Science.gov

Sample records for bacterial outer membrane proteins

  1. Structural Aspects of Bacterial Outer Membrane Protein Assembly.

    PubMed

    Calmettes, Charles; Judd, Andrew; Moraes, Trevor F

    2015-01-01

    The outer membrane of Gram-negative bacteria is predominantly populated by β-Barrel proteins and lipid anchored proteins that serve a variety of biological functions. The proper folding and assembly of these proteins is essential for bacterial viability and often plays a critical role in virulence and pathogenesis. The β-barrel assembly machinery (Bam) complex is responsible for the proper assembly of β-barrels into the outer membrane of Gram-negative bacteria, whereas the localization of lipoproteins (Lol) system is required for proper targeting of lipoproteins to the outer membrane.

  2. Gibbs motif sampling: detection of bacterial outer membrane protein repeats.

    PubMed Central

    Neuwald, A. F.; Liu, J. S.; Lawrence, C. E.

    1995-01-01

    The detection and alignment of locally conserved regions (motifs) in multiple sequences can provide insight into protein structure, function, and evolution. A new Gibbs sampling algorithm is described that detects motif-encoding regions in sequences and optimally partitions them into distinct motif models; this is illustrated using a set of immunoglobulin fold proteins. When applied to sequences sharing a single motif, the sampler can be used to classify motif regions into related submodels, as is illustrated using helix-turn-helix DNA-binding proteins. Other statistically based procedures are described for searching a database for sequences matching motifs found by the sampler. When applied to a set of 32 very distantly related bacterial integral outer membrane proteins, the sampler revealed that they share a subtle, repetitive motif. Although BLAST (Altschul SF et al., 1990, J Mol Biol 215:403-410) fails to detect significant pairwise similarity between any of the sequences, the repeats present in these outer membrane proteins, taken as a whole, are highly significant (based on a generally applicable statistical test for motifs described here). Analysis of bacterial porins with known trimeric beta-barrel structure and related proteins reveals a similar repetitive motif corresponding to alternating membrane-spanning beta-strands. These beta-strands occur on the membrane interface (as opposed to the trimeric interface) of the beta-barrel. The broad conservation and structural location of these repeats suggests that they play important functional roles. PMID:8520488

  3. Protein–protein interactions and the spatiotemporal dynamics of bacterial outer membrane proteins

    PubMed Central

    Kleanthous, Colin; Rassam, Patrice; Baumann, Christoph G

    2015-01-01

    It has until recently been unclear whether outer membrane proteins (OMPs) of Gram-negative bacteria are organized or distributed randomly. Studies now suggest promiscuous protein–protein interactions (PPIs) between β-barrel OMPs in Escherichia coli govern their local and global dynamics, engender spatiotemporal patterning of the outer membrane into micro-domains and are the basis of β-barrel protein turnover. We contextualize these latest advances, speculate on areas of bacterial cell biology that might be influenced by the organization of OMPs into supramolecular assemblies, and highlight the new questions and controversies this revised view of the bacterial outer membrane raises. PMID:26629934

  4. Discovery of an archetypal protein transport system in bacterial outer membranes.

    PubMed

    Selkrig, Joel; Mosbahi, Khedidja; Webb, Chaille T; Belousoff, Matthew J; Perry, Andrew J; Wells, Timothy J; Morris, Faye; Leyton, Denisse L; Totsika, Makrina; Phan, Minh-Duy; Celik, Nermin; Kelly, Michelle; Oates, Clare; Hartland, Elizabeth L; Robins-Browne, Roy M; Ramarathinam, Sri Harsha; Purcell, Anthony W; Schembri, Mark A; Strugnell, Richard A; Henderson, Ian R; Walker, Daniel; Lithgow, Trevor

    2012-04-01

    Bacteria have mechanisms to export proteins for diverse purposes, including colonization of hosts and pathogenesis. A small number of archetypal bacterial secretion machines have been found in several groups of bacteria and mediate a fundamentally distinct secretion process. Perhaps erroneously, proteins called 'autotransporters' have long been thought to be one of these protein secretion systems. Mounting evidence suggests that autotransporters might be substrates to be secreted, not an autonomous transporter system. We have discovered a new translocation and assembly module (TAM) that promotes efficient secretion of autotransporters in proteobacteria. Functional analysis of the TAM in Citrobacter rodentium, Salmonella enterica and Escherichia coli showed that it consists of an Omp85-family protein, TamA, in the outer membrane and TamB in the inner membrane of diverse bacterial species. The discovery of the TAM provides a new target for the development of therapies to inhibit colonization by bacterial pathogens.

  5. The participation of outer membrane proteins in the bacterial sensitivity to nanosilver.

    PubMed

    Kędziora, Anna; Krzyżewska, Eva; Dudek, Bartłomiej; Bugla-Płoskońska, Gabriela

    2016-06-13

    The presented study is to analyze the participation of outer membrane proteins of Gram- negative bacteria in sensitivity to silver nanomaterials. The mechanism of interaction of silver with the bacterial cell is best described in this group of microorganisms. There are several theories regarding the effectiveness of antimicrobial ions and nanosilver, and at the indicated differences in the way they work. Outer membrane proteins of Gram-negative bacteria are involved in the procurement of silver from the environment and contribute to the development mechanisms of resistance to nanometals. They are measurable parameter in the field of cell phenotypic response to the presence of Gram-negative bacteria in the environment silver nanoforms: its properties, chemical composition, content or times of action. Proteomic methods (including two dimensional electrophoresis and MALDI‑TOF MS) are therefore relevant techniques for determining the susceptibility of bacteria to silver and the changes taking place in the outer membrane under the influence: uptime/exposure and physical and chemical parameters of silver nanomaterials. Many products containing nanosilver is still in the research phase in terms of physico‑chemical characteristics and biological activity, others have been already implemented in many industries. During the very fast nanotechnology developing and introduction to the market products based on the nanosilver the bacterial answer to nanosilver is needed.

  6. Identification of a novel bacterial outer membrane interleukin-1Β-binding protein from Aggregatibacter actinomycetemcomitans.

    PubMed

    Paino, Annamari; Ahlstrand, Tuuli; Nuutila, Jari; Navickaite, Indre; Lahti, Maria; Tuominen, Heidi; Välimaa, Hannamari; Lamminmäki, Urpo; Pöllänen, Marja T; Ihalin, Riikka

    2013-01-01

    Aggregatibacter actinomycetemcomitans is a gram-negative opportunistic oral pathogen. It is frequently associated with subgingival biofilms of both chronic and aggressive periodontitis, and the diseased sites of the periodontium exhibit increased levels of the proinflammatory mediator interleukin (IL)-1β. Some bacterial species can alter their physiological properties as a result of sensing IL-1β. We have recently shown that this cytokine localizes to the cytoplasm of A. actinomycetemcomitans in co-cultures with organotypic gingival mucosa. However, current knowledge about the mechanism underlying bacterial IL-1β sensing is still limited. In this study, we characterized the interaction of A. actinomycetemcomitans total membrane protein with IL-1β through electrophoretic mobility shift assays. The interacting protein, which we have designated bacterial interleukin receptor I (BilRI), was identified through mass spectrometry and was found to be Pasteurellaceae specific. Based on the results obtained using protein function prediction tools, this protein localizes to the outer membrane and contains a typical lipoprotein signal sequence. All six tested biofilm cultures of clinical A. actinomycetemcomitans strains expressed the protein according to phage display-derived antibody detection. Moreover, proteinase K treatment of whole A. actinomycetemcomitans cells eliminated BilRI forms that were outer membrane specific, as determined through immunoblotting. The protein was overexpressed in Escherichia coli in both the outer membrane-associated form and a soluble cytoplasmic form. When assessed using flow cytometry, the BilRI-overexpressing E. coli cells were observed to bind 2.5 times more biotinylated-IL-1β than the control cells, as detected with avidin-FITC. Overexpression of BilRI did not cause binding of a biotinylated negative control protein. In a microplate assay, soluble BilRI bound to IL-1β, but this binding was not specific, as a control protein for IL-1

  7. Identification of a Novel Bacterial Outer Membrane Interleukin-1Β-Binding Protein from Aggregatibacter actinomycetemcomitans

    PubMed Central

    Paino, Annamari; Ahlstrand, Tuuli; Nuutila, Jari; Navickaite, Indre; Lahti, Maria; Tuominen, Heidi; Välimaa, Hannamari; Lamminmäki, Urpo; Pöllänen, Marja T.; Ihalin, Riikka

    2013-01-01

    Aggregatibacteractinomycetemcomitans is a gram-negative opportunistic oral pathogen. It is frequently associated with subgingival biofilms of both chronic and aggressive periodontitis, and the diseased sites of the periodontium exhibit increased levels of the proinflammatory mediator interleukin (IL)-1β. Some bacterial species can alter their physiological properties as a result of sensing IL-1β. We have recently shown that this cytokine localizes to the cytoplasm of A. actinomycetemcomitans in co-cultures with organotypic gingival mucosa. However, current knowledge about the mechanism underlying bacterial IL-1β sensing is still limited. In this study, we characterized the interaction of A. actinomycetemcomitans total membrane protein with IL-1β through electrophoretic mobility shift assays. The interacting protein, which we have designated bacterial interleukin receptor I (BilRI), was identified through mass spectrometry and was found to be Pasteurellaceae specific. Based on the results obtained using protein function prediction tools, this protein localizes to the outer membrane and contains a typical lipoprotein signal sequence. All six tested biofilm cultures of clinical A. actinomycetemcomitans strains expressed the protein according to phage display-derived antibody detection. Moreover, proteinase K treatment of whole A. actinomycetemcomitans cells eliminated BilRI forms that were outer membrane specific, as determined through immunoblotting. The protein was overexpressed in Escherichia coli in both the outer membrane-associated form and a soluble cytoplasmic form. When assessed using flow cytometry, the BilRI-overexpressing E. coli cells were observed to bind 2.5 times more biotinylated-IL-1β than the control cells, as detected with avidin-FITC. Overexpression of BilRI did not cause binding of a biotinylated negative control protein. In a microplate assay, soluble BilRI bound to IL-1β, but this binding was not specific, as a control protein for IL-1

  8. Reconstitution of a nanomachine driving the assembly of proteins into bacterial outer membranes

    PubMed Central

    Shen, Hsin-Hui; Belousoff, Matthew J.; Noinaj, Nicholas; Lu, Jingxiong; Holt, Stephen A.; Tan, Khershing; Selkrig, Joel; Webb, Chaille T.; Buchanan, Susan K.; Martin, Lisandra L.; Lithgow, Trevor

    2015-01-01

    In biological membranes, various protein secretion devices function as nanomachines, and measuring the internal movements of their component parts is a major technological challenge. The translocation assembly module (the TAM) is a nanomachine required for virulence of bacterial pathogens. We have reconstituted a membrane containing the TAM onto a gold surface for characterization by Quartz Crystal Microbalance with Dissipation (QCM-D) and Magnetic Contrast Neutron Reflectrometry (MCNR). The MCNR studies provided structural resolution down to 1Å, enabling accurate measurement of protein domains projecting from the membrane layer. Here, we show that dynamic movements within the TamA component of the TAM are initiated in the presence of a substrate protein, Ag43, and that these movements recapitulate an initial stage in membrane protein assembly. The reconstituted system provides a powerful new means to study molecular movements in biological membranes, and the technology is widely applicable to studying the dynamics of diverse cellular nanomachines. PMID:25341963

  9. Reconstitution of a nanomachine driving the assembly of proteins into bacterial outer membranes

    NASA Astrophysics Data System (ADS)

    Shen, Hsin-Hui; Leyton, Denisse L.; Shiota, Takuya; Belousoff, Matthew J.; Noinaj, Nicholas; Lu, Jingxiong; Holt, Stephen A.; Tan, Khershing; Selkrig, Joel; Webb, Chaille T.; Buchanan, Susan K.; Martin, Lisandra L.; Lithgow, Trevor

    2014-10-01

    In biological membranes, various protein secretion devices function as nanomachines, and measuring the internal movements of their component parts is a major technological challenge. The translocation and assembly module (TAM) is a nanomachine required for virulence of bacterial pathogens. We have reconstituted a membrane containing the TAM onto a gold surface for characterization by quartz crystal microbalance with dissipation (QCM-D) and magnetic contrast neutron reflectrometry (MCNR). The MCNR studies provided structural resolution down to 1 Å, enabling accurate measurement of protein domains projecting from the membrane layer. Here we show that dynamic movements within the TamA component of the TAM are initiated in the presence of a substrate protein, Ag43, and that these movements recapitulate an initial stage in membrane protein assembly. The reconstituted system provides a powerful new means to study molecular movements in biological membranes, and the technology is widely applicable to studying the dynamics of diverse cellular nanomachines.

  10. Enhancement of macrophage-mediated tumor cell killing by bacterial outer membrane proteins (porins).

    PubMed Central

    Weinberg, J B; Ribi, E; Wheat, R W

    1983-01-01

    Various microbial products are known to influence the function of mouse peritoneal macrophages. Lipopolysaccharide (LPS) and certain lipid A-associated proteins are known to enhance the tumoricidal effects of macrophages. The purpose of this study was to determine whether porins (outer membrane proteins) of Salmonella typhimurium G30/C21 would influence the activity of macrophages from lipid A-responsive and -unresponsive mice. Porins, extracted by a combined sodium dodecyl sulfate-EDTA method from cell walls, were free of LPS as determined by Limulus amebocyte lysate assay and appeared as a band at approximately 36,000 molecular weight on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In tumor cell killing assays done under LPS-free conditions, the porins in doses of 1 to 10 ng/ml enhanced the tumoricidal effect of macrophages from bacillus Calmette-Guérin-infected C3H/HeN or C3H/HeJ mice. Protein-free LPS enhanced the tumoricidal activity of macrophages from bacillus Calmette-Guérin-infected C3H/HeN but not C3H/HeJ mice. The tumoricidal-enhancing activity of protein-free LPS was blocked by the lipid A-binding antibiotic polymyxin B sulfate, but the effects of porins were not altered by the polymyxin B sulfate. These results suggest that porins, proteins known to alter membrane function, may alter macrophage function by interaction with macrophage membranes. Images PMID:6311745

  11. High-resolution diffraction from crystals of a membrane-protein complex: bacterial outer membrane protein OmpC complexed with the antibacterial eukaryotic protein lactoferrin

    SciTech Connect

    Sundara Baalaji, N.; Acharya, K. Ravi; Singh, T. P.; Krishnaswamy, S. E-mail: mkukrishna@rediffmail.com

    2005-08-01

    Crystals of the complex formed between the bacterial membrane protein OmpC and the antibacterial protein lactoferrin suitable for high-resolution structure determination have been obtained. The crystals belong to the hexagonal space group P6, with unit-cell parameters a = b = 116.3, c = 152.4 Å. Crystals of the complex formed between the outer membrane protein OmpC from Escherichia coli and the eukaryotic antibacterial protein lactoferrin from Camelus dromedarius (camel) have been obtained using a detergent environment. Initial data processing suggests that the crystals belong to the hexagonal space group P6, with unit-cell parameters a = b = 116.3, c = 152.4 Å, α = β = 90, γ = 120°. This indicated a Matthews coefficient (V{sub M}) of 3.3 Å{sup 3} Da{sup −1}, corresponding to a possible molecular complex involving four molecules of lactoferrin and two porin trimers in the unit cell (4832 amino acids; 533.8 kDa) with 63% solvent content. A complete set of diffraction data was collected to 3 Å resolution at 100 K. Structure determination by molecular replacement is in progress. Structural study of this first surface-exposed membrane-protein complex with an antibacterial protein will provide insights into the mechanism of action of OmpC as well as lactoferrin.

  12. A Molecularly Complete Planar Bacterial Outer Membrane Platform

    PubMed Central

    Hsia, Chih-Yun; Chen, Linxiao; Singh, Rohit R.; DeLisa, Matthew P.; Daniel, Susan

    2016-01-01

    The bacterial outer membrane (OM) is a barrier containing membrane proteins and liposaccharides that fulfill crucial functions for Gram-negative bacteria. With the advent of drug-resistant bacteria, it is necessary to understand the functional role of this membrane and its constituents to enable novel drug designs. Here we report a simple method to form an OM-like supported bilayer (OM-SB), which incorporates native lipids and membrane proteins of gram-negative bacteria from outer membrane vesicles (OMVs). We characterize the formation of OM-SBs using quartz crystal microbalance with dissipation (QCM-D) and fluorescence microscopy. We show that the orientation of proteins in the OM-SB matches the native bacterial membrane, preserving the characteristic asymmetry of these membranes. As a demonstration of the utility of the OM-SB platform, we quantitatively measure antibiotic interactions between OM-SBs and polymyxin B, a cationic peptide used to treat Gram-negative infections. This data enriches understanding of the antibacterial mechanism of polymyxin B, including disruption kinetics and changes in membrane mechanical properties. Combining OM-SBs with microfluidics will enable higher throughput screening of antibiotics. With a broader view, we envision that a molecularly complete membrane-scaffold could be useful for cell-free applications employing engineered membrane proteins in bacterial membranes for myriad technological purposes. PMID:27600663

  13. Outer membrane protein A and OprF – Versatile roles in Gram-negative bacterial infections

    PubMed Central

    Krishnan, Subramanian; Prasadarao, Nemani V.

    2012-01-01

    Outer membrane protein A (OmpA) is an abundant protein of Escherichia coli and other enterobacteria with a multitude of functions. Although the structural features and porin function of OmpA were well studied, its role in the pathogenesis of various bacterial infections has been emerging for the past decade. The four extracellular loops of OmpA interact with a variety of host tissues for adhesion, invasion and evasion of host-defense mechanisms. This review describes how various regions present in the extracellular loops of OmpA contribute to the pathogenesis of neonatal meningitis induced by E. coli K1 and for many other functions. In addition, the function of OmpA like proteins such as OprF of Pseudomonas aeruginosa is also discussed herein. PMID:22240162

  14. An efficient depyrogenation method for recombinant bacterial outer membrane lipoproteins.

    PubMed

    Basto, Afonso P; Morais, Joana; Marcelino, Eduardo; Leitão, Alexandre; Santos, Dulce M

    2014-06-01

    Bacterial outer membrane lipoproteins are anchored in the outer membrane lipid layer in close association with lipopolysaccharides (LPS) and with other hydrophobic membrane proteins, making their purification technically challenging. We have previously shown that a thorough delipidation of outer membrane preparations from the Escherichia coli expression host is an important step to eliminate contaminant proteins when purifying recombinant antigens expressed in fusion with the Pseudomonas aeruginosa OprI lipoprotein. Here we report the cloning and expression of three antigens in fusion with OprI (ovalbumin, eGFP and BbPDI) and our efforts to deal with the variable LPS contamination levels observed in different batches of purified lipoproteins. The use of polymyxin B columns or endotoxin removal polycationic magnetic beads for depyrogenation of purified lipoproteins resulted in high protein losses and the use of Triton X-114 or sodium deoxycholate during the course of affinity chromatography showed to be ineffective to reduce LPS contamination. Instead, performing a hot phenol/water LPS extraction from outer membrane preparations prior to metal affinity chromatography allowed the purification of the recombinant fusion lipoproteins with LPS contents below 0.02EU/μg of protein. The purified recombinant lipoproteins retain their capacity to stimulate bone marrow-derived dendritic cells allowing for the study of their immunomodulatory properties through TLR2/1. This is a simple and easy to scale up method that can also be considered for the purification of other outer membrane lipoproteins.

  15. Contribution of bacterial outer membrane vesicles to innate bacterial defense

    PubMed Central

    2011-01-01

    Background Outer membrane vesicles (OMVs) are constitutively produced by Gram-negative bacteria throughout growth and have proposed roles in virulence, inflammation, and the response to envelope stress. Here we investigate outer membrane vesiculation as a bacterial mechanism for immediate short-term protection against outer membrane acting stressors. Antimicrobial peptides as well as bacteriophage were used to examine the effectiveness of OMV protection. Results We found that a hyper-vesiculating mutant of Escherichia coli survived treatment by antimicrobial peptides (AMPs) polymyxin B and colistin better than the wild-type. Supplementation of E. coli cultures with purified outer membrane vesicles provided substantial protection against AMPs, and AMPs significantly induced vesiculation. Vesicle-mediated protection and induction of vesiculation were also observed for a human pathogen, enterotoxigenic E. coli (ETEC), challenged with polymyxin B. When ETEC with was incubated with low concentrations of vesicles concomitant with polymyxin B treatment, bacterial survival increased immediately, and the culture gained resistance to polymyxin B. By contrast, high levels of vesicles also provided immediate protection but prevented acquisition of resistance. Co-incubation of T4 bacteriophage and OMVs showed fast, irreversible binding. The efficiency of T4 infection was significantly reduced by the formation of complexes with the OMVs. Conclusions These data reveal a role for OMVs in contributing to innate bacterial defense by adsorption of antimicrobial peptides and bacteriophage. Given the increase in vesiculation in response to the antimicrobial peptides, and loss in efficiency of infection with the T4-OMV complex, we conclude that OMV production may be an important factor in neutralizing environmental agents that target the outer membrane of Gram-negative bacteria. PMID:22133164

  16. Assembly of outer-membrane proteins in bacteria and mitochondria.

    PubMed

    Tommassen, Jan

    2010-09-01

    The cell envelope of Gram-negative bacteria consists of two membranes separated by the periplasm. In contrast with most integral membrane proteins, which span the membrane in the form of hydrophobic alpha-helices, integral outer-membrane proteins (OMPs) form beta-barrels. Similar beta-barrel proteins are found in the outer membranes of mitochondria and chloroplasts, probably reflecting the endosymbiont origin of these eukaryotic cell organelles. How these beta-barrel proteins are assembled into the outer membrane has remained enigmatic for a long time. In recent years, much progress has been reached in this field by the identification of the components of the OMP assembly machinery. The central component of this machinery, called Omp85 or BamA, is an essential and highly conserved bacterial protein that recognizes a signature sequence at the C terminus of its substrate OMPs. A homologue of this protein is also found in mitochondria, where it is required for the assembly of beta-barrel proteins into the outer membrane as well. Although accessory components of the machineries are different between bacteria and mitochondria, a mitochondrial beta-barrel OMP can be assembled into the bacterial outer membrane and, vice versa, bacterial OMPs expressed in yeast are assembled into the mitochondrial outer membrane. These observations indicate that the basic mechanism of OMP assembly is evolutionarily highly conserved.

  17. Species-specificity of the BamA component of the bacterial outer membrane protein-assembly machinery.

    PubMed

    Volokhina, Elena B; Grijpstra, Jan; Beckers, Frank; Lindh, Erika; Robert, Viviane; Tommassen, Jan; Bos, Martine P

    2013-01-01

    The BamA protein is the key component of the Bam complex, the assembly machinery for outer membrane proteins (OMP) in gram-negative bacteria. We previously demonstrated that BamA recognizes its OMP substrates in a species-specific manner in vitro. In this work, we further studied species specificity in vivo by testing the functioning of BamA homologs of the proteobacteria Neisseria meningitidis, Neisseria gonorrhoeae, Bordetella pertussis, Burkholderia mallei, and Escherichia coli in E. coli and in N. meningitidis. We found that no BamA functioned in another species than the authentic one, except for N. gonorrhoeae BamA, which fully complemented a N. meningitidis bamA mutant. E. coli BamA was not assembled into the N. meningitidis outer membrane. In contrast, the N. meningitidis BamA protein was assembled into the outer membrane of E. coli to a significant extent and also associated with BamD, an essential accessory lipoprotein of the Bam complex.Various chimeras comprising swapped N-terminal periplasmic and C-terminal membrane-embedded domains of N. meningitidis and E. coli BamA proteins were also not functional in either host, although some of them were inserted in the OM suggesting that the two domains of BamA need to be compatible in order to function. Furthermore, conformational analysis of chimeric proteins provided evidence for a 16-stranded β-barrel conformation of the membrane-embedded domain of BamA.

  18. Key Residues of Outer Membrane Protein OprI Involved in Hexamer Formation and Bacterial Susceptibility to Cationic Antimicrobial Peptides

    PubMed Central

    Chang, Ting-Wei; Wang, Chiu-Feng; Huang, Hsin-Jye; Wang, Iren; Hsu, Shang-Te Danny

    2015-01-01

    Antimicrobial peptides (AMPs) are important components of the host innate defense mechanism against invading pathogens. Our previous studies have shown that the outer membrane protein, OprI from Pseudomonas aeruginosa or its homologue, plays a vital role in the susceptibility of Gram-negative bacteria to cationic α-helical AMPs (Y. M. Lin, S. J. Wu, T. W. Chang, C. F. Wang, C. S. Suen, M. J. Hwang, M. D. Chang, Y. T. Chen, Y. D. Liao, J Biol Chem 285:8985–8994, 2010, http://dx.doi.org/10.1074/jbc.M109.078725; T. W. Chang, Y. M. Lin, C. F. Wang, Y. D. Liao, J Biol Chem 287:418–428, 2012, http://dx.doi.org/10.1074/jbc.M111.290361). Here, we obtained two forms of recombinant OprI: rOprI-F, a hexamer composed of three disulfide-bridged dimers, was active in AMP binding, while rOprI-R, a trimer, was not. All the subunits predominantly consisted of α-helices and exhibited rigid structures with a melting point centered around 76°C. Interestingly, OprI tagged with Escherichia coli signal peptide was expressed in a hexamer, which was anchored on the surface of E. coli, possibly through lipid acids added at the N terminus of OprI and involved in the binding and susceptibility to AMP as native P. aeruginosa OprI. Deletion and mutation studies showed that Cys1 and Asp27 played a key role in hexamer formation and AMP binding, respectively. The increase of OprI hydrophobicity upon AMP binding revealed that it undergoes conformational changes for membrane fusion. Our results showed that OprI on bacterial surfaces is responsible for the recruitment and susceptibility to amphipathic α-helical AMPs and may be used to screen antimicrobials. PMID:26248382

  19. Key Residues of Outer Membrane Protein OprI Involved in Hexamer Formation and Bacterial Susceptibility to Cationic Antimicrobial Peptides.

    PubMed

    Chang, Ting-Wei; Wang, Chiu-Feng; Huang, Hsin-Jye; Wang, Iren; Hsu, Shang-Te Danny; Liao, You-Di

    2015-10-01

    Antimicrobial peptides (AMPs) are important components of the host innate defense mechanism against invading pathogens. Our previous studies have shown that the outer membrane protein, OprI from Pseudomonas aeruginosa or its homologue, plays a vital role in the susceptibility of Gram-negative bacteria to cationic α-helical AMPs (Y. M. Lin, S. J. Wu, T. W. Chang, C. F. Wang, C. S. Suen, M. J. Hwang, M. D. Chang, Y. T. Chen, Y. D. Liao, J Biol Chem 285:8985-8994, 2010, http://dx.doi.org/10.1074/jbc.M109.078725; T. W. Chang, Y. M. Lin, C. F. Wang, Y. D. Liao, J Biol Chem 287:418-428, 2012, http://dx.doi.org/10.1074/jbc.M111.290361). Here, we obtained two forms of recombinant OprI: rOprI-F, a hexamer composed of three disulfide-bridged dimers, was active in AMP binding, while rOprI-R, a trimer, was not. All the subunits predominantly consisted of α-helices and exhibited rigid structures with a melting point centered around 76°C. Interestingly, OprI tagged with Escherichia coli signal peptide was expressed in a hexamer, which was anchored on the surface of E. coli, possibly through lipid acids added at the N terminus of OprI and involved in the binding and susceptibility to AMP as native P. aeruginosa OprI. Deletion and mutation studies showed that Cys1 and Asp27 played a key role in hexamer formation and AMP binding, respectively. The increase of OprI hydrophobicity upon AMP binding revealed that it undergoes conformational changes for membrane fusion. Our results showed that OprI on bacterial surfaces is responsible for the recruitment and susceptibility to amphipathic α-helical AMPs and may be used to screen antimicrobials.

  20. Bacterial outer membrane vesicles and vaccine applications.

    PubMed

    Acevedo, Reinaldo; Fernández, Sonsire; Zayas, Caridad; Acosta, Armando; Sarmiento, Maria Elena; Ferro, Valerie A; Rosenqvist, Einar; Campa, Concepcion; Cardoso, Daniel; Garcia, Luis; Perez, Jose Luis

    2014-01-01

    Vaccines based on outer membrane vesicles (OMV) were developed more than 20 years ago against Neisseria meningitidis serogroup B. These nano-sized structures exhibit remarkable potential for immunomodulation of immune responses and delivery of meningococcal antigens or unrelated antigens incorporated into the vesicle structure. This paper reviews different applications in OMV Research and Development (R&D) and provides examples of OMV developed and evaluated at the Finlay Institute in Cuba. A Good Manufacturing Practice (GMP) process was developed at the Finlay Institute to produce OMV from N. meningitidis serogroup B (dOMVB) using detergent extraction. Subsequently, OMV from N. meningitidis, serogroup A (dOMVA), serogroup W (dOMVW), and serogroup X (dOMVX) were obtained using this process. More recently, the extraction process has also been applied effectively for obtaining OMV on a research scale from Vibrio cholerae (dOMVC), Bordetella pertussis (dOMVBP), Mycobacterium smegmatis (dOMVSM), and BCG (dOMVBCG). The immunogenicity of the OMV has been evaluated for specific antibody induction, and together with functional bactericidal and challenge assays in mice has shown their protective potential. dOMVB has been evaluated with non-neisserial antigens, including with a herpes virus type 2 glycoprotein, ovalbumin, and allergens. In conclusion, OMV are proving to be more versatile than first conceived and remain an important technology for development of vaccine candidates.

