2-β-strands 1-2 (H2-S12) or H2-β-strands 1-3 (H2-S13), were synthesized and examined for antimicrobial action. The five peptides of hLZ exhibit microbicidal activity to various degrees against several bacterial strains. The HLH peptide and its N-terminal helix (H1) were significantly the most potent bactericidal to Gram-positive and Gram-negative bacteria and the fungus Candida albicans . Outer and inner membrane permeabilization studies, as well as measurements of transmembrane electrochemical potentials, provided evidence that HLH peptide and its N-terminal helix (H1) kill bacteria by crossing the outer membrane of Gram-negative bacteria via self-promoted uptake and are able to dissipate the membrane potential-dependent respiration of Gram-positive bacteria. This finding is the first to describe that hLZ possesses multiple antimicrobial peptide motifs within its N-terminal domain, providing insight into new classes of antibiotic peptides with potential use in the treatment of infectious diseases.

  6. Bacterial Drug Tolerance under Clinical Conditions Is Governed by Anaerobic Adaptation but not Anaerobic Respiration

    PubMed Central

    Hemsley, Claudia M.; Luo, Jamie X.; Andreae, Clio A.; Butler, Clive S.; Soyer, Orkun S.

    2014-01-01

    Noninherited antibiotic resistance is a phenomenon whereby a subpopulation of genetically identical bacteria displays phenotypic tolerance to antibiotics. We show here that compared to Escherichia coli, the clinically relevant genus Burkholderia displays much higher levels of cells that tolerate ceftazidime. By measuring the dynamics of the formation of drug-tolerant cells under conditions that mimic in vivo infections, we show that in Burkholderia bacteria, oxygen levels affect the formation of these cells. The drug-tolerant cells are characterized by an anaerobic metabolic signature and can be eliminated by oxygenating the system or adding nitrate. The transcriptome profile suggests that these cells are not dormant persister cells and are likely to be drug tolerant as a consequence of the upregulation of anaerobic nitrate respiration, efflux pumps, β-lactamases, and stress response proteins. These findings have important implications for the treatment of chronic bacterial infections and the methodologies and conditions that are used to study drug-tolerant and persister cells in vitro. PMID:25049258

  7. Bacterial drug tolerance under clinical conditions is governed by anaerobic adaptation but not anaerobic respiration.

    PubMed

    Hemsley, Claudia M; Luo, Jamie X; Andreae, Clio A; Butler, Clive S; Soyer, Orkun S; Titball, Richard W

    2014-10-01

    Noninherited antibiotic resistance is a phenomenon whereby a subpopulation of genetically identical bacteria displays phenotypic tolerance to antibiotics. We show here that compared to Escherichia coli, the clinically relevant genus Burkholderia displays much higher levels of cells that tolerate ceftazidime. By measuring the dynamics of the formation of drug-tolerant cells under conditions that mimic in vivo infections, we show that in Burkholderia bacteria, oxygen levels affect the formation of these cells. The drug-tolerant cells are characterized by an anaerobic metabolic signature and can be eliminated by oxygenating the system or adding nitrate. The transcriptome profile suggests that these cells are not dormant persister cells and are likely to be drug tolerant as a consequence of the upregulation of anaerobic nitrate respiration, efflux pumps, β-lactamases, and stress response proteins. These findings have important implications for the treatment of chronic bacterial infections and the methodologies and conditions that are used to study drug-tolerant and persister cells in vitro.

  8. Using Reactive Transport Modeling to Understand Changes in Electrical Conductivity Associated with Bacterial Growth and Respiration

    NASA Astrophysics Data System (ADS)

    Regberg, A. B.; Singha, K.; Picardal, F.; Brantley, S. L.

    2011-12-01

    Previous research has linked measured changes in the bulk electrical conductivity (σb) of water-saturated sediments to the respiration and growth of anaerobic bacteria. If the mechanism causing this signal is understood and characterized it could be used to identify and monitor zones of bacterial activity in the subsurface. The 1-D reactive transport model PHREEQC was used to understand σb signals by modeling chemical gradients within two column reactors and corresponding changes in effluent chemistry. The flow-through column reactors were packed with Fe(III)-bearing sediment from Oyster, VA and inoculated with an environmental consortia of microorganisms. Influent in the first reactor was amended with 1mM Na-acetate to encourage the growth of iron-reducing bacteria. Influent in the second reactor was amended with 0.1mM Na-Acetate and 2mM NaNO3 to encourage the growth of nitrate-reducing bacteria. While effluent concentrations of acetate, Fe(II), NO3-, NO2-, and NH4+ remained at steady state, we measured a 3-fold increase (0.055 S/m - 0.2 S/m) in σb in the iron-reducing column and a 10-fold increase in σb (0.07 S/m - 0.8 S/m) in the nitrate-reducing column over 198 days. The ionic strength in both reactors remained constant through time indicating that the measured increases in σb were not caused by changing effluent concentrations. PHREEQC successfully matched the measured changes in effluent concentrations for both columns when the reaction database was modified in the following manner. For the iron-reducing column, kinetic expressions governing the rate of iron reduction, the rate of bacterial growth, and the production of methane were added to the reaction database. Additionally, surface adsorption and cation exchange reactions were added so that the model was consistent with measured effluent chemistry. For the nitrate-reducing column, kinetic expressions governing nitrate reduction and bacterial growth were added to the reaction database. Additionally

  9. Microbial metal reduction by members of the genus Shewanella: novel strategies for anaerobic respiration

    SciTech Connect

    Dichristina, Thomas; Bates, David J.; Burns, Justin L.; Dale, Jason R.; Payne, Amanda N.

    2006-01-01

    Metal-reducing members of the genus Shewanella are important components of the microbial community residing in redox-stratified freshwater and marine environments. Metal-reducing gram-negative bacteria such as Shewanella, however, are presented with a unique physiological challenge: they are required to respire anaerobically on terminal electron acceptors which are either highly insoluble (Fe(III)- and Mn(IV)-oxides) and reduced to soluble end-products or highly soluble (U(VI) and Tc(VII)) and reduced to insoluble end-products. To overcome physiological problems associated with metal solubility, metal-respiring Shewanella are postulated to employ a variety of novel respiratory strategies not found in other gram-negative bacteria which respire on soluble electron acceptors such as O2, NO3 and SO4. The following chapter highlights the latest findings on the molecular mechanism of Fe(III), U(VI) and Tc(VII) reduction by Shewanella, with particular emphasis on electron transport chain physiology.

  10. Bacterial sorption of heavy metals. [Bacillus cereus

    SciTech Connect

    Mullen, M.D.; Wolf, D.C. ); Ferris, F.G.; Beveridge, T.J.; Flemming, C.A. ); Bailey, G.W. )

    1989-12-01

    Four bacteria, Bacillus cereus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa, were examined for the ability to remove Ag{sup +}, Cd{sup 2+}, Cu{sup 2+}, and La{sup 3+} from solution by batch equilibration methods. Cd and Cu sorption over the concentration range 0.001 to 1 mM was described by Freundlich isotherms. At 1 mM concentrations of both Cd{sup 2+} and Cu{sup 2+}, P. aeruginosa and B. cereus were the most and least efficient at metal removal, respectively. Freundlich K constants indicated that E. coli was most efficient at Cd{sup 2+} removal and B. subtilis removed the most Cu{sup 2+}. Removal of Ag{sup +} from solution by bacteria was very efficient; an average of 89% of the total Ag{sup +} was removed from the 1 mM solution, while only 12, 29, and 27% of the total Cd{sup 2+}, Cu{sup 2+}, and La{sup 3+}, respectively, were sorbed from 1 mM solutions. Electron microscopy indicated that La{sup 3+} accumulated at the cell surface as needlelike, crystalline precipitates. Silver precipitated as discrete colloidal aggregates at the cell surface and occasionally in the cytoplasm. Neither Cd{sup 2+} nor Cu{sup 2+} provided enough electron scattering to identify the location of sorption. The affinity series for bacterial removal of these metals decreased in the order Ag > La > Cu > Cd. The results indicate that bacterial cells are capable of binding large quantities of different metals.

  11. EDTA addition enhances bacterial respiration activities and hydrocarbon degradation in bioaugmented and non-bioaugmented oil-contaminated desert soils.

    PubMed

    Al Kharusi, Samiha; Abed, Raeid M M; Dobretsov, Sergey

    2016-03-01

    The low number and activity of hydrocarbon-degrading bacteria and the low solubility and availability of hydrocarbons hamper bioremediation of oil-contaminated soils in arid deserts, thus bioremediation treatments that circumvent these limitations are required. We tested the effect of Ethylenediaminetetraacetic acid (EDTA) addition, at different concentrations (i.e. 0.1, 1 and 10 mM), on bacterial respiration and biodegradation of Arabian light oil in bioaugmented (i.e. with the addition of exogenous alkane-degrading consortium) and non-bioaugmented oil-contaminated desert soils. Post-treatment shifts in the soils' bacterial community structure were monitored using MiSeq sequencing. Bacterial respiration, indicated by the amount of evolved CO2, was highest at 10 mM EDTA in bioaugmented and non-bioaugmented soils, reaching an amount of 2.2 ± 0.08 and 1.6 ± 0.02 mg-CO2 g(-1) after 14 days of incubation, respectively. GC-MS revealed that 91.5% of the C14-C30 alkanes were degraded after 42 days when 10 mM EDTA and the bacterial consortium were added together. MiSeq sequencing showed that 78-91% of retrieved sequences in the original soil belonged to Deinococci, Alphaproteobacteria, Gammaproteobacteia and Bacilli. The same bacterial classes were detected in the 10 mM EDTA-treated soils, however with slight differences in their relative abundances. In the bioaugmented soils, only Alcanivorax sp. MH3 and Parvibaculum sp. MH21 from the exogenous bacterial consortium could survive until the end of the experiment. We conclude that the addition of EDTA at appropriate concentrations could facilitate biodegradation processes by increasing hydrocarbon availability to microbes. The addition of exogenous oil-degrading bacteria along with EDTA could serve as an ideal solution for the decontamination of oil-contaminated desert soils.

  12. Comparative Genomics Analysis and Phenotypic Characterization of Shewanella putrefaciens W3-18-1: Anaerobic Respiration, Bacterial Microcompartments, and Lateral Flagella

    SciTech Connect

    Qiu, D.; Tu, Q.; He, Zhili; Zhou, Jizhong

    2010-05-17

    Respiratory versatility and psychrophily are the hallmarks of Shewanella. The ability to utilize a wide range of electron acceptors for respiration is due to the large number of c-type cytochrome genes present in the genome of Shewanella strains. More recently the dissimilatory metal reduction of Shewanella species has been extensively and intensively studied for potential applications in the bioremediation of radioactive wastes of groundwater and subsurface environments. Multiple Shewanella genome sequences are now available in the public databases (Fredrickson et al., 2008). Most of the sequenced Shewanella strains were isolated from marine environments and this genus was believed to be of marine origin (Hau and Gralnick, 2007). However, the well-characterized model strain, S. oneidensis MR-1, was isolated from the freshwater lake sediment of Lake Oneida, New York (Myers and Nealson, 1988) and similar bacteria have also been isolated from other freshwater environments (Venkateswaran et al., 1999). Here we comparatively analyzed the genome sequence and physiological characteristics of S. putrefaciens W3-18-1 and S. oneidensis MR-1, isolated from the marine and freshwater lake sediments, respectively. The anaerobic respirations, carbon source utilization, and cell motility have been experimentally investigated. Large scale horizontal gene transfers have been revealed and the genetic divergence between these two strains was considered to be critical to the bacterial adaptation to specific habitats, freshwater or marine sediments.

  13. Influences of Mn(II) and V(IV) on Bacterial Surface Chemistry and Metal Reactivity

    NASA Astrophysics Data System (ADS)

    French, S.; Fakra, S.; Glasauer, S.

    2009-05-01

    Microorganisms in terrestrial and marine environments are typically bathed in solutions that contain a range of metal ions, toxic and beneficial. Bacteria such as Shewanella putrefaciens CN32 are metabolically versatile in their respiration, and the reductive dissolution of widely dispersed metals such as Fe(III), Mn(IV), or V(V) can present unique challenges if nearby bodies of water are used for irrigation or drinking. In redox transition zones, dissimilatory metal reduction (DMR) by bacteria can lead to generation of high concentrations of soluble metals. It has been shown that metals will associate with negatively charged bacterial membranes, and the mechanisms of metal reduction are well defined for many species of bacteria. The interaction of metals with the cell wall during DMR is, however, not well documented; very little is known about the interaction of respired transition metals with membrane lipids. Furthermore, bacterial surfaces tend to change in response to their immediate environments. Variations in conditions such as oxygen or metal presence may affect surface component composition, including availability of metal reactive sites. Our research seeks to characterize the biochemical nature of metal-membrane interactions, as well as identify the unique changes at the cell surface that arise as a result of metal presence in their environments. We have utilized scanning transmission X-ray microscopy (STXM) to examine the dynamics of soluble Mn(II) and V(IV) interactions with purified bacterial membranes rather than whole cells. This prevents intracellular interferences, and allows for near edge X-ray absorption fine structure (NEXAFS) spectroscopic analyses of cell surface and surface-associated components. NEXAFS spectra for carbon, nitrogen, and oxygen edges indicate that Mn(II) and V(IV) induce biological modifications of the cell membrane in both aerobic and anaerobic conditions. These changes depend not only on the metal, but also on the presence of

  14. A Diverse Community of Metal(loid) Oxide Respiring Bacteria Is Associated with Tube Worms in the Vicinity of the Juan de Fuca Ridge Black Smoker Field.

    PubMed

    Maltman, Chris; Walter, Graham; Yurkov, Vladimir

    2016-01-01

    Epibiotic bacteria associated with tube worms living in the vicinity of deep sea hydrothermal vents of the Juan de Fuca Ridge in the Pacific Ocean were investigated for the ability to respire anaerobically on tellurite, tellurate, selenite, selenate, metavanadate and orthovanadate as terminal electron acceptors. Out of 107 isolates tested, 106 were capable of respiration on one or more of these oxides, indicating that metal(loid) oxide based respiration is not only much more prevalent in nature than is generally believed, but also is an important mode of energy generation in the habitat. Partial 16S rRNA gene sequencing revealed the bacterial community to be rich and highly diverse, containing many potentially new species. Furthermore, it appears that the worms not only possess a close symbiotic relationship with chemolithotrophic sulfide-oxidizing bacteria, but also with the metal(loid) oxide transformers. Possibly they protect the worms through reduction of the toxic compounds that would otherwise be harmful to the host.

  15. A Diverse Community of Metal(loid) Oxide Respiring Bacteria Is Associated with Tube Worms in the Vicinity of the Juan de Fuca Ridge Black Smoker Field

    PubMed Central

    Maltman, Chris; Walter, Graham; Yurkov, Vladimir

    2016-01-01

    Epibiotic bacteria associated with tube worms living in the vicinity of deep sea hydrothermal vents of the Juan de Fuca Ridge in the Pacific Ocean were investigated for the ability to respire anaerobically on tellurite, tellurate, selenite, selenate, metavanadate and orthovanadate as terminal electron acceptors. Out of 107 isolates tested, 106 were capable of respiration on one or more of these oxides, indicating that metal(loid) oxide based respiration is not only much more prevalent in nature than is generally believed, but also is an important mode of energy generation in the habitat. Partial 16S rRNA gene sequencing revealed the bacterial community to be rich and highly diverse, containing many potentially new species. Furthermore, it appears that the worms not only possess a close symbiotic relationship with chemolithotrophic sulfide-oxidizing bacteria, but also with the metal(loid) oxide transformers. Possibly they protect the worms through reduction of the toxic compounds that would otherwise be harmful to the host. PMID:26914590

  16. Molecular characterization of bacterial respiration of minerals. Final technical report, March 1, 1985--February 29, 1996

    SciTech Connect

    Blake, R. II

    1996-08-01

    The goals of this project were to continue the identification, separation, and characterization of the cellular components necessary for aerobic respiration on iron, and to initiate an investigation of the molecular principles whereby these bacteria recognize and adhere to their insoluble inorganic substrates. Progress is described.

  17. Residual organic matter and microbial respiration in bottom ash: Effects on metal leaching and eco-toxicity.

    PubMed

    Ilyas, A; Persson, K M; Persson, M

    2015-09-01

    A common assumption regarding the residual organic matter, in bottom ash, is that it does not represent a significant pool of organic carbon and, beyond metal-ion complexation process, it is of little consequence to evolution of ash/leachate chemistry. This article evaluates the effect of residual organic matter and associated microbial respiratory processes on leaching of toxic metals (i.e. arsenic, copper, chromium, molybdenum, nickel, lead, antimony and zinc), eco-toxicity of ash leachates. Microbial respiration was quantified with help of a respirometric test equipment OXITOP control system. The effect of microbial respiration on metal/residual organic matter leaching and eco-toxicity was quantified with the help of batch leaching tests and an eco-toxicity assay - Daphnia magna. In general, the microbial respiration process decreased the leachate pH and eco-toxicity, indicating modification of bioavailability of metal species. Furthermore, the leaching of critical metals, such as copper and chromium, decreased after the respiration in both ash types (fresh and weathered). It was concluded that microbial respiration, if harnessed properly, could enhance the stability of fresh bottom ash and may promote its reuse.

  18. The environmental controls that govern the end product of bacterial nitrate respiration

    SciTech Connect

    Kraft, Beate; Tegetmeyer, Halina E.; Sharma, Ritin; Klotz, Martin G.; Ferdelman, Timothy G.; Hettich, Robert L.; Geelhoed, Jeanine S.; Strous, Marc

    2014-08-08

    In the biogeochemical nitrogen cycle, microbial respiration processes compete for nitrate as an electron acceptor. Denitrification converts nitrate into nitrogenous gas and thus removes fixed nitrogen from the biosphere, whereas ammonification converts nitrate into ammonium, which is directly reusable by primary producers. In this paper, we combined multiple parallel long-term incubations of marine microbial nitrate-respiring communities with isotope labeling and metagenomics to unravel how specific environmental conditions select for either process. Microbial generation time, supply of nitrite relative to nitrate, and the carbon/nitrogen ratio were identified as key environmental controls that determine whether nitrite will be reduced to nitrogenous gas or ammonium. Finally, our results define the microbial ecophysiology of a biogeochemical feedback loop that is key to global change, eutrophication, and wastewater treatment.

  19. The environmental controls that govern the end product of bacterial nitrate respiration

    DOE PAGES

    Kraft, Beate; Tegetmeyer, Halina E.; Sharma, Ritin; ...

    2014-08-08

    In the biogeochemical nitrogen cycle, microbial respiration processes compete for nitrate as an electron acceptor. Denitrification converts nitrate into nitrogenous gas and thus removes fixed nitrogen from the biosphere, whereas ammonification converts nitrate into ammonium, which is directly reusable by primary producers. In this paper, we combined multiple parallel long-term incubations of marine microbial nitrate-respiring communities with isotope labeling and metagenomics to unravel how specific environmental conditions select for either process. Microbial generation time, supply of nitrite relative to nitrate, and the carbon/nitrogen ratio were identified as key environmental controls that determine whether nitrite will be reduced to nitrogenous gasmore » or ammonium. Finally, our results define the microbial ecophysiology of a biogeochemical feedback loop that is key to global change, eutrophication, and wastewater treatment.« less

  20. Metallization of bacterial cellulose for electrical and electronic device manufacture

    DOEpatents

    Evans, Barbara R.; O'Neill, Hugh M.; Jansen, Valerie Malyvanh; Woodward, Jonathan

    2006-01-17

    The employment of metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The fuel cell includes an electrolyte membrane comprising a membrane support structure comprising bacterial cellulose, an anode disposed on one side of the electrolyte membrane, and a cathode disposed on an opposite side of the electrolyte membrane. At least one of the anode and the cathode comprises an electrode support structure comprising bacterial cellulose, and a catalyst disposed in or on the electrode support structure.

  1. In situ spectroscopic investigation of hyperthermophilic metal-respiring archaea at high-temperature

    NASA Astrophysics Data System (ADS)

    Ménez, B.; Bureau, H.; Gouget, B.; Avoscan, L.; Simionovici, A.; Somogyi, A.

    2003-04-01

    The main issue of this study is developing methodologies that can improve abilities to characterize life in extreme habitats. In particular, it aims at evaluating the possibility of monitoring microorganisms mediated reactions involving metals by using non destructive X-ray microprobe combined with high pressure and temperature micro-reactors. The first step was dedicated to the study of metal-respiring organisms that achieve growth with oxyanions of arsenate and selenate as their electron acceptors for the oxidation of organic substrates or H2, forming elemental selenium or arsenite, respectively, as the reduction products. We focused on a strictly anaerobic hyperthermophilic archaea, Pyrobaculum arsenaticum, recently isolated and well adapted to high levels of arsenate and selenate (Huber et al., 2000, System. Appl. Microbiol., 23, 305). We report here the first in situ X-ray Absorption Near Edge Structure (XANES) spectroscopic characterization of the oxidation state of selenium following microbial respiration at high temperature. A Basset-modified Hydrothermal Diamond Anvil Cell (HDAC) acts as anaerobic micro-reactor to reproduce extreme temperature and pressure conditions for life and allows, together with the direct visual observation of the organisms, the microbeam characterization of the changes of metal concentration and speciation induced by microbial activity. The measurements were performed at the ESRF on undulator beamline ID22. P. arsenaticum together with its culture medium, doped with selenate (50 μM), were loaded under N_2 atmosphere in the HDAC. High-resolution X-ray fluorescence and selenium K-edge XANES spectra were collected alternatively and continuously at high temperature (up to 95^oC), allowing for the time-resolved monitoring of the chemical evolution of the culture medium. Data processing is still in progress. In the long-term, our aim is, on one hand, to shed light on the tolerance in terms of temperature, pressure and metal

  2. Molecular characterization of bacterial respiration on minerals. Final technical report, August 4, 1994--August 3, 1996

    SciTech Connect

    Blake, R. II

    1996-12-31

    The scope of work outlined in the original proposal contained two specific aims. Highlights of the results obtained and published on each specific aim during the grant period in question are summarized. The first aim continued the identification, separation, and characterization of the cellular components necessary for aerobic respiration on iron. An electrochemical apparatus for the large scale cultivation of chemolithotrophic bacteria that respire aerobically on ferrous ions was perfected. The kinetic properties of an acid-stable iron:rusticyanin oxidoreductase from T. ferrooxidans were determined. The overall tertiary structure of rusticyanin in solution was elucidated from a combination of homonuclear proton and heteronuclear {sup 15}N-edited NMR spectra. An artificial gene for rusticyanin was designed, synthesized, and successfully expressed in E. coli. The X-ray crystallographic structure of rusticyanin was solved to a resolution of 1.9 {angstrom} by multiwavelength anomalous dispersion (MAD) phasing. The second aim initiated an investigation of the molecular principles whereby these bacteria recognize and adhere to their insoluble inorganic substrates. The electrophoretic mobility of T. ferrooxidans with and without its insoluble substrates was determined by laser Doppler velocimetry under physiological conditions. The adherence of T. ferrooxidans to the surface of pyrite was observed directly in a video-enhanced light microscope.

  3. Metal kinetics and respiration rates in F1 generation of carabid beetles (Pterostichus oblongopunctatus F.) originating from metal-contaminated and reference areas.

    PubMed

    Lagisz, M; Kramarz, P; Niklinska, M

    2005-05-01

    We investigated resistance to metals in carabid beetles inhabiting metal-polluted and reference areas. Chronic multigeneration exposure to toxic metal concentrations may potentially result in adaptation through decreased metal uptake rate and/or increased excretion rate. The cost of resistance to pollution could be associated with increased metabolic rate. To test these predictions, laboratory cultured F(1)-generation beetles originating from metal-polluted and reference sites were exposed to food contaminated with zinc and/or cadmium for 10 weeks. After that, uncontaminated food was offered to the animals for another 3 weeks. During the experiment, internal concentrations of Cd and Zn were measured as were respiration rates of the animals. The results obtained show no significant differences in metal accumulation and excretion patterns or respiration rates between the populations. This may suggest that adaptation has not occurred in the beetles chronically exposed to toxic metal concentrations. The possible explanations for the lack of differences between the populations are discussed.

  4. Viral effects on bacterial respiration, production and growth efficiency: Consistent trends in the Southern Ocean and the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Bonilla-Findji, Osana; Malits, Andrea; Lefèvre, Dominique; Rochelle-Newall, Emma; Lemée, Rodolphe; Weinbauer, Markus G.; Gattuso, Jean-Pierre

    2008-03-01

    To investigate the potential effects of viruses on bacterial respiration (BR), production (BP) and growth efficiency (BGE), experiments were performed using natural microbial communities from the coastal Mediterranean Sea, from a typical high-nutrient low-chlorophyll (HNLC) region in the Southern Ocean and from a naturally iron (Fe)-fertilized algal bloom above the Kerguelen Plateau (Southern Ocean). Seawater was sequentially filtered and concentrated to produce a bacterial concentrate, a viral concentrate and a virus-free ultrafiltrate. The combination of all three fractions served as treatments with active viruses. Heating or microwaving was used to inactivate viruses for the control treatments. Despite the differences in the initial trophic state and community composition of the study sites, consistent trends were found. In the presence of active viruses, BR was stimulated (up to 113%), whereas BP and BGE were reduced (up to 51%). Our results suggest that viruses enhance the role of bacteria as oxidizers of organic matter, hence as producers of CO 2, and remineralizers of CO 2, N, P and Fe. In the context of Fe-fertilization, this has important implications for the final fate of organic carbon in marine systems.

  5. Leaf litter breakdown, microbial respiration and shredder production in metal-polluted streams

    USGS Publications Warehouse

    Carlisle, D.M.; Clements, W.H.

    2005-01-01

    1. If species disproportionately influence ecosystem functioning and also differ in their sensitivities to environmental conditions, the selective removal of species by anthropogenic stressors may lead to strong effects on ecosystem processes. We evaluated whether these circumstances held for several Colorado, U.S.A. streams stressed by Zn. 2. Benthic invertebrates and chemistry were sampled in five second-third order streams for 1 year. Study streams differed in dissolved metal concentrations, but were otherwise similar in chemical and physical characteristics. Secondary production of leaf-shredding insects was estimated using the increment summation and size-frequency methods. Leaf litter breakdown rates were estimated by retrieving litter-bags over a 171 day period. Microbial activity on leaf litter was measured in the laboratory using changes in oxygen concentration over a 48 h incubation period. 3. Dissolved Zn concentrations varied eightfold among two reference and three polluted streams. Total secondary production of shredders was negatively associated with metal contamination. Secondary production in reference streams was dominated by Taenionema pallidum. Results of previous studies and the current investigation demonstrate that this shredder is highly sensitive to metals in Colorado headwater streams. Leaf litter breakdown rates were similar between reference streams and declined significantly in the polluted streams. Microbial respiration at the most contaminated site was significantly lower than at reference sites. 4. Our results supported the hypothesis that some shredder species contribute disproportionately to leaf litter breakdown. Furthermore, the functionally dominant taxon was also the most sensitive to metal contamination. We conclude that leaf litter breakdown in our study streams lacked functional redundancy and was therefore highly sensitive to contaminant-induced alterations in community structure. We argue for the necessity of simultaneously

  6. Identification of Electrode Respiring, Hydrocarbonoclastic Bacterial Strain Stenotrophomonas maltophilia MK2 Highlights the Untapped Potential for Environmental Bioremediation

    PubMed Central

    Venkidusamy, Krishnaveni; Megharaj, Mallavarapu

    2016-01-01

    Electrode respiring bacteria (ERB) possess a great potential for many biotechnological applications such as microbial electrochemical remediation systems (MERS) because of their exoelectrogenic capabilities to degrade xenobiotic pollutants. Very few ERB have been isolated from MERS, those exhibited a bioremediation potential toward organic contaminants. Here we report once such bacterial strain, Stenotrophomonas maltophilia MK2, a facultative anaerobic bacterium isolated from a hydrocarbon fed MERS, showed a potent hydrocarbonoclastic behavior under aerobic and anaerobic environments. Distinct properties of the strain MK2 were anaerobic fermentation of the amino acids, electrode respiration, anaerobic nitrate reduction and the ability to metabolize n-alkane components (C8–C36) of petroleum hydrocarbons (PH) including the biomarkers, pristine and phytane. The characteristic of diazoic dye decolorization was used as a criterion for pre-screening the possible electrochemically active microbial candidates. Bioelectricity generation with concomitant dye decolorization in MERS showed that the strain is electrochemically active. In acetate fed microbial fuel cells (MFCs), maximum current density of 273 ± 8 mA/m2 (1000 Ω) was produced (power density 113 ± 7 mW/m2) by strain MK2 with a coulombic efficiency of 34.8%. Further, the presence of possible alkane hydroxylase genes (alkB and rubA) in the strain MK2 indicated that the genes involved in hydrocarbon degradation are of diverse origin. Such observations demonstrated the potential of facultative hydrocarbon degradation in contaminated environments. Identification of such a novel petrochemical hydrocarbon degrading ERB is likely to offer a new route to the sustainable bioremedial process of source zone contamination with simultaneous energy generation through MERS. PMID:28018304

  7. Trace metal mobilization in soil by bacterial polymers

    SciTech Connect

    Chen, Jyh-Herng; Czajka, D.R.; Lion, L.W.

    1995-02-01

    Enhanced transport of trace metal in porous media can occur in the presence of a ligand or {open_quotes}carrier{close_quotes} that has a high affinity for binding the pollutant, is dispersed and mobile in the soil environment, is recalcitrant with respect to microbial degradation, and is acceptable to the public. These aspects of the facilitated transport to trace metals are discussed with respect to a naturally occurring carrier; extracellular polymers of bacterial origin. The literature is reviewed regarding the production and composition of bacterial extracellular polymers, the processes relevant to the facilitated transport of trace metals in soil by bacterial polymers, and potential for transformation of polymers in soils by microbial degradation. Model calculations of contaminant retardation are presented for the case of polymer-mediated transport of cadmium in a sandy aquifer material. The available information suggests that extracellular polymers can bind metal ions and are mobile in the soil environment. Extracellular polymers also appear to be relatively slowly degraded by soil microorganisms. These properties and the supporting model calculations indicate that extracellular polymers of bacterial origin merit consideration as agents that may be applied to contaminated soils to enhance trace metal mobility. 58 refs., 3 figs.

  8. Bacterial Killing by Dry Metallic Copper Surfaces▿

    PubMed Central

    Santo, Christophe Espírito; Lam, Ee Wen; Elowsky, Christian G.; Quaranta, Davide; Domaille, Dylan W.; Chang, Christopher J.; Grass, Gregor

    2011-01-01

    Metallic copper surfaces rapidly and efficiently kill bacteria. Cells exposed to copper surfaces accumulated large amounts of copper ions, and this copper uptake was faster from dry copper than from moist copper. Cells suffered extensive membrane damage within minutes of exposure to dry copper. Further, cells removed from copper showed loss of cell integrity. Acute contact with metallic copper surfaces did not result in increased mutation rates or DNA lesions. These findings are important first steps for revealing the molecular sensitive targets in cells lethally challenged by exposure to copper surfaces and provide a scientific explanation for the use of copper surfaces as antimicrobial agents for supporting public hygiene. PMID:21148701

  9. Quinone-reactive proteins devoid of haem b form widespread membrane-bound electron transport modules in bacterial respiration.

    PubMed

    Simon, Jörg; Kern, Melanie

    2008-10-01

    Many quinone-reactive enzyme complexes that are part of membrane-integral eukaryotic or prokaryotic respiratory electron transport chains contain one or more haem b molecules embedded in the membrane. In recent years, various novel proteins have emerged that are devoid of haem b but are thought to fulfil a similar function in bacterial anaerobic respiratory systems. These proteins are encoded by genes organized in various genomic arrangements and are thought to form widespread membrane-bound quinone-reactive electron transport modules that exchange electrons with redox partner proteins located at the outer side of the cytoplasmic membrane. Prototypic representatives are the multihaem c-type cytochromes NapC, NrfH and TorC (NapC/NrfH family), the putative iron-sulfur protein NapH and representatives of the NrfD/PsrC family. Members of these protein families vary in the number of their predicted transmembrane segments and, consequently, diverse quinone-binding sites are expected. Only a few of these enzymes have been isolated and characterized biochemically and high-resolution structures are limited. This mini-review briefly summarizes predicted and experimentally demonstrated properties of the proteins in question and discusses their role in electron transport and bioenergetics of anaerobic respiration.

  10. Feasibility of spray drying bacteriophages into respirable powders to combat pulmonary bacterial infections.

    PubMed

    Vandenheuvel, Dieter; Singh, Abhishek; Vandersteegen, Katrien; Klumpp, Jochen; Lavigne, Rob; Van den Mooter, Guy

    2013-08-01

    The use of bacterial viruses for antibacterial treatment (bacteriophage therapy) is currently being reevaluated. In this study, we analyze the potential of processing bacteriophages in a dry powder formulation, using a laboratory spray dryer. The phages were dried in the presence of lactose, trehalose or dextran 35, serving as an excipient to give the resulting powder the necessary bulk mass and offer protection to the delicate phage structure. Out of the three excipients tested, trehalose was found to be the most efficient in protecting the phages from temperature and shear stress throughout the spray drying process. A low inlet air temperature and atomizing force appeared to be the best parameter conditions for phage survival. Pseudomonas podovirus LUZ19 was remarkably stable, suffering less than 1 logarithmic unit reduction in phage titer. The phage titer of Staphyloccus phage Romulus-containing powders, a member of the Myoviridae family, showed more than 2.5 logarithmic units reduction. On the other hand, Romulus-containing powders showed more favorable characteristics for pulmonary delivery, with a high percentage of dry powder particles in the pulmonary deposition fraction (1-5 μm particle diameter). Even though the parameters were not optimized for spray drying all phages, it was demonstrated that spray drying phages with this industrial relevant and scalable set up was possible. The resulting powders had desirable size ranges for pulmonary delivery of phages with dry powder inhalers (DPIs).

  11. Sorption of heavy metals by prepared bacterial cell surfaces

    SciTech Connect

    Churchill, S.A.; Walters, J.V.; Churchill, P.F.

    1995-10-01

    Prepared biomass from two Gram-negative and one Gram-positive bacterial strains was examined for single, binary, and quaternary mixtures of polyvalent metal cation binding to cell surfaces. The biosorption of {sub 24}Cr{sup 3+}, {sub 27}Co{sup 2+}, {sub 28}Ni{sup 2+}, and {sub 29}Cu{sup 2+} for each bacterial cell type was evaluated using a batch equilibrium method. The binding of each metal by all three bacterial cells could be described by the Freundlich sorption model. The isotherm binding constants suggest that E. coli cells are the most efficient at binding copper, chromium, and nickel; and M. luteus adsorbs cobalt most efficiently. The K-values for copper bound to P. aeruginosa and E. coli are > 2-fold and > 8-fold greater, respectively, than previous reported for intact cells. The general metal-affinity series observed was Cr{sup 3+} > Cu{sup 2+} > Ni{sup 2+} > Co{sup 2+}. There was a marked lower affinity of all biosorbents for Co{sup 2+} and Ni{sup 2+}. M. luteus and E. coli had a strong preference for Co{sup 2+} over Ni{sup 2+}. Metal-binding enhancement could be ascribed to increased cell barrier surface porosity to metal-bearing solutions.

  12. Beneficial role of bacterial endophytes in heavy metal phytoremediation.

    PubMed

    Ma, Ying; Rajkumar, Mani; Zhang, Chang; Freitas, Helena

    2016-06-01

    Phytoremediation is an emerging technology that uses plants and their associated microbes to clean up pollutants from the soil, water and air. In recent years, phytoremediation assisted by bacterial endophytes has been highly recommended for cleaning up of metal polluted soils since endophytic bacteria can alleviate metal toxicity in plant through their own metal resistance system and facilitate plant growth under metal stress. Endophytic bacteria improve plant growth in metal polluted soils in two different ways: 1) directly by producing plant growth beneficial substances including solubilization/transformation of mineral nutrients (phosphate, nitrogen and potassium), production of phytohormones, siderophores and specific enzymes; and 2) indirectly through controlling plant pathogens or by inducing a systemic resistance of plants against pathogens. Besides, they also alter metal accumulation capacity in plants by excreting metal immobilizing extracellular polymeric substances, as well as metal mobilizing organic acids and biosurfactants. The present work aims to review the progress of recent research on the isolation, identification and diversity of metal resistant endophytic bacteria and illustrate various mechanisms responsible for plant growth promotion and heavy metal detoxification/phytoaccumulation/translocation in plants.

  13. Seasonal Variation in Soil Microbial Biomass, Bacterial Community Composition and Extracellular Enzyme Activity in Relation to Soil Respiration in a Northern Great Plains Grassland

    NASA Astrophysics Data System (ADS)

    Wilton, E.; Flanagan, L. B.

    2014-12-01

    Soil respiration rate is affected by seasonal changes in temperature and moisture, but is this a direct effect on soil metabolism or an indirect effect caused by changes in microbial biomass, bacterial community composition and substrate availability? In order to address this question, we compared continuous measurements of soil and plant CO2 exchange made with an automatic chamber system to analyses conducted on replicate soil samples collected on four dates during June-August. Microbial biomass was estimated from substrate-induced respiration rate, bacterial community composition was determined by 16S rRNA amplicon pyrosequencing, and β-1,4-N-acetylglucosaminidase (NAGase) and phenol oxidase enzyme activities were assayed fluorometrically or by absorbance measurements, respectively. Soil microbial biomass declined from June to August in strong correlation with a progressive decline in soil moisture during this time period. Soil bacterial species richness and alpha diversity showed no significant seasonal change. However, bacterial community composition showed a progressive shift over time as measured by Bray-Curtis dissimilarity. In particular, the change in community composition was associated with increasing relative abundance in the alpha and delta classes, and declining abundance of the beta and gamma classes of the Proteobacteria phylum during June-August. NAGase showed a progressive seasonal decline in potential activity that was correlated with microbial biomass and seasonal changes in soil moisture. In contrast, phenol oxidase showed highest potential activity in mid-July near the time of peak soil respiration and ecosystem photosynthesis, which may represent a time of high input of carbon exudates into the soil from plant roots. This input of exudates may stimulate the activity of phenol oxidase, a lignolytic enzyme involved in the breakdown of soil organic matter. These analyses indicated that seasonal change in soil respiration is a complex

  14. The Role of Bacterial Spores in Metal Cycling and Their Potential Application in Metal Contaminant Bioremediation.

    PubMed

    Butterfield, Cristina N; Lee, Sung-Woo; Tebo, Bradley M

    2016-04-01

    Bacteria are one of the premier biological forces that, in combination with chemical and physical forces, drive metal availability in the environment. Bacterial spores, when found in the environment, are often considered to be dormant and metabolically inactive, in a resting state waiting for favorable conditions for them to germinate. However, this is a highly oversimplified view of spores in the environment. The surface of bacterial spores represents a potential site for chemical reactions to occur. Additionally, proteins in the outer layers (spore coats or exosporium) may also have more specific catalytic activity. As a consequence, bacterial spores can play a role in geochemical processes and may indeed find uses in various biotechnological applications. The aim of this review is to introduce the role of bacteria and bacterial spores in biogeochemical cycles and their potential use as toxic metal bioremediation agents.

  15. Enhancement of bacterial iron and sulfate respiration for in situ bioremediation of acid mine drainage sites: a case study

    SciTech Connect

    Bilgin, A.A.; Harrington, J.M.; Silverstein, J.

    2007-08-15

    The prevention of acid mine drainage (AMD) in situ is more attractive than down-gradient treatment alternatives that do not involve source control. AMD source control can be achieved by shifting the microbial activity in the sulfidic rock from pyrite oxidation to anaerobic heterotrophic activity. This is achieved by adding biodegradable organic carbon amendments to the sulfidic rock. This technique was applied to an abandoned coal mine pool in Pennsylvania. The pool had a pH of 3.0 to 3.5. Following treatment, near-neutral pH and decreased effluent heavy metal concentrations were achieved. In situ bioremediation by the enhancement of bacterial iron and sulfate reduction is a promising technology for AMD prevention.

  16. Improving the sensitivity of bacterial bioreporters for heavy metals.

    PubMed

    Hynninen, Anu; Tönismann, Karmen; Virta, Marko

    2010-01-01

    Whole-cell bacterial bioreporters represent a convenient testing method for quantifying the bioavailability of contaminants in environmental samples. Despite the fact that several bioreporters have been constructed for measuring heavy metals, their application to environmental samples has remained minimal. The major drawbacks of the available bioreporters include a lack of sensitivity and specificity. Here, we report an improvement in the limit of detection of bacterial bioreporters by interfering with the natural metal homeostasis system of the host bacterium. The limit of detection of a Pseudomonas putida KT2440-based Zn/Cd/Pb-biosensor was improved by a factor of up to 45 by disrupting four main efflux transporters for Zn/Cd/Pb and thereby causing the metals to accumulate in the cell. The specificity of the bioreporter could be modified by changing the sensor element. A Zn-specific bioreporter was achieved by using the promoter of the cadA1 gene from P. putida as a sensor element. The constructed transporter-deficient P. putida reporter strain detected Zn(2+) concentrations about 50 times lower than that possible with other available Zn-bioreporters. The achieved detection limits were significantly below the permitted limit values for Zn and Pb in water and in soil, allowing for reliable detection of heavy metals in the environment.

  17. Detection of Metal and Organometallic Compounds with Bioluminescent Bacterial Bioassays.

    PubMed

    Durand, M J; Hua, A; Jouanneau, S; Cregut, M; Thouand, G

    2015-10-17

    Chemical detection of metal and organometallic compounds is very specific and sensitive, but these techniques are time consuming and expensive. Although these techniques provide information about the concentrations of compounds, they fail to inform us about the toxicity of a sample. Because the toxic effects of metals and organometallic compounds are influenced by a multitude of environmental factors, such as pH, the presence of chelating agents, speciation, and organic matter, bioassays have been developed for ecotoxicological studies. Among these bioassays, recombinant luminescent bacteria have been developed over the past 20 years, and many of them are specific for the detection of metals and metalloids. These bioassays are simple to use, are inexpensive, and provide information on the bioavailable fraction of metals and organometals. Thus, they are an essential complementary tool for providing information beyond chemical analysis. In this chapter, we propose to investigate the detection of metals and organometallic compounds with bioluminescent bacterial bioassays and the applications of these bioassays to environmental samples. Graphical Abstract.

  18. High mobilization of arsenic, metals and rare earth elements in seepage waters driven by respiration of old allochthonous organic carbon.

    PubMed

    Weiske, Arndt; Schaller, Jörg; Hegewald, Tilo; Machill, Susanne; Werner, Ingo; Dudel, E Gert

    2013-12-01

    Metal and metalloid mobilization processes within seepage water are of major concern in a range of water reservoir systems. The mobilization process of arsenic and heavy metals within a dam and sediments of a drinking water reservoir was investigated. Principle component analysis (PCA) on time series data of seepage water showed a clear positive correlation of arsenic with iron and DOC (dissolved organic carbon), and a negative correlation with nitrate due to respiratory processes. A relationship of reductive metal and metalloid mobilization with respiration of old carbon was shown. The system is influenced by sediment layers as well as a recent DOC input from degraded ombrotrophic peatbogs in the catchment area. The isotopic composition ((12)C, (13)C and (14)C) of DOC is altered along the path from basin to seepage water, but no significant changes in structural parameters (LC-OCD-OND, FT-IR) could be seen. DIC (dissolved inorganic carbon) in seepage water partly originates from respiratory processes, and a higher relationship of it with sediment carbon than with the DOC inventory of infiltrating water was found. This study revealed the interaction of respiratory processes with metal and metalloid mobilization in sediment water flows. In contrast to the presumption that emerging DOC via respiratory processes mainly controls arsenic and metal mobilization it could be shown that the presence of aged carbon compounds is essential. The findings emphasize the importance of aged organic carbon for DOC, DIC, arsenic and metal turnover.

  19. Bacterial adhesion to glass and metal-oxide surfaces.

    PubMed

    Li, Baikun; Logan, Bruce E

    2004-07-15

    Metal oxides can increase the adhesion of negatively-charged bacteria to surfaces primarily due to their positive charge. However, the hydrophobicity of a metal-oxide surface can also increase adhesion of bacteria. In order to understand the relative contribution of charge and hydrophobicity to bacterial adhesion, we measured the adhesion of 8 strains of bacteria, under conditions of low and high-ionic strength (1 and 100 mM, respectively) to 11 different surfaces and examined adhesion as a function of charge, hydrophobicity (water contact angle) and surface energy. Inorganic surfaces included three uncoated glass surfaces and eight metal-oxide thin films prepared on the upper (non-tin-exposed) side of float glass by chemical vapor deposition. The Gram-negative bacteria differed in lengths of lipopolysaccharides on their outer surface (three Escherichia coli strains), the amounts of exopolysaccharides (two Pseudomonas aeruginosa strains), and their known relative adhesion to sand grains (two Burkholderia cepacia strains). One Gram positive bacterium was also used that had a lower adhesion to glass than these other bacteria (Bacillus subtilis). For all eight bacteria, there was a consistent increase in adhesion between with the type of inorganic surface in the order: float glass exposed to tin (coded here as Si-Sn), glass microscope slide (Si-m), uncoated air-side float glass surface (Si-a), followed by thin films of (Co(1-y-z)Fe(y)Cr(z))3O4, Ti/Fe/O, TiO2, SnO2, SnO2:F, SnO2:Sb, A1(2)O3, and Fe2O3 (the colon indicates metal doping, a slash indicates that the metal is a major component, while the dash is used to distinguish surfaces). Increasing the ionic strength from 1 to 100 mM increased adhesion by a factor of 2.0 +/- 0.6 (73% of the sample results were within the 95% CI) showing electrostatic charge was important in adhesion. However, adhesion was not significantly correlated with bacterial charge and contact angle. Adhesion (A) of the eight strains was

  20. Comparison of the response of bacterial luminescence and mitochondrial respiration to the effluent of an oil refinery

    SciTech Connect

    Riisberg, M.; Bratlie, E.; Stenersen, J.

    1996-04-01

    The effects of oil refinery effluents on rat mitochondrial respiration and on the luminescence of the bacterium Photobacterium phosphoreum were compared. Mitochondria from male Wistar rat livers were exposed to different concentrations of refinery effluents in a semiclosed 3-ml reaction vessel. Respiration was measured polarographically with an oxygen electrode. Effects on P. phosphoreum were measured by the standard test developed by Microbics. The mitochondrial method showed EC50s in the range from 1 to 7.5%, while Microtox gave EC50 in the range from 30 to 42%. The higher sensitivity of mitochondria may be exploited in the development of a sensitive biosensor for toxicity of oil refinery effluents.

  1. Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes

    SciTech Connect

    Shi, Liang; Squier, Thomas C.; Zachara, John M.; Fredrickson, Jim K.

    2007-07-01

    Dissimilatory reduction of metal (e.g. Fe, Mn) (hydr)oxides represents a challenge for microorganisms, as their cell envelopes are impermeable to metal (hydr)oxides that are poorly soluble in water. To overcome this physical barrier, the Gram-negative bacteria Shewanella oneidensis MR-1 and Geobactersulfurreducens have developed electron transfer (ET) strategies that require multihaem c-type cytochromes (c-Cyts). In S. oneidensis MR-1, multihaem c-Cyts CymA and MtrA are believed to transfer electrons from the inner membrane quinone/quinol pool through the periplasm to the outer membrane. The type II secretion system of S. oneidensis MR-1 has been implicated in the reduction of metal (hydr)oxides, most likely by translocating decahaem c-Cyts MtrC and OmcA across outer membrane to the surface of bacterial cells where they form a protein complex. The extracellular MtrC and OmcA can directly reduce solid metal (hydr)oxides. Likewise, outer membrane multihaem c-Cyts OmcE and OmcS of G. sulfurreducens are suggested to transfer electrons from outer membrane to type IV pili that are hypothesized to relay the electrons to solid metal (hydr)oxides. Thus, multihaem c-Cyts play critical roles in S. oneidensis MR-1-and G. sulfurreducens-mediated dissimilatory reduction of solid metal (hydr)oxides by facilitating ET across the bacterial cell envelope.

  2. Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes.

    PubMed

    Shi, Liang; Squier, Thomas C; Zachara, John M; Fredrickson, James K

    2007-07-01

    Dissimilatory reduction of metal (e.g. Fe, Mn) (hydr)oxides represents a challenge for microorganisms, as their cell envelopes are impermeable to metal (hydr)oxides that are poorly soluble in water. To overcome this physical barrier, the Gram-negative bacteria Shewanella oneidensis MR-1 and Geobacter sulfurreducens have developed electron transfer (ET) strategies that require multihaem c-type cytochromes (c-Cyts). In S. oneidensis MR-1, multihaem c-Cyts CymA and MtrA are believed to transfer electrons from the inner membrane quinone/quinol pool through the periplasm to the outer membrane. The type II secretion system of S. oneidensis MR-1 has been implicated in the reduction of metal (hydr)oxides, most likely by translocating decahaem c-Cyts MtrC and OmcA across outer membrane to the surface of bacterial cells where they form a protein complex. The extracellular MtrC and OmcA can directly reduce solid metal (hydr)oxides. Likewise, outer membrane multihaem c-Cyts OmcE and OmcS of G. sulfurreducens are suggested to transfer electrons from outer membrane to type IV pili that are hypothesized to relay the electrons to solid metal (hydr)oxides. Thus, multihaem c-Cyts play critical roles in S. oneidensis MR-1- and G. sulfurreducens-mediated dissimilatory reduction of solid metal (hydr)oxides by facilitating ET across the bacterial cell envelope.

  3. PEROXOTITANATE- AND MONOSODIUM METAL-TITANATE COMPOUNDS AS INHIBITORS OF BACTERIAL GROWTH

    SciTech Connect

    Hobbs, D.

    2011-01-19

    Sodium titanates are ion-exchange materials that effectively bind a variety of metal ions over a wide pH range. Sodium titanates alone have no known adverse biological effects but metal-exchanged titanates (or metal titanates) can deliver metal ions to mammalian cells to alter cell processes in vitro. In this work, we test a hypothesis that metal-titanate compounds inhibit bacterial growth; demonstration of this principle is one prerequisite to developing metal-based, titanate-delivered antibacterial agents. Focusing initially on oral diseases, we exposed five species of oral bacteria to titanates for 24 h, with or without loading of Au(III), Pd(II), Pt(II), and Pt(IV), and measuring bacterial growth in planktonic assays through increases in optical density. In each experiment, bacterial growth was compared with control cultures of titanates or bacteria alone. We observed no suppression of bacterial growth by the sodium titanates alone, but significant (p < 0.05, two-sided t-tests) suppression was observed with metal-titanate compounds, particularly Au(III)-titanates, but with other metal titanates as well. Growth inhibition ranged from 15 to 100% depending on the metal ion and bacterial species involved. Furthermore, in specific cases, the titanates inhibited bacterial growth 5- to 375-fold versus metal ions alone, suggesting that titanates enhanced metal-bacteria interactions. This work supports further development of metal titanates as a novel class of antibacterials.

  4. Bacterial metal leaching and bioaccumulation. (Latest citations from the Life Sciences collection database). Published Search

    SciTech Connect

    1995-01-01

    The bibliography contains citations concerning bacterial strains used in metal leaching from effluents, and their role in metal recovery processes. Factors affecting bacterial growth such as temperature, pH and oxygen consumption are discussed. The isolation of bacteria suitable for these processes is considered. (Contains 250 citations and includes a subject term index and title list.)

  5. Bacterial metal leaching and bioaccumulation. (Latest citations from the Life Sciences Collection database). Published Search

    SciTech Connect

    Not Available

    1994-03-01

    The bibliography contains citations concerning bacterial strains used in metal leaching from effluents, and their role in metal recovery processes. Factors affecting bacterial growth such as temperature, pH and oxygen consumption are discussed. The isolation of bacteria suitable for these processes is considered. (Contains 250 citations and includes a subject term index and title list.)

  6. A cost-effective and field-ready potentiostat that poises subsurface electrodes to monitor bacterial respiration.

    PubMed

    Friedman, Elliot S; Rosenbaum, Miriam A; Lee, Alexander W; Lipson, David A; Land, Bruce R; Angenent, Largus T

    2012-02-15

    Here, we present the proof-of-concept for a subsurface bioelectrochemical system (BES)-based biosensor capable of monitoring microbial respiration that occurs through exocellular electron transfer. This system includes our open-source design of a three-channel microcontroller-unit (MCU)-based potentiostat that is capable of chronoamperometry, which laboratory tests showed to be accurate within 0.95 ± 0.58% (95% Confidence Limit) of a commercial potentiostat. The potentiostat design is freely available online: http://angenent.bee.cornell.edu/potentiostat.html. This robust and field-ready potentiostat, which can withstand temperatures of -30°C, can be manufactured at relatively low cost ($600), thus, allowing for en-masse deployment at field sites. The MCU-based potentiostat was integrated with electrodes and a solar panel-based power system, and deployed as a biosensor to monitor microbial respiration in drained thaw lake basins outside Barrow, AK. At three different depths, the working electrode of a microbial three-electrode system (M3C) was maintained at potentials corresponding to the microbial reduction of iron(III) compounds and humic acids. Thereby, the working electrode mimics these compounds and is used by certain microbes as an electron acceptor. The sensors revealed daily cycles in microbial respiration. In the medium- and deep-depth electrodes the onset of these cycles followed a considerable increase in overall activity that corresponded to those soils reaching temperatures conducive to microbial activity as the summer thaw progressed. The BES biosensor is a valuable tool for studying microbial activity in situ in remote environments, and the cost-efficient design of the potentiostat allows for wide-scale use in remote areas.

  7. Effect of a metal alloy fuel catalyst on bacterial growth.

    PubMed

    Ghosh, Ruma; Koerting, Claudia; Suib, Steven L; Best, Michael H; Berlin, Alvin J

    2005-11-08

    Many microorganisms have been demonstrated to utilize petroleum fuel products to fulfill their nutritional requirement for carbon. As a result, the ability of these microbes to degrade fuel has both a deleterious affect as well as beneficial applications. This study focused on the undesired ability of bacteria to grow on fuel and the potential for some metal alloys to inhibit this biodegradation. The objective of this study was to review the pattern of growth of two reference strains of petroleum-degrading bacteria, Pseudomonas oleovorans and Rhodococcus rhodocrous, in a specific hydrocarbon environment in the presence of a commercially available alloy. The alloy formulated and supplied by Advanced Power Systems International Inc. (APSI) is sold for fuel reformulation and other purposes. The components of the alloy used in the study were antimony, tin, lead, and mercury formulated as pellets. Surface characterization also showed the presence of tin oxide and lead amalgam phases. Hydrocarbon used for the study was primarily 87-octane gasoline. The growth of the bacteria in the water and mineral-supplemented gasoline mixture over 6-8 weeks was monitored by the viable plate count method. While an initial increase in bacteria occurred in the first week, overall bacterial growth was found to be suppressed in the presence of the alloy. Results also indicate that the alloy surface characteristics that convey the catalytic activity may also contribute to the observed antibacterial activity.

  8. Bacterial metal leaching and bioaccumulation. (Latest citations from the Life Sciences Collection database). Published Search

    SciTech Connect

    1996-06-01

    The bibliography contains citations concerning bioleaching and bioaccumulation in metal recovery systems. References study bacterial oxidation, fungal metabolism, metal extraction, and metal recovery from deposits. Gold and uranium ore treatments are discussed. Toxicity characteristic leaching procedure (TCLP) tests and ultrasound pretreatment are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  9. Comprehensive Proteomic and Metabolomic Signatures of Nontypeable Haemophilus influenzae-Induced Acute Otitis Media Reveal Bacterial Aerobic Respiration in an Immunosuppressed Environment.

    PubMed

    Harrison, Alistair; Dubois, Laura G; St John-Williams, Lisa; Moseley, M Arthur; Hardison, Rachael L; Heimlich, Derek R; Stoddard, Alexander; Kerschner, Joseph E; Justice, Sheryl S; Thompson, J Will; Mason, Kevin M

    2016-03-01

    A thorough understanding of the molecular details of the interactions between bacteria and host are critical to ultimately prevent disease. Recent technological advances allow simultaneous analysis of host and bacterial protein and metabolic profiles from a single small tissue sample to provide insight into pathogenesis. We used the chinchilla model of human otitis media to determine, for the first time, the most expansive delineation of global changes in protein and metabolite profiles during an experimentally induced disease. After 48 h of infection with nontypeable Haemophilus influenzae, middle ear tissue lysates were analyzed by high-resolution quantitative two-dimensional liquid chromatography-tandem mass spectrometry. Dynamic changes in 105 chinchilla proteins and 66 metabolites define the early proteomic and metabolomic signature of otitis media. Our studies indicate that establishment of disease coincides with actin morphogenesis, suppression of inflammatory mediators, and bacterial aerobic respiration. We validated the observed increase in the actin-remodeling complex, Arp2/3, and experimentally showed a role for Arp2/3 in nontypeable Haemophilus influenzae invasion. Direct inhibition of actin branch morphology altered bacterial invasion into host epithelial cells, and is supportive of our efforts to use the information gathered to modify outcomes of disease. The twenty-eight nontypeable Haemophilus influenzae proteins identified participate in carbohydrate and amino acid metabolism, redox homeostasis, and include cell wall-associated metabolic proteins. Quantitative characterization of the molecular signatures of infection will redefine our understanding of host response driven developmental changes during pathogenesis. These data represent the first comprehensive study of host protein and metabolite profiles in vivo in response to infection and show the feasibility of extensive characterization of host protein profiles during disease. Identification of

  10. Comprehensive Proteomic and Metabolomic Signatures of Nontypeable Haemophilus influenzae-Induced Acute Otitis Media Reveal Bacterial Aerobic Respiration in an Immunosuppressed Environment*

    PubMed Central

    Harrison, Alistair; Dubois, Laura G.; St. John-Williams, Lisa; Moseley, M. Arthur; Hardison, Rachael L.; Heimlich, Derek R.; Stoddard, Alexander; Kerschner, Joseph E.; Justice, Sheryl S.; Thompson, J. Will; Mason, Kevin M.

    2016-01-01

    A thorough understanding of the molecular details of the interactions between bacteria and host are critical to ultimately prevent disease. Recent technological advances allow simultaneous analysis of host and bacterial protein and metabolic profiles from a single small tissue sample to provide insight into pathogenesis. We used the chinchilla model of human otitis media to determine, for the first time, the most expansive delineation of global changes in protein and metabolite profiles during an experimentally induced disease. After 48 h of infection with nontypeable Haemophilus influenzae, middle ear tissue lysates were analyzed by high-resolution quantitative two-dimensional liquid chromatography-tandem mass spectrometry. Dynamic changes in 105 chinchilla proteins and 66 metabolites define the early proteomic and metabolomic signature of otitis media. Our studies indicate that establishment of disease coincides with actin morphogenesis, suppression of inflammatory mediators, and bacterial aerobic respiration. We validated the observed increase in the actin-remodeling complex, Arp2/3, and experimentally showed a role for Arp2/3 in nontypeable Haemophilus influenzae invasion. Direct inhibition of actin branch morphology altered bacterial invasion into host epithelial cells, and is supportive of our efforts to use the information gathered to modify outcomes of disease. The twenty-eight nontypeable Haemophilus influenzae proteins identified participate in carbohydrate and amino acid metabolism, redox homeostasis, and include cell wall-associated metabolic proteins. Quantitative characterization of the molecular signatures of infection will redefine our understanding of host response driven developmental changes during pathogenesis. These data represent the first comprehensive study of host protein and metabolite profiles in vivo in response to infection and show the feasibility of extensive characterization of host protein profiles during disease. Identification of

  11. Composition, Reactivity, and Regulations of Extracellular Metal-Reducing Structures (Bacterial Nanowires) Produced by Dissimilatory Metal Reducing Bacteria

    SciTech Connect

    Scholten, Johannes

    2006-06-01

    This research proposal seeks to describe the composition and function of electrically conductive appendages known as bacterial nanowires. This project targets bacterial nanowires produced by dissimilatory metal reducing bacteria Shewanella and Geobacter. Specifically, this project will investigate the role of these structures in the reductive transformation of iron oxides as solid phase electron acceptors, as well as uranium as a dissolved electron acceptor that forms nanocrystalline particles of uraninite upon reduction.

  12. Structural diversity of bacterial communities in a heavy metal mineralized granite outcrop.

    PubMed

    Gleeson, Deirdre; McDermott, Frank; Clipson, Nicholas

    2006-03-01

    This laboratory study of a variably mineralized and hydrothermally altered granite outcrop investigated the influences of rock-surface chemistry and heavy metal content on resident bacterial populations. Results indicated that elevated heavy metal concentrations had a profound impact on bacterial community structure, with strong relationships found between certain ribotypes and particular chemical/heavy metal elements. Automated ribosomal intergenic sequence analysis (ARISA) was used to assess the nature and extent of bacterial diversity, and this was combined with chemical analysis and multivariate statistics to identify the main geochemical factors influencing bacterial community structure. A randomization test revealed significant changes in bacterial structure between samples, while canonical correspondence analysis (CCA) related each individual ARISA profile to linear combinations of the chemical variables (mineralogy, major element and heavy metal concentrations) revealing the geochemical factors that correlated with changes in the ARISA data. anova was performed to further explore interactions between individual ribotypes and chemical/heavy metal composition, and revealed that a high proportion of ribotypes correlated significantly with heavy metals.

  13. Effect of organic carbon and metal accumulation on the bacterial communities in sulphidogenic sediments.

    PubMed

    Bueche, Matthieu; Junier, Pilar

    2016-06-01

    A unique geochemical setting in Lake Cadagno, Switzerland, has led to the accumulation of insoluble metal sulphides in the sedimentary record as the result of past airborne pollution. This offers an exceptional opportunity to study the effect of these metals on the bacterial communities in sediments, and in particular to investigate further the link between metal contamination and an increase in the populations of endospore-forming bacteria observed previously in other metal-contaminated sediments. A decrease in organic carbon and total bacterial counts was correlated with an increase in the numbers of endospores in the oldest sediment samples, showing the first environmental evidence of a decrease in nutrient availability as a trigger of sporulation. Proteobacteria and Firmicutes were the two dominant bacterial phyla throughout the sediment, the former in an area with high sulphidogenic activity, and the latter in the oldest samples. Even though the dominant Firmicutes taxa were stable along the sediment core and did not vary with changes in metal contamination, the prevalence of some molecular species like Clostridium sp. was positively correlated with metal sulphide concentration. However, this cannot be generalized to all endospore-forming species. Overall, the community composition supports the hypothesis of sporulation as the main mechanism explaining the dominance of endospore formers in the deepest part of the sediment core, while metal contamination in the form of insoluble metal sulphide deposits appears not to be linked with sporulation as a mechanism of metal tolerance in this sulphidogenic ecosystem.

  14. Bacterial Exopolysaccharides For Corrosion Inhibition on Metal Substrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofilms, composed of extra-cellular polymers secreted by bacteria, have been observed to both increase as well as decrease the rate of metal corrosion. Exopolysaccharides derived from Leuconostoc mesenteroides cultures have been shown to inhibit corrosion on corrosion-sensitive metals. The substa...

  15. Preventing bacterial growth on implanted device with an interfacial metallic film and penetrating X-rays.

    PubMed

    An, Jincui; Sun, An; Qiao, Yong; Zhang, Peipei; Su, Ming

    2015-02-01

    Device-related infections have been a big problem for a long time. This paper describes a new method to inhibit bacterial growth on implanted device with tissue-penetrating X-ray radiation, where a thin metallic film deposited on the device is used as a radio-sensitizing film for bacterial inhibition. At a given dose of X-ray, the bacterial viability decreases as the thickness of metal film (bismuth) increases. The bacterial viability decreases with X-ray dose increases. At X-ray dose of 2.5 Gy, 98% of bacteria on 10 nm thick bismuth film are killed; while it is only 25% of bacteria are killed on the bare petri dish. The same dose of X-ray kills 8% fibroblast cells that are within a short distance from bismuth film (4 mm). These results suggest that penetrating X-rays can kill bacteria on bismuth thin film deposited on surface of implant device efficiently.

  16. Engineered Bacterial Metal-binding Proteins for Nanoscale Self-assembly and heavy Metal Tolerance

    NASA Astrophysics Data System (ADS)

    Hall Sedlak, Ruth Amanda

    Implementing biological principles in material synthesis and assembly is one way to expand our abilities to efficiently assemble nanoscale materials and devices. Specifically, recent advances in identifying peptides that bind inorganic materials with high affinity and specificity has spurred investigation of protein models for nanoscale inorganic assembly. This dissertation presents the results of my studies of several E. coli proteins engineered to bind inorganic materials through simple peptide motifs. I demonstrate that these proteins modulate the self-assembly of DNA-based nanostructures and can introduce heavy metal tolerance into metal-sensitive bacteria. Chapter 2 explores use of the engineered F plasmid DNA relaxase/helicase TraI for the self-assembly of complex DNA-protein-gold nanostructures. The full-length protein is engineered with a gold binding motif at an internal permissive site (TraI369GBP1-7x), while a truncated version of TraI is engineered with the same gold binding motif at the C-terminus (TraI361GBP1-7x). Both constructs bind gold nanoparticles while maintaining their DNA binding activity, and transmission electron microscopy reveals TraI369GBP1-7x utilizes its non-specific DNA binding activity to decorate single-stranded and double-stranded DNA with gold nanoparticles. The self assembly principles demonstrated in this work will be fundamental to constructing higher ordered hybrid nanostructures through DNA-protein-nanoparticle interactions. Chapter 3 studies the effects of expressing inorganic binding peptides within cells. I identified a silver binding peptide that, when fused to the periplasmic maltose binding protein, protects E. coli from silver toxicity in batch culture and reduces silver ions to silver nanoparticles within the bacterial periplasm. Engineered metal-ion tolerant microorganisms such as this E. coli could potentially be used in applications ranging from remediation to interrogation of biomolecule-metal interactions in vivo

  17. Bacterial adhesion on amorphous and crystalline metal oxide coatings.

    PubMed

    Almaguer-Flores, Argelia; Silva-Bermudez, Phaedra; Galicia, Rey; Rodil, Sandra E

    2015-12-01

    Several studies have demonstrated the influence of surface properties (surface energy, composition and topography) of biocompatible materials on the adhesion of cells/bacteria on solid substrates; however, few have provided information about the effect of the atomic arrangement or crystallinity. Using magnetron sputtering deposition, we produced amorphous and crystalline TiO2 and ZrO2 coatings with controlled micro and nanoscale morphology. The effect of the structure on the physical-chemical surface properties was carefully analyzed. Then, we studied how these parameters affect the adhesion of Escherichia coli and Staphylococcus aureus. Our findings demonstrated that the nano-topography and the surface energy were significantly influenced by the coating structure. Bacterial adhesion at micro-rough (2.6 μm) surfaces was independent of the surface composition and structure, contrary to the observation in sub-micron (0.5 μm) rough surfaces, where the crystalline oxides (TiO2>ZrO2) surfaces exhibited higher numbers of attached bacteria. Particularly, crystalline TiO2, which presented a predominant acidic nature, was more attractive for the adhesion of the negatively charged bacteria. The information provided by this study, where surface modifications are introduced by means of the deposition of amorphous or crystalline oxide coatings, offers a route for the rational design of implant surfaces to control or inhibit bacterial adhesion.

  18. Three common metal contaminants of urban runoff (Zn, Cu & Pb) accumulate in freshwater biofilm and modify embedded bacterial communities.

    PubMed

    Ancion, Pierre-Yves; Lear, Gavin; Lewis, Gillian D

    2010-08-01

    We investigated the absorption rates of zinc, copper and lead in freshwater biofilm and assessed whether biofilm bacterial populations are affected by exposure to environmentally relevant concentrations of these metals in flow chamber microcosms. Metals were rapidly accumulated by the biofilm and then retained for at least 14 days after transfer to uncontaminated water. Changes in bacterial populations were assessed by Automated Ribosomal Intergenic Spacer Analysis (ARISA) and 16S rRNA gene clone libraries. Significant differences in bacterial community structure occurred within only three days of exposure to metals and remained detectable at least 14 days after transfer to uncontaminated water. The rapid uptake of stormwater-associated metals and their retention in the biofilm highlight the potential role of biofilms in the transfer of metals to organisms at higher trophic levels. The sensitivity of stream biofilm bacterial populations to metal exposure supports their use as an indicator of stream ecological health.

