Sample records for bacterial mitotic machineries

  1. Spatial organization of transcription machinery and its segregation from the replisome in fast-growing bacterial cells

    PubMed Central

    Cagliero, Cedric; Zhou, Yan Ning; Jin, Ding Jun

    2014-01-01

    In a fast-growing Escherichia coli cell, most RNA polymerase (RNAP) is allocated to rRNA synthesis forming transcription foci at clusters of rrn operons or bacterial nucleolus, and each of the several nascent nucleoids contains multiple pairs of replication forks. The composition of transcription foci has not been determined. In addition, how the transcription machinery is three-dimensionally organized to promote cell growth in concord with replication machinery in the nucleoid remains essentially unknown. Here, we determine the spatial and functional landscapes of transcription and replication machineries in fast-growing E. coli cells using super-resolution-structured illumination microscopy. Co-images of RNAP and DNA reveal spatial compartmentation and duplication of the transcription foci at the surface of the bacterial chromosome, encompassing multiple nascent nucleoids. Transcription foci cluster with NusA and NusB, which are the rrn anti-termination system and are associated with nascent rRNAs. However, transcription foci tend to separate from SeqA and SSB foci, which track DNA replication forks and/or the replisomes, demonstrating that transcription machinery and replisome are mostly located in different chromosomal territories to maintain harmony between the two major cellular functions in fast-growing cells. Our study suggests that bacterial chromosomes are spatially and functionally organized, analogous to eukaryotes. PMID:25416798

  2. Spatiotemporal Regulation of Nuclear Transport Machinery and Microtubule Organization

    PubMed Central

    Okada, Naoyuki; Sato, Masamitsu

    2015-01-01

    Spindle microtubules capture and segregate chromosomes and, therefore, their assembly is an essential event in mitosis. To carry out their mission, many key players for microtubule formation need to be strictly orchestrated. Particularly, proteins that assemble the spindle need to be translocated at appropriate sites during mitosis. A small GTPase (hydrolase enzyme of guanosine triphosphate), Ran, controls this translocation. Ran plays many roles in many cellular events: nucleocytoplasmic shuttling through the nuclear envelope, assembly of the mitotic spindle, and reorganization of the nuclear envelope at the mitotic exit. Although these events are seemingly distinct, recent studies demonstrate that the mechanisms underlying these phenomena are substantially the same as explained by molecular interplay of the master regulator Ran, the transport factor importin, and its cargo proteins. Our review focuses on how the transport machinery regulates mitotic progression of cells. We summarize translocation mechanisms governed by Ran and its regulatory proteins, and particularly focus on Ran-GTP targets in fission yeast that promote spindle formation. We also discuss the coordination of the spatial and temporal regulation of proteins from the viewpoint of transport machinery. We propose that the transport machinery is an essential key that couples the spatial and temporal events in cells. PMID:26308057

  3. Mcl-1 dynamics influence mitotic slippage and death in mitosis.

    PubMed

    Sloss, Olivia; Topham, Caroline; Diez, Maria; Taylor, Stephen

    2016-02-02

    Microtubule-binding drugs such as taxol are frontline treatments for a variety of cancers but exactly how they yield patient benefit is unclear. In cell culture, inhibiting microtubule dynamics prevents spindle assembly, leading to mitotic arrest followed by either apoptosis in mitosis or slippage, whereby a cell returns to interphase without dividing. Myeloid cell leukaemia-1 (Mcl-1), a pro-survival member of the Bcl-2 family central to the intrinsic apoptosis pathway, is degraded during a prolonged mitotic arrest and may therefore act as a mitotic death timer. Consistently, we show that blocking proteasome-mediated degradation inhibits taxol-induced mitotic apoptosis in a Mcl-1-dependent manner. However, this degradation does not require the activity of either APC/C-Cdc20, FBW7 or MULE, three separate E3 ubiquitin ligases implicated in targeting Mcl-1 for degradation. This therefore challenges the notion that Mcl-1 undergoes regulated degradation during mitosis. We also show that Mcl-1 is continuously synthesized during mitosis and that blocking protein synthesis accelerates taxol induced death-in-mitosis. Modulating Mcl-1 levels also influences slippage; overexpressing Mcl-1 extends the time from mitotic entry to mitotic exit in the presence of taxol, while inhibiting Mcl-1 accelerates it. We suggest that Mcl-1 competes with Cyclin B1 for binding to components of the proteolysis machinery, thereby slowing down the slow degradation of Cyclin B1 responsible for slippage. Thus, modulating Mcl-1 dynamics influences both death-in-mitosis and slippage. However, because mitotic degradation of Mcl-1 appears not to be under the control of an E3 ligase, we suggest that the notion of network crosstalk is used with caution.

  4. Endocycles: a recurrent evolutionary innovation for post-mitotic cell growth.

    PubMed

    Edgar, Bruce A; Zielke, Norman; Gutierrez, Crisanto

    2014-03-01

    In endoreplication cell cycles, known as endocycles, cells successively replicate their genomes without segregating chromosomes during mitosis and thereby become polyploid. Such cycles, for which there are many variants, are widespread in protozoa, plants and animals. Endocycling cells can achieve ploidies of >200,000 C (chromatin-value); this increase in genomic DNA content allows a higher genomic output, which can facilitate the construction of very large cells or enhance macromolecular secretion. These cells execute normal S phases, using a G1-S regulatory apparatus similar to the one used by mitotic cells, but their capability to segregate chromosomes has been suppressed, typically by downregulation of mitotic cyclin-dependent kinase activity. Endocycles probably evolved many times, and the various endocycle mechanisms found in nature highlight the versatility of the cell cycle control machinery.

  5. BRCA1 interaction of centrosomal protein Nlp is required for successful mitotic progression.

    PubMed

    Jin, Shunqian; Gao, Hua; Mazzacurati, Lucia; Wang, Yang; Fan, Wenhong; Chen, Qiang; Yu, Wei; Wang, Mingrong; Zhu, Xueliang; Zhang, Chuanmao; Zhan, Qimin

    2009-08-21

    Breast cancer susceptibility gene BRCA1 is implicated in the control of mitotic progression, although the underlying mechanism(s) remains to be further defined. Deficiency of BRCA1 function leads to disrupted mitotic machinery and genomic instability. Here, we show that BRCA1 physically interacts and colocalizes with Nlp, an important molecule involved in centrosome maturation and spindle formation. Interestingly, Nlp centrosomal localization and its protein stability are regulated by normal cellular BRCA1 function because cells containing BRCA1 mutations or silenced for endogenous BRCA1 exhibit disrupted Nlp colocalization to centrosomes and enhanced Nlp degradation. Its is likely that the BRCA1 regulation of Nlp stability involves Plk1 suppression. Inhibition of endogenous Nlp via the small interfering RNA approach results in aberrant spindle formation, aborted chromosomal segregation, and aneuploidy, which mimic the phenotypes of disrupted BRCA1. Thus, BRCA1 interaction of Nlp might be required for the successful mitotic progression, and abnormalities of Nlp lead to genomic instability.

  6. SON is a spliceosome-associated factor required for mitotic progression.

    PubMed

    Huen, Michael S Y; Sy, Shirley M H; Leung, Ka Man; Ching, Yick-Pang; Tipoe, George L; Man, Cornelia; Dong, Shuo; Chen, Junjie

    2010-07-01

    The eukaryotic RNA splicing machinery is dedicated to the daunting task of excising intronic sequences on the many nascent RNA transcripts in a cell, and in doing so facilitates proper translation of its transcriptome. Notably, emerging evidence suggests that RNA splicing may also play direct roles in maintaining genome stability. Here we report the identification of the RNA/DNA-binding protein SON as a component of spliceosome that plays pleiotropic roles during mitotic progression. We found that SON is essential for cell proliferation, and that its inactivation triggers a MAD2-dependent mitotic delay. Moreover, SON deficiency is accompanied by defective chromosome congression, compromised chromosome segregation and cytokinesis, which in turn contributes to cellular aneuploidy and cell death. In summary, our study uncovers a specific link between SON and mitosis, and highlights the potential of RNA processing as additional regulatory mechanisms that govern cell proliferation and division. © 2010 Landes Bioscience

  7. SON is a spliceosome-associated factor required for mitotic progression

    PubMed Central

    Sy, Shirley MH; Leung, Ka Man; Ching, Yick-Pang; Tipoe, George L; Man, Cornelia; Dong, Shuo

    2010-01-01

    The eukaryotic RNA splicing machinery is dedicated to the daunting task of excising intronic sequences on the many nascent RNA transcripts in a cell, and in doing so facilitates proper translation of its transcriptome. Notably, emerging evidence suggests that RNA splicing may also play direct roles in maintaining genome stability. Here we report the identification of the RNA/DNA-binding protein SON as a component of spliceosome that plays pleiotropic roles during mitotic progression. We found that SON is essential for cell proliferation, and that its inactivation triggers a MAD2-dependent mitotic delay. Moreover, SON deficiency is accompanied by defective chromosome congression, compromised chromosome segregation and cytokinesis, which in turn contributes to cellular aneuploidy and cell death. In summary, our study uncovers a specific link between SON and mitosis, and highlights the potential of RNA processing as additional regulatory mechanisms that govern cell proliferation and division. PMID:20581448

  8. Changes in Ect2 Localization Couple Actomyosin-Dependent Cell Shape Changes to Mitotic Progression

    PubMed Central

    Matthews, Helen K.; Delabre, Ulysse; Rohn, Jennifer L.; Guck, Jochen; Kunda, Patricia; Baum, Buzz

    2012-01-01

    Summary As they enter mitosis, animal cells undergo profound actin-dependent changes in shape to become round. Here we identify the Cdk1 substrate, Ect2, as a central regulator of mitotic rounding, thus uncovering a link between the cell-cycle machinery that drives mitotic entry and its accompanying actin remodeling. Ect2 is a RhoGEF that plays a well-established role in formation of the actomyosin contractile ring at mitotic exit, through the local activation of RhoA. We find that Ect2 first becomes active in prophase, when it is exported from the nucleus into the cytoplasm, activating RhoA to induce the formation of a mechanically stiff and rounded metaphase cortex. Then, at anaphase, binding to RacGAP1 at the spindle midzone repositions Ect2 to induce local actomyosin ring formation. Ect2 localization therefore defines the stage-specific changes in actin cortex organization critical for accurate cell division. PMID:22898780

  9. BRCA1 Interaction of Centrosomal Protein Nlp Is Required for Successful Mitotic Progression*♦

    PubMed Central

    Jin, Shunqian; Gao, Hua; Mazzacurati, Lucia; Wang, Yang; Fan, Wenhong; Chen, Qiang; Yu, Wei; Wang, Mingrong; Zhu, Xueliang; Zhang, Chuanmao; Zhan, Qimin

    2009-01-01

    Breast cancer susceptibility gene BRCA1 is implicated in the control of mitotic progression, although the underlying mechanism(s) remains to be further defined. Deficiency of BRCA1 function leads to disrupted mitotic machinery and genomic instability. Here, we show that BRCA1 physically interacts and colocalizes with Nlp, an important molecule involved in centrosome maturation and spindle formation. Interestingly, Nlp centrosomal localization and its protein stability are regulated by normal cellular BRCA1 function because cells containing BRCA1 mutations or silenced for endogenous BRCA1 exhibit disrupted Nlp colocalization to centrosomes and enhanced Nlp degradation. Its is likely that the BRCA1 regulation of Nlp stability involves Plk1 suppression. Inhibition of endogenous Nlp via the small interfering RNA approach results in aberrant spindle formation, aborted chromosomal segregation, and aneuploidy, which mimic the phenotypes of disrupted BRCA1. Thus, BRCA1 interaction of Nlp might be required for the successful mitotic progression, and abnormalities of Nlp lead to genomic instability. PMID:19509300

  10. Alzheimer Aβ disrupts the mitotic spindle and directly inhibits mitotic microtubule motors

    PubMed Central

    Borysov, Sergiy I; Granic, Antoneta; Padmanabhan, Jaya; Walczak, Claire E

    2011-01-01

    Chromosome mis-segregation and aneuploidy are greatly induced in Alzheimer disease and models thereof by mutant forms of the APP and PS proteins and by their product, the Aβ peptide. Here we employ human somatic cells and Xenopus egg extracts to show that Aβ impairs the assembly and maintenance of the mitotic spindle. Mechanistically, these defects result from Aβ's inhibition of mitotic motor kinesins, including Eg5, KIF4A and MCAK. In vitro studies show that oligomeric Aβ directly inhibits recombinant MCAK by a noncompetitive mechanism. In contrast, inhibition of Eg5 and KIF4A is competitive with respect to both ATP and microtubules, indicating that Aβ interferes with their interactions with the microtubules of the mitotic spindle. Consistently, increased levels of polymerized microtubules or of the microtubule stabilizing protein Tau significantly decrease the inhibitory effect of Aβ on Eg5 and KIF4A. Together, these results indicate that by disrupting the interaction between specific kinesins and microtubules and by exerting a direct inhibitory effect on the motor activity, excess Aβ deregulates the mechanical forces that govern the spindle and thereby leads to the generation of defective mitotic structures. The resulting defect in neurogenesis can account for the over 30% aneuploid/hyperploid, degeneration-prone neurons observed in Alzheimer disease brain. The finding of mitotic motors including Eg5 in mature post-mitotic neurons implies that their inhibition by Aβ may also disrupt neuronal function and plasticity. PMID:21566458

  11. Cell cycle-regulated proteolysis of mitotic target proteins.

    PubMed

    Bastians, H; Topper, L M; Gorbsky, G L; Ruderman, J V

    1999-11-01

    The ubiquitin-dependent proteolysis of mitotic cyclin B, which is catalyzed by the anaphase-promoting complex/cyclosome (APC/C) and ubiquitin-conjugating enzyme H10 (UbcH10), begins around the time of the metaphase-anaphase transition and continues through G1 phase of the next cell cycle. We have used cell-free systems from mammalian somatic cells collected at different cell cycle stages (G0, G1, S, G2, and M) to investigate the regulated degradation of four targets of the mitotic destruction machinery: cyclins A and B, geminin H (an inhibitor of S phase identified in Xenopus), and Cut2p (an inhibitor of anaphase onset identified in fission yeast). All four are degraded by G1 extracts but not by extracts of S phase cells. Maintenance of destruction during G1 requires the activity of a PP2A-like phosphatase. Destruction of each target is dependent on the presence of an N-terminal destruction box motif, is accelerated by additional wild-type UbcH10 and is blocked by dominant negative UbcH10. Destruction of each is terminated by a dominant activity that appears in nuclei near the start of S phase. Previous work indicates that the APC/C-dependent destruction of anaphase inhibitors is activated after chromosome alignment at the metaphase plate. In support of this, we show that addition of dominant negative UbcH10 to G1 extracts blocks destruction of the yeast anaphase inhibitor Cut2p in vitro, and injection of dominant negative UbcH10 blocks anaphase onset in vivo. Finally, we report that injection of dominant negative Ubc3/Cdc34, whose role in G1-S control is well established and has been implicated in kinetochore function during mitosis in yeast, dramatically interferes with congression of chromosomes to the metaphase plate. These results demonstrate that the regulated ubiquitination and destruction of critical mitotic proteins is highly conserved from yeast to humans.

  12. Bacterial pathogen manipulation of host membrane trafficking.

    PubMed

    Asrat, Seblewongel; de Jesús, Dennise A; Hempstead, Andrew D; Ramabhadran, Vinay; Isberg, Ralph R

    2014-01-01

    Pathogens use a vast number of strategies to alter host membrane dynamics. Targeting the host membrane machinery is important for the survival and pathogenesis of several extracellular, vacuolar, and cytosolic bacteria. Membrane manipulation promotes bacterial replication while suppressing host responses, allowing the bacterium to thrive in a hostile environment. This review provides a comprehensive summary of various strategies used by both extracellular and intracellular bacteria to hijack host membrane trafficking machinery. We start with mechanisms used by bacteria to alter the plasma membrane, delve into the hijacking of various vesicle trafficking pathways, and conclude by summarizing bacterial adaptation to host immune responses. Understanding bacterial manipulation of host membrane trafficking provides insights into bacterial pathogenesis and uncovers the molecular mechanisms behind various processes within a eukaryotic cell.

  13. Bacterial Cell Mechanics.

    PubMed

    Auer, George K; Weibel, Douglas B

    2017-07-25

    Cellular mechanical properties play an integral role in bacterial survival and adaptation. Historically, the bacterial cell wall and, in particular, the layer of polymeric material called the peptidoglycan were the elements to which cell mechanics could be primarily attributed. Disrupting the biochemical machinery that assembles the peptidoglycan (e.g., using the β-lactam family of antibiotics) alters the structure of this material, leads to mechanical defects, and results in cell lysis. Decades after the discovery of peptidoglycan-synthesizing enzymes, the mechanisms that underlie their positioning and regulation are still not entirely understood. In addition, recent evidence suggests a diverse group of other biochemical elements influence bacterial cell mechanics, may be regulated by new cellular mechanisms, and may be triggered in different environmental contexts to enable cell adaptation and survival. This review summarizes the contributions that different biomolecular components of the cell wall (e.g., lipopolysaccharides, wall and lipoteichoic acids, lipid bilayers, peptidoglycan, and proteins) make to Gram-negative and Gram-positive bacterial cell mechanics. We discuss the contribution of individual proteins and macromolecular complexes in cell mechanics and the tools that make it possible to quantitatively decipher the biochemical machinery that contributes to bacterial cell mechanics. Advances in this area may provide insight into new biology and influence the development of antibacterial chemotherapies.

  14. Rapid detection of biothreat agents based on cellular machinery.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lane, Todd W.; Gantt, Richard W.

    This research addresses rapid and sensitive identification of biological agents in a complex background. We attempted to devise a method by which the specificity of the cellular transcriptional machinery could be used to detect and identify bacterial bio-terror agents in a background of other organisms. Bacterial cells contain RNA polymerases and transcription factors that transcribe genes into mRNA for translation into proteins. RNA polymerases in conjunction with transcription factors recognize regulatory elements (promoters) upstream of the gene. These promoters are, in many cases, recognized by the polymerase and transcription factor combinations of one species only. We have engineered a plasmid,more » for Escherichia coli, containing the virA promoter from the target species Shigella flexneri. This promoter was fused to a reporter gene Green Fluorescent Protein (GFP). In theory the indicator strain (carrying the plasmid) is mixed with the target strain and the two are lysed. The cellular machinery from both cells mixes and the GFP is produced. This report details the results of testing this system.« less

  15. ATP depletion during mitotic arrest induces mitotic slippage and APC/CCdh1-dependent cyclin B1 degradation.

    PubMed

    Park, Yun Yeon; Ahn, Ju-Hyun; Cho, Min-Guk; Lee, Jae-Ho

    2018-04-27

    ATP depletion inhibits cell cycle progression, especially during the G1 phase and the G2 to M transition. However, the effect of ATP depletion on mitotic progression remains unclear. We observed that the reduction of ATP after prometaphase by simultaneous treatment with 2-deoxyglucose and NaN 3 did not arrest mitotic progression. Interestingly, ATP depletion during nocodazole-induced prometaphase arrest resulted in mitotic slippage, as indicated by a reduction in mitotic cells, APC/C-dependent degradation of cyclin B1, increased cell attachment, and increased nuclear membrane reassembly. Additionally, cells successfully progressed through the cell cycle after mitotic slippage, as indicated by EdU incorporation and time-lapse imaging. Although degradation of cyclin B during normal mitotic progression is primarily regulated by APC/C Cdc20 , we observed an unexpected decrease in Cdc20 prior to degradation of cyclin B during mitotic slippage. This decrease in Cdc20 was followed by a change in the binding partner preference of APC/C from Cdc20 to Cdh1; consequently, APC/C Cdh1 , but not APC/C Cdc20 , facilitated cyclin B degradation following ATP depletion. Pulse-chase analysis revealed that ATP depletion significantly abrogated global translation, including the translation of Cdc20 and Cdh1. Additionally, the half-life of Cdh1 was much longer than that of Cdc20. These data suggest that ATP depletion during mitotic arrest induces mitotic slippage facilitated by APC/C Cdh1 -dependent cyclin B degradation, which follows a decrease in Cdc20 resulting from reduced global translation and the differences in the half-lives of the Cdc20 and Cdh1 proteins.

  16. Genome co-amplification upregulates a mitotic gene network activity that predicts outcome and response to mitotic protein inhibitors in breast cancer

    DOE PAGES

    Hu, Zhi; Mao, Jian-Hua; Curtis, Christina; ...

    2016-07-01

    Background: High mitotic activity is associated with the genesis and progression of many cancers. Small molecule inhibitors of mitotic apparatus proteins are now being developed and evaluated clinically as anticancer agents. With clinical trials of several of these experimental compounds underway, it is important to understand the molecular mechanisms that determine high mitotic activity, identify tumor subtypes that carry molecular aberrations that confer high mitotic activity, and to develop molecular markers that distinguish which tumors will be most responsive to mitotic apparatus inhibitors. Methods: We identified a coordinately regulated mitotic apparatus network by analyzing gene expression profiles for 53 malignantmore » and non-malignant human breast cancer cell lines and two separate primary breast tumor datasets. We defined the mitotic network activity index (MNAI) as the sum of the transcriptional levels of the 54 coordinately regulated mitotic apparatus genes. The effect of those genes on cell growth was evaluated by small interfering RNA (siRNA). Results: High MNAI was enriched in basal-like breast tumors and was associated with reduced survival duration and preferential sensitivity to i nhibitors of the mitotic apparatus proteins, polo-like kinase, centromere associated protein E and aurora kinase designated GSK462364, GSK923295 and GSK1070916, respectively. Co-amplification of regions of chromosomes 8q24, 10p15-p12, 12p13, and 17q24-q25 was associated with the transcriptional upregulation of this network of 54 mitotic apparatus genes, and we identify transcription factors that localize to these regions and putatively regulate mitotic activity. Knockdown of the mitotic network by siRNA identified 22 genes that might be considered as additional therapeutic targets for this clinically relevant patient subgroup. Conclusions: We define a molecular signature which may guide therapeutic approaches for tumors with high mitotic network activity.« less

  17. Genome co-amplification upregulates a mitotic gene network activity that predicts outcome and response to mitotic protein inhibitors in breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Zhi; Mao, Jian-Hua; Curtis, Christina

    Background: High mitotic activity is associated with the genesis and progression of many cancers. Small molecule inhibitors of mitotic apparatus proteins are now being developed and evaluated clinically as anticancer agents. With clinical trials of several of these experimental compounds underway, it is important to understand the molecular mechanisms that determine high mitotic activity, identify tumor subtypes that carry molecular aberrations that confer high mitotic activity, and to develop molecular markers that distinguish which tumors will be most responsive to mitotic apparatus inhibitors. Methods: We identified a coordinately regulated mitotic apparatus network by analyzing gene expression profiles for 53 malignantmore » and non-malignant human breast cancer cell lines and two separate primary breast tumor datasets. We defined the mitotic network activity index (MNAI) as the sum of the transcriptional levels of the 54 coordinately regulated mitotic apparatus genes. The effect of those genes on cell growth was evaluated by small interfering RNA (siRNA). Results: High MNAI was enriched in basal-like breast tumors and was associated with reduced survival duration and preferential sensitivity to i nhibitors of the mitotic apparatus proteins, polo-like kinase, centromere associated protein E and aurora kinase designated GSK462364, GSK923295 and GSK1070916, respectively. Co-amplification of regions of chromosomes 8q24, 10p15-p12, 12p13, and 17q24-q25 was associated with the transcriptional upregulation of this network of 54 mitotic apparatus genes, and we identify transcription factors that localize to these regions and putatively regulate mitotic activity. Knockdown of the mitotic network by siRNA identified 22 genes that might be considered as additional therapeutic targets for this clinically relevant patient subgroup. Conclusions: We define a molecular signature which may guide therapeutic approaches for tumors with high mitotic network activity.« less

  18. Macrophage Autophagy and Bacterial Infections

    PubMed Central

    Bah, Aïcha; Vergne, Isabelle

    2017-01-01

    Autophagy is a well-conserved lysosomal degradation pathway that plays key roles in bacterial infections. One of the most studied is probably xenophagy, the selective capture and degradation of intracellular bacteria by lysosomes. However, the impact of autophagy goes beyond xenophagy and involves intensive cross-talks with other host defense mechanisms. In addition, autophagy machinery can have non-canonical functions such as LC3-associated phagocytosis. In this review, we intend to summarize the current knowledge on the many functions of autophagy proteins in cell defenses with a focus on bacteria–macrophage interaction. We also present the strategies developed by pathogens to evade or to exploit this machinery in order to establish a successful infection. Finally, we discuss the opportunities and challenges of autophagy manipulation in improving therapeutics and vaccines against bacterial pathogens. PMID:29163544

  19. Micromechanics of human mitotic chromosomes

    NASA Astrophysics Data System (ADS)

    Sun, Mingxuan; Kawamura, Ryo; Marko, John F.

    2011-02-01

    Eukaryote cells dramatically reorganize their long chromosomal DNAs to facilitate their physical segregation during mitosis. The internal organization of folded mitotic chromosomes remains a basic mystery of cell biology; its understanding would likely shed light on how chromosomes are separated from one another as well as into chromosome structure between cell divisions. We report biophysical experiments on single mitotic chromosomes from human cells, where we combine micromanipulation, nano-Newton-scale force measurement and biochemical treatments to study chromosome connectivity and topology. Results are in accord with previous experiments on amphibian chromosomes and support the 'chromatin network' model of mitotic chromosome structure. Prospects for studies of chromosome-organizing proteins using siRNA expression knockdowns, as well as for differential studies of chromosomes with and without mutations associated with genetic diseases, are also discussed.

  20. Calibrated mitotic oscillator drives motile ciliogenesis.

    PubMed

    Al Jord, Adel; Shihavuddin, Asm; Servignat d'Aout, Raphaël; Faucourt, Marion; Genovesio, Auguste; Karaiskou, Anthi; Sobczak-Thépot, Joëlle; Spassky, Nathalie; Meunier, Alice

    2017-11-10

    Cell division and differentiation depend on massive and rapid organelle remodeling. The mitotic oscillator, centered on the cyclin-dependent kinase 1-anaphase-promoting complex/cyclosome (CDK1-APC/C) axis, spatiotemporally coordinates this reorganization in dividing cells. Here we discovered that nondividing cells could also implement this mitotic clocklike regulatory circuit to orchestrate subcellular reorganization associated with differentiation. We probed centriole amplification in differentiating mouse-brain multiciliated cells. These postmitotic progenitors fine-tuned mitotic oscillator activity to drive the orderly progression of centriole production, maturation, and motile ciliation while avoiding the mitosis commitment threshold. Insufficient CDK1 activity hindered differentiation, whereas excessive activity accelerated differentiation yet drove postmitotic progenitors into mitosis. Thus, postmitotic cells can redeploy and calibrate the mitotic oscillator to uncouple cytoplasmic from nuclear dynamics for organelle remodeling associated with differentiation. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  1. The p90 ribosomal S6 kinase 2 specifically affects mitotic progression by regulating the basal level, distribution and stability of mitotic spindles

    PubMed Central

    Park, Yun Yeon; Nam, Hyun-Ja; Do, Mihyang; Lee, Jae-Ho

    2016-01-01

    RSK2, also known as RPS6KA3 (ribosomal protein S6 kinase, 90 kDa, polypeptide 3), is a downstream kinase of the mitogen-activated protein kinase (MAPK) pathway, which is important in regulating survival, transcription, growth and proliferation. However, its biological role in mitotic progression is not well understood. In this study, we examined the potential involvement of RSK2 in the regulation of mitotic progression. Interestingly, depletion of RSK2, but not RSK1, caused the accumulation of mitotic cells. Time-lapse analysis revealed that mitotic duration, particularly the duration for metaphase-to-anaphase transition was prolonged in RSK2-depleted cells, suggesting activation of spindle assembly checkpoint (SAC). Indeed, more BubR1 (Bub1-related kinase) was present on metaphase plate kinetochores in RSK2-depleted cells, and depletion of BubR1 abolished the mitotic accumulation caused by RSK2 depletion, confirming BubR1-dependent SAC activation. Along with the shortening of inter-kinetochore distance, these data suggested that weakening of the tension across sister kinetochores by RSK2 depletion led to the activation of SAC. To test this, we analyzed the RSK2 effects on the stability of kinetochore–microtubule interactions, and found that RSK2-depleted cells formed less kinetochore–microtubule fibers. Moreover, RSK2 depletion resulted in the decrease of basal level of microtubule as well as an irregular distribution of mitotic spindles, which might lead to observed several mitotic progression defects such as increase in unaligned chromosomes, defects in chromosome congression and a decrease in pole-to-pole distance in these cells. Taken together, our data reveal that RSK2 affects mitotic progression by regulating the distribution, basal level and the stability of mitotic spindles. PMID:27491410

  2. Cell Death During Crisis Is Mediated by Mitotic Telomere Deprotection

    PubMed Central

    Hayashi, Makoto T.; Cesare, Anthony J.; Rivera, Teresa; Karlseder, Jan

    2015-01-01

    Tumour formation is blocked by two barriers, replicative senescence and crisis1. Senescence is triggered by short telomeres and is bypassed by disruption of tumour suppressive pathways. After senescence bypass, cells undergo crisis, during which almost all of the cells in the population die. Cells that escape crisis harbor unstable genomes and other parameters of transformation. The mechanism of cell death during crisis remained elusive. We show that cells in crisis undergo spontaneous mitotic arrest, resulting in death during mitosis or in the following cell cycle. The phenotype was induced by loss of p53 function, and suppressed by telomerase overexpression. Telomere fusions triggered mitotic arrest in p53-compromised non-crisis cells, indicating such fusions as the underlying cause. Exacerbation of mitotic telomere deprotection by partial TRF2 knockdown2 increased the ratio of cells that died during mitotic arrest and sensitized cancer cells to mitotic poisons. We propose a crisis pathway wherein chromosome fusions induce mitotic arrest, resulting in mitotic telomere deprotection and cell death, thereby eliminating precancerous cells from the population. PMID:26108857

  3. Prognostic value of mitotic counts in breast cancer of Saudi Arabian patients.

    PubMed

    Buhmeida, Abdelbaset; Al-Maghrabi, Jaudah; Merdad, Adnan; Al-Thubaity, Fatima; Chaudhary, Adeel; Gari, Mamdooh; Abuzenadah, Adel; Collan, Yrjö; Syrjänen, Kari; Al-Qahtani, Mohammed

    2011-01-01

    Quantitative methods in combination with other objective prognostic criteria can improve the evaluation of a cancer patient's prognosis, and possibly predict response to therapy. One of the important prognostic and predictive markers is the mitotic count, which has proven valuable in many aspects. In this study, the prognostic value of the mitotic count was assessed in breast cancer (BC) patients in Saudi Arabia. The study comprised a series of 87 patients diagnosed and treated for breast cancer at the Departments of Surgery and Oncology, King Abdul-Aziz University Hospital, between 2000 and 2008. Mitotic counts were carried out using a standard laboratory microscope (objective, × 40; field diameter, 420 μm). The number of mitotic figures in 10 consecutive high-power fields (hpf) from the most cellular area of the sample gave the mitotic activity index (MAI, mitotic figures/10 hpf). The standardized mitotic index (SMI) recorded the mitotic count as the number of mitotic figures by area of the neoplastic tissue in the microscopic field, thus the number of mitoses in 10 consecutive fields was corrected for the volume fraction and field size (mitotic figures/mm²). The means of MAI and SMI of the tumors in the entire series of 87 patients were 15 mitotic figures/10 hpf (range 4-45) and 4 mitotic figures/mm² (range 1-9), respectively. The mitotic counts were higher in advanced stages than in early cancer (p < 0.04). The mitotic counts were significantly larger in patients with high-grade tumor (p < 0.004) and in cases with tumor metastasis (p < 0.004). The mitotic counts were also significantly larger in the recurrent cases than in non-recurrent ones (p < 0.02). The quantitatively measurable mitotic counts of cancer cell nuclei are of significant prognostic value in invasive ductal carcinoma of the breast in Saudi Arabia and the mean cut-off values of MAI and SMI can be applied as objective (quantitative) criteria to distinguish breast cancer patients into groups

  4. Autophagic clearance of bacterial pathogens: molecular recognition of intracellular microorganisms.

    PubMed

    Pareja, Maria Eugenia Mansilla; Colombo, Maria I

    2013-01-01

    Autophagy is involved in several physiological and pathological processes. One of the key roles of the autophagic pathway is to participate in the first line of defense against the invasion of pathogens, as part of the innate immune response. Targeting of intracellular bacteria by the autophagic machinery, either in the cytoplasm or within vacuolar compartments, helps to control bacterial proliferation in the host cell, controlling also the spreading of the infection. In this review we will describe the means used by diverse bacterial pathogens to survive intracellularly and how they are recognized by the autophagic molecular machinery, as well as the mechanisms used to avoid autophagic clearance.

  5. Mitotic regulator Nlp interacts with XPA/ERCC1 complexes and regulates nucleotide excision repair (NER) in response to UV radiation.

    PubMed

    Ma, Xiao-Juan; Shang, Li; Zhang, Wei-Min; Wang, Ming-Rong; Zhan, Qi-Min

    2016-04-10

    Cellular response to DNA damage, including ionizing radiation (IR) and UV radiation, is critical for the maintenance of genomic fidelity. Defects of DNA repair often result in genomic instability and malignant cell transformation. Centrosomal protein Nlp (ninein-like protein) has been characterized as an important cell cycle regulator that is required for proper mitotic progression. In this study, we demonstrate that Nlp is able to improve nucleotide excision repair (NER) activity and protects cells against UV radiation. Upon exposure of cells to UVC, Nlp is translocated into the nucleus. The C-terminus (1030-1382) of Nlp is necessary and sufficient for its nuclear import. Upon UVC radiation, Nlp interacts with XPA and ERCC1, and enhances their association. Interestingly, down-regulated expression of Nlp is found to be associated with human skin cancers, indicating that dysregulated Nlp might be related to the development of human skin cancers. Taken together, this study identifies mitotic protein Nlp as a new and important member of NER pathway and thus provides novel insights into understanding of regulatory machinery involved in NER. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. A Brief History of Research on Mitotic Mechanisms.

    PubMed

    McIntosh, J Richard; Hays, Thomas

    2016-12-21

    This chapter describes in summary form some of the most important research on chromosome segregation, from the discovery and naming of mitosis in the nineteenth century until around 1990. It gives both historical and scientific background for the nine chapters that follow, each of which provides an up-to-date review of a specific aspect of mitotic mechanism. Here, we trace the fruits of each new technology that allowed a deeper understanding of mitosis and its underlying mechanisms. We describe how light microscopy, including phase, polarization, and fluorescence optics, provided descriptive information about mitotic events and also enabled important experimentation on mitotic functions, such as the dynamics of spindle fibers and the forces generated for chromosome movement. We describe studies by electron microscopy, including quantitative work with serial section reconstructions. We review early results from spindle biochemistry and genetics, coupled to molecular biology, as these methods allowed scholars to identify key molecular components of mitotic mechanisms. We also review hypotheses about mitotic mechanisms whose testing led to a deeper understanding of this fundamental biological event. Our goal is to provide modern scientists with an appreciation of the work that has laid the foundations for their current work and interests.

  7. Mitotic and apoptotic activity in colorectal neoplasia.

    PubMed

    Kohoutova, Darina; Pejchal, Jaroslav; Bures, Jan

    2018-05-18

    Colorectal cancer (CRC) is third most commonly diagnosed cancer worldwide. The aim of the prospective study was to evaluate mitosis and apoptosis of epithelial cells at each stage of colorectal neoplasia. A total of 61 persons were enrolled into the study: 18 patients with non-advanced colorectal adenoma (non-a-A), 13 patients with advanced colorectal adenoma (a-A), 13 patients with CRC and 17 controls: individuals with normal findings on colonoscopy. Biopsy samples were taken from pathology (patients) and healthy mucosa (patients and healthy controls). Samples were formalin-fixed paraffin-embedded and stained with haematoxylin-eosin. Mitotic and apoptotic activity were evaluated in lower and upper part of the crypts and in the superficial compartment. Apoptotic activity was also assessed using detection of activated caspase-3. In controls, mitotic activity was present in lower part of crypts, accompanied with low apoptotic activity. Mitotic and apoptotic activity decreased (to almost zero) in upper part of crypts. In superficial compartment, increase in apoptotic activity was observed. Transformation of healthy mucosa into non-a-A was associated with significant increase of mitotic activity in lower and upper part of the crypts and with significant increase of apoptotic activity in all three compartments; p < 0.05. Transformation of non-a-A into a-A did not lead to any further significant increase in apoptotic activity, but was related to significant increase in mitotic activity in upper part of crypts and superficial compartment. A significant decrease in apoptotic activity was detected in all three comparments of CRC samples compared to a-A; p < 0.05. No differences in mitotic and apoptotic activity between biopsies in healthy controls and biopsy samples from healthy mucosa in patients with colorectal neoplasia were observed. Detection of activated caspase-3 confirmed the above findings in apoptotic activity. Significant dysregulation of mitosis and apoptosis

  8. Human Nek7-interactor RGS2 is required for mitotic spindle organization

    PubMed Central

    de Souza, Edmarcia Elisa; Hehnly, Heidi; Perez, Arina Marina; Meirelles, Gabriela Vaz; Smetana, Juliana Helena Costa; Doxsey, Stephen; Kobarg, Jörg

    2015-01-01

    The mitotic spindle apparatus is composed of microtubule (MT) networks attached to kinetochores organized from 2 centrosomes (a.k.a. spindle poles). In addition to this central spindle apparatus, astral MTs assemble at the mitotic spindle pole and attach to the cell cortex to ensure appropriate spindle orientation. We propose that cell cycle-related kinase, Nek7, and its novel interacting protein RGS2, are involved in mitosis regulation and spindle formation. We found that RGS2 localizes to the mitotic spindle in a Nek7-dependent manner, and along with Nek7 contributes to spindle morphology and mitotic spindle pole integrity. RGS2-depletion leads to a mitotic-delay and severe defects in the chromosomes alignment and congression. Importantly, RGS2 or Nek7 depletion or even overexpression of wild-type or kinase-dead Nek7, reduced γ-tubulin from the mitotic spindle poles. In addition to causing a mitotic delay, RGS2 depletion induced mitotic spindle misorientation coinciding with astral MT-reduction. We propose that these phenotypes directly contribute to a failure in mitotic spindle alignment to the substratum. In conclusion, we suggest a molecular mechanism whereupon Nek7 and RGS2 may act cooperatively to ensure proper mitotic spindle organization. PMID:25664600

  9. Human Nek7-interactor RGS2 is required for mitotic spindle organization.

    PubMed

    de Souza, Edmarcia Elisa; Hehnly, Heidi; Perez, Arina Marina; Meirelles, Gabriela Vaz; Smetana, Juliana Helena Costa; Doxsey, Stephen; Kobarg, Jörg

    2015-01-01

    The mitotic spindle apparatus is composed of microtubule (MT) networks attached to kinetochores organized from 2 centrosomes (a.k.a. spindle poles). In addition to this central spindle apparatus, astral MTs assemble at the mitotic spindle pole and attach to the cell cortex to ensure appropriate spindle orientation. We propose that cell cycle-related kinase, Nek7, and its novel interacting protein RGS2, are involved in mitosis regulation and spindle formation. We found that RGS2 localizes to the mitotic spindle in a Nek7-dependent manner, and along with Nek7 contributes to spindle morphology and mitotic spindle pole integrity. RGS2-depletion leads to a mitotic-delay and severe defects in the chromosomes alignment and congression. Importantly, RGS2 or Nek7 depletion or even overexpression of wild-type or kinase-dead Nek7, reduced γ-tubulin from the mitotic spindle poles. In addition to causing a mitotic delay, RGS2 depletion induced mitotic spindle misorientation coinciding with astral MT-reduction. We propose that these phenotypes directly contribute to a failure in mitotic spindle alignment to the substratum. In conclusion, we suggest a molecular mechanism whereupon Nek7 and RGS2 may act cooperatively to ensure proper mitotic spindle organization.

  10. Micromechanical-biochemical studies of mitotic chromosome elasticity and structure

    NASA Astrophysics Data System (ADS)

    Poirier, Michael Guy

    The structure of mitotic chromosomes was studied by combining micromechanical force measurements with microfluidic biochemical exposures. Our method is to use glass micropipettes attached to either end of a single chromosome to do mechanical experiments in the extracellular buffer. A third pipette can be used to locally 'spray' reactants so as to carry out dynamical mechanical-chemical experiments. The following elastic properties of mitotic chromosomes are found: Young's modulus, Y = 300 Pa; Poisson ratio, sigma = 0.1; Bending rigidity, B = 1 x 10 -22 J·m; Internal viscosity, eta' = 100 kg/m·sec; Volume fraction, ϕ = 0.7; Extensions of less than 3 times the relaxed length are linear and reversible; Extensions beyond 30 fold exhibit a force plateau at 15 nN and convert the chromosome to a disperse ghost-like state with little change in chromatin structure; Mitotic chromosomes are relatively isotropic; dsDNA cuts of at least every 3 kb cause the a mitotic chromosomes to fall apart; dsDNA cuts less frequently than every 50 kb do not affect mitotic chromosome structure. These results lead to the conclusion that mitotic chromosomes are a network crosslinked every 50 kb between which chromatin is fold by chromatin folding proteins, which are likely to be condensins.

  11. A Brief History of Research on Mitotic Mechanisms

    PubMed Central

    McIntosh, J. Richard; Hays, Thomas

    2016-01-01

    This chapter describes in summary form some of the most important research on chromosome segregation, from the discovery and naming of mitosis in the nineteenth century until around 1990. It gives both historical and scientific background for the nine chapters that follow, each of which provides an up-to-date review of a specific aspect of mitotic mechanism. Here, we trace the fruits of each new technology that allowed a deeper understanding of mitosis and its underlying mechanisms. We describe how light microscopy, including phase, polarization, and fluorescence optics, provided descriptive information about mitotic events and also enabled important experimentation on mitotic functions, such as the dynamics of spindle fibers and the forces generated for chromosome movement. We describe studies by electron microscopy, including quantitative work with serial section reconstructions. We review early results from spindle biochemistry and genetics, coupled to molecular biology, as these methods allowed scholars to identify key molecular components of mitotic mechanisms. We also review hypotheses about mitotic mechanisms whose testing led to a deeper understanding of this fundamental biological event. Our goal is to provide modern scientists with an appreciation of the work that has laid the foundations for their current work and interests. PMID:28009830

  12. Effects of caffeine on mitotic index, mitotic aberrations and bimitosis with and without aeration.

    PubMed

    Röper, W

    1977-07-01

    The effects of 1 to 3 h 0.2% caffeine treatment on mitosis in lateral roots of Vicia faba with and without aeration have been investigated. During the treatment a marked decrease of the mitotic index followed by strong deviations and changing phase indices can be stated. By means of aeration the number of mitotic aberrations increases with time of treatment, while it decreases without aeration until 3 h treatment. Tetraploid cells are supposed to be formed by spindle aberrations at early anaphase. The number of binucleate and tetraploid cells is affected by aeration during caffeine treatment. During division of the binucleate cells tetraploid nuclei are formed by fusions, so the population of binucleate cells may become smaller.

  13. Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana.

    PubMed

    Van Leene, Jelle; Hollunder, Jens; Eeckhout, Dominique; Persiau, Geert; Van De Slijke, Eveline; Stals, Hilde; Van Isterdael, Gert; Verkest, Aurine; Neirynck, Sandy; Buffel, Yelle; De Bodt, Stefanie; Maere, Steven; Laukens, Kris; Pharazyn, Anne; Ferreira, Paulo C G; Eloy, Nubia; Renne, Charlotte; Meyer, Christian; Faure, Jean-Denis; Steinbrenner, Jens; Beynon, Jim; Larkin, John C; Van de Peer, Yves; Hilson, Pierre; Kuiper, Martin; De Veylder, Lieven; Van Onckelen, Harry; Inzé, Dirk; Witters, Erwin; De Jaeger, Geert

    2010-08-10

    Cell proliferation is the main driving force for plant growth. Although genome sequence analysis revealed a high number of cell cycle genes in plants, little is known about the molecular complexes steering cell division. In a targeted proteomics approach, we mapped the core complex machinery at the heart of the Arabidopsis thaliana cell cycle control. Besides a central regulatory network of core complexes, we distinguished a peripheral network that links the core machinery to up- and downstream pathways. Over 100 new candidate cell cycle proteins were predicted and an in-depth biological interpretation demonstrated the hypothesis-generating power of the interaction data. The data set provided a comprehensive view on heterodimeric cyclin-dependent kinase (CDK)-cyclin complexes in plants. For the first time, inhibitory proteins of plant-specific B-type CDKs were discovered and the anaphase-promoting complex was characterized and extended. Important conclusions were that mitotic A- and B-type cyclins form complexes with the plant-specific B-type CDKs and not with CDKA;1, and that D-type cyclins and S-phase-specific A-type cyclins seem to be associated exclusively with CDKA;1. Furthermore, we could show that plants have evolved a combinatorial toolkit consisting of at least 92 different CDK-cyclin complex variants, which strongly underscores the functional diversification among the large family of cyclins and reflects the pivotal role of cell cycle regulation in the developmental plasticity of plants.

  14. Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana

    PubMed Central

    Van Leene, Jelle; Hollunder, Jens; Eeckhout, Dominique; Persiau, Geert; Van De Slijke, Eveline; Stals, Hilde; Van Isterdael, Gert; Verkest, Aurine; Neirynck, Sandy; Buffel, Yelle; De Bodt, Stefanie; Maere, Steven; Laukens, Kris; Pharazyn, Anne; Ferreira, Paulo C G; Eloy, Nubia; Renne, Charlotte; Meyer, Christian; Faure, Jean-Denis; Steinbrenner, Jens; Beynon, Jim; Larkin, John C; Van de Peer, Yves; Hilson, Pierre; Kuiper, Martin; De Veylder, Lieven; Van Onckelen, Harry; Inzé, Dirk; Witters, Erwin; De Jaeger, Geert

    2010-01-01

    Cell proliferation is the main driving force for plant growth. Although genome sequence analysis revealed a high number of cell cycle genes in plants, little is known about the molecular complexes steering cell division. In a targeted proteomics approach, we mapped the core complex machinery at the heart of the Arabidopsis thaliana cell cycle control. Besides a central regulatory network of core complexes, we distinguished a peripheral network that links the core machinery to up- and downstream pathways. Over 100 new candidate cell cycle proteins were predicted and an in-depth biological interpretation demonstrated the hypothesis-generating power of the interaction data. The data set provided a comprehensive view on heterodimeric cyclin-dependent kinase (CDK)–cyclin complexes in plants. For the first time, inhibitory proteins of plant-specific B-type CDKs were discovered and the anaphase-promoting complex was characterized and extended. Important conclusions were that mitotic A- and B-type cyclins form complexes with the plant-specific B-type CDKs and not with CDKA;1, and that D-type cyclins and S-phase-specific A-type cyclins seem to be associated exclusively with CDKA;1. Furthermore, we could show that plants have evolved a combinatorial toolkit consisting of at least 92 different CDK–cyclin complex variants, which strongly underscores the functional diversification among the large family of cyclins and reflects the pivotal role of cell cycle regulation in the developmental plasticity of plants. PMID:20706207

  15. A dynamic mode of mitotic bookmarking by transcription factors

    PubMed Central

    Teves, Sheila S; An, Luye; Hansen, Anders S; Xie, Liangqi; Darzacq, Xavier; Tjian, Robert

    2016-01-01

    During mitosis, transcription is shut off, chromatin condenses, and most transcription factors (TFs) are reported to be excluded from chromosomes. How do daughter cells re-establish the original transcription program? Recent discoveries that a select set of TFs remain bound on mitotic chromosomes suggest a potential mechanism for maintaining transcriptional programs through the cell cycle termed mitotic bookmarking. Here we report instead that many TFs remain associated with chromosomes in mouse embryonic stem cells, and that the exclusion previously described is largely a fixation artifact. In particular, most TFs we tested are significantly enriched on mitotic chromosomes. Studies with Sox2 reveal that this mitotic interaction is more dynamic than in interphase and is facilitated by both DNA binding and nuclear import. Furthermore, this dynamic mode results from lack of transcriptional activation rather than decreased accessibility of underlying DNA sequences in mitosis. The nature of the cross-linking artifact prompts careful re-examination of the role of TFs in mitotic bookmarking. DOI: http://dx.doi.org/10.7554/eLife.22280.001 PMID:27855781

  16. Mechanical control of mitotic progression in single animal cells

    PubMed Central

    Cattin, Cedric J.; Düggelin, Marcel; Martinez-Martin, David; Gerber, Christoph; Müller, Daniel J.; Stewart, Martin P.

    2015-01-01

    Despite the importance of mitotic cell rounding in tissue development and cell proliferation, there remains a paucity of approaches to investigate the mechanical robustness of cell rounding. Here we introduce ion beam-sculpted microcantilevers that enable precise force-feedback–controlled confinement of single cells while characterizing their progression through mitosis. We identify three force regimes according to the cell response: small forces (∼5 nN) that accelerate mitotic progression, intermediate forces where cells resist confinement (50–100 nN), and yield forces (>100 nN) where a significant decline in cell height impinges on microtubule spindle function, thereby inhibiting mitotic progression. Yield forces are coincident with a nonlinear drop in cell height potentiated by persistent blebbing and loss of cortical F-actin homogeneity. Our results suggest that a buildup of actomyosin-dependent cortical tension and intracellular pressure precedes mechanical failure, or herniation, of the cell cortex at the yield force. Thus, we reveal how the mechanical properties of mitotic cells and their response to external forces are linked to mitotic progression under conditions of mechanical confinement. PMID:26305930

  17. Identification of a novel mitotic phosphorylation motif associated with protein localization to the mitotic apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Feng; Camp, David G.; Gritsenko, Marina A.

    2007-11-16

    The chromosomal passenger complex (CPC) is a critical regulator of chromosome, cytoskeleton and membrane dynamics during mitosis. Here, we identified phosphopeptides and phosphoprotein complexes recognized by a phosphorylation specific antibody that labels the CPC using liquid chromatography coupled to mass spectrometry. A mitotic phosphorylation motif (PX{G/T/S}{L/M}[pS]P or WGL[pS]P) was identified in 11 proteins including Fzr/Cdh1 and RIC-8, two proteins with potential links to the CPC. Phosphoprotein complexes contained known CPC components INCENP, Aurora-B and TD-60, as well as SMAD2, 14-3-3 proteins, PP2A, and Cdk1, a likely kinase for this motif. Protein sequence analysis identified phosphorylation motifs in additional proteins includingmore » SMAD2, Plk3 and INCENP. Mitotic SMAD2 and Plk3 phosphorylation was confirmed using phosphorylation specific antibodies, and in the case of Plk3, phosphorylation correlates with its localization to the mitotic apparatus. A mutagenesis approach was used to show INCENP phosphorylation is required for midbody localization. These results provide evidence for a shared phosphorylation event that regulates localization of critical proteins during mitosis.« less

  18. Loops determine the mechanical properties of mitotic chromosomes

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Heermann, Dieter W.

    2013-03-01

    In mitosis, chromosomes undergo a condensation into highly compacted, rod-like objects. Many models have been put forward for the higher-order organization of mitotic chromosomes including radial loop and hierarchical folding models. Additionally, mechanical properties of mitotic chromosomes under different conditions were measured. However, the internal organization of mitotic chromosomes still remains unclear. Here we present a polymer model for mitotic chromosomes and show how chromatin loops play a major role for their mechanical properties. The key assumption of the model is the ability of the chromatin fibre to dynamically form loops with the help of binding proteins. Our results show that looping leads to a tight compaction and significantly increases the bending rigidity of chromosomes. Moreover, our qualitative prediction of the force elongation behaviour is close to experimental findings. This indicates that the internal structure of mitotic chromosomes is based on self-organization of the chromatin fibre. We also demonstrate how number and size of loops have a strong influence on the mechanical properties. We suggest that changes in the mechanical characteristics of chromosomes can be explained by an altered internal loop structure. YZ gratefully appreciates funding by the German National Academic Foundation (Studienstiftung des deutschen Volkes) and support by the Heidelberg Graduate School for Mathematical and Computational Methods in the Sciences (HGS MathComp).

  19. A near death experience: Shigella manipulates host death machinery to silence innate immunity.

    PubMed

    Bronner, Denise N; O'Riordan, Mary Xd

    2014-10-01

    Release of mitochondrial contents often triggers inflammation and cell death, and modulating this process can be advantageous to invading pathogens. In this issue of The EMBO Journal, Andree and colleagues reveal new findings that an intracellular bacterial pathogen exploits apoptotic machinery to suppress host immune signaling, yet avoids cell death. This study emphasizes the need to expand our understanding of the roles played by pro‐apoptotic proteins in non‐death scenarios.

  20. Axin localizes to mitotic spindles and centrosomes in mitotic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Shi-Mun; Choi, Eun-Jin; Song, Ki-Joon

    2009-04-01

    Wnt signaling plays critical roles in cell proliferation and carcinogenesis. In addition, numerous recent studies have shown that various Wnt signaling components are involved in mitosis and chromosomal instability. However, the role of Axin, a negative regulator of Wnt signaling, in mitosis has remained unclear. Using monoclonal antibodies against Axin, we found that Axin localizes to the centrosome and along mitotic spindles. This localization was suppressed by siRNA specific for Aurora A kinase and by Aurora kinase inhibitor. Interestingly, Axin over-expression altered the subcellular distribution of Plk1 and of phosphorylated glycogen synthase kinase (GSK3{beta}) without producing any notable changes inmore » cellular phenotype. In the presence of Aurora kinase inhibitor, Axin over-expression induced the formation of cleavage furrow-like structures and of prominent astral microtubules lacking midbody formation in a subset of cells. Our results suggest that Axin modulates distribution of Axin-associated proteins such as Plk1 and GSK3{beta} in an expression level-dependent manner and these interactions affect the mitotic process, including cytokinesis under certain conditions, such as in the presence of Aurora kinase inhibitor.« less

  1. Effects of intracellular pH on the mitotic apparatus and mitotic stage in the sand dollar egg.

    PubMed

    Watanabe, K; Hamaguchi, M S; Hamaguchi, Y

    1997-01-01

    The effect of change in intracellular pH (pHi) on mitosis was investigated in the sand dollar egg. The pHi in the fertilized egg of Scaphechinus mirabilis and Clypeaster japonicus, which was 7.34 and 7.31, respectively, changed by means of treating the egg at nuclear envelope breakdown with sea water containing acetate and/or ammonia at various values of pH. The mitotic apparatus at pHi 6.70 became larger than that of normal fertilized eggs; that is, the mitotic spindle had the maximal size, especially in length at pHi 6.70. The spindle length linearly decreased when pHi increased from 6.70 to 7.84. By polarization microscopy, the increase in birefringence retardation was detected at slightly acidic pHi, suggesting that the increase in size of the spindle is caused by the increase in the amount of microtubules in the spindle. At pHi 6.30, the organization of the mitotic apparatus was inhibited. Furthermore, slightly acidic pHi caused cleavage retardation or inhibition. By counting the number of the eggs at various mitotic stages with time after treating them with the media, it is found that metaphase was persistent and most of the S. mirabilis eggs were arrested at metaphase under the condition of pHi 6.70. It is concluded that at slightly acidic pH, the microtubules in the spindle are stabilized and more microtubules assembled than those in the normal eggs.

  2. Robust mitotic entry is ensured by a latching switch.

    PubMed

    Tuck, Chloe; Zhang, Tongli; Potapova, Tamara; Malumbres, Marcos; Novák, Béla

    2013-01-01

    Cell cycle events are driven by Cyclin dependent kinases (CDKs) and by their counter-acting phosphatases. Activation of the Cdk1:Cyclin B complex during mitotic entry is controlled by the Wee1/Myt1 inhibitory kinases and by Cdc25 activatory phosphatase, which are themselves regulated by Cdk1:Cyclin B within two positive circuits. Impairing these two feedbacks with chemical inhibitors induces a transient entry into M phase referred to as mitotic collapse. The pathology of mitotic collapse reveals that the positive circuits play a significant role in maintaining the M phase state. To better understand the function of these feedback loops during G2/M transition, we propose a simple model for mitotic entry in mammalian cells including spatial control over Greatwall kinase phosphorylation. After parameter calibration, the model is able to recapture the complex and non-intuitive molecular dynamics reported by Potapova et al. (Potapova et al., 2011). Moreover, it predicts the temporal patterns of other mitotic regulators which have not yet been experimentally tested and suggests a general design principle of cell cycle control: latching switches buffer the cellular stresses which accompany cell cycle processes to ensure that the transitions are smooth and robust.