  1. Bacterial Outer Membrane Vesicles and Vaccine Applications

    PubMed Central

    Acevedo, Reinaldo; Fernández, Sonsire; Zayas, Caridad; Acosta, Armando; Sarmiento, Maria Elena; Ferro, Valerie A.; Rosenqvist, Einar; Campa, Concepcion; Cardoso, Daniel; Garcia, Luis; Perez, Jose Luis

    2014-01-01

    Vaccines based on outer membrane vesicles (OMV) were developed more than 20 years ago against Neisseria meningitidis serogroup B. These nano-sized structures exhibit remarkable potential for immunomodulation of immune responses and delivery of meningococcal antigens or unrelated antigens incorporated into the vesicle structure. This paper reviews different applications in OMV Research and Development (R&D) and provides examples of OMV developed and evaluated at the Finlay Institute in Cuba. A Good Manufacturing Practice (GMP) process was developed at the Finlay Institute to produce OMV from N. meningitidis serogroup B (dOMVB) using detergent extraction. Subsequently, OMV from N. meningitidis, serogroup A (dOMVA), serogroup W (dOMVW), and serogroup X (dOMVX) were obtained using this process. More recently, the extraction process has also been applied effectively for obtaining OMV on a research scale from Vibrio cholerae (dOMVC), Bordetella pertussis (dOMVBP), Mycobacterium smegmatis (dOMVSM), and BCG (dOMVBCG). The immunogenicity of the OMV has been evaluated for specific antibody induction, and together with functional bactericidal and challenge assays in mice has shown their protective potential. dOMVB has been evaluated with non-neisserial antigens, including with a herpes virus type 2 glycoprotein, ovalbumin, and allergens. In conclusion, OMV are proving to be more versatile than first conceived and remain an important technology for development of vaccine candidates. PMID:24715891

  2. Outer membrane proteins of pathogenic spirochetes

    PubMed Central

    Cullen, Paul A.; Haake, David A.; Adler, Ben

    2009-01-01

    Pathogenic spirochetes are the causative agents of several important diseases including syphilis, Lyme disease, leptospirosis, swine dysentery, periodontal disease and some forms of relapsing fever. Spirochetal bacteria possess two membranes and the proteins present in the outer membrane are at the site of interaction with host tissue and the immune system. This review describes the current knowledge in the field of spirochetal outer membrane protein (OMP) biology. What is known concerning biogenesis and structure of OMPs, with particular regard to the atypical signal peptide cleavage sites observed amongst the spirochetes, is discussed. We examine the functions that have been determined for several spirochetal OMPs including those that have been demonstrated to function as adhesins, porins or to have roles in complement resistance. A detailed description of the role of spirochetal OMPs in immunity, including those that stimulate protective immunity or that are involved in antigenic variation, is given. A final section is included which covers experimental considerations in spirochetal outer membrane biology. This section covers contentious issues concerning cellular localization of putative OMPs, including determination of surface exposure. A more detailed knowledge of spirochetal OMP biology will hopefully lead to the design of new vaccines and a better understanding of spirochetal pathogenesis. PMID:15449605

  3. Properties and Phylogeny of 76 Families of Bacterial and Eukaryotic Organellar Outer Membrane Pore-Forming Proteins

    PubMed Central

    Reddy, Bhaskara L.; Saier, Milton H.

    2016-01-01

    We here report statistical analyses of 76 families of integral outer membrane pore-forming proteins (OMPPs) found in bacteria and eukaryotic organelles. 47 of these families fall into one superfamily (SFI) which segregate into fifteen phylogenetic clusters. Families with members of the same protein size, topology and substrate specificities often cluster together. Virtually all OMPP families include only proteins that form transmembrane pores. Nine such families, all of which cluster together in the SFI phylogenetic tree, contain both α- and β-structures, are multi domain, multi subunit systems, and transport macromolecules. Most other SFI OMPPs transport small molecules. SFII and SFV homologues derive from Actinobacteria while SFIII and SFIV proteins derive from chloroplasts. Three families of actinobacterial OMPPs and two families of eukaryotic OMPPs apparently consist primarily of α-helices (α-TMSs). Of the 71 families of (putative) β-barrel OMPPs, only twenty could not be assigned to a superfamily, and these derived primarily from Actinobacteria (1), chloroplasts (1), spirochaetes (8), and proteobacteria (10). Proteins were identified in which two or three full length OMPPs are fused together. Family characteristic are described and evidence agrees with a previous proposal suggesting that many arose by adjacent β-hairpin structural unit duplications. PMID:27064789

  4. Identification of polyvalent protective immunogens from outer membrane proteins in Vibrio parahaemolyticus to protect fish against bacterial infection.

    PubMed

    Peng, Bo; Ye, Jin-Zhou; Han, Yi; Zeng, Li; Zhang, Jian-Ying; Li, Hui

    2016-07-01

    Vaccination is one of the most effective and economic way to prevent infectious diseases in aquaculture. The development of effective vaccines, however, is still limited, especially for polyvalent vaccines, which are against multiple species. With this regard, identification of polyvalent protective immunogens, serving as polyvalent vaccines, became a key step in vaccine development. In the current study, 17 outer membrane proteins from Vibrio parahaemolyticus were identified as immunogens. Further, four of the 17 proteins including VP2309, VP0887, VPA0548 and VP1019 were characterized as efficiently protective immunogens against V. parahaemolyticus' infection through passive and active immunizations in zebrafish. Importantly, these four proteins showed cross-protective capability against infections by Aeromonas hydrophila or/and Pseudomonas fluorescens, which shared similar epitopes with V. parahaemolyticus in homology of these proteins. Further investigation showed that the expression level of the four protective immunogens elevated in response to fish plasma in a dose-dependent manner. These results indicate that the four protective immunogens are polyvalent vaccine candidates in aquaculture.

  5. Sorting of bacterial lipoproteins to the outer membrane by the Lol system.

    PubMed

    Narita, Shin-ichiro; Tokuda, Hajime

    2010-01-01

    Bacterial lipoproteins comprise a subset of membrane proteins with a lipid-modified cysteine residue at their amino termini through which they are anchored to the membrane. In Gram-negative bacteria, lipoproteins are localized on either the inner or the outer membrane. The Lol system is responsible for the transport of lipoproteins to the outer membrane.The Lol system comprises an inner-membrane ABC transporter LolCDE complex, a periplasmic carrier protein, LolA, and an outer membrane receptor protein, LolB. Lipoproteins are synthesized as precursors in the cytosol and then translocated across the inner membrane by the Sec translocon to the outer leaflet of the inner membrane, where lipoprotein precursors are processed to mature lipoproteins. The LolCDE complex then mediates the release of outer membrane-specific lipoproteins from the inner membrane while the inner membrane-specific lipoproteins possessing Asp at position 2 are not released by LolCDE because it functions as a LolCDE avoidance signal, causing the retention of these lipoproteins in the inner membrane. A water-soluble lipoprotein-LolA complex is formed as a result of the release reaction mediated by LolCDE. This complex traverses the hydrophilic periplasm to reach the outer membrane, where LolB accepts a lipoprotein from LolA and then catalyzes its incorporation into the inner leaflet of the outer membrane.

  6. Mechanism of anchoring of OmpA protein to the cell wall peptidoglycan of the gram-negative bacterial outer membrane

    PubMed Central

    Park, Jeong Soon; Lee, Woo Cheol; Yeo, Kwon Joo; Ryu, Kyoung-Seok; Kumarasiri, Malika; Hesek, Dusan; Lee, Mijoon; Mobashery, Shahriar; Song, Jung Hyun; Kim, Seung Il; Lee, Je Chul; Cheong, Chaejoon; Jeon, Young Ho; Kim, Hye-Yeon

    2012-01-01

    The outer membrane protein A (OmpA) plays important roles in anchoring of the outer membrane to the bacterial cell wall. The C-terminal periplasmic domain of OmpA (OmpA-like domain) associates with the peptidoglycan (PGN) layer noncovalently. However, there is a paucity of information on the structural aspects of the mechanism of PGN recognition by OmpA-like domains. To elucidate this molecular recognition process, we solved the high-resolution crystal structure of an OmpA-like domain from Acinetobacter baumannii bound to diaminopimelate (DAP), a unique bacterial amino acid from the PGN. The structure clearly illustrates that two absolutely conserved Asp271 and Arg286 residues are the key to the binding to DAP of PGN. Identification of DAP as the central anchoring site of PGN to OmpA is further supported by isothermal titration calorimetry and a pulldown assay with PGN. An NMR-based computational model for complexation between the PGN and OmpA emerged, and this model is validated by determining the crystal structure in complex with a synthetic PGN fragment. These structural data provide a detailed glimpse of how the anchoring of OmpA to the cell wall of gram-negative bacteria takes place in a DAP-dependent manner.—Park, J. S., Lee, W. C., Yeo, K. J., Ryu, K.-S., Kumarasiri, M., Hesek, D., Lee, M., Mobashery, S., Song, J. H., Lim, S. I., Lee, J. C., Cheong, C., Jeon, Y. H., Kim, H.-Y. Mechanism of anchoring of OmpA protein to the cell wall peptidoglycan of the gram-negative bacterial outer membrane. PMID:21965596

  7. Molecular Basis of Bacterial Outer Membrane Permeability Revisited

    PubMed Central

    Nikaido, Hiroshi

    2003-01-01

    Gram-negative bacteria characteristically are surrounded by an additional membrane layer, the outer membrane. Although outer membrane components often play important roles in the interaction of symbiotic or pathogenic bacteria with their host organisms, the major role of this membrane must usually be to serve as a permeability barrier to prevent the entry of noxious compounds and at the same time to allow the influx of nutrient molecules. This review summarizes the development in the field since our previous review (H. Nikaido and M. Vaara, Microbiol. Rev. 49:1-32, 1985) was published. With the discovery of protein channels, structural knowledge enables us to understand in molecular detail how porins, specific channels, TonB-linked receptors, and other proteins function. We are now beginning to see how the export of large proteins occurs across the outer membrane. With our knowledge of the lipopolysaccharide-phospholipid asymmetric bilayer of the outer membrane, we are finally beginning to understand how this bilayer can retard the entry of lipophilic compounds, owing to our increasing knowledge about the chemistry of lipopolysaccharide from diverse organisms and the way in which lipopolysaccharide structure is modified by environmental conditions. PMID:14665678

  8. The Effect of Lipopolysaccharide Core Oligosaccharide Size on the Electrostatic Binding of Antimicrobial Proteins to Models of the Gram Negative Bacterial Outer Membrane

    PubMed Central

    2016-01-01

    Understanding the electrostatic interactions between bacterial membranes and exogenous proteins is crucial to designing effective antimicrobial agents against Gram-negative bacteria. Here we study, using neutron reflecometry under multiple isotopic contrast conditions, the role of the uncharged sugar groups in the outer core region of lipopolysaccharide (LPS) in protecting the phosphate-rich inner core region from electrostatic interactions with antimicrobial proteins. Models of the asymmetric Gram negative outer membrane on silicon were prepared with phopshatidylcholine (PC) in the inner leaflet (closest to the silicon), whereas rough LPS was used to form the outer leaflet (facing the bulk solution). We show how salt concentration can be used to reversibly alter the binding affinity of a protein antibiotic colicin N (ColN) to the anionic LPS confirming that the interaction is electrostatic in nature. By examining the interaction of ColN with two rough LPS types with different-sized core oligosaccharide regions we demonstrate the role of uncharged sugars in blocking short-range electrostatic interactions between the cationic antibiotics and the vulnerable anionic phosphate groups. PMID:27003358

  9. Structure of the Neisserial Outer Membrane Protein Opa60: Loop Flexibility Essential to Receptor Recognition and Bacterial Engulfment

    PubMed Central

    2015-01-01

    The structure and dynamics of Opa proteins, which we report herein, are responsible for the receptor-mediated engulfment of Neisseria gonorrheae or Neisseria meningitidis by human cells and can offer deep understanding into the molecular recognition of pathogen–host receptor interactions. Such interactions are vital to understanding bacterial pathogenesis as well as the mechanism of foreign body entry to a human cell, which may provide insights for the development of targeted pharmaceutical delivery systems. The size and dynamics of the extracellular loops of Opa60 required a hybrid refinement approach wherein membrane and distance restraints were used to generate an initial NMR structural ensemble, which was then further refined using molecular dynamics in a DMPC bilayer. The resulting ensemble revealed that the extracellular loops, which bind host receptors, occupy compact conformations, interact with each other weakly, and are dynamic on the nanosecond time scale. We predict that this conformational sampling is critical for enabling diverse Opa loop sequences to engage a common set of receptors. PMID:24813921

  10. A pitfall in diagnosis of human prion diseases using detection of protease-resistant prion protein in urine. Contamination with bacterial outer membrane proteins.

    PubMed

    Furukawa, Hisako; Doh-ura, Katsumi; Okuwaki, Ryo; Shirabe, Susumu; Yamamoto, Kazuo; Udono, Heiichiro; Ito, Takashi; Katamine, Shigeru; Niwa, Masami

    2004-05-28

    Because a definite diagnosis of prion diseases relies on the detection of the abnormal isoform of prion protein (PrPSc), it has been urgently necessary to establish a non-invasive diagnostic test to detect PrPSc in human prion diseases. To evaluate diagnostic usefulness and reliability of the detection of protease-resistant prion protein in urine, we extensively analyzed proteinase K (PK)-resistant proteins in patients affected with prion diseases and control subjects by Western blot, a coupled liquid chromatography and mass spectrometry analysis, and N-terminal sequence analysis. The PK-resistant signal migrating around 32 kDa previously reported by Shaked et al. (Shaked, G. M., Shaked, Y., Kariv-Inbal, Z., Halimi, M., Avraham, I., and Gabizon, R. (2001) J. Biol. Chem. 276, 31479-31482) was not observed in this study. Instead, discrete protein bands with an apparent molecular mass of approximately 37 kDa were detected in the urine of many patients affected with prion diseases and two diseased controls. Although these proteins also gave strong signals in the Western blot using a variety of anti-PrP antibodies as a primary antibody, we found that the signals were still detectable by incubation of secondary antibodies alone, i.e. in the absence of the primary anti-PrP antibodies. Mass spectrometry and N-terminal protein sequencing analysis revealed that the majority of the PK-resistant 37-kDa proteins in the urine of patients were outer membrane proteins (OMPs) of the Enterobacterial species. OMPs isolated from these bacteria were resistant to PK and the PK-resistant OMPs from the Enterobacterial species migrated around 37 kDa on SDS-PAGE. Furthermore, nonspecific binding of OMPs to antibodies could be mistaken for PrPSc. These findings caution that bacterial contamination can affect the immunological detection of prion protein. Therefore, the presence of Enterobacterial species should be excluded in the immunological tests for PrPSc in clinical samples, in

  11. Structural Basis for Alginate Secretion Across the Bacterial Outer Membrane

    SciTech Connect

    J Whitney; I Hay; C Li; P Eckford; H Robinson; M Amaya; L Wood; D Ohman; C Bear; et al.

    2011-12-31

    Pseudomonas aeruginosa is the predominant pathogen associated with chronic lung infection among cystic fibrosis patients. During colonization of the lung, P. aeruginosa converts to a mucoid phenotype characterized by the overproduction of the exopolysaccharide alginate. Secretion of newly synthesized alginate across the outer membrane is believed to occur through the outer membrane protein AlgE. Here we report the 2.3 {angstrom} crystal structure of AlgE, which reveals a monomeric 18-stranded {beta}-barrel characterized by a highly electropositive pore constriction formed by an arginine-rich conduit that likely acts as a selectivity filter for the negatively charged alginate polymer. Interestingly, the pore constriction is occluded on either side by extracellular loop L2 and an unusually long periplasmic loop, T8. In halide efflux assays, deletion of loop T8 ({Delta}T8-AlgE) resulted in a threefold increase in anion flux compared to the wild-type or {Delta}L2-AlgE supporting the idea that AlgE forms a transport pathway through the membrane and suggesting that transport is regulated by T8. This model is further supported by in vivo experiments showing that complementation of an algE deletion mutant with {Delta}T8-AlgE impairs alginate production. Taken together, these studies support a mechanism for exopolysaccharide export across the outer membrane that is distinct from the Wza-mediated translocation observed in canonical capsular polysaccharide export systems.

  12. Structural basis for alginate secretion across the bacterial outer membrane

    SciTech Connect

    Whitney, J.C.; Robinson, H.; Hay, I. D.; Li, C.; Eckford, P. D. W.; Amaya, M. F.; Wood, L. F.; Ohman, D. E.; Bear, C. E.; Rehm, B. H.; Howell, P. L.

    2011-08-09

    Pseudomonas aeruginosa is the predominant pathogen associated with chronic lung infection among cystic fibrosis patients. During colonization of the lung, P. aeruginosa converts to a mucoid phenotype characterized by the overproduction of the exopolysaccharide alginate. Secretion of newly synthesized alginate across the outer membrane is believed to occur through the outer membrane protein AlgE. Here we report the 2.3 {angstrom} crystal structure of AlgE, which reveals a monomeric 18-stranded {beta}-barrel characterized by a highly electropositive pore constriction formed by an arginine-rich conduit that likely acts as a selectivity filter for the negatively charged alginate polymer. Interestingly, the pore constriction is occluded on either side by extracellular loop L2 and an unusually long periplasmic loop, T8. In halide efflux assays, deletion of loop T8 ({Delta}T8-AlgE) resulted in a threefold increase in anion flux compared to the wild-type or {Delta}L2-AlgE supporting the idea that AlgE forms a transport pathway through the membrane and suggesting that transport is regulated by T8. This model is further supported by in vivo experiments showing that complementation of an algE deletion mutant with {Delta}T8-AlgE impairs alginate production. Taken together, these studies support a mechanism for exopolysaccharide export across the outer membrane that is distinct from the Wza-mediated translocation observed in canonical capsular polysaccharide export systems.

  13. Ligand-gated Diffusion Across the Bacterial Outer Membrane

    SciTech Connect

    B Lepore; M Indic; H Pham; E Hearn; D Patel; B van den Berg

    2011-12-31

    Ligand-gated channels, in which a substrate transport pathway is formed as a result of the binding of a small-molecule chemical messenger, constitute a diverse class of membrane proteins with important functions in prokaryotic and eukaryotic organisms. Despite their widespread nature, no ligand-gated channels have yet been found within the outer membrane (OM) of Gram-negative bacteria. Here we show, using in vivo transport assays, intrinsic tryptophan fluorescence and X-ray crystallography, that high-affinity (submicromolar) substrate binding to the OM long-chain fatty acid transporter FadL from Escherichia coli causes conformational changes in the N terminus that open up a channel for substrate diffusion. The OM long-chain fatty acid transporter FadL from E. coli is a unique paradigm for OM diffusion-driven transport, in which ligand gating within a {beta}-barrel membrane protein is a prerequisite for channel formation.

  14. Efficient quantification and characterization of bacterial outer membrane derived nano-particles with flow cytometric analysis.

    PubMed

    Wieser, Andreas; Storz, Enno; Liegl, Gabriele; Peter, Annabell; Pritsch, Michael; Shock, Jonathan; Wai, Sun Nyunt; Schubert, Sören

    2014-11-01

    There currently exists no efficient and easy method for size profiling and counting of membranous nano-scale particles, such as bacterial outer membrane vesicles (OMVs). We present here a cost-effective and fast method capable of profiling and counting small sample volumes of nano-scale membranous vesicles with standard laboratory equipment without the need for any washing steps. OMV populations of different bacterial species are compared and even subpopulations of OMVs can be identified after a simple labelling procedure. Counting is possible over three orders of magnitude without any changes to the protocol. Protein contaminations do not alter the described measurements.

  15. An efficient bacterial surface display system based on a novel outer membrane anchoring element from the Escherichia coli protein YiaT.

    PubMed

    Han, Mee-Jung; Lee, Seung Hwan

    2015-01-01

    In a bacterial surface display system, the display of a successful recombinant protein is highly dependent on the choice of anchoring motif. In this study, we developed an efficient Escherichia coli display system using novel anchoring motifs derived from the protein YiaT. To determine the best surface-anchoring motif, full-length YiaT and two of its C-terminal truncated forms, cut at the R181 and R232 sites, were evaluated. Two industrial enzymes, a lipase from Pseudomonas fluorescens SIK W1 and an α-amylase from Bacillus subtilis, were used as the target proteins for display. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Western blot, immunofluorescence microscopy and whole-cell enzyme activity measurements confirmed the expression of the fusion proteins on the E. coli surface. Using YiaTR181 or YiaTR232 as the anchoring motif, the fusion proteins showed very high enzyme activities and did not exert any adverse effects on either cell growth or the outer membrane integrity. Additionally, these fusion proteins were suitable for displaying proteins of large molecular size in an active form. Compared with the previous anchoring motifs FadL and OprF, YiaTR181 and YiaTR232 had approximately 10-fold and 20-fold higher enzyme activities, respectively. These results suggest that YiaT can be used as an E. coli anchoring motif to efficiently display various enzymes; hence, this system could be employed in a variety of biotechnological and industrial applications.

  16. Membrane protein architects: the role of the BAM complex in outer membrane protein assembly.

    PubMed

    Knowles, Timothy J; Scott-Tucker, Anthony; Overduin, Michael; Henderson, Ian R

    2009-03-01

    The folding of transmembrane proteins into the outer membrane presents formidable challenges to Gram-negative bacteria. These proteins must migrate from the cytoplasm, through the inner membrane and into the periplasm, before being recognized by the beta-barrel assembly machinery, which mediates efficient insertion of folded beta-barrels into the outer membrane. Recent discoveries of component structures and accessory interactions of this complex are yielding insights into how cells fold membrane proteins. Here, we discuss how these structures illuminate the mechanisms responsible for the biogenesis of outer membrane proteins.

  17. Dynamic periplasmic chaperone reservoir facilitates biogenesis of outer membrane proteins

    PubMed Central

    Costello, Shawn M.; Plummer, Ashlee M.; Fleming, Patrick J.; Fleming, Karen G.

    2016-01-01

    Outer membrane protein (OMP) biogenesis is critical to bacterial physiology because the cellular envelope is vital to bacterial pathogenesis and antibiotic resistance. The process of OMP biogenesis has been studied in vivo, and each of its components has been studied in isolation in vitro. This work integrates parameters and observations from both in vivo and in vitro experiments into a holistic computational model termed “Outer Membrane Protein Biogenesis Model” (OMPBioM). We use OMPBioM to assess OMP biogenesis mathematically in a global manner. Using deterministic and stochastic methods, we are able to simulate OMP biogenesis under varying genetic conditions, each of which successfully replicates experimental observations. We observe that OMPs have a prolonged lifetime in the periplasm where an unfolded OMP makes, on average, hundreds of short-lived interactions with chaperones before folding into its native state. We find that some periplasmic chaperones function primarily as quality-control factors; this function complements the folding catalysis function of other chaperones. Additionally, the effective rate for the β-barrel assembly machinery complex necessary for physiological folding was found to be higher than has currently been observed in vitro. Overall, we find a finely tuned balance between thermodynamic and kinetic parameters maximizes OMP folding flux and minimizes aggregation and unnecessary degradation. In sum, OMPBioM provides a global view of OMP biogenesis that yields unique insights into this essential pathway. PMID:27482090

  18. Acinetobacter baumannii outer membrane protein A modulates the biogenesis of outer membrane vesicles.

    PubMed

    Moon, Dong Chan; Choi, Chul Hee; Lee, Jung Hwa; Choi, Chi-Won; Kim, Hye-Yeon; Park, Jeong Soon; Kim, Seung Il; Lee, Je Chul

    2012-02-01

    Acinetobacter baumannii secretes outer membrane vesicles (OMVs) during both in vitro and in vivo growth, but the biogenesis mechanism by which A. baumannii produces OMVs remains undefined. Outer membrane protein A of A. baumannii (AbOmpA) is a major protein in the outer membrane and the C-terminus of AbOmpA interacts with diaminopimelate of peptidoglycan. This study investigated the role of AbOmpA in the biogenesis of A. baumannii OMVs. Quantitative and qualitative approaches were used to analyze OMV biogenesis in A. baumannii ATCC 19606T and an isogenic ΔAbOmpA mutant. OMV production was significantly increased in the ΔAbOmpA mutant compared to wild-type bacteria as demonstrated by quantitation of proteins and lipopolysaccharides (LPS) packaged in OMVs. LPS profiles prepared from OMVs from wild-type bacteria and the ΔAbOmpA mutant had identical patterns, but proteomic analysis showed different protein constituents in OMVs from wild-type bacteria compared to the ΔAbOmpA mutant. In conclusion, AbOmpA influences OMV biogenesis by controlling OMV production and protein composition.

  19. Klebsiella pneumoniae O antigen loss alters the outer membrane protein composition and the selective packaging of proteins into secreted outer membrane vesicles.

    PubMed

    Cahill, Bethaney K; Seeley, Kent W; Gutel, Dedra; Ellis, Terri N

    2015-11-01

    Klebsiella pneumoniae is a nosocomial pathogen which naturally secretes lipopolysaccharide (LPS) and cell envelope associated proteins into the environment through the production of outer membrane vesicles (OMVs). The loss of the LPS O antigen has been demonstrated in other bacterial species to significantly alter the composition of OMVs. Therefore, this study aimed to comprehensively analyze the impact of O antigen loss on the sub-proteomes of both the outer membrane and secreted OMVs from K. pneumoniae. As determined by LC-MS/MS, OMVs were highly enriched with outer membrane proteins involved in cell wall, membrane, and envelope biogenesis as compared to the source cellular outer membrane. Deletion of wbbO, the enzyme responsible for O antigen attachment to LPS, decreased but did not eliminate this enrichment effect. Additionally, loss of O antigen resulted in OMVs with increased numbers of proteins involved in post-translational modification, protein turnover, and chaperones as compared to secreted vesicles from the wild type. This alteration of OMV composition may be a compensatory mechanism to deal with envelope stress. This comprehensive analysis confirms the highly distinct protein composition of OMVs as compared to their source membrane, and provides evidence for a selective sorting mechanism that involves LPS polysaccharides. These data support the hypothesis that modifications to LPS alters both the mechanics of protein sorting and the contents of secreted OMVs and significantly impacts the protein composition of the outer membrane.

  20. Proteomic and genomic analysis reveals novel Campylobacter jejuni outer membrane proteins and potential heterogeneity.

    PubMed

    Watson, Eleanor; Sherry, Aileen; Inglis, Neil F; Lainson, Alex; Jyothi, Dushyanth; Yaga, Raja; Manson, Erin; Imrie, Lisa; Everest, Paul; Smith, David G E

    2014-09-01

    Gram-negative bacterial outer membrane proteins play important roles in the interaction of bacteria with their environment including nutrient acquisition, adhesion and invasion, and antibiotic resistance. In this study we identified 47 proteins within the Sarkosyl-insoluble fraction of Campylobacter jejuni 81-176, using LC-ESI-MS/MS. Comparative analysis of outer membrane protein sequences was visualised to reveal protein distribution within a panel of Campylobacter spp., identifying several C. jejuni-specific proteins. Smith-Waterman analyses of C. jejuni homologues revealed high sequence conservation amongst a number of hypothetical proteins, sequence heterogeneity of other proteins and several proteins which are absent in a proportion of strains.

  1. Helicobacter pylori Outer Membrane Protein-Related Pathogenesis.

    PubMed

    Matsuo, Yuichi; Kido, Yasutoshi; Yamaoka, Yoshio

    2017-03-11

    Helicobacter pylori colonizes the human stomach and induces inflammation, and in some cases persistent infection can result in gastric cancer. Attachment to the gastric mucosa is the first step in establishing bacterial colonization, and outer membrane proteins (OMPs) play a pivotal role in binding to human cells. Some OMP interaction molecules are known in H. pylori, and their associated host cell responses have been gradually clarified. Many studies have demonstrated that OMPs are essential to CagA translocation into gastric cells via the Type IV secretion system of H. pylori. This review summarizes the mechanisms through which H. pylori utilizes OMPs to colonize the human stomach and how OMPs cooperate with the Type IV secretion system.

  2. Helicobacter pylori Outer Membrane Protein-Related Pathogenesis

    PubMed Central

    Matsuo, Yuichi; Kido, Yasutoshi; Yamaoka, Yoshio

    2017-01-01

    Helicobacter pylori colonizes the human stomach and induces inflammation, and in some cases persistent infection can result in gastric cancer. Attachment to the gastric mucosa is the first step in establishing bacterial colonization, and outer membrane proteins (OMPs) play a pivotal role in binding to human cells. Some OMP interaction molecules are known in H. pylori, and their associated host cell responses have been gradually clarified. Many studies have demonstrated that OMPs are essential to CagA translocation into gastric cells via the Type IV secretion system of H. pylori. This review summarizes the mechanisms through which H. pylori utilizes OMPs to colonize the human stomach and how OMPs cooperate with the Type IV secretion system. PMID:28287480

  3. A Peptidomimetic Antibiotic Targets Outer Membrane Proteins and Disrupts Selectively the Outer Membrane in Escherichia coli*

    PubMed Central

    Urfer, Matthias; Bogdanovic, Jasmina; Lo Monte, Fabio; Moehle, Kerstin; Zerbe, Katja; Omasits, Ulrich; Ahrens, Christian H.; Pessi, Gabriella; Eberl, Leo; Robinson, John A.

    2016-01-01

    Increasing antibacterial resistance presents a major challenge in antibiotic discovery. One attractive target in Gram-negative bacteria is the unique asymmetric outer membrane (OM), which acts as a permeability barrier that protects the cell from external stresses, such as the presence of antibiotics. We describe a novel β-hairpin macrocyclic peptide JB-95 with potent antimicrobial activity against Escherichia coli. This peptide exhibits no cellular lytic activity, but electron microscopy and fluorescence studies reveal an ability to selectively disrupt the OM but not the inner membrane of E. coli. The selective targeting of the OM probably occurs through interactions of JB-95 with selected β-barrel OM proteins, including BamA and LptD as shown by photolabeling experiments. Membrane proteomic studies reveal rapid depletion of many β-barrel OM proteins from JB-95-treated E. coli, consistent with induction of a membrane stress response and/or direct inhibition of the Bam folding machine. The results suggest that lethal disruption of the OM by JB-95 occurs through a novel mechanism of action at key interaction sites within clusters of β-barrel proteins in the OM. These findings open new avenues for developing antibiotics that specifically target β-barrel proteins and the integrity of the Gram-negative OM. PMID:26627837

  4. Carbohydrate-reactive, pore-forming outer membrane proteins of Aeromonas hydrophila.

    PubMed Central

    Quinn, D M; Atkinson, H M; Bretag, A H; Tester, M; Trust, T J; Wong, C Y; Flower, R L

    1994-01-01

    Two outer membrane proteins of Aeromonas hydrophila A6, isolated in a one-step affinity chromatography process based on carbohydrate reactivity, were found to be pore-forming molecules in artificial planar bilayer membranes. These carbohydrate-reactive outer membrane proteins (CROMPs; M(r)s, 40,000 and 43,000) were subjected to amino acid analysis. The amino acid profiles for these two outer membrane proteins were almost identical. A partial protein sequence of a 14-amino-acid fragment of the 40,000-Da protein revealed homology with outer membrane porins of Escherichia coli and A. hydrophila. CROMPs were compared with carbohydrate-reactive porins also extracted from outer membranes of A. hydrophila A6. These porins were isolated by using standard porin purification techniques (insolubility in 2% sodium dodecyl sulfate, solubility in 0.4 M NaCl, and Sephacryl S-200 gel filtration), and then Synsorb H type 2 affinity chromatography was done. The physical and functional properties of the carbohydrate-reactive porins and CROMPs were found to be identical. On the basis of pore-forming properties in planar lipid bilayers and channel inhibition with maltotriose solutions, a nonspecific, general diffusion porin and a LamB-like maltoporin were identified in both CROMP and carbohydrate-reactive porin preparations. To our knowledge, the use of carbohydrate reactivity to isolate channel-forming proteins from bacterial outer membranes has not been reported previously. Images PMID:7520425

  5. Outer membrane protein biogenesis in Gram-negative bacteria

    PubMed Central

    Rollauer, Sarah E.; Sooreshjani, Moloud A.; Noinaj, Nicholas; Buchanan, Susan K.