  19. Heavy metals species affect fungal-bacterial synergism during the bioremediation of fluoranthene.

    PubMed

    Ma, Xiao-Kui; Ding, Ning; Peterson, Eric Charles; Daugulis, Andrew J

    2016-09-01

    The co-occurrence of polycyclic aromatic hydrocarbons (PAHs) with heavy metals (HMs) is very common in contaminated soils, but the influence of HMs on fungal-bacterial synergism during PAH bioremediation has not been investigated. The bioremediation of fluoranthene-contaminated sand using co-cultures of Acremonium sp. P0997 and Bacillus subtilis showed increases of 109.4 and 9.8 % in degradation compared to pure bacterial and fungal cultures, respectively, removing 64.1 ± 1.4 % fluoanthene in total. The presence of Cu(2+) reduced fluoranthene removal to 53.7 ± 1.7 %, while inhibiting bacterial growth, and reducing translocation of bacteria on fungal hyphae by 49.5 %, in terms of the bacterial translocation ratio. Cu(2+) reduced bacterial diffusion by 46.8 and 31.9 %, as reflected by D (a bulk random motility diffusional coefficient) and D eff (the effective one-dimensional diffusion coefficient) compared to the control without HM supplementation, respectively. However, Mn(2+) resulted in a 78.2 ± 1.9 % fluoranthene degradation, representing an increase of 21.9 %, while enhancing bacterial growth and bacterial translocation on fungal hyphae, showing a 12.0 % increase in translocation ratio, with no observable impact on D and D eff. Hence, the presence of HMs has been shown to affect fungal-bacterial synergism in PAH degradation, and this effect differs with HM species.

  20. Light-scattering Characteristics of Metal Nanoparticles on a Single Bacterial Cell.

    PubMed

    Kinoshita, Takamasa; Kiso, Keita; LE, Dung Q; Shiigi, Hiroshi; Nagaoka, Tsutomu

    2016-01-01

    Metal nanoparticles express unique light-scattering characteristics based on the localized surface plasmon resonance, which depends on the metal species, particle size, and aggregation state of the nanoparticles. Therefore, we focused on the light-scattering characteristics of metal nanoparticles, such as silver, gold, and copper oxide, adsorbed on a bacterium. Monodisperse silver nanoparticles expressed the strongest scattered light among them, and showed various colors of scattered light. Although a monodisperse gold nanoparticle produced monochromatic light (green color), the color of the scattered light strongly depended on the aggregation state of the nanoparticles on a bacterium. On the other hand, copper oxide nanoparticles expressed monochromatic light (blue color), regardless of their aggregation states on a bacterium. We examined details concerning the light-scattering characteristics of metal nanoparticles, and discussed the possibility of their applications to bacterial cell imaging.

  1. Analysis of Bacterial Deposition on Metal (Hydr)oxide-Coated Sand Filter Media.

    PubMed

    Truesdail; Lukasik; Farrah; Shah; Dickinson

    1998-07-15

    The aim of this study was to investigate the importance of surface potential in microbial deposition onto modified granular surfaces. Recent experimental and theoretical work has indicated that surfaces coated with metal oxides and hydroxide rich oxide/hydroxide mixtures ((hydr)oxides) have the potential to increase the capture efficiencies of commercial filtration systems. This study quantitatively compared different metal (hydr)oxide coatings in their abilities to enhance bacterial deposition. Specifically, the deposition rates of bacterial strains Streptococcus faecalis, Staphylococcus aureus, Salmonella typhimurium, and Escherichia coli were compared for Ottawa sand and surface coatings consisting of aluminum (hydr)oxide, iron (hydr)oxide, and mixed iron and aluminum (hydr)oxide. The metal-(hydr)oxide-modified granular media enhanced bacterial deposition relative to the noncoated Ottawa sand. The electropositive surfaces, the aluminum and the mixed (hydr)oxides, had similar average kinetic rate constants, five times larger than the rate constants observed for the untreated Ottawa sand. The measured kinetic rate constants for the positively charged systems of aluminum (hydr)oxide and mixed (hydr)oxide collectors suggested that the overall rate of deposition was limited by the transport of bacteria to the granular surface rather than the rate of attachment. For systems where the collector surfaces were negatively charged, as in the cases of Ottawa sand and the iron (hydr)oxide coating, large energy barriers to attachment were predicted from DLVO theory but these barriers did not totally inhibit bacterial deposition. The deposition results could not be fully explained by DLVO theory and suggested the importance of other factors such as collector charge heterogeneity, motility, and bacterial surface appendages in enhanced deposition. Copyright 1998 Academic Press.

  2. [Role of superoxide anion radicals in the bacterial corrosion of metals].

    PubMed

    Belov, D V; Kalinina, A A; Sokolova, T N; Smirnov, V F; Chelnokova, M V; Kartashov, V R

    2012-01-01

    It was found that seven strains of bacteria can cause corrosion damage to aluminum, its alloys, and zinc. With respect to the studied metals, the most active bacteria were Proteus vulgaris 1212 and Pseudomonas aeruginosa 969. Superoxide anion radicals were demonstrated to play a role in the initiation of corrosive damage to aluminum and zinc, while bacterial exometabolites participate in the later stages of this process.

  3. Applications of bacterial cellulose as precursor of carbon and composites with metal oxide, metal sulfide and metal nanoparticles: A review of recent advances.

    PubMed

    Foresti, M L; Vázquez, A; Boury, B

    2017-02-10

    This mini review is limited to very recent studies (last 5-10 years) on two major issues, concerning: the production and physical/chemical modification of bacterial cellulose (BC), and its transformation into carbon and integrated synthesis of metal oxides (TiO2, ZnO, Fe3O4, etc.), metal sulfide (ZnS, CdS, etc.) and metal nanoparticles (Au, Ag, Pt, Pd, etc.) within bacterial cellulose nanoribbons network. We believe that the crossover of these two domains could be of considerable interest in the view of improving the performance of materials prepared with bacterial cellulose. The diversity of these nanomaterials allows targeting of many very different properties/applications: electrochemical devices, catalysis and photocatalysis, sensors, etc. After an introduction to the most important chemical and physical characteristics of BC, production parameters, and its physical and chemical modifications, we review the use of BC as a precursor of inorganic materials like carbon and composites with metal or inorganic nanoparticles.

  4. Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation--part A.

    PubMed

    Vera, Mario; Schippers, Axel; Sand, Wolfgang

    2013-09-01

    Bioleaching of metal sulfides is performed by a diverse group of microorganisms. The dissolution chemistry of metal sulfides follows two pathways, which are determined by the mineralogy and the acid solubility of the metal sulfides: the thiosulfate and the polysulfide pathways. Bacterial cells can effect this metal sulfide dissolution via iron(II) ion and sulfur compound oxidation. Thereby, iron(III) ions and protons, the metal sulfide-attacking agents, are available. Cells can be active either in planktonic state or in forming biofilms on the mineral surface; however, the latter is much more efficient in terms of bioleaching kinetics. In the case of Acidithiobacillus ferrooxidans, bacterial exopolymers contain iron(III) ions, each complexed by two uronic acid residues. The resulting positive charge allows an electrostatic attachment to the negatively charged pyrite. Thus, the first function of complexed iron(III) ions is the mediation of cell attachment, while their second function is oxidative dissolution of the metal sulfide, similar to the role of free iron(III) ions in non-contact leaching. In both cases, the electrons extracted from the metal sulfide reduce molecular oxygen via a redox chain forming a supercomplex spanning the periplasmic space and connecting both outer and inner membranes. In this review, we summarize some recent discoveries relevant to leaching bacteria which contribute to a better understanding of these fascinating microorganisms. These include surface science, biochemistry of iron and sulfur metabolism, anaerobic metabolism, and biofilm formation. The study of microbial interactions among multispecies leaching consortia, including cell-to-cell communication mechanisms, must be considered in order to reveal more insights into the biology of bioleaching microorganisms and their potential biotechnological use.

  5. Effect of metals on a siderophore producing bacterial isolate and its implications on microbial assisted bioremediation of metal contaminated soils.

    PubMed

    Gaonkar, Teja; Bhosle, Saroj

    2013-11-01

    A bacterial isolate producing siderophore under iron limiting conditions, was isolated from mangroves of Goa. Based on morphological, biochemical, chemotaxonomical and 16S rDNA studies, the isolate was identified as Bacillus amyloliquefaciens NAR38.1. Preliminary characterization of the siderophore indicated it to be catecholate type with dihydroxy benzoate as the core component. Optimum siderophore production was observed at pH 7 in mineral salts medium (MSM) without any added iron with glucose as the carbon source. Addition of NaCl in the growth medium showed considerable decrease in siderophore production above 2% NaCl. Fe(+2) and Fe(+3) below 2 μM and 40 μM concentrations respectively, induced siderophore production, above which the production was repressed. Binding studies of the siderophore with Fe(+2) and Fe(+3) indicated its high affinity towards Fe(+3). The siderophore concentration in the extracellular medium was enhanced when MSM was amended with essential metals Zn, Co, Mo and Mn, however, decreased with Cu, while the concentration was reduced with abiotic metals As, Pb, Al and Cd. Significant increase in extracellular siderophore production was observed with Pb and Al at concentrations of 50 μM and above. The effect of metals on siderophore production was completely mitigated in presence of Fe. The results implicate effect of metals on the efficiency of siderophore production by bacteria for potential application in bioremediation of metal contaminated iron deficient soils especially in the microbial assisted phytoremediation processes.

  6. The effect of heavy metal contamination on the bacterial community structure at Jiaozhou Bay, China.

    PubMed

    Yao, Xie-Feng; Zhang, Jiu-Ming; Tian, Li; Guo, Jian-Hua

    In this study, determination of heavy metal parameters and microbiological characterization of marine sediments obtained from two heavily polluted sites and one low-grade contaminated reference station at Jiaozhou Bay in China were carried out. The microbial communities found in the sampled marine sediments were studied using PCR-DGGE (denaturing gradient gel electrophoresis) fingerprinting profiles in combination with multivariate analysis. Clustering analysis of DGGE and matrix of heavy metals displayed similar occurrence patterns. On this basis, 17 samples were classified into two clusters depending on the presence or absence of the high level contamination. Moreover, the cluster of highly contaminated samples was further classified into two sub-groups based on the stations of their origin. These results showed that the composition of the bacterial community is strongly influenced by heavy metal variables present in the sediments found in the Jiaozhou Bay. This study also suggested that metagenomic techniques such as PCR-DGGE fingerprinting in combination with multivariate analysis is an efficient method to examine the effect of metal contamination on the bacterial community structure.

  7. Adsorption to metal oxides of the Pseudomonas aeruginosa siderophore pyoverdine and implications for bacterial biofilm formation on metals.

    PubMed

    Upritchard, Hamish G; Yang, Jing; Bremer, Philip J; Lamont, Iain L; McQuillan, A James

    2007-06-19

    The initiation of biofilm formation is poorly understood, and in particular, the contribution of chemical bond formation between bacterial cells and metal surfaces has received little attention. We have previously used in situ infrared spectroscopy to show, during the initial stages of Pseudomonas aeruginosa biofilm formation, the formation of coordinate covalent bonds between titanium dioxide particle films and pyoverdine, a mixed catecholate and hydroxamate siderophore. Here we show using infrared spectroscopy that pyoverdine can also form covalent bonds with particle films of Fe2O3, CrOOH, and AlOOH. Adsorption to the metal oxides through the catechol-like 2,3-diamino-6,7-dihydroxyquinoline part of pyoverdine was most evident in the infrared spectrum of the adsorbed pyoverdine molecule. Weaker infrared absorption bands that are consistent with the hydroxamic acids of pyoverdine binding covalently to TiO2, Fe2O3, and AlOOH surfaces were also observed. The adsorption of pyoverdine to TiO2 and Fe2O3 surfaces showed a pH dependence that is indicative of the dominance of the catechol-like ligand of pyoverdine. Infrared absorption bands were also evident for pyoverdine associated with the cells of P. aeruginosa on TiO2 and Fe2O3 surfaces and were notably absent for genetically modified cells unable to synthesize or bind pyoverdine at the cell surface. These studies confirm the generality of pyoverdine-metal bond formation and suggest a wider involvement of siderophores in bacterial biofilm initiation on metals.

  8. Multiple Heavy Metal Tolerance of Soil Bacterial Communities and Its Measurement by a Thymidine Incorporation Technique

    PubMed Central

    Díaz-Raviña, Montserrat; Bååth, Erland; Frostegård, Åsa

    1994-01-01

    A thymidine incorporation technique was used to determine the tolerance of a soil bacterial community to Cu, Cd, Zn, Ni, and Pb. An agricultural soil was artificially contaminated in our laboratory with individual metals at three different concentrations, and the results were compared with the results obtained by using the plate count technique. Thymidine incorporation was found to be a simple and rapid method for measuring tolerance. Data obtained by this technique were very reproducible. A linear relationship was found between changes in community tolerance levels obtained by the thymidine incorporation and plate count techniques (r = 0.732, P < 0.001). An increase in tolerance to the metal added to soil was observed for the bacterial community obtained from each polluted soil compared with the community obtained from unpolluted soil. The only exception was when Pb was added; no indication of Pb tolerance was found. An increase in the tolerance to metals other than the metal originally added to soil was also observed, indicating that there was multiple heavy metal tolerance at the community level. Thus, Cu pollution, in addition to increasing tolerance to Cu, also induced tolerance to Zn, Cd, and Ni. Zn and Cd pollution increased community tolerance to all five metals. Ni amendment increased tolerance to Ni the most but also increased community tolerance to Zn and, to lesser degrees, increased community tolerance to Pb and Cd. In soils polluted with Pb increased tolerance to other metals was found in the following order: Ni > Cd > Zn > Cu. We found significant positive relationships between changes in Cd, Zn, and Pb tolerance and, to a lesser degree, between changes in Pb and Ni tolerance when all metals and amendment levels were compared. The magnitude of the increase in heavy metal tolerance was found to be linearly related to the logarithm of the metal concentration added to the soil. Threshold tolerance concentrations were estimated from these linear

  9. Heavy metals in liquid pig manure in light of bacterial antimicrobial resistance

    SciTech Connect

    Hoelzel, Christina S.; Mueller, Christa; Harms, Katrin S.; Mikolajewski, Sabine; Schaefer, Stefanie; Schwaiger, Karin; Bauer, Johann

    2012-02-15

    Heavy metals are regularly found in liquid pig manure, and might interact with bacterial antimicrobial resistance. Concentrations of heavy metals were determined by atomic spectroscopic methods in 305 pig manure samples and were connected to the phenotypic resistance of Escherichia coli (n=613) against 29 antimicrobial drugs. Concentrations of heavy metals (/kg dry matter) were 0.08-5.30 mg cadmium, 1.1-32.0 mg chrome, 22.4-3387.6 mg copper, <2.0-26.7 mg lead, <0.01-0.11 mg mercury, 3.1-97.3 mg nickel and 93.0-8239.0 mg zinc. Associated with the detection of copper and zinc, resistance rates against {beta}-lactams were significantly elevated. By contrast, the presence of mercury was significantly associated with low antimicrobial resistance rates of Escherichia coli against {beta}-lactams, aminoglycosides and other antibiotics. Effects of subinhibitory concentrations of mercury on bacterial resistance against penicillins, cephalosporins, aminoglycosides and doxycycline were also demonstrated in a laboratory trial. Antimicrobial resistance in the porcine microflora might be increased by copper and zinc. By contrast, the occurrence of mercury in the environment might, due to co-toxicity, act counter-selective against antimicrobial resistant strains.

  10. Heavy metals in liquid pig manure in light of bacterial antimicrobial resistance.

    PubMed

    Hölzel, Christina S; Müller, Christa; Harms, Katrin S; Mikolajewski, Sabine; Schäfer, Stefanie; Schwaiger, Karin; Bauer, Johann

    2012-02-01

    Heavy metals are regularly found in liquid pig manure, and might interact with bacterial antimicrobial resistance. Concentrations of heavy metals were determined by atomic spectroscopic methods in 305 pig manure samples and were connected to the phenotypic resistance of Escherichia coli (n=613) against 29 antimicrobial drugs. Concentrations of heavy metals (/kg dry matter) were 0.08-5.30 mg cadmium, 1.1-32.0 mg chrome, 22.4-3387.6 mg copper, <2.0-26.7 mg lead, <0.01-0.11 mg mercury, 3.1-97.3 mg nickel and 93.0-8239.0 mg zinc. Associated with the detection of copper and zinc, resistance rates against β-lactams were significantly elevated. By contrast, the presence of mercury was significantly associated with low antimicrobial resistance rates of Escherichia coli against β-lactams, aminoglycosides and other antibiotics. Effects of subinhibitory concentrations of mercury on bacterial resistance against penicillins, cephalosporins, aminoglycosides and doxycycline were also demonstrated in a laboratory trial. Antimicrobial resistance in the porcine microflora might be increased by copper and zinc. By contrast, the occurrence of mercury in the environment might, due to co-toxicity, act counter-selective against antimicrobial resistant strains.

  11. Irrigation water quality in southern Mexico City based on bacterial and heavy metal analyses

    NASA Astrophysics Data System (ADS)

    Solís, C.; Sandoval, J.; Pérez-Vega, H.; Mazari-Hiriart, M.

    2006-08-01

    Xochimilco is located in southern Mexico City and represents the reminiscence of the pre-Columbian farming system, the "chinampa" agriculture. "Chinampas" are island plots surrounded by a canal network. At present the area is densely urbanized and populated, with various contaminant sources contributing to the water quality degradation. The canal system is recharged by a combination of treated-untreated wastewater, and precipitation during the rainy season. Over 40 agricultural species, including vegetables, cereals and flowers, are produced in the "chinampas". In order to characterize the quality of Xochimilcos' water used for irrigation, spatial and temporal contaminant indicators such as microorganisms and heavy metals were investigated. Bacterial indicators (fecal coliforms, fecal enterococcus) were analyzed by standard analytical procedures, and heavy metals (such as Fe, Cu, Zn and Pb) were analyzed by particle induced X-ray emission (PIXE). The more contaminated sites coincide with the heavily populated areas. Seasonal variation of contaminants was observed, with the higher bacterial counts and heavy metal concentrations reported during the rainy season.

  12. Isolation and Genomic Characterization of ‘Desulfuromonas soudanensis WTL’, a Metal- and Electrode-Respiring Bacterium from Anoxic Deep Subsurface Brine

    PubMed Central

    Badalamenti, Jonathan P.; Summers, Zarath M.; Chan, Chi Ho; Gralnick, Jeffrey A.; Bond, Daniel R.

    2016-01-01

    Reaching a depth of 713 m below the surface, the Soudan Underground Iron Mine (Soudan, MN, USA) transects a massive Archaean (2.7 Ga) banded iron formation, providing a remarkably accessible window into the terrestrial deep biosphere. Despite organic carbon limitation, metal-reducing microbial communities are present in potentially ancient anoxic brines continuously emanating from exploratory boreholes on Level 27. Using graphite electrodes deposited in situ as bait, we electrochemically enriched and isolated a novel halophilic iron-reducing Deltaproteobacterium, ‘Desulfuromonas soudanensis’ strain WTL, from an acetate-fed three-electrode bioreactor poised at +0.24 V (vs. standard hydrogen electrode). Cyclic voltammetry revealed that ‘D. soudanensis’ releases electrons at redox potentials approximately 100 mV more positive than the model freshwater surface isolate Geobacter sulfurreducens, suggesting that its extracellular respiration is tuned for higher potential electron acceptors. ‘D. soudanensis’ contains a 3,958,620-bp circular genome, assembled to completion using single-molecule real-time (SMRT) sequencing reads, which encodes a complete TCA cycle, 38 putative multiheme c-type cytochromes, one of which contains 69 heme-binding motifs, and a LuxI/LuxR quorum sensing cassette that produces an unidentified N-acyl homoserine lactone. Another cytochrome is predicted to lie within a putative prophage, suggesting that horizontal gene transfer plays a role in respiratory flexibility among metal reducers. Isolation of ‘D. soudanensis’ underscores the utility of electrode-based approaches for enriching rare metal reducers from a wide range of habitats. PMID:27445996

  13. Response of bacterial isolates from Antarctic shallow sediments towards heavy metals, antibiotics and polychlorinated biphenyls.

    PubMed

    Lo Giudice, Angelina; Casella, Patrizia; Bruni, Vivia; Michaud, Luigi

    2013-03-01

    The response of bacterial isolates from Antarctic sediments to polychlorinated biphenyls (Aroclor 1242 mixture), heavy metal salts (cadmium, copper, mercury and zinc) and antibiotics (ampicillin, chloramphenicol, kanamycin and streptomycin) was investigated. Overall, the ability to growth in the presence of Aroclor 1242 as a sole carbon source was observed for 22 isolates that mainly belonged to Psychrobacter spp. Tolerance to the heavy metals assayed in this study was in the order of Cd > Cu > Zn > Hg and appeared to be strictly related to the metal concentrations, as determined during previous chemical surveys in the same area. With regards to antibiotic assays, the response of the isolates to the tested antibiotics ranged from complete resistance to total susceptibility. In particular, resistances to ampicillin and chloramphenicol were very pronounced in the majority of isolates. Our isolates differently responded to the presence of toxic compounds primarily based on their phylogenetic affiliation and secondarily at strain level. Moreover, the high incidence of resistance either to metal or antibiotics, in addition to the capability to grow on PCBs, confirm that bacteria are able to cope and/or adapt to the occurrence pollutants even in low human-impacted environments.

  14. Metal stressors consistently modulate bacterial conjugal plasmid uptake potential in a phylogenetically conserved manner

    PubMed Central

    Klümper, U.; Dechesne, A.; Riber, L.; Brandt, K.K.; Gülay, A.; Sørensen, S.J.; Smets, B.F.

    2016-01-01

    The environmental stimulants and inhibitors of conjugal plasmid transfer in microbial communities are poorly understood. Specifically, it is not known whether exposure to stressors may cause a community to alter its plasmid uptake ability. We assessed whether metals (Cu, Cd, Ni, Zn) and one metalloid (As), at concentrations causing partial growth inhibition, modulate community permissiveness (i.e. uptake ability) against a broad-host-range IncP-type plasmid (pKJK5). Cells were extracted from an agricultural soil as recipient community and a previously described cultivation-minimal filter mating assay was conducted with an exogenous E. coli donor strain. The donor hosted a gfp-tagged pKJK5 derivative from which conjugation events could be microscopically quantified and transconjugants isolated and phylogenetically described at high resolution via FACS and 16S rRNA amplicon sequencing. Metal stress consistently decreased plasmid transfer frequencies to the community, while the transconjugal pool richness remained unaffected with OTUs belonging to 12 bacterial phyla. The taxonomic composition of the transconjugal pools was distinct from their respective recipient communities and clustered dependent on the stress type and dose. However, for certain OTUs, stress in- or decreased plasmid permissiveness by more than 1000-fold and this response was typically correlated across different metals and doses. The response to some stresses was, in addition, phylogenetically conserved. This is the first demonstration that community permissiveness is sensitive to metal(loid) stress in a manner that is both partially consistent across stressors and phylogenetically conserved. PMID:27482924

  15. Heavy metal and bacterial pollution of the Sava River in Serbia.

    PubMed

    Vuković, Zivorad; Marković, Ljiljana; Radenković, Mirjana; Vuković, Dubravka; Stanković, Srboljub

    2011-03-01

    The aim of this study was to establish microbial and heavy metal pollution of the Sava River at three locations close to industry and urban areas (Šabac, Obrenovac, Beograd) in Serbia. Heavy metal analysis included Cu, Zn, Pb, and Cd in the river water and sediment samples. Using the microbiological analysis we tried to establish the effectiveness of total coliforms, faecal coliforms and Escherichia coli in detecting pollution of surface waters. We found that E. coli levels steadily increased downstream from Šabac (location 1; 2100 MPN per 100 mL) to Belgrade (location 3; 10000 MPN per 100 mL). To prevent bacterial contamination, it is necessary to reduce the discharge of wastewater with faecal matters near highly populated towns. Heavy metal levels in sediments correlated with those in the river water. Fluctuations attributed mainly to anthropogenic sources were not high. These results point to acceptable anthropogenic contribution to heavy metal content in the Sava River and to low environmental risk.

  16. Inactivation of bacterial and viral biothreat agents on metallic copper surfaces.

    PubMed

    Bleichert, Pauline; Espírito Santo, Christophe; Hanczaruk, Matthias; Meyer, Hermann; Grass, Gregor

    2014-12-01

    In recent years several studies in laboratory settings and in hospital environments have demonstrated that surfaces of massive metallic copper have intrinsic antibacterial and antiviral properties. Microbes are rapidly inactivated by a quick, sharp shock known as contact killing. The underlying mechanism is not yet fully understood; however, in this process the cytoplasmic membrane is severely damaged. Pathogenic bacterial and viral high-consequence species able to evade the host immune system are among the most serious lethal microbial challenges to human health. Here, we investigated contact-killing mediated by copper surfaces of Gram-negative bacteria (Brucella melitensis, Burkholderia mallei, Burkholderia pseudomallei, Francisella tularensis tularensis and Yersinia pestis) and of Gram-positive endospore-forming Bacillus anthracis. Additionally, we also tested inactivation of monkeypox virus and vaccinia virus on copper. This group of pathogens comprises biothreat species (or their close relatives) classified by the Center for Disease and Control and Prevention (CDC) as microbial select agents posing severe threats to public health and having the potential to be deliberately released. All agents were rapidly inactivated on copper between 30 s and 5 min with the exception of B. anthracis endospores. For vegetative bacterial cells prolonged contact to metallic copper resulted in the destruction of cell structure.

  17. Anaerobic respiration on tellurate and other metalloids in bacteria from hydrothermal vent fields in the eastern Pacific Ocean.

    PubMed

    Csotonyi, Julius T; Stackebrandt, Erko; Yurkov, Vladimir

    2006-07-01

    This paper reports the discovery of anaerobic respiration on tellurate by bacteria isolated from deep ocean (1,543 to 1,791 m) hydrothermal vent worms. The first evidence for selenite- and vanadate-respiring bacteria from deep ocean hydrothermal vents is also presented. Enumeration of the anaerobic metal(loid)-resistant microbial community associated with hydrothermal vent animals indicates that a greater proportion of the bacterial community associated with certain vent fauna resists and reduces metal(loid)s anaerobically than aerobically, suggesting that anaerobic metal(loid) respiration might be an important process in bacteria that are symbiotic with vent fauna. Isolates from Axial Volcano and Explorer Ridge were tested for their ability to reduce tellurate, selenite, metavanadate, or orthovanadate in the absence of alternate electron acceptors. In the presence of metal(loid)s, strains showed an ability to grow and produce ATP, whereas in the absence of metal(loid)s, no growth or ATP production was observed. The protonophore carbonyl cyanide m-chlorophenylhydrazone depressed metal(loid) reduction. Anaerobic tellurate respiration will be a significant component in describing biogeochemical cycling of Te at hydrothermal vents.

  18. Alkali-earth metal bridges formed in biofilm matrices regulate the uptake of fluoroquinolone antibiotics and protect against bacterial apoptosis.

    PubMed

    Kang, Fuxing; Wang, Qian; Shou, Weijun; Collins, Chris D; Gao, Yanzheng

    2017-01-01

    Bacterially extracellular biofilms play a critical role in relieving toxicity of fluoroquinolone antibiotic (FQA) pollutants, yet it is unclear whether antibiotic attack may be defused by a bacterial one-two punch strategy associated with metal-reinforced detoxification efficiency. Our findings help to assign functions to specific structural features of biofilms, as they strongly imply a molecularly regulated mechanism by which freely accessed alkali-earth metals in natural waters affect the cellular uptake of FQAs at the water-biofilm interface. Specifically, formation of alkali-earth-metal (Ca(2+) or Mg(2+)) bridge between modeling ciprofloxacin and biofilms of Escherichia coli regulates the trans-biofilm transport rate of FQAs towards cells (135-nm-thick biofilm). As the addition of Ca(2+) and Mg(2+) (0-3.5 mmol/L, CIP: 1.25 μmol/L), the transport rates were reduced to 52.4% and 63.0%, respectively. Computational chemistry analysis further demonstrated a deprotonated carboxyl in the tryptophan residues of biofilms acted as a major bridge site, of which one side is a metal and the other is a metal girder jointly connected to the carboxyl and carbonyl of a FQA. The bacterial growth rate depends on the bridging energy at anchoring site, which underlines the environmental importance of metal bridge formed in biofilm matrices in bacterially antibiotic resistance.

  19. Organohalide respiration: microbes breathing chlorinated molecules

    PubMed Central

    Leys, David; Adrian, Lorenz; Smidt, Hauke

    2013-01-01

    Bacterial respiration has taken advantage of almost every redox couple present in the environment. The reduction of organohalide compounds to release the reduced halide ion drives energy production in organohalide respiring bacteria. This process is centred around the reductive dehalogenases, an iron–sulfur and corrinoid containing family of enzymes. These enzymes, transcriptional regulators and the bacteria themselves have potential to contribute to future bioremediation solutions that address the pollution of the environment by halogenated organic compounds. PMID:23479746

  20. Effects of copper on sulfate reduction in bacterial consortia enriched from metal-contaminated and uncontaminated sediments.

    PubMed

    Jin, Song; Drever, James I; Colberg, Patricia J S

    2007-02-01

    The effects of copper amendments on bacterial sulfate reduction in enrichment cultures obtained from two types of freshwater sediment were examined. Sulfate-reducing bacterial (SRB) consortia were enriched from pond sediment with no known history of metal contamination (uncontaminated) and from reservoir sediment with a well-documented history of metal contamination (metal-contaminated). The rates and extent of sulfate reduction in each sediment type in the absence of added copper were indistinguishable. With amendments of 0.8 mg/L copper, no inhibitory effects on sulfate reduction were observed in either consortium type. At 8.0 mg/L copper, activity in uncontaminated SRB consortia was significantly inhibited, as evidenced by a delay in and decreased rate of sulfate reduction; sulfidogenesis in metal-contaminated consortia was apparently unaffected. When the dissolved copper concentration was 30.0 mg/L, sulfidogenic activity in pond sediment consortia was completely inhibited. The rate of sulfate reduction temporarily decreased in the metal-contaminated enrichments but recovered after a short time. In active microcosms, copper was precipitated as CuS. The results of this study suggest that SRB from metal-contaminated environments have a markedly higher metal tolerance than those enriched from uncontaminated environments. The most significant inference from this work is that metal sulfide formation alone does not explain observed differences in metal tolerance between SRB consortia enriched from uncontaminated sediments and those that are derived from metal-contaminated sediments.

  1. Comparison of Metals and Tetracycline as Selective Agents for Development of Tetracycline Resistant Bacterial Communities in Agricultural Soil.

    PubMed

    Song, Jianxiao; Rensing, Christopher; Holm, Peter E; Virta, Marko; Brandt, Kristian K

    2017-03-07

    Environmental selection of antibiotic resistance may be caused by either antibiotic residues or coselecting agents. Using a strictly controlled experimental design, we compared the ability of metals (Cu or Zn) and tetracycline to (co)select for tetracycline resistance in bacterial communities. Soil microcosms were established by amending agricultural soil with known levels of Cu, Zn, or tetracycline known to represent commonly used metals and antibiotics for pig farming. Soil bacterial growth dynamics and bacterial community-level tetracycline resistance were determined using the [(3)H]leucine incorporation technique, whereas soil Cu, Zn, and tetracycline exposure were quantified by a panel of whole-cell bacterial bioreporters. Tetracycline resistance increased significantly in soils containing environmentally relevant levels of Cu (≥365 mg kg(-1)) and Zn (≥264 mg kg(-1)) but not in soil spiked with unrealistically high levels of tetracycline (up to 100 mg kg(-1)). These observations were consistent with bioreporter data showing that metals remained bioavailable, whereas tetracycline was only transiently bioavailable. Community-level tetracycline resistance was correlated to the initial toxicant-induced inhibition of bacterial growth. In conclusion, our study demonstrates that toxic metals in some cases may exert a stronger selection pressure for environmental selection of resistance to an antibiotic than the specific antibiotic itself.

  2. Dynamics of the Heme-binding Bacterial Gas-sensing Dissimilative Nitrate Respiration Regulator (DNR) and Activation Barriers for Ligand Binding and Escape*

    PubMed Central

    Lobato, Laura; Bouzhir-Sima, Latifa; Yamashita, Taku; Wilson, Michael T.; Vos, Marten H.; Liebl, Ursula

    2014-01-01

    DNR (dissimilative nitrate respiration regulator) is a heme-binding transcription factor that is involved in the regulation of denitrification in Pseudomonas aeruginosa. In the ferrous deoxy state, the heme is 6-coordinate; external NO and CO can replace an internal ligand. Using fluorescence anisotropy, we show that high-affinity sequence-specific DNA binding occurs only when the heme is nitrosylated, consistent with the proposed function of DNR as NO sensor and transcriptional activator. This role is moreover supported by the NO “trapping” properties revealed by ultrafast spectroscopy that are similar to those of other heme-based NO sensor proteins. Dissociated CO-heme pairs rebind in an essentially barrierless way. This process competes with migration out of the heme pocket. The latter process is thermally activated (Ea ∼7 kJ/mol). This result is compared with other heme proteins, including the homologous CO sensor/transcription factor CooA, variants of the 5-coordinate mycobacterial sensor DosT and the electron transfer protein cytochrome c. This comparison indicates that thermal activation of ligand escape from the heme pocket is specific for systems where an external ligand replaces an internal one. The origin of this finding and possible implications are discussed. PMID:25037216

  3. Degradation of metal-EDTA complexes by resting cells of the bacterial strain DSM 9103

    SciTech Connect

    Satroutdinov, A.D.; Dedyukhina, E.G.; Chistyakova, T.I.; Witschel, M.; Minkevich, I.G.; Eroshin, V.K.; Egli, T.

    2000-05-01

    Ethylenediaminetetraacetate (EDTA), an industrially important chelating agent, forms very stable complexes with di- and trivalent metal ions, and in both wastewater and natural waters it is normally present in the metal-associated form. Therefore, the influence of EDTA speciation on its utilization by the EDTA-degrading bacterial strain DSM 9103 was investigated. EDTA-grown cells harvested from the exponential phase of a batch culture were incubated with 1 mM of various EDTA species and the EDTA concentration in the assay was monitored as a function of time. Uncomplexed EDTA as well as complexes with low stability constants were found to be readily degraded to completion at a constant rate. For more stable EDTA chelates (i.e., chelates of Co{sup 2+}, Cu{sup 2+}, Zn{sup 2+}, and Pb{sup 2+}) the data suggest that these complexes were not used directly by the cells but that they had to dissociate prior to degradation. The rate of this dissociation step possibly determined the microbial degradation of these complexes. CdEDTA{sup 2{minus}} and Fe(III)EDTA{sup {minus}} were not degraded within 48 h. In case of CdEDTA{sup 2{minus}} the toxicity of freed Cd{sup 2+} ions most likely prevented a significant degradation of the complex, whereas in case of Fe(III)EDTA{sup {minus}} a combination of metal or complex toxicity and the very slow dissociation of the complex might explain the absence of degradation.

  4. Biodegradation of the metallic carcinogen hexavalent chromium Cr(VI) by an indigenously isolated bacterial strain

    PubMed Central

    Mishra, Susmita

    2010-01-01

    Background: Hexavalent chromium [Cr(VI)], a potential mutagen and carcinogen, is regularly introduced into the environment through diverse anthropogenic activities, including electroplating, leather tanning, and pigment manufacturing. Human exposure to this toxic metal ion not only causes potential human health hazards but also affects other life forms. The World Health Organization, the International Agency for Research on Cancer, and the Environmental Protection Agency have determined that Cr(VI) compounds are known human carcinogens. The Sukinda valley in Jajpur District, Orissa, is known for its deposit of chromite ore, producing nearly 98% of the chromite ore in India and one of the prime open cast chromite ore mines in the world (CES, Orissa Newsletter). Materials and Methods: Our investigation involved microbial remediation of Cr(VI) without producing any byproduct. Bacterial cultures tolerating high concentrations of Cr were isolated from the soil sample collected from the chromite-contaminated sites of Sukinda, and their bioaccumulation properties were investigated. Strains capable of growing at 250 mg/L Cr(VI) were considered as Cr resistant. Results: The experimental investigation showed the maximum specific Cr uptake at pH 7 and temperature 30°C. At about 50 mg/L initial Cr(VI) concentrations, uptake of the selected potential strain exceeded 98% within 12 h of incubation. The bacterial isolate was identified by 16S rRNA sequencing as Brevebacterium casei. Conclusion: Results indicated promising approach for microbial remediation of effluents containing elevated levels of Cr(VI). PMID:20976016

  5. Nosepiece respiration monitor

    NASA Technical Reports Server (NTRS)

    Lavery, A. L.; Long, L. E.; Rice, N. E.

    1968-01-01

    Comfortable, inexpensive nosepiece respiration monitor produces rapid response signals to most conventional high impedance medical signal conditioners. The monitor measures respiration in a manner that produces a large signal with minimum delay.

  6. Respirator Fact Sheet

    MedlinePlus

    ... it last? That depends on how much filtering capacity the respirator has and the amount of hazard ... and it will vary by each respirator model's capacities. That's why your emergency plan must include some ...

  7. Metabolic and bacterial diversity in soils historically contaminated by heavy metals and hydrocarbons.

    PubMed

    Vivas, Astrid; Moreno, Beatriz; del Val, Coral; Macci, Cristina; Masciandaro, Grazia; Benitez, Emilio

    2008-11-01

    The aim of this study was to characterize soils contaminated by different levels of heavy metals and hydrocarbons (Madonna Dell'Acqua, Pisa, Italy). The soils were chemically and biochemically analysed by measuring the standard chemical properties and some enzyme activities related to microbial activity (dehydrogenase activity) and the soil carbon cycle (total and extracellular beta-glucosidase activities). The metabolic capacities of soil microorganisms to degrade hydrocarbons through catechol 2,3-dioxygenase were also described. The microbial diversity of contaminated and uncontaminated soils was estimated by denaturing gradient gel electrophoresis (DGGE) of amplified 16S rDNA sequences. The PCR/single-strand conformation polymorphism (PCR/SSCP) method was used to estimate the genetic diversity of PAH-degrading genes in both contaminated and uncontaminated soils. A greater bacterial diversity and lower catechol 2,3-dioxygenase activity was detected in unpolluted soils. The complexity of the microbial community (Shannon and Simpson indices) as well as the dehydrogenase soil activity negatively correlated with contamination levels. The greatest PAH-degrading gene diversity and the most intense catechol 2,3-dioxygenase activity were found in the soils with the highest levels of hydrocarbons. Heavy metals and hydrocarbon pollution has caused a genetic and metabolic alteration in microbial communities, corresponding to a reduction in microbial activity. A multi-technique approach combining traditional biochemical methods with molecular-based techniques, along with some methodological improvements, may represent an important tool to expand our knowledge of the role of microbial diversity in contaminated soil.

  8. Bacterial killing by light-triggered release of silver from biomimetic metal nanorods.

    PubMed

    Black, Kvar C L; Sileika, Tadas S; Yi, Ji; Zhang, Ran; Rivera, José G; Messersmith, Phillip B

    2014-01-15

    Illumination of noble metal nanoparticles at the plasmon resonance causes substantial heat generation, and the transient and highly localized temperature increases that result from this energy conversion can be exploited for photothermal therapy by plasmonically heating gold nanorods (NRs) bound to cell surfaces. Here, plasmonic heating is used for the first time to locally release silver from gold core/silver shell (Au@Ag) NRs targeted to bacterial cell walls. A novel biomimetic method of preparing Au@Ag core-shell NRs is employed, involving deposition of a thin organic polydopamine (PD) primer onto Au NR surfaces, followed by spontaneous electroless silver metallization, and conjugation of antibacterial antibodies and passivating polymers for targeting to gram-negative and gram-positive bacteria. Dramatic cytotoxicity of S. epidermidis and E. coli cells targeted with Au@Ag NRs is observed upon exposure to light as a result of the combined antibacterial effects of plasmonic heating and silver release. The antibacterial effect is much greater than with either plasmonic heating or silver alone, implying a strong therapeutic synergy between cell-targeted plasmonic heating and the associated silver release upon irradiation. The findings suggest a potential antibacterial use of Au@Ag NRs when coupled with light irradiation, which has not been previously described.

  9. Bacterial Killing by Light-Triggered Release of Silver from Biomimetic Metal Nanorods

    PubMed Central

    Yi, Ji; Zhang, Ran; Rivera, José G.; Messersmith, Phillip B.

    2014-01-01

    Illumination of noble metal nanoparticles at the plasmon resonance causes substantial heat generation, and the transient and highly localized temperature increases that result from this energy conversion can be exploited for photothermal therapy by plasmonically heating gold nanorods (NRs) bound to cell surfaces. Here, we report the first use of plasmonic heating to locally release silver from gold core/silver shell (Au@Ag) NRs targeted to bacterial cell walls. A novel biomimetic method of preparing Au@Ag core-shell NRs was employed, involving deposition of a thin organic polydopamine (PD) primer onto Au NR surfaces, followed by spontaneous electroless silver metallization, and conjugation of antibacterial antibodies and passivating polymers for targeting to gram-negative and gram-positive bacteria. Dramatic cytotoxicity of S. epidermidis and E. coli cells targeted with Au@Ag NRs was observed upon exposure to light as a result of the combined antibacterial effects of plasmonic heating and silver release. The antibacterial effect was much greater than with either plasmonic heating or silver alone, implying a strong therapeutic synergy between cell-targeted plasmonic heating and the associated silver release upon irradiation. Our findings suggest a potential antibacterial use of Au@Ag NRs when coupled with light irradiation, which was not previously described. PMID:23847147

  10. Ecofriendly biosorption of dyes and metals by bacterial biomass of Aeromonas hydrophila RC1.

    PubMed

    Busi, Siddhardha; Chatterjee, Rahul; Rajkumari, Jobina; Hnamte, Sairengpuii

    2016-03-01

    The ability of dried bacterial biomass in azo dye and heavy metal removal from aqueous solution was explored. Biosorption of three textile dyes, Eriochrome black T (EBT), Acid Red 26 (AR) and Trypan blue (TB) and heavy metals (Pb and Cr) by dried biomass of Aeromonas hydrophila RC1, was investigated in a batch system under various parameters such as dye concentration, contact time, concentration of biomass, pH, and temperature. The experimental results showed that the extent of biosorption for dyes increased with increase in initial concentration of dyes, biomass concentration, contact time, temperature and decreased with increase in pH. The experimental isotherms data were analyzed using Langmuir and Freundlich isotherm equations. The Langmuir model yielded good fit to the experimental data (R² approximately 0.794, 0.844 and 0.969 for the dyes, EBT, AR and TB, respectively) with maximum monolayer adsorption capacity of 58.8 mg g⁻¹ for AR. Similarly results were obtained for heavy metals and the data fit in Langmuir model (R² value of 0.849 and 0.787) with q(m) value of 40 mg g⁻¹ for Pb. The results fit in pseudo first order kinetics with removal upto 96.67 % for Pb. Involvement of the surface characteristics of the biomass in biosorption was studied using scanning electron micrographs, FTIR, EDX and XRD analysis. Thus, use ofA. hydrophila RC1 biomass can be extensively employed in water treatment plants in order to get desired water quality in the most economical way.

  11. Promising Biological Indicator of Heavy Metal Pollution: Bioluminescent Bacterial Strains Isolated and Characterized from Marine Niches of Goa, India.

    PubMed

    Thakre, Neha A; Shanware, Arti S

    2015-09-01

    In present study, several marine water samples collected from the North Goa Beaches, India for isolation of luminescent bacterial species. Isolates obtained labelled as DP1-5 and AB1-6. Molecular characterization including identification of a microbial culture using 16S rRNA gene based molecular technique and phylogenetic analysis confirmed that DP3 & AB1 isolates were Vibrio harveyi. All of the isolates demonstrated multiple metal resistances in terms of growth, with altered luminescence with variable metal concentration. Present investigations were an attempt towards exploring and reporting an updated diversity of bioluminescent bacterial species from various sites around the Goa, India which would be explored in future for constructing luminescence based biosensor for efficiently monitoring the level of hazardous metals in the environment.

  12. Colour removal from aqueous solutions of metal-complex azo dyes using bacterial cells of Shewanella strain J18 143.

    PubMed

    Li, Tie; Guthrie, James Thomas

    2010-06-01

    The decoloration treatment of textile dye effluents through biodegradation, using bacterial cells, has been studied as a possible means of solving some of the problems that are associated with the pollution of water sources by colorants. In this paper, the use of whole bacterial cells of Shewanella J18 143 for the reduction of aqueous solutions of selected mono-azo, metal-complex dyes, namely Irgalan Grey GLN, Irgalan Black RBLN and Irgalan Blue 3GL, was investigated. The effects of temperature, pH and dye concentration on colour removal were also investigated and shown to be important. The operative conditions for the removal of colour were 30 degrees C, at pH 6.8, with a final dye concentration of 0.12 g/L in the colour reduction system. This study provides an extension to the application of Shewanella strain J18 143 bacterial cells in the decoloration of textile wastewaters.

  13. Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater

    PubMed Central

    2013-01-01

    Background Heavy-metals exert considerable stress on the environment worldwide. This study assessed the resistance to and bioremediation of heavy-metals by selected protozoan and bacterial species in highly polluted industrial-wastewater. Specific variables (i.e. chemical oxygen demand, pH, dissolved oxygen) and the growth/die-off-rates of test organisms were measured using standard methods. Heavy-metal removals were determined in biomass and supernatant by the Inductively Couple Plasma Optical Emission Spectrometer. A parallel experiment was performed with dead microbial cells to assess the biosorption ability of test isolates. Results The results revealed that the industrial-wastewater samples were highly polluted with heavy-metal concentrations exceeding by far the maximum limits (in mg/l) of 0.05-Co, 0.2-Ni, 0.1-Mn, 0.1-V, 0.01-Pb, 0.01-Cu, 0.1-Zn and 0.005-Cd, prescribed by the UN-FAO. Industrial-wastewater had no major effects on Pseudomonas putida, Bacillus licheniformis and Peranema sp. (growth rates up to 1.81, 1.45 and 1.43 d-1, respectively) compared to other test isolates. This was also revealed with significant COD increases (p < 0.05) in culture media inoculated with living bacterial isolates (over 100%) compared to protozoan isolates (up to 24% increase). Living Pseudomonas putida demonstrated the highest removal rates of heavy metals (Co-71%, Ni-51%, Mn-45%, V-83%, Pb-96%, Ti-100% and Cu-49%) followed by Bacillus licheniformis (Al-23% and Zn-53%) and Peranema sp. (Cd-42%). None of the dead cells were able to remove more than 25% of the heavy metals. Bacterial isolates contained the genes copC, chrB, cnrA3 and nccA encoding the resistance to Cu, Cr, Co-Ni and Cd-Ni-Co, respectively. Protozoan isolates contained only the genes encoding Cu and Cr resistance (copC and chrB genes). Peranema sp. was the only protozoan isolate which had an additional resistant gene cnrA3 encoding Co-Ni resistance. Conclusion Significant differences (p < 0

  14. Structural and functional studies of multiheme cytochromes C involved in extracellular electron transport in bacterial dissimilatory metal reduction.

    PubMed

    Tikhonova, T V; Popov, V O

    2014-12-01

    Bacteria utilizing insoluble mineral forms of metal oxides as electron acceptors in respiratory processes are widespread in the nature. The electron transfer from a pool of reduced quinones in the cytoplasmic membrane across the periplasm to the bacterial outer membrane and then to an extracellular acceptor is a key step in bacterial dissimilatory metal reduction. Multiheme cytochromes c play a crucial role in the extracellular electron transfer. The bacterium Shewanella oneidensis MR-1 was used as a model organism to study the mechanism of extracellular electron transport. In this review, we discuss recent data on the composition, structures, and functions of multiheme cytochromes c and their functional complexes responsible for extracellular electron transport in Shewanella oneidensis.

  15. Carbon, Metals, and Grain Size Correlate with Bacterial Community Structure in Sediments of a High Arsenic Aquifer

    PubMed Central

    Legg, Teresa M.; Zheng, Yan; Simone, Bailey; Radloff, Kathleen A.; Mladenov, Natalie; González, Antonio; Knights, Dan; Siu, Ho Chit; Rahman, M. Moshiur; Ahmed, K. Matin; McKnight, Diane M.; Nemergut, Diana R.

    2011-01-01

    Bacterial communities can exert significant influence on the biogeochemical cycling of arsenic (As). This has globally important implications since As in drinking water affects the health of over 100 million people worldwide, including in the Ganges–Brahmaputra Delta region of Bangladesh where geogenic arsenic in groundwater can reach concentrations of more than 10 times the World Health Organization’s limit. Thus, the goal of this research was to investigate patterns in bacterial community composition across gradients in sediment texture and chemistry in an aquifer with elevated groundwater As concentrations in Araihazar, Bangladesh. We characterized the bacterial community by pyrosequencing 16S rRNA genes from aquifer sediment samples collected at three locations along a groundwater flow path at a range of depths between 1.5 and 15 m. We identified significant differences in bacterial community composition between locations in the aquifer. In addition, we found that bacterial community structure was significantly related to sediment grain size, and sediment carbon (C), manganese (Mn), and iron (Fe) concentrations. Deltaproteobacteria and Chloroflexi were found in higher proportions in silty sediments with higher concentrations of C, Fe, and Mn. By contrast, Alphaproteobacteria and Betaproteobacteria were in higher proportions in sandy sediments with lower concentrations of C and metals. Based on the phylogenetic affiliations of these taxa, these results may indicate a shift to more Fe-, Mn-, and humic substance-reducers in the high C and metal sediments. It is well-documented that C, Mn, and Fe may influence the mobility of groundwater arsenic, and it is intriguing that these constituents may also structure the bacterial community. PMID:22470368

  16. Health risk assessment of heavy metals and bacterial contamination in drinking water sources: a case study of Malakand Agency, Pakistan.

    PubMed

    Nawab, Javed; Khan, Sardar; Ali, Sharafat; Sher, Hassan; Rahman, Ziaur; Khan, Kifayatullah; Tang, Jianfeng; Ahmad, Aziz

    2016-05-01

    Human beings are frequently exposed to pathogens and heavy metals through ingestion of contaminated drinking water throughout the world particularly in developing countries. The present study aimed to assess the quality of water used for drinking purposes in Malakand Agency, Pakistan. Water samples were collected from different sources (dug wells, bore wells, tube wells, springs, and hand pumps) and analyzed for different physico-chemical parameters and bacterial pathogens (fecal coliform bacteria) using standard methods, while heavy metals were analyzed using atomic absorption spectrophotometry (AAS-PEA-700). In the study area, 70 % of water sources were contaminated with F. coliform representing high bacterial contamination. The heavy metals, such as Cd (29 and 8 %), Ni (16 and 78 %), and Cr (7 %), exceeded their respective safe limits of WHO (2006) and Pak-EPA (2008), respectively, in water sources, while Pb (9 %) only exceeded from WHO safe limit. The risk assessment tools such as daily intake of metals (DIMs) and health risk indexes (HRIs) were used for health risk estimation and were observed in the order of Ni > Cr > Mn > Pb > Cd and Cd > Ni > Pb > Mn > Cr, respectively. The HRI values of heavy metals for both children and adults were <1, showing lack of potential health risk to the local inhabitants of the study area.

  17. Enhancement of Bacterial Transport in Aerobic and Anaerobic Environments: Assessing the Effect of Metal Oxide Chemical Heterogeneities

    SciTech Connect

    T.C. Onstott

    2005-09-30

    The goal of our research was to understand the fundamental processes that control microbial transport in physically and chemically heterogeneous aquifers and from this enhanced understanding determine the requirements for successful, field-scale delivery of microorganisms to metal contaminated subsurface sites. Our specific research goals were to determine; (1) the circumstances under which the preferential adsorption of bacteria to Fe, Mn, and Al oxyhydroxides influences field-scale bacterial transport, (2) the extent to which the adhesion properties of bacterial cells affect field-scale bacterial transport, (3) whether microbial Fe(III) reduction can enhance field-scale transport of Fe reducing bacteria (IRB) and other microorganisms and (4) the effect of field-scale physical and chemical heterogeneity on all three processes. Some of the spin-offs from this basic research that can improve biostimulation and bioaugmentation remediation efforts at contaminated DOE sites have included; (1) new bacterial tracking tools for viable bacteria; (2) an integrated protocol which combines subsurface characterization, laboratory-scale experimentation, and scale-up techniques to accurately predict field-scale bacterial transport; and (3) innovative and inexpensive field equipment and methods that can be employed to enhance Fe(III) reduction and microbial transport and to target microbial deposition under both aerobic and anaerobic conditions.

  18. Bioremediation of high molecular weight polyaromatic hydrocarbons co-contaminated with metals in liquid and soil slurries by metal tolerant PAHs degrading bacterial consortium.

    PubMed

    Thavamani, Palanisami; Megharaj, Mallavarapu; Naidu, Ravi

    2012-11-01

    Bioremediation of polyaromatic hydrocarbons (PAH) contaminated soils in the presence of heavy metals have proved to be difficult and often challenging due to the ability of toxic metals to inhibit PAH degradation by bacteria. In this study, a mixed bacterial culture designated as consortium-5 was isolated from a former manufactured gas plant (MGP) site. The ability of this consortium to utilise HMW PAHs such as pyrene and BaP as a sole carbon source in the presence of toxic metal Cd was demonstrated. Furthermore, this consortium has proven to be effective in degradation of HMW PAHs even from the real long term contaminated MGP soil. Thus, the results of this study demonstrate the great potential of this consortium for field scale bioremediation of PAHs in long term mix contaminated soils such as MGP sites. To our knowledge this is the first study to isolate and characterize metal tolerant HMW PAH degrading bacterial consortium which shows great potential in bioremediation of mixed contaminated soils such as MGP.

  19. Modeling interactions of toxic metals with suspended bacterial cells, extracellular polymer and biofilms in a simulated freshwater environment

    SciTech Connect

    Nelson, Y.M.; Lo, W.; Lion, L.W.

    1995-12-01

    The transport of transition metals in aquatic environments is governed by their interactions with suspended and adherent biological materials and with colloidal and deposited metal oxides. These interactions were investigated using a laboratory biofilm reactor system containing a pure culture of a single bacterial species (Pseudomonas cepacia) to exemplify biological factors influencing trace metals. Use of controlled conditions allowed for development of mechanistic models to describe bacterial growth and attachment, extracellular polymer production, and biofilm accumulation as well as the interactions of each of these phases with trace metals (exemplified by lead). Lead binding to each component of the system was characterized by determining adsorption isotherms in separate experiments. Integration of the biological model with lead binding data and a chemical equilibrium program (MINEQL) to determine speciation provided a general mechanistic model to predict lead transport and distribution. The most significant factors influencing lead distribution in these experiments were lead binding to biofilms, which consisted of up to 80% extracellular polymer and lead binding to iron oxide deposits.

  20. Speech and respiration.

    PubMed

    Conrad, B; Schönle, P

    1979-04-12

    This investigation deals with the temporal aspects of air volume changes during speech. Speech respiration differs fundamentally from resting respiration. In resting respiration the duration and velocity of inspiration (air flow or lung volume change) are in a range similar to that of expiration. In speech respiration the duration of inspiration decreases and its velocity increases; conversely, the duration of expiration increases and the volume of air flow decreases dramatically. The following questions arise: are these two respiration types different entities, or do they represent the end points of a continuum from resting to speech respiration? How does articulation without the generation of speech sound affect breathing? Does (verbalized?) thinking without articulation or speech modify the breathing pattern? The main test battery included four tasks (spontaneous speech, reading, serial speech, arithmetic) performed under three conditions (speaking aloud, articulating subvocally, quiet performance by tryping to exclusively 'think' the tasks). Respiratory movements were measured with a chest pneumograph and evaluated in comparison with a phonogram and the identified spoken text. For quiet performance the resulting respiratory time ratio (relation of duration of inspiration versus expiration) showed a gradual shift in the direction of speech respiration--the least for reading, the most for arithmetic. This change was even more apparent for the subvocal tasks. It is concluded that (a) there is a gradual automatic change from resting to speech respiration and (b) the degree of internal verbalization (activation of motor speech areas) defines the degree of activation of the speech respiratory pattern.

  1. Voluntary use of respirators.

    PubMed

    Feiner, Lynn

    2009-11-01

    Allowing voluntary use of respirators can provide workers with an added level of comfort and relief from nuisance levels of particulates, gases, or vapors. But misuse can result in illness or injury to the worker. Understanding and following OSHA's guidelines on voluntary use of respirators is one of the many ways you help provide a safe workplace and ensure your employees stay healthy.

  2. Soluble metals in residual oil fly ash alter innate and adaptive pulmonary immune responses to bacterial infection in rats

    SciTech Connect

    Roberts, Jenny R. . E-mail: jur6@cdc.gov; Young, Shih-Houng; Castranova, Vincent; Antonini, James M.

    2007-06-15

    The soluble metals of the pollutant, residual oil fly ash (ROFA), have been shown to alter pulmonary bacterial clearance in rats. The goal of this study was to determine the potential effects on both the innate and adaptive lung immune responses after bacterial infection in rats pre-exposed to the soluble metals in ROFA. Sprague-Dawley rats were intratracheally dosed (i.t.) at day 0 with ROFA (R-Total) (1.0 mg/100 g body weight), the soluble fraction of ROFA (R-Soluble), the soluble sample subject to a chelator (R-Chelex), or phosphate-buffered saline (Saline). On day 3, rats were administered an i.t. dose of 5 x 10{sup 4} Listeria monocytogenes. On days 6, 8, and 10, bacterial pulmonary clearance was monitored and bronchoalveolar lavage (BAL) was performed on days 3 (pre-infection), 6, 8, and 10. A concentrated first fraction of lavage fluid was retained for analysis of lactate dehydrogenase and albumin to assess lung injury. BAL cell number, phenotype, and production of reactive oxygen (ROS) and nitrogen species (RNS) were assessed, and a variety of cytokines were measured in the BAL fluid. Rats pre-treated with R-Soluble showed elevated lung injury/cytotoxicity and increased cellular influx into the lungs. R-Soluble-treatment also altered ROS, RNS, and cytokine levels, and caused a degree of macrophage and T cell inhibition. These effects of R-Soluble result in increased pulmonary bacterial burden after infection. The results suggest that soluble metals in ROFA increase lung injury and inflammation, and alter both innate and adaptive pulmonary immune responses.

  3. Composition, Reactivity and Regulation of Extracellular Metal-Reducing Structures (Bacterial Nanowires) Produced by Dissimilatory Metal - Reducing Bacteria

    SciTech Connect

    Beveridge, Terrance J.

    2004-06-01

    Approach. Previously, using conventional and cryoTEM techniques, surface physicochemistry assays, NMR structural analysis, etc., we showed that the structure and composition of Shewanella's lipopolysaccharide (LPS) and capsular polysaccharide (PS) significantly determined overall cell surface physicochemistry. In our study a strong correlation between such macroscopic parameters as surface electronegativity, hydrophobicity or hydrophilicity, and bacterial adhesion to hematite was observed. Rough LPS strains exhibited more than an order higher affinity and maximal sorption capacity to hematite when compared to encapsulated strains. These general trends, however, characterize bacterial adhesion only as a bulk process, being unable to reveal finer mechanisms taking place at the level of an individual cell. Cell surface physicochemical and structural heterogeneity suggests much more complex interactions at the bacterial-mineral interface than predicted by such approaches operating within macroscopic parameters.

  4. Final Scientific Report: Bacterial Nanowires and Extracellular Electron Transfer to Heavy Metals and Radionuclides by Bacterial Isolates from DOE Field Research Centers

    SciTech Connect

    Nealson, Kenneth

    2016-12-20

    This proposal involved the study of bacteria capable of transferring electrons from the bacterial cells to electron acceptors located outside the cell. These could be either insoluble minerals that were transformed into soluble products upon the addition of electrons, or they could be soluble salts like uranium or chromium, that become insoluble upon the addition of electrons. This process is called extracellular electron transport or EET, and can be done directly by cellular contact, or via conductive appendages called bacterial nanowires. In this work we examined a number of different bacteria for their ability to perform EET, and also looked at their ability to produce conductive nanowires that can be used for EET at a distance away from the EET-capable cells. In the work, new bacteria were isolated, new abilities of EET were examined, and many new methods were developed, and carefully described in the literature. These studies set the stage for future work dealing with the bioremediation of toxic metals like uranium and chromium. They also point out that EET (and conductive nanowires) are far more common that had been appreciated, and may be involved with energy transfer not only in sediments, but in symbioses between different bacteria, and in symbiosis/pathogenesis between bacteria and higher organisms.

  5. Functional diversity and dynamics of bacterial communities in a membrane bioreactor for the treatment of metal-working fluid wastewater.

    PubMed

    Grijalbo, Lucía; Garbisu, Carlos; Martín, Iker; Etxebarria, Javier; Gutierrez-Mañero, F Javier; Lucas Garcia, Jose Antonio

    2015-12-01

    An extensive microbiological study has been carried out in a membrane bioreactor fed with activated sludge and metal-working fluids. Functional diversity and dynamics of bacterial communities were studied with different approaches. Functional diversity of culturable bacterial communities was studied with different Biolog™ plates. Structure and dynamics of bacterial communities were studied in culturable and in non-culturable fractions using a 16S rRNA analysis. Among the culturable bacteria, Alphaproteobacteria and Gammaproteobacteria were the predominant classes. However, changes in microbial community structure were detected over time. Culture-independent analysis showed that Betaproteobacteria was the most frequently detected class in the membrane bioreactor (MBR) community with Zoogloea and Acidovorax as dominant genera. Also, among non-culturable bacteria, a process of succession was observed. Longitudinal structural shifts observed were more marked for non-culturable than for culturable bacteria, pointing towards an important role in the MBR performance. Microbial community metabolic abilities assessed with Biolog™ Gram negative, Gram positive and anaerobic plates also showed differences over time for Shannon's diversity index, kinetics of average well colour development, and the intensely used substrates by bacterial community in each plate.

  6. Impact of hydrocarbons, PCBs and heavy metals on bacterial communities in Lerma River, Salamanca, Mexico: Investigation of hydrocarbon degradation potential.

    PubMed

    Brito, Elcia M S; De la Cruz Barrón, Magali; Caretta, César A; Goñi-Urriza, Marisol; Andrade, Leandro H; Cuevas-Rodríguez, Germán; Malm, Olaf; Torres, João P M; Simon, Maryse; Guyoneaud, Remy

    2015-07-15

    Freshwater contamination usually comes from runoff water or direct wastewater discharges to the environment. This paper presents a case study which reveals the impact of these types of contamination on the sediment bacterial population. A small stretch of Lerma River Basin, heavily impacted by industrial activities and urban wastewater release, was studied. Due to industrial inputs, the sediments are characterized by strong hydrocarbon concentrations, ranging from 2 935 to 28 430μg·kg(-1) of total polyaromatic hydrocarbons (PAHs). These sediments are also impacted by heavy metals (e.g., 9.6μg·kg(-1) of Cd and 246μg·kg(-1) of Cu, about 8 times the maximum recommended values for environmental samples) and polychlorinated biphenyls (ranging from 54 to 123μg·kg(-1) of total PCBs). The bacterial diversity on 6 sediment samples, taken from upstream to downstream of the main industrial and urban contamination sources, was assessed through TRFLP. Even though the high PAH concentrations are hazardous to aquatic life, they are not the only factor driving bacterial community composition in this ecosystem. Urban discharges, leading to hypoxia and low pH, also strongly influenced bacterial community structure. The bacterial bioprospection of these samples, using PAH as unique carbon source, yielded 8 hydrocarbonoclastic strains. By sequencing the 16S rDNA gene, these were identified as similar to Mycobacterium goodii, Pseudomonas aeruginosa, Pseudomonas lundensis or Aeromonas veronii. These strains showed high capacity to degrade naphthalene (between 92 and 100% at 200mg·L(-1)), pyrene (up to 72% at 100mg·L(-1)) and/or fluoranthene (52% at 50mg·L(-1)) as their only carbon source on in vitro experiments. These hydrocarbonoclastic bacteria were detected even in the samples upstream of the city of Salamanca, suggesting chronical contamination, already in place longer before. Such microorganisms are clearly potential candidates for hydrocarbon degradation in the

  7. Respiration in Aquatic Insects.

    ERIC Educational Resources Information Center

    MacFarland, John

    1985-01-01

    This article: (1) explains the respiratory patterns of several freshwater insects; (2) describes the differences and mechanisms of spiracular cutaneous, and gill respiration; and (3) discusses behavioral aspects of selected aquatic insects. (ML)

  8. Heavy Metal Pollution from Gold Mines: Environmental Effects and Bacterial Strategies for Resistance

    PubMed Central

    Fashola, Muibat Omotola; Ngole-Jeme, Veronica Mpode; Babalola, Olubukola Oluranti

    2016-01-01

    Mining activities can lead to the generation of large quantities of heavy metal laden wastes which are released in an uncontrolled manner, causing widespread contamination of the ecosystem. Though some heavy metals classified as essential are important for normal life physiological processes, higher concentrations above stipulated levels have deleterious effects on human health and biota. Bacteria able to withstand high concentrations of these heavy metals are found in the environment as a result of various inherent biochemical, physiological, and/or genetic mechanisms. These mechanisms can serve as potential tools for bioremediation of heavy metal polluted sites. This review focuses on the effects of heavy metal wastes generated from gold mining activities on the environment and the various mechanisms used by bacteria to counteract the effect of these heavy metals in their immediate environment. PMID:27792205

  9. Effect of bacterial inoculation of strains of Pseudomonas aeruginosa, Alcaligenes feacalis and Bacillus subtilis on germination, growth and heavy metal (Cd, Cr, and Ni) uptake of Brassica juncea.

    PubMed

    Ndeddy Aka, Robinson Junior; Babalola, Olubukola Oluranti

    2016-01-01

    Bacterial inoculation may influence Brassica juncea growth and heavy metal (Ni, Cr, and Cd) accumulation. Three metal tolerant bacterial isolates (BCr3, BCd33, and BNi11) recovered from mine tailings, identified as Pseudomonas aeruginosa KP717554, Alcaligenes feacalis KP717561, and Bacillus subtilis KP717559 were used. The isolates exhibited multiple plant growth beneficial characteristics including the production of indole-3-acetic acid, hydrogen cyanide, ammonia, insoluble phosphate solubilization together with the potential to protect plants against fungal pathogens. Bacterial inoculation improved seeds germination of B. juncea plant in the presence of 0.1 mM Cr, Cd, and Ni, as compared to the control treatment. Compared with control treatment, soil inoculation with bacterial isolates significantly increased the amount of soluble heavy metals in soil by 51% (Cr), 50% (Cd), and 44% (Ni) respectively. Pot experiment of B. juncea grown in soil spiked with 100 mg kg(-1) of NiCl2, 100 mg kg(-1) of CdCl2, and 150 mg kg(-1) of K2Cr2O7, revealed that inoculation with metal tolerant bacteria not only protected plants against the toxic effects of heavy metals, but also increased growth and metal accumulation of plants significantly. These findings suggest that such metal tolerant, plant growth promoting bacteria are valuable tools which could be used to develop bio-inoculants for enhancing the efficiency of phytoextraction.

  10. 76 FR 28811 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Respirator...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-18

    ...; Respirator Program Records ACTION: Notice. SUMMARY: The Department of Labor (DOL) is submitting the Mine..., ``Respirator Program Records,'' to the Office of Management and Budget (OMB) for review and approval for... equipment is used, metal and nonmetal mine operators institute a respirator program governing...

  11. Enhanced bioaccumulation of heavy metal ions by bacterial cells due to surface display of short metal binding peptides

    SciTech Connect

    Kotrba, P.; Ruml, T.; Doleckova, L.; Lorenzo, V. de

    1999-03-01

    Metal binding peptides of sequences Gly-His-His-Pro-His-Gly (named HP) and Gly-Cys-Gly-Cys-Pro-Cys-Gly-Cys-Gly (named CP) were genetically engineered into LamB protein and expressed in Escherichia coli. The Cd{sup 2+}-to-HP and Cd{sup 2+}-to-CP stoichiometries of peptides were 1:1 and 3:1, respectively. Hybrid LamB proteins were found to be properly folded in the outer membrane of E. coli. Isolated cell envelopes of E. coli bearing newly added metal binding peptides showed an up to 1.8-fold increase in Cd{sup 2+} binding capacity. The bioaccumulation of Cd{sup 2+}, Cu{sup 2+}, and Zn{sup 2+} by E. coli was evaluated. Surface display of CP multiplied the ability of E. coli to bind Cd{sup 2+} from growth medium fourfold. Display of HP peptide did not contribute to an increase in the accumulation of Cu{sup 2+} and Zn{sup 2+}. However, Cu{sup 2+} ceased contribution of HP for Cd{sup 2+} accumulation, probably due to the strong binding of Cu{sup 2+} to HP. Thus, considering the cooperation of cell structures with inserted peptides, the relative affinities of metal binding peptide and, for example, the cell wall to metal ion should be taken into account in the rational design of peptide sequences possessing specificity for a particular metal.