  3. Regulation of spindle integrity and mitotic fidelity by BCCIP

    PubMed Central

    Huhn, S C; Liu, J; Ye, C; Lu, H; Jiang, X; Feng, X; Ganesan, S; White, E; Shen, Z

    2017-01-01

    Centrosomes together with the mitotic spindle ensure the faithful distribution of chromosomes between daughter cells, and spindle orientation is a major determinant of cell fate during tissue regeneration. Spindle defects are not only an impetus of chromosome instability but are also a cause of developmental disorders involving defective asymmetric cell division. In this work, we demonstrate BCCIP, especially BCCIPα, as a previously unidentified component of the mitotic spindle pole and the centrosome. We demonstrate that BCCIP localizes proximal to the mother centriole and participates in microtubule organization and then redistributes to the spindle pole to ensure faithful spindle architecture. We find that BCCIP depletion leads to morphological defects, disoriented mitotic spindles, chromosome congression defects and delayed mitotic progression. Our study identifies BCCIP as a novel factor critical for microtubule regulation and explicates a mechanism utilized by BCCIP in tumor suppression. PMID:28394342

  4. An automated fluorescence videomicroscopy assay for the detection of mitotic catastrophe

    PubMed Central

    Rello-Varona, S; Kepp, O; Vitale, I; Michaud, M; Senovilla, L; Jemaà, M; Joza, N; Galluzzi, L; Castedo, M; Kroemer, G

    2010-01-01

    Mitotic catastrophe can be defined as a cell death mode that occurs during or shortly after a prolonged/aberrant mitosis, and can show apoptotic or necrotic features. However, conventional procedures for the detection of apoptosis or necrosis, including biochemical bulk assays and cytofluorometric techniques, cannot discriminate among pre-mitotic, mitotic and post-mitotic death, and hence are inappropriate to monitor mitotic catastrophe. To address this issue, we generated isogenic human colon carcinoma cell lines that differ in ploidy and p53 status, yet express similar amounts of fluorescent biosensors that allow for the visualization of chromatin (histone H2B coupled to green fluorescent protein (GFP)) and centrosomes (centrin coupled to the Discosoma striata red fluorescent protein (DsRed)). By combining high-resolution fluorescence videomicroscopy and automated image analysis, we established protocols and settings for the simultaneous assessment of ploidy, mitosis, centrosome number and cell death (which in our model system occurs mainly by apoptosis). Time-lapse videomicroscopy showed that this approach can be used for the high-throughput detection of mitotic catastrophe induced by three mechanistically distinct anti-mitotic agents (dimethylenastron (DIMEN), nocodazole (NDZ) and paclitaxel (PTX)), and – in this context – revealed an important role of p53 in the control of centrosome number. PMID:21364633

  5. Identification of Mitosis-Specific Phosphorylation in Mitotic Chromosome-Associated Proteins.

    PubMed

    Ohta, Shinya; Kimura, Michiko; Takagi, Shunsuke; Toramoto, Iyo; Ishihama, Yasushi

    2016-09-02

    During mitosis, phosphorylation of chromosome-associated proteins is a key regulatory mechanism. Mass spectrometry has been successfully applied to determine the complete protein composition of mitotic chromosomes, but not to identify post-translational modifications. Here, we quantitatively compared the phosphoproteome of isolated mitotic chromosomes with that of chromosomes in nonsynchronized cells. We identified 4274 total phosphorylation sites and 350 mitosis-specific phosphorylation sites in mitotic chromosome-associated proteins. Significant mitosis-specific phosphorylation in centromere/kinetochore proteins was detected, although the chromosomal association of these proteins did not change throughout the cell cycle. This mitosis-specific phosphorylation might play a key role in regulation of mitosis. Further analysis revealed strong dependency of phosphorylation dynamics on kinase consensus patterns, thus linking the identified phosphorylation sites to known key mitotic kinases. Remarkably, chromosomal axial proteins such as non-SMC subunits of condensin, TopoIIα, and Kif4A, together with the chromosomal periphery protein Ki67 involved in the establishment of the mitotic chromosomal structure, demonstrated high phosphorylation during mitosis. These findings suggest a novel mechanism for regulation of chromosome restructuring in mitosis via protein phosphorylation. Our study generated a large quantitative database on protein phosphorylation in mitotic and nonmitotic chromosomes, thus providing insights into the dynamics of chromatin protein phosphorylation at mitosis onset.

  6. Structures of archaeal DNA segregation machinery reveal bacterial and eukaryotic linkages

    PubMed Central

    Schumacher, Maria A.; Tonthat, Nam K; Lee, Jeehyun; Rodriguez-Castañeda, Fernando A.; Chinnam, Naga babu; Kalliomaa-Sanford, Anne K.; Ng, Irene W.; Barge, Madhuri T.; Shaw, Porsha L.R.; Barillà, Daniela

    2016-01-01

    Although recent studies have provided a wealth of information about archaeal biology, nothing is known about the molecular basis of DNA segregation in these organisms. Here we unveil the machinery and assembly mechanism of the archaeal Sulfolobus pNOB8 partition system. This system employs three proteins; ParA, an atypical ParB adaptor and a centromere-binding component, AspA. AspA utilizes a spreading mechanism to create a DNA superhelix onto which ParB assembles. This supercomplex links to the ParA motor, which contains a bacteria-like Walker motif. The ParB C-domain harbors structural similarity to CenpA, which dictates eukaryotic segregation. Thus, this archaeal system combines bacteria-like and eukarya-like components, suggesting the possible conservation of DNA segregation principles across the three domains of life. PMID:26339031

  7. Physical Limits on the Precision of Mitotic Spindle Positioning by Microtubule Pushing forces: Mechanics of mitotic spindle positioning.

    PubMed

    Howard, Jonathon; Garzon-Coral, Carlos

    2017-11-01

    Tissues are shaped and patterned by mechanical and chemical processes. A key mechanical process is the positioning of the mitotic spindle, which determines the size and location of the daughter cells within the tissue. Recent force and position-fluctuation measurements indicate that pushing forces, mediated by the polymerization of astral microtubules against- the cell cortex, maintain the mitotic spindle at the cell center in Caenorhabditis elegans embryos. The magnitude of the centering forces suggests that the physical limit on the accuracy and precision of this centering mechanism is determined by the number of pushing microtubules rather than by thermally driven fluctuations. In cells that divide asymmetrically, anti-centering, pulling forces generated by cortically located dyneins, in conjunction with microtubule depolymerization, oppose the pushing forces to drive spindle displacements away from the center. Thus, a balance of centering pushing forces and anti-centering pulling forces localize the mitotic spindles within dividing C. elegans cells. © 2017 The Authors. BioEssays published by Wiley Periodicals, Inc.

  8. Requirement of mismatch repair genes MSH2 and MSH3 in the RAD1-RAD10 pathway of mitotic recombination in Saccharomyces cerevisiae.

    PubMed

    Saparbaev, M; Prakash, L; Prakash, S

    1996-03-01

    The RAD1 and RAD10 genes of Saccharomyces cerevisiae are required for nucleotide excision repair and they also act in mitotic recombination. The Rad1-Rad10 complex has a single-stranded DNA endonuclease activity. Here, we show that the mismatch repair genes MSH2 and MSH3 function in mitotic recombination. For both his3 and his4 duplications, and for homologous integration of a linear DNA fragment into the genome, the msh3 delta mutation has an effect on recombination similar to that of the rad1 delta and rad10 delta mutations. The msh2 delta mutation also reduces the rate of recombination of the his3 duplication and lowers the incidence of homologous integration of a linear DNA fragment. Epistasis analyses indicate that MSH2 and MSH3 function in the RAD1-RAD10 recombination pathway, and studies presented here suggest an involvement of the RAD1-RAD10 pathway in reciprocal recombination. The possible roles of Msh2, Msh3, Rad1, and Rad10 proteins in genetic recombination are discussed. Coupling of mismatch binding proteins with the recombinational machinery could be important for ensuring genetic fidelity in the recombination process.

  9. Timely Endocytosis of Cytokinetic Enzymes Prevents Premature Spindle Breakage during Mitotic Exit

    PubMed Central

    Onishi, Masayuki; Yeong, Foong May

    2016-01-01

    Cytokinesis requires the spatio-temporal coordination of membrane deposition and primary septum (PS) formation at the division site to drive acto-myosin ring (AMR) constriction. It has been demonstrated that AMR constriction invariably occurs only after the mitotic spindle disassembly. It has also been established that Chitin Synthase II (Chs2p) neck localization precedes mitotic spindle disassembly during mitotic exit. As AMR constriction depends upon PS formation, the question arises as to how chitin deposition is regulated so as to prevent premature AMR constriction and mitotic spindle breakage. In this study, we propose that cells regulate the coordination between spindle disassembly and AMR constriction via timely endocytosis of cytokinetic enzymes, Chs2p, Chs3p, and Fks1p. Inhibition of endocytosis leads to over accumulation of cytokinetic enzymes during mitotic exit, which accelerates the constriction of the AMR, and causes spindle breakage that eventually could contribute to monopolar spindle formation in the subsequent round of cell division. Intriguingly, the mitotic spindle breakage observed in endocytosis mutants can be rescued either by deleting or inhibiting the activities of, CHS2, CHS3 and FKS1, which are involved in septum formation. The findings from our study highlight the importance of timely endocytosis of cytokinetic enzymes at the division site in safeguarding mitotic spindle integrity during mitotic exit. PMID:27447488

  10. O-Linked N-Acetylglucosamine Cycling Regulates Mitotic Spindle Organization*

    PubMed Central

    Tan, Ee Phie; Caro, Sarah; Potnis, Anish; Lanza, Christopher; Slawson, Chad

    2013-01-01

    Any defects in the correct formation of the mitotic spindle will lead to chromosomal segregation errors, mitotic arrest, or aneuploidy. We demonstrate that O-linked N-acetylglucosamine (O-GlcNAc), a post-translational modification of serine and threonine residues in nuclear and cytoplasmic proteins, regulates spindle function. In O-GlcNAc transferase or O-GlcNAcase gain of function cells, the mitotic spindle is incorrectly assembled. Chromosome condensation and centrosome assembly is impaired in these cells. The disruption in spindle architecture is due to a reduction in histone H3 phosphorylation by Aurora kinase B. However, gain of function cells treated with the O-GlcNAcase inhibitor Thiamet-G restored the assembly of the spindle and partially rescued histone phosphorylation. Together, these data suggest that the coordinated addition and removal of O-GlcNAc, termed O-GlcNAc cycling, regulates mitotic spindle organization and provides a potential new perspective on how O-GlcNAc regulates cellular events. PMID:23946484

  11. Mitotic trafficking of silicon microparticles†

    PubMed Central

    Serda, Rita E.; Ferrati, Silvia; Godin, Biana; Tasciotti, Ennio; Liu, XueWu

    2010-01-01

    Multistage carriers were recently introduced by our laboratory, with the concurrent objectives of co-localized delivery of multiple therapeutic agents, the “theranostic” integration of bioactive moieties with imaging contrast, and the selective, potentially personalized bypassing of the multiplicity of biological barriers that adversely impact biodistribution of vascularly injected particulates. Mesoporous (“nanoporous”) silicon microparticles were selected as primary carriers in multi-stage devices, with targets including vascular endothelia at pathological lesions. The objective of this study was to evaluate biocompatibility of mesoporous silicon microparticles with endothelial cells using in vitro assays with an emphasis on microparticle compatibility with mitotic events. We observed that vascular endothelial cells, following internalization of silicon microparticles, maintain cellular integrity, as demonstrated by cellular morphology, viability and intact mitotic trafficking of vesicles bearing silicon microparticles. The presence of gold or iron oxide nanoparticles within the porous matrix did not alter the cellular uptake of particles or the viability of endothelial cells subsequent to engulfment of microparticles. Endothelial cells maintained basal levels of IL-6 and IL-8 release in the presence of silicon microparticles. This is the first study that demonstrates polarized, ordered partitioning of endosomes based on tracking microparticles. The finding that mitotic sorting of endosomes is unencumbered by the presence of nanoporous silicon microparticles advocates the use of silicon microparticles for biomedical applications. PMID:20644846

  12. Systems cell biology of the mitotic spindle.

    PubMed

    Saleem, Ramsey A; Aitchison, John D

    2010-01-11

    Cell division depends critically on the temporally controlled assembly of mitotic spindles, which are responsible for the distribution of duplicated chromosomes to each of the two daughter cells. To gain insight into the process, Vizeacoumar et al., in this issue (Vizeacoumar et al. 2010. J. Cell Biol. doi:10.1083/jcb.200909013), have combined systems genetics with high-throughput and high-content imaging to comprehensively identify and classify novel components that contribute to the morphology and function of the mitotic spindle.

  13. Arsenite inhibits mitotic division and perturbs spindle dynamics in HeLa S3 cells.

    PubMed

    Huang, S C; Lee, T C

    1998-05-01

    Arsenical compounds, known to be human carcinogens, were shown to disturb cell cycle progression and induce cytogenetic alterations in a variety of cell systems. We report here that a 24 h treatment of arsenite induced mitotic accumulation in human cell lines. HeLa S3 and KB cells were most susceptible: 35% of the total cell population was arrested at the mitotic stage after treatment with 5 microM sodium arsenite in HeLa S3 cells and after 10 microM in KB cells. Under a microscope, we observed abnormal mitotic figures in arsenite-arrested mitotic cells, including deranged chromosome congression, elongated polar distance of mitotic spindle, and enhanced microtubule immunofluorescence. The spindle microtubules of arsenite-arrested mitotic cells were more resistant to nocodazole-induced dissolution than those of control mitotic cells. According to turbidity assay, arsenite at concentrations below 100 microM significantly enhanced polymerization of tubulins. Since spindle dynamics play a crucial role in mitotic progression, our results suggest that arsenite-induced mitotic arrest may be due to arsenite's effects on attenuation of spindle dynamics.

  14. 46 CFR 130.450 - Machinery alarms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Machinery alarms. 130.450 Section 130.450 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS VESSEL CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Automation of Unattended Machinery Spaces § 130.450 Machinery alarms. (a...

  15. Dysregulation of mitotic machinery genes precedes genome instability during spontaneous pre-malignant transformation of mouse ovarian surface epithelial cells.

    PubMed

    Urzúa, Ulises; Ampuero, Sandra; Roby, Katherine F; Owens, Garrison A; Munroe, David J

    2016-10-25

    Based in epidemiological evidence, repetitive ovulation has been proposed to play a role in the origin of ovarian cancer by inducing an aberrant wound rupture-repair process of the ovarian surface epithelium (OSE). Accordingly, long term cultures of isolated OSE cells undergo in vitro spontaneous transformation thus developing tumorigenic capacity upon extensive subcultivation. In this work, C57BL/6 mouse OSE (MOSE) cells were cultured up to passage 28 and their RNA and DNA copy number profiles obtained at passages 2, 5, 7, 10, 14, 18, 23, 25 and 28 by means of DNA microarrays. Gene ontology, pathway and network analyses were focused in passages earlier than 20, which is a hallmark of malignancy in this model. At passage 14, 101 genes were up-regulated in absence of significant DNA copy number changes. Among these, the top-3 enriched functions (>30 fold, adj p < 0.05) comprised 7 genes coding for centralspindlin, chromosome passenger and minichromosome maintenance protein complexes. The genes Ccnb1 (Cyclin B1), Birc5 (Survivin), Nusap1 and Kif23 were the most recurrent in over a dozen GO terms related to the mitotic process. On the other hand, Pten plus the large non-coding RNAs Malat1 and Neat1 were among the 80 down-regulated genes with mRNA processing, nuclear bodies, ER-stress response and tumor suppression as relevant terms. Interestingly, the earliest discrete segmental aneuploidies arose by passage 18 in chromosomes 7, 10, 11, 13, 15, 17 and 19. By passage 23, when MOSE cells express the malignant phenotype, the dysregulated gene expression repertoire expanded, DNA imbalances enlarged in size and covered additional loci. Prior to early aneuploidies, overexpression of genes coding for the mitotic apparatus in passage-14 pre-malignant MOSE cells indicate an increased proliferation rate suggestive of replicative stress. Concomitant down-regulation of nuclear bodies and RNA processing related genes suggests altered control of nuclear RNA maturation

  16. Structures of archaeal DNA segregation machinery reveal bacterial and eukaryotic linkages.

    PubMed

    Schumacher, Maria A; Tonthat, Nam K; Lee, Jeehyun; Rodriguez-Castañeda, Fernando A; Chinnam, Naga Babu; Kalliomaa-Sanford, Anne K; Ng, Irene W; Barge, Madhuri T; Shaw, Porsha L R; Barillà, Daniela

    2015-09-04

    Although recent studies have provided a wealth of information about archaeal biology, nothing is known about the molecular basis of DNA segregation in these organisms. Here, we unveil the machinery and assembly mechanism of the archaeal Sulfolobus pNOB8 partition system. This system uses three proteins: ParA; an atypical ParB adaptor; and a centromere-binding component, AspA. AspA utilizes a spreading mechanism to create a DNA superhelix onto which ParB assembles. This supercomplex links to the ParA motor, which contains a bacteria-like Walker motif. The C domain of ParB harbors structural similarity to CenpA, which dictates eukaryotic segregation. Thus, this archaeal system combines bacteria-like and eukarya-like components, which suggests the possible conservation of DNA segregation principles across the three domains of life. Copyright © 2015, American Association for the Advancement of Science.

  17. 46 CFR 130.450 - Machinery alarms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Machinery alarms. 130.450 Section 130.450 Shipping COAST... MISCELLANEOUS EQUIPMENT AND SYSTEMS Automation of Unattended Machinery Spaces § 130.450 Machinery alarms. (a... must provide battery power for the alarm required by § 130.460(a)(8) of this subpart. ...

  18. 46 CFR 130.450 - Machinery alarms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Machinery alarms. 130.450 Section 130.450 Shipping COAST... MISCELLANEOUS EQUIPMENT AND SYSTEMS Automation of Unattended Machinery Spaces § 130.450 Machinery alarms. (a... must provide battery power for the alarm required by § 130.460(a)(8) of this subpart. ...

  19. 46 CFR 130.450 - Machinery alarms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Machinery alarms. 130.450 Section 130.450 Shipping COAST... MISCELLANEOUS EQUIPMENT AND SYSTEMS Automation of Unattended Machinery Spaces § 130.450 Machinery alarms. (a... must provide battery power for the alarm required by § 130.460(a)(8) of this subpart. ...

  20. 46 CFR 130.450 - Machinery alarms.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Machinery alarms. 130.450 Section 130.450 Shipping COAST... MISCELLANEOUS EQUIPMENT AND SYSTEMS Automation of Unattended Machinery Spaces § 130.450 Machinery alarms. (a... must provide battery power for the alarm required by § 130.460(a)(8) of this subpart. ...

  1. 46 CFR 45.149 - Machinery space openings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Machinery space openings. 45.149 Section 45.149 Shipping... Assignment § 45.149 Machinery space openings. (a) Machinery space openings in position 1 or 2 must be framed... funnel or machinery space ventilator that must be kept open for the essential operations of the ship must...

  2. 46 CFR 45.149 - Machinery space openings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Machinery space openings. 45.149 Section 45.149 Shipping... Assignment § 45.149 Machinery space openings. (a) Machinery space openings in position 1 or 2 must be framed... funnel or machinery space ventilator that must be kept open for the essential operations of the ship must...

  3. 46 CFR 45.149 - Machinery space openings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Machinery space openings. 45.149 Section 45.149 Shipping... Assignment § 45.149 Machinery space openings. (a) Machinery space openings in position 1 or 2 must be framed... funnel or machinery space ventilator that must be kept open for the essential operations of the ship must...

  4. 46 CFR 45.149 - Machinery space openings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Machinery space openings. 45.149 Section 45.149 Shipping... Assignment § 45.149 Machinery space openings. (a) Machinery space openings in position 1 or 2 must be framed... funnel or machinery space ventilator that must be kept open for the essential operations of the ship must...

  5. 46 CFR 45.149 - Machinery space openings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Machinery space openings. 45.149 Section 45.149 Shipping... Assignment § 45.149 Machinery space openings. (a) Machinery space openings in position 1 or 2 must be framed... funnel or machinery space ventilator that must be kept open for the essential operations of the ship must...

  6. 46 CFR 58.01-45 - Machinery space, ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Machinery space, ventilation. 58.01-45 Section 58.01-45... MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-45 Machinery space, ventilation. Each machinery space must be ventilated to ensure that, when machinery or boilers are operating at full power in all...

  7. 46 CFR 58.01-45 - Machinery space, ventilation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Machinery space, ventilation. 58.01-45 Section 58.01-45... MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-45 Machinery space, ventilation. Each machinery space must be ventilated to ensure that, when machinery or boilers are operating at full power in all...

  8. 46 CFR 58.01-45 - Machinery space, ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Machinery space, ventilation. 58.01-45 Section 58.01-45... MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-45 Machinery space, ventilation. Each machinery space must be ventilated to ensure that, when machinery or boilers are operating at full power in all...

  9. 46 CFR 58.01-45 - Machinery space, ventilation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Machinery space, ventilation. 58.01-45 Section 58.01-45... MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-45 Machinery space, ventilation. Each machinery space must be ventilated to ensure that, when machinery or boilers are operating at full power in all...

  10. 46 CFR 58.01-45 - Machinery space, ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Machinery space, ventilation. 58.01-45 Section 58.01-45... MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-45 Machinery space, ventilation. Each machinery space must be ventilated to ensure that, when machinery or boilers are operating at full power in all...

  11. Xanthium strumarium extract inhibits mammalian cell proliferation through mitotic spindle disruption mediated by xanthatin.

    PubMed

    Sánchez-Lamar, Angel; Piloto-Ferrer, Janet; Fiore, Mario; Stano, Pasquale; Cozzi, Renata; Tofani, Daniela; Cundari, Enrico; Francisco, Marbelis; Romero, Aylema; González, Maria L; Degrassi, Francesca

    2016-12-24

    Xanthium strumarium L. is a member of the Asteraceae family popularly used with multiple therapeutic purposes. Whole extracts of this plant have shown anti-mitotic activity in vitro suggesting that some components could induce mitotic arrest in proliferating cells. Aim of the present work was to characterize the anti-mitotic properties of the X. strumarium whole extract and to isolate and purify active molecule(s). The capacity of the whole extract to inhibit mitotic progression in mammalian cultured cells was investigated to identify its anti-mitotic activity. Isolation of active component(s) was performed using a bioassay-guided multistep separation procedure in which whole extract was submitted to a progressive process of fractionation and fractions were challenged for their anti-mitotic activity. Our results show for the first time that X. strumarium whole extract inhibits assembly of the mitotic spindle and spindle-pole separation, thereby heavily affecting mitosis, impairing the metaphase to anaphase transition and inducing apoptosis. The purification procedure led to a fraction with an anti-mitotic activity comparable to that of the whole extract. Chemical analysis of this fraction showed that its major component was xanthatin. The present work shows a new activity of X. strumarium extract, i.e. the alteration of the mitotic apparatus in cultured cells that may be responsible for the anti-proliferative activity of the extract. Anti-mitotic activity is shown to be mainly exerted by xanthatin. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. The bipolar assembly domain of the mitotic motor kinesin-5

    PubMed Central

    Acar, Seyda; Carlson, David B.; Budamagunta, Madhu S.; Yarov-Yarovoy, Vladimir; Correia, John J.; Niñonuevo, Milady R.; Jia, Weitao; Tao, Li; Leary, Julie A.; Voss, John C.; Evans, James E.; Scholey, Jonathan M.

    2013-01-01

    An outstanding unresolved question is how does the mitotic spindle utilize microtubules and mitotic motors to coordinate accurate chromosome segregation during mitosis? This process depends upon the mitotic motor, kinesin-5, whose unique bipolar architecture, with pairs of motor domains lying at opposite ends of a central rod, allows it to crosslink microtubules within the mitotic spindle and to coordinate their relative sliding during spindle assembly, maintenance and elongation. The structural basis of kinesin-5’s bipolarity is, however, unknown, as protein asymmetry has so far precluded its crystallization. Here we use electron microscopy of single molecules of kinesin-5 and its subfragments, combined with hydrodynamic analysis plus mass spectrometry, circular dichroism and site-directed spin label electron paramagnetic resonance spectroscopy, to show how a staggered antiparallel coiled-coil ‘BASS’ (bipolar assembly) domain directs the assembly of four kinesin-5 polypeptides into bipolar minifilaments. PMID:23299893

  13. Nuclear Chk1 prevents premature mitotic entry.

    PubMed

    Matsuyama, Makoto; Goto, Hidemasa; Kasahara, Kousuke; Kawakami, Yoshitaka; Nakanishi, Makoto; Kiyono, Tohru; Goshima, Naoki; Inagaki, Masaki

    2011-07-01

    Chk1 inhibits the premature activation of the cyclin-B1-Cdk1. However, it remains controversial whether Chk1 inhibits Cdk1 in the centrosome or in the nucleus before the G2-M transition. In this study, we examined the specificity of the mouse monoclonal anti-Chk1 antibody DCS-310, with which the centrosome was stained. Conditional Chk1 knockout in mouse embryonic fibroblasts reduced nuclear but not centrosomal staining with DCS-310. In Chk1(+/myc) human colon adenocarcinoma (DLD-1) cells, Chk1 was detected in the nucleus but not in the centrosome using an anti-Myc antibody. Through the combination of protein array and RNAi technologies, we identified Ccdc-151 as a protein that crossreacted with DCS-310 on the centrosome. Mitotic entry was delayed by expression of the Chk1 mutant that localized in the nucleus, although forced immobilization of Chk1 to the centrosome had little impact on the timing of mitotic entry. These results suggest that nuclear but not centrosomal Chk1 contributes to correct timing of mitotic entry.

  14. Epigenetic Characteristics of the Mitotic Chromosome in 1D and 3D

    PubMed Central

    Oomen, Marlies E.; Dekker, Job

    2017-01-01

    While chromatin characteristics in interphase are widely studied, characteristics of mitotic chromatin and their inheritance through mitosis are still poorly understood. During mitosis chromatin undergoes dramatic changes: Transcription stalls, chromatin binding factors leave the chromatin, histone modifications change and chromatin becomes highly condensed. Many key insights into mitotic chromosome state and conformation have come from extensive microscopy studies over the last century. Over the last decade the development of 3C-based techniques has enabled the study of higher order chromosome organization during mitosis in a genome-wide manner. During mitosis chromosomes lose their cell type specific and locus-dependent chromatin organization that characterizes interphase chromatin and fold into randomly positioned loop arrays. Upon exit of mitosis cells are capable of quickly rearranging the chromosome conformation to form the cell type specific interphase organization again. The information that enables this rearrangement after mitotic exit is thought to be encoded at least in part in mitotic bookmarks, e.g. histone modifications and variants, histone remodelers, chromatin factors and non-coding RNA. Here we give an overview of the chromosomal organization and epigenetic characteristics of the interphase and mitotic chromatin in vertebrates. Second, we describe different ways in which mitotic bookmarking enables epigenetic memory of the features of the interphase chromatin through mitosis. And third, we explore the role of epigenetic modifications and mitotic bookmarking in cell differentiation. PMID:28228067

  15. Response of Fe-S cluster assembly machinery of Escherichia coli to mechanical stress in a model of amino-acid crystal fermentation.

    PubMed

    Okutani, Satoshi; Iwai, Takayoshi; Iwatani, Shintaro; Matsuno, Kiyoshi; Takahashi, Yasuhiro; Hase, Toshiharu

    2015-09-01

    During amino-acid crystal fermentation, mechanical stress on bacterial cells caused by crystal collision often impacts negatively on bacterial growth and amino-acid production. When Escherichia coli cells were cultivated under mechanical stress of polyvinyl chloride particles as a model of the crystal fermentation, activities of iron-sulfur (Fe-S) cluster-containing enzymes were apparently decreased. Based on an assumption that function of Fe-S cluster assembly machinery would be elevated to recover the enzyme activities in such stressed cells, we analyzed levels of various components of Fe-S cluster assembly machinery by western blotting. It was found that the expression of HscA, a chaperon component of the machinery, was up-regulated and that shorter forms of HscA with the N-terminal region truncated were accumulated, suggesting an important role of HscA against the mechanical stress. An overexpression of HscA gene in E. coli cells gave a positive effect on rescue of the stress-induced decrease of the activity of Fe-S cluster-containing enzyme. These results may provide a new strategy to alleviate the mechanical stress during the amino-acid crystal fermentation. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Localization of latency-associated nuclear antigen (LANA) on mitotic chromosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahayu, Retno; Ohsaki, Eriko; Omori, Hiroko

    In latent infection of Kaposi's sarcoma-associated herpesvirus (KSHV), viral gene expression is extremely limited and copy numbers of viral genomes remain constant. Latency-associated nuclear antigen (LANA) is known to have a role in maintaining viral genome copy numbers in growing cells. Several studies have shown that LANA is localized in particular regions on mitotic chromosomes, such as centromeres/pericentromeres. We independently examined the distinct localization of LANA on mitotic chromosomes during mitosis, using super-resolution laser confocal microscopy and correlative fluorescence microscopy–electron microscopy (FM-EM) analyses. We found that the majority of LANA were not localized at particular regions such as telomeres/peritelomeres, centromeres/pericentromeres,more » and cohesion sites, but at the bodies of condensed chromosomes. Thus, LANA may undergo various interactions with the host factors on the condensed chromosomes in order to tether the viral genome to mitotic chromosomes and realize faithful viral genome segregation during cell division. - Highlights: • This is the first report showing LANA dots on mitotic chromosomes by fluorescent microscopy followed by electron microscopy. • LANA dots localized randomly on condensed chromosomes other than centromere/pericentromere and telomere/peritelomre. • Cellular mitotic checkpoint should not be always involved in the segregation of KSHV genomes in the latency.« less

  17. Novel nickel transport mechanism across the bacterial outer membrane energized by the TonB/ExbB/ExbD machinery.

    PubMed

    Schauer, Kristine; Gouget, Barbara; Carrière, Marie; Labigne, Agnès; de Reuse, Hilde

    2007-02-01

    Nickel is a cofactor for various microbial enzymes, yet as a trace element, its scavenging is challenging. In the case of the pathogen Helicobacter pylori, nickel is essential for the survival in the human stomach, because it is the cofactor of the important virulence factor urease. While nickel transport across the cytoplasmic membrane is accomplished by the nickel permease NixA, the mechanism by which nickel traverses the outer membrane (OM) of this Gram-negative bacterium is unknown. Import of iron-siderophores and cobalamin through the bacterial OM is carried out by specific receptors energized by the TonB/ExbB/ExbD machinery. In this study, we show for the first time that H. pylori utilizes TonB/ExbB/ExbD for nickel uptake in addition to iron acquisition. We have identified the nickel-regulated protein FrpB4, homologous to TonB-dependent proteins, as an OM receptor involved in nickel uptake. We demonstrate that ExbB/ExbD/TonB and FrpB4 deficient bacteria are unable to efficiently scavenge nickel at low pH. This condition mimics those encountered by H. pylori during stomach colonization, under which nickel supply and full urease activity are essential to combat acidity. We anticipate that this nickel scavenging system is not restricted to H. pylori, but will be represented more largely among Gram-negative bacteria.

  18. Inhibition of Bcl-xL sensitizes cells to mitotic blockers, but not mitotic drivers

    PubMed Central

    Bennett, Ailsa; Sloss, Olivia; Topham, Caroline; Nelson, Louisa; Tighe, Anthony

    2016-01-01

    Cell fate in response to an aberrant mitosis is governed by two competing networks: the spindle assembly checkpoint (SAC) and the intrinsic apoptosis pathway. The mechanistic interplay between these two networks is obscured by functional redundancy and the ability of cells to die either in mitosis or in the subsequent interphase. By coupling time-lapse microscopy with selective pharmacological agents, we systematically probe pro-survival Bcl-xL in response to various mitotic perturbations. Concentration matrices show that BH3-mimetic-mediated inhibition of Bcl-xL synergises with perturbations that induce an SAC-mediated mitotic block, including drugs that dampen microtubule dynamics, and inhibitors targeting kinesins and kinases required for spindle assembly. By contrast, Bcl-xL inhibition does not synergize with drugs which drive cells through an aberrant mitosis by overriding the SAC. This differential effect, which is explained by compensatory Mcl-1 function, provides opportunities for patient stratification and combination treatments in the context of cancer chemotherapy. PMID:27512141

  19. 46 CFR 30.10-42 - Machinery space-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Machinery space-TB/ALL. 30.10-42 Section 30.10-42...-42 Machinery space—TB/ALL. The term machinery space means any space that contains machinery and related equipment including Category A machinery spaces, propelling machinery, boilers, oil fuel units...

  20. 46 CFR 30.10-42 - Machinery space-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Machinery space-TB/ALL. 30.10-42 Section 30.10-42...-42 Machinery space—TB/ALL. The term machinery space means any space that contains machinery and related equipment including Category A machinery spaces, propelling machinery, boilers, oil fuel units...

  1. 46 CFR 30.10-42 - Machinery space-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Machinery space-TB/ALL. 30.10-42 Section 30.10-42...-42 Machinery space—TB/ALL. The term machinery space means any space that contains machinery and related equipment including Category A machinery spaces, propelling machinery, boilers, oil fuel units...

  2. 46 CFR 30.10-42 - Machinery space-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Machinery space-TB/ALL. 30.10-42 Section 30.10-42...-42 Machinery space—TB/ALL. The term machinery space means any space that contains machinery and related equipment including Category A machinery spaces, propelling machinery, boilers, oil fuel units...

  3. 46 CFR 30.10-42 - Machinery space-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Machinery space-TB/ALL. 30.10-42 Section 30.10-42...-42 Machinery space—TB/ALL. The term machinery space means any space that contains machinery and related equipment including Category A machinery spaces, propelling machinery, boilers, oil fuel units...

  4. Multi-scale computational study of the mechanical regulation of cell mitotic rounding in epithelia

    PubMed Central

    Xu, Zhiliang; Zartman, Jeremiah J.; Alber, Mark

    2017-01-01

    Mitotic rounding during cell division is critical for preventing daughter cells from inheriting an abnormal number of chromosomes, a condition that occurs frequently in cancer cells. Cells must significantly expand their apical area and transition from a polygonal to circular apical shape to achieve robust mitotic rounding in epithelial tissues, which is where most cancers initiate. However, how cells mechanically regulate robust mitotic rounding within packed tissues is unknown. Here, we analyze mitotic rounding using a newly developed multi-scale subcellular element computational model that is calibrated using experimental data. Novel biologically relevant features of the model include separate representations of the sub-cellular components including the apical membrane and cytoplasm of the cell at the tissue scale level as well as detailed description of cell properties during mitotic rounding. Regression analysis of predictive model simulation results reveals the relative contributions of osmotic pressure, cell-cell adhesion and cortical stiffness to mitotic rounding. Mitotic area expansion is largely driven by regulation of cytoplasmic pressure. Surprisingly, mitotic shape roundness within physiological ranges is most sensitive to variation in cell-cell adhesivity and stiffness. An understanding of how perturbed mechanical properties impact mitotic rounding has important potential implications on, amongst others, how tumors progressively become more genetically unstable due to increased chromosomal aneuploidy and more aggressive. PMID:28531187

  5. Requirement of mismatch repair genes MSH2 and MSH3 in the RAD1-RAD10 pathway of mitotic recombination in Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saparbaev, M.; Prakash, L.; Prakash, S.

    1996-03-01

    The RAD1 and RAD10 genes of Saccharomyces cerevisiae are required for nucleotide excision repair and they also act in mitotic recombination. The Rad1-Rad10 complex has a single-stranded DNA endonuclease activity. Here, we show that the mismatch repair genes MSH2 and MSH3 function in mitotic recombination. For both his3 and his4 duplications, and for homologous integration of a linear DNA fragment into the genome, the msh3-A mutation has an effect on recombination similar to that of the rad1{Delta} and rad10{Delta} mutations. The msh2{Delta} mutation also reduces the rate of recombination of the his3 duplication and lowers the incidence of homologous integrationmore » of a linear DNA fragment. Epistasis analyses indicate that MSH2 and MSH3 function in the RAD1-RAD10 recombination pathway, and studies presented here suggest an involvement of the RAM-RAD10 pathway in reciprocal recombination. The possible roles of Msh2, Msh3, Rad1, and Rad10 proteins in genetic recombination are discussed. Coupling of mismatch binding proteins with the recombinational machinery could be important for ensuring genetic fidelity in the recombination process. 59 refs., 2 figs., 7 tabs.« less

  6. Mitotic cells generate protrusive extracellular forces to divide in three-dimensional microenvironments

    NASA Astrophysics Data System (ADS)

    Nam, Sungmin; Chaudhuri, Ovijit

    2018-06-01

    During mitosis, or cell division, mammalian cells undergo extensive morphological changes, including elongation along the mitotic axis, which is perpendicular to the plane that bisects the two divided cells. Although much is known about the intracellular dynamics of mitosis, it is unclear how cells are able to divide in tissues, where the changes required for mitosis are mechanically constrained by surrounding cells and extracellular matrix. Here, by confining cells three dimensionally in hydrogels, we show that dividing cells generate substantial protrusive forces that deform their surroundings along the mitotic axis, clearing space for mitotic elongation. When forces are insufficient to create space for mitotic elongation, mitosis fails. We identify one source of protrusive force as the elongation of the interpolar spindle, an assembly of microtubules aligned with the mitotic axis. Another source of protrusive force is shown to be contraction of the cytokinetic ring, the polymeric structure that cleaves a dividing cell at its equator, which drives expansion along the mitotic axis. These findings reveal key functions for the interpolar spindle and cytokinetic ring in protrusive extracellular force generation, and explain how dividing cells overcome mechanical constraints in confining microenvironments, including some types of tumour.

  7. Anti-mitotic agents: Are they emerging molecules for cancer treatment?

    PubMed

    Penna, Larissa Siqueira; Henriques, João Antonio Pêgas; Bonatto, Diego

    2017-05-01

    Mutations in cancer cells frequently result in cell cycle alterations that lead to unrestricted growth compared to normal cells. Considering this phenomenon, many drugs have been developed to inhibit different cell-cycle phases. Mitotic phase targeting disturbs mitosis in tumor cells, triggers the spindle assembly checkpoint and frequently results in cell death. The first anti-mitotics to enter clinical trials aimed to target tubulin. Although these drugs improved the treatment of certain cancers, and many anti-microtubule compounds are already approved for clinical use, severe adverse events such as neuropathies were observed. Since then, efforts have been focused on the development of drugs that also target kinases, motor proteins and multi-protein complexes involved in mitosis. In this review, we summarize the major proteins involved in the mitotic phase that can also be targeted for cancer treatment. Finally, we address the activity of anti-mitotic drugs tested in clinical trials in recent years. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Peptide Epimerization Machineries Found in Microorganisms.

    PubMed

    Ogasawara, Yasushi; Dairi, Tohru

    2018-01-01

    D-Amino acid residues have been identified in peptides from a variety of eukaryotes and prokaryotes. In microorganisms, UDP- N -acetylmuramic acid pentapeptide (UDP-MurNAc-L-Ala-D-Glu-meso-diaminopimelate-D-Ala-D-Ala), a unit of peptidoglycan, is a representative. During its biosynthesis, D-Ala and D-Glu are generally supplied by racemases from the corresponding isomers. However, we recently identified a unique unidirectional L-Glu epimerase catalyzing the epimerization of the terminal L-Glu of UDP-MurNAc-L-Ala-L-Glu. Several such enzymes, introducing D-amino acid resides into peptides via epimerization, have been reported to date. This includes a L-Ala-D/L-Glu epimerase, which is possibly used during peptidoglycan degradation. In bacterial primary metabolisms, to the best of our knowledge, these two machineries are the only examples of peptide epimerization. However, a variety of peptides containing D-amino acid residues have been isolated from microorganisms as secondary metabolites. Their biosynthetic mechanisms have been studied and three different peptide epimerization machineries have been reported. The first is non-ribosomal peptide synthetase (NRPS). Excellent studies with dissected modules of gramicidin synthetase and tyrocidine synthetase revealed the reactions of the epimerization domains embedded in the enzymes. The obtained information is still utilized to predict epimerization domains in uncharacterized NRPSs. The second includes the biosynthetic enzymes of lantibiotics, which are ribosome-dependently supplied peptide antibiotics containing polycyclic thioether amino acids (lanthionines). A mechanism for the formation of the D-Ala moiety in lanthionine by two enzymes, dehydratases catalyzing the conversion of L-Ser into dehydroalanine and enzymes catalyzing nucleophilic attack of the thiol of cysteine into dehydroalanine, was clarified. Similarly, the formation of a D-Ala residue by reduction of the dehydroalanine residue was also reported. The last

  9. Mitotic rate is associated with positive lymph nodes in patients with thin melanomas.

    PubMed

    Wheless, Lee; Isom, Chelsea A; Hooks, Mary A; Kauffmann, Rondi M

    2018-05-01

    The American Joint Commission on Cancer will remove mitotic rate from its staging guidelines in 2018. Using a large nationally representative cohort, we examined the association between mitotic rate and lymph node positivity among thin melanomas. A total of 149,273 thin melanomas in the National Cancer Database were examined for their association of high-risk features of mitotic rate, ulceration, and Breslow depth with lymph node status. Among 17,204 patients with thin melanomas with data on Breslow depth, ulceration, and mitotic rate who underwent a lymph node biopsy, there was a strong linear relationship between odds of having a positive lymph node and mitotic rate (R 2  = 0.96, P < .0001, β = 3.31). The odds of having a positive node increased by 19% with each 1-point increase in mitotic rate (odds ratio, 1.19; 95% confidence interval, 1.17-1.21). Cases with negative nodes had a mean mitotic rate of 1.54 plus or minus 2.07 mitoses/mm 2 compared with 3.30 plus or minus 3.54 mitoses/mm 2 for those with positive nodes (P < .0001). The data collected do not allow for survival analyses. Mitotic rate was strongly associated with the odds of having a positive lymph node and should continue to be reported on pathology reports. Copyright © 2017 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  10. Cell division and turgor mediate enhanced plant growth in Arabidopsis plants treated with the bacterial signalling molecule lumichrome.

    PubMed

    Pholo, Motlalepula; Coetzee, Beatrix; Maree, Hans J; Young, Philip R; Lloyd, James R; Kossmann, Jens; Hills, Paul N

    2018-05-17

    Transcriptomic analysis indicates that the bacterial signalling molecule lumichrome enhances plant growth through a combination of enhanced cell division and cell enlargement, and possibly enhances photosynthesis. Lumichrome (7,8 dimethylalloxazine), a novel multitrophic signal molecule produced by Sinorhizobium meliloti bacteria, has previously been shown to elicit growth promotion in different plant species (Phillips et al. in Proc Natl Acad Sci USA 96:12275-12280, https://doi.org/10.1073/pnas.96.22.12275 , 1999). However, the molecular mechanisms that underlie this plant growth promotion remain obscure. Global transcript profiling using RNA-seq suggests that lumichrome enhances growth by inducing genes impacting on turgor driven growth and mitotic cell cycle that ensures the integration of cell division and expansion of developing leaves. The abundance of XTH9 and XPA4 transcripts was attributed to improved mediation of cell-wall loosening to allow turgor-driven cell enlargement. Mitotic CYCD3.3, CYCA1.1, SP1L3, RSW7 and PDF1 transcripts were increased in lumichrome-treated Arabidopsis thaliana plants, suggesting enhanced growth was underpinned by increased cell differentiation and expansion with a consequential increase in biomass. Synergistic ethylene-auxin cross-talk was also observed through reciprocal over-expression of ACO1 and SAUR54, in which ethylene activates the auxin signalling pathway and regulates Arabidopsis growth by both stimulating auxin biosynthesis and modulating the auxin transport machinery to the leaves. Decreased transcription of jasmonate biosynthesis and responsive-related transcripts (LOX2; LOX3; LOX6; JAL34; JR1) might contribute towards suppression of the negative effects of methyl jasmonate (MeJa) such as chlorophyll loss and decreases in RuBisCO and photosynthesis. This work contributes towards a deeper understanding of how lumichrome enhances plant growth and development.

  11. Evidence of Selection against Complex Mitotic-Origin Aneuploidy during Preimplantation Development

    PubMed Central

    McCoy, Rajiv C.; Demko, Zachary P.; Ryan, Allison; Banjevic, Milena; Hill, Matthew; Sigurjonsson, Styrmir; Rabinowitz, Matthew; Petrov, Dmitri A.

    2015-01-01

    Whole-chromosome imbalances affect over half of early human embryos and are the leading cause of pregnancy loss. While these errors frequently arise in oocyte meiosis, many such whole-chromosome abnormalities affecting cleavage-stage embryos are the result of chromosome missegregation occurring during the initial mitotic cell divisions. The first wave of zygotic genome activation at the 4–8 cell stage results in the arrest of a large proportion of embryos, the vast majority of which contain whole-chromosome abnormalities. Thus, the full spectrum of meiotic and mitotic errors can only be detected by sampling after the initial cell divisions, but prior to this selective filter. Here, we apply 24-chromosome preimplantation genetic screening (PGS) to 28,052 single-cell day-3 blastomere biopsies and 18,387 multi-cell day-5 trophectoderm biopsies from 6,366 in vitro fertilization (IVF) cycles. We precisely characterize the rates and patterns of whole-chromosome abnormalities at each developmental stage and distinguish errors of meiotic and mitotic origin without embryo disaggregation, based on informative chromosomal signatures. We show that mitotic errors frequently involve multiple chromosome losses that are not biased toward maternal or paternal homologs. This outcome is characteristic of spindle abnormalities and chaotic cell division detected in previous studies. In contrast to meiotic errors, our data also show that mitotic errors are not significantly associated with maternal age. PGS patients referred due to previous IVF failure had elevated rates of mitotic error, while patients referred due to recurrent pregnancy loss had elevated rates of meiotic error, controlling for maternal age. These results support the conclusion that mitotic error is the predominant mechanism contributing to pregnancy losses occurring prior to blastocyst formation. This high-resolution view of the full spectrum of whole-chromosome abnormalities affecting early embryos provides insight

  12. Mechanisms and Regulation of Mitotic Recombination in Saccharomyces cerevisiae

    PubMed Central

    Symington, Lorraine S.; Rothstein, Rodney; Lisby, Michael

    2014-01-01

    Homology-dependent exchange of genetic information between DNA molecules has a profound impact on the maintenance of genome integrity by facilitating error-free DNA repair, replication, and chromosome segregation during cell division as well as programmed cell developmental events. This chapter will focus on homologous mitotic recombination in budding yeast Saccharomyces cerevisiae. However, there is an important link between mitotic and meiotic recombination (covered in the forthcoming chapter by Hunter et al. 2015) and many of the functions are evolutionarily conserved. Here we will discuss several models that have been proposed to explain the mechanism of mitotic recombination, the genes and proteins involved in various pathways, the genetic and physical assays used to discover and study these genes, and the roles of many of these proteins inside the cell. PMID:25381364

  13. Measuring mitotic spindle dynamics in budding yeast

    NASA Astrophysics Data System (ADS)

    Plumb, Kemp

    In order to carry out its life cycle and produce viable progeny through cell division, a cell must successfully coordinate and execute a number of complex processes with high fidelity, in an environment dominated by thermal noise. One important example of such a process is the assembly and positioning of the mitotic spindle prior to chromosome segregation. The mitotic spindle is a modular structure composed of two spindle pole bodies, separated in space and spanned by filamentous proteins called microtubules, along which the genetic material of the cell is held. The spindle is responsible for alignment and subsequent segregation of chromosomes into two equal parts; proper spindle positioning and timing ensure that genetic material is appropriately divided amongst mother and daughter cells. In this thesis, I describe fluorescence confocal microscopy and automated image analysis algorithms, which I have used to observe and analyze the real space dynamics of the mitotic spindle in budding yeast. The software can locate structures in three spatial dimensions and track their movement in time. By selecting fluorescent proteins which specifically label the spindle poles and cell periphery, mitotic spindle dynamics have been measured in a coordinate system relevant to the cell division. I describe how I have characterised the accuracy and precision of the algorithms by simulating fluorescence data for both spindle poles and the budding yeast cell surface. In this thesis I also describe the construction of a microfluidic apparatus that allows for the measurement of long time-scale dynamics of individual cells and the development of a cell population. The tools developed in this thesis work will facilitate in-depth quantitative analysis of the non-equilibrium processes in living cells.

  14. 46 CFR 169.241 - Machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Machinery. 169.241 Section 169.241 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Inspection and Certification Inspections § 169.241 Machinery. (a) At each inspection for certification and periodic inspection...

  15. 46 CFR 169.241 - Machinery.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Machinery. 169.241 Section 169.241 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Inspection and Certification Inspections § 169.241 Machinery. (a) At each inspection for certification and periodic inspection...

  16. 46 CFR 42.15-35 - Machinery space openings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Machinery space openings. 42.15-35 Section 42.15-35... BY SEA Conditions of Assignment of Freeboard § 42.15-35 Machinery space openings. (a) Machinery space..., funnel, or machinery space ventilators in an exposed position on the freeboard or superstructure deck...

  17. 46 CFR 42.15-35 - Machinery space openings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Machinery space openings. 42.15-35 Section 42.15-35... BY SEA Conditions of Assignment of Freeboard § 42.15-35 Machinery space openings. (a) Machinery space..., funnel, or machinery space ventilators in an exposed position on the freeboard or superstructure deck...

  18. 46 CFR 42.15-35 - Machinery space openings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Machinery space openings. 42.15-35 Section 42.15-35... BY SEA Conditions of Assignment of Freeboard § 42.15-35 Machinery space openings. (a) Machinery space..., funnel, or machinery space ventilators in an exposed position on the freeboard or superstructure deck...

  19. 46 CFR 42.15-35 - Machinery space openings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Machinery space openings. 42.15-35 Section 42.15-35... BY SEA Conditions of Assignment of Freeboard § 42.15-35 Machinery space openings. (a) Machinery space..., funnel, or machinery space ventilators in an exposed position on the freeboard or superstructure deck...

  20. 46 CFR 42.15-35 - Machinery space openings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Machinery space openings. 42.15-35 Section 42.15-35... BY SEA Conditions of Assignment of Freeboard § 42.15-35 Machinery space openings. (a) Machinery space..., funnel, or machinery space ventilators in an exposed position on the freeboard or superstructure deck...

  1. 29 CFR 1915.164 - Ship's propulsion machinery.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Ship's propulsion machinery. 1915.164 Section 1915.164 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... Machinery and Piping Systems § 1915.164 Ship's propulsion machinery. (a) Before work is performed on the...

  2. 29 CFR 1915.164 - Ship's propulsion machinery.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Ship's propulsion machinery. 1915.164 Section 1915.164 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... Machinery and Piping Systems § 1915.164 Ship's propulsion machinery. (a) Before work is performed on the...

  3. 29 CFR 1915.164 - Ship's propulsion machinery.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Ship's propulsion machinery. 1915.164 Section 1915.164 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... Machinery and Piping Systems § 1915.164 Ship's propulsion machinery. (a) Before work is performed on the...

  4. 29 CFR 1915.164 - Ship's propulsion machinery.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Ship's propulsion machinery. 1915.164 Section 1915.164 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... Machinery and Piping Systems § 1915.164 Ship's propulsion machinery. (a) Before work is performed on the...

  5. 29 CFR 1915.164 - Ship's propulsion machinery.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Ship's propulsion machinery. 1915.164 Section 1915.164 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... Machinery and Piping Systems § 1915.164 Ship's propulsion machinery. (a) Before work is performed on the...

  6. 46 CFR 171.095 - Machinery space bulkhead.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Machinery space bulkhead. 171.095 Section 171.095... PERTAINING TO VESSELS CARRYING PASSENGERS Additional Subdivision Requirements § 171.095 Machinery space... transverse watertight bulkheads to separate the machinery space from the remainder of the vessel. All...

  7. 46 CFR 171.095 - Machinery space bulkhead.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Machinery space bulkhead. 171.095 Section 171.095... PERTAINING TO VESSELS CARRYING PASSENGERS Additional Subdivision Requirements § 171.095 Machinery space... transverse watertight bulkheads to separate the machinery space from the remainder of the vessel. All...

  8. 46 CFR 171.095 - Machinery space bulkhead.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Machinery space bulkhead. 171.095 Section 171.095... PERTAINING TO VESSELS CARRYING PASSENGERS Additional Subdivision Requirements § 171.095 Machinery space... transverse watertight bulkheads to separate the machinery space from the remainder of the vessel. All...

  9. 46 CFR 171.095 - Machinery space bulkhead.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Machinery space bulkhead. 171.095 Section 171.095... PERTAINING TO VESSELS CARRYING PASSENGERS Additional Subdivision Requirements § 171.095 Machinery space... transverse watertight bulkheads to separate the machinery space from the remainder of the vessel. All...

  10. 46 CFR 171.095 - Machinery space bulkhead.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Machinery space bulkhead. 171.095 Section 171.095... PERTAINING TO VESSELS CARRYING PASSENGERS Additional Subdivision Requirements § 171.095 Machinery space... transverse watertight bulkheads to separate the machinery space from the remainder of the vessel. All...

  11. 46 CFR 58.01-50 - Machinery space, noise.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Machinery space, noise. 58.01-50 Section 58.01-50... MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-50 Machinery space, noise. (a) Each machinery space must be designed to minimize the exposure of personnel to noise in accordance with IMO A.468(XII...

  12. 46 CFR 58.01-50 - Machinery space, noise.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Machinery space, noise. 58.01-50 Section 58.01-50... MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-50 Machinery space, noise. (a) Each machinery space must be designed to minimize the exposure of personnel to noise in accordance with IMO A.468(XII...

  13. 46 CFR 58.01-50 - Machinery space, noise.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Machinery space, noise. 58.01-50 Section 58.01-50... MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-50 Machinery space, noise. (a) Each machinery space must be designed to minimize the exposure of personnel to noise in accordance with IMO A.468(XII...

  14. 46 CFR 58.01-50 - Machinery space, noise.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Machinery space, noise. 58.01-50 Section 58.01-50... MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-50 Machinery space, noise. (a) Each machinery space must be designed to minimize the exposure of personnel to noise in accordance with IMO A.468(XII...

  15. 46 CFR 58.01-50 - Machinery space, noise.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Machinery space, noise. 58.01-50 Section 58.01-50... MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-50 Machinery space, noise. (a) Each machinery space must be designed to minimize the exposure of personnel to noise in accordance with IMO A.468(XII...

  16. ADJUSTMENT, MAINTENANCE, AND REPAIR OF CROP HARVESTING MACHINERY. AGRICULTURAL MACHINERY--SERVICE OCCUPATIONS, MODULE NUMBER 11.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    ONE OF A SERIES DESIGNED FOR HELPING TEACHERS PREPARE POSTSECONDARY-LEVEL STUDENTS FOR AGRICULTURAL MACHINERY SERVICE OCCUPATIONS AS PARTS MEN, MECHANICS, MECHANIC'S HELPERS, AND SERVICE SUPERVISORS, THIS GUIDE AIMS TO DEVELOP STUDENT COMPETENCY IN ADJUSTING, REPAIRING, AND MAINTAINING CROP HARVESTING MACHINERY. SUGGESTIONS FOR INTRODUCTION OF THE…

  17. 46 CFR 174.195 - Bulkheads in machinery spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Bulkheads in machinery spaces. 174.195 Section 174.195... in machinery spaces. (a) The bulkhead in each machinery space of each OSV must be watertight to the bulkhead deck. (b) Each penetration of, and each opening in, a bulkhead in a machinery space must— (1) Be...

  18. 46 CFR 174.195 - Bulkheads in machinery spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Bulkheads in machinery spaces. 174.195 Section 174.195... in machinery spaces. (a) The bulkhead in each machinery space of each OSV must be watertight to the bulkhead deck. (b) Each penetration of, and each opening in, a bulkhead in a machinery space must— (1) Be...

  19. 46 CFR 174.195 - Bulkheads in machinery spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Bulkheads in machinery spaces. 174.195 Section 174.195... in machinery spaces. (a) The bulkhead in each machinery space of each OSV must be watertight to the bulkhead deck. (b) Each penetration of, and each opening in, a bulkhead in a machinery space must— (1) Be...

  20. 46 CFR 174.195 - Bulkheads in machinery spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Bulkheads in machinery spaces. 174.195 Section 174.195... in machinery spaces. (a) The bulkhead in each machinery space of each OSV must be watertight to the bulkhead deck. (b) Each penetration of, and each opening in, a bulkhead in a machinery space must— (1) Be...

  1. 46 CFR 174.195 - Bulkheads in machinery spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Bulkheads in machinery spaces. 174.195 Section 174.195... in machinery spaces. (a) The bulkhead in each machinery space of each OSV must be watertight to the bulkhead deck. (b) Each penetration of, and each opening in, a bulkhead in a machinery space must— (1) Be...

  2. 29 CFR 1915.165 - Ship's deck machinery.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Ship's deck machinery. 1915.165 Section 1915.165 Labor... (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Ship's Machinery and Piping Systems § 1915.165 Ship's deck machinery. (a) Before work is performed on the anchor windlass or any of...

  3. 29 CFR 1915.165 - Ship's deck machinery.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Ship's deck machinery. 1915.165 Section 1915.165 Labor... (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Ship's Machinery and Piping Systems § 1915.165 Ship's deck machinery. (a) Before work is performed on the anchor windlass or any of...

  4. 29 CFR 1915.165 - Ship's deck machinery.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Ship's deck machinery. 1915.165 Section 1915.165 Labor... (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Ship's Machinery and Piping Systems § 1915.165 Ship's deck machinery. (a) Before work is performed on the anchor windlass or any of...

  5. 29 CFR 1915.165 - Ship's deck machinery.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Ship's deck machinery. 1915.165 Section 1915.165 Labor... (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Ship's Machinery and Piping Systems § 1915.165 Ship's deck machinery. (a) Before work is performed on the anchor windlass or any of...

  6. 30 CFR 75.1725 - Machinery and equipment; operation and maintenance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... machinery until the power is off and the machinery is blocked against motion, except where machinery motion... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Machinery and equipment; operation and....1725 Machinery and equipment; operation and maintenance. (a) Mobile and stationary machinery and...

  7. 30 CFR 75.1725 - Machinery and equipment; operation and maintenance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... machinery until the power is off and the machinery is blocked against motion, except where machinery motion... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Machinery and equipment; operation and....1725 Machinery and equipment; operation and maintenance. (a) Mobile and stationary machinery and...

  8. 30 CFR 75.1725 - Machinery and equipment; operation and maintenance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... machinery until the power is off and the machinery is blocked against motion, except where machinery motion... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Machinery and equipment; operation and....1725 Machinery and equipment; operation and maintenance. (a) Mobile and stationary machinery and...

  9. 30 CFR 75.1725 - Machinery and equipment; operation and maintenance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... machinery until the power is off and the machinery is blocked against motion, except where machinery motion... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Machinery and equipment; operation and....1725 Machinery and equipment; operation and maintenance. (a) Mobile and stationary machinery and...

  10. 30 CFR 75.1725 - Machinery and equipment; operation and maintenance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... machinery until the power is off and the machinery is blocked against motion, except where machinery motion... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Machinery and equipment; operation and....1725 Machinery and equipment; operation and maintenance. (a) Mobile and stationary machinery and...

  11. 33 CFR 157.39 - Machinery space bilges.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Machinery space bilges. 157.39... Vessel Operation § 157.39 Machinery space bilges. (a) A tank vessel may discharge an oily mixture from a machinery space bilge that is combined with an oil cargo residue if the vessel discharges in compliance with...

  12. 33 CFR 157.39 - Machinery space bilges.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Machinery space bilges. 157.39... Vessel Operation § 157.39 Machinery space bilges. (a) A tank vessel may discharge an oily mixture from a machinery space bilge that is combined with an oil cargo residue if the vessel discharges in compliance with...

  13. 33 CFR 157.39 - Machinery space bilges.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Machinery space bilges. 157.39... Vessel Operation § 157.39 Machinery space bilges. (a) A tank vessel may discharge an oily mixture from a machinery space bilge that is combined with an oil cargo residue if the vessel discharges in compliance with...

  14. 33 CFR 157.39 - Machinery space bilges.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Machinery space bilges. 157.39... Vessel Operation § 157.39 Machinery space bilges. (a) A tank vessel may discharge an oily mixture from a machinery space bilge that is combined with an oil cargo residue if the vessel discharges in compliance with...

  15. 33 CFR 157.39 - Machinery space bilges.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Machinery space bilges. 157.39... Vessel Operation § 157.39 Machinery space bilges. (a) A tank vessel may discharge an oily mixture from a machinery space bilge that is combined with an oil cargo residue if the vessel discharges in compliance with...

  16. Mitotic Recombination and Genetic Changes in Saccharomyces cerevisiae during Wine Fermentation

    PubMed Central

    Puig, Sergi; Querol, Amparo; Barrio, Eladio; Pérez-Ortín, José E.