    2015-01-01

    Gram-negative bacteria contain a double membrane which serves for both protection and for providing nutrients for viability. The outermost of these membranes is called the outer membrane (OM), and it contains a host of fully integrated membrane proteins which serve essential functions for the cell, including nutrient uptake, cell adhesion, cell signalling and waste export. For pathogenic strains, many of these outer membrane proteins (OMPs) also serve as virulence factors for nutrient scavenging and evasion of host defence mechanisms. OMPs are unique membrane proteins in that they have a β-barrel fold and can range in size from 8 to 26 strands, yet can still serve many different functions for the cell. Despite their essential roles in cell survival and virulence, the exact mechanism for the biogenesis of these OMPs into the OM has remained largely unknown. However, the past decade has witnessed significant progress towards unravelling the pathways and mechanisms necessary for moulding a nascent polypeptide into a functional OMP within the OM. Here, we will review some of these recent discoveries that have advanced our understanding of the biogenesis of OMPs in Gram-negative bacteria, starting with synthesis in the cytoplasm to folding and insertion into the OM. PMID:26370935

  6. Bacterial outer membrane vesicle biogenesis: a new mechanism and its implications

    PubMed Central

    Roier, Sandro; Zingl, Franz G.; Cakar, Fatih; Schild, Stefan

    2016-01-01

    Outer membrane vesicle (OMV) release by Gram-negative bacteria has been observed and studied for decades. First considered as a by-product of cell lysis, it soon became evident that OMVs are actively secreted from the outer membrane (OM) of Gram-negative bacteria. Accordingly, these small particles (~ 10-300 nm in diameter) consist mainly of OM components like phospholipids (PLs), OM proteins, and lipopolysaccharides or lipooligosaccharides. However, OMVs may also comprise periplasmic, inner membrane, or cytoplasmic components. Since the shedding of substantial amounts of OM material represents a significant energy cost to the bacterial cell, OMV production must have some vital biological functions for Gram-negative bacteria. Indeed, intense research on that topic revealed that OMVs play important roles in bacterial physiology and pathogenesis, ranging from secretion and delivery of biomolecules (for example, toxins, DNA, or quorum sensing molecules) over stress response and biofilm formation to immunomodulation and adherence to host cells. Only recently researchers have begun to elucidate the mechanistic aspects of OMV formation, but a general mechanism for the biogenesis of these vesicles is still lacking. Here we review the findings and implications of our recent study published in Nature Communications (Roier S, et al. (2016) Nat. Commun. 7:10515), where we propose a novel and highly conserved bacterial OMV biogenesis mechanism based on PL accumulation in the outer leaflet of the OM. This mechanism might not only have important pathophysiological roles in vivo, but also represents the first general mechanism of OMV formation applicable to all Gram-negative bacteria.

  7. Heterogeneous interactome between Litopenaeus vannamei plasma proteins and Vibrio parahaemolyticus outer membrane proteins.

    PubMed

    Liu, Xiang; She, Xin-Tao; Zhu, Qing-Feng; Li, Hui; Peng, Xuan-Xian

    2013-01-01

    A great loss has been suffered by microbial infectious diseases under intensive shrimp farming in recent years. In this background, the understanding of shrimp innate immunity becomes an importantly scientific issue, but little is known about the heterogeneous protein-protein interaction between pathogenic cells and hosts, which is a key step for the invading microbes to infect internet organs through bloodstream. In the present study, bacterial outer membrane (OM) protein array and pull-down approaches are used to isolate both Vibrio parahaemolyticus OM proteins that bind to shrimp serum proteins and the shrimp serum proteins that interact with bacterial cells, respectively. Three interacting shrimp serum proteins, hemocyanin, β-1,3-glucan binding protein and LV_HP_RA36F08r and thirty interacting OM proteins were determined. They form 63 heterogeneous protein-protein interactions. Nine out of the 30 OM proteins were randomly demonstrated to be up-regulated or down-regulated when bacterial cells were cultured with shrimp sera, indicating the biological significance of the network. The interesting findings uncover the complexity of struggle between host immunity and bacterial infection. Compared with our previous report on heterogeneous interactome between fish grill and bacterial OM proteins, the present study further extends the investigation from lower vertebrates to invertebrates and develops a bacterial OM protein array to identify the OM proteins bound with shrimp serum proteins, which elevates the frequencies of the bound OM proteins. Our results highlight the way to determine and understand the heterogeneous interaction between hosts and microbes.

  8. Proteomic profiling of Gram-negative bacterial outer membrane vesicles: Current perspectives.

    PubMed

    Lee, Jaewook; Kim, Oh Youn; Gho, Yong Song

    2016-10-01

    Outer membrane vesicles (OMVs) are extracellular vesicles derived from Gram-negative bacteria. Recent progress in the studies of Gram-negative bacterial extracellular vesicles implies that OMVs may function as intercellular communicasomes in bacteria-bacteria and bacteria-host interactions. Current MS-based high-throughput proteomic analyses of Gram-negative bacterial OMVs have identified thousands of vesicular proteins and provided clues to reveal the biogenesis and pathophysiological functions of Gram-negative bacterial OMVs. The future directions of proteomics of Gram-negative bacterial OMVs may include the isolation strategy of Gram-negative bacterial OMVs to thoroughly exclude nonvesicular contaminants and proteomics of Gram-negative bacterial OMVs derived from diverse conditions as well as body fluids of bacterium-infected hosts. We hope this review will shed light on future research in this emerging field of proteomics of extracellular vesicles derived from Gram-negative bacteria and contribute to the development of OMV-based diagnostic tools and effective vaccines.

  9. Affinity purification of bacterial outer membrane vesicles (OMVs) utilizing a His-tag mutant.

    PubMed

    Alves, Nathan J; Turner, Kendrick B; DiVito, Kyle A; Daniele, Michael A; Walper, Scott A

    To facilitate the rapid purification of bacterial outer membrane vesicles (OMVs), we developed two plasmid constructs that utilize a truncated, transmembrane protein to present an exterior histidine repeat sequence. We chose OmpA, a highly abundant porin protein, as the protein scaffold and utilized the lac promoter to allow for inducible control of the epitope-presenting construct. OMVs containing mutant OmpA-His6 were purified directly from Escherichia coli culture media on an immobilized metal affinity chromatography (IMAC) Ni-NTA resin. This enabling technology can be combined with other molecular tools directed at OMV packaging to facilitate the separation of modified/cargo-loaded OMV from their wt counterparts. In addition to numerous applications in the pharmaceutical and environmental remediation industries, this technology can be utilized to enhance basic research capabilities in the area of elucidating endogenous OMV function.

  10. Iron-Associated Outer Membrane Proteins of Magnetic Bacteria

    DTIC Science & Technology

    1989-06-16

    AD-A210 088 _ _ _ _ _ _ _ _ _ _ _ _ Form Approved WrMN PAGE0MB No ()704-0188 la RPORTSECQ!TY -AssF.(L; i RES’C it MA %CS ()NA 14 J 1 ILL 2a SECURITY...NUMBERS 800N. uicy t.PROGRAM PROiECT rASK P T’O ~80NQunyS.EiLEVE T NO NO NO jACCES ON NO Arlington, VA 22217-5000 61153N IRR 4106 4413-009 1 1 TITLE...include Security Classification) (u) Iron Associated Outer Membrane Proteins of Magnetic Bacteria 12 PERSONAL AuTHOR(S) Blakemore, Richard Peter 1 3a

  11. Major outer membrane proteins unique to reproductive cells of Hyphomonas jannaschiana.

    PubMed Central

    Shen, N; Dagasan, L; Sledjeski, D; Weiner, R M

    1989-01-01

    Separation on the basis of molecular weight resolved three proteins specific to the swarmer cell of Hyphomonas jannaschiana. In the reproductive cell, 4 major proteins were identified as cytoplasmic and 10 were identified as envelope. Of these envelope proteins, one was common to both the inner and outer membranes, four were common to the inner membrane, and five were common to the outer membrane. Four of these outer membrane proteins were specific to the reproductive cell, and two of these proteins, with apparent molecular weights of 116,000 and 29,000, constituted 19% of the total cell protein and 54% of the outer membrane protein. Images PMID:2703471

  12. HHomp—prediction and classification of outer membrane proteins

    PubMed Central

    Remmert, Michael; Linke, Dirk; Lupas, Andrei N.; Söding, Johannes

    2009-01-01

    Outer membrane proteins (OMPs) are the transmembrane proteins found in the outer membranes of Gram-negative bacteria, mitochondria and plastids. Most prediction methods have focused on analogous features, such as alternating hydrophobicity patterns. Here, we start from the observation that almost all β-barrel OMPs are related by common ancestry. We identify proteins as OMPs by detecting their homologous relationships to known OMPs using sequence similarity. Given an input sequence, HHomp builds a profile hidden Markov model (HMM) and compares it with an OMP database by pairwise HMM comparison, integrating OMP predictions by PROFtmb. A crucial ingredient is the OMP database, which contains profile HMMs for over 20 000 putative OMP sequences. These were collected with the exhaustive, transitive homology detection method HHsenser, starting from 23 representative OMPs in the PDB database. In a benchmark on TransportDB, HHomp detects 63.5% of the true positives before including the first false positive. This is 70% more than PROFtmb, four times more than BOMP and 10 times more than TMB-Hunt. In Escherichia coli, HHomp identifies 57 out of 59 known OMPs and correctly assigns them to their functional subgroups. HHomp can be accessed at http://toolkit.tuebingen.mpg.de/hhomp. PMID:19429691

  13. HHomp--prediction and classification of outer membrane proteins.

    PubMed

    Remmert, Michael; Linke, Dirk; Lupas, Andrei N; Söding, Johannes

    2009-07-01

    Outer membrane proteins (OMPs) are the transmembrane proteins found in the outer membranes of Gram-negative bacteria, mitochondria and plastids. Most prediction methods have focused on analogous features, such as alternating hydrophobicity patterns. Here, we start from the observation that almost all beta-barrel OMPs are related by common ancestry. We identify proteins as OMPs by detecting their homologous relationships to known OMPs using sequence similarity. Given an input sequence, HHomp builds a profile hidden Markov model (HMM) and compares it with an OMP database by pairwise HMM comparison, integrating OMP predictions by PROFtmb. A crucial ingredient is the OMP database, which contains profile HMMs for over 20,000 putative OMP sequences. These were collected with the exhaustive, transitive homology detection method HHsenser, starting from 23 representative OMPs in the PDB database. In a benchmark on TransportDB, HHomp detects 63.5% of the true positives before including the first false positive. This is 70% more than PROFtmb, four times more than BOMP and 10 times more than TMB-Hunt. In Escherichia coli, HHomp identifies 57 out of 59 known OMPs and correctly assigns them to their functional subgroups. HHomp can be accessed at http://toolkit.tuebingen.mpg.de/hhomp.

  14. Outer Membrane Protein Folding and Topology from a Computational Transfer Free Energy Scale.

    PubMed

    Lin, Meishan; Gessmann, Dennis; Naveed, Hammad; Liang, Jie

    2016-03-02

    Knowledge of the transfer free energy of amino acids from aqueous solution to a lipid bilayer is essential for understanding membrane protein folding and for predicting membrane protein structure. Here we report a computational approach that can calculate the folding free energy of the transmembrane region of outer membrane β-barrel proteins (OMPs) by combining an empirical energy function with a reduced discrete state space model. We quantitatively analyzed the transfer free energies of 20 amino acid residues at the center of the lipid bilayer of OmpLA. Our results are in excellent agreement with the experimentally derived hydrophobicity scales. We further exhaustively calculated the transfer free energies of 20 amino acids at all positions in the TM region of OmpLA. We found that the asymmetry of the Gram-negative bacterial outer membrane as well as the TM residues of an OMP determine its functional fold in vivo. Our results suggest that the folding process of an OMP is driven by the lipid-facing residues in its hydrophobic core, and its NC-IN topology is determined by the differential stabilities of OMPs in the asymmetrical outer membrane. The folding free energy is further reduced by lipid A and assisted by general depth-dependent cooperativities that exist between polar and ionizable residues. Moreover, context-dependency of transfer free energies at specific positions in OmpLA predict regions important for protein function as well as structural anomalies. Our computational approach is fast, efficient and applicable to any OMP.

  15. Characterization and immunogenicity of Kingella kingae outer-membrane proteins.

    PubMed

    Yagupsky, Pablo; Slonim, Ariela

    2005-01-01

    In recent years, Kingella kingae has emerged as an important pediatric pathogen but the antigenicity of the organism and the host immune response have not been studied. Outer membrane proteins (OMPs) of 57 K. kingae isolates were characterized and the immune response of 19 children with invasive infections was studied by immunoblotting. Kingella kingae OMPs were remarkably similar disregarding place and time of isolation and associated clinical condition (asymptomatic carriage, bacteremia, endocarditis, septic arthritis or osteomyelitis). Most OMPs were immunogenic but the specific bands that reacted in each strain and the intensity of the reactions varied substantially. When convalescent sera were reacted with heterologous strains, bands that either were not recognized by the homologous serum or were not present in the homologous strain were visualized. These results demonstrate that OMPs of K. kingae are highly conserved but suggest that some epitopes are polymorphic, resulting in a variable pattern of immune response.

  16. The heat-modifiable outer membrane protein of Actinobacillus actinomycetemcomitans: relationship to OmpA proteins.

    PubMed Central

    Wilson, M E

    1991-01-01

    The outer membrane of Actinobacillus actinomycetemcomitans contains a 29-kDa protein which exhibits heat modifiability on sodium dodecyl sulfate-polyacrylamide gels and represents a major target for immunoglobulin G antibody in sera of periodontitis patients colonized by this organism. In the present study, the N-terminal amino acid sequence of the 29-kDa outer membrane protein was determined and compared with reported sequences for other known proteins. The heat-modifiable outer membrane protein of A. actinomycetemcomitans was found to exhibit significant N-terminal homology with the OmpA proteins of other gram-negative bacteria. Moreover, this protein reacted with antiserum raised against the purified OmpA protein of Escherichia coli K-12. Whether the heat-modifiable OMP of A. actinomycetemcomitans also shares functional properties of OmpA proteins, particularly with respect to bacteriophage receptor activity, is presently under investigation. Images PMID:2050416

  17. Long-Distance Delivery of Bacterial Virulence Factors by Pseudomonas aeruginosa Outer Membrane Vesicles

    PubMed Central

    Bomberger, Jennifer M.; MacEachran, Daniel P.; Coutermarsh, Bonita A.; Ye, Siying; O'Toole, George A.; Stanton, Bruce A.

    2009-01-01

    Bacteria use a variety of secreted virulence factors to manipulate host cells, thereby causing significant morbidity and mortality. We report a mechanism for the long-distance delivery of multiple bacterial virulence factors, simultaneously and directly into the host cell cytoplasm, thus obviating the need for direct interaction of the pathogen with the host cell to cause cytotoxicity. We show that outer membrane–derived vesicles (OMV) secreted by the opportunistic human pathogen Pseudomonas aeruginosa deliver multiple virulence factors, including β-lactamase, alkaline phosphatase, hemolytic phospholipase C, and Cif, directly into the host cytoplasm via fusion of OMV with lipid rafts in the host plasma membrane. These virulence factors enter the cytoplasm of the host cell via N-WASP–mediated actin trafficking, where they rapidly distribute to specific subcellular locations to affect host cell biology. We propose that secreted virulence factors are not released individually as naked proteins into the surrounding milieu where they may randomly contact the surface of the host cell, but instead bacterial derived OMV deliver multiple virulence factors simultaneously and directly into the host cell cytoplasm in a coordinated manner. PMID:19360133

  18. Role of outer-membrane proteins and lipopolysaccharide in conjugation between Neisseria gonorrhoeae and Neisseria cinerea.

    PubMed

    Genco, C A; Clark, V L

    1988-12-01

    Little is known concerning the mechanism involved in cell contact between the donor and recipient during conjugation in Neisseria gonorrhoeae. The formation of stable mating pairs during conjugation in Escherichia coli appears to require a specific protein as well as LPS in the outer membrane of the recipient cell. To attempt to identify the cell surface components necessary for conjugation in the neisseriae, we began a comparison of the outer membrane of Neisseria cinerea strains that can (Con+) and cannot (Con-) serve as recipients in conjugation with N. gonorrhoeae. There were no differences in outer-membrane protein profiles on SDS-polyacrylamide gel electrophoresis between Con+ and Con- strains that could be correlated with the ability to conjugate. However, whole outer membrane isolated from Con+ strains specifically inhibited conjugation while those from Con- strains did not. Proteolytic cleavage of outer-membrane proteins by trypsin, pronase or alpha-chymotrypsin abolished the inhibitory effect of Con+ outer membranes, suggesting that these outer membranes contained a protease-sensitive protein(s) involved in conjugation. Although periodate oxidation of Con+ outer-membrane carbohydrates did not abolish the inhibitory action of these membranes, purified LPS from both Con+ and Con- strains inhibited conjugation when added at low concentrations. These results suggest that conjugation requires the presence of a specific conjugal receptor that consists of both LPS and one or more outer-membrane proteins. Both Con+ and Con- strains contain the necessary LPS, but only Con+ strains contain the required protein(s).

  19. Bacterial social networks: structure and composition of Myxococcus xanthus outer membrane vesicle chains.

    PubMed

    Remis, Jonathan P; Wei, Dongguang; Gorur, Amita; Zemla, Marcin; Haraga, Jessica; Allen, Simon; Witkowska, H Ewa; Costerton, J William; Berleman, James E; Auer, Manfred

    2014-02-01

    The social soil bacterium, Myxococcus xanthus, displays a variety of complex and highly coordinated behaviours, including social motility, predatory rippling and fruiting body formation. Here we show that M. xanthus cells produce a network of outer membrane extensions in the form of outer membrane vesicle chains and membrane tubes that interconnect cells. We observed peritrichous display of vesicles and vesicle chains, and increased abundance in biofilms compared with planktonic cultures. By applying a range of imaging techniques, including three-dimensional (3D) focused ion beam scanning electron microscopy, we determined these structures to range between 30 and 60 nm in width and up to 5 μm in length. Purified vesicle chains consist of typical M. xanthus lipids, fucose, mannose, N-acetylglucosamine and N-acetylgalactoseamine carbohydrates and a small set of cargo protein. The protein content includes CglB and Tgl outer membrane proteins known to be transferable between cells in a contact-dependent manner. Most significantly, the 3D organization of cells within biofilms indicates that cells are connected via an extensive network of membrane extensions that may connect cells at the level of the periplasmic space. Such a network would allow the transfer of membrane proteins and other molecules between cells, and therefore could provide a mechanism for the coordination of social activities.

  20. Lack of Outer Membrane Protein A Enhances the Release of Outer Membrane Vesicles and Survival of Vibrio cholerae and Suppresses Viability of Acanthamoeba castellanii

    PubMed Central

    Valeru, Soni Priya; Shanan, Salah; Alossimi, Haifa; Sandström, Gunnar

    2014-01-01

    Vibrio cholerae, the causative agent of the diarrhoeal disease cholera, survives in aquatic environments. The bacterium has developed a survival strategy to grow and survive inside Acanthamoeba castellanii. It has been shown that V. cholerae expresses outer membrane proteins as virulence factors playing a role in the adherence to interacted host cells. This study examined the role of outer membrane protein A (OmpA) and outer membrane vesicles (OMVs) in survival of V. cholerae alone and during its interaction with A. castellanii. The results showed that an OmpA mutant of V. cholerae survived longer than wild-type V. cholerae when cultivated alone. Cocultivation with A. castellanii enhanced the survival of both bacterial strains and OmpA protein exhibited no effect on attachment, engulfment, and survival inside the amoebae. However, cocultivation of the OmpA mutant of V. cholerae decreased the viability of A. castellanii and this bacterial strain released more OMVs than wild-type V. cholerae. Surprisingly, treatment of amoeba cells with OMVs isolated from the OmpA mutant significantly decreased viable counts of the amoeba cells. In conclusion, the results might highlight a regulating rule for OmpA in survival of V. cholerae and OMVs as a potent virulence factor for this bacterium towards eukaryotes in the environment. PMID:24799908

  1. Methylation and in vivo expression of the surface-exposed Leptospira interrogans outer membrane protein OmpL32

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies have revealed that bacterial protein methylation is a widespread post-translational modification that is required for virulence in selected pathogenic bacteria. In particular, altered methylation of outer membrane proteins has been shown to modulate the effectiveness of the host immu...

  2. Molecular Structure of the Outer Bacterial Membrane of Pseudomonas aeruginosa via Classical Simulation

    SciTech Connect

    Shroll, Robert M.; Straatsma, TP

    2002-10-23

    A detailed structural analysis has been performed of the outer bacterial membrane of Pseudomonas aeruginosa using a parameterized classical simulation model [R. D. Lins and T. P. Straatsma, Biophys. J. 81:1037-1046, (2001)] with modest modifications. The structural analysis of the membrane is presented and newly discovered characteristics of the membrane are discussed. Simulations indicate that the relative contribution of different ligands to calcium ion coordination varies across the membrane, while maintaining a constant average coordination number of 6.1. Water penetrates the surface of the membrane to a depth of about 30?. The hydration of ions and phosphate groups is shown to depend on location within the membrane. A measure of saccharide residue orientation is defined and average orientations are presented. Saccharide residues possess varying degrees of motion with a trend of greater mobility at the membrane surface. However, their motion is limited and even in the membrane outer core region the average structure appears fairly rigid over a period of 1 ns.

  3. Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models

    DOE PAGES

    Clifton, Luke A.; Skoda, Maximilian W. A.; Le Brun, Anton P.; ...

    2014-12-09

    The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg2+ and Ca2+) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-ray and neutronmore » reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca2+ binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration.« less

  4. Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models

    SciTech Connect

    Clifton, Luke A.; Skoda, Maximilian W. A.; Le Brun, Anton P.; Ciesielski, Filip; Kuzmenko, Ivan; Holt, Stephen A.; Lakey, Jeremy H.

    2014-12-09

    The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg2+ and Ca2+) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-ray and neutron reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca2+ binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration.

  5. The presequence pathway is involved in protein sorting to the mitochondrial outer membrane

    PubMed Central

    Wenz, Lena-Sophie; Opaliński, Łukasz; Schuler, Max-Hinderk; Ellenrieder, Lars; Ieva, Raffaele; Böttinger, Lena; Qiu, Jian; van der Laan, Martin; Wiedemann, Nils; Guiard, Bernard; Pfanner, Nikolaus; Becker, Thomas

    2014-01-01

    The mitochondrial outer membrane contains integral α-helical and β-barrel proteins that are imported from the cytosol. The machineries importing β-barrel proteins have been identified, however, different views exist on the import of α-helical proteins. It has been reported that the biogenesis of Om45, the most abundant signal-anchored protein, does not depend on proteinaceous components, but involves direct insertion into the outer membrane. We show that import of Om45 occurs via the translocase of the outer membrane and the presequence translocase of the inner membrane. Assembly of Om45 in the outer membrane involves the MIM machinery. Om45 thus follows a new mitochondrial biogenesis pathway that uses elements of the presequence import pathway to direct a protein to the outer membrane. PMID:24781695

  6. Proteomic analysis of Lawsonia intracellularis reveals expression of outer membrane proteins during infection.

    PubMed

    Watson, Eleanor; Alberdi, M Pilar; Inglis, Neil F; Lainson, Alex; Porter, Megan E; Manson, Erin; Imrie, Lisa; Mclean, Kevin; Smith, David G E

    2014-12-05

    Lawsonia intracellularis is the aetiological agent of the commercially significant porcine disease, proliferative enteropathy. Current understanding of host-pathogen interaction is limited due to the fastidious microaerophilic obligate intracellular nature of the bacterium. In the present study, expression of bacterial proteins during infection was investigated using a mass spectrometry approach. LC-ESI-MS/MS analysis of two isolates of L. intracellularis from heavily-infected epithelial cell cultures and database mining using fully annotated L. intracellularis genome sequences identified 19 proteins. According to the Clusters of Orthologous Groups (COG) functional classification, proteins were identified with roles in cell metabolism, protein synthesis and oxidative stress protection; seven proteins with putative or unknown function were also identified. Detailed bioinformatic analyses of five uncharacterised proteins, which were expressed by both isolates, identified domains and motifs common to other outer membrane-associated proteins with important roles in pathogenesis including adherence and invasion. Analysis of recombinant proteins on Western blots using immune sera from L. intracellularis-infected pigs identified two proteins, LI0841 and LI0902 as antigenic. The detection of five outer membrane proteins expressed during infection, including two antigenic proteins, demonstrates the potential of this approach to interrogate L. intracellularis host-pathogen interactions and identify novel targets which may be exploited in disease control.

  7. Outer Membrane Proteins form Specific Patterns in Antibiotic-Resistant Edwardsiella tarda

    PubMed Central

    Peng, Bo; Wang, Chao; Li, Hui; Su, Yu-bin; Ye, Jin-zhou; Yang, Man-jun; Jiang, Ming; Peng, Xuan-xian

    2017-01-01

    Outer membrane proteins of Gram-negative bacteria play key roles in antibiotic resistance. However, it is unknown whether outer membrane proteins that respond to antibiotics behave in a specific manner. The present study specifically investigated the differentially expressed outer membrane proteins of an antibiotic-resistant bacterium, Edwardsiella tarda, a Gram-negative pathogen that can lead to unnecessary mass medication of antimicrobials and consequently resistance development in aquaculture and a spectrum of intestinal and extraintestinal diseases in humans. The comparison of a clinically isolated strain to the laboratory derived kanamycin-, tetracycline-, or chloramphenicol-resistant strains identified their respective outer membrane proteins expression patterns, which are distinct to each other. Similarly, the same approach was utilized to profile the patterns in double antibiotic-resistant bacteria. Surprisingly, one pattern is always dominant over the other as to these three antibiotics; the pattern of chloramphenicol is over tetracycline, which is over kanamycin. This type of pattern was also confirmed in clinically relevant multidrug-resistant bacteria. In addition, the presence of plasmid encoding antibiotic-resistant genes also alters the outer membrane protein profile in a similar manner. Our results demonstrate that bacteria adapt the antibiotic stress through the regulation of outer membrane proteins expression. And more importantly, different outer membrane protein profiles were required to cope with different antibiotics. This type of specific pattern provides the rationale for the development of novel strategy to design outer membrane protein arrays to identify diverse multidrug resistance profiles as biomarkers for clinical medication. PMID:28210241

  8. Outer Membrane Proteins form Specific Patterns in Antibiotic-Resistant Edwardsiella tarda.

    PubMed

    Peng, Bo; Wang, Chao; Li, Hui; Su, Yu-Bin; Ye, Jin-Zhou; Yang, Man-Jun; Jiang, Ming; Peng, Xuan-Xian

    2017-01-01

    Outer membrane proteins of Gram-negative bacteria play key roles in antibiotic resistance. However, it is unknown whether outer membrane proteins that respond to antibiotics behave in a specific manner. The present study specifically investigated the differentially expressed outer membrane proteins of an antibiotic-resistant bacterium, Edwardsiella tarda, a Gram-negative pathogen that can lead to unnecessary mass medication of antimicrobials and consequently resistance development in aquaculture and a spectrum of intestinal and extraintestinal diseases in humans. The comparison of a clinically isolated strain to the laboratory derived kanamycin-, tetracycline-, or chloramphenicol-resistant strains identified their respective outer membrane proteins expression patterns, which are distinct to each other. Similarly, the same approach was utilized to profile the patterns in double antibiotic-resistant bacteria. Surprisingly, one pattern is always dominant over the other as to these three antibiotics; the pattern of chloramphenicol is over tetracycline, which is over kanamycin. This type of pattern was also confirmed in clinically relevant multidrug-resistant bacteria. In addition, the presence of plasmid encoding antibiotic-resistant genes also alters the outer membrane protein profile in a similar manner. Our results demonstrate that bacteria adapt the antibiotic stress through the regulation of outer membrane proteins expression. And more importantly, different outer membrane protein profiles were required to cope with different antibiotics. This type of specific pattern provides the rationale for the development of novel strategy to design outer membrane protein arrays to identify diverse multidrug resistance profiles as biomarkers for clinical medication.

  9. Protecting enzymatic function through directed packaging into bacterial outer membrane vesicles

    PubMed Central

    Alves, Nathan J.; Turner, Kendrick B.; Medintz, Igor L.; Walper, Scott A.

    2016-01-01

    Bacteria possess innate machinery to transport extracellular cargo between cells as well as package virulence factors to infect host cells by secreting outer membrane vesicles (OMVs) that contain small molecules, proteins, and genetic material. These robust proteoliposomes have evolved naturally to be resistant to degradation and provide a supportive environment to extend the activity of encapsulated cargo. In this study, we sought to exploit bacterial OMV formation to package and maintain the activity of an enzyme, phosphotriesterase (PTE), under challenging storage conditions encountered for real world applications. Here we show that OMV packaged PTE maintains activity over free PTE when subjected to elevated temperatures (>100-fold more activity after 14 days at 37 °C), iterative freeze-thaw cycles (3.4-fold post four-cycles), and lyophilization (43-fold). We also demonstrate how lyophilized OMV packaged PTE can be utilized as a cell free reagent for long term environmental remediation of pesticide/chemical warfare contaminated areas. PMID:27117743

  10. Proteomic Analysis of Outer Membrane Proteins from Salmonella Enteritidis Strains with Different Sensitivity to Human Serum

    PubMed Central

    Dudek, Bartłomiej; Krzyżewska, Eva; Kapczyńska, Katarzyna; Rybka, Jacek; Pawlak, Aleksandra; Korzekwa, Kamila; Klausa, Elżbieta; Bugla-Płoskońska, Gabriela

    2016-01-01

    Differential analysis of outer membrane composition of S. Enteritidis strains, resistant to 50% normal human serum (NHS) was performed in order to find factors influencing the resistance to higher concentrations of NHS. Ten S. Enteritidis clinical strains, resistant to 50% NHS, all producing very long lipopolysaccharide, were subjected to the challenge of 75% NHS. Five extreme strains: two resistant and three sensitive to 75% NHS, were chosen for the further analysis of outer membrane proteins composition. Substantial differences were found in the levels of particular outer membrane proteins between resistant and sensitive strains, i.e. outer membrane protease E (PgtE) was present mainly in resistant strains, while sensitive strains possessed a high level of flagellar hook-associated protein 2 (FliD) and significantly higher levels of outer membrane protein A (OmpA). PMID:27695090

  11. Activation of the Complement Classical Pathway (C1q Binding) by Mesophilic Aeromonas hydrophila Outer Membrane Protein

    PubMed Central

    Merino, Susana; Nogueras, Maria Mercedes; Aguilar, Alicia; Rubires, Xavier; Albertí, Sebastian; Benedí, Vicente Javier; Tomás, Juan M.