  12. Uncovering the transmembrane metal binding site of the novel bacterial major facilitator superfamily-type copper importer CcoA

    DOE PAGES

    Khalfaoui-Hassani, Bahia; Verissimo, Andreia F.; Koch, Hans -Georg; ...

    2016-01-19

    In this study, uptake and trafficking of metals and their delivery to their respective metalloproteins are important processes. Cells need precise control of each step to avoid exposure to excessive metal concentrations and their harmful consequences. Copper (Cu) is a required micronutrient used as a cofactor in proteins. However, in large amounts, it can induce oxidative damage; hence, Cu homeostasis is indispensable for cell survival. Biogenesis of respiratory heme-Cu oxygen (HCO) reductases includes insertion of Cu into their catalytic subunits to form heme-Cu binuclear centers. Previously, we had shown that CcoA is a major facilitator superfamily (MFS)-type bacterial Cu importermore » required for biogenesis of cbb3-type cytochromecoxidase (cbb3-Cox). Here, using Rhodobacter capsulatus, we focused on the import and delivery of Cu to cbb3-Cox. By comparing the CcoA amino acid sequence with its homologues from other bacterial species, we located several well-conserved Met, His, and Tyr residues that might be important for Cu transport. We determined the topology of the transmembrane helices that carry these residues to establish that they are membrane embedded, and substituted for them amino acids that do not ligand metal atoms. Characterization of these mutants for their uptake of radioactive64Cu and cbb3-Cox activities demonstrated that Met233 and His261 of CcoA are essential and Met237 and Met265 are important, whereas Tyr230 has no role for Cu uptake or cbb3-Cox biogenesis. These findings show for the first time that CcoA-mediated Cu import relies on conserved Met and His residues that could act as metal ligands at the membrane-embedded Cu binding domain of this transporter.« less

  13. Uncovering the Transmembrane Metal Binding Site of the Novel Bacterial Major Facilitator Superfamily-Type Copper Importer CcoA

    PubMed Central

    Khalfaoui-Hassani, Bahia; Verissimo, Andreia F.; Koch, Hans-Georg

    2016-01-01

    ABSTRACT Uptake and trafficking of metals and their delivery to their respective metalloproteins are important processes. Cells need precise control of each step to avoid exposure to excessive metal concentrations and their harmful consequences. Copper (Cu) is a required micronutrient used as a cofactor in proteins. However, in large amounts, it can induce oxidative damage; hence, Cu homeostasis is indispensable for cell survival. Biogenesis of respiratory heme-Cu oxygen (HCO) reductases includes insertion of Cu into their catalytic subunits to form heme-Cu binuclear centers. Previously, we had shown that CcoA is a major facilitator superfamily (MFS)-type bacterial Cu importer required for biogenesis of cbb3-type cytochrome c oxidase (cbb3-Cox). Here, using Rhodobacter capsulatus, we focused on the import and delivery of Cu to cbb3-Cox. By comparing the CcoA amino acid sequence with its homologues from other bacterial species, we located several well-conserved Met, His, and Tyr residues that might be important for Cu transport. We determined the topology of the transmembrane helices that carry these residues to establish that they are membrane embedded, and substituted for them amino acids that do not ligand metal atoms. Characterization of these mutants for their uptake of radioactive 64Cu and cbb3-Cox activities demonstrated that Met233 and His261 of CcoA are essential and Met237 and Met265 are important, whereas Tyr230 has no role for Cu uptake or cbb3-Cox biogenesis. These findings show for the first time that CcoA-mediated Cu import relies on conserved Met and His residues that could act as metal ligands at the membrane-embedded Cu binding domain of this transporter. PMID:26787831

  14. Direct Metal Transfer Between Periplasmic Proteins Identifies a Bacterial Copper Chaperone

    SciTech Connect

    Bagai, I.; Rensing, C.; Blackburn, N.; McEvoy, M.M.

    2009-05-11

    Transition metals require exquisite handling within cells to ensure that cells are not harmed by an excess of free metal species. In Gram-negative bacteria, copper is required in only small amounts in the periplasm, not in the cytoplasm, so a key aspect of protection under excess metal conditions is to export copper from the periplasm. Additional protection could be conferred by a periplasmic chaperone to limit the free metal species prior to export. Using isothermal titration calorimetry, we have demonstrated that two periplasmic proteins, CusF and CusB, of the Escherichia coli Cu(I)/Ag(I) efflux system undergo a metal-dependent interaction. Through the development of a novel X-ray absorption spectroscopy approach using selenomethionine labeling to distinguish the metal sites of the two proteins, we have demonstrated transfer of Cu(I) occurs between CusF and CusB. The interaction between these proteins is highly specific, as a homologue of CusF with a 51% identical sequence and a similar affinity for metal, did not function in metal transfer. These experiments establish a metallochaperone activity for CusF in the periplasm of Gram-negative bacteria, serving to protect the periplasm from metal-mediated damage.

  15. Direct metal transfer between periplasmic proteins identifies a bacterial copper chaperone.

    PubMed

    Bagai, Ireena; Rensing, Christopher; Blackburn, Ninian J; McEvoy, Megan M

    2008-11-04

    Transition metals require exquisite handling within cells to ensure that cells are not harmed by an excess of free metal species. In gram-negative bacteria, copper is required in only small amounts in the periplasm, not in the cytoplasm, so a key aspect of protection under excess metal conditions is to export copper from the periplasm. Additional protection could be conferred by a periplasmic chaperone to limit the free metal species prior to export. Using isothermal titration calorimetry, we have demonstrated that two periplasmic proteins, CusF and CusB, of the Escherichia coli Cu(I)/Ag(I) efflux system undergo a metal-dependent interaction. Through the development of a novel X-ray absorption spectroscopy approach using selenomethionine labeling to distinguish the metal sites of the two proteins, we have demonstrated transfer of Cu(I) occurs between CusF and CusB. The interaction between these proteins is highly specific, as a homologue of CusF with a 51% identical sequence and a similar affinity for metal, did not function in metal transfer. These experiments establish a metallochaperone activity for CusF in the periplasm of gram-negative bacteria, serving to protect the periplasm from metal-mediated damage.

  16. Effects of properties of metal-contaminated soils on bacterial bioluminescence activity, seed germination, and root and shoot growth.

    PubMed

    Kang, Il-Mo; Kong, In Chul

    2016-01-01

    This study examined the effects of several factors (metal contents and soil properties) on bacterial bioluminescence activity, seed germination and root/shoot growth of Lactuca in metal-contaminated soils. Each bioassay showed different sensitivities to extractants of soil samples. Average sensitivities of the bioassay were in the following order: root growth > bioluminescence ≥ shoot growth ≥ seed germination. Both total and weak acid-extracted metal contents showed no observable correlations with the activity of any bioassays (r(2) < 0.279). However, reasonable correlations were observed between the bioluminescence activity and organics (r(2) = 0.7198) as well as between root growth and CEC (r(2) = 0.6676). Effects of soils were difficult to generalize since they were dependent on many factors, such as soil properties, metal contents, and the organism used in each test. Nonetheless, these results indicated that a battery of bioassays is an effective strategy for assessment of contaminated soils. Furthermore, specific soil factors were shown to more influence on soil toxicity, depending on the type of bioassay.

  17. Soluble metals associated with residual oil fly ash increase morbidity and lung injury after bacterial infection in rats.

    PubMed

    Roberts, Jenny R; Taylor, Michael D; Castranova, Vincent; Clarke, Robert W; Antonini, James M

    2004-02-13

    Inhalation of residual oil fly ash (ROFA) has been shown to impair lung defense mechanisms in laboratory animals and susceptible populations. Bioavailability of soluble transition metals has been shown to play a key role in lung injury caused by ROFA exposure. The goal of this study was to evaluate the effect of soluble metals on lung defense and injury in animals preexposed to ROFA followed by pulmonary challenge with a bacterial pathogen. ROFA was suspended in saline (ROFA-TOTAL), incubated overnight at 37 degrees C, and separated by centrifugation into soluble (ROFA-SOL) and insoluble (ROFA-INSOL) fractions. A portion of the soluble sample was treated with the metal-binding resin Chelex for 24 h at 37 degrees C. Sprague-Dawley rats were intratracheally dosed at d 0 with ROFA-TOTAL (1.0 mg/100 g body weight), ROFA-INSOL, ROFA-SOL, saline, saline + Chelex, or ROFA-SOL + Chelex. At d 3, 5 x 10(5) Listeria monocytogenes were intratracheally instilled into rats from each treatment group. At d 6, 8, and 10, left lungs were removed, homogenized, and cultured to assess bacterial clearance. Histopathological analysis was performed on the right lungs. Pulmonary exposure of ROFA-TOTAL or ROFA-SOL before infection led to a marked increase in lung injury and inflammation at all three time points after inoculation, and an increase in morbidity in comparison to saline control rats. Treatment with ROFA-INSOL, saline + Chelex, or ROFA-SOL + Chelex caused no significant increases in lung damage and morbidity when compared to control. By d 10, the ROFA-SOL and ROFA-TOTAL groups had approximately 200-fold more bacteria in the lung than saline control, indicating the inability of these groups to effectively respond to the infection. None of the other treatment groups had significant impairments in bacterial clearance when compared to saline. In conclusion, exposure to ROFA-TOTAL and ROFA-SOL significantly suppressed the lung response to infection. These results suggest that soluble

  18. 42 CFR 84.1141 - Isoamyl acetate tightness test; dust, fume, and mist respirators designed for respiratory...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... mist respirators designed for respiratory protection against fumes of various metals having an air... HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist....1141 Isoamyl acetate tightness test; dust, fume, and mist respirators designed for...

  19. 42 CFR 84.1141 - Isoamyl acetate tightness test; dust, fume, and mist respirators designed for respiratory...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... mist respirators designed for respiratory protection against fumes of various metals having an air... HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist....1141 Isoamyl acetate tightness test; dust, fume, and mist respirators designed for...

  20. 42 CFR 84.1141 - Isoamyl acetate tightness test; dust, fume, and mist respirators designed for respiratory...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... mist respirators designed for respiratory protection against fumes of various metals having an air... HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist....1141 Isoamyl acetate tightness test; dust, fume, and mist respirators designed for...

  1. Mercury and Other Heavy Metals Influence Bacterial Community Structure in Contaminated Tennessee Streams▿ †

    PubMed Central

    Vishnivetskaya, Tatiana A.; Mosher, Jennifer J.; Palumbo, Anthony V.; Yang, Zamin K.; Podar, Mircea; Brown, Steven D.; Brooks, Scott C.; Gu, Baohua; Southworth, George R.; Drake, Meghan M.; Brandt, Craig C.; Elias, Dwayne A.

    2011-01-01

    High concentrations of uranium, inorganic mercury [Hg(II)], and methylmercury (MeHg) have been detected in streams located in the Department of Energy reservation in Oak Ridge, TN. To determine the potential effects of the surface water contamination on the microbial community composition, surface stream sediments were collected 7 times during the year, from 5 contaminated locations and 1 control stream. Fifty-nine samples were analyzed for bacterial community composition and geochemistry. Community characterization was based on GS 454 FLX pyrosequencing with 235 Mb of 16S rRNA gene sequence targeting the V4 region. Sorting and filtering of the raw reads resulted in 588,699 high-quality sequences with lengths of >200 bp. The bacterial community consisted of 23 phyla, including Proteobacteria (ranging from 22.9 to 58.5% per sample), Cyanobacteria (0.2 to 32.0%), Acidobacteria (1.6 to 30.6%), Verrucomicrobia (3.4 to 31.0%), and unclassified bacteria. Redundancy analysis indicated no significant differences in the bacterial community structure between midchannel and near-bank samples. Significant correlations were found between the bacterial community and seasonal as well as geochemical factors. Furthermore, several community members within the Proteobacteria group that includes sulfate-reducing bacteria and within the Verrucomicrobia group appeared to be associated positively with Hg and MeHg. This study is the first to indicate an influence of MeHg on the in situ microbial community and suggests possible roles of these bacteria in the Hg/MeHg cycle. PMID:21057024

  2. Mercury and other heavy metals influence bacterial community structure in contaminated Tennessee streams

    SciTech Connect

    Vishnivetskaya, Tatiana A; Mosher, Jennifer J; Palumbo, Anthony Vito; Yang, Zamin; Podar, Mircea; Brown, Steven D; Brooks, Scott C; Gu, Baohua; Southworth, George R; Drake, Meghan M; Brandt, Craig C; Elias, Dwayne A

    2011-01-01

    High concentrations of uranium, inorganic mercury [Hg(II)], and methylmercury (MeHg) have been detected in streams located in the Department of Energy reservation in Oak Ridge, TN. To determine the potential effects of the surface water contamination on the microbial community composition, surface stream sediments were collected 7 times during the year, from 5 contaminated locations and 1 control stream. Fifty-nine samples were analyzed for bacterial community composition and geochemistry. Community characterization was based on GS 454 FLX pyrosequencing with 235 Mb of 16S rRNA gene sequence targeting the V4 region. Sorting and filtering of the raw reads resulted in 588,699 high-quality sequences with lengths of >200 bp. The bacterial community consisted of 23 phyla, including Proteobacteria (ranging from 22.9 to 58.5% per sample), Cyanobacteria (0.2 to 32.0%), Acidobacteria (1.6 to 30.6%), Verrucomicrobia (3.4 to 31.0%), and unclassified bacteria. Redundancy analysis indicated no significant differences in the bacterial community structure between midchannel and near-bank samples. Significant correlations were found between the bacterial community and seasonal as well as geochemical factors. Furthermore, several community members within the Proteobacteria group that includes sulfate-reducing bacteria and within the Verrucomicrobia group appeared to be associated positively with Hg and MeHg. This study is the first to indicate an influence of MeHg on the in situ microbial community and suggests possible roles of these bacteria in the Hg/MeHg cycle.

  3. A simple synthesis method to produce metal oxide loaded carbon paper using bacterial cellulose gel and characterization of its electrochemical behavior in an aqueous electrolyte

    NASA Astrophysics Data System (ADS)

    Miyajima, Naoya; Jinguji, Ken; Matsumura, Taiyu; Matsubara, Toshihiro; Sakane, Hideto; Akatsu, Takashi; Tanaike, Osamu

    2016-04-01

    A simple synthetic chemical process to produce metal oxide loaded carbon papers was developed using bacterial cellulose gel, which consisted of nanometer-sized fibrous cellulose and water. Metal ions were successfully impregnated into the gel via aqueous solution media before drying and carbonization methods resulting in metal oxide contents that were easy to control through variations in the concentration of aqueous solutions. The papers loaded by molybdenum oxides were characterized as pseudocapacitor electrodes preliminary, and the large redox capacitance of the oxides was followed by a conductive fibrous carbon substrate, suggesting that a binder and carbon black additive-free electrode consisting of metal oxides and carbon paper was formed.

  4. Application of a bacterial extracellular polymeric substance in heavy metal adsorption in a co-contaminated aqueous system

    PubMed Central

    de Oliveira Martins, Paula Salles; de Almeida, Narcisa Furtado; Leite, Selma Gomes Ferreira

    2008-01-01

    The application of a bacterial extracellular polymeric substance (EPS) in the bioremediation of heavy metals (Cd, Zn and Cu) by a microbial consortium in a hydrocarbon co-contaminated aqueous system was studied. At the low concentrations used in this work (1.00 ppm of each metal), it was not observed an inhibitory effect on the cellular growing. In the other hand, the application of the EPS lead to a lower concentration of the free heavy metals in solution, once a great part of them is adsorbed in the polymeric matrix (87.12% of Cd; 19.82% of Zn; and 37.64% of Cu), when compared to what is adsorbed or internalized by biomass (5.35% of Cd; 47.35% of Zn; and 24.93% of Cu). It was noted an increase of 24% in the consumption of ethylbenzene, among the gasoline components that were quantified, in the small interval of time evaluated (30 hours). Our results suggest that, if the experiments were conducted in a larger interval of time, it would possibly be noted a higher effect in the degradation of gasoline compounds. Still, considering the low concentrations that were evaluated, it is possible that a real system could be bioremediated by natural attenuation process, demonstrated by the low effect of those levels of contaminants and co-contaminants over the naturally present microbial consortium. PMID:24031307

  5. Bacterial swimming, swarming and chemotactic response to heavy metal presence: which could be the influence on wastewater biotreatment efficiency?

    PubMed

    Barrionuevo, Matías R; Vullo, Diana L

    2012-09-01

    Fixed-bed reactors are usually designed for wastewater biotreatments, where the biofilm establishment and maintenance play the most important roles. Biofilm development strictly relies on different types of bacterial motility: swimming, swarming, and chemotaxis, which can be altered by the microenvironment conditions. The aim of this work is to do an integrated study on the effects of Cu(II), Cd(II), Zn(II) and Cr(VI) on swimming, swarming and chemotaxis of Pseudomonas veronii 2E, Delftia acidovorans AR and Ralstonia taiwanensis M2 to improve biofilm development and maintenance for metal loaded wastewater biotreatment in fixed-bed bioreactors. Swimming, swarming and chemotactic response evaluation experiments were carried out at different metal concentrations. P. veronii 2E motility was not affected by metal presence, being this strain optimal for fixed-bed reactors. D. acidovorans AR swarming was inhibited by Cd and Zn. Although R. taiwanensis M2 showed high resistance to Cu, Cd, Cr and Zn, motility was definitively altered, so further studies on R. taiwanensis M2 resistance mechanisms would be particularly interesting.

  6. The efficacy of different anti-microbial metals at preventing the formation of, and eradicating bacterial biofilms of pathogenic indicator strains.

    PubMed

    Gugala, Natalie; Lemire, Joe A; Turner, Raymond J

    2017-02-15

    The emergence of multidrug-resistant pathogens and the prevalence of biofilm-related infections have generated a demand for alternative anti-microbial therapies. Metals have not been explored in adequate detail for their capacity to combat infectious disease. Metal compounds can now be found in textiles, medical devices and disinfectants-yet, we know little about their efficacy against specific pathogens. To help fill this knowledge gap, we report on the anti-microbial and antibiofilm activity of seven metals: silver, copper, titanium, gallium, nickel, aluminum and zinc against three bacterial strains, Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. To evaluate the capacity of metal ions to prevent the growth of, and eradicate biofilms and planktonic cells, bacterial cultures were inoculated in the Calgary Biofilm Device (minimal biofilm eradication concentration) in the presence of the metal salts. Copper, gallium and titanium were capable of preventing planktonic and biofilm growth, and eradicating established biofilms of all tested strains. Further, we observed that the efficacies of the other tested metal salts displayed variable efficacy against the tested strains. Further, contrary to the enhanced resistance anticipated from bacterial biofilms, particular metal salts were observed to be more effective against biofilm communities versus planktonic cells. In this study, we have demonstrated that the identity of the bacterial strain must be considered before treatment with a particular metal ion. Consequent to the use of metal ions as anti-microbial agents to fight multidrug-resistant and biofilm-related infections increases, we must aim for more selective deployment in a given infectious setting.The Journal of Antibiotics advance online publication, 15 February 2017; doi:10.1038/ja.2017.10.

  7. Remobilization of toxic heavy metals adsorbed to bacterial wall-clay composites.

    PubMed Central

    Flemming, C A; Ferris, F G; Beveridge, T J; Bailey, G W

    1990-01-01

    Significant quantities of Ag(I), Cu(II), and Cr(III) were bound to isolated Bacillus subtilis 168 walls, Escherichia coli K-12 envelopes, kaolinite and smectite clays, and the corresponding organic material-clay aggregates (1:1, wt/wt). These sorbed metals were leached with HNO3, Ca(NO3)2, EDTA, fulvic acid, and lysozyme at several concentrations over 48 h at room temperature. The remobilization of the sorbed metals depended on the physical properties of the organic and clay surfaces and on the character and concentration of the leaching agents. In general, the order of remobilization of metals was Cr much less than Ag less than Cu. Cr was very stable in the wall, clay, and composite systems; pH 3.0, 500 microM EDTA, 120-ppm [mg liter-1] fulvic acid, and 160-ppm Ca remobilized less than 32% (wt/wt) of sorbed Cr. Ag (45 to 87%) and Cu (up to 100%) were readily removed by these agents. Although each leaching agent was effective at mobilizing certain metals, elevated Ca or acidic pH produced the greatest overall mobility. The organic chelators were less effective. Lysozyme digestion of Bacillus walls remobilized Cu from walls and Cu-wall-kaolinite composites, but Ag, Cr, and smectite partially inhibited enzyme activity, and the metals remained insoluble. The extent of metal remobilization was not always dependent on increasing concentrations of leaching agents; for example, Ag mobility decreased with some clays and some composites treated with high fulvic acid, EDTA, and lysozyme concentrations. Sometimes the organic material-clay composites reacted in a manner distinctly different from that of their individual counterparts; e.g., 25% less Cu was remobilized from wall- and envelope-smectite composites than from walls, envelopes, or smectite individually in 500 microM EDTA. Alternatively, treatment with 160-ppm Ca removed 1.5 to 10 times more Ag from envelope-kaolinite composites than from the individual components. The particle size of the deposited metal may account

  8. Crystal Structure and Conformational Change Mechanism of a Bacterial Nramp-Family Divalent Metal Transporter.

    PubMed

    Bozzi, Aaron T; Bane, Lukas B; Weihofen, Wilhelm A; Singharoy, Abhishek; Guillen, Eduardo R; Ploegh, Hidde L; Schulten, Klaus; Gaudet, Rachelle

    2016-12-06

    The widely conserved natural resistance-associated macrophage protein (Nramp) family of divalent metal transporters enables manganese import in bacteria and dietary iron uptake in mammals. We determined the crystal structure of the Deinococcus radiodurans Nramp homolog (DraNramp) in an inward-facing apo state, including the complete transmembrane (TM) segment 1a (absent from a previous Nramp structure). Mapping our cysteine accessibility scanning results onto this structure, we identified the metal-permeation pathway in the alternate outward-open conformation. We investigated the functional impact of two natural anemia-causing glycine-to-arginine mutations that impaired transition metal transport in both human Nramp2 and DraNramp. The TM4 G153R mutation perturbs the closing of the outward metal-permeation pathway and alters the selectivity of the conserved metal-binding site. In contrast, the TM1a G45R mutation prevents conformational change by sterically blocking the essential movement of that helix, thus locking the transporter in an inward-facing state.

  9. Heavy-Metal and Antibiotic Resistance in the Bacterial Flora of Sediments of New York Bight

    PubMed Central

    Timoney, J. F.; Port, Jennifer; Giles, Janis; Spanier, J.

    1978-01-01

    The New York Bight extends seaward some 80 to 100 miles (ca. 129 to 161 km) from the Long Island and New Jersey shorelines to the edge of the continental shelf. Over 14 × 106 m3 of sewage sludge, dredge spoils, acid wastes, and cellar dirt are discharged into this area each year. Large populations of Bacillus sp. resistant to 20 μg of mercury per ml were observed in Bight sediments contaminated by these wastes. Resistant Bacillus populations were much greater in sediments containing high concentrations of Hg and other heavy metals than in sediments from areas further offshore where dumping has never been practiced and where heavy-metal concentrations were found to be low. Ampicillin resistance due mainly to β-lactamase production was significantly (P < 0.001) more frequent in Bacillus strains from sediments near the sewage sludge dump site than in similar Bacillus populations from control sediments. Bacillus strains with combined ampicillin and Hg resistances were almost six times as frequent at the sludge dump site as in control sediments. This observation suggests that genes for Hg resistance and β-lactamase production are simultaneously selected for in Bacillus and that heavy-metal contamination of an ecosystem can result in a selection pressure for antibiotic resistance in bacteria in that system. Also, Hg resistance was frequently linked with other heavy-metal resistances and, in a substantial proportion of Bacillus strains, involved reduction to volatile metallic Hg (Hg°). PMID:727779

  10. Uncovering the transmembrane metal binding site of the novel bacterial major facilitator superfamily-type copper importer CcoA

    SciTech Connect

    Khalfaoui-Hassani, Bahia; Verissimo, Andreia F.; Koch, Hans -Georg; Daldal, Fevzi

    2016-01-19

    In this study, uptake and trafficking of metals and their delivery to their respective metalloproteins are important processes. Cells need precise control of each step to avoid exposure to excessive metal concentrations and their harmful consequences. Copper (Cu) is a required micronutrient used as a cofactor in proteins. However, in large amounts, it can induce oxidative damage; hence, Cu homeostasis is indispensable for cell survival. Biogenesis of respiratory heme-Cu oxygen (HCO) reductases includes insertion of Cu into their catalytic subunits to form heme-Cu binuclear centers. Previously, we had shown that CcoA is a major facilitator superfamily (MFS)-type bacterial Cu importer required for biogenesis of cbb3-type cytochromecoxidase (cbb3-Cox). Here, using Rhodobacter capsulatus, we focused on the import and delivery of Cu to cbb3-Cox. By comparing the CcoA amino acid sequence with its homologues from other bacterial species, we located several well-conserved Met, His, and Tyr residues that might be important for Cu transport. We determined the topology of the transmembrane helices that carry these residues to establish that they are membrane embedded, and substituted for them amino acids that do not ligand metal atoms. Characterization of these mutants for their uptake of radioactive64Cu and cbb3-Cox activities demonstrated that Met233 and His261 of CcoA are essential and Met237 and Met265 are important, whereas Tyr230 has no role for Cu uptake or cbb3-Cox biogenesis. These findings show for the first time that CcoA-mediated Cu import relies on conserved Met and His residues that could act as metal ligands at the membrane-embedded Cu binding domain of this transporter.

  11. Accumulation of clinically relevant antibiotic-resistance genes, bacterial load, and metals in freshwater lake sediments in Central Europe.

    PubMed

    Devarajan, Naresh; Laffite, Amandine; Graham, Neil D; Meijer, Maria; Prabakar, Kandasamy; Mubedi, Josué I; Elongo, Vicky; Mpiana, Pius T; Ibelings, Bastiaan Willem; Wildi, Walter; Poté, John

    2015-06-02

    Wastewater treatment plants (WWTP) receive the effluents from various sources (communities, industrial, and hospital effluents) and are recognized as reservoir for antibiotic-resistance genes (ARGs) that are associated with clinical pathogens. The aquatic environment is considered a hot-spot for horizontal gene transfer, and lake sediments offer the opportunity for reconstructing the pollution history and evaluating the impacts. In this context, variation with depth and time of the total bacterial load, the abundance of faecal indicator bacteria (FIB; E. coli and Enterococcus spp. (ENT)), Pseudomonas spp., and ARGs (blaTEM, blaSHV, blaCTX-M, blaNDM, and aadA) were quantified in sediment profiles of different parts of Lake Geneva using quantitative PCR. The abundance of bacterial marker genes was identified in sediments contaminated by WWTP following eutrophication of the lake. Additionally, ARGs, including the extended-spectrum ß-lactam- and aminoglycoside-resistance genes, were identified in the surface sediments. The ARG and FIB abundance strongly correlated (r ≥ 0.403, p < 0.05, n = 34) with organic matter and metal concentrations in the sediments, indicating a common and contemporary source of contamination. The contamination of sediments by untreated or partially treated effluent water can affect the quality of ecosystem. Therefore, the reduction of contaminants from the source is recommended for further improvement of water quality.

  12. RESPIROMETRY AS A TOOL TO DETERMINE METAL TOXICITY IN A SULFATE REDUCING BACTERIAL CULTURE

    EPA Science Inventory

    A novel method under development for treatment of acid mine drainage waste uses biologically- generated hydrogen sulfide (H2S) to precipitate the metals in acid mine drainage (principally zinc, copper, aluminum, nickel, cadmium, arsenic, manganese, iron, and cobalt). The insolub...

  13. Ex Situ Formation of Metal Selenide Quantum Dots Using Bacterially Derived Selenide Precursors

    SciTech Connect

    Fellowes, Jonathan W.; Pattrick, Richard; Lloyd, Jon; Charnock, John M.; Coker, Victoria S.; Mosselmans, JFW; Weng, Tsu-Chien; Pearce, Carolyn I.

    2013-04-12

    Luminescent quantum dots were synthesized using bacterially derived selenide (SeII-) as the precursor. Biogenic SeII- was produced by the reduction of Se-IV by Veillonella atypica and compared directly against borohydride-reduced Se-IV for the production of glutathione-stabilized CdSe and beta-mercaptoethanol-stabilized ZnSe nanoparticles by aqueous synthesis. Biological SeII- formed smaller, narrower size distributed QDs under the same conditions. The growth kinetics of biologically sourced CdSe phases were slower. The proteins isolated from filter sterilized biogenic SeII- included a methylmalonyl-CoA decarboxylase previously characterized in the closely related Veillonella parvula. XAS analysis of the glutathione-capped CdSe at the S K-edge suggested that sulfur from the glutathione was structurally incorporated within the CdSe. A novel synchrotron based XAS technique was also developed to follow the nucleation of biological and inorganic selenide phases, and showed that biogenic SeII- is more stable and more resistant to beam-induced oxidative damage than its inorganic counterpart. The bacterial production of quantum dot precursors offers an alternative, 'green' synthesis technique that negates the requirement of expensive, toxic chemicals and suggests a possible link to the exploitation of selenium contaminated waste streams.

  14. Ex situ formation of metal selenide quantum dots using bacterially derived selenide precursors.

    PubMed

    Fellowes, J W; Pattrick, R A D; Lloyd, J R; Charnock, J M; Coker, V S; Mosselmans, J F W; Weng, T-C; Pearce, C I

    2013-04-12

    Luminescent quantum dots were synthesized using bacterially derived selenide (Se(II-)) as the precursor. Biogenic Se(II-) was produced by the reduction of Se(IV) by Veillonella atypica and compared directly against borohydride-reduced Se(IV) for the production of glutathione-stabilized CdSe and β-mercaptoethanol-stabilized ZnSe nanoparticles by aqueous synthesis. Biological Se(II-) formed smaller, narrower size distributed QDs under the same conditions. The growth kinetics of biologically sourced CdSe phases were slower. The proteins isolated from filter sterilized biogenic Se(II-) included a methylmalonyl-CoA decarboxylase previously characterized in the closely related Veillonella parvula. XAS analysis of the glutathione-capped CdSe at the S K-edge suggested that sulfur from the glutathione was structurally incorporated within the CdSe. A novel synchrotron based XAS technique was also developed to follow the nucleation of biological and inorganic selenide phases, and showed that biogenic Se(II-) is more stable and more resistant to beam-induced oxidative damage than its inorganic counterpart. The bacterial production of quantum dot precursors offers an alternative, 'green' synthesis technique that negates the requirement of expensive, toxic chemicals and suggests a possible link to the exploitation of selenium contaminated waste streams.

  15. Effects of bioirrigation of non-biting midges (Diptera: Chironomidae) on lake sediment respiration

    PubMed Central

    Baranov, Viktor; Lewandowski, Jörg; Romeijn, Paul; Singer, Gabriel; Krause, Stefan

    2016-01-01

    Bioirrigation or the transport of fluids into the sediment matrix due to the activities of organisms such as bloodworms (larvae of Diptera, Chironomidae), has substantial impacts on sediment respiration in lakes. However, previous quantifications of bioirrigation impacts of Chironomidae have been limited by technical challenges such as the difficulty to separate faunal and bacterial respiration. This paper describes a novel method based on the bioreactive tracer resazurin for measuring respiration in-situ in non-sealed systems with constant oxygen supply. Applying this new method in microcosm experiments revealed that bioirrigation enhanced sediment respiration by up to 2.5 times. The new method is yielding lower oxygen consumption than previously reported, as it is only sensitive to aerobic heterotrophous respiration and not to other processes causing oxygen decrease. Hence it decouples the quantification of respiration of animals and inorganic oxygen consumption from microbe respiration in sediment. PMID:27256514

  16. Effects of bioirrigation of non-biting midges (Diptera: Chironomidae) on lake sediment respiration

    NASA Astrophysics Data System (ADS)

    Baranov, Viktor; Lewandowski, Jörg; Romeijn, Paul; Singer, Gabriel; Krause, Stefan

    2016-06-01

    Bioirrigation or the transport of fluids into the sediment matrix due to the activities of organisms such as bloodworms (larvae of Diptera, Chironomidae), has substantial impacts on sediment respiration in lakes. However, previous quantifications of bioirrigation impacts of Chironomidae have been limited by technical challenges such as the difficulty to separate faunal and bacterial respiration. This paper describes a novel method based on the bioreactive tracer resazurin for measuring respiration in-situ in non-sealed systems with constant oxygen supply. Applying this new method in microcosm experiments revealed that bioirrigation enhanced sediment respiration by up to 2.5 times. The new method is yielding lower oxygen consumption than previously reported, as it is only sensitive to aerobic heterotrophous respiration and not to other processes causing oxygen decrease. Hence it decouples the quantification of respiration of animals and inorganic oxygen consumption from microbe respiration in sediment.

  17. EPS production and bioremoval of heavy metals by mixed and pure bacterial cultures isolated from Ankara Stream.

    PubMed

    Kiliç, Nur Koçberber; Kürkçü, Güliz; Kumruoğlu, Durna; Dönmez, Gönül

    2015-01-01

    This study is focused on isolation of Ni(II), Cu(II) and Cr(VI) resistant bacteria to assess their exopolysaccharide (EPS) production and related bioremoval capacities. Mixed cultures had higher heavy metal removal capacity in media with molasses (MAS) than the control cultures lacking this carbon (AS) containing 50 mg/l of heavy metal. The yields were 32%, 75.7%, and 51.1% in MAS, while the corresponding values were 29%, 55.1%, and 34.5% in AS, respectively. Purification of the strains 1, 5 and 6 present in the mixed cultures decreased the bioremoval capacities of the mixed culture samples, although these strains produced higher EPS amounts in MAS agar. Strain 5 had the highest Cu(II) (69.1%) and Cr(VI) (43.1%) removal rates at 25 mg/l initial concentration of each pollutant with EPS amounts of 0.74 g/l and 1.05 g/l, respectively. This strain was identified as Stenotrophomonas maltophilia. The presented data show that especially mixed and also pure cultures of bacterial strains isolated from Ankara Stream could be assessed as potential bioremoval agents in the treatment of Cu(II) or Cr(VI) containing wastewaters.

  18. How to Properly Put On, Take Off a Disposable Respirator

    MedlinePlus

    ... from both hands at the top of the metal nose clip (if present). Slide fingertips down both sides of the metal strip to mold the nose area to the ... HANDS! Employers must comply with the OSHA Respiratory Protection Standard, 29 CFR 1910.134 if respirators are ...

  19. Small ecosystem engineers as important regulators of lake's sediment respiration.

    NASA Astrophysics Data System (ADS)

    Baranov, Victor; Lewandowski, Joerg; Krause, Stefan; Romeijn, Paul

    2016-04-01

    Although shallow lakes are covering only about 1.5% of the land surface of the Earth, they are responsible for sequestration of carbon amounts similar or even larger than those sequestered in all marine sediments. One of the most important drivers of the carbon sequestration in lakes is sediment respiration. Especially in shallow lakes, bioturbation, i.e. the biogenic reworking of the sediment matrix and the transport of fluids within the sediment, severely impacts on sediment respiration. Widespread freshwater bioturbators such as chironomid larvae (Diptera, Chironomidae) are building tubes in the sediment and actively pump water through their burrows (ventilation). In the present work we study how different organism densities and temperatures (5-30°C) impact on respiration rates. In a microcosm experiment the bioreactive resazurin/resorufin smart tracer system was applied for quantifying the impacts of different densities of Chironomidae (Diptera) larvae (0, 1000, 2000 larvae/m2) on sediment respiration. Tracer transformation rates (and sediment respiration) were correlated with larval densities with highest transformation rates occurring in microcosms with highest larval densities. Respiration differences between defaunated sediment and sediment with 1000 and 2000 larvae per m2 was insignificant at 5 °C, and was progressively increasing with rising temperatures. At 30 °C respiration rates of sediment with 2000 larvae per m2 was 4.8 times higher than those of defaunated sediment. We interpret this as an effect of temperature on larval metabolic and locomotory activity. Furthermore, bacterial communities are benefiting from the combination of the high water temperatures and bioirrigation as bacterial community are able to maintain high metabolic rates due to oxygen supplied by bioirrigation. In the context of global climate change that means that chironomid ecosystem engineering activity will have a profound and increasing impact on lake sediment respiration

  20. Bacterial exposure to metal-oxide nanoparticles: Methods, physical interactions, and biological effects

    NASA Astrophysics Data System (ADS)

    Horst, Allison Marie

    Nanotechnology is a major endeavor of this century, with proposed applications in fields ranging from agriculture to energy to medicine. Nanoscale titanium dioxide (nano-TiO2) is among the most widely produced nanoparticles worldwide, and already exists in consumer products including impermanent personal care products and surface coatings. Inevitably, nano-TiO2 will be transported into the environment via consumer or industrial waste, where its effects on organisms are largely unknown. Out of concern for the possible ill-effects of nanoparticles in the environment, there is now a field of study in nanotoxicology. Bacteria are ideal organisms for nanotoxicology research because they are environmentally important, respond rapidly to intoxication, and provide evidence for effects in higher organisms. My doctoral research focuses on the effects and interactions of nano-TiO2 in aqueous systems with planktonic bacteria. This dissertation describes four projects and the outcomes of the research: (1) A discovery, using a combination of environmental- and cryogenic-scanning electron microscopy and dynamic light scattering (DLS), that initially agglomerated nano-TiO2 is dispersed upon bacterial contact, as nanoparticles preferentially sorbed to cell surfaces. (2) Establishment of a method to disperse nanoparticles in an aqueous culture medium for nanotoxicology studies. A combination of electrostatic repulsion, steric hindrance and sonication yielded a high initial level of nano-TiO2 dispersion (i.e. < 300 nm average agglomerate size) and reduced nanoparticle sedimentation. The approach is described in the context of general considerations for dispersion that are transferable to other nanoparticle and media chemistries. (3) Assessment and optimization of optically-based assays to simultaneously study effects of nanoparticles on bacterial membranes (membrane potential, membrane permeability, and electron transport chain function) and generation of reactive oxygen species. A

  1. Influence of charge and metal coordination of meso-substituted porphyrins on bacterial photoinactivation

    NASA Astrophysics Data System (ADS)

    Zoltan, Tamara; Vargas, Franklin; López, Verónica; Chávez, Valery; Rivas, Carlos; Ramírez, Álvaro H.

    2015-01-01

    The photodynamic effect of meso-substituted porphyrins with different charges and metal ions: meso-tetraphenylporphyrin tetrasulfonate 1, its nickel 2 and zinc complexes 3; meso-tetranaphthylporphyrin tetrasulfonate 4, and its zinc complex Zn 5; and tetra piridyl ethylacetate porphirins 6 and their nickel 7 and zinc 8 complexes, were synthesized and studied their antimicrobial activity against Escherichia coli. Fluorescence quantum yields (ΦF) were measured in water using reference TPPS4, obtaining higher values for complexes 3 and 4. The singlet oxygen ΦΔ were measured using histidine as trapping singlet oxygen and Rose Bengal as a reference standard. Complexes 1, 2 and 6 have the highest quantum yields of singlet oxygen formation, showing no relation with the peripheral charges and efficiency as Type II photosensitizers. Meanwhile complexes 3, 8 and 4 were the most efficient in producing radical species, determined with their reaction with NADH. The photoinduced antibacterial activity of complex was investigated at different concentrations of the photosensitizers with an irradiation time of 30 min. The higher antibacterial activities were obtained for the complexes 1-3 that are those with greater production of ROS and minor structural deformations. Complexes 7 and 8 had moderate activity, while 4-6 a low activity. Thus, in this work demonstrates that the production of ROS and structural deformations due to peripheral substituents and metal coordination, influence the activity of the complexes studied. Therefore, is important to perform comprehensive study physics and structurally when predicting or explain such activity.

  2. Influence of charge and metal coordination of meso-substituted porphyrins on bacterial photoinactivation.

    PubMed

    Zoltan, Tamara; Vargas, Franklin; López, Verónica; Chávez, Valery; Rivas, Carlos; Ramírez, Álvaro H

    2015-01-25

    The photodynamic effect of meso-substituted porphyrins with different charges and metal ions: meso-tetraphenylporphyrin tetrasulfonate 1, its nickel 2 and zinc complexes 3; meso-tetranaphthylporphyrin tetrasulfonate 4, and its zinc complex Zn 5; and tetra piridyl ethylacetate porphirins 6 and their nickel 7 and zinc 8 complexes, were synthesized and studied their antimicrobial activity against Escherichia coli. Fluorescence quantum yields (ΦF) were measured in water using reference TPPS4, obtaining higher values for complexes 3 and 4. The singlet oxygen ΦΔ were measured using histidine as trapping singlet oxygen and Rose Bengal as a reference standard. Complexes 1, 2 and 6 have the highest quantum yields of singlet oxygen formation, showing no relation with the peripheral charges and efficiency as Type II photosensitizers. Meanwhile complexes 3, 8 and 4 were the most efficient in producing radical species, determined with their reaction with NADH. The photoinduced antibacterial activity of complex was investigated at different concentrations of the photosensitizers with an irradiation time of 30 min. The higher antibacterial activities were obtained for the complexes 1-3 that are those with greater production of ROS and minor structural deformations. Complexes 7 and 8 had moderate activity, while 4-6 a low activity. Thus, in this work demonstrates that the production of ROS and structural deformations due to peripheral substituents and metal coordination, influence the activity of the complexes studied. Therefore, is important to perform comprehensive study physics and structurally when predicting or explain such activity.

  3. Trace metals and their relation to bacterial infections studied by X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Maser, J.; Wagner, D.; Lai, B.; Cai, Z.; Legnini, D.; Moric, I.; Bermudez, L.

    2003-03-01

    Bacterial pathogens survive in different environments in the human host by responding with expression of virulence factors that enable them to adapt to changing conditions. Trace elements regulate the expression of many virulence genes in bacteria and are thus important for their survival in the host. Mycobacteria are intracellular pathogens that can cause diseases such as tuberculosis or secondary infections in immunocompromised patients. We have used a hard x-ray microprobe to study the trace element distribution in the mycobacterial phagosome after infection of macrophages. We have studied phagosomes with virulent (M. avium) and nonvirulent (M. smegmatis) mycobacteria. In this article, we will show that the iron concentration in phagosomes with macrophages infected with nonvirulent M. smegmatis is reduced 24 hours after infection but increased in phagosomes in cells infected with virulent M. avium. In addition, we will show the effect activation of macrophages with tumor necrosis factor (TNF-α) or interferon (IFN-γ) has on the iron concentration in M. avium.

  4. Assessment of bacterial communities and characterization of lead-resistant bacteria in the rhizosphere soils of metal-tolerant Chenopodium ambrosioides grown on lead-zinc mine tailings.

    PubMed

    Zhang, Wen-hui; Huang, Zhi; He, Lin-yan; Sheng, Xia-fang

    2012-06-01

    Bacterial communities in the rhizosphere soils of metal tolerant and accumulating Chenopodium ambrosioides grown in highly and moderately lead-zinc mine tailings contaminated-soils as well as the adjacent soils with low metal contamination were characterized by using cultivation-independent and cultivation techniques. A total of 69, 73, and 83 bacterial operational taxonomic units (OTUs) having 84.8-100% similarity with the closest match in the database were detected among high, moderate, and low-contamination soil clone libraries, respectively. These OTUs had a Shannon diversity index value in the range of 4.06-4.30. There were 9, 10, and 14 bacterial genera specific to high, moderate, and low metal-contaminated soil clone libraries, respectively. Phylogenetic analysis showed that the Pb-resistant isolates belonged to 8 genera. Pseudomonas and Arthrobacter were predominant among the isolates. Most of the isolates (82-86%) produced indole acetic acid and siderophores. More strains from the highly metal-contaminated soil produced 1-aminocyclopropane-1-carboxylate deaminase than the strains from the moderately and lowly metal-contaminated soils. In experiments involving canola grown in quartz sand containing 200 mg kg(-1) of Pb, inoculation with the isolated Paenibacillus jamilae HTb8 and Pseudomonas sp. GTa5 was found to significantly increase the above-ground tissues dry weight (ranging from 19% to 36%) and Pb uptake (ranging from 30% to 40%) compared to the uninoculated control. These results show that C. ambrosioides harbor different metal-resistant bacterial communities in their rhizosphere soils and the isolates expressing plant growth promoting traits may be exploited for improving the phytoextraction efficiency of Pb-polluted environment.

  5. Effects of pH amendment on metal working fluid wastewater biological treatment using a defined bacterial consortium.

    PubMed

    van der Gast, Christopher J; Thompson, Ian P

    2005-02-05

    The aim of this study was to determine whether pH amendment of a highly alkaline metal working fluid (MWF) wastewater would improve biological treatment in a bioreactor system following introduction of a bacterial inoculum (comprised of the following strains: Agrobacterium radiobacter, Comamonas testosteroni, Methylobacterium mesophilicum, Microbacterium esteraromaticum, and Microbacterium saperdae). The pH values tested were 6, 7, 8, and 9. Three replicate batch mode bioreactors inoculated with the bacterial inoculum (plus an abiotic control bioreactor) were operated for each of the four pH conditions. After 14 days, the final mean chemical oxygen demand (COD) reduction at pH 9 was 50 +/- 1.4%; at pH 8, 58 +/- 1.4%; pH 7, 65 +/- 1.0%; and pH 6, 75 +/- 2.7% of the initial COD (approximately 10,000 mg L(-1)), respectively. Interestingly, within 5 days, the pH in all inoculated bioreactors progressed toward pH 8. However, all abiotic control bioreactors remained at the pH at which they were amended. The fate of the inoculum, determined by denaturing gradient gel electrophoresis (DGGE) and by cluster analysis of the resulting DGGE profiles, revealed that the inocula survived throughout operation of all pH-amended bioreactors. Length-heterogeneity polymerase chain reaction (PCR) was used to track the population dynamics of individual strains. After 7 days of operation, M. esteraromaticum was the most abundant population in all bioreactors, regardless of pH. From our findings, it appears necessary to adjust the MWF wastewater from pH 9 to between 6 and 7, to achieve optimal biological treatment rates.

  6. Genes for all metals--a bacterial view of the periodic table. The 1996 Thom Award Lecture.

    PubMed

    Silver, S

    1998-01-01

    Bacterial chromosomes have genes for transport proteins for inorganic nutrient cations and oxyanions, such as NH4+, K+, Mg2+, Co2+, Fe3+, Mn2+, Zn2+ and other trace cations, and PO4(3-), SO4(2-) and less abundant oxyanions. Together these account for perhaps a few hundred genes in many bacteria. Bacterial plasmids encode resistance systems for toxic metal and metalloid ions including Ag+, AsO2-, AsO4(3-), Cd2+, Co2+, CrO4(2-), Cu2+, Hg2+, Ni2+, Pb2+, TeO3(2-), Tl+ and Zn2+. Most resistance systems function by energy-dependent efflux of toxic ions. A few involve enzymatic (mostly redox) transformations. Some of the efflux resistance systems are ATPases and others are chemiosmotic ion/proton exchangers. The Cd(2+)-resistance cation pump of Gram-positive bacteria is membrane P-type ATPase, which has been labeled with 32P from [gamma-32P]ATP and drives ATP-dependent Cd2+ (and Zn2+) transport by membrane vesicles. The genes defective in the human hereditary diseases of copper metabolism, Menkes syndrome and Wilson's disease, encode P-type ATPases that are similar to bacterial cadmium ATPases. The arsenic resistance system transports arsenite [As(III)], alternatively with the ArsB polypeptide functioning as a chemiosmotic efflux transporter or with two polypeptides, ArsB and ArsA, functioning as an ATPase. The third protein of the arsenic resistance system is an enzyme that reduces intracellular arsenate [As(V)] to arsenite [As(III)], the substrate of the efflux system. In Gram-negative cells, a three polypeptide complex functions as a chemiosmotic cation/protein exchanger to efflux Cd2+, Zn2+ and Co2+. This pump consists of an inner membrane (CzcA), an outer membrane (CzcC) and a membrane-spanning (CzcB) protein that function together.

  7. Plankton respiration in the Eastern Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Robinson, Carol; Serret, Pablo; Tilstone, Gavin; Teira, Eva; Zubkov, Mikhail V.; Rees, Andrew P.; Woodward, E. Malcolm S.

    2002-05-01

    Concurrent measurements of dark community respiration (DCR), gross production (GP), size fractionated primary production ( 14C PP), nitrogen uptake, nutrients, chlorophyll a concentration, and heterotrophic and autotrophic bacterial abundance were collected from the upper 200 m of a latitudinal (32°S-48°N) transect in the Eastern Atlantic Ocean during May/June 1998. The mean mixed layer respiration rate was 2.5±2.1 mmol O 2 m -3 d -1 ( n=119) for the whole transect, 2.2±1.1 mmol O 2 m -3 d -1 ( n=32) in areas where chlorophyll a was <0.5 mg m -3 and 1.5±0.7 mmol O 2 m -3 d -1 ( n=10) where chlorophyll a was <0.2 mg m -3. These values lie within the range of published data collected in comparable waters, they co-vary with indicators of heterotrophic and autotrophic biomass (heterotrophic bacterial abundance, chlorophyll a concentration, beam attenuation and particulate organic carbon concentration) and they can be reconciled with accepted estimates of total respiratory activity. The mean and median respiratory quotient (RQ), calculated as the ratio of dissolved inorganic carbon production to dissolved oxygen consumption, was 0.8 ( n=11). At the time of the study, plankton community respiration exceeded GP in the picoautotroph dominated oligotrophic regions (Eastern Tropical Atlantic [15.5°S-14.2°N] and North Atlantic Subtropical Gyre [21.5-42.5°N]), which amounted to 50% of the stations sampled along the 12,100 km transect. These regions also exhibited high heterotrophic: autotrophic biomass ratios, higher turnover rates of phytoplankton than of bacteria and low f ratios. However, the carbon supply mechanisms required to sustain the rates of respiration higher than GP could not be fully quantified. Future research should aim to determine the temporal balance of respiration and GP together with substrate supply mechanisms in these ocean regions.

  8. Resilience of the rhizosphere Pseudomonas and ammonia-oxidizing bacterial populations during phytoextraction of heavy metal polluted soil with poplar.

    PubMed

    Frey, Beat; Pesaro, Manuel; Rüdt, Andreas; Widmer, Franco

    2008-06-01

    We assessed the effects of phytoextraction on the dynamics of Pseudomonas spp. and ammonia-oxidizing bacterial populations in a heavy metal (HM) polluted soil. Hybrid poplars were grown in two-compartment root containers with a medium history (> 4 years) of HM pollution for 13 weeks. Bulk and poplar rhizosphere soils were analysed by denaturing gradient gel electrophoresis (DGGE) of Pseudomonas (sensu stricto) 16S rRNA and amoA gene fragments. DGGE patterns revealed that Pseudomonas and amoA-containing populations in the contaminated soils were markedly different from those in the uncontaminated soils. Pseudomonas and amoA profiles appeared to be stable over time in the bulk soils. In contrast, contaminated rhizosphere soils revealed a clear shift of populations with removal of HM becoming similar or at least shifted to the populations of the uncontaminated soils. The effect of phytoextraction was, however, not evident in the bulk samples, which still contained large amounts of HM. Cloning and sequencing of dominant DGGE bands revealed that Pseudomonas were phylogenetically related to the Pseudomonas fluorescens cluster and the amoA sequences to Nitrosospira spp. At the last sampling, major prominent band sequences from contaminated rhizosphere soils were identical to sequences obtained from uncontaminated rhizosphere soils, indicating that the populations were dominated by the same phylotypes. This study suggests that two taxonomically different populations are able to recover after the relief of HM stress by phytoextraction practices, whereas bulk microbial activities still remained depressed.

  9. The Diesel Exhaust in Miners Study: III. Interrelations between respirable elemental carbon and gaseous and particulate components of diesel exhaust derived from area sampling in underground non-metal mining facilities.

    PubMed

    Vermeulen, Roel; Coble, Joseph B; Yereb, Daniel; Lubin, Jay H; Blair, Aaron; Portengen, Lützen; Stewart, Patricia A; Attfield, Michael; Silverman, Debra T

    2010-10-01

    Diesel exhaust (DE) has been implicated as a potential lung carcinogen. However, the exact components of DE that might be involved have not been clearly identified. In the past, nitrogen oxides (NO(x)) and carbon oxides (CO(x)) were measured most frequently to estimate DE, but since the 1990s, the most commonly accepted surrogate for DE has been elemental carbon (EC). We developed quantitative estimates of historical exposure levels of respirable elemental carbon (REC) for an epidemiologic study of mortality, particularly lung cancer, among diesel-exposed miners by back-extrapolating 1998-2001 REC exposure levels using historical measurements of carbon monoxide (CO). The choice of CO was based on the availability of historical measurement data. Here, we evaluated the relationship of REC with CO and other current and historical components of DE from side-by-side area measurements taken in underground operations of seven non-metal mining facilities. The Pearson correlation coefficient of the natural log-transformed (Ln)REC measurements with the Ln(CO) measurements was 0.4. The correlation of REC with the other gaseous, organic carbon (OC), and particulate measurements ranged from 0.3 to 0.8. Factor analyses indicated that the gaseous components, including CO, together with REC, loaded most strongly on a presumed 'Diesel exhaust' factor, while the OC and particulate agents loaded predominantly on other factors. In addition, the relationship between Ln(REC) and Ln(CO) was approximately linear over a wide range of REC concentrations. The fact that CO correlated with REC, loaded on the same factor, and increased linearly in log-log space supported the use of CO in estimating historical exposure levels to DE.

  10. Hybrid respiration-signal conditioner

    NASA Technical Reports Server (NTRS)

    Rinard, G. A.; Steffen, D. A.; Sturm, R. E.

    1979-01-01

    Hybrid impedance-pneumograph and respiration-rate signal conditioner element of hand-held vital signs monitor measures changes in impedance of chest during breathing cycle and generates analog respiration signal as output along with synchronous square wave that can be monitored by breath-rate processor.

  11. Radar sensitivity to human heartbeats and respiration

    NASA Astrophysics Data System (ADS)

    Aardal, Øyvind; Brovoll, Sverre; Paichard, Yoann; Berger, Tor; Lande, Tor Sverre; Hamran, Svein-Erik

    2015-05-01

    Human heartbeats and respiration can be detected from a distance using radar. This can be used for medical applications and human being detection. It is useful to have a system independent measure of how detectable the vital signs are. In radar applications, the Radar Cross Section (RCS) is normally used to characterize the detectability of an object. Since the human vital signs are seen by the radar as movements of the torso, the modulations in the person RCS can be used as a system independent measure of the vital signs detectability. In this paper, measurements of persons seated in an anechoic chamber are presented. The measurements were calibrated using empty room and a metallic calibration sphere. A narrowband radar operating at frequencies from 500 MHz to 18 GHz in discrete steps was used. A turntable provided measurements at precise aspect angles all around the person under test. In an I & Q receiver, the heartbeat and respiration modulation is a combination of amplitude and phase mod- modulations. The measurements were filtered, leaving the modulations from the vital signs in the radar recordings. The procedure for RCS computation was applied to these filtered data, capturing the complex signatures. It was found that both the heartbeat and respiration detectability increase with increasing frequency. The heartbeat signatures are almost equal from the front and the back, while being almost undetectable from the sides of the person. The respiration signatures are slightly higher from the front than from the back, and smaller from the sides. The signature measurements presented in this paper provide an objective system independent measure of the detectability of human vital signs as a function of frequency and aspect angle. These measures are useful for example in system design and in assessing real measurement scenarios.

  12. Respiration in the open ocean.

    PubMed

    del Giorgio, Paul A; Duarte, Carlos M

    2002-11-28

    A key question when trying to understand the global carbon cycle is whether the oceans are net sources or sinks of carbon. This will depend on the production of organic matter relative to the decomposition due to biological respiration. Estimates of respiration are available for the top layers, the mesopelagic layer, and the abyssal waters and sediments of various ocean regions. Although the total open ocean respiration is uncertain, it is probably substantially greater than most current estimates of particulate organic matter production. Nevertheless, whether the biota act as a net source or sink of carbon remains an open question.

  13. A multi-channel bioluminescent bacterial biosensor for the on-line detection of metals and toxicity. Part I: design and optimization of bioluminescent bacterial strains.

    PubMed

    Charrier, Thomas; Durand, Marie-José; Jouanneau, Sulivan; Dion, Michel; Pernetti, Mimma; Poncelet, Denis; Thouand, Gérald

    2011-05-01

    This study describes the construction of inducible bioluminescent strains via genetic engineering along with their characterization and optimization in the detection of heavy metals. Firstly, a preliminary comparative study enabled us to select a suitable carbon substrate from pyruvate, glucose, citrate, diluted Luria-Bertani, and acetate. The latter carbon source provided the best induction ratios for comparison. Results showed that the three constructed inducible strains, Escherichia coli DH1 pBzntlux, pBarslux, and pBcoplux, were usable when conducting a bioassay after a 14-h overnight culture at 30 °C. Utilizing these sensors gave a range of 12 detected heavy metals including several cross-detections. Detection limits for each metal were often close to and sometimes lower than the European standards for water pollution. Finally, in order to maintain sensitive bacteria within the future biosensor-measuring cell, the agarose immobilization matrix was compared to polyvinyl alcohol (PVA). Agarose was selected because the detection limits of the bioluminescent strains were not affected, in contrast to PVA. Specific detection and cross-detection ranges determined in this study will form the basis of a multiple metals detection system by the new multi-channel Lumisens3 biosensor.

  14. Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd-hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation.

    PubMed

    Luo, Sheng-lian; Chen, Liang; Chen, Jue-liang; Xiao, Xiao; Xu, Tao-ying; Wan, Yong; Rao, Chan; Liu, Cheng-bin; Liu, Yu-tang; Lai, Cui; Zeng, Guang-ming

    2011-11-01

    This study investigates the heavy metal-resistant bacterial endophytes of Cd-hyperaccumulator Solanum nigrum L. grown on a mine tailing by using cultivation-dependent technique. Thirty Cd-tolerant bacterial endophytes were isolated from roots, stems, and leaves of S. nigrum L. and classified by amplified ribosomal DNA-restriction analysis into 18 different types. Phylogenetic analysis based on 16S rDNA sequences showed that these isolates belonged to four groups: Actinobacteria (43%), Proteobacteria (23%), Bacteroidetes (27%) and Firmicutes (7%). All the isolates were then characterized for their plant growth promoting traits as well as their resistances to different heavy metals; and the actual plant growth promotion and colonization ability were also assessed. Four isolates were re-introduced into S. nigrum L. under Cd stress and resulted in Cd phytotoxicity decrease, as dry weights of roots increased from 55% to 143% and dry weights of above-ground from 64% to 100% compared to the uninoculated ones. The total Cd accumulation of inoculated plants increased from 66% to 135% (roots) and from 22% to 64% (above-ground) compared to the uninoculated ones. Our research suggests that bacterial endophytes are a most promising resource and may be the excellent candidates of bio-inoculants for enhancing the phytoremediation efficiency.

  15. From breathing to respiration.

    PubMed

    Fitting, Jean-William

    2015-01-01

    The purpose of breathing remained an enigma for a long time. The Hippocratic school described breathing patterns but did not associate breathing with the lungs. Empedocles and Plato postulated that breathing was linked to the passage of air through pores of the skin. This was refuted by Aristotle who believed that the role of breathing was to cool the heart. In Alexandria, breakthroughs were accomplished in the anatomy and physiology of the respiratory system. Later, Galen proposed an accurate description of the respiratory muscles and the mechanics of breathing. However, his heart-lung model was hampered by the traditional view of two non-communicating vascular systems - veins and arteries. After a period of stagnation in the Middle Ages, knowledge progressed with the discovery of pulmonary circulation. The comprehension of the purpose of breathing progressed by steps thanks to Boyle and Mayow among others, and culminated with the contribution of Priestley and the discovery of oxygen by Lavoisier. Only then was breathing recognized as fulfilling the purpose of respiration, or gas exchange. A century later, a controversy emerged concerning the active or passive transfer of oxygen from alveoli to the blood. August and Marie Krogh settled the dispute, showing that passive diffusion was sufficient to meet the oxygen needs.

  16. Identification of Anaerobic Selenate-Respiring Bacteria from Aquatic Sediments▿

    PubMed Central

    Narasingarao, Priya; Häggblom, Max M.

    2007-01-01

    The diversity population of microorganisms with the capability to use selenate as a terminal electron acceptor, reducing it to selenite and elemental selenium by the process known as dissimilatory selenate reduction, is largely unknown. The overall objective of this study was to gain an in-depth understanding of anaerobic biotransformation of selenium in the environment, particularly anaerobic respiration, and to characterize the microorganisms catalyzing this process. Here, we demonstrate the isolation and characterization of four novel anaerobic dissimilatory selenate-respiring bacteria enriched from a variety of sources, including sediments from three different water bodies in Chennai, India, and a tidal estuary in New Jersey. Strains S5 and S7 from India, strain KM from the Meadowlands, NJ, and strain pn1, categorized as a laboratory contaminant, were all phylogenetically distinct, belonging to various phyla in the bacterial domain. The 16S rRNA gene sequence shows that strain S5 constitutes a new genus belonging to Chrysiogenetes, while strain S7 belongs to the Deferribacteres, with greater than 98% 16S rRNA gene similarity to Geovibrio ferrireducens. Strain KM is related to Malonomonas rubra, Pelobacter acidigallici, and Desulfuromusa spp., with 96 to 97% 16S rRNA gene similarity. Strain pn1 is 99% similar to Pseudomonas stutzeri. Strains S5, S7, and KM are obligately anaerobic selenate-respiring microorganisms, while strain pn1 is facultatively anaerobic. Besides respiring selenate, all these strains also respire nitrate. PMID:17435005

  17. 78 FR 18601 - Respirator Certification Fees; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-27

    ... HUMAN SERVICES Centers for Disease Control and Prevention Respirator Certification Fees; Public Meeting... stakeholders to present information the impact of an increase on respirator fees on individual respirator... in respirator certification and approval fees on individual respirator manufacturers, the...

  18. Biodecolorization of Reactive Black-5 by a metal and salt tolerant bacterial strain Pseudomonas sp. RA20 isolated from Paharang drain effluents in Pakistan.

    PubMed

    Hussain, Sabir; Maqbool, Zahid; Ali, Shafaqat; Yasmeen, Tahira; Imran, Muhammad; Mahmood, Faisal; Abbas, Farhat

    2013-12-01

    Discharge of untreated azo dyes contaminated textile wastewater into soil and water bodies causes severe contamination. The present study was conducted to isolate dye degrading bacterial strains from a textile industry wastewater carrying drain in the neighborhood of Faisalabad, Pakistan. Seventy six bacterial strains were initially isolated and was screened using liquid mineral salts medium spiked with Reactive Black-5 azo dye. The strain RA20 was found to be the most efficient azo dye degrading bacterial isolate and was identified by amplifying and sequencing its 16S rRNA. Analysis indicated that this strain belonged to genus Pseudomonas and was designated as Pseudomonas sp. RA20. It had the highest decolorization activity at pH 8 and 25 °C incubation temperature under static conditions using yeast extract as an additional C source. This strain was also effective in decolorizing structurally related other reactive dyes including Reactive Orange 16, Reactive Yellow 2 and Reactive Red 120 but with varying efficacy. RA20 decolorized Reactive Black-5 significantly in the presence of up to 30 g L⁻¹ NaCl; however, the decolorization rate was significantly (p≤0.05) reduced beyond this salt concentration. Moreover, this bacterial strain also exhibited moderate tolerance to different heavy metals including zinc (Zn), cadmium (Cd), chromium (Cr), lead (Pb) and copper (Cu). RA20 also decolorized Reactive Black-5 in the presence of a mixture of the selected heavy metals depending upon their concentrations. This study highlights the importance of Pseudomonas sp. RA20 as a prospective biological resource for bioremediation of water and soils contaminated with azo dyes.

  19. A comparison of conventional methods for the quantification of bacterial cells after exposure to metal oxide nanoparticles

    PubMed Central

    2014-01-01

    Background Due to potential interference of nanoparticles on bacterial quantification, there is a challenge to develop a fast, accurate and reproducible method for bacterial quantification. Currently various bacterial quantification methods are used by researchers performing nanoparticles study, but there has been no efficacy evaluation of these methods. Here we study interference of nanoparticles on three most commonly used conventional bacterial quantification methods, including colony counting to determine the colony-forming units (CFU), spectrophotometer method of optical density (OD) measurement, and flow cytometry (FCM). Results Three oxide nanoparticles including ZnO, TiO2, and SiO2 and four bacterial species including Salmonella enterica serovar Newport, Staphylococcus epidermidis, Enterococcus faecalis, and Escherichia coli were included in the test. Results showed that there is no apparent interference of the oxide nanoparticles on quantifications of all four bacterial species by FCM measurement; CFU counting is time consuming, less accurate and not suitable for automation; and the spectrophotometer method using OD measurement was the most unreliable method to quantify and detect the bacteria in the presence of the nanoparticles. Conclusion In summary, FCM measurement proved to be the best method, which is suitable for rapid, accurate and automatic detection of bacteria in the presence of the nanoparticles. PMID:25138641

  20. Respirable quartz exposure at silica flour producers, 1975-1986

    SciTech Connect

    Not Available

    1988-10-01

    A study was conducted on respirable quartz exposures at silica flour producers for the period 1975-1986. In 1979, evaluations were performed at two silica-flour facilities in Illinois for the purpose of determining worker exposure to respirable quartz. It was evident that workers at both sites had a high incidence of silicosis. Continuing with the effort, visits were made to 28 silica-flour producers between 1975 and 1986. A total of 2,175 respirable quartz samples were examined and 52% of these exceeded the Mining Safety and Health Act (MSHA) Permissible Exposure Level (PEL). In 1984, 1985, and 1986, the percentages of samples taken which exceeded the PEL were 44, 46, and 34, respectively. The Recommended Exposure Level (REL) as established in NIOSH for pure respirable quartz limits exposure to a 10-hour time-weighted average level of 0.05mg/m{sup 3}. The percentage of samples of respirable quartz which exceeded this REL for the same time period were 74, 76, and 69, respectively. According to the authors, while the figures since 1979 do show the exposures to be dropping, there were still far more overexposures in this industry than in most other metal and nonmetal commodities. Without greater efforts to meet the levels required, the new cases of silicosis will continue to occur among workers in this industry.

  1. Class 1 integrons in benthic bacterial communities: abundance, association with Tn402-like transposition modules and evidence for coselection with heavy-metal resistance.

    PubMed

    Rosewarne, Carly P; Pettigrove, Vincent; Stokes, Hatch W; Parsons, Yvonne M

    2010-04-01

    The integron/gene cassette system contributes to lateral gene transfer of genetic information in bacterial communities, with gene cassette-encoded proteins potentially playing an important role in adaptation to stress. Class 1 integrons are a particularly important class as they themselves seem to be broadly disseminated among the Proteobacteria and have an established role in the spread of antibiotic resistance genes. The abundance and structure of class 1 integrons in freshwater sediment bacterial communities was assessed through sampling of 30 spatially distinct sites encompassing different substrate and catchment types from the Greater Melbourne Area of Victoria, Australia. Real-time PCR was used to demonstrate that the abundance of intI1 was increased as a result of ecosystem perturbation, indicated by classification of sample locations based on the catchment type and a strong positive correlation with the first principal component factor score, comprised primarily of the heavy metals zinc, mercury, lead and copper. Additionally, the abundance of intI1 at sites located downstream from treated sewage outputs was associated with the percentage contribution of the discharge to the basal flow rate. Characterization of class 1 integrons in bacteria cultured from selected sediment samples identified an association with complete Tn402-like transposition modules, and the potential for coselection of heavy-metal and antibiotic resistance mechanisms in benthic environments.

  2. Surface display of metal fixation motifs of bacterial P1-type ATPases specifically promotes biosorption of Pb(2+) by Saccharomyces cerevisiae.