    2000-01-01

    Natural strains of Saccharomyces cerevisiae are prototrophic homothallic yeasts that sporulate poorly, are often heterozygous, and may be aneuploid. This genomic constitution may confer selective advantages in some environments. Different mechanisms of recombination, such as meiosis or mitotic rearrangement of chromosomes, have been proposed for wine strains. We studied the stability of the URA3 locus of a URA3/ura3 wine yeast in consecutive grape must fermentations. ura3/ura3 homozygotes were detected at a rate of 1 × 10−5 to 3 × 10−5 per generation, and mitotic rearrangements for chromosomes VIII and XII appeared after 30 mitotic divisions. We used the karyotype as a meiotic marker and determined that sporulation was not involved in this process. Thus, we propose a hypothesis for the genome changes in wine yeasts during vinification. This putative mechanism involves mitotic recombination between homologous sequences and does not necessarily imply meiosis. PMID:10788381

  17. Inhibition of intra-Golgi transport in vitro by mitotic kinase.

    PubMed

    Stuart, R A; Mackay, D; Adamczewski, J; Warren, G

    1993-02-25

    It has previously been shown that exocytic and endocytic membrane traffic are inhibited in mitotic mammalian cells. Here we have used a cell-free intra-Golgi transport assay supplemented with heterologous cytosols to mimic this effect in vitro. Cytosols with high histone kinase activity, made either from mitotic cells or by cyclin A treatment of interphase cells, inhibited intra-Golgi transport by up to 75%. Inhibition of transport was reversed by the kinase inhibitor staurosporine or by reduction in ATP levels leading to inactivation of histone kinase. The data indicate that cell cycle control of intra-Golgi transport is due to a reversible modification of cytosol, and this assay system may be used to study the molecular mechanism of mitotic transport inhibition in mammalian cells.

  18. The NIMA Kinase Is Required To Execute Stage-Specific Mitotic Functions after Initiation of Mitosis

    PubMed Central

    Govindaraghavan, Meera; Lad, Alisha A.

    2014-01-01

    The G2-M transition in Aspergillus nidulans requires the NIMA kinase, the founding member of the Nek kinase family. Inactivation of NIMA results in a late G2 arrest, while overexpression of NIMA is sufficient to promote mitotic events independently of cell cycle phase. Endogenously tagged NIMA-GFP has dynamic mitotic localizations appearing first at the spindle pole body and then at nuclear pore complexes before transitioning to within nuclei and the mitotic spindle and back at the spindle pole bodies at mitotic exit, suggesting that it functions sequentially at these locations. Since NIMA is indispensable for mitotic entry, it has been difficult to determine the requirement of NIMA for subaspects of mitosis. We show here that when NIMA is partially inactivated, although mitosis can be initiated, a proportion of cells fail to successfully generate two daughter nuclei. We further define the mitotic defects to show that normal NIMA function is required for the formation of a bipolar spindle, nuclear pore complex disassembly, completion of chromatin segregation, and the normal structural rearrangements of the nuclear envelope required to generate two nuclei from one. In the remaining population of cells that enter mitosis with inadequate NIMA, two daughter nuclei are generated in a manner dependent on the spindle assembly checkpoint, indicating highly penetrant defects in mitotic progression without sufficient NIMA activity. This study shows that NIMA is required not only for mitotic entry but also sequentially for successful completion of stage-specific mitotic events. PMID:24186954

  19. Mechanism of APC/CCDC20 activation by mitotic phosphorylation.

    PubMed

    Qiao, Renping; Weissmann, Florian; Yamaguchi, Masaya; Brown, Nicholas G; VanderLinden, Ryan; Imre, Richard; Jarvis, Marc A; Brunner, Michael R; Davidson, Iain F; Litos, Gabriele; Haselbach, David; Mechtler, Karl; Stark, Holger; Schulman, Brenda A; Peters, Jan-Michael

    2016-05-10

    Chromosome segregation and mitotic exit are initiated by the 1.2-MDa ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) and its coactivator CDC20 (cell division cycle 20). To avoid chromosome missegregation, APC/C(CDC20) activation is tightly controlled. CDC20 only associates with APC/C in mitosis when APC/C has become phosphorylated and is further inhibited by a mitotic checkpoint complex until all chromosomes are bioriented on the spindle. APC/C contains 14 different types of subunits, most of which are phosphorylated in mitosis on multiple sites. However, it is unknown which of these phospho-sites enable APC/C(CDC20) activation and by which mechanism. Here we have identified 68 evolutionarily conserved mitotic phospho-sites on human APC/C bound to CDC20 and have used the biGBac technique to generate 47 APC/C mutants in which either all 68 sites or subsets of them were replaced by nonphosphorylatable or phospho-mimicking residues. The characterization of these complexes in substrate ubiquitination and degradation assays indicates that phosphorylation of an N-terminal loop region in APC1 is sufficient for binding and activation of APC/C by CDC20. Deletion of the N-terminal APC1 loop enables APC/C(CDC20) activation in the absence of mitotic phosphorylation or phospho-mimicking mutations. These results indicate that binding of CDC20 to APC/C is normally prevented by an autoinhibitory loop in APC1 and that its mitotic phosphorylation relieves this inhibition. The predicted location of the N-terminal APC1 loop implies that this loop controls interactions between the N-terminal domain of CDC20 and APC1 and APC8. These results reveal how APC/C phosphorylation enables CDC20 to bind and activate the APC/C in mitosis.

  20. Mechanism of APC/CCDC20 activation by mitotic phosphorylation

    PubMed Central

    Qiao, Renping; Weissmann, Florian; Yamaguchi, Masaya; Brown, Nicholas G.; VanderLinden, Ryan; Imre, Richard; Jarvis, Marc A.; Brunner, Michael R.; Davidson, Iain F.; Litos, Gabriele; Haselbach, David; Mechtler, Karl; Stark, Holger; Schulman, Brenda A.; Peters, Jan-Michael

    2016-01-01

    Chromosome segregation and mitotic exit are initiated by the 1.2-MDa ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) and its coactivator CDC20 (cell division cycle 20). To avoid chromosome missegregation, APC/CCDC20 activation is tightly controlled. CDC20 only associates with APC/C in mitosis when APC/C has become phosphorylated and is further inhibited by a mitotic checkpoint complex until all chromosomes are bioriented on the spindle. APC/C contains 14 different types of subunits, most of which are phosphorylated in mitosis on multiple sites. However, it is unknown which of these phospho-sites enable APC/CCDC20 activation and by which mechanism. Here we have identified 68 evolutionarily conserved mitotic phospho-sites on human APC/C bound to CDC20 and have used the biGBac technique to generate 47 APC/C mutants in which either all 68 sites or subsets of them were replaced by nonphosphorylatable or phospho-mimicking residues. The characterization of these complexes in substrate ubiquitination and degradation assays indicates that phosphorylation of an N-terminal loop region in APC1 is sufficient for binding and activation of APC/C by CDC20. Deletion of the N-terminal APC1 loop enables APC/CCDC20 activation in the absence of mitotic phosphorylation or phospho-mimicking mutations. These results indicate that binding of CDC20 to APC/C is normally prevented by an autoinhibitory loop in APC1 and that its mitotic phosphorylation relieves this inhibition. The predicted location of the N-terminal APC1 loop implies that this loop controls interactions between the N-terminal domain of CDC20 and APC1 and APC8. These results reveal how APC/C phosphorylation enables CDC20 to bind and activate the APC/C in mitosis. PMID:27114510

  1. Repeated furrow formation from a single mitotic apparatus in cylindrical sand dollar eggs.

    PubMed

    Rappaport, R

    1985-04-01

    The methods used previously to demonstrate the ability of a single mitotic apparatus to elicit multiple furrows involved considerable cell distortion and did not permit the investigator to control the positioning of the parts or to observe satisfactorily the early stages of furrow development. In this investigation, Echinarachnius parma eggs were confined in 82 microns i.d. transparent, silicone rubber-walled capillaries, and the mitotic apparatus was moved by pushing the poles inward with 55-microns-diameter glass balls. When the mitotic apparatus was shifted immediately after the furrow first appeared, a new furrow appeared in the normal relation to the new position in 1-2 minutes. The same mitotic apparatus could elicit up to 13 furrows as it was shifted back and forth by alternately pushing in the poles. The previous furrow regressed as the new furrow developed. The operations protracted the furrow establishment period to as long as 24.5 minutes after establishment of the first furrow. The characteristics of furrow regression were related to the distance the mitotic apparatus was moved. It is unlikely that regression was caused either by stress imposed on the surface or the removal of the mitotic apparatus from the vicinity of the furrow.

  2. 46 CFR 119.465 - Ventilation of spaces containing diesel machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation of spaces containing diesel machinery. 119... MACHINERY INSTALLATION Specific Machinery Requirements § 119.465 Ventilation of spaces containing diesel machinery. (a) A space containing diesel machinery must be fitted with adequate means, such as dripproof...

  3. 46 CFR 119.465 - Ventilation of spaces containing diesel machinery.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Ventilation of spaces containing diesel machinery. 119... MACHINERY INSTALLATION Specific Machinery Requirements § 119.465 Ventilation of spaces containing diesel machinery. (a) A space containing diesel machinery must be fitted with adequate means, such as dripproof...

  4. Arsenite-induced mitotic death involves stress response and is independent of tubulin polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, B. Frazier; McNeely, Samuel C.; Miller, Heather L.

    2008-07-15

    Arsenite, a known mitotic disruptor, causes cell cycle arrest and cell death at anaphase. The mechanism causing mitotic arrest is highly disputed. We compared arsenite to the spindle poisons nocodazole and paclitaxel. Immunofluorescence analysis of {alpha}-tubulin in interphase cells demonstrated that, while nocodazole and paclitaxel disrupt microtubule polymerization through destabilization and hyperpolymerization, respectively, microtubules in arsenite-treated cells remain comparable to untreated cells even at supra-therapeutic concentrations. Immunofluorescence analysis of {alpha}-tubulin in mitotic cells showed spindle formation in arsenite- and paclitaxel-treated cells but not in nocodazole-treated cells. Spindle formation in arsenite-treated cells appeared irregular and multi-polar. {gamma}-tubulin staining showed that cellsmore » treated with nocodazole and therapeutic concentrations of paclitaxel contained two centrosomes. In contrast, most arsenite-treated mitotic cells contained more than two centrosomes, similar to centrosome abnormalities induced by heat shock. Of the three drugs tested, only arsenite treatment increased expression of the inducible isoform of heat shock protein 70 (HSP70i). HSP70 and HSP90 proteins are intimately involved in centrosome regulation and mitotic spindle formation. HSP90 inhibitor 17-DMAG sensitized cells to arsenite treatment and increased arsenite-induced centrosome abnormalities. Combined treatment of 17-DMAG and arsenite resulted in a supra-additive effect on viability, mitotic arrest, and centrosome abnormalities. Thus, arsenite-induced abnormal centrosome amplification and subsequent mitotic arrest is independent of effects on tubulin polymerization and may be due to specific stresses that are protected against by HSP90 and HSP70.« less

  5. Disappearance of nucleosome positioning in mitotic chromatin in vivo.

    PubMed

    Komura, Jun-ichiro; Ono, Tetsuya

    2005-04-15

    During mitosis, transcription is silenced and most transcription factors are displaced from their recognition sequences. By in vivo footprinting analysis, we have confirmed and extended previous studies showing loss of transcription factors from an RNA polymerase II promoter (c-FOS) and, for the first time, an RNA polymerase III promoter (U6) in HeLa cells. Because little was known about nucleosomal organization in mitotic chromosomes, we performed footprinting analysis for nucleosomes on these promoters in interphase and mitotic cells. During interphase, each of the promoters had a positioned nucleosome in the region intervening between proximal promoter elements and distal enhancer elements, but the strong nucleosome positioning disappeared during mitosis. Thus, the nucleosomal organization that appears to facilitate transcription in interphase cells may be lost in mitotic cells, and nucleosome positioning during mitosis does not seem to be a major component of the epigenetic mechanisms to mark genes for rapid reactivation after this phase.

  6. 46 CFR 58.01-35 - Main propulsion auxiliary machinery.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Main propulsion auxiliary machinery. 58.01-35 Section 58... AUXILIARY MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-35 Main propulsion auxiliary machinery. Auxiliary machinery vital to the main propulsion system must be provided in duplicate unless the system...

  7. 46 CFR 58.01-35 - Main propulsion auxiliary machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Main propulsion auxiliary machinery. 58.01-35 Section 58... AUXILIARY MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-35 Main propulsion auxiliary machinery. Auxiliary machinery vital to the main propulsion system must be provided in duplicate unless the system...

  8. 46 CFR 58.01-35 - Main propulsion auxiliary machinery.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Main propulsion auxiliary machinery. 58.01-35 Section 58... AUXILIARY MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-35 Main propulsion auxiliary machinery. Auxiliary machinery vital to the main propulsion system must be provided in duplicate unless the system...

  9. 46 CFR 58.01-35 - Main propulsion auxiliary machinery.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Main propulsion auxiliary machinery. 58.01-35 Section 58... AUXILIARY MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-35 Main propulsion auxiliary machinery. Auxiliary machinery vital to the main propulsion system must be provided in duplicate unless the system...

  10. 46 CFR 58.01-35 - Main propulsion auxiliary machinery.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Main propulsion auxiliary machinery. 58.01-35 Section 58... AUXILIARY MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-35 Main propulsion auxiliary machinery. Auxiliary machinery vital to the main propulsion system must be provided in duplicate unless the system...

  11. 46 CFR 130.460 - Placement of machinery alarms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Placement of machinery alarms. 130.460 Section 130.460..., AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Automation of Unattended Machinery Spaces § 130.460 Placement of machinery alarms. (a) Visible and audible alarms must be installed at the pilothouse to indicate...

  12. 46 CFR 130.460 - Placement of machinery alarms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Placement of machinery alarms. 130.460 Section 130.460..., AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Automation of Unattended Machinery Spaces § 130.460 Placement of machinery alarms. (a) Visible and audible alarms must be installed at the pilothouse to indicate...

  13. 46 CFR 130.460 - Placement of machinery alarms.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Placement of machinery alarms. 130.460 Section 130.460..., AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Automation of Unattended Machinery Spaces § 130.460 Placement of machinery alarms. (a) Visible and audible alarms must be installed at the pilothouse to indicate...

  14. 46 CFR 130.460 - Placement of machinery alarms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Placement of machinery alarms. 130.460 Section 130.460..., AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Automation of Unattended Machinery Spaces § 130.460 Placement of machinery alarms. (a) Visible and audible alarms must be installed at the pilothouse to indicate...

  15. Transcriptional Response of Selenopolypeptide Genes and Selenocysteine Biosynthesis Machinery Genes in Escherichia coli during Selenite Reduction.

    PubMed

    Tetteh, Antonia Y; Sun, Katherine H; Hung, Chiu-Yueh; Kittur, Farooqahmed S; Ibeanu, Gordon C; Williams, Daniel; Xie, Jiahua

    2014-01-01

    Bacteria can reduce toxic selenite into less toxic, elemental selenium (Se(0)), but the mechanism on how bacterial cells reduce selenite at molecular level is still not clear. We used Escherichia coli strain K12, a common bacterial strain, as a model to study its growth response to sodium selenite (Na2SeO3) treatment and then used quantitative real-time PCR (qRT-PCR) to quantify transcript levels of three E. coli selenopolypeptide genes and a set of machinery genes for selenocysteine (SeCys) biosynthesis and incorporation into polypeptides, whose involvements in the selenite reduction are largely unknown. We determined that 5 mM Na2SeO3 treatment inhibited growth by ∼ 50% while 0.001 to 0.01 mM treatments stimulated cell growth by ∼ 30%. Under 50% inhibitory or 30% stimulatory Na2SeO3 concentration, selenopolypeptide genes (fdnG, fdoG, and fdhF) whose products require SeCys but not SeCys biosynthesis machinery genes were found to be induced ≥2-fold. In addition, one sulfur (S) metabolic gene iscS and two previously reported selenite-responsive genes sodA and gutS were also induced ≥2-fold under 50% inhibitory concentration. Our findings provide insight about the detoxification of selenite in E. coli via induction of these genes involved in the selenite reduction process.

  16. UV-C irradiation delays mitotic progression by recruiting Mps1 to kinetochores.

    PubMed

    Zhang, Xiaojuan; Ling, Youguo; Wang, Wenjun; Zhang, Yanhong; Ma, Qingjun; Tan, Pingping; Song, Ting; Wei, Congwen; Li, Ping; Liu, Xuedong; Ma, Runlin Z; Zhong, Hui; Cao, Cheng; Xu, Quanbin

    2013-04-15

    The effect of UV irradiation on replicating cells during interphase has been studied extensively. However, how the mitotic cell responds to UV irradiation is less well defined. Herein, we found that UV-C irradiation (254 nm) increases recruitment of the spindle checkpoint proteins Mps1 and Mad2 to the kinetochore during metaphase, suggesting that the spindle assembly checkpoint (SAC) is reactivated. In accordance with this, cells exposed to UV-C showed delayed mitotic progression, characterized by a prolonged chromosomal alignment during metaphase. UV-C irradiation also induced the DNA damage response and caused a significant accumulation of γ-H2AX on mitotic chromosomes. Unexpectedly, the mitotic delay upon UV-C irradiation is not due to the DNA damage response but to the relocation of Mps1 to the kinetochore. Further, we found that UV-C irradiation activates Aurora B kinase. Importantly, the kinase activity of Aurora B is indispensable for full recruitment of Mps1 to the kinetochore during both prometaphase and metaphase. Taking these findings together, we propose that UV irradiation delays mitotic progression by evoking the Aurora B-Mps1 signaling cascade, which exerts its role through promoting the association of Mps1 with the kinetochore in metaphase.

  17. UV-C irradiation delays mitotic progression by recruiting Mps1 to kinetochores

    PubMed Central

    Zhang, Xiaojuan; Ling, Youguo; Wang, Wenjun; Zhang, Yanhong; Ma, Qingjun; Tan, Pingping; Song, Ting; Wei, Congwen; Li, Ping; Liu, Xuedong; Ma, Runlin Z.; Zhong, Hui; Cao, Cheng; Xu, Quanbin

    2013-01-01

    The effect of UV irradiation on replicating cells during interphase has been studied extensively. However, how the mitotic cell responds to UV irradiation is less well defined. Herein, we found that UV-C irradiation (254 nm) increases recruitment of the spindle checkpoint proteins Mps1 and Mad2 to the kinetochore during metaphase, suggesting that the spindle assembly checkpoint (SAC) is reactivated. In accordance with this, cells exposed to UV-C showed delayed mitotic progression, characterized by a prolonged chromosomal alignment during metaphase. UV-C irradiation also induced the DNA damage response and caused a significant accumulation of γ-H2AX on mitotic chromosomes. Unexpectedly, the mitotic delay upon UV-C irradiation is not due to the DNA damage response but to the relocation of Mps1 to the kinetochore. Further, we found that UV-C irradiation activates Aurora B kinase. Importantly, the kinase activity of Aurora B is indispensable for full recruitment of Mps1 to the kinetochore during both prometaphase and metaphase. Taking these findings together, we propose that UV irradiation delays mitotic progression by evoking the Aurora B-Mps1 signaling cascade, which exerts its role through promoting the association of Mps1 with the kinetochore in metaphase. PMID:23531678

  18. Ki-67 acts as a biological surfactant to disperse mitotic chromosomes

    PubMed Central

    Cuylen, Sara; Blaukopf, Claudia; Politi, Antonio Z.; Müller-Reichert, Thomas; Neumann, Beate; Poser, Ina; Ellenberg, Jan; Hyman, Anthony A.; Gerlich, Daniel W.

    2016-01-01

    Summary Eukaryotic genomes are partitioned into chromosomes, which during mitosis form compact and spatially well-separated mechanical bodies1–3.This enables chromosomes to move independently of each other for segregation of precisely one copy of the genome to each of the nascent daughter cells. Despite insights into the spatial organization of mitotic chromosomes4 and the discovery of proteins at the chromosome surface3,5,6, the molecular and biophysical basis of mitotic chromosome individuality have remained unclear. We report that Ki-67, a component of the mitotic chromosome periphery, prevents chromosomes from collapsing into a single chromatin mass after nuclear envelope disassembly, thus enabling independent chromosome motility and efficient interactions with the mitotic spindle. The chromosome separation function of Ki-67 is not confined within a specific protein domain but correlates with size and net charge of truncation mutants that apparently lack secondary structure. This suggests that Ki-67 forms a steric and electrical barrier, similar to surface-active agents (surfactants) that disperse particles or phase-separated liquid droplets in solvents. Fluorescence correlation spectroscopy showed a high surface density of Ki-67 and dual-color labeling of both protein termini revealed an extended molecular conformation, indicating brush-like arrangements that are characteristic for polymeric surfactants. Our study thus elucidates a biomechanical role of the mitotic chromosome periphery and suggests that natural proteins can function as surfactants in intracellular compartmentalization. PMID:27362226

  19. 46 CFR 252.33 - Hull and machinery insurance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Hull and machinery insurance. 252.33 Section 252.33... Subsidy Rates § 252.33 Hull and machinery insurance. (a) Subsidy items. The fair and reasonable net premium costs (including stamp taxes) of hull and machinery, increased value, excess general average...

  20. The Notch pathway regulates the Second Mitotic Wave cell cycle independently of bHLH proteins.

    PubMed

    Bhattacharya, Abhishek; Li, Ke; Quiquand, Manon; Rimesso, Gerard; Baker, Nicholas E

    2017-11-15

    Notch regulates both neurogenesis and cell cycle activity to coordinate precursor cell generation in the differentiating Drosophila eye. Mosaic analysis with mitotic clones mutant for Notch components was used to identify the pathway of Notch signaling that regulates the cell cycle in the Second Mitotic Wave. Although S phase entry depends on Notch signaling and on the transcription factor Su(H), the transcriptional co-activator Mam and the bHLH repressor genes of the E(spl)-Complex were not essential, although these are Su(H) coactivators and targets during the regulation of neurogenesis. The Second Mitotic Wave showed little dependence on ubiquitin ligases neuralized or mindbomb, and although the ligand Delta is required non-autonomously, partial cell cycle activity occurred in the absence of known Notch ligands. We found that myc was not essential for the Second Mitotic Wave. The Second Mitotic Wave did not require the HLH protein Extra macrochaetae, and the bHLH protein Daughterless was required only cell-nonautonomously. Similar cell cycle phenotypes for Daughterless and Atonal were consistent with requirement for neuronal differentiation to stimulate Delta expression, affecting Notch activity in the Second Mitotic Wave indirectly. Therefore Notch signaling acts to regulate the Second Mitotic Wave without activating bHLH gene targets. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. 46 CFR 282.23 - Hull and machinery insurance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Hull and machinery insurance. 282.23 Section 282.23... COMMERCE OF THE UNITED STATES Calculation of Subsidy Rates § 282.23 Hull and machinery insurance. (a) Subsidy items. The fair and reasonable net premium costs (including stamp taxes) of hull and machinery...

  2. 46 CFR 111.103-3 - Machinery space ventilation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Machinery space ventilation. 111.103-3 Section 111.103-3...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-3 Machinery space ventilation. (a) Each machinery space ventilation system must have two controls to stop the ventilation, one of which may be the supply...

  3. 46 CFR 111.103-3 - Machinery space ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Machinery space ventilation. 111.103-3 Section 111.103-3...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-3 Machinery space ventilation. (a) Each machinery space ventilation system must have two controls to stop the ventilation, one of which may be the supply...

  4. 46 CFR 111.103-3 - Machinery space ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Machinery space ventilation. 111.103-3 Section 111.103-3...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-3 Machinery space ventilation. (a) Each machinery space ventilation system must have two controls to stop the ventilation, one of which may be the supply...

  5. 46 CFR 111.103-3 - Machinery space ventilation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Machinery space ventilation. 111.103-3 Section 111.103-3...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-3 Machinery space ventilation. (a) Each machinery space ventilation system must have two controls to stop the ventilation, one of which may be the supply...

  6. 46 CFR 111.103-3 - Machinery space ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Machinery space ventilation. 111.103-3 Section 111.103-3...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-3 Machinery space ventilation. (a) Each machinery space ventilation system must have two controls to stop the ventilation, one of which may be the supply...

  7. A mitotic SKAP isoform regulates spindle positioning at astral microtubule plus ends

    PubMed Central

    Kern, David M.; Nicholls, Peter K.; Page, David C.

    2016-01-01

    The Astrin/SKAP complex plays important roles in mitotic chromosome alignment and centrosome integrity, but previous work found conflicting results for SKAP function. Here, we demonstrate that SKAP is expressed as two distinct isoforms in mammals: a longer, testis-specific isoform that was used for the previous studies in mitotic cells and a novel, shorter mitotic isoform. Unlike the long isoform, short SKAP rescues SKAP depletion in mitosis and displays robust microtubule plus-end tracking, including localization to astral microtubules. Eliminating SKAP microtubule binding results in severe chromosome segregation defects. In contrast, SKAP mutants specifically defective for plus-end tracking facilitate proper chromosome segregation but display spindle positioning defects. Cells lacking SKAP plus-end tracking have reduced Clasp1 localization at microtubule plus ends and display increased lateral microtubule contacts with the cell cortex, which we propose results in unbalanced dynein-dependent cortical pulling forces. Our work reveals an unappreciated role for the Astrin/SKAP complex as an astral microtubule mediator of mitotic spindle positioning. PMID:27138257

  8. Suspension of Mitotic Activity in Dentate Gyrus of the Hibernating Ground Squirrel

    PubMed Central

    Popov, Victor I.; Kraev, Igor V.; Ignat'ev, Dmitri A.; Stewart, Michael G.

    2011-01-01

    Neurogenesis occurs in the adult mammalian hippocampus, a region of the brain important for learning and memory. Hibernation in Siberian ground squirrels provides a natural model to study mitosis as the rapid fall in body temperature in 24 h (from 35-36°C to +4–6°C) permits accumulation of mitotic cells at different stages of the cell cycle. Histological methods used to study adult neurogenesis are limited largely to fixed tissue, and the mitotic state elucidated depends on the specific phase of mitosis at the time of day. However, using an immunohistochemical study of doublecortin (DCX) and BrdU-labelled neurons, we demonstrate that the dentate gyrus of the ground squirrel hippocampus contains a population of immature cells which appear to possess mitotic activity. Our data suggest that doublecortin-labelled immature cells exist in a mitotic state and may represent a renewable pool for generation of new neurons within the dentate gyrus. PMID:21773054

  9. 46 CFR 196.30-5 - Accidents to machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Accidents to machinery. 196.30-5 Section 196.30-5... Reports of Accidents, Repairs, and Unsafe Equipment § 196.30-5 Accidents to machinery. (a) In the event of an accident to a boiler, unfired pressure vessel, or machinery tending to render the further use of...

  10. 46 CFR 97.30-5 - Accidents to machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Accidents to machinery. 97.30-5 Section 97.30-5 Shipping... Reports of Accidents, Repairs, and Unsafe Equipment § 97.30-5 Accidents to machinery. (a) In the event of an accident to a boiler, unfired pressure vessel, or machinery tending to render the further use of...

  11. 46 CFR 196.30-5 - Accidents to machinery.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Accidents to machinery. 196.30-5 Section 196.30-5... Reports of Accidents, Repairs, and Unsafe Equipment § 196.30-5 Accidents to machinery. (a) In the event of an accident to a boiler, unfired pressure vessel, or machinery tending to render the further use of...

  12. 46 CFR 97.30-5 - Accidents to machinery.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Accidents to machinery. 97.30-5 Section 97.30-5 Shipping... Reports of Accidents, Repairs, and Unsafe Equipment § 97.30-5 Accidents to machinery. (a) In the event of an accident to a boiler, unfired pressure vessel, or machinery tending to render the further use of...

  13. [The effect of pemolin on the mitotic activity of Vicia faba L (author's transl)].

    PubMed

    Brabec, F; Röper, W

    1976-02-01

    The effect of diverse concentrations of 5-phenyl-2-imino-4-oxazolidone (PIO, pemolin, Tradon) on the mitotic activity in lateral roots of Vicia faba L. was studied by aerated and non-aerated hydrocultivation with and without mineral nutrition, respectively. With optimal conditions (aerated nutrient solution) weak PIO-concentrations, most significantly 10(-6) g/ml, effected a marked increase of the mitotic index. Contrarily, strong PIO-concentrations (10(-4) and 3 X 10(-4) g/ml = saturated solution) significantly decreased the mitotic index though simultaneously preserving the mitotic activity in long-term experiments, when on account of nutrient deficiency it had already collapsed in weak PIO-concentrations and the controls. The activating effect of weak PIO-concentrations compared with the controls is more significant in stress situations (nutrient deficiency, O2-deficiency) than under optimal conditions. Furthermore a slight acceleration of mid-mitotic phases (metaphase--anaphase) recognized by a marked decrease in percentage of these phases, can be stated with weak PIO-concentrations, again particularly so with 10(-6) g/ml. In total, dependent on concentration, pemolin presumably may either activate or suppress cell metabolism and particularly the mitotic cycle. The exact site of action of the substance is still unknown.

  14. Mitotic figure counts are significantly overestimated in resection specimens of invasive breast carcinomas.

    PubMed

    Lehr, Hans-Anton; Rochat, Candice; Schaper, Cornelia; Nobile, Antoine; Shanouda, Sherien; Vijgen, Sandrine; Gauthier, Arnaud; Obermann, Ellen; Leuba, Susana; Schmidt, Marcus; C, Curzio Ruegg; Delaloye, Jean-Francois; Simiantonaki, Nectaria; Schaefer, Stephan C

    2013-03-01

    Several authors have demonstrated an increased number of mitotic figures in breast cancer resection specimen when compared with biopsy material. This has been ascribed to a sampling artifact where biopsies are (i) either too small to allow formal mitotic figure counting or (ii) not necessarily taken form the proliferating tumor periphery. Herein, we propose a different explanation for this phenomenon. Biopsy and resection material of 52 invasive ductal carcinomas was studied. We counted mitotic figures in 10 representative high power fields and quantified MIB-1 immunohistochemistry by visual estimation, counting and image analysis. We found that mitotic figures were elevated by more than three-fold on average in resection specimen over biopsy material from the same tumors (20±6 vs 6±2 mitoses per 10 high power fields, P=0.008), and that this resulted in a relative diminution of post-metaphase figures (anaphase/telophase), which made up 7% of all mitotic figures in biopsies but only 3% in resection specimen (P<0.005). At the same time, the percentages of MIB-1 immunostained tumor cells among total tumor cells were comparable in biopsy and resection material, irrespective of the mode of MIB-1 quantification. Finally, we found no association between the size of the biopsy material and the relative increase of mitotic figures in resection specimen. We propose that the increase in mitotic figures in resection specimen and the significant shift towards metaphase figures is not due to a sampling artifact, but reflects ongoing cell cycle activity in the resected tumor tissue due to fixation delay. The dwindling energy supply will eventually arrest tumor cells in metaphase, where they are readily identified by the diagnostic pathologist. Taken together, we suggest that the rapidly fixed biopsy material better represents true tumor biology and should be privileged as predictive marker of putative response to cytotoxic chemotherapy.

  15. Caspase 2 in mitotic catastrophe: The terminator of aneuploid and tetraploid cells.

    PubMed

    Vitale, Ilio; Manic, Gwenola; Castedo, Maria; Kroemer, Guido

    2017-01-01

    Mitotic catastrophe is an oncosuppressive mechanism that targets cells experiencing defective mitoses via the activation of specific cell cycle checkpoints, regulated cell death pathways and/or cell senescence. This prevents the accumulation of karyotypic aberrations, which otherwise may drive oncogenesis and tumor progression. Here, we summarize experimental evidence confirming the role of caspase 2 (CASP2) as the main executor of mitotic catastrophe, and we discuss the signals that activate CASP2 in the presence of mitotic aberrations. In addition, we summarize the main p53-dependent and -independent effector pathways through which CASP2 limits chromosomal instability and non-diploidy, hence mediating robust oncosuppressive functions.

  16. Mitotic chromosome condensation in vertebrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vagnarelli, Paola, E-mail: P.Vagnarelli@ed.ac.uk

    2012-07-15

    Work from several laboratories over the past 10-15 years has revealed that, within the interphase nucleus, chromosomes are organized into spatially distinct territories [T. Cremer, C. Cremer, Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet. 2 (2001) 292-301 and T. Cremer, M. Cremer, S. Dietzel, S. Muller, I. Solovei, S. Fakan, Chromosome territories-a functional nuclear landscape, Curr. Opin. Cell Biol. 18 (2006) 307-316]. The overall compaction level and intranuclear location varies as a function of gene density for both entire chromosomes [J.A. Croft, J.M. Bridger, S. Boyle, P. Perry, P. Teague,W.A. Bickmore, Differences in themore » localization and morphology of chromosomes in the human nucleus, J. Cell Biol. 145 (1999) 1119-1131] and specific chromosomal regions [N.L. Mahy, P.E. Perry, S. Gilchrist, R.A. Baldock, W.A. Bickmore, Spatial organization of active and inactive genes and noncoding DNA within chromosome territories, J. Cell Biol. 157 (2002) 579-589] (Fig. 1A, A'). In prophase, when cyclin B activity reaches a high threshold, chromosome condensation occurs followed by Nuclear Envelope Breakdown (NEB) [1]. At this point vertebrate chromosomes appear as compact structures harboring an attachment point for the spindle microtubules physically recognizable as a primary constriction where the two sister chromatids are held together. The transition from an unshaped interphase chromosome to the highly structured mitotic chromosome (compare Figs. 1A and B) has fascinated researchers for several decades now; however a definite picture of how this process is achieved and regulated is not yet in our hands and it will require more investigation to comprehend the complete process. From a biochemical point of view a vertebrate mitotic chromosomes is composed of DNA, histone proteins (60%) and non-histone proteins (40%) [6]. I will discuss below what is known to date on the contribution of these two different

  17. AN INDIRECT METHOD TO ASSAY FOR MITOTIC CENTERS IN SAND DOLLAR (DENDRASTER EXCENTRICUS) EGGS

    PubMed Central

    Went, Hans A.

    1966-01-01

    It is possible consistently to induce sea urchin and sand dollar eggs to cleave directly from one cell into four cells. This is done by exposing the fertilized eggs to benzimidazole for 20 to 30 min beginning about early metaphase. The mitotic apparatus regresses, the cells do not cleave, and shortly after they are returned to normal sea water an early-prophase-appearing nucleus is present in each cell. Each cell then organizes a tetrapolar tetrahedral mitotic apparatus de novo, instead of transforming a bipolar mitotic apparatus into a tetrapolar figure, and cleaves one-to-four. In another type of experiment, it appears that sand dollar eggs exposed to mercaptoethanol during the first period of mitotic center duplication have only half as many centers by first cleavage metaphase as the normal controls. This is consistent with an earlier report by Mazia et al (1960). Using this same experimental technique, it was demonstrated that benzimidazole, on the contrary, does not interfere with mitotic center duplication in sand dollar eggs. A labeling experiment demonstrated that benzimidazole does not interfere markedly with the normal pattern of incorporation of C14-thymidine into the DNA of sea urchin eggs. The data reported here suggest that judicious treatment of sand dollar eggs (and probably sea urchin eggs, too) with benzimidazole can induce the eggs to cleave into as many cells as there were mitotic centers sometime earlier, for example at early metaphase of the first cleavage division. This provides a very useful tool for studies on the process of mitotic center duplication. PMID:6008198

  18. An indirect method to assay for mitotic centers in sand dollar (Dendraster excentricus) eggs.

    PubMed

    Went, H A

    1966-09-01

    It is possible consistently to induce sea urchin and sand dollar eggs to cleave directly from one cell into four cells. This is done by exposing the fertilized eggs to benzimidazole for 20 to 30 min beginning about early metaphase. The mitotic apparatus regresses, the cells do not cleave, and shortly after they are returned to normal sea water an early-prophase-appearing nucleus is present in each cell. Each cell then organizes a tetrapolar tetrahedral mitotic apparatus de novo, instead of transforming a bipolar mitotic apparatus into a tetrapolar figure, and cleaves one-to-four. In another type of experiment, it appears that sand dollar eggs exposed to mercaptoethanol during the first period of mitotic center duplication have only half as many centers by first cleavage metaphase as the normal controls. This is consistent with an earlier report by Mazia et al (1960). Using this same experimental technique, it was demonstrated that benzimidazole, on the contrary, does not interfere with mitotic center duplication in sand dollar eggs. A labeling experiment demonstrated that benzimidazole does not interfere markedly with the normal pattern of incorporation of C(14)-thymidine into the DNA of sea urchin eggs. The data reported here suggest that judicious treatment of sand dollar eggs (and probably sea urchin eggs, too) with benzimidazole can induce the eggs to cleave into as many cells as there were mitotic centers sometime earlier, for example at early metaphase of the first cleavage division. This provides a very useful tool for studies on the process of mitotic center duplication.

  19. Bacterial Pili exploit integrin machinery to promote immune activation and efficient blood-brain barrier penetration

    PubMed Central

    Banerjee, Anirban; Kim, Brandon J.; Carmona, Ellese M.; Cutting, Andrew S.; Gurney, Michael A.; Carlos, Chris; Feuer, Ralph; Prasadarao, Nemani V.; Doran, Kelly S.

    2011-01-01

    Group B Streptococcus (GBS) is the leading cause of meningitis in newborn infants. Bacterial cell surface appendages, known as pili, have been recently described in streptococcal pathogens, including GBS. The pilus tip adhesin, PilA, contributes to GBS adherence to blood-brain barrier (BBB) endothelium; however, the host receptor and the contribution of PilA in central nervous system (CNS) disease pathogenesis are unknown. Here we show that PilA binds collagen, which promotes GBS interaction with the α2β1 integrin resulting in activation of host chemokine expression and neutrophil recruitment during infection. Mice infected with the PilA-deficient mutant exhibit delayed mortality, a decrease in neutrophil infiltration and bacterial CNS dissemination. We find that PilA-mediated virulence is dependent on neutrophil influx as neutrophil depletion results in a decrease in BBB permeability and GBS–BBB penetration. Our results suggest that the bacterial pilus, specifically the PilA adhesin, has a dual role in immune activation and bacterial entry into the CNS. PMID:21897373

  20. 30 CFR 77.404 - Machinery and equipment; operation and maintenance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the power is off and the machinery is blocked against motion, except where machinery motion is... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Machinery and equipment; operation and... OF UNDERGROUND COAL MINES Safeguards for Mechanical Equipment § 77.404 Machinery and equipment...

  1. 30 CFR 77.404 - Machinery and equipment; operation and maintenance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the power is off and the machinery is blocked against motion, except where machinery motion is... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Machinery and equipment; operation and... OF UNDERGROUND COAL MINES Safeguards for Mechanical Equipment § 77.404 Machinery and equipment...

  2. 30 CFR 77.404 - Machinery and equipment; operation and maintenance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the power is off and the machinery is blocked against motion, except where machinery motion is... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Machinery and equipment; operation and... OF UNDERGROUND COAL MINES Safeguards for Mechanical Equipment § 77.404 Machinery and equipment...

  3. 30 CFR 77.404 - Machinery and equipment; operation and maintenance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the power is off and the machinery is blocked against motion, except where machinery motion is... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Machinery and equipment; operation and... OF UNDERGROUND COAL MINES Safeguards for Mechanical Equipment § 77.404 Machinery and equipment...

  4. 30 CFR 77.404 - Machinery and equipment; operation and maintenance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the power is off and the machinery is blocked against motion, except where machinery motion is... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Machinery and equipment; operation and... OF UNDERGROUND COAL MINES Safeguards for Mechanical Equipment § 77.404 Machinery and equipment...

  5. EGF Induced Centrosome Separation Promotes Mitotic Progression and Cell Survival

    PubMed Central

    Mardin, Balca R.; Isokane, Mayumi; Cosenza, Marco R.; Krämer, Alwin; Ellenberg, Jan; Fry, Andrew M.; Schiebel, Elmar

    2014-01-01

    Summary Timely and accurate assembly of the mitotic spindle is critical for the faithful segregation of chromosomes and centrosome separation is a key step in this process. The timing of centrosome separation varies dramatically between cell types; however, the mechanisms responsible for these differences and its significance are unclear. Here, we show that activation of epidermal growth factor receptor (EGFR) signaling determines the timing of centrosome separation. Premature separation of centrosomes decreases the requirement for the major mitotic kinesin Eg5 for spindle assembly, accelerates mitosis and decreases the rate of chromosome missegregation. Importantly, EGF stimulation impacts upon centrosome separation and mitotic progression to different degrees in different cell lines. Cells with high EGFR levels fail to arrest in mitosis upon Eg5 inhibition. This has important implications for cancer therapy since cells with high centrosomal response to EGF are more susceptible to combinatorial inhibition of EGFR and Eg5. PMID:23643362

  6. Radmis, a Novel Mitotic Spindle Protein that Functions in Cell Division of Neural Progenitors

    PubMed Central

    Yumoto, Takahito; Nakadate, Kazuhiko; Nakamura, Yuki; Sugitani, Yoshinobu; Sugitani-Yoshida, Reiko; Ueda, Shuichi; Sakakibara, Shin-ichi

    2013-01-01

    Developmental dynamics of neural stem/progenitor cells (NSPCs) are crucial for embryonic and adult neurogenesis, but its regulatory factors are not fully understood. By differential subtractive screening with NSPCs versus their differentiated progenies, we identified the radmis (radial fiber and mitotic spindle)/ckap2l gene, a novel microtubule-associated protein (MAP) enriched in NSPCs. Radmis is a putative substrate for the E3-ubiquitin ligase, anaphase promoting complex/cyclosome (APC/C), and is degraded via the KEN box. Radmis was highly expressed in regions of active neurogenesis throughout life, and its distribution was dynamically regulated during NSPC division. In embryonic and perinatal brains, radmis localized to bipolar mitotic spindles and radial fibers (basal processes) of dividing NSPCs. As central nervous system development proceeded, radmis expression was lost in most brain regions, except for several neurogenic regions. In adult brain, radmis expression persisted in the mitotic spindles of both slowly-dividing stem cells and rapid amplifying progenitors. Overexpression of radmis in vitro induced hyper-stabilization of microtubules, severe defects in mitotic spindle formation, and mitotic arrest. In vivo gain-of-function using in utero electroporation revealed that radmis directed a reduction in NSPC proliferation and a concomitant increase in cell cycle exit, causing a reduction in the Tbr2-positive basal progenitor population and shrinkage of the embryonic subventricular zone. Besides, radmis loss-of-function by shRNAs induced the multipolar mitotic spindle structure, accompanied with the catastrophe of chromosome segregation including the long chromosome bridge between two separating daughter nuclei. These findings uncover the indispensable role of radmis in mitotic spindle formation and cell-cycle progression of NSPCs. PMID:24260314

  7. Electro-Acoustic Behavior of the Mitotic Spindle: A Semi-Classical Coarse-Grained Model

    PubMed Central

    Havelka, Daniel; Kučera, Ondřej; Deriu, Marco A.; Cifra, Michal

    2014-01-01

    The regulation of chromosome separation during mitosis is not fully understood yet. Microtubules forming mitotic spindles are targets of treatment strategies which are aimed at (i) the triggering of the apoptosis or (ii) the interruption of uncontrolled cell division. Despite these facts, only few physical models relating to the dynamics of mitotic spindles exist up to now. In this paper, we present the first electromechanical model which enables calculation of the electromagnetic field coupled to acoustic vibrations of the mitotic spindle. This electromagnetic field originates from the electrical polarity of microtubules which form the mitotic spindle. The model is based on the approximation of resonantly vibrating microtubules by a network of oscillating electric dipoles. Our computational results predict the existence of a rapidly changing electric field which is generated by either driven or endogenous vibrations of the mitotic spindle. For certain values of parameters, the intensity of the electric field and its gradient reach values which may exert a not-inconsiderable force on chromosomes which are aligned in the spindle midzone. Our model may describe possible mechanisms of the effects of ultra-short electrical and mechanical pulses on dividing cells—a strategy used in novel methods for cancer treatment. PMID:24497952

  8. 46 CFR 185.352 - Ventilation of gasoline machinery spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Ventilation of gasoline machinery spaces. 185.352... (UNDER 100 GROSS TONS) OPERATIONS Miscellaneous Operating Requirements § 185.352 Ventilation of gasoline machinery spaces. The mechanical exhaust for the ventilation of a gasoline machinery space, required by...

  9. 46 CFR 185.352 - Ventilation of gasoline machinery spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Ventilation of gasoline machinery spaces. 185.352... (UNDER 100 GROSS TONS) OPERATIONS Miscellaneous Operating Requirements § 185.352 Ventilation of gasoline machinery spaces. The mechanical exhaust for the ventilation of a gasoline machinery space, required by...

  10. 46 CFR 185.352 - Ventilation of gasoline machinery spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Ventilation of gasoline machinery spaces. 185.352... (UNDER 100 GROSS TONS) OPERATIONS Miscellaneous Operating Requirements § 185.352 Ventilation of gasoline machinery spaces. The mechanical exhaust for the ventilation of a gasoline machinery space, required by...

  11. 46 CFR 185.352 - Ventilation of gasoline machinery spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Ventilation of gasoline machinery spaces. 185.352... machinery spaces. The mechanical exhaust for the ventilation of a gasoline machinery space, required by... sufficient to insure at least one complete change of air in the space served. ...

  12. 46 CFR 185.352 - Ventilation of gasoline machinery spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Ventilation of gasoline machinery spaces. 185.352... machinery spaces. The mechanical exhaust for the ventilation of a gasoline machinery space, required by... sufficient to insure at least one complete change of air in the space served. ...

  13. The structure of the mitotic spindle and nucleolus during mitosis in the amebo-flagellate Naegleria.

    PubMed

    Walsh, Charles J

    2012-01-01

    Mitosis in the amebo-flagellate Naegleria pringsheimi is acentrosomal and closed (the nuclear membrane does not break down). The large central nucleolus, which occupies about 20% of the nuclear volume, persists throughout the cell cycle. At mitosis, the nucleolus divides and moves to the poles in association with the chromosomes. The structure of the mitotic spindle and its relationship to the nucleolus are unknown. To identify the origin and structure of the mitotic spindle, its relationship to the nucleolus and to further understand the influence of persistent nucleoli on cellular division in acentriolar organisms like Naegleria, three-dimensional reconstructions of the mitotic spindle and nucleolus were carried out using confocal microscopy. Monoclonal antibodies against three different nucleolar regions and α-tubulin were used to image the nucleolus and mitotic spindle. Microtubules were restricted to the nucleolus beginning with the earliest prophase spindle microtubules. Early spindle microtubules were seen as short rods on the surface of the nucleolus. Elongation of the spindle microtubules resulted in a rough cage of microtubules surrounding the nucleolus. At metaphase, the mitotic spindle formed a broad band completely embedded within the nucleolus. The nucleolus separated into two discreet masses connected by a dense band of microtubules as the spindle elongated. At telophase, the distal ends of the mitotic spindle were still completely embedded within the daughter nucleoli. Pixel by pixel comparison of tubulin and nucleolar protein fluorescence showed 70% or more of tubulin co-localized with nucleolar proteins by early prophase. These observations suggest a model in which specific nucleolar binding sites for microtubules allow mitotic spindle formation and attachment. The fact that a significant mass of nucleolar material precedes the chromosomes as the mitotic spindle elongates suggests that spindle elongation drives nucleolar division.

  14. 29 CFR 1910.214 - Cooperage machinery. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 5 2011-07-01 2011-07-01 false Cooperage machinery. [Reserved] 1910.214 Section 1910.214 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Machinery and Machine Guarding § 1910.214...

  15. The pupylation machinery is involved in iron homeostasis by targeting the iron storage protein ferritin.

    PubMed

    Küberl, Andreas; Polen, Tino; Bott, Michael

    2016-04-26

    The balance of sufficient iron supply and avoidance of iron toxicity by iron homeostasis is a prerequisite for cellular metabolism and growth. Here we provide evidence that, in Actinobacteria, pupylation plays a crucial role in this process. Pupylation is a posttranslational modification in which the prokaryotic ubiquitin-like protein Pup is covalently attached to a lysine residue in target proteins, thus resembling ubiquitination in eukaryotes. Pupylated proteins are recognized and unfolded by a dedicated AAA+ ATPase (Mycobacterium proteasomal AAA+ ATPase; ATPase forming ring-shaped complexes). In Mycobacteria, degradation of pupylated proteins by the proteasome serves as a protection mechanism against several stress conditions. Other bacterial genera capable of pupylation such as Corynebacterium lack a proteasome, and the fate of pupylated proteins is unknown. We discovered that Corynebacterium glutamicum mutants lacking components of the pupylation machinery show a strong growth defect under iron limitation, which was caused by the absence of pupylation and unfolding of the iron storage protein ferritin. Genetic and biochemical data support a model in which the pupylation machinery is responsible for iron release from ferritin independent of degradation.

  16. The pupylation machinery is involved in iron homeostasis by targeting the iron storage protein ferritin

    PubMed Central

    Küberl, Andreas; Polen, Tino; Bott, Michael

    2016-01-01

    The balance of sufficient iron supply and avoidance of iron toxicity by iron homeostasis is a prerequisite for cellular metabolism and growth. Here we provide evidence that, in Actinobacteria, pupylation plays a crucial role in this process. Pupylation is a posttranslational modification in which the prokaryotic ubiquitin-like protein Pup is covalently attached to a lysine residue in target proteins, thus resembling ubiquitination in eukaryotes. Pupylated proteins are recognized and unfolded by a dedicated AAA+ ATPase (Mycobacterium proteasomal AAA+ ATPase; ATPase forming ring-shaped complexes). In Mycobacteria, degradation of pupylated proteins by the proteasome serves as a protection mechanism against several stress conditions. Other bacterial genera capable of pupylation such as Corynebacterium lack a proteasome, and the fate of pupylated proteins is unknown. We discovered that Corynebacterium glutamicum mutants lacking components of the pupylation machinery show a strong growth defect under iron limitation, which was caused by the absence of pupylation and unfolding of the iron storage protein ferritin. Genetic and biochemical data support a model in which the pupylation machinery is responsible for iron release from ferritin independent of degradation. PMID:27078093

  17. Bacterial subversion of host actin dynamics at the plasma membrane.

    PubMed

    Carabeo, Rey

    2011-10-01

    Invasion of non-phagocytic cells by a number of bacterial pathogens involves the subversion of the actin cytoskeletal remodelling machinery to produce actin-rich cell surface projections designed to engulf the bacteria. The signalling that occurs to induce these actin-rich structures has considerable overlap among a diverse group of bacteria. The molecular organization within these structures act in concert to internalize the invading pathogen. This dynamic process could be subdivided into three acts - actin recruitment, engulfment, and finally, actin disassembly/internalization. This review will present the current state of knowledge of the molecular processes involved in each stage of bacterial invasion, and provide a perspective that highlights the temporal and spatial control of actin remodelling that occurs during bacterial invasion. © 2011 Blackwell Publishing Ltd.

  18. Basic research on machinery fault diagnostics: Past, present, and future trends

    NASA Astrophysics Data System (ADS)

    Chen, Xuefeng; Wang, Shibin; Qiao, Baijie; Chen, Qiang

    2018-06-01

    Machinery fault diagnosis has progressed over the past decades with the evolution of machineries in terms of complexity and scale. High-value machineries require condition monitoring and fault diagnosis to guarantee their designed functions and performance throughout their lifetime. Research on machinery Fault diagnostics has grown rapidly in recent years. This paper attempts to summarize and review the recent R&D trends in the basic research field of machinery fault diagnosis in terms of four main aspects: Fault mechanism, sensor technique and signal acquisition, signal processing, and intelligent diagnostics. The review discusses the special contributions of Chinese scholars to machinery fault diagnostics. On the basis of the review of basic theory of machinery fault diagnosis and its practical applications in engineering, the paper concludes with a brief discussion on the future trends and challenges in machinery fault diagnosis.

  19. The MiAge Calculator: a DNA methylation-based mitotic age calculator of human tissue types.

    PubMed

    Youn, Ahrim; Wang, Shuang

    2018-01-01

    Cell division is important in human aging and cancer. The estimation of the number of cell divisions (mitotic age) of a given tissue type in individuals is of great interest as it allows not only the study of biological aging (using a new molecular aging target) but also the stratification of prospective cancer risk. Here, we introduce the MiAge Calculator, a mitotic age calculator based on a novel statistical framework, the MiAge model. MiAge is designed to quantitatively estimate mitotic age (total number of lifetime cell divisions) of a tissue using the stochastic replication errors accumulated in the epigenetic inheritance process during cell divisions. With the MiAge model, the MiAge Calculator was built using the training data of DNA methylation measures of 4,020 tumor and adjacent normal tissue samples from eight TCGA cancer types and was tested using the testing data of DNA methylation measures of 2,221 tumor and adjacent normal tissue samples of five other TCGA cancer types. We showed that within each of the thirteen cancer types studied, the estimated mitotic age is universally accelerated in tumor tissues compared to adjacent normal tissues. Across the thirteen cancer types, we showed that worse cancer survivals are associated with more accelerated mitotic age in tumor tissues. Importantly, we demonstrated the utility of mitotic age by showing that the integration of mitotic age and clinical information leads to improved survival prediction in six out of the thirteen cancer types studied. The MiAge Calculator is available at http://www.columbia.edu/∼sw2206/softwares.htm .

  20. The Saccharomyces cerevisiae MUM2 gene interacts with the DNA replication machinery and is required for meiotic levels of double strand breaks.

    PubMed Central

    Davis, L; Barbera, M; McDonnell, A; McIntyre, K; Sternglanz, R; Jin , Q; Loidl, J; Engebrecht, J

    2001-01-01

    The Saccharomyces cerevisiae MUM2 gene is essential for meiotic, but not mitotic, DNA replication and thus sporulation. Genetic interactions between MUM2 and a component of the origin recognition complex and polymerase alpha-primase suggest that MUM2 influences the function of the DNA replication machinery. Early meiotic gene expression is induced to a much greater extent in mum2 cells than in meiotic cells treated with the DNA synthesis inhibitor hydroxyurea. This result indicates that the mum2 meiotic arrest is downstream of the arrest induced by hydroxyurea and suggests that DNA synthesis is initiated in the mutant. Genetic analyses indicate that the recombination that occurs in mum2 mutants is dependent on the normal recombination machinery and on synaptonemal complex components and therefore is not a consequence of lesions created by incompletely replicated DNA. Both meiotic ectopic and allelic recombination are similarly reduced in the mum2 mutant, and the levels are consistent with the levels of meiosis-specific DSBs that are generated. Cytological analyses of mum2 mutants show that chromosome pairing and synapsis occur, although at reduced levels compared to wild type. Given the near-wild-type levels of meiotic gene expression, pairing, and synapsis, we suggest that the reduction in DNA replication is directly responsible for the reduced level of DSBs and meiotic recombination. PMID:11238403

  1. 46 CFR 185.208 - Accidents to machinery.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Accidents to machinery. 185.208 Section 185.208 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) OPERATIONS Marine Casualties and Voyage Records § 185.208 Accidents to machinery. The owner, managing...

  2. 46 CFR 122.208 - Accidents to machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Accidents to machinery. 122.208 Section 122.208 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150... Voyage Records § 122.208 Accidents to machinery. The owner, managing operator, or master shall report...

  3. 46 CFR 185.208 - Accidents to machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Accidents to machinery. 185.208 Section 185.208 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) OPERATIONS Marine Casualties and Voyage Records § 185.208 Accidents to machinery. The owner, managing...

  4. 46 CFR 122.208 - Accidents to machinery.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Accidents to machinery. 122.208 Section 122.208 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150... Voyage Records § 122.208 Accidents to machinery. The owner, managing operator, or master shall report...

  5. Microtubule-dependent regulation of mitotic protein degradation

    PubMed Central

    Song, Ling; Craney, Allison; Rape, Michael

    2014-01-01

    Accurate cell division depends on tightly regulated ubiquitylation events catalyzed by the anaphase-promoting complex. Among its many substrates, the APC/C triggers the degradation of proteins that stabilize the mitotic spindle, and loss or accumulation of such spindle assembly factors can result in aneuploidy and cancer. Although critical for cell division, it has remained poorly understood how the timing of spindle assembly factor degradation is established during mitosis. Here, we report that active spindle assembly factors are protected from APC/C-dependent degradation by microtubules. In contrast, those molecules that are not bound to microtubules are highly susceptible to proteolysis and turned over immediately after APC/C-activation. The correct timing of spindle assembly factor degradation, as achieved by this regulatory circuit, is required for accurate spindle structure and function. We propose that the localized stabilization of APC/C-substrates provides a mechanism for the selective disposal of cell cycle regulators that have fulfilled their mitotic roles. PMID:24462202

  6. The Utilization during Mitotic Cell Division of Loci Controlling Meiotic Recombination and Disjunction in DROSOPHILA MELANOGASTER

    PubMed Central

    Baker, Bruce S.; Carpenter, Adelaide T. C.; Ripoll, P.

    1978-01-01

    To inquire whether the loci identified by recombination-defective and disjunction-defective meiotic mutants in Drosophila are also utilized during mitotic cell division, the effects of 18 meiotic mutants (representing 13 loci) on mitotic chromosome stability have been examined genetically. To do this, meiotic-mutant-bearing flies heterozygous for recessive somatic cell markers were examined for the frequencies and types of spontaneous clones expressing the cell markers. In such flies, marked clones can arise via mitotic recombination, mutation, chromosome breakage, nondisjunction or chromosome loss, and clones from these different origins can be distinguished. In addition, meiotic mutants at nine loci have been examined for their effects on sensitivity to killing by UV and X rays.—Mutants at six of the seven recombination-defective loci examined (mei-9, mei-41, c(3)G, mei-W68, mei-S282, mei-352, mei-218) cause mitotic chromosome instability in both sexes, whereas mutants at one locus (mei-218) do not affect mitotic chromosome stability. Thus many of the loci utilized during meiotic recombination also function in the chromosomal economy of mitotic cells.—The chromosome instability produced by mei-41 alleles is the consequence of chromosome breakage, that of mei-9 alleles is primarily due to chromosome breakage and, to a lesser extent, to an elevated frequency of mitotic recombination, whereas no predominant mechanism responsible for the instability caused by c(3)G alleles is discernible. Since these three loci are defective in their responses to mutagen damage, their effects on chromosome stability in nonmutagenized cells are interpreted as resulting from an inability to repair spontaneous lesions. Both mei-W68 and mei-S282 increase mitotic recombination (and in mei-W68, to a lesser extent, chromosome loss) in the abdomen but not the wing. In the abdomen, the primary effect on chromosome stability occurs during the larval period when the abdominal histoblasts

  7. Fe-S cluster coordination of the chromokinesin KIF4A alters its sub-cellular localization during mitosis.

    PubMed

    Ben-Shimon, Lilach; Paul, Viktoria D; David-Kadoch, Galit; Volpe, Marina; Stümpfig, Martin; Bill, Eckhard; Mühlenhoff, Ulrich; Lill, Roland; Ben-Aroya, Shay

    2018-05-30

    Fe-S clusters act as co-factors of proteins with diverse functions, e.g. in DNA repair. Down-regulation of the cytosolic iron-sulfur protein assembly (CIA) machinery promotes genomic instability by the inactivation of multiple DNA repair pathways. Furthermore, CIA deficiencies are associated with so far unexplained mitotic defects. Here, we show that CIA2B and MMS19, constituents of the CIA targeting complex involved in facilitating Fe-S cluster insertion into cytosolic and nuclear target proteins, co-localize with components of the mitotic machinery. Down-regulation of CIA2B and MMS19 impairs the mitotic cycle. We identify the chromokinesin KIF4A as a mitotic component involved in these effects. KIF4A binds a Fe-S cluster in vitro through its conserved cysteine-rich domain. We demonstrate in vivo that this domain is required for the mitosis-related KIF4A localization and for the mitotic defects associated with KIF4A knockout. KIF4A is the first identified mitotic component carrying such a post-translational modification. These findings suggest that the lack of Fe-S clusters in KIF4A upon down-regulation of the CIA targeting complex contributes to the mitotic defects. © 2018. Published by The Company of Biologists Ltd.