    1998-01-01

    The mechanism of killing of Aeromonas hydrophila serum-sensitive strains in nonimmune serum by the complement classical pathway has been studied. The bacterial cell surface component that binds C1q more efficiently was identified as a major outer membrane protein of 39 kDa, presumably the porin II described by D. Jeanteur, N. Gletsu, F. Pattus, and J. T. Buckley (Mol. Microbiol. 6:3355–3363, 1992), of these microorganisms. We have demonstrated that the purified form of porin II binds C1q and activates the classical pathway in an antibody-independent manner, with the subsequent consumption of C4 and reduction of the serum total hemolytic activity. Activation of the classical pathway has been observed in human nonimmune serum and agammaglobulinemic serum (both depleted of factor D). Binding of C1q to other components of the bacterial outer membrane, in particular to rough lipopolysaccharide, could not be demonstrated. Activation of the classical pathway by this lipopolysaccharide was also much less efficient than activation by the outer membrane protein. The strains possessing O-antigen lipopolysaccharide bind less C1q than the serum-sensitive strains, because the outer membrane protein is less accessible, and are resistant to complement-mediated killing. Finally, a similar or identical outer membrane protein (presumably porin II) that binds C1q was shown to be present in strains from the most common mesophilic Aeromonas O serogroups. PMID:9673268

  12. Flagella proteins contribute to the production of outer membrane vesicles from Escherichia coli W3110.

    PubMed

    Manabe, Takayuki; Kato, Mayu; Ueno, Takayuki; Kawasaki, Kiyoshi

    2013-11-08

    Gram-negative bacteria, including Escherichia coli, release outer membrane vesicles (OMVs) that are derived from the bacterial outer membrane. OMVs contribute to bacterial cell-cell communications and host-microbe interactions by delivering components to locations outside the bacterial cell. In order to explore the molecular machinery involved in OMV biogenesis, the role of a major OMV protein was examined in the production of OMVs from E. coli W3110, which is a widely used standard E. coli K-12 strain. In addition to OmpC and OmpA, which are used as marker proteins for OMVs, an analysis of E. coli W3110 OMVs revealed that they also contain abundant levels of FliC, which is also known as flagellin. A membrane-impermeable biotin-labeling reagent did not label FliC in intact OMVs, but labeled FliC in sonically disrupted OMVs, suggesting that FliC is localized in the lumen of OMV. Compared to the parental strain expressing wild-type fliC, an E. coli strain with a fliC-null mutation produced reduced amounts of OMVs based on both protein and phosphate levels. In addition, an E. coli W3110-derived strain with a null-mutation in flgK, which encodes flagellar hook-associated protein that is essential along with FliC for flagella synthesis, also produced fewer OMVs than the parental strain. Taken together, these results indicate that the ability to form flagella, including the synthesis of flagella proteins, affects the production of E. coli W3110 OMVs.

  13. Permeability barrier of the gram-negative bacterial outer membrane with special reference to nisin.

    PubMed

    Helander, I M; Mattila-Sandholm, T

    2000-09-25

    The effect of nisin pretreatment on organic acid-induced permeability increase in strains of Escherichia coli, Pseudomonas aeruginosa, P. marginalis, and Salmonella enterica sv. Typhimurium was investigated, using assays based on the uptake of a fluorescent dye 1-N-phenylnaphthylamine (NPN) and on the bacterial susceptibility to detergent-induced bacteriolysis. The outer membrane of bacteria which had been pretreated with nisin was shown to be less stable against 1 mM EDTA, as indicated by their significantly higher NPN uptake levels as compared to untreated bacteria. Upon challenge with a tenfold lower concentration of EDTA (0.1 mM) some nisin-treated strains (Typhimurium, P. marginalis) exhibited, however, NPN uptake levels which were lower than those seen in control bacteria, suggesting that nisin had stabilized their outer membrane. Nisin pretreatment also decreased the NPN uptake induced by citric or lactic acid or both in E. coli, P. marginalis, and Typhimurium, whereas in P. aeruginosa the pretreatment resulted in increased NPN uptake in response to citric and lactic acid. These results suggest that, with the exception of P. aeruginosa, nisin could protect bacteria from the outer membrane-disrupting effect caused by the acids. P. aeruginosa was, however, shown to be protected against bacteriolysis induced by the detergents sodium dodecylsulfate and Triton X-100. With a pair of isogenic mutants of Typhimurium differing in their cell surface charge it was shown that the NPN uptake response to I mM EDTA of the abnormally cationic strain was not significantly affected by nisin, whereas in the normal anionic strain nisin strongly strengthened the uptake. Our hypothesis based on these findings is that the normally anionic cell surface of Gram-negative bacteria has a tendency to bind the cationic nisin. The binding of nisin to the surface does not proceed to the cytoplasmic membrane, but in the outer membrane the bound nisin actually stabilizes its structure

  14. Antigenic Structure of Outer Membrane Protein E of Moraxella catarrhalis and Construction and Characterization of Mutants

    PubMed Central

    Murphy, Timothy F.; Brauer, Aimee L.; Yuskiw, Norine; Hiltke, Thomas J.

    2000-01-01

    Outer membrane protein E (OMP E) is a 50-kDa protein of Moraxella catarrhalis which possesses several characteristics indicating that the protein will be an effective vaccine antigen. To study the antigenic structure of OMP E, eight monoclonal antibodies were developed and characterized. Three of the antibodies recognized epitopes which are present on the bacterial surface. Fusion peptides corresponding to overlapping regions of OMP E were constructed, and immunoblot assays were performed to localize the areas of the molecule bound by the monoclonal antibodies. These studies identified a surface-exposed epitope in the region of amino acids 80 through 180. To further study the protein, two mutants which lack OMP E were constructed. In bactericidal assays, the mutants were more readily killed by normal human serum compared to the isogenic parent strains. These results indicate that OMP E is involved in the expression of serum resistance of M. catarrhalis. PMID:11035732

  15. Expression, Solubilization, and Purification of Bacterial Membrane Proteins.

    PubMed

    Jeffery, Constance J

    2016-02-02

    Bacterial integral membrane proteins play many important roles, including sensing changes in the environment, transporting molecules into and out of the cell, and in the case of commensal or pathogenic bacteria, interacting with the host organism. Working with membrane proteins in the lab can be more challenging than working with soluble proteins because of difficulties in their recombinant expression and purification. This protocol describes a standard method to express, solubilize, and purify bacterial integral membrane proteins. The recombinant protein of interest with a 6His affinity tag is expressed in E. coli. After harvesting the cultures and isolating cellular membranes, mild detergents are used to solubilize the membrane proteins. Protein-detergent complexes are then purified using IMAC column chromatography. Support protocols are included to help select a detergent for protein solubilization and for use of gel filtration chromatography for further purification.

  16. Leptospiral Outer Membrane Protein Microarray, a Novel Approach to Identification of Host Ligand-Binding Proteins

    PubMed Central

    Matsunaga, James; Haake, David A.

    2012-01-01

    Leptospirosis is a zoonosis with worldwide distribution caused by pathogenic spirochetes belonging to the genus Leptospira. The leptospiral life cycle involves transmission via freshwater and colonization of the renal tubules of their reservoir hosts. Infection requires adherence to cell surfaces and extracellular matrix components of host tissues. These host-pathogen interactions involve outer membrane proteins (OMPs) expressed on the bacterial surface. In this study, we developed an Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130 OMP microarray containing all predicted lipoproteins and transmembrane OMPs. A total of 401 leptospiral genes or their fragments were transcribed and translated in vitro and printed on nitrocellulose-coated glass slides. We investigated the potential of this protein microarray to screen for interactions between leptospiral OMPs and fibronectin (Fn). This approach resulted in the identification of the recently described fibronectin-binding protein, LIC10258 (MFn8, Lsa66), and 14 novel Fn-binding proteins, denoted Microarray Fn-binding proteins (MFns). We confirmed Fn binding of purified recombinant LIC11612 (MFn1), LIC10714 (MFn2), LIC11051 (MFn6), LIC11436 (MFn7), LIC10258 (MFn8, Lsa66), and LIC10537 (MFn9) by far-Western blot assays. Moreover, we obtained specific antibodies to MFn1, MFn7, MFn8 (Lsa66), and MFn9 and demonstrated that MFn1, MFn7, and MFn9 are expressed and surface exposed under in vitro growth conditions. Further, we demonstrated that MFn1, MFn4 (LIC12631, Sph2), and MFn7 enable leptospires to bind fibronectin when expressed in the saprophyte, Leptospira biflexa. Protein microarrays are valuable tools for high-throughput identification of novel host ligand-binding proteins that have the potential to play key roles in the virulence mechanisms of pathogens. PMID:22961849

  17. Bacterial Social Networks: Structure and composition of Myxococcus xanthus outer membrane vesicle chains

    PubMed Central

    Remis, Jonathan P.; Wei, Doug; Gorur, Amita; Zemla, Marcin; Haraga, Jessica; Allen, Simon; Witkowska, H. Ewa; Costerton, J. William; Berleman, James E.; Auer, Manfred

    2014-01-01

    Summary The social soil bacterium, Myxococcus xanthus, displays a variety of complex and highly coordinated behaviors, including social motility, predatory rippling and fruiting body formation. Here we show that M. xanthus cells produce a network of outer membrane extensions in the form of vesicles and vesicle chains that interconnect cells. We observed peritrichous display of vesicles and vesicle chains and increased abundance in biofilms compared to planktonic cultures. By applying a range of imaging techniques, including 3D Focused Ion Beam Scanning Electron Microscopy (FIB/SEM), we determined these structures to range between 30-60 nm in width and up to 5 μm in length. Purified vesicle chains consist of typical M. xanthus lipids, fucose, mannose, N-acetylglucosamine (GlcNAc) and N-acetylgalactoseamine (GalNAc) carbohydrates and a small set of cargo protein. The protein content includes CglB and Tgl membrane proteins transferred in a contact-dependent manner. Most significantly, the 3D organization of cells within biofilms indicates that cells are connected via an extensive network of membrane extensions that may connect cells at the level of the periplasmic space. Such a network would allow the transfer of membrane proteins and other molecules between cells, and likely provides a mechanism for the coordination of social activities. PMID:23848955

  18. Structure of BamA, an essential factor in outer membrane protein biogenesis.

    PubMed

    Albrecht, Reinhard; Schütz, Monika; Oberhettinger, Philipp; Faulstich, Michaela; Bermejo, Ivan; Rudel, Thomas; Diederichs, Kay; Zeth, Kornelius

    2014-06-01

    Outer membrane protein (OMP) biogenesis is an essential process for maintaining the bacterial cell envelope and involves the β-barrel assembly machinery (BAM) for OMP recognition, folding and assembly. In Escherichia coli this function is orchestrated by five proteins: the integral outer membrane protein BamA of the Omp85 superfamily and four associated lipoproteins. To unravel the mechanism underlying OMP folding and insertion, the structure of the E. coli BamA β-barrel and P5 domain was determined at 3 Å resolution. These data add information beyond that provided in the recently published crystal structures of BamA from Haemophilus ducreyi and Neisseria gonorrhoeae and are a valuable basis for the interpretation of pertinent functional studies. In an `open' conformation, E. coli BamA displays a significant degree of flexibility between P5 and the barrel domain, which is indicative of a multi-state function in substrate transfer. E. coli BamA is characterized by a discontinuous β-barrel with impaired β1-β16 strand interactions denoted by only two connecting hydrogen bonds and a disordered C-terminus. The 16-stranded barrel surrounds a large cavity which implies a function in OMP substrate binding and partial folding. These findings strongly support a mechanism of OMP biogenesis in which substrates are partially folded inside the barrel cavity and are subsequently released laterally into the lipid bilayer.

  19. Gene cloning and prokaryotic expression of recombinant outer membrane protein from Vibrio parahaemolyticus

    NASA Astrophysics Data System (ADS)

    Yuan, Ye; Wang, Xiuli; Guo, Sheping; Qiu, Xuemei

    2011-06-01

    Gram-negative Vibrio parahaemolyticus is a common pathogen in humans and marine animals. The outer membrane protein of bacteria plays an important role in the infection and pathogenicity to the host. Thus, the outer membrane proteins are an ideal target for vaccines. We amplified a complete outer membrane protein gene (ompW) from V. parahaemolyticus ATCC 17802. We then cloned and expressed the gene into Escherichia coli BL21 (DE3) cells. The gene coded for a protein that was 42.78 kDa. We purified the protein using Ni-NTA affinity chromatography and Anti-His antibody Western blotting, respectively. Our results provide a basis for future application of the OmpW protein as a vaccine candidate against infection by V. parahaemolyticus. In addition, the purified OmpW protein can be used for further functional and structural studies.

  20. Eukaryote-wide sequence analysis of mitochondrial β-barrel outer membrane proteins

    PubMed Central

    2011-01-01

    Background The outer membranes of mitochondria are thought to be homologous to the outer membranes of Gram negative bacteria, which contain 100's of distinct families of β-barrel membrane proteins (BOMPs) often forming channels for transport of nutrients or drugs. However, only four families of mitochondrial BOMPs (MBOMPs) have been confirmed to date. Although estimates as high as 100 have been made in the past, the number of yet undiscovered MBOMPs is an open question. Fortunately, the recent discovery of a membrane integration signal (the β-signal) for MBOMPs gave us an opportunity to look for undiscovered MBOMPs. Results We present the results of a comprehensive survey of eukaryotic protein sequences intended to identify new MBOMPs. Our search employs recent results on β-signals as well as structural information and a novel BOMP predictor trained on both bacterial and mitochondrial BOMPs. Our principal finding is circumstantial evidence suggesting that few MBOMPs remain to be discovered, if one assumes that, like known MBOMPs, novel MBOMPs will be monomeric and β-signal dependent. In addition to this, our analysis of MBOMP homologs reveals some exceptions to the current model of the β-signal, but confirms its consistent presence in the C-terminal region of MBOMP proteins. We also report a β-signal independent search for MBOMPs against the yeast and Arabidopsis proteomes. We find no good candidates MBOMPs in yeast but the Arabidopsis results are less conclusive. Conclusions Our results suggest there are no remaining MBOMPs left to discover in yeast; and if one assumes all MBOMPs are β-signal dependent, few MBOMP families remain undiscovered in any sequenced organism. PMID:21272379

  1. Role of Pseudomonas aeruginosa Peptidoglycan-Associated Outer Membrane Proteins in Vesicle Formation

    PubMed Central

    Wessel, Aimee K.; Liew, Jean; Kwon, Taejoon; Marcotte, Edward M.

    2013-01-01

    Gram-negative bacteria produce outer membrane vesicles (OMVs) that package and deliver proteins, small molecules, and DNA to prokaryotic and eukaryotic cells. The molecular details of OMV biogenesis have not been fully elucidated, but peptidoglycan-associated outer membrane proteins that tether the outer membrane to the underlying peptidoglycan have been shown to be critical for OMV formation in multiple Enterobacteriaceae. In this study, we demonstrate that the peptidoglycan-associated outer membrane proteins OprF and OprI, but not OprL, impact production of OMVs by the opportunistic pathogen Pseudomonas aeruginosa. Interestingly, OprF does not appear to be important for tethering the outer membrane to peptidoglycan but instead impacts OMV formation through modulation of the levels of the Pseudomonas quinolone signal (PQS), a quorum signal previously shown by our laboratory to be critical for OMV formation. Thus, the mechanism by which OprF impacts OMV formation is distinct from that for other peptidoglycan-associated outer membrane proteins, including OprI. PMID:23123904

  2. Interaction between Polyamines and Bacterial Outer Membranes as Investigated with Ion-Selective Electrodes

    PubMed Central

    Katsu, Takashi; Nakagawa, Hideki; Yasuda, Keiko

    2002-01-01

    We analyzed the interaction between polyamines and the outer membrane of Escherichia coli cells using potentiometric measurements with Ca2+, tetraphenylphosphonium (TPP+), and K+ electrodes. The Ca2+ electrode was used to examine the ability of the polyamines to release Ca2+ from the outer membrane. The TPP+ electrode was used to examine the ability to permeabilize the outer membrane, since the uptake of TPP+ was enhanced when the permeability barrier of the outer membrane was disrupted. The K+ electrode was used to examine permeabilization in the cytoplasmic membrane by monitoring the efflux of K+ in cytosol. Although Ca2+ release was remarkably enhanced by increasing the number of amino groups in polyamines, no TPP+ uptake was observed with polyamines of a simple structure, such as ethylenediamine, spermidine, and spermine. TPP+ uptake was observed when appropriate lipophilic moieties were further attached to the polyamines with three or four amino groups, indicating that the existence of bulky moieties as well as the number of amino groups is important to induce outer membrane permeabilization. Thus, 1-naphthylacetylspermine and N,N′-bis[6-[[(2-methoxyphenyl)methyl]amino]hexyl]-1,8-octanediamine (methoctramine) were especially effective in increasing the permeability of the outer membrane of E. coli cells, being comparable to polymyxin B nonapeptide, a well-known cationic peptide showing such action. PMID:11897592

  3. Association of the outer membrane protein Omp33 with fitness and virulence of Acinetobacter baumannii.

    PubMed

    Smani, Younes; Dominguez-Herrera, Juan; Pachón, Jerónimo

    2013-11-15

    Outer membrane protein 33 (Omp33) is an outer membrane porin of Acinetobacter baumannii associated with carbapenem resistance. However, the role of Omp33 in the fitness and virulence of A. baumannii remains unknown. In the present study, we investigated the role of Omp33 in fitness and virulence of A. baumannii by using an isogenic knockout strain deficient in the omp33 gene (JPAB02), derived from the ATCC 17978 wild-type (wt). Both in vitro and in vivo defect in the growth rate was found in the JPAB02 strain in competition with the ATCC 17978 wt, highlighting the effect of Omp33 on the metabolic fitness. A significant reduction was observed both in adherence and invasion of human lung epithelial cells and in cytotoxicity of these cells and macrophages with JPAB02. In a murine peritoneal sepsis model, the JPAB02 strain exhibited lower lethal dose 0 (LD0), LD50, and LD100, and dissemination in mice, with reduced bacterial concentration in spleen and lungs. From these data, we concluded that Omp33 plays an important role for fitness and virulence of A. baumannii.

  4. Acinetobacter baumannii Outer Membrane Vesicles Elicit a Potent Innate Immune Response via Membrane Proteins

    PubMed Central

    Jun, So Hyun; Lee, Jung Hwa; Kim, Bo Ra; Kim, Seung Il; Park, Tae In

    2013-01-01

    Acinetobacter baumannii is increasingly becoming a major nosocomial pathogen. This opportunistic pathogen secretes outer membrane vesicles (OMVs) that interact with host cells. The aim of this study was to investigate the ability of A. baumannii OMVs to elicit a pro-inflammatory response in vitro and the immunopathology in response to A. baumannii OMVs in vivo. OMVs derived from A. baumannii ATCC 19606T induced expression of pro-inflammatory cytokine genes, interleukin (IL)-1β and IL-6, and chemokine genes, IL-8, macrophage inflammatory protein-1α, and monocyte chemoattractant protein-1, in epithelial cells in a dose-dependent manner. Disintegration of OMV membrane with ethylenediaminetetraacetic acid resulted in low expression of pro-inflammatory cytokine genes, as compared with the response to intact OMVs. In addition, proteinase K-treated A. baumannii OMVs did not induce significant increase in expression of pro-inflammatory cytokine genes above the basal level, suggesting that the surface-exposed membrane proteins in intact OMVs are responsible for pro-inflammatory response. Early inflammatory processes, such as vacuolization and detachment of epithelial cells and neutrophilic infiltration, were clearly observed in lungs of mice injected with A. baumannii OMVs. Our data demonstrate that OMVs produced by A. baumannii elicit a potent innate immune response, which may contribute to immunopathology of the infected host. PMID:23977136

  5. Legionella pneumophila-Derived Outer Membrane Vesicles Promote Bacterial Replication in Macrophages

    PubMed Central

    Jung, Anna Lena; Stoiber, Cornelia; Herkt, Christina E.; Schulz, Christine; Bertrams, Wilhelm; Schmeck, Bernd

    2016-01-01

    The formation and release of outer membrane vesicles (OMVs) is a phenomenon of Gram-negative bacteria. This includes Legionella pneumophila (L. pneumophila), a causative agent of severe pneumonia. Upon its transmission into the lung, L. pneumophila primarily infects and replicates within macrophages. Here, we analyzed the influence of L. pneumophila OMVs on macrophages. To this end, differentiated THP-1 cells were incubated with increasing doses of Legionella OMVs, leading to a TLR2-dependent classical activation of macrophages with the release of pro-inflammatory cytokines. Inhibition of TLR2 and NF-κB signaling reduced the induction of pro-inflammatory cytokines. Furthermore, treatment of THP-1 cells with OMVs prior to infection reduced replication of L. pneumophila in THP-1 cells. Blocking of TLR2 activation or heat denaturation of OMVs restored bacterial replication in the first 24 h of infection. With prolonged infection-time, OMV pre-treated macrophages became more permissive for bacterial replication than untreated cells and showed increased numbers of Legionella-containing vacuoles and reduced pro-inflammatory cytokine induction. Additionally, miRNA-146a was found to be transcriptionally induced by OMVs and to facilitate bacterial replication. Accordingly, IRAK-1, one of miRNA-146a’s targets, showed prolonged activation-dependent degradation, which rendered THP-1 cells more permissive for Legionella replication. In conclusion, L. pneumophila OMVs are initially potent pro-inflammatory stimulators of macrophages, acting via TLR2, IRAK-1, and NF-κB, while at later time points, OMVs facilitate L. pneumophila replication by miR-146a-dependent IRAK-1 suppression. OMVs might thereby promote spreading of L. pneumophila in the host. PMID:27105429

  6. The Xylella fastidiosa PD1063 protein is secreted in association with outer membrane vesicles.

    PubMed

    Pierce, Brittany K; Voegel, Tanja; Kirkpatrick, Bruce C

    2014-01-01

    Xylella fastidiosa is a gram-negative, xylem-limited plant pathogenic bacterium that causes disease in a variety of economically important agricultural crops including Pierce's disease of grapevines. Xylella fastidiosa biofilms formed in the xylem vessels of plants play a key role in early colonization and pathogenicity by providing a protected niche and enhanced cell survival. Here we investigate the role of Xylella fastidiosa PD1063, the predicted ortholog of Xanthomonas oryzae pv. oryzae PXO_03968, which encodes an outer membrane protein. To assess the function of the Xylella fastidiosa ortholog, we created Xylella fastidiosa mutants deleted for PD1063 and then assessed biofilm formation, cell-cell aggregation and cell growth in vitro. We also assessed disease severity and pathogen titers in grapevines mechanically inoculated with the Xylella fastidiosa PD1063 mutant. We found a significant decrease in cell-cell aggregation among PD1063 mutants but no differences in cell growth, biofilm formation, disease severity or titers in planta. Based on the demonstration that Xanthomonas oryzae pv. oryzae PXO_03968 encodes an outer membrane protein, secreted in association with outer membrane vesicles, we predicted that PD1063 would also be secreted in a similar manner. Using anti-PD1063 antibodies, we found PD1063 in the supernatant and secreted in association with outer membrane vesicles. PD1063 purified from the supernatant, outer membrane fractions and outer membrane vesicles was 19.2 kD, corresponding to the predicted size of the processed protein. Our findings suggest Xylella fastidiosa PD1063 is not essential for development of Pierce's disease in Vitis vinifera grapevines although further research is required to determine the function of the PD1063 outer membrane protein in Xylella fastidiosa.

  7. Insights into the Structure and Assembly of Escherichia coli Outer Membrane Protein A

    PubMed Central

    Reusch, Rosetta N.

    2012-01-01

    Outer membrane protein A (OmpA) of Escherichia coli is a paradigm for the biogenesis of outer membrane proteins; however, the structure and assembly of OmpA have remained controversial. A review of studies to date supports the hypothesis that native OmpA is a single-domain large pore, while a two-domain narrow pore structure is a folding intermediate or minor conformer. The in vitro refolding of OmpA to the large pore conformation requires that the protein be isolated from outer membranes with an intact disulfide bond and then adequately incubated in lipids at temperatures ≥ 26 °C to overcome the high energy of activation for refolding. The in vivo maturation of the protein involves covalent modification of serines in the eighth β-barrel of the N-terminal domain by oligo-(R)-3-hydroxybutyrates as the protein is escorted across the cytoplasm by SecB for post-translational secretion across the SEC translocase in the inner membrane. After cleavage of the signal sequence, protein chaperones, such a Skp, DegP and SurA, guide OmpA across the periplasm to the BAM complex in the outer membrane. During this passage, a disulfide bond is formed between C290 and C302 by DsbA, and the hydrophobicity of segments of the C-terminal domain which are destined for incorporation as β-barrels in the outer membrane bilayer is increased by covalent attachment of oligo-(R)-3-hydroxybutyrates. With the aid of the BAM complex, OmpA is then assembled into the outer membrane as a single-domain large pore. PMID:22251410

  8. Distinct Pathways Mediate the Sorting of Tail-anchored Mitochondrial Outer Membrane Proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known about the biogenesis of tail-anchored (TA) proteins localized to the mitochondrial outer membrane in plant cells. To address this issue, we screened all of the (>500) known and predicted TA proteins in Arabidopsis for those annotated, based on Gene Ontology, to possess mitochondrial...

  9. Distinct Pathways Mediate the Sorting of Tail-anchored Mitochondrial Outer Membrane Proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known about the biogenesis of tail-anchored (TA) proteins localized to the mitochondrial outer membrane in plant cells. To address this issue, we screened all of the (>600) known and predicted TA proteins in Arabidopsis thaliana for those annotated, based on Gene Ontology, to possess mitoc...

  10. Subdominant outer membrane antigens in anaplasma marginale: conservation, antigenicity, and protective capacity using recombinant protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anaplasma marginale is a tick-borne rickettsial pathogen of cattle with a worldwide distribution. Currently a safe and efficacious vaccine is unavailable. Outer membrane protein (OMP) extracts or a well- defined surface protein complex reproducibly induce protective immunity. However, there are seve...

  11. TonB-Dependent outer-membrane proteins and siderophore utilization in Pseudomonas fluorescens Pf-5

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soil bacterium Pseudomonas fluorescens Pf-5 produces two siderophores, a pyoverdine and enantio-pyochelin, and its proteome includes 45 TonB-dependent outer-membrane proteins, which commonly function in uptake of siderophores and other substrates from the environment. The 45 proteins share the ...

  12. Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis

    SciTech Connect

    Caldwell, H.D.; Kromhout, J.; Schachter, J.

    1981-03-01

    Elementary bodies (EB) of Chlamydia trachomatis serotypes C, E, and L2 were extrinsically radioiodinated, and whole-cell lysates of these serotypes were compared by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Autoradiography of the polypeptide profiles identified a major surface protein with an apparent subunit molecular weight of 39,500 that was common to each C. trachomatis serotype. The abilities of nonionic (Triton X-100), dipolar ionic (Zwittergent TM-314), mild (sodium deoxycholate and sodium N-lauroyl sarcosine), and strongly anionic (SDS) detergents to extract this protein from intact EB of the L2 serotype were investigated by SDS-PAGE analysis of the soluble and insoluble fractions obtained after each detergent treatment. Only SDS readily extracted this protein from intact EB. Sarkosyl treatment selectively solubilized the majority of other EB proteins, leaving the 39,500-dalton protein associated with the Sarkosyl-insoluble fraction. Ultrastructural studies of the Sarkosyl-insoluble EB pellet showed it to consist of empty EB particles possessing an apparently intact outer membrane. No structural evidence for a peptidoglycan-like cell wall was found. Morphologically these chlamydial outer membrane complexes (COMC) resembled intact chlamydial EB outer membranes. The 39,500-dalton outer membrane protein was quantitatively extracted from COMC by treating them with 2% SDS at 60 degrees C. This protein accounted for 61% of the total COMC-associated protein, and its extraction resulted in a concomitant loss of the COMC membrane structure and morphology. The 39,500-dalton major outer membrane protein is a serogroup antigen of C. trachomatis organisms.

  13. Meningococcal outer membrane protein NhhA triggers apoptosis in macrophages.

    PubMed

    Sjölinder, Mikael; Altenbacher, Georg; Hagner, Matthias; Sun, Wei; Schedin-Weiss, Sophia; Sjölinder, Hong

    2012-01-01

    Phagocytotic cells play a fundamental role in the defense against bacterial pathogens. One mechanism whereby bacteria evade phagocytosis is to produce factors that trigger apoptosis. Here we identify for the first time a meningococcal protein capable of inducing macrophage apoptosis. The conserved meningococcal outer membrane protein NhhA (Neisseria hia/hsf homologue A, also known as Hsf) mediates bacterial adhesion and interacts with extracellular matrix components heparan sulphate and laminin. Meningococci lacking NhhA fail to colonise nasal mucosa in a mouse model of meningococcal disease. We found that exposure of macrophages to NhhA resulted in a highly increased rate of apoptosis that proceeded through caspase activation. Exposure of macrophages to NhhA also led to iNOS induction and nitric oxide production. However, neither nitric oxide production nor TNF-α signaling was found to be a prerequisite for NhhA-induced apoptosis. Macrophages exposed to wildtype NhhA-expressing meningococci were also found to undergo apoptosis whereas NhhA-deficient meningococci had a markedly decreased capacity to induce macrophage apoptosis. These data provide new insights on the role of NhhA in meningococcal disease. NhhA-induced macrophage apoptosis could be a mechanism whereby meningococci evade immunoregulatory and phagocytotic actions of macrophages.

  14. High-throughput isolation and characterization of untagged membrane protein complexes: outer membrane complexes of Desulfovibrio vulgaris.

    PubMed

    Walian, Peter J; Allen, Simon; Shatsky, Maxim; Zeng, Lucy; Szakal, Evelin D; Liu, Haichuan; Hall, Steven C; Fisher, Susan J; Lam, Bonita R; Singer, Mary E; Geller, Jil T; Brenner, Steven E; Chandonia, John-Marc; Hazen, Terry C; Witkowska, H Ewa; Biggin, Mark D; Jap, Bing K

    2012-12-07

    Cell membranes represent the "front line" of cellular defense and the interface between a cell and its environment. To determine the range of proteins and protein complexes that are present in the cell membranes of a target organism, we have utilized a "tagless" process for the system-wide isolation and identification of native membrane protein complexes. As an initial subject for study, we have chosen the Gram-negative sulfate-reducing bacterium Desulfovibrio vulgaris. With this tagless methodology, we have identified about two-thirds of the outer membrane- associated proteins anticipated. Approximately three-fourths of these appear to form homomeric complexes. Statistical and machine-learning methods used to analyze data compiled over multiple experiments revealed networks of additional protein-protein interactions providing insight into heteromeric contacts made between proteins across this region of the cell. Taken together, these results establish a D. vulgaris outer membrane protein data set that will be essential for the detection and characterization of environment-driven changes in the outer membrane proteome and in the modeling of stress response pathways. The workflow utilized here should be effective for the global characterization of membrane protein complexes in a wide range of organisms.