    PubMed

    Kotrba, Pavel; Ruml, Tomas

    2010-04-01

    Biosorption of metal ions may take place by different passive metal-sequestering processes such as ion exchange, complexation, physical entrapment, and inorganic microprecipitation or by a combination of these. To improve the biosorption capacity of the potential yeast biosorbent, short metal-binding NP peptides (harboring the CXXEE metal fixation motif of the bacterial Pb(2+)-transporting P1-type ATPases) were efficiently displayed and covalently anchored to the cell wall of Saccharomyces cerevisiae. These were fusions to the carboxyl-terminal part of the sexual adhesion glycoprotein alpha-agglutinin (AGalpha1Cp). Compared to yeast cells displaying the anchoring domain only, those having a surface display of NP peptides multiplied their Pb(2+) biosorption capacity from solutions containing a 75 to 300 microM concentration of the metal ion up to 5-fold. The S-type Pb(2+) biosorption isotherms, plus the presence of electron-dense deposits (with an average size of 80 by 240 nm, observed by transmission electron microscopy) strongly suggested that the improved biosorption potential of NP-displaying cells is due to the onset of microprecipitation of Pb species on the modified cell wall. The power of an improved capacity for Pb biosorption was also retained by the isolated cell walls containing NP peptides. Their Pb(2+) biosorption property was insensitive to the presence of a 3-fold molar excess of either Cd(2+) or Zn(2+). These results suggest that the biosorption mechanism can be specifically upgraded with microprecipitation by the engineering of the biosorbent with an eligible metal-binding peptide.

  3. Electrical stimulation to restore respiration.

    PubMed

    Creasey, G; Elefteriades, J; DiMarco, A; Talonen, P; Bijak, M; Girsch, W; Kantor, C

    1996-04-01

    Electrical stimulation has been used for over 25 years to restore breathing to patients with high quadriplegia causing respiratory paralysis and patients with central alveolar hypoventilation. Three groups have developed electrical pacing systems for long-term support of respiration in humans. These systems consist of electrodes implanted on the phrenic nerves, connected by leads to a stimulator implanted under the skin, and powered and controlled from a battery-powered transmitter outside the body. The systems differ principally in the electrode design and stimulation waveform. Approximately 1,000 people worldwide have received one of the three phrenic pacing devices, most with strongly positive results: reduced risk of tracheal problems and chronic infection, the ability to speak and smell more normally, reduced risk of accidental interruption of respiration, greater independence, and reduced costs and time for ventilatory care. For patients with partial lesions of the phrenic nerves, intercostal muscle stimulation may supplement respiration.

  4. Hospital Effluents Are One of Several Sources of Metal, Antibiotic Resistance Genes, and Bacterial Markers Disseminated in Sub-Saharan Urban Rivers

    PubMed Central

    Laffite, Amandine; Kilunga, Pitchouna I.; Kayembe, John M.; Devarajan, Naresh; Mulaji, Crispin K.; Giuliani, Gregory; Slaveykova, Vera I.; Poté, John

    2016-01-01

    Data concerning the occurrence of emerging biological contaminants such as antibiotic resistance genes (ARGs) and fecal indicator bacteria (FIB) in aquatic environments in Sub-Saharan African countries is limited. On the other hand, antibiotic resistance remains a worldwide problem which may pose serious potential risks to human and animal health. Consequently, there is a growing number of reports concerning the prevalence and dissemination of these contaminants into various environmental compartments. Sediments provide the opportunity to reconstruct the pollution history and evaluate impacts so this study investigates the abundance and distribution of toxic metals, FIB, and ARGs released from hospital effluent wastewaters and their presence in river sediments receiving systems. ARGs (blaTEM, blaCTX-M, blaSHV, and aadA), total bacterial load, and selected bacterial species FIB [Escherichia coli, Enterococcus (ENT)] and species (Psd) were quantified by targeting species specific genes using quantitative PCR (qPCR) in total DNA extracted from the sediments recovered from 4 hospital outlet pipes (HOP) and their river receiving systems in the City of Kinshasa in the Democratic Republic of the Congo. The results highlight the great concentration of toxic metals in HOP, reaching the values (in mg kg−1) of 47.9 (Cr), 213.6 (Cu), 1434.4 (Zn), 2.6 (Cd), 281.5 (Pb), and 13.6 (Hg). The results also highlight the highest (P < 0.05) values of 16S rRNA, FIB, and ARGs copy numbers in all sampling sites including upstream (control site), discharge point, and downstream of receiving rivers, indicating that the hospital effluent water is not an exclusive source of the biological contaminants entering the urban rivers. Significant correlation were observed between (i) all analyzed ARGs and total bacterial load (16S rRNA) 0.51 to 0.72 (p < 0.001, n = 65); (ii) ARGs (except blaTEM) and FIB and Psd 0.57 < r < 0.82 (p < 0.001, n = 65); and (iii) ARGs (except blaTEM) and toxic metals

  5. Hospital Effluents Are One of Several Sources of Metal, Antibiotic Resistance Genes, and Bacterial Markers Disseminated in Sub-Saharan Urban Rivers.

    PubMed

    Laffite, Amandine; Kilunga, Pitchouna I; Kayembe, John M; Devarajan, Naresh; Mulaji, Crispin K; Giuliani, Gregory; Slaveykova, Vera I; Poté, John

    2016-01-01

    Data concerning the occurrence of emerging biological contaminants such as antibiotic resistance genes (ARGs) and fecal indicator bacteria (FIB) in aquatic environments in Sub-Saharan African countries is limited. On the other hand, antibiotic resistance remains a worldwide problem which may pose serious potential risks to human and animal health. Consequently, there is a growing number of reports concerning the prevalence and dissemination of these contaminants into various environmental compartments. Sediments provide the opportunity to reconstruct the pollution history and evaluate impacts so this study investigates the abundance and distribution of toxic metals, FIB, and ARGs released from hospital effluent wastewaters and their presence in river sediments receiving systems. ARGs (bla TEM, bla CTX-M, bla SHV, and aadA), total bacterial load, and selected bacterial species FIB [Escherichia coli, Enterococcus (ENT)] and species (Psd) were quantified by targeting species specific genes using quantitative PCR (qPCR) in total DNA extracted from the sediments recovered from 4 hospital outlet pipes (HOP) and their river receiving systems in the City of Kinshasa in the Democratic Republic of the Congo. The results highlight the great concentration of toxic metals in HOP, reaching the values (in mg kg(-1)) of 47.9 (Cr), 213.6 (Cu), 1434.4 (Zn), 2.6 (Cd), 281.5 (Pb), and 13.6 (Hg). The results also highlight the highest (P < 0.05) values of 16S rRNA, FIB, and ARGs copy numbers in all sampling sites including upstream (control site), discharge point, and downstream of receiving rivers, indicating that the hospital effluent water is not an exclusive source of the biological contaminants entering the urban rivers. Significant correlation were observed between (i) all analyzed ARGs and total bacterial load (16S rRNA) 0.51 to 0.72 (p < 0.001, n = 65); (ii) ARGs (except bla TEM) and FIB and Psd 0.57 < r < 0.82 (p < 0.001, n = 65); and (iii) ARGs (except bla TEM) and toxic

  6. [Dark respiration of terrestrial vegetations: a review].

    PubMed

    Sun, Jin-Wei; Yuan, Feng-Hui; Guan, De-Xin; Wu, Jia-Bing

    2013-06-01

    The source and sink effect of terrestrial plants is one of the hotspots in terrestrial ecosystem research under the background of global change. Dark respiration of terrestrial plants accounts for a large fraction of total net carbon balance, playing an important role in the research of carbon cycle under global climate change. However, there is little study on plant dark respiration. This paper summarized the physiological processes of plant dark respiration, measurement methods of the dark respiration, and the effects of plant biology and environmental factors on the dark respiration. The uncertainty of the dark respiration estimation was analyzed, and the future hotspots of related researches were pointed out.

  7. Soil Respiration - A Geochemist's Perspective

    NASA Astrophysics Data System (ADS)

    Van Cappellen, P.

    2015-12-01

    Soil biogeochemistry is largely driven by the decomposition of plant-derived organic matter by soil microorganisms. In addition to its effects on water quality and soil fertility, the decomposition of organic matter couples soil processes to climate, via the production and emission of greenhouse gases. In this presentation, I will review a number of key factors controlling the rate of decomposition of soil organic matter. In particular, I will discuss the importance of the spatial and temporal variations in redox conditions as drivers of soil respiration. The discussion will highlight the limitations of current soil respiration models based on partitioning soil organic matter in a finite number of pools of different degradability. In order to predict the sensitivity of soil respiration to anthropogenic pressures - including climate warming - it is crucial to relate the apparent degradability of soil organic matter to the geochemical and hydrological dynamics of the soil environment. Overall, there remains much scope for geochemists to help develop more robust, process-based, representations of soil respiration in global carbon models and climate predictions.

  8. The influence of bacterial-humus preparations on the biological activity of soils polluted with oil products and heavy metals

    NASA Astrophysics Data System (ADS)

    Kozlova, E. N.; Stepanov, A. L.; Lysak, L. V.

    2015-04-01

    The influence of bacterial-humus preparations based on Gumigel ( Agrosintez Company) on the biological activity of soddy-podzolic soil polluted with Pb(CH3COO)2 and gasoline was studied in a model experiment. Some indicators of biological activity are shown to depend on soil pollution to different extents. The process of nitrogen fixation and the activity of dehydrogenase and phosphatase were mostly inhibited by Pb(CH3COO)2 and gasoline. Gasoline compared to Pb(CH3COO)2 inhibited the soil biological activity to a greater extent. The bacterial-humus preparations exerted a significant positive effect on the biological activity of the polluted soils manifested in the increase of the total number of bacteria and of the enzyme activity (1.5-5.0 times), in the intensification of nitrogen fixation and denitrification (3-8 times), as well as in the increase in the biomass of the plants grown (1.5-2.0 times). The application of bacterial suspensions of pure cultures or the microbial complex without the preparations of humic acids did not always give a positive effect.

  9. Ecology and Biotechnology of Selenium-Respiring Bacteria

    PubMed Central

    2015-01-01

    SUMMARY In nature, selenium is actively cycled between oxic and anoxic habitats, and this cycle plays an important role in carbon and nitrogen mineralization through bacterial anaerobic respiration. Selenium-respiring bacteria (SeRB) are found in geographically diverse, pristine or contaminated environments and play a pivotal role in the selenium cycle. Unlike its structural analogues oxygen and sulfur, the chalcogen selenium and its microbial cycling have received much less attention by the scientific community. This review focuses on microorganisms that use selenate and selenite as terminal electron acceptors, in parallel to the well-studied sulfate-reducing bacteria. It overviews the significant advancements made in recent years on the role of SeRB in the biological selenium cycle and their ecological role, phylogenetic characterization, and metabolism, as well as selenium biomineralization mechanisms and environmental biotechnological applications. PMID:25631289

  10. Heavy metal impact on bacterial biomass based on DNA analyses and uptake by wild plants in the abandoned copper mine soils.

    PubMed

    Guo, Zhaohui; Megharaj, Mallavarapu; Beer, Michael; Ming, Hui; Mahmudur Rahman, Mohammad; Wu, Weihong; Naidu, Ravi

    2009-09-01

    The metals contamination in surface soils and their accumulation in wild plants from the abandoned Burra and Kapunda copper mines located in South Australia were assessed, and the predominant bacterial diversity in the contaminated surface soils from these two abandoned copper mine sites were evaluated through polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis. The results showed the average concentration of Cu in soils was 3821.59 mg/kg while wild plants accumulated up to 173.44 mg/kg. The concentration of Cu in shoots of spear grass (Stipa uitida) and berry saltbush (Afriplex semibaccata) was higher than that of roots. The concentration of total and extractable As, Cd, Cu and Pb in soils slightly correlated with of these elements in the corresponding wild plants. The toxicity of Cu in heavily contaminated soils impacted on the quantities of specific microbial populations and no significant change in the microbial diversity of highly contaminated soils.

  11. Assessment of metal and bacterial contamination in cultivated fish and impact on human health for residents living in the Mekong Delta.

    PubMed

    Chanpiwat, Penradee; Sthiannopkao, Suthipong; Widmer, Kenneth; Himeno, Seiichiro; Miyataka, Hideki; Vu, Ngoc-Ut; Tran, Van-Viet; Pham, Thi-Tuyet-Ngan

    2016-11-01

    Fish is the main source of animal protein and micronutrients for inhabitants in the lower Mekong River basin. Consumption of fish in the basin ranges from 41 to 51 kg capita(-1) year(-1). Thus, concerns of human health impacts caused by daily intake of metals contained in fish, and the incidence of bacterial contamination from Listeria and Escherichia coli have been raised. This study was conducted to 1) determine concentrations of metals, fecal indicator organisms, and Listeria spp. in cultivated common diet fish, and 2) assess human health risks as results of fish consumption on a daily basis. The results showed significant impacts of metal accumulation in fish especially from the intensive aquaculture. Chemical use to promote the rapid allometric growth of fish was expected to be the explanation for this finding. Concentrations of metals contained in different fish species were not statistically different with the exceptions of Na, Mn, and Zn. This might be due to the mobility of elements in aquaculture farms. Listeria and E. coli log CFU/g were 1.36 ± 0.11 (standard error) and 1.57 ± 0.1 s.e., respectively with higher counts observed in samples collected in market sites. Lastly, for human health risk assessment via fish consumption, it was found that hazard quotients of consuming As, Cu, and Zn contained in all fish species could contribute adverse health effects to the local residents (hazard quotients higher than 1). Therefore, risk management measures must be promoted and implemented in all study areas to reduce potential risks to local Vietnamese residents.

  12. A multi-channel bioluminescent bacterial biosensor for the on-line detection of metals and toxicity. Part II: technical development and proof of concept of the biosensor.

    PubMed

    Charrier, Thomas; Chapeau, Cyrille; Bendria, Loubna; Picart, Pascal; Daniel, Philippe; Thouand, Gérald

    2011-05-01

    This research study deals with the on-line detection of heavy metals and toxicity within the context of environmental pollution monitoring. It describes the construction and the proof of concept of a multi-channel bioluminescent bacterial biosensor in immobilized phase: Lumisens3. This new versatile device, designed for the non-stop analysis of water pollution, enables the insertion of any bioluminescent strains (inducible or constitutive), immobilized in a multi-well removable card. The technical design of Lumisens3 has benefited from both a classical and a robust approach and includes four main parts: (1) a dedicated removable card contains 64 wells, 3 mm in depth, arranged in eight grooves within which bacteria are immobilized, (2) this card is incubated on a Pelletier block with a CCD cooled camera on top for bioluminescence monitoring, (3) a fluidic network feeds the card with the sample to be analyzed and finally (4) a dedicated computer interface, BIOLUX 1.0, controls all the elements of the biosensor, allowing it to operate autonomously. The proof of concept of this biosensor was performed using a set of four bioluminescent bacteria (Escherichia coli DH1 pBzntlux, pBarslux, pBcoplux, and E. coli XL1 pBfiluxCDABE) in the online detection of CdCl(2) 0.5 μM and As(2)O(3) 5 μM from an influent. When considering metals individually, the "fingerprints" from the biosensor were as expected. However, when metals were mixed together, cross reaction and synergistic effects were detected. This biosensor allowed us to demonstrate the simultaneous on-line cross detection of one or several heavy metals as well as the measurement of the overall toxicity of the sample.

  13. Respirable bacteriophages for the treatment of bacterial lung infections.

    PubMed

    Hoe, Susan; Semler, Diana D; Goudie, Amanda D; Lynch, Karlene H; Matinkhoo, Sadaf; Finlay, Warren H; Dennis, Jonathan J; Vehring, Reinhard

    2013-12-01

    This review article discusses the development of respiratory therapeutics containing bacteriophages indicated for lung infections, specifically those that have become increasingly difficult to treat because of antibiotic resistance. Recent achievements and remaining problems are presented for each step necessary to develop a bacteriophage-containing dosage form for respiratory drug delivery, including selection of appropriate bacteriophages for therapy, processing and purification of phage preparations, formulation into a stable, solid dosage form, and delivery device selection. Safety and efficacy studies in animals and human subjects are also reviewed.

  14. Metal-assisted polyatomic SIMS and laser desorption/ionization for enhanced small molecule imaging of bacterial biofilms

    PubMed Central

    Dunham, Sage J. B.; Comi, Troy J.; Ko, Kyungwon; Li, Bin; Baig, Nameera F.; Morales-Soto, Nydia; Shrout, Joshua D.; Bohn, Paul W.; Sweedler, Jonathan V.

    2016-01-01

    Mass spectrometry imaging (MSI) has become an important analytical tool for many sectors of science and medicine. As the application of MSI expands into new areas of inquiry, existing methodologies must be adapted and improved to meet emerging challenges. Particularly salient is the need for small molecule imaging methods that are compatible with complex multicomponent systems, a challenge that is amplified by the effects of analyte migration and matrix interference. With a focus on microbial biofilms from the opportunistic pathogen Pseudomonas aeruginosa, the relative advantages of two established microprobe-based MSI techniques—polyatomic secondary ion mass spectrometry (SIMS) and laser desorption/ionization—are compared, with emphasis on exploring the effect of surface metallization on small molecule imaging. A combination of qualitative image comparison and multivariate statistical analysis demonstrates that sputtering microbial biofilms with a 2.5 nm layer of gold selectively enhances C60-SIMS ionization for several molecular classes including rhamnolipids and 2-alkyl-quinolones. Metallization also leads to the reduction of in-source fragmentation and subsequent ionization of media-specific background polymers, which improves spectral purity and image quality. These findings show that the influence of metallization upon ionization is strongly dependent on both the surface architecture and the analyte class, and further demonstrate that metal-assisted C60-SIMS is a viable method for small molecule imaging of intact molecular ions in complex biological systems. PMID:26945568

  15. Metal-assisted polyatomic SIMS and laser desorption/ionization for enhanced small molecule imaging of bacterial biofilms.

    PubMed

    Dunham, Sage J B; Comi, Troy J; Ko, Kyungwon; Li, Bin; Baig, Nameera F; Morales-Soto, Nydia; Shrout, Joshua D; Bohn, Paul W; Sweedler, Jonathan V

    2016-06-04

    Mass spectrometry imaging (MSI) has become an important analytical tool for many sectors of science and medicine. As the application of MSI expands into new areas of inquiry, existing methodologies must be adapted and improved to meet emerging challenges. Particularly salient is the need for small molecule imaging methods that are compatible with complex multicomponent systems, a challenge that is amplified by the effects of analyte migration and matrix interference. With a focus on microbial biofilms from the opportunistic pathogen Pseudomonas aeruginosa, the relative advantages of two established microprobe-based MSI techniques-polyatomic secondary ion mass spectrometry (SIMS) and laser desorption/ionization-are compared, with emphasis on exploring the effect of surface metallization on small molecule imaging. A combination of qualitative image comparison and multivariate statistical analysis demonstrates that sputtering microbial biofilms with a 2.5 nm layer of gold selectively enhances C60-SIMS ionization for several molecular classes including rhamnolipids and 2-alkyl-quinolones. Metallization also leads to the reduction of in-source fragmentation and subsequent ionization of media-specific background polymers, which improves spectral purity and image quality. These findings show that the influence of metallization upon ionization is strongly dependent on both the surface architecture and the analyte class, and further demonstrate that metal-assisted C60-SIMS is a viable method for small molecule imaging of intact molecular ions in complex biological systems.

  16. Antimicrobial Applications of Transition Metal Complexes of Benzothiazole Based Terpolymer: Synthesis, Characterization, and Effect on Bacterial and Fungal Strains

    PubMed Central

    Riswan Ahamed, Mohamed A.; Azarudeen, Raja S.; Kani, N. Mujafar

    2014-01-01

    Terpolymer of 2-amino-6-nitro-benzothiazole-ethylenediamine-formaldehyde (BEF) has been synthesized and characterized by elemental analysis and various spectral techniques like FTIR, UV-Visible, and 1H and 13C-NMR. The terpolymer metal complexes were prepared with Cu2+, Ni2+, and Zn2+ metal ions using BEF terpolymer as a ligand. The complexes have been characterized by elemental analysis and IR, UV-Visible, ESR, 1H-NMR, and 13C-NMR spectral studies. Gel permeation chromatography was used to determine the molecular weight of the ligand. The surface features and crystalline behavior of the ligand and its complexes were analyzed by scanning electron microscope and X-ray diffraction methods. Thermogravimetric analysis was used to analyze the thermal stability of the ligand and its metal complexes. Kinetic parameters such as activation energy (Ea) and order of reaction (n) and thermodynamic parameters, namely, ΔS, ΔF, S*, and Z, were calculated using Freeman-Carroll (FC), Sharp-Wentworth (SW), and Phadnis-Deshpande (PD) methods. Thermal degradation model of the terpolymer and its metal complexes was also proposed using PD method. Biological activities of the ligand and its complexes were tested against Shigella sonnei, Escherichia coli, Klebsiella species, Staphylococcus aureus, Bacillus subtilis, and Salmonella typhimurium bacteria and Aspergillus flavus, Aspergillus niger, Penicillium species, Candida albicans, Cryptococcus neoformans, Mucor species fungi. PMID:25298760

  17. Impact of Mining Waste on Airborne Respirable Particulates in Northeastern Oklahoma, United States

    EPA Science Inventory

    Atmospheric dispersion of particles from mine waste is potentially an important route of human exposure to metals in communities close to active and abandoned mining areas. In this study, we assessed sources of mass and metal concentrations in two size fractions of respirable pa...

  18. [Research advances in forest soil respiration].

    PubMed

    Luan, Junwei; Xiang, Chenghua; Luo, Zongshi; Gong, Yuanbo

    2006-12-01

    Among the methods of measuring forest soil respiration, infrared CO2 analysis is the optimal one so far. Comparing with empirical model, the process-based model in simulating the production and transportation of soil CO2 has the advantage of considering the biological and physical processes of soil respiration. Generally, soil respiration is positively correlated with soil temperature and moisture, but there are still many uncertainties about the relationships between soil respiration and forest management activities such as firing, cutting, and fertilization. The relationships of soil respiration with vegetation type and soil microbial biomass, as well as the spatial heterogeneity of soil respiration, are the hotspots in recent researches. Some issues and future development in forest soil respiration research were discussed in this paper.

  19. Mesoporous silica nanoparticles inhibit cellular respiration.

    PubMed

    Tao, Zhimin; Morrow, Matthew P; Asefa, Tewodros; Sharma, Krishna K; Duncan, Cole; Anan, Abhishek; Penefsky, Harvey S; Goodisman, Jerry; Souid, Abdul-Kader

    2008-05-01

    We studied the effect of two types of mesoporous silica nanoparticles, MCM-41 and SBA-15, on mitochondrial O 2 consumption (respiration) in HL-60 (myeloid) cells, Jurkat (lymphoid) cells, and isolated mitochondria. SBA-15 inhibited cellular respiration at 25-500 microg/mL; the inhibition was concentration-dependent and time-dependent. The cellular ATP profile paralleled that of respiration. MCM-41 had no noticeable effect on respiration rate. In cells depleted of metabolic fuels, 50 microg/mL SBA-15 delayed the onset of glucose-supported respiration by 12 min and 200 microg/mL SBA-15 by 34 min; MCM-41 also delayed the onset of glucose-supported respiration. Neither SBA-15 nor MCM-41 affected cellular glutathione. Both nanoparticles inhibited respiration of isolated mitochondria and submitochondrial particles.

  20. MICROBIAL COLONIZATION, RESPIRATION, AND BREAKDOWN OF MAPLE LEAVES ALONG A STREAM-MARSH CONTINUUM

    EPA Science Inventory

    Breakdown rates, macroinvertebrate and bacterial colonization, and microbial respiration were measured on decaying maple (Acer saccharum) leaves at three sites along a stream-marsh continuum. Breakdown rates (-k+-SE) were 0.0284+-0.0045 d-1 for leaves in a high-gradient, non-tida...

  1. MICROBIAL COLONIZATION, RESPIRATION AND BREAKDOWN OF MAPLE LEAVES ALONG A STREAM-MARSH CONTINUUM

    EPA Science Inventory

    Breakdown rates, macroinvertebrate and bacterial colonization, and microbial respiration were measured on decaying maple leaves at three sites along a stream-marsh continuum. Breakdown rates were 0.0284+/-0.0045 d-1 for leaves in a high-gradient, non-tidal stream; 0.0112 +/- 0.0...

  2. The Effect of Graphene Oxide/Reduced Graphene Oxide Functionalized with Metal Nanoparticles on Dermal, Bacterial, and Cancerous/Non-Cancerous Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Chen, Arthur; Rafailovich, Miriam; Simon, Marcia; Isseroff, Rebecca; Walker, Stephen; Cho, Jae Hee; Jerome, John

    Graphene and metal nanoparticles are permeating health products but their effects individually and combined on human skin are uncertain. This project studied the effect of graphene oxide (GO) and reduced graphene oxide (rGO) functionalized with Ag or Pt nanoparticles (Ag/PtNPs) on bacterial, dermal (DFBC's), and cancerous (SCC13's) and non-cancerous (DO33's) epidermal cells. GO was functionalized with AgNPs or PtNPs, forming metallized-GO; then reduced with NaBH4. FTIR and SEM confirmed the synthesis and composition. Confocal and SEM showed that Ag-rGO, depending on nanoparticle size, killed either S. Aureus or K. Pneumoniae, while Pt-rGO and rGO had no effect. Rhodamine staining revealed that Ag-rGO was very toxic to SCC13's, but only slightly toxic to DO33's. Pt-rGO and rGO had little effect on SCC13's and DO33's. At high concentrations all GO solutions inhibited cell growth but were not cytotoxic. Optical microscopy displayed that every GO/rGO solution adhered to DFBC's and influenced their direction of growth, making GO/rGO potentially applicable for wound healing. Garcia MRSEC Polymers at Engineered Interfaces.

  3. Impact of Metal Pollution and Thlaspi caerulescens Growth on Soil Microbial Communities▿

    PubMed Central

    Epelde, Lur; Becerril, José M.; Kowalchuk, George A.; Deng, Ye; Zhou, Jizhong; Garbisu, Carlos

    2010-01-01

    Soil microorganisms drive critical functions in plant-soil systems. As such, various microbial properties have been proposed as indicators of soil functioning, making them potentially useful in evaluating the recovery of polluted soils via phytoremediation strategies. To evaluate microbial responses to metal phytoextraction using hyperaccumulators, a microcosm experiment was carried out to study the impacts of Zn and/or Cd pollution and Thlaspi caerulescens growth on key soil microbial properties: basal respiration; substrate-induced respiration (SIR); bacterial community structure as assessed by PCR-denaturing gradient gel electrophoresis (DGGE); community sizes of total bacteria, ammonia-oxidizing bacteria, and chitin-degrading bacteria as assessed by quantitative PCR (Q-PCR); and functional gene distributions as determined by functional gene arrays (GeoChip). T. caerulescens proved to be suitable for Zn and Cd phytoextraction: shoots accumulated up to 8,211 and 1,763 mg kg−1 (dry weight [DW]) of Zn and Cd, respectively. In general, Zn pollution led to decreased levels of basal respiration and ammonia-oxidizing bacteria, while T. caerulescens growth increased the values of substrate-induced respiration (SIR) and total bacteria. In soils polluted with 1,000 mg Zn kg−1 and 250 mg Cd kg−1 (DW), soil bacterial community profiles and the distribution of microbial functional genes were most affected by the presence of metals. Metal-polluted and planted soils had the highest percentage of unique genes detected via the GeoChip (35%). It was possible to track microbial responses to planting with T. caerulescens and to gain insight into the effects of metal pollution on soilborne microbial communities. PMID:20935131

  4. Respirable concrete dust--silicosis hazard in the construction industry.

    PubMed

    Linch, Kenneth D

    2002-03-01

    Concrete is an extremely important part of the infrastructure of modern life and must be replaced as it ages. Many of the methods of removing, repairing, or altering existing concrete structures have the potential for producing vast quantities of respirable dust. Since crystalline silica in the form of quartz is a major component of concrete, airborne respirable quartz dust may be produced during construction work involving the disturbance of concrete, thereby producing a silicosis hazard for exposed workers. Silicosis is a debilitating and sometimes fatal lung disease resulting from breathing microscopic particles of crystalline silica. Between 1992 and 1998, the National Institute for Occupational Safety and Health (NIOSH) made visits to construction projects where concrete was being mechanically disturbed in order to obtain data concerning respirable crystalline silica dust exposures. The construction activities studied included: abrasive blasting, concrete pavement sawing and drilling, and asphalt/concrete milling. Air samples of respirable dust were obtained using 10-mm nylon cyclone pre-separators, 37-mm polyvinyl chloride (PVC) filters, and constant-flow pumps calibrated at 1.7 L/min. In addition, high-volume respirable dust samples were obtained on 37-mm PVC filters using 1/2" metal cyclones (Sensidyne model 18) and constant-flow pumps calibrated at 9.0 L/min. Air sample analysis included total weight gain by gravimetric analysis according to NIOSH Analytical Method 600 and respirable crystalline silica (quartz and cristobalite) using x-ray diffraction, as per NIOSH Analytical Method 7500. For abrasive blasting of concrete structures, the respirable crystalline silica (quartz) concentration ranged up to 14.0 mg/m3 for a 96-minute sample resulting in an eight-hour time-weighted average (TWA) of 2.8 mg/m3. For drilling concrete highway pavement the respirable quartz concentrations ranged up to 4.4 mg/m3 for a 358-minute sample, resulting in an eight-hour TWA

  5. Validation of Respirator Filter Efficacy

    DTIC Science & Technology

    2007-11-02

    A 1980’ s unpublished ECBC report presented calculations of the required degree of filtration needed to protect a respirator wearer from a given...tested against three bioaerosols ranging in size from 0.69 – 0.88 µm aerodynamic diameter (Mycobacterium abscessus , staphylococcus epidermidis , and 10...and penetration beginning with 99.97% @ 0.3 µm for 10 cm/ s face velocity, a fiber diameter of 0.9 µm, a 0.07 solidity, a 0.3 mm media thickness, and

  6. A Versatile Strategy for Production of Membrane Proteins with Diverse Topologies: Application to Investigation of Bacterial Homologues of Human Divalent Metal Ion and Nucleoside Transporters.

    PubMed

    Ma, Cheng; Hao, Zhenyu; Huysmans, Gerard; Lesiuk, Amelia; Bullough, Per; Wang, Yingying; Bartlam, Mark; Phillips, Simon E; Young, James D; Goldman, Adrian; Baldwin, Stephen A; Postis, Vincent L G

    2015-01-01

    Membrane proteins play key roles in many biological processes, from acquisition of nutrients to neurotransmission, and are targets for more than 50% of current therapeutic drugs. However, their investigation is hampered by difficulties in their production and purification on a scale suitable for structural studies. In particular, the nature and location of affinity tags introduced for the purification of recombinant membrane proteins can greatly influence their expression levels by affecting their membrane insertion. The extent of such effects typically depends on the transmembrane topologies of the proteins, which for proteins of unknown structure are usually uncertain. For example, attachment of oligohistidine tags to the periplasmic termini of membrane proteins often interferes with folding and drastically impairs expression in Escherichia coli. To circumvent this problem we have employed a novel strategy to enable the rapid production of constructs bearing a range of different affinity tags compatible with either cytoplasmic or periplasmic attachment. Tags include conventional oligohistidine tags compatible with cytoplasmic attachment and, for attachment to proteins with a periplasmic terminus, either tandem Strep-tag II sequences or oligohistidine tags fused to maltose binding protein and a signal sequence. Inclusion of cleavage sites for TEV or HRV-3C protease enables tag removal prior to crystallisation trials or a second step of purification. Together with the use of bioinformatic approaches to identify members of membrane protein families with topologies favourable to cytoplasmic tagging, this has enabled us to express and purify multiple bacterial membrane transporters. To illustrate this strategy, we describe here its use to purify bacterial homologues of human membrane proteins from the Nramp and ZIP families of divalent metal cation transporters and from the concentrative nucleoside transporter family. The proteins are expressed in E. coli in a

  7. Soil respiration under climate warming: differential response of heterotrophic and autotrophic respiration.

    PubMed

    Wang, Xin; Liu, Lingli; Piao, Shilong; Janssens, Ivan A; Tang, Jianwu; Liu, Weixing; Chi, Yonggang; Wang, Jing; Xu, Shan

    2014-10-01

    Despite decades of research, how climate warming alters the global flux of soil respiration is still poorly characterized. Here, we use meta-analysis to synthesize 202 soil respiration datasets from 50 ecosystem warming experiments across multiple terrestrial ecosystems. We found that, on average, warming by 2 °C increased soil respiration by 12% during the early warming years, but warming-induced drought partially offset this effect. More significantly, the two components of soil respiration, heterotrophic respiration and autotrophic respiration showed distinct responses. The warming effect on autotrophic respiration was not statistically detectable during the early warming years, but nonetheless decreased with treatment duration. In contrast, warming by 2 °C increased heterotrophic respiration by an average of 21%, and this stimulation remained stable over the warming duration. This result challenged the assumption that microbial activity would acclimate to the rising temperature. Together, our findings demonstrate that distinguishing heterotrophic respiration and autotrophic respiration would allow us better understand and predict the long-term response of soil respiration to warming. The dependence of soil respiration on soil moisture condition also underscores the importance of incorporating warming-induced soil hydrological changes when modeling soil respiration under climate change.

  8. Respirators: Supervisors Self-Study #43442

    SciTech Connect

    Chochoms, Michael

    2016-04-20

    This course, Respirators: Supervisors Self-Study (#43442), addresses training requirements for supervisors of respirator wearers as specified by the American National Standard Institute (ANSI) Standard for Respiratory Protection, ANSI Z88.2, and as incorporated by reference in the Department of Energy (DOE) Worker Health and Safety Rule, 10 Code of Federal Regulations (CFR) 851. This course also presents the responsibilities of supervisors of respirator wearers at Los Alamos National Laboratory (LANL).

  9. An evaluation of respirator maintenance requirements.

    PubMed

    Brosseau, L M; Traubel, K

    1997-03-01

    A telephone survey was developed as part of a pilot study to evaluate the inspection, cleaning, maintenance, and storage aspects of respirator protection programs (RPP). Regulations and consensus standards such as those published by the Occupational Safety and Health Administration in the Code of Federal Regulations (CFR) or the American National Standards Institute (ANSI) require or recommend that RPP contain elements that ensure that the respirators provide proper protection. A great deal of research has been done to evaluate the effectiveness of new respirators; however, little research has been conducted to evaluate how respirators behave over time in real industrial settings Respirator inspection, cleaning, maintenance, and storage are significant factors in determining how well a respirator continues to perform. The telephone survey was developed by reviewing the requirements and recommendations of CFR 1910.134 and ANSI Z88.2-1980. Approximately 30 companies were selected based on their use of negative air-purifying respirators. Most of the companies represented the hardgoods manufacturing or service industries. Although the majority of companies were meeting requirements, responses indicated that the following improvements in RPP were necessary: (1) inspection of all respirator parts should be carried out before and after each use, (2) replacement parts should be made readily available on site, (3) regular cleaning should be performed, and (4) more hands-on practice with respirators and their maintenance should be incorporated into training sessions.

  10. Respirator selection for clandestine methamphetamine laboratory investigation.

    PubMed

    Nelson, Gary O; Bronder, Gregory D; Larson, Scott A; Parker, Jay A; Metzler, Richard W

    2012-01-01

    First responders to illicit drug labs may not always have SCBA protection available. Air-purifying respirators using organic vapor cartridges with P-100 filters may not be sufficient. It would be better to use a NIOSH-approved CBRN respirator with its required multi-purpose cartridge system, which includes a P-100 filter. This would remove all the primary drug lab contaminants—organic vapors, acid gases, ammonia, phosphine, iodine, and airborne meth particulates. To assure the proper selection and use of a respirator, it is recommended that the contaminants present be identified and quantified and the OSHA 29 CFR 1910.134 respirator protection program requirements followed.

  11. Measuring aerobic respiration in stream ecosystems using the resazurin-resorufin system

    NASA Astrophysics Data System (ADS)

    GonzáLez-Pinzón, Ricardo; Haggerty, Roy; Myrold, David D.

    2012-09-01

    The use of smart tracers to study hydrologic systems is becoming more widespread. Smart tracers are compounds that irreversibly react in the presence of a process or condition under investigation. Resazurin (Raz) is a smart tracer that undergoes an irreversible reduction to resorufin (Rru) in the presence of cellular metabolic activity. We quantified the relationship between the transformation of Raz and aerobic bacterial respiration in pure culture experiments using two obligate aerobes and two facultative anaerobes, and in colonized surface and shallow (<10 cm) hyporheic sediments using reach-scale experiments. We found that the transformation of Raz to Rru was nearly perfectly (minr2 = 0.986), positively correlated with aerobic microbial respiration in all experiments. These results suggest that Raz can be used as a surrogate to measure respiration in situ and in vivoat different spatial scales, thus providing an alternative to investigate mechanistic controls of solute transport and stream metabolism on nutrient processing. Lastly, a comparison of respiration and mass-transfer rates in streams suggests that field-scale respiration is controlled by the slower of respiration and mass transfer, highlighting the need to understand both biogeochemistry and physics in stream ecosystems.

  12. Impact assessment of respirable suspended particulate matter from diesel generator sets used for pumping station.

    PubMed

    Talwar, B; Pipalatkar, P; Gajghate, D G; Nema, P

    2010-10-01

    Prediction of respirable suspended particulate matter impacts of diesel generator sets used for pumping station has been made using meteorological data, information on stack characteristics and emission rate, baseline ambient particulate matter and Industrial Source Complex Short Term (ISCST-3) model. It is observed that particulate matter emission from pumping station-S workplace diesel generator sets ranged from 2.4 to 436.5 mg Nm⁻³ and while at pumping station-C, it ranged from 23.2 to 186.5 mg Nm⁻³. The predicted and ambient respirable suspended particulate matter concentrations are below the national air quality standard for respirable suspended particulate matter in a mixed industrial area. Metals contents in respirable suspended particulate matter indicate the origin of crustal and mobile sources. Therefore, the impact of diesel generator sets used for pumping of crude oil on local air quality would be acceptable.

  13. Bacterial and cell-free production of APP671-726 containing amyloid precursor protein transmembrane and metal-binding domains.

    PubMed

    Bocharova, O V; Urban, A S; Nadezhdin, K D; Bocharov, E V; Arseniev, A S

    2013-11-01

    More than half of the mutations associated with familiar Alzheimer's disease have been found in the transmembrane domain of amyloid precursor protein (APP). These pathogenic mutations presumably influence the APP transmembrane domain structural and dynamic properties and result in its conformational change or/and lateral dimerization. Despite much data about the pathogenesis of Alzheimer's disease, the initial steps of the pathogenesis remain unclear so far. For the investigation of the molecular basis of Alzheimer's disease, we selected amyloid precursor protein fragment APP671-726 containing the transmembrane and metal-binding domains. This fragment is the substrate of the γ-secretase complex whose abnormal activity leads to the formation of amyloidogenic Aβ42 peptides. This work for the first time describes a highly effective cell-free APP671-726 production method and improved method of bacterial synthesis. Both methods yield milligram quantities of isotope-labeled protein for structural study by high resolution NMR spectroscopy in membrane mimicking milieus.

  14. Qualitative Alterations of Bacterial Metabolome after Exposure to Metal Nanoparticles with Bactericidal Properties: A Comprehensive Workflow Based on (1)H NMR, UHPLC-HRMS, and Metabolic Databases.

    PubMed

    Chatzimitakos, Theodoros G; Stalikas, Constantine D

    2016-09-02

    Metal nanoparticles (NPs) have proven to be more toxic than bulk analogues of the same chemical composition due to their unique physical properties. The NPs, lately, have drawn the attention of researchers because of their antibacterial and biocidal properties. In an effort to shed light on the mechanism through which the bacteria elimination is achieved and the metabolic changes they undergo, an untargeted metabolomic fingerprint study was carried out on Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria species. The (1)H NMR spectroscopy, in conjunction with high resolution mass-spectrometry (HRMS) and an unsophisticated data processing workflow were implemented. The combined NMR/HRMS data, supported by an open-access metabolomic database, proved to be efficacious in the process of assigning a putative annotation to a wide range of metabolite signals and is a useful tool to appraise the metabolome alterations, as a consequence of bacterial response to NPs. Interestingly, not all the NPs diminished the intracellular metabolites; bacteria treated with iron NPs produced metabolites not present in the nonexposed bacteria sample, implying the activation of previously inactive metabolic pathways. In contrast, copper and iron-copper NPs reduced the annotated metabolites, alluding to the conclusion that the metabolic pathways (mainly alanine, aspartate, and glutamate metabolism, beta-alanine metabolism, glutathione metabolism, and arginine and proline metabolism) were hindered by the interactions of NPs with the intracellular metabolites.

  15. Contact Killing of Bacteria on Copper Is Suppressed if Bacterial-Metal Contact Is Prevented and Is Induced on Iron by Copper Ions

    PubMed Central

    Mathews, Salima; Hans, Michael

    2013-01-01

    Bacteria are rapidly killed on copper surfaces, and copper ions released from the surface have been proposed to play a major role in the killing process. However, it has remained unclear whether contact of the bacteria with the copper surface is also an important factor. Using laser interference lithography, we engineered copper surfaces which were covered with a grid of an inert polymer which prevented contact of the bacteria with the surface. Using Enterococcus hirae as a model organism, we showed that the release of ionic copper from these modified surfaces was not significantly reduced. In contrast, killing of bacteria was strongly attenuated. When E. hirae cells were exposed to a solid iron surface, the loss of cell viability was the same as on glass. However, exposing cells to iron in the presence of 4 mM CuSO4 led to complete killing in 100 min. These experiments suggest that contact killing proceeds by a mechanism whereby the metal-bacterial contact damages the cell envelope, which, in turn, makes the cells susceptible to further damage by copper ions. PMID:23396344

  16. Synthesis, aggregation and spectroscopic studies of novel water soluble metal free, zinc, copper and magnesium phthalocyanines and investigation of their anti-bacterial properties.

    PubMed

    Bayrak, Rıza; Akçay, Hakkı Türker; Beriş, Fatih Şaban; Sahin, Ertan; Bayrak, Hacer; Demirbaş, Ümit

    2014-12-10

    In this study, novel phthalonitrile derivative (3) was synthesized by the reaction between 4-nitrophthalonitrile (2) and a triazole derivative (1) containing pyridine moiety. Crystal structure of compound (3) was characterized by X-ray diffraction. New metal free and metallo-phthalocyanine complexes (Zn, Cu, and Mg) were synthesized using the phthalonitrile derivative (3). Cationic derivatives of these phthalocyanines (5, 7, 9, and 11) were prepared from the non-ionic phthalocyanines (4, 6, 8, and 10). All proposed structures were supported by instrumental methods. The aggregation behaviors of the phthalocyanines (4-11) were investigated in different solvents such as dimethylsulfoxide (DMSO), N,N-dimethylformamide (DMF), chloroform and water. Water soluble cationic Pcs (5, 7, 9, and 11) aggregated in water and sodium dodecyl sulfate was used to prevent the aggregation. The second derivatives of the UV-Vis spectra of aggregated Pcs were used for analyzing the Q and B bands of aggregated species. Thermal behaviors of the phthalocyanines were also studied. In addition, anti-bacterial properties of the phthalocyanines were investigated. We used four gram negative and two gram positive bacteria to determine antibacterial activity of these compounds. Compound 7 has the best activity against the all bacteria with 125μg/mL of MIC value. Compounds 4, 6, and 10 have the similar effect on the bacteria with 250μg/mL of MIC value.

  17. Synthesis, aggregation and spectroscopic studies of novel water soluble metal free, zinc, copper and magnesium phthalocyanines and investigation of their anti-bacterial properties

    NASA Astrophysics Data System (ADS)

    Bayrak, Rıza; Akçay, Hakkı Türker; Beriş, Fatih Şaban; Şahin, Ertan; Bayrak, Hacer; Demirbaş, Ümit

    2014-12-01

    In this study, novel phthalonitrile derivative (3) was synthesized by the reaction between 4-nitrophthalonitrile (2) and a triazole derivative (1) containing pyridine moiety. Crystal structure of compound (3) was characterized by X-ray diffraction. New metal free and metallo-phthalocyanine complexes (Zn, Cu, and Mg) were synthesized using the phthalonitrile derivative (3). Cationic derivatives of these phthalocyanines (5, 7, 9, and 11) were prepared from the non-ionic phthalocyanines (4, 6, 8, and 10). All proposed structures were supported by instrumental methods. The aggregation behaviors of the phthalocyanines (4-11) were investigated in different solvents such as dimethylsulfoxide (DMSO), N,N-dimethylformamide (DMF), chloroform and water. Water soluble cationic Pcs (5, 7, 9, and 11) aggregated in water and sodium dodecyl sulfate was used to prevent the aggregation. The second derivatives of the UV-Vis spectra of aggregated Pcs were used for analyzing the Q and B bands of aggregated species. Thermal behaviors of the phthalocyanines were also studied. In addition, anti-bacterial properties of the phthalocyanines were investigated. We used four gram negative and two gram positive bacteria to determine antibacterial activity of these compounds. Compound 7 has the best activity against the all bacteria with 125 μg/mL of MIC value. Compounds 4, 6, and 10 have the similar effect on the bacteria with 250 μg/mL of MIC value.

  18. Patterns of benthic bacterial diversity in coastal areas contaminated by heavy metals, polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs)

    PubMed Central

    Quero, Grazia Marina; Cassin, Daniele; Botter, Margherita; Perini, Laura; Luna, Gian Marco

    2015-01-01

    Prokaryotes in coastal sediments are fundamental players in the ecosystem functioning and regulate processes relevant in the global biogeochemical cycles. Nevertheless, knowledge on benthic microbial diversity patterns across spatial scales, or as function to anthropogenic influence, is still limited. We investigated the microbial diversity in two of the most chemically polluted sites along the coast of Italy. One site is the Po River Prodelta (Northern Adriatic Sea), which receives contaminant discharge from one of the largest rivers in Europe. The other site, the Mar Piccolo of Taranto (Ionian Sea), is a chronically polluted area due to steel production plants, oil refineries, and intense maritime traffic. We collected sediments from 30 stations along gradients of contamination, and studied prokaryotic diversity using Illumina sequencing of amplicons of a 16S rDNA gene fragment. The main sediment variables and the concentration of eleven metals, polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) were measured. Chemical analyses confirmed the high contamination in both sites, with concentrations of PCBs particularly high and often exceeding the sediment guidelines. The analysis of more than 3 millions 16S rDNA sequences showed that richness decreased with higher contamination levels. Multivariate analyses showed that contaminants significantly shaped community composition. Assemblages differed significantly between the two sites, but showed wide within-site variations related with spatial gradients in the chemical contamination, and the presence of a core set of OTUs shared by the two geographically distant sites. A larger importance of PCB-degrading taxa was observed in the Mar Piccolo, suggesting their potential selection in this historically polluted site. Our results indicate that sediment contamination by multiple contaminants significantly alter benthic prokaryotic diversity in coastal areas, and suggests considering the potential

  19. Respirators: APR Issuer Self Study 33461

    SciTech Connect

    Chochoms, Michael

    2016-07-13

    Respirators: APR Issuer Self-Study (course 33461) is designed to introduce and familiarize employees selected as air-purifying respirator (APR) issuers at Los Alamos National Laboratory (LANL) with the responsibilities, limitations, procedures, and resources for issuing APRs at LANL. The goal is to enable these issuers to consistently provide proper, functioning APRs to authorized users

  20. Mitochondrial respiration is sensitive to cytoarchitectural breakdown.

    PubMed

    Kandel, Judith; Angelin, Alessia A; Wallace, Douglas C; Eckmann, David M

    2016-11-07

    An abundance of research suggests that cellular mitochondrial and cytoskeletal disruption are related, but few studies have directly investigated causative connections between the two. We previously demonstrated that inhibiting microtubule and microfilament polymerization affects mitochondrial motility on the whole-cell level in fibroblasts. Since mitochondrial motility can be indicative of mitochondrial function, we now further characterize the effects of these cytoskeletal inhibitors on mitochondrial potential, morphology and respiration. We found that although they did not reduce mitochondrial inner membrane potential, cytoskeletal toxins induced significant decreases in basal mitochondrial respiration. In some cases, basal respiration was only affected after cells were pretreated with the calcium ionophore A23187 in order to stress mitochondrial function. In most cases, mitochondrial morphology remained unaffected, but extreme microfilament depolymerization or combined intermediate doses of microtubule and microfilament toxins resulted in decreased mitochondrial lengths. Interestingly, these two particular exposures did not affect mitochondrial respiration in cells not sensitized with A23187, indicating an interplay between mitochondrial morphology and respiration. In all cases, inducing maximal respiration diminished differences between control and experimental groups, suggesting that reduced basal respiration originates as a largely elective rather than pathological symptom of cytoskeletal impairment. However, viability experiments suggest that even this type of respiration decrease may be associated with cell death.

  1. Direct reading of electrocardiograms and respiration rates

    NASA Technical Reports Server (NTRS)

    Wise, J. P.

    1969-01-01

    Technique for reading heart and respiration rates is more accurate and direct than the previous method. Index of a plastic calibrated card is aligned with a point on the electrocardiogram. Complexes are counted as indicated on the card and heart or respiration rate is read directly from the appropriate scale.

  2. Photosynthesis and Respiration in a Jar.

    ERIC Educational Resources Information Center

    Buttner, Joseph K.

    2000-01-01

    Describes an activity that reduces the biosphere to a water-filled jar to simulate the relationship between cellular respiration, photosynthesis, and energy. Allows students in high school biology and related courses to explore quantitatively cellular respiration and photosynthesis in almost any laboratory setting. (ASK)

  3. Sleep and Respiration in Microgravity

    NASA Technical Reports Server (NTRS)

    West, John B.; Elliott, Ann R.; Prisk, G. Kim; Paiva, Manuel

    2003-01-01

    Sleep is often reported to be of poor quality in microgravity, and studies on the ground have shown a strong relationship between sleep-disordered breathing and sleep disruption. During the 16-day Neurolab mission, we studied the influence of possible changes in respiratory function on sleep by performing comprehensive sleep recordings on the payload crew on four nights during the mission. In addition, we measured the changes in the ventilatory response to low oxygen and high carbon dioxide in the same subjects during the day, hypothesizing that changes in ventilatory control might affect respiration during sleep. Microgravity caused a large reduction in the ventilatory response to reduced oxygen. This is likely the result of an increase in blood pressure at the peripheral chemoreceptors in the neck that occurs when the normally present hydrostatic pressure gradient between the heart and upper body is abolished. This reduction was similar to that seen when the subjects were placed acutely in the supine position in one-G. In sharp contrast to low oxygen, the ventilatory response to elevated carbon dioxide was unaltered by microgravity or the supine position. Because of the similarities of the findings in microgravity and the supine position, it is unlikely that changes in ventilatory control alter respiration during sleep in microgravity. During sleep on the ground, there were a small number of apneas (cessation of breathing) and hypopneas (reduced breathing) in these normal subjects. During sleep in microgravity, there was a reduction in the number of apneas and hypopneas per hour compared to preflight. Obstructive apneas virtually disappeared in microgravity, suggesting that the removal of gravity prevents the collapse of upper airways during sleep. Arousals from sleep were reduced in microgravity compared to preflight, and virtually all of this reduction was as a result of a reduction in the number of arousals from apneas and hypopneas. We conclude that any sleep

  4. Improving respiration measurements with gas exchange analyzers.

    PubMed

    Montero, R; Ribas-Carbó, M; Del Saz, N F; El Aou-Ouad, H; Berry, J A; Flexas, J; Bota, J

    2016-12-01

    Dark respiration measurements with open-flow gas exchange analyzers are often questioned for their low accuracy as their low values often reach the precision limit of the instrument. Respiration was measured in five species, two hypostomatous (Vitis Vinifera L. and Acanthus mollis) and three amphistomatous, one with similar amount of stomata in both sides (Eucalyptus citriodora) and two with different stomata density (Brassica oleracea and Vicia faba). CO2 differential (ΔCO2) increased two-fold with no change in apparent Rd, when the two leaves with higher stomatal density faced outside. These results showed a clear effect of the position of stomata on ΔCO2. Therefore, it can be concluded that leaf position is important to guarantee the improvement of respiration measurements increasing ΔCO2 without affecting the respiration results by leaf or mass units. This method will help to increase the accuracy of leaf respiration measurements using gas exchange analyzers.

  5. Physicochemical properties of respirable-size lunar dust

    NASA Astrophysics Data System (ADS)

    McKay, D. S.; Cooper, B. L.; Taylor, L. A.; James, J. T.; Thomas-Keprta, K.; Pieters, C. M.; Wentworth, S. J.; Wallace, W. T.; Lee, T. S.

    2015-02-01

    We separated the respirable dust and other size fractions from Apollo 14 bulk sample 14003,96 in a dry nitrogen environment. While our toxicology team performed in vivo and in vitro experiments with the respirable fraction, we studied the size distribution and shape, chemistry, mineralogy, spectroscopy, iron content and magnetic resonance of various size fractions. These represent the finest-grained lunar samples ever measured for either FMR np-Fe0 index or precise bulk chemistry, and are the first instance we know of in which SEM/TEM samples have been obtained without using liquids. The concentration of single-domain, nanophase metallic iron (np-Fe0) increases as particle size diminishes to 2 μm, confirming previous extrapolations. Size-distribution studies disclosed that the most frequent particle size was in the 0.1-0.2 μm range suggesting a relatively high surface area and therefore higher potential toxicity. Lunar dust particles are insoluble in isopropanol but slightly soluble in distilled water (~0.2 wt%/3 days). The interaction between water and lunar fines, which results in both agglomeration and partial dissolution, is observable on a macro scale over time periods of less than an hour. Most of the respirable grains were smooth amorphous glass. This suggests less toxicity than if the grains were irregular, porous, or jagged, and may account for the fact that lunar dust is less toxic than ground quartz.

  6. Apparatus and method for the characterization of respirable aerosols

    DOEpatents

    Clark, Douglas K.; Hodges, Bradley W.; Bush, Jesse D.; Mishima, Jofu

    2016-05-31

    An apparatus for the characterization of respirable aerosols, including: a burn chamber configured to selectively contain a sample that is selectively heated to generate an aerosol; a heating assembly disposed within the burn chamber adjacent to the sample; and a sampling segment coupled to the burn chamber and configured to collect the aerosol such that it may be analyzed. The apparatus also includes an optional sight window disposed in a wall of the burn chamber such that the sample may be viewed during heating. Optionally, the sample includes one of a Lanthanide, an Actinide, and a Transition metal.

  7. The effect of gender and respirator brand on the association of respirator fit with facial dimensions.

    PubMed

    Oestenstad, R Kent; Elliott, Leshan J; Beasley, T Mark

    2007-12-01

    This study examined the association of facial dimensions with respirator fit considering the effect of gender and respirator brand. Forty-one subjects (20 white females and 21 white males) participated in the study. Each subject was measured for 12 facial dimensions using anthropometric sliding and spreading calipers and a steel measuring tape. Three quantitative fit tests were conducted with the same subject wearing one size of three different brands of half-mask respirators resulting in a total of nine fit tests. Linear mixed model analysis was used to model respirator fit as a function of gender and respirator brand while controlling for facial dimensions. Results indicated that the gender by respirator brand interaction was not statistically significant (p = 0.794), and there was no significant difference in respirator fit between males and females (p = 0.356). There was a significant difference in respirator fit among respirator brands (p < 0.001). Because correlations between facial dimensions and respirator fit differed across gender and respirator brand, six separate linear mixed models were fit to assess which facial dimensions most strongly relate to respirator fit using a "one variable at a step" backward elimination procedure. None of the 12 facial dimensions were significantly associated with respirator fit in all six models. However, bigonial breadth and menton-nasion length were significantly associated with respirator fit in five of the six models, and biectoorbitale breadth, bizygomatic breadth, and lip width were significantly associated with respirator fit in four of the six models. Although this study resulted in significant findings related to the correlation of respirator fit with menton-nasion length and lip width (the dimensions currently used to define the half-mask respirator test panel), other facial dimensions were also shown to be significantly associated with respirator fit. Based on these findings and findings from previous studies

  8. Clinical pulmonary function and industrial respirator wear

    SciTech Connect

    Raven, P.B.; Moss, R.F.; Page, K.; Garmon, R.; Skaggs, B.

    1981-12-01

    This investigation was the initial step in determining a clinical pulmonary test which could be used to evaluate workers as to their suitability to industrial respirator wear. Sixty subjects, 12 superior, 37 normal, and 11 moderately impaired with respect to lung function tests were evaluated with a battery of clinical pulmonary tests while wearing an industrial respirator. The respirator was a full-face mask (MSA-Ultravue) demand breathing type equipped with an inspiratory resistance of 85mm H/sub 2/O at 85 L/min air flow and an expiratory resistance of 25mm H/sub 2/O at 85 L/min air flow. Comparisons of these tests were made between the three groups of subjects both with and without a respirator. It appears that those lung tests which measure the flow characteristics of the lung especially those that are effort dependant are more susceptible to change as a result of respirator wear. Hence, the respirator affects the person with superior lung function to a greater degree than the moderately impaired person. It was suggested that the clinical test of 15 second maximum voluntary ventilations (MVV./sub 25/) may be the test of choice for determining worker capability in wearing an industrial respirator.

  9. Effects of substrate induced respiration on the stability of bottom ash in landfill cover environment.

    PubMed

    Ilyas, A; Lovat, E; Persson, K M

    2014-12-01

    The municipal solid waste incineration bottom ash is being increasingly used to construct landfill covers in Sweden. In post-closure, owing to increased cover infiltration, the percolating water can add external organic matter to bottom ash. The addition and subsequent degradation of this external organic matter can affect metal mobility through complexation and change in redox conditions. However, the impacts of such external organic matter addition on bottom ash stability have not been fully evaluated yet. Therefore, the objective of this study was to evaluate the impact of external organic matter on bottom ash respiration and metal leaching. The samples of weathered bottom ash were mixed with oven dried and digested wastewater sludge (1%-5% by weight). The aerobic respiration activity (AT4), as well as the leaching of metals, was tested with the help of respiration and batch leaching tests. The respiration and heavy metal leaching increased linearly with the external organic matter addition. Based on the results, it was concluded that the external organic matter addition would negatively affect the quality of landfill cover drainage.

  10. BOREAS TE-5 Soil Respiration Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Ehleriinger, Jim; Brooks, J. Renee; Flanagan, Larry

    2000-01-01

    The BOREAS TE-5 team collected measurements in the NSA and SSA on gas exchange, gas composition, and tree growth. Soil respiration data were collected from 26-May-94 to 07-Sep-94 in the BOREAS NSA and SSA to compare the soil respiration rates in different forest sites using a LI-COR 6200 soil respiration chamber (model 6299). The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distrobuted Activity Archive Center (DAAC).

  11. A combined electrochemical and optical trapping platform for measuring single cell respiration rates at electrode interfaces

    SciTech Connect

    Gross, Benjamin J.; El-Naggar, Mohamed Y.

    2015-06-15

    Metal-reducing bacteria gain energy by extracellular electron transfer to external solids, such as naturally abundant minerals, which substitute for oxygen or the other common soluble electron acceptors of respiration. This process is one of the earliest forms of respiration on earth and has significant environmental and technological implications. By performing electron transfer to electrodes instead of minerals, these microbes can be used as biocatalysts for conversion of diverse chemical fuels to electricity. Understanding such a complex biotic-abiotic interaction necessitates the development of tools capable of probing extracellular electron transfer down to the level of single cells. Here, we describe an experimental platform for single cell respiration measurements. The design integrates an infrared optical trap, perfusion chamber, and lithographically fabricated electrochemical chips containing potentiostatically controlled transparent indium tin oxide microelectrodes. Individual bacteria are manipulated using the optical trap and placed on the microelectrodes, which are biased at a suitable oxidizing potential in the absence of any chemical electron acceptor. The potentiostat is used to detect the respiration current correlated with cell-electrode contact. We demonstrate the system with single cell measurements of the dissimilatory-metal reducing bacterium Shewanella oneidensis MR-1, which resulted in respiration currents ranging from 15 fA to 100 fA per cell under our measurement conditions. Mutants lacking the outer-membrane cytochromes necessary for extracellular respiration did not result in any measurable current output upon contact. In addition to the application for extracellular electron transfer studies, the ability to electronically measure cell-specific respiration rates may provide answers for a variety of fundamental microbial physiology questions.

  12. A combined electrochemical and optical trapping platform for measuring single cell respiration rates at electrode interfaces.

    PubMed

    Gross, Benjamin J; El-Naggar, Mohamed Y

    2015-06-01

    Metal-reducing bacteria gain energy by extracellular electron transfer to external solids, such as naturally abundant minerals, which substitute for oxygen or the other common soluble electron acceptors of respiration. This process is one of the earliest forms of respiration on earth and has significant environmental and technological implications. By performing electron transfer to electrodes instead of minerals, these microbes can be used as biocatalysts for conversion of diverse chemical fuels to electricity. Understanding such a complex biotic-abiotic interaction necessitates the development of tools capable of probing extracellular electron transfer down to the level of single cells. Here, we describe an experimental platform for single cell respiration measurements. The design integrates an infrared optical trap, perfusion chamber, and lithographically fabricated electrochemical chips containing potentiostatically controlled transparent indium tin oxide microelectrodes. Individual bacteria are manipulated using the optical trap and placed on the microelectrodes, which are biased at a suitable oxidizing potential in the absence of any chemical electron acceptor. The potentiostat is used to detect the respiration current correlated with cell-electrode contact. We demonstrate the system with single cell measurements of the dissimilatory-metal reducing bacterium Shewanella oneidensis MR-1, which resulted in respiration currents ranging from 15 fA to 100 fA per cell under our measurement conditions. Mutants lacking the outer-membrane cytochromes necessary for extracellular respiration did not result in any measurable current output upon contact. In addition to the application for extracellular electron transfer studies, the ability to electronically measure cell-specific respiration rates may provide answers for a variety of fundamental microbial physiology questions.

  13. Respiration in Neonate Sea Turtles

    PubMed Central

    Paladino, Frank V.; Strohl, Kingman P.; Pilar Santidrián, T.; Klann, Kenneth; Spotila, James R.

    2007-01-01

    The pattern and control of respiration is virtually unknown in hatchling sea turtles. Using incubator-raised turtles, we measured oxygen consumption, frequency, tidal volume, and minute volume for leatherback (Dermochelys coriacea) and olive ridley (Lepidochelys olivacea) turtle hatchlings for the first six days after pipping. In addition, we tested the hatchlings’ response to hypercapnic, hyperoxic, and hypoxic challenges over this time period. Hatchling sea turtles generally showed resting ventilation characteristics that are similar to those of adults: a single breath followed by a long respiratory pause, slow frequency, and high metabolic rate. With hypercapnic challenge, both species responded primarily by elevating respiratory frequency via a decrease in the non-ventilatory period. Leatherback resting tidal volume increased with age but otherwise, neither species’ resting respiratory pattern nor response to gas challenge changed significantly over the first few days after hatching. At the time of nest emergence, sea turtles have achieved a respiratory pattern that is similar to that of actively diving adults. PMID:17258487

  14. Respiration in a changing environment.

    PubMed

    Perry, Steven F; Spinelli Oliveira, Elisabeth

    2010-08-31

    Multidisciplinary respiratory research highlighted in the present symposium uses existing and new models from all Kingdoms in both basic and applied research and bears upon molecular signaling processes that have been present from the beginning of life and have been maintained as an integral part of it. Many of these old mechanisms are still recognizable as ROS and oxygen-dependent pathways that probably were in place even before photosynthesis evolved. These processes are not only recognizable through relatively small molecules such as nucleotides and their derivatives. Also some DNA sequences such as the hypoxia response elements and pas gene family are ancient and have been co-opted in various functions. The products of pas genes, in addition to their function in regulating nuclear response to hypoxia as part of the hypoxia-inducible factor HIF, play key roles in development, phototransduction, and control of circadian rhythmicity. Also RuBisCO, an enzyme best known for incorporating CO(2) into organic substrates in plants also has an ancient oxygenase function, which plays a key role in regulating peroxide balance in cells. As life forms became more complex and aerobic metabolism became dominant in multicellular organisms, the signaling processes also took on new levels of complexity but many ancient elements remained. The way in which they are integrated into remodeling processes involved in tradeoffs between respiration and nutrition or in control of aging in complex organisms is an exciting field for future research.

  15. Light respiration by subtropical seaweeds.

    PubMed

    Carvalho, Matheus C; Eyre, Bradley D

    2017-03-20

    Here we report the first-ever measurements of light CO2 respiration rate (CRR) by seaweeds. We measured the influence of temperature (15 to 25°C) and light (irradiance from 60 to 670 μmol · m(-2) · s(-1) ) on the light CCR of two subtropical seaweed species, and measured the CRR of seven different seaweed species under the same light (150 μmol · m(-2) · s(-1) ) and temperature (25°C). There was little effect of irradiance on light CRR, but there was an effect of temperature. Across the seven species light CRR was similar to OCR (oxygen consumption rate in the dark), with the exception of a single species. The outlier species was a coralline alga, and the higher light CRR was probably driven by calcification. CRR could be estimated from OCR, as well as carbon photosynthetic rates from oxygen photosynthetic rates, which suggests that previous studies have probably provided good estimations of gross photosynthesis for seaweeds. This article is protected by copyright. All rights reserved.

  16. Respiration during sleep in kyphoscoliosis.

    PubMed Central

    Sawicka, E H; Branthwaite, M A

    1987-01-01

    Eleven subjects with non-paralytic and 10 with paralytic kyphoscoliosis and nine normal control subjects were studied during sleep. The Cobb angle of those with kyphoscoliosis varied from 60 degrees to 140 degrees (median 100 degrees) and the vital capacity varied from 17% to 56% (median 28%) of the value predicted on the basis of span. Recordings made during sleep included expired carbon dioxide tension at the nose, gas flow at the mouth, arterial oxygen saturation, chest wall movement, and the electroencephalogram, electro-oculogram, and electrocardiogram. In three subjects transcutaneous carbon dioxide tension was measured simultaneously. Patients with kyphoscoliosis hypoventilated during sleep, particularly in rapid eye movement sleep, resulting in a rise in end tidal and transcutaneous carbon dioxide tension, and a reduction in oxygen saturation to a degree not observed in normal subjects. Reduced chest wall movement was the major cause of these episodes, which were more frequent and occupied a greater proportion of sleep time in those with kyphoscoliosis than in normal subjects. Serious cardiac arrhythmias were rarely associated. It is concluded that disturbances of respiration during sleep occur in patients with kyphoscoliosis and that these may be important in the pathogenesis of cardiorespiratory failure. PMID:3424256

  17. Bacterial Sialidase

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Data shows that elevated sialidase in bacterial vaginosis patients correlates to premature births in women. Bacterial sialidase also plays a significant role in the unusual colonization of Pseudomonas aeruginosa in cystic fibrosis patients. Crystals of Salmonella sialidase have been reproduced and are used for studying the inhibitor-enzyme complexes. These inhibitors may also be used to inhibit a trans-sialidase of Trypanosome cruzi, a very similar enzyme to bacterial sialidase, therefore preventing T. cruzi infection, the causitive agent of Chagas' disease. The Center for Macromolecular Crystallography suggests that inhibitors of bacterial sialidases can be used as prophylactic drugs to prevent bacterial infections in these critical cases.

  18. Soil microbial community composition and respiration along an experimental precipitation gradient in a semiarid steppe

    PubMed Central

    Zhao, Cancan; Miao, Yuan; Yu, Chengde; Zhu, Lili; Wang, Feng; Jiang, Lin; Hui, Dafeng; Wan, Shiqiang

    2016-01-01

    As a primary limiting factor in arid and semiarid regions, precipitation strongly influences soil microbial properties. However, the patterns and mechanisms of soil microbial responses to precipitation have not been well documented. In this study, changes in soil microorganisms along an experimental precipitation gradient with seven levels of precipitation manipulation (i.e., ambient precipitation as a control, and ±20%, ±40%, and ±60% of ambient precipitation) were explored in a semiarid temperate steppe in northern China. Soil microbial biomass carbon and respiration as well as the ratio of fungal to bacterial biomass varied along the experimental precipitation gradient and peaked under the +40% precipitation treatment. The shifts in microbial community composition could be largely attributable to the changes in soil water and nutrient availability. The metabolic quotient increased (indicating reduced carbon use efficiency) with increasing precipitation due to the leaching of dissolved organic carbon. The relative contributions of microbial respiration to soil and ecosystem respiration increased with increasing precipitation, suggesting that heterotrophic respiration will be more sensitive than autotrophic respiration if precipitation increases in the temperate steppe as predicted under future climate-change scenarios. PMID:27074973

  19. Soil microbial community composition and respiration along an experimental precipitation gradient in a semiarid steppe.