  8. The Drosophila Microtubule-Associated Protein Mars Stabilizes Mitotic Spindles by Crosslinking Microtubules through Its N-Terminal Region

    PubMed Central

    Zhang, Gang; Beati, Hamze; Nilsson, Jakob; Wodarz, Andreas

    2013-01-01

    Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs) are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs) have been reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function. Here we show that Mars is able to stabilize the mitotic spindle in vivo. Both in vivo and in vitro data reveal that the N-terminal region of Mars functions in the stabilization of the mitotic spindle by crosslinking adjacent MTs. PMID:23593258

  9. Role of senescence and mitotic catastrophe in cancer therapy

    PubMed Central

    2010-01-01

    Senescence and mitotic catastrophe (MC) are two distinct crucial non-apoptotic mechanisms, often triggered in cancer cells and tissues in response to anti-cancer drugs. Chemotherapeuticals and myriad other factors induce cell eradication via these routes. While senescence drives the cells to a state of quiescence, MC drives the cells towards death during the course of mitosis. The senescent phenotype distinguishes tumor cells that survived drug exposure but lost the ability to form colonies from those that recover and proliferate after treatment. Although senescent cells do not proliferate, they are metabolically active and may secrete proteins with potential tumor-promoting activities. The other anti-proliferative response of tumor cells is MC that is a form of cell death that results from abnormal mitosis and leads to the formation of interphase cells with multiple micronuclei. Different classes of cytotoxic agents induce MC, but the pathways of abnormal mitosis differ depending on the nature of the inducer and the status of cell-cycle checkpoints. In this review, we compare the two pathways and mention that they are activated to curb the growth of tumors. Altogether, we have highlighted the possibilities of the use of senescence targeting drugs, mitotic kinases and anti-mitotic agents in fabricating novel strategies in cancer control. PMID:20205872

  10. Antiproliferative Fate of the Tetraploid Formed after Mitotic Slippage and Its Promotion; A Novel Target for Cancer Therapy Based on Microtubule Poisons.

    PubMed

    Nakayama, Yuji; Inoue, Toshiaki

    2016-05-19

    Microtubule poisons inhibit spindle function, leading to activation of spindle assembly checkpoint (SAC) and mitotic arrest. Cell death occurring in prolonged mitosis is the first target of microtubule poisons in cancer therapies. However, even in the presence of microtubule poisons, SAC and mitotic arrest are not permanent, and the surviving cells exit the mitosis without cytokinesis (mitotic slippage), becoming tetraploid. Another target of microtubule poisons-based cancer therapy is antiproliferative fate after mitotic slippage. The ultimate goal of both the microtubule poisons-based cancer therapies involves the induction of a mechanism defined as mitotic catastrophe, which is a bona fide intrinsic oncosuppressive mechanism that senses mitotic failure and responds by driving a cell to an irreversible antiproliferative fate of death or senescence. This mechanism of antiproliferative fate after mitotic slippage is not as well understood. We provide an overview of mitotic catastrophe, and explain new insights underscoring a causal association between basal autophagy levels and antiproliferative fate after mitotic slippage, and propose possible improved strategies. Additionally, we discuss nuclear alterations characterizing the mitotic catastrophe (micronuclei, multinuclei) after mitotic slippage, and a possible new type of nuclear alteration (clustered micronuclei).

  11. Proteomic analysis of cell cycle progression in asynchronous cultures, including mitotic subphases, using PRIMMUS

    PubMed Central

    Whigham, Arlene; Clarke, Rosemary; Brenes-Murillo, Alejandro J; Estes, Brett; Madhessian, Diana; Lundberg, Emma; Wadsworth, Patricia

    2017-01-01

    The temporal regulation of protein abundance and post-translational modifications is a key feature of cell division. Recently, we analysed gene expression and protein abundance changes during interphase under minimally perturbed conditions (Ly et al., 2014, 2015). Here, we show that by using specific intracellular immunolabelling protocols, FACS separation of interphase and mitotic cells, including mitotic subphases, can be combined with proteomic analysis by mass spectrometry. Using this PRIMMUS (PRoteomic analysis of Intracellular iMMUnolabelled cell Subsets) approach, we now compare protein abundance and phosphorylation changes in interphase and mitotic fractions from asynchronously growing human cells. We identify a set of 115 phosphorylation sites increased during G2, termed ‘early risers’. This set includes phosphorylation of S738 on TPX2, which we show is important for TPX2 function and mitotic progression. Further, we use PRIMMUS to provide the first a proteome-wide analysis of protein abundance remodeling between prophase, prometaphase and anaphase. PMID:29052541

  12. Regulating positioning and orientation of mitotic spindles via cell size and shape

    NASA Astrophysics Data System (ADS)

    Li, Jingchen; Jiang, Hongyuan

    2018-01-01

    Proper location of the mitotic spindle is critical for chromosome segregation and the selection of the cell division plane. However, how mitotic spindles sense cell size and shape to regulate their own position and orientation is still largely unclear. To investigate this question systematically, we used a general model by considering chromosomes, microtubule dynamics, and forces of various molecular motors. Our results show that in cells of various sizes and shapes, spindles can always be centered and oriented along the long axis robustly in the absence of other specified mechanisms. We found that the characteristic time of positioning and orientation processes increases with cell size. Spindles sense the cell size mainly by the cortical force in small cells and by the cytoplasmic force in large cells. In addition to the cell size, the cell shape mainly influences the orientation process. We found that more slender cells have a faster orientation process, and the final orientation is not necessarily along the longest axis but is determined by the radial profile and the symmetry of the cell shape. Finally, our model also reproduces the separation and repositioning of the spindle poles during the anaphase. Therefore, our work provides a general tool for studying the mitotic spindle across the whole mitotic phase.

  13. Mediator can regulate mitotic entry and direct periodic transcription in fission yeast.

    PubMed

    Banyai, Gabor; Lopez, Marcela Davila; Szilagyi, Zsolt; Gustafsson, Claes M

    2014-11-01

    Cdk8 is required for correct timing of mitotic progression in fission yeast. How the activity of Cdk8 is regulated is unclear, since the kinase is not activated by T-loop phosphorylation and its partner, CycC, does not oscillate. Cdk8 is, however, a component of the multiprotein Mediator complex, a conserved coregulator of eukaryotic transcription that is connected to a number of intracellular signaling pathways. We demonstrate here that other Mediator components regulate the activity of Cdk8 in vivo and thereby direct the timing of mitotic entry. Deletion of Mediator components Med12 and Med13 leads to higher cellular Cdk8 protein levels, premature phosphorylation of the Cdk8 target Fkh2, and earlier entry into mitosis. We also demonstrate that Mediator is recruited to clusters of mitotic genes in a periodic fashion and that the complex is required for the transcription of these genes. We suggest that Mediator functions as a hub for coordinated regulation of mitotic progression and cell cycle-dependent transcription. The many signaling pathways and activator proteins shown to function via Mediator may influence the timing of these cell cycle events. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  14. Brownian dynamics simulation of fission yeast mitotic spindle formation

    NASA Astrophysics Data System (ADS)

    Edelmaier, Christopher

    2014-03-01

    The mitotic spindle segregates chromosomes during mitosis. The dynamics that establish bipolar spindle formation are not well understood. We have developed a computational model of fission-yeast mitotic spindle formation using Brownian dynamics and kinetic Monte Carlo methods. Our model includes rigid, dynamic microtubules, a spherical nuclear envelope, spindle pole bodies anchored in the nuclear envelope, and crosslinkers and crosslinking motor proteins. Crosslinkers and crosslinking motor proteins attach and detach in a grand canonical ensemble, and exert forces and torques on the attached microtubules. We have modeled increased affinity for crosslinking motor attachment to antiparallel microtubule pairs, and stabilization of microtubules in the interpolar bundle. We study parameters controlling the stability of the interpolar bundle and assembly of a bipolar spindle from initially adjacent spindle-pole bodies.

  15. Salt-inducible kinase 3 is a novel mitotic regulator and a target for enhancing antimitotic therapeutic-mediated cell death

    PubMed Central

    Chen, H; Huang, S; Han, X; Zhang, J; Shan, C; Tsang, Y H; Ma, H T; Poon, R Y C

    2014-01-01

    Many mitotic kinases are both critical for maintaining genome stability and are important targets for anticancer therapies. We provide evidence that SIK3 (salt-inducible kinase 3), an AMP-activated protein kinase-related kinase, is important for mitosis to occur properly in mammalian cells. Downregulation of SIK3 resulted in an extension of mitosis in both mouse and human cells but did not affect the DNA damage checkpoint. Time-lapse microscopy and other approaches indicated that mitotic exit but not mitotic entry was delayed. Although repression of SIK3 alone simply delayed mitotic exit, it was able to sensitize cells to various antimitotic chemicals. Both mitotic arrest and cell death caused by spindle poisons were enhanced after SIK3 depletion. Likewise, the antimitotic effects due to pharmacological inhibition of mitotic kinases including Aurora A, Aurora B, and polo-like kinase 1 were enhanced in the absence of SIK3. Finally, in addition to promoting the sensitivity of a small-molecule inhibitor of the mitotic kinesin Eg5, SIK3 depletion was able to overcome cells that developed drug resistance. These results establish the importance of SIK3 as a mitotic regulator and underscore the potential of SIK3 as a druggable antimitotic target. PMID:24743732

  16. 46 CFR 182.465 - Ventilation of spaces containing diesel machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Ventilation of spaces containing diesel machinery. 182... Ventilation of spaces containing diesel machinery. (a) A space containing diesel machinery must be fitted with... operation of main engines and auxiliary engines. (b) Air-cooled propulsion and auxiliary diesel engines...

  17. 46 CFR 182.465 - Ventilation of spaces containing diesel machinery.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Ventilation of spaces containing diesel machinery. 182... Ventilation of spaces containing diesel machinery. (a) A space containing diesel machinery must be fitted with... operation of main engines and auxiliary engines. (b) Air-cooled propulsion and auxiliary diesel engines...

  18. Choreography of the Mycobacterium Replication Machinery during the Cell Cycle

    PubMed Central

    Trojanowski, Damian; Ginda, Katarzyna; Pióro, Monika; Hołówka, Joanna; Skut, Partycja; Jakimowicz, Dagmara

    2015-01-01

    ABSTRACT It has recently been demonstrated that bacterial chromosomes are highly organized, with specific positioning of the replication initiation region. Moreover, the positioning of the replication machinery (replisome) has been shown to be variable and dependent on species-specific cell cycle features. Here, we analyzed replisome positions in Mycobacterium smegmatis, a slow-growing bacterium that exhibits characteristic asymmetric polar cell extension. Time-lapse fluorescence microscopy analyses revealed that the replisome is slightly off-center in mycobacterial cells, a feature that is likely correlated with the asymmetric growth of Mycobacterium cell poles. Estimates of the timing of chromosome replication in relation to the cell cycle, as well as cell division and chromosome segregation events, revealed that chromosomal origin-of-replication (oriC) regions segregate soon after the start of replication. Moreover, our data demonstrate that organization of the chromosome by ParB determines the replisome choreography. PMID:25691599

  19. The Research of Computer Aided Farm Machinery Designing Method Based on Ergonomics

    NASA Astrophysics Data System (ADS)

    Gao, Xiyin; Li, Xinling; Song, Qiang; Zheng, Ying

    Along with agricultural economy development, the farm machinery product type Increases gradually, the ergonomics question is also getting more and more prominent. The widespread application of computer aided machinery design makes it possible that farm machinery design is intuitive, flexible and convenient. At present, because the developed computer aided ergonomics software has not suitable human body database, which is needed in view of farm machinery design in China, the farm machinery design have deviation in ergonomics analysis. This article puts forward that using the open database interface procedure in CATIA to establish human body database which aims at the farm machinery design, and reading the human body data to ergonomics module of CATIA can product practical application virtual body, using human posture analysis and human activity analysis module to analysis the ergonomics in farm machinery, thus computer aided farm machinery designing method based on engineering can be realized.

  20. Greatwall is essential to prevent mitotic collapse after nuclear envelope breakdown in mammals.

    PubMed

    Álvarez-Fernández, Mónica; Sánchez-Martínez, Ruth; Sanz-Castillo, Belén; Gan, Pei Pei; Sanz-Flores, María; Trakala, Marianna; Ruiz-Torres, Miguel; Lorca, Thierry; Castro, Anna; Malumbres, Marcos

    2013-10-22

    Greatwall is a protein kinase involved in the inhibition of protein phosphatase 2 (PP2A)-B55 complexes to maintain the mitotic state. Although its biochemical activity has been deeply characterized in Xenopus, its specific relevance during the progression of mitosis is not fully understood. By using a conditional knockout of the mouse ortholog, Mastl, we show here that mammalian Greatwall is essential for mouse embryonic development and cell cycle progression. Yet, Greatwall-null cells enter into mitosis with normal kinetics. However, these cells display mitotic collapse after nuclear envelope breakdown (NEB) characterized by defective chromosome condensation and prometaphase arrest. Intriguingly, Greatwall is exported from the nucleus to the cytoplasm in a CRM1-dependent manner before NEB. This export occurs after the nuclear import of cyclin B-Cdk1 complexes, requires the kinase activity of Greatwall, and is mediated by Cdk-, but not Polo-like kinase 1-dependent phosphorylation. The mitotic collapse observed in Greatwall-deficient cells is partially rescued after concomitant depletion of B55 regulatory subunits, which are mostly cytoplasmic before NEB. These data suggest that Greatwall is an essential protein in mammals required to prevent mitotic collapse after NEB.

  1. A mitotic kinase scaffold depleted in testicular seminomas impacts spindle orientation in germ line stem cells

    PubMed Central

    Hehnly, Heidi; Canton, David; Bucko, Paula; Langeberg, Lorene K; Ogier, Leah; Gelman, Irwin; Santana, L Fernando; Wordeman, Linda; Scott, John D

    2015-01-01

    Correct orientation of the mitotic spindle in stem cells underlies organogenesis. Spindle abnormalities correlate with cancer progression in germ line-derived tumors. We discover a macromolecular complex between the scaffolding protein Gravin/AKAP12 and the mitotic kinases, Aurora A and Plk1, that is down regulated in human seminoma. Depletion of Gravin correlates with an increased mitotic index and disorganization of seminiferous tubules. Biochemical, super-resolution imaging, and enzymology approaches establish that this Gravin scaffold accumulates at the mother spindle pole during metaphase. Manipulating elements of the Gravin-Aurora A-Plk1 axis prompts mitotic delay and prevents appropriate assembly of astral microtubules to promote spindle misorientation. These pathological responses are conserved in seminiferous tubules from Gravin−/− mice where an overabundance of Oct3/4 positive germ line stem cells displays randomized orientation of mitotic spindles. Thus, we propose that Gravin-mediated recruitment of Aurora A and Plk1 to the mother (oldest) spindle pole contributes to the fidelity of symmetric cell division. DOI: http://dx.doi.org/10.7554/eLife.09384.001 PMID:26406118

  2. Mitotic Arrest in Teratoma Susceptible Fetal Male Germ Cells

    PubMed Central

    Western, Patrick S.; Ralli, Rachael A.; Wakeling, Stephanie I.; Lo, Camden; van den Bergen, Jocelyn A.; Miles, Denise C.; Sinclair, Andrew H.

    2011-01-01

    Formation of germ cell derived teratomas occurs in mice of the 129/SvJ strain, but not in C57Bl/6 inbred or CD1 outbred mice. Despite this, there have been few comparative studies aimed at determining the similarities and differences between teratoma susceptible and non-susceptible mouse strains. This study examines the entry of fetal germ cells into the male pathway and mitotic arrest in 129T2/SvJ mice. We find that although the entry of fetal germ cells into mitotic arrest is similar between 129T2/SvJ, C57Bl/6 and CD1 mice, there were significant differences in the size and germ cell content of the testis cords in these strains. In 129T2/SvJ mice germ cell mitotic arrest involves upregulation of p27KIP1, p15INK4B, activation of RB, the expression of male germ cell differentiation markers NANOS2, DNMT3L and MILI and repression of the pluripotency network. The germ-line markers DPPA2 and DPPA4 show reciprocal repression and upregulation, respectively, while FGFR3 is substantially enriched in the nucleus of differentiating male germ cells. Further understanding of fetal male germ cell differentiation promises to provide insight into disorders of the testis and germ cell lineage, such as testis tumour formation and infertility. PMID:21674058

  3. 46 CFR 58.20-15 - Installation of refrigerating machinery.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... AND AUXILIARY MACHINERY AND RELATED SYSTEMS Refrigeration Machinery § 58.20-15 Installation of... refrigeration compressor spaces shall be effectively ventilated and drained and shall be separated from the...

  4. 46 CFR 58.20-15 - Installation of refrigerating machinery.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... AND AUXILIARY MACHINERY AND RELATED SYSTEMS Refrigeration Machinery § 58.20-15 Installation of... refrigeration compressor spaces shall be effectively ventilated and drained and shall be separated from the...

  5. 46 CFR 58.20-15 - Installation of refrigerating machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... AND AUXILIARY MACHINERY AND RELATED SYSTEMS Refrigeration Machinery § 58.20-15 Installation of... refrigeration compressor spaces shall be effectively ventilated and drained and shall be separated from the...

  6. 46 CFR 58.20-15 - Installation of refrigerating machinery.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... AND AUXILIARY MACHINERY AND RELATED SYSTEMS Refrigeration Machinery § 58.20-15 Installation of... refrigeration compressor spaces shall be effectively ventilated and drained and shall be separated from the...

  7. 46 CFR 58.20-15 - Installation of refrigerating machinery.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... AND AUXILIARY MACHINERY AND RELATED SYSTEMS Refrigeration Machinery § 58.20-15 Installation of... refrigeration compressor spaces shall be effectively ventilated and drained and shall be separated from the...

  8. Is retinoic acid genetic machinery a chordate innovation?

    PubMed

    Cañestro, Cristian; Postlethwait, John H; Gonzàlez-Duarte, Roser; Albalat, Ricard

    2006-01-01

    Development of many chordate features depends on retinoic acid (RA). Because the action of RA during development seems to be restricted to chordates, it had been previously proposed that the "invention" of RA genetic machinery, including RA-binding nuclear hormone receptors (Rars), and the RA-synthesizing and RA-degrading enzymes Aldh1a (Raldh) and Cyp26, respectively, was an important step for the origin of developmental mechanisms leading to the chordate body plan. We tested this hypothesis by conducting an exhaustive survey of the RA machinery in genomic databases for twelve deuterostomes. We reconstructed the evolution of these genes in deuterostomes and showed for the first time that RA genetic machinery--that is Aldh1a, Cyp26, and Rar orthologs--is present in nonchordate deuterostomes. This finding implies that RA genetic machinery was already present during early deuterostome evolution, and therefore, is not a chordate innovation. This new evolutionary viewpoint argues against the hypothesis that the acquisition of gene families underlying RA metabolism and signaling was a key event for the origin of chordates. We propose a new hypothesis in which lineage-specific duplication and loss of RA machinery genes could be related to the morphological radiation of deuterostomes.

  9. Genetic variation in mitotic regulatory pathway genes is associated with breast tumor grade

    PubMed Central

    Purrington, Kristen S.; Slettedahl, Seth; Bolla, Manjeet K.; Michailidou, Kyriaki; Czene, Kamila; Nevanlinna, Heli; Bojesen, Stig E.; Andrulis, Irene L.; Cox, Angela; Hall, Per; Carpenter, Jane; Yannoukakos, Drakoulis; Haiman, Christopher A.; Fasching, Peter A.; Mannermaa, Arto; Winqvist, Robert; Brenner, Hermann; Lindblom, Annika; Chenevix-Trench, Georgia; Benitez, Javier; Swerdlow, Anthony; Kristensen, Vessela; Guénel, Pascal; Meindl, Alfons; Darabi, Hatef; Eriksson, Mikael; Fagerholm, Rainer; Aittomäki, Kristiina; Blomqvist, Carl; Nordestgaard, Børge G.; Nielsen, Sune F.; Flyger, Henrik; Wang, Xianshu; Olswold, Curtis; Olson, Janet E.; Mulligan, Anna Marie; Knight, Julia A.; Tchatchou, Sandrine; Reed, Malcolm W.R.; Cross, Simon S.; Liu, Jianjun; Li, Jingmei; Humphreys, Keith; Clarke, Christine; Scott, Rodney; Fostira, Florentia; Fountzilas, George; Konstantopoulou, Irene; Henderson, Brian E.; Schumacher, Fredrick; Le Marchand, Loic; Ekici, Arif B.; Hartmann, Arndt; Beckmann, Matthias W.; Hartikainen, Jaana M.; Kosma, Veli-Matti; Kataja, Vesa; Jukkola-Vuorinen, Arja; Pylkäs, Katri; Kauppila, Saila; Dieffenbach, Aida Karina; Stegmaier, Christa; Arndt, Volker; Margolin, Sara; Balleine, Rosemary; Arias Perez, Jose Ignacio; Pilar Zamora, M.; Menéndez, Primitiva; Ashworth, Alan; Jones, Michael; Orr, Nick; Arveux, Patrick; Kerbrat, Pierre; Truong, Thérèse; Bugert, Peter; Toland, Amanda E.; Ambrosone, Christine B.; Labrèche, France; Goldberg, Mark S.; Dumont, Martine; Ziogas, Argyrios; Lee, Eunjung; Dite, Gillian S.; Apicella, Carmel; Southey, Melissa C.; Long, Jirong; Shrubsole, Martha; Deming-Halverson, Sandra; Ficarazzi, Filomena; Barile, Monica; Peterlongo, Paolo; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Tollenaar, Robert A.E.M.; Seynaeve, Caroline; Brüning, Thomas; Ko, Yon-Dschun; Van Deurzen, Carolien H.M.; Martens, John W.M.; Kriege, Mieke; Figueroa, Jonine D.; Chanock, Stephen J.; Lissowska, Jolanta; Tomlinson, Ian; Kerin, Michael J.; Miller, Nicola; Schneeweiss, Andreas; Tapper, William J.; Gerty, Susan M.; Durcan, Lorraine; Mclean, Catriona; Milne, Roger L.; Baglietto, Laura; dos Santos Silva, Isabel; Fletcher, Olivia; Johnson, Nichola; Van'T Veer, Laura J.; Cornelissen, Sten; Försti, Asta; Torres, Diana; Rüdiger, Thomas; Rudolph, Anja; Flesch-Janys, Dieter; Nickels, Stefan; Weltens, Caroline; Floris, Giuseppe; Moisse, Matthieu; Dennis, Joe; Wang, Qin; Dunning, Alison M.; Shah, Mitul; Brown, Judith; Simard, Jacques; Anton-Culver, Hoda; Neuhausen, Susan L.; Hopper, John L.; Bogdanova, Natalia; Dörk, Thilo; Zheng, Wei; Radice, Paolo; Jakubowska, Anna; Lubinski, Jan; Devillee, Peter; Brauch, Hiltrud; Hooning, Maartje; García-Closas, Montserrat; Sawyer, Elinor; Burwinkel, Barbara; Marmee, Frederick; Eccles, Diana M.; Giles, Graham G.; Peto, Julian; Schmidt, Marjanka; Broeks, Annegien; Hamann, Ute; Chang-Claude, Jenny; Lambrechts, Diether; Pharoah, Paul D.P.; Easton, Douglas; Pankratz, V. Shane; Slager, Susan; Vachon, Celine M.; Couch, Fergus J.

    2014-01-01

    Mitotic index is an important component of histologic grade and has an etiologic role in breast tumorigenesis. Several small candidate gene studies have reported associations between variation in mitotic genes and breast cancer risk. We measured associations between 2156 single nucleotide polymorphisms (SNPs) from 194 mitotic genes and breast cancer risk, overall and by histologic grade, in the Breast Cancer Association Consortium (BCAC) iCOGS study (n = 39 067 cases; n = 42 106 controls). SNPs in TACC2 [rs17550038: odds ratio (OR) = 1.24, 95% confidence interval (CI) 1.16–1.33, P = 4.2 × 10−10) and EIF3H (rs799890: OR = 1.07, 95% CI 1.04–1.11, P = 8.7 × 10−6) were significantly associated with risk of low-grade breast cancer. The TACC2 signal was retained (rs17550038: OR = 1.15, 95% CI 1.07–1.23, P = 7.9 × 10−5) after adjustment for breast cancer risk SNPs in the nearby FGFR2 gene, suggesting that TACC2 is a novel, independent genome-wide significant genetic risk locus for low-grade breast cancer. While no SNPs were individually associated with high-grade disease, a pathway-level gene set analysis showed that variation across the 194 mitotic genes was associated with high-grade breast cancer risk (P = 2.1 × 10−3). These observations will provide insight into the contribution of mitotic defects to histological grade and the etiology of breast cancer. PMID:24927736

  10. Saccharomyces cerevisiae Mob1p Is Required for Cytokinesis and Mitotic Exit

    PubMed Central

    Luca, Francis C.; Mody, Manali; Kurischko, Cornelia; Roof, David M.; Giddings, Thomas H.; Winey, Mark

    2001-01-01

    The Saccharomyces cerevisiae mitotic exit network (MEN) is a conserved set of genes that mediate the transition from mitosis to G1 by regulating mitotic cyclin degradation and the inactivation of cyclin-dependent kinase (CDK). Here, we demonstrate that, in addition to mitotic exit, S. cerevisiae MEN gene MOB1 is required for cytokinesis and cell separation. The cytokinesis defect was evident in mob1 mutants under conditions in which there was no mitotic-exit defect. Observation of live cells showed that yeast myosin II, Myo1p, was present in the contractile ring at the bud neck but that the ring failed to contract and disassemble. The cytokinesis defect persisted for several mitotic cycles, resulting in chains of cells with correctly segregated nuclei but with uncontracted actomyosin rings. The cytokinesis proteins Cdc3p (a septin), actin, and Iqg1p/ Cyk1p (an IQGAP-like protein) appeared to correctly localize in mob1 mutants, suggesting that MOB1 functions subsequent to actomyosin ring assembly. We also examined the subcellular distribution of Mob1p during the cell cycle and found that Mob1p first localized to the spindle pole bodies during mid-anaphase and then localized to a ring at the bud neck just before and during cytokinesis. Localization of Mob1p to the bud neck required CDC3, MEN genes CDC5, CDC14, CDC15, and DBF2, and spindle pole body gene NUD1 but was independent of MYO1. The localization of Mob1p to both spindle poles was abolished in cdc15 and nud1 mutants and was perturbed in cdc5 and cdc14 mutants. These results suggest that the MEN functions during the mitosis-to-G1 transition to control cyclin-CDK inactivation and cytokinesis. PMID:11564880

  11. 46 CFR 97.15-15 - Examination of boilers and machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Examination of boilers and machinery. 97.15-15 Section... VESSELS OPERATIONS Tests, Drills, and Inspections § 97.15-15 Examination of boilers and machinery. It shall be the duty of the chief engineer when assuming charge of the boilers and machinery of a vessel to...

  12. 46 CFR 78.17-30 - Examination of boilers and machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Examination of boilers and machinery. 78.17-30 Section... OPERATIONS Tests, Drills, and Inspections § 78.17-30 Examination of boilers and machinery. It shall be the duty of the chief engineer when assuming charge of the boilers and machinery of a vessel to examine...

  13. 46 CFR 32.35-1 - Boilers and machinery-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Boilers and machinery-TB/ALL. 32.35-1 Section 32.35-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Main and Auxiliary Machinery § 32.35-1 Boilers and machinery—TB/ALL. Boilers, main and auxiliary...

  14. Factors associated with small-scale agricultural machinery adoption in Bangladesh: Census findings.

    PubMed

    Mottaleb, Khondoker Abdul; Krupnik, Timothy J; Erenstein, Olaf

    2016-08-01

    There is strong advocacy for agricultural machinery appropriate for smallholder farmers in South Asia. Such 'scale-appropriate' machinery can increase returns to land and labour, although the still substantial capital investment required can preclude smallholder ownership. Increasing machinery demand has resulted in relatively well-developed markets for rental services for tillage, irrigation, and post-harvest operations. Many smallholders thereby access agricultural machinery that may have otherwise been cost prohibitive to purchase through fee-for-service arrangements, though opportunity for expansion remains. To more effectively facilitate the development and investment in scale-appropriate machinery, there is a need to better understand the factors associated with agricultural machinery purchases and service provision. This paper first reviews Bangladesh's historical policy environment that facilitated the development of agricultural machinery markets. It then uses recent Bangladesh census data from 814,058 farm households to identify variables associated with the adoption of the most common smallholder agricultural machinery - irrigation pumps, threshers, and power tillers (mainly driven by two-wheel tractors). Multinomial probit model results indicate that machinery ownership is positively associated with household assets, credit availability, electrification, and road density. These findings suggest that donors and policy makers should focus not only on short-term projects to boost machinery adoption. Rather, sustained emphasis on improving physical and civil infrastructure and services, as well as assuring credit availability, is also necessary to create an enabling environment in which the adoption of scale-appropriate farm machinery is most likely.

  15. Spatial Reorganization of the Endoplasmic Reticulum during Mitosis Relies on Mitotic Kinase Cyclin A in the Early Drosophila Embryo

    PubMed Central

    Bergman, Zane J.; Mclaurin, Justin D.; Eritano, Anthony S.; Johnson, Brittany M.; Sims, Amanda Q.; Riggs, Blake

    2015-01-01

    Mitotic cyclin-dependent kinase with their cyclin partners (cyclin:Cdks) are the master regulators of cell cycle progression responsible for regulating a host of activities during mitosis. Nuclear mitotic events, including chromosome condensation and segregation have been directly linked to Cdk activity. However, the regulation and timing of cytoplasmic mitotic events by cyclin:Cdks is poorly understood. In order to examine these mitotic cytoplasmic events, we looked at the dramatic changes in the endoplasmic reticulum (ER) during mitosis in the early Drosophila embryo. The dynamic changes of the ER can be arrested in an interphase state by inhibition of either DNA or protein synthesis. Here we show that this block can be alleviated by micro-injection of Cyclin A (CycA) in which defined mitotic ER clusters gathered at the spindle poles. Conversely, micro-injection of Cyclin B (CycB) did not affect spatial reorganization of the ER, suggesting CycA possesses the ability to initiate mitotic ER events in the cytoplasm. Additionally, RNAi-mediated simultaneous inhibition of all 3 mitotic cyclins (A, B and B3) blocked spatial reorganization of the ER. Our results suggest that mitotic ER reorganization events rely on CycA and that control and timing of nuclear and cytoplasmic events during mitosis may be defined by release of CycA from the nucleus as a consequence of breakdown of the nuclear envelope. PMID:25689737

  16. Loading of PAX3 to Mitotic Chromosomes Is Mediated by Arginine Methylation and Associated with Waardenburg Syndrome*

    PubMed Central

    Wu, Tsu-Fang; Yao, Ya-Li; Lai, I-Lu; Lai, Chien-Chen; Lin, Pei-Lun; Yang, Wen-Ming

    2015-01-01

    PAX3 is a transcription factor critical to gene regulation in mammalian development. Mutations in PAX3 are associated with Waardenburg syndrome (WS), but the mechanism of how mutant PAX3 proteins cause WS remains unclear. Here, we found that PAX3 loads on mitotic chromosomes using its homeodomain. PAX3 WS mutants with mutations in homeodomain lose the ability to bind mitotic chromosomes. Moreover, loading of PAX3 on mitotic chromosomes requires arginine methylation, which is regulated by methyltransferase PRMT5 and demethylase JMJD6. Mutant PAX3 proteins that lose mitotic chromosome localization block cell proliferation and normal development of zebrafish. These results reveal the molecular mechanism of PAX3s loading on mitotic chromosomes and the importance of this localization pattern in normal development. Our findings suggest that PAX3 WS mutants interfere with the normal functions of PAX3 in a dominant negative manner, which is important to the understanding of the pathogenesis of Waardenburg syndrome. PMID:26149688

  17. Deficiency of RITA results in multiple mitotic defects by affecting microtubule dynamics.

    PubMed

    Steinhäuser, K; Klöble, P; Kreis, N-N; Ritter, A; Friemel, A; Roth, S; Reichel, J M; Michaelis, J; Rieger, M A; Louwen, F; Oswald, F; Yuan, J

    2017-04-01

    Deregulation of mitotic microtubule (MT) dynamics results in defective spindle assembly and chromosome missegregation, leading further to chromosome instability, a hallmark of tumor cells. RBP-J interacting and tubulin-associated protein (RITA) has been identified as a negative regulator of the Notch signaling pathway. Intriguingly, deregulated RITA is involved in primary hepatocellular carcinoma and other malignant entities. We were interested in the potential molecular mechanisms behind its involvement. We show here that RITA binds to tubulin and localizes to various mitotic MT structures. RITA coats MTs and affects their structures in vitro as well as in vivo. Tumor cell lines deficient of RITA display increased acetylated α-tubulin, enhanced MT stability and reduced MT dynamics, accompanied by multiple mitotic defects, including chromosome misalignment and segregation errors. Re-expression of wild-type RITA, but not RITA Δtub ineffectively binding to tubulin, restores the phenotypes, suggesting that the role of RITA in MT modulation is mediated via its interaction with tubulin. Mechanistically, RITA interacts with tubulin/histone deacetylase 6 (HDAC6) and its suppression decreases the binding of the deacetylase HDAC6 to tubulin/MTs. Furthermore, the mitotic defects and increased MT stability are also observed in RITA -/- mouse embryonic fibroblasts. RITA has thus a novel role in modulating MT dynamics and its deregulation results in erroneous chromosome segregation, one of the major reasons for chromosome instability in tumor cells.

  18. 46 CFR 196.15-15 - Examination of boilers and machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Examination of boilers and machinery. 196.15-15 Section... VESSELS OPERATIONS Test, Drills, and Inspections § 196.15-15 Examination of boilers and machinery. (a) It shall be the duty of the chief engineer when he assumes charge of the boilers and machinery of a vessel...

  19. Novel mechanisms power bacterial gliding motility.

    PubMed

    Nan, Beiyan; Zusman, David R

    2016-07-01

    For many bacteria, motility is essential for survival, growth, virulence, biofilm formation and intra/interspecies interactions. Since natural environments differ, bacteria have evolved remarkable motility systems to adapt, including swimming in aqueous media, and swarming, twitching and gliding on solid and semi-solid surfaces. Although tremendous advances have been achieved in understanding swimming and swarming motilities powered by flagella, and twitching motility powered by Type IV pili, little is known about gliding motility. Bacterial gliders are a heterogeneous group containing diverse bacteria that utilize surface motilities that do not depend on traditional flagella or pili, but are powered by mechanisms that are less well understood. Recently, advances in our understanding of the molecular machineries for several gliding bacteria revealed the roles of modified ion channels, secretion systems and unique machinery for surface movements. These novel mechanisms provide rich source materials for studying the function and evolution of complex microbial nanomachines. In this review, we summarize recent findings made on the gliding mechanisms of the myxobacteria, flavobacteria and mycoplasmas. © 2016 John Wiley & Sons Ltd.

  20. Developmental alterations in centrosome integrity contribute to the post-mitotic state of mammalian cardiomyocytes

    PubMed Central

    Zebrowski, David C; Vergarajauregui, Silvia; Wu, Chi-Chung; Piatkowski, Tanja; Becker, Robert; Leone, Marina; Hirth, Sofia; Ricciardi, Filomena; Falk, Nathalie; Giessl, Andreas; Just, Steffen; Braun, Thomas; Weidinger, Gilbert; Engel, Felix B

    2015-01-01

    Mammalian cardiomyocytes become post-mitotic shortly after birth. Understanding how this occurs is highly relevant to cardiac regenerative therapy. Yet, how cardiomyocytes achieve and maintain a post-mitotic state is unknown. Here, we show that cardiomyocyte centrosome integrity is lost shortly after birth. This is coupled with relocalization of various centrosome proteins to the nuclear envelope. Consequently, postnatal cardiomyocytes are unable to undergo ciliogenesis and the nuclear envelope adopts the function as cellular microtubule organizing center. Loss of centrosome integrity is associated with, and can promote, cardiomyocyte G0/G1 cell cycle arrest suggesting that centrosome disassembly is developmentally utilized to achieve the post-mitotic state in mammalian cardiomyocytes. Adult cardiomyocytes of zebrafish and newt, which are able to proliferate, maintain centrosome integrity. Collectively, our data provide a novel mechanism underlying the post-mitotic state of mammalian cardiomyocytes as well as a potential explanation for why zebrafish and newts, but not mammals, can regenerate their heart. DOI: http://dx.doi.org/10.7554/eLife.05563.001 PMID:26247711

  1. Heat shock protein inhibitors, 17-DMAG and KNK437, enhance arsenic trioxide-induced mitotic apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Yichen; Yen Wenyen; Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan

    2009-04-15

    Arsenic trioxide (ATO) has recently emerged as a promising therapeutic agent in leukemia because of its ability to induce apoptosis. However, there is no sufficient evidence to support its therapeutic use for other types of cancers. In this study, we investigated if, and how, 17-dimethylaminoethylamino-17-demethoxy-geldanamycin (17-DMAG), an antagonist of heat shock protein 90 (HSP90), and KNK437, a HSP synthesis inhibitor, potentiated the cytotoxic effect of ATO. Our results showed that cotreatment with ATO and either 17-DMAG or KNK437 significantly increased ATO-induced cell death and apoptosis. siRNA-mediated attenuation of the expression of the inducible isoform of HSP70 (HSP70i) or HSP90{alpha}/{beta} alsomore » enhanced ATO-induced apoptosis. In addition, cotreatment with ATO and 17-DMAG or KNK437 significantly increased ATO-induced mitotic arrest and ATO-induced BUBR1 phosphorylation and PDS1 accumulation. Cotreatment also significantly increased the percentage of mitotic cells with abnormal mitotic spindles and promoted metaphase arrest as compared to ATO treatment alone. These results indicated that 17-DMAG or KNK437 may enhance ATO cytotoxicity by potentiating mitotic arrest and mitotic apoptosis possibly through increased activation of the spindle checkpoint.« less

  2. Mitotic Recombination in the Heterochromatin of the Sex Chromosomes of DROSOPHILA MELANOGASTER

    PubMed Central

    Ripoll, P.; Garcia-Bellido, A.

    1978-01-01

    The frequency of spontaneous and X-ray-induced mitotic recombination involving the Y chromosome has been studied in individuals with a marked Y chromosome arm and different XY compound chromosomes. The genotypes used include X chromosomes with different amounts of X heterochromatin and either or both arms of the Y chromosome attached to either side of the centromere. Individuals with two Y chromosomes have also been studied. The results show that the bulk of mitotic recombination takes place between homologous regions. PMID:100372

  3. A nontranscriptional role for Oct4 in the regulation of mitotic entry

    PubMed Central

    Zhao, Rui; Deibler, Richard W.; Lerou, Paul H.; Ballabeni, Andrea; Heffner, Garrett C.; Cahan, Patrick; Unternaehrer, Juli J.; Kirschner, Marc W.; Daley, George Q.

    2014-01-01

    Rapid progression through the cell cycle and a very short G1 phase are defining characteristics of embryonic stem cells. This distinct cell cycle is driven by a positive feedback loop involving Rb inactivation and reduced oscillations of cyclins and cyclin-dependent kinase (Cdk) activity. In this setting, we inquired how ES cells avoid the potentially deleterious consequences of premature mitotic entry. We found that the pluripotency transcription factor Oct4 (octamer-binding transcription factor 4) plays an unappreciated role in the ES cell cycle by forming a complex with cyclin–Cdk1 and inhibiting Cdk1 activation. Ectopic expression of Oct4 or a mutant lacking transcriptional activity recapitulated delayed mitotic entry in HeLa cells. Reduction of Oct4 levels in ES cells accelerated G2 progression, which led to increased chromosomal missegregation and apoptosis. Our data demonstrate an unexpected nontranscriptional function of Oct4 in the regulation of mitotic entry. PMID:25324523

  4. 46 CFR 58.01-40 - Machinery, angles of inclination.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... AUXILIARY MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-40 Machinery, angles of inclination. (a... angle of list up to and including 15°, and when the vessel is inclined under dynamic conditions (rolling...

  5. Curcumin-induced mitotic arrest is characterized by spindle abnormalities, defects in chromosomal congression and DNA damage

    PubMed Central

    Manson, Margaret M.

    2013-01-01

    The chemopreventive agent curcumin has anti-proliferative effects in many tumour types, but characterization of cell cycle arrest, particularly with physiologically relevant concentrations, is still incomplete. Following oral ingestion, the highest concentrations of curcumin are achievable in the gut. Although it has been established that curcumin induces arrest at the G2/M stage of the cell cycle in colorectal cancer lines, it is not clear whether arrest occurs at the G2/M transition or in mitosis. To elucidate the precise stage of arrest, we performed a direct comparison of the levels of curcumin-induced G2/M boundary and mitotic arrest in eight colorectal cancer lines (Caco-2, DLD-1, HCA-7, HCT116p53+/+, HCT116p53–/–, HCT116p21–/–, HT-29 and SW480). Flow cytometry confirmed that these lines underwent G2/M arrest following treatment for 12h with clinically relevant concentrations of curcumin (5–10 μM). In all eight lines, the majority of this arrest occurred at the G2/M transition, with a proportion of cells arresting in mitosis. Examination of the mitotic index using fluorescence microscopy showed that the HCT116 and Caco-2 lines exhibited the highest levels of curcumin-induced mitotic arrest. Image analysis revealed impaired mitotic progression in all lines, exemplified by mitotic spindle abnormalities and defects in chromosomal congression. Pre-treatment with inhibitors of the DNA damage signalling pathway abrogated curcumin-induced mitotic arrest, but had little effect at the G2/M boundary. Moreover, pH2A.X staining seen in mitotic, but not interphase, cells suggests that this aberrant mitosis results in DNA damage. PMID:23125222

  6. 46 CFR 169.629 - Compartments containing gasoline machinery or fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Compartments containing gasoline machinery or fuel tanks... gasoline machinery or fuel tanks. Spaces containing gasoline machinery or fuel tanks must have natural... Standard H-2.5, “Design and Construction; Ventilation of Boats Using Gasoline. ...

  7. 46 CFR 169.629 - Compartments containing gasoline machinery or fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Compartments containing gasoline machinery or fuel tanks... gasoline machinery or fuel tanks. Spaces containing gasoline machinery or fuel tanks must have natural... Standard H-2.5, “Design and Construction; Ventilation of Boats Using Gasoline. ...

  8. 46 CFR 169.629 - Compartments containing gasoline machinery or fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Compartments containing gasoline machinery or fuel tanks... gasoline machinery or fuel tanks. Spaces containing gasoline machinery or fuel tanks must have natural... Standard H-2.5, “Design and Construction; Ventilation of Boats Using Gasoline. ...

  9. 46 CFR 169.629 - Compartments containing gasoline machinery or fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Compartments containing gasoline machinery or fuel tanks... gasoline machinery or fuel tanks. Spaces containing gasoline machinery or fuel tanks must have natural... Standard H-2.5, “Design and Construction; Ventilation of Boats Using Gasoline. ...

  10. 46 CFR 169.629 - Compartments containing gasoline machinery or fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Compartments containing gasoline machinery or fuel tanks... gasoline machinery or fuel tanks. Spaces containing gasoline machinery or fuel tanks must have natural... Standard H-2.5, “Design and Construction; Ventilation of Boats Using Gasoline. ...

  11. 46 CFR 78.33-5 - Accidents to machinery.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Accidents to machinery. 78.33-5 Section 78.33-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS Reports of Accidents, Repairs, and Unsafe Equipment § 78.33-5 Accidents to machinery. (a) In the event of an accident...

  12. 46 CFR 78.33-5 - Accidents to machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Accidents to machinery. 78.33-5 Section 78.33-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS Reports of Accidents, Repairs, and Unsafe Equipment § 78.33-5 Accidents to machinery. (a) In the event of an accident...

  13. Immunodetection of phosphohistone H3 as a surrogate of mitotic figure count and clinical outcome in cutaneous melanoma.

    PubMed

    Tetzlaff, Michael T; Curry, Jonathan L; Ivan, Doina; Wang, Wei-Lien; Torres-Cabala, Carlos A; Bassett, Roland L; Valencia, Karla M; McLemore, Michael S; Ross, Merrick I; Prieto, Victor G

    2013-09-01

    In the American Joint Committee on Cancer (AJCC)-TNM (2009) staging system, the key prognostic factor in cutaneous melanoma is the depth of dermal invasion (Breslow thickness) with further refinement according to the presence of epidermal ulceration or dermal mitoses. Immunodetection of phosphohistone H3 has been shown to facilitate the identification of mitotic figures in various neoplasms. We selected 120 cases of primary cutaneous melanoma with completely annotated histopathologic parameters and clinical outcomes and performed double immunohistochemical staining for MLANA (Mart-1/Melan-A) and phosphohistone H3. One hundred and thirteen cases were amenable to antiphosphohistone H3 staining from 66 men and 47 women, with mean age of 64 years (9-93), including 61 superficial spreading type, 24 nodular, 6 lentigo maligna, 8 acral lentiginous, and 14 unclassified. The mean Breslow thickness was 2.53 mm (0.20-25), ulceration was present in 25/113 (22%) and the mean mitotic count was 3.2/mm(2) (<1-29/mm(2)). In 27/113 (24%) of the cases, antiphosphohistone H3 failed to highlight mitotic figures anywhere in the tissue (normal or tumor cell), whereas in 86/113 (76%) antiphosphohistone H3 detected at least one mitotic figure. Among the latter, antiphosphohistone H3 did not detect mitotic figures in dermal tumor cells in 37/86 cases (43%), whereas anti-PHH3 identified at least one melanocytic mitotic figure in the other 49/86 cases (57%; range: 1-66/mm(2)). The relationship between phosphohistone H3 and manual mitotic count was statistically significant (Pearson correlation=0.59, P<0.0001). Logistic regression analyses demonstrated an association between the development of subsequent metastatic disease and the following variables: mitotic figures (odds ratio (OR)=5.7; P=0.0001); phosphohistone H3-positive mitotic figures (OR=3.0; P=0.008); Breslow thickness (OR=4.0 per mm; P=0.0002); ulceration (OR=3.94; P=0.008). The application of phosphohistone H3

  14. Automatic microscopy for mitotic cell location.

    NASA Technical Reports Server (NTRS)

    Herron, J.; Ranshaw, R.; Castle, J.; Wald, N.

    1972-01-01

    Advances are reported in the development of an automatic microscope with which to locate hematologic or other cells in mitosis for subsequent chromosome analysis. The system under development is designed to perform the functions of: slide scanning to locate metaphase cells; conversion of images of selected cells into binary form; and on-line computer analysis of the digitized image for significant cytogenetic data. Cell detection criteria are evaluated using a test sample of 100 mitotic cells and 100 artifacts.

  15. 29 CFR 1918.98 - Qualifications of machinery operators and supervisory training.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Qualifications of machinery operators and supervisory... General Working Conditions. § 1918.98 Qualifications of machinery operators and supervisory training. (a) Qualification of machinery operators. (1) Only an employee determined by the employer to be competent by reason...

  16. 29 CFR 1918.98 - Qualifications of machinery operators and supervisory training.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Qualifications of machinery operators and supervisory... General Working Conditions. § 1918.98 Qualifications of machinery operators and supervisory training. (a) Qualification of machinery operators. (1) Only an employee determined by the employer to be competent by reason...

  17. 29 CFR 1918.98 - Qualifications of machinery operators and supervisory training.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Qualifications of machinery operators and supervisory... General Working Conditions. § 1918.98 Qualifications of machinery operators and supervisory training. (a) Qualification of machinery operators. (1) Only an employee determined by the employer to be competent by reason...

  18. 29 CFR 1918.98 - Qualifications of machinery operators and supervisory training.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Qualifications of machinery operators and supervisory... General Working Conditions. § 1918.98 Qualifications of machinery operators and supervisory training. (a) Qualification of machinery operators. (1) Only an employee determined by the employer to be competent by reason...

  19. 46 CFR 109.419 - Report of unsafe machinery.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Report of unsafe machinery. 109.419 Section 109.419 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Reports, Notifications, and Records Reports and Notifications § 109.419 Report of unsafe machinery. If a boiler, unfired pressure vessel, or...

  20. 46 CFR 30.10-6a - Category A machinery space-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... aggregate power is at least 500 brake horsepower; (c) Internal combustion machinery that uses a fuel that... 46 Shipping 1 2013-10-01 2013-10-01 false Category A machinery space-TB/ALL. 30.10-6a Section 30... Definitions § 30.10-6a Category A machinery space—TB/ALL. The term Category A machinery space means any space...

  1. 46 CFR 30.10-6a - Category A machinery space-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... aggregate power is at least 500 brake horsepower; (c) Internal combustion machinery that uses a fuel that... 46 Shipping 1 2010-10-01 2010-10-01 false Category A machinery space-TB/ALL. 30.10-6a Section 30... Definitions § 30.10-6a Category A machinery space—TB/ALL. The term Category A machinery space means any space...

  2. 46 CFR 30.10-6a - Category A machinery space-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... aggregate power is at least 500 brake horsepower; (c) Internal combustion machinery that uses a fuel that... 46 Shipping 1 2014-10-01 2014-10-01 false Category A machinery space-TB/ALL. 30.10-6a Section 30... Definitions § 30.10-6a Category A machinery space—TB/ALL. The term Category A machinery space means any space...

  3. 46 CFR 30.10-6a - Category A machinery space-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... aggregate power is at least 500 brake horsepower; (c) Internal combustion machinery that uses a fuel that... 46 Shipping 1 2011-10-01 2011-10-01 false Category A machinery space-TB/ALL. 30.10-6a Section 30... Definitions § 30.10-6a Category A machinery space—TB/ALL. The term Category A machinery space means any space...

  4. 46 CFR 30.10-6a - Category A machinery space-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... aggregate power is at least 500 brake horsepower; (c) Internal combustion machinery that uses a fuel that... 46 Shipping 1 2012-10-01 2012-10-01 false Category A machinery space-TB/ALL. 30.10-6a Section 30... Definitions § 30.10-6a Category A machinery space—TB/ALL. The term Category A machinery space means any space...

  5. Loading of PAX3 to Mitotic Chromosomes Is Mediated by Arginine Methylation and Associated with Waardenburg Syndrome.

    PubMed

    Wu, Tsu-Fang; Yao, Ya-Li; Lai, I-Lu; Lai, Chien-Chen; Lin, Pei-Lun; Yang, Wen-Ming

    2015-08-14

    PAX3 is a transcription factor critical to gene regulation in mammalian development. Mutations in PAX3 are associated with Waardenburg syndrome (WS), but the mechanism of how mutant PAX3 proteins cause WS remains unclear. Here, we found that PAX3 loads on mitotic chromosomes using its homeodomain. PAX3 WS mutants with mutations in homeodomain lose the ability to bind mitotic chromosomes. Moreover, loading of PAX3 on mitotic chromosomes requires arginine methylation, which is regulated by methyltransferase PRMT5 and demethylase JMJD6. Mutant PAX3 proteins that lose mitotic chromosome localization block cell proliferation and normal development of zebrafish. These results reveal the molecular mechanism of PAX3s loading on mitotic chromosomes and the importance of this localization pattern in normal development. Our findings suggest that PAX3 WS mutants interfere with the normal functions of PAX3 in a dominant negative manner, which is important to the understanding of the pathogenesis of Waardenburg syndrome. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. High-Resolution Mapping of Two Types of Spontaneous Mitotic Gene Conversion Events in Saccharomyces cerevisiae

    PubMed Central

    Yim, Eunice; O’Connell, Karen E.; St. Charles, Jordan; Petes, Thomas D.

    2014-01-01

    Gene conversions and crossovers are related products of the repair of double-stranded DNA breaks by homologous recombination. Most previous studies of mitotic gene conversion events have been restricted to measuring conversion tracts that are <5 kb. Using a genetic assay in which the lengths of very long gene conversion tracts can be measured, we detected two types of conversions: those with a median size of ∼6 kb and those with a median size of >50 kb. The unusually long tracts are initiated at a naturally occurring recombination hotspot formed by two inverted Ty elements. We suggest that these long gene conversion events may be generated by a mechanism (break-induced replication or repair of a double-stranded DNA gap) different from the short conversion tracts that likely reflect heteroduplex formation followed by DNA mismatch repair. Both the short and long mitotic conversion tracts are considerably longer than those observed in meiosis. Since mitotic crossovers in a diploid can result in a heterozygous recessive deleterious mutation becoming homozygous, it has been suggested that the repair of DNA breaks by mitotic recombination involves gene conversion events that are unassociated with crossing over. In contrast to this prediction, we found that ∼40% of the conversion tracts are associated with crossovers. Spontaneous mitotic crossover events in yeast are frequent enough to be an important factor in genome evolution. PMID:24990991

  7. Agriculture Power and Machinery.

    ERIC Educational Resources Information Center

    Rogers, Tom

    This guide is intended to assist vocational agriculture teachers who are teaching secondary- or postsecondary-level courses in agricultural power and machinery. The materials presented are based on the Arizona validated occupational competencies and tasks for the following occupations: service manager, shop foreman, service technician, and tractor…

  8. PIASy Mediates SUMO-2/3 Conjugation of Poly(ADP-ribose) Polymerase 1 (PARP1) on Mitotic Chromosomes*

    PubMed Central

    Ryu, Hyunju; Al-Ani, Gada; Deckert, Katelyn; Kirkpatrick, Donald; Gygi, Steven P.; Dasso, Mary; Azuma, Yoshiaki

    2010-01-01

    PIASy is a small ubiquitin-related modifier (SUMO) ligase that modifies chromosomal proteins in mitotic Xenopus egg extracts and plays an essential role in mitotic chromosome segregation. We have isolated a novel SUMO-2/3-modified mitotic chromosomal protein and identified it as poly(ADP-ribose) polymerase 1 (PARP1). PARP1 was robustly conjugated to SUMO-2/3 on mitotic chromosomes but not on interphase chromatin. PIASy promotes SUMOylation of PARP1 both in egg extracts and in vitro reconstituted SUMOylation assays. Through tandem mass spectrometry analysis of mitotically SUMOylated PARP1, we identified a residue within the BRCA1 C-terminal domain of PARP1 (lysine 482) as its primary SUMOylation site. Mutation of this residue significantly reduced PARP1 SUMOylation in egg extracts and enhanced the accumulation of species derived from modification of secondary lysine residues in assays using purified components. SUMOylation of PARP1 did not alter in vitro PARP1 enzyme activity, poly-ADP-ribosylation (PARylation), nor did inhibition of SUMOylation of PARP1 alter the accumulation of PARP1 on mitotic chromosomes, suggesting that SUMOylation regulates neither the intrinsic activity of PARP1 nor its localization. However, loss of SUMOylation increased PARP1-dependent PARylation on isolated chromosomes, indicating SUMOylation controls the capacity of PARP1 to modify other chromatin-associated proteins. PMID:20228053

  9. Interkinetic nuclear migration and basal tethering facilitates post-mitotic daughter separation in intestinal organoids

    PubMed Central

    Carroll, Thomas D.; Langlands, Alistair J.; Osborne, James M.; Newton, Ian P.; Appleton, Paul L.

    2017-01-01

    ABSTRACT Homeostasis of renewing tissues requires balanced proliferation, differentiation and movement. This is particularly important in the intestinal epithelium where lineage tracing suggests that stochastic differentiation choices are intricately coupled to the position of a cell relative to a niche. To determine how position is achieved, we followed proliferating cells in intestinal organoids and discovered that the behaviour of mitotic sisters predicted long-term positioning. We found that, normally, 70% of sisters remain neighbours, while 30% lose contact and separate after cytokinesis. These post-mitotic placements predict longer term differences in positions assumed by sisters: adjacent sisters reach similar positions over time; in a pair of separating sisters, one remains close to its birthplace while the other is displaced upward. Computationally modelling crypt dynamics confirmed that post-mitotic separation leads to sisters reaching different compartments. We show that interkinetic nuclear migration, cell size and asymmetric tethering by a process extending from the basal side of cells contribute to separations. These processes are altered in adenomatous polyposis coli (Apc) mutant epithelia where separation is lost. We conclude that post-mitotic placement contributes to stochastic niche exit and, when defective, supports the clonal expansion of Apc mutant cells. PMID:28982714

  10. 46 CFR 189.15-1 - Standards in inspection of hulls, boilers, and machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Standards in inspection of hulls, boilers, and machinery... inspection of hulls, boilers, and machinery. In the inspection of hulls, boilers, and machinery of vessels... chapter, respecting material and construction of hulls, boilers, and machinery, and certificate of...

  11. 46 CFR 91.15-1 - Standards in inspection of hulls, boilers, and machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Standards in inspection of hulls, boilers, and machinery... hulls, boilers, and machinery. In the inspection of hulls, boilers, and machinery of vessels, the..., respecting material and inspection of hulls, boilers, and machinery, and the certificate of classification...