  15. NMR Polypeptide Backbone Conformation of the E. coli Outer Membrane Protein W

    PubMed Central

    Horst, Reto; Stanczak, Pawel; Wüthrich, Kurt

    2014-01-01

    SUMMARY The outer membrane proteins (Omp) are key factors for bacterial survival and virulence. Among the Omps which have been structurally characterized either by X-ray crystallography or by NMR in solution, the crystal structure of OmpW stands out because three of its four extracellular loops are well defined, whereas long extracellular loops in other E. coli Omps are disordered in the crystals as well as in NMR structures. OmpW thus presented an opportunity for detailed comparison of the extracellular loops in a β-barrel membrane protein structure in crystals and in non-crystalline milieus. Here the polypeptide backbone conformation of OmpW in 30-Fos micelles was determined. Complete backbone NMR assignments were obtained and the loops were structurally characterized. In combination with the OmpW crystal structure, NMR line shape analyses and 15N{1H}-NOE data, these results showed that intact regular secondary structures in the loops undergo slow hinge motions at the detergent–solvent interface. PMID:25017731

  16. High-throughput Isolation and Characterization of Untagged Membrane Protein Complexes: Outer Membrane Complexes of Desulfovibrio vulgaris

    PubMed Central

    2012-01-01

    Cell membranes represent the “front line” of cellular defense and the interface between a cell and its environment. To determine the range of proteins and protein complexes that are present in the cell membranes of a target organism, we have utilized a “tagless” process for the system-wide isolation and identification of native membrane protein complexes. As an initial subject for study, we have chosen the Gram-negative sulfate-reducing bacterium Desulfovibrio vulgaris. With this tagless methodology, we have identified about two-thirds of the outer membrane- associated proteins anticipated. Approximately three-fourths of these appear to form homomeric complexes. Statistical and machine-learning methods used to analyze data compiled over multiple experiments revealed networks of additional protein–protein interactions providing insight into heteromeric contacts made between proteins across this region of the cell. Taken together, these results establish a D. vulgaris outer membrane protein data set that will be essential for the detection and characterization of environment-driven changes in the outer membrane proteome and in the modeling of stress response pathways. The workflow utilized here should be effective for the global characterization of membrane protein complexes in a wide range of organisms. PMID:23098413

  17. Outer membrane proteins can be simply identified using secondary structure element alignment

    PubMed Central

    2011-01-01

    Background Outer membrane proteins (OMPs) are frequently found in the outer membranes of gram-negative bacteria, mitochondria and chloroplasts and have been found to play diverse functional roles. Computational discrimination of OMPs from globular proteins and other types of membrane proteins is helpful to accelerate new genome annotation and drug discovery. Results Based on the observation that almost all OMPs consist of antiparallel β-strands in a barrel shape and that their secondary structure arrangements differ from those of other types of proteins, we propose a simple method called SSEA-OMP to identify OMPs using secondary structure element alignment. Through intensive benchmark experiments, the proposed SSEA-OMP method is better than some well-established OMP detection methods. Conclusions The major advantage of SSEA-OMP is its good prediction performance considering its simplicity. The web server implements the method is freely accessible at http://protein.cau.edu.cn/SSEA-OMP/index.html. PMID:21414186

  18. A trans-outer membrane porin-cytochrome protein complex for extracellular electron transfer by Geobacter sulfurreducens PCA

    DOE PAGES

    Liu, Yimo; Wang, Zheming; Liu, Juan; ...

    2014-09-24

    The multiheme, outer membrane c-type cytochrome (c-Cyt) OmcB of Geobacter sulfurreducens was previously proposed to mediate electron transfer across the outer membrane. However, the underlying mechanism has remained uncharacterized. In G. sulfurreducens, the omcB gene is part of two tandem four-gene clusters, each is predicted to encode a transcriptional factor (OrfR/OrfS), a porin-like outer membrane protein (OmbB/OmbC), a periplasmic c-type cytochrome (OmaB/OmaC), and an outer membrane c-Cyt (OmcB/OmcC), respectively. Here we showed that OmbB/OmbC, OmaB/OmaC and OmcB/OmcC of G. sulfurreducens PCA formed the porin-cytochrome (Pcc) protein complexes, which were involved in transferring electrons across the outer membrane. The isolated Pccmore » protein complexes reconstituted in proteoliposomes transferred electrons from reduced methyl viologen across the lipid bilayer of liposomes to Fe(III)-citrate and ferrihydrite. The pcc clusters were found in all eight sequenced Geobacter and 11 other bacterial genomes from six different phyla, demonstrating a widespread distribution of Pcc protein complexes in phylogenetically diverse bacteria. Deletion of ombB-omaB-omcB-orfS-ombC-omaC-omcC gene clusters had no impact on the growth of G. sulfurreducens PCA with fumarate, but diminished the ability of G. sulfurreducens PCA to reduce Fe(III)-citrate and ferrihydrite. Finally, complementation with the ombB-omaB-omcB gene cluster restored the ability of G. sulfurreducens PCA to reduce Fe(III)-citrate and ferrihydrite.« less

  19. A trans-outer membrane porin-cytochrome protein complex for extracellular electron transfer by Geobacter sulfurreducens PCA

    SciTech Connect

    Liu, Yimo; Wang, Zheming; Liu, Juan; Levar, Caleb; Edwards, Marcus; Babauta, Jerome T.; Kennedy, David W.; Shi, Zhi; Beyenal, Haluk; Bond, Daniel R.; Clarke, Thomas A.; Butt, Julea N.; Richardson, David J.; Rosso, Kevin M.; Zachara, John M.; Fredrickson, Jim K.; Shi, Liang

    2014-09-24

    The multiheme, outer membrane c-type cytochrome (c-Cyt) OmcB of Geobacter sulfurreducens was previously proposed to mediate electron transfer across the outer membrane. However, the underlying mechanism has remained uncharacterized. In G. sulfurreducens, the omcB gene is part of two tandem four-gene clusters, each is predicted to encode a transcriptional factor (OrfR/OrfS), a porin-like outer membrane protein (OmbB/OmbC), a periplasmic c-type cytochrome (OmaB/OmaC), and an outer membrane c-Cyt (OmcB/OmcC), respectively. Here we showed that OmbB/OmbC, OmaB/OmaC and OmcB/OmcC of G. sulfurreducens PCA formed the porin-cytochrome (Pcc) protein complexes, which were involved in transferring electrons across the outer membrane. The isolated Pcc protein complexes reconstituted in proteoliposomes transferred electrons from reduced methyl viologen across the lipid bilayer of liposomes to Fe(III)-citrate and ferrihydrite. The pcc clusters were found in all eight sequenced Geobacter and 11 other bacterial genomes from six different phyla, demonstrating a widespread distribution of Pcc protein complexes in phylogenetically diverse bacteria. Deletion of ombB-omaB-omcB-orfS-ombC-omaC-omcC gene clusters had no impact on the growth of G. sulfurreducens PCA with fumarate, but diminished the ability of G. sulfurreducens PCA to reduce Fe(III)-citrate and ferrihydrite. Finally, complementation with the ombB-omaB-omcB gene cluster restored the ability of G. sulfurreducens PCA to reduce Fe(III)-citrate and ferrihydrite.

  20. A trans-outer membrane porin-cytochrome protein complex for extracellular electron transfer by Geobacter sulfurreducens PCA.

    PubMed

    Liu, Yimo; Wang, Zheming; Liu, Juan; Levar, Caleb; Edwards, Marcus J; Babauta, Jerome T; Kennedy, David W; Shi, Zhi; Beyenal, Haluk; Bond, Daniel R; Clarke, Thomas A; Butt, Julea N; Richardson, David J; Rosso, Kevin M; Zachara, John M; Fredrickson, James K; Shi, Liang

    2014-12-01

    The multi-heme, outer membrane c-type cytochrome (c-Cyt) OmcB of Geobacter sulfurreducens was previously proposed to mediate electron transfer across the outer membrane. However, the underlying mechanism has remained uncharacterized. In G. sulfurreducens, the omcB gene is part of two tandem four-gene clusters, each is predicted to encode a transcriptional factor (OrfR/OrfS), a porin-like outer membrane protein (OmbB/OmbC), a periplasmic c-type cytochrome (OmaB/OmaC) and an outer membrane c-Cyt (OmcB/OmcC) respectively. Here, we showed that OmbB/OmbC, OmaB/OmaC and OmcB/OmcC of G. sulfurreducens PCA formed the porin-cytochrome (Pcc) protein complexes, which were involved in transferring electrons across the outer membrane. The isolated Pcc protein complexes reconstituted in proteoliposomes transferred electrons from reduced methyl viologen across the lipid bilayer of liposomes to Fe(III)-citrate and ferrihydrite. The pcc clusters were found in all eight sequenced Geobacter and 11 other bacterial genomes from six different phyla, demonstrating a widespread distribution of Pcc protein complexes in phylogenetically diverse bacteria. Deletion of ombB-omaB-omcB-orfS-ombC-omaC-omcC gene clusters had no impact on the growth of G. sulfurreducens PCA with fumarate but diminished the ability of G. sulfurreducens PCA to reduce Fe(III)-citrate and ferrihydrite. Complementation with the ombB-omaB-omcB gene cluster restored the ability of G. sulfurreducens PCA to reduce Fe(III)-citrate and ferrihydrite.

  1. Outer membrane protein functions as integrator of protein import and DNA inheritance in mitochondria

    PubMed Central

    Käser, Sandro; Oeljeklaus, Silke; Týč, Jiří; Vaughan, Sue; Warscheid, Bettina; Schneider, André

    2016-01-01

    Trypanosomatids are one of the earliest diverging eukaryotes that have fully functional mitochondria. pATOM36 is a trypanosomatid-specific essential mitochondrial outer membrane protein that has been implicated in protein import. Changes in the mitochondrial proteome induced by ablation of pATOM36 and in vitro assays show that pATOM36 is required for the assembly of the archaic translocase of the outer membrane (ATOM), the functional analog of the TOM complex in other organisms. Reciprocal pull-down experiments and immunofluorescence analyses demonstrate that a fraction of pATOM36 interacts and colocalizes with TAC65, a previously uncharacterized essential component of the tripartite attachment complex (TAC). The TAC links the single-unit mitochondrial genome to the basal body of the flagellum and mediates the segregation of the replicated mitochondrial genomes. RNAi experiments show that pATOM36, in line with its dual localization, is not only essential for ATOM complex assembly but also for segregation of the replicated mitochondrial genomes. However, the two functions are distinct, as a truncated version of pATOM36 lacking the 75 C-terminal amino acids can rescue kinetoplast DNA missegregation but not the lack of ATOM complex assembly. Thus, pATOM36 has a dual function and integrates mitochondrial protein import with mitochondrial DNA inheritance. PMID:27436903

  2. Outer membrane protein functions as integrator of protein import and DNA inheritance in mitochondria.

    PubMed

    Käser, Sandro; Oeljeklaus, Silke; Týč, Jiří; Vaughan, Sue; Warscheid, Bettina; Schneider, André

    2016-08-02

    Trypanosomatids are one of the earliest diverging eukaryotes that have fully functional mitochondria. pATOM36 is a trypanosomatid-specific essential mitochondrial outer membrane protein that has been implicated in protein import. Changes in the mitochondrial proteome induced by ablation of pATOM36 and in vitro assays show that pATOM36 is required for the assembly of the archaic translocase of the outer membrane (ATOM), the functional analog of the TOM complex in other organisms. Reciprocal pull-down experiments and immunofluorescence analyses demonstrate that a fraction of pATOM36 interacts and colocalizes with TAC65, a previously uncharacterized essential component of the tripartite attachment complex (TAC). The TAC links the single-unit mitochondrial genome to the basal body of the flagellum and mediates the segregation of the replicated mitochondrial genomes. RNAi experiments show that pATOM36, in line with its dual localization, is not only essential for ATOM complex assembly but also for segregation of the replicated mitochondrial genomes. However, the two functions are distinct, as a truncated version of pATOM36 lacking the 75 C-terminal amino acids can rescue kinetoplast DNA missegregation but not the lack of ATOM complex assembly. Thus, pATOM36 has a dual function and integrates mitochondrial protein import with mitochondrial DNA inheritance.

  3. Linkage between anaplasma marginale outer membrane proteins enhances immunogenicity, but is not required for protection from challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prevention of bacterial infections via immunization presents particular challenges. While outer membrane extracts are often protective; they are difficult and expensive to isolate and standardize, and thus often impractical for development and implementation in vaccination programs. In contrast, ind...

  4. The protein import channel in the outer mitosomal membrane of Giardia intestinalis.

    PubMed

    Dagley, Michael J; Dolezal, Pavel; Likic, Vladimir A; Smid, Ondrej; Purcell, Anthony W; Buchanan, Susan K; Tachezy, Jan; Lithgow, Trevor

    2009-09-01

    The identification of mitosomes in Giardia generated significant debate on the evolutionary origin of these organelles, whether they were highly reduced mitochondria or the product of a unique endosymbiotic event in an amitochondrial organism. As the protein import pathway is a defining characteristic of mitochondria, we sought to discover a TOM (translocase in the outer mitochondrial membrane) complex in Giardia. A Hidden Markov model search of the Giardia genome identified a Tom40 homologous sequence (GiTom40), where Tom40 is the protein translocation channel of the TOM complex. The GiTom40 protein is located in the membrane of mitosomes in a approximately 200-kDa TOM complex. As Tom40 was derived in the development of mitochondria to serve as the protein import channel in the outer membrane, its presence in Giardia evidences the mitochondrial ancestry of mitosomes.

  5. Virulence characteristics of extraintestinal pathogenic Escherichia coli deletion of gene encoding the outer membrane protein X

    PubMed Central

    MENG, Xianrong; LIU, Xueling; ZHANG, Liyuan; HOU, Bo; LI, Binyou; TAN, Chen; LI, Zili; ZHOU, Rui; LI, Shaowen

    2016-01-01

    Outer membrane protein X (OmpX) and its homologues have been proposed to contribute to the virulence in various bacterial species. But, their role in virulence of extraintestinal pathogenic Escherichia coli (ExPEC) is yet to be determined. This study evaluates the role of OmpX in ExPEC virulence in vitro and in vivo using a clinical strain PPECC42 of porcine origin. The ompX deletion mutant exhibited increased swimming motility and decreased adhesion to, and invasion of pulmonary epithelial A549 cell, compared to the wild-type strain. A mild increase in LD50 and distinct decrease in bacterial load in such organs as heart, liver, spleen, lung and kidney were observed in mice infected with the ompX mutant. Complementation of the complete ompX gene in trans restored the virulence of mutant strain to the level of wild-type strain. Our results reveal that OmpX contributes to ExPEC virulence, but may be not an indispensable virulence determinant. PMID:27149893

  6. A Comprehensive Approach to Identification of Surface-Exposed, Outer Membrane-Spanning Proteins of Leptospira interrogans

    PubMed Central

    Pinne, Marija; Haake, David A.

    2009-01-01

    Leptospirosis is a zoonosis with worldwide distribution caused by pathogenic spirochetes belonging to the genus Leptospira. The leptospiral life cycle involves transmission via fresh water and colonization of the renal tubules of their reservoir hosts or infection of accidental hosts, including humans. Bacterial outer membrane proteins (OMPs), particularly those with surface-exposed regions, play crucial roles in virulence mechanisms of pathogens and the adaptation to various environmental conditions, including those of the mammalian host. Little is known about the surface-exposed OMPs in Leptospira, particularly those with outer membrane-spanning domains. Herein, we describe a comprehensive strategy for identification and characterization of leptospiral transmembrane OMPs. The genomic sequence of L. interrogans serovar Copenhageni strain Fiocruz L1–130 allowed us to employ the β-barrel prediction programs, PRED-TMBB and TMBETA-NET, to identify potential transmembrane OMPs. Several complementary methods were used to characterize four novel OMPs, designated OmpL36, OmpL37, OmpL47 and OmpL54. In addition to surface immunofluorescence and surface biotinylation, we describe surface proteolysis of intact leptospires as an improved method for determining the surface exposure of leptospiral proteins. Membrane integration was confirmed using techniques for removal of peripheral membrane proteins. We also demonstrate deficiencies in the Triton X-114 fractionation method for assessing the outer membrane localization of transmembrane OMPs. Our results establish a broadly applicable strategy for the elucidation of novel surface-exposed outer membrane-spanning proteins of Leptospira, an essential step in the discovery of potential virulence factors, diagnostic antigens and vaccine candidates. PMID:19562037

  7. Methylation and in vivo expression of the surface-exposed Leptospira interrogans outer-membrane protein OmpL32

    PubMed Central

    Eshghi, Azad; Pinne, Marija; Haake, David A.; Zuerner, Richard L.; Frank, Ami

    2012-01-01

    Recent studies have revealed that bacterial protein methylation is a widespread post-translational modification that is required for virulence in selected pathogenic bacteria. In particular, altered methylation of outer-membrane proteins has been shown to modulate the effectiveness of the host immune response. In this study, 2D gel electrophoresis combined with MALDI-TOF MS identified a Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130 protein, corresponding to ORF LIC11848, which undergoes extensive and differential methylation of glutamic acid residues. Immunofluorescence microscopy implicated LIC11848 as a surface-exposed outer-membrane protein, prompting the designation OmpL32. Indirect immunofluorescence microscopy of golden Syrian hamster liver and kidney sections revealed expression of OmpL32 during colonization of these organs. Identification of methylated surface-exposed outer-membrane proteins, such as OmpL32, provides a foundation for delineating the role of this post-translational modification in leptospiral virulence. PMID:22174381

  8. Antibody Responses to Recombinant Protein Fragments of the Major Outer Membrane Protein and Polymorphic Outer Membrane Protein POMP90 in Chlamydophila abortus-Infected Pregnant Sheep

    PubMed Central

    Livingstone, Morag; Entrican, Gary; Wattegedera, Sean; Buxton, David; McKendrick, Iain J.; Longbottom, David

    2005-01-01

    Chlamydophila abortus is one of the major causes of infectious abortion in pregnant sheep (enzootic abortion of ewes or EAE) worldwide. Organisms shed in infected placentas and uterine discharges at lambing time are the main sources of environmental contamination, responsible for transmission to susceptible animals and possible human contacts. In the present study, a recently developed test, based on a recombinant fragment of the polymorphic outer membrane protein POMP90 (rOMP90-4 indirect enzyme-linked immunosorbent assay [iELISA]) and one based on the variable segment 2 (VS2) region of the major outer membrane protein (MOMP) (MOMP VS2 iELISA) were compared using sera from C. abortus-infected ewes at different stages throughout pregnancy. The rOMP90 iELISA detected antibody much earlier in pregnancy than the MOMP iELISA, which, like the complement fixation test, detected antibody only at the time of abortion or lambing. No anti-MOMP antibody response could be detected in three of seven experimentally infected ewes. Furthermore, the rOMP90 iELISA detected antibody in an animal that seroconverted during the course of the study, which the MOMP iELISA failed to detect. Overall, the results show that the rOMP90-4 iELISA is considerably more sensitive than the MOMP VS2 iELISA for identifying animals infected with C. abortus. Earlier detection of infection will allow appropriate control measures to be taken to reduce environmental contamination, thus limiting the spread of infection, financial losses, and the possible risks of zoonotic transmission to humans. PMID:15939753

  9. Use of gene fusions to study outer membrane protein localization in Escherichia coli.

    PubMed Central

    Silhavy, T J; Shuman, H A; Beckwith, J; Schwartz, M

    1977-01-01

    Escherichia coli strains have been isolated that produce hybrid proteins comprised of an NH2-terminal sequence from the lamB gene product (an outer membrane protein) and a major portion of the COOH-terminal sequence of beta-galactosidase (beta-D-galactoside galactohydrolase, EC 3.2.1.23; a cytoplasmic protein). These proteins exhibit beta-galactosidase activity. One such strain, pop 3105, produces a hybrid protein containing very little of the lamB gene protein; the protein is found in the cytoplasm. The protein found in a second strain, pop 3186, contains much more of the lamB gene protein; a substantial fraction of the beta-galactosidase activity is found in the outer membrane, probably facing outward. These results indicate that information necessary to direct the lamB gene product to its outer membrane location is located within the lamB gene itself. The properties of such fusion strains open up the prospect of a precise genetic analysis of the genetic components involved in protein transport. Images PMID:414221

  10. Analysis of Surface-Exposed Outer Membrane Proteins in Helicobacter pylori

    PubMed Central

    Voss, Bradley J.; Gaddy, Jennifer A.; McDonald, W. Hayes

    2014-01-01

    More than 50 Helicobacter pylori genes are predicted to encode outer membrane proteins (OMPs), but there has been relatively little experimental investigation of the H. pylori cell surface proteome. In this study, we used selective biotinylation to label proteins localized to the surface of H. pylori, along with differential detergent extraction procedures to isolate proteins localized to the outer membrane. Proteins that met multiple criteria for surface-exposed outer membrane localization included known adhesins, as well as Cag proteins required for activity of the cag type IV secretion system, putative lipoproteins, and other proteins not previously recognized as cell surface components. We identified sites of nontryptic cleavage consistent with signal sequence cleavage, as well as C-terminal motifs that may be important for protein localization. A subset of surface-exposed proteins were highly susceptible to proteolysis when intact bacteria were treated with proteinase K. Most Hop and Hom OMPs were susceptible to proteolysis, whereas Hor and Hof proteins were relatively resistant. Most of the protease-susceptible OMPs contain a large protease-susceptible extracellular domain exported beyond the outer membrane and a protease-resistant domain at the C terminus with a predicted β-barrel structure. These features suggest that, similar to the secretion of the VacA passenger domain, the N-terminal domains of protease-susceptible OMPs are exported through an autotransporter pathway. Collectively, these results provide new insights into the repertoire of surface-exposed H. pylori proteins that may mediate bacterium-host interactions, as well as the cell surface topology of these proteins. PMID:24769695

  11. Biophysical characterization of the outer membrane polysaccharide export protein and the polysaccharide co-polymerase protein from Xanthomonas campestris.

    PubMed

    Bianco, M I; Jacobs, M; Salinas, S R; Salvay, A G; Ielmini, M V; Ielpi, L

    2014-09-01

    This study investigated the structural and biophysical characteristics of GumB and GumC, two Xanthomonas campestris membrane proteins that are involved in xanthan biosynthesis. Xanthan is an exopolysaccharide that is thought to be a virulence factor that contributes to bacterial in planta growth. It also is one of the most important industrial biopolymers. The first steps of xanthan biosynthesis are well understood, but the polymerization and export mechanisms remain unclear. For this reason, the key proteins must be characterized to better understand these processes. Here we characterized, by biochemical and biophysical techniques, GumB, the outer membrane polysaccharide export protein, and GumC, the polysaccharide co-polymerase protein of the xanthan biosynthesis system. Our results suggested that recombinant GumB is a tetrameric protein in solution. On the other hand, we observed that both native and recombinant GumC present oligomeric conformation consistent with dimers and higher-order oligomers. The transmembrane segments of GumC are required for GumC expression and/or stability. These initial results provide a starting point for additional studies that will clarify the roles of GumB and GumC in the xanthan polymerization and export processes and further elucidate their functions and mechanisms of action.

  12. PelC is a Pseudomonas aeruginosa outer membrane lipoprotein of the OMA family of proteins involved in exopolysaccharide transport.

    PubMed

    Vasseur, Perrine; Soscia, Chantal; Voulhoux, Romé; Filloux, Alain

    2007-08-01

    Pseudomonas aeruginosa is a gram-negative bacterium, opportunistic pathogen, which causes severe acute or chronic infections, as is the case with cystic fibrosis patients. Chronic infections are frequently accompanied by the development of the bacterial population into a specialized community called biofilm. The pelA-G gene cluster of P. aeruginosa has been shown to be involved in pellicle production and biofilm formation. The pel genes have been proposed to contribute to the formation of the exopolysaccharide-containing pellicle. However, the function and the subcellular localization of the seven different Pel proteins are poorly understood. Based on bioinformatics analysis, we have previously considered that PelF is a putative glycosyltransferase (GT4 family), whereas PelG is a Wzx-like polysaccharide transporter from the PST family. In this study we have further characterized the PelC protein. We have shown that PelC is an outer membrane lipoprotein. The N-terminal signal peptide of the PelC lipoprotein is sufficient to target the protein into the membranes. However, by constructing various PelC hybrid proteins we also proposed that efficient and functional outer membrane insertion of PelC requires not only the signal peptide and the lipid modification, but also requires the C-terminal domain of PelC. Because the gene encoding the outer membrane lipoprotein PelC is part of a putative gene cluster involved in exopolysaccharide biogenesis, we suggest that PelC is a new member of the outer membrane auxiliary (OMA) family of lipoprotein whose Wza, involved in Escherichia coli capsular polysaccharide transport, is an archetype.

  13. Antibiotic Resistance and Regulation of the Gram-Negative Bacterial Outer Membrane Barrier by Host Innate Immune Molecules

    PubMed Central

    2016-01-01

    ABSTRACT The Gram-negative outer membrane is an important barrier that provides protection against toxic compounds, which include antibiotics and host innate immune molecules such as cationic antimicrobial peptides. Recently, significant research progress has been made in understanding the biogenesis, regulation, and functioning of the outer membrane, including a recent paper from the laboratory of Dr. Brett Finlay at the University of British Columbia (J. van der Heijden et al., mBio 7:e01238-16, 2016, http://dx.doi.org/10.1128/mBio.01541-16). These investigators demonstrate that toxic oxygen radicals, such as those found in host tissues, regulate outer membrane permeability by altering the outer membrane porin protein channels to regulate the influx of oxygen radicals as well as β-lactam antibiotics. This commentary provides context about this interesting paper and discusses the prospects of utilizing increased knowledge of outer membrane biology to develop new antibiotics for antibiotic-resistant Gram-negative bacteria. PMID:27677793

  14. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β.

    PubMed

    Roundhill, Elizabeth; Turnbull, Doug; Burchill, Susan

    2016-05-01

    Overexpression of plasma membrane multidrug resistance-associated protein 1 (MRP-1) in Ewing's sarcoma (ES) predicts poor outcome. MRP-1 is also expressed in mitochondria, and we have examined the submitochondrial localization of MRP-1 and investigated the mechanism of MRP-1 transport and role of this organelle in the response to doxorubicin. The mitochondrial localization of MRP-1 was examined in ES cell lines by differential centrifugation and membrane solubilization by digitonin. Whether MRP-1 is chaperoned by heat shock proteins (HSPs) was investigated by immunoprecipitation, immunofluorescence microscopy, and HSP knockout using small hairpin RNA and inhibitors (apoptozole, 17-AAG, and NVPAUY). The effect of disrupting mitochondrial MRP-1-dependent efflux activity on the cytotoxic effect of doxorubicin was investigated by counting viable cell number. Mitochondrial MRP-1 is glycosylated and localized to the outer mitochondrial membrane, where it is coexpressed with HSP90. MRP-1 binds to both HSP90 and HSP70, although only inhibition of HSP90β decreases expression of MRP-1 in the mitochondria. Disruption of mitochondrial MRP-1-dependent efflux significantly increases the cytotoxic effect of doxorubicin (combination index, <0.9). For the first time, we have demonstrated that mitochondrial MRP-1 is expressed in the outer mitochondrial membrane and is a client protein of HSP90β, where it may play a role in the doxorubicin-induced resistance of ES.-Roundhill, E., Turnbull, D., Burchill, S. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β.

  15. Cross-linking analysis of antigenic outer membrane protein complexes of Neisseria meningitidis.

    PubMed

    Sánchez, Sandra; Abel, Ana; Arenas, Jesús; Criado, María Teresa; Ferreirós, Carlos M

    2006-03-01

    Polysaccharide-based approaches have not enabled the development of effective vaccines against meningococci of serogroup B, and the most promising current research is focused on the use of outer membrane vesicles. Due to the toxicity of the outer membrane oligosaccharides, new vaccines based on purified proteins are being sought, but despite the application of advanced techniques, they remain elusive, perhaps due to the fact that standard techniques for analysis of antigens overlook conformational epitopes located in membrane complexes. Membrane complex antigens have been analyzed in Neisseria gonorrhoeae, and a study published on Neisseria meningitidis has reported the in vitro formation of 800-kD complexes by deposition of a purified protein (MSP63) onto synthetic lipid layers; however, no studies to date have attempted to identify membrane complexes present in vivo in N. meningitidis. In the present study, cross-linking with formaldehyde was used to identify outer membrane protein associations in various N. meningitidis and Neisseria lactamica strains. In N. meningitides, complexes of about 450 kD (also present in N. lactamica), 165 and 95 kD were detected and shown to be made up of the proteins MSP63, PorA/PorB/RmpM/FetA, and PorA/PorB/RmpM, respectively. In western blots, the 450-kD complex was identified by mouse antibodies raised against outer membrane vesicles, but not by antibodies raised against the purified complex, demonstrating the importance of conformational epitopes, and thus suggesting that the analysis of antigens in their native conformation may be useful or even essential for the design of effective vaccines against meningococci.

  16. Escherichia coli pleiotropic mutant that reduces amounts of several periplasmic and outer membrane proteins.

    PubMed Central

    Wanner, B L; Sarthy, A; Beckwith, J

    1979-01-01

    We have isolated a mutant of Escherichia coli K-12 that is reduced from 6- to 10-fold in the amount of alkaline phosphatase found in the periplasmic space. The reduced synthesis is not due to effects at the level of transcription regulation of the phoA gene, the structural gene for the enzyme. In addition, the mutation (termed perA) responsible for this phenotype results in reduced amounts of possibly six or more other periplasmic proteins and at least three outer membrane proteins. One of the outer membrane proteins affected is protein IA (D. L. Diedrich, A. O. Summers, and C. A. Schnaitman, J. Bacteriol. 131:598-607, 1977). Although other possibilities exist, one explanation for the phenotype of the perA mutation is that it affects the cell's secretory apparatus. Images PMID:387722

  17. Lipopolysaccharide Density and Structure Govern the Extent and Distance of Nanoparticle Interaction with Actual and Model Bacterial Outer Membranes

    PubMed Central

    Jacobson, Kurt H.; Gunsolus, Ian L.; Kuech, Thomas R.; Troiano, Julianne M.; Melby, Eric S.; Lohse, Samuel E.; Hu, Dehong; Chrisler, William B.; Murphy, Catherine J.; Orr, Galya; Geiger, Franz M.; Haynes, Christy L.; Pedersen, Joel A.