    PubMed

    Zhao, Cancan; Miao, Yuan; Yu, Chengde; Zhu, Lili; Wang, Feng; Jiang, Lin; Hui, Dafeng; Wan, Shiqiang

    2016-04-14

    As a primary limiting factor in arid and semiarid regions, precipitation strongly influences soil microbial properties. However, the patterns and mechanisms of soil microbial responses to precipitation have not been well documented. In this study, changes in soil microorganisms along an experimental precipitation gradient with seven levels of precipitation manipulation (i.e., ambient precipitation as a control, and ±20%, ±40%, and ±60% of ambient precipitation) were explored in a semiarid temperate steppe in northern China. Soil microbial biomass carbon and respiration as well as the ratio of fungal to bacterial biomass varied along the experimental precipitation gradient and peaked under the +40% precipitation treatment. The shifts in microbial community composition could be largely attributable to the changes in soil water and nutrient availability. The metabolic quotient increased (indicating reduced carbon use efficiency) with increasing precipitation due to the leaching of dissolved organic carbon. The relative contributions of microbial respiration to soil and ecosystem respiration increased with increasing precipitation, suggesting that heterotrophic respiration will be more sensitive than autotrophic respiration if precipitation increases in the temperate steppe as predicted under future climate-change scenarios.

  20. Propane respiration jump-starts microbial response to a deep oil spill.

    PubMed

    Valentine, David L; Kessler, John D; Redmond, Molly C; Mendes, Stephanie D; Heintz, Monica B; Farwell, Christopher; Hu, Lei; Kinnaman, Franklin S; Yvon-Lewis, Shari; Du, Mengran; Chan, Eric W; Garcia Tigreros, Fenix; Villanueva, Christie J

    2010-10-08

    The Deepwater Horizon event resulted in suspension of oil in the Gulf of Mexico water column because the leakage occurred at great depth. The distribution and fate of other abundant hydrocarbon constituents, such as natural gases, are also important in determining the impact of the leakage but are not yet well understood. From 11 to 21 June 2010, we investigated dissolved hydrocarbon gases at depth using chemical and isotopic surveys and on-site biodegradation studies. Propane and ethane were the primary drivers of microbial respiration, accounting for up to 70% of the observed oxygen depletion in fresh plumes. Propane and ethane trapped in the deep water may therefore promote rapid hydrocarbon respiration by low-diversity bacterial blooms, priming bacterial populations for degradation of other hydrocarbons in the aging plume.

  1. Photosynthesis and Respiration in Leaf Slices.

    ERIC Educational Resources Information Center

    Brown, Simon

    1998-01-01

    Demonstrates how leaf slices provide an inexpensive material for illustrating several fundamental points about the biochemistry of photosynthesis and respiration. Presents experiments that illustrate the effects of photon flux density and herbicides and carbon dioxide concentration. (DDR)

  2. Spartina alterniflora invasion alters soil microbial community composition and microbial respiration following invasion chronosequence in a coastal wetland of China

    NASA Astrophysics Data System (ADS)

    Yang, Wen; Jeelani, Nasreen; Leng, Xin; Cheng, Xiaoli; An, Shuqing

    2016-05-01

    The role of exotic plants in regulating soil microbial community structure and activity following invasion chronosequence remains unclear. We investigated soil microbial community structure and microbial respiration following Spartina alterniflora invasion in a chronosequence of 6-, 10-, 17-, and 20-year-old by comparing with bare flat in a coastal wetland of China. S. alterniflora invasion significantly increased soil moisture and salinity, the concentrations of soil water-soluble organic carbon and microbial biomass carbon (MBC), the quantities of total and various types of phospholipid fatty acids (PLFAs), the fungal:bacterial PLFAs ratio and cumulative microbial respiration compared with bare flat. The highest MBC, gram-negative bacterial and saturated straight-chain PLFAs were found in 10-year-old S. alterniflora soil, while the greatest total PLFAs, bacterial and gram-positive bacterial PLFAs were found in 10- and 17-year-old S. alterniflora soils. The monounsaturated:branched PLFAs ratio declined, and cumulative microbial respiration on a per-unit-PLFAs increased following S. alterniflora invasion in the chronosequence. Our results suggest that S. alterniflora invasion significantly increased the biomass of soil various microbial groups and microbial respiration compared to bare flat soil by increasing soil available substrate, and modifying soil physiochemical properties. Soil microbial community reached the most enriched condition in the 10-year-old S. alterniflora community.

  3. Spartina alterniflora invasion alters soil microbial community composition and microbial respiration following invasion chronosequence in a coastal wetland of China

    PubMed Central

    Yang, Wen; Jeelani, Nasreen; Leng, Xin; Cheng, Xiaoli; An, Shuqing

    2016-01-01

    The role of exotic plants in regulating soil microbial community structure and activity following invasion chronosequence remains unclear. We investigated soil microbial community structure and microbial respiration following Spartina alterniflora invasion in a chronosequence of 6-, 10-, 17-, and 20-year-old by comparing with bare flat in a coastal wetland of China. S. alterniflora invasion significantly increased soil moisture and salinity, the concentrations of soil water-soluble organic carbon and microbial biomass carbon (MBC), the quantities of total and various types of phospholipid fatty acids (PLFAs), the fungal:bacterial PLFAs ratio and cumulative microbial respiration compared with bare flat. The highest MBC, gram-negative bacterial and saturated straight-chain PLFAs were found in 10-year-old S. alterniflora soil, while the greatest total PLFAs, bacterial and gram-positive bacterial PLFAs were found in 10- and 17-year-old S. alterniflora soils. The monounsaturated:branched PLFAs ratio declined, and cumulative microbial respiration on a per-unit-PLFAs increased following S. alterniflora invasion in the chronosequence. Our results suggest that S. alterniflora invasion significantly increased the biomass of soil various microbial groups and microbial respiration compared to bare flat soil by increasing soil available substrate, and modifying soil physiochemical properties. Soil microbial community reached the most enriched condition in the 10-year-old S. alterniflora community. PMID:27241173

  4. Telephone communications with several commercial respirators.

    PubMed

    Johnson, A T; Scott, W H; Coyne, K M; Koh, F C; Rebar, J E

    2001-01-01

    Previous work showed that telephone communications while wearing military respirators degraded both word comprehension and recognition speed. In addition, electronic amplification of the speech diaphragm signal had shown no advantage to the extra hardware. This experiment was performed to test effects of different configurations of commercially available respirators on telephone communications accuracy and speed. Twelve pairs of subjects were separated into different rooms and communicated by telephone. Modified rhyme-test words were presented by computer to the speaker, who transmitted the word by telephone to the listener. During the first replication, subjects were given no instruction about telephone communications procedure. During the second replication subjects followed a communications protocol that instructed them when to move the telephone handset from their ears to their mouths. Results showed that the protocol uniformly improved communications accuracy without incurring any extra time penalty. Word comprehension was still twice as fast without a respirator as with a respirator. Accuracy with the protocol nearly equaled the no respirator control value for most respirators tested.

  5. Mitochondrial respiration without ubiquinone biosynthesis

    PubMed Central

    Wang, Ying; Hekimi, Siegfried

    2013-01-01

    Ubiquinone (UQ), a.k.a. coenzyme Q, is a redox-active lipid that participates in several cellular processes, in particular mitochondrial electron transport. Primary UQ deficiency is a rare but severely debilitating condition. Mclk1 (a.k.a. Coq7) encodes a conserved mitochondrial enzyme that is necessary for UQ biosynthesis. We engineered conditional Mclk1 knockout models to study pathogenic effects of UQ deficiency and to assess potential therapeutic agents for the treatment of UQ deficiencies. We found that Mclk1 knockout cells are viable in the total absence of UQ. The UQ biosynthetic precursor DMQ9 accumulates in these cells and can sustain mitochondrial respiration, albeit inefficiently. We demonstrated that efficient rescue of the respiratory deficiency in UQ-deficient cells by UQ analogues is side chain length dependent, and that classical UQ analogues with alkyl side chains such as idebenone and decylUQ are inefficient in comparison with analogues with isoprenoid side chains. Furthermore, Vitamin K2, which has an isoprenoid side chain, and has been proposed to be a mitochondrial electron carrier, had no efficacy on UQ-deficient mouse cells. In our model with liver-specific loss of Mclk1, a large depletion of UQ in hepatocytes caused only a mild impairment of respiratory chain function and no gross abnormalities. In conjunction with previous findings, this surprisingly small effect of UQ depletion indicates a nonlinear dependence of mitochondrial respiratory capacity on UQ content. With this model, we also showed that diet-derived UQ10 is able to functionally rescue the electron transport deficit due to severe endogenous UQ deficiency in the liver, an organ capable of absorbing exogenous UQ. PMID:23847050

  6. Ultrafine and respirable particle exposure during vehicle fire suppression.

    PubMed

    Evans, Douglas E; Fent, Kenneth W

    2015-10-01

    Vehicle fires are a common occurrence, yet few studies have reported exposures associated with burning vehicles. This article presents an assessment of firefighters' potential for ultrafine and respirable particle exposure during vehicle fire suppression training. Fires were initiated within the engine compartment and passenger cabins of three salvaged vehicles, with subsequent water suppression by fire crews. Firefighter exposures were monitored with an array of direct reading particle and air quality instruments. A flexible metallic duct and blower drew contaminants to the instrument array, positioned at a safe distance from the burning vehicles, with the duct inlet positioned at the nozzle operator's shoulder. The instruments measured the particle number, active surface area, respirable particle mass, photoelectric response, aerodynamic particle size distributions, and air quality parameters. Although vehicle fires were suppressed quickly (<10 minutes), firefighters may be exposed to short duration, high particle concentration episodes during fire suppression, which are orders of magnitude greater than the ambient background concentration. A maximum transient particle concentration of 1.21 × 10(7) particles per cm(3), 170 mg m(-3) respirable particle mass, 4700 μm(2) cm(-3) active surface area and 1400 (arbitrary units) in photoelectric response were attained throughout the series of six fires. Expressed as fifteen minute time-weighted averages, engine compartment fires averaged 5.4 × 10(4) particles per cm(3), 0.36 mg m(-3) respirable particle mass, 92 μm(2) cm(-3) active particle surface area and 29 (arbitrary units) in photoelectric response. Similarly, passenger cabin fires averaged 2.04 × 10(5) particles per cm(3), 2.7 mg m(-3) respirable particle mass, 320 μm(2) cm(-3) active particle surface area, and 34 (arbitrary units) in photoelectric response. Passenger cabin fires were a greater potential source of exposure than engine compartment fires. The

  7. Ultrafine and respirable particle exposure during vehicle fire suppression

    PubMed Central

    Fent, Kenneth W.

    2015-01-01

    Vehicle fires are a common occurrence, yet few studies have reported exposures associated with burning vehicles. This article presents an assessment of firefighters’ potential for ultrafine and respirable particle exposure during vehicle fire suppression training. Fires were initiated within the engine compartment and passenger cabins of three salvaged vehicles, with subsequent water suppression by fire crews. Firefighter exposures were monitored with an array of direct reading particle and air quality instruments. A flexible metallic duct and blower drew contaminants to the instrument array, positioned at a safe distance from the burning vehicles, with the duct inlet positioned at the nozzle operator’s shoulder. The instruments measured the particle number, active surface area, respirable particle mass, photoelectric response, aerodynamic particle size distributions, and air quality parameters. Although vehicle fires were suppressed quickly (<10 minutes), firefighters may be exposed to short duration, high particle concentration episodes during fire suppression, which are orders of magnitude greater than the ambient background concentration. A maximum transient particle concentration of 1.21 × 107 particles per cm3, 170 mg m−3 respirable particle mass, 4700 μm2 cm−3 active surface area and 1400 (arbitrary units) in photoelectric response were attained throughout the series of six fires. Expressed as fifteen minute time-weighted averages, engine compartment fires averaged 5.4 × 104 particles per cm3, 0.36 mg m−3 respirable particle mass, 92 μm2 cm−3 active particle surface area and 29 (arbitrary units) in photoelectric response. Similarly, passenger cabin fires averaged 2.04 × 105 particles per cm3, 2.7 mg m−3 respirable particle mass, 320 μm2 cm−3 active particle surface area, and 34 (arbitrary units) in photoelectric response. Passenger cabin fires were a greater potential source of exposure than engine compartment fires. The wind direction

  8. Effect of long-term industrial waste effluent pollution on soil enzyme activities and bacterial community composition.

    PubMed

    Subrahmanyam, Gangavarapu; Shen, Ju-Pei; Liu, Yu-Rong; Archana, Gattupalli; Zhang, Li-Mei

    2016-02-01

    Although numerous studies have addressed the influence of exogenous pollutants on microorganisms, the effect of long-term industrial waste effluent (IWE) pollution on the activity and diversity of soil bacteria was still unclear. Three soil samples characterized as uncontaminated (R1), moderately contaminated (R2), and highly contaminated (R3) receiving mixed organic and heavy metal pollutants for more than 20 years through IWE were collected along the Mahi River basin, Gujarat, western India. Basal soil respiration and in situ enzyme activities indicated an apparent deleterious effect of IWE on microbial activity and soil function. Community composition profiling of soil bacteria using 16S rRNA gene amplification and denaturing gradient gel electrophoresis (DGGE) method indicated an apparent bacterial community shift in the IWE-affected soils. Cloning and sequencing of DGGE bands revealed that the dominated bacterial phyla in polluted soil were affiliated with Firmicutes, Acidobacteria, and Actinobacteria, indicating that these bacterial phyla may have a high tolerance to pollutants. We suggested that specific bacterial phyla along with soil enzyme activities could be used as relevant biological indicators for long-term pollution assessment on soil quality. Graphical Abstract Bacterial community profiling and soil enzyme activities in long-term industrial waste effluent polluted soils.

  9. 42 CFR 84.250 - Vinyl chloride respirators; description.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Vinyl chloride respirators; description. 84.250... Respirators § 84.250 Vinyl chloride respirators; description. Vinyl chloride respirators, including all... escape from vinyl chloride atmospheres containing adequate oxygen to support life, are...

  10. 42 CFR 84.250 - Vinyl chloride respirators; description.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Vinyl chloride respirators; description. 84.250... Respirators § 84.250 Vinyl chloride respirators; description. Vinyl chloride respirators, including all... escape from vinyl chloride atmospheres containing adequate oxygen to support life, are...

  11. 42 CFR 84.250 - Vinyl chloride respirators; description.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Vinyl chloride respirators; description. 84.250... Respirators § 84.250 Vinyl chloride respirators; description. Vinyl chloride respirators, including all... escape from vinyl chloride atmospheres containing adequate oxygen to support life, are...

  12. 42 CFR 84.250 - Vinyl chloride respirators; description.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Vinyl chloride respirators; description. 84.250... Respirators § 84.250 Vinyl chloride respirators; description. Vinyl chloride respirators, including all... escape from vinyl chloride atmospheres containing adequate oxygen to support life, are...

  13. 42 CFR 84.250 - Vinyl chloride respirators; description.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Vinyl chloride respirators; description. 84.250... Respirators § 84.250 Vinyl chloride respirators; description. Vinyl chloride respirators, including all... escape from vinyl chloride atmospheres containing adequate oxygen to support life, are...

  14. 42 CFR 84.197 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84.197... Cartridge Respirators § 84.197 Respirator containers; minimum requirements. Respirators shall be equipped with a substantial, durable container bearing markings which show the applicant's name, the type...

  15. 42 CFR 84.134 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84.134... Respirators § 84.134 Respirator containers; minimum requirements. Supplied-air respirators shall be equipped with a substantial, durable container bearing markings which show the applicant's name, the type...

  16. 42 CFR 84.174 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84.174... Air-Purifying Particulate Respirators § 84.174 Respirator containers; minimum requirements. (a) Except..., durable container bearing markings which show the applicant's name, the type of respirator it...

  17. 42 CFR 84.191 - Chemical cartridge respirators; required components.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Chemical cartridge respirators; required components... Chemical Cartridge Respirators § 84.191 Chemical cartridge respirators; required components. (a) Each chemical cartridge respirator described in § 84.190 shall, where its design requires, contain the...

  18. 42 CFR 84.191 - Chemical cartridge respirators; required components.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Chemical cartridge respirators; required components... Chemical Cartridge Respirators § 84.191 Chemical cartridge respirators; required components. (a) Each chemical cartridge respirator described in § 84.190 shall, where its design requires, contain the...

  19. 42 CFR 84.191 - Chemical cartridge respirators; required components.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Chemical cartridge respirators; required components... Chemical Cartridge Respirators § 84.191 Chemical cartridge respirators; required components. (a) Each chemical cartridge respirator described in § 84.190 shall, where its design requires, contain the...

  20. 42 CFR 84.191 - Chemical cartridge respirators; required components.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Chemical cartridge respirators; required components... Chemical Cartridge Respirators § 84.191 Chemical cartridge respirators; required components. (a) Each chemical cartridge respirator described in § 84.190 shall, where its design requires, contain the...

  1. 42 CFR 84.191 - Chemical cartridge respirators; required components.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Chemical cartridge respirators; required components... Chemical Cartridge Respirators § 84.191 Chemical cartridge respirators; required components. (a) Each chemical cartridge respirator described in § 84.190 shall, where its design requires, contain the...

  2. I. Development of Metal-Mediated SPOT-Synthesis Methods for the Efficient Construction of Small-Molecule Macroarrays. II. Design and Synthesis of Novel Bacterial Biofilm Inhibitors

    NASA Astrophysics Data System (ADS)

    Frei, Reto

    I. The use of small molecule probes to explore biological phenomena has become a valuable tool in chemical biology. As a result, methods that permit the rapid synthesis and biological evaluation of such compounds are highly sought-after. The small molecule macroarray represents one such approach for the synthesis and identification of novel bioactive agents. Macroarrays are readily constructed via the SPOT-synthesis technique on planar cellulose membranes, yielding spatially addressed libraries of ˜10-1000 unique compounds. We sought to expand the arsenal of chemical reactions compatible with this solid-phase platform, and developed highly efficient SPOT-synthesis protocols for the Mizoroki-Heck, Suzuki-Miyaura, and copper-catalyzed azide-alkyne cycloaddition reaction. We demonstrated that these metal-mediated reactions can be implemented, either individually or sequentially, for the efficient construction of small molecules in high purity on rapid time scales. Utilizing these powerful C-C and C-N bond forming coupling reactions, we constructed a series of macroarrays based on novel stilbene, phenyl-naphthalene, and triazole scaliblds. Subsequent biological testing of the stilbene and phenyl-naphthalene libraries revealed several potent antagonists and agonists, respectively, of the quorum sensing (QS) receptor LuxR in Vibrio fischeri. II. Bacteria living within biofilms are notorious for their resistance to known antibiotic agents, and constitute a major human health threat. Methods to attenuate biofilm growth would have a significant impact on the management of bacterial infections. Despite intense research efforts, small molecules capable of either inhibiting or dispersing biolilms remain scarce. We utilized natural products with purported anti-biofilm or QS inhibitory activity as sources of structural insight to guide the synthesis of novel biofilm modulators with improved activities. These studies revealed 2-aminobenzimidazole derivatives as highly potent

  3. The world-class Howard's Pass SEDEX Zn-Pb district, Selwyn Basin, Yukon. Part II: the roles of thermochemical and bacterial sulfate reduction in metal fixation

    NASA Astrophysics Data System (ADS)

    Gadd, Michael G.; Layton-Matthews, Daniel; Peter, Jan M.; Paradis, Suzanne; Jonasson, Ian R.

    2016-07-01

    The Howard's Pass district of sedimentary exhalative (SEDEX) Zn-Pb deposits is located in Yukon Territory and comprises 14 Zn-Pb deposits that contain an estimated 400.7 Mt of sulfide mineralization grading 4.5 % Zn and 1.5 % Pb. Mineralization is hosted in carbonaceous and calcareous and, to a lesser extent, siliceous mudstones. Pyrite is a minor but ubiquitous mineral in the host rocks stratigraphically above, within, and below mineralization. Petrographic analyses reveal that pyrite has a complex and protracted growth history, preserving multiple generations of pyrite within single grains. Sulfur isotope analysis of paragenetically complex pyrite by secondary ion mass spectrometry (SIMS) reveals that sulfur isotope compositions vary with textural zonation. Within the Zn-Pb deposits, framboidal pyrite is the earliest pyrite generation recognized, and this exclusively has negative δ34S values (mean = -16.6 ± 4.1 ‰; n = 55), whereas paragenetically later pyrite and galena possess positive δ34S values (mean = 29.1 ± 7.5 and 22.4 ± 3.0 ‰, n = 13 and 13, respectively). Previous studies found that sphalerite and galena mineral separates have exclusively positive δ34S values (mean = 16.8 ± 3.3 and 12.7 ± 2.8 ‰, respectively; Goodfellow and Jonasson 1986). These distinct sulfur isotope values are interpreted to reflect varying contributions of bacterially reduced seawater sulfate (negative; framboidal pyrite) and thermochemically reduced seawater sulfate and/or hydrothermal sulfate (positive; galena, sphalerite, later forms of pyrite). Textural evidence indicates that framboidal pyrite predates galena and sphalerite deposition. Collectively, the in situ and bulk sulfur isotope data are much more complex than δ34S values permitted by prevailing genetic models that invoke only biogenically reduced sulfur and coeval deposition of galena, sphalerite, and framboidal pyrite within a euxinic water column, and we present several lines of evidence that argue

  4. The world-class Howard's Pass SEDEX Zn-Pb district, Selwyn Basin, Yukon. Part II: the roles of thermochemical and bacterial sulfate reduction in metal fixation

    NASA Astrophysics Data System (ADS)

    Gadd, Michael G.; Layton-Matthews, Daniel; Peter, Jan M.; Paradis, Suzanne; Jonasson, Ian R.

    2017-03-01

    The Howard's Pass district of sedimentary exhalative (SEDEX) Zn-Pb deposits is located in Yukon Territory and comprises 14 Zn-Pb deposits that contain an estimated 400.7 Mt of sulfide mineralization grading 4.5 % Zn and 1.5 % Pb. Mineralization is hosted in carbonaceous and calcareous and, to a lesser extent, siliceous mudstones. Pyrite is a minor but ubiquitous mineral in the host rocks stratigraphically above, within, and below mineralization. Petrographic analyses reveal that pyrite has a complex and protracted growth history, preserving multiple generations of pyrite within single grains. Sulfur isotope analysis of paragenetically complex pyrite by secondary ion mass spectrometry (SIMS) reveals that sulfur isotope compositions vary with textural zonation. Within the Zn-Pb deposits, framboidal pyrite is the earliest pyrite generation recognized, and this exclusively has negative δ34S values (mean = -16.6 ± 4.1 ‰; n = 55), whereas paragenetically later pyrite and galena possess positive δ34S values (mean = 29.1 ± 7.5 and 22.4 ± 3.0 ‰, n = 13 and 13, respectively). Previous studies found that sphalerite and galena mineral separates have exclusively positive δ34S values (mean = 16.8 ± 3.3 and 12.7 ± 2.8 ‰, respectively; Goodfellow and Jonasson 1986). These distinct sulfur isotope values are interpreted to reflect varying contributions of bacterially reduced seawater sulfate (negative; framboidal pyrite) and thermochemically reduced seawater sulfate and/or hydrothermal sulfate (positive; galena, sphalerite, later forms of pyrite). Textural evidence indicates that framboidal pyrite predates galena and sphalerite deposition. Collectively, the in situ and bulk sulfur isotope data are much more complex than δ34S values permitted by prevailing genetic models that invoke only biogenically reduced sulfur and coeval deposition of galena, sphalerite, and framboidal pyrite within a euxinic water column, and we present several lines of evidence that argue

  5. Respiration and Reproductive Effort in Xanthium canadense

    PubMed Central

    KINUGASA, TOSHIHIKO; HIKOSAKA, KOUKI; HIROSE, TADAKI

    2005-01-01

    • Background and Aims The proportion of resources devoted to reproduction in the plant is called the reproductive effort (RE), which is most commonly expressed as the proportion of reproductive biomass to total plant biomass production (REW). Reproductive yield is the outcome of photosynthates allocated to reproductive structures minus subsequent respiratory consumption for construction and maintenance of reproductive structures. Thus, REW can differ from RE in terms of photosynthates allocated to reproductive structures (REP). • Methods Dry mass growth and respiration of vegetative and reproductive organs were measured in Xanthium canadense and the amount of photosynthates and its partitioning to dry mass growth and respiratory consumption were determined. Differences between REW and REP were analysed in terms of growth and maintenance respiration. • Key Results The fraction of allocated photosynthates that was consumed by respiration was smaller in the reproductive organ than in the vegetative organs. Consequently, REP was smaller than REW. The smaller respiratory consumption in the reproductive organ resulted from its shorter period of existence and a seasonal decline in temperature, as well as a slower rate of maintenance respiration, although the fraction of photosynthates consumed by growth respiration was larger than in the vegetative organs. • Conclusions Reproductive effort in terms of photosynthates (REP) was smaller than that in terms of biomass (REW). This difference resulted from respiratory consumption for maintenance, which was far smaller in the reproductive organ than in vegetative organs. PMID:15837721

  6. Delayed ultraviolet light-induced cessation of respiration by inadequate aeration of Escherichia coli.

    PubMed

    Joshi, J G; Swenson, P A; Schenley, R L

    1977-02-01

    Inadequately aerated Escherichia coli B/r cultures did not shut their respiration off 60 min after ultraviolet light (52 M/m2 at 254 nm) as they did when well supplied with oxygen. Since cessation of respiaration is associated with cell death, the result suggested that oxygen toxicity by superoxide radicals generated by cell metabolism might be responsible for cell death. The specific activity of superoxide dismutase, which scavenges O2- radicals, increased twofold after 90 min of adequate aeration, but the specific activity of catalase remained constant. Respiration and viability of irradiated cells were affected not at all by the presence of superoxide dismutase and only slightly by the presence of catalase. Metal ions such as Mn2+ and Fe2+ inducers of superoxide dismutase, had no effect on respiration and viability. When irradiated cells were incubated under N2 for 90 min, the respiration, growth, and viability time-course responses were the same as for the cells not exposed to anareobiosis. We conclude that superoxide anions generated at the time of irradiation play no part in cessation delays the ultraviolet light-induced synthesis of proteins responsible for the irreversible cessation of respiration.

  7. Extracellular respiration of dimethyl sulfoxide by Shewanella oneidensis strain MR-1.

    PubMed

    Gralnick, Jeffrey A; Vali, Hojatollah; Lies, Douglas P; Newman, Dianne K

    2006-03-21

    Shewanella species are renowned for their respiratory versatility, including their ability to respire poorly soluble substrates by using enzymatic machinery that is localized to the outside of the cell. The ability to engage in "extracellular respiration" to date has focused primarily on respiration of minerals. Here, we identify two gene clusters in Shewanella oneidensis strain MR-1 that each contain homologs of genes required for metal reduction and genes that are predicted to encode dimethyl sulfoxide (DMSO) reductase subunits. Molecular and genetic analyses of these clusters indicate that one (SO1427-SO1432) is required for anaerobic respiration of DMSO. We show that DMSO respiration is an extracellular respiratory process through the analysis of mutants defective in type II secretion, which is required for transporting proteins to the outer membrane in Shewanella. Moreover, immunogold labeling of DMSO reductase subunits reveals that they reside on the outer leaflet of the outer membrane under anaerobic conditions. The extracellular localization of the DMSO reductase in S. oneidensis suggests these organisms may perceive DMSO in the environment as an insoluble compound.

  8. Effects of Picoxystrobin and 4-n-Nonylphenol on Soil Microbial Community Structure and Respiration Activity

    PubMed Central

    Stenrød, Marianne; Klemsdal, Sonja S.; Norli, Hans Ragnar; Eklo, Ole Martin

    2013-01-01

    There is widespread use of chemical amendments to meet the demands for increased productivity in agriculture. Potentially toxic compounds, single or in mixtures, are added to the soil medium on a regular basis, while the ecotoxicological risk assessment procedures mainly follow a chemical by chemical approach. Picoxystrobin is a fungicide that has caused concern due to studies showing potentially detrimental effects to soil fauna (earthworms), while negative effects on soil microbial activities (nitrification, respiration) are shown to be transient. Potential mixture situations with nonylphenol, a chemical frequently occurring as a contaminant in sewage sludge used for land application, infer a need to explore whether these chemicals in mixture could alter the potential effects of picoxystrobin on the soil microflora. The main objective of this study was to assess the effects of picoxystrobin and nonylphenol, as single chemicals and mixtures, on soil microbial community structure and respiration activity in an agricultural sandy loam. Effects of the chemicals were assessed through measurements of soil microbial respiration activity and soil bacterial and fungal community structure fingerprints, together with a degradation study of the chemicals, through a 70 d incubation period. Picoxystrobin caused a decrease in the respiration activity, while 4-n-nonylphenol caused an increase in respiration activity concurring with a rapid degradation of the substance. Community structure fingerprints were also affected, but these results could not be directly interpreted in terms of positive or negative effects, and were indicated to be transient. Treatment with the chemicals in mixture caused less evident changes and indicated antagonistic effects between the chemicals in soil. In conclusion, the results imply that the application of the fungicide picoxystrobin and nonylphenol from sewage sludge application to agricultural soil in environmentally relevant concentrations, as

  9. Effects of picoxystrobin and 4-n-nonylphenol on soil microbial community structure and respiration activity.

    PubMed

    Stenrød, Marianne; Klemsdal, Sonja S; Norli, Hans Ragnar; Eklo, Ole Martin

    2013-01-01

    There is widespread use of chemical amendments to meet the demands for increased productivity in agriculture. Potentially toxic compounds, single or in mixtures, are added to the soil medium on a regular basis, while the ecotoxicological risk assessment procedures mainly follow a chemical by chemical approach. Picoxystrobin is a fungicide that has caused concern due to studies showing potentially detrimental effects to soil fauna (earthworms), while negative effects on soil microbial activities (nitrification, respiration) are shown to be transient. Potential mixture situations with nonylphenol, a chemical frequently occurring as a contaminant in sewage sludge used for land application, infer a need to explore whether these chemicals in mixture could alter the potential effects of picoxystrobin on the soil microflora. The main objective of this study was to assess the effects of picoxystrobin and nonylphenol, as single chemicals and mixtures, on soil microbial community structure and respiration activity in an agricultural sandy loam. Effects of the chemicals were assessed through measurements of soil microbial respiration activity and soil bacterial and fungal community structure fingerprints, together with a degradation study of the chemicals, through a 70 d incubation period. Picoxystrobin caused a decrease in the respiration activity, while 4-n-nonylphenol caused an increase in respiration activity concurring with a rapid degradation of the substance. Community structure fingerprints were also affected, but these results could not be directly interpreted in terms of positive or negative effects, and were indicated to be transient. Treatment with the chemicals in mixture caused less evident changes and indicated antagonistic effects between the chemicals in soil. In conclusion, the results imply that the application of the fungicide picoxystrobin and nonylphenol from sewage sludge application to agricultural soil in environmentally relevant concentrations, as

  10. Soil respiration partition and its components in the total agro-ecosystem respiration

    NASA Astrophysics Data System (ADS)

    Delogu, Emilie; LeDantec, Valerie; Mordelet, Patrick; Buysse, Pauline; Aubinet, Marc; Pattey, Elizabeth; Mary, Bruno

    2013-04-01

    Close to 15% of the Earth's terrestrial surface is used for cropland. In the context of global warming, and acknowledged by the Kyoto Protocol, agricultural soils could be a significant sink for atmospheric CO2. Understanding the factors influencing carbon fluxes of agricultural soils is essential for implementing efficient mitigation practices. Most of the soil respiration modeling studies was carried out in forest ecosystems, but only a few was carried out in agricultural ecosystems. In the study, we evaluated simple formalisms to model soil respiration using wheat data from four contrasting geographical mi-latitude regions. Soil respiration were measured in three winter wheat fields at Lamasquère (43°49'N, 01°23'E, 2007) and Auradé (43°54'N, 01°10'E, 2008), South-West France and Lonzée (50°33'N, 4°44'E, 2007), Belgium, and in a spring wheat field at Ottawa (45°22'N, 75°43'W, 2007, 2011), Ontario, Canada. Manual closed chambers were used in the French sites. The Belgium and Canadian sites were equipped with automated closed chamber systems, which continuously collected 30-min soil respiration exchanges. All the sites were also equipped with eddy flux towers. When eddy flux data were collected over bare soil, the net ecosystem exchange (NEE) was equal to soil respiration exchange. These NEE data were used to validate the model. Different biotic and abiotic descriptors were used to model daily soil respiration and its heterotrophic and autotrophic components: soil temperature, soil relative humidity, Gross Primary Productivity (GPP), shoot biomass, crop height, with different formalisms. It was interesting to conclude that using biotic descriptors did not improve the performances of the model. In fact, a combination of abiotic descriptors (soil humidity and soil temperature) allowed significant model formalism to model soil respiration. The simple soil respiration model was used to calculate the heterotrophic and autotrophic source contributions to

  11. Enumeration of respiring Pseudomonas spp. in milk within 6 hours by fluorescence in situ hybridization following formazan reduction.

    PubMed

    Kitaguchi, Akiko; Yamaguchi, Nobuyasu; Nasu, Masao

    2005-05-01

    Respiring Pseudomonas spp. in milk were quantified within 6 h by fluorescence in situ hybridization (FISH) with vital staining. FISH with an oligonucleotide probe based on 16S rRNA sequences was used for the specific detection of Pseudomonas spp. at the single cell level. 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) was used to estimate bacterial respiratory activity. The numbers of respiring Pseudomonas cells as determined by FISH with CTC staining (CTC-FISH) were almost the same or higher than the numbers of CFU as determined by the conventional culture method.

  12. BOREAS TE-2 Wood Respiration Data

    NASA Technical Reports Server (NTRS)

    Ryan, Michael G.; Lavigne, Michael; Hall, Forrest G. (Editor); Papagno, Andrea (Editor)

    2000-01-01

    The BOREAS TE-2 team collected several data sets in support of its efforts to characterize and interpret information on the respiration of the foliage, roots, and wood of boreal vegetation. This data set contains measurements of wood respiration conducted in the NSA during the growing season of 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  13. BOREAS TE-2 Continuous Wood Respiration Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Papagno, Andrea (Editor); Ryan, Michael G.; Lavigne, Michael

    2000-01-01

    The BOREAS TE-2 team collected several data sets in support of its efforts to characterize and interpret information on the respiration of the foliage, roots, and wood of boreal vegetation. This data set contains measurements of wood respiration measured continuously (about once per hour) in the NSA during the growing season of 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  14. BOREAS TE-2 Foliage Respiration Data

    NASA Technical Reports Server (NTRS)

    Ryan, Michael G.; Hall, Forrest G. (Editor); Lavigne, Michael; Papagno, Andrea (Editor)

    2000-01-01

    The BOREAS TE-2 team collected several data sets in support of its efforts to characterize and interpret information on the respiration of the foliage, roots, and wood of boreal vegetation. This data set contains measurements of foliar respiration conducted in the NSA during the growing season of 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  15. BOREAS TE-2 Root Respiration Data

    NASA Technical Reports Server (NTRS)

    Ryan, Michael G.; Lavigne, Michael; Hall, Forrest G. (Editor); Papagno, Andrea (Editor)

    2000-01-01

    The BOREAS TE-2 team collected several data sets in support of its efforts to characterize and interpret information on the respiration of the foliage, roots, and wood of boreal vegetation. This data set includes means of tree root respiration measurements on roots having diameters ranging from 0 to 2 mm conducted in the NSA during the growing season of 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  16. Changes in soil respiration components and their specific respiration along three successional forests in the subtropics

    DOE PAGES

    Han, Tianfeng; Liu, Juxiu; Wang, Gangsheng; ...

    2016-01-16

    1.Understanding how soil respiration components change with forest succession is critical for modelling and predicting soil carbon (C) processes and its sequestration below-ground. The specific respiration (a ratio of respiration to biomass) is increasingly being used as an indicator of forest succession conceptually based on Odum's theory of ecosystem development. However, the hypothesis that specific soil respiration declines with forest succession remains largely untested. 2.We used a trenching method to partition soil respiration into heterotrophic respiration and autotrophic respiration (RH and RA) and then evaluated the specific RH and specific RA in three successional forests in subtropical China. 3.Our resultsmore » showed a clear seasonality in the influence of forest succession on RH, with no significant differences among the three forests in the dry season but a higher value in the old-growth forest than the other two forests in the wet season. RA in the old-growth forest tended to be the highest among the three forests. Both the specific RH and specific RA decreased with the progressive maturity of three forests. 4.Lastly, our results highlight the importance of forest succession in determining the variation of RH in different seasons. With forest succession, soil microbes and plant roots become more efficient to conserve C resources, which would result in a greater proportion of C retained in soils.« less

  17. Impacts of Shewanella oneidensis c-type cytochromes on aerobic and anaerobic respiration

    SciTech Connect

    Gao, Haichun; Barua, Soumitra; Liang, Yili; Wu, Lianming; Dong, Yangyang; Reed, Samantha B.; Chen, Jingrong; Culley, David E.; Kennedy, David W.; Yang, Yunfeng; He, Zhili; Nealson, Kenneth H.; Fredrickson, Jim K.; Tiedje, James M.; Romine, Margaret F.; Zhou, Jizhong

    2010-06-24

    Shewanella are renowned for their ability to utilize a wide range of electron acceptors (EA) for respiration, which has been partially accredited to the presence of a large number of the c-type cytochromes. To investigate the involvement of c-type cytochrome proteins in aerobic and anaerobic respiration of Shewanella oneidensis Mr -1, 36 in-frame deletion mutants, among possible 41 predicted, c-type cytochrome genes were obtained. The potential involvement of each individual c-type cytochrome in the reduction of a variety of EAs was assessed individually as well as in competition experiments. While results on the wellstudied c-type cytochromes CymA(SO4591) and MtrC(SO1778) were consistent with previous findings, collective observations were very interesting: the responses of S. oneidensis Mr -1 to low and highly toxic metals appeared to be significantly different; CcoO, CcoP and PetC, proteins involved in aerobic respiration in various organisms, played critical roles in both aerobic and anaerobic respiration with highly toxic metals as EA. In addition, these studies also suggested that an uncharacterized c-type cytochrome (SO4047) may be important to both aerobiosis and anaerobiosis.

  18. Impacts of Shewanella oneidensis c-type cytochromes on aerobic and anaerobic respiration.

    PubMed

    Gao, Haichun; Barua, Soumitra; Liang, Yili; Wu, Lin; Dong, Yangyang; Reed, Samantha; Chen, Jingrong; Culley, Dave; Kennedy, David; Yang, Yunfeng; He, Zhili; Nealson, Kenneth H; Fredrickson, James K; Tiedje, James M; Romine, Margaret; Zhou, Jizhong

    2010-07-01

    Shewanella are renowned for their ability to utilize a wide range of electron acceptors (EA) for respiration, which has been partially accredited to the presence of a large number of the c-type cytochromes. To investigate the involvement of c-type cytochrome proteins in aerobic and anaerobic respiration of Shewanella oneidensis Mr -1, 36 in-frame deletion mutants, among possible 41 predicted, c-type cytochrome genes were obtained. The potential involvement of each individual c-type cytochrome in the reduction of a variety of EAs was assessed individually as well as in competition experiments. While results on the well-studied c-type cytochromes CymA(SO4591) and MtrC(SO1778) were consistent with previous findings, collective observations were very interesting: the responses of S. oneidensis Mr -1 to low and highly toxic metals appeared to be significantly different; CcoO, CcoP and PetC, proteins involved in aerobic respiration in various organisms, played critical roles in both aerobic and anaerobic respiration with highly toxic metals as EA. In addition, these studies also suggested that an uncharacterized c-type cytochrome (SO4047) may be important to both aerobiosis and anaerobiosis.

  19. Nitrate respiration associated with detrital aggregates in aerobic bottom waters of the abyssal NE Pacific

    NASA Astrophysics Data System (ADS)

    Wolgast, D. M.; Carlucci, A. F.; Bauer, J. E.

    Rates of nitrate utilization in tube core respirometers (TCR) placed over aggregates on the seafloor at an abyssal site (Station M) in the eastern North Pacific Ocean increased at times of high particle flux. In the presence of aggregates, both oxygen and nitrate were used in respiration. The ratio of O 2 : NO 3 concentrations in ambient waters was 3.9, while O 2 : NO 3 utilization rates in TCR overlying and TCR aggregate pore waters were 2.6 and 0.6, respectively. We postulated that denitrification was occurring in microzones of the particle-rich oxygenated (135 μM) waters. To test this, nitrate respiration was measured aboard a ship in oxygen-minimum (˜26 μM) water supplemented with particulate matter collected by a surface net tow. Dissolved oxygen consumption occurred immediately, followed by nitrate utilization while oxygen was still present. Calculations from cell densities indicated 0.6 μM of the original 42 μM of nitrate was assimilated into bacterial biomass during 36 h of incubation, suggesting the major portion of the utilized nitrate was used in respiration. Nitrate utilization rates in the in situ incubation study and those of the shipboard experiment were 3.1 and 2.7 μM d -1, respectively. The results of the present studies suggest nitrate respiration occurs in microzones of aggregates in oxygenated bottom waters at times of high particle flux and causes some loss of fixed nitrogen.

  20. Cholera Toxin Production Induced upon Anaerobic Respiration is Suppressed by Glucose Fermentation in Vibrio cholerae.

    PubMed

    Oh, Young Taek; Lee, Kang-Mu; Bari, Wasimul; Kim, Hwa Young; Kim, Hye Jin; Yoon, Sang Sun

    2016-03-01

    The causative agent of pandemic cholera, Vibrio cholerae, infects the anaerobic environment of the human intestine. Production of cholera toxin (CT), a major virulence factor of V. cholerae, is highly induced during anaerobic respiration with trimethylamine N-oxide (TMAO) as an alternative electron acceptor. However, the molecular mechanism of TMAO-stimulated CT production is not fully understood. Herein, we reveal that CT production during anaerobic TMAO respiration is affected by glucose fermentation. When the seventh pandemic V. cholerae O1 strain N16961 was grown with TMAO and additional glucose, CT production was markedly reduced. Furthermore, an N16961 Δcrp mutant, devoid of cyclic AMP receptor protein (CRP), was defective in CT production during growth by anaerobic TMAO respiration, further suggesting a role of glucose metabolism in regulating TMAO-mediated CT production. TMAO reductase activity was noticeably decreased when grown together with glucose or by mutation of the crp gene. A CRP binding region was identified in the promoter region of the torD gene, which encodes a structural subunit of the TMAO reductase. Gel shift assays further confirmed the binding of purified CRP to the torD promoter sequence. Together, our results suggest that the bacterial ability to respire using TMAO is controlled by CRP, whose activity is dependent on glucose availability. Our results reveal a novel mechanism for the regulation of major virulence factor production by V. cholerae under anaerobic growth conditions.

  1. Influence of the molybdenum cofactor biosynthesis on anaerobic respiration, biofilm formation and motility in Burkholderia thailandensis.

    PubMed

    Andreae, Clio A; Titball, Richard W; Butler, Clive S

    2014-01-01

    Burkholderia thailandensis is closely related to Burkholderia pseudomallei, a bacterial pathogen and the causative agent of melioidosis. B. pseudomallei can survive and persist within a hypoxic environment for up to one year and has been shown to grow anaerobically in the presence of nitrate. Currently, little is known about the role of anaerobic respiration in pathogenesis of melioidosis. Using B. thailandensis as a model, a library of 1344 transposon mutants was created to identify genes required for anaerobic nitrate respiration. One transposon mutant (CA01) was identified with an insertion in BTH_I1704 (moeA), a gene required for the molybdopterin biosynthetic pathway. This pathway is involved in the synthesis of a molybdopterin cofactor required for a variety of molybdoenzymes, including nitrate reductase. Disruption of molybdopterin biosynthesis prevented growth under anaerobic conditions, when using nitrate as the sole terminal electron acceptor. Defects in anaerobic respiration, nitrate reduction, motility and biofilm formation were observed for CA01. Mutant complementation with pDA-17:BTH_I1704 was able to restore anaerobic growth on nitrate, nitrate reductase activity and biofilm formation, but did not restore motility. This study highlights the potential importance of molybdoenzyme-dependent anaerobic respiration in the survival and virulence of B. thailandensis.

  2. Bulk soil and rhizosphere bacterial community PCR-DGGE profiles and beta-galactosidase activity as indicators of biological quality in soils contaminated by heavy metals and cultivated with Silene vulgaris (Moench) Garcke.

    PubMed

    Martínez-Iñigo, M J; Pérez-Sanz, A; Ortiz, I; Alonso, J; Alarcón, R; García, P; Lobo, M C

    2009-06-01

    The biological quality of two heavy metal contaminated soils (soil C: Typic Calcixerept, pH 8.3 and soil H: Typic Haploxeraf, pH 7.3) was investigated after growing the metal-tolerant plant Silene vulgaris (Moench) Garcke for two vegetative periods. The activity of the enzyme beta-galactosidase, which is sensitive to the presence of contaminants in soil, and the polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) profiles of 16S rRNA gene fragments of culturable bacteria from bulk soil and rhizosphere were determined. The microbial enzymatic activity was higher in planted soils than in bare soils at the contamination level of 600 mg of total heavy metals kg(-1) soil. After growing S. vulgaris, beta-galactosidase activity was almost recovered in the calcareous soil. In this soil new bands appeared in the PCR-DGGE profiles of the rhizosphere bacterial community as a response to the exposure to heavy metals.

  3. Bacterial Tracheitis

    MedlinePlus

    ... as a complication of croup (see Croup ) or endotracheal intubation (insertion of a plastic breathing tube through the ... irregularities that distinguish bacterial tracheitis from croup. Treatment Endotracheal intubation Antibiotics With treatment, most children recover completely. Very ...

  4. Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans

    PubMed Central

    Caza, Mélissa; Kronstad, James W.

    2013-01-01

    Iron is the most abundant transition metal in the human body and its bioavailability is stringently controlled. In particular, iron is tightly bound to host proteins such as transferrin to maintain homeostasis, to limit potential damage caused by iron toxicity under physiological conditions and to restrict access by pathogens. Therefore, iron acquisition during infection of a human host is a challenge that must be surmounted by every successful pathogenic microorganism. Iron is essential for bacterial and fungal physiological processes such as DNA replication, transcription, metabolism, and energy generation via respiration. Hence, pathogenic bacteria and fungi have developed sophisticated strategies to gain access to iron from host sources. Indeed, siderophore production and transport, iron acquisition from heme and host iron-containing proteins such as hemoglobin and transferrin, and reduction of ferric to ferrous iron with subsequent transport are all strategies found in bacterial and fungal pathogens of humans. This review focuses on a comparison of these strategies between bacterial and fungal pathogens in the context of virulence and the iron limitation that occurs in the human body as a mechanism of innate nutritional defense. PMID:24312900

  5. 42 CFR 84.1130 - Respirators; description.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... respective vapors, or from the chemical reaction between their respective vapors and gases. (3) Air-purifying... reaction with sorbent material in the canister. (c) Pesticide respirators, including all completely...) Front-mounted or back-mounted gas masks; (2) Chin-style gas mask; (3) Chemical cartridge; (4)...

  6. 42 CFR 84.1130 - Respirators; description.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... respective vapors, or from the chemical reaction between their respective vapors and gases. (3) Air-purifying... reaction with sorbent material in the canister. (c) Pesticide respirators, including all completely...) Front-mounted or back-mounted gas masks; (2) Chin-style gas mask; (3) Chemical cartridge; (4)...

  7. 42 CFR 84.1130 - Respirators; description.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... respective vapors, or from the chemical reaction between their respective vapors and gases. (3) Air-purifying... reaction with sorbent material in the canister. (c) Pesticide respirators, including all completely...) Front-mounted or back-mounted gas masks; (2) Chin-style gas mask; (3) Chemical cartridge; (4)...

  8. 42 CFR 84.1130 - Respirators; description.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... respective vapors, or from the chemical reaction between their respective vapors and gases. (3) Air-purifying... reaction with sorbent material in the canister. (c) Pesticide respirators, including all completely...) Front-mounted or back-mounted gas masks; (2) Chin-style gas mask; (3) Chemical cartridge; (4)...

  9. 42 CFR 84.1130 - Respirators; description.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... respective vapors, or from the chemical reaction between their respective vapors and gases. (3) Air-purifying... reaction with sorbent material in the canister. (c) Pesticide respirators, including all completely...) Front-mounted or back-mounted gas masks; (2) Chin-style gas mask; (3) Chemical cartridge; (4)...

  10. Respiration patterns of resting wasps (Vespula sp.).

    PubMed

    Käfer, Helmut; Kovac, Helmut; Stabentheiner, Anton

    2013-04-01

    We investigated the respiration patterns of wasps (Vespula sp.) in their viable temperature range (2.9-42.4°C) by measuring CO2 production and locomotor and endothermic activity. Wasps showed cycles of an interburst-burst type at low ambient temperatures (Ta<5°C) or typical discontinuous gas exchange patterns with closed, flutter and open phases. At high Ta of >31°C, CO2 emission became cyclic. With rising Ta they enhanced CO2-emission primarily by an exponential increase in respiration frequency, from 2.6 mHz at 4.7°C to 74 mHz at 39.7°C. In the same range of Ta CO2 release per cycle decreased from 38.9 to 26.4 μl g(-1)cycle(-1). A comparison of wasps with other insects showed that they are among the insects with a low respiratory frequency at a given resting metabolic rate (RMR), and a relatively flat increase of respiratory frequency with RMR. CO2 emission was always accompanied by abdominal respiration movements in all open phases and in 71.4% of the flutter phases, often accompanied by body movements. Results suggest that resting wasps gain their highly efficient gas exchange to a considerable extent via the length and type of respiration movements.

  11. 78 FR 18535 - Respirator Certification Fees

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-27

    ... HUMAN SERVICES 42 CFR Part 84 RIN 0920-AA42 Respirator Certification Fees AGENCY: Centers for Disease... and Human Services (HHS) proposes to revise the fee structure currently used by the National Institute... number). SUPPLEMENTARY INFORMATION: This proposed rule is designed to establish fees for the...

  12. Development of conformal respirator monitoring technology

    SciTech Connect

    Shonka, J.J.; Weismann, J.J.; Logan, R.J.

    1997-04-01

    This report summarizes the results of a Small Business Innovative Research Phase II project to develop a modular, surface conforming respirator monitor to improve upon the manual survey techniques presently used by the nuclear industry. Research was performed with plastic scintillator and gas proportional modules in an effort to find the most conducive geometry for a surface conformal, position sensitive monitor. The respirator monitor prototype developed is a computer controlled, position-sensitive detection system employing 56 modular proportional counters mounted in molds conforming to the inner and outer surfaces of a commonly used respirator (Scott Model 801450-40). The molds are housed in separate enclosures and hinged to create a {open_quotes}waffle-iron{close_quotes} effect so that the closed monitor will simultaneously survey both surfaces of the respirator. The proportional counter prototype was also designed to incorporate Shonka Research Associates previously developed charge-division electronics. This research provided valuable experience into pixellated position sensitive detection systems. The technology developed can be adapted to other monitoring applications where there is a need for deployment of many traditional radiation detectors.

  13. Electrophrenic respiration in patients with high quadriplegia.

    PubMed

    Sharkey, P C; Halter, J A; Nakajima, K

    1989-04-01

    After determining that 15 patients with high spinal cord injuries who were permanently apneic had viable phrenic nerves, electrophrenic respiration units were implanted. Thirteen of the patients (86%) achieved full-time respiration and two more achieved half-time respiration. Despite the loss of 8 patients to unrelated problems, 7 now use electrophrenic respiration continuously, one having done so for 16 years. The patient selection criteria, neurophysiological evaluation method, surgical procedure, postoperative care, and methods for diagnosis of system failures are presented. A comparison of the cervical and thoracic procedures is made. The cervical approach is preferred. Complications consisted primarily of equipment failures. For the external components there were several cases of antenna connection and battery connection failures. The implanted receivers failed in 6 cases with an average lifetime of 48 months, ranging from 24 to 108 months. In one case fibrosis around the electrode resulted in failure to stimulate the phrenic nerve effectively. In another case, infection required removal of the system which was reimplanted later and has continued to provide successful ventilation.

  14. Effects of cadmium on heart mitochondrial respiration

    SciTech Connect

    Kisling, G.M.; Kopp, S.J.; Paulson, D.J.; Tow, J.P.

    1986-03-01

    The purpose of this study was to determine the direct effect of cadmium on isolated heart mitochondrial respiration. Mitochondria were rapidly prepared by polytroning hearts from male Sprague-Dawley rats in a 0.25 M Sucrose, 4 mM Tris, 1 mM EGTA, 0.2% BSA buffer (pH 7.4), followed by a two-part differential centrifugation. Mitochondria were resuspended in this same Tris-sucrose-BSA buffer minus EGTA and mitochondrial respiration was assayed using a Clark oxygen electrode system at a concentration of 0.5 mg total mitochondrial protein/ml assay buffer. At 5 x 10/sup -6/ M cadmium, mitochondrial state 3 respiration (pyruvate plus malate) was reduced to a level 74.8% of the control value. A 50% reduction in state 3 respiratory rate was achieved at a cadmium concentration of 8.75 x 10/sup -6/ M. The respiratory control ratio did not change significantly but at higher cadmium concentrations (< greater than or equal to 1.25 x 10/sup -5/ M) the ADP/O ratio was increased. None of the cadmium concentrations tested, from 10/sup -8/ to 10/sup -4/ M, demonstrated an uncoupling response. These data suggest that cadmium acts strictly as an inhibitor of heart mitochondrial oxidative phosphorylation. These results contrast those of earlier work involving liver mitochondria in which cadmium was reported to uncouple mitochondrial respiration.

  15. Estimating Canopy Dark Respiration for Crop Models

    NASA Technical Reports Server (NTRS)

    Monje Mejia, Oscar Alberto

    2014-01-01

    Crop production is obtained from accurate estimates of daily carbon gain.Canopy gross photosynthesis (Pgross) can be estimated from biochemical models of photosynthesis using sun and shaded leaf portions and the amount of intercepted photosyntheticallyactive radiation (PAR).In turn, canopy daily net carbon gain can be estimated from canopy daily gross photosynthesis when canopy dark respiration (Rd) is known.

  16. A comparison of facemask and respirator filtration test methods.

    PubMed

    Rengasamy, Samy; Shaffer, Ronald; Williams, Brandon; Smit, Sarah

    2017-02-01

    NIOSH published a Federal Register Notice to explore the possibility of incorporating FDA required filtration tests for surgical masks (SMs) in the 42 CFR Part 84 respirator certification process. There have been no published studies comparing the filtration efficiency test methods used for NIOSH certification of N95 filtering facepiece respirators (N95 FFRs) with those used by the FDA for clearance of SMs. To address this issue, filtration efficiencies of "N95 FFRs" including six N95 FFR models and three surgical N95 FFR models, and three SM models were measured using the NIOSH NaCl aerosol test method, and FDA required particulate filtration efficiency (PFE) and bacterial filtration efficiency (BFE) methods, and viral filtration efficiency (VFE) method. Five samples of each model were tested using each method. Both PFE and BFE tests were done using unneutralized particles as per FDA guidance document. PFE was measured using 0.1 µm size polystyrene latex particles and BFE with ∼3.0 µm size particles containing Staphylococcus aureus bacteria. VFE was obtained using ∼3.0 µm size particles containing phiX 174 as the challenge virus and Escherichia coli as the host. Results showed that the efficiencies measured by the NIOSH NaCl method for "N95 FFRs" were from 98.15-99.68% compared to 99.74-99.99% for PFE, 99.62-99.9% for BFE, and 99.8-99.9% for VFE methods. Efficiencies by the NIOSH NaCl method were significantly (p = <0.05) lower than the other methods. SMs showed lower efficiencies (54.72-88.40%) than "N95 FFRs" measured by the NIOSH NaCl method, while PFE, BFE, and VFE methods produced no significant difference. The above results show that the NIOSH NaCl method is relatively conservative and is able to identify poorly performing filtration devices. The higher efficiencies obtained using PFE, BFE and VFE methods show that adding these supplemental particle penetration methods will not improve respirator certification.

  17. [Endogenous respiration process analysis of heterotrophic biomass and autotrophic biomass based on respiration map ].

    PubMed

    Li, Zhi-hua; Bai, Xu-li; Zhang, Qin; Liu, Yi; He, Chun-bo

    2014-09-01

    The endogenous process is an important metabolic part of the activated sludge, and the understanding of this process is still unclear. Characteristics of endogenous respiration for heterotrophic bacteria and autotrophic nitrifiers were analyzed using respirogram. Results showed that both heterotrophic and autotrophic bacteria entered the stage of endogenous respiration at almost the same time, but heterotrophic bacteria first entered the stage of dormancy i. e. , they were easier to recover a higher proportion of biomass during the dormancy stage, indicating that heterotrophic bacteria exhibited strong environmental adaptability. Autotrophic bacteria were, however, quite different. This finding confirmed that autotrophic bacteria were more vulnerable from the viewpoint of endogenous respiration. In addition, the study also found that the increase of endogenous respiration rate ratio reflected the decreased sludge activity. And the proportion of endogenous respiration was an important parameter to characterize the activity of activated sludge, which can be used as a quantitative index for the health status of activated sludge. The findings further deepened the understanding of endogenous respiration process and provided a theoretical basis for the operation and management of wastewater treatment plants.

  18. Intracellular metabolite levels shape sulfur isotope fractionation during microbial sulfate respiration

    PubMed Central

    Wing, Boswell A.; Halevy, Itay

    2014-01-01

    We present a quantitative model for sulfur isotope fractionation accompanying bacterial and archaeal dissimilatory sulfate respiration. By incorporating independently available biochemical data, the model can reproduce a large number of recent experimental fractionation measurements with only three free parameters: (i) the sulfur isotope selectivity of sulfate uptake into the cytoplasm, (ii) the ratio of reduced to oxidized electron carriers supporting the respiration pathway, and (iii) the ratio of in vitro to in vivo levels of respiratory enzyme activity. Fractionation is influenced by all steps in the dissimilatory pathway, which means that environmental sulfate and sulfide levels control sulfur isotope fractionation through the proximate influence of intracellular metabolites. Although sulfur isotope fractionation is a phenotypic trait that appears to be strain specific, we show that it converges on near-thermodynamic behavior, even at micromolar sulfate levels, as long as intracellular sulfate reduction rates are low enough (<<1 fmol H2S⋅cell−1⋅d−1). PMID:25362045

  19. Intracellular metabolite levels shape sulfur isotope fractionation during microbial sulfate respiration

    NASA Astrophysics Data System (ADS)

    Wing, Boswell A.; Halevy, Itay

    2014-12-01

    We present a quantitative model for sulfur isotope fractionation accompanying bacterial and archaeal dissimilatory sulfate respiration. By incorporating independently available biochemical data, the model can reproduce a large number of recent experimental fractionation measurements with only three free parameters: (i) the sulfur isotope selectivity of sulfate uptake into the cytoplasm, (ii) the ratio of reduced to oxidized electron carriers supporting the respiration pathway, and (iii) the ratio of in vitro to in vivo levels of respiratory enzyme activity. Fractionation is influenced by all steps in the dissimilatory pathway, which means that environmental sulfate and sulfide levels control sulfur isotope fractionation through the proximate influence of intracellular metabolites. Although sulfur isotope fractionation is a phenotypic trait that appears to be strain specific, we show that it converges on near-thermodynamic behavior, even at micromolar sulfate levels, as long as intracellular sulfate reduction rates are low enough (<<1 fmol H2Sṡcell-1ṡd-1).

  20. Intracellular metabolite levels shape sulfur isotope fractionation during microbial sulfate respiration.

    PubMed

    Wing, Boswell A; Halevy, Itay

    2014-12-23

    We present a quantitative model for sulfur isotope fractionation accompanying bacterial and archaeal dissimilatory sulfate respiration. By incorporating independently available biochemical data, the model can reproduce a large number of recent experimental fractionation measurements with only three free parameters: (i) the sulfur isotope selectivity of sulfate uptake into the cytoplasm, (ii) the ratio of reduced to oxidized electron carriers supporting the respiration pathway, and (iii) the ratio of in vitro to in vivo levels of respiratory enzyme activity. Fractionation is influenced by all steps in the dissimilatory pathway, which means that environmental sulfate and sulfide levels control sulfur isotope fractionation through the proximate influence of intracellular metabolites. Although sulfur isotope fractionation is a phenotypic trait that appears to be strain specific, we show that it converges on near-thermodynamic behavior, even at micromolar sulfate levels, as long as intracellular sulfate reduction rates are low enough (<1 fmol H2S⋅cell(-1)⋅d(-1)).

  1. 21 CFR 892.1970 - Radiographic ECG/respirator synchronizer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiographic ECG/respirator synchronizer. 892.1970... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1970 Radiographic ECG/respirator synchronizer. (a) Identification. A radiographic ECG/respirator synchronizer is a device intended to be used...

  2. 42 CFR 84.1156 - Pesticide respirators; performance requirements; general.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Pesticide respirators; performance requirements... DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators and Combination Gas Masks § 84.1156 Pesticide respirators; performance requirements;...

  3. 42 CFR 84.1156 - Pesticide respirators; performance requirements; general.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Pesticide respirators; performance requirements... DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators and Combination Gas Masks § 84.1156 Pesticide respirators; performance requirements;...

  4. 42 CFR 84.1156 - Pesticide respirators; performance requirements; general.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Pesticide respirators; performance requirements... DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators and Combination Gas Masks § 84.1156 Pesticide respirators; performance requirements;...

  5. 42 CFR 84.1156 - Pesticide respirators; performance requirements; general.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Pesticide respirators; performance requirements... DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators and Combination Gas Masks § 84.1156 Pesticide respirators; performance requirements;...

  6. 42 CFR 84.1156 - Pesticide respirators; performance requirements; general.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Pesticide respirators; performance requirements... DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators and Combination Gas Masks § 84.1156 Pesticide respirators; performance requirements;...

  7. 42 CFR 84.1134 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84... Combination Gas Masks § 84.1134 Respirator containers; minimum requirements. (a) Except as provided in paragraph (b) of this section each respirator shall be equipped with a substantial, durable...

  8. 42 CFR 84.190 - Chemical cartridge respirators: description.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Chemical cartridge respirators: description. 84.190... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.190 Chemical cartridge respirators: description. (a) Chemical...

  9. 42 CFR 84.190 - Chemical cartridge respirators: description.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Chemical cartridge respirators: description. 84.190... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.190 Chemical cartridge respirators: description. (a) Chemical...

  10. 42 CFR 84.190 - Chemical cartridge respirators: description.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Chemical cartridge respirators: description. 84.190... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.190 Chemical cartridge respirators: description. (a) Chemical...

  11. 42 CFR 84.190 - Chemical cartridge respirators: description.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Chemical cartridge respirators: description. 84.190... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.190 Chemical cartridge respirators: description. (a) Chemical...

  12. 42 CFR 84.190 - Chemical cartridge respirators: description.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Chemical cartridge respirators: description. 84.190... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.190 Chemical cartridge respirators: description. (a) Chemical...

  13. Bacterial rheotaxis.

    PubMed

    Marcos; Fu, Henry C; Powers, Thomas R; Stocker, Roman

    2012-03-27

    The motility of organisms is often directed in response to environmental stimuli. Rheotaxis is the directed movement resulting from fluid velocity gradients, long studied in fish, aquatic invertebrates, and spermatozoa. Using carefully controlled microfluidic flows, we show that rheotaxis also occurs in bacteria. Excellent quantitative agreement between experiments with Bacillus subtilis and a mathematical model reveals that bacterial rheotaxis is a purely physical phenomenon, in contrast to fish rheotaxis but in the same way as sperm rheotaxis. This previously unrecognized bacterial taxis results from a subtle interplay between velocity gradients and the helical shape of flagella, which together generate a torque that alters a bacterium's swimming direction. Because this torque is independent of the presence of a nearby surface, bacterial rheotaxis is not limited to the immediate neighborhood of liquid-solid interfaces, but also takes place in the bulk fluid. We predict that rheotaxis occurs in a wide range of bacterial habitats, from the natural environment to the human body, and can interfere with chemotaxis, suggesting that the fitness benefit conferred by bacterial motility may be sharply reduced in some hydrodynamic conditions.

  14. Contribution of silver nanoparticles to extend Salmonella typhimurium growth under various respiration regimes.

    PubMed

    Hidouri, Slah; Yohmes, Mannoubia Ben; Landoulsi, Ahmed

    2016-10-01

    Living cells interact with different forms of metal; the resulted biochemical alteration depends on the dose. Over an average dose in ionic form, metals interact with respiration processes at various levels, and it induces oxidative stress by shifting the whole oxydoreduction equilibrium. To correct the toxicity, cell develops different ways to cancel the effect of the exceeded charges, and it reduces the ion to get a more stable form. In the case of nanoparticles, the reactivity of surface has been enhanced that can alter the biological mechanisms; the cell may develop different strategies to minimize this reactivity. The current study is focused on the pursuing of cell behavior regarding the presence of nanoparticles and their associated metals. Nanoparticles have been synthesized using bio-reducing agents and then were structurally characterized using X-ray diffraction, UV-Vis, and infra-red spectroscopy. The oxydoreduction flexibility of the post-synthesis modified nanoparticles was tested in vitro. Interactions with cells were done using Salmonella under various respiration conditions. The final results show the possible correction of oxidative stress effects and the recuperation of respiration.

  15. Complementarity among plant growth promoting traits in rhizospheric bacterial communities promotes plant growth.

    PubMed

    Singh, Mangal; Awasthi, Ashutosh; Soni, Sumit K; Singh, Rakshapal; Verma, Rajesh K; Kalra, Alok

    2015-10-27

    An assessment of roles of rhizospheric microbial diversity in plant growth is helpful in understanding plant-microbe interactions. Using random combinations of rhizospheric bacterial species at different richness levels, we analysed the contribution of species richness, compositions, interactions and identity on soil microbial respiration and plant biomass. We showed that bacterial inoculation in plant rhizosphere enhanced microbial respiration and plant biomass with complementary relationships among bacterial species. Plant growth was found to increase linearly with inoculation of rhizospheric bacterial communities with increasing levels of species or plant growth promoting trait diversity. However, inoculation of diverse bacterial communities having single plant growth promoting trait, i.e., nitrogen fixation could not enhance plant growth over inoculation of single bacteria. Our results indicate that bacterial diversity in rhizosphere affect ecosystem functioning through complementary relationship among plant growth promoting traits and may play significant roles in delivering microbial services to plants.

  16. [Contribution of wheat rhizosphere respiration to soil respiration under elevated atmospheric CO2 and nitrogen application].

    PubMed

    Kou, Tai-ji; Xu, Xiao-feng; Zhu, Jian-guo; Xie, Zu-bin; Guo, Da-yong; Miao, Yan-fang

    2011-10-01

    With the support of free-air carbon dioxide enrichment (FACE) system and by using isotope 13C technique, and through planting wheat (Triticum aestivum L., C3 crop) on a soil having been planted with maize (Zea mays L., C4 crop) for many years, this paper studied the effects of elevated atmospheric CO2 and nitrogen application on the delta 13C value of soil emitted CO2 and the wheat rhizosphere respiration. With the growth of wheat, the delta 13C value of soil emitted CO2 had a gradual decrease. Elevated atmospheric CO2 concentration (200 micromol mol(-1)) decreased the delta 13C value of emitted CO2 at booting and heading stages significantly when the nitrogen application rate was 250 kg hm(-2) (HN), and at jointing and booting stages significantly when the nitrogen application rate was 150 kg hm(-2) (LN). Nevertheless, the elevated atmospheric CO2 promoted the proportions of wheat rhizosphere respiration to soil respiration at booting and heading stages significantly. From jointing stage to maturing stage, the proportions of wheat rhizosphere respiration to soil respiration were 24%-48% (HN) and 21%-48% (LN) under elevated atmospheric CO2, and 20%-36% (HN) and 19%-32% (LN) under ambient atmospheric CO2. Under both elevated and ambient atmospheric CO2 concentrations, the delta 13C value of emitted CO2 and the rhizosphere respiration had different responses to the increased nitrogen application rate, and there was a significant interactive effect of atmospheric CO2 concentration and nitrogen application rate on the wheat rhizosphere respiration at jointing stage.

  17. Changes in soil respiration components and their specific respiration along three successional forests in the subtropics

    SciTech Connect

    Han, Tianfeng; Liu, Juxiu; Wang, Gangsheng; Huang, Wenjuan; Zhou, Guoyi

    2016-01-16

    1.Understanding how soil respiration components change with forest succession is critical for modelling and predicting soil carbon (C) processes and its sequestration below-ground. The specific respiration (a ratio of respiration to biomass) is increasingly being used as an indicator of forest succession conceptually based on Odum's theory of ecosystem development. However, the hypothesis that specific soil respiration declines with forest succession remains largely untested. 2.We used a trenching method to partition soil respiration into heterotrophic respiration and autotrophic respiration (RH and RA) and then evaluated the specific RH and specific RA in three successional forests in subtropical China. 3.Our results showed a clear seasonality in the influence of forest succession on RH, with no significant differences among the three forests in the dry season but a higher value in the old-growth forest than the other two forests in the wet season. RA in the old-growth forest tended to be the highest among the three forests. Both the specific RH and specific RA decreased with the progressive maturity of three forests. 4.Lastly, our results highlight the importance of forest succession in determining the variation of RH in different seasons. With forest succession, soil microbes and plant roots become more efficient to conserve C resources, which would result in a greater proportion of C retained in soils.