  12. Wnt activation followed by Notch inhibition promotes mitotic hair cell regeneration in the postnatal mouse cochlea

    PubMed Central

    Li, Wenyan; Chen, Yan; Zhang, Shasha; Tang, Mingliang; Sun, Shan; Chai, Renjie; Li, Huawei

    2016-01-01

    Hair cell (HC) loss is the main cause of permanent hearing loss in mammals. Previous studies have reported that in neonatal mice cochleae, Wnt activation promotes supporting cell (SC) proliferation and Notch inhibition promotes the trans-differentiation of SCs into HCs. However, Wnt activation alone fails to regenerate significant amounts of new HCs, Notch inhibition alone regenerates the HCs at the cost of exhausting the SC population, which leads to the death of the newly regenerated HCs. Mitotic HC regeneration might preserve the SC number while regenerating the HCs, which could be a better approach for long-term HC regeneration. We present a two-step gene manipulation, Wnt activation followed by Notch inhibition, to accomplish mitotic regeneration of HCs while partially preserving the SC number. We show that Wnt activation followed by Notch inhibition strongly promotes the mitotic regeneration of new HCs in both normal and neomycin-damaged cochleae while partially preserving the SC number. Lineage tracing shows that the majority of the mitotically regenerated HCs are derived specifically from the Lgr5+ progenitors with or without HC damage. Our findings suggest that the co-regulation of Wnt and Notch signaling might provide a better approach to mitotically regenerate HCs from Lgr5+ progenitor cells. PMID:27564256

  13. 49 CFR 1242.47 - Machinery (account XX-27-40).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Machinery (account XX-27-40). 1242.47 Section 1242...-Equipment § 1242.47 Machinery (account XX-27-40). Separate common expenses on the basis of the freight/passenger separation of administration (account XX-27-01). ...

  14. 46 CFR 169.315 - Ventilation (other than machinery spaces).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Ventilation (other than machinery spaces). 169.315 Section 169.315 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Construction and Arrangement Hull Structure § 169.315 Ventilation (other than machinery...

  15. Mio depletion links mTOR regulation to Aurora A and Plk1 activation at mitotic centrosomes

    PubMed Central

    Trinkle-Mulcahy, Laura; Porter, Michael; Jeyaprakash, A. Arockia

    2015-01-01

    Coordination of cell growth and proliferation in response to nutrient supply is mediated by mammalian target of rapamycin (mTOR) signaling. In this study, we report that Mio, a highly conserved member of the SEACAT/GATOR2 complex necessary for the activation of mTORC1 kinase, plays a critical role in mitotic spindle formation and subsequent chromosome segregation by regulating the proper concentration of active key mitotic kinases Plk1 and Aurora A at centrosomes and spindle poles. Mio-depleted cells showed reduced activation of Plk1 and Aurora A kinase at spindle poles and an impaired localization of MCAK and HURP, two key regulators of mitotic spindle formation and known substrates of Aurora A kinase, resulting in spindle assembly and cytokinesis defects. Our results indicate that a major function of Mio in mitosis is to regulate the activation/deactivation of Plk1 and Aurora A, possibly by linking them to mTOR signaling in a pathway to promote faithful mitotic progression. PMID:26124292

  16. Industrial Machinery Maintenance and Repair. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    This vocational program guide is intended to assist in the organization, operation, and evaluation of a program in industrial machinery maintenance and repair in school districts, area vocational centers, and community colleges. The following topics are covered: job duties of millwrights, maintenance mechanics, and machinery erectors; program…

  17. Machinery Management. FMO: Fundamentals of Machine Operation. Third Edition.

    ERIC Educational Resources Information Center

    Bowers, Wendell

    This text is intended to provide a basic understanding of selecting, maintaining, and managing farm machinery. The following topics are covered in the individual chapters: dealing with typical problems in farm machinery management; measuring machine capacity; improving field efficiency; matching machine size and capacity; estimating power…

  18. Dietary flavonoid fisetin induces a forced exit from mitosis by targeting the mitotic spindle checkpoint

    PubMed Central

    Salmela, Anna-Leena; Pouwels, Jeroen; Varis, Asta; Kukkonen, Anu M.; Toivonen, Pauliina; Halonen, Pasi K.; Perälä, Merja; Kallioniemi, Olli; Gorbsky, Gary J.; Kallio, Marko J.

    2009-01-01

    Fisetin is a natural flavonol present in edible vegetables, fruits and wine at 2–160 μg/g concentrations and an ingredient in nutritional supplements with much higher concentrations. The compound has been reported to exert anticarcinogenic effects as well as antioxidant and anti-inflammatory activity via its ability to act as an inhibitor of cell proliferation and free radical scavenger, respectively. Our cell-based high-throughput screen for small molecules that override chemically induced mitotic arrest identified fisetin as an antimitotic compound. Fisetin rapidly compromised microtubule drug-induced mitotic block in a proteasome-dependent manner in several human cell lines. Moreover, in unperturbed human cancer cells fisetin caused premature initiation of chromosome segregation and exit from mitosis without normal cytokinesis. To understand the molecular mechanism behind these mitotic errors, we analyzed the consequences of fisetin treatment on the localization and phoshorylation of several mitotic proteins. Aurora B, Bub1, BubR1 and Cenp-F rapidly lost their kinetochore/centromere localization and others became dephosphorylated upon addition of fisetin to the culture medium. Finally, we identified Aurora B kinase as a novel direct target of fisetin. The activity of Aurora B was significantly reduced by fisetin in vitro and in cells, an effect that can explain the observed forced mitotic exit, failure of cytokinesis and decreased cell viability. In conclusion, our data propose that fisetin perturbs spindle checkpoint signaling, which may contribute to the antiproliferative effects of the compound. PMID:19395653

  19. The influence of serotonin on the mitotic rate in the colonic crypt epithelium and in colonic adenocarcinoma in rats.

    PubMed

    Tutton, P J; Barkla, D H

    1978-01-01

    1. The mitotic rate in the crypts of Lieberkühn of the descending colon and in dimethylhydrazine-induced adenocarcinomata of the descending colon of rat was measured using a stathmokinetic technique. 2. Intraperitoneal injection of a small dose (10 microgram/kg) of serotonin resulted in an increase in the tumour cell mitotic rate. 3. Blockade of serotonin receptors by 2-bromolysergic acid diethylamide and depletion of tissue serotonin levels following injection of DL-6-fluorotryptophan both result in a decrease in the tumour cell mitotic rate. 4. Treatment with serotonin, 2-bromolysergic acid diethylamide and DL-6-fluorotryptophan were all without effect on the colonic crypt cell mitotic rate.

  20. 4. MACHINERY SHED AND STORAGE ROOM ADDITION, SOUTH AND WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. MACHINERY SHED AND STORAGE ROOM ADDITION, SOUTH AND WEST WALL LOOKING NORTHEAST SEED STORAGE BUILDING (1963) BEHIND - Tucson Plant Material Center, Machinery Shed, 3241 North Romero Road, Tucson, Pima County, AZ

  1. Exotic mitotic mechanisms

    PubMed Central

    Drechsler, Hauke; McAinsh, Andrew D.

    2012-01-01

    The emergence of eukaryotes around two billion years ago provided new challenges for the chromosome segregation machineries: the physical separation of multiple large and linear chromosomes from the microtubule-organizing centres by the nuclear envelope. In this review, we set out the diverse solutions that eukaryotic cells use to solve this problem, and show how stepping away from ‘mainstream’ mitosis can teach us much about the mechanisms and mechanics that can drive chromosome segregation. We discuss the evidence for a close functional and physical relationship between membranes, nuclear pores and kinetochores in generating the forces necessary for chromosome segregation during mitosis. PMID:23271831

  2. 46 CFR 109.205 - Inspection of boilers and machinery.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Inspection of boilers and machinery. 109.205 Section 109.205 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.205 Inspection of boilers and machinery. The chief engineer...

  3. 46 CFR 109.205 - Inspection of boilers and machinery.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Inspection of boilers and machinery. 109.205 Section 109.205 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.205 Inspection of boilers and machinery. The chief engineer...

  4. 46 CFR 109.205 - Inspection of boilers and machinery.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Inspection of boilers and machinery. 109.205 Section 109.205 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.205 Inspection of boilers and machinery. The chief engineer...

  5. 46 CFR 109.205 - Inspection of boilers and machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Inspection of boilers and machinery. 109.205 Section 109.205 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.205 Inspection of boilers and machinery. The chief engineer...

  6. 46 CFR 109.205 - Inspection of boilers and machinery.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Inspection of boilers and machinery. 109.205 Section 109.205 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.205 Inspection of boilers and machinery. The chief engineer...

  7. Machinery-related occupational fatalities in the United States, 1980 to 1989.

    PubMed

    Pratt, S G; Kisner, S M; Helmkamp, J C

    1996-01-01

    The National Traumatic Occupational Fatalities surveillance system identified machinery-related incidents as the second leading cause of traumatic occupational fatalities in the United States between 1980 and 1989. These incidents resulted in 8,505 civilian worker deaths and an average annual fatality rate of .80 per 100,000 workers. Workers aged 65 years and older had 5.8 times the fatality rate of workers aged 16 to 64 years (4.06 vs. 70). The highest industry-specific rate was noted in agriculture, forestry, and fishing (7.47). Tractors and other agricultural machinery were associated with nearly 9 of every 10 fatal machinery-related incidents involving workers aged 65 or older. Although numerous studies of agricultural machinery-related fatalities are found in the literature, detailed analyses of machinery-related fatalities in the construction industry as well as analyses of work situations and risk factors associated with fatal injuries are needed.

  8. Proteasome inhibition enhances the efficacy of volasertib-induced mitotic arrest in AML in vitro and prolongs survival in vivo.

    PubMed

    Schnerch, Dominik; Schüler, Julia; Follo, Marie; Felthaus, Julia; Wider, Dagmar; Klingner, Kathrin; Greil, Christine; Duyster, Justus; Engelhardt, Monika; Wäsch, Ralph

    2017-03-28

    Elderly and frail patients, diagnosed with acute myeloid leukemia (AML) and ineligible to undergo intensive treatment, have a dismal prognosis. The small molecule inhibitor volasertib induces a mitotic block via inhibition of polo-like kinase 1 and has shown remarkable anti-leukemic activity when combined with low-dose cytarabine. We have demonstrated that AML cells are highly vulnerable to cell death in mitosis yet manage to escape a mitotic block through mitotic slippage by sustained proteasome-dependent slow degradation of cyclin B. Therefore, we tested whether interfering with mitotic slippage through proteasome inhibition arrests and kills AML cells more efficiently during mitosis. We show that therapeutic doses of bortezomib block the slow degradation of cyclin B during a volasertib-induced mitotic arrest in AML cell lines and patient-derived primary AML cells. In a xenotransplant mouse model of human AML, mice receiving volasertib in combination with bortezomib showed superior disease control compared to mice receiving volasertib alone, highlighting the potential therapeutic impact of this drug combination.

  9. A molecular mechanism of mitotic centrosome assembly in Drosophila

    PubMed Central

    Conduit, Paul T; Richens, Jennifer H; Wainman, Alan; Holder, James; Vicente, Catarina C; Pratt, Metta B; Dix, Carly I; Novak, Zsofia A; Dobbie, Ian M; Schermelleh, Lothar; Raff, Jordan W

    2014-01-01

    Centrosomes comprise a pair of centrioles surrounded by pericentriolar material (PCM). The PCM expands dramatically as cells enter mitosis, but it is unclear how this occurs. In this study, we show that the centriole protein Asl initiates the recruitment of DSpd-2 and Cnn to mother centrioles; both proteins then assemble into co-dependent scaffold-like structures that spread outwards from the mother centriole and recruit most, if not all, other PCM components. In the absence of either DSpd-2 or Cnn, mitotic PCM assembly is diminished; in the absence of both proteins, it appears to be abolished. We show that DSpd-2 helps incorporate Cnn into the PCM and that Cnn then helps maintain DSpd-2 within the PCM, creating a positive feedback loop that promotes robust PCM expansion around the mother centriole during mitosis. These observations suggest a surprisingly simple mechanism of mitotic PCM assembly in flies. DOI: http://dx.doi.org/10.7554/eLife.03399.001 PMID:25149451

  10. The Yeast Polo Kinase Cdc5 Regulates the Shape of the Mitotic Nucleus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walters, Alison D.; May, Christopher K.; Dauster, Emma S.

    Abnormal nuclear size and shape are hallmarks of aging and cancer. However, the mechanisms regulating nuclear morphology and nuclear envelope (NE) expansion are poorly understood. In metazoans, the NE disassembles prior to chromosome segregation and reassembles at the end of mitosis. In budding yeast, the NE remains intact. The nucleus elongates as chromosomes segregate and then divides at the end of mitosis to form two daughter nuclei without NE disassembly. The budding yeast nucleus also undergoes remodeling during a mitotic arrest; the NE continues to expand despite the pause in chromosome segregation, forming a nuclear extension, or "flare," that encompassesmore » the nucleolus. The distinct nucleolar localization of the mitotic flare indicates that the NE is compartmentalized and that there is a mechanism by which NE expansion is confined to the region adjacent to the nucleolus. Here we show that mitotic flare formation is dependent on the yeast polo kinase Cdc5. This function of Cdc5 is independent of its known mitotic roles, including rDNA condensation. High-resolution imaging revealed that following Cdc5 inactivation, nuclei expand isometrically rather than forming a flare, indicating that Cdc5 is needed for NE compartmentalization. Lastly, even in an uninterrupted cell cycle, a small NE expansion occurs adjacent to the nucleolus prior to anaphase in a Cdc5-dependent manner. Our data provide the first evidence that polo kinase, a key regulator of mitosis, plays a role in regulating nuclear morphology and NE expansion.« less

  11. The Yeast Polo Kinase Cdc5 Regulates the Shape of the Mitotic Nucleus

    DOE PAGES

    Walters, Alison D.; May, Christopher K.; Dauster, Emma S.; ...

    2014-11-20

    Abnormal nuclear size and shape are hallmarks of aging and cancer. However, the mechanisms regulating nuclear morphology and nuclear envelope (NE) expansion are poorly understood. In metazoans, the NE disassembles prior to chromosome segregation and reassembles at the end of mitosis. In budding yeast, the NE remains intact. The nucleus elongates as chromosomes segregate and then divides at the end of mitosis to form two daughter nuclei without NE disassembly. The budding yeast nucleus also undergoes remodeling during a mitotic arrest; the NE continues to expand despite the pause in chromosome segregation, forming a nuclear extension, or "flare," that encompassesmore » the nucleolus. The distinct nucleolar localization of the mitotic flare indicates that the NE is compartmentalized and that there is a mechanism by which NE expansion is confined to the region adjacent to the nucleolus. Here we show that mitotic flare formation is dependent on the yeast polo kinase Cdc5. This function of Cdc5 is independent of its known mitotic roles, including rDNA condensation. High-resolution imaging revealed that following Cdc5 inactivation, nuclei expand isometrically rather than forming a flare, indicating that Cdc5 is needed for NE compartmentalization. Lastly, even in an uninterrupted cell cycle, a small NE expansion occurs adjacent to the nucleolus prior to anaphase in a Cdc5-dependent manner. Our data provide the first evidence that polo kinase, a key regulator of mitosis, plays a role in regulating nuclear morphology and NE expansion.« less

  12. 40 CFR 180.521 - Fumigants for grain-mill machinery; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Fumigants for grain-mill machinery... Tolerances § 180.521 Fumigants for grain-mill machinery; tolerances for residues. (a) General. Fumigants may be safely used in or on grain-mill machinery in accordance with the following prescribed conditions...

  13. COMPETENCIES IN AGRICULTURE NEEDED BY MALES EMPLOYED IN WHOLESALE FARM MACHINERY DISTRIBUTION.

    ERIC Educational Resources Information Center

    MAXWELL, ROBERT HAWORTH

    LISTS OF 39 AGRICULTURAL AND 37 NONAGRICULTURAL COMPETENCIES, ABILITIES, AND UNDERSTANDINGS NEEDED BY MALES EMPLOYED IN WHOLESALE FARM MACHINERY DISTRIBUTION WERE DEVELOPED BY 18 SELECTED EMPLOYEES OF WHOLESALE FARM MACHINERY FIRMS AND SENT IN QUESTIONNAIRE FORM TO 180 EMPLOYEES OF WHOLESALE FARM MACHINERY FIRMS THAT WERE COOPERATING MEMBERS OF…

  14. Low Back Pain in Port Machinery Operators

    NASA Astrophysics Data System (ADS)

    BOVENZI, M.; PINTO, I.; STACCHINI, N.

    2002-05-01

    The occurrence of several types of low back pain (LBP) was investigated by a standardized questionnaire in a group of 219 port machinery operators exposed to whole-body vibration (WBV) and postural load and in a control group of 85 maintenance workers employed at the same transport company. The group of port machinery operators included 85 straddle carrier drivers, 88 fork-lift truck drivers, and 46 crane operators. The vector sum of the frequency-weighted r.m.s. acceleration of vibration measured on the seatpan of port vehicles and machines averaged 0·90 m/s2 for fork-lift trucks, 0·48 m/s2 for straddle carriers, 0·53 m/s2 for mobile cranes, and 0·22 m/s2 for overhead cranes. The 12-month prevalence of low back symptoms (LBP, sciatic pain, treated LBP, sick leave due to LBP) was significantly greater in the fork-lift truck drivers than in the controls and the other two groups of port machinery operators. After adjusting for potential confounders, the prevalence of low back symptoms was found to increase with the increase of WBV exposure expressed as duration of exposure (driving years), equivalent vibration magnitude (m/s2), or cumulative vibration exposure (yr m2/s4). An excess risk for lumbar disc herniation was observed in the port machinery operators with prolonged driving experience. In both the controls and the port machinery operators, low back complaints were strongly associated with perceived postural load assessed in terms of frequency and/or duration of awkward postures at work. Multivariate analysis showed that vibration exposure and postural load were independent predictors of LBP. Even though the cross-sectional design of the present study does not permit firm conclusions on the relationship between WBV exposure and low back disorders, the findings of this investigation provide additional epidemiological evidence that seated WBV exposure combined with non-neutral trunk postures, as while driving, is associated with an increased risk of long

  15. The relative effect of citral on mitotic microtubules in wheat roots and BY2 cells.

    PubMed

    Chaimovitsh, D; Rogovoy Stelmakh, O; Altshuler, O; Belausov, E; Abu-Abied, M; Rubin, B; Sadot, E; Dudai, N

    2012-03-01

    The plant volatile monoterpene citral is a highly active compound with suggested allelopathic traits. Seed germination and seedling development are inhibited in the presence of citral, and it disrupts microtubules in both plant and animal cells in interphase. We addressed the following additional questions: can citral interfere with cell division; what is the relative effect of citral on mitotic microtubules compared to interphase cortical microtubules; what is its effect on newly formed cell plates; and how does it affect the association of microtubules with γ-tubulin? In wheat seedlings, citral led to inhibition of root elongation, curvature of newly formed cell walls and deformation of microtubule arrays. Citral's effect on microtubules was both dose- and time-dependent, with mitotic microtubules appearing to be more sensitive to citral than cortical microtubules. Association of γ-tubulin with microtubules was more sensitive to citral than were the microtubules themselves. To reveal the role of disrupted mitotic microtubules in dictating aberrations in cell plates in the presence of citral, we used tobacco BY2 cells expressing GFP-Tua6. Citral disrupted mitotic microtubules, inhibited the cell cycle and increased the frequency of asymmetric cell plates in these cells. The time scale of citral's effect in BY2 cells suggested a direct influence on cell plates during their formation. Taken together, we suggest that at lower concentrations, citral interferes with cell division by disrupting mitotic microtubules and cell plates, and at higher concentrations it inhibits cell elongation by disrupting cortical microtubules. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. Sulforaphane induces reactive oxygen species-mediated mitotic arrest and subsequent apoptosis in human bladder cancer 5637 cells.

    PubMed

    Park, Hyun Soo; Han, Min Ho; Kim, Gi-Young; Moon, Sung-Kwon; Kim, Wun-Jae; Hwang, Hye Jin; Park, Kun Young; Choi, Yung Hyun

    2014-02-01

    The present study was undertaken to determine whether sulforaphane-derived reactive oxygen species (ROS) might cause growth arrest and apoptosis in human bladder cancer 5637 cells. Our results show that the reduced viability of 5637 cells by sulforaphane is due to mitotic arrest, but not the G2 phase. The sulforaphane-induced mitotic arrest correlated with an induction of cyclin B1 and phosphorylation of Cdk1, as well as a concomitant increased complex between cyclin B1 and Cdk1. Sulforaphane-induced apoptosis was associated with the activation of caspase-8 and -9, the initiators caspases of the extrinsic and intrinsic apoptotic pathways, respectively, and activation of effector caspase-3 and cleavage of poly (ADP-ribose) polymerase. However, blockage of caspase activation inhibited apoptosis and abrogated growth inhibition in sulforaphane-treated 5637 cells. This study further investigated the roles of ROS with respect to mitotic arrest and the apoptotic effect of sulforaphane, and the maximum level of ROS accumulation was observed 3h after sulforaphane treatment. However, a ROS scavenger, N-acetyl-L-cysteine, notably attenuated sulforaphane-mediated apoptosis as well as mitotic arrest. Overall, these results suggest that sulforaphane induces mitotic arrest and apoptosis of 5637 cells via a ROS-dependent pathway. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Diverse mitotic functions of the cytoskeletal cross-linking protein Shortstop suggest a role in Dynein/Dynactin activity

    PubMed Central

    Dewey, Evan B.; Johnston, Christopher A.

    2017-01-01

    Proper assembly and orientation of the bipolar mitotic spindle is critical to the fidelity of cell division. Mitotic precision fundamentally contributes to cell fate specification, tissue development and homeostasis, and chromosome distribution within daughter cells. Defects in these events are thought to contribute to several human diseases. The underlying mechanisms that function in spindle morphogenesis and positioning remain incompletely defined, however. Here we describe diverse roles for the actin-microtubule cross-linker Shortstop (Shot) in mitotic spindle function in Drosophila. Shot localizes to mitotic spindle poles, and its knockdown results in an unfocused spindle pole morphology and a disruption of proper spindle orientation. Loss of Shot also leads to chromosome congression defects, cell cycle progression delay, and defective chromosome segregation during anaphase. These mitotic errors trigger apoptosis in Drosophila epithelial tissue, and blocking this apoptotic response results in a marked induction of the epithelial–mesenchymal transition marker MMP-1. The actin-binding domain of Shot directly interacts with Actin-related protein-1 (Arp-1), a key component of the Dynein/Dynactin complex. Knockdown of Arp-1 phenocopies Shot loss universally, whereas chemical disruption of F-actin does so selectively. Our work highlights novel roles for Shot in mitosis and suggests a mechanism involving Dynein/Dynactin activation. PMID:28747439

  18. Promotion of chloroplast proliferation upon enhanced post-mitotic cell expansion in leaves.

    PubMed

    Kawade, Kensuke; Horiguchi, Gorou; Ishikawa, Naoko; Hirai, Masami Yokota; Tsukaya, Hirokazu

    2013-09-28

    Leaves are determinate organs; hence, precise control of cell proliferation and post-mitotic cell expansion is essential for their growth. A defect in cell proliferation often triggers enhanced post-mitotic cell expansion in leaves. This phenomenon is referred to as 'compensation'. Several lines of evidence from studies on compensation have shown that cell proliferation and post-mitotic cell expansion are coordinately regulated during leaf development. Therefore, compensation has attracted much attention to the mechanisms for leaf growth. However, our understanding of compensation at the subcellular level remains limited because studies of compensation have focused mainly on cellular-level phenotypes. Proper leaf growth requires quantitative control of subcellular components in association with cellular-level changes. To gain insight into the subcellular aspect of compensation, we investigated the well-known relationship between cell area and chloroplast number per cell in compensation-exhibiting lines, and asked whether chloroplast proliferation is modulated in response to the induction of compensation. We first established a convenient and reliable method for observation of chloroplasts in situ. Using this method, we analyzed Arabidopsis thaliana mutants fugu5 and angustifolia3 (an3), and a transgenic line KIP-RELATED PROTEIN2 overexpressor (KRP2 OE), which are known to exhibit typical features of compensation. We here showed that chloroplast number per cell increased in the subepidermal palisade tissue of these lines. We analyzed tetraploidized wild type, fugu5, an3 and KRP2 OE, and found that cell area itself, but not nuclear ploidy, is a key parameter that determines the activity of chloroplast proliferation. In particular, in the case of an3, we uncovered that promotion of chloroplast proliferation depends on the enhanced post-mitotic cell expansion. The expression levels of chloroplast proliferation-related genes are similar to or lower than that in the wild

  19. Promotion of chloroplast proliferation upon enhanced post-mitotic cell expansion in leaves

    PubMed Central

    2013-01-01

    Background Leaves are determinate organs; hence, precise control of cell proliferation and post-mitotic cell expansion is essential for their growth. A defect in cell proliferation often triggers enhanced post-mitotic cell expansion in leaves. This phenomenon is referred to as ‘compensation’. Several lines of evidence from studies on compensation have shown that cell proliferation and post-mitotic cell expansion are coordinately regulated during leaf development. Therefore, compensation has attracted much attention to the mechanisms for leaf growth. However, our understanding of compensation at the subcellular level remains limited because studies of compensation have focused mainly on cellular-level phenotypes. Proper leaf growth requires quantitative control of subcellular components in association with cellular-level changes. To gain insight into the subcellular aspect of compensation, we investigated the well-known relationship between cell area and chloroplast number per cell in compensation-exhibiting lines, and asked whether chloroplast proliferation is modulated in response to the induction of compensation. Results We first established a convenient and reliable method for observation of chloroplasts in situ. Using this method, we analyzed Arabidopsis thaliana mutants fugu5 and angustifolia3 (an3), and a transgenic line KIP-RELATED PROTEIN2 overexpressor (KRP2 OE), which are known to exhibit typical features of compensation. We here showed that chloroplast number per cell increased in the subepidermal palisade tissue of these lines. We analyzed tetraploidized wild type, fugu5, an3 and KRP2 OE, and found that cell area itself, but not nuclear ploidy, is a key parameter that determines the activity of chloroplast proliferation. In particular, in the case of an3, we uncovered that promotion of chloroplast proliferation depends on the enhanced post-mitotic cell expansion. The expression levels of chloroplast proliferation-related genes are similar to or

  20. Human papillomavirus type 16 E7 oncoprotein engages but does not abrogate the mitotic spindle assembly checkpoint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yueyang; Munger, Karl, E-mail: kmunger@rics.bwh.harvard.edu

    2012-10-10

    The mitotic spindle assembly checkpoint (SAC) ensures faithful chromosome segregation during mitosis by censoring kinetochore-microtubule interactions. It is frequently rendered dysfunctional during carcinogenesis causing chromosome missegregation and genomic instability. There are conflicting reports whether the HPV16 E7 oncoprotein drives chromosomal instability by abolishing the SAC. Here we report that degradation of mitotic cyclins is impaired in cells with HPV16 E7 expression. RNAi-mediated depletion of Mad2 or BubR1 indicated the involvement of the SAC, suggesting that HPV16 E7 expression causes sustained SAC engagement. Mutational analyses revealed that HPV16 E7 sequences that are necessary for retinoblastoma tumor suppressor protein binding as wellmore » as sequences previously implicated in binding the nuclear and mitotic apparatus (NuMA) protein and in delocalizing dynein from the mitotic spindle contribute to SAC engagement. Importantly, however, HPV16 E7 does not markedly compromise the SAC response to microtubule poisons.« less

  1. Image analysis assisted study of mitotic figures in oral epithelial dysplasia and squamous cell carcinoma using differential stains.

    PubMed

    Tandon, Ankita; Singh, Narendra Nath; Brave, V R; Sreedhar, Gadiputi

    2016-11-01

    Mitosis is a process of cell division resulting in two genetically equivalent daughter cells. Excessive proliferation of cells due to mitosis is the hallmark in pre cancer and cancer. This study was conducted to count the number of mitotic figures in normal oral mucosa, oral epithelial dysplasia and squamous cell carcinoma in both Hematoxylin and Eosin (H&E) and Crystal Violet stained sections. Also the overall number of mitotic figures with both stains were compared along with the evaluation of staining efficacy of both the stains. The present study was conducted on 20 specimens each of the three categories. These were further divided into two groups for staining with H&E and with 1% Crystal Violet respectively. Images were captured and analyzed using image analysis software Dewinter Biowizard 4.1. Comparison of mitotic figure count in three categories in sections stained with both stains showed statistically significant difference ( p  < 0.001). The mean number of mitotic figures seen in Crystal Violet reagent were significantly higher as seen in H&E stain ( p  < 0.001). The overall diagnostic efficacy of Crystal Violet was 87.6%. Crystal Violet scored over H&E stain and also helped to better appreciate metaphases in Squamous cell carcinoma and telophases in dysplasia. Number of mitotic figures progressively increase with the advancement of the pathology. Use of 1% Crystal Violet provides better appreciation of mitotic figures and can be employed as a selective stain in routine histopathology.

  2. CDK-dependent potentiation of MPS1 kinase activity is essential to the mitotic checkpoint.

    PubMed

    Morin, Violeta; Prieto, Susana; Melines, Sabrina; Hem, Sonia; Rossignol, Michel; Lorca, Thierry; Espeut, Julien; Morin, Nathalie; Abrieu, Ariane

    2012-02-21

    Accurate chromosome segregation relies upon a mitotic checkpoint that monitors kinetochore attachment toward opposite spindle poles before enabling chromosome disjunction [1]. The MPS1/TTK protein kinase is a core component of the mitotic checkpoint that lies upstream of MAD2 and BubR1 both at the kinetochore and in the cytoplasm [2, 3]. To gain insight into the mechanisms underlying the regulation of MPS1 kinase, we undertook the identification of Xenopus MPS1 phosphorylation sites by mass spectrometry. We mapped several phosphorylation sites onto MPS1 and we show that phosphorylation of S283 in the noncatalytic region of MPS1 is required for full kinase activity. This phosphorylation potentiates MPS1 catalytic efficiency without impairing its affinity for the substrates. By using Xenopus egg extracts depleted of endogenous MPS1 and reconstituted with single point mutants, we show that phosphorylation of S283 is essential to activate the mitotic checkpoint. This phosphorylation does not regulate the localization of MPS1 to the kinetochore but is required for the recruitment of MAD1/MAD2, demonstrating its role at the kinetochore. Constitutive phosphorylation of S283 lowers the number of kinetochores required to hold the checkpoint, which suggests that CDK-dependent phosphorylation of MPS1 is essential to sustain the mitotic checkpoint when few kinetochores remain unattached. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Temporal Regulation of Lipin Activity Diverged to Account for Differences in Mitotic Programs

    PubMed Central

    Makarova, Maria; Gu, Ying; Chen, Jun-Song; Beckley, Janel Renée; Gould, Kathleen Louise; Oliferenko, Snezhana

    2016-01-01

    Summary Eukaryotes remodel the nucleus during mitosis using a variety of mechanisms that differ in the timing and the extent of nuclear envelope (NE) breakdown. Here, we probe the principles enabling this functional diversity by exploiting the natural divergence in NE management strategies between the related fission yeasts Schizosaccharomyces pombe and Schizosaccharomyces japonicus [1, 2, 3]. We show that inactivation of Ned1, the phosphatidic acid phosphatase of the lipin family, by CDK phosphorylation is both necessary and sufficient to promote NE expansion required for “closed” mitosis in S. pombe. In contrast, Ned1 is not regulated during division in S. japonicus, thus limiting membrane availability and necessitating NE breakage. Interspecies gene swaps result in phenotypically normal divisions with the S. japonicus lipin acquiring an S. pombe-like mitotic phosphorylation pattern. Our results provide experimental evidence for the mitotic regulation of phosphatidic acid flux and suggest that the regulatory networks governing lipin activity diverged in evolution to give rise to strikingly dissimilar mitotic programs. PMID:26774782

  4. Functional organization of mitotic microtubules. Physical chemistry of the in vivo equilibrium system.

    PubMed Central

    Inoué, S; Fuseler, J; Salmon, E D; Ellis, G W

    1975-01-01

    Equilibrium between mitotic microtubules and tubulin is analyzed, using birefringence of mitotic spindle to measure microtubule concentration in vivo. A newly designed temperature-controlled slide and miniature, thermostated hydrostatic pressure chamber permit rapid alteration of temperature and of pressure. Stress birefringence of the windows is minimized, and a system for rapid recording of compensation is incorporated, so that birefringence can be measured to 0.1 nm retardation every few seconds. Both temperature and pressure data yield thermodynamic values (delta H similar to 35 kcal/mol, delta S similar to 120 entropy units [eu], delta V similar to 400 ml/mol of subunit polymerized) consistent with the explanation that polymerization of tubulin is entropy driven and mediated by hydrophobic interactions. Kinetic data suggest pseudo-zero-order polymerization and depolymerization following rapid temperature shifts, and a pseudo-first-order depolymerization during anaphase at constant temperature. The equilibrium properties of the in vivo mitotic microtubules are compared with properties of isolated brain tubules. Images FIGURE 1 FIGURE 2 FIGURE 5 FIGURE 12 FIGURE 13 FIGURE 14 FIGURE 19 PMID:1139037

  5. Cdk1 phosphorylates SPAT-1/Bora to trigger PLK-1 activation and drive mitotic entry in C. elegans embryos

    PubMed Central

    Tavernier, Nicolas; Noatynska, Anna; Panbianco, Costanza; Martino, Lisa; Van Hove, Lucie; Schwager, Françoise; Léger, Thibaut

    2015-01-01

    The molecular mechanisms governing mitotic entry during animal development are incompletely understood. Here, we show that the mitotic kinase CDK-1 phosphorylates Suppressor of Par-Two 1 (SPAT-1)/Bora to regulate its interaction with PLK-1 and to trigger mitotic entry in early Caenorhabditis elegans embryos. Embryos expressing a SPAT-1 version that is nonphosphorylatable by CDK-1 and that is defective in PLK-1 binding in vitro present delays in mitotic entry, mimicking embryos lacking SPAT-1 or PLK-1 functions. We further show that phospho–SPAT-1 activates PLK-1 by triggering phosphorylation on its activator T loop in vitro by Aurora A. Likewise, we show that phosphorylation of human Bora by Cdk1 promotes phosphorylation of human Plk1 by Aurora A, suggesting that this mechanism is conserved in humans. Our results suggest that CDK-1 activates PLK-1 via SPAT-1 phosphorylation to promote entry into mitosis. We propose the existence of a positive feedback loop that connects Cdk1 and Plk1 activation to ensure a robust control of mitotic entry and cell division timing. PMID:25753036

  6. Thermal spray manual for machinery components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travis, R.; Ginther, C.; Herbstritt, M.

    1995-12-31

    The Thermal Spray Manual For Machinery Components is a National Shipbuilding Research (SP-7) Project. This Manual is being developed by Puget Sound Naval Shipyard with the help of other government thermal spray facilities and SP-7 panel members. The purpose of the manual is to provide marine repair facilities with a ``how to do`` document that will be ``user friendly`` and known to be technically sound through production experience. The manual`s intent is to give marine repair facilities the ability to maximize the thermal spray process as a repair method for machinery components and to give these facilities guidelines on howmore » to become qualified to receive certification that they meet the requirements of Military Standard 1687A.« less

  7. FOREWORD: 26th IAHR Symposium on Hydraulic Machinery and Systems

    NASA Astrophysics Data System (ADS)

    Wu, Yulin; Wang, Zhengwei; Liu, Shuhong; Yuan, Shouqi; Luo, Xingqi; Wang, Fujun

    2012-11-01

    The 26th IAHR Symposium on Hydraulic Machinery and Systems, will be held in Beijing, China, 19-23 August 2012. It is jointly organized by Tsinghua University, State Key Laboratory of Hydro Science and Hydraulic Engineering, China, Jiangsu University, Xi'an University of Technology, China Agricultural University, National Engineering Research Center of Hydropower Equipment and Dongfang Electric Machinery Co., Ltd. It is the second time that China hosts such a symposium. By the end of 2011, the China electrical power system had a total of 1 050 GW installed power, out of which 220 GW was in hydropower plants. The energy produced in hydropower facilities was 662.6 TWh from a total of 4,720 TWh electrical energy production in 2011. Moreover, in 2020, new hydropower capacities are going to be developed, with a total of 180 GW installed power and an estimated 708 TWh/year energy production. And in 2011, the installed power of pumped storage stations was about 25GW. In 2020, the data will be 70GW. At the same time, the number of pumps used in China is increasing rapidly. China produces about 29,000,000 pumps with more than 220 series per year. By the end of 2011, the Chinese pumping system has a total of 950 GW installed power. The energy consumed in pumping facilities was 530 TWh in 2011. The pump energy consumption accounted for about 12% of the national electrical energy production. Therefore, there is a large market in the field of hydraulic machinery including water turbines, pump turbines and a variety of pumps in China. There are also many research projects in this field. For example, we have conducted National Key Research Projects on 1000 MW hydraulic turbine, and on the pump turbines with high head, as well as on the large capacity pumps for water supply. Tsinghua University of Beijing is proud to host the 26th IAHR Symposium on Hydraulic Machinery and Systems. Tsinghua University was established in 1911, after the founding of the People's Republic of China. It

  8. Effect of HIV-1 Tat on the formation of the mitotic spindle by interaction with ribosomal protein S3.

    PubMed

    Kim, Jiyoung; Kim, Yeon-Soo

    2018-06-06

    Human immunodeficiency virus type 1 (HIV-1) Tat, an important regulator of viral transcription, interacts with diverse cellular proteins and promotes or inhibits cell proliferation. Here, we show that ribosomal protein S3 (RPS3) plays an important role in mitosis through an interaction with α-tubulin and that Tat binds to and inhibits the localization of RPS3 in the mitotic spindle during mitosis. RPS3 colocalized with α-tubulin around chromosomes in the mitotic spindle. Depletion of RPS3 promoted α-tubulin assembly, while overexpression of RPS3 impaired α-tubulin assembly. Depletion of RPS3 resulted in aberrant mitotic spindle formation, segregation failure, and defective abscission. Moreover, ectopic expression of RPS3 rescued the cell proliferation defect in RPS3-knockdown cells. HIV-1 Tat interacted with RPS3 through its basic domain and increased the level of RPS3 in the nucleus. Expression of Tat caused defects in mitotic spindle formation and chromosome assembly in mitosis. Moreover, the localization of RPS3 in the mitotic spindle was disrupted when HIV-1 Tat was expressed in HeLa and Jurkat cells. These results suggest that Tat inhibits cell proliferation via an interaction with RPS3 and thereby disrupts mitotic spindle formation during HIV-1 infection. These results might provide insight into the mechanism underlying lymphocyte pathogenesis during HIV-1 infection.

  9. 4. FIRST FLOOR INTERIOR, AMMONIA COMPRESSION DYNAMOS IN MACHINERY ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. FIRST FLOOR INTERIOR, AMMONIA COMPRESSION DYNAMOS IN MACHINERY ROOM ALONG SOUTH SIDE OF WESTERN PORTION OF BUILDING, FROM EASTERN ENTRANCE TO MACHINERY ROOM, LOOKING WEST. - Oakland Naval Supply Center, Cold Storage Warehouse, South of C Street between First & Second Street, Oakland, Alameda County, CA

  10. Inhibition of the Mitotic Exit Network in Response to Damaged Telomeres

    PubMed Central

    Valerio-Santiago, Mauricio; de los Santos-Velázquez, Ana Isabel; Monje-Casas, Fernando

    2013-01-01

    When chromosomal DNA is damaged, progression through the cell cycle is halted to provide the cells with time to repair the genetic material before it is distributed between the mother and daughter cells. In Saccharomyces cerevisiae, this cell cycle arrest occurs at the G2/M transition. However, it is also necessary to restrain exit from mitosis by maintaining Bfa1-Bub2, the inhibitor of the Mitotic Exit Network (MEN), in an active state. While the role of Bfa1 and Bub2 in the inhibition of mitotic exit when the spindle is not properly aligned and the spindle position checkpoint is activated has been extensively studied, the mechanism by which these proteins prevent MEN function after DNA damage is still unclear. Here, we propose that the inhibition of the MEN is specifically required when telomeres are damaged but it is not necessary to face all types of chromosomal DNA damage, which is in agreement with previous data in mammals suggesting the existence of a putative telomere-specific DNA damage response that inhibits mitotic exit. Furthermore, we demonstrate that the mechanism of MEN inhibition when telomeres are damaged relies on the Rad53-dependent inhibition of Bfa1 phosphorylation by the Polo-like kinase Cdc5, establishing a new key role of this kinase in regulating cell cycle progression. PMID:24130507

  11. Mitotic activity in dorsal epidermis of Rana pipiens.

    NASA Technical Reports Server (NTRS)

    Garcia-Arce, H.; Mizell, S.

    1972-01-01

    Study of statistically significant rhythms of mitotic division in dorsal epidermis of frogs, Rana pipiens, exposed to a 12:12 light:dark environment for 14 days. The results include the findings that (1) male animals have a primary period of 22 hr in summer and 18 hr in winter, (2) female animals have an 18 hr period, and (3) parapinealectomy and blinding abolish the rhythm.

  12. Synergistic Blockade of Mitotic Exit by Two Chemical Inhibitors of the APC/C

    PubMed Central

    Sackton, Katharine L.; Dimova, Nevena; Zeng, Xing; Tian, Wei; Zhang, Mengmeng; Sackton, Timothy B.; Meaders, Johnathan; Pfaff, Kathleen L.; Sigoillot, Frederic; Yu, Hongtao; Luo, Xuelian; King, Randall W.

    2014-01-01

    Summary Protein machines are multi-subunit protein complexes that orchestrate highly regulated biochemical tasks. An example is the Anaphase-Promoting Complex/Cyclosome (APC/C), a thirteen-subunit ubiquitin ligase that initiates the metaphase-anaphase transition and mitotic exit by targeting proteins such as securin and cyclin B1 for ubiquitin-dependent destruction by the proteasome1,2. Because blocking mitotic exit is an effective approach for inducing tumor cell death3,4, the APC/C represents a potential novel target for cancer therapy. APC/C activation in mitosis requires binding of Cdc205, which forms a co-receptor with the APC/C to recognize substrates containing a Destruction box (D-box)6-14. Here we demonstrate that we can synergistically inhibit APC/C-dependent proteolysis and mitotic exit by simultaneously disrupting two protein-protein interactions within the APC/C-Cdc20-substrate ternary complex. We identified a small molecule, called apcin (APC inhibitor), which binds to Cdc20 and competitively inhibits the ubiquitylation of D-box-containing substrates. Analysis of the crystal structure of the apcin-Cdc20 complex suggests that apcin occupies the D-box-binding pocket on the side face of the WD40-domain. The ability of apcin to block mitotic exit is synergistically amplified by co-addition of tosyl-L-arginine methyl ester (TAME), a small molecule that blocks the APC/C-Cdc20 interaction15,16. This work suggests that simultaneous disruption of multiple, weak protein-protein interactions is an effective approach for inactivating a protein machine. PMID:25156254

  13. The Echinoid Mitotic Gradient: Effect of Cell Size on the Micromere Cleavage Cycle

    PubMed Central

    Langelan Duncan, Rosalie E.; Whiteley, Arthur H.

    2012-01-01

    SUMMARY Like other euechinoids, the fertilized eggs of the sand dollar Dendraster excentricus proceed through cleavages that produce a pattern of macromeres, mesomeres, and micromeres at the 4th division. The 8 cells of the macro-mesomere lineage proceed through 6 additional cleavages before hatching. At the fifth overall division, the 4 micromeres produce a lineage of large micromeres that will divide 3 additional times, and a lineage of small micromeres that will divide once more before hatching. Irrespective of lineage, the length of the cell cycles is closely related to the size of the blastomere; cells of the same size have the same cell cycle time. A consequence is that at the fourth cleavage, there is a gradient of mitotic activity from the fastest dividers at the animal pole and the slowest cleacing micromeres at the vegetal pole. By the time of hatching, which is the 10th division of meso-macromeres, all cells are the same small size, the metachronic pattern of division gives way to asynchrony, and the mitotic gradient along the polar axis is lost. Experimental pre-exposure to sodium dodecyl sulfate (SDS), however, blocks the appearance of the gradients in cell size, the mitotic gradient, and the differential in cell cycle times. It is proposed that the mitotic gradients, cell cycle times, and attainment of a state of asynchrony are functions of cell size. Developmental consequences of the transition are large, and include coordinated activation of transcriptions, synthesis of new patterns of proteins, alterations of metabolism, and onset of morphogenesis. PMID:22006441

  14. Determining local and contextual features describing appearance of difficult to identify mitotic figures

    NASA Astrophysics Data System (ADS)

    Gandomkar, Ziba; Brennan, Patrick C.; Mello-Thoms, Claudia

    2017-03-01

    Mitotic count is helpful in determining the aggressiveness of breast cancer. In previous studies, it was shown that the agreement among pathologists for grading mitotic index is fairly modest, as mitoses have a large variety of appearances and they could be mistaken for other similar objects. In this study, we determined local and contextual features that differ significantly between easily identifiable mitoses and challenging ones. The images were obtained from the Mitosis-Atypia 2014 challenge. In total, the dataset contained 453 mitotic figures. Two pathologists annotated each mitotic figure. In case of disagreement, an opinion from a third pathologist was requested. The mitoses were grouped into three categories, those recognized as "a true mitosis" by both pathologists ,those labelled as "a true mitosis" by only one of the first two readers and also the third pathologist, and those annotated as "probably a mitosis" by all readers or the majority of them. After color unmixing, the mitoses were segmented from H channel. Shape-based features along with intensity-based and textural features were extracted from H-channel, blue ratio channel and five different color spaces. Holistic features describing each image were also considered. The Kruskal-Wallis H test was used to identify significantly different features. Multiple comparisons were done using the rank-based version of Tukey-Kramer test. The results indicated that there are local and global features which differ significantly among different groups. In addition, variations between mitoses in different groups were captured in the features from HSL and LCH color space more than other ones.

  15. Vertical Transmission of a Drosophila Endosymbiont Via Cooption of the Yolk Transport and Internalization Machinery

    PubMed Central

    Herren, Jeremy K.; Paredes, Juan C.; Schüpfer, Fanny; Lemaitre, Bruno

    2013-01-01

    ABSTRACT Spiroplasma is a diverse bacterial clade that includes many vertically transmitted insect endosymbionts, including Spiroplasma poulsonii, a natural endosymbiont of Drosophila melanogaster. These bacteria persist in the hemolymph of their adult host and exhibit efficient vertical transmission from mother to offspring. In this study, we analyzed the mechanism that underlies their vertical transmission, and here we provide strong evidence that these bacteria use the yolk uptake machinery to colonize the germ line. We show that Spiroplasma reaches the oocyte by passing through the intercellular space surrounding the ovarian follicle cells and is then endocytosed into oocytes within yolk granules during the vitellogenic stages of oogenesis. Mutations that disrupt yolk uptake by oocytes inhibit vertical Spiroplasma transmission and lead to an accumulation of these bacteria outside the oocyte. Impairment of yolk secretion by the fat body results in Spiroplasma not reaching the oocyte and a severe reduction of vertical transmission. We propose a model in which Spiroplasma first interacts with yolk in the hemolymph to gain access to the oocyte and then uses the yolk receptor, Yolkless, to be endocytosed into the oocyte. Cooption of the yolk uptake machinery is a powerful strategy for endosymbionts to target the germ line and achieve vertical transmission. This mechanism may apply to other endosymbionts and provides a possible explanation for endosymbiont host specificity. PMID:23462112

  16. Comparative analysis of mitotic aberrations induced by diethyl sulphate (DES) and sodium azide (SA) in Vicia faba L. (Fabaceae).

    PubMed

    Bhat, Tariq Ahmad; Sharma, Monika; Anis, M

    2007-03-01

    The present investigation provides a comparative account of different concentrations (0.01, 0.02, 0.03, 0.04, 0.05 and 0.06%) of diethylsulphate (DES) and Sodium Azide (SA) on mitotic aberrations, seed germination, seedling survival, plant height and mitotic index in Vicia faba L. variety major. The control plants were normal while as treated ones showed significant alterations. The mutagens caused dose dependent decrease in seed germination, seedling survival, plant height and mitotic index. All the parameters were found negatively affected and were positively correlated with mutagenic concentrations. The cytological study revealed various types of mitotic aberrations, among them the dominant were fragments, stickiness, precocious separation, c-metaphase, ring chromosomes, unequal separation, laggards, bridges, micronuclei, disturbed anaphase etc. Stickiness and fragments were more frequent as compared to other types.

  17. Therapeutic Interventions to Disrupt the Protein Synthetic Machinery in Melanoma

    PubMed Central

    Kardos, Gregory R.; Robertson, Gavin P.

    2015-01-01

    Control of the protein synthetic machinery is deregulated in many cancers, including melanoma, in order to increase protein production. Tumor suppressors and oncogenes play key roles in protein synthesis from the transcription of rRNA and ribosome biogenesis to mRNA translation initiation and protein synthesis. Major signaling pathways are altered in melanoma to modulate the protein synthetic machinery thereby promoting tumor development. However, despite the importance of this process in melanoma development, involvement of the protein synthetic machinery in this cancer type is an underdeveloped area of study. Here, we review the coupling of melanoma development to deregulation of the protein synthetic machinery. We examine existing knowledge regarding RNA Polymerase I inhibition and mRNA translation focusing on their inhibition for therapeutic applications in melanoma. Furthermore, the contribution of amino acid biosynthesis and involvement of ribosomal proteins are also reviewed as future therapeutic strategies to target deregulated protein production in melanoma. PMID:26139519

  18. The Light Intermediate Chain 2 Subpopulation of Dynein Regulates Mitotic Spindle Orientation.

    PubMed

    Mahale, Sagar; Kumar, Megha; Sharma, Amit; Babu, Aswini; Ranjan, Shashi; Sachidanandan, Chetana; Mylavarapu, Sivaram V S

    2016-12-23

    Cytoplasmic dynein 1 is a multi-protein intracellular motor essential for mediating several mitotic functions, including the establishment of proper spindle orientation. The functional relevance and mechanistic distinctions between two discrete dynein subpopulations distinguished only by Light Intermediate Chain (LIC) homologues, LIC1 and LIC2 is unknown during mitosis. Here, we identify LIC2-dynein as the major mediator of proper spindle orientation and uncover its underlying molecular mechanism. Cortically localized dynein, essential for maintaining correct spindle orientation, consists majorly of LIC2-dynein, which interacts with cortical 14-3-3 ε- ζ and Par3, conserved proteins required for orienting the spindle. LIC2-dynein is also responsible for the majority of dynein-mediated asymmetric poleward transport of NuMA, helping focus microtubule minus ends. In addition, LIC2-dynein dominates in equatorially aligning chromosomes at metaphase and in regulating mitotic spindle length. Key mitotic functions of LIC2 were remarkably conserved in and essential for early embryonic divisions and development in zebrafish. Thus LIC2-dynein exclusively engages with two major cortical pathways to govern spindle orientation. Overall, we identify a novel selectivity of molecular interactions between the two LICs in mitosis as the underlying basis for their uneven distribution of labour in ensuring proper spindle orientation.

  19. Sensitivity and usefulness of anti-phosphohistone-H3 antibody immunostaining for counting mitotic figures in meningioma cases.

    PubMed

    Fukushima, Shintaro; Terasaki, Mizuhiko; Sakata, Kiyohiko; Miyagi, Naohisa; Kato, Seiya; Sugita, Yasuo; Shigemori, Minoru

    2009-01-01

    According to current World Health Organization (WHO) criteria, counting mitotic figures (MF), which is equal to the mitotic index (MI), on paraffin sections stained with hematoxylin and eosin (HE) is one of the recognized classification methods for meningiomas. However, it is not always easy to find the area of highest mitotic activity, and there are different perspectives among pathologists with regard to differentiating MF from non-MF, i.e., which are apoptotic figures and which are crushed or distorted cells. Moreover, there is an issue of overgrading in meningiomas with preoperative feeder embolization. Recently, anti-phosphohistone-H3 (PHH3) antibody has been reported as a mitosis-specific marker for meningioma grading. In this study, we attempted PHH3 immunostaining for our meningioma cases and verified not only the sensitivity of PHH3 immunostaining but also that of its usefulness in grading meningiomas. Forty-five initial histologically confirmed meningiomas (37 benign, 7 atypical, and 1 anaplastic) were reviewed according to current WHO criteria based on counting MF on HE-stained slides. PHH3-immunostained MF were counted in the same way, and the MIB-1 labeling index (LI) was calculated for each sample. PHH3-labeled MF were easily identified and permitted rapid recognition of the areas of highest mitotic activity. As a result, significant increase of PHH3 mitotic index (PHH3-MI) in comparison with HE mitotic index (HE-MI) and strong correlations with HE-MI to PHH3-MI as well as PHH3-MI to MIB-1 LI were demonstrated. Furthermore, no significant differences of PHH3-MI between cases with and without feeder embolization were demonstrated. As such, PHH3 may be a sensitive and useful marker for meningioma grading as based on the MF.

  20. 46 CFR 71.15-1 - Standards in inspection of hulls, boilers, and machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Standards in inspection of hulls, boilers, and machinery... VESSELS INSPECTION AND CERTIFICATION Inspection of Vessels § 71.15-1 Standards in inspection of hulls, boilers, and machinery. In the inspection of hulls, boilers, and machinery of vessels, the standards...

  1. Impaired mitotic progression and preimplantation lethality in mice lacking OMCG1, a new evolutionarily conserved nuclear protein.

    PubMed

    Artus, Jérôme; Vandormael-Pournin, Sandrine; Frödin, Morten; Nacerddine, Karim; Babinet, Charles; Cohen-Tannoudji, Michel

    2005-07-01

    While highly conserved through evolution, the cell cycle has been extensively modified to adapt to new developmental programs. Recently, analyses of mouse mutants revealed that several important cell cycle regulators are either dispensable for development or have a tissue- or cell-type-specific function, indicating that many aspects of cell cycle regulation during mammalian embryo development remain to be elucidated. Here, we report on the characterization of a new gene, Omcg1, which codes for a nuclear zinc finger protein. Embryos lacking Omcg1 die by the end of preimplantation development. In vitro cultured Omcg1-null blastocysts exhibit a dramatic reduction in the total cell number, a high mitotic index, and the presence of abnormal mitotic figures. Importantly, we found that Omcg1 disruption results in the lengthening of M phase rather than in a mitotic block. We show that the mitotic delay in Omcg1-/- embryos is associated with neither a dysfunction of the spindle checkpoint nor abnormal global histone modifications. Taken together, these results suggest that Omcg1 is an important regulator of the cell cycle in the preimplantation embryo.

  2. The Autophagic Machinery in Enterovirus Infection

    PubMed Central

    Lai, Jeffrey K. F.; Sam, I-Ching; Chan, Yoke Fun

    2016-01-01

    The Enterovirus genus of the Picornaviridae family comprises many important human pathogens, including polioviruses, rhinovirus, enterovirus A71, and enterovirus D68. They cause a wide variety of diseases, ranging from mild to severe life-threatening diseases. Currently, no effective vaccine is available against enteroviruses except for poliovirus. Enteroviruses subvert the autophagic machinery to benefit their assembly, maturation, and exit from host. Some enteroviruses spread between cells via a process described as autophagosome-mediated exit without lysis (AWOL). The early and late phases of autophagy are regulated through various lipids and their metabolizing enzymes. Some of these lipids and enzymes are specifically regulated by enteroviruses. In the present review, we summarize the current understanding of the regulation of autophagic machinery by enteroviruses, and provide updates on recent developments in this field. PMID:26828514

  3. The Autophagic Machinery in Enterovirus Infection.

    PubMed

    Lai, Jeffrey K F; Sam, I-Ching; Chan, Yoke Fun

    2016-01-27

    The Enterovirus genus of the Picornaviridae family comprises many important human pathogens, including polioviruses, rhinovirus, enterovirus A71, and enterovirus D68. They cause a wide variety of diseases, ranging from mild to severe life-threatening diseases. Currently, no effective vaccine is available against enteroviruses except for poliovirus. Enteroviruses subvert the autophagic machinery to benefit their assembly, maturation, and exit from host. Some enteroviruses spread between cells via a process described as autophagosome-mediated exit without lysis (AWOL). The early and late phases of autophagy are regulated through various lipids and their metabolizing enzymes. Some of these lipids and enzymes are specifically regulated by enteroviruses. In the present review, we summarize the current understanding of the regulation of autophagic machinery by enteroviruses, and provide updates on recent developments in this field.

  4. Effects of polyamines and polyamine biosynthetic inhibitors on mitotic activity of Allium cepa root tips.

    PubMed

    Unal, Meral; Palavan-Unsal, Narcin; Tufekci, M A

    2008-03-01

    The genotoxic and cytotoxic effects of exogenous polyamines (PAs), putrescine (Put), spermidine (Spd), spermine (Spm) and PA biosynthetic inhibitors, alpha-difluoromethylornithine (DFMO), cyclohexilamine (CHA), methylglioxal bis-(guanylhydrazone) (MGBG) were investigated in the root meristems of Allium cepa L. The reduction of mitotic index and the induction of chromosomal aberrations such as bridges, stickiness, c-mitotic anaphases, micronuclei, endoredupliction by PAs and PA biosynthetic inhibitors were observed and these were used as evidence of genotoxicity and cytotoxicity.

  5. Mitotic cells contract actomyosin cortex and generate pressure to round against or escape epithelial confinement

    NASA Astrophysics Data System (ADS)

    Sorce, Barbara; Escobedo, Carlos; Toyoda, Yusuke; Stewart, Martin P.; Cattin, Cedric J.; Newton, Richard; Banerjee, Indranil; Stettler, Alexander; Roska, Botond; Eaton, Suzanne; Hyman, Anthony A.; Hierlemann, Andreas; Müller, Daniel J.

    2015-11-01

    Little is known about how mitotic cells round against epithelial confinement. Here, we engineer micropillar arrays that subject cells to lateral mechanical confinement similar to that experienced in epithelia. If generating sufficient force to deform the pillars, rounding epithelial (MDCK) cells can create space to divide. However, if mitotic cells cannot create sufficient space, their rounding force, which is generated by actomyosin contraction and hydrostatic pressure, pushes the cell out of confinement. After conducting mitosis in an unperturbed manner, both daughter cells return to the confinement of the pillars. Cells that cannot round against nor escape confinement cannot orient their mitotic spindles and more likely undergo apoptosis. The results highlight how spatially constrained epithelial cells prepare for mitosis: either they are strong enough to round up or they must escape. The ability to escape from confinement and reintegrate after mitosis appears to be a basic property of epithelial cells.

  6. Mitotic cells contract actomyosin cortex and generate pressure to round against or escape epithelial confinement

    PubMed Central

    Sorce, Barbara; Escobedo, Carlos; Toyoda, Yusuke; Stewart, Martin P.; Cattin, Cedric J.; Newton, Richard; Banerjee, Indranil; Stettler, Alexander; Roska, Botond; Eaton, Suzanne; Hyman, Anthony A.; Hierlemann, Andreas; Müller, Daniel J.