    2015-01-01

    Design of nanomedicines and nanoparticle-based antimicrobial and antifouling formulations and assessment of the potential implications of nanoparticle release into the environment requires understanding nanoparticle interaction with bacterial surfaces. Here we demonstrate the electrostatically driven association of functionalized nanoparticles with lipopolysaccharides of Gram-negative bacterial outer membranes and find that lipopolysaccharide structure influences the extent and location of binding relative to the outer leaflet-solution interface. By manipulating the lipopolysaccharide content in Shewanella oneidensis outer membranes, we observed the electrostatically driven interaction of cationic gold nanoparticles with the lipopolysaccharide-containing leaflet. We probed this interaction by quartz crystal microbalance with dissipation monitoring (QCM-D) and second harmonic generation (SHG) using solid-supported lipopolysaccharide-containing bilayers. The association of cationic nanoparticles increased with lipopolysaccharide content, while no association of anionic nanoparticles was observed. The harmonic-dependence of QCM-D measurements suggested that a population of the cationic nanoparticles was held at a distance from the outer leaflet-solution interface of bilayers containing smooth lipopolysaccharides (those bearing a long O-polysaccharide). Additionally, smooth lipopolysaccharides held the bulk of the associated cationic particles outside of the interfacial zone probed by SHG. Our results demonstrate that positively charged nanoparticles are more likely to interact with Gram-negative bacteria than are negatively charged particles, and this interaction occurs primarily through lipopolysaccharides. PMID:26207769

  18. Major outer membrane protein of Legionella pneumophila carries a species-specific epitope.

    PubMed Central

    Nolte, F S; Conlin, C A

    1986-01-01

    A monoclonal antibody (LP3IIG2) directed against a species-specific epitope of Legionella pneumophila is available from Genetic Systems Corp., Seattle, Wash., for use as a diagnostic reagent. Outer membrane protein-rich fractions were prepared from L. pneumophila serogroups 1 to 8 by treatment of cell envelopes with 2% Triton X-100. Immunoblots of sodium dodecyl sulfate-polyacrylamide gels demonstrated that each membrane fraction contained two bands that reacted with LP3IIG2. The monoclonal antibody bound preferentially to a 26,000-molecular-weight band that appears to result from modification of the 29,000-molecular-weight major outer membrane protein. Images PMID:2420824

  19. Conserved outer membrane protein of Neisseria meningitidis involved in capsule expression.

    PubMed Central

    Frosch, M; Müller, D; Bousset, K; Müller, A

    1992-01-01

    In Neisseria meningitidis, translocation of capsular polysaccharides to the cell surface is mediated by a transport system that fits the characteristics of ABC (ATP-binding cassette) transporters. One protein of this transport system, termed CtrA, is located in the outer membrane. By use of a CtrA-specific monoclonal antibody, we could demonstrate that CtrA occurs exclusively in N. meningitidis and not in other pathogenic or nonpathogenic Neisseria species. Nucleotide sequence comparison of the ctrA gene from different meningococcal serogroups indicated that CtrA is strongly conserved in all meningococcal serogroups, independent of the chemical composition of the capsular polysaccharide. Secondary structure analysis revealed that CtrA is anchored in the outer membrane by eight membrane-spanning amphipathic beta strands, a structure of proteins that function as porins. Images PMID:1371768

  20. Deciphering the function of the outer membrane protein OprD homologue of Acinetobacter baumannii.

    PubMed

    Catel-Ferreira, Manuella; Nehmé, Rony; Molle, Virginie; Aranda, Jesús; Bouffartigues, Emeline; Chevalier, Sylvie; Bou, Germán; Jouenne, Thierry; Dé, Emmanuelle

    2012-07-01

    The increasing number of carbapenem-resistant Acinetobacter baumannii isolates is a major cause for concern which restricts therapeutic options to treat severe infections caused by this emerging pathogen. To identify the molecular mechanisms involved in carbapenem resistance, we studied the contribution of an outer membrane protein homologue of the Pseudomonas aeruginosa OprD porin. Suspected to be the preferred pathway of carbapenems in A. baumannii, the oprD homologue gene was inactivated in strain ATCC 17978. Comparison of wild-type and mutant strains did not confirm the expected increased resistance to any antibiotic tested. OprD homologue sequence analysis revealed that this protein actually belongs to an OprD subgroup but is closer to the P. aeruginosa OprQ protein, with which it could share some functions, e.g., allowing bacterial survival under low-iron or -magnesium growth conditions or under poor oxygenation. We thus overexpressed and purified a recombinant OprD homologue protein to further examine its functional properties. As a specific channel, this porin presented rather low single-channel conductance, i.e., 28 pS in 1 M KCl, and was partially closed by micro- and millimolar concentrations of Fe(3+) and Mg(2+), respectively, but not by imipenem and meropenem or basic amino acids. The A. baumannii OprD homologue is likely not involved in the carbapenem resistance mechanism, but as an OprQ-like protein, it could contribute to the adaptation of this bacterium to magnesium- and/or iron-depleted environments.

  1. Prediction of structural features and application to outer membrane protein identification

    PubMed Central

    Yan, Renxiang; Wang, Xiaofeng; Huang, Lanqing; Yan, Feidi; Xue, Xiaoyu; Cai, Weiwen

    2015-01-01

    Protein three-dimensional (3D) structures provide insightful information in many fields of biology. One-dimensional properties derived from 3D structures such as secondary structure, residue solvent accessibility, residue depth and backbone torsion angles are helpful to protein function prediction, fold recognition and ab initio folding. Here, we predict various structural features with the assistance of neural network learning. Based on an independent test dataset, protein secondary structure prediction generates an overall Q3 accuracy of ~80%. Meanwhile, the prediction of relative solvent accessibility obtains the highest mean absolute error of 0.164, and prediction of residue depth achieves the lowest mean absolute error of 0.062. We further improve the outer membrane protein identification by including the predicted structural features in a scoring function using a simple profile-to-profile alignment. The results demonstrate that the accuracy of outer membrane protein identification can be improved by ~3% at a 1% false positive level when structural features are incorporated. Finally, our methods are available as two convenient and easy-to-use programs. One is PSSM-2-Features for predicting secondary structure, relative solvent accessibility, residue depth and backbone torsion angles, the other is PPA-OMP for identifying outer membrane proteins from proteomes. PMID:26104144

  2. Analysis and Characterization of Proteins Associated with Outer Membrane Vesicles Secreted by Cronobacter spp.

    PubMed Central

    Kothary, Mahendra H.; Gopinath, Gopal R.; Gangiredla, Jayanthi; Rallabhandi, Prasad V.; Harrison, Lisa M.; Yan, Qiong Q.; Chase, Hannah R.; Lee, Boram; Park, Eunbi; Yoo, YeonJoo; Chung, Taejung; Finkelstein, Samantha B.; Negrete, Flavia J.; Patel, Isha R.; Carter, Laurenda; Sathyamoorthy, Venugopal; Fanning, Séamus; Tall, Ben D.

    2017-01-01

    Little is known about secretion of outer membrane vesicles (OMVs) by Cronobacter. In this study, OMVs isolated from Cronobacter sakazakii, Cronobacter turicensis, and Cronobacter malonaticus were examined by electron microscopy (EM) and their associated outer membrane proteins (OMP) and genes were analyzed by SDS-PAGE, protein sequencing, BLAST, PCR, and DNA microarray. EM of stained cells revealed that the OMVs are secreted as pleomorphic micro-vesicles which cascade from the cell's surface. SDS-PAGE analysis identified protein bands with molecular weights of 18 kDa to >100 kDa which had homologies to OMPs such as GroEL; OmpA, C, E, F, and X; MipA proteins; conjugative plasmid transfer protein; and an outer membrane auto-transporter protein (OMATP). PCR analyses showed that most of the OMP genes were present in all seven Cronobacter species while a few genes (OMATP gene, groEL, ompC, mipA, ctp, and ompX) were absent in some phylogenetically-related species. Microarray analysis demonstrated sequence divergence among the OMP genes that was not captured by PCR. These results support previous findings that OmpA and OmpX may be involved in virulence of Cronobacter, and are packaged within secreted OMVs. These results also suggest that other OMV-packaged OMPs may be involved in roles such as stress response, cell wall and plasmid maintenance, and extracellular transport. PMID:28232819

  3. Prediction of structural features and application to outer membrane protein identification

    NASA Astrophysics Data System (ADS)

    Yan, Renxiang; Wang, Xiaofeng; Huang, Lanqing; Yan, Feidi; Xue, Xiaoyu; Cai, Weiwen

    2015-06-01

    Protein three-dimensional (3D) structures provide insightful information in many fields of biology. One-dimensional properties derived from 3D structures such as secondary structure, residue solvent accessibility, residue depth and backbone torsion angles are helpful to protein function prediction, fold recognition and ab initio folding. Here, we predict various structural features with the assistance of neural network learning. Based on an independent test dataset, protein secondary structure prediction generates an overall Q3 accuracy of ~80%. Meanwhile, the prediction of relative solvent accessibility obtains the highest mean absolute error of 0.164, and prediction of residue depth achieves the lowest mean absolute error of 0.062. We further improve the outer membrane protein identification by including the predicted structural features in a scoring function using a simple profile-to-profile alignment. The results demonstrate that the accuracy of outer membrane protein identification can be improved by ~3% at a 1% false positive level when structural features are incorporated. Finally, our methods are available as two convenient and easy-to-use programs. One is PSSM-2-Features for predicting secondary structure, relative solvent accessibility, residue depth and backbone torsion angles, the other is PPA-OMP for identifying outer membrane proteins from proteomes.

  4. Identification of Chlamydia trachomatis outer membrane complex proteins by differential proteomics.

    PubMed

    Liu, Xiaoyun; Afrane, Mary; Clemmer, David E; Zhong, Guangming; Nelson, David E

    2010-06-01

    The extracellular chlamydial infectious particle, or elementary body (EB), is enveloped by an intra- and intermolecular cysteine cross-linked protein shell called the chlamydial outer membrane complex (COMC). A few abundant proteins, including the major outer membrane protein and cysteine-rich proteins (OmcA and OmcB), constitute the overwhelming majority of COMC proteins. The identification of less-abundant COMC proteins has been complicated by limitations of proteomic methodologies and the contamination of COMC fractions with abundant EB proteins. Here, we used parallel liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) analyses of Chlamydia trachomatis serovar L2 434/Bu EB, COMC, and Sarkosyl-soluble EB fractions to identify proteins enriched or depleted from COMC. All well-described COMC proteins were specifically enriched in the COMC fraction. In contrast, multiple COMC-associated proteins found in previous studies were strongly enriched in the Sarkosyl-soluble fraction, suggesting that these proteins are not COMC components or are not stably associated with COMC. Importantly, we also identified novel proteins enriched in COMC. The list of COMC proteins identified in this study has provided reliable information for further understanding chlamydial protein secretion systems and modeling COMC and EB structures.

  5. Single-point single-molecule FRAP distinguishes inner and outer nuclear membrane protein distribution

    PubMed Central

    Mudumbi, Krishna C; Schirmer, Eric C; Yang, Weidong

    2016-01-01

    The normal distribution of nuclear envelope transmembrane proteins (NETs) is disrupted in several human diseases. NETs are synthesized on the endoplasmic reticulum and then transported from the outer nuclear membrane (ONM) to the inner nuclear membrane (INM). Quantitative determination of the distribution of NETs on the ONM and INM is limited in available approaches, which moreover provide no information about translocation rates in the two membranes. Here we demonstrate a single-point single-molecule FRAP microscopy technique that enables determination of distribution and translocation rates for NETs in vivo. PMID:27558844

  6. The major anaerobically induced outer membrane protein of Neisseria gonorrhoeae, Pan 1, is a lipoprotein.

    PubMed Central

    Hoehn, G T; Clark, V L

    1992-01-01

    Pan 1 is an acidic outer membrane protein of Neisseria gonorrhoeae that is expressed only when gonococci are grown anaerobically. On silver-stained sodium dodecyl sulfate-polyacrylamide gels, Pan 1 migrates as an intense but diffuse 54-kDa protein. The deduced amino acid sequence of Pan 1 from the aniA (anaerobically induced protein) open reading frame reveals a lipoprotein consensus sequence, Ala-Leu-Ala-Ala-Cys, and a processed molecular mass of 39 kDa. Furthermore, there is strong homology at the N terminus and C terminus of Pan 1 to the termini of the gonococcal outer membrane lipoproteins Lip and Laz. [3H]palmitic acid labeling of gonococci grown under oxygen-limited conditions demonstrated specific incorporation of label into Pan 1, suggesting further that Pan 1 is a lipoprotein. Images PMID:1398981

  7. Pseudomonas aeruginosa Outer Membrane Vesicles Triggered by Human Mucosal Fluid and Lysozyme Can Prime Host Tissue Surfaces for Bacterial Adhesion

    PubMed Central

    Metruccio, Matteo M. E.; Evans, David J.; Gabriel, Manal M.; Kadurugamuwa, Jagath L.; Fleiszig, Suzanne M. J.

    2016-01-01

    Pseudomonas aeruginosa is a leading cause of human morbidity and mortality that often targets epithelial surfaces. Host immunocompromise, or the presence of indwelling medical devices, including contact lenses, can predispose to infection. While medical devices are known to accumulate bacterial biofilms, it is not well understood why resistant epithelial surfaces become susceptible to P. aeruginosa. Many bacteria, including P. aeruginosa, release outer membrane vesicles (OMVs) in response to stress that can fuse with host cells to alter their function. Here, we tested the hypothesis that mucosal fluid can trigger OMV release to compromise an epithelial barrier. This was tested using tear fluid and corneal epithelial cells in vitro and in vivo. After 1 h both human tear fluid, and the tear component lysozyme, greatly enhanced OMV release from P. aeruginosa strain PAO1 compared to phosphate buffered saline (PBS) controls (∼100-fold). Transmission electron microscopy (TEM) and SDS-PAGE showed tear fluid and lysozyme-induced OMVs were similar in size and protein composition, but differed from biofilm-harvested OMVs, the latter smaller with fewer proteins. Lysozyme-induced OMVs were cytotoxic to human corneal epithelial cells in vitro and murine corneal epithelium in vivo. OMV exposure in vivo enhanced Ly6G/C expression at the corneal surface, suggesting myeloid cell recruitment, and primed the cornea for bacterial adhesion (∼4-fold, P < 0.01). Sonication disrupted OMVs retained cytotoxic activity, but did not promote adhesion, suggesting the latter required OMV-mediated events beyond cell killing. These data suggest that mucosal fluid induced P. aeruginosa OMVs could contribute to loss of epithelial barrier function during medical device-related infections. PMID:27375592

  8. The outer membrane protein TolC from Sinorhizobium meliloti affects protein secretion, polysaccharide biosynthesis, antimicrobial resistance, and symbiosis.

    PubMed

    Cosme, Ana M; Becker, Anke; Santos, Mário R; Sharypova, Larissa A; Santos, Pedro M; Moreira, Leonilde M

    2008-07-01

    Sinorhizobium meliloti is capable of establishing a symbiotic nitrogen fixation relationship with Medicago sativa. During this process, it must cope with diverse environments and has evolved different types of transport systems that help its propagation in the plant roots. TolC protein family members are the outer-membrane components of several transport systems involved in the export of diverse molecules, playing an important role in bacterial survival. In this work, we have characterized the protein TolC from S. meliloti 2011. An insertional mutation in the tolC gene strongly affected the resistance phenotype to antimicrobial agents and induced higher susceptibility to osmotic and oxidative stresses. Immunodetection experiments and comparison of the extracellular proteins present in the supernatant of the wild-type versus tolC mutant strains showed that the calcium-binding protein ExpE1, the endoglycanase ExsH, and the product of open reading frame SMc04171, a putative hemolysin-type calcium-binding protein, are secreted by a TolC-dependent secretion system. In the absence of TolC, neither succinoglycan nor galactoglucan were detected in the culture supernatant. Moreover, S. meliloti tolC mutant induced a reduced number of nonfixing nitrogen nodules in M. sativa roots. Taken together, our results confirm the importance of TolC in protein secretion, exopolysaccharide biosynthesis, antimicrobials resistance, and symbiosis.

  9. Mitochondrial Outer Membrane Proteins Assist Bid in Bax-mediated Lipidic Pore Formation

    PubMed Central

    Schafer, Blanca; Quispe, Joel; Choudhary, Vineet; Chipuk, Jerry E.; Ajero, Teddy G.; Du, Han; Schneiter, Roger

    2009-01-01

    Mitochondrial outer membrane permeabilization (MOMP) is a critical step in apoptosis and is regulated by Bcl-2 family proteins. In vitro systems using cardiolipin-containing liposomes have demonstrated the key features of MOMP induced by Bax and cleaved Bid; however, the nature of the “pores” and how they are formed remain obscure. We found that mitochondrial outer membranes contained very little cardiolipin, far less than that required for liposome permeabilization, despite their responsiveness to Bcl-2 family proteins. Strikingly, the incorporation of isolated mitochondrial outer membrane (MOM) proteins into liposomes lacking cardiolipin conferred responsiveness to cleaved Bid and Bax. Cardiolipin dependence was observed only when permeabilization was induced with cleaved Bid but not with Bid or Bim BH3 peptide or oligomerized Bax. Therefore, we conclude that MOM proteins specifically assist cleaved Bid in Bax-mediated permeabilization. Cryoelectron microscopy of cardiolipin-liposomes revealed that cleaved Bid and Bax produced large round holes with diameters of 25–100 nm, suggestive of lipidic pores. In sum, we propose that activated Bax induces lipidic pore formation and that MOM proteins assist cleaved Bid in this process in the absence of cardiolipin. PMID:19244344

  10. Outer Hair Cell Lateral Wall Structure Constrains the Mobility of Plasma Membrane Proteins

    PubMed Central

    Yamashita, Tetsuji; Hakizimana, Pierre; Wu, Siva; Hassan, Ahmed; Jacob, Stefan; Temirov, Jamshid; Fang, Jie; Mellado-Lagarde, Marcia; Gursky, Richard; Horner, Linda; Leibiger, Barbara; Leijon, Sara; Centonze, Victoria E.; Berggren, Per-Olof; Frase, Sharon; Auer, Manfred; Brownell, William E.; Fridberger, Anders; Zuo, Jian

    2015-01-01

    Nature’s fastest motors are the cochlear outer hair cells (OHCs). These sensory cells use a membrane protein, Slc26a5 (prestin), to generate mechanical force at high frequencies, which is essential for explaining the exquisite hearing sensitivity of mammalian ears. Previous studies suggest that Slc26a5 continuously diffuses within the membrane, but how can a freely moving motor protein effectively convey forces critical for hearing? To provide direct evidence in OHCs for freely moving Slc26a5 molecules, we created a knockin mouse where Slc26a5 is fused with YFP. These mice and four other strains expressing fluorescently labeled membrane proteins were used to examine their lateral diffusion in the OHC lateral wall. All five proteins showed minimal diffusion, but did move after pharmacological disruption of membrane-associated structures with a cholesterol-depleting agent and salicylate. Thus, our results demonstrate that OHC lateral wall structure constrains the mobility of plasma membrane proteins and that the integrity of such membrane-associated structures are critical for Slc26a5’s active and structural roles. The structural constraint of membrane proteins may exemplify convergent evolution of cellular motors across species. Our findings also suggest a possible mechanism for disorders of cholesterol metabolism with hearing loss such as Niemann-Pick Type C diseases. PMID:26352669

  11. A Novel Mechanism of Host-Pathogen Interaction through sRNA in Bacterial Outer Membrane Vesicles

    PubMed Central

    Koeppen, Katja; Hampton, Thomas H.; Jarek, Michael; Scharfe, Maren; Gerber, Scott A.; Mielcarz, Daniel W.; Demers, Elora G.; Dolben, Emily L.; Hammond, John H.; Hogan, Deborah A.; Stanton, Bruce A.

    2016-01-01

    Bacterial outer membrane vesicle (OMV)-mediated delivery of proteins to host cells is an important mechanism of host-pathogen communication. Emerging evidence suggests that OMVs contain differentially packaged short RNAs (sRNAs) with the potential to target host mRNA function and/or stability. In this study, we used RNA-Seq to characterize differentially packaged sRNAs in Pseudomonas aeruginosa OMVs, and to show transfer of OMV sRNAs to human airway cells. We selected one sRNA for further study based on its stable secondary structure and predicted mRNA targets. Our candidate sRNA (sRNA52320), a fragment of a P. aeruginosa methionine tRNA, was abundant in OMVs and reduced LPS-induced as well as OMV-induced IL-8 secretion by cultured primary human airway epithelial cells. We also showed that sRNA52320 attenuated OMV-induced KC cytokine secretion and neutrophil infiltration in mouse lung. Collectively, these findings are consistent with the hypothesis that sRNA52320 in OMVs is a novel mechanism of host-pathogen interaction whereby P. aeruginosa reduces the host immune response. PMID:27295279

  12. Lipopolysaccharide Density and Structure Govern the Extent and Distance of Nanoparticle Interaction with Actual and Model Bacterial Outer Membranes

    DOE PAGES

    Jacobson, Kurt H.; Gunsolus, Ian L.; Kuech, Thomas R.; ...

    2015-07-24

    We report that design of nanomedicines and nanoparticle-based antimicrobial and antifouling formulations, and assessment of the potential implications of nanoparticle release into the environment require understanding nanoparticle interaction with bacterial surfaces. Here we demonstrate electrostatically driven association of functionalized nanoparticles with lipopolysaccharides of Gram-negative bacterial outer membranes and find that lipopolysaccharide structure influences the extent and location of binding relative to the lipid-solution interface. By manipulating the lipopolysaccharide content in Shewanella oneidensis outer membranes, we observed electrostatically driven interaction of cationic gold nanoparticles with the lipopolysaccharide-containing leaflet. We probed this interaction by quartz crystal microbalance with dissipation monitoring (QCM-D) andmore » second harmonic generation (SHG) using solid-supported lipopolysaccharide-containing bilayers. Association of cationic nanoparticles increased with lipopolysaccharide content, while no association of anionic nanoparticles was observed. The harmonic-dependence of QCM-D measurements suggested that a population of the cationic nanoparticles was held at a distance from the outer leaflet-solution interface of bilayers containing smooth lipopolysaccharides (those bearing a long O-polysaccharide). Additionally, smooth lipopolysaccharides held the bulk of the associated cationic particles outside of the interfacial zone probed by SHG. Lastly, our results demonstrate that positively charged nanoparticles are more likely to interact with Gram-negative bacteria than are negatively charged particles, and this interaction occurs primarily through lipopolysaccharides.« less

  13. Lipopolysaccharide Density and Structure Govern the Extent and Distance of Nanoparticle Interaction with Actual and Model Bacterial Outer Membranes

    SciTech Connect

    Jacobson, Kurt H.; Gunsolus, Ian L.; Kuech, Thomas R.; Troiano, Julianne M.; Melby, Eric S.; Lohse, Samuel E.; Hu, Dehong; Chrisler, William B.; Murphy, Catherine J.; Orr, Galya; Geiger, Franz M.; Haynes, Christy L.; Pedersen, Joel A.

    2015-07-24

    We report that design of nanomedicines and nanoparticle-based antimicrobial and antifouling formulations, and assessment of the potential implications of nanoparticle release into the environment require understanding nanoparticle interaction with bacterial surfaces. Here we demonstrate electrostatically driven association of functionalized nanoparticles with lipopolysaccharides of Gram-negative bacterial outer membranes and find that lipopolysaccharide structure influences the extent and location of binding relative to the lipid-solution interface. By manipulating the lipopolysaccharide content in Shewanella oneidensis outer membranes, we observed electrostatically driven interaction of cationic gold nanoparticles with the lipopolysaccharide-containing leaflet. We probed this interaction by quartz crystal microbalance with dissipation monitoring (QCM-D) and second harmonic generation (SHG) using solid-supported lipopolysaccharide-containing bilayers. Association of cationic nanoparticles increased with lipopolysaccharide content, while no association of anionic nanoparticles was observed. The harmonic-dependence of QCM-D measurements suggested that a population of the cationic nanoparticles was held at a distance from the outer leaflet-solution interface of bilayers containing smooth lipopolysaccharides (those bearing a long O-polysaccharide). Additionally, smooth lipopolysaccharides held the bulk of the associated cationic particles outside of the interfacial zone probed by SHG. Lastly, our results demonstrate that positively charged nanoparticles are more likely to interact with Gram-negative bacteria than are negatively charged particles, and this interaction occurs primarily through lipopolysaccharides.

  14. The fusogenic lipid phosphatidic acid promotes the biogenesis of mitochondrial outer membrane protein Ugo1

    PubMed Central

    Keller, Michael; Taskin, Asli A.; Horvath, Susanne E.; Guan, Xue Li; Prinz, Claudia; Opalińska, Magdalena; Zorzin, Carina; van der Laan, Martin; Wenk, Markus R.; Schubert, Rolf; Wiedemann, Nils; Holzer, Martin

    2015-01-01

    Import and assembly of mitochondrial proteins depend on a complex interplay of proteinaceous translocation machineries. The role of lipids in this process has been studied only marginally and so far no direct role for a specific lipid in mitochondrial protein biogenesis has been shown. Here we analyzed a potential role of phosphatidic acid (PA) in biogenesis of mitochondrial proteins in Saccharomyces cerevisiae. In vivo remodeling of the mitochondrial lipid composition by lithocholic acid treatment or by ablation of the lipid transport protein Ups1, both leading to an increase of mitochondrial PA levels, specifically stimulated the biogenesis of the outer membrane protein Ugo1, a component of the mitochondrial fusion machinery. We reconstituted the import and assembly pathway of Ugo1 in protein-free liposomes, mimicking the outer membrane phospholipid composition, and found a direct dependency of Ugo1 biogenesis on PA. Thus, PA represents the first lipid that is directly involved in the biogenesis pathway of a mitochondrial membrane protein. PMID:26347140

  15. Outer Membrane Proteins of Pseudomonas aeruginosa. Their Role in Antibiotic Susceptibility.

    DTIC Science & Technology

    1980-12-01

    is the X phage receptor which has been implicated in the maltose and maltodextrin transport system by overcoming the diffusion barrier for these...accomodate small molecules other than maltodextrins . It is significant, however, that the X receptor is used for maltose transport only when substrate...and maltodextrins (23). -4- Physiological roles of outer membrane proteins of Gram-negative bacteria other than those just discussed are: peptidoglycan

  16. Expression, crystallization and preliminary X-ray crystallographic studies of the outer membrane protein OmpW from Escherichia coli

    SciTech Connect

    Albrecht, Reinhard; Zeth, Kornelius; Söding, Johannes; Lupas, Andrei; Linke, Dirk

    2006-04-01

    The outer membrane protein OmpW from E. coli was overexpressed in inclusion bodies and refolded with the help of detergent. The protein has been crystallized and the crystals diffract to 3.5 Å resolution. OmpW is an eight-stranded 21 kDa molecular-weight β-barrel protein from the outer membrane of Gram-negative bacteria. It is a major antigen in bacterial infections and has implications in antibiotic resistance and in the oxidative degradation of organic compounds. OmpW from Escherichia coli was cloned and the protein was expressed in inclusion bodies. A method for refolding and purification was developed which yields properly folded protein according to circular-dichroism measurements. The protein has been crystallized and crystals were obtained that diffracted to a resolution limit of 3.5 Å. The crystals belong to space group P422, with unit-cell parameters a = 122.5, c = 105.7 Å. A homology model of OmpW is presented based on known structures of eight-stranded β-barrels, intended for use in molecular-replacement trials.

  17. Epidemiology of virulence-associated plasmids and outer membrane protein patterns within seven common Salmonella serotypes.

    PubMed

    Helmuth, R; Stephan, R; Bunge, C; Hoog, B; Steinbeck, A; Bulling, E

    1985-04-01

    Antibiotic-sensitive Salmonella isolates belonging to seven common serotypes and originating from 29 different countries from all continents were investigated for their plasmid DNA content (337 isolates) and their outer membrane protein profiles (216 isolates). Of the S. typhimurium, S. enteritidis, S. dublin, and S. choleraesuis isolates, 90% or more carried a serotype-specific plasmid. The molecular sizes of the plasmids were 60 megadaltons (Md) for S. typhimurium, 37 Md for S. enteritidis, 56 Md for S. dublin, and 30 Md for S. choleraesuis. The outer membrane protein profiles were homogeneous within each of the seven serotypes, except that a minority of S. enteritidis and S. dublin strains were lacking one major outer membrane protein. Virulence studies were performed with 39 representative strains by measuring the 50% lethal doses (LD50S) after oral infection of mice. The LD50 values obtained for plasmid-positive strains of S. typhimurium, S. enteritidis, and S. dublin were up to 10(6)-fold lower than the values obtained for the plasmid-free strains of the same serotype. Only the plasmid-positive strains could invade the livers of orally infected mice, and only they were resistant to the bactericidal activity of 90% guinea pig serum. Strains of S. infantis were generally plasmid free, whereas S. panama and S. heidelberg isolates carried heterogeneous plasmid populations. The virulence properties of the latter three serotypes could not be correlated with the predominant plasmids found in these strains.

  18. A Novel Mitosomal β-Barrel Outer Membrane Protein in Entamoeba

    PubMed Central

    Santos, Herbert J.; Imai, Kenichiro; Makiuchi, Takashi; Tomii, Kentaro; Horton, Paul; Nozawa, Akira; Ibrahim, Mohamed; Tozawa, Yuzuru; Nozaki, Tomoyoshi

    2015-01-01

    Entamoeba possesses a highly divergent mitochondrion-related organelle known as the mitosome. Here, we report the discovery of a novel protein in Entamoeba, which we name Mitosomal β-barrel Outer Membrane Protein of 30 kDa (MBOMP30). Initially identified through in silico analysis, we experimentally confirmed that MBOMP30 is indeed a β-barrel protein. Circular dichroism analysis showed MBOMP30 has a predominant β-sheet structure. Localization to Entamoeba histolytica mitosomes was observed through Percoll-gradient fractionation and immunofluorescence assay. Mitosomal membrane integration was demonstrated by carbonate fractionation, proteinase K digestion, and immunoelectron microscopy. Interestingly, the deletion of the putative β-signal, a sequence believed to guide β-barrel outer membrane protein (BOMP) assembly, did not affect membrane integration, but abolished the formation of a ~240 kDa complex. MBOMP30 represents only the seventh subclass of eukaryotic BOMPs discovered to date and lacks detectable homologs outside Entamoeba, suggesting that it may be unique to Entamoeba mitosomes. PMID:25711150

  19. Molecular characterization, occurrence, and immunogenicity in infected sheep and cattle of two minor outer membrane proteins of Brucella abortus.