  18. A MEMS turbine prototype for respiration harvesting

    NASA Astrophysics Data System (ADS)

    Goreke, U.; Habibiabad, S.; Azgin, K.; Beyaz, M. I.

    2015-12-01

    The design, manufacturing, and performance characterization of a MEMS-scale turbine prototype is reported. The turbine is designed for integration into a respiration harvester that can convert normal human breathing into electrical power through electromagnetic induction. The device measures 10 mm in radius, and employs 12 blades located around the turbine periphery along with ball bearings around the center. Finite element simulations showed that an average torque of 3.07 μNm is induced at 12 lpm airflow rate, which lies in normal breathing levels. The turbine and a test package were manufactured using CNC milling on PMMA. Tests were performed at respiration flow rates between 5-25 lpm. The highest rotational speed was measured to be 9.84 krpm at 25 lpm, resulting in 8.96 mbar pressure drop across the device and 370 mW actuation power.

  19. Ammonium excretion and oxygen respiration of tropical copepods and euphausiids exposed to oxygen minimum zone conditions

    NASA Astrophysics Data System (ADS)

    Kiko, Rainer; Hauss, Helena; Buchholz, Friedrich; Melzner, Frank

    2016-04-01

    Calanoid copepods and euphausiids are key components of marine zooplankton communities worldwide. Most euphausiids and several copepod species perform diel vertical migrations (DVMs) that contribute to the export of particulate and dissolved matter to midwater depths. In vast areas of the global ocean, and in particular in the eastern tropical Atlantic and Pacific, the daytime distribution depth of many migrating organisms corresponds to the core of the oxygen minimum zone (OMZ). At depth, the animals experience reduced temperature and oxygen partial pressure (pO2) and an increased carbon dioxide partial pressure (pCO2) compared to their near-surface nighttime habitat. Although it is well known that low oxygen levels can inhibit respiratory activity, the respiration response of tropical copepods and euphausiids to relevant pCO2, pO2, and temperature conditions remains poorly parameterized. Further, the regulation of ammonium excretion at OMZ conditions is generally not well understood. It was recently estimated that DVM-mediated ammonium supply could fuel bacterial anaerobic ammonium oxidation - a major loss process for fixed nitrogen in the ocean considerably. These estimates were based on the implicit assumption that hypoxia or anoxia in combination with hypercapnia (elevated pCO2) does not result in a down-regulation of ammonium excretion. We exposed calanoid copepods from the Eastern Tropical North Atlantic (ETNA; Undinula vulgaris and Pleuromamma abdominalis) and euphausiids from the Eastern Tropical South Pacific (ETSP; Euphausia mucronata) and the ETNA (Euphausia gibboides) to different temperatures, carbon dioxide and oxygen levels to study their survival, respiration and excretion rates at these conditions. An increase in temperature by 10 °C led to an approximately 2-fold increase of the respiration and excretion rates of U. vulgaris (Q10, respiration = 1.4; Q10, NH4-excretion = 1.6), P. abdominalis (Q10, respiration = 2.0; Q10, NH4-excretion = 2.4) and

  20. AgNO3 dependant modulation of glucose mediated respiration kinetics in Escherichia coli at different pH and temperature.

    PubMed

    Afiqah, Radin Nur; Paital, Biswaranjan; Kumar, Sunil; Majeed, Abu Bakar Abdul; Tripathy, Minaketan

    2016-11-01

    The inhibitory role of AgNO3 on glucose-mediated respiration in Escherichia coli has been investigated as a function of pH and temperature using Clark-type electrode, environmental scanning electron microscopy, and computational tools. In the given concentration of bacterial suspension (1 × 10(8)  CFU/ml), E. coli showed an increasing nonlinear trend of tetra-phasic respiration between 1-133 μM glucose concentration within 20 min. The glucose concentrations above 133 μM did not result any linear increment in respiration but rather showed a partial inhibition at higher glucose concentrations (266-1066 μM). In the presence of glucose, AgNO3 caused a concentration-dependent (47-1960 μM) inhibition of the respiration rate within 4 min of its addition. The respiration rate was the highest at pH 7-8 and then was decreased on either side of this pH range. The inhibitory action of AgNO3 upon bacterial respiration was the highest at 37 °C. The observations of the respiration data were well supported by the altered bacterial morphology as observed in electron microscopic study. Docking study indicated the AgNO3 binding to different amino acids of all respiratory complex enzymes in E. coli and thereby explaining its interference with the respiratory chain. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Respirators, internal dose, and Oyster Creek

    SciTech Connect

    Michal, R.

    1996-06-01

    This article looks at the experience of Oyster Creek in relaxing the requirements for the use of respirators in all facets of plant maintenance, on the overall dose received by plant maintenance personnel. For Roger Shaw, director of radiological controls for three years at GPU Nuclear Corporation`s Oyster Creek nuclear plant the correct dose balance is determined on a job-by-job basis: Does the job require a respirator, which is an effective means of decreasing worker inhalation of airborne radioactive particles? Will wearing a respirator slow down a worker, consequently increasing whole body radiation exposure by prolonging the time spent in fields of high external radiation? How does respiratory protection affect worker safety and to what degree? While changes to the Nuclear Regulatory Commission`s 10CFR20 have updated the radiation protection requirements for the nuclear industry, certain of the revisions have been directed specifically at reducing worker dose, Shaw said. {open_quotes}It basically delineates that dose is dose,{close_quotes} Shaw said, {open_quotes}regardless of whether it is acquired externally or internally.{close_quotes} The revision of Part 20 changed the industry`s attitude toward internal dose, which had always been viewed negatively. {open_quotes}Internal dose was always seen as preventable by wearing respirators and by using engineering techniques such as ventilation control and decontamination,{close_quotes} Shaw said, {open_quotes}whereas external dose, although reduced where practical, was seen as a fact of the job.{close_quotes}

  2. Robust respiration detection from remote photoplethysmography

    PubMed Central

    van Gastel, Mark; Stuijk, Sander; de Haan, Gerard

    2016-01-01

    Continuous monitoring of respiration is essential for early detection of critical illness. Current methods require sensors attached to the body and/or are not robust to subject motion. Alternative camera-based solutions have been presented using motion vectors and remote photoplethysmography. In this work, we present a non-contact camera-based method to detect respiration, which can operate in both visible and dark lighting conditions by detecting the respiratory-induced colour differences of the skin. We make use of the close similarity between skin colour variations caused by the beating of the heart and those caused by respiration, leading to a much improved signal quality compared to single-channel approaches. Essentially, we propose to find the linear combination of colour channels which suppresses the distortions best in a frequency band including pulse rate, and subsequently we use this same linear combination to extract the respiratory signal in a lower frequency band. Evaluation results obtained from recordings on healthy subjects which perform challenging scenarios, including motion, show that respiration can be accurately detected over the entire range of respiratory frequencies, with a correlation coefficient of 0.96 in visible light and 0.98 in infrared, compared to 0.86 with the best-performing non-contact benchmark algorithm. Furthermore, evaluation on a set of videos recorded in a Neonatal Intensive Care Unit (NICU) shows that this technique looks promising as a future alternative to current contact-sensors showing a correlation coefficient of 0.87. PMID:28018717

  3. Frost Induces Respiration and Accelerates Carbon Depletion in Trees

    PubMed Central

    Sperling, Or; Earles, J. Mason; Secchi, Francesca; Godfrey, Jessie; Zwieniecki, Maciej A.

    2015-01-01

    Cellular respiration depletes stored carbohydrates during extended periods of limited photosynthesis, e.g. winter dormancy or drought. As respiration rate is largely a function of temperature, the thermal conditions during such periods may affect non-structural carbohydrate (NSC) availability and, ultimately, recovery. Here, we surveyed stem responses to temperature changes in 15 woody species. For two species with divergent respirational response to frost, P. integerrima and P. trichocarpa, we also examined corresponding changes in NSC levels. Finally, we simulated respiration-induced NSC depletion using historical temperature data for the western US. We report a novel finding that tree stems significantly increase respiration in response to near freezing temperatures. We observed this excess respiration in 13 of 15 species, deviating 10% to 170% over values predicted by the Arrhenius equation. Excess respiration persisted at temperatures above 0°C during warming and reoccurred over multiple frost-warming cycles. A large adjustment of NSCs accompanied excess respiration in P. integerrima, whereas P. trichocarpa neither excessively respired nor adjusted NSCs. Over the course of the years included in our model, frost-induced respiration accelerated stem NSC consumption by 8.4 mg (glucose eq.) cm-3 yr-1 on average in the western US, a level of depletion that may continue to significantly affect spring NSC availability. This novel finding revises the current paradigm of low temperature respiration kinetics. PMID:26629819

  4. Frost Induces Respiration and Accelerates Carbon Depletion in Trees.

    PubMed

    Sperling, Or; Earles, J Mason; Secchi, Francesca; Godfrey, Jessie; Zwieniecki, Maciej A

    2015-01-01

    Cellular respiration depletes stored carbohydrates during extended periods of limited photosynthesis, e.g. winter dormancy or drought. As respiration rate is largely a function of temperature, the thermal conditions during such periods may affect non-structural carbohydrate (NSC) availability and, ultimately, recovery. Here, we surveyed stem responses to temperature changes in 15 woody species. For two species with divergent respirational response to frost, P. integerrima and P. trichocarpa, we also examined corresponding changes in NSC levels. Finally, we simulated respiration-induced NSC depletion using historical temperature data for the western US. We report a novel finding that tree stems significantly increase respiration in response to near freezing temperatures. We observed this excess respiration in 13 of 15 species, deviating 10% to 170% over values predicted by the Arrhenius equation. Excess respiration persisted at temperatures above 0 °C during warming and reoccurred over multiple frost-warming cycles. A large adjustment of NSCs accompanied excess respiration in P. integerrima, whereas P. trichocarpa neither excessively respired nor adjusted NSCs. Over the course of the years included in our model, frost-induced respiration accelerated stem NSC consumption by 8.4 mg (glucose eq.) cm(-3) yr(-1) on average in the western US, a level of depletion that may continue to significantly affect spring NSC availability. This novel finding revises the current paradigm of low temperature respiration kinetics.

  5. Extracellular respiration of dimethyl sulfoxide by Shewanella oneidensis strain MR-1

    PubMed Central

    Gralnick, Jeffrey A.; Vali, Hojatollah; Lies, Douglas P.; Newman, Dianne K.

    2006-01-01

    Shewanella species are renowned for their respiratory versatility, including their ability to respire poorly soluble substrates by using enzymatic machinery that is localized to the outside of the cell. The ability to engage in “extracellular respiration” to date has focused primarily on respiration of minerals. Here, we identify two gene clusters in Shewanella oneidensis strain MR-1 that each contain homologs of genes required for metal reduction and genes that are predicted to encode dimethyl sulfoxide (DMSO) reductase subunits. Molecular and genetic analyses of these clusters indicate that one (SO1427–SO1432) is required for anaerobic respiration of DMSO. We show that DMSO respiration is an extracellular respiratory process through the analysis of mutants defective in type II secretion, which is required for transporting proteins to the outer membrane in Shewanella. Moreover, immunogold labeling of DMSO reductase subunits reveals that they reside on the outer leaflet of the outer membrane under anaerobic conditions. The extracellular localization of the DMSO reductase in S. oneidensis suggests these organisms may perceive DMSO in the environment as an insoluble compound. PMID:16537430

  6. Diffusion in biofilms respiring on electrodes

    SciTech Connect

    Renslow, Ryan S.; Babauta, Jerome T.; Majors, Paul D.; Beyenal, Haluk

    2012-11-15

    The goal of this study was to measure spatially and temporally resolved effective diffusion coefficients (De) in biofilms respiring on electrodes. Two model electrochemically active biofilms, Geobacter sulfurreducens PCA and Shewanella oneidensis MR-1, were investigated. A novel nuclear magnetic resonance microimaging perfusion probe capable of simultaneous electrochemical and pulsed-field gradient nuclear magnetic resonance (PFG-NMR) techniques was used. PFG-NMR allowed for noninvasive, nondestructive, high spatial resolution in situ De measurements in living biofilms respiring on electrodes. The electrodes were polarized so that they would act as the sole terminal electron acceptor for microbial metabolism. We present our results as both two-dimensional De heat maps and surface-averaged relative effective diffusion coefficient (Drs) depth profiles. We found that (1) Drs decreases with depth in G. sulfurreducens biofilms, following a sigmoid shape; (2) Drs at a given location decreases with G. sulfurreducens biofilm age; (3) average De and Drs profiles in G. sulfurreducens biofilms are lower than those in S. oneidensis biofilms—the G. sulfurreducens biofilms studied here were on average 10 times denser than the S. oneidensis biofilms; and (4) halting the respiration of a G. sulfurreducens biofilm decreases the De values. Density, reflected by De, plays a major role in the extracellular electron transfer strategies of electrochemically active biofilms.

  7. Natural Niche for Organohalide-Respiring Chloroflexi

    PubMed Central

    Krzmarzick, Mark J.; Crary, Benjamin B.; Harding, Jevon J.; Oyerinde, Oyenike O.; Leri, Alessandra C.; Myneni, Satish C. B.

    2012-01-01

    The phylum Chloroflexi contains several isolated bacteria that have been found to respire a diverse array of halogenated anthropogenic chemicals. The distribution and role of these Chloroflexi in uncontaminated terrestrial environments, where abundant natural organohalogens could function as potential electron acceptors, have not been studied. Soil samples (116 total, including 6 sectioned cores) from a range of uncontaminated sites were analyzed for the number of Dehalococcoides-like Chloroflexi 16S rRNA genes present. Dehalococcoides-like Chloroflexi populations were detected in all but 13 samples. The concentrations of organochlorine ([organochlorine]), inorganic chloride, and total organic carbon (TOC) were obtained for 67 soil core sections. The number of Dehalococcoides-like Chloroflexi 16S rRNA genes positively correlated with [organochlorine]/TOC while the number of Bacteria 16S rRNA genes did not. Dehalococcoides-like Chloroflexi were also observed to increase in number with a concomitant accumulation of chloride when cultured with an enzymatically produced mixture of organochlorines. This research provides evidence that organohalide-respiring Chloroflexi are widely distributed as part of uncontaminated terrestrial ecosystems, they are correlated with the fraction of TOC present as organochlorines, and they increase in abundance while dechlorinating organochlorines. These findings suggest that organohalide-respiring Chloroflexi may play an integral role in the biogeochemical chlorine cycle. PMID:22101035

  8. Respirable coal mine dust sample processing

    SciTech Connect

    Raymond, L.D.; Tomb, T.F.; Parobeck, P.S.

    1987-01-01

    The Federal Coal Mine Health and Safety Act of 1969 established mandatory dust standards for coal mines. Regulatory requirements for complying with the provisions of the Act were prescribed in Title 30, Code of Federal Regulations, Parts 70 and 71, which were published in the Federal Register on April 3, 1970, and March 28, 1972, respectively. These standard and sampling requirements of coal mine operators, along with a description of the laboratory which was established to process respirable coal mine dust samples collected in accordance with these requirements, were published in MESA Informational Report (MESA, the acronym for the Mining Enforcement and Safety Administration, was changed to MSHA, the acronym for the Mine Safety and Health Administration, in 1977). These standards and regulatory requirements continued under the Federal Mine Safety and Health Act of 1977 until November 1980, when major regulatory revisions were made in the operator's dust sampling program. This paper describes the changes in the respirable coal mine dust sampling program and the equipment and procedures used by MSHA to process respirable coal mine dust samples collected in accordance with regulatory requirements. 10 figs., 1 tab.

  9. Continuous respirable mine dust monitor development

    SciTech Connect

    Cantrell, B.K.; Williams, K.L.; Stein, S.W.

    1996-12-31

    In June 1992, the Mine Safety and Health Administration (MSHA) published the Report of the Coal Mine Respirable Dust Task Group, Review of the Program to Control Respirable Coal Mine Dust in the United States. As one of its recommendations, the report called for the accelerated development of two mine dust monitors: (1) a fixed-site monitor capable of providing continuous information on dust levels to the miner, mine operator, and to MSHA, if necessary, and (2) a personal sampling device capable of providing both a short-term personal exposure measurement as well as a full-shift measurement. In response to this recommendation, the U.S. Bureau of Mines initiated the development of a fixed-site machine-mounted continuous respirable dust monitor. The technology chosen for monitor development is the Rupprecht and Patashnick Co., Inc. tapered element oscillating microbalance. Laboratory and in-mine tests have indicated that, with modification, this sensor can meet the humidity and vibration requirements for underground coal mine use. The U.S. Department of Energy Pittsburgh Research Center (DOE-PRC) is continuing that effort by developing prototypes of a continuous dust monitor based on this technology. These prototypes are being evaluated in underground coal mines as they become available. This effort, conducted as a joint venture with MSHA, is nearing completion with every promise of success.

  10. DIFFUSION IN BIOFILMS RESPIRING ON ELECTRODES

    PubMed Central

    Renslow, RS; Babauta, JT; Majors, PD; Beyenal, H

    2013-01-01

    The goal of this study was to measure spatially and temporally resolved effective diffusion coefficients (De) in biofilms respiring on electrodes. Two model electrochemically active biofilms, Geobacter sulfurreducens PCA and Shewanella oneidensis MR-1, were investigated. A novel nuclear magnetic resonance microimaging perfusion probe capable of simultaneous electrochemical and pulsed-field gradient nuclear magnetic resonance (PFG-NMR) techniques was used. PFG-NMR allowed noninvasive, nondestructive, high spatial resolution in situ De measurements in living biofilms respiring on electrodes. The electrodes were polarized so that they would act as the sole terminal electron acceptor for microbial metabolism. We present our results as both two-dimensional De heat maps and surface-averaged relative effective diffusion coefficient (Drs) depth profiles. We found that 1) Drs decreases with depth in G. sulfurreducens biofilms, following a sigmoid shape; 2) Drs at a given location decreases with G. sulfurreducens biofilm age; 3) average De and Drs profiles in G. sulfurreducens biofilms are lower than those in S. oneidensis biofilms—the G. sulfurreducens biofilms studied here were on average 10 times denser than the S. oneidensis biofilms; and 4) halting the respiration of a G. sulfurreducens biofilm decreases the De values. Density, reflected by De, plays a major role in the extracellular electron transfer strategies of electrochemically active biofilms. PMID:23420623

  11. Standing stocks, production, and respiration of phytoplankton and heterotrophic bacteria in the western Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Kirchman, David L.; Hill, Victoria; Cottrell, Matthew T.; Gradinger, Rolf; Malmstrom, Rex R.; Parker, Alexander

    2009-08-01

    Standing stocks and production rates for phytoplankton and heterotrophic bacteria were examined during four expeditions in the western Arctic Ocean (Chukchi Sea and Canada Basin) in the spring and summer of 2002 and 2004. Rates of primary production (PP) and bacterial production (BP) were higher in the summer than in spring and in shelf waters than in the basin. Most surprisingly, PP was 3-fold higher in 2004 than in 2002; ice-corrected rates were 1581 and 458 mg C m -2 d -1, respectively, for the entire region. The difference between years was mainly due to low ice coverage in the summer of 2004. The spatial and temporal variation in PP led to comparable variation in BP. Although temperature explained as much variability in BP as did PP or phytoplankton biomass, there was no relationship between temperature and bacterial growth rates above about 0 °C. The average ratio of BP to PP was 0.06 and 0.79 when ice-corrected PP rates were greater than and less than 100 mg C m -2 d -1, respectively; the overall average was 0.34. Bacteria accounted for a highly variable fraction of total respiration, from 3% to over 60% with a mean of 25%. Likewise, the fraction of PP consumed by bacterial respiration, when calculated from growth efficiency (average of 6.9%) and BP estimates, varied greatly over time and space (7% to >500%). The apparent uncoupling between respiration and PP has several implications for carbon export and storage in the western Arctic Ocean.

  12. Measuring respiration of cultured cell with oxygen electrode as a metabolic indicator for drug screening.

    PubMed

    Amano, Y; Okumura, C; Yoshida, M; Katayama, H; Unten, S; Arai, J; Tagawa, T; Hoshina, S; Hashimoto, H; Ishikawa, H

    1999-03-01

    New trend in methods for assessing pharmacological action to bacteria and cell is to measure their metabolic activities induced, while the conventional methods used population growth. We focused on respiration volume as an indicator of cell metabolism, and developed inexpensive disposable oxygen electrode sensor and multi-channel dissolved oxygen meters (DOX-10 and DOX-96KB). Using these instruments, cytotoxicity was measured for 48 hrs and the method showed superior features to conventional methods in its handiness of one step assay, and excellent adaptability to automated systems. Total usability of this oxygen electrode method is being evaluated in bacterial drug susceptibility test, anticancer drug susceptibility test, and alternatives to animal experiment.

  13. Assessment of heavy metal and bacterial pollution in coastal aquifers from SIPCOT industrial zones, Gulf of Mannar, South Coast of Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Selvam, S.; Antony Ravindran, A.; Venkatramanan, S.; Singaraja, C.

    2015-06-01

    Heavy metals and microbiological contamination were investigated in groundwater in the industrial and coastal city of Thoothukudi. The main sources of drinking water in this area are water bores which are dug up to the depth of 10-50 m in almost every house. A number of chemical and pharmaceutical industries have been established since past three decades. Effluents from these industries are reportedly being directly discharged onto surrounding land, irrigation fields and surface water bodies forming point and non-point sources of contamination for groundwater in the study area. The study consists of the determination of physico-chemical properties, trace metals, heavy metals and microbiological quality of drinking water. Heavy metals were analysed using Inductively Coupled Plasma Mass Spectrometry and compared with the (WHO in Guidelines for drinking water quality, 2004) standards. The organic contamination was detected in terms of most probable number (MPN) test in order to find out faecal coliforms that were identified through biochemical tests. A comparison of the results of groundwater samples with WHO guidelines reveals that most of the groundwater samples are heavily contaminated with heavy metals like arsenic, selenium, lead, boron, aluminium, iron and vanadium. The selenium level was higher than 0.01 mg/l in 82 % of the study area and the arsenic concentration exceeded 0.01 mg/l in 42 % of the area. The results reveal that heavy metal contamination in the area is mainly due to the discharge of effluents from copper industries, alkali chemical industry, fertiliser industry, thermal power plant and sea food industries. The results showed that there are pollutions for the groundwater, and the total Coliform means values ranged from 0.6-145 MPN ml-1, faecal Coliform ranged from 2.2-143 MPN ml-1, Escherichia coli ranged from 0.9 to 40 MPN ml-1 and faecal streptococci ranged from 10-9.20 × 102 CFU ml-1. The coastal regions are highly contaminated with total

  14. Effects of photodynamic action on respiration in nonphosphorylating mitochondria.

    PubMed

    Salet, C; Moreno, G; Ricchelli, F

    1998-10-15

    We have studied the effects of singlet oxygen produced by photodynamic action on respiration in nonphosphorylating mitochondria (state 4). Isolated rat liver mitochondria were incubated with 3 microM hematoporphyrin and irradiated at 365 nm with a fluence rate of 25 W/m2. After short durations of irradiation, state 4 respiration with beta-hydroxybutyrate as substrate increases while respiration with succinate is negligibly affected. When mitochondria have been uncoupled with carbonylcyanide-p-trifluoromethoxyphenyl hydrazone before irradiation, no change occurs in beta-hydroxybutyrate-driven respiration, while succinate-driven respiration strongly decreases. Stimulation of state 4 NADH respiration cannot be explained by slippage of the NADH ubiquinone oxidoreductase because the stoichiometry of the redox pump was found insensitive to photodynamic action. In the light of the metabolite theory for linear enzymatic chains applied to state 4 respiration (Brand et al., Biochem. J. 255, 535-539, 1988), these results suggest that stimulation of NADH respiration is simply due to an increase of membrane leaks which occurs after irradiation. In the case of succinate-driven respiration, a strong inhibition of succinate dehydrogenase activity has been demonstrated after irradiation. It can be suggested that this inhibition introduces a negative control coefficient over state 4 respiration, counterbalancing the effects due to leakage.

  15. Differences in the Effect of Coal Pile Runoff (Low pH, High Metal Concentrations) Versus Natural Carolina Bay Water (Low pH, Low Metal Concentrations) on Plant Condition and Associated Bacterial Epiphytes of Salvinia minima.

    PubMed

    Lindell, A H; Tuckfield, R C; McArthur, J V

    2016-05-01

    Numerous wetlands and streams have been impacted by acid mine drainage (AMD) resulting in lowered pH and increased levels of toxic heavy metals. Remediation of these contaminated sites requires knowledge on the response of microbial communities (especially epiphytic) and aquatic plants to these altered environmental conditions. We examined the effect of coal pile runoff waters as an example of AMD in contrast to natural water from Carolina Bays with low pH and levels of metals on Salvinia minima, a non-native, metal accumulating plant and associated epiphytic bacteria. Treatments included water from two Carolina Bays, one AMD basin and Hoagland's Solution at two pH levels (natural and adjusted to 5.0-5.5). Using controlled replicated microcosms (N = 64) we determined that the combination of low pH and high metal concentrations has a significant negative impact (p < 0.05) on plant condition and epiphytes. Solution metal concentrations dropped indicating removal from solution by S. minima in all microcosms.

  16. Diversity and characterization of culturable bacterial endophytes from Zea mays and their potential as plant growth-promoting agents in metal-degraded soils.

    PubMed

    Pereira, S I A; Castro, P M L

    2014-12-01

    In this study, we evaluated the phylogenetic diversity of culturable bacterial endophytes of Zea mays plants growing in an agricultural soil contaminated with Zn and Cd. Endophytic bacterial counts were determined in roots and shoots, and isolates were grouped by random amplified polymorphic DNA and identified by 16S ribosomal RNA (rRNA) gene sequencing. Endophytes were further characterized for the production of plant growth-promoting (PGP) substances, such as NH3, siderophores, indol-3-acetic acid (IAA), hydrogen cyanide and extracellular enzymes, and for the capacity to solubilize phosphate. The endophytes producing higher amounts of IAA were screened for their tolerance to Zn and Cd and used as bioinoculants for maize seedlings grown in the Zn/Cd-contaminated soil. The counts of endophytes varied between plant tissues, being higher in roots (6.48 log10 g(-1) fresh weight) when compared to shoots (5.77 log10 g(-1) fresh weight). Phylogenetic analysis showed that endophytes belong to three major groups: α-Proteobacteria (31 %), γ-Proteobacteria (26 %) and Actinobacteria (26 %). Pseudomonas, Agrobacterium, Variovorax and Curtobacterium were among the most represented genera. Endophytes were well-adapted to high Zn/Cd concentrations (up to 300 mg Cd l(-1) and 1,000 mg Zn l(-1)) and showed ability to produce several PGP traits. Strains Ochrobactrum haematophilum ZR 3-5, Acidovorax oryzae ZS 1-7, Frigoribacterium faeni ZS 3-5 and Pantoea allii ZS 3-6 increased root elongation and biomass of maize seedlings grown in soil contaminated with Cd and Zn. The endophytes isolated in this study have potential to be used in bioremediation/phytoremediation strategies.

  17. Microbial respiration and root respiration follow divergent seasonal and diel temporal patterns in a temperate forest

    NASA Astrophysics Data System (ADS)

    Davidson, E. A.; Savage, K. E.; Tang, J.

    2010-12-01

    Soil respiration is often related to empirical measurements of soil temperature and water content, as if it were a single process that responds uniformly to these environmental drivers. However, we know that root and microbial processes both contribute to CO2 production within the soil, and the roots are connected to aboveground plant tissues, which may, in turn, be responding to other environmental cues. Trenched plots provide a method to separate these two processes, where only microbial respiration (Rm) occurs in the trenched plots that have had roots excluded, total soil respiration (Rt) occurs in untrenched reference plots, and root respiration (Rr) is inferred by the difference between the two treatments. Like all methods, this one has potential artifacts that may render the quantification of Rr uncertain, but the method is likely to demonstrate the phenology of Rr and its impact on diel and seasonal temporal patterns of Rt. We deployed three automated soil respiration chambers in both control and trenched plots at the Harvard Forest in central Massachusetts. Soil CO2 efflux was measured every half hour for each chamber from day-of-year 112 to 304, 2009 (with some data gaps in the intervening period due to equipment failure). For the combined measurement period, mean daily soil respiration and mean daily flux amplitude were significantly higher in the reference plots compared to the trenched plots. The peak flux also occurred about 2 hours later in the evening in the reference plots compared to the trenched plots. Breaking this period down into four seasonal windows (spring, early summer, late summer, and autumn), the mean daily flux was significantly higher in the reference plot for all seasons, the higher daily amplitude was significant only during the early summer, and the delay in peak emissions was significant during early and late summer. While roots were contributing to soil respiration in all measurement periods, their largest effect on daily mean

  18. Forest Soil Respiration: Identifying Sources and Controls

    NASA Astrophysics Data System (ADS)

    Högberg, P.

    2008-12-01

    Most of the respiration in forests comes from the soil. This flux is composed of two components, autotrophic and heterotrophic respiration. In a strict sense the former should be plant belowground respiration only, but the term is used here to denote respiration by roots, their mycorrhizal fungal symbionts and other closely associated organisms dependent on recent photosynthate. Heterotrophs are organisms using organic matter, chiefly above- and belowground litters, as substrate (i.e. substrates of in general much higher ecosystem age). Because of the complexity of the plant-soil system, the component fluxes are difficult to study. I will discuss results of different approaches to partition soil respiratory components and to study their controls. The focus will be on northern boreal forests. In these generally strongly nitrogen-limited forests, the autotrophic respiration equals or exceeds the heterotrophic component. The large autotrophic component reflects high plant allocation of C to roots and mycorrhizal fungi in response to the low N supply. A physiological manipulation, girdling, which stops the flow of photosynthates to roots, showed that autotrophic respiration could account for as much as 70% in N-limited forests, but only 40% in fertilized forests. Also using girdling, we could show that a shift to lower summertime temperature leads to a decrease in heterotrophic but not in autotrophic activity, suggesting substrate (photosynthate) limitation of the latter. Physiological manipulations like girdling and trenching cannot be used to reveal the finer details of soil C dynamics. Natural abundance stable isotope (13C) and 14C approaches also have their limitations if a high resolution in terms of time, space and organism is required. A very high resolution can, of course, be obtained in studies of laboratory micro- or mesocosms, but the possibility to extend the interpretation of their results to the field may be questioned. In the CANIFLEX (CArbon NItrogen

  19. Tillage Effects on Soil Properties & Respiration

    NASA Astrophysics Data System (ADS)

    Rusu, Teodor; Bogdan, Ileana; Moraru, Paula; Pop, Adrian; Duda, Bogdan; Cacovean, Horea; Coste, Camelia

    2015-04-01

    Soil tillage systems can be able to influence soil compaction, water dynamics, soil temperature and soil structural condition. These processes can be expressed as changes of soil microbiological activity, soil respiration and sustainability of agriculture. Objectives of this study were: 1) to assess the effects of tillage systems (Conventional System-CS, Minimum Tillage-MT, No-Tillage-NT) on soil compaction, soil temperature, soil moisture and soil respiration and 2) to establish the relationship that exists in changing soil properties. Three treatments were installed: CS-plough + disc; MT-paraplow + rotary grape; NT-direct sowing. The study was conducted on an Argic-Stagnic Faeoziom. The MT and NT applications reduce or completely eliminate the soil mobilization, due to this, soil is compacted in the first year of application. The degree of compaction is directly related to soil type and its state of degradation. The state of soil compaction diminished over time, tending toward a specific type of soil density. Soil moisture was higher in NT and MT at the time of sowing and in the early stages of vegetation and differences diminished over time. Moisture determinations showed statistically significant differences. The MT and NT applications reduced the thermal amplitude in the first 15 cm of soil depth and increased the soil temperature by 0.5-2.20C. The determinations confirm the effect of soil tillage system on soil respiration; the daily average was lower at NT (315-1914 mmoli m-2s-1) and followed by MT (318-2395 mmoli m-2s-1) and is higher in the CS (321-2480 mmol m-2s-1). Comparing with CS, all the two conservation tillage measures decreased soil respiration, with the best effects of no-tillage. An exceeding amount of CO2 produced in the soil and released into the atmosphere, resulting from aerobic processes of mineralization of organic matter (excessive loosening) is considered to be not only a way of increasing the CO2 in the atmosphere, but also a loss of

  20. Mechanism of Bacterial Oligosaccharyltransferase

    PubMed Central

    Gerber, Sabina; Lizak, Christian; Michaud, Gaëlle; Bucher, Monika; Darbre, Tamis; Aebi, Markus; Reymond, Jean-Louis; Locher, Kaspar P.

    2013-01-01

    N-Linked glycosylation is an essential post-translational protein modification in the eukaryotic cell. The initial transfer of an oligosaccharide from a lipid carrier onto asparagine residues within a consensus sequon is catalyzed by oligosaccharyltransferase (OST). The first X-ray structure of a complete bacterial OST enzyme, Campylobacter lari PglB, was recently determined. To understand the mechanism of PglB, we have quantified sequon binding and glycosylation turnover in vitro using purified enzyme and fluorescently labeled, synthetic peptide substrates. Using fluorescence anisotropy, we determined a dissociation constant of 1.0 μm and a strict requirement for divalent metal ions for consensus (DQNAT) sequon binding. Using in-gel fluorescence detection, we quantified exceedingly low glycosylation rates that remained undetected using in vivo assays. We found that an alanine in the −2 sequon position, converting the bacterial sequon to a eukaryotic one, resulted in strongly lowered sequon binding, with in vitro turnover reduced 50,000-fold. A threonine is preferred over serine in the +2 sequon position, reflected by a 4-fold higher affinity and a 1.2-fold higher glycosylation rate. The interaction of the +2 sequon position with PglB is modulated by isoleucine 572. Our study demonstrates an intricate interplay of peptide and metal binding as the first step of protein N-glycosylation. PMID:23382388

  1. ESTIMATING ROOT RESPIRATION IN SPRUCE AND BEECH: DECREASES IN SOIL RESPIRATION FOLLOWING GIRDLING

    EPA Science Inventory

    A study was undertaken to follow seasonal fluxes of CO2 from soil and to estimate the contribution of autotrophic (root + mycorrhizal) to total soil respiration (SR) in a mixed stand of European beech (Fagus sylvatica) and Norway spruce (Picea abies) near Freising, Germany. Matu...

  2. Soil respiration under different land uses in Eastern China.

    PubMed

    Fan, Li-Chao; Yang, Ming-Zhen; Han, Wen-Yan

    2015-01-01

    Land-use change has a crucial influence on soil respiration, which further affects soil nutrient availability and carbon stock. We monitored soil respiration rates under different land-use types (tea gardens with three production levels, adjacent woodland, and a vegetable field) in Eastern China at weekly intervals over a year using the dynamic closed chamber method. The relationship between soil respiration and environmental factors was also evaluated. The soil respiration rate exhibited a remarkable single peak that was highest in July/August and lowest in January. The annual cumulative respiration flux increased by 25.6% and 20.9% in the tea garden with high production (HP) and the vegetable field (VF), respectively, relative to woodland (WL). However, no significant differences were observed between tea gardens with medium production (MP), low production (LP), WL, and VF. Soil respiration rates were significantly and positively correlated with organic carbon, total nitrogen, and available phosphorous content. Each site displayed a significant exponential relationship between soil respiration and soil temperature measured at 5 cm depth, which explained 84-98% of the variation in soil respiration. The model with a combination of soil temperature and moisture was better at predicting the temporal variation of soil respiration rate than the single temperature model for all sites. Q10 was 2.40, 2.00, and 1.86-1.98 for VF, WL, and tea gardens, respectively, indicating that converting WL to VF increased and converting to tea gardens decreased the sensitivity of soil respiration to temperature. The equation of the multiple linear regression showed that identical factors, including soil organic carbon (SOC), soil water content (SWC), pH, and water soluble aluminum (WSAl), drove the changes in soil respiration and Q10 after conversion of land use. Temporal variations of soil respiration were mainly controlled by soil temperature, whereas spatial variations were

  3. Performance of the Volumetric Diffusive Respirator at Altitude

    DTIC Science & Technology

    2014-08-18

    AFRL-SA-WP-SR-2014-0020 Performance of the Volumetric Diffusive Respirator at Altitude Dario Rodriquez, MSc1; Tyler Britton, RRT2...the Volumetric Diffusive Respirator at Altitude 5a. CONTRACT NUMBER FA8650-12-2-6B012 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...volumetric diffusive respirator is a pneumatic ventilator used by the U.S. Army Burn Team and the U.S. Air Force Lung Team for patients with hypoxemic

  4. Hydrological pulse regulating the bacterial heterotrophic metabolism between Amazonian mainstems and floodplain lakes

    PubMed Central

    Vidal, Luciana O.; Abril, Gwenäel; Artigas, Luiz F.; Melo, Michaela L.; Bernardes, Marcelo C.; Lobão, Lúcia M.; Reis, Mariana C.; Moreira-Turcq, Patrícia; Benedetti, Marc; Tornisielo, Valdemar L.; Roland, Fabio

    2015-01-01

    We evaluated in situ rates of bacterial carbon processing in Amazonian floodplain lakes and mainstems, during both high water (HW) and low water (LW) phases (p < 0.05). Our results showed that bacterial production (BP) was lower and more variable than bacterial respiration, determined as total respiration. Bacterial carbon demand was mostly accounted by BR and presented the same pattern that BR in both water phases. Bacterial growth efficiency (BGE) showed a wide range (0.2–23%) and low mean value of 3 and 6%, (in HW and LW, respectively) suggesting that dissolved organic carbon was mostly allocated to catabolic metabolism. However, BGE was regulated by BP in LW phase. Consequently, changes in BGE showed the same pattern that BP. In addition, the hydrological pulse effects on mainstems and floodplains lakes connectivity were found for BP and BGE in LW. Multiple correlation analyses revealed that indexes of organic matter (OM) quality (chlorophyll-a, N stable isotopes and C/N ratios) were the strongest seasonal drivers of bacterial carbon metabolism. Our work indicated that: (i) the bacterial metabolism was mostly driven by respiration in Amazonian aquatic ecosystems resulting in low BGE in either high or LW phase; (ii) the hydrological pulse regulated the bacterial heterotrophic metabolism between Amazonian mainstems and floodplain lakes mostly driven by OM quality. PMID:26483776

  5. Ecosystem-level controls on root-rhizosphere respiration.

    PubMed

    Hopkins, Francesca; Gonzalez-Meler, Miquel A; Flower, Charles E; Lynch, Douglas J; Czimczik, Claudia; Tang, Jianwu; Subke, Jens-Arne

    2013-07-01

    Recent advances in the partitioning of autotrophic from heterotrophic respiration processes in soils in conjunction with new high temporal resolution soil respiration data sets offer insights into biotic and environmental controls of respiration. Besides temperature, many emerging controlling factors have not yet been incorporated into ecosystem-scale models. We synthesize recent research that has partitioned soil respiration into its process components to evaluate effects of nitrogen, temperature and photosynthesis on autotrophic flux from soils at the ecosystem level. Despite the widely used temperature dependence of root respiration, gross primary productivity (GPP) can explain most patterns of ecosystem root respiration (and to some extent heterotrophic respiration) at within-season time-scales. Specifically, heterotrophi crespiration is influenced by a seasonally variable supply of recent photosynthetic products in the rhizosphere. The contribution of stored root carbon (C) to root respiratory fluxes also varied seasonally, partially decoupling the proportion of photosynthetic C driving root respiration. In order to reflect recent insights, new hierarchical models, which incorporate root respiration as a primary function of GPP and which respond to environmental variables by modifying Callocation belowground, are needed for better prediction of future ecosystem C sequestration.

  6. Autotrophic and heterotrophic components of soil respiration in permafrost zone.

    NASA Astrophysics Data System (ADS)

    Udovenko, Maria; Goncharova, Olga

    2016-04-01

    Soil carbon dioxide emissions production is an important integral indicator of soil biological activity and it includes several components: the root respiration and microbial decomposition of organic matter. Separate determination of the components of soil respiration is necessary for studying the balance of carbon in the soil and to assessment its potential as a sink or source of carbon dioxide. The aim of this study was testing field methods of separate determination of root and microbial respiration in soils of north of West Siberia. The research took place near the town Nadym, Yamalo-Nenets Autonomous District (north of West Siberia).The study area was located in the northern taiga with sporadic permafrost. Investigations were carried out at two sites: in forest and in frozen peatland. 3 methods were tested for the separation of microbial and root respiration. 1) "Shading"; 2) "Clipping"(removing the above-ground green plant parts); 3)a modified method of roots exclusion (It is to compare the emission of soils of "peat spots", devoid of vegetation and roots, and soils located in close proximity to the spots on which there is herbaceous vegetation and moss). For the experiments on methods of "Shading" and "Clipping" in the forest and on the frozen peatland ware established 12 plots, 1 x 1 m (3 plots in the forest and at 9 plots on frozen peatland; 4 of them - control).The criterions for choosing location sites were the similarity of meso- and microrelief, the same depth of permafrost, the same vegetation. Measurement of carbon dioxide emissions (chamber method) was carried out once a day, in the evening, for a week. Separation the root and microbial respiration by "Shading" showed that in the forest the root respiration contribution is 5%, and microbial - 95%. On peatlands root respiration is 41%, 59% of the microbial. In the experiment "Clipping" in peatlands root respiration is 56%, the microbial respiration - 44%, in forest- root respiration is 17%, and

  7. 42 CFR 84.1134 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators...

  8. 42 CFR 84.1134 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators...

  9. 42 CFR 84.1134 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators...

  10. 42 CFR 84.1134 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators...

  11. Influences of environmental noise level and respiration rate on the accuracy of acoustic respiration rate monitoring.

    PubMed

    Yabuki, Shizuha; Toyama, Hiroaki; Takei, Yusuke; Wagatsuma, Toshihiro; Yabuki, Hiroshi; Yamauchi, Masanori

    2017-02-07

    We tested the hypothesis that the environmental noise generated by a forced-air warming system reduces the monitoring accuracy of acoustic respiration rate (RRa). Noise levels were adjusted to 45-55, 56-65, 66-75, and 76-85 dB. Healthy participants breathed at set respiration rates (RRset) of 6, 12, and 30/min. Under each noise level at each RRset, the respiration rates by manual counting (RRm) and RRa were recorded. Any appearance of the alarm display on the RRa monitor was also recorded. Each RRm of all participants agreed with each RRset at each noise level. At 45-55 dB noise, the RRa of 13, 17, and 17 participants agreed with RRset of 6, 12, and 30/min, respectively. The RRa of 14, 17, and 16 participants at 56-65 dB noise, agreed with RRset of 6, 12, and 30/min, respectively. At 66-75 dB noise, the RRa of 9, 15, and 16 participants agreed with RRset of 6, 12, and 30/min, respectively. The RRa of one, nine, and nine participants at 76-85 dB noise agreed with RRset of 6, 12, and 30/min, respectively, which was significantly less than the other noise levels (P < 0.05). Overall, 72.9% of alarm displays highlighted incorrect values of RRa. In a noisy situation involving the operation of a forced-air warming system, the acoustic respiration monitoring should be used carefully especially in patients with a low respiration rate.

  12. A comparative analysis of green synthesis approach starch capped metal oxides (ZnO & CdO) nanoparticles and its bacterial activity

    NASA Astrophysics Data System (ADS)

    Vidhya, K.; Devarajan, V. P.; Viswanathan, C.; Nataraj, D.; Bhoopathi, G.

    2013-06-01

    In this study, we have investigated the bacterial activity of starch capped ZnO & CdO NPs. The NPs were prepared through green technique under room temperature and then obtained samples were characterized by using XRD and PL techniques. XRD pattern confirms the crystal nature it shows hexagonal structure for ZnO NPs and monoclinic structure for CdO NPs and their average particle size is ±20 nm. Further, the optical properties of NPs were investigated using PL technique in which the starch capped ZnO NPs shows maximum emission at 440 nm whereas starch capped CdO NPs shows maximum emission at 545 nm. Finally, toxic test was performed with E.coli bacteria and their results were investigated. Hence, starch capped ZnO NPs induced less killing effect when compared with starch capped CdO NPs. Therefore, we conclude that the starch capped ZnO NPs may be less toxic to microorganisms when compared with starch capped CdO NPs. In addition, starch capped ZnO NPs is also suitable for anti-microbial activity.

  13. Microbial Respiration and Formate Oxidation as Metabolic Signatures of Inflammation-Associated Dysbiosis.

    PubMed

    Hughes, Elizabeth R; Winter, Maria G; Duerkop, Breck A; Spiga, Luisella; Furtado de Carvalho, Tatiane; Zhu, Wenhan; Gillis, Caroline C; Büttner, Lisa; Smoot, Madeline P; Behrendt, Cassie L; Cherry, Sara; Santos, Renato L; Hooper, Lora V; Winter, Sebastian E

    2017-02-08

    Intestinal inflammation is frequently associated with an alteration of the gut microbiota, termed dysbiosis, which is characterized by a reduced abundance of obligate anaerobic bacteria and an expansion of facultative Proteobacteria such as commensal E. coli. The mechanisms enabling the outgrowth of Proteobacteria during inflammation are incompletely understood. Metagenomic sequencing revealed bacterial formate oxidation and aerobic respiration to be overrepresented metabolic pathways in a chemically induced murine model of colitis. Dysbiosis was accompanied by increased formate levels in the gut lumen. Formate was of microbial origin since no formate was detected in germ-free mice. Complementary studies using commensal E. coli strains as model organisms indicated that formate dehydrogenase and terminal oxidase genes provided a fitness advantage in murine models of colitis. In vivo, formate served as electron donor in conjunction with oxygen as the terminal electron acceptor. This work identifies bacterial formate oxidation and oxygen respiration as metabolic signatures for inflammation-associated dysbiosis.

  14. Can we distinguish autotrophic respiration from heterotrophic respiration in a field site using high temporal resolution CO2 flux measurements?

    NASA Astrophysics Data System (ADS)

    Biro, Beatrice; Berger, Sina; Praetzel, Leandra; Blodau, Christian

    2016-04-01

    The processes behind C-cycling in peatlands are important to understand for assessing the vulnerability of peatlands as carbon sinks under changing climate conditions. Especially boreal peatlands are likely to underlie strong alterations in the future. It is expected that C-pools that are directly influenced by vegetation and water table fluctuations can be easily destabilized. The CO2 efflux through respiration underlies autotrophic and heterotrophic processes that show different feedbacks on changing environmental conditions. In order to understand the respiration fluxes better for more accurate modelling and prognoses, the determination of the relative importance of different respiration sources is necessary. Earlier studies used e.g. exfoliation experiments, incubation experiments or modelling approaches to estimate the different respiration sources for the total ecosystem respiration (Reco). To further the understanding in this topic, I want to distinguish autotrophic and heterotrophic respiration using high temporal resolution measurements. The study site was selected along a hydrological gradient in a peatland in southern Ontario (Canada) and measurements were conducted from May to September 2015 once per month. Environmental controls (water table, soil temperature and soil moisture) that effect the respiration sources were recorded. In my study I used a Li-COR 6400XT and a Los Gatos greenhouse gas analyzer (GGA). Reco was determined by chamber flux measurements with the GGA, while simultaneously CO2 respiration measurements on different vegetation compartments like roots, leaves and mosses were conducted using the Li-COR 6400XT. The difference between Reco and autotrophic respiration equals heterotrophic respiration. After the measurements, the vegetation plots were harvested and separated for all compartments (leaves, roots, mosses, soil organic matter), dried and weighed. The weighted respiration rates from all vegetation compartments sum up to

  15. Bacterial activity in plant (Schoenoplectus validus) biofilms of constructed wetlands.

    PubMed

    Pollard, Peter C

    2010-12-01

    Biofilm-bacterial communities have been exploited in the treatment of wastewater in 'fixed-film' processes. Our understanding of biofilm dynamics requires a quantitative knowledge of bacterial growth-kinetics in these microenvironments. The aim of this paper was to apply the thymidine assay to quantify bacterial growth without disturbing the biofilm on the surfaces of emergent macrophytes (Schoenoplectus validus) of a constructed wetland. The isotope was rapidly and efficiently taken-up and incorporated into dividing biofilm-bacteria. Isotope diffusion into the biofilm did not limit the growth rate measurement. Isotope dilution was inhibited at >12 μM thymidine. Biofilm-bacterial biomass and growth rates were not correlated to the plant surface area (r(2) < 0.02). The measurements of in situ biofilm-bacterial growth rates both displayed, and accommodated, the inherent heterogeneity of the complex wetland ecosystem. Biofilm-bacterial respiratory activities, measured using the redox dye CTC, and growth rates were measured simultaneously. The dye did not interfere with bacterial growth. Biofilm-bacterial specific growth rates ranged from 1.4 ± 0.6 d(-1) to 3.3 ± 1.3 d(-1). In the constructed wetlands of this study biofilm-bacterial specific growth rates, compared to those of natural ecosystems, could be markedly improved through changes in wetland design that increased bacterial respiration while minimising biofilm growth.

  16. Observing Mean Annual Mediterranean Maquis Ecosystem Respiration

    NASA Astrophysics Data System (ADS)

    Marras, S.; Bellucco, V.; Mereu, S.; Sirca, C.; Spano, D.

    2014-12-01

    In semi arid ecosystems, extremely low Soil Water Content (SWC) values may limit ecosystem respiration (Reco) to the point of hiding the typical exponential response of respiration to temperature. This work is aimed to understand and model the Reco of an evergreen Mediterranean maquis ecosystem and to estimate the contribution of soil CO2 efflux to Reco. The selected site is located in the center of the Mediterranean sea in Sardinia (Italy). Mean annual precipitation is 588 mm and mean annual temperature is 15.9 °C. Vegetation cover is heterogeneous: 70% covered by shrubs and 30% of bare soil. Net Ecosystem Exchange (NEE) is monitored with an Eddy Covariance (EC) tower since April 2004. Soil collars were placed underneath the dominant species (Juniperus phoenicea and Pistacia lentiscus) and over the bare soil. Soil CO2 efflux was measured once a month since April 2012. Soil temperature and SWC were monitored continuously at 5 cm depth in 4 different positions close to the soil collars. Six years of EC measurements (2005-2010) and two years of soil CO2 efflux (2012-2013) measurements were analysed. Reco was estimated from the measured EC fluxes at night after filtering for adequate turbulence (u* > 1.5). Reco measurements were then binned into 1°C intervals and median values were first fitted using the Locally Estimated Scatterplot Smoothing (LOESS) method (to determine the dominant trend of the experimental curve) Reco shows an exponential increase with air and soil temperature, until SWC measured at 0.2 m depth remains above 19% vol. Secondly, the coefficients of the selected Lloyd and Taylor (1994) were estimated through the nonlinear least square (nls) method: Rref (ecosystem respiration rate at a reference temperature of 10 °C was equal to 1.65 μmol m-2 s-1 and E0 (activation energy parameter that determines the temperature sensitivity) was equal to 322.46. In addition, bare and drier soils show a reduced response of measured CO2 efflux to increasing

  17. Endotoxin-induced basal respiration alterations of renal HK-2 cells: A sign of pathologic metabolism down-regulation

    SciTech Connect

    Quoilin, C.; Mouithys-Mickalad, A.; Duranteau, J.; Gallez, B.; Hoebeke, M.

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer A HK-2 cells model of inflammation-induced acute kidney injury. Black-Right-Pointing-Pointer Two oximetry methods: high resolution respirometry and ESR spectroscopy. Black-Right-Pointing-Pointer Oxygen consumption rates of renal cells decrease when treated with LPS. Black-Right-Pointing-Pointer Cells do not recover normal respiration when the LPS treatment is removed. Black-Right-Pointing-Pointer This basal respiration alteration is a sign of pathologic metabolism down-regulation. -- Abstract: To study the mechanism of oxygen regulation in inflammation-induced acute kidney injury, we investigate the effects of a bacterial endotoxin (lipopolysaccharide, LPS) on the basal respiration of proximal tubular epithelial cells (HK-2) both by high-resolution respirometry and electron spin resonance spectroscopy. These two complementary methods have shown that HK-2 cells exhibit a decreased oxygen consumption rate when treated with LPS. Surprisingly, this cellular respiration alteration persists even after the stress factor was removed. We suggested that this irreversible decrease in renal oxygen consumption after LPS challenge is related to a pathologic metabolic down-regulation such as a lack of oxygen utilization by cells.

  18. Bacterial Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Lauga, Eric

    2016-01-01

    Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells, yet they represent the bulk of the world's biomass and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micrometer scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically complex environments. Using hydrodynamics as an organizing framework, I review the biomechanics of bacterial motility and look ahead to future challenges.

  19. Cyanide-resistant Respiration in Freshly Cut Potato Slices.

    PubMed

    Rychter, A; Janes, H W; Frenkel, C

    1978-04-01

    Treating intact white potato (Solanum tuberosum L.) tuber with ethylene in air or O(2) made it possible to obtain freshly cut slices which exhibit cyanide-resistant respiration. The cyanide-resistant path requires induction in whole tubers. The data also indicate that high O(2) concentration is necessary for the full development of cyanide-resistant respiration.

  20. Respirator Speech Intelligibility Testing with an Experienced Speaker

    DTIC Science & Technology

    2015-05-01

    RESPIRATOR SPEECH INTELLIGIBILITY TESTING WITH AN EXPERIENCED...2. REPORT TYPE Final 3. DATES COVERED (From - To) Oct 2008 - Jun 2009 4. TITLE AND SUBTITLE Respirator Speech Intelligibility Testing with an...14. ABSTRACT The Modified Rhyme Test (MRT) is used by the National Institute for Occupational Safety and Health (NIOSH) to assess speech

  1. Respiration hastens maturation and lowers yield in rice.

    PubMed

    Sitaramam, V; Bhate, R; Kamalraj, P; Pachapurkar, S

    2008-07-01

    Role of respiration in plant growth remains an enigma. Growth of meristematic cells, which are not photosynthetic, is entirely driven by endogenous respiration. Does respiration determine growth and size or does it merely burn off the carbon depleting the biomass? We show here that respiration of the germinating rice seed, which is contributed largely by the meristematic cells of the embryo, quantitatively correlates with the dynamics of much of plant growth, starting with the time for germination to the time for flowering and yield. Seed respiration appears to define the quantitative phenotype that contributes to yield via growth dynamics that could be discerned even in commercial varieties, which are biased towards higher yield, despite considerable susceptibility of the dynamics to environmental perturbations. Intrinsic variation, irreducible despite stringent growth conditions, required independent validation of relevant physiological variables both by critical sampling design and by constructing dendrograms for the interrelationships between variables that yield high consensus. More importantly, seed respiration, by mediating the generation clock time via variable time for maturation as seen in rice, directly offers the plausible basis for the phenotypic variation, a major ecological stratagem in a variable environment with uncertain water availability. Faster respiring rice plants appear to complete growth dynamics sooner, mature faster, resulting in a smaller plant with lower yield. Counter to the common allometric views, respiration appears to determine size in the rice plant, and offers a valid physiological means, within the limits of intrinsic variation, to help parental selection in breeding.

  2. Soil Respiration and Student Inquiry: A Perfect Match

    ERIC Educational Resources Information Center

    Hoyt, Catherine Marie; Wallenstein, Matthew David

    2011-01-01

    This activity explores the cycling of carbon between the atmosphere (primarily as CO[subscript 2]) and biomass in plants, animals, and microscopic organisms. Students design soil respiration experiments using a protocol that resembles current practice in soil ecology. Three methods for measuring soil respiration are presented. Student-derived…

  3. 30 CFR 70.300 - Respiratory equipment; respirable dust.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Respiratory equipment; respirable dust. 70.300... SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-UNDERGROUND COAL MINES Respiratory Equipment § 70.300 Respiratory equipment; respirable dust. Respiratory equipment approved by NIOSH under 42 CFR part 84 shall...

  4. 20 CFR 718.303 - Death from a respirable disease.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false Death from a respirable disease. 718.303... DISABILITY OR DEATH DUE TO PNEUMOCONIOSIS Presumptions Applicable to Eligibility Determinations § 718.303 Death from a respirable disease. (a)(1) If a deceased miner was employed for ten or more years in one...

  5. 20 CFR 718.303 - Death from a respirable disease.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Death from a respirable disease. 718.303... DISABILITY OR DEATH DUE TO PNEUMOCONIOSIS Presumptions Applicable to Eligibility Determinations § 718.303 Death from a respirable disease. (a)(1) If a deceased miner was employed for ten or more years in one...

  6. 20 CFR 718.303 - Death from a respirable disease.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false Death from a respirable disease. 718.303... DISABILITY OR DEATH DUE TO PNEUMOCONIOSIS Presumptions Applicable to Eligibility Determinations § 718.303 Death from a respirable disease. (a)(1) If a deceased miner was employed for ten or more years in one...

  7. Waiting to inhale: HIF-1 modulates aerobic respiration.

    PubMed

    Boutin, Adam T; Johnson, Randall S

    2007-04-06

    The hypoxia-inducible factor HIF-1 is known to promote anaerobic respiration during low oxygen conditions (hypoxia). In this issue, Fukuda et al. (2007) expand the range of HIF-1's functions by showing that it modulates aerobic respiration as well.

  8. 78 FR 56273 - Occupational Exposure to Respirable Crystalline Silica

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-12

    ...The Occupational Safety and Health Administration (OSHA) proposes to amend its existing standards for occupational exposure to respirable crystalline silica. The basis for issuance of this proposal is a preliminary determination by the Assistant Secretary of Labor for Occupational Safety and Health that employees exposed to respirable crystalline silica face a significant risk to their health......

  9. 30 CFR 70.300 - Respiratory equipment; respirable dust.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Respiratory equipment; respirable dust. 70.300... SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-UNDERGROUND COAL MINES Respiratory Equipment § 70.300 Respiratory equipment; respirable dust. Respiratory equipment approved by NIOSH under 42 CFR part 84 shall...

  10. 30 CFR 72.700 - Respiratory equipment; respirable dust.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Respiratory equipment; respirable dust. 72.700... SAFETY AND HEALTH HEALTH STANDARDS FOR COAL MINES Miscellaneous § 72.700 Respiratory equipment; respirable dust. (a) Respiratory equipment approved by NIOSH under 42 CFR part 84 shall be made available...

  11. 30 CFR 70.300 - Respiratory equipment; respirable dust.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Respiratory equipment; respirable dust. 70.300... SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-UNDERGROUND COAL MINES Respiratory Equipment § 70.300 Respiratory equipment; respirable dust. Respiratory equipment approved by NIOSH under 42 CFR part 84 shall...

  12. 30 CFR 70.300 - Respiratory equipment; respirable dust.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Respiratory equipment; respirable dust. 70.300... SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-UNDERGROUND COAL MINES Respiratory Equipment § 70.300 Respiratory equipment; respirable dust. Respiratory equipment approved by NIOSH under 42 CFR part 84 shall...

  13. 30 CFR 70.300 - Respiratory equipment; respirable dust.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Respiratory equipment; respirable dust. 70.300... SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-UNDERGROUND COAL MINES Respiratory Equipment § 70.300 Respiratory equipment; respirable dust. Respiratory equipment approved by NIOSH under 42 CFR part 84 shall...

  14. Study of contact characteristics between a respirator and a headform.

    PubMed

    Cai, Mang; Shen, Shengnan; Li, Hui; Zhang, Xiaotie; Ma, Yanzhao

    2016-01-01

    This article presents a computational study on contact characteristics of contact pressure and resultant deformation between an N95 filtering facepiece respirator and a newly developed digital headform. The geometry of the headform model is obtained based on computed tomography scanning of a volunteer. The segmentation and reconstruction of the headform model is performed by Mimics v16.0 (Materialise, Leuven, Belgium), which is a medical image processing software. The respirator model is obtained by scanning the surface of a 3M 8210 N95 respirator using a 3D digitizer and then the model is transformed by Geomagic Studio v12.0 (3D system, Rock Hill, SC), a reverse engineering software. The headform model contains a soft tissue layer, a skull layer, and a separate nose. The respirator model contains two layers (an inner face sealing layer and an outer layer) and a nose clip. Both the headform and respirator are modeled as solid elements and are deformable. The commercial software, LS-DYNA (LSTC, Livermore, CA), is used to simulate the contact between the respirator and headform. Contact pressures and resultant deformation of the headform are investigated. Effects of respirator stiffness on contact characteristics are also studied. A Matlab (MathWorks, Natick, MA) program is developed to calculate local gaps between the headform and respirator in the stable wearing state.

  15. Automatic patient respiration failure detection system with wireless transmission

    NASA Technical Reports Server (NTRS)

    Dimeff, J.; Pope, J. M.

    1968-01-01

    Automatic respiration failure detection system detects respiration failure in patients with a surgically implanted tracheostomy tube, and actuates an audible and/or visual alarm. The system incorporates a miniature radio transmitter so that the patient is unencumbered by wires yet can be monitored from a remote location.

  16. Bioremediation of soils co-contaminated with heavy metals and 2,4,5-trichlorophenol by fruiting body of Clitocybe maxima.

    PubMed

    Liu, Hongying; Guo, Shanshan; Jiao, Kai; Hou, Junjun; Xie, Han; Xu, Heng

    2015-08-30

    Pot experiments were performed to investigate the single effect of 2,4,5-trichlorophenol (TCP) or heavy metals (Cu, Cd, Cu+Cd) and the combined effects of metals-TCP on the growth of Clitocybe maxima together with the accumulation of heavy metals as well as dissipation of TCP. Results showed a negative effect of contaminations on fruiting time and biomass of the mushroom. TCP decreased significantly in soils accounting for 70.66-96.24% of the initial extractable concentration in planted soil and 66.47-91.42% in unplanted soil, which showed that the dissipation of TCP was enhanced with mushroom planting. Higher biological activities (bacterial counts, soil respiration and laccase activity) were detected in planted soils relative to unplanted controls, and the enhanced dissipation of TCP in planted soils might be derived from the increased biological activities. The metals accumulation in mushroom increased with the augment of metal load, and the proportion of acetic acid (HOAc) extractable metal in soils with C. maxima was larger than that in unplanted soils, which may be an explanation of metal uptake by C. maxima. These results suggested that the presence of C. maxima was effective in promoting the bioremediation of soil contaminated with heavy metals and TCP.

  17. Theoretical description of RESPIRATION-CP

    NASA Astrophysics Data System (ADS)

    Nielsen, Anders B.; Tan, Kong Ooi; Shankar, Ravi; Penzel, Susanne; Cadalbert, Riccardo; Samoson, Ago; Meier, Beat H.; Ernst, Matthias

    2016-02-01

    We present a quintuple-mode operator-based Floquet approach to describe arbitrary amplitude modulated cross polarization experiments under magic-angle spinning (MAS). The description is used to analyze variants of the RESPIRATION approach (RESPIRATIONCP) where recoupling conditions and the corresponding first-order effective Hamiltonians are calculated, validated numerically and compared to experimental results for 15N-13C coherence transfer in uniformly 13C,15N-labeled alanine and in uniformly 2H,13C,15N-labeled (deuterated and 100% back-exchanged) ubiquitin at spinning frequencies of 16.7 and 90.9 kHz. Similarities and differences between different implementations of the RESPIRATIONCP sequence using either CW irradiation or small flip-angle pulses are discussed.

  18. Characterization of a Novel Polymeric Bioflocculant Produced from Bacterial Utilization of n-Hexadecane and Its Application in Removal of Heavy Metals

    PubMed Central

    Pathak, Mihirjyoti; Sarma, Hridip K.; Bhattacharyya, Krishna G.; Subudhi, Sanjukta; Bisht, Varsha; Lal, Banwari; Devi, Arundhuti

    2017-01-01

    A novel polymeric bioflocculant was produced by a bacterium utilizing degradation of n-hexadecane as the energy source. The bioflocculant was produced with a bioflocculating activity of 87.8%. The hydrocarbon degradation was confirmed by gas chromatography-mass spectrometry analysis and was further supported with contact angle measurements for the changes in hydrophobic nature of the culture medium. A specific aerobic degradation pathway followed by the bacterium during the bioflocculant production and hydrocarbon utilization process has been proposed. FT-IR, SEM-EDX, LC/MS, and 1H NMR measurements indicated the presence of carbohydrates and proteins as the major components of the bioflocculant. The bioflocculant was characterized for its carbohydrate monomer constituents and its practical applicability was established for removing the heavy metals (Ni2+, Zn2+, Cd2+, Cu2+, and Pb2+) from aqueous solutions at concentrations of 1–50 mg L-1. The highest activity of the bioflocculant was observed with Ni2+ with 79.29 ± 0.12% bioflocculation efficiency. PMID:28223975

  19. Oxidation of calprotectin by hypochlorous acid prevents chelation of essential metal ions and allows bacterial growth: Relevance to infections in cystic fibrosis.

    PubMed

    Magon, Nicholas J; Turner, Rufus; Gearry, Richard B; Hampton, Mark B; Sly, Peter D; Kettle, Anthony J

    2015-09-01

    Calprotectin provides nutritional immunity by sequestering manganese and zinc ions. It is abundant in the lungs of patients with cystic fibrosis but fails to prevent their recurrent infections. Calprotectin is a major protein of neutrophils and composed of two monomers, S100A8 and S100A9. We show that the ability of calprotectin to limit growth of Staphylococcus aureus and Pseudomonas aeruginosa is exquisitely sensitive to oxidation by hypochlorous acid. The N-terminal cysteine residue on S100A9 was highly susceptible to oxidation which resulted in cross-linking of the protein monomers. The N-terminal methionine of S100A8 was also readily oxidized by hypochlorous acid, forming both the methionine sulfoxide and the unique product dehydromethionine. Isolated human neutrophils formed these modifications on calprotectin when their myeloperoxidase generated hypochlorous acid. Up to 90% of the N-terminal amine on S100A8 in bronchoalveolar lavage fluid from young children with cystic fibrosis was oxidized. Oxidized calprotectin was higher in children with cystic fibrosis compared to disease controls, and further elevated in those patients with infections. Our data suggest that oxidative stress associated with inflammation in cystic fibrosis will stop metal sequestration by calprotectin. Consequently, strategies aimed at blocking extracellular myeloperoxidase activity should enable calprotectin to provide nutritional immunity within the airways.

  20. Characterization of a Novel Polymeric Bioflocculant Produced from Bacterial Utilization of n-Hexadecane and Its Application in Removal of Heavy Metals.

    PubMed

    Pathak, Mihirjyoti; Sarma, Hridip K; Bhattacharyya, Krishna G; Subudhi, Sanjukta; Bisht, Varsha; Lal, Banwari; Devi, Arundhuti

    2017-01-01

    A novel polymeric bioflocculant was produced by a bacterium utilizing degradation of n-hexadecane as the energy source. The bioflocculant was produced with a bioflocculating activity of 87.8%. The hydrocarbon degradation was confirmed by gas chromatography-mass spectrometry analysis and was further supported with contact angle measurements for the changes in hydrophobic nature of the culture medium. A specific aerobic degradation pathway followed by the bacterium during the bioflocculant production and hydrocarbon utilization process has been proposed. FT-IR, SEM-EDX, LC/MS, and (1)H NMR measurements indicated the presence of carbohydrates and proteins as the major components of the bioflocculant. The bioflocculant was characterized for its carbohydrate monomer constituents and its practical applicability was established for removing the heavy metals (Ni(2+), Zn(2+), Cd(2+), Cu(2+), and Pb(2+)) from aqueous solutions at concentrations of 1-50 mg L(-1). The highest activity of the bioflocculant was observed with Ni(2+) with 79.29 ± 0.12% bioflocculation efficiency.

  1. The effect of the new Massachusetts Bay sewage outfall on the concentrations of metals and bacterial spores in nearby bottom and suspended sediments

    USGS Publications Warehouse

    Bothner, Michael H.; Casso, M.A.; Rendigs, R. R.; Lamothe, P.J.

    2002-01-01

    Since the new outfall for Boston's treated sewage effluent began operation on September 6, 2000, no change has been observed in concentrations of silver or Clostridium perfringens spores (an ecologically benign tracer of sewage), in bottom sediments at a site 2.5 km west of the outfall. In suspended sediment samples collected with a time-series sediment trap located 1.3 km south of the outfall, silver and C. perfringens spores increased by 38% and 103%, respectively, in post-outfall samples while chromium, copper, and zinc showed no change. All metal concentrations in sediments are <50% of warning levels established by the Massachusetts Water Resources Authority. An 11-year data set of bottom sediment characteristics collected three times per year prior to outfall startup provides perspective for the interpretation of post-outfall data. A greater than twofold increase in concentrations of sewage tracers (silver and C. perfringens) was observed in muddy sediments following the exceptional storm of December 11-16, 1992 that presumably moved contaminated inshore sediment offshore. ?? 2002 Elsevier Science Ltd. All rights reserved.