    2015-01-01

    Little is known about how mitotic cells round against epithelial confinement. Here, we engineer micropillar arrays that subject cells to lateral mechanical confinement similar to that experienced in epithelia. If generating sufficient force to deform the pillars, rounding epithelial (MDCK) cells can create space to divide. However, if mitotic cells cannot create sufficient space, their rounding force, which is generated by actomyosin contraction and hydrostatic pressure, pushes the cell out of confinement. After conducting mitosis in an unperturbed manner, both daughter cells return to the confinement of the pillars. Cells that cannot round against nor escape confinement cannot orient their mitotic spindles and more likely undergo apoptosis. The results highlight how spatially constrained epithelial cells prepare for mitosis: either they are strong enough to round up or they must escape. The ability to escape from confinement and reintegrate after mitosis appears to be a basic property of epithelial cells. PMID:26602832

  7. Tractor & Machinery Safety. 1984 Revision.

    ERIC Educational Resources Information Center

    Montana State Office of Public Instruction, Helena. Dept. of Vocational Education Services.

    This curriculum guide is intended for use in teaching an instructional unit in tractor and machinery safety that is geared toward college freshmen. Addressed in the individual lessons of the unit are the following topics: understanding the importance of safe and efficient tractor operation, understanding the characteristics of tractors, preparing…

  8. AGRICULTURAL MACHINERY--POWER. TEACHERS COPY.

    ERIC Educational Resources Information Center

    HILL, DURWIN; VENABLE, BENNY MAC

    THE PURPOSE OF THIS DOCUMENT IS TO PROVIDE A STUDY GUIDE FOR STUDENTS PREPARING FOR AGRICULTURAL MACHINERY OCCUPATIONS IN A VOCATIONAL AGRICULTURE COOPERATIVE EDUCATION PROGRAM. THE MATERIAL WAS DESIGNED BY SUBJECT MATTER SPECIALISTS ON THE BASIS OF STATE ADVISORY COMMITTEE RECOMMENDATIONS, TRIED IN OPERATIONAL PROGRAMS, AND REFINED BY A TEACHER.…

  9. Studying the Role of the Mitotic Exit Network in Cytokinesis.

    PubMed

    Foltman, Magdalena; Sanchez-Diaz, Alberto

    2017-01-01

    In budding yeast cells, cytokinesis is achieved by the successful division of the cytoplasm into two daughter cells, but the precise mechanisms of cell division and its regulation are still rather poorly understood. The Mitotic Exit Network (MEN) is the signaling cascade that is responsible for the release of Cdc14 phosphatase leading to the inactivation of the kinase activity associated to cyclin-dependent kinases (CDK), which drives exit from mitosis and a rapid and efficient cytokinesis. Mitotic CDK impairs the activation of MEN before anaphase, and activation of MEN in anaphase leads to the inactivation of CDK, which presents a challenge to determine the contribution that each pathway makes to the successful onset of cytokinesis. To determine CDK and MEN contribution to cytokinesis irrespectively of each other, here we present methods to induce cytokinesis after the inactivation of CDK activity in temperature sensitive mutants of the MEN pathway. An array of methods to monitor the cellular events associated with the successful cytokinesis is included.

  10. 65. CALIFORNIA STREET CABLE RAILWAY WINDING MACHINERY: Photocopy of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    65. CALIFORNIA STREET CABLE RAILWAY - WINDING MACHINERY: Photocopy of February 1955 photograph showing the winding machinery of the California Street Cable Railroad. The two suspended sheaves on the right of the photograph bore down on the cable as it left the winders, supplying tension to the cable and eliminating the need for a long tension run. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  11. Instability in Rotating Machinery

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The proceedings contain 45 papers on a wide range of subjects including flow generated instabilities in fluid flow machines, cracked shaft detection, case histories of instability phenomena in compressors, turbines, and pumps, vibration control in turbomachinery (including antiswirl techniques), and the simulation and estimation of destabilizing forces in rotating machines. The symposium was held to serve as an update on the understanding and control of rotating machinery instability problems.

  12. Direct membrane binding by bacterial actin MreB.

    PubMed

    Salje, Jeanne; van den Ent, Fusinita; de Boer, Piet; Löwe, Jan

    2011-08-05

    Bacterial actin MreB is one of the key components of the bacterial cytoskeleton. It assembles into short filaments that lie just underneath the membrane and organize the cell wall synthesis machinery. Here we show that MreB from both T. maritima and E. coli binds directly to cell membranes. This function is essential for cell shape determination in E. coli and is proposed to be a general property of many, if not all, MreBs. We demonstrate that membrane binding is mediated by a membrane insertion loop in TmMreB and by an N-terminal amphipathic helix in EcMreB and show that purified TmMreB assembles into double filaments on a membrane surface that can induce curvature. This, the first example of a membrane-binding actin filament, prompts a fundamental rethink of the structure and dynamics of MreB filaments within cells. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Hair cell recovery in mitotically blocked cultures of the bullfrog saccule

    NASA Technical Reports Server (NTRS)

    Baird, R. A.; Burton, M. D.; Fashena, D. S.; Naeger, R. A.

    2000-01-01

    Hair cells in many nonmammalian vertebrates are regenerated by the mitotic division of supporting cell progenitors and the differentiation of the resulting progeny into new hair cells and supporting cells. Recent studies have shown that nonmitotic hair cell recovery after aminoglycoside-induced damage can also occur in the vestibular organs. Using hair cell and supporting cell immunocytochemical markers, we have used confocal and electron microscopy to examine the fate of damaged hair cells and the origin of immature hair cells after gentamicin treatment in mitotically blocked cultures of the bullfrog saccule. Extruding and fragmenting hair cells, which undergo apoptotic cell death, are replaced by scar formations. After losing their bundles, sublethally damaged hair cells remain in the sensory epithelium for prolonged periods, acquiring supporting cell-like morphology and immunoreactivity. These modes of damage appear to be mutually exclusive, implying that sublethally damaged hair cells repair their bundles. Transitional cells, coexpressing hair cell and supporting cell markers, are seen near scar formations created by the expansion of neighboring supporting cells. Most of these cells have morphology and immunoreactivity similar to that of sublethally damaged hair cells. Ultrastructural analysis also reveals that most immature hair cells had autophagic vacuoles, implying that they originated from damaged hair cells rather than supporting cells. Some transitional cells are supporting cells participating in scar formations. Supporting cells also decrease in number during hair cell recovery, supporting the conclusion that some supporting cells undergo phenotypic conversion into hair cells without an intervening mitotic event.

  14. Hair cell recovery in mitotically blocked cultures of the bullfrog saccule.

    PubMed

    Baird, R A; Burton, M D; Lysakowski, A; Fashena, D S; Naeger, R A

    2000-10-24

    Hair cells in many nonmammalian vertebrates are regenerated by the mitotic division of supporting cell progenitors and the differentiation of the resulting progeny into new hair cells and supporting cells. Recent studies have shown that nonmitotic hair cell recovery after aminoglycoside-induced damage can also occur in the vestibular organs. Using hair cell and supporting cell immunocytochemical markers, we have used confocal and electron microscopy to examine the fate of damaged hair cells and the origin of immature hair cells after gentamicin treatment in mitotically blocked cultures of the bullfrog saccule. Extruding and fragmenting hair cells, which undergo apoptotic cell death, are replaced by scar formations. After losing their bundles, sublethally damaged hair cells remain in the sensory epithelium for prolonged periods, acquiring supporting cell-like morphology and immunoreactivity. These modes of damage appear to be mutually exclusive, implying that sublethally damaged hair cells repair their bundles. Transitional cells, coexpressing hair cell and supporting cell markers, are seen near scar formations created by the expansion of neighboring supporting cells. Most of these cells have morphology and immunoreactivity similar to that of sublethally damaged hair cells. Ultrastructural analysis also reveals that most immature hair cells had autophagic vacuoles, implying that they originated from damaged hair cells rather than supporting cells. Some transitional cells are supporting cells participating in scar formations. Supporting cells also decrease in number during hair cell recovery, supporting the conclusion that some supporting cells undergo phenotypic conversion into hair cells without an intervening mitotic event.

  15. Estimating Vibrational Powers Of Parts In Fluid Machinery

    NASA Technical Reports Server (NTRS)

    Harvey, S. A.; Kwok, L. C.

    1995-01-01

    In new method of estimating vibrational power associated with component of fluid-machinery system, physics of flow through (or in vicinity of) component regarded as governing vibrations. Devised to generate scaling estimates for design of new parts of rocket engines (e.g., pumps, combustors, nozzles) but applicable to terrestrial pumps, turbines, and other machinery in which turbulent flows and vibrations caused by such flows are significant. Validity of method depends on assumption that fluid flows quasi-steadily and that flow gives rise to uncorrelated acoustic powers in different parts of pump.

  16. The Differential Roles of Budding Yeast Tem1p, Cdc15p, and Bub2p Protein Dynamics in Mitotic ExitD⃞V⃞

    PubMed Central

    Molk, Jeffrey N.; Schuyler, Scott C.; Liu, Jenny Y.; Evans, James G.; Salmon, E. D.; Pellman, David; Bloom, Kerry

    2004-01-01

    In the budding yeast Saccharomyces cerevisiae the mitotic spindle must be positioned along the mother-bud axis to activate the mitotic exit network (MEN) in anaphase. To examine MEN proteins during mitotic exit, we imaged the MEN activators Tem1p and Cdc15p and the MEN regulator Bub2p in vivo. Quantitative live cell fluorescence microscopy demonstrated the spindle pole body that segregated into the daughter cell (dSPB) signaled mitotic exit upon penetration into the bud. Activation of mitotic exit was associated with an increased abundance of Tem1p-GFP and the localization of Cdc15p-GFP on the dSPB. In contrast, Bub2p-GFP fluorescence intensity decreased in mid-to-late anaphase on the dSPB. Therefore, MEN protein localization fluctuates to switch from Bub2p inhibition of mitotic exit to Cdc15p activation of mitotic exit. The mechanism that elevates Tem1p-GFP abundance in anaphase is specific to dSPB penetration into the bud and Dhc1p and Lte1p promote Tem1p-GFP localization. Finally, fluorescence recovery after photobleaching (FRAP) measurements revealed Tem1p-GFP is dynamic at the dSPB in late anaphase. These data suggest spindle pole penetration into the bud activates mitotic exit, resulting in Tem1p and Cdc15p persistence at the dSPB to initiate the MEN signal cascade. PMID:14718561

  17. Determination of the Core of a Minimal Bacterial Gene Set†

    PubMed Central

    Gil, Rosario; Silva, Francisco J.; Peretó, Juli; Moya, Andrés

    2004-01-01

    The availability of a large number of complete genome sequences raises the question of how many genes are essential for cellular life. Trying to reconstruct the core of the protein-coding gene set for a hypothetical minimal bacterial cell, we have performed a computational comparative analysis of eight bacterial genomes. Six of the analyzed genomes are very small due to a dramatic genome size reduction process, while the other two, corresponding to free-living relatives, are larger. The available data from several systematic experimental approaches to define all the essential genes in some completely sequenced bacterial genomes were also considered, and a reconstruction of a minimal metabolic machinery necessary to sustain life was carried out. The proposed minimal genome contains 206 protein-coding genes with all the genetic information necessary for self-maintenance and reproduction in the presence of a full complement of essential nutrients and in the absence of environmental stress. The main features of such a minimal gene set, as well as the metabolic functions that must be present in the hypothetical minimal cell, are discussed. PMID:15353568

  18. Targeting Alp7/TACC to the spindle pole body is essential for mitotic spindle assembly in fission yeast

    PubMed Central

    Tang, Ngang Heok; Okada, Naoyuki; Fong, Chii Shyang; Arai, Kunio; Sato, Masamitsu; Toda, Takashi

    2014-01-01

    The conserved TACC protein family localises to the centrosome (the spindle pole body, SPB in fungi) and mitotic spindles, thereby playing a crucial role in bipolar spindle assembly. However, it remains elusive how TACC proteins are recruited to the centrosome/SPB. Here, using fission yeast Alp7/TACC, we have determined clustered five amino acid residues within the TACC domain required for SPB localisation. Critically, these sequences are essential for the functions of Alp7, including proper spindle formation and mitotic progression. Moreover, we have identified pericentrin-like Pcp1 as a loading factor to the mitotic SPB, although Pcp1 is not a sole platform. PMID:24937146

  19. Quantitative phosphoproteomics reveals new roles for the protein phosphatase PP6 in mitotic cells.

    PubMed

    Rusin, Scott F; Schlosser, Kate A; Adamo, Mark E; Kettenbach, Arminja N

    2015-10-13

    Protein phosphorylation is an important regulatory mechanism controlling mitotic progression. Protein phosphatase 6 (PP6) is an essential enzyme with conserved roles in chromosome segregation and spindle assembly from yeast to humans. We applied a baculovirus-mediated gene silencing approach to deplete HeLa cells of the catalytic subunit of PP6 (PP6c) and analyzed changes in the phosphoproteome and proteome in mitotic cells by quantitative mass spectrometry-based proteomics. We identified 408 phosphopeptides on 272 proteins that increased and 298 phosphopeptides on 220 proteins that decreased in phosphorylation upon PP6c depletion in mitotic cells. Motif analysis of the phosphorylated sites combined with bioinformatics pathway analysis revealed previously unknown PP6c-dependent regulatory pathways. Biochemical assays demonstrated that PP6c opposed casein kinase 2-dependent phosphorylation of the condensin I subunit NCAP-G, and cellular analysis showed that depletion of PP6c resulted in defects in chromosome condensation and segregation in anaphase, consistent with dysregulation of condensin I function in the absence of PP6 activity. Copyright © 2015, American Association for the Advancement of Science.

  20. Quantitative phosphoproteomics reveals new roles for the protein phosphatase PP6 in mitotic cells

    PubMed Central

    Rusin, Scott F.; Schlosser, Kate A.; Adamo, Mark E.; Kettenbach, Arminja N.

    2017-01-01

    Protein phosphorylation is an important regulatory mechanism controlling mitotic progression. Protein phosphatase 6 (PP6) is an essential enzyme with conserved roles in chromosome segregation and spindle assembly from yeast to humans. We applied a baculovirus-mediated gene silencing approach to deplete HeLa cells of the catalytic subunit of PP6 (PP6c) and analyzed changes in the phosphoproteome and proteome in mitotic cells by quantitative mass spectrometry–based proteomics. We identified 408 phosphopeptides on 272 proteins that increased and 298 phosphopeptides on 220 proteins that decreased in phosphorylation upon PP6c depletion in mitotic cells. Motif analysis of the phosphorylated sites combined with bioinformatics pathway analysis revealed previously unknown PP6c–dependent regulatory pathways. Biochemical assays demonstrated that PP6c opposed casein kinase 2–dependent phosphorylation of the condensin I subunit NCAP-G, and cellular analysis showed that depletion of PP6c resulted in defects in chromosome condensation and segregation in anaphase, consistent with dysregulation of condensin I function in the absence of PP6 activity. PMID:26462736

  1. Kinesin-8 effects on mitotic microtubule dynamics contribute to spindle function in fission yeast

    PubMed Central

    Gergely, Zachary R.; Crapo, Ammon; Hough, Loren E.; McIntosh, J. Richard; Betterton, Meredith D.

    2016-01-01

    Kinesin-8 motor proteins destabilize microtubules. Their absence during cell division is associated with disorganized mitotic chromosome movements and chromosome loss. Despite recent work studying effects of kinesin-8s on microtubule dynamics, it remains unclear whether the kinesin-8 mitotic phenotypes are consequences of their effect on microtubule dynamics, their well-established motor activity, or additional, unknown functions. To better understand the role of kinesin-8 proteins in mitosis, we studied the effects of deletion of the fission yeast kinesin-8 proteins Klp5 and Klp6 on chromosome movements and spindle length dynamics. Aberrant microtubule-driven kinetochore pushing movements and tripolar mitotic spindles occurred in cells lacking Klp5 but not Klp6. Kinesin-8–deletion strains showed large fluctuations in metaphase spindle length, suggesting a disruption of spindle length stabilization. Comparison of our results from light microscopy with a mathematical model suggests that kinesin-8–induced effects on microtubule dynamics, kinetochore attachment stability, and sliding force in the spindle can explain the aberrant chromosome movements and spindle length fluctuations seen. PMID:27146110

  2. Automatic digital image analysis for identification of mitotic cells in synchronous mammalian cell cultures.

    PubMed

    Eccles, B A; Klevecz, R R

    1986-06-01

    Mitotic frequency in a synchronous culture of mammalian cells was determined fully automatically and in real time using low-intensity phase-contrast microscopy and a newvicon video camera connected to an EyeCom III image processor. Image samples, at a frequency of one per minute for 50 hours, were analyzed by first extracting the high-frequency picture components, then thresholding and probing for annular objects indicative of putative mitotic cells. Both the extraction of high-frequency components and the recognition of rings of varying radii and discontinuities employed novel algorithms. Spatial and temporal relationships between annuli were examined to discern the occurrences of mitoses, and such events were recorded in a computer data file. At present, the automatic analysis is suited for random cell proliferation rate measurements or cell cycle studies. The automatic identification of mitotic cells as described here provides a measure of the average proliferative activity of the cell population as a whole and eliminates more than eight hours of manual review per time-lapse video recording.

  3. Novel insights into mitotic chromosome condensation

    PubMed Central

    Piskadlo, Ewa; Oliveira, Raquel A.

    2016-01-01

    The fidelity of mitosis is essential for life, and successful completion of this process relies on drastic changes in chromosome organization at the onset of nuclear division. The mechanisms that govern chromosome compaction at every cell division cycle are still far from full comprehension, yet recent studies provide novel insights into this problem, challenging classical views on mitotic chromosome assembly. Here, we briefly introduce various models for chromosome assembly and known factors involved in the condensation process (e.g. condensin complexes and topoisomerase II). We will then focus on a few selected studies that have recently brought novel insights into the mysterious way chromosomes are condensed during nuclear division. PMID:27508072

  4. LIS1 controls mitosis and mitotic spindle organization via the LIS1–NDEL1–dynein complex

    PubMed Central

    Moon, Hyang Mi; Youn, Yong Ha; Pemble, Hayley; Yingling, Jessica; Wittmann, Torsten; Wynshaw-Boris, Anthony

    2014-01-01

    Heterozygous LIS1 mutations are responsible for the human neuronal migration disorder lissencephaly. Mitotic functions of LIS1 have been suggested from many organisms throughout evolution. However, the cellular functions of LIS1 at distinct intracellular compartments such as the centrosome and the cell cortex have not been well defined especially during mitotic cell division. Here, we used detailed cellular approaches and time-lapse live cell imaging of mitosis from Lis1 mutant mouse embryonic fibroblasts to reveal critical roles of LIS1 in mitotic spindle regulation. We found that LIS1 is required for the tight control of chromosome congression and segregation to dictate kinetochore–microtubule (MT) interactions and anaphase progression. In addition, LIS1 is essential for the establishment of mitotic spindle pole integrity by maintaining normal centrosome number. Moreover, LIS1 plays crucial roles in mitotic spindle orientation by increasing the density of astral MT plus-end movements toward the cell cortex, which enhances cortical targeting of LIS1–dynein complex. Overexpression of NDEL1–dynein and MT stabilization rescues spindle orientation defects in Lis1 mutants, demonstrating that mouse LIS1 acts via the LIS1–NDEL1–dynein complex to regulate astral MT plus-ends dynamics and establish proper contacts of MTs with the cell cortex to ensure precise cell division. PMID:24030547

  5. Mitotic Transcriptional Activation: Clearance of Actively Engaged Pol II via Transcriptional Elongation Control in Mitosis.

    PubMed

    Liang, Kaiwei; Woodfin, Ashley R; Slaughter, Brian D; Unruh, Jay R; Box, Andrew C; Rickels, Ryan A; Gao, Xin; Haug, Jeffrey S; Jaspersen, Sue L; Shilatifard, Ali

    2015-11-05

    Although it is established that some general transcription factors are inactivated at mitosis, many details of mitotic transcription inhibition (MTI) and its underlying mechanisms are largely unknown. We have identified mitotic transcriptional activation (MTA) as a key regulatory step to control transcription in mitosis for genes with transcriptionally engaged RNA polymerase II (Pol II) to activate and transcribe until the end of the gene to clear Pol II from mitotic chromatin, followed by global impairment of transcription reinitiation through MTI. Global nascent RNA sequencing and RNA fluorescence in situ hybridization demonstrate the existence of transcriptionally engaged Pol II in early mitosis. Both genetic and chemical inhibition of P-TEFb in mitosis lead to delays in the progression of cell division. Together, our study reveals a mechanism for MTA and MTI whereby transcriptionally engaged Pol II can progress into productive elongation and finish transcription to allow proper cellular division. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Loss of the DNA Damage Repair Kinase ATM Impairs Inflammasome-Dependent Anti-Bacterial Innate Immunity.

    PubMed

    Erttmann, Saskia F; Härtlova, Anetta; Sloniecka, Marta; Raffi, Faizal A M; Hosseinzadeh, Ava; Edgren, Tomas; Rofougaran, Reza; Resch, Ulrike; Fällman, Maria; Ek, Torben; Gekara, Nelson O

    2016-07-19

    The ATM kinase is a central component of the DNA damage repair machinery and redox balance. ATM dysfunction results in the multisystem disease ataxia-telangiectasia (AT). A major cause of mortality in AT is respiratory bacterial infections. Whether ATM deficiency causes innate immune defects that might contribute to bacterial infections is not known. Here we have shown that loss of ATM impairs inflammasome-dependent anti-bacterial innate immunity. Cells from AT patients or Atm(-/-) mice exhibited diminished interleukin-1β (IL-1β) production in response to bacteria. In vivo, Atm(-/-) mice were more susceptible to pulmonary S. pneumoniae infection in a manner consistent with inflammasome defects. Our data indicate that such defects were due to oxidative inhibition of inflammasome complex assembly. This study reveals an unanticipated function of reactive oxygen species (ROS) in negative regulation of inflammasomes and proposes a theory for the notable susceptibility of AT patients to pulmonary bacterial infection. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The pso4-1 mutation reduces spontaneous mitotic gene conversion and reciprocal recombination in Saccharomyces cerevisiae.

    PubMed

    Meira, L B; Fonseca, M B; Averbeck, D; Schenberg, A C; Henriques, J A

    1992-11-01

    Spontaneous mitotic recombination was examined in the haploid pso4-1 mutant of Saccharomyces cerevisiae and in the corresponding wild-type strain. Using a genetic system involving a duplication of the his4 gene it was shown that the pso4-1 mutation decreases at least fourfold the spontaneous rate of mitotic recombination. The frequency of spontaneous recombination was reduced tenfold in pso4-1 strains, as previously observed in the rad52-1 mutant. However, whereas the rad52-1 mutation specifically reduces gene conversion, the pso4-1 mutation reduces both gene conversion and reciprocal recombination. Induced mitotic recombination was also studied in pso4-1 mutant and wild-type strains after treatment with 8-methoxypsoralen plus UVA and 254 nm UV irradiation. Consistent with previous results, the pso4-1 mutation was found strongly to affect recombination induction.

  8. Phosphorylation of histone H3 on Ser-10 by Aurora B is essential for chromosome condensation in porcine embryos during the first mitotic division.

    PubMed

    Chen, Changchao; Zhang, Zixiao; Cui, Panpan; Liao, Yaya; Zhang, Yue; Yao, Lingyun; Rui, Rong; Ju, Shiqiang

    2017-07-01

    Phosphorylation of histone H3 on Ser-10 (H3S10ph) is involved in regulating mitotic chromosome condensation and decondensation, which plays an important regulatory role during mitotic cell cycle progression in mammalian cells. However, whether H3S10ph plays a similar role in early porcine embryos during the first mitotic division remains uncertain. In this study, the subcellular localization and possible roles of H3S10ph were evaluated in the first mitotic cell cycle progression of porcine embryos using western blot, indirect immunofluorescence and barasertib (H3S10ph upstream regulator Aurora-B inhibitor) treatments. H3S10ph exhibited a dynamic localization pattern and was localized to chromosomes from prometaphase to anaphase stages. Treatment of porcine embryos with barasertib inhibited mitotic division at the prophase stage and was associated with a defect in chromosome condensation accompanied by the reduction of H3S10ph. These results indicated that H3S10ph is involved in the first mitotic division in porcine embryos through its regulatory function in chromosome condensation, which further affects porcine embryo cell cycle progression during mitotic division.

  9. The flavonoid eupatorin inactivates the mitotic checkpoint leading to polyploidy and apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salmela, Anna-Leena; Turku Graduate School of Biomedical Sciences, Turku; Turku Centre for Biotechnology, P.O. Box 123, University of Turku

    The spindle assembly checkpoint (SAC) is a conserved mechanism that ensures the fidelity of chromosome distribution in mitosis by preventing anaphase onset until the correct bipolar microtubule-kinetochore attachments are formed. Errors in SAC function may contribute to tumorigenesis by inducing numerical chromosome anomalies (aneuploidy). On the other hand, total disruption of SAC can lead to massive genomic imbalance followed by cell death, a phenomena that has therapeutic potency. We performed a cell-based high-throughput screen with a compound library of 2000 bioactives for novel SAC inhibitors and discovered a plant-derived phenolic compound eupatorin (3 Prime ,5-dihydroxy-4 Prime ,6,7-trimethoxyflavone) as an anti-mitoticmore » flavonoid. The premature override of the microtubule drug-imposed mitotic arrest by eupatorin is dependent on microtubule-kinetochore attachments but not interkinetochore tension. Aurora B kinase activity, which is essential for maintenance of normal SAC signaling, is diminished by eupatorin in cells and in vitro providing a mechanistic explanation for the observed forced mitotic exit. Eupatorin likely has additional targets since eupatorin treatment of pre-mitotic cells causes spindle anomalies triggering a transient M phase delay followed by impaired cytokinesis and polyploidy. Finally, eupatorin potently induces apoptosis in multiple cancer cell lines and suppresses cancer cell proliferation in organotypic 3D cell culture model.« less

  10. Disruption of IFT Complex A Causes Cystic Kidneys without Mitotic Spindle Misorientation

    PubMed Central

    Jonassen, Julie A.; SanAgustin, Jovenal; Baker, Stephen P.

    2012-01-01

    Intraflagellar transport (IFT) complexes A and B build and maintain primary cilia. In the mouse, kidney-specific or hypomorphic mutant alleles of IFT complex B genes cause polycystic kidneys, but the influence of IFT complex A proteins on renal development is not well understood. In the present study, we found that HoxB7-Cre–driven deletion of the complex A gene Ift140 from collecting ducts disrupted, but did not completely prevent, cilia assembly. Mutant kidneys developed collecting duct cysts by postnatal day 5, with rapid cystic expansion and renal dysfunction by day 15 and little remaining parenchymal tissue by day 20. In contrast to many models of polycystic kidney disease, precystic Ift140-deleted collecting ducts showed normal centrosomal positioning and no misorientation of the mitotic spindle axis, suggesting that disruption of oriented cell division is not a prerequisite to cyst formation in these kidneys. Precystic collecting ducts had an increased mitotic index, suggesting that cell proliferation may drive cyst expansion even with normal orientation of the mitotic spindle. In addition, we observed significant increases in expression of canonical Wnt pathway genes and mediators of Hedgehog and tissue fibrosis in highly cystic, but not precystic, kidneys. Taken together, these studies indicate that loss of Ift140 causes pronounced renal cystic disease and suggest that abnormalities in several different pathways may influence cyst progression. PMID:22282595

  11. Impaired Mitotic Progression and Preimplantation Lethality in Mice Lacking OMCG1, a New Evolutionarily Conserved Nuclear Protein†

    PubMed Central

    Artus, Jérôme; Vandormael-Pournin, Sandrine; Frödin, Morten; Nacerddine, Karim; Babinet, Charles; Cohen-Tannoudji, Michel

    2005-01-01

    While highly conserved through evolution, the cell cycle has been extensively modified to adapt to new developmental programs. Recently, analyses of mouse mutants revealed that several important cell cycle regulators are either dispensable for development or have a tissue- or cell-type-specific function, indicating that many aspects of cell cycle regulation during mammalian embryo development remain to be elucidated. Here, we report on the characterization of a new gene, Omcg1, which codes for a nuclear zinc finger protein. Embryos lacking Omcg1 die by the end of preimplantation development. In vitro cultured Omcg1-null blastocysts exhibit a dramatic reduction in the total cell number, a high mitotic index, and the presence of abnormal mitotic figures. Importantly, we found that Omcg1 disruption results in the lengthening of M phase rather than in a mitotic block. We show that the mitotic delay in Omcg1−/− embryos is associated with neither a dysfunction of the spindle checkpoint nor abnormal global histone modifications. Taken together, these results suggest that Omcg1 is an important regulator of the cell cycle in the preimplantation embryo. PMID:15988037

  12. Bacterial Origin of a Mitochondrial Outer Membrane Protein Translocase

    PubMed Central

    Harsman, Anke; Niemann, Moritz; Pusnik, Mascha; Schmidt, Oliver; Burmann, Björn M.; Hiller, Sebastian; Meisinger, Chris; Schneider, André; Wagner, Richard

    2012-01-01

    Mitochondria are of bacterial ancestry and have to import most of their proteins from the cytosol. This process is mediated by Tom40, an essential protein that forms the protein-translocating pore in the outer mitochondrial membrane. Tom40 is conserved in virtually all eukaryotes, but its evolutionary origin is unclear because bacterial orthologues have not been identified so far. Recently, it was shown that the parasitic protozoon Trypanosoma brucei lacks a conventional Tom40 and instead employs the archaic translocase of the outer mitochondrial membrane (ATOM), a protein that shows similarities to both eukaryotic Tom40 and bacterial protein translocases of the Omp85 family. Here we present electrophysiological single channel data showing that ATOM forms a hydrophilic pore of large conductance and high open probability. Moreover, ATOM channels exhibit a preference for the passage of cationic molecules consistent with the idea that it may translocate unfolded proteins targeted by positively charged N-terminal presequences. This is further supported by the fact that the addition of a presequence peptide induces transient pore closure. An in-depth comparison of these single channel properties with those of other protein translocases reveals that ATOM closely resembles bacterial-type protein export channels rather than eukaryotic Tom40. Our results support the idea that ATOM represents an evolutionary intermediate between a bacterial Omp85-like protein export machinery and the conventional Tom40 that is found in mitochondria of other eukaryotes. PMID:22778261

  13. Diverse mitotic functions of the cytoskeletal cross-linking protein Shortstop suggest a role in Dynein/Dynactin activity.

    PubMed

    Dewey, Evan B; Johnston, Christopher A

    2017-09-15

    Proper assembly and orientation of the bipolar mitotic spindle is critical to the fidelity of cell division. Mitotic precision fundamentally contributes to cell fate specification, tissue development and homeostasis, and chromosome distribution within daughter cells. Defects in these events are thought to contribute to several human diseases. The underlying mechanisms that function in spindle morphogenesis and positioning remain incompletely defined, however. Here we describe diverse roles for the actin-microtubule cross-linker Shortstop (Shot) in mitotic spindle function in Drosophila Shot localizes to mitotic spindle poles, and its knockdown results in an unfocused spindle pole morphology and a disruption of proper spindle orientation. Loss of Shot also leads to chromosome congression defects, cell cycle progression delay, and defective chromosome segregation during anaphase. These mitotic errors trigger apoptosis in Drosophila epithelial tissue, and blocking this apoptotic response results in a marked induction of the epithelial-mesenchymal transition marker MMP-1. The actin-binding domain of Shot directly interacts with Actin-related protein-1 (Arp-1), a key component of the Dynein/Dynactin complex. Knockdown of Arp-1 phenocopies Shot loss universally, whereas chemical disruption of F-actin does so selectively. Our work highlights novel roles for Shot in mitosis and suggests a mechanism involving Dynein/Dynactin activation. © 2017 Dewey and Johnston. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  14. Elucidating cdc25’s Oncogenic Mechanism in Breast Cancer Using Pin1, a Negative Mitotic Regulator

    DTIC Science & Technology

    2000-07-01

    inhibitor aphidicolin. This defect in replication checkpoint function was reversed after addition of recombinant wild type Pin 1, but not an isomerase... inhibitor , aphidicolin. Mock-depleted extracts effectively postponed mitotic entry in response to replication inhibition, while depletion of Pin 1 from...fail to haft mitotic entry in response to the DNA polymerase inhibitor , aphidicolin. The addition of recombinant Pin1 restores the appropriate G2

  15. Inhibition of the Ras-ERK pathway in mitotic COS7 cells is due to the inability of EGFR/Raf to transduce EGF signaling to downstream proteins.

    PubMed

    Shi, Huaiping; Zhang, Tianying; Yi, Yongqing; Ma, Yue

    2016-06-01

    Although previous studies have shown that Ras-ERK signaling in mitosis is closed due to the inhibition of signal transduction, the events involved in the molecular mechanisms are still unclear. In the present study, we investigated the Ras-ERK signaling pathway in mitotic COS7 cells. The results demonstrated that treatment with epidermal growth factor (EGF) failed to increase the endocytosis of EGF-EGFR (EGF receptor) complexes in mitotic COS7 cells, although a large amount of endosomes were found in asynchronous COS7 cells. Clathrin expression levels in mitotic COS7 cells were inhibited whereas caveolin expression levels in mitotic COS7 cells were almost unaffected. Y1068 and Y1086 residues of EGFR in the mitotic COS7 cells were activated. However, Grb2 and Shc in the mitotic COS7 cells did not bind to activated EGFR. Ras activity was inhibited in the mitotic COS7 cells whereas its downstream protein, Raf, was obviously phosphorylated by EGF in mitosis. Treatment with phorbol 12-myristate 13-acetate (PMA) also increased the phosphorylation levels of Raf in the mitotic COS7 cells. Nevertheless, Raf phosphorylation in mitosis was significantly inhibited by AG1478. Lastly, activation of EGF-mediated MEK and ERK in the mitotic COS7 cells was obviously inhibited. In summary, our results suggest that the Ras-ERK pathway is inhibited in mitotic COS7 cells which may be the dual result of the difficulty in the transduction of EGF signaling by EGFR or Raf to downstream proteins.

  16. 49 CFR 173.222 - Dangerous goods in equipment, machinery or apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Than Class 1 and Class 7 § 173.222 Dangerous goods in equipment, machinery or apparatus. Hazardous... 49 Transportation 2 2011-10-01 2011-10-01 false Dangerous goods in equipment, machinery or apparatus. 173.222 Section 173.222 Transportation Other Regulations Relating to Transportation PIPELINE AND...

  17. 49 CFR 173.222 - Dangerous goods in equipment, machinery or apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Than Class 1 and Class 7 § 173.222 Dangerous goods in equipment, machinery or apparatus. Hazardous... 49 Transportation 2 2010-10-01 2010-10-01 false Dangerous goods in equipment, machinery or apparatus. 173.222 Section 173.222 Transportation Other Regulations Relating to Transportation PIPELINE AND...

  18. 46 CFR 169.631 - Separation of machinery and fuel tank spaces from accommodation spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Separation of machinery and fuel tank spaces from accommodation spaces. 169.631 Section 169.631 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... machinery and fuel tank spaces from accommodation spaces. (a) Machinery and fuel tank spaces must be...

  19. 46 CFR 169.631 - Separation of machinery and fuel tank spaces from accommodation spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Separation of machinery and fuel tank spaces from accommodation spaces. 169.631 Section 169.631 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... machinery and fuel tank spaces from accommodation spaces. (a) Machinery and fuel tank spaces must be...

  20. Hair cell recovery in mitotically blocked cultures of the bullfrog saccule

    PubMed Central

    Baird, Richard A.; Burton, Miriam D.; Fashena, David S.; Naeger, Rebecca A.

    2000-01-01

    Hair cells in many nonmammalian vertebrates are regenerated by the mitotic division of supporting cell progenitors and the differentiation of the resulting progeny into new hair cells and supporting cells. Recent studies have shown that nonmitotic hair cell recovery after aminoglycoside-induced damage can also occur in the vestibular organs. Using hair cell and supporting cell immunocytochemical markers, we have used confocal and electron microscopy to examine the fate of damaged hair cells and the origin of immature hair cells after gentamicin treatment in mitotically blocked cultures of the bullfrog saccule. Extruding and fragmenting hair cells, which undergo apoptotic cell death, are replaced by scar formations. After losing their bundles, sublethally damaged hair cells remain in the sensory epithelium for prolonged periods, acquiring supporting cell-like morphology and immunoreactivity. These modes of damage appear to be mutually exclusive, implying that sublethally damaged hair cells repair their bundles. Transitional cells, coexpressing hair cell and supporting cell markers, are seen near scar formations created by the expansion of neighboring supporting cells. Most of these cells have morphology and immunoreactivity similar to that of sublethally damaged hair cells. Ultrastructural analysis also reveals that most immature hair cells had autophagic vacuoles, implying that they originated from damaged hair cells rather than supporting cells. Some transitional cells are supporting cells participating in scar formations. Supporting cells also decrease in number during hair cell recovery, supporting the conclusion that some supporting cells undergo phenotypic conversion into hair cells without an intervening mitotic event. PMID:11050201

  1. 46 CFR 28.840 - Means for stopping pumps, ventilation, and machinery.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... pumps, ventilation, and machinery. All electrically driven fuel oil transfer pumps, fuel oil unit and service pumps, and ventilation fans shall be fitted with remote controls from a readily accessible... 46 Shipping 1 2014-10-01 2014-10-01 false Means for stopping pumps, ventilation, and machinery. 28...

  2. 46 CFR 28.840 - Means for stopping pumps, ventilation, and machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... pumps, ventilation, and machinery. All electrically driven fuel oil transfer pumps, fuel oil unit and service pumps, and ventilation fans shall be fitted with remote controls from a readily accessible... 46 Shipping 1 2010-10-01 2010-10-01 false Means for stopping pumps, ventilation, and machinery. 28...

  3. 46 CFR 28.840 - Means for stopping pumps, ventilation, and machinery.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... pumps, ventilation, and machinery. All electrically driven fuel oil transfer pumps, fuel oil unit and service pumps, and ventilation fans shall be fitted with remote controls from a readily accessible... 46 Shipping 1 2013-10-01 2013-10-01 false Means for stopping pumps, ventilation, and machinery. 28...

  4. 46 CFR 28.840 - Means for stopping pumps, ventilation, and machinery.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... pumps, ventilation, and machinery. All electrically driven fuel oil transfer pumps, fuel oil unit and service pumps, and ventilation fans shall be fitted with remote controls from a readily accessible... 46 Shipping 1 2012-10-01 2012-10-01 false Means for stopping pumps, ventilation, and machinery. 28...

  5. 46 CFR 28.840 - Means for stopping pumps, ventilation, and machinery.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... pumps, ventilation, and machinery. All electrically driven fuel oil transfer pumps, fuel oil unit and service pumps, and ventilation fans shall be fitted with remote controls from a readily accessible... 46 Shipping 1 2011-10-01 2011-10-01 false Means for stopping pumps, ventilation, and machinery. 28...

  6. HYDRAULIC POWER TRANSFER SYSTEMS. AGRICULTURAL MACHINERY--SERVICE OCCUPATIONS, MODULE NUMBER 9.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    ONE OF A SERIES DESIGNED TO HELP TEACHERS PREPARE POSTSECONDARY-LEVEL STUDENTS FOR THE AGRICULTURAL MACHINERY SERVICE OCCUPATIONS AS PARTS MEN, MECHANICS, MECHANIC'S HELPERS, AND SERVICE SUPERVISORS, THIS GUIDE AIMS TO DEVELOP STUDENT COMPETENCY IN UNDERSTANDING BASIC HYDRAULICS AND ITS APPLICATION TO AGRICULTURAL MACHINERY. IT WAS DEVELOPED BY A…

  7. Mitotic rate in primary melanoma: interobserver and intraobserver reliability, analyzed using H&E sections and immunohistochemistry.

    PubMed

    Garbe, Claus; Eigentler, Thomas K; Bauer, Jürgen; Blödorn-Schlicht, Norbert; Cerroni, Lorenzo; Fend, Falko; Hantschke, Markus; Kurschat, Peter; Kutzner, Heinz; Metze, Dieter; Mielke, Volker; Preßler, Harald; Reusch, Michael; Reusch, Ursula; Stadler, Rudolf; Tronnier, Michael; Yazdi, Amir; Metzler, Gisela

    2016-09-01

    In 2009, the AJCC issued a revised melanoma staging system. In addition to tumor thickness and ulceration, the mitotic rate was introduced as the third major prognostic parameter for the classification of primary cutaneous melanoma. Given that, according to the 2009 AJCC classification, the detection of one or more dermal tumor mitoses leads to an upstaging - from stage Ia to Ib - of melanomas with a tumor thickness of ≤ 1.0 mm, we set out to investigate the reproducibility of this new parameter. In order to assess interobserver reliability, 17 dermatopathologists und pathologists - all well versed in the diagnosis of cutaneous melanoma - analyzed the mitotic rate in 15 thin primary cutaneous melanomas (mean tumor thickness 0.91 mm) using identical slides. Mitotic rates were determined on H&E and phosphohistone H3 (Ser10)-stained samples. Without knowledge of their previous assessment, five of the aforementioned examiners reevaluated the samples after more than one year in order to ascertain intraobserver reliability. Interobserver reliability of the mitotic rate in thin primary melanomas is disappointing and independent of whether H&E or immunohistochemically stained samples are used (kappa value: 0.088 [H&E], 0.154 [IH], respectively). Kappa values improved to 0.345 (H&E) and 0.403 (IH) when using a cutoff of 0/1 vs. 2+ mitoses. Similarly unsatisfactory, kappa values for intraobserver reliability ranged from 0.18 and 0.348, depending on the individual examiner. Given the unsatisfactory reproducibility and large variations in assessing the mitotic rate, it remains a matter of debate whether this diagnostic parameter should play a role in therapeutic decisions. © 2016 Deutsche Dermatologische Gesellschaft (DDG). Published by John Wiley & Sons Ltd.

  8. Application of DNA Machineries for the Barcode Patterned Detection of Genes or Proteins.

    PubMed

    Zhou, Zhixin; Luo, Guofeng; Wulf, Verena; Willner, Itamar

    2018-06-05

    The study introduces an analytical platform for the detection of genes or aptamer-ligand complexes by nucleic acid barcode patterns generated by DNA machineries. The DNA machineries consist of nucleic acid scaffolds that include specific recognition sites for the different genes or aptamer-ligand analytes. The binding of the analytes to the scaffolds initiate, in the presence of the nucleotide mixture, a cyclic polymerization/nicking machinery that yields displaced strands of variable lengths. The electrophoretic separation of the resulting strands provides barcode patterns for the specific detection of the different analytes. Mixtures of DNA machineries that yield, upon sensing of different genes (or aptamer ligands), one-, two-, or three-band barcode patterns are described. The combination of nucleic acid scaffolds acting, in the presence of polymerase/nicking enzyme and nucleotide mixture, as DNA machineries, that generate multiband barcode patterns provide an analytical platform for the detection of an individual gene out of many possible genes. The diversity of genes (or other analytes) that can be analyzed by the DNA machineries and the barcode patterned imaging is given by the Pascal's triangle. As a proof-of-concept, the detection of one of six genes, that is, TP53, Werner syndrome, Tay-Sachs normal gene, BRCA1, Tay-Sachs mutant gene, and cystic fibrosis disorder gene by six two-band barcode patterns is demonstrated. The advantages and limitations of the detection of analytes by polymerase/nicking DNA machineries that yield barcode patterns as imaging readout signals are discussed.

  9. Manual Fire Suppression Methods on Typical Machinery Space Spray Fires

    DTIC Science & Technology

    1990-07-31

    Aqueous Film Forming Foam Manuscnpt approved April 25, 1990. ( AFFF ), has been incorporated in machinery space fire protection systems to...distribution unlimited. 13. ABSTRACT (Maximum 200 words) A series of tests was conducted to evaluate the effectiveness of Aqueous Film Forming Foami ( AFFF ...machinery space fire protection systems to control running fuel and fuel spray fires (PKP side of TAFES), and bilge fires ( aqueous film forming foam

  10. Functional Characterization of G12, a Gene Required for Mitotic Progression during Gastrulation in Zebrafish

    NASA Technical Reports Server (NTRS)

    Reinsch, Sigrid; Conway, Gregory; Dalton, Bonnie P. (Technical Monitor)

    2002-01-01

    In a differential RNA display screen we have isolated a zebrafish gene, G12, for which homologs can only be found in DNA databases for vertebrates, but not invertebrates. This suggests that this is a gene required specifically in vertebrates. G12 expression is upregulated at mid-blastula transition (MBT). Morpholino inactivation of this gene by injection into 1-cell embryos results in mitotic defects and apoptosis shortly after MBT. Nuclei in morpholino treated embryos also display segregation defects. We have characterized the localization of this gene as a GFP fusion in live and fixed embryos. Overexpression of G12-GFP is non-toxic. Animals retain GFP expression for at least 7 days with no developmental defects, Interestingly in these animals G12-GFP is never detectable in blood cells though blood is present. In the deep cells of early embryos, G 12GFP is localized to nuclei and cytoskeletal elements in interphase and to the centrosome and spindle apparatus during mitosis. In the EVL, G12-GFP shows additional localization to the cell periphery, especially in mitosis. In the yolk syncytium, G12-GFP again localizes to nuclei and strongly to cytoplasmic microtubules of migrating nuclei at the YSL margin. Morpholinc, injection specifically into the YSL after cellularization blocks epiboly and nuclei of the YSL show mitotic defects while deep cells show no mitotic defects and continue to divide. Rescue experiments in which morpholino and G12-GFP RNA are co-injected indicate partial rescue by the G12-GFP. The rescue is cell autonomous; that is, regions of the embryo with higher G12-GFP expression show fewer mitotic defects. Spot 14, the human bomolog of G12, has been shown to be amplified in aggressive breast tumors. This finding, along with our functional and morphological data suggest that G12 and spot 14 are vertebrate-specific and may function either as mitotic checkpoints or as structural components of the spindle apparatus.

  11. Research of rotating machinery vibration parameters - Shaft speed relationship

    NASA Astrophysics Data System (ADS)

    Kostyukov, V. N.; Kostyukov, A. V.; Zaytsev, A. V.; Teterin, A. O.

    2017-08-01

    The paper considers the relationship between the parameters of the vibration arising in rotating machinery during operation and the shaft speed. The goal of this paper is to determine the dependence of the vibration parameters on the shaft speed for solving applied engineering problems. To properly evaluate the technical condition of bearing assemblies, we should take into account the pattern of the rotating machinery vibration parameters-shaft speed relationship, which will allow creating new diagnostic features, the totality of which will ensure an increased reliability of diagnosis. We took the check for a correlation between the factor and resultative feature parameters as the correlation analysis method. A high pair linear correlation between the diagnostic features (acceleration, velocity, displacement) and the shaft speed was determined on the basis of the check for correlation between the vibration parameters and the shaft speed, and also the linear correlation coefficients can be used to solve the applied engineering problems of diagnosing the bearing assemblies of the rotating machinery.

  12. LOX is a novel mitotic spindle-associated protein essential for mitosis.

    PubMed

    Boufraqech, Myriem; Wei, Darmood; Weyemi, Urbain; Zhang, Lisa; Quezado, Martha; Kalab, Petr; Kebebew, Electron

    2016-05-17

    LOX regulates cancer progression in a variety of human malignancies. It is overexpressed in aggressive cancers and higher expression of LOX is associated with higher cancer mortality. Here, we report a new function of LOX in mitosis. We show that LOX co-localizes to mitotic spindles from metaphase to telophase, and p-H3(Ser10)-positive cells harbor strong LOX staining. Further, purification of mitotic spindles from synchronized cells show that LOX fails to bind to microtubules in the presence of nocodazole, whereas paclitaxel treated samples showed enrichment in LOX expression, suggesting that LOX binds to stabilized microtubules. LOX knockdown leads to G2/M phase arrest; reduced p-H3(Ser10), cyclin B1, CDK1, and Aurora B. Moreover, LOX knockdown significantly increased sensitivity of cancer cells to chemotherapeutic agents that target microtubules. Our findings suggest that LOX has a role in cancer cell mitosis and may be targeted to enhance the activity of microtubule inhibitors for cancer therapy.

  13. An approach to built-in test for shipboard machinery systems

    NASA Astrophysics Data System (ADS)

    Hegner, H. R.

    This paper presents an approach for incorporating built-in test (BIT) into shipboard machinery systems. BIT, as used herein, denotes both built-in test and on-line monitoring. Since sensors are a key element to a successful machinery monitoring system, an assessment of shipboard sensors is included in the paper. Specific design examples are also presented for a marine diesel engine, gas turbine engine, and air conditioning plant.

  14. Targeting Cell Polarity Machinery to Exhaust Breast Cancer Stem Cells

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-15-1-0644 TITLE: Targeting Cell Polarity Machinery to Exhaust Breast Cancer Stem Cells PRINCIPAL INVESTIGATOR: Chun-Ju...U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION STATEMENT: Approved for Public Release...Targeting Cell Polarity Machinery to Exhaust Breast Cancer Stem Cells 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1-0644 5c. PROGRAM ELEMENT

  15. Recent findings and future directions for interpolar mitotic kinesin inhibitors in cancer therapy.

    PubMed

    Myers, Stephanie M; Collins, Ian

    2016-01-01

    The kinesin class of microtubule-associated motor proteins present attractive anticancer targets owing to their roles in key functions in dividing cells. Two interpolar mitotic kinesins Eg5 and HSET have opposing motor functions in mitotic spindle assembly with respect to microtubule movement, but both offer opportunities to develop cancer selective therapeutic agents. Here, we summarize the progress to date in developing inhibitors of Eg5 and HSET, with an emphasis on structural biology insights into the binding modes of allosteric inhibitors, compound selectivity and mechanisms of action of different chemical scaffolds. We discuss translation of preclinical studies to clinical experience with Eg5 inhibitors, recent findings on potential resistance mechanisms and explore the implications for future anticancer drug development against these targets.

  16. Recent findings and future directions for interpolar mitotic kinesin inhibitors in cancer therapy

    PubMed Central

    Myers, Stephanie M.; Collins, Ian

    2016-01-01

    The kinesin class of microtubule-associated motor proteins present attractive anti-cancer targets owing to their roles in key functions in dividing cells. Two interpolar mitotic kinesins Eg5 and HSET have opposing motor functions in mitotic spindle assembly with respect to microtubule movement, but both offer opportunities to develop cancer selective therapeutic agents. Here, we summarize the progress to date in developing inhibitors of Eg5 and HSET, with an emphasis on structural biology insights into the binding modes of allosteric inhibitors, compound selectivity and mechanisms of action of different chemical scaffolds. We discuss translation of preclinical studies to clinical experience with Eg5 inhibitors, recent findings on potential resistance mechanisms, and explore the implications for future anticancer drug development against these targets. PMID:26976726

  17. Fault Diagnosis for Rotating Machinery: A Method based on Image Processing

    PubMed Central

    Lu, Chen; Wang, Yang; Ragulskis, Minvydas; Cheng, Yujie

    2016-01-01

    Rotating machinery is one of the most typical types of mechanical equipment and plays a significant role in industrial applications. Condition monitoring and fault diagnosis of rotating machinery has gained wide attention for its significance in preventing catastrophic accident and guaranteeing sufficient maintenance. With the development of science and technology, fault diagnosis methods based on multi-disciplines are becoming the focus in the field of fault diagnosis of rotating machinery. This paper presents a multi-discipline method based on image-processing for fault diagnosis of rotating machinery. Different from traditional analysis method in one-dimensional space, this study employs computing method in the field of image processing to realize automatic feature extraction and fault diagnosis in a two-dimensional space. The proposed method mainly includes the following steps. First, the vibration signal is transformed into a bi-spectrum contour map utilizing bi-spectrum technology, which provides a basis for the following image-based feature extraction. Then, an emerging approach in the field of image processing for feature extraction, speeded-up robust features, is employed to automatically exact fault features from the transformed bi-spectrum contour map and finally form a high-dimensional feature vector. To reduce the dimensionality of the feature vector, thus highlighting main fault features and reducing subsequent computing resources, t-Distributed Stochastic Neighbor Embedding is adopt to reduce the dimensionality of the feature vector. At last, probabilistic neural network is introduced for fault identification. Two typical rotating machinery, axial piston hydraulic pump and self-priming centrifugal pumps, are selected to demonstrate the effectiveness of the proposed method. Results show that the proposed method based on image-processing achieves a high accuracy, thus providing a highly effective means to fault diagnosis for rotating machinery. PMID

  18. Fault Diagnosis for Rotating Machinery: A Method based on Image Processing.

    PubMed

    Lu, Chen; Wang, Yang; Ragulskis, Minvydas; Cheng, Yujie

    2016-01-01

    Rotating machinery is one of the most typical types of mechanical equipment and plays a significant role in industrial applications. Condition monitoring and fault diagnosis of rotating machinery has gained wide attention for its significance in preventing catastrophic accident and guaranteeing sufficient maintenance. With the development of science and technology, fault diagnosis methods based on multi-disciplines are becoming the focus in the field of fault diagnosis of rotating machinery. This paper presents a multi-discipline method based on image-processing for fault diagnosis of rotating machinery. Different from traditional analysis method in one-dimensional space, this study employs computing method in the field of image processing to realize automatic feature extraction and fault diagnosis in a two-dimensional space. The proposed method mainly includes the following steps. First, the vibration signal is transformed into a bi-spectrum contour map utilizing bi-spectrum technology, which provides a basis for the following image-based feature extraction. Then, an emerging approach in the field of image processing for feature extraction, speeded-up robust features, is employed to automatically exact fault features from the transformed bi-spectrum contour map and finally form a high-dimensional feature vector. To reduce the dimensionality of the feature vector, thus highlighting main fault features and reducing subsequent computing resources, t-Distributed Stochastic Neighbor Embedding is adopt to reduce the dimensionality of the feature vector. At last, probabilistic neural network is introduced for fault identification. Two typical rotating machinery, axial piston hydraulic pump and self-priming centrifugal pumps, are selected to demonstrate the effectiveness of the proposed method. Results show that the proposed method based on image-processing achieves a high accuracy, thus providing a highly effective means to fault diagnosis for rotating machinery.

  19. High throughput screening of natural products for anti-mitotic effects in MDA-MB-231 human breast carcinoma cells

    PubMed Central

    Mazzio, E; Badisa, R; Mack, N; Deiab, S; Soliman, KFA

    2013-01-01

    Some of the most effective anti-mitotic microtubule-binding agents, such as paclitaxel (Taxus brevifolia) were originally discovered through robust NCI botanical screenings. In this study, a high-through microarray format was utilized to screen 897 aqueous extracts of commonly used natural products (0.00015–0.5 mg/ml) relative to paclitaxel for anti-mitotic effects (independent of toxicity) on proliferation of MDA-MB-231 cells. The data obtained showed that less than 1.34 % tested showed inhibitory growth (IG50) properties <0.0183 mg/ml. The most potent anti-mitotics (independent of toxicity) were Mandrake root (Podophyllum peltatum), Truja Twigs (Thuja occidentalis), Colorado desert mistletoe (Phoradendron flavescens), Tou Gu Cao Speranskia Herb (Speranskia tuberculata), Bentonite Clay, Bunge Root (Pulsatilla chinensis), Brucea Fruit (Brucea javanica), Madder Root (Rubia tinctorum), Gallnut of Chinese Sumac (Melaphis chinensis), Elecampane Root (Inula Helenium), Yuan Zhi Root (Polygala tenuifolia), Pagoda Tree Fruit (Melia Toosendan), Stone Root (Collinsonia Canadensis) and others such as American Witchhazel, Arjun and Bladderwrack. The strongest tumoricidal herbs identified from amongst the subset evaluated for anti-mitotic properties were wild yam (Dioscorea villosa), beth-root (Trillium Pendulum) and alkanet-root (Lithospermum canescens). Additional data was obtained on a lesser-recognized herb: (Speranskia tuberculata) which showed growth inhibition on BT-474 (human ductal breast carcinoma) and Ishikawa (human endometrial adenocarcinoma) cells with ability to block replicative DNA synthesis leading to G2 arrest in MDA-MB-231 cells. In conclusion, these findings present relative potency of natural anti-mitotic resources effective against human breast carcinoma MDA-MB-231 cell division. PMID:24105850

  20. The accident analysis of mobile mine machinery in Indian opencast coal mines.

    PubMed

    Kumar, R; Ghosh, A K

    2014-01-01

    This paper presents the analysis of large mining machinery related accidents in Indian opencast coal mines. The trends of coal production, share of mining methods in production, machinery deployment in open cast mines, size and population of machinery, accidents due to machinery, types and causes of accidents have been analysed from the year 1995 to 2008. The scrutiny of accidents during this period reveals that most of the responsible factors are machine reversal, haul road design, human fault, operator's fault, machine fault, visibility and dump design. Considering the types of machines, namely, dumpers, excavators, dozers and loaders together the maximum number of fatal accidents has been caused by operator's faults and human faults jointly during the period from 1995 to 2008. The novel finding of this analysis is that large machines with state-of-the-art safety system did not reduce the fatal accidents in Indian opencast coal mines.

  1. The Ndc80 complex targets Bod1 to human mitotic kinetochores

    PubMed Central

    2017-01-01

    Regulation of protein phosphatase activity by endogenous protein inhibitors is an important mechanism to control protein phosphorylation in cells. We recently identified Biorientation defective 1 (Bod1) as a small protein inhibitor of protein phosphatase 2A containing the B56 regulatory subunit (PP2A-B56). This phosphatase controls the amount of phosphorylation of several kinetochore proteins and thus the establishment of load-bearing chromosome-spindle attachments in time for accurate separation of sister chromatids in mitosis. Like PP2A-B56, Bod1 directly localizes to mitotic kinetochores and is required for correct segregation of mitotic chromosomes. In this report, we have probed the spatio-temporal regulation of Bod1 during mitotic progression. Kinetochore localization of Bod1 increases from nuclear envelope breakdown until metaphase. Phosphorylation of Bod1 at threonine 95 (T95), which increases Bod1's binding to and inhibition of PP2A-B56, peaks in prometaphase when PP2A-B56 localization to kinetochores is highest. We demonstrate here that kinetochore targeting of Bod1 depends on the outer kinetochore protein Ndc80 and not PP2A-B56. Crucially, Bod1 depletion functionally affects Ndc80 phosphorylation at the N-terminal serine 55 (S55), as well as a number of other phosphorylation sites within the outer kinetochore, including Knl1 at serine 24 and 60 (S24, S60), and threonine T943 and T1155 (T943, T1155). Therefore, Ndc80 recruits a phosphatase inhibitor to kinetochores which directly feeds forward to regulate Ndc80, and Knl1 phosphorylation, including sites that mediate the attachment of microtubules to kinetochores. PMID:29142109

  2. Evidence for Mitotic Recombination in W(ei)/+ Heterozygous Mice

    PubMed Central

    Panthier, J. J.; Guenet, J. L.; Condamine, H.; Jacob, F.