    PubMed Central

    Tibor, A; Saman, E; de Wergifosse, P; Cloeckaert, A; Limet, J N; Letesson, J J

    1996-01-01

    Screening of a Brucella abortus genomic library with two sets of monoclonal antibodies allowed the isolation of the genes corresponding to two minor outer membrane proteins (OMP10 and OMP19) found in this bacterial species. Sequence analysis of the omp10 gene revealed an open reading frame capable of encoding a protein of 126 amino acids. The nucleotide sequence of the insert producing the OMP19 protein contains two overlapping open reading frames, the largest of which (177 codons) was shown to encode the protein of interest. Analysis of the N-terminal sequences of both putative proteins revealed features of a bacterial signal peptide, and homology to the bacterial lipoprotein processing sequence was also observed. Immunoblotting with monoclonal antibodies specific for OMP10 or OMP19 showed that both proteins are present in the 34 Brucella strains tested, representing all six Brucella species and all their biovars. The OMP19 detected in the five Brucella ovis strains examined migrated at an apparent molecular weight that is slightly higher than those of the other Brucella species, confirming the divergence of B. ovis from these species. OMP10 and OMP19 were produced in recombinant Escherichia coli and purified to homogeneity for serological analysis. A large fraction of sera from sheep naturally infected with Brucella melitensis were reactive with these proteins in an enzyme-linked immunosorbent assay, whereas sera from B. abortus-infected cattle were almost completely unreactive in this assay. PMID:8557326

  20. Construction of a multivalent meningococcal vaccine strain based on the class 1 outer membrane protein.

    PubMed Central

    Van Der Ley, P; Poolman, J T

    1992-01-01

    Outer membrane complexes (OMCs) are promising vaccine candidates for protection against meningococcal disease. However, a major obstacle to this approach is the fact that the protective antibodies induced are generally type specific. In an attempt to overcome this problem, we have investigated the possibility of constructing a multivalent vaccine strain by insertion of an additional class 1 outer membrane protein-encoding gene. Starting with a derivative of strain H44/76 deficient in class 3 outer membrane protein, a second class 1 gene was inserted into the chromosome, through homologous recombination with a suicide plasmid carrying the class 1 gene from strain 2996 placed within a class 5 gene. In this way, a strain was obtained in which a class 3 protein was in effect replaced by a class 1 protein from another subtype, i.e. P1.5,2 in addition to the P1.7,16 protein of H44/76. Immunization of mice with such OMCs resulted in high bactericidal titers against both H44/76 and 2996, where normally only strain-specific antibodies are induced. Mutational removal of class 3 protein from the immunizing OMCs had no detectable effect on the bactericidal titer against H44/76, whereas removal of class 1 protein led to a strong reduction. These results demonstrate the dominant role of the subtype-specific sequences of class 1 protein in the induction of bactericidal antibodies and show that construction of a multivalent OMC-based vaccine should be feasible. Images PMID:1639486

  1. SurA Is Involved in the Targeting to the Outer Membrane of a Tat Signal Sequence-Anchored Protein

    PubMed Central

    Rondelet, Arnaud

    2012-01-01

    The twin arginine translocation (Tat) pathway exports folded proteins from the cytoplasm to the periplasm of bacteria. The targeting of the exported proteins to the Tat pathway relies on a specific amino-terminal signal sequence, which is cleaved after exportation. In the phytopathogen Dickeya dadantii, the pectin lyase homologue PnlH is exported by the Tat pathway without cleavage of its signal sequence, which anchors PnlH into the outer membrane. In proteobacteria, the vast majority of outer membrane proteins consists of β-barrel proteins and lipoproteins. Thus, PnlH represents a new kind of outer membrane protein. In Escherichia coli, periplasmic chaperones SurA, Skp, and DegP work together with the β-barrel assembly machinery (Bam) to target and insert β-barrel proteins into the outer membrane. In this work, we showed that SurA is required for an efficient targeting of PnlH to the outer membrane. Moreover, we were able to detect an in vitro interaction between SurA and the PnlH signal sequence. Since the PnlH signal sequence contains a highly hydrophobic region, we propose that SurA protects it from the hydrophobic periplasm during targeting of PnlH to the outer membrane. We also studied the nature of the information carried by the PnlH signal sequence responsible for its targeting to the outer membrane after exportation by the Tat system. PMID:22961852

  2. Iron- and molybdenum-repressible outer membrane proteins in competent Azotobacter vinelandii.

    PubMed

    Page, W J; von Tigerstrom, M

    1982-07-01

    Azotobacter vinelandii produced three major proteins of 93,000, 85,000, and 81,000 daltons and a minor 77,000-dalton protein in the outer membrane of Fe-limited cells, and these cells were competent for transformation by DNA. The synthesis of these proteins was repressed in Fe-sufficient medium. Mo limitation of nitrogen-fixing cells resulted in the hyperproduction of a 44,000-dalton protein and the production of a minor 77,000-dalton protein in the outer membrane. Mo limitation enhanced competence in Fe-limited medium and induced competence in Fe-sufficient medium. The 44,000-dalton protein was replaced by a 45,000-dalton protein when Fe-sufficient medium also contained NH4+, but the cells were noncompetent. The synthesis of these proteins was repressed in Mo-sufficient medium and by NH4+ in Fe-limited medium. All of the culture supernatants contained a blue-white fluorescent material (absorbance maximum, 214 nm) which appeared to coordinate Fe3+, Fe2+, MoO4(2-), WO3(2-), and VO3(-).

  3. Fate of ferrisiderophores after import across bacterial outer membranes: different iron release strategies are observed in the cytoplasm or periplasm depending on the siderophore pathways.

    PubMed

    Schalk, Isabelle J; Guillon, Laurent

    2013-05-01

    Siderophore production and utilization is one of the major strategies deployed by bacteria to get access to iron, a key nutrient for bacterial growth. The biological function of siderophores is to solubilize iron in the bacterial environment and to shuttle it back to the cytoplasm of the microorganisms. This uptake process for Gram-negative species involves TonB-dependent transporters for translocation across the outer membranes. In Escherichia coli and many other Gram-negative bacteria, ABC transporters associated with periplasmic binding proteins import ferrisiderophores across cytoplasmic membranes. Recent data reveal that in some siderophore pathways, this step can also be carried out by proton-motive force-dependent permeases, for example the ferrichrome and ferripyochelin pathways in Pseudomonas aeruginosa. Iron is then released from the siderophores in the bacterial cytoplasm by different enzymatic mechanisms depending on the nature of the siderophore. Another strategy has been reported for the pyoverdine pathway in P. aeruginosa: iron is released from the siderophore in the periplasm and only siderophore-free iron is transported into the cytoplasm by an ABC transporter having two atypical periplasmic binding proteins. This review presents recent findings concerning both ferrisiderophore and siderophore-free iron transport across bacterial cytoplasmic membranes and considers current knowledge about the mechanisms involved in iron release from siderophores.

  4. Appoptosin interacts with mitochondrial outer-membrane fusion proteins and regulates mitochondrial morphology.

    PubMed

    Zhang, Cuilin; Shi, Zhun; Zhang, Lingzhi; Zhou, Zehua; Zheng, Xiaoyuan; Liu, Guiying; Bu, Guojun; Fraser, Paul E; Xu, Huaxi; Zhang, Yun-Wu

    2016-03-01

    Mitochondrial morphology is regulated by fusion and fission machinery. Impaired mitochondria dynamics cause various diseases, including Alzheimer's disease. Appoptosin (encoded by SLC25A38) is a mitochondrial carrier protein that is located in the mitochondrial inner membrane. Appoptosin overexpression causes overproduction of reactive oxygen species (ROS) and caspase-dependent apoptosis, whereas appoptosin downregulation abolishes β-amyloid-induced mitochondrial fragmentation and neuronal death during Alzheimer's disease. Herein, we found that overexpression of appoptosin resulted in mitochondrial fragmentation in a manner independent of its carrier function, ROS production or caspase activation. Although appoptosin did not affect levels of mitochondrial outer-membrane fusion (MFN1 and MFN2), inner-membrane fusion (OPA1) and fission [DRP1 (also known as DNM1L) and FIS1] proteins, appoptosin interacted with MFN1 and MFN2, as well as with the mitochondrial ubiquitin ligase MITOL (also known as MARCH5) but not OPA1, FIS1 or DRP1. Appoptosin overexpression impaired the interaction between MFN1 and MFN2, and mitochondrial fusion. By contrast, co-expression of MFN1, MITOL and a dominant-negative form of DRP1, DRP1(K38A), partially rescued appoptosin-induced mitochondrial fragmentation and apoptosis, whereas co-expression of FIS1 aggravated appoptosin-induced apoptosis. Together, our results demonstrate that appoptosin can interact with mitochondrial outer-membrane fusion proteins and regulates mitochondrial morphology.

  5. Brucella ovis PA mutants for outer membrane proteins Omp10, Omp19, SP41, and BepC are not altered in their virulence and outer membrane properties.

    PubMed

    Sidhu-Muñoz, Rebeca S; Sancho, Pilar; Vizcaíno, Nieves

    2016-04-15

    Mutants in several genes have been obtained on the genetic background of virulent rough (lacking O-polysaccharide) Brucella ovis PA. The target genes encode outer membrane proteins previously associated with the virulence of smooth (bearing O-polysaccharide chains in the lipopolysaccharide) Brucella strains. Multiple attempts to delete omp16, coding for a homologue to peptidoglycan-associated lipoproteins, were unsuccessful, which suggests that Omp16 is probably essential for in vitro survival of B. ovis PA. Single deletion of omp10 or omp19-that encode two other outer membrane lipoproteins--was achieved, but the simultaneous removal of both genes failed, suggesting an essential complementary function between both proteins. Two other deletion mutants, defective in the Tol-C-homologue BepC or in the SP41 adhesin, were also obtained. Surprisingly when compared to previous results obtained with smooth Brucella, none of the B. ovis mutants showed attenuation in the virulence, either in the mouse model or in cellular models of professional and non-professional phagocytes. Additionally, and in contrast to the observations reported with smooth Brucella strains, several properties related to the outer membrane remained almost unaltered. These results evidence new distinctive traits between naturally rough B. ovis and smooth brucellae.

  6. Identification of a novel type III secretion-associated outer membrane-bound protein from Xanthomonas campestris pv. campestris

    PubMed Central

    Li, Lei; Li, Rui-Fang; Ming, Zhen-Hua; Lu, Guang-Tao; Tang, Ji-Liang

    2017-01-01

    Many bacterial pathogens employ the type III secretion system (T3SS) to translocate effector proteins into eukaryotic cells to overcome host defenses. To date, most of our knowledge about the T3SS molecular architecture comes from the studies on animal pathogens. In plant pathogens, nine Hrc proteins are believed to be structural components of the T3SS, of which HrcC and HrcJ form the outer and inner rings of the T3SS, respectively. Here, we demonstrated that a novel outer membrane-bound protein (HpaM) of Xanthomonas campestris pv. campestris is critical for the type III secretion and is structurally and functionally conserved in phytopathogenic Xanthomonas spp. We showed that the C-terminus of HpaM extends into the periplasm to interact physically with HrcJ and the middle part of HpaM interacts physically with HrcC. It is clear that the outer and inner rings compose the main basal body of the T3SS apparatus in animal pathogens. Therefore, we presume that HpaM may act as a T3SS structural component, or play a role in assisting assembling or affecting the stability of the T3SS apparatus. HpaM is a highly prevalent and specific protein in Xanthomonas spp., suggesting that the T3SS of Xanthomonas is distinctive in some aspects from other pathogens. PMID:28198457

  7. Identification of a novel type III secretion-associated outer membrane-bound protein from Xanthomonas campestris pv. campestris.

    PubMed

    Li, Lei; Li, Rui-Fang; Ming, Zhen-Hua; Lu, Guang-Tao; Tang, Ji-Liang

    2017-02-15

    Many bacterial pathogens employ the type III secretion system (T3SS) to translocate effector proteins into eukaryotic cells to overcome host defenses. To date, most of our knowledge about the T3SS molecular architecture comes from the studies on animal pathogens. In plant pathogens, nine Hrc proteins are believed to be structural components of the T3SS, of which HrcC and HrcJ form the outer and inner rings of the T3SS, respectively. Here, we demonstrated that a novel outer membrane-bound protein (HpaM) of Xanthomonas campestris pv. campestris is critical for the type III secretion and is structurally and functionally conserved in phytopathogenic Xanthomonas spp. We showed that the C-terminus of HpaM extends into the periplasm to interact physically with HrcJ and the middle part of HpaM interacts physically with HrcC. It is clear that the outer and inner rings compose the main basal body of the T3SS apparatus in animal pathogens. Therefore, we presume that HpaM may act as a T3SS structural component, or play a role in assisting assembling or affecting the stability of the T3SS apparatus. HpaM is a highly prevalent and specific protein in Xanthomonas spp., suggesting that the T3SS of Xanthomonas is distinctive in some aspects from other pathogens.

  8. An immunoproteomic approach for characterization of the outer membrane proteins of Salmonella Gallinarum.

    PubMed

    Cho, Youngjae; Sun, Jisun; Han, Jang Hyuck; Jang, Joo Hyun; Kang, Zheng Wu; Hahn, Tae-Wook

    2014-03-01

    Salmonella enterica serovar Gallinarum (SG) is an important pathogen that causes fowl typhoid in chickens. In order to investigate SG outer membrane proteins (OMPs) as potential vaccine candidate proteins, we established a proteomic map and database of antigenic SG-OMPs. A total of 174 spots were detected by 2DE. Twenty-two antigen-reactive spots were identified as nine specific proteins using PMF. OmpA was the most abundant protein among all of the identified OMPs, and it exhibited seven protein species. We conducted Western blot analysis for the SG-OMPs in order to determine which proteins were cross-reactive to the serovars Salmonella Enteritidis, Salmonella Typhimurium, and SG. Our results indicated that OmpA was considered to be an antigenic cross-reactive protein among the three serovars. This study sheds new light on our understanding of cross-protection among Salmonella serovars.

  9. Crystal structure of a major outer membrane protein from Thermus thermophilus HB27.

    PubMed

    Brosig, Alexander; Nesper, Jutta; Boos, Winfried; Welte, Wolfram; Diederichs, Kay

    2009-02-06

    The thermophilic eubacterium Thermus thermophilus belongs to one of the oldest branches of evolution and has a multilayered cell envelope that differs from that of modern Gram-negative bacteria. Its outer membrane contains integral outer membrane proteins (OMPs), of which only a few are characterized. TtoA, a new beta-barrel OMP, was identified by searching the genome sequence of strain HB27 for the presence of a C-terminal signature sequence. The structure of TtoA was determined to a resolution of 2.8 A, representing the first crystal structure of an OMP from a thermophilic bacterium. TtoA consists of an eight-stranded beta-barrel with a large extracellular part to which a divalent cation is bound. A five-stranded extracellular beta-sheet protrudes out of the membrane-embedded transmembrane barrel and is stabilized by a disulfide bridge. The edge of this beta-sheet forms crystal contacts that could mimic interactions with other proteins. In modern Gram-negative bacteria, the C-terminal signature sequence of OMPs is required for binding to an Omp85 family protein as a prerequisite for its assembly. We present hints that a similar assembly pathway exists in T. thermophilus by an in vitro binding assay, where unfolded TtoA binds to the Thermus Omp85 family protein TtOmp85, while a mutant without the signature sequence does not.

  10. The outer mitochondrial membrane in higher plants.

    PubMed

    Duncan, Owen; van der Merwe, Margaretha J; Daley, Daniel O; Whelan, James

    2013-04-01

    The acquisition and integration of intracellular organelles, such as mitochondria and plastids, were important steps in the emergence of complex multicellular life. Although the outer membranes of these organelles have lost many of the functions of their free-living bacterial ancestor, others were acquired during organellogenesis. To date, the biological roles of these proteins have not been systematically characterized. In this review, we discuss the evolutionary origins and functions of outer membrane mitochondrial (OMM) proteins in Arabidopsis thaliana. Our analysis, using phylogenetic inference, indicates that several OMM proteins either acquired novel functional roles or were recruited from other subcellular localizations during evolution in Arabidopsis. These observations suggest the existence of novel communication routes and functions between organelles within plant cells.

  11. AKR2A-mediated import of chloroplast outer membrane proteins is essential for chloroplast biogenesis.

    PubMed

    Bae, Wonsil; Lee, Yong Jik; Kim, Dae Heon; Lee, Junho; Kim, Soojin; Sohn, Eun Ju; Hwang, Inhwan

    2008-02-01

    In plant cells, chloroplasts have essential roles in many biochemical reactions and physiological responses. Chloroplasts require numerous protein components, but only a fraction of these proteins are encoded by the chloroplast genome. Instead, most are encoded by the nuclear genome and imported into chloroplasts from the cytoplasm post-translationally. Membrane proteins located in the chloroplast outer envelope membrane (OEM) have a critical function in the import of proteins into the chloroplast. However, the biogenesis of chloroplast OEM proteins remains poorly understood. Here, we report that an Arabidopsis ankyrin repeat protein, AKR2A, plays an essential role in the biogenesis of the chloroplast OEM proteins. AKR2A binds to chloroplast OEM protein targeting signals, as well as to chloroplasts. It also displays chaperone activity towards chloroplast OEM proteins, and facilitates the targeting of OEP7 to chloroplasts in vitro. AKR2A RNAi in plants with an akr2b knockout background showed greatly reduced levels of chloroplast proteins, including OEM proteins, and chloroplast biogenesis was also defective. Thus, AKR2A functions as a cytosolic mediator for sorting and targeting of nascent chloroplast OEM proteins to the chloroplast.

  12. Extraction, purification, and characterization of major outer membrane proteins from Wolinella recta ATCC 33238.

    PubMed Central

    Kennell, W L; Holt, S C

    1991-01-01

    The outer membrane of Wolinella recta ATCC 33238 was isolated by French pressure cell disruption and differential centrifugation. Outer membrane proteins (OMPs) were solubilized by Zwittergent 3.14 extraction and separated by DEAE-Sephacel ion-exchange chromatography. The major OMPs that were found in W. recta ATCC 33238 and in several other Wolinella spp. consisted of proteins with apparent molecular masses of 51, 45, and 43 kDa. These three conserved proteins were purified to essential homogeneity by one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and characterized chemically. Heating at between 75 and 100 degrees C revealed both the 43- and 51-kDa proteins to be heat modified from apparent molecular masses of 32 and 38 kDa, respectively. The 45-kDa protein was unmodified at all temperatures tested. Two-dimensional isoelectric focusing-SDS-PAGE revealed the 51-kDa protein to be composed of multiple pIs between a pH of 5.0 and greater than 8.0 while the 43- and 45-kDa proteins had a pI of approximately 6.0. N'-terminal amino acid sequence analysis of the first 30 to 40 amino acids and search of the Protein Identification Resource data base for similar proteins only revealed the 43-kDa protein to be similar to the P.69 OMP of Bordetella pertussis; however, the homology was weak (33%). Amino acid analysis revealed the 43-kDa protein to be noncharged and the 45- and 51-kDa proteins to be hydrophilic, containing between 38 to 42% polar residues but no cysteine. This study reports the purification and partial characterization of three conserved proteins in W. recta ATCC 33238. Images PMID:1894372

  13. Role of outer membrane protein T in pathogenicity of avian pathogenic Escherichia coli.

    PubMed

    Hejair, Hassan M A; Ma, Jiale; Zhu, Yingchu; Sun, Min; Dong, Wenyang; Zhang, Yue; Pan, Zihao; Zhang, Wei; Yao, Huochun

    2017-01-27

    An outer membrane protein T (OmpT) could play a vital role in the pathogenesis of the neonatal meningitis Escherichia coli (NMEC) in human and animals. However, whether ompT plays a role in avian pathogenic E. coli (APEC) infection remains unclear. In this study we evaluated the potential of ompT in APEC pathogenesis. An ompT gene was deleted from APEC mutant strain (TW-XM) was constructed and characterized. The inactivation of ompT reduced significantly the adherence and invasion capabilities of APEC to mouse brain microvascular endothelial cell (BMEC) bEnd.3 cells at the rates of 43.8% and 28.8% respectively, compared with the wild strain TW-XM. Further studies showed that deletion of ompT gene reduced the bacterial virulence with 15.2-fold in ducklings and 9.7-fold in mouse models based on the measurement of the LD50. Furthermore, experimental infection of animals revealed that, loss of ompT showed reduced APEC colonization and invasion capacity in brains, lungs and blood by 2-fold, 1.96-fold, and 1.7-fold, respectively, compared with the wild-type strain TW-XM. These virulence-related phenotypes were partially recoverable by genetic complementation. The results of the quantitative real-time reverse transcription-PCR (qRT-PCR) indicated that the loss of ompT significantly decreased the expression levels of ompA, fimC and tsh in the mutant strain ΔOmpT, when compared with TW-XM (p<0.01). Collectively, our data showed that inactivation of ompT decreased adhesion, invasion, colonization, proliferation capacities, possibly by reduced expression levels of ompA, fimC and tsh, which may justify that, ompT is implicated in APEC pathogenicity.

  14. The solution structure of the outer membrane lipoprotein OmlA from Xanthomonas axonopodis pv. citri reveals a protein fold implicated in protein-protein interaction.

    PubMed

    Vanini, Marina Marques Teixeira; Spisni, Alberto; Sforça, Maurício Luis; Pertinhez, Thelma Aguiar; Benedetti, Celso Eduardo

    2008-06-01

    The outer membrane lipoprotein A (OmlA) belongs to a family of bacterial small lipoproteins widely distributed across the beta and gamma proteobacteria. Although the role of numerous bacterial lipoproteins is known, the biological function of OmlA remains elusive. We found that in the citrus canker pathogen, Xanthomonas axonopodis pv. citri (X. citri), OmlA is coregulated with the ferric uptake regulator (Fur) and their expression is enhanced when X. citri is grown on citrus leaves, suggesting that these proteins are involved in plant-pathogen interaction. To gain insights into the function of OmlA, its conformational and dynamic features were determined by nuclear magnetic resonance. The protein has highly flexible N- and C- termini and a structurally well defined core composed of three beta-strands and two small alpha-helices, which pack against each other forming a two-layer alpha/beta scaffold. This protein fold resembles the domains of the beta-lactamase inhibitory protein BLIP, involved in protein-protein binding. In conclusion, the structure of OmlA does suggest that this protein may be implicated in protein-protein interactions required during X. citri infection.

  15. Studies on the expression of outer membrane protein 2 in escherichia coli.

    PubMed

    Fralick, J A; Diedrich, D L

    1982-01-01

    The relative level of protein 2 expressed in the outer membrane of strains of Escherichia coli K-12 lysogenized with bacteriophage PA-2 was found to be influenced by both the growth temperature and lc+ gene dosage. An increase in either of these parameters was accompanied by an increase in the level of protein 2 up to an apparent saturation level. Any increase in the amount of protein 2 was accompanied by a concomittant decrease in the amount of OmpF and OmpC porins. This inverse relationship led to the maintenance of an approximately constant protein mass per unit of peptidoglycan. Our results are discussed in light of recent genetic studies on the regulation of the OmpF and OmpC porins and can be explained through the competition of these three matrix proteins for a common export or insertion site.

  16. Expression, crystallization and preliminary X-ray analysis of an outer membrane protein from Thermus thermophilus HB27

    PubMed Central

    Brosig, Alexander; Nesper, Jutta; Welte, Wolfram; Diederichs, Kay

    2008-01-01

    The cell envelope of the thermophilic bacterium Thermus thermophilus is multilayered and includes an outer membrane with integral outer membrane proteins that are not well characterized. The hypothetical protein TTC0834 from T. thermophilus HB27 was identified as a 22 kDa outer membrane protein containing eight predicted β-strands. TTC0834 was expressed with an N-­terminal His tag in T. thermophilus HB8 and detected in the S-layer/outer membrane envelope fraction. His-TTC0834 was purified and crystallized under various conditions. Native data sets were collected to 3.2 Å resolution and the best diffracting crystals belonged to space group P3121 or P3221, with unit-cell parameters a = b = 166.67, c = 97.53 Å. PMID:18540069

  17. Expression, crystallization and preliminary X-ray analysis of an outer membrane protein from Thermus thermophilus HB27.

    PubMed

    Brosig, Alexander; Nesper, Jutta; Welte, Wolfram; Diederichs, Kay

    2008-06-01

    The cell envelope of the thermophilic bacterium Thermus thermophilus is multilayered and includes an outer membrane with integral outer membrane proteins that are not well characterized. The hypothetical protein TTC0834 from T. thermophilus HB27 was identified as a 22 kDa outer membrane protein containing eight predicted beta-strands. TTC0834 was expressed with an N-terminal His tag in T. thermophilus HB8 and detected in the S-layer/outer membrane envelope fraction. His-TTC0834 was purified and crystallized under various conditions. Native data sets were collected to 3.2 A resolution and the best diffracting crystals belonged to space group P3(1)21 or P3(2)21, with unit-cell parameters a = b = 166.67, c = 97.53 A.

  18. Proteolytic Cleavage of the Immunodominant Outer Membrane Protein rOmpA in Rickettsia rickettsii.

    PubMed

    Noriea, Nicholas F; Clark, Tina R; Mead, David; Hackstadt, Ted

    2017-03-15

    Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever, contains two immunodominant proteins, rOmpA and rOmpB, in the outer membrane. Both rOmpA and rOmpB are conserved throughout spotted fever group rickettsiae as members of a family of autotransporter proteins. Previously, it was demonstrated that rOmpB is proteolytically processed, with the cleavage site residing near the autotransporter domain at the carboxy-terminal end of the protein, cleaving the 168-kDa precursor into apparent 120-kDa and 32-kDa fragments. The 120- and 32-kDa fragments remain noncovalently associated on the surface of the bacterium, with implications that the 32-kDa fragment functions as the membrane anchor domain. Here we present evidence for a similar posttranslational processing of rOmpA. rOmpA is expressed as a predicted 224-kDa precursor yet is observed on SDS-PAGE as a 190-kDa protein. A small rOmpA fragment of ∼32 kDa was discovered during surface proteome analysis and identified as the carboxy-terminal end of the protein. A rabbit polyclonal antibody was generated to the autotransporter region of rOmpA and confirmed a 32-kDa fragment corresponding to the calculated mass of a proteolytically cleaved rOmpA autotransporter region. N-terminal amino acid sequencing revealed a cleavage site on the carboxy-terminal side of Ser-1958 in rOmpA. An avirulent strain of R. rickettsii Iowa deficient in rOmpB processing was also defective in the processing of rOmpA. The similarities of the cleavage sites and the failure of R. rickettsii Iowa to process either rOmpA or rOmpB suggest that a single enzyme may be responsible for both processing events.IMPORTANCE Members of the spotted fever group of rickettsiae, including R. rickettsii, the etiologic agent of Rocky Mountain spotted fever, express at least four autotransporter proteins that are protective antigens or putative virulence determinants. One member of this class of proteins, rOmpB, is proteolytically processed to a

  19. Electron crystallography of PhoE porin, an outer membrane, channel- forming protein from E. coli

    SciTech Connect

    Walian, P.J.

    1989-11-01

    One approach to studying the structure of membrane proteins is the use of electron crystallography. Dr. Bing Jap has crystallized PhoE pore-forming protein (porin) from the outer membrane of escherichia coli (E. coli) into monolayer crystals. The findings of this research and those of Jap (1988, 1989) have determined these crystals to be highly ordered, yielding structural information to a resolution of better than 2.8 angstroms. The task of this thesis has been to collect and process the electron diffraction patterns necessary to generate a complete three-dimensional set of high resolution structure factor amplitudes of PhoE porin. Fourier processing of these amplitudes when combined with the corresponding phase data is expected to yield the three-dimensional structure of PhoE porin at better than 3.5 angstroms resolution. 92 refs., 33 figs., 3 tabs. (CBS)

  20. The Outer Membrane Protein OmpW Forms an Eight-Stranded beta-Barrel with a Hydrophobic Channel

    SciTech Connect

    Hong,H.; Patel, D.; Tamm, L.; van den Berg, B.

    2006-01-01

    Escherichia coli OmpW belongs to a family of small outer membrane (OM) proteins that are widespread in Gram-negative bacteria. Their functions are unknown, but recent data suggest that they may be involved in the protection of bacteria against various forms of environmental stress. In order to gain insight into the function of these proteins we have determined the crystal structure of Escherichia coli OmpW to 2.7 Angstroms resolution. The structure shows that OmpW forms an eight-stranded beta-barrel with a long and narrow hydrophobic channel that contains a bound LDAO detergent molecule. Single channel conductance experiments show that OmpW functions as an ion channel in planar lipid bilayers. The channel activity can be blocked by the addition of LDAO. Taken together, the data suggest that members of the OmpW family could be involved in the transport of small hydrophobic molecules across the bacterial OM.

  1. Surface expression, single-channel analysis and membrane topology of recombinant Chlamydia trachomatis Major Outer Membrane Protein

    PubMed Central

    Findlay, Heather E; McClafferty, Heather; Ashley, Richard H

    2005-01-01

    Background Chlamydial bacteria are obligate intracellular pathogens containing a cysteine-rich porin (Major Outer Membrane Protein, MOMP) with important structural and, in many species, immunity-related roles. MOMP forms extensive disulphide bonds with other chlamydial proteins, and is difficult to purify. Leaderless, recombinant MOMPs expressed in E. coli have yet to be refolded from inclusion bodies, and although leadered MOMP can be expressed in E. coli cells, it often misfolds and aggregates. We aimed to improve the surface expression of correctly folded MOMP to investigate the membrane topology of the protein, and provide a system to display native and modified MOMP epitopes. Results C. trachomatis MOMP was expressed on the surface of E. coli cells (including "porin knockout" cells) after optimizing leader sequence, temperature and medium composition, and the protein was functionally reconstituted at the single-channel level to confirm it was folded correctly. Recombinant MOMP formed oligomers even in the absence of its 9 cysteine residues, and the unmodified protein also formed inter- and intra-subunit disulphide bonds. Its topology was modeled as a (16-stranded) β-barrel, and specific structural predictions were tested by removing each of the four putative surface-exposed loops corresponding to highly immunogenic variable sequence (VS) domains, and one or two of the putative transmembrane strands. The deletion of predicted external loops did not prevent folding and incorporation of MOMP into the E. coli outer membrane, in contrast to the removal of predicted transmembrane strands. Conclusions C. trachomatis MOMP was functionally expressed on the surface of E. coli cells under newly optimized conditions. Tests of its predicted membrane topology were consistent with β-barrel oligomers in which major immunogenic regions are displayed on surface-exposed loops. Functional surface expression, coupled with improved understanding of MOMP's topology, could provide

  2. Salmonellae PhoPQ regulation of the outer membrane to resist innate immunity.

    PubMed

    Dalebroux, Zachary D; Miller, Samuel I

    2014-02-01

    Salmonellae sense host cues to regulate properties important for bacterial survival and replication within host tissues. The PhoPQ two-component regulatory system senses phagosome acidification and cationic antimicrobial peptides (CAMP) to regulate the protein and lipid contents of the bacterial envelope that comprises an inner and outer membrane. PhoPQ-regulated lipid components of the outer membrane include lipopolysaccharides and glycerophospholipids. Envelope proteins regulated by PhoPQ, include: components of virulence associated secretion systems, the flagellar apparatus, membrane transport systems, and proteins that are likely structural components of the outer membrane. PhoPQ alteration of the bacterial surface results in increased bacterial resistance to CAMP and decreased detection by the innate immune system. This review details the molecular complexity of the bacterial cell envelope and highlights the outer membrane lipid bilayer as an environmentally regulated bacterial organelle.

  3. Piscine reovirus encodes a cytotoxic, non-fusogenic, integral membrane protein and previously unrecognized virion outer-capsid proteins.