  2. Cholera toxin production during anaerobic trimethylamine N-oxide respiration is mediated by stringent response in Vibrio cholerae.

    PubMed

    Oh, Young Taek; Park, Yongjin; Yoon, Mi Young; Bari, Wasimul; Go, Junhyeok; Min, Kyung Bae; Raskin, David M; Lee, Kang-Mu; Yoon, Sang Sun

    2014-05-09

    As a facultative anaerobe, Vibrio cholerae can grow by anaerobic respiration. Production of cholera toxin (CT), a major virulence factor of V. cholerae, is highly promoted during anaerobic growth using trimethylamine N-oxide (TMAO) as an alternative electron acceptor. Here, we investigated the molecular mechanisms of TMAO-stimulated CT production and uncovered the crucial involvement of stringent response in this process. V. cholerae 7th pandemic strain N16961 produced a significantly elevated level of ppGpp, the bacterial stringent response alarmone, during anaerobic TMAO respiration. Bacterial viability was impaired, and DNA replication was also affected under the same growth condition, further suggesting that stringent response is induced. A ΔrelA ΔspoT ppGpp overproducer strain produced an enhanced level of CT, whereas anaerobic growth via TMAO respiration was severely inhibited. In contrast, a ppGpp-null strain (ΔrelA ΔspoT ΔrelV) grew substantially better, but produced no CT, suggesting that CT production and bacterial growth are inversely regulated in response to ppGpp accumulation. Bacterial capability to produce CT was completely lost when the dksA gene, which encodes a protein that works cooperatively with ppGpp, was deleted. In the ΔdksA mutant, stringent response growth inhibition was alleviated, further supporting the inverse regulation of CT production and anaerobic growth. In vivo virulence of ΔrelA ΔspoT ΔrelV or ΔdksA mutants was significantly attenuated. The ΔrelA ΔspoT mutant maintained virulence when infected with exogenous TMAO despite its defective growth. Together, our results reveal that stringent response is activated under TMAO-stimulated anaerobic growth, and it regulates CT production in a growth-dependent manner in V. cholerae.

  3. Hot spots of soil respiration in an Asian tropical rainforest

    NASA Astrophysics Data System (ADS)

    Ohashi, Mizue; Kume, Tomonori; Yamane, Seiki; Suzuki, Masakazu

    2007-04-01

    Little is known about the variability in carbon dioxide (CO2) emissions from soil (soil respiration) in tropical rainforests. We studied temporal and spatial fluctuations of soil respiration in an intact Asian tropical rainforest. The values of soil respiration were distributed lognormally with mean and median values of 5.32 and 4.65 μmol m-2 s-1, respectively. Soil respiration varied little over time though highly in space. CO2 hot spots (>10 μmol m-2 s-1) were found with extremely high values (15-25 μmol m-2 s-1). Each CO2 hot spot occurred sporadically at different times and locations. It is hypothesized that animal activities are responsible for the hot spots. The impact of CO2 hot spots on total soil respiration was 10%, which is comparable to the estimation of net C balance in tropical rainforests.

  4. Direct Quantification of Microbial Community Respiration along a Contamination Gradient using a novel Hydrologic Smart Tracer

    NASA Astrophysics Data System (ADS)

    Stanaway, D. J.; Haggerty, R.; Feris, K. P.

    2010-12-01

    Heavy metal contamination in lotic ecosystems is a major health and environmental concern worldwide. The Resazurin Resorufin (Raz Rru) Smart Tracer system (Haggerty et al., 2008) provides a novel approach to test current models of microbial ecosystem response to chronic stressors such as heavy metals. These models predict that functional redundancy of metabolic capabilities of community members (e.g. respiration rate and enzyme activity) will compensate for decreases in species diversity until a stress threshold is reached. At this point, species diversity and function are expected to decline rapidly. Contrary to this model, microbial communities of the Clark Fork River (CF), Montana, demonstrate high levels of species diversity along the contamination gradient, whereas community function is inversely proportional to the level of contamination. The Raz Rru tool, a metabolically reactive hydrologic tracer, allows for direct quantification of in-situ microbial respiration rates. Therefore, this tool provides an opportunity to build upon studies of ecosystem response to contamination previously limited to extrapolation of point scale measurements to reach scale processes. The Raz Rru tool is used here to quantify the magnitude of metal induced limits on heterotrophic microbial respiration in communities that have evolved to different levels of chronic metal exposure. In this way we propose to be able to test a novel hypothesis concerning the nature of evolution of community processes to chronic stress and persistent environmental pollutants. Specifically, we hypothesize that metal contamination produces a measureable metabolic cost to both tolerant and intolerant communities. To test this hypothesis, rates of respiration associated with hyporheic sediments, supporting intact microbial communities, were quantified in the presence and absence of an acute Cd exposure in column experiments. Hyporheic sediment was collected from differently contaminated locations within

  5. Production of gold nanoparticles by electrode-respiring Geobacter sulfurreducens biofilms

    SciTech Connect

    Tanzil, Abid H.; Sultana, Sujala T.; Saunders, Steven R.; Dohnalkova, Alice C.; Shi, Liang; Davenport, Emily; Ha, Phuc; Beyenal, Haluk

    2016-12-01

    Current chemical syntheses of nanoparticles (NP) has had limited success due to the relatively high environmental cost caused by the use of harsh chemicals requiring necessary purification and size-selective fractionation. Therefore, biological approaches have received recent attention for their potential to overcome these obstacles as a benign synthetic approach. The intrinsic nature of biomolecules present in microorganisms has intrigued researchers to design bottom-up approaches to biosynthesize metal nanoparticles using microorganisms. Most of the literature work has focused on NP synthesis using planktonic cells while the use of biofilms are limited. The goal of this work was to synthesize gold nanoparticles (AuNPs) using electrode respiring Geobacter sulfurreducens biofilms. We found that most of the AuNPs are generated in the extracellular matrix of Geobacter biofilms with an average particle size of 20 nm. The formation of AuNPs was verified using TEM, FTIR and EDX. We also found that the extracellular substances extracted from electrode respiring G. sulfurreducens biofilms can reduce Au3+ to AuNPs. It appears that reducing sugars were involved in bioreduction and synthesis of AuNPs and amine groups acted as the major biomolecules involved in binding. This is first demonstration of AuNPs formation from the extracellular matrix of electrode respiring biofilms.

  6. 76 FR 3175 - Proposed Extension of Existing Information Collection; Respirator Program Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-19

    ... Safety and Health Administration Proposed Extension of Existing Information Collection; Respirator... miners against hazards. Where protective equipment or respirators are required because of exposure to... respirators is essential for ensuring that workers are properly and effectively using the equipment. Title...

  7. Remediation of grey forest soils heavily polluted with heavy metals by means of their leaching at acidic pH followed by the soil reclamation by means of neutralization and bacterial manure addition

    NASA Astrophysics Data System (ADS)

    Georgiev, Plamen; Groudev, Stoyan; Spasova, Irena; Nicolova, Marina

    2014-05-01

    Some grey forest soils in Western Bulgaria are heavily polluted with heavy metals (copper, lead, and zinc), arsenic, and uranium due to the infiltration of acid mine drainage generated at the abandoned uranium mine Curilo. This paper presents some results from a study about soil remediation based on the contaminants leaching from the topsoil by means of irrigation with solutions containing sulphuric acid or its in situ generation by means of sulphur-oxidizing chemolithotrophic bacteria in or without the presence of finely cut straw. These methods were tested in large scale zero suction lysimeters. The approaches based on S° and finely cut straw addition was the most efficient amongst the tested methods and for seven months of soil remediation the concentration of all soil contaminants were decreased below the relevant Maximum Admissible Concentration (MAC). Neutralization of the soil acidity was applied as a next stage of soil reclamation by adding CaCO3 and cow manure. As a result, soil pH increased from strongly acidic (2.36) to slightly acidic (6.15) which allowed subsequent addition of humic acids and bacterial manure to the topsoil. The soil habitat changed in this way facilitated the growth of microorganisms which restored the biogeochemical cycles of nitrogen and carbon to the levels typical for non-polluted grey forest soil.

  8. Y-12 Respirator Flow Cycle Time Reduction Project

    SciTech Connect

    Hawk, C.T.; Rogers, P.E.

    2000-12-01

    In mid-July 2000, a Cycle Time Reduction (CTR) project was initiated by senior management to improve the flow and overall efficiency of the respirator distribution process at Y-12. A cross-functional team was formed to evaluate the current process and to propose necessary changes for improvement. Specifically, the team was challenged to make improvements that would eliminate production work stoppages due to the unavailability of respirators in Y-12 Stores. Prior to the team initiation, plant back orders for a specific model respirator were averaging above 600 and have been as high as 750+. The Cycle Time Reduction team segmented the respirator flow into detailed steps, with the focus and emphasis primarily being on the movement of dirty respirators out of work areas, transportation to Oak Ridge National Laboratory (ORNL) Laundry, and return back to Y-12 Stores inventory. The team selected a popular model respirator, size large, to track improvements. Despite a 30 percent increase in respirator usage for the same period of time in the previous year, the team has reduced the back orders by 89% with a steady trend downward. Summary of accomplishments: A 47 percent reduction in the average cycle time for dirty respirators to be laundered and stocked for reuse at the Y-12 Complex; A 73 percent reduction in the average cycle time for dirty respirators to be laundered and stocked for reuse specifically for major users: Enriched Uranium Operations (EUO) and Facilities Maintenance Organization (FMO); Development of a performance measure for tracking back orders; An 89 percent reduction in the number of laundered respirators on back order; Implementation of a tracking method to account for respirator loss; Achievement of an annual cost savings/avoidance of $800K with a one-time cost of $20K; Implementation of a routine pick-up schedule for EUO (major user of respirators); Elimination of activities no longer determined to be needed; Elimination of routine complaint calls to

  9. Bacterial vaginosis.

    PubMed Central

    Spiegel, C A

    1991-01-01

    Bacterial vaginosis (BV) is the most common of the vaginitides affecting women of reproductive age. It appears to be due to an alteration in the vaginal ecology by which Lactobacillus spp., the predominant organisms in the healthy vagina, are replaced by a mixed flora including Prevotella bivia, Prevotella disiens, Porphyromonas spp., Mobiluncus spp., and Peptostreptococcus spp. All of these organisms except Mobiluncus spp. are also members of the endogenous vaginal flora. While evidence from treatment trials does not support the notion that BV is sexually transmitted, recent studies have shown an increased risk associated with multiple sexual partners. It has also been suggested that the pathogenesis of BV may be similar to that of urinary tract infections, with the rectum serving as a reservoir for some BV-associated flora. The organisms associated with BV have also been recognized as agents of female upper genital tract infection, including pelvic inflammatory disease, and the syndrome BV has been associated with adverse outcome of pregnancy, including premature rupture of membranes, chorioamnionitis, and fetal loss; postpartum endometritis; cuff cellulitis; and urinary tract infections. The mechanisms by which the BV-associated flora causes the signs of BV are not well understood, but a role for H2O2-producing Lactobacillus spp. in protecting against colonization by catalase-negative anaerobic bacteria has been recognized. These and other aspects of BV are reviewed. PMID:1747864

  10. Transition Metals and Virulence in Bacteria

    PubMed Central

    Palmer, Lauren D.; Skaar, Eric P.

    2016-01-01

    Transition metals are required trace elements for all forms of life. Due to their unique inorganic and redox properties, transition metals serve as cofactors for enzymes and other proteins. In bacterial pathogenesis, the vertebrate host represents a rich source of nutrient metals, and bacteria have evolved diverse metal acquisition strategies. Host metal homeostasis changes dramatically in response to bacterial infections, including production of metal sequestering proteins and the bombardment of bacteria with toxic levels of metals. Presumably, in response, bacteria have evolved systems to subvert metal sequestration and toxicity. The coevolution of hosts and their bacterial pathogens in the battle for metals has uncovered emerging paradigms in social microbiology, rapid evolution, host specificity, and metal homeostasis across domains. This review focuses on recent advances and open questions in our understanding of the complex role of transition metals at the host-pathogen interface. PMID:27617971

  11. Small bowel bacterial overgrowth

    MedlinePlus

    Overgrowth - intestinal bacteria; Bacterial overgrowth - intestine; Small intestinal bacterial overgrowth; SIBO ... intestine does not have a high number of bacteria. Excess bacteria in the small intestine may use ...

  12. Soil Respiration Hotspots in Temperate Tidal Restored and Natural Wetlands

    NASA Astrophysics Data System (ADS)

    Scott, M.; Schafer, K. V.

    2015-12-01

    Whether a wetland is a carbon dioxide sink or source is dependent on the balance of photosynthesis and ecosystem respiration. As temperature is increasing, respiration may accelerate over photosynthesis, yet the dynamics in tidal temperate wetlands are not clear as the tidal influence impact respiration egress of the soil. Here, we investigated soil respiration of two different microsites in each a natural and a restored wetland over a range of temperature and water level conditions over the growing season. Soil respiration increased with incoming tide and was lowest under water-inundated conditions. Mudflat microsites tended to have higher soil respiration than vegetated areas, indicating sufficiently high carbon input into non-vegetated areas for high respiratory fluxes. Whereby Spartina alterniflora microsites exhibited on average lower soil respiration fluxes of about 13 micromol m-2 s-1, Spartina patens exhibited higher fluxes at about 38 micromol m2 s-1 with Phragmites australis intermediate soil respiratory fluxes. Largest spatial variation was observed for mudflat microsites.

  13. Soil Respiration in Semiarid Temperate Grasslands under Various Land Management.

    PubMed

    Wang, Zhen; Ji, Lei; Hou, Xiangyang; Schellenberg, Michael P

    2016-01-01

    Soil respiration, a major component of the global carbon cycle, is significantly influenced by land management practices. Grasslands are potentially a major sink for carbon, but can also be a source. Here, we investigated the potential effect of land management (grazing, clipping, and ungrazed enclosures) on soil respiration in the semiarid grassland of northern China. Our results showed the mean soil respiration was significantly higher under enclosures (2.17 μmol.m(-2).s(-1)) and clipping (2.06 μmol.m(-2).s(-1)) than under grazing (1.65 μmol.m-(2).s(-1)) over the three growing seasons. The high rates of soil respiration under enclosure and clipping were associated with the higher belowground net primary productivity (BNPP). Our analyses indicated that soil respiration was primarily related to BNPP under grazing, to soil water content under clipping. Using structural equation models, we found that soil water content, aboveground net primary productivity (ANPP) and BNPP regulated soil respiration, with soil water content as the predominant factor. Our findings highlight that management-induced changes in abiotic (soil temperature and soil water content) and biotic (ANPP and BNPP) factors regulate soil respiration in the semiarid temperate grassland of northern China.

  14. Soil Respiration in Semiarid Temperate Grasslands under Various Land Management

    PubMed Central

    Hou, Xiangyang; Schellenberg, Michael P.

    2016-01-01

    Soil respiration, a major component of the global carbon cycle, is significantly influenced by land management practices. Grasslands are potentially a major sink for carbon, but can also be a source. Here, we investigated the potential effect of land management (grazing, clipping, and ungrazed enclosures) on soil respiration in the semiarid grassland of northern China. Our results showed the mean soil respiration was significantly higher under enclosures (2.17μmol.m−2.s−1) and clipping (2.06μmol.m−2.s−1) than under grazing (1.65μmol.m−2.s−1) over the three growing seasons. The high rates of soil respiration under enclosure and clipping were associated with the higher belowground net primary productivity (BNPP). Our analyses indicated that soil respiration was primarily related to BNPP under grazing, to soil water content under clipping. Using structural equation models, we found that soil water content, aboveground net primary productivity (ANPP) and BNPP regulated soil respiration, with soil water content as the predominant factor. Our findings highlight that management-induced changes in abiotic (soil temperature and soil water content) and biotic (ANPP and BNPP) factors regulate soil respiration in the semiarid temperate grassland of northern China. PMID:26808376

  15. Radiolytic hydrogen and microbial respiration in subsurface sediments.

    PubMed

    Blair, Carly C; D'Hondt, Steven; Spivack, Arthur J; Kingsley, Richard H

    2007-12-01

    Radiolysis of water may provide a continuous flux of an electron donor (molecular hydrogen) to subsurface microbial communities. We assessed the significance of this process in anoxic marine sediments by comparing calculated radiolytic H(2) production rates to estimates of net (organic-fueled) respiration at several Ocean Drilling Program (ODP) Leg 201 sites. Radiolytic H(2) yield calculations are based on abundances of radioactive elements (uranium, thorium, and potassium), porosity, grain density, and a model of water radiolysis. Net respiration estimates are based on fluxes of dissolved electron acceptors and their products. Comparison of radiolytic H(2) yields and respiration at multiple sites suggests that radiolysis gains importance as an electron donor source as net respiration and organic carbon content decrease. Our results suggest that radiolytic production of H(2) may fuel 10% of the metabolic respiration at the Leg 201 site where organic-fueled respiration is lowest (ODP Site 1231). In sediments with even lower rates of organic-fueled respiration, water radiolysis may be the principal source of electron donors. Marine sedimentary ecosystems may be useful models for non-photosynthetic ecosystems on early Earth and on other planets and moons, such as Mars and Europa.

  16. Alternative respiration and fumaric acid production of Rhizopus oryzae.

    PubMed

    Gu, Shuai; Xu, Qing; Huang, He; Li, Shuang

    2014-06-01

    Under the conditions of fumaric acid fermentation, Rhizopus oryzae ME-F14 possessed at least two respiratory systems. The respiration of mycelia was partially inhibited by the cytochrome respiration inhibitor antimycin A or the alternative respiration inhibitor salicylhydroxamic acid and was completely inhibited in the presence of both antimycin A and salicylhydroxamic acid. During fumaric acid fermentation process, the activity of alternative respiration had a great correlation with fumaric acid productivity; both of them reached peak at the same time. The alternative oxidase gene, which encoded the mitochondrial alternative oxidase responsible for alternative respiration in R. oryzae ME-F14, was cloned and characterized in Escherichia coli. The activity of alternative respiration, the alternative oxidase gene transcription level, as well as the fumaric acid titer were measured under different carbon sources and different carbon-nitrogen ratios. The activity of alternative respiration was found to be comparable to the transcription level of the alternative oxidase gene and the fumaric acid titer. These results indicated that the activity of the alternative oxidase was regulated at the transcription stage under the conditions tested for R. oryzae ME-F14.

  17. Respiration and sodium transport in rabbit urinary bladder.

    PubMed

    Silverthorn, S U; Eaton, D C

    1982-07-28

    Respiration of rabbit urinary bladder was measured in free-floating pieces and in short-circuited pieces mounted in an Ussing chamber. Ouabain, amiloride, and potassium-free saline inhibited respiration approx. 20%; sodium-free saline depressed respiration approx. 40-50%. The coupling ratio between respiration and transport in short-circuited tissues was about two sodium ions per molecule O2. Chloride-free saline depressed mean oxygen consumption 21% in free-floating tissue pieces; 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS) and furosemide had no effect. The effect of chloride-free saline in short-circuited tissues was variable; in tissues with low transport rates, respiration was stimulated about 21% while in tissue with high transport rates respiration was reduced about 24%. Nystatin and monensin, both of which markedly increase the conductance of cell membranes with a concomitant increase in sodium entry, stimulated respiration. These data indicate that 50-60% of the total oxygen consumption is not influenced by sodium, 20-25% is linked to (Na+ +K+)-ATPase transport, while the remaining 25-30% is sodium-dependent but not ouabain-inhibitable.

  18. Root Zone Respiration on Hydroponically Grown Wheat Plant Systems

    NASA Technical Reports Server (NTRS)

    Soler-Crespo, R. A.; Monje, O. A.

    2010-01-01

    Root respiration is a biological phenomenon that controls plant growth and physiological development during a plant's lifespan. This process is dependent on the availability of oxygen in the system where the plant is located. In hydroponic systems, where plants are submerged in a solution containing vital nutrients but no type of soil, the availability of oxygen arises from the dissolved oxygen concentration in the solution. This oxygen concentration is dependent on the , gas-liquid interface formed on the upper surface of the liquid, as given by Henry's Law, depending on pressure and temperature conditions. Respiration rates of the plants rise as biomass and root zone increase with age. The respiration rate of Apogee wheat plants (Triticum aestivum) was measured as a function of light intensity (catalytic for photosynthesis) and CO2 concentration to determine their effect on respiration rates. To determine their effects on respiration rate and plant growth microbial communities were introduced into the system, by Innoculum. Surfactants were introduced, simulating gray-water usage in space, as another factor to determine their effect on chemical oxygen demand of microbials and on respiration rates of the plants. It is expected to see small effects from changes in CO2 concentration or light levels, and to see root respiration decrease in an exponential manner with plant age and microbial activity.

  19. Aerosol penetration through filtering facepieces and respirator cartridges.

    PubMed

    Chen, C C; Lehtimäki, M; Willeke, K

    1992-09-01

    Air-purifying respirators must be certified following the National Institute for Occupational Safety and Health (NIOSH) filter test criteria (30 CFR 11). The criteria specify a range for the mean particle size and the measure of spread permissible for the test aerosol. The authors' experiments have shown that aerosol penetration as a function of particle size differs considerably among certified respirators of the same type. Filtering facepieces (disposable respirators) and cartridges of the dust-mist, dust-mist-fume, and high-efficiency particulate air type were tested. The respirators were sealed to mannequins in a test chamber. The aerosol concentrations inside and outside the respirator were measured by an aerodynamic particle sizer and a laser aerosol spectrometer over a particle size range of 0.1 to 15 microns. Five flow rates ranging from 5 to 100 L/min were used to study flow dependency. The aerosol penetration through the filters is presented as a function of particle size. Aerosol penetration and pressure drop are combined to express the performance of each filter in terms of "quality factor." Under the same test conditions, the quality factor of one respirator may be as much as 6.6 times more than that of another respirator of the same type. The filter quality factor has a greater aerosol size dependency as airflow and aerosol size increase. In general, cartridges have a larger surface area than filtering facepieces but not necessarily lower filter penetration or higher filter quality.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. The cytological implications of primary respiration.

    PubMed

    Crisera, P N

    2001-01-01

    Observing the macroscopic complexities of evolved species, the exceptional continuity that occurs among different cells, tissues and organs to respond coherently to the proper set of stimuli as a function of self/species survival is appreciable. Accordingly, it alludes to a central rhythm that resonates throughout the cell; nominated here as primary respiration (PR), which is capable of binding and synchronizing a diversity of physiological processes into a functional biological unity. Phylogenetically, it was conserved as an indispensable element in the makeup of the subkingdom Metazoa, since these species require a high degree of coordination among the different cells that form their body. However, it does not preclude the possibility of a basal rhythm to orchestrate the intricacies of cellular dynamics of both prokaryotic and eukaryotic cells. In all probability, PR emerges within the crucial organelles, with special emphasis on the DNA (5), and propagated and transduced within the infrastructure of the cytoskeleton as wave harmonics (49). Collectively, this equivalent vibration for the subphylum Vertebrata emanates as craniosacral respiration (CSR), though its expression is more elaborate depending on the development of the CNS. Furthermore, the author suggests that the phenomenon of PR or CSR be intimately associated to the basic rest/activity cycle (BRAC), generated by concentrically localized neurons that possess auto-oscillatory properties and assembled into a vital network (39). Historically, during Protochordate-Vertebrate transition, this area circumscribes an archaic region of the brain in which many vital biological rhythms have their source, called hindbrain rhombomeres. Bass and Baker (2) propose that pattern-generating circuits of more recent innovations, such as vocal, electromotor, extensor muscle tonicity, locomotion and the extraocular system, have their origin from the same Hox gene-specified compartments of the embryonic hindbrain (rhombomeres

  1. Influence of soil moisture on soil respiration

    NASA Astrophysics Data System (ADS)

    Fer, Miroslav; Kodesova, Radka; Nikodem, Antonin; Klement, Ales; Jelenova, Klara

    2015-04-01

    The aim of this work was to describe an impact of soil moisture on soil respiration. Study was performed on soil samples from morphologically diverse study site in loess region of Southern Moravia, Czech Republic. The original soil type is Haplic Chernozem, which was due to erosion changed into Regosol (steep parts) and Colluvial soil (base slope and the tributary valley). Soil samples were collected from topsoils at 5 points of the selected elevation transect and also from the parent material (loess). Grab soil samples, undisturbed soil samples (small - 100 cm3, and large - 713 cm3) and undisturbed soil blocks were taken. Basic soil properties were determined on grab soil samples. Small undisturbed soil samples were used to determine the soil water retention curves and the hydraulic conductivity functions using the multiple outflow tests in Tempe cells and a numerical inversion with HYDRUS 1-D. During experiments performed in greenhouse dry large undisturbed soil samples were wetted from below using a kaolin tank and cumulative water inflow due to capillary rise was measured. Simultaneously net CO2 exchange rate and net H2O exchange rate were measured using LCi-SD portable photosynthesis system with Soil Respiration Chamber. Numerical inversion of the measured cumulative capillary rise data using the HYDRUS-1D program was applied to modify selected soil hydraulic parameters for particular conditions and to simulate actual soil water distribution within each soil column in selected times. Undisturbed soil blocks were used to prepare thin soil sections to study soil-pore structure. Results for all soil samples showed that at the beginning of soil samples wetting the CO2 emission increased because of improving condition for microbes' activity. The maximum values were reached for soil column average soil water content between 0.10 and 0.15 cm3/cm3. Next CO2 emission decreased since the pore system starts filling by water (i.e. aggravated conditions for microbes

  2. Temperature response of soil respiration largely unaltered with experimental warming

    USGS Publications Warehouse

    Carey, Joanna C.; Tang, Jianwu; Templer, Pamela H.; Kroeger, Kevin D.; Crowther, Thomas W.; Burton, Andrew J.; Dukes, Jeffrey S.; Emmett, Bridget; Frey, Serita D.; Heskel, Mary A.; Jiang, Lifen; Machmuller, Megan B.; Mohan, Jacqueline; Panetta, Anne Marie; Reich, Peter B.; Reinsch, Sabine; Wang, Xin; Allison, Steven D.; Bamminger, Chris; Bridgham, Scott; Collins, Scott L.; de Dato, Giovanbattista; Eddy, William C.; Enquist, Brian J.; Estiarte, Marc; Harte, John; Henderson, Amanda; Johnson, Bart R.; Steenberg Larsen, Klaus; Luo, Yiqi; Marhan, Sven; Melillo, Jerry M.; Penuelas, Josep; Pfeifer-Meister, Laurel; Poll, Christian; Rastetter, Edward B.; Reinmann, Andrew B.; Reynolds, Lorien L.; Schmidt, Inger K.; Shaver, Gaius R.; Strong, Aaron L.; Suseela, Vidya; Tietema, Albert

    2016-01-01

    The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation of soil respiration to experimental warming in several major biome types, contrary to the results from multiple single-site studies. Moreover, across all nondesert biomes, respiration rates with and without experimental warming follow a Gaussian response, increasing with soil temperature up to a threshold of ∼25 °C, above which respiration rates decrease with further increases in temperature. This consistent decrease in temperature sensitivity at higher temperatures demonstrates that rising global temperatures may result in regionally variable responses in soil respiration, with colder climates being considerably more responsive to increased ambient temperatures compared with warmer regions. Our analysis adds a unique cross-biome perspective on the temperature response of soil respiration, information critical to improving our mechanistic understanding of how soil carbon dynamics change with climatic warming.

  3. Noninvasive, quantitative respirator fit testing through dynamic pressure measurement.

    PubMed

    Carpenter, D R; Willeke, K

    1988-10-01

    A new method has been invented for the noninvasive and quantitative determination of fit for a respirator. The test takes a few seconds and requires less expensive instrumentation than presently used for invasive testing. In this test, the breath is held at a negative pressure for a few seconds, and the leak-induced pressure decay inside the respirator cavity is monitored. A dynamic pressure sensor is attached to a modified cartridge of an air-purifying respirator or built into the respirator body or into the air supply line of an air-supplied respirator. The method is noninvasive in that the modified cartridge can be mounted onto any air-purifying respirator. The pressure decay during testing quantifies the airflow entered through the leak site. An equation has been determined which gives the air leakage as a function of pressure decay slope, respirator volume and the pressure differential during actual wear--all of which are determined by the dynamic pressure sensor. Thus, the ratio of air inhaled through the filters or via the air supply line to the leak rate is a measure of respirator fit, independent of aerosol deposition in the lung and aerosol distribution in the respirator cavity as found for quantitative fit testing with aerosols. The new method is shown to be independent of leak and sensor locations. The concentration and distribution of aerosols entered through the leak site is dependent only on the physical dimensions of the leak site and the air velocity in it, which can be determined independently.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Temperature response of soil respiration largely unaltered with experimental warming.

    PubMed

    Carey, Joanna C; Tang, Jianwu; Templer, Pamela H; Kroeger, Kevin D; Crowther, Thomas W; Burton, Andrew J; Dukes, Jeffrey S; Emmett, Bridget; Frey, Serita D; Heskel, Mary A; Jiang, Lifen; Machmuller, Megan B; Mohan, Jacqueline; Panetta, Anne Marie; Reich, Peter B; Reinsch, Sabine; Wang, Xin; Allison, Steven D; Bamminger, Chris; Bridgham, Scott; Collins, Scott L; de Dato, Giovanbattista; Eddy, William C; Enquist, Brian J; Estiarte, Marc; Harte, John; Henderson, Amanda; Johnson, Bart R; Larsen, Klaus Steenberg; Luo, Yiqi; Marhan, Sven; Melillo, Jerry M; Peñuelas, Josep; Pfeifer-Meister, Laurel; Poll, Christian; Rastetter, Edward; Reinmann, Andrew B; Reynolds, Lorien L; Schmidt, Inger K; Shaver, Gaius R; Strong, Aaron L; Suseela, Vidya; Tietema, Albert

    2016-11-29

    The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation of soil respiration to experimental warming in several major biome types, contrary to the results from multiple single-site studies. Moreover, across all nondesert biomes, respiration rates with and without experimental warming follow a Gaussian response, increasing with soil temperature up to a threshold of ∼25 °C, above which respiration rates decrease with further increases in temperature. This consistent decrease in temperature sensitivity at higher temperatures demonstrates that rising global temperatures may result in regionally variable responses in soil respiration, with colder climates being considerably more responsive to increased ambient temperatures compared with warmer regions. Our analysis adds a unique cross-biome perspective on the temperature response of soil respiration, information critical to improving our mechanistic understanding of how soil carbon dynamics change with climatic warming.

  5. Does metal pollution matter with C retention by rice soil?

    PubMed Central

    Bian, Rongjun; Cheng, Kun; Zheng, Jufeng; Liu, Xiaoyu; Liu, Yongzhuo; Li, Zhipeng; Li, Lianqing; Smith, Pete; Pan, Genxing; Crowley, David; Zheng, Jinwei; Zhang, Xuhui; Zhang, Liangyun; Hussain, Qaiser

    2015-01-01

    Soil respiration, resulting in decomposition of soil organic carbon (SOC), emits CO2 to the atmosphere and increases under climate warming. However, the impact of heavy metal pollution on soil respiration in croplands is not well understood. Here we show significantly increased soil respiration and efflux of both CO2 and CH4 with a concomitant reduction in SOC storage from a metal polluted rice soil in China. This change is linked to a decline in soil aggregation, in microbial abundance and in fungal dominance. The carbon release is presumably driven by changes in carbon cycling occurring in the stressed soil microbial community with heavy metal pollution in the soil. The pollution-induced increase in soil respiration and loss of SOC storage will likely counteract efforts to increase SOC sequestration in rice paddies for climate change mitigation. PMID:26272277

  6. Quantitative respirator fit testing: dynamic pressure versus aerosol measurement.

    PubMed

    Carpenter, D R; Willeke, K

    1988-10-01

    A noninvasive, fast, inexpensive new fit testing method has been invented which relates the slope of the pressure decay inside a respirator during breath-holding to the fit of the respirator on the wearer's face. The dynamic pressure test has been compared with the conventional aerosol test at different leakage levels. The results of this comparison show that the sensitivity of the dynamic pressure test is similar to that of the aerosol test. The pressure test, however, is independent of leak site and probe location and can be performed on respirators before and after their use.

  7. Wood and foliar respiration of tropical wet forest environment

    NASA Astrophysics Data System (ADS)

    Asao, S.; Bedoya Arrieta, R.; Ryan, M. G.

    2011-12-01

    Wood and foliar respiration from tropical forests constitute major components of ecosystem respiration that may control their productivity and carbon storage. However, few estimates on tropical forests vary greatly. Furthermore, the trees in these forests respire great amounts of carbon, but impacts of individual tree species on respiration is not well known. We examined wood and foliar respiration in this environment in relation to individual tree species. The objectives of this study were to: 1) identify how respiration rates relate to scaling variables for wood and foliage, 2) examine the effects of individual tree species on these relationships, 3) extrapolate the rates to the annual fluxes of the whole stands, and 4) determine if tree species differed in these fluxes. Established on an abandoned pasture in 1988 at La Selva Biological Station in Costa Rica, the monodominant stands contained four native species in a complete randomized block design. Respiration rates based on tissue surface area ranged among dominant tree species from 0.6 to 1.0 μg C m^-2 s^-1 for small diameter wood (<10cm), 1.0 to 1.8 μg C m^-2 s^-1 for large diameter wood, and 0.7 to 0.8 μg C m^-2 s^-1 for foliage. Understory species had similar wood respiration rates, but foliage respiration rates were about half of those for canopy leaves. Among surface area, volume, or biomass, respiration rates scaled best with surface area for wood with small diameter, volume or biomass for large diameter wood, and leaf area for foliage. These relationships differed slightly among tree species and between canopy trees and understory species. Foliar respiration rate was generally related to leaf nitrogen content, and this relationship differed among dominant tree species. Temperature response of foliar respiration also differed among tree species and canopy class. However, daily and annual temperature fluctuations had less than 3% effect on annual flux. Annual respiratory fluxes from wood and foliage

  8. Carbon Monoxide Gas Is Not Inert, but Global, in Its Consequences for Bacterial Gene Expression, Iron Acquisition, and Antibiotic Resistance

    PubMed Central

    Wareham, Lauren K.; Begg, Ronald; Jesse, Helen E.; van Beilen, Johan W.A.; Ali, Salar; Svistunenko, Dimitri; McLean, Samantha; Hellingwerf, Klaas J.; Sanguinetti, Guido

    2016-01-01

    Abstract Aims: Carbon monoxide is a respiratory poison and gaseous signaling molecule. Although CO-releasing molecules (CORMs) deliver CO with temporal and spatial specificity in mammals, and are proven antimicrobial agents, we do not understand the modes of CO toxicity. Our aim was to explore the impact of CO gas per se, without intervention of CORMs, on bacterial physiology and gene expression. Results: We used tightly controlled chemostat conditions and integrated transcriptomic datasets with statistical modeling to reveal the global effects of CO. CO is known to inhibit bacterial respiration, and we found expression of genes encoding energy-transducing pathways to be significantly affected via the global regulators, Fnr, Arc, and PdhR. Aerobically, ArcA—the response regulator—is transiently phosphorylated and pyruvate accumulates, mimicking anaerobiosis. Genes implicated in iron acquisition, and the metabolism of sulfur amino acids and arginine, are all perturbed. The global iron-related changes, confirmed by modulation of activity of the transcription factor Fur, may underlie enhanced siderophore excretion, diminished intracellular iron pools, and the sensitivity of CO-challenged bacteria to metal chelators. Although CO gas (unlike H2S and NO) offers little protection from antibiotics, a ruthenium CORM is a potent adjuvant of antibiotic activity. Innovation: This is the first detailed exploration of global bacterial responses to CO, revealing unexpected targets with implications for employing CORMs therapeutically. Conclusion: This work reveals the complexity of bacterial responses to CO and provides a basis for understanding the impacts of CO from CORMs, heme oxygenase activity, or environmental sources. Antioxid. Redox Signal. 24, 1013–1028. PMID:26907100

  9. Arabidopsis alternative oxidase sustains Escherichia coli respiration.

    PubMed Central

    Kumar, A M; Söll, D

    1992-01-01

    Glutamyl-tRNA reductase, encoded by the hemA gene, is the first enzyme in porphyrin biosynthesis in many organisms. Hemes, important porphyrin derivatives, are essential components of redox enzymes, such as cytochromes. Thus a hemA Escherichia coli strain (SASX41B) is deficient in cytochrome-mediated aerobic respiration. Upon complementation of this strain with an Arabidopsis thaliana cDNA library, we isolated a clone which permitted the SASX41B strain to grow aerobically. The clone encodes the gene for Arabidopsis alternative oxidase, whose deduced amino acid sequence was found to have 71% identity with that of the enzyme from the voodoo lily, Sauromatum guttatum. The Arabidopsis protein is expressed as a 31-kDa protein in E. coli and confers on this organism cyanide-resistant growth, which in turn is sensitive to salicylhydroxamate. This implies that a single polypeptide is sufficient for alternative oxidase activity. Based on these observations we propose that a cyanide-insensitive respiratory pathway operates in the transformed E. coli hemA strain. Introduction of this pathway now opens the way to genetic/molecular biological investigations of alternative oxidase and its cofactor. Images PMID:1438286

  10. Salt stimulated respiration of Chlorella fusca.

    PubMed

    Löppert, H G

    1976-01-01

    ATP contents have been measured before and after addition of KCl (5 mM final concentration) to suspensions of Chlorella in distilled water under different conditions of energy supply. The levels decreased immediately after salt addition and returned to the original values under conditions both of oxidative phosphorylation and of cyclic photophosphorylation, but not under conditions of fermentation. It appears that this decrease in the ATP level is the cause for salt stimulated respiration (S.S.R.). Furthermore, it is shown that cycloheximide and EDTA, which interact with Rb+ uptake (active and ATP-driven) at low salt concentration, also reduce S.S.R. From this parallelism it is concluded that the ATPase involved in Rb+ uptake at low salt concentration is also responsible for S.S.R. at high salt concentration. As S.S.R. provides far more energy than is required for the small influx of ions it is suggested that the ATPase is decoupled by the salt from ion transport.

  11. Occupational Exposure to Respirable Dust, Respirable Crystalline Silica and Diesel Engine Exhaust Emissions in the London Tunnelling Environment.

    PubMed

    Galea, Karen S; Mair, Craig; Alexander, Carla; de Vocht, Frank; van Tongeren, Martie

    2016-03-01

    Personal 8-h shift exposure to respirable dust, diesel engine exhaust emissions (DEEE) (as respirable elemental carbon), and respirable crystalline silica of workers involved in constructing an underground metro railway tunnel was assessed. Black carbon (BC) concentrations were also assessed using a MicroAeth AE51. During sprayed concrete lining (SCL) activities in the tunnel, the geometric mean (GM) respirable dust exposure level was 0.91mg m(-3), with the highest exposure measured on a back-up sprayer (3.20mg m(-3)). The GM respirable crystalline silica concentration for SCL workers was 0.03mg m(-3), with the highest measurement also for the back-up sprayer (0.24mg m(-3)). During tunnel boring machine (TBM) activities, the GM respirable dust concentration was 0.54mg m(-3). The GM respirable elemental carbon concentration for all the TBM operators was 18 µg m(-3); with the highest concentration measured on a segment lifter. The BC concentrations were higher in the SCL environment in comparison to the TBM environment (daily GM 18-54 µg m(-3) versus 3-6 µg m(-3)). This small-scale monitoring campaign provides additional personal data on exposures experienced by underground tunnel construction workers.

  12. Removal and recovery of metals from a coal pile runoff.

    PubMed

    Ibeanusi, Victor M; Phinney, Donna; Thompson, Michelle

    2003-05-01

    The removal and recovery of heavy metals from a coal pile runoff water using a mixture of multiple metal-tolerant bacterial strains of ATCC 55673, and ATCC 55674 and a Pseudomonas sp. was investigated. The analysis of elemental composition of metal precipitates recovered from the bacterial biomass by transmission electron microscopy andenergy dispersive X-ray analysis revealed the presence of metals originally present in the wastewater. In addition, analysis of metals in culture supernatant and bacterial biomass by inductively coupled plasma emission spectroscopy (ICP-ES) indicated a removal range of 82-100% and a recovery of 15-58% of metals from the wastewater and bacterial biomass, respectively.

  13. Nitric oxide evokes an adaptive response to oxidative stress by arresting respiration.

    PubMed

    Husain, Maroof; Bourret, Travis J; McCollister, Bruce D; Jones-Carson, Jessica; Laughlin, James; Vázquez-Torres, Andrés

    2008-03-21

    Aerobic metabolism generates biologically challenging reactive oxygen species (ROS) by the endogenous autooxidation of components of the electron transport chain (ETC). Basal levels of oxidative stress can dramatically rise upon activation of the NADPH oxidase-dependent respiratory burst. To minimize ROS toxicity, prokaryotic and eukaryotic organisms express a battery of low-molecular-weight thiol scavengers, a legion of detoxifying catalases, peroxidases, and superoxide dismutases, as well as a variety of repair systems. We present herein blockage of bacterial respiration as a novel strategy that helps the intracellular pathogen Salmonella survive extreme oxidative stress conditions. A Salmonella strain bearing mutations in complex I NADH dehydrogenases is refractory to the early NADPH oxidase-dependent antimicrobial activity of IFNgamma-activated macrophages. The ability of NADH-rich, complex I-deficient Salmonella to survive oxidative stress is associated with resistance to peroxynitrite (ONOO(-)) and hydrogen peroxide (H(2)O(2)). Inhibition of respiration with nitric oxide (NO) also triggered a protective adaptive response against oxidative stress. Expression of the NDH-II dehydrogenase decreases NADH levels, thereby abrogating resistance of NO-adapted Salmonella to H(2)O(2). NADH antagonizes the hydroxyl radical (OH(.)) generated in classical Fenton chemistry or spontaneous decomposition of peroxynitrous acid (ONOOH), while fueling AhpCF alkylhydroperoxidase. Together, these findings identify the accumulation of NADH following the NO-mediated inhibition of Salmonella's ETC as a novel antioxidant strategy. NO-dependent respiratory arrest may help mitochondria and a plethora of organisms cope with oxidative stress engendered in situations as diverse as aerobic respiration, ischemia reperfusion, and inflammation.

  14. Soil microbial respiration and PICT responses to an industrial and historic lead pollution: a field study.

    PubMed

    Bérard, Annette; Capowiez, Line; Mombo, Stéphane; Schreck, Eva; Dumat, Camille; Deola, Frédéric; Capowiez, Yvan

    2016-03-01

    We performed a field investigation to study the long-term impacts of Pb soil contamination on soil microbial communities and their catabolic structure in the context of an industrial site consisting of a plot of land surrounding a secondary lead smelter. Microbial biomass, catabolic profiles, and ecotoxicological responses (PICT) were monitored on soils sampled at selected locations along 110-m transects established on the site. We confirmed the high toxicity of Pb on respirations and microbial and fungal biomasses by measuring positive correlations with distance from the wall factory and negative correlation with total Pb concentrations. Pb contamination also induced changes in microbial and fungal catabolic structure (from carbohydrates to amino acids through carboxylic malic acid). Moreover, PICT measurement allowed to establish causal linkages between lead and its effect on biological communities taking into account the contamination history of the ecosystem at community level. The positive correlation between qCO2 (based on respiration and substrate use) and PICT suggested that the Pb stress-induced acquisition of tolerance came at a greater energy cost for microbial communities in order to cope with the toxicity of the metal. In this industrial context of long-term polymetallic contamination dominated by Pb in a field experiment, we confirmed impacts of this metal on soil functioning through microbial communities, as previously observed for earthworm communities.

  15. Quantifying rhizosphere respiration for two cool-season perennial forages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the regulation of ecosystem carbon dioxide flux from forage production systems requires knowledge of component fluxes, including photosynthetic uptake and respiratory loss. Experimental separation of soil respiration into its heterotrophic (free-living soil organisms) and rhizosphere c...

  16. Effect of Pregnancy Upon Facial Anthropometrics and Respirator Fit Testing.

    PubMed

    Roberge, Raymond J; Kim, Jung-Hyun; Palmiero, Andrew; Powell, Jeffrey B

    2015-01-01

    Workers required to wear respirators must undergo additional respirator fit testing if a significant change in body weight occurs. Approximately 10% of working women of reproductive age will be pregnant and experience a significant change in weight, yet the effect of pregnancy-associated weight gain on respirator fit is unknown. Cephalo-facial anthropometric measurements and quantitative fit testing of N95 filtering facepiece respirators (N95 FFR) of 15 pregnant women and 15 matched, non-pregnant women were undertaken for comparisons between the groups. There were no significant differences between pregnant and non-pregnant women with respect to cephalo-facial anthropometric measurements or N95 FFR quantitative fit tests. Healthy pregnant workers, who adhere to the recommended weight gain limits of pregnancy, are unlikely to experience an increase in cephalo-facial dimensions that would mandate additional N95 FFR fit testing above that which is normally required on an annual basis.

  17. Respirator Use in a Hospital Setting: Establishing Surveillance Metrics.

    PubMed

    Yarbrough, Mary I; Ficken, Meredith E; Lehmann, Christoph U; Talbot, Thomas R; Swift, Melanie D; McGown, Paula W; Wheaton, Robert F; Bruer, Michele; Little, Steven W; Oke, Charles A

    Information that details use and supply of respirators in acute care hospitals is vital to prevent disease transmission, assure the safety of health care personnel, and inform national guidelines and regulations.

  18. Thoracic and respirable particle definitions for human health risk assessment

    EPA Science Inventory

    Provides estimates of the thoracic and respirable fractions, for adults and children during typical activities during both nasal and oral inhalation, that may be used in the design of experimental studies and interpretation of evidence of health effects.

  19. Identification and characterization of a bacterial hydrosulfide ion channel

    PubMed Central

    Czyzewski, Bryan K.; Wang, Da-Neng

    2013-01-01

    Believed to have been critical to the origin of life on Earth 1, the hydrosulfide ion (HS−) and its undissociated form, hydrogen sulfide (H2S), continue to play a prominent role in physiology and cellular signaling 2. As a major metabolite in anaerobic bacterial growth, hydrogen sulfide is a product of both assimilatory and dissimilatory sulfate reduction 2–4. These pathways can reduce various oxidized sulfur compounds including sulfate, sulfite and thiosulfate. The dissimilatory sulfate reduction pathway uses this molecule as the terminal electron acceptor for anaerobic respiration, where it produces excess amounts of H2S4. The reduction of sulfite is a key intermediate step in all sulfate reduction pathways. In Clostridium and Salmonella, an inducible sulfite reductase is directly linked to the regeneration of NAD+, which has been suggested to play a role in energy production and growth, as well as in the detoxification of sulfite 3. Above a certain concentration threshold, both H2S and HS− nhibit cell growth by binding the metal centers of enzymes and cytochrome oxidase5, necessitating a release mechanism for the export of this toxic metabolite from the cell 5–9. Through a combination of genetic, biochemical and functional approaches, we have identified a hydrosulfide ion channel (HSC) in the pathogen Clostridium difficile. The HS− channel is a member of the formate-nitrite-transport (FNT) family, in which ~50 HSC genes form a third subfamily alongside those for formate (FocA) 10,11 and for nitrite (NirC) 12. In addition to HS− ions, HSC is also permeable to formate and nitrite. Such polyspecificity can be explained by the conserved ion selectivity filter observed in the HSC crystal structure. The channel has a low open probability and is tightly regulated, to avoid decoupling of the membrane proton gradient. PMID:22407320

  20. Identification and characterization of a bacterial hydrosulphide ion channel

    SciTech Connect

    Czyzewski, Bryan K.; Wang, Da-Neng

    2012-10-26

    The hydrosulphide ion (HS{sup -}) and its undissociated form, hydrogen sulphide (H{sub 2}S), which are believed to have been critical to the origin of life on Earth, remain important in physiology and cellular signalling. As a major metabolite in anaerobic bacterial growth, hydrogen sulphide is a product of both assimilatory and dissimilatory sulphate reduction. These pathways can reduce various oxidized sulphur compounds including sulphate, sulphite and thiosulphate. The dissimilatory sulphate reduction pathway uses this molecule as the terminal electron acceptor for anaerobic respiration, in which process it produces excess amounts of H{sub 2}S. The reduction of sulphite is a key intermediate step in all sulphate reduction pathways. In Clostridium and Salmonella, an inducible sulphite reductase is directly linked to the regeneration of NAD{sup +}, which has been suggested to have a role in energy production and growth, as well as in the detoxification of sulphite. Above a certain concentration threshold, both H{sub 2}S and HS{sup -} inhibit cell growth by binding the metal centres of enzymes and cytochrome oxidase, necessitating a release mechanism for the export of this toxic metabolite from the cell. Here we report the identification of a hydrosulphide ion channel in the pathogen Clostridium difficile through a combination of genetic, biochemical and functional approaches. The HS{sup -} channel is a member of the formate/nitrite transport family, in which about 50 hydrosulphide ion channels form a third subfamily alongside those for formate (FocA) and for nitrite (NirC). The hydrosulphide ion channel is permeable to formate and nitrite as well as to HS{sup -} ions. Such polyspecificity can be explained by the conserved ion selectivity filter observed in the channel's crystal structure. The channel has a low open probability and is tightly regulated, to avoid decoupling of the membrane proton gradient.

  1. Tai Chi training reduced coupling between respiration and postural control

    PubMed Central

    Holmes, Matthew L; Manor, Brad; Hsieh, Wan-hsin; Hu, Kun; Lipsitz, Lewis A; Li, Li

    2015-01-01

    In order to maintain stable upright stance, the postural control system must account for the continuous perturbations to the body’s center-of-mass including those caused by spontaneous respiration. Both aging and disease increase “posturo-respiratory synchronization;” which reflects the degree to which respiration affects postural sway fluctuations over time. Tai Chi training emphasizes the coordination of respiration and bodily movements and may therefore optimize the functional interaction between these two systems. The purpose of the project was to examine the effect of Tai Chi training on the interaction between respiration and postural control in older adults. We hypothesized that Tai Chi training would improve the ability of the postural control system to compensate for respiratory perturbations and thus, reduce posturo-respiratory synchronization. Participants were recruited from supportive housing facilities and randomized to a 12-week Tai Chi intervention (n=28; 86±5yrs) or educational-control program (n=34, 85±6yrs). Standing postural sway and respiration were simultaneously recorded with a force plate and respiratory belt under eyes-open and eyes-closed conditions. Posturo-respiratory synchronization was determined by quantifying the variation of the phase relationship between the dominant oscillatory mode of respiration and corresponding oscillations within postural sway. Groups were similar in age, gender distribution, height, body mass, and intervention compliance. Neither intervention altered average sway speed, sway magnitude or respiratory rate. As compared to the education-control group, however, Tai Chi training reduced posturo-respiratory synchronization when standing with eyes open or closed (p<0.001). Tai Chi training did not affect traditional parameters of standing postural control or respiration, yet reduced the coupling between respiration and postural control. The beneficial effects of Tai Chi training may therefore stem in part

  2. Stem respiration in a closed-canopy upland oak forest.

    PubMed

    Edwards, N T; Hanson, P J

    1996-04-01

    Stem respiration was measured throughout 1993 on 56 mature trees of three species (Quercus alba L., Quercus prinus L., and Acer rubrum L.) in Walker Branch Watershed, Oak Ridge, Tennessee. A subset of the trees was remeasured during 1994. Diameter increments, stem temperatures and soil water were also monitored. Respiration rates in the spring and summer of 1993 tracked growth rate increments, except during a drought when growth dropped to zero and respiration increased to its highest rate. During the dormant season, rates of total stem respiration (R(t)) tended to be greater in large trees with thick sapwood but no such trend was observed during the growing season. Before and after the growing season, respiration rates correlated well with stem temperatures. Estimated values of Q(10) were 2.4 for the two oak species and 1.7 for red maple. The Q(10) values were used along with baseline respiration measurements and stem temperatures to predict seasonal changes in maintenance respiration (R(m)). In red maple, annual total R(m) accounted for 56 and 60% of R(t) in 1993 and 1994, respectively. In chestnut oak, R(m) accounted for 65 and 58% of R(t) in 1993 and 1994, respectively. In white oak, R(m) accounted for 47 and 53% of R(t) in 1993 and 1994, respectively. Extrapolating these data to the stand level showed that woody tissue respiration accounted for 149 and 204 g C m(-2) soil surface year(-1) in 1993 and 1994, respectively.

  3. Tai Chi training reduced coupling between respiration and postural control.

    PubMed

    Holmes, Matthew L; Manor, Brad; Hsieh, Wan-hsin; Hu, Kun; Lipsitz, Lewis A; Li, Li

    2016-01-01

    In order to maintain stable upright stance, the postural control system must account for the continuous perturbations to the body's center-of-mass including those caused by spontaneous respiration. Both aging and disease increase "posturo-respiratory synchronization;" which reflects the degree to which respiration affects postural sway fluctuations over time. Tai Chi training emphasizes the coordination of respiration and bodily movements and may therefore optimize the functional interaction between these two systems. The purpose of the project was to examine the effect of Tai Chi training on the interaction between respiration and postural control in older adults. We hypothesized that Tai Chi training would improve the ability of the postural control system to compensate for respiratory perturbations and thus, reduce posturo-respiratory synchronization. Participants were recruited from supportive housing facilities and randomized to a 12-week Tai Chi intervention (n=28; 86 ± 5 yrs) or educational-control program (n=34, 85 ± 6 yrs). Standing postural sway and respiration were simultaneously recorded with a force plate and respiratory belt under eyes-open and eyes-closed conditions. Posturo-respiratory synchronization was determined by quantifying the variation of the phase relationship between the dominant oscillatory mode of respiration and corresponding oscillations within postural sway. Groups were similar in age, gender distribution, height, body mass, and intervention compliance. Neither intervention altered average sway speed, sway magnitude or respiratory rate. As compared to the education-control group, however, Tai Chi training reduced posturo-respiratory synchronization when standing with eyes open or closed (p<0.001). Tai Chi training did not affect traditional parameters of standing postural control or respiration, yet reduced the coupling between respiration and postural control. The beneficial effects of Tai Chi training may therefore stem in part

  4. Effects of the Changjiang (Yangtze) River discharge on planktonic community respiration in the East China Sea

    NASA Astrophysics Data System (ADS)

    Chen, Chung-Chi; Shiah, Fuh-Kwo; Chiang, Kuo-Ping; Gong, Gwo-Ching; Kemp, W. Michael

    2009-03-01

    Planktonic communities tend to flourish on the western margins of the East China Sea (ECS) fueled by substrates delivered largely from the Changjiang River, the fifth largest river in the world. To study the effects of the Changjiang River discharge on planktonic community respiration (CR), physical-chemical variables and key processes were measured in three consecutive summers in the ECS. Results showed that concentrations of nitrate and Chl a, protozoan biomass, bacterial production, as well as CR in the surface water were all negatively correlated with sea surface salinity, reflecting the strong influence of river discharge on the ECS shelf ecosystem. Moreover, mean values of nitrate, Chl a concentrations, and CR rates were proportionally related to the area of Changjiang diluted water (CDW; salinity ≤31.0 practical salinity units (psu)), an index of river discharge rate. Presumably, higher river flow delivers higher nutrient concentrations which stimulate phytoplankton growth, which in turn fuels CR. CR exhibited significant monthly and interannual variability, and rates appear to be dominated by bacteria and phytoplankton. Although the plankton community was relatively productive (mean = 0.8 mg C m-2 d-1) in the CDW, the mean ratio of production to respiration was low (0.42). This suggests that the heterotrophic processes regulating CR were supported by riverine organic carbon input in addition to in situ autotrophic production.

  5. The Regulatory Role of Ferric Uptake Regulator (Fur) during Anaerobic Respiration of Shewanella piezotolerans WP3

    PubMed Central

    Yang, Xin-Wei; He, Ying; Xu, Jun; Xiao, Xiang; Wang, Feng-Ping

    2013-01-01

    Ferric uptake regulator (Fur) is a global regulator that controls bacterial iron homeostasis. In this study, a fur deletion mutant of the deep-sea bacterium Shewanella piezotolerans WP3 was constructed. Physiological studies revealed that the growth rate of this mutant under aerobic conditions was only slightly lower than that of wild type (WT), but severe growth defects were observed under anaerobic conditions when different electron acceptors (EAs) were provided. Comparative transcriptomic analysis demonstrated that Fur is involved not only in classical iron homeostasis but also in anaerobic respiration. Fur exerted pleiotropic effects on the regulation of anaerobic respiration by controlling anaerobic electron transport, the heme biosynthesis system, and the cytochrome c maturation system. Biochemical assays demonstrated that levels of c-type cytochromes were lower in the fur mutant, consistent with the transcriptional profiling. Transcriptomic analysis and electrophoretic mobility shift assays revealed a primary regulation network for Fur in WP3. These results suggest that Fur may act as a sensor for anoxic conditions to trigger and influence the anaerobic respiratory system. PMID:24124499

  6. Structural and Spectral Features of Selenium Nanospheres Produced by Se-Respiring Bacteria

    USGS Publications Warehouse

    Oremland, R.S.; Herbel, M.J.; Blum, J.S.; Langley, S.; Beveridge, T.J.; Ajayan, P.M.; Sutto, T.; Ellis, A.V.; Curran, S.

    2004-01-01

    Certain anaerobic bacteria respire toxic selenium oxyanions and in doing so produce extracellular accumulations of elemental selenium [Se(0)]. We examined three physiologically and phylogenetically diverse species of selenate- and selenite-respiring bacteria, Sulfurospirillum barnesii, Bacillus selenitireducens, and Selenihalanaerobacter shriftii, for the occurrence of this phenomenon. When grown with selenium oxyanions as the electron acceptor, all of these organisms formed extracellular granules consisting of stable, uniform nanospheres (diameter, ???300 nm) of Se(0) having monoclinic crystalline structures. Intracellular packets of Se(0) were also noted. The number of intracellular Se(0) packets could be reduced by first growing cells with nitrate as the electron acceptor and then adding selenite ions to washed suspensions of the nitrate-grown cells. This resulted in the formation of primarily extracellular Se nanospheres. After harvesting and cleansing of cellular debris, we observed large differences in the optical properties (UV-visible absorption and Raman spectra) of purified extracellular nanospheres produced in this manner by the three different bacterial species. The spectral properties in turn differed substantially from those of amorphous Se(0) formed by chemical oxidation of H2Se and of black, vitreous Se(0) formed chemically by reduction of selenite with ascorbate. The microbial synthesis of Se(0) nanospheres results in unique, complex, compacted nanostructural arrangements of Se atoms. These arrangements probably reflect a diversity of enzymes involved in the dissimilatory reduction that are subtly different in different microbes. Remarkably, these conditions cannot be achieved by current methods of chemical synthesis.

  7. Growth of Desulfovibrio vulgaris when respiring U(VI) and characterization of biogenic uraninite.

    PubMed

    Zhou, Chen; Vannela, Raveender; Hyun, Sung Pil; Hayes, Kim F; Rittmann, Bruce E

    2014-06-17

    The capacity of Desulfovibrio vulgaris to reduce U(VI) was studied previously with nongrowth conditions involving a high biomass concentration; thus, bacterial growth through respiration of U(VI) was not proven. In this study, we conducted a series of batch tests on U(VI) reduction by D. vulgaris at a low initial biomass (10 to 20 mg/L of protein) that could reveal biomass growth. D. vulgaris grew with U(VI) respiration alone, as well as with simultaneous sulfate reduction. Patterns of growth kinetics and solids production were affected by sulfate and Fe(2+). Biogenic sulfide nonenzymatically reduced 76% of the U(VI) and greatly enhanced the overall reduction rate in the absence of Fe(2+) but was rapidly scavenged by Fe(2+) to form FeS in the presence of Fe(2+). Biogenic U solids were uraninite (UO2) nanocrystallites associated with 20 mg/g biomass as protein. The crystallite thickness of UO2 was 4 to 5 nm without Fe(2+) but was <1.4 nm in the presence of Fe(2+), indicating poor crystallization inhibited by adsorbed Fe(2+) and other amorphous Fe solids, such as FeS or FeCO3. This work fills critical gaps in understanding the metabolic utilization of U by microorganisms and formation of UO2 solids in bioremediation sites.

  8. The regulatory role of ferric uptake regulator (Fur) during anaerobic respiration of Shewanella piezotolerans WP3.

    PubMed

    Yang, Xin-Wei; He, Ying; Xu, Jun; Xiao, Xiang; Wang, Feng-Ping

    2013-01-01

    Ferric uptake regulator (Fur) is a global regulator that controls bacterial iron homeostasis. In this study, a fur deletion mutant of the deep-sea bacterium Shewanella piezotolerans WP3 was constructed. Physiological studies revealed that the growth rate of this mutant under aerobic conditions was only slightly lower than that of wild type (WT), but severe growth defects were observed under anaerobic conditions when different electron acceptors (EAs) were provided. Comparative transcriptomic analysis demonstrated that Fur is involved not only in classical iron homeostasis but also in anaerobic respiration. Fur exerted pleiotropic effects on the regulation of anaerobic respiration by controlling anaerobic electron transport, the heme biosynthesis system, and the cytochrome c maturation system. Biochemical assays demonstrated that levels of c-type cytochromes were lower in the fur mutant, consistent with the transcriptional profiling. Transcriptomic analysis and electrophoretic mobility shift assays revealed a primary regulation network for Fur in WP3. These results suggest that Fur may act as a sensor for anoxic conditions to trigger and influence the anaerobic respiratory system.

  9. Stimulation of respiration in rat thymocytes induced by ionizing radiation.

    PubMed

    Gudz, T I; Pandelova, I G; Novgorodov, S A

    1994-04-01

    The effect of X irradiation on the respiration of rat thymocytes was studied. An increase in the rate of O2 uptake was observed 1 h after cells were irradiated with doses of 6-10 Gy. The radiation-induced increase in respiration could be blocked by oligomycin, an inhibitor of mitochondrial ATP synthase, suggesting control by increased cytoplasmic ATP turnover. The stimulation of respiration was not associated with changes in the activity of mitochondrial electron transfer enzymes or permeability of the inner membrane. Several inhibitors of processes which used ATP were screened for their effects on the basal respiration rate and on the radiation response. In irradiated thymocytes, an enhancement of inhibition of respiration by ouabain, La3+ and cycloheximide was observed. These results indicate that the radiation-induced stimulation of respiration is due to changes in ion homeostasis and protein synthesis. The effect of X irradiation was shown to be independent of the redox status of nonprotein thiols and was not associated with detectable changes in some products of lipid peroxidation. The radiation-induced decrease in activity of superoxide dismutase suggests free radical involvement in deleterious effects of radiation.

  10. Development of a Molecular System for Studying Microbial Arsenate Respiration

    NASA Astrophysics Data System (ADS)

    Saltikov, C. W.; Newman, D. K.

    2002-12-01

    The toxic element arsenic is a major contaminant of many groundwaters and surface waters throughout the world. Arsenic enrichment is primarily of geological origin resulting from weathering processes and geothermal activity. Not surprisingly, microorganisms inhabiting anoxic arsenic-contaminated environments have evolved to exploit arsenate during respiration. Numerous bacteria have been isolated that use arsenate as a terminal electron acceptor for respiratory growth. The diversity of this metabolism appears to be widespread throughout the microbial tree of life, suggesting respiratory arsenate reduction is ancient in origin. Yet little is known about the molecular mechanisms for how these organisms respire arsenate. We have developed a model system in Shewanella trabarsenatis, strain ANA-3, a facultative anaerobe that respires arsenate and tolerates high concentrations of arsenite (10 mM). Through loss-of-function studies, we have identified genes involved in both arsenic resistance and arsenate respiration. The genes that confer resistance to arsenic are homologous to the well-characterized ars operon of E. coli. However, the respiratory arsenate reductase is predicted to encode a novel protein that shares homologous regions (~ 40 % similarity) to molybdopterin anaerobic reductases specific for DMSO, thiosulfate, nitrate, and polysulfide. I will discuss our emerging model for how strain ANA-3 respires arsenate and the relationship between arsenite resistance and arsenate respiration. I will also highlight the relevance of this type of analysis for biogeochemical studies.

  11. Metal Inhibition of Growth and Manganese Oxidation in Pseudomonas putida GB-1

    NASA Astrophysics Data System (ADS)

    Pena, J.; Sposito, G.

    2009-12-01

    Biogenic manganese oxides (MnO2) are ubiquitous nanoparticulate minerals that contribute to the adsorption of nutrient and toxicant metals, the oxidative degradation of various organic compounds, and the respiration of metal-reducing bacteria in aquatic and terrestrial environments. The formation of these minerals is catalyzed by a diverse and widely-distributed group of bacteria and fungi, often through the enzymatic oxidation of aqueous Mn(II) to Mn(IV). In metal-impacted ecosystems, toxicant metals may alter the viability and metabolic activity of Mn-oxidizing organisms, thereby limiting the conditions under which biogenic MnO2 can form and diminishing their potential as adsorbent materials. Pseudomonas putida GB-1 (P. putida GB-1) is a model Mn-oxidizing laboratory culture representative of freshwater and soil biofilm-forming bacteria. Manganese oxidation in P. putida GB-1 occurs via two single-electron-transfer reactions, involving a multicopper oxidase enzyme found on the bacterial outer membrane surface. Near the onset of the stationary phase of growth, dark brown MnO2 particles are deposited in a matrix of bacterial cells and extracellular polymeric substances, thus forming heterogeneous biomineral assemblages. In this study, we assessed the influence of various transition metals on microbial growth and manganese oxidation capacity in a P. putida GB-1 culture propagated in a nutrient-rich growth medium. The concentration-response behavior of actively growing P. putida GB-1 cells was investigated for Fe, Co, Ni, Cu and Zn at pH ≈ 6 in the presence and absence of 1 mM Mn. Toxicity parameters such as EC0, EC50 and Hillslope, and EC100 were obtained from the sigmoidal concentration-response curves. The extent of MnO2 formation in the presence of the various metal cations was documented 24, 50, 74 and 104 h after the metal-amended medium was inoculated. Toxicity values were compared to twelve physicochemical properties of the metals tested. Significant

  12. Multi-Scale Modeling of Respiration: Linking External to Cellular Respiration during Exercise

    PubMed Central

    Zhou, Haiying; Lai, Nicola; Saidel, Gerald M.; Cabrera, Marco E.

    2014-01-01

    In human studies investigating factors that control cellular respiration in working skeletal muscle, pulmonary VO2 dynamics (VO2p) measured at the mouth by indirect calorimetry is typically used to represent muscle O2 consumption (UO2m). Furthermore, measurement of muscle oxygenation using near-infrared spectroscopy has provided information on the dynamic balance between oxygen delivery and oxygen consumption at the microvascular level. To relate these measurements and gain quantitative understanding of the regulation of VO2 at the cellular, tissue and whole-body level, a multiscale computational model of oxygen transport and metabolism during exercise was developed. The model incorporates mechanisms of oxygen transport from the airway opening to working muscle and other-organs cells, as well as the phosphagenic and oxidative pathways of ATP synthesis in these tissue cells. Model simulations of external (VO2p) and cellular (UO2m) respiration show that, during moderate exercise, their characteristic mean response times are similar even when a transit delay exists between tissue cells and the external environment for normal subjects. PMID:19457732

  13. Surfactants and the Mechanics of Respiration

    NASA Astrophysics Data System (ADS)

    Jbaily, Abdulrahman; Szeri, Andrew J.

    2016-11-01

    Alveoli are small sacs found at the end of terminal bronchioles in human lungs with a mean diameter of 200 μm. A thin layer of fluid (hypophase) coats the inner face of an alveolus and is in contact with the air in the lungs. The thickness of this layer varies among alveoli, but is in the range of 0.1 to 0.5 μm for many portions of the alveolar network. The interfacial tension σ at the air-hypophase interface tends to favor collapse of the alveolus, and resists its expansion during inhalation. Type II alveolar cells synthesize and secrete a mixture of phospholipids and proteins called pulmonary surfactant. These surfactant molecules adsorb to the interface causing σ of water at body temperature is 70 mN/m and falls to an equilibrium value of 25 mN/m when surfactants are present. Also, in a dynamic sense, it is known that σ is reduced to near 0 during exhalation when the surfactant film compresses. In this work, the authors develop a mechanical and transport model of the alveolus to study the effect of surfactants on various aspects of respiration. The model is composed of three principal parts: (i) air movement into and out of the alveolus; (ii) a balance of linear momentum across the two-layered membrane of the alveolus (hypophase and elastic wall); and (iii) a pulmonary surfactant transport problem in the hypophase. The goal is to evaluate the influence of pulmonary surfactant on respiratory mechanics.