    1990-01-01

    A number of alleles at coat color loci of the house mouse give rise to areas of wild-type pigmentation on the coats of otherwise mutant animals. Such unstable alleles include both recessive and dominant mutations. Among the latter are several alleles at the W locus. In this report, phenotypic reversions of the W(ei) allele at the W locus were studied Mice heterozygous in repulsion for both W(ei) and buff (bf) [i.e. W(ei)+/+bf] were examined for the occurrence of phenotypic reversion events. Buff (bf) is a recessive mutation, which lies 21 cM from W on the telomeric side of chromosome 5 and is responsible for the khaki colored coat of nonagouti buff homozygotes (a/a; bf/bf). Two kinds of fully pigmented reversion spots were recovered on the coats of a/a; W(ei)+/+bf mice: either solid black or khaki colored. Furthermore phenotypic reversions of W(ei)/+ were enhanced significantly following X-irradiation of 9.25-day-old W(ei)/+ embryos (P < 0.04). These observations are consistent with the suggestion of a role for mitotic recombination in the origin of these phenotypic reversions. In addition these results rise the intriguing possibility that some W mutations may enhance mitotic recombination in the house mouse. PMID:2341029

  3. Bacterial determinants of the social behavior of Bacillus subtilis.

    PubMed

    Romero, Diego

    2013-09-01

    Bacteria utilize sophisticated cellular machinery to sense environmental changes and coordinate the most appropriate response. Fine sensors located on cell surfaces recognize a myriad of triggers and initiate genetic cascades leading to activation or repression of certain groups of genes. Structural elements such as pilli, exopolysaccharides and flagella are also exposed at the cell surface and contribute to modulating the intimate interaction with surfaces and host cells. This review will cover the latest advances in our understanding of the biology and functionality of these bacterial determinants within the context of biofilm formation of Bacillus subtilis. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  4. 49 CFR 393.130 - What are the rules for securing heavy vehicles, equipment and machinery?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., equipment and machinery? 393.130 Section 393.130 Transportation Other Regulations Relating to Transportation... heavy vehicles, equipment and machinery? (a) Applicability. The rules in this section apply to the transportation of heavy vehicles, equipment and machinery which operate on wheels or tracks, such as front end...

  5. 49 CFR 393.130 - What are the rules for securing heavy vehicles, equipment and machinery?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., equipment and machinery? 393.130 Section 393.130 Transportation Other Regulations Relating to Transportation... heavy vehicles, equipment and machinery? (a) Applicability. The rules in this section apply to the transportation of heavy vehicles, equipment and machinery which operate on wheels or tracks, such as front end...

  6. 49 CFR 393.130 - What are the rules for securing heavy vehicles, equipment and machinery?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., equipment and machinery? 393.130 Section 393.130 Transportation Other Regulations Relating to Transportation... heavy vehicles, equipment and machinery? (a) Applicability. The rules in this section apply to the transportation of heavy vehicles, equipment and machinery which operate on wheels or tracks, such as front end...

  7. 8. MACHINERY SHED STORAGE ROOM ADDITION DETAIL SHOWING MATRIX OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. MACHINERY SHED STORAGE ROOM ADDITION DETAIL SHOWING MATRIX OF NAILS USED TO ADHERE PORTLAND CEMENT PLASTER, SOUTH ADOBE WALL ADJACENT TO WINDOW Note: Photographs Nos. AZ-159-A-9 through AZ-159-A-10 are photocopies of photographs. The original prints and negatives are located in the SCS Tucson Plant Materials Center, Tucson, Arizona. Photographer Ted F. Spaller. - Tucson Plant Material Center, Machinery Shed, 3241 North Romero Road, Tucson, Pima County, AZ

  8. Comparison of staining of mitotic figures by haematoxylin and eosin-and crystal violet stains, in oral epithelial dysplasia and squamous cell carcinoma.

    PubMed

    Ankle, Madhuri R; Kale, Alka D; Charantimath, Seema

    2007-01-01

    Mitosis of cells gives rise to tissue integrity. Defects during mitosis bring about abnormalities. Excessive proliferation of cells due to increased mitosis is one such outcome, which is the hallmark in precancer and cancer. The localization of proliferating cells or their precursors may not be obvious and easy. Establishing an easy way to distinguish these mitotic cells will help in grading and understanding their biological potential. Although immunohistochemistry is an advanced method in use, the cost and time factor makes it less feasible for many laboratories. Selective histochemical stains like toluidine blue, giemsa and crystal violet have been used in tissues including the developing brain, neural tissue and skin. 1) To compare the staining of mitotic cells in haematoxylin and eosin with that in crystal violet. 2) To compare the number of mitotic figures present in normal oral mucosa, epithelial dysplasia and oral squamous cell carcinoma in crystal violet-stained sections with that in H and E-stained sections. Ten tissues of normal oral mucosa and 15 tissues each of oral epithelial dysplasia seen in tobacco-associated leukoplakia and squamous cell carcinoma were studied to evaluate the selectivity of 1% crystal violet for mitotic figures. The staining was compared with standard H and E staining. Statistical analysis was done using Mann-Whitney U test. A statistically significant increase in the mean mitotic count was observed in crystal violet-stained sections of epithelial dysplasia as compared to the H and E-stained sections (p=0.0327). A similar increase in the mitotic counts was noted in crystal violet-stained sections of oral squamous cell carcinoma as compared to the H and E-stained sections.(p=0.0443). No significant difference was found in the mitotic counts determined in dysplasia or carcinoma by either the crystal violet (p=0.4429) or the H and E-staining techniques (p=0.2717). One per cent crystal violet provides a definite advantage over the H

  9. Live-cell imaging visualizes frequent mitotic skipping during senescence-like growth arrest in mammary carcinoma cells exposed to ionizing radiation.

    PubMed

    Suzuki, Masatoshi; Yamauchi, Motohiro; Oka, Yasuyoshi; Suzuki, Keiji; Yamashita, Shunichi

    2012-06-01

    Senescence-like growth arrest in human solid carcinomas is now recognized as the major outcome of radiotherapy. This study was designed to analyze cell cycle during the process of senescence-like growth arrest in mammary carcinoma cells exposed to X-rays. Fluorescent ubiquitination-based cell cycle indicators were introduced into the human mammary carcinoma cell line MCF-7. Cell cycle was sequentially monitored by live-cell imaging for up to 5 days after exposure to 10 Gy of X-rays. Live-cell imaging revealed that cell cycle transition from G2 to G1 phase without mitosis, so-called mitotic skipping, was observed in 17.1% and 69.8% of G1- and G2-irradiated cells, respectively. Entry to G1 phase was confirmed by the nuclear accumulation of mKO(2)-hCdt1 as well as cyclin E, which was inversely correlated to the accumulation of G2-specific markers such as mAG-hGeminin and CENP-F. More than 90% of cells skipping mitosis were persistently arrested in G1 phase and showed positive staining for the senescent biochemical marker, which is senescence-associated ß-galactosidase, indicating induction of senescence-like growth arrest accompanied by mitotic skipping. While G2 irradiation with higher doses of X-rays induced mitotic skipping in approximately 80% of cells, transduction of short hairpin RNA (shRNA) for p53 significantly suppressed mitotic skipping, suggesting that ionizing radiation-induced mitotic skipping is associated with p53 function. The present study found the pathway of senescence-like growth arrest in G1 phase without mitotic entry following G2-irradiation. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Microtubule-dependent path to the cell cortex for cytoplasmic dynein in mitotic spindle orientation

    PubMed Central

    Markus, Steven M.; Lee, Wei-Lih

    2011-01-01

    During animal development, microtubules (MTs) play a major role in directing cellular and subcellular patterning, impacting cell polarization and subcellular organization, thereby affecting cell fate determination and tissue architecture. In particular, when progenitor cells divide asymmetrically along an anterior-posterior or apical-basal axis, MTs must coordinate the position of the mitotic spindle with the site of cell division to ensure normal distribution of cell fate determinants and equal sequestration of genetic material into the two daughter cells. Emerging data from diverse model systems have led to the prevailing view that, during mitotic spindle positioning, polarity cues at the cell cortex signal for the recruitment of NuMA and the minus-end directed MT motor cytoplasmic dynein.1 The NuMA/dynein complex is believed to connect, in turn, to the mitotic spindle via astral MTs, thus aligning and tethering the spindle, but how this connection is achieved faithfully is unclear. Do astral MTs need to search for and then capture cortical NuMA/dynein? How does dynein capture the astral MTs emanating from the correct spindle pole? Recently, using the classical model of asymmetric cell division—budding yeast S. cerevisiae—we successfully demonstrated that astral MTs assume an active role in cortical dynein targeting, in that astral MTs utilize their distal plus ends to deliver dynein to the daughter cell cortex, the site where dynein activity is needed to perform its spindle alignment function. This observation introduced the novel idea that, during mitotic spindle orientation processes, polarity cues at the cell cortex may actually signal to prime the cortical receptors for MT-dependent dynein delivery. This model is consistent with the observation that dynein/dynactin accumulate prominently at the astral MT plus ends during metaphase in a wide range of cultured mammalian cells. PMID:22754610

  11. Curcumin-treated cancer cells show mitotic disturbances leading to growth arrest and induction of senescence phenotype.

    PubMed

    Mosieniak, Grażyna; Sliwinska, Małgorzata A; Przybylska, Dorota; Grabowska, Wioleta; Sunderland, Piotr; Bielak-Zmijewska, Anna; Sikora, Ewa

    2016-05-01

    Cellular senescence is recognized as a potent anticancer mechanism that inhibits carcinogenesis. Cancer cells can also undergo senescence upon chemo- or radiotherapy. Curcumin, a natural polyphenol derived from the rhizome of Curcuma longa, shows anticancer properties both in vitro and in vivo. Previously, we have shown that treatment with curcumin leads to senescence of human cancer cells. Now we identified the molecular mechanism underlying this phenomenon. We observed a time-dependent accumulation of mitotic cells upon curcumin treatment. The time-lapse analysis proved that those cells progressed through mitosis for a significantly longer period of time. A fraction of cells managed to divide or undergo mitotic slippage and then enter the next phase of the cell cycle. Cells arrested in mitosis had an improperly formed mitotic spindle and were positive for γH2AX, which shows that they acquired DNA damage during prolonged mitosis. Moreover, the DNA damage response pathway was activated upon curcumin treatment and the components of this pathway remained upregulated while cells were undergoing senescence. Inhibition of the DNA damage response decreased the number of senescent cells. Thus, our studies revealed that the induction of cell senescence upon curcumin treatment resulted from aberrant progression through the cell cycle. Moreover, the DNA damage acquired by cancer cells, due to mitotic disturbances, activates an important molecular mechanism that determines the potential anticancer activity of curcumin. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Dissecting the machinery that introduces disulfide bonds in Pseudomonas aeruginosa.

    PubMed

    Arts, Isabelle S; Ball, Geneviève; Leverrier, Pauline; Garvis, Steven; Nicolaes, Valérie; Vertommen, Didier; Ize, Bérengère; Tamu Dufe, Veronica; Messens, Joris; Voulhoux, Romé; Collet, Jean-François

    2013-12-10

    Disulfide bond formation is required for the folding of many bacterial virulence factors. However, whereas the Escherichia coli disulfide bond-forming system is well characterized, not much is known on the pathways that oxidatively fold proteins in pathogenic bacteria. Here, we report the detailed unraveling of the pathway that introduces disulfide bonds in the periplasm of the human pathogen Pseudomonas aeruginosa. The genome of P. aeruginosa uniquely encodes two DsbA proteins (P. aeruginosa DsbA1 [PaDsbA1] and PaDsbA2) and two DsbB proteins (PaDsbB1 and PaDsbB2). We found that PaDsbA1, the primary donor of disulfide bonds to secreted proteins, is maintained oxidized in vivo by both PaDsbB1 and PaDsbB2. In vitro reconstitution of the pathway confirms that both PaDsbB1 and PaDsbB2 shuttle electrons from PaDsbA1 to membrane-bound quinones. Accordingly, deletion of both P. aeruginosa dsbB1 (PadsbB1) and PadsbB2 is required to prevent the folding of several P. aeruginosa virulence factors and to lead to a significant decrease in pathogenicity. Using a high-throughput proteomic approach, we also analyzed the impact of PadsbA1 deletion on the global periplasmic proteome of P. aeruginosa, which allowed us to identify more than 20 new potential substrates of this major oxidoreductase. Finally, we report the biochemical and structural characterization of PaDsbA2, a highly oxidizing oxidoreductase, which seems to be expressed under specific conditions. By fully dissecting the machinery that introduces disulfide bonds in P. aeruginosa, our work opens the way to the design of novel antibacterial molecules able to disarm this pathogen by preventing the proper assembly of its arsenal of virulence factors. The human pathogen Pseudomonas aeruginosa causes life-threatening infections in immunodepressed and cystic fibrosis patients. The emergence of P. aeruginosa strains resistant to all of the available antibacterial agents calls for the urgent development of new antibiotics

  13. Assessing the Contributions of Motor Enzymes and Microtubule Dynamics to Mitotic Chromosome Motions.

    PubMed

    McIntosh, J Richard

    2017-10-06

    During my graduate work with Keith Porter, I became fascinated by the mitotic spindle, an interest that has motivated much of my scientific work ever since. I began spindle studies by using electron microscopes, instruments that have made significant contributions to our understanding of spindle organization. Such instruments have helped to elucidate the distributions of spindle microtubules, the interactions among them, their molecular polarity, and their associations with both kinetochores and spindle poles. Our lab has also investigated some processes of spindle physiology: microtubule dynamics, the actions of microtubule-associated proteins (including motor enzymes), the character of forces generated by specific spindle components, and factors that control mitotic progression. Here, I give a personal perspective on some of this intellectual history and on what recent discoveries imply about the mechanisms of chromosome motion.

  14. Polyoma small T antigen triggers cell death via mitotic catastrophe

    PubMed Central

    Fernando, Arun T Pores; Andrabi, Shaida; Cizmecioglu, Onur; Zhu, Cailei; Livingston, David M.; Higgins, Jonathan M.G; Schaffhausen, Brian S; Roberts, Thomas M

    2014-01-01

    Polyoma small T antigen (PyST), an early gene product of the polyoma virus, has been shown to cause cell death in a number of mammalian cells in a protein phosphatase 2A (PP2A)-dependent manner. In the current study, using a cell line featuring regulated expression of PyST, we found that PyST arrests cells in mitosis. Live-cell and immunofluorescence studies showed that the majority of the PyST-expressing cells were arrested in prometaphase with almost no cells progressing beyond metaphase. These cells exhibited defects in chromosomal congression, sister chromatid cohesion and spindle positioning, resulting in the activation of the Spindle Assembly Checkpoint (SAC). Prolonged mitotic arrest then led to cell death via mitotic catastrophe. Cell cycle inhibitors that block cells in G1/S prevented PyST-induced death. PyST-induced cell death that occurs during M is not dependent on p53 status. These data suggested, and our results confirmed that, PP2A inhibition could be used to preferentially kill cancer cells with p53 mutations that proliferate normally in the presence of cell cycle inhibitors. PMID:24998850

  15. Micromanipulation studies of the mitotic apparatus in sand dollar eggs.

    PubMed

    Hiramoto, Y; Nakano, Y

    1988-01-01

    Mechanical properties of the mitotic spindle and the effects of various operations of the mitotic apparatus on the chromosome movement and spindle elongation were investigated in fertilized eggs and blastomeres of the sand dollar, Clypeaster japonicus. On the basis of results with mechanical stretching and compression of the spindle with a pair of microneedles and the behavior of an oil drop microinjected into the spindle, it was concluded that the equatorial region of the spindle is mechanically weaker than the half-spindle region. Anaphase chromosome movement occurred in the spindle from which an aster had been removed or separated with its polar end and in the spindle in which the interzonal region had been removed. This fact indicates that chromosomes move poleward in anaphase by forces generated near the kinetochores in the half-spindle. Because of the effects of separation or removal of an aster from the spindle on the spindle elongation in anaphase and the behavior of the aster, it was concluded that the spindle elongation in anaphase is caused by pulling forces generated by asters attached to the ends of the spindle.

  16. Implications of mitotic and meiotic irregularities in common beans (Phaseolus vulgaris L.).

    PubMed

    Lima, D C; Braz, G T; Dos Reis, G B; Techio, V H; Davide, L C; de F B Abreu, A

    2016-05-23

    The common bean has great social and economic importance in Brazil and is the subject of a high number of publications, especially in the fields of genetics and breeding. Breeding programs aim to increase grain yield; however, mitosis and meiosis represent under explored research areas that have a direct impact on grain yield. Therefore, the study of cell division could be another tool available to bean geneticists and breeders. The aim of this study was to investigate irregularities occurring during the cell cycle and meiosis in common bean. The common bean cultivar used was BRSMG Talismã, which owing to its high yield and grain quality is recommended for cultivation in Brazil. We classified the interphase nuclei, estimated the mitotic and meiotic index, grain pollen viability, and percentage of abnormalities in both processes. The mitotic index was 4.1%, the interphase nucleus was non-reticulated, and 19% of dividing somatic cells showed abnormal behavior. Meiosis also presented irregularities resulting in a meiotic index of 44.6%. Viability of pollen grains was 94.3%. These results indicate that the common bean cultivar BRSMG Talismã possesses repair mechanisms that compensate for changes by producing a large number of pollen grains. Another important strategy adopted by bean plants to ensure stability is the elimination of abnormal cells by apoptosis. As the common bean cultivar BRSMG Talismã is recommended for cultivation because of its good agronomic performance, it can be concluded that mitotic and meiotic irregularities have no negative influence on its grain quality and yield.

  17. How to be good at being bad: centrosome amplification and mitotic propensity drive intratumoral heterogeneity

    PubMed Central

    Rida, Padmashree C. G.; Cantuaria, Guilherme; Reid, Michelle D.; Kucuk, Omer

    2016-01-01

    Cancer is truly an iconic disease—a tour de force whose multiple formidable strengths can be attributed to the bewildering heterogeneity that a tumor can manifest both spatially and temporally. A Darwinian evolutionary process is believed to undergird, at least in part, the generation of this heterogeneity that contributes to poor clinical outcomes. Risk assessment in clinical oncology is currently based on a small number of clinicopathologic factors (like stage, histological grade, receptor status, and serum tumor markers) and offers limited accuracy in predicting disease course as evidenced by the prognostic heterogeneity that persists in risk segments produced by present-day models. We posit that this insufficiency stems from the exclusion of key risk contributors from such models, especially the omission of certain factors implicated in generating intratumoral heterogeneity. The extent of centrosome amplification and the mitotic propensity inherent in a tumor are two such vital factors whose contributions to poor prognosis are presently overlooked in risk prognostication. Supernumerary centrosomes occur widely in tumors and are potent drivers of chromosomal instability that fosters intratumoral heterogeneity. The mitotic propensity of a proliferating population of tumor cells reflects the cell cycling kinetics of that population. Since frequent passage through improperly regulated mitotic divisions accelerates production of diverse genotypes, the mitotic propensity inherent in a tumor serves as a powerful beacon of risk. In this review, we highlight how centrosome amplification and error-prone mitoses contribute to poor clinical outcomes and urge the need to develop these cancer-specific traits as much-needed clinically-facile prognostic biomarkers with immense potential value for individualized cancer treatment in the clinic. PMID:26358854

  18. Picropodophyllin causes mitotic arrest and catastrophe by depolymerizing microtubules via Insulin-like growth factor-1 receptor-independent mechanism

    PubMed Central

    Waraky, Ahmed; Akopyan, Karen; Parrow, Vendela; Strömberg, Thomas; Axelson, Magnus; Abrahmsén, Lars; Lindqvist, Arne; Larsson, Olle; Aleem, Eiman

    2014-01-01

    Picropodophyllin (PPP) is an anticancer drug undergoing clinical development in NSCLC. PPP has been shown to suppress IGF-1R signaling and to induce a G2/M cell cycle phase arrest but the exact mechanisms remain to be elucidated. The present study identified an IGF-1-independent mechanism of PPP leading to pro-metaphase arrest. The mitotic block was induced in human cancer cell lines and in an A549 xenograft mouse but did not occur in normal hepatocytes/mouse tissues. Cell cycle arrest by PPP occurred in vitro and in vivo accompanied by prominent CDK1 activation, and was IGF-1R-independent since it occurred also in IGF-1R-depleted and null cells. The tumor cells were not arrested in G2/M but in mitosis. Centrosome separation was prevented during mitotic entry, resulting in a monopolar mitotic spindle with subsequent prometaphase-arrest, independent of Plk1/Aurora A or Eg5, and leading to cell features of mitotic catastrophe. PPP also increased soluble tubulin and decreased spindle-associated tubulin within minutes, indicating that it interfered with microtubule dynamics. These results provide a novel IGF-1R-independent mechanism of antitumor effects of PPP. PMID:25268741

  19. 46 CFR 167.15-25 - Inspection standards for hulls, boilers and machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Inspection standards for hulls, boilers and machinery... SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Inspections § 167.15-25 Inspection standards for hulls, boilers and... Classing Steel Vessels” regarding the construction of hulls, boilers and machinery in effect on the date of...

  20. The Aurora kinase A inhibitor TC-A2317 disrupts mitotic progression and inhibits cancer cell proliferation

    PubMed Central

    Min, Yoo Hong; Kim, Wootae; Kim, Ja-Eun

    2016-01-01

    Mitotic progression is crucial for the maintenance of chromosomal stability. A proper progression is ensured by the activities of multiple kinases. One of these enzymes, the serine/threonine kinase Aurora A, is required for proper mitosis through the regulation of centrosome and spindle assembly. In this study, we functionally characterized a newly developed Aurora kinase A inhibitor, TC-A2317. In human lung cancer cells, TC-A2317 slowed proliferation by causing aberrant formation of centrosome and microtubule spindles and prolonging the duration of mitosis. Abnormal mitotic progression led to accumulation of cells containing micronuclei or multinuclei. Furthermore, TC-A2317–treated cells underwent apoptosis, autophagy or senescence depending on cell type. In addition, TC-A2317 inactivated the spindle assembly checkpoint triggered by paclitaxel, thereby exacerbating mitotic catastrophe. Consistent with this, the expression level of Aurora A in tumors was inversely correlated with survival in lung cancer patients. Collectively, these data suggest that inhibition of Aurora kinase A using TC-A2317 is a promising target for anti-cancer therapeutics. PMID:27713168

  1. 46 CFR 32.56-25 - Category A machinery spaces: Windows and port lights-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Category A machinery spaces: Windows and port lights-T... Laying Date On or After January 1, 1975 § 32.56-25 Category A machinery spaces: Windows and port lights—T..., boundaries of category A machinery spaces and boundaries of cargo pumprooms must not be pierced for windows...

  2. Alternatives to overcoming bacterial resistances: State-of-the-art.

    PubMed

    Rios, Alessandra C; Moutinho, Carla G; Pinto, Flávio C; Del Fiol, Fernando S; Jozala, Angela; Chaud, Marco V; Vila, Marta M D C; Teixeira, José A; Balcão, Victor M

    2016-10-01

    Worldwide, bacterial resistance to chemical antibiotics has reached such a high level that endangers public health. Presently, the adoption of alternative strategies that promote the elimination of resistant microbial strains from the environment is of utmost importance. This review discusses and analyses several (potential) alternative strategies to current chemical antibiotics. Bacteriophage (or phage) therapy, although not new, makes use of strictly lytic phage particles as an alternative, or a complement, in the antimicrobial treatment of bacterial infections. It is being rediscovered as a safe method, because these biological entities devoid of any metabolic machinery do not possess any affinity whatsoever to eukaryotic cells. Lysin therapy is also recognized as an innovative antimicrobial therapeutic option, since the topical administration of preparations containing purified recombinant lysins with amounts in the order of nanograms, in infections caused by Gram-positive bacteria, demonstrated a high therapeutic potential by causing immediate lysis of the target bacterial cells. Additionally, this therapy exhibits the potential to act synergistically when combined with certain chemical antibiotics already available on the market. Another potential alternative antimicrobial therapy is based on the use of antimicrobial peptides (AMPs), amphiphilic polypeptides that cause disruption of the bacterial membrane and can be used in the treatment of bacterial, fungal and viral infections, in the prevention of biofilm formation, and as antitumoral agents. Interestingly, bacteriocins are a common strategy of bacterial defense against other bacterial agents, eliminating the potential opponents of the former and increasing the number of available nutrients in the environment for their own growth. They can be applied in the food industry as biopreservatives and as probiotics, and also in fighting multi-resistant bacterial strains. The use of antibacterial antibodies

  3. 46 CFR 167.65-60 - Examination of boilers and machinery by engineer.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Examination of boilers and machinery by engineer. 167.65-60 Section 167.65-60 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL... machinery by engineer. It shall be the duty of an engineer when he assumes charge of the boilers and...

  4. 46 CFR 167.65-60 - Examination of boilers and machinery by engineer.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Examination of boilers and machinery by engineer. 167.65-60 Section 167.65-60 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL... machinery by engineer. It shall be the duty of an engineer when he assumes charge of the boilers and...

  5. 46 CFR 167.65-60 - Examination of boilers and machinery by engineer.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Examination of boilers and machinery by engineer. 167.65-60 Section 167.65-60 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL... machinery by engineer. It shall be the duty of an engineer when he assumes charge of the boilers and...

  6. 46 CFR 167.65-60 - Examination of boilers and machinery by engineer.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Examination of boilers and machinery by engineer. 167.65-60 Section 167.65-60 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL... machinery by engineer. It shall be the duty of an engineer when he assumes charge of the boilers and...

  7. Active Vibration Dampers For Rotating Machinery

    NASA Technical Reports Server (NTRS)

    Kascack, Albert F.; Ropchock, John J.; Lakatos, Tomas F.; Montague, Gerald T.; Palazzolo, Alan; Lin, Reng Rong

    1994-01-01

    Active dampers developed to suppress vibrations in rotating machinery. Essentially feedback control systems and reciprocating piezoelectric actuators. Similar active damper containing different actuators described in LEW-14488. Concept also applicable to suppression of vibrations in stationary structures subject to winds and earthquakes. Active damper offers adjustable suppression of vibrations. Small and lightweight and responds faster to transients.

  8. Measuring Leakage From Large, Complicated Machinery

    NASA Technical Reports Server (NTRS)

    Bottemiller, S.

    1987-01-01

    Test chamber improvised from large bag. Cumulative sizes of leaks in large, complicated machinery measure with relatively simple variation of helium leak-checking technique. When used to check Space Shuttle main engine, new technique gave repeatable and correct results within 0.5 stdin.3/min (1.4 x 10 negative to the seventh power stdm3/s).

  9. Live-cell imaging RNAi screen identifies PP2A–B55α and importin-β1 as key mitotic exit regulators in human cells

    PubMed Central

    Schmitz, Michael H. A.; Held, Michael; Janssens, Veerle; Hutchins, James R. A.; Hudecz, Otto; Ivanova, Elitsa; Goris, Jozef; Trinkle-Mulcahy, Laura; Lamond, Angus I.; Poser, Ina; Hyman, Anthony A.; Mechtler, Karl; Peters, Jan-Michael; Gerlich, Daniel W.

    2013-01-01

    When vertebrate cells exit mitosis various cellular structures are re-organized to build functional interphase cells1. This depends on Cdk1 (cyclin dependent kinase 1) inactivation and subsequent dephosphorylation of its substrates2–4. Members of the protein phosphatase 1 and 2A (PP1 and PP2A) families can dephosphorylate Cdk1 substrates in biochemical extracts during mitotic exit5,6, but how this relates to postmitotic reassembly of interphase structures in intact cells is not known. Here, we use a live-cell imaging assay and RNAi knockdown to screen a genome-wide library of protein phosphatases for mitotic exit functions in human cells. We identify a trimeric PP2A–B55α complex as a key factor in mitotic spindle breakdown and postmitotic reassembly of the nuclear envelope, Golgi apparatus and decondensed chromatin. Using a chemically induced mitotic exit assay, we find that PP2A–B55α functions downstream of Cdk1 inactivation. PP2A–B55α isolated from mitotic cells had reduced phosphatase activity towards the Cdk1 substrate, histone H1, and was hyper-phosphorylated on all subunits. Mitotic PP2A complexes co-purified with the nuclear transport factor importin-β1, and RNAi depletion of importin-β1 delayed mitotic exit synergistically with PP2A–B55α. This demonstrates that PP2A–B55α and importin-β1 cooperate in the regulation of postmitotic assembly mechanisms in human cells. PMID:20711181

  10. [Genetic control of mitotic crossing-over in yeasts. III. Induction by 8-methoxypsoralen and long-wave UV irradiation (lambda=365 nm)].

    PubMed

    Fedorova, I V; Marfin, S V

    1982-02-01

    The lethal effect of 8-methoxypsoralen (8-MOP) plus 365 nm light has been studied in haploid radiosensitive strains of Saccharomyces cerevisiae. The diploid of wild type and the diploid homozygous for the rad2 mutation (this mutation blocks the excision of UV-induced pyrimidine dimers) were more resistant to the lethal effect of 8-MOP plus 365 nm light than the haploid of wild type and rad2 haploid, respectively. The diploid homozygous for rad54 mutation (the mutation blocks the repair of double-strand breaks in DNA) was more sensitive than haploid rad54. The method of repeated irradiation allowed to study the capacity of radiosensitive diploids to remove monoadducts induced by 8-MOP in DNA. This process was very effective in diploids of wild type and in the rad54 rad54 diploid, while the rad2 rad2 diploid was characterized by nearly complete absence of monoadduct excision. The study of mitotic crossing over and mitotic segregation in yeast diploids, containing a pair of complementing alleles of the ade2 gene (red/pink) has shown a very high recombinogenic effect of 8-MOP plus 365 nm light. The rad2 mutation slightly increased the frequency of mitotic segregation and mitotic crossing over. The rad54 mutation decreased the frequency of mitotic segregation and entirely suppressed mitotic crossing over. The method of repeated irradiation showed that the cross-links, but not monoadducts, are the main cause of high recombinogenic effect of 8-MOP plus 365 nm light. The possible participation of different repair systems in recombinational processes induced by 8-MOP in yeast cells is discussed.

  11. Machinery Repairman 3 & 2. Rate Training Manual and Nonresident Career Course. Revised.

    ERIC Educational Resources Information Center

    Bynum, Michael H.; Taylor, Edward A.

    This Rate Training Manual (textbook) and Nonresident Career Course form a correspondence self-study package to teach the theoretical knowledge and mental skills needed by the Machinery Repairman Third Class and Second Class. The 15 chapters in the textbook are (1) Scope of the Machinery Repairman Rating; (2) Toolrooms and Tools; (3) Layout and…

  12. 46 CFR 167.65-60 - Examination of boilers and machinery by engineer.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Examination of boilers and machinery by engineer. 167.65... SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Special Operating Requirements § 167.65-60 Examination of boilers and machinery by engineer. It shall be the duty of an engineer when he assumes charge of the boilers and...

  13. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-1 Power ventilation systems except machinery space ventilation systems. Each power ventilation system must... 46 Shipping 4 2010-10-01 2010-10-01 false Power ventilation systems except machinery space...

  14. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-1 Power ventilation systems except machinery space ventilation systems. Each power ventilation system must... 46 Shipping 4 2011-10-01 2011-10-01 false Power ventilation systems except machinery space...

  15. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-1 Power ventilation systems except machinery space ventilation systems. Each power ventilation system must... 46 Shipping 4 2014-10-01 2014-10-01 false Power ventilation systems except machinery space...

  16. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-1 Power ventilation systems except machinery space ventilation systems. Each power ventilation system must... 46 Shipping 4 2012-10-01 2012-10-01 false Power ventilation systems except machinery space...

  17. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-1 Power ventilation systems except machinery space ventilation systems. Each power ventilation system must... 46 Shipping 4 2013-10-01 2013-10-01 false Power ventilation systems except machinery space...

  18. 46 CFR 169.625 - Compartments containing diesel machinery.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... structure. Prior to installing ventilation for the engines, plans or sketches showing the machinery... mechanical supply and exhaust ventilation. One duct must extend to a point near the bottom of the compartment...

  19. 46 CFR 169.625 - Compartments containing diesel machinery.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... structure. Prior to installing ventilation for the engines, plans or sketches showing the machinery... mechanical supply and exhaust ventilation. One duct must extend to a point near the bottom of the compartment...

  20. 46 CFR 169.625 - Compartments containing diesel machinery.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... structure. Prior to installing ventilation for the engines, plans or sketches showing the machinery... mechanical supply and exhaust ventilation. One duct must extend to a point near the bottom of the compartment...

  1. 29 CFR 1915.165 - Ship's deck machinery.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Ship's Machinery and Piping... claws (also known as chain stoppers) shall be made fast to the anchor chains. (2) The riding pawls shall...

  2. Web-based Interactive Simulator for Rotating Machinery.

    ERIC Educational Resources Information Center

    Sirohi, Vijayalaxmi

    1999-01-01

    Baroma (Balance of Rotating Machinery), the Web-based educational engineering interactive software for teaching/learning combines didactical and software ergonomical approaches. The software in tutorial form simulates a problem using Visual Interactive Simulation in graphic display, and animation is brought about through graphical user interface…

  3. Interplay of heritage and habitat in the distribution of bacterial signal transduction systems.

    PubMed

    Galperin, Michael Y; Higdon, Roger; Kolker, Eugene

    2010-04-01

    Comparative analysis of the complete genome sequences from a variety of poorly studied organisms aims at predicting ecological and behavioral properties of these organisms and helping in characterizing their habitats. This task requires finding appropriate descriptors that could be correlated with the core traits of each system and would allow meaningful comparisons. Using the relatively simple bacterial models, first attempts have been made to introduce suitable metrics to describe the complexity of organism's signaling machinery, which included introducing the "bacterial IQ" score. Here, we use an updated census of prokaryotic signal transduction systems to improve this parameter and evaluate its consistency within selected bacterial phyla. We also introduce a more elaborate descriptor, a set of profiles of relative abundance of members of each family of signal transduction proteins encoded in each genome. We show that these family profiles are well conserved within each genus and are often consistent within families of bacteria. Thus, they reflect evolutionary relationships between organisms as well as individual adaptations of each organism to its specific ecological niche.

  4. Effects of heat stress in the leaf mitotic cell cycle and chromosomes of four wine-producing grapevine varieties.

    PubMed

    Carvalho, Ana; Leal, Fernanda; Matos, Manuela; Lima-Brito, José

    2018-05-22

    Grapevine varieties respond differentially to heat stress (HS). HS ultimately reduces the photosynthesis and respiratory performance. However, the HS effects in the leaf nuclei and mitotic cells of grapevine are barely known. This work intends to evaluate the HS effects in the leaf mitotic cell cycle and chromosomes of four wine-producing varieties: Touriga Franca (TF), Touriga Nacional (TN), Rabigato, and Viosinho. In vitro plants with 11 months were used in a stepwise acclimation and recovery (SAR) experimental setup comprising different phases: heat acclimation period (3 h-32 °C), extreme HS (1 h-42 °C), and two recovery periods (3 h-32 °C and 24 h-25 °C), and compared to control plants (maintained in vitro at 25 °C). At the end of each SAR phase, leaves were collected, fixed, and used for cell suspensions and chromosome preparations. Normal and abnormal interphase and mitotic cells were observed, scored, and statistically analyzed in all varieties and treatments (control and SAR phases). Different types of chromosomal anomalies in all mitotic phases, treatments, and varieties were found. In all varieties, the percentage of dividing cells with anomalies (%DCA) after extreme HS increased relative to control. TF and Viosinho were considered the most tolerant to HS. TF showed a gradual MI reduction from heat acclimation to HS and the lowest %DCA after HS and 24 h of recovery. Only Viosinho reached the control values after the long recovery period. Extrapolating these data to the field, we hypothesize that during consecutive hot summer days, the grapevine plants will not have time or capacity to recover from the mitotic anomalies caused by high temperatures.

  5. Nonfatal work-related injuries among agricultural machinery operators in northern China: A cross-sectional study

    PubMed Central

    Zheng, Lei; Zhao, Na; Chen, Dingyan; Hu, Meirong; Fu, Xianghua; Stallones, Lorann; Xiang, Huiyun; Wang, Zengzhen

    2013-01-01

    Purpose To identify the annual prevalence and potential risk factors of nonfatal agricultural machinery injuries among agricultural machinery operators in the northern areas of China. Methods A quota sampling method was used to study 1921 agricultural machinery operators in 5 provinces in northern China. Agricultural machinery injuries that occurred between July 1, 2008, and June 30, 2009 were investigated. Data on nonfatal injuries and related factors were obtained by in-person interviews. Results The prevalence of agricultural machinery-related injuries among the surveyed operators was 13.1%. Being male, having lower family income and/or poor hearing, being in debt, and feeling stressed were five significant risk factors for injuries. The majority of injuries took place on farmlands (46.6%), roads (26.3%), or in backyards (17.5%). The four most common causes of injuries were being stuck by starting handles that slipped, being slashed or stabbed by sharp objects, being struck by falling objects, and falls from stationary vehicles. Conclusions The prevalence of agricultural machinery-related injuries in our study was high. Males, low family income, poor hearing, and stress were associated with high risk of injury occurrence. PMID:23915490

  6. Nonfatal work-related injuries among agricultural machinery operators in northern China: a cross-sectional study.

    PubMed

    Zheng, Lei; Zhao, Na; Chen, Dingyan; Hu, Meirong; Fu, Xianghua; Stallones, Lorann; Xiang, Huiyun; Wang, Zengzhen

    2014-03-01

    To identify the annual prevalence and potential risk factors of nonfatal agricultural machinery injuries among agricultural machinery operators in the northern areas of China. A quota sampling method was used to study 1921 agricultural machinery operators in 5 provinces in northern China. Agricultural machinery injuries that occurred between July 1, 2008, and June 30, 2009 were investigated. Data on nonfatal injuries and related factors were obtained by in-person interviews. The prevalence of agricultural machinery-related injuries among the surveyed operators was 13.1%. Being male, having lower family income and/or poor hearing, being in debt, and feeling stressed were five significant risk factors for injuries. The majority of injuries took place on farmlands (46.6%), roads (26.3%), or in backyards (17.5%). The four most common causes of injuries were being stuck by starting handles that slipped, being slashed or stabbed by sharp objects, being struck by falling objects, and falls from stationary vehicles. The prevalence of agricultural machinery-related injuries in our study was high. Males, low family income, poor hearing, and stress were associated with high risk of injury occurrence. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Argonaute-1 functions as a mitotic regulator by controlling Cyclin B during Drosophila early embryogenesis.

    PubMed

    Pushpavalli, Sreerangam N C V L; Sarkar, Arpita; Bag, Indira; Hunt, Clayton R; Ramaiah, M Janaki; Pandita, Tej K; Bhadra, Utpal; Pal-Bhadra, Manika

    2014-02-01

    The role of Ago-1 in microRNA (miRNA) biogenesis has been thoroughly studied, but little is known about its involvement in mitotic cell cycle progression. In this study, we established evidence of the regulatory role of Ago-1 in cell cycle control in association with the G2/M cyclin, cyclin B. Immunostaining of early embryos revealed that the maternal effect gene Ago-1 is essential for proper chromosome segregation, mitotic cell division, and spindle fiber assembly during early embryonic development. Ago-1 mutation resulted in the up-regulation of cyclin B-Cdk1 activity and down-regulation of p53, grp, mei-41, and wee1. The increased expression of cyclin B in Ago-1 mutants caused less stable microtubules and probably does not produce enough force to push the nuclei to the cortex, resulting in a decreased number of pole cells. The role of cyclin B in mitotic defects was further confirmed by suppressing the defects in the presence of one mutant copy of cyclin B. We identified involvement of 2 novel embryonic miRNAs--miR-981 and miR--317-for spatiotemporal regulation of cyclin B. In summary, our results demonstrate that the haploinsufficiency of maternal Ago-1 disrupts mitotic chromosome segregation and spindle fiber assembly via miRNA-guided control during early embryogenesis in Drosophila. The increased expression of cyclin B-Cdk1 and decreased activity of the Cdk1 inhibitor and cell cycle checkpoint proteins (mei-41 and grp) in Ago-1 mutant embryos allow the nuclei to enter into mitosis prematurely, even before completion of DNA replication. Thus, our results have established a novel role of Ago-1 as a regulator of the cell cycle.

  8. Transportin acts to regulate mitotic assembly events by target binding rather than Ran sequestration

    PubMed Central

    Bernis, Cyril; Swift-Taylor, Beth; Nord, Matthew; Carmona, Sarah; Chook, Yuh Min; Forbes, Douglass J.

    2014-01-01

    The nuclear import receptors importin β and transportin play a different role in mitosis: both act phenotypically as spatial regulators to ensure that mitotic spindle, nuclear membrane, and nuclear pore assembly occur exclusively around chromatin. Importin β is known to act by repressing assembly factors in regions distant from chromatin, whereas RanGTP produced on chromatin frees factors from importin β for localized assembly. The mechanism of transportin regulation was unknown. Diametrically opposed models for transportin action are as follows: 1) indirect action by RanGTP sequestration, thus down-regulating release of assembly factors from importin β, and 2) direct action by transportin binding and inhibiting assembly factors. Experiments in Xenopus assembly extracts with M9M, a superaffinity nuclear localization sequence that displaces cargoes bound by transportin, or TLB, a mutant transportin that can bind cargo and RanGTP simultaneously, support direct inhibition. Consistently, simple addition of M9M to mitotic cytosol induces microtubule aster assembly. ELYS and the nucleoporin 107–160 complex, components of mitotic kinetochores and nuclear pores, are blocked from binding to kinetochores in vitro by transportin, a block reversible by M9M. In vivo, 30% of M9M-transfected cells have spindle/cytokinesis defects. We conclude that the cell contains importin β and transportin “global positioning system”or “GPS” pathways that are mechanistically parallel. PMID:24478460

  9. Role of BRCA1 in Controlling Mitotic Arrest in Ovarian Cystadenoma Cells

    PubMed Central

    Yu, Vanessa M.; Marion, Christine M.; Austria, Theresa M.; Yeh, Jennifer; Schönthal, Axel H.; Dubeau, Louis

    2011-01-01

    Cancers that develop in BRCA1 mutation carriers are usually near tetraploid/polyploid. This led us to hypothesize that BRCA1 controls the mitotic checkpoint complex, as loss of such control could lead to mitotic errors resulting in tetraploidy/polyploidy with subsequent aneuploidy. We used an in vitro system mimicking pre-malignant conditions, consisting of cell strains derived from the benign counterparts of serous ovarian carcinomas (cystadenomas) and expressing SV40 large T antigen, conferring the equivalent of a p53 mutation. We previously showed that such cells undergo one or several doublings of their DNA content as they age in culture and approach the phenomenon of in vitro crisis. Here we show that such increase in DNA content reflects a cell cycle arrest possibly at the anaphase promoting complex, as evidenced by decreased BrdU incorporation and increased expression of the mitotic checkpoint complex. Down-regulation of BRCA1 in cells undergoing crisis leads to activation of the anaphase promoting complex and resumption of growth kinetics similar to those seen in cells before they reach crisis. Cells recovering from crisis after BRCA1 down-regulation become multinucleated, suggesting that reduced BRCA1 expression may lead to initiation of a new cell cycle without completion of cytokinesis. This is the first demonstration that BRCA1 controls a physiological arrest at the M phase apart from its established role in DNA damage response, a role that could represent an important mechanism for acquisition of aneuploidy during tumor development. This may be particularly relevant to cancers that have a near tetraploid/polyploid number of chromosomes. PMID:21792894

  10. Production and characterization of pyrolytic oils by pyrolysis of waste machinery oil.

    PubMed

    Sinağ, Ali; Gülbay, Selen; Uskan, Burçin; Uçar, Suat; Ozgürler, Sara Bilge

    2010-01-15

    The main objective of this work is to propose an alternative method for evaluation of the waste machinery oil which is an environmental problem in Turkey. For this purpose, pyrolysis of waste machinery oil was conducted in a tubular reactor. Effect of the experimental conditions (various temperatures, catalyst type) on the formation of pyrolytic oil, gas, and char was investigated. Nickel supported on silica and zeolite (HZSM-5) were used as catalysts. Properties of the pyrolytic oils were characterized by gas chromatograph equipped with a mass selective detector (GC-MS), gas chromatography with flame ionization detector (GC-FID for boiling point range distribution), nuclear magnetic resonance ((1)H NMR) spectroscopy, higher heating value measurement, and elemental analysis. The behavior of the metals in the waste machinery oil and the pyrolytic oil samples was also quantitatively detected by inductively coupled plasma (ICP) analysis. As, Cd and Cr contents of the all pyrolytic oils were found as <0.05 ppm, while Cu content of the pyrolytic oils varied between 0.3 ppm and 0.61 ppm. Only Vanadium contents of the pyrolytic oils obtained at 800 degrees C (0.342 ppm) and in the presence of HZSM5 (0.57 ppm) increased compared to that obtained by waste machinery oil (0.1 ppm). Lower metal contents of the pyrolytic oils reveal that pyrolysis of the waste machinery oils leads to the formation of environmental friendly pyrolytic oils with higher heating values.

  11. Physical limits on kinesin-5–mediated chromosome congression in the smallest mitotic spindles

    PubMed Central

    McCoy, Kelsey M.; Tubman, Emily S.; Claas, Allison; Tank, Damien; Clancy, Shelly Applen; O’Toole, Eileen T.; Berman, Judith; Odde, David J.

    2015-01-01

    A characteristic feature of mitotic spindles is the congression of chromosomes near the spindle equator, a process mediated by dynamic kinetochore microtubules. A major challenge is to understand how precise, submicrometer-scale control of kinetochore micro­tubule dynamics is achieved in the smallest mitotic spindles, where the noisiness of microtubule assembly/disassembly will potentially act to overwhelm the spatial information that controls microtubule plus end–tip positioning to mediate congression. To better understand this fundamental limit, we conducted an integrated live fluorescence, electron microscopy, and modeling analysis of the polymorphic fungal pathogen Candida albicans, which contains one of the smallest known mitotic spindles (<1 μm). Previously, ScCin8p (kinesin-5 in Saccharomyces cerevisiae) was shown to mediate chromosome congression by promoting catastrophe of long kinetochore microtubules (kMTs). Using C. albicans yeast and hyphal kinesin-5 (Kip1p) heterozygotes (KIP1/kip1∆), we found that mutant spindles have longer kMTs than wild-type spindles, consistent with a less-organized spindle. By contrast, kinesin-8 heterozygous mutant (KIP3/kip3∆) spindles exhibited the same spindle organization as wild type. Of interest, spindle organization in the yeast and hyphal states was indistinguishable, even though yeast and hyphal cell lengths differ by two- to fivefold, demonstrating that spindle length regulation and chromosome congression are intrinsic to the spindle and largely independent of cell size. Together these results are consistent with a kinesin-5–mediated, length-dependent depolymerase activity that organizes chromosomes at the spindle equator in C. albicans to overcome fundamental noisiness in microtubule self-assembly. More generally, we define a dimensionless number that sets a fundamental physical limit for maintaining congression in small spindles in the face of assembly noise and find that C. albicans operates very close to

  12. 33 CFR 150.620 - What are the requirements for protecting personnel from machinery?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... protecting personnel from machinery? 150.620 Section 150.620 Navigation and Navigable Waters COAST GUARD... Health Machine Guards § 150.620 What are the requirements for protecting personnel from machinery? The deepwater port operator must ensure that all personnel are protected from the risks created by operating...

  13. 33 CFR 150.620 - What are the requirements for protecting personnel from machinery?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... protecting personnel from machinery? 150.620 Section 150.620 Navigation and Navigable Waters COAST GUARD... Health Machine Guards § 150.620 What are the requirements for protecting personnel from machinery? The deepwater port operator must ensure that all personnel are protected from the risks created by operating...

  14. 33 CFR 150.620 - What are the requirements for protecting personnel from machinery?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... protecting personnel from machinery? 150.620 Section 150.620 Navigation and Navigable Waters COAST GUARD... Health Machine Guards § 150.620 What are the requirements for protecting personnel from machinery? The deepwater port operator must ensure that all personnel are protected from the risks created by operating...

  15. 33 CFR 150.620 - What are the requirements for protecting personnel from machinery?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... protecting personnel from machinery? 150.620 Section 150.620 Navigation and Navigable Waters COAST GUARD... Health Machine Guards § 150.620 What are the requirements for protecting personnel from machinery? The deepwater port operator must ensure that all personnel are protected from the risks created by operating...

  16. Cyclin K dependent regulation of Aurora B affects apoptosis and proliferation by induction of mitotic catastrophe in prostate cancer.

    PubMed

    Schecher, Sabrina; Walter, Britta; Falkenstein, Michael; Macher-Goeppinger, Stephan; Stenzel, Philipp; Krümpelmann, Kristina; Hadaschik, Boris; Perner, Sven; Kristiansen, Glen; Duensing, Stefan; Roth, Wilfried; Tagscherer, Katrin E

    2017-10-15

    Cyclin K plays a critical role in transcriptional regulation as well as cell development. However, the role of Cyclin K in prostate cancer is unknown. Here, we describe the impact of Cyclin K on prostate cancer cells and examine the clinical relevance of Cyclin K as a biomarker for patients with prostate cancer. We show that Cyclin K depletion in prostate cancer cells induces apoptosis and inhibits proliferation accompanied by an accumulation of cells in the G2/M phase. Moreover, knockdown of Cyclin K causes mitotic catastrophe displayed by multinucleation and spindle multipolarity. Furthermore, we demonstrate a Cyclin K dependent regulation of the mitotic kinase Aurora B and provide evidence for an Aurora B dependent induction of mitotic catastrophe. In addition, we show that Cyclin K expression is associated with poor biochemical recurrence-free survival in patients with prostate cancer treated with an adjuvant therapy. In conclusion, targeting Cyclin K represents a novel, promising anti-cancer strategy to induce cell cycle arrest and apoptotic cell death through induction of mitotic catastrophe in prostate cancer cells. Moreover, our results indicate that Cyclin K is a putative predictive biomarker for clinical outcome and therapy response for patients with prostate cancer. © 2017 UICC.

  17. ADJUSTMENT, MAINTENANCE, AND REPAIR OF TILLAGE, PLANTING, SPRAYING, AND FERTILIZING MACHINERY. AGRICULTURAL MACHINERY--SERVICE OCCUPATIONS, MODULE NUMBER 10.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    THE PURPOSE OF THIS GUIDE IS TO HELP TEACHERS PREPARE POSTSECONDARY-LEVEL STUDENTS FOR THE AGRICULTURAL MACHINERY SERVICE OCCUPATIONS AS PARTS MEN, MECHANICS, MECHANIC'S HELPERS, AND SERVICE SUPERVISORS. IT WAS DESIGNED BY A NATIONAL TASK FORCE ON THE BASIS OF RESEARCH FROM STATE STUDIES. THE MAJOR OBJECTIVE IS TO DEVELOP (1) STUDENT UNDERSTANDING…

  18. Effects of Taxol plus radiation on the apoptotic and mitotic indices of mouse intestinal crypt cells.

    PubMed

    Ozkan, L; Ozuysal, S; Egeli, U; Adim, S B; Tunca, B; Aydemir, N; Ceçener, G; Ergül, E; Akpinar, G; Cimen, C; Engin, K; Ahmed, M M

    2001-07-01

    In this study we investigated the effect of Taxol, radiation, or Taxol plus radiation on highly proliferative normal tissue--the intestinal crypt cells of Swiss albino mice. Swiss-albino mice, 3-4 months old, were used in this study. Taxol was administered by bolus intravenously through the tail vein. Radiation was given using a linear accelerator. There were four treatment categories, which comprised a total of 34 groups. Each group consisted of five animals. The first category was a control category which comprised one group (n = 5). The second treatment category was Taxol alone which comprised three groups (n = 15). The third treatment category was radiation alone which comprised three groups (n = 15). The fourth treatment category was Taxol plus radiation which comprised 27 groups (n = 135). Mice were killed 24 h after Taxol or radiation or combined administration using ether anesthesia. Using a light microscope, apoptotic and mitotic indices were counted on jejunal crypt cells of mice that were stained with hematoxylin-eosin. Differences between groups were statistically evaluated with Student's t-test. Taxol caused a dose-dependent increase in apoptosis (P = 0.045) and decreased the mitotic index (P = 0.006) at high doses. Similarly, radiation caused a dose-dependent increase in apoptosis (P = 0.046) and decreased the mitotic index (P = 0.299) at higher radiation doses. Compared to radiation alone, Taxol caused a significant induction of apoptosis (P = 0.010). In combination, no significant radiosensitizing effect of Taxol was observed (enhancement ratio < 1), when compared to radiation alone. However, an increase in apoptosis was observed after 24 h of Taxol exposure when compared to 12 or 48 h of Taxol exposure (P = 0.0001 and P = 0.0001). These findings suggest that Taxol did not cause a radiosensitizing effect in intestinal crypt cells. However, a 24-hour pretreatment of Taxol exposure followed by radiation caused significant induction of apoptosis and

  19. Bacterial Actins.

    PubMed

    Izoré, Thierry; van den Ent, Fusinita

    2017-01-01

    A diverse set of protein polymers, structurally related to actin filaments contributes to the organization of bacterial cells as cytomotive or cytoskeletal filaments. This chapter describes actin homologs encoded by bacterial chromosomes. MamK filaments, unique to magnetotactic bacteria, help establishing magnetic biological compasses by interacting with magnetosomes. Magnetosomes are intracellular membrane invaginations containing biomineralized crystals of iron oxide that are positioned by MamK along the long-axis of the cell. FtsA is widespread across bacteria and it is one of the earliest components of the divisome to arrive at midcell, where it anchors the cell division machinery to the membrane. FtsA binds directly to FtsZ filaments and to the membrane through its C-terminus. FtsA shows altered domain architecture when compared to the canonical actin fold. FtsA's subdomain 1C replaces subdomain 1B of other members of the actin family and is located on the opposite side of the molecule. Nevertheless, when FtsA assembles into protofilaments, the protofilament structure is preserved, as subdomain 1C replaces subdomain IB of the following subunit in a canonical actin filament. MreB has an essential role in shape-maintenance of most rod-shaped bacteria. Unusually, MreB filaments assemble from two protofilaments in a flat and antiparallel arrangement. This non-polar architecture implies that both MreB filament ends are structurally identical. MreB filaments bind directly to membranes where they interact with both cytosolic and membrane proteins, thereby forming a key component of the elongasome. MreB filaments in cells are short and dynamic, moving around the long axis of rod-shaped cells, sensing curvature of the membrane and being implicated in peptidoglycan synthesis.

  20. SIRT6 deacetylates H3K18Ac at pericentric chromatin to prevent mitotic errors and cell senescence

    PubMed Central

    Tasselli, Luisa; Xi, Yuanxin; Zheng, Wei; Tennen, Ruth I.; Odrowaz, Zaneta; Simeoni, Federica; Li, Wei; Chua, Katrin F.

    2018-01-01

    Pericentric heterochromatin silencing at mammalian centromeres is essential for mitotic fidelity and genomic stability. Defective pericentric silencing is observed in senescent cells, aging tissues, and mammalian tumors, but the underlying mechanisms and functional consequences of these defects are unclear. Here, we uncover a pivotal role of the human SIRT6 enzyme in pericentric transcriptional silencing, and show that this function protects against mitotic defects, genomic instability, and cellular senescence. At pericentric heterochromatin, SIRT6 promotes deacetylation of a new substrate, histone H3 lysine K18 (H3K18), and inactivation of SIRT6 in cells leads to H3K18 hyperacetylation and aberrant accumulation of pericentric transcripts. Strikingly, RNAi-depletion of these transcripts rescues the mitotic and senescence phenotypes of SIRT6-deficient cells. Together, our findings reveal a new function for SIRT6 and H3K18Ac regulation at heterochromatin, and demonstrate the pathogenic role of de-regulated pericentric transcription in aging- and cancer- related cellular dysfunction. PMID:27043296

  1. Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning.

    PubMed

    Li, Chuan; Sánchez, René-Vinicio; Zurita, Grover; Cerrada, Mariela; Cabrera, Diego

    2016-06-17

    Fault diagnosis is important for the maintenance of rotating machinery. The detection of faults and fault patterns is a challenging part of machinery fault diagnosis. To tackle this problem, a model for deep statistical feature learning from vibration measurements of rotating machinery is presented in this paper. Vibration sensor signals collected from rotating mechanical systems are represented in the time, frequency, and time-frequency domains, each of which is then used to produce a statistical feature set. For learning statistical features, real-value Gaussian-Bernoulli restricted Boltzmann machines (GRBMs) are stacked to develop a Gaussian-Bernoulli deep Boltzmann machine (GDBM). The suggested approach is applied as a deep statistical feature learning tool for both gearbox and bearing systems. The fault classification performances in experiments using this approach are 95.17% for the gearbox, and 91.75% for the bearing system. The proposed approach is compared to such standard methods as a support vector machine, GRBM and a combination model. In experiments, the best fault classification rate was detected using the proposed model. The results show that deep learning with statistical feature extraction has an essential improvement potential for diagnosing rotating machinery faults.

  2. Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning

    PubMed Central

    Li, Chuan; Sánchez, René-Vinicio; Zurita, Grover; Cerrada, Mariela; Cabrera, Diego

    2016-01-01

    Fault diagnosis is important for the maintenance of rotating machinery. The detection of faults and fault patterns is a challenging part of machinery fault diagnosis. To tackle this problem, a model for deep statistical feature learning from vibration measurements of rotating machinery is presented in this paper. Vibration sensor signals collected from rotating mechanical systems are represented in the time, frequency, and time-frequency domains, each of which is then used to produce a statistical feature set. For learning statistical features, real-value Gaussian-Bernoulli restricted Boltzmann machines (GRBMs) are stacked to develop a Gaussian-Bernoulli deep Boltzmann machine (GDBM). The suggested approach is applied as a deep statistical feature learning tool for both gearbox and bearing systems. The fault classification performances in experiments using this approach are 95.17% for the gearbox, and 91.75% for the bearing system. The proposed approach is compared to such standard methods as a support vector machine, GRBM and a combination model. In experiments, the best fault classification rate was detected using the proposed model. The results show that deep learning with statistical feature extraction has an essential improvement potential for diagnosing rotating machinery faults. PMID:27322273

  3. Depletion of nuclear import protein karyopherin alpha 7 (KPNA7) induces mitotic defects and deformation of nuclei in cancer cells.

    PubMed

    Vuorinen, Elisa M; Rajala, Nina K; Ihalainen, Teemu O; Kallioniemi, Anne

    2018-03-27

    Nucleocytoplasmic transport is a tightly regulated process carried out by specific transport machinery, the defects of which may lead to a number of diseases including cancer. Karyopherin alpha 7 (KPNA7), the newest member of the karyopherin alpha nuclear importer family, is expressed at a high level during embryogenesis, reduced to very low or absent levels in most adult tissues but re-expressed in cancer cells. We used siRNA-based knock-down of KPNA7 in cancer cell lines, followed by functional assays (proliferation and cell cycle) and immunofluorescent stainings to determine the role of KPNA7 in regulation of cancer cell growth, proper mitosis and nuclear morphology. In the present study, we show that the silencing of KPNA7 results in a dramatic reduction in pancreatic and breast cancer cell growth, irrespective of the endogenous KPNA7 expression level. This growth inhibition is accompanied by a decrease in the fraction of S-phase cells as well as aberrant number of centrosomes and severe distortion of the mitotic spindles. In addition, KPNA7 depletion leads to reorganization of lamin A/C and B1, the main nuclear lamina proteins, and drastic alterations in nuclear morphology with lobulated and elongated nuclei. Taken together, our data provide new important evidence on the contribution of KPNA7 to the regulation of cancer cell growth and the maintenance of nuclear envelope environment, and thus deepens our understanding on the impact of nuclear transfer proteins in cancer pathogenesis.

  4. Mathematical modeling and numerical simulation of the mitotic spindle orientation system.

    PubMed

    Ibrahim, Bashar

    2018-05-21

    The mitotic spindle orientation and position is crucial for the fidelity of chromosome segregation during asymmetric cell division to generate daughter cells with different sizes or fates. This mechanism is best understood in the budding yeast Saccharomyces cerevisiae, named the spindle position checkpoint (SPOC). The SPOC inhibits cells from exiting mitosis until the mitotic spindle is properly oriented along the mother-daughter polarity axis. Despite many experimental studies, the mechanisms underlying SPOC regulation remains elusive and unexplored theoretically. Here, a minimal mathematical is developed to describe SPOC activation and silencing having autocatalytic feedback-loop. Numerical simulations of the nonlinear ordinary differential equations (ODEs) model accurately reproduce the phenotype of SPOC mechanism. Bifurcation analysis of the nonlinear ODEs reveals the orientation dependency on spindle pole bodies, and how this dependence is altered by parameter values. These results provide for systems understanding on the molecular organization of spindle orientation system via mathematical modeling. The presented mathematical model is easy to understand and, within the above mentioned context, can be used as a base for further development of quantitative models in asymmetric cell-division. Copyright © 2018. Published by Elsevier Inc.

  5. Amphiastral Mitotic Spindle Assembly in Vertebrate Cells Lacking Centrosomes

    PubMed Central

    Hornick, Jessica E.; Mader, Christopher C.; Tribble, Emily K.; Bagne, Cydney C.; Vaughan, Kevin T.; Shaw, Sidney L.; Hinchcliffe, Edward H.

    2011-01-01

    Summary The role of centrosomes/centrioles during mitotic spindle assembly in vertebrates remains controversial. In cell-free extracts and experimentally derived acentrosomal cells, randomly oriented microtubules (MTs) self-organize around mitotic chromosomes and assemble anastral spindles [1, 2, 3]. However, vertebrate somatic cells normally assemble a connected pair of polarized, astral MT arrays – termed an amphiaster (“a star on both sides” [4]) – that is formed by the splitting and separation of the microtubule-organizing center (MTOC) well before nuclear envelope breakdown (NEB) [5]. Whether amphiaster formation requires splitting of duplicated centrosomes is not known. We found that when centrosomes were removed from living vertebrate cells early in their cell cycle, an acentriolar MTOC re-assembled, and prior to NEB, a functional amphiastral spindle formed. Cytoplasmic dynein, dynactin, and pericentrin are all recruited to the interphase aMTOC, and the activity of kinesin-5 is needed for amphiaster formation. Mitosis proceeded on time and these karyoplasts divided in two. However, ~35% of aMTOCs failed to split/separate before NEB, and these entered mitosis with persistent monastral spindles. The chromatin-mediated RAN-GTP pathway could not restore bipolarity to monastral spindles, and these cells exited mitosis as single daughters. Our data reveal the novel finding that MTOC separation and amphiaster formation does not absolutely require the centrosome, but in its absence, the fidelity of bipolar spindle assembly is highly compromised. PMID:21439826

  6. Synaptic Vesicle-Recycling Machinery Components as Potential Therapeutic Targets

    PubMed Central

    Li, Ying C.

    2017-01-01

    Presynaptic nerve terminals are highly specialized vesicle-trafficking machines. Neurotransmitter release from these terminals is sustained by constant local recycling of synaptic vesicles independent from the neuronal cell body. This independence places significant constraints on maintenance of synaptic protein complexes and scaffolds. Key events during the synaptic vesicle cycle—such as exocytosis and endocytosis—require formation and disassembly of protein complexes. This extremely dynamic environment poses unique challenges for proteostasis at synaptic terminals. Therefore, it is not surprising that subtle alterations in synaptic vesicle cycle-associated proteins directly or indirectly contribute to pathophysiology seen in several neurologic and psychiatric diseases. In contrast to the increasing number of examples in which presynaptic dysfunction causes neurologic symptoms or cognitive deficits associated with multiple brain disorders, synaptic vesicle-recycling machinery remains an underexplored drug target. In addition, irrespective of the involvement of presynaptic function in the disease process, presynaptic machinery may also prove to be a viable therapeutic target because subtle alterations in the neurotransmitter release may counter disease mechanisms, correct, or compensate for synaptic communication deficits without the need to interfere with postsynaptic receptor signaling. In this article, we will overview critical properties of presynaptic release machinery to help elucidate novel presynaptic avenues for the development of therapeutic strategies against neurologic and neuropsychiatric disorders. PMID:28265000

  7. Naval Open Architecture Machinery Control Systems for Next Generation Integrated Power Systems

    DTIC Science & Technology

    2012-05-01

    PORTABLE) OS / RTOS ADAPTATION MIDDLEWARE (FOR OS PORTABILITY) MACHINERY CONTROLLER FRAMEWORK MACHINERY CONTROL SYSTEM SERVICES POWER CONTROL SYSTEM...SERVICES SHIP SYSTEM SERVICES TTY 0 TTY N … OPERATING SYSTEM ( OS / RTOS ) COMPUTER HARDWARE UDP IP TCP RAW DEV 0 DEV N … POWER MANAGEMENT CONTROLLER...operating systems (DOS, Windows, Linux, OS /2, QNX, SCO Unix ...) COMPUTERS: ISA compatible motherboards, workstations and portables (Compaq, Dell

  8. AN INVESTIGATION OF THE TRAINING AND SKILL REQUIREMENTS OF INDUSTRIAL MACHINERY MAINTENANCE WORKERS. VOLUME I. FINAL REPORT.

    ERIC Educational Resources Information Center

    LYNN, FRANK

    DRAMATIC CHANGES IN THE CHARACTERISTICS AND COMPLEXITY OF PRODUCTION MACHINERY AND EQUIPMENT HAVE CREATED A GROWING NEED FOR ADEQUATELY TRAINED AND SKILLED MACHINERY MAINTENANCE WORKERS IN INDUSTRY. THIS STUDY DEFINED THE CHARACTERISTICS OF THE LABOR MARKET FOR MACHINERY MAINTENANCE WORKERS SUCH AS MILLWRIGHTS, MECHANICAL HYDRAULIC, ELECTRICAL,…

  9. 39. REBUILT ENGINES AND WINDING MACHINERY: Photocopy of December 1906 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. REBUILT ENGINES AND WINDING MACHINERY: Photocopy of December 1906 photograph of the steam engines and winding machinery at the Washington and Mason Street powerhouse. View towards west. United Railroads of San Francisco rebuilt the damaged engines and winders shown in CA-12-60 and CA-12-61. There are no cables strung over the winders in this photograph, indicating that the firm had yet to resume service. Note the rough shed erected over the engines to protect them from weather while work continued on the reconstruction of the powerhouse. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  10. An Energy Analysis of the Pseudo Wigner-Ville Distribution in Support of Machinery Monitoring and Diagnostics

    DTIC Science & Technology

    1992-06-01

    AD-A256 202 NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS - _ ’. AN ENERGY ANALYSIS OF THE PSEUDO WIGNER - VILLE DISTRIBUTION IN SUPPORT OF...NO 11 TITLE (Include Security Classification) AN ENERGY ANALYSIS OF THE PSEUDO WIGNER - VILLE DISTRIBUTION IN SUPPORT OF MACHINERY MONITORING AND...block number) FIELD GROUP SUB-GROUP machinery monitoring, transient, pseudo wigner - ville distribution , machinery diagnostics 19 ABSTRACT (Continue on

  11. 94. DAM TAINTER GATE OPERATING MACHINERY METHOD OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    94. DAM - TAINTER GATE OPERATING MACHINERY - METHOD OF ATTACHING LIFTING CHAINS TO DRUMS OF HOIST - LAKESIDE TYPE (ML-4&5-55/34-FS), February 1938 - Upper Mississippi River 9-Foot Channel, Lock & Dam No. 4, Alma, Buffalo County, WI

  12. Research on bearing fault diagnosis of large machinery based on mathematical morphology

    NASA Astrophysics Data System (ADS)

    Wang, Yu

    2018-04-01

    To study the automatic diagnosis of large machinery fault based on support vector machine, combining the four common faults of the large machinery, the support vector machine is used to classify and identify the fault. The extracted feature vectors are entered. The feature vector is trained and identified by multi - classification method. The optimal parameters of the support vector machine are searched by trial and error method and cross validation method. Then, the support vector machine is compared with BP neural network. The results show that the support vector machines are short in time and high in classification accuracy. It is more suitable for the research of fault diagnosis in large machinery. Therefore, it can be concluded that the training speed of support vector machines (SVM) is fast and the performance is good.

  13. Genetically encoded photochemical covalent crosslinking within the Hcp-1 self-assembling bacterial secretion machinery.

    PubMed

    Antonczak, Alicja K; Milholland, Kedric; Tippmann, Eric M

    2018-05-01

    The target protein, Hcp1, was first described as part of the bacterial Type VI secretion system from Pseudomonas aeruginosa. The protein first self-assembles into a hexamer and then the hexamers further stack into a nanotubular structure. Hcp1 monomers were targeted for mutagenesis with two widely used photoactivatable amino acids: para-benzoyl phenylalanine or para-azidophenylalanine. The ability of these amino acids to form covalent adducts within the Hcp1 self-assembled system was investigated. Multiple residues, putatively of equal distance between the monomer-monomer interface were targeted. The efficiency of each amino acid to covalently link self-assembled hexamers was determined. The results demonstrate the choice and role of genetically encoded tools applied to complicated biological processes such as self-assembly and also suggested some structural dynamics of the Hcp-1 protein not obvious from crystallographic structures.

  14. Dynamic autophosphorylation of mps1 kinase is required for faithful mitotic progression.

    PubMed

    Wang, Xinghui; Yu, Huijuan; Xu, Leilei; Zhu, Tongge; Zheng, Fan; Fu, Chuanhai; Wang, Zhiyong; Dou, Zhen

    2014-01-01

    The spindle assembly checkpoint (SAC) is a surveillance mechanism monitoring cell cycle progression, thus ensuring accurate chromosome segregation. The conserved mitotic kinase Mps1 is a key component of the SAC. The human Mps1 exhibits comprehensive phosphorylation during mitosis. However, the related biological relevance is largely unknown. Here, we demonstrate that 8 autophosphorylation sites within the N-terminus of Mps1, outside of the catalytic domain, are involved in regulating Mps1 kinetochore localization. The phospho-mimicking mutant of the 8 autophosphorylation sites impairs Mps1 localization to kinetochore and also affects the kinetochore recruitment of BubR1 and Mad2, two key SAC effectors, subsequently leading to chromosome segregation errors. Interestingly, the non-phosphorylatable mutant of the 8 autophosphorylation sites enhances Mps1 kinetochore localization and delays anaphase onset. We further show that the Mps1 phospho-mimicking and non-phosphorylatable mutants do not affect metaphase chromosome congression. Thus, our results highlight the importance of dynamic autophosphorylation of Mps1 in regulating accurate chromosome segregation and ensuring proper mitotic progression.

  15. Dynamic Autophosphorylation of Mps1 Kinase Is Required for Faithful Mitotic Progression

    PubMed Central

    Wang, Xinghui; Yu, Huijuan; Xu, Leilei; Zhu, Tongge; Zheng, Fan; Fu, Chuanhai; Wang, Zhiyong; Dou, Zhen

    2014-01-01

    The spindle assembly checkpoint (SAC) is a surveillance mechanism monitoring cell cycle progression, thus ensuring accurate chromosome segregation. The conserved mitotic kinase Mps1 is a key component of the SAC. The human Mps1 exhibits comprehensive phosphorylation during mitosis. However, the related biological relevance is largely unknown. Here, we demonstrate that 8 autophosphorylation sites within the N-terminus of Mps1, outside of the catalytic domain, are involved in regulating Mps1 kinetochore localization. The phospho-mimicking mutant of the 8 autophosphorylation sites impairs Mps1 localization to kinetochore and also affects the kinetochore recruitment of BubR1 and Mad2, two key SAC effectors, subsequently leading to chromosome segregation errors. Interestingly, the non-phosphorylatable mutant of the 8 autophosphorylation sites enhances Mps1 kinetochore localization and delays anaphase onset. We further show that the Mps1 phospho-mimicking and non-phosphorylatable mutants do not affect metaphase chromosome congression. Thus, our results highlight the importance of dynamic autophosphorylation of Mps1 in regulating accurate chromosome segregation and ensuring proper mitotic progression. PMID:25265012

  16. COURSE OUTLINE FOR AGRICULTURAL MACHINERY--SERVICE OCCUPATIONS.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    THE OBJECTIVE OF THE 16-MODULE COURSE OUTLINED IN THIS GUIDE IS TO HELP TEACHERS PREPARE FORMER FARMERS, HIGH SCHOOL DROPOUTS AND GRADUATES, AND UNEMPLOYED, AND EMPLOYED PERSONS FOR OCCUPATIONAL ENTRY AS AGRICULTURAL MACHINERY SETUP MEN, MECHANIC'S HELPERS, MECHANICS, PARTS MEN, AND SERVICE SUPERVISORS. IT WAS DEVELOPED BY A NATIONAL TASK FORCE ON…

  17. EARNINGS IN THE MACHINERY INDUSTRIES, MID-1966.

    ERIC Educational Resources Information Center

    BAUER, FREDERICK L.

    RESULTS OF A MID-1966 NATIONWIDE SURVEY BY THE BUREAU OF LABOR STATISTICS SHOWED THAT THE EARNINGS OF PRODUCTION AND RELATED NONELECTRICAL MACHINERY WORKERS IN 21 LARGE OCCUPATIONAL AREAS VARIED BY OCCUPATION, SIZE OF ESTABLISHMENT, AND COMMUNITY, INDUSTRY, LABOR-MANAGEMENT CONTRACT STATUS, AND LOCATION. THE AVERAGE HOURLY WAGE WAS $2.84. HIGHER…

  18. Bacterial Polysaccharide Co-Polymerases Share a Common Framework for Control of Polymer Length

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tocilj,A.; Munger, C.; Proteau, A.

    2008-01-01

    The chain length distribution of complex polysaccharides present on the bacterial surface is determined by polysaccharide co-polymerases (PCPs) anchored in the inner membrane. We report crystal structures of the periplasmic domains of three PCPs that impart substantially different chain length distributions to surface polysaccharides. Despite very low sequence similarities, they have a common protomer structure with a long central alpha-helix extending 100 Angstroms into the periplasm. The protomers self-assemble into bell-shaped oligomers of variable sizes, with a large internal cavity. Electron microscopy shows that one of the full-length PCPs has a similar organization as that observed in the crystal formore » its periplasmic domain alone. Functional studies suggest that the top of the PCP oligomers is an important region for determining polysaccharide modal length. These structures provide a detailed view of components of the bacterial polysaccharide assembly machinery.« less

  19. Acrylamide effects on kinesin-related proteins of the mitotic/meiotic spindle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sickles, Dale W.; Sperry, Ann O.; Testino, Angie

    The microtubule (MT) motor protein kinesin is a vital component of cells and organs expressing acrylamide (ACR) toxicity. As a mechanism of its potential carcinogenicity, we determined whether kinesins involved in cell division are inhibited by ACR similar to neuronal kinesin [Sickles, D.W., Brady, S.T., Testino, A.R., Friedman, M.A., and Wrenn, R.A. (1996). Direct effect of the neurotoxicant acrylamide on kinesin-based microtubule motility. Journal of Neuroscience Research 46, 7-17.] Kinesin-related genes were isolated from rat testes [Navolanic, P.M., and Sperry, A.O. (2000). Identification of isoforms of a mitotic motor in mammalian spermatogenesis. Biology of Reproduction 62, 1360-1369.], their kinesin-like proteinsmore » expressed in bacteria using recombinant DNA techniques and the effects of ACR, glycidamide (GLY) and propionamide (a non-neurotoxic metabolite) on the function of two of the identified kinesin motors were tested. KIFC5A MT bundling activity, required for mitotic spindle formation, was measured in an MT-binding assay. Both ACR and GLY caused a similar concentration-dependent reduction in the binding of MT; concentrations of 100 {mu}M ACR or GLY reduced its activity by 60%. KRP2 MT disassembling activity was assayed using the quantity of tubulin disassembled from taxol-stabilized MT. Both ACR and GLY inhibited KRP2-induced MT disassembly. GLY was substantially more potent; significant reductions of 60% were achieved by 500 {mu}M, a comparable inhibition by ACR required a 5 mM concentration. Propionamide had no significant effect on either kinesin, except KRP2 at 10 mM. This is the first report of ACR inhibition of a mitotic/meiotic motor protein. ACR (or GLY) inhibition of kinesin may be an alternative mechanism to DNA adduction in the production of cell division defects and potential carcinogenicity. We conclude that ACR may act on multiple kinesin family members and produce toxicities in organs highly dependent on microtubule-based functions.« less

  20. Structural maintenance of chromosome complexes differentially compact mitotic chromosomes according to genomic context

    PubMed Central

    Schalbetter, S. A.; Goloborodko, A.; Fudenberg, G.; Belton, J.-M.; Miles, C.; Yu, M.; Dekker, J.; Mirny, L.; Baxter, J.

    2017-01-01

    Structural Maintenance of Chromosomes (SMC) protein complexes are key determinants of chromosome conformation. Using Hi-C and polymer modeling, we study how cohesin and condensin, two deeply conserved SMC complexes, organize chromosomes in the budding yeast Saccharomyces cerevisiae. The canonical role of cohesin is to co-align sister chromatids whilst condensin generally compacts mitotic chromosomes. We find strikingly different roles for the two complexes in budding yeast mitosis. First, cohesin is responsible for compacting mitotic chromosome arms, independently of sister chromatid cohesion. Polymer simulations demonstrate this role can be fully accounted for through cis-looping of chromatin. Second, condensin is generally dispensable for compaction along chromosome arms. Instead it plays a targeted role compacting the rDNA proximal regions and promoting resolution of peri-centromeric regions. Our results argue that the conserved mechanism of SMC complexes is to form chromatin loops and that distinct SMC-dependent looping activities are selectively deployed to appropriately compact chromosomes. PMID:28825700

  1. Mitotic Cortical Waves Predict Future Division Sites by Encoding Positional and Size Information.

    PubMed

    Xiao, Shengping; Tong, Cheesan; Yang, Yang; Wu, Min

    2017-11-20

    Dynamic spatial patterns such as traveling waves could theoretically encode spatial information, but little is known about whether or how they are employed by biological systems, especially higher eukaryotes. Here, we show that concentric target or spiral waves of active Cdc42 and the F-BAR protein FBP17 are invoked in adherent cells at the onset of mitosis. These waves predict the future sites of cell divisions and represent the earliest known spatial cues for furrow assembly. Unlike interphase waves, the frequencies and wavelengths of the mitotic waves display size-dependent scaling properties. While the positioning role of the metaphase waves requires microtubule dynamics, spindle and microtubule-independent inhibitory signals are propagated by the mitotic waves to ensure the singularity of furrow formation. Taken together, we propose that metaphase cortical waves integrate positional and cell size information for division-plane specification in adhesion-dependent cytokinesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The phototransduction machinery in the rod outer segment has a strong efficacy gradient

    PubMed Central

    Mazzolini, Monica; Facchetti, Giuseppe; Andolfi, Laura; Proietti Zaccaria, Remo; Tuccio, Salvatore; Treu, Johannes; Altafini, Claudio; Di Fabrizio, Enzo M.; Lazzarino, Marco; Rapp, Gert; Torre, Vincent

    2015-01-01

    Rod photoreceptors consist of an outer segment (OS) and an inner segment. Inside the OS a biochemical machinery transforms the rhodopsin photoisomerization into electrical signal. This machinery has been treated as and is thought to be homogenous with marginal inhomogeneities. To verify this assumption, we developed a methodology based on special tapered optical fibers (TOFs) to deliver highly localized light stimulations. By using these TOFs, specific regions of the rod OS could be stimulated with spots of light highly confined in space. As the TOF is moved from the OS base toward its tip, the amplitude of saturating and single photon responses decreases, demonstrating that the efficacy of the transduction machinery is not uniform and is 5–10 times higher at the base than at the tip. This gradient of efficacy of the transduction machinery is attributed to a progressive depletion of the phosphodiesterase along the rod OS. Moreover we demonstrate that, using restricted spots of light, the duration of the photoresponse along the OS does not increase linearly with the light intensity as with diffuse light. PMID:25941368

  3. Metabolic labelling of the carbohydrate core in bacterial peptidoglycan and its applications

    PubMed Central

    Liang, Hai; DeMeester, Kristen E.; Hou, Ching-Wen; Parent, Michelle A.; Caplan, Jeffrey L.; Grimes, Catherine L.

    2017-01-01

    Bacterial cells are surrounded by a polymer known as peptidoglycan (PG), which protects the cell from changes in osmotic pressure and small molecule insults. A component of this material, N-acetyl-muramic acid (NAM), serves as a core structural element for innate immune recognition of PG fragments. We report the synthesis of modifiable NAM carbohydrate derivatives and the installation of these building blocks into the backbone of Gram-positive and Gram-negative bacterial PG utilizing metabolic cell wall recycling and biosynthetic machineries. Whole cells are labelled via click chemistry and visualized using super-resolution microscopy, revealing higher resolution PG structural details and allowing the cell wall biosynthesis, as well as its destruction in immune cells, to be tracked. This study will assist in the future identification of mechanisms that the immune system uses to recognize bacteria, glean information about fundamental cell wall architecture and aid in the design of novel antibiotics. PMID:28425464

  4. Impact of the 2009 AJCC staging guidelines for melanoma on the number of mitotic figures reported by dermatopathologists at one institution.

    PubMed

    Larson, Allison R; Rothschild, Brian; Walls, Andrew C; Granter, Scott R; Qureshi, Abrar A; Murphy, George F; Laga, Alvaro C

    2015-08-01

    In 2009 the revised seventh staging system for melanoma recommended the use of mitotic count to separate stage T1a from T1b. However, careful scrutiny of cases may lead to an inadvertent selection effect, with consequent increased reporting of mitotic counts. We investigated whether there is a significant increase in mitotic counts reported since 2009 for melanomas with a Breslow thickness of 1.0 mm or less. We conducted a retrospective, case-controlled study examining invasive melanoma cases at a large academic center. Mitotic counts were compared between pathology reports before 2009 (n = 61) and after 2009 (n = 125), with a subset of slides re-examined in a blinded fashion. Before the 2009 staging guidelines, 51% of cases had one or more mitosis reported compared to 38% after 2009 (p = 0.113). Blinded re-counting did not yield a significant difference when compared with the original pathology reports in either group. There was not a significant difference in the number of mitoses reported after the implementation of the new guidelines. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Molecular building blocks and their architecture in biologically/environmentally compatible soft matter chemical machinery.

    PubMed

    Toyota, Taro; Banno, Taisuke; Nitta, Sachiko; Takinoue, Masahiro; Nomoto, Tomonori; Natsume, Yuno; Matsumura, Shuichi; Fujinami, Masanori

    2014-01-01

    This review briefly summarizes recent developments in the construction of biologically/environmentally compatible chemical machinery composed of soft matter. Since environmental and living systems are open systems, chemical machinery must continuously fulfill its functions not only through the influx and generation of molecules but also via the degradation and dissipation of molecules. If the degradation or dissipation of soft matter molecular building blocks and biomaterial molecules/polymers can be achieved, soft matter particles composed of them can be used to realize chemical machinery such as selfpropelled droplets, drug delivery carriers, tissue regeneration scaffolds, protocell models, cell-/tissuemarkers, and molecular computing systems.

  6. The RNAi Inheritance Machinery of Caenorhabditis elegans.

    PubMed

    Spracklin, George; Fields, Brandon; Wan, Gang; Becker, Diveena; Wallig, Ashley; Shukla, Aditi; Kennedy, Scott

    2017-07-01

    Gene silencing mediated by dsRNA (RNAi) can persist for multiple generations in Caenorhabditis elegans (termed RNAi inheritance). Here we describe the results of a forward genetic screen in C. elegans that has identified six factors required for RNAi inheritance: GLH-1/VASA, PUP-1/CDE-1, MORC-1, SET-32, and two novel nematode-specific factors that we term here (heritable RNAi defective) HRDE-2 and HRDE-4 The new RNAi inheritance factors exhibit mortal germline (Mrt) phenotypes, which we show is likely caused by epigenetic deregulation in germ cells. We also show that HRDE-2 contributes to RNAi inheritance by facilitating the binding of small RNAs to the inheritance Argonaute (Ago) HRDE-1 Together, our results identify additional components of the RNAi inheritance machinery whose conservation provides insights into the molecular mechanism of RNAi inheritance, further our understanding of how the RNAi inheritance machinery promotes germline immortality, and show that HRDE-2 couples the inheritance Ago HRDE-1 with the small RNAs it needs to direct RNAi inheritance and germline immortality. Copyright © 2017 by the Genetics Society of America.

  7. Chromosome Association of Minichromosome Maintenance Proteins in Drosophila Mitotic Cycles

    PubMed Central

    Su, Tin Tin; O'Farrell, Patrick H.

    1997-01-01

    Minichromosome maintenance (MCM) proteins are essential DNA replication factors conserved among eukaryotes. MCMs cycle between chromatin bound and dissociated states during each cell cycle. Their absence on chromatin is thought to contribute to the inability of a G2 nucleus to replicate DNA. Passage through mitosis restores the ability of MCMs to bind chromatin and the ability to replicate DNA. In Drosophila early embryonic cell cycles, which lack a G1 phase, MCMs reassociate with condensed chromosomes toward the end of mitosis. To explore the coupling between mitosis and MCM–chromatin interaction, we tested whether this reassociation requires mitotic degradation of cyclins. Arrest of mitosis by induced expression of nondegradable forms of cyclins A and/or B showed that reassociation of MCMs to chromatin requires cyclin A destruction but not cyclin B destruction. In contrast to the earlier mitoses, mitosis 16 (M16) is followed by G1, and MCMs do not reassociate with chromatin at the end of M16. dacapo mutant embryos lack an inhibitor of cyclin E, do not enter G1 quiescence after M16, and show mitotic reassociation of MCM proteins. We propose that cyclin E, inhibited by Dacapo in M16, promotes chromosome binding of MCMs. We suggest that cyclins have both positive and negative roles in controlling MCM–chromatin association. PMID:9314525

  8. Machinery health prognostics: A systematic review from data acquisition to RUL prediction

    NASA Astrophysics Data System (ADS)

    Lei, Yaguo; Li, Naipeng; Guo, Liang; Li, Ningbo; Yan, Tao; Lin, Jing

    2018-05-01

    Machinery prognostics is one of the major tasks in condition based maintenance (CBM), which aims to predict the remaining useful life (RUL) of machinery based on condition information. A machinery prognostic program generally consists of four technical processes, i.e., data acquisition, health indicator (HI) construction, health stage (HS) division, and RUL prediction. Over recent years, a significant amount of research work has been undertaken in each of the four processes. And much literature has made an excellent overview on the last process, i.e., RUL prediction. However, there has not been a systematic review that covers the four technical processes comprehensively. To fill this gap, this paper provides a review on machinery prognostics following its whole program, i.e., from data acquisition to RUL prediction. First, in data acquisition, several prognostic datasets widely used in academic literature are introduced systematically. Then, commonly used HI construction approaches and metrics are discussed. After that, the HS division process is summarized by introducing its major tasks and existing approaches. Afterwards, the advancements of RUL prediction are reviewed including the popular approaches and metrics. Finally, the paper provides discussions on current situation, upcoming challenges as well as possible future trends for researchers in this field.

  9. The Host Range of Gammaretroviruses and Gammaretroviral Vectors Includes Post-Mitotic Neural Cells

    PubMed Central

    Liu, Xiu-Huai; Xu, Wenqin; Russ, Jill; Eiden, Lee E.; Eiden, Maribeth V.

    2011-01-01

    Background Gammaretroviruses and gammaretroviral vectors, in contrast to lentiviruses and lentiviral vectors, are reported to be restricted in their ability to infect growth-arrested cells. The block to this restriction has never been clearly defined. The original assessment of the inability of gammaretroviruses and gammaretroviral vectors to infect growth-arrested cells was carried out using established cell lines that had been growth-arrested by chemical means, and has been generalized to neurons, which are post-mitotic. We re-examined the capability of gammaretroviruses and their derived vectors to efficiently infect terminally differentiated neuroendocrine cells and primary cortical neurons, a target of both experimental and therapeutic interest. Methodology/Principal Findings Using GFP expression as a marker for infection, we determined that both growth-arrested (NGF-differentiated) rat pheochromocytoma cells (PC12 cells) and primary rat cortical neurons could be efficiently transduced, and maintained long-term protein expression, after exposure to murine leukemia virus (MLV) and MLV-based retroviral vectors. Terminally differentiated PC12 cells transduced with a gammaretroviral vector encoding the anti-apoptotic protein Bcl-xL were protected from cell death induced by withdrawal of nerve growth factor (NGF), demonstrating gammaretroviral vector-mediated delivery and expression of genes at levels sufficient for therapeutic effect in non-dividing cells. Post-mitotic rat cortical neurons were also shown to be susceptible to transduction by murine replication-competent gammaretroviruses and gammaretroviral vectors. Conclusions/Significance These findings suggest that the host range of gammaretroviruses includes post-mitotic and other growth-arrested cells in mammals, and have implications for re-direction of gammaretroviral gene therapy to neurological disease. PMID:21464894

  10. The Spo12 protein of Saccharomyces cerevisiae: a regulator of mitotic exit whose cell cycle-dependent degradation is mediated by the anaphase-promoting complex.

    PubMed Central

    Shah, R; Jensen, S; Frenz, L M; Johnson, A L; Johnston, L H

    2001-01-01

    The Spo12 protein plays a regulatory role in two of the most fundamental processes of biology, mitosis and meiosis, and yet its biochemical function remains elusive. In this study we concentrate on the genetic and biochemical analysis of its mitotic function. Since high-copy SPO12 is able to suppress a wide variety of mitotic exit mutants, all of which arrest with high Clb-Cdc28 activity, we speculated whether SPO12 is able to facilitate exit from mitosis when overexpressed by antagonizing mitotic kinase activity. We show, however, that Spo12 is not a potent regulator of Clb-Cdc28 activity and can function independently of either the cyclin-dependent kinase inhibitor (CDKi), Sic1, or the anaphase-promoting complex (APC) regulator, Hct1. Spo12 protein level is regulated by the APC and the protein is degraded in G1 by an Hct1-dependent mechanism. We also demonstrate that in addition to localizing to the nucleus Spo12 is a nucleolar protein. We propose a model where overexpression of Spo12 may lead to the delocalization of a small amount of Cdc14 from the nucleolus, resulting in a sufficient lowering of mitotic kinase levels to facilitate mitotic exit. Finally, site-directed mutagenesis of highly conserved residues in the Spo12 protein sequence abolishes both its mitotic suppressor activity as well as its meiotic function. This result is the first indication that Spo12 may carry out the same biochemical function in mitosis as it does in meiosis. PMID:11729145

  11. Mitotic Vulnerability in Triple-Negative Breast Cancer Associated with LIN9 Is Targetable with BET Inhibitors.

    PubMed

    Sahni, Jennifer M; Gayle, Sylvia S; Webb, Bryan M; Weber-Bonk, Kristen L; Seachrist, Darcie D; Singh, Salendra; Sizemore, Steven T; Restrepo, Nicole A; Bebek, Gurkan; Scacheri, Peter C; Varadan, Vinay; Summers, Matthew K; Keri, Ruth A

    2017-10-01

    Triple-negative breast cancers (TNBC) are highly aggressive, lack FDA-approved targeted therapies, and frequently recur, making the discovery of novel therapeutic targets for this disease imperative. Our previous analysis of the molecular mechanisms of action of bromodomain and extraterminal protein inhibitors (BETi) in TNBC revealed these drugs cause multinucleation, indicating BET proteins are essential for efficient mitosis and cytokinesis. Here, using live cell imaging, we show that BET inhibition prolonged mitotic progression and induced mitotic cell death, both of which are indicative of mitotic catastrophe. Mechanistically, the mitosis regulator LIN9 was a direct target of BET proteins that mediated the effects of BET proteins on mitosis in TNBC. Although BETi have been proposed to function by dismantling super-enhancers (SE), the LIN9 gene lacks an SE but was amplified or overexpressed in the majority of TNBCs. In addition, its mRNA expression predicted poor outcome across breast cancer subtypes. Together, these results provide a mechanism for cancer selectivity of BETi that extends beyond modulation of SE-associated genes and suggest that cancers dependent upon LIN9 overexpression may be particularly vulnerable to BETi. Cancer Res; 77(19); 5395-408. ©2017 AACR . ©2017 American Association for Cancer Research.

  12. Tumor Environmental Factors Glucose Deprivation and Lactic Acidosis Induce Mitotic Chromosomal Instability – An Implication in Aneuploid Human Tumors

    PubMed Central

    Zhu, Chunpeng; Hu, Xun

    2013-01-01

    Mitotic chromosomal instability (CIN) plays important roles in tumor progression, but what causes CIN is incompletely understood. In general, tumor CIN arises from abnormal mitosis, which is caused by either intrinsic or extrinsic factors. While intrinsic factors such as mitotic checkpoint genes have been intensively studied, the impact of tumor microenvironmental factors on tumor CIN is largely unknown. We investigate if glucose deprivation and lactic acidosis – two tumor microenvironmental factors – could induce cancer cell CIN. We show that glucose deprivation with lactic acidosis significantly increases CIN in 4T1, MCF-7 and HCT116 scored by micronuclei, or aneuploidy, or abnormal mitosis, potentially via damaging DNA, up-regulating mitotic checkpoint genes, and/or amplifying centrosome. Of note, the feature of CIN induced by glucose deprivation with lactic acidosis is similar to that of aneuploid human tumors. We conclude that tumor environmental factors glucose deprivation and lactic acidosis can induce tumor CIN and propose that they are potentially responsible for human tumor aneuploidy. PMID:23675453

  13. 9 CFR 318.24 - Product prepared using advanced meat/bone separation machinery; process control.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .../bone separation machinery; process control. 318.24 Section 318.24 Animals and Animal Products FOOD.../bone separation machinery; process control. (a) General. Meat, as defined in § 301.2 of this subchapter, may be derived by mechanically separating skeletal muscle tissue from the bones of livestock, other...

  14. 9 CFR 318.24 - Product prepared using advanced meat/bone separation machinery; process control.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .../bone separation machinery; process control. 318.24 Section 318.24 Animals and Animal Products FOOD.../bone separation machinery; process control. (a) General. Meat, as defined in § 301.2 of this subchapter, may be derived by mechanically separating skeletal muscle tissue from the bones of livestock, other...

  15. 9 CFR 318.24 - Product prepared using advanced meat/bone separation machinery; process control.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .../bone separation machinery; process control. 318.24 Section 318.24 Animals and Animal Products FOOD.../bone separation machinery; process control. (a) General. Meat, as defined in § 301.2 of this subchapter, may be derived by mechanically separating skeletal muscle tissue from the bones of livestock, other...

  16. 9 CFR 318.24 - Product prepared using advanced meat/bone separation machinery; process control.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .../bone separation machinery; process control. 318.24 Section 318.24 Animals and Animal Products FOOD.../bone separation machinery; process control. (a) General. Meat, as defined in § 301.2 of this subchapter, may be derived by mechanically separating skeletal muscle tissue from the bones of livestock, other...

  17. 9 CFR 318.24 - Product prepared using advanced meat/bone separation machinery; process control.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .../bone separation machinery; process control. 318.24 Section 318.24 Animals and Animal Products FOOD.../bone separation machinery; process control. (a) General. Meat, as defined in § 301.2 of this subchapter, may be derived by mechanically separating skeletal muscle tissue from the bones of livestock, other...

  18. 46 CFR 169.631 - Separation of machinery and fuel tank spaces from accommodation spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Separation of machinery and fuel tank spaces from accommodation spaces. 169.631 Section 169.631 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Ventilation § 169.631 Separation of...

  19. Effect of 60-Hz magnetic fields on ultraviolet light-induced mutation and mitotic recombination in Saccharomyces cerevisiae.

    PubMed

    Ager, D D; Radul, J A

    1992-12-01

    The purpose of this study was to examine the effect of extremely low frequency (ELF) magnetic fields on the induction of genetic damage. In general, mutational studies involving ELF magnetic fields have proven negative. However, studies examining sister-chromatid exchange and chromosome aberrations have yielded conflicting results. In this study, we have examined whether 60-Hz magnetic fields are capable of inducing mutation or mitotic recombination in the yeast Saccharomyces cerevisiae. In addition we determined whether magnetic fields were capable of altering the genetic response of S. cerevisiae to UV (254 nm). We measured the frequencies of induced mutation, gene conversion and reciprocal mitotic crossing-over for exposures to magnetic fields alone (1 mT) or in combination with various UV exposures (2-50 J/m2). These experiments were performed using a repair-proficient strain (RAD+), as well as a strain of yeast (rad3) which is incapable of excising UV-induced thymine dimers. Magnetic field exposures did not induce mutation, gene conversion or reciprocal mitotic crossing-over in either of these strains, nor did the fields influence the frequencies of UV-induced genetic events.

  20. Machinery of protein folding and unfolding.

    PubMed

    Zhang, Xiaodong; Beuron, Fabienne; Freemont, Paul S

    2002-04-01

    During the past two years, a large amount of biochemical, biophysical and low- to high-resolution structural data have provided mechanistic insights into the machinery of protein folding and unfolding. It has emerged that dual functionality in terms of folding and unfolding might exist for some systems. The majority of folding/unfolding machines adopt oligomeric ring structures in a cooperative fashion and utilise the conformational changes induced by ATP binding/hydrolysis for their specific functions.

  1. How to Anchor Machinery in Your School Shop

    ERIC Educational Resources Information Center

    Walker, John R.

    1978-01-01

    An industrial arts teacher explains the need to mount school shop machinery securely and describes methods of mounting permanently or temporarily. Reasons for anchoring machine tools are safety, accuracy of operation, and the prevention of damage to the machine. Five figures illustrate anchoring and leveling. (MF)

  2. The GPER agonist G-1 induces mitotic arrest and apoptosis in human vascular smooth muscle cells independent of GPER.

    PubMed

    Gui, Yu; Shi, Zhan; Wang, ZengYong; Li, Jing-Jing; Xu, Can; Tian, RuiJuan; Song, XinXing; Walsh, Michael P; Li, Dong; Gao, Jie; Zheng, Xi-Long

    2015-04-01

    The G protein-coupled estrogen receptor (GPER) has been implicated in the regulation of smooth muscle cell (SMC) proliferation. The GPER selective agonist G-1 has been a useful tool for exploring the biological roles of GPER in a variety of experimental settings, including SMC proliferation. The present study, originally designed to investigate cellular and signaling mechanisms underlying the regulatory role of GPER in vascular SMC proliferation using G-1, unexpectedly revealed off-target effects of G-1. G-1(1-10 μM) inhibited bromodeoxyuridine (BrdU) incorporation of human SMCs and caused G2/M cell accumulation. G-1 treatment also increased mitotic index concurrent with a decrease in phosphorylation of Cdk1 (Tyr 15) and an increase in phosphorylation of the mitotic checkpoint protein BuBR1. Furthermore, G-1 caused microtubule disruption, mitotic spindle damage, and tubulin depolymerization. G-1 induced cell apoptosis as indicated by the appearance of TUNEL-positive and annexin V-positive cells with enhanced cleavage of caspases 3 and 9. However, neither the GPER antagonist G-15 nor the MAPK kinase inhibitor PD98059 prevented these G-1 effects. Down-regulation of GPER or p44/42 MAPK with siRNA transfection also did not affect the G-1-induced apoptosis. We conclude that G-1 inhibits proliferation of SMCs through mechanisms involving mitotic arrest and apoptosis, independent of GPER and the MAPK pathway. © 2014 Wiley Periodicals, Inc.

  3. Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions.

    PubMed

    Römling, Ute; Galperin, Michael Y

    2015-09-01

    Recent studies of bacterial cellulose biosynthesis, including structural characterization of a functional cellulose synthase complex, provided the first mechanistic insight into this fascinating process. In most studied bacteria, just two subunits, BcsA and BcsB, are necessary and sufficient for the formation of the polysaccharide chain in vitro. Other subunits - which differ among various taxa - affect the enzymatic activity and product yield in vivo by modulating (i) the expression of the biosynthesis apparatus, (ii) the export of the nascent β-D-glucan polymer to the cell surface, and (iii) the organization of cellulose fibers into a higher-order structure. These auxiliary subunits play key roles in determining the quantity and structure of resulting biofilms, which is particularly important for the interactions of bacteria with higher organisms - leading to rhizosphere colonization and modulating the virulence of cellulose-producing bacterial pathogens inside and outside of host cells. We review the organization of four principal types of cellulose synthase operon found in various bacterial genomes, identify additional bcs genes that encode components of the cellulose biosynthesis and secretion machinery, and propose a unified nomenclature for these genes and subunits. We also discuss the role of cellulose as a key component of biofilms and in the choice between acute infection and persistence in the host. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Bacterial cellulose biosynthesis: diversity of operons, subunits, products and functions

    PubMed Central

    Römling, Ute; Galperin, Michael Y.

    2015-01-01

    Summary Recent studies of bacterial cellulose biosynthesis, including structural characterization of a functional cellulose synthase complex, provided the first mechanistic insight into this fascinating process. In most studied bacteria, just two subunits, BcsA and BcsB, are necessary and sufficient for the formation of the polysaccharide chain in vitro. Other subunits – which differ among various taxa – affect the enzymatic activity and product yield in vivo by modulating expression of biosynthesis apparatus, export of the nascent β-D-glucan polymer to the cell surface, and the organization of cellulose fibers into a higher-order structure. These auxiliary subunits play key roles in determining the quantity and structure of the resulting biofilm, which is particularly important for interactions of bacteria with higher organisms that lead to rhizosphere colonization and modulate virulence of cellulose-producing bacterial pathogens inside and outside of host cells. Here we review the organization of four principal types of cellulose synthase operons found in various bacterial genomes, identify additional bcs genes that encode likely components of the cellulose biosynthesis and secretion machinery, and propose a unified nomenclature for these genes and subunits. We also discuss the role of cellulose as a key component of biofilms formed by a variety of free-living and pathogenic bacteria and, for the latter, in the choice between acute infection and persistence in the host. PMID:26077867

  5. Localization of phosphorylated forms of Bcl-2 in mitosis: co-localization with Ki-67 and nucleolin in nuclear structures and on mitotic chromosomes.

    PubMed

    Barboule, Nadia; Truchet, Isabelle; Valette, Annie

    2005-04-01

    Bcl-2 phosphorylation is a normal physiological process occurring at mitosis or during mitotic arrest induced by microtubule damaging agents. The consequences of Bcl-2 phosphorylation on its function are still controversial. To better understand the role of Bcl-2 phosphorylation in mitosis, we studied the subcellular localization of phosphorylated forms of Bcl-2. Immunofluorescence experiments performed in synchronized HeLa cells indicate for the first time that mitotic phosphorylated forms of Bcl-2 can be detected in nuclear structures in prophase cells together with nucleolin and Ki-67. In later mitotic stages, as previously described, phosphorylated forms of Bcl-2 are localized on mitotic chromosomes. In addition, we demonstrate that Bcl-2 in these structures is at least in part phosphorylated on the T56 residue. Then, coimmunoprecipitation experiments reveal that, in cells synchronized at the onset of mitosis, Bcl-2 is present in a complex with nucleolin, cdc2 kinase and PP1 phosphatase. Taken together, these data further support the idea that Bcl-2 could have a new function at mitosis.

  6. Immune subversion by chromatin manipulation: a 'new face' of host-bacterial pathogen interaction.

    PubMed

    Arbibe, Laurence

    2008-08-01

    Bacterial pathogens have evolved various strategies to avoid immune surveillance, depending of their in vivo'lifestyle'. The identification of few bacterial effectors capable to enter the nucleus and modifying chromatin structure in host raises the fascinating questions of how pathogens modulate chromatin structure and why. Chromatin is a dynamic structure that maintains the stability and accessibility of the host DNA genome to the transcription machinery. This review describes the various strategies used by pathogens to interface with host chromatin. In some cases, chromatin injury can be a strategy to take control of major cellular functions, such as the cell cycle. In other cases, manipulation of chromatin structure at specific genomic locations by modulating epigenetic information provides a way for the pathogen to impose its own transcriptional signature onto host cells. This emerging field should strongly influence our understanding of chromatin regulation at interphase nucleus and may provide invaluable openings to the control of immune gene expression in inflammatory and infectious diseases.

  7. Activation of Short and Long Chain Fatty Acid Sensing Machinery in the Ileum Lowers Glucose Production in Vivo.

    PubMed

    Zadeh-Tahmasebi, Melika; Duca, Frank A; Rasmussen, Brittany A; Bauer, Paige V; Côté, Clémence D; Filippi, Beatrice M; Lam, Tony K T

    2016-04-15

    Evidence continues to emerge detailing the myriad of ways the gut microbiota influences host energy homeostasis. Among the potential mechanisms, short chain fatty acids (SCFAs), the byproducts of microbial fermentation of dietary fibers, exhibit correlative beneficial metabolic effects in humans and rodents, including improvements in glucose homeostasis. The underlying mechanisms, however, remain elusive. We here report that one of the main bacterially produced SCFAs, propionate, activates ileal mucosal free fatty acid receptor 2 to trigger a negative feedback pathway to lower hepatic glucose production in healthy rats in vivo We further demonstrate that an ileal glucagon-like peptide-1 receptor-dependent neuronal network is necessary for ileal propionate and long chain fatty acid sensing to regulate glucose homeostasis. These findings highlight the potential to manipulate fatty acid sensing machinery in the ileum to regulate glucose homeostasis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Defects in chromosome congression and mitotic progression in KIF18A-deficient cells are partly mediated through impaired functions of CENP-E.

    PubMed

    Huang, Ying; Yao, Yixin; Xu, Han-Zhang; Wang, Zhu-Gang; Lu, Luo; Dai, Wei

    2009-08-15

    KIF18A, a molecular motor, is an essential component in the regulation of orderly chromosome congression by attenuation of the kinetochore oscillation amplitude at the midzone during mitosis in vertebrate cells. Here we report that KIF18A depletion resulted in mitotic arrest which was accompanied by the presence of unaligned chromosomes in HeLa cells. This resembles the phenotype induced by an impaired function of CENP-E, also a mitotic kinesin essential for the formation of the mitotic spindles. Our further analysis showed that KIF18A depletion caused specific downregulation of CENP-E. Downregulation of CENP-E as the result of KIF18A silencing was not due to reduced transcription but primarily due to the enhanced protein degradation. Co-immunoprecipitation revealed that KIF18A physically interacted with CENP-E and BubR1 during mitosis. Ectopic expression of the wild-type tail domain of CENP-E, but not a corresponding mutant, significantly suppressed chromosome congression defects in mitotic cells. Together, our studies strongly suggest that chromosome congression defects as the result of KIF18A depletion is at least in part mediated through destabilizing kinetochore CENP-E.

  9. 101. STARBOARD AIRPLANE ELEVATOR MACHINERY ROOM AFT LOOKING FORWARD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    101. STARBOARD AIRPLANE ELEVATOR MACHINERY ROOM - AFT LOOKING FORWARD PORT TO STARBOARD SHOWING ELEVATOR ENGINE, LIFTING WIRES, HYDRAULIC PIPING WITH REMOTE OPERATOR. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA

  10. Analysis of stationary displacement patterns in rotating machinery subject to local harmonic excitation

    NASA Astrophysics Data System (ADS)

    Österlind, Tomas; Kari, Leif; Nicolescu, Cornel Mihai

    2017-02-01

    Rotor vibration and stationary displacement patterns observed in rotating machineries subject to local harmonic excitation are analysed for improved understanding and dynamic characterization. The analysis stresses the importance of coordinate transformation between rotating and stationary frame of reference for accurate results and estimation of dynamic properties. A generic method which can be used for various rotor applications such as machine tool spindle and turbo machinery vibration is presented. The phenomenon shares similarities with stationary waves in rotating disks though focuses on vibration in shafts. The paper further proposes a graphical tool, the displacement map, which can be used for selection of stable rotational speed for rotating machinery. The results are validated through simulation of dynamic response of a milling cutter, which is a typical example of a variable speed rotor operating under different load conditions.

  11. Regulation of transcription by eukaryotic-like serine-threonine kinases and phosphatases in Gram-positive bacterial pathogens

    PubMed Central

    Wright, David P; Ulijasz, Andrew T

    2014-01-01

    Bacterial eukaryotic-like serine threonine kinases (eSTKs) and serine threonine phosphatases (eSTPs) have emerged as important signaling elements that are indispensable for pathogenesis. Differing considerably from their histidine kinase counterparts, few eSTK genes are encoded within the average bacterial genome, and their targets are pleiotropic in nature instead of exclusive. The growing list of important eSTK/P substrates includes proteins involved in translation, cell division, peptidoglycan synthesis, antibiotic tolerance, resistance to innate immunity and control of virulence factors. Recently it has come to light that eSTK/Ps also directly modulate transcriptional machinery in many microbial pathogens. This novel form of regulation is now emerging as an additional means by which bacteria can alter their transcriptomes in response to host-specific environmental stimuli. Here we focus on the ability of eSTKs and eSTPs in Gram-positive bacterial pathogens to directly modulate transcription, the known mechanistic outcomes of these modifications, and their roles as an added layer of complexity in controlling targeted RNA synthesis to enhance virulence potential. PMID:25603430

  12. Fluorescence excitation-emission matrix spectroscopy for degradation monitoring of machinery lubricants

    NASA Astrophysics Data System (ADS)

    Sosnovski, Oleg; Suresh, Pooja; Dudelzak, Alexander E.; Green, Benjamin

    2018-02-01

    Lubrication oil is a vital component of heavy rotating machinery defining the machine's health, operational safety and effectiveness. Recently, the focus has been on developing sensors that provide real-time/online monitoring of oil condition/lubricity. Industrial practices and standards for assessing oil condition involve various analytical methods. Most these techniques are unsuitable for online applications. The paper presents the results of studying degradation of antioxidant additives in machinery lubricants using Fluorescence Excitation-Emission Matrix (EEM) Spectroscopy and Machine Learning techniques. EEM Spectroscopy is capable of rapid and even standoff sensing; it is potentially applicable to real-time online monitoring.

  13. Reconstitution of the protein insertion machinery of the mitochondrial inner membrane.

    PubMed Central

    Haucke, V; Schatz, G

    1997-01-01

    We have reconstituted the protein insertion machinery of the yeast mitochondrial inner membrane into proteoliposomes. The reconstituted proteoliposomes have a distinct morphology and protein composition and correctly insert the ADP/ATP carrier (AAC) and Tim23p, two multi-spanning integral proteins of the mitochondrial inner membrane. The reconstituted system requires a membrane potential, but not Tim44p or mhsp70, both of which are required for the ATP-driven translocation of proteins into the matrix. The protein insertion machinery can thus operate independently of the energy-transducing Tim44p-mhsp70 complex. PMID:9303300

  14. Oocyte formation by mitotically-active germ cells purified from ovaries of reproductive age women

    PubMed Central

    White, Yvonne A. R.; Woods, Dori C.; Takai, Yasushi; Ishihara, Osamu; Seki, Hiroyuki; Tilly, Jonathan L.

    2012-01-01

    Germline stem cells that produce oocytes in vitro and fertilization-competent eggs in vivo have been identified in and isolated from adult mouse ovaries. Here we describe and validate a FACS-based protocol that can be used with adult mouse ovaries and human ovarian cortical tissue to purify rare mitotically-active cells that exhibit a gene expression profile consistent with primitive germ cells. Once established in vitro, these cells can be expanded for months and spontaneously generate 35–50 µm oocytes, as determined by morphology, gene expression and attainment of haploid (1n) status. Injection of the human germline cells, engineered to stably express GFP, into human ovarian cortical biopsies leads to formation of follicles containing GFP-positive oocytes 1–2 weeks after xenotransplantation into immunodeficient female mice. Thus, ovaries of reproductive-age women, like adult mice, possess rare mitotically-active germ cells that can be propagated in vitro as well as generate oocytes in vitro and in vivo. PMID:22366948

  15. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women.

    PubMed

    White, Yvonne A R; Woods, Dori C; Takai, Yasushi; Ishihara, Osamu; Seki, Hiroyuki; Tilly, Jonathan L

    2012-02-26

    Germline stem cells that produce oocytes in vitro and fertilization-competent eggs in vivo have been identified in and isolated from adult mouse ovaries. Here we describe and validate a fluorescence-activated cell sorting-based protocol that can be used with adult mouse ovaries and human ovarian cortical tissue to purify rare mitotically active cells that have a gene expression profile that is consistent with primitive germ cells. Once established in vitro, these cells can be expanded for months and can spontaneously generate 35- to 50-μm oocytes, as determined by morphology, gene expression and haploid (1n) status. Injection of the human germline cells, engineered to stably express GFP, into human ovarian cortical biopsies leads to formation of follicles containing GFP-positive oocytes 1-2 weeks after xenotransplantation into immunodeficient female mice. Thus, ovaries of reproductive-age women, similar to adult mice, possess rare mitotically active germ cells that can be propagated in vitro as well as generate oocytes in vitro and in vivo.

  16. PLK1 regulation of PCNT cleavage ensures fidelity of centriole separation during mitotic exit.

    PubMed

    Kim, Jaeyoun; Lee, Kwanwoo; Rhee, Kunsoo

    2015-12-09

    Centrioles are duplicated and segregated in close link to the cell cycle. During mitosis, daughter centrioles are disengaged and eventually separated from mother centrioles. New daughter centrioles may be generated only after centriole separation. Therefore, centriole separation is considered a licensing step for centriole duplication. It was previously known that separase specifically cleaves pericentrin (PCNT) during mitotic exit. Here we report that PCNT has to be phosphorylated by PLK1 to be a suitable substrate of separase. Phospho-resistant mutants of PCNT are not cleaved by separase and eventually inhibit centriole separation. Furthermore, phospho-mimetic PCNT mutants rescue centriole separation even in the presence of a PLK1 inhibitor. On the basis on these results, we propose that PLK1 phosphorylation is a priming step for separase-mediated cleavage of PCNT and eventually for centriole separation. PLK1 phosphorylation of PCNT provides an additional layer of regulatory mechanism to ensure the fidelity of centriole separation during mitotic exit.

  17. DNA Strand Breaks in Mitotic Germ Cells of Caenorhabditis elegans Evaluated by Comet Assay

    PubMed Central

    Park, Sojin; Choi, Seoyun; Ahn, Byungchan

    2016-01-01

    DNA damage responses are important for the maintenance of genome stability and the survival of organisms. Such responses are activated in the presence of DNA damage and lead to cell cycle arrest, apoptosis, and DNA repair. In Caenorhabditis elegans, double-strand breaks induced by DNA damaging agents have been detected indirectly by antibodies against DSB recognizing proteins. In this study we used a comet assay to detect DNA strand breaks and to measure the elimination of DNA strand breaks in mitotic germline nuclei of C. elegans. We found that C. elegans brc-1 mutants were more sensitive to ionizing radiation and camptothecin than the N2 wild-type strain and repaired DNA strand breaks less efficiently than N2. This study is the first demonstration of direct measurement of DNA strand breaks in mitotic germline nuclei of C. elegans. This newly developed assay can be applied to detect DNA strand breaks in different C. elegans mutants that are sensitive to DNA damaging agents. PMID:26903030

  18. Production of Phloroglucinol, a Platform Chemical, in Arabidopsis using a Bacterial Gene.

    PubMed

    Abdel-Ghany, Salah E; Day, Irene; Heuberger, Adam L; Broeckling, Corey D; Reddy, Anireddy S N

    2016-12-07

    Phloroglucinol (1,3,5-trihydroxybenzene; PG) and its derivatives are phenolic compounds that are used for various industrial applications. Current methods to synthesize PG are not sustainable due to the requirement for carbon-based precursors and co-production of toxic byproducts. Here, we describe a more sustainable production of PG using plants expressing a native bacterial or a codon-optimized synthetic PhlD targeted to either the cytosol or chloroplasts. Transgenic lines were analyzed for the production of PG using gas and liquid chromatography coupled to mass spectroscopy. Phloroglucinol was produced in all transgenic lines and the line with the highest PhlD transcript level showed the most accumulation of PG. Over 80% of the produced PG was glycosylated to phlorin. Arabidopsis leaves have the machinery to glycosylate PG to form phlorin, which can be hydrolyzed enzymatically to produce PG. Furthermore, the metabolic profile of plants with PhlD in either the cytosol or chloroplasts was altered. Our results provide evidence that plants can be engineered to produce PG using a bacterial gene. Phytoproduction of PG using a bacterial gene paves the way for further genetic manipulations to enhance the level of PG with implications for the commercial production of this important platform chemical in plants.

  19. Dislocation-mediated growth of bacterial cell walls

    PubMed Central

    Amir, Ariel; Nelson, David R.

    2012-01-01

    Recent experiments have illuminated a remarkable growth mechanism of rod-shaped bacteria: proteins associated with cell wall extension move at constant velocity in circles oriented approximately along the cell circumference [Garner EC, et al., (2011) Science 333:222–225], [Domínguez-Escobar J, et al. (2011) Science 333:225–228], [van Teeffelen S, et al. (2011) PNAS 108:15822–15827]. We view these as dislocations in the partially ordered peptidoglycan structure, activated by glycan strand extension machinery, and study theoretically the dynamics of these interacting defects on the surface of a cylinder. Generation and motion of these interacting defects lead to surprising effects arising from the cylindrical geometry, with important implications for growth. We also discuss how long range elastic interactions and turgor pressure affect the dynamics of the fraction of actively moving dislocations in the bacterial cell wall. PMID:22660931

  20. 46 CFR 61.20-3 - Main and auxiliary machinery and associated equipment, including fluid control systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... control for the means of stopping machinery driving forced and induced draft fans, fuel oil transfer pumps, fuel oil unit pumps, and fans in the ventilation systems serving machinery and cargo spaces shall be...