  14. 30 CFR 71.301 - Respirable dust control plan; approval by District Manager and posting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Respirable dust control plan; approval by... WORK AREAS OF UNDERGROUND COAL MINES Respirable Dust Control Plans § 71.301 Respirable dust control... control plans on a mine-by-mine basis. When approving respirable dust control plans, the District...

  15. 30 CFR 90.300 - Respirable dust control plan; filing requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Respirable dust control plan; filing... DEVELOPMENT OF PNEUMOCONIOSIS Respirable Dust Control Plans § 90.300 Respirable dust control plan; filing... part 90 miner, the operator shall submit a written respirable dust control plan for that part 90...

  16. 30 CFR 71.300 - Respirable dust control plan; filing requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Respirable dust control plan; filing... OF UNDERGROUND COAL MINES Respirable Dust Control Plans § 71.300 Respirable dust control plan; filing... submit to the District Manager for approval a written respirable dust control plan applicable to the...

  17. 30 CFR 71.301 - Respirable dust control plan; approval by District Manager and posting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Respirable dust control plan; approval by... WORK AREAS OF UNDERGROUND COAL MINES Respirable Dust Control Plans § 71.301 Respirable dust control... control plans on a mine-by-mine basis. When approving respirable dust control plans, the District...

  18. 30 CFR 90.300 - Respirable dust control plan; filing requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Respirable dust control plan; filing... DEVELOPMENT OF PNEUMOCONIOSIS Respirable Dust Control Plans § 90.300 Respirable dust control plan; filing... part 90 miner, the operator shall submit a written respirable dust control plan for that part 90...

  19. 30 CFR 71.300 - Respirable dust control plan; filing requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Respirable dust control plan; filing... OF UNDERGROUND COAL MINES Respirable Dust Control Plans § 71.300 Respirable dust control plan; filing... submit to the District Manager for approval a written respirable dust control plan applicable to the...

  20. 30 CFR 71.301 - Respirable dust control plan; approval by District Manager and posting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Respirable dust control plan; approval by... WORK AREAS OF UNDERGROUND COAL MINES Respirable Dust Control Plans § 71.301 Respirable dust control... control plans on a mine-by-mine basis. When approving respirable dust control plans, the District...

  1. 30 CFR 90.300 - Respirable dust control plan; filing requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Respirable dust control plan; filing... DEVELOPMENT OF PNEUMOCONIOSIS Respirable Dust Control Plans § 90.300 Respirable dust control plan; filing... part 90 miner, the operator shall submit a written respirable dust control plan for that part 90...

  2. 30 CFR 71.300 - Respirable dust control plan; filing requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Respirable dust control plan; filing... OF UNDERGROUND COAL MINES Respirable Dust Control Plans § 71.300 Respirable dust control plan; filing... submit to the District Manager for approval a written respirable dust control plan applicable to the...

  3. 42 CFR 84.253 - Chemical-cartridge respirators; requirements and tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Chemical-cartridge respirators; requirements and... DEVICES Special Use Respirators § 84.253 Chemical-cartridge respirators; requirements and tests. (a... for chemical-cartridge respirators prescribed in Subpart L of this part are applicable to...

  4. 46 CFR Appendix E to Subpart C of... - Respirator Fit Tests

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Respirator Fit Tests E Appendix E to Subpart C of Part...—Respirator Fit Tests Procedures This appendix contains the procedures for properly fitting a respirator to... (QLFT), and the Quantitative Fit Test (QNFT). Note that respirators (negative pressure or...

  5. 46 CFR Appendix E to Subpart C of... - Respirator Fit Tests

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Respirator Fit Tests E Appendix E to Subpart C of Part...—Respirator Fit Tests Procedures This appendix contains the procedures for properly fitting a respirator to... (QLFT), and the Quantitative Fit Test (QNFT). Note that respirators (negative pressure or...

  6. 46 CFR Appendix E to Subpart C of... - Respirator Fit Tests

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Respirator Fit Tests E Appendix E to Subpart C of Part...—Respirator Fit Tests Procedures This appendix contains the procedures for properly fitting a respirator to... (QLFT), and the Quantitative Fit Test (QNFT). Note that respirators (negative pressure or...

  7. 46 CFR Appendix E to Subpart C to... - Respirator Fit Tests

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Respirator Fit Tests E Appendix E to Subpart C to Part...—Respirator Fit Tests Procedures This appendix contains the procedures for properly fitting a respirator to... (QLFT), and the Quantitative Fit Test (QNFT). Note that respirators (negative pressure or...

  8. [Differences in soil respiration between cropland and grassland ecosystems and factors influencing soil respiration on the Loess Plateau].

    PubMed

    Zhou, Xiao-Gang; Zhang, Yan-Jun; Nan, Ya-Fang; Liu, Qing-Fang; Guo, Sheng-Li

    2013-03-01

    Understanding the effect of land-use change on soil respiration rates becomes critical in predicting soil carbon cycling under conversion of arable into grassland on the Loess Plateau. From July 2010 to December 2011, CO2 efflux from the soil surface was measured between 08:00 to 10:00 am in clear days by a Licor-8100 closed chamber system (Li-COR, Lincoln, NE, US). Also, soil temperature and soil moisture at the 5-cm depth was measured using a Li-Cor thermocouple and a hand-held frequency-domain reflectometer (ML2x, Delta-T Devices Ltd, UK) at each PVC collar, respectively. We found marked differences (P < 0.05) in soil respiration related to different land-use: the mean cropland soil respiration [1.35 micromol x (m2 x s)(-1)] was 24% (P < 0.05) less than the paired grassland soil respiration [1.67 micromol x (m2 x s)(-1)] (P < 0.05) during the period of experiment and the cumulative CO2-C emissions in grassland (856 g x m(-2)) was 23% (P < 0.05) higher than that in cropland (694 g x m(-2)). Soil moisture from 0-5 cm depth was much drier in cropland and significantly different between cropland and grassland except for winter. However, there were no clear relationships between soil moisture and soil respiration. Soil temperature at 5-cm depth was 2.5 degress C higher in grassland during the period of experiment (P < 0.05). Regression of soil temperature vs. soil respiration indicated significant exponential relationships both in grassland and cropland. Besides, there were intrinsic differences in response of soil respiration to temperature between the cropland and grassland ecosystems: grassland and cropland respiration response was significantly different at the alpha = 0.05 level, also expressed by a higher temperature sensitivity of soil respiration (Q10) in cropland (2.30) relative to grassland (1.74). Soil temperature of cropland and grassland can explain 79% of the variation in the soil respiration in grassland, compared to 82% in cropland. Therefore, land

  9. Analysis of respirable particulate exposure and its effect to public health around lead smelter and e-waste processing industry in West Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Marselina, M.; Roosmini, D.; Salami, I. R. S.; Ayu A, M.; Cahyadi, W.

    2016-03-01

    Respirable particulate exposure strongly affects human health, especially for children who lived around industrial area. This study was conducted to evaluate the effect of respirable particulate exposure to lung capacity of children. Study location in this study was Parung Panjang District, area of lead smelter industry and also in Astana Anyar District, area of e-waste processing industry. Thirty children were involved in Astana Anyar District and also thirty children in Parung Panjang District. The control groups were also studied in both areas. Predicted average daily intake (ADD) of respirable particulate was estimated and lung or respiration condition of children was measured by using spirometer. The lung condition of respondents was estimated by FEV1.0 and FVC values. As the result, the predicted ADD of children in lead smelter area is 3 times higher than the predicted ADD of children in e-waste processing area. It was correlated positively with the higher PM2.5 concentration in Parung Panjang District than the PM2.5 concentration in Astana Anyar District. Metals concentration in Parung Panjang was also measured with X-Ray Fluorescence (XRF) in this study and it was clearly state that metals concentration in location study were higher than metals concentration in control area.

  10. Response of pinon and juniper respiration to drought and warming

    NASA Astrophysics Data System (ADS)

    Collins, A.; McDowell, N. G.

    2013-12-01

    Drought and temperature-induced tree mortality is believed to be occurring globally, though the physiological mechanisms underlying documented mortality events are not well understood. Understanding the controls on forest carbon cycling and their responses during drought and temperature stress is critical in informing vegetation models and thus predictions of forest response to climate change. Pinon pine (Pinus edulis) and oneseed juniper (Juniperus monosperma) are widespread species in forests of the Southwestern United States and known to be susceptible to mortality due to altered precipitation and temperature regimes. Respiration is a key component of the carbon budget and its response to abiotic stress is thought to play a role in mortality or survival. The ability of these species to acclimate respiration to altered temperature and/or precipitation is a key model parameter, but is currently not known. A careful examination of the response of pinon and juniper respiration to increased temperature and drought conditions is thus a necessary step in predicting their future distribution in a changing environment. We established a rainfall and temperature manipulation experiment in a pinon-juniper woodland near Los Alamos, NM. In-situ trees were exposed to one of five treatments: warming alone, drought alone, warming plus drought, ambient control, and chamber control. Respiration measurements were conducted on the bole of each tree once per month between June and November 2012. A polycarbonate gas-exchange chamber was temporarily sealed to the bole of each tree during the night of each measurement cycle. Air was circulated from the chamber to a closed-path infra-red gas analyzer and CO2 flux was measured hourly. Preliminary analysis of results shows marked differences between the two species. Heated pinon showed elevated respiration and an unchanging Q10 of respiration while all other pinon treatments were no different from ambient control in either parameter

  11. Metal Preferences and Metallation*

    PubMed Central

    Foster, Andrew W.; Osman, Deenah; Robinson, Nigel J.

    2014-01-01

    The metal binding preferences of most metalloproteins do not match their metal requirements. Thus, metallation of an estimated 30% of metalloenzymes is aided by metal delivery systems, with ∼25% acquiring preassembled metal cofactors. The remaining ∼70% are presumed to compete for metals from buffered metal pools. Metallation is further aided by maintaining the relative concentrations of these pools as an inverse function of the stabilities of the respective metal complexes. For example, magnesium enzymes always prefer to bind zinc, and these metals dominate the metalloenzymes without metal delivery systems. Therefore, the buffered concentration of zinc is held at least a million-fold below magnesium inside most cells. PMID:25160626

  12. Anaerobic microbial remobilization of coprecipitated metals

    DOEpatents

    Francis, A.J.; Dodge, C.J.

    1994-10-11

    A process is provided for solubilizing coprecipitated metals. Metals in waste streams are concentrated by treatment with an iron oxide coprecipitating agent. The coprecipitated metals are solubilized by contacting the coprecipitate with a bacterial culture of a Clostridium species ATCC 53464. The remobilized metals can then be recovered and recycled. 4 figs.

  13. Anaerobic microbial remobilization of coprecipitated metals

    DOEpatents

    Francis, Arokiasamy J.; Dodge, Cleveland J.

    1994-10-11

    A process is provided for solubilizing coprecipitated metals. Metals in wastestreams are concentrated by treatment with an iron oxide coprecipitating agent. The coprecipitated metals are solubilized by contacting the coprecipitate with a bacterial culture of a Clostridium species ATCC 53464. The remobilized metals can then be recovered and recycled.

  14. Using bacterial cell growth to template catalytic asymmetry.

    PubMed

    Kaehr, Bryan; Brinker, C Jeffrey

    2010-08-07

    We report an approach to position gold nanoparticle catalysts for metal reduction asymmetrically on a biological template (E. coli) by exploiting the polarity of the bacterial cell envelope undergoing growth and division.

  15. Decreased sucrose content triggers starch breakdown and respiration in stored potato tubers (Solanum tuberosum).

    PubMed

    Hajirezaei, Mohammad-Reza; Börnke, Frederik; Peisker, Martin; Takahata, Yasuhiro; Lerchl, Jens; Kirakosyan, Ara; Sonnewald, Uwe

    2003-01-01

    To change the hexose-to-sucrose ratio within phloem cells, yeast-derived cytosolic invertase was expressed in transgenic potato (Solanum tuberosum cv. Desirée) plants under control of the rolC promoter. Vascular tissue specific expression of the transgene was verified by histochemical detection of invertase activity in tuber cross-sections. Vegetative growth and tuber yield of transgenic plants was unaltered as compared to wild-type plants. However, the sprout growth of stored tubers was much delayed, indicating impaired phloem-transport of sucrose towards the developing bud. Biochemical analysis of growing tubers revealed that, in contrast to sucrose levels, which rapidly declined in growing invertase-expressing tubers, hexose and starch levels remained unchanged as compared to wild-type controls. During storage, sucrose and starch content declined in wild-type tubers, whereas glucose and fructose levels remained unchanged. A similar response was found in transgenic tubers with the exception that starch degradation was accelerated and fructose levels increased slightly. Furthermore, changes in carbohydrate metabolism were accompanied by an elevated level of phosphorylated intermediates, and a stimulated rate of respiration. Considering that sucrose breakdown was restricted to phloem cells it is concluded that, in response to phloem-associated sucrose depletion or hexose elevation, starch degradation and respiration is triggered in parenchyma cells. To study further whether elevated hexose and/or hexose-phosphates or decreased sucrose levels are responsible for the metabolic changes observed, sucrose content was decreased by tuber-specific expression of a bacterial sucrose isomerase. Sucrose isomerase catalyses the reversible conversion of sucrose into palatinose, which is not further metabolizable by plant cells. Tubers harvested from these plants were found to accumulate high levels of palatinose at the expense of sucrose. In addition, starch content decreased

  16. A bacterial view of the periodic table: genes and proteins for toxic inorganic ions.

    PubMed

    Silver, Simon; Phung, Le T

    2005-12-01

    Essentially all bacteria have genes for toxic metal ion resistances and these include those for Ag+, AsO2-, AsO4(3-), Cd2+ Co2+, CrO4(2-), Cu2+, Hg2+, Ni2+, Pb2+, TeO3(2-), Tl+ and Zn2+. The largest group of resistance systems functions by energy-dependent efflux of toxic ions. Fewer involve enzymatic transformations (oxidation, reduction, methylation, and demethylation) or metal-binding proteins (for example, metallothionein SmtA, chaperone CopZ and periplasmic silver binding protein SilE). Some of the efflux resistance systems are ATPases and others are chemiosmotic ion/proton exchangers. For example, Cd2+-efflux pumps of bacteria are either inner membrane P-type ATPases or three polypeptide RND chemiosmotic complexes consisting of an inner membrane pump, a periplasmic-bridging protein and an outer membrane channel. In addition to the best studied three-polypeptide chemiosmotic system, Czc (Cd2+, Zn2+, and Co2), others are known that efflux Ag+, Cu+, Ni2+, and Zn2+. Resistance to inorganic mercury, Hg2+ (and to organomercurials, such as CH3Hg+ and phenylmercury) involve a series of metal-binding and membrane transport proteins as well as the enzymes mercuric reductase and organomercurial lyase, which overall convert more toxic to less toxic forms. Arsenic resistance and metabolizing systems occur in three patterns, the widely-found ars operon that is present in most bacterial genomes and many plasmids, the more recently recognized arr genes for the periplasmic arsenate reductase that functions in anaerobic respiration as a terminal electron acceptor, and the aso genes for the periplasmic arsenite oxidase that functions as an initial electron donor in aerobic resistance to arsenite.

  17. A bacterial bioreporter panel to assay the cytotoxicity of atmospheric particulate matter

    NASA Astrophysics Data System (ADS)

    Kessler, Nivi; Schauer, James J.; Yagur-Kroll, Sharon; Melamed, Sahar; Tirosh, Ofir; Belkin, Shimshon; Erel, Yigal

    2012-12-01

    Numerous studies have demonstrated that elevated concentrations of suspended atmospheric particulate matter (PM) are associated with adverse health effects. In order to minimize the adverse public health effects of atmospheric PM by exposure management, there is a need for a greater understanding of the toxic mechanisms and the components that are responsible for the toxic effects. The aim of this study was to utilize bioassay techniques to investigate these aspects. For this purpose a reporter panel of 9 genetically engineered bacterial (Escherichia coli) strains was composed. Each panel member was designed to report on a different stress condition with a measurable light signal produced by the luciferase enzyme. Toxic mechanisms and components were studied using six anthropogenic PM source samples, including two vehicle combustion particles, three coal fly ash (CFA) samples and an urban dust sample. The most prominent outcome of the panel exposure results were broad panel responses observed for two of the CFA samples, indicating oxidative stress, respiration inhibition and iron deficiency. These responses were relieved when the samples were treated with EDTA, a non-specific metal chelator, suggesting the involvement of metals in the observed effects. Bioavailability analysis of the samples suggests that chromium was related to the toxic responses induced by two of the CFA samples. Oxidative stress was also observed in several samples of ambient atmospheric aerosols and excess metal toxicity in an urban dust sample collected in a parking lot. The reporter panel approach, as demonstrated in this study, has the potential of providing novel insights as to the mechanisms of atmospheric PM toxicity. Furthermore, combining the panel's results with bioavailability data can enlighten about the role of different PM components in the observed toxicity.

  18. Pyrogenic effect of respirable road dust particles

    NASA Astrophysics Data System (ADS)

    Jayawardena, Umesh; Tollemark, Linda; Tagesson, Christer; Leanderson, Per

    2009-02-01

    Because pyrogenic (fever-inducing) compounds on ambient particles may play an important role for particle toxicity, simple methods to measure pyrogens on particles are needed. Here we have used a modified in vitro pyrogen test (IPT) to study the release of interleukin 1β (IL-1β) in whole human blood exposed to respirable road-dust particles (RRDP). Road dusts were collected from the roadside at six different streets in three Swedish cities and particles with a diameter less than 10 μm (RRDP) were prepared by a water sedimentation procedure followed by lyophilisation. RRDP (200 μl of 1 - 106 ng/ml) were mixed with 50 μl whole blood and incubated at 37 °C overnight before IL-1β was analysed with chemiluminescence ELISA in 384-well plates. Endotoxin (lipopolysaccharide from Salmonella minnesota), zymosan B and Curdlan (P-1,3-glucan) were used as positive controls. All RRDP samples had a pyrogenic effect and the most active sample produced 1.6 times more IL-1β than the least active. This formation was of the same magnitude as in samples with 10 ng LPS/ml and was larger than that evoked by zymosan B and Curdlan (by mass basis). The method was sensitive enough to determine formation of IL-1β in mixtures with 10 ng RRDP/ml or 0.01 ng LPS/ml. The endotoxin inhibitor, polymyxin B (10 μg/ml), strongly reduced the RRDP-induced formation of IL-1β at 1μg RRDP/ml (around 80 % inhibition), but had only marginal or no effects at higher RRDP-concentrations (10 and 100 μg /ml). In summary, all RRDP tested had a clear pyrogen effect in this in vitro model. Endotoxin on the particles but also other factors contributed to the pyrogenic effect. As opposed to the limulus amebocyte lysate (LAL) assay (which measures endotoxin alone), IPT measures a broad range of pyrogens that may be present on particulate matter. The IPT method thus affords a simple, sensitive and quantitative determination of the total pyrogenic potential of ambient particles.

  19. Role of individual nap gene cluster products in NapC-independent nitrate respiration of Wolinella succinogenes.

    PubMed

    Kern, Melanie; Mager, Anke M; Simon, Jörg

    2007-11-01

    Bacterial nap gene clusters, encoding periplasmic nitrate reductase (NapA), are complex and diverse, and the composition of the electron transport chain donating electrons to NapA is poorly characterized in most organisms. Exceptionally, Wolinella succinogenes transfers electrons from formate via the menaquinone pool to NapA independently of a membrane-bound c-type cytochrome of the NapC family. The role of individual ORFs of the W. succinogenes napAGHBFLD gene cluster is assessed here by characterizing in-frame gene inactivation mutants. The ability of the mutants to grow by nitrate respiration was tested and their NapA content and specific nitrate reductase activity were determined. The napB and napD gene products proved to be essential for nitrate respiration, with NapD being required for the production of mature NapA. Inactivation of either subunit of the putative membrane-bound menaquinol dehydrogenase complex NapGH almost abolished growth by nitrate respiration. Substitution of the twin-arginine sequence of NapG had the same effect as absence of NapG. Phenotypes of mutants lacking either NapF or NapL suggest that both proteins function in NapA assembly and/or export. The data substantiate the current model of the composition of the NapC-independent electron transport chain as well as of NapA maturation, and indicate the presence of an alternative electron transport pathway to NapA.

  20. Divergent PCB organohalide-respiring consortia enriched from the efflux channel of a former Delor manufacturer in Eastern Europe.

    PubMed

    Praveckova, Martina; Brennerova, Maria V; Cvancarova, Monika; De Alencastro, Luiz Felippe; Holliger, Christof; Rossi, Pierre

    2015-10-01

    Polychlorinated biphenyl (PCB) organohalide-respiring communities from the efflux channel of a former Delor manufacturer in Eastern Slovakia were assessed using metagenomic, statistical and cultivation-adapted approaches. Multivariate analysis of environmental factors together with terminal restriction fragment length polymorphisms of the bacterial communities in the primary sediments revealed both temporal and spatial heterogeneity in the distribution of microbial populations, which reflects the dynamic pattern of contamination and altered conditions for biodegradation activity along the channel. Anaerobic microcosms were developed from eight sediments sampled along the channel, where high concentrations of PCBs - from 6.6 to 136mg/kg dry weight, were measured. PCB dehalorespiring activity, congruent with changes in the microbial composition in all microcosms, was detected. After 10 months of cultivation, the divergently evolved consortia achieved up to 35.9 percent reduction of the total PCB concentration. Phylogenetic-analysis of the active Chloroflexi-related organohalide-respiring bacteria by partial sequencing of 16S rRNA genes in cDNA from microcosms with the highest PCB dechlorination activity revealed diverse and unique complexity of the populations. The predominant organohalide respirers were either affiliated with Dehalococcoides sp. and Dehalococcoides-like group (DLG) organisms or were composed of currently unknown distant clades of DLG bacteria. The present study should encourage researchers to explore the full potential of the indigenous PCB dechlorinating populations to develop effective bioremediation approaches that can perform the complete mineralization of PCBs in polluted environments.

  1. Oxygen utilization rate (OUR) underestimates ocean respiration: A model study

    NASA Astrophysics Data System (ADS)

    Koeve, W.; Kähler, P.

    2016-08-01

    We use a simple 1-D model representing an isolated density surface in the ocean and 3-D global ocean biogeochemical models to evaluate the concept of computing the subsurface oceanic oxygen utilization rate (OUR) from the changes of apparent oxygen utilization (AOU) and water age. The distribution of AOU in the ocean is not only the imprint of respiration in the ocean's interior but is strongly influenced by transport processes and eventually loss at the ocean surface. Since AOU and water age are subject to advection and diffusive mixing, it is only when they are affected both in the same way that OUR represents the correct rate of oxygen consumption. This is the case only when advection prevails or with uniform respiration rates, when the proportions of AOU and age are not changed by transport. In experiments with the 1-D tube model, OUR underestimates respiration when maximum respiration rates occur near the outcrops of isopycnals and overestimates when maxima occur far from the outcrops. Given the distribution of respiration in the ocean, i.e., elevated rates near high-latitude outcrops of isopycnals and low rates below the oligotrophic gyres, underestimates are the rule. Integrating these effects globally in three coupled ocean biogeochemical and circulation models, we find that AOU-over-age based calculations underestimate true model respiration by a factor of 3. Most of this difference is observed in the upper 1000 m of the ocean with the discrepancies increasing toward the surface where OUR underestimates respiration by as much as factor of 4.

  2. Seasonality of temperate forest photosynthesis and daytime respiration

    NASA Astrophysics Data System (ADS)

    Wehr, R.; Munger, J. W.; McManus, J. B.; Nelson, D. D.; Zahniser, M. S.; Davidson, E. A.; Wofsy, S. C.; Saleska, S. R.

    2016-06-01

    Terrestrial ecosystems currently offset one-quarter of anthropogenic carbon dioxide (CO2) emissions because of a slight imbalance between global terrestrial photosynthesis and respiration. Understanding what controls these two biological fluxes is therefore crucial to predicting climate change. Yet there is no way of directly measuring the photosynthesis or daytime respiration of a whole ecosystem of interacting organisms; instead, these fluxes are generally inferred from measurements of net ecosystem-atmosphere CO2 exchange (NEE), in a way that is based on assumed ecosystem-scale responses to the environment. The consequent view of temperate deciduous forests (an important CO2 sink) is that, first, ecosystem respiration is greater during the day than at night; and second, ecosystem photosynthetic light-use efficiency peaks after leaf expansion in spring and then declines, presumably because of leaf ageing or water stress. This view has underlain the development of terrestrial biosphere models used in climate prediction and of remote sensing indices of global biosphere productivity. Here, we use new isotopic instrumentation to determine ecosystem photosynthesis and daytime respiration in a temperate deciduous forest over a three-year period. We find that ecosystem respiration is lower during the day than at night—the first robust evidence of the inhibition of leaf respiration by light at the ecosystem scale. Because they do not capture this effect, standard approaches overestimate ecosystem photosynthesis and daytime respiration in the first half of the growing season at our site, and inaccurately portray ecosystem photosynthetic light-use efficiency. These findings revise our understanding of forest-atmosphere carbon exchange, and provide a basis for investigating how leaf-level physiological dynamics manifest at the canopy scale in other ecosystems.

  3. Seasonality of temperate forest photosynthesis and daytime respiration.

    PubMed

    Wehr, R; Munger, J W; McManus, J B; Nelson, D D; Zahniser, M S; Davidson, E A; Wofsy, S C; Saleska, S R

    2016-06-30

    Terrestrial ecosystems currently offset one-quarter of anthropogenic carbon dioxide (CO2) emissions because of a slight imbalance between global terrestrial photosynthesis and respiration. Understanding what controls these two biological fluxes is therefore crucial to predicting climate change. Yet there is no way of directly measuring the photosynthesis or daytime respiration of a whole ecosystem of interacting organisms; instead, these fluxes are generally inferred from measurements of net ecosystem-atmosphere CO2 exchange (NEE), in a way that is based on assumed ecosystem-scale responses to the environment. The consequent view of temperate deciduous forests (an important CO2 sink) is that, first, ecosystem respiration is greater during the day than at night; and second, ecosystem photosynthetic light-use efficiency peaks after leaf expansion in spring and then declines, presumably because of leaf ageing or water stress. This view has underlain the development of terrestrial biosphere models used in climate prediction and of remote sensing indices of global biosphere productivity. Here, we use new isotopic instrumentation to determine ecosystem photosynthesis and daytime respiration in a temperate deciduous forest over a three-year period. We find that ecosystem respiration is lower during the day than at night-the first robust evidence of the inhibition of leaf respiration by light at the ecosystem scale. Because they do not capture this effect, standard approaches overestimate ecosystem photosynthesis and daytime respiration in the first half of the growing season at our site, and inaccurately portray ecosystem photosynthetic light-use efficiency. These findings revise our understanding of forest-atmosphere carbon exchange, and provide a basis for investigating how leaf-level physiological dynamics manifest at the canopy scale in other ecosystems.

  4. Effects of respirators on worker efficiency. Final report

    SciTech Connect

    Cardarelli, R.; Woldstad, J.; Slobodien, M.J.; Madison, J.M.

    1995-06-01

    The purpose of this study was to quantify the effect of full face piece air purifying respirator use on worker efficiency. With and without a respirator, twenty nuclear power plant workers performed a typical mechanical work task and 2 dexterity tests in an environmental chamber maintained at a temperature of 35{degrees}C (95{degrees}F) and a relative humidity of 65%. The subjects were trained for one day and tested on the following day. On test day, each subject performed each standardized task twice in full cotton protective clothing, once with a respirator and once without. The order in which subjects performed the task with and without a respirator was staggered. The standardized tasks consisted of a stud torquing procedure and two separate trials of a pegboard dexterity test (before and after the torquing procedure). All subject testing wa videotaped and the videotapes were time coded for evaluation by an independent reviewer who determined the times for task completion. The 95% confidence intervals for the mean percentage increase in time to complete the various tasks for trials using th respirator were: 1st Dexterity Test (Lower Limit -1.16%, Mean 3.05%, Upper Limit 7.27%); Stud Torquing (Lower Limit -0.99%, Mean 2.11%, Upper Limit 5.21%); 2nd Dexterity Test (Lower Limit -2.06%, Mean 1.62%, Upper Limit 5.30%). These small increases in completion times attributable to respirator use were not statistically significant. It was concluded that respirator use had no significant effect on the efficiency with which workers conducted the tasks in this study.

  5. Impact of Land Use on Soil Respiration in Southwestern Victoria

    NASA Astrophysics Data System (ADS)

    Teodosio, B.; Daly, E.; Pauwels, V. R. N.

    2015-12-01

    Land use management is one of the key contributors to the global environmental change. Considerable changes in landscapes have been experienced in Southwestern Victoria, Australia in the past two decades. Eucalyptus globulus (blue gum) plantations have expanded, resulting in possible changes in the water and carbon balances of catchments. The shift from pastures to plantations could have a significant impact on the local carbon balance with possible effects on atmospheric CO2 concentration and vegetation productivity. We present preliminary measurements from a field study comparing soil respiration in a plantation and a pasture. Adjacent catchments in Southwestern Victoria, near Gatum, were used as study areas; the prominent difference between the two catchments is the land use, with one catchment being used as a pasture for livestock grazing and the other catchment being mainly planted with blue gums. The variability of soil respiration in the pasture is governed by differences in soil moisture and substrate content due to local features of the topography and livestock grazing. Soil respiration measurements in the plantation were taken on mounds, access tracks, and open spaces. Most observations on mounds had higher soil respiration possibly due to root and mycorrhizal respiration. The measurements in open spaces had comparable values with mound measurements; this might be due to a less limited radiation. The soil respiration between trees had lower values, possibly because of radiation limitation due to the canopy cover. These preliminary measurements allow us to compare soil respiration variability across catchments with different land uses. This is important to estimate CO2 fluxes from soil to the atmosphere in large areas and will be valuable in estimating gross primary production from measurements of net ecosystem exchange.

  6. Two decades of warming increases diversity of a potentially lignolytic bacterial community

    PubMed Central

    Pold, Grace; Melillo, Jerry M.; DeAngelis, Kristen M.

    2015-01-01

    As Earth's climate warms, the massive stores of carbon found in soil are predicted to become depleted, and leave behind a smaller carbon pool that is less accessible to microbes. At a long-term forest soil-warming experiment in central Massachusetts, soil respiration and bacterial diversity have increased, while fungal biomass and microbially-accessible soil carbon have decreased. Here, we evaluate how warming has affected the microbial community's capability to degrade chemically-complex soil carbon using lignin-amended BioSep beads. We profiled the bacterial and fungal communities using PCR-based methods and completed extracellular enzyme assays as a proxy for potential community function. We found that lignin-amended beads selected for a distinct community containing bacterial taxa closely related to known lignin degraders, as well as members of many genera not previously noted as capable of degrading lignin. Warming tended to drive bacterial community structure more strongly in the lignin beads, while the effect on the fungal community was limited to unamended beads. Of those bacterial operational taxonomic units (OTUs) enriched by the warming treatment, many were enriched uniquely on lignin-amended beads. These taxa may be contributing to enhanced soil respiration under warming despite reduced readily available C availability. In aggregate, these results suggest that there is genetic potential for chemically complex soil carbon degradation that may lead to extended elevated soil respiration with long-term warming. PMID:26042112

  7. Two decades of warming increases diversity of a potentially lignolytic bacterial community.

    PubMed

    Pold, Grace; Melillo, Jerry M; DeAngelis, Kristen M

    2015-01-01

    As Earth's climate warms, the massive stores of carbon found in soil are predicted to become depleted, and leave behind a smaller carbon pool that is less accessible to microbes. At a long-term forest soil-warming experiment in central Massachusetts, soil respiration and bacterial diversity have increased, while fungal biomass and microbially-accessible soil carbon have decreased. Here, we evaluate how warming has affected the microbial community's capability to degrade chemically-complex soil carbon using lignin-amended BioSep beads. We profiled the bacterial and fungal communities using PCR-based methods and completed extracellular enzyme assays as a proxy for potential community function. We found that lignin-amended beads selected for a distinct community containing bacterial taxa closely related to known lignin degraders, as well as members of many genera not previously noted as capable of degrading lignin. Warming tended to drive bacterial community structure more strongly in the lignin beads, while the effect on the fungal community was limited to unamended beads. Of those bacterial operational taxonomic units (OTUs) enriched by the warming treatment, many were enriched uniquely on lignin-amended beads. These taxa may be contributing to enhanced soil respiration under warming despite reduced readily available C availability. In aggregate, these results suggest that there is genetic potential for chemically complex soil carbon degradation that may lead to extended elevated soil respiration with long-term warming.

  8. Effects of viruses on bacterial functions under contrasting nutritional conditions for four species of bacteria isolated from Hong Kong waters

    PubMed Central

    Liu, Hao; Yuan, Xiangcheng; Xu, Jie; Harrison, Paul J.; He, Lei; Yin, Kedong

    2015-01-01

    Free living viruses are ubiquitous in marine waters and concentrations are usually several times higher than the bacterial abundance. These viruses are capable of lysing host bacteria and therefore, play an important role in the microbial loop in oligotrophic waters. However, few studies have been conducted to compare the role of viruses in regulating bacterial abundance and heterotrophic activities between natural oligotrophic waters and anthropogenic influenced eutrophic waters. In this study, we examined viral effects on bacterial functions of four single bacterial species incubated with natural viral assemblages in seawater samples from eutrophic and oligotrophic waters. The viral-lysis of bacteria was significantly higher in eutrophic than oligotrophic waters. This suggests that viruses were capable of controlling bacterial abundance, respiration and production in the eutrophic waters. Cellular bacterial respiration and production was higher with viruses than without viruses, which was more evident in the oligotrophic waters. These results indicate that viruses can slow down bacterial consumption of oxygen and reduce bacteria-induced eutrophication effects in anthropogenic eutrophic waters, but switch to the role of sustaining the bacterial population when nutrients are limiting. There were bacterial species differences in resisting viral attack, which can influence the dominance and biodiversity of bacterial species in coastal waters. PMID:26404394

  9. Effects of viruses on bacterial functions under contrasting nutritional conditions for four species of bacteria isolated from Hong Kong waters

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Yuan, Xiangcheng; Xu, Jie; Harrison, Paul J.; He, Lei; Yin, Kedong

    2015-09-01

    Free living viruses are ubiquitous in marine waters and concentrations are usually several times higher than the bacterial abundance. These viruses are capable of lysing host bacteria and therefore, play an important role in the microbial loop in oligotrophic waters. However, few studies have been conducted to compare the role of viruses in regulating bacterial abundance and heterotrophic activities between natural oligotrophic waters and anthropogenic influenced eutrophic waters. In this study, we examined viral effects on bacterial functions of four single bacterial species incubated with natural viral assemblages in seawater samples from eutrophic and oligotrophic waters. The viral-lysis of bacteria was significantly higher in eutrophic than oligotrophic waters. This suggests that viruses were capable of controlling bacterial abundance, respiration and production in the eutrophic waters. Cellular bacterial respiration and production was higher with viruses than without viruses, which was more evident in the oligotrophic waters. These results indicate that viruses can slow down bacterial consumption of oxygen and reduce bacteria-induced eutrophication effects in anthropogenic eutrophic waters, but switch to the role of sustaining the bacterial population when nutrients are limiting. There were bacterial species differences in resisting viral attack, which can influence the dominance and biodiversity of bacterial species in coastal waters.

  10. Effects of viruses on bacterial functions under contrasting nutritional conditions for four species of bacteria isolated from Hong Kong waters.

    PubMed

    Liu, Hao; Yuan, Xiangcheng; Xu, Jie; Harrison, Paul J; He, Lei; Yin, Kedong

    2015-09-25

    Free living viruses are ubiquitous in marine waters and concentrations are usually several times higher than the bacterial abundance. These viruses are capable of lysing host bacteria and therefore, play an important role in the microbial loop in oligotrophic waters. However, few studies have been conducted to compare the role of viruses in regulating bacterial abundance and heterotrophic activities between natural oligotrophic waters and anthropogenic influenced eutrophic waters. In this study, we examined viral effects on bacterial functions of four single bacterial species incubated with natural viral assemblages in seawater samples from eutrophic and oligotrophic waters. The viral-lysis of bacteria was significantly higher in eutrophic than oligotrophic waters. This suggests that viruses were capable of controlling bacterial abundance, respiration and production in the eutrophic waters. Cellular bacterial respiration and production was higher with viruses than without viruses, which was more evident in the oligotrophic waters. These results indicate that viruses can slow down bacterial consumption of oxygen and reduce bacteria-induced eutrophication effects in anthropogenic eutrophic waters, but switch to the role of sustaining the bacterial population when nutrients are limiting. There were bacterial species differences in resisting viral attack, which can influence the dominance and biodiversity of bacterial species in coastal waters.

  11. Automatic respiration tracking for radiotherapy using optical 3D camera

    NASA Astrophysics Data System (ADS)

    Li, Tuotuo; Geng, Jason; Li, Shidong

    2013-03-01

    Rapid optical three-dimensional (O3D) imaging systems provide accurate digitized 3D surface data in real-time, with no patient contact nor radiation. The accurate 3D surface images offer crucial information in image-guided radiation therapy (IGRT) treatments for accurate patient repositioning and respiration management. However, applications of O3D imaging techniques to image-guided radiotherapy have been clinically challenged by body deformation, pathological and anatomical variations among individual patients, extremely high dimensionality of the 3D surface data, and irregular respiration motion. In existing clinical radiation therapy (RT) procedures target displacements are caused by (1) inter-fractional anatomy changes due to weight, swell, food/water intake; (2) intra-fractional variations from anatomy changes within any treatment session due to voluntary/involuntary physiologic processes (e.g. respiration, muscle relaxation); (3) patient setup misalignment in daily reposition due to user errors; and (4) changes of marker or positioning device, etc. Presently, viable solution is lacking for in-vivo tracking of target motion and anatomy changes during the beam-on time without exposing patient with additional ionized radiation or high magnet field. Current O3D-guided radiotherapy systems relay on selected points or areas in the 3D surface to track surface motion. The configuration of the marks or areas may change with time that makes it inconsistent in quantifying and interpreting the respiration patterns. To meet the challenge of performing real-time respiration tracking using O3D imaging technology in IGRT, we propose a new approach to automatic respiration motion analysis based on linear dimensionality reduction technique based on PCA (principle component analysis). Optical 3D image sequence is decomposed with principle component analysis into a limited number of independent (orthogonal) motion patterns (a low dimension eigen-space span by eigen-vectors). New

  12. Respirable Silica Dust Suppression During Artificial Stone Countertop Cutting

    PubMed Central

    Cooper, Jared H.; Johnson, David L.; Phillips, Margaret L.

    2015-01-01

    Purpose: To assess the relative efficacy of three types of controls in reducing respirable silica exposure during artificial stone countertop cutting with a handheld circular saw. Approach: A handheld worm drive circular saw equipped with a diamond segmented blade was fitted with water supply to wet the blade as is typical. The normal wetted-blade condition was compared to (i) wetted-blade plus ‘water curtain’ spray and (ii) wetted-blade plus local exhaust ventilation (LEV). Four replicate 30-min trials of 6-mm deep, 3-mm wide cuts in artificial quartz countertop stone were conducted at each condition in a 24-m3 unventilated tent. One dry cutting trial was also conducted for comparison. Respirable cyclone breathing zone samples were collected on the saw operator and analyzed gravimetrically for respirable mass and by X-ray diffraction for respirable quartz mass. Results: Mean quartz content of the respirable dust was 58.5%. The ranges of 30-min mass and quartz task concentrations in mg m−3 were as follows—wet blade alone: 3.54–7.51 and 1.87–4.85; wet blade + curtain: 1.81–5.97 and 0.92–3.41; and wet blade + LEV: 0.20–0.69 and <0.12–0.20. Dry cutting task concentrations were 69.6mg m−3 mass and 44.6mg m−3 quartz. There was a statistically significant difference (α = 0.05) between the wet blade + LEV and wet blade only conditions, but not between the wet blade + curtain and wet blade only conditions, for both respirable dust and respirable silica. Conclusions: Sawing with a wetted blade plus LEV reduced mean respirable dust and quartz task exposures by a factor of 10 compared to the wet blade only condition. We were unable to show a statistically significant benefit of a water curtain in the ejection path, but the data suggested some respirable dust suppression. PMID:25326187

  13. Respiratory protection as a function of respirator fitting characteristics and fit-test accuracy.

    PubMed

    Campbell, D L; Coffey, C C; Lenhart, S W

    2001-01-01

    The fitting characteristics of particulate respirators are no longer assessed in the National Institute for Occupational Safety and Health respirator certification program. It is important for respirator program administrators to understand the implications of that change and the additional burden it may impose. To address that issue, a typical respirator fit-testing program is analyzed using a mathematical model that describes the effectiveness of a fit-testing program as a function of the fitting characteristics of the respirator and the accuracy of the fittesting method. The model is used to estimate (1) the respirator assignment error, the percentage of respirator wearers mistakenly assigned an ill-fitting respirator; (2) the number of fit-test trials necessary to qualify a group of workers for respirator use; and (3) the number of workers who will fail the fit-test with any candidate respirator model and thereby fail to qualify for respirator use. Using data from previous studies, the model predicts respirator assignment errors ranging from 0 to 20%, depending on the fitting characteristics of the respirator models selected and the fit-testing method used. This analysis indicates that when respirators do not necessarily have good fitting characteristics, respirator program administrators should exercise increased care in the selection of respirator models and increased care in fit-testing. Also presented are ways to assess the fitting characteristics of candidate respirator models by monitoring the first-time fit-testing results. The model demonstrates that significant public health and economic benefits can result when only respirators having good fitting characteristics are purchased and respirators are assigned to workers using highly accurate fit-testing methods.

  14. Cannabinoid-induced changes in respiration of brain mitochondria.

    PubMed

    Fišar, Zdeněk; Singh, Namrata; Hroudová, Jana

    2014-11-18

    Cannabinoids exert various biological effects that are either receptor-mediated or independent of receptor signaling. Mitochondrial effects of cannabinoids were interpreted either as non-receptor-mediated alteration of mitochondrial membranes, or as indirect consequences of activation of plasma membrane type 1 cannabinoid receptors (CB1). Recently, CB1 receptors were confirmed to be localized to the membranes of neuronal mitochondria, where their activation directly regulates respiration and energy production. Here, we performed in-depth analysis of cannabinoid-induced changes of mitochondrial respiration using both an antagonist/inverse agonist of CB1 receptors, AM251 and the cannabinoid receptor agonists, Δ(9)-tetrahydrocannabinol (THC), cannabidiol, anandamide, and WIN 55,212-2. Relationships were determined between cannabinoid concentration and respiratory rate driven by substrates of complex I, II or IV in pig brain mitochondria. Either full or partial inhibition of respiratory rate was found for the tested drugs, with an IC50 in the micromolar range, which verified the significant role of non-receptor-mediated mechanism in inhibiting mitochondrial respiration. Effect of stepwise application of THC and AM251 evidenced protective role of AM251 and corroborated the participation of CB1 receptor activation in the inhibition of mitochondrial respiration. We proposed a model, which includes both receptor- and non-receptor-mediated mechanisms of cannabinoid action on mitochondrial respiration. This model explains both the inhibitory effect of cannabinoids and the protective effect of the CB1 receptor inverse agonist.

  15. Breathing simulator of workers for respirator performance test.

    PubMed

    Yuasa, Hisashi; Kumita, Mikio; Honda, Takeshi; Kimura, Kazushi; Nozaki, Kosuke; Emi, Hitoshi; Otani, Yoshio

    2015-01-01

    Breathing machines are widely used to evaluate respirator performance but they are capable of generating only limited air flow patterns, such as, sine, triangular and square waves. In order to evaluate the respirator performance in practical use, it is desirable to test the respirator using the actual breathing patterns of wearers. However, it has been a difficult task for a breathing machine to generate such complicated flow patterns, since the human respiratory volume changes depending on the human activities and workload. In this study, we have developed an electromechanical breathing simulator and a respiration sampling device to record and reproduce worker's respiration. It is capable of generating various flow patterns by inputting breathing pattern signals recorded by a computer, as well as the fixed air flow patterns. The device is equipped with a self-control program to compensate the difference in inhalation and exhalation volume and the measurement errors on the breathing flow rate. The system was successfully applied to record the breathing patterns of workers engaging in welding and reproduced the breathing patterns.

  16. Isotopic Forced-Diffusion Technique for Soil Respiration Pathway Studies

    NASA Astrophysics Data System (ADS)

    Nickerson, Nick; Egan, Jocelyn; Risk, David; McArthur, Gordon; Cunningham, Kevin; Jacobson, Gloria; Saad, Nabil; Panetta, Robert

    2013-04-01

    Isotopic ratio measurements of soil-respired CO2 can provide a wealth of insight into soil-level carbon-cycle processes that is not available using bulk CO2 emissions measurements alone. Soil contains substantial amounts of carbon, and can contribute CO2to the atmosphere through various respiration pathways. Isotopic analysis can distinguish autotrophic root and rhizosphere respiration from heterotrophic respiration due to the catabolism of soil organic matter (SOM). Because of this, researchers have shifted their efforts toward the use of natural abundance and tracer isotopic techniques in ecosystem respiration studies. However, recent experimental and theoretical evidence indicates that these traditional techniques yield biased estimates of the soil isotopic flux, largely owing to disturbances to the soil's natural diffusive regime. To help eliminate theses biases, we have developed a new technique called Isotopic Forced-Diffusion (IsoFD). The Isotopic Forced-Diffusion technique integrates a Forced Diffusion dynamic chamber with a cavity ringdown spectrometer measuring δ13C-CO2, which are operated together as a closed, recycling system where the leakage and pressures through the system are properly managed. The system produces real-time, high temporal resolution isotopic soil efflux data. We will present the theory behind this technique and present preliminary laboratory and field data.

  17. Isotopic Forced-Diffusion Technique for Soil Respiration Studies

    NASA Astrophysics Data System (ADS)

    McArthur, G.; Nickerson, N. R.; Egan, J.; Risk, D. A.; Jacobson, G. A.; Cunningham, K. L.; Saad, N.

    2013-12-01

    Isotopic ratio measurements of soil-respired CO2 can provide a wealth of insight into soil-level carbon-cycle processes that is not available using bulk CO2 emission measurements alone. Soil contains substantial amounts of carbon, and can contribute CO2 to the atmosphere through various respiration pathways. Isotopic analysis can distinguish autotrophic root and rhizosphere respiration from heterotrophic respiration due to the catabolism of soil organic matter (SOM). Because of this, researchers have shifted their efforts toward the use of natural abundance and tracer isotopic techniques in ecosystem respiration studies. However, recent experimental and theoretical evidence indicates that these traditional techniques yield biased estimates of the soil isotopic flux, largely owing to disturbances to the soil's natural diffusive regime. To help eliminate these biases, we have developed a new technique called Isotopic Forced-Diffusion (IsoFD). The Isotopic Forced-Diffusion technique integrates a Forced Diffusion dynamic chamber with a cavity ringdown spectrometer measuring d13C-CO2, which are operated together as an integrated system. The system produces real-time, high temporal resolution isotopic soil efflux data. Here, we will present the theory behind this technique, present laboratory data demonstrating the accuracy and precision of the technique in controlled environments and finally field data from two campaigns, showing the ability of the Iso-FD chamber to detect natural diurnal changes in isotopic signature as well as differentiate sources in C3-C4 transitional systems.

  18. Assessment of respiration activity and ecotoxicity of composts containing biopolymers.

    PubMed

    Kopeć, Michał; Gondek, Krzysztof; Baran, Agnieszka

    2013-03-01

    The research was conducted to determine if introducing biodegradable polymer materials to the composting process would affect selected biological properties of mature compost. Determination of biological properties of composts composed of testing their respiration activity and toxicity. Respiration activity was measured in material from the composting process by means of OxiTop Control measuring system. The ecotoxicity of composts was estimated by means of a set of biotests composed of three microbiotests using five test organisms. Introduction of polymer materials caused a decrease in respiration activity of mature compost. Similar dependencies as in the case of mass loss were registered. Compost to which a biodegradable polymer with the highest content of starch was added revealed the smallest difference in comparison with organic material composted without polymers. Lower content of starch in a polymer caused lower respiration activity of composts, whereas microorganism vaccine might have accelerated maturing of composts, thus contributing to the smallest respiration of compost. In composts containing biopolymers the following were observed: an increase in germination inhibition--2.5 times, roots growth inhibition--1.8 times, growth inhibition of Heterocypris incongruens--four times and luminescence inhibition of Vibrio fischeri--1.6 times in comparison with the control (compost K1). Composts containing biopolymers were classified as toxicity class III, whereas the compost without polymer addition as class II.

  19. Exposure to inhalable, respirable, and ultrafine particles in welding fume.

    PubMed

    Lehnert, Martin; Pesch, Beate; Lotz, Anne; Pelzer, Johannes; Kendzia, Benjamin; Gawrych, Katarzyna; Heinze, Evelyn; Van Gelder, Rainer; Punkenburg, Ewald; Weiss, Tobias; Mattenklott, Markus; Hahn, Jens-Uwe; Möhlmann, Carsten; Berges, Markus; Hartwig, Andrea; Brüning, Thomas

    2012-07-01

    This investigation aims to explore determinants of exposure to particle size-specific welding fume. Area sampling of ultrafine particles (UFP) was performed at 33 worksites in parallel with the collection of respirable particles. Personal sampling of respirable and inhalable particles was carried out in the breathing zone of 241 welders. Median mass concentrations were 2.48 mg m(-3) for inhalable and 1.29 mg m(-3) for respirable particles when excluding 26 users of powered air-purifying respirators (PAPRs). Mass concentrations were highest when flux-cored arc welding (FCAW) with gas was applied (median of inhalable particles: 11.6 mg m(-3)). Measurements of particles were frequently below the limit of detection (LOD), especially inside PAPRs or during tungsten inert gas welding (TIG). However, TIG generated a high number of small particles, including UFP. We imputed measurements respirable or inhalable fraction of the welding fume (expressed as their mass) remains challenging.

  20. Pulsed light decontamination of endive salad and mung bean sprouts and impact on color and respiration activity.

    PubMed

    Kramer, B; Wunderlich, J; Muranyi, P

    2015-02-01

    The objective of this study was the determination of the efficiency of pulsed light (PL) treatments for the decontamination of endive salad and mung bean sprouts, as well as the assessment of quality changes in relation to discoloration and alteration of respiration activity. Produce samples were artificially inoculated with two bacterial test strains Escherichia coli (DSM 498) and Listeria innocua (DSM 20649) and exposed to PL at different energy doses. The inactivation efficiency with regard to the naturally occurring microbiota was also investigated. Besides microbiological investigations, color changes were determined as well as the produce respiration during chilled storage. The results indicated that inactivation of more than 2 log was possible with one flash in the case of fresh-cut salad, while the reduction on mung bean sprouts was limited to approximately 1.6 log with one flash, irrespective if the natural flora or inoculated E. coli or L. innocua were considered. The UV part of the PL proved to be exclusively responsible for the inactivation of microorganisms. Significant lower levels of microbial counts of treated compared with untreated samples were maintained for up to 6 days. In the case of endive salad, a dose-dependent progressive discoloration and increase in respiration was diminished by applying optical bandpass filters, which only slightly affected the inactivation efficiency. In contrast, PL treatments showed a positive effect on color and general appearance of mung bean sprouts, while the respiration was almost unaffected. However, care must be taken with regard to efficiency-limiting matrix effects and impact on food quality. These aspects have to be assessed for each treated product. The integration of PL in industrial food processing plants could be an alternative way to improve the microbial quality of fresh produce, and therefore have a positive impact on public health by reducing the risk of contaminations with pathogenic bacteria.

  1. SYSTEMIC TRANSLOCATION OF PARTICULATE MATTER-ASSOCIATED METALS FOLLOWING A SINGLE INTRATRACHEAL INSTILLATION IN RATS

    EPA Science Inventory

    Respirable ambient particulate matter (PM) exposure has been associated with an increased risk of cardiovascular disease. Direct translocation of PM associated metals from the lungs into systemic circulation may be partly responsible. We measured elemental content of lungs, pla...

  2. Estimating daytime ecosystem respiration to improve estimates of gross primary production of a temperate forest.

    PubMed

    Sun, Jinwei; Wu, Jiabing; Guan, Dexin; Yao, Fuqi; Yuan, Fenghui; Wang, Anzhi; Jin, Changjie

    2014-01-01

    Leaf respiration is an important component of carbon exchange in terrestrial ecosystems, and estimates of leaf respiration directly affect the accuracy of ecosystem carbon budgets. Leaf respiration is inhibited by light; therefore, gross primary production (GPP) will be overestimated if the reduction in leaf respiration by light is ignored. However, few studies have quantified GPP overestimation with respect to the degree of light inhibition in forest ecosystems. To determine the effect of light inhibition of leaf respiration on GPP estimation, we assessed the variation in leaf respiration of seedlings of the dominant tree species in an old mixed temperate forest with different photosynthetically active radiation levels using the Laisk method. Canopy respiration was estimated by combining the effect of light inhibition on leaf respiration of these species with within-canopy radiation. Leaf respiration decreased exponentially with an increase in light intensity. Canopy respiration and GPP were overestimated by approximately 20.4% and 4.6%, respectively, when leaf respiration reduction in light was ignored compared with the values obtained when light inhibition of leaf respiration was considered. This study indicates that accurate estimates of daytime ecosystem respiration are needed for the accurate evaluation of carbon budgets in temperate forests. In addition, this study provides a valuable approach to accurately estimate GPP by considering leaf respiration reduction in light in other ecosystems.

  3. Growth and respiration of regenerating tissues of the axolotl tail.

    PubMed

    Vladimirova, I G

    1975-01-01

    Changes in the weight and oxygen consumption were studied during regeneration of the tail in adult axolotls and larvae. The curve of the increase in weight of the regenerating tail in both age groups is S-shaped. The intensity of respiration of the regenerating tail increases in adult axolotls and in larvae at the blastema stage; in adult axolotls there is also a second increase in the intensity of respiration of the regenerating tail during differentiation of the muscles. The relationship between weight and the rate of respiration was compared during regeneration of the tail in axolotl and the normal growth of the animals. Whereas growth of the animals was characterized by the relationship QO2 equals aPk with a constant value of k, during regeneration the various stages of this process have their own corresponding values of k.

  4. Determination of critical anthropometric parameters for design of respirators

    SciTech Connect

    You-Hin Liau

    1982-12-01

    Anthropometric data were collected from 243 workers in a respirator fit-test programme, and an attempt was made to determine a correlation between these data and the Protection Factor obtained from quantitative fit-testing for half-mask respirators. Data were collected for two direct and five indirect facial measurements from front- and side-view slides of test subjects. For analysis, the data were normalized with relevant respirators dimensions (4 brands and 10 sizes). Results of linear regression analysis indicated that correlation coefficients between Protection Factor and anthropometric data (face length, mouth width, face width, nasal root breadth) were, respectively, 0.04, 0.22, 0.30 and 0.04. These correlation coefficients are for white males without facial hair. The analysis showed the 'critical' parameters to be mouth width and face width; however, a person with certain combinations of anthropometric parameters may provide a better correlation with Protection Factor.

  5. Indoor-outdoor relationships of respirable sulfates and particles

    NASA Astrophysics Data System (ADS)

    Dockery, Douglas W.; Spengler, John D.

    Indoor and outdoor concentrations of respirable particulates and sulfates have been measured in 68 homes in six cities for at least 1 yr. A conservation of mass model was derived describing indoor concentrations in terms of outdoor concentrations, infiltration and indoor sources. The measured data were analysed to identify important building characteristics and to quantify their effect. The mean infiltration rate of outdoor fine particulates was found to be approximately 70%. Cigarette smoking was found to be the dominant indoor source of respirable particulates. Increased indoor concentrations of sulfates were found to be associated with smoking and also with gas stoves. The effect of full air conditioning of the building was to reduce infiltration of outdoor fine particulates by about one half, while preventing dilution and purging of internally generated pollutants. The model for indoor respirable particulate and sulfate levels was found to compare well with measurements.

  6. Evaluation of respirable crystalline silica in high school ceramics classrooms.

    PubMed

    Fechser, Matthew; Alaves, Victor; Larson, Rodney; Sleeth, Darrah

    2014-01-23

    Air concentrations of respirable crystalline silica were measured in eleven (11) high school ceramics classrooms located in Salt Lake County, UT, USA. Respirable dust was collected on PVC filters using precision flow pumps and cyclone samplers (n = 44). Filters were subsequently analyzed for respirable dust and percent crystalline silica content. The geometric mean of the silica concentrations was 0.009 mg/m3 near the teacher's work station and 0.008 mg/m3 near the kilns. The number of students in the classroom was correlated to the silica concentration in the ceramics classroom, but no correlation was found between the silica concentrations and either the size of the classroom or the age of the building. Results from this study indicate that ceramics teachers may be at an increased risk of exposure to crystalline silica based on the ACGIH TLV of 0.025 mg/m3, with an excess of 21%.

  7. Evaluation of Respirable Crystalline Silica in High School Ceramics Classrooms

    PubMed Central

    Fechser, Matthew; Alaves, Victor; Larson, Rodney; Sleeth, Darrah

    2014-01-01

    Air concentrations of respirable crystalline silica were measured in eleven (11) high school ceramics classrooms located in Salt Lake County, UT, USA. Respirable dust was collected on PVC filters using precision flow pumps and cyclone samplers (n = 44). Filters were subsequently analyzed for respirable dust and percent crystalline silica content. The geometric mean of the silica concentrations was 0.009 mg/m3 near the teacher’s work station and 0.008 mg/m3 near the kilns. The number of students in the classroom was correlated to the silica concentration in the ceramics classroom, but no correlation was found between the silica concentrations and either the size of the classroom or the age of the building. Results from this study indicate that ceramics teachers may be at an increased risk of exposure to crystalline silica based on the ACGIH TLV of 0.025 mg/m3, with an exceedance of 21%. PMID:24464235

  8. THE GROWTH AND RESPIRATION OF THE AVENA COLEOPTILE

    PubMed Central

    Bonner, James

    1936-01-01

    1. Transport of the plant growth hormone into the Avena coleoptile as well as the action of the hormone on cell elongation in the coleoptile are shown to depend upon aerobic metabolism. 2. Crystalline auxine, in contrast with impure preparations, affects neither the magnitude nor the respiratory quotient of coleoptile respiration. 3. Increasing age of the coleoptile cell decreases its rate of elongation much more than its rate of respiration. HCN or phenylurethane on the other hand decrease the two processes to the same extent, in spite of the fact that only a small portion of the energy liberated by respiration can be used in the mechanical process of growth. 4. From 2 and 3 it is concluded that processes of a respiratory nature but of relatively small magnitude form one or more integral steps in the chain of reactions by which the plant growth hormone brings about cell elongation. PMID:19872979

  9. THE GROWTH AND RESPIRATION OF THE AVENA COLEOPTILE.

    PubMed

    Bonner, J

    1936-09-20

    1. Transport of the plant growth hormone into the Avena coleoptile as well as the action of the hormone on cell elongation in the coleoptile are shown to depend upon aerobic metabolism. 2. Crystalline auxine, in contrast with impure preparations, affects neither the magnitude nor the respiratory quotient of coleoptile respiration. 3. Increasing age of the coleoptile cell decreases its rate of elongation much more than its rate of respiration. HCN or phenylurethane on the other hand decrease the two processes to the same extent, in spite of the fact that only a small portion of the energy liberated by respiration can be used in the mechanical process of growth. 4. From 2 and 3 it is concluded that processes of a respiratory nature but of relatively small magnitude form one or more integral steps in the chain of reactions by which the plant growth hormone brings about cell elongation.

  10. [Anaerobic humus respiration by Shewanella cinica D14T].

    PubMed

    Xu, Zhi-cheng; Hong, Yi-guo; Luo, Wei; Chen, Xing-juan; Sun, Guo-ping; Xu, Mei-ying; Guo, Jun; Cen, Ying-hua

    2006-12-01

    Experimental results suggested Shewanella cinica D14T is capable of humus respiration utilizing various organic acids and some important environmental pollutants (e.g., toluene. etc) as electron donors and AQS or AQDS as a sole terminal electron acceptor under anaerobic condition. The dissimilatory reduction of 1mmol/L AQDS can couple to the production of enough ATP to support cell growth about 60 generations; The oxidization of electron donors was coupled to the reduction of humus, as reduced humus increased corresponding with increasing of electron donor; The typical inhibitors such as Cu2+ which inhibited Fe-S center, Stigmatellin which was methyl-naphthoquinone model, Dicumarol which inhibited oxidized methyl-naphthoquinone transform to reduced one, Metyrapone which was specific inhibitor for P450 enzyme blocked the humus respiration seriously. These were powerful evidences for humus-respiration by D14.

  11. Amazing structure of respirasome: unveiling the secrets of cell respiration.

    PubMed

    Guo, Runyu; Gu, Jinke; Wu, Meng; Yang, Maojun

    2016-12-01

    Respirasome, a huge molecular machine that carries out cellular respiration, has gained growing attention since its discovery, because respiration is the most indispensable biological process in almost all living creatures. The concept of respirasome has renewed our understanding of the respiratory chain organization, and most recently, the structure of respirasome solved by Yang's group from Tsinghua University (Gu et al. Nature 237(7622):639-643, 2016) firstly presented the detailed interactions within this huge molecular machine, and provided important information for drug design and screening. However, the study of cellular respiration went through a long history. Here, we briefly showed the detoured history of respiratory chain investigation, and then described the amazing structure of respirasome.

  12. Pulse wave transit time for monitoring respiration rate.

    PubMed

    Johansson, A; Ahlstrom, C; Lanne, T; Ask, P

    2006-06-01

    In this study, we investigate the beat-to-beat respiratory fluctuations in pulse wave transit time (PTT) and its subcomponents, the cardiac pre-ejection period (PEP) and the vessel transit time (VTT) in ten healthy subjects. The three transit times were found to fluctuate in pace with respiration. When applying a simple breath detecting algorithm, 88% of the breaths seen in a respiration air-flow reference could be detected correctly in PTT. Corresponding numbers for PEP and VTT were 76 and 81%, respectively. The performance during hypo- and hypertension was investigated by invoking blood pressure changes. In these situations, the error rates in breath detection were significantly higher. PTT can be derived from signals already present in most standard monitoring set-ups. The transit time technology thus has prospects to become an interesting alternative for respiration rate monitoring.

  13. The Path of Carbon in Photosynthesis VII. Respiration and Photosynthesis

    DOE R&D Accomplishments Database

    Benson, A. A.; Calvin, M.

    1949-07-21

    The relationship of respiration to photosynthesis in barley seedling leaves and the algae, Chlorella and Scenedesmus, has been investigated using radioactive carbon dioxide and the techniques of paper chromatography and radioautography. The plants are allowed to photosynthesize normally for thirty seconds in c{sup 14}O{sub 2} after which they are allowed to respire in air or helium in the light or dark. Respiration of photosynthetic intermediates as evidenced by the appearance of labeled glutomic, isocitric, fumaric and succinic acids is slower in the light than in the dark. Labeled glycolic acid is observed in barley and algae. It disappears rapidly in the dark and is maintained and increased in quantity in the light in C0{sub 2}-free air.

  14. Effects of respirators under heat/work conditions

    SciTech Connect

    James, R.; Dukes-Dobos, F.; Smith, R.

    1984-06-01

    Physiological responses and perceived strain of five unacclimatized male subjects were studied. The subjects were exposed to heat during an exercise task and were evaluated while wearing half and full facepiece, cartridge-type, air-purifying respirators, and without a respirator. The exercise consisted of walking on a treadmill for a period of 1 hour in a controlled environmental chamber at each of two different energy expenditure levels (200 and 400 kcal/hr)(approx. = 58 and 116 Watts) and two different heat exposures (air temperatures of 25/sup 0/C and 43.3./sup 0/C). The results indicated that wearing a full facepiece respirator imposed significant physiological strain added to that caused by the heat and workloads used in the study. Five of the six physiological measures show this increased physiological strain: (1) heart rate; (2) minute ventilation; (3) oxygen consumption; (4) energy expenditure; and (5) oral temperature. There was no detectable effect on sweat rate. Although subjective ratings indicated more discomfort with increasing physiological strain, the observed correlations between such measures were low (T/sub b/ < .60). The net consequence of the significant effects indicates that workers' tolerance to moderate or high levels of work under hot conditions while wearing a respirator is reduced. The reduction is more pronounced when wearing a full mask than when wearing a half mask. Changes in respirator design which minimize respiratory dead space are suggested to alleviate this problem. Otherwise, prevention of excessive physiological strain from respirator use when working at moderate or higher levels at hot job sites could necessitate more rest breaks or limiting work time under such conditions.

  15. Inhibition of cellular respiration by endogenously produced carbon monoxide.

    PubMed

    D'Amico, Gabriela; Lam, Francis; Hagen, Thilo; Moncada, Salvador

    2006-06-01

    Endogenously produced nitric oxide (NO) interacts with mitochondrial cytochrome c oxidase, leading to inhibition of cellular respiration. This interaction has been shown to have important physiological and pathophysiological consequences. Exogenous carbon monoxide (CO) is also known to inhibit cytochrome c oxidase in vitro; however, it is not clear whether endogenously produced CO can inhibit cellular respiration and, if so, what the significance of this might be. In this study, we show that exogenous CO inhibits respiration in a moderate but persistent manner in HEK293 cells under ambient (21%) oxygen concentrations (K(i) = 1.44 microM). This effect of CO was increased (K(i) = 0.35 microM) by incubation in hypoxic conditions (1% oxygen). Endogenous CO, generated by HEK293 cells transfected with the inducible isoform of haem oxygenase (haem oxygenase-1; HO-1), also inhibited cellular respiration moderately (by 12%) and this was accompanied by inhibition (23%) of cytochrome c oxidase activity. When the cells were incubated in hypoxic conditions during HO-1 induction, the inhibitory effect of CO on cell respiration was markedly increased to 70%. Furthermore, endogenously produced CO was found to be responsible for the respiratory inhibition that occurs in RAW264.7 cells activated in hypoxic conditions with lipopolysaccharide and interferon-gamma, in the presence of N-(iminoethyl)-L-ornithine to prevent the synthesis of NO. Our results indicate that CO contributes significantly to the respiratory inhibition in activated cells, particularly under hypoxic conditions. Inhibition of cell respiration by endogenous CO through its interaction with cytochrome c oxidase might have an important role in inflammatory and hypoxic conditions.

  16. Soil freeze-thaw causes shift to older respired carbon

    NASA Astrophysics Data System (ADS)

    Egan, J.; Risk, D. A.; Phillips, C. L.; McArthur, G.

    2013-12-01

    One of the impacts of climate change will include changes in the duration and frequency of snow cover and soil frost. Changes to winter climate dynamics could have an effect on soil respiration rates and stability of carbon. A large portion of soil respiration research has focused on the growing season, so this project aimed to examine the effect that soil freeze-thaw has on soil respiration rates and recruitment of substrates of different potential quality and age. Using nests of horizontally-installed soil gas wells at three prairie sites in Saskatchewan, soil air at various depths was collected and analyzed for CO2 concentration, stable isotopic, and radiocarbon signatures, at 6 regular intervals between August 2011 to August 2012. The radiocarbon results were the most interesting, where after the soil thaw in March 2012, there was a significant deviation from radiocarbon signatures pre-thaw. At all sites, post-thaw signatures reflected the respiration of significantly older carbon before recovering to normal in the summer. As well, the post-thaw radiocarbon signatures were different than in the winter, suggesting that an interplay between microbial and root respiration was not responsible for the anomalies. These trends were observed through depth and at all sites, though to differing degrees. Comparatively, stable isotopic signatures and soil CO2 concentrations followed typical annual patterns through depth and time, with higher respiration in the summer and with higher concentrations at depth. Presented here are the results from that study and an associated incubation experiment to address possible methodological bias. Overall, this work suggests that snow duration, and freeze-thaw processes, both have the potential to affect substrates being utilized by the microbial community, and that these subtleties may go unrecognized using only concentration and stable isotopic signature.

  17. Bioirrigation impacts on sediment respiration and microbial metabolic activity

    NASA Astrophysics Data System (ADS)

    Baranov, V. A.; Lewandowski, J.; Romeijn, P.; Krause, S.

    2015-12-01

    Some bioturbators build tubes in the sediment and pump water through their burrows (ventilation). Oxygen is transferred through the burrow walls in the adjacent sediment (bioirrigation). Bioirrigation is playing a pivotal role in the mediation of biogeochemical processes in lake sediments and has the potential to enhance nutrient cycling. The present study investigates the impact of bioirrigation on lake sediment metabolism, respiration rates and in particular, the biogeochemical impacts of bioirrigation intensity as a function of organism density. We therefore apply the bioreactive Resazurin/Resorufin smart tra