    PubMed

    Key, Tim; Read, Jolene; Nibert, Max L; Duncan, Roy

    2013-05-01

    Piscine reovirus (PRV) is a tentative new member of the family Reoviridae and has been linked to heart and skeletal muscle inflammation in farmed Atlantic salmon (Salmo salar L.). Recent sequence-based evidence suggests that PRV is about equally related to members of the genera Orthoreovirus and Aquareovirus. Sequence similarities have also suggested that PRV might encode a fusion-associated small transmembrane (FAST) protein, which in turn suggests that PRV might be the prototype of a new genus with syncytium-inducing potential. In previous support of this designation has been the absence of identifiable PRV-encoded homologues of either the virion outer-clamp protein of ortho- and aquareoviruses or the virion outer-fibre protein of most orthoreoviruses. In the current report, we have provided experimental evidence that the putative p13 FAST protein of PRV lacks the defining feature of the FAST protein family - the ability to induce syncytium formation. Instead, p13 is the first example of a cytosolic, integral membrane protein encoded by ortho- or aquareoviruses, and induces cytotoxicity in the absence of cell-cell fusion. Sequence analysis also identified signature motifs of the outer-clamp and outer-fibre proteins of other reoviruses in two of the predicted PRV gene products. Based on these findings, we conclude that PRV does not encode a FAST protein and is therefore unlikely to be a new fusogenic reovirus. The presence of a novel integral membrane protein and two previously unrecognized, essential outer-capsid proteins has important implications for the biology, evolution and taxonomic classification of this virus.

  4. Pore-forming ability of major outer membrane proteins from Wolinella recta ATCC 33238.

    PubMed Central

    Kennell, W L; Egli, C; Hancock, R E; Holt, S C

    1992-01-01

    Three major outer membrane proteins with apparent molecular masses of 43, 45, and 51 kDa were purified from Wolinella recta ATCC 33238, and their pore-forming abilities were determined by the black lipid bilayer method. The non-heat-modifiable 45-kDa protein (Omp 45) showed no pore-forming activity even at high KCl concentrations. The single-channel conductances in 1 M KCl of the heat-modifiable proteins with apparent molecular masses of 43 kDa (Omp 43) and 51 kDa (Omp 51) were 0.49 and 0.60 nS, respectively. The proteins formed nonselective channels and, as determined by experiments of ion selectivity and zero-current potential, were weakly anion selective. Images PMID:1370429

  5. Membrane composition influences the topology bias of bacterial integral membrane proteins.

    PubMed

    Bay, Denice C; Turner, Raymond J

    2013-02-01

    Small multidrug resistance (SMR) protein family members confer bacterial resistance to toxic antiseptics and are believed to function as dual topology oligomers. If dual topology is essential for SMR activity, then the topology bias should change as bacterial membrane lipid compositions alter to maintain a "neutral" topology bias. To test this hypothesis, a bioinformatic analysis of bacterial SMR protein sequences was performed to determine a membrane protein topology based on charged amino acid residues within loops, and termini regions according to the positive inside rule. Three bacterial lipid membrane parameters were examined, providing the proportion of polar lipid head group charges at the membrane surface (PLH), the relative hydrophobic fatty acid length (FAL), and the proportion of fatty acid unsaturation (FAU). Our analysis indicates that individual SMR pairs, and to a lesser extent SMR singleton topology biases, are significantly correlated to increasing PLH, FAL and FAU differences validating the hypothesis. Correlations between the topology biases of SMR proteins identified in Gram+ compared to Gram- species and each lipid parameter demonstrated a linear inverse relationship.

  6. Conservation of peptide structure of outer membrane protein-macromolecular complex from Neisseria gonorrhoeae.

    PubMed Central

    Hansen, M V; Wilde, C E

    1984-01-01

    The structural conservation of an outer membrane protein of Neisseria gonorrhoeae called OMP-MC (outer membrane protein-macromolecular complex) was investigated by determining the isoelectric point and amino-terminal amino acid sequence of the protein and by using high-performance liquid chromatography for comparative tryptic peptide mapping. The 76,000-dalton subunits generated by reduction and alkylation of the native 800,000-dalton complex from six test strains focused in ultrathin gels as bands of restricted heterogeneity at an approximate pI of 7.6. Dansyl chloride labeling indicated that all strains shared glycine as the amino-terminal amino acid. Sequence analysis of OMP-MC from two strains revealed no amino acid differences within the first 11 residues. Dual-label peptide maps revealed an extremely high degree of conservation of peptide structure. The results indicate that (i) OMP-MCs isolated from various strains of N. gonorrhoeae share structural homology and (ii) the 800,000-dalton complex is a homopolymer composed of 10 to 12 apparently identical 76,000-dalton subunits. Images PMID:6421738

  7. Molecular characterization of the 98-kilodalton iron-regulated outer membrane protein of Neisseria meningitidis.

    PubMed Central

    Pettersson, A; van der Ley, P; Poolman, J T; Tommassen, J

    1993-01-01

    When grown under iron limitation, Neisseria meningitidis expresses several additional outer membrane proteins (OMPs), which were studied to assess their vaccine potential. Two monoclonal antibodies were obtained against a 98-kDa OMP of strain 2996 (B:2b:P1.2). Cross-reactivity studies revealed that the two antibodies reacted with 44 and 42 of 74 meningococcal strains, respectively. The antibodies did not block the binding of transferrin or lactoferrin to intact cells. The structural gene for the protein, tentatively designated iroA, was isolated and sequenced. Computer analysis revealed homology to the ferric siderophore receptors in the outer membrane of Escherichia coli and to gonococcal transferrin-binding protein 1 (TbpA). The high degree of cross-reactivity and the results of Southern blot analyses, which showed that the iroA gene is also present in strains that did not react with the monoclonal antibodies, suggest that the 98-kDa OMP is well conserved among meningococci and that it is a suitable vaccine candidate. However, the antibodies were not bactericidal in an in vitro assay with human complement. Images PMID:8406871

  8. Structural and functional importance of outer membrane proteins in Vibrio cholerae flagellum.

    PubMed

    Bari, Wasimul; Lee, Kang-Mu; Yoon, Sang Sun

    2012-08-01

    Vibrio cholerae has a sheath-covered monotrichous flagellum that is known to contribute to virulence. Although the structural organization of the V. cholerae flagellum has been extensively studied, the involvement of outer membrane proteins as integral components in the flagellum still remains elusive. Here we show that flagella produced by V. cholerae O1 El Tor strain C6706 were two times thicker than those from two other Gram-negative bacteria. A C6706 mutant strain (SSY11) devoid of two outer membrane proteins (OMPs), OmpU and OmpT, produced thinner flagella. SSY11 showed significant defects in the flagella-mediated motility as compared to its parental strain. Moreover, increased shedding of the flagella-associated proteins was observed in the culture supernatant of SSY11. This finding was also supported by the observation that culture supernatants of the SSY11 strain induced the production of a significantly higher level of IL-8 in human colon carcinoma HT29 and alveolar epithelial A549 cells than those of the wild-type C6706 strain. These results further suggest a definite role of these two OMPs in providing the structural integrity of the V. cholerae flagellum as part of the surrounding sheath.

  9. OMPcontact: An Outer Membrane Protein Inter-Barrel Residue Contact Prediction Method.

    PubMed

    Zhang, Li; Wang, Han; Yan, Lun; Su, Lingtao; Xu, Dong

    2017-03-01

    In the two transmembrane protein types, outer membrane proteins (OMPs) perform diverse important biochemical functions, including substrate transport and passive nutrient uptake and intake. Hence their 3D structures are expected to reveal these functions. Because experimental structures are scarce, predicted 3D structures are more adapted to OMP research instead, and the inter-barrel residue contact is becoming one of the most remarkable features, improving prediction accuracy by describing the structural information of OMPs. To predict OMP structures accurately, we explored an OMP inter-barrel residue contact prediction method: OMPcontact. Multiple OMP-specific features were integrated in the method, including residue evolutionary covariation, topology-based transmembrane segment relative residue position, OMP lipid layer accessibility, and residue evolution conservation. These features describe the properties of a residue pair in different respects: sequential, structural, evolutionary, and biochemical. Within a 3-residues slide window, a Support Vector Machine (SVM) could accurately determinate the inter-barrel contact residue pair using above features. A 5-fold cross-valuation process was applied in testing the OMPcontact performance against a non-redundant OMP set with 75 samples inside. The tests compared four evolutionary covariation methods and screen analyzed the adaptive ones for inter-barrel contact prediction. The results showed our method not only efficiently realized the prediction, but also scored the possibility for residue pairs reliably. This is expected to improve OMP tertiary structure prediction. Therefore, OMPcontact will be helpful in compiling a structural census of outer membrane protein.

  10. The construction and characterization of Neisseria gonorrhoeae lacking protein III in its outer membrane

    PubMed Central

    1989-01-01

    Protein III (PIII) is a highly conserved, antigenically stable gonococcal outer membrane protein that is closely associated with the major outer membrane protein, protein I (PI). We have previously reported the cloning of the PIII gene. This gene was inserted into the Eco RI site of the runaway plasmid pMOB45. The beta-lactamase (beta la) Bam HI restriction fragment from the gonococcal plasmid pFA3 was inserted at the Xba I site in the PIII gene. The plasmid construct was Hae III methylated and the PIII/beta la insert was excised with Eco RI and used to transform gonococcal strain F62. One beta la+, ampicillin- resistant transformant was isolated and designated 2D. A Western blot of 2D whole cell lysate was probed with affinity-purified polyclonal PIII antisera. No PIII reactivity was detected. Southern blot analysis was performed on F62 and 2D chromosomal DNA that were cut with Eco RI or Cla I. A PIII DNA probe hybridized with fragments 2.2 kb larger in strain 2D than strain F62. This corresponds to the size of the beta la insert. A beta la-specific probe hybridized with the same 2D restriction fragments as above, but did not react with any F62 fragments, confirming that homologous recombination had occurred. There were minimal phenotypic changes between 2D and its parent strain, F62. Chromosomal DNA from 2D was able to transform gonococcal strains F62, UU1, and Pgh 3-2, rendering these PIII-. 2D and other PIII- transformants can now be used to study the role of PIII in gonococcal physiology, metabolism, membrane structure, and pathogenesis. Moreover, we now have organisms from which we can purify gonococcal proteins without PIII contamination. PMID:2499656

  11. Purification of cone outer segment for proteomic analysis on its membrane proteins in carp retina

    PubMed Central

    Fukagawa, Takashi; Takafuji, Kazuaki; Tachibanaki, Shuji

    2017-01-01

    Rods and cones are both photoreceptors in the retina, but they are different in many aspects including the light response characteristics and, for example, cell morphology and metabolism. These differences would be caused by differences in proteins expressed in rods and cones. To understand the molecular bases of these differences between rods and cones, one of the ways is to compare proteins expressed in rods and cones, and to find those expressed specifically or dominantly. In the present study, we are interested in proteins in the outer segment (OS), the site responsible for generation of rod- or cone-characteristic light responses and also the site showing different morphology between rods and cones. For this, we established a method to purify the OS and the inner segment (IS) of rods and also of cones from purified carp rods and cones, respectively, using sucrose density gradient. In particular, we were interested in proteins tightly bound to the membranes of cone OS. To identify these proteins, we analyzed proteins in some selected regions of an SDS-gel of washed membranes of the OS and the IS obtained from both rods and cones, with Liquid Chromatography-tandem Mass Spectrometry (LC-MS/MS) using a protein database constructed from carp retina. By comparing the lists of the proteins found in the OS and the IS of both rods and cones, we found some proteins present in cone OS membranes specifically or dominantly, in addition to the proteins already known to be present specifically in cone OS. PMID:28291804

  12. Two Outer Membrane Proteins Contribute to Caulobacter crescentus Cellular Fitness by Preventing Intracellular S-Layer Protein Accumulation

    DOE PAGES

    Overton, K. Wesley; Park, Dan M.; Yung, Mimi C.; ...

    2016-09-23

    Surface layers, or S-layers, are two-dimensional protein arrays that form the outermost layer of many bacteria and archaea. They serve several functions, including physical protection of the cell from environmental threats. The high abundance of S-layer proteins necessitates a highly efficient export mechanism to transport the S-layer protein from the cytoplasm to the cell exterior.Caulobacter crescentusis unique in that it has two homologous, seemingly redundant outer membrane proteins, RsaFaand RsaFb, which together with other components form a type I protein translocation pathway for S-layer export. These proteins have homology toEscherichia coliTolC, the outer membrane channel of multidrug efflux pumps. Heremore » we provide evidence that, unlike TolC, RsaFaand RsaFbare not involved in either the maintenance of membrane stability or the active export of antimicrobial compounds. Rather, RsaFaand RsaFbare required to prevent intracellular accumulation and aggregation of the S-layer protein RsaA; deletion of RsaFaand RsaFbled to a general growth defect and lowered cellular fitness. Using Western blotting, transmission electron microscopy, and transcriptome sequencing (RNA-seq), we show that loss of both RsaFaand RsaFbled to accumulation of insoluble RsaA in the cytoplasm, which in turn caused upregulation of a number of genes involved in protein misfolding and degradation pathways. These findings provide new insight into the requirement for RsaFaand RsaFbin cellular fitness and tolerance to antimicrobial agents and further our understanding of the S-layer export mechanism on both the transcriptional and translational levels inC. crescentus. IMPORTANCEDecreased growth rate and reduced cell fitness are common side effects of protein production in overexpression systems. Inclusion bodies typically form inside the cell, largely due to a lack of sufficient export machinery to transport the overexpressed proteins to the extracellular environment. This phenomenon can

  13. Outer eggshell membrane as delivery vehicle for polysaccharide/protein microcapsules incorporated with vitamin E.

    PubMed

    Chai, Zhi; Li, Yuanyuan; Liu, Fei; Du, Bingjian; Jiao, Tong; Zhang, Chunyue; Leng, Xiaojing

    2013-01-23

    This study investigates the features of a new type of delivery system prepared by combining a natural outer eggshell membrane (OESM) with emulsified microcapsules. The loading efficiency, controlled release properties, and forming mechanisms of the prepared system were studied. The polysaccharide/protein microcapsules incorporated with vitamin E can be attached to highly cross-linked protein fiber networks of OESM. This attachment could be reinforced more than 2-fold using glutaraldehyde as a cross-linking agent. The combined OESM/microcapsule delivery system significantly exhibited better controlled release properties than the microcapsules alone because of the steric blocking effect. Moreover, the OESM delivery system incorporated with microcapsules formed by pectin/protein as wall material showed more resistance against enzymatic attacks because of the formation of compact aggregates promoted by electrostatic effects.

  14. Identification of an Iron-Regulated, Hemin-Binding Outer Membrane Protein in Sinorhizobium meliloti

    PubMed Central

    Battistoni, Federico; Platero, Raúl; Duran, Rosario; Cerveñansky, Carlos; Battistoni, Julio; Arias, Alicia; Fabiano, Elena

    2002-01-01

    Rhizobia are soil bacteria that are able to establish symbiotic associations with leguminous hosts. In iron-limited environments these bacteria can use iron present in heme or heme compounds (hemoglobin, leghemoglobin). Here we report the presence in Sinorhizobium meliloti of an iron-regulated outer membrane protein that is able to bind hemin but not hemoglobin. Protein assignment was done by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Tryptic peptides correlated with the mass measurements obtained accounted for 54% of the translated sequence of a putative heme receptor gene present in the chromosome of S. meliloti 1021. The results which we obtained suggest that this protein (designated ShmR for Sinorhizobium heme receptor) is involved in high-affinity heme-mediated iron transport. PMID:12450806

  15. Outer membrane protein A (OmpA): a new player in shigella flexneri protrusion formation and inter-cellular spreading.

    PubMed

    Ambrosi, Cecilia; Pompili, Monica; Scribano, Daniela; Zagaglia, Carlo; Ripa, Sandro; Nicoletti, Mauro

    2012-01-01

    Outer membrane protein A (OmpA) is a multifaceted predominant outer membrane protein of Escherichia coli and other Enterobacteriaceae whose role in the pathogenesis of various bacterial infections has recently been recognized. Here, the role of OmpA on the virulence of Shigella flexneri has been investigated. An ompA mutant of wild-type S. flexneri 5a strain M90T was constructed (strain HND92) and it was shown to be severely impaired in cell-to-cell spreading since it failed to plaque on HeLa cell monolayers. The lack of OmpA significantly reduced the levels of IcsA while the levels of cell associated and released IcsP-cleaved 95 kDa amino-terminal portion of the mature protein were similar. Nevertheless, the ompA mutant displayed IcsA exposed across the entire bacterial surface. Surprisingly, the ompA mutant produced proper F-actin comet tails, indicating that the aberrant IcsA exposition at bacterial lateral surface did not affect proper activation of actin-nucleating proteins, suggesting that the absence of OmpA likely unmasks mature or cell associated IcsA at bacterial lateral surface. Moreover, the ompA mutant was able to invade and to multiply within HeLa cell monolayers, although internalized bacteria were found to be entrapped within the host cell cytoplasm. We found that the ompA mutant produced significantly less protrusions than the wild-type strain, indicating that this defect could be responsible of its inability to plaque. Although we could not definitely rule out that the ompA mutation might exert pleiotropic effects on other S. flexneri genes, complementation of the ompA mutation with a recombinant plasmid carrying the S. flexneri ompA gene clearly indicated that a functional OmpA protein is required and sufficient for proper IcsA exposition, plaque and protrusion formation. Moreover, an independent ompA mutant was generated. Since we found that both mutants displayed identical virulence profile, these results further supported the findings

  16. Regulation of the inner membrane mitochondrial permeability transition by the outer membrane translocator protein (peripheral benzodiazepine receptor).

    PubMed

    Sileikyte, Justina; Petronilli, Valeria; Zulian, Alessandra; Dabbeni-Sala, Federica; Tognon, Giuseppe; Nikolov, Peter; Bernardi, Paolo; Ricchelli, Fernanda

    2011-01-14

    We studied the properties of the permeability transition pore (PTP) in rat liver mitochondria and in mitoplasts retaining inner membrane ultrastructure and energy-linked functions. Like mitochondria, mitoplasts readily underwent a permeability transition following Ca(2+) uptake in a process that maintained sensitivity to cyclosporin A. On the other hand, major differences between mitochondria and mitoplasts emerged in PTP regulation by ligands of the outer membrane translocator protein of 18 kDa, TSPO, formerly known as the peripheral benzodiazepine receptor. Indeed, (i) in mitoplasts, the PTP could not be activated by photo-oxidation after treatment with dicarboxylic porphyrins endowed with protoporphyrin IX configuration, which bind TSPO in intact mitochondria; and (ii) mitoplasts became resistant to the PTP-inducing effects of N,N-dihexyl-2-(4-fluorophenyl)indole-3-acetamide and of other selective ligands of TSPO. Thus, the permeability transition is an inner membrane event that is regulated by the outer membrane through specific interactions with TSPO.

  17. Differential Expression of In Vivo and In Vitro Protein Profile of Outer Membrane of Acidovorax avenae Subsp. avenae

    PubMed Central

    Qiu, Hui; Li, Bin; Jabeen, Amara; Li, Liping; Liu, He; Kube, Michael; Xie, Guanlin; Wang, Yanli; Sun, Guochang

    2012-01-01

    Outer membrane (OM) proteins play a significant role in bacterial pathogenesis. In this work, we examined and compared the expression of the OM proteins of the rice pathogen Acidovorax avenae subsp. avenae strain RS-1, a Gram-negative bacterium, both in an in vitro culture medium and in vivo rice plants. Global proteomic profiling of A. avenae subsp. avenae strain RS-1 comparing in vivo and in vitro conditions revealed the differential expression of proteins affecting the survival and pathogenicity of the rice pathogen in host plants. The shotgun proteomics analysis of OM proteins resulted in the identification of 97 proteins in vitro and 62 proteins in vivo by mass spectrometry. Among these OM proteins, there is a high number of porins, TonB-dependent receptors, lipoproteins of the NodT family, ABC transporters, flagellins, and proteins of unknown function expressed under both conditions. However, the major proteins such as phospholipase and OmpA domain containing proteins were expressed in vitro, while the proteins such as the surface anchored protein F, ATP-dependent Clp protease, OmpA and MotB domain containing proteins were expressed in vivo. This may indicate that these in vivo OM proteins have roles in the pathogenicity of A. avenae subsp. avenae strain RS-1. In addition, the LC-MS/MS identification of OmpA and MotB validated the in silico prediction of the existance of Type VI secretion system core components. To the best of our knowledge, this is the first study to reveal the in vitro and in vivo protein profiles, in combination with LC-MS/MS mass spectra, in silico OM proteome and in silico genome wide analysis, of pathogenicity or plant host required proteins of a plant pathogenic bacterium. PMID:23166741

  18. Outer membrane protein DsrA is the major fibronectin-binding determinant of Haemophilus ducreyi.

    PubMed

    Leduc, Isabelle; White, C Dinitra; Nepluev, Igor; Throm, Robert E; Spinola, Stanley M; Elkins, Christopher

    2008-04-01

    The ability to bind extracellular matrix proteins is a critical virulence determinant for skin pathogens. Haemophilus ducreyi, the etiological agent of the genital ulcer disease chancroid, binds extracellular matrix components, including fibronectin (FN). We investigated H. ducreyi FN binding and report several important findings about this interaction. First, FN binding by H. ducreyi was greatly increased in bacteria grown on heme and almost completely inhibited by hemoglobin. Second, wild-type strain 35000HP bound significantly more FN than did a dsrA mutant in two different FN binding assays. Third, the expression of dsrA in the dsrA mutant restored FN binding and conferred the ability to bind FN to a non-FN-binding Haemophilus influenzae strain. Fourth, an anti-DsrA monoclonal antibody partially blocked FN binding by H. ducreyi. The hemoglobin receptor, the collagen-binding protein, the H. ducreyi lectin, the fine-tangle pili, and the outer membrane protein OmpA2 were not involved in H. ducreyi FN binding, since single mutants bound FN as well as the parent strain did. However, the major outer membrane protein may have a minor role in FN binding by H. ducreyi, since a double dsrA momp mutant bound less FN than did the single dsrA mutant. Finally, despite major sequence differences, DsrA proteins from both class I and class II H. ducreyi strains mediated FN and vitronectin binding. We concluded that DsrA is the major factor involved in FN binding by both classes of H. ducreyi strains.

  19. Influence of the lipid membrane environment on structure and activity of the outer membrane protein Ail from Yersinia pestis

    PubMed Central

    Ding, Yi; Fujimoto, L. Miya; Yao, Yong; Plano, Gregory V.; Marassi, Francesca M.

    2014-01-01

    The surrounding environment has significant consequences for the structural and functional properties of membrane proteins. While native structure and function can be reconstituted in lipid bilayer membranes, the detergents used for protein solubilization are not always compatible with biological activity and, hence, not always appropriate for direct detection of ligand binding by NMR spectroscopy. Here we describe how the sample environment affects the activity of the outer membrane protein Ail (attachment invasion locus) from Yersinia pestis. Although Ail adopts the correct β-barrel fold in micelles, the high detergent concentrations required for NMR structural studies are not compatible with the ligand binding functionality of the protein. We also describe preparations of Ail embedded in phospholipid bilayer nanodiscs, optimized for NMR studies and ligand binding activity assays. Ail in nanodiscs is capable of binding its human ligand fibronectin and also yields high quality NMR spectra that reflect the proper fold. Binding activity assays, developed to be performed directly with the NMR samples, show that ligand binding involves the extracellular loops of Ail. The data show that even when detergent micelles support the protein fold, detergents can interfere with activity in subtle ways. PMID:25433311

  20. Purification, Refolding, and Crystallization of the Outer Membrane Protein OmpG from Escherichia coli.

    PubMed

    Köster, Stefan; van Pee, Katharina; Yildiz, Özkan

    2015-01-01

    OmpG is a pore-forming protein from E. coli outer membranes. Unlike the classical outer membrane porins, which are trimers, the OmpG channel is a monomeric β-barrel made of 14 antiparallel β-strands with short periplasmic turns and longer extracellular loops. The channel activity of OmpG is pH dependent and the channel is gated by the extracellular loop L6. At neutral/high pH, the channel is open and permeable for substrate molecules with a size up to 900 Da. At acidic pH, loop L6 folds across the channel and blocks the pore. The channel blockage at acidic pH appears to be triggered by the protonation of a histidine pair on neighboring β-strands, which repel one another, resulting in the rearrangement of loop L6 and channel closure. OmpG was purified by refolding from inclusion bodies and crystallized in two and three dimensions. Crystallization and analysis by electron microscopy and X-ray crystallography revealed the fundamental mechanisms essential for the channel activity.

  1. Outer membrane protein e of Escherichia coli K-12 is co-regulated with alkaline phosphatase.

    PubMed Central

    Tommassen, J; Lugtenberg, B

    1980-01-01

    Outer membrane protein e is induced in wild-type cells, just like alkaline phosphatase and some other periplasmic proteins, by growth under phosphatase limitation. nmpA and nmpB mutants, which synthesize protein e constitutively, are shown also to produce the periplasmic enzyme alkaline phosphatase constitutively. Alternatively, individual phoS, phoT, and phoR mutants as well as pit pst double mutants, all of which are known to produce alkaline phosphatase constitutively, were found to be constitutive for protein e. Also, the periplasmic space of most nmpA mutants and of all nmpB mutants grown in excess phosphate was found to contain, in addition to alkaline phosphatase, at least two new proteins, a phenomenon known for individual phoT and phoR mutants as well as for pit pst double mutants. The other nmpA mutants as well as phoS mutants lacked one of these extra periplasmic proteins, namely the phosphate-binding protein. From these data and from the known positions of the mentioned genes on the chromosomal map, it is concluded that nmpB mutants are identical to phoR mutants. Moreover, some nmpA mutants were shown to be identical to phoS mutants, whereas other nmpA mutants are likely to contain mutations in one of the genes phoS, phoT, or pst. Images PMID:6995425

  2. Clearing the outer mitochondrial membrane from harmful proteins via lipid droplets

    PubMed Central

    Bischof, Johannes; Salzmann, Manuel; Streubel, Maria Karolin; Hasek, Jiri; Geltinger, Florian; Duschl, Jutta; Bresgen, Nikolaus; Briza, Peter; Haskova, Danusa; Lejskova, Renata; Sopjani, Mentor; Richter, Klaus; Rinnerthaler, Mark

    2017-01-01

    In recent years it turned out that there is not only extensive communication between the nucleus and mitochondria but also between mitochondria and lipid droplets (LDs) as well. We were able to demonstrate that a number of proteins shuttle between LDs and mitochondria and it depends on the metabolic state of the cell on which organelle these proteins are predominantly localized. Responsible for the localization of the particular proteins is a protein domain consisting of two α-helices, which we termed V-domain according to the predicted structure. So far we have detected this domain in the following proteins: mammalian BAX, BCL-XL, TCTP and yeast Mmi1p and Erg6p. According to our experiments there are two functions of this domain: (1) shuttling of proteins to mitochondria in times of stress and apoptosis; (2) clearing the outer mitochondrial membrane from pro- as well as anti-apoptotic proteins by moving them to LDs after the stress ceases. In this way the LDs are used by the cell to modulate stress response. PMID:28386457

  3. Purification, crystallization and characterization of the Pseudomonas outer membrane protein FapF, a functional amyloid transporter

    PubMed Central

    Rouse, Sarah L.; Hawthorne, Wlliam J.; Lambert, Sebastian; Morgan, Marc L.; Hare, Stephen A.; Matthews, Stephen

    2016-01-01

    Bacteria often produce extracellular amyloid fibres via a multi-component secretion system. Aggregation-prone, unstructured subunits cross the periplasm and are secreted through the outer membrane, after which they self-assemble. Here, significant progress is presented towards solving the high-resolution crystal structure of the novel amyloid transporter FapF from Pseudomonas, which facilitates the secretion of the amyloid-forming polypeptide FapC across the bacterial outer membrane. This represents the first step towards obtaining structural insight into the products of the Pseudomonas fap operon. Initial attempts at crystallizing full-length and N-terminally truncated constructs by refolding techniques were not successful; however, after preparing FapF106–430 from the membrane fraction, reproducible crystals were obtained using the sitting-drop method of vapour diffusion. Diffraction data have been processed to 2.5 Å resolution. These crystals belonged to the monoclinic space group C121, with unit-cell parameters a = 143.4, b = 124.6, c = 80.4 Å, α = γ = 90, β = 96.32° and three monomers in the asymmetric unit. It was found that the switch to complete detergent exchange into C8E4 was crucial for forming well diffracting crystals, and it is suggested that this combined with limited proteolysis is a potentially useful protocol for membrane β-barrel protein crystallography. The three-dimensional structure of FapF will provide invaluable information on the mechanistic differences of biogenesis between the curli and Fap functional amyloid systems. PMID:27917837

  4. Membrane Frizzled Related Protein is necessary for the normal development and maintenance of photoreceptor outer segments

    PubMed Central

    Won, Jungyeon; Smith, Richard S.; Peachey, Neal S.; Wu, Jiang; Hicks, Wanda L.; Naggert, Jürgen K.; Nishina, Patsy M.

    2009-01-01

    A 4 base pair deletion in a splice donor site of the Mfrp (membrane-type frizzled-related protein) gene, herein referred to as Mfrprd6/rd6, is predicted to lead to the skipping of exon 4 and photoreceptor degeneration in retinal degeneration 6 (rd6) mutant mice. Little, however, is known about the function of the protein or how the mutation causes the degenerative retinal phenotype. Here we examine ultrastructural changes in the retina of Mfrprd6/rd6 mice to determine the earliest effects of the mutation. We also extend the reported observations of the expression pattern of the dicistronic Mfrp/C1qtnf5 message and the localization of these and other retinal pigment epithelium (RPE) and retinal proteins during development and assess the ability of RPE cells to phagocytize outer segments in mutant and WT mice. At the ultrastructural level, outer segments do not develop normally in Mfrprd6/rd6 mutants. They are disorganized and become progressively shorter as mutant mice age. Additionally, there are focal areas in which there is a reduction of apical RPE microvilli. At P25, the rod ERG a-wave of Mfrprd6/rd6 mice is reduced in amplitude by ~50% as are ERG components generated by the RPE. Examination of β-catenin localization and Fos and Tcf-1 expression, intermediates of the canonical Wnt-pathway, showed they were not different between mutant and WT mice, suggesting that MFRP may operate through an alternative pathway. Finally, impaired outer segment phagocytosis was observed in Mfrprd6/rd6 mice both in standard ambient lighting conditions and with bright light exposure when compared to WT controls. PMID:18764959

  5. Purification, pore-forming ability, and antigenic relatedness of the major outer membrane protein of Shigella dysenteriae type 1.

    PubMed Central

    Roy, S; Das, A B; Ghosh, A N; Biswas, T

    1994-01-01

    The major outer membrane protein (MOMP), the most abundant outer membrane protein, was purified to homogeneity from Shigella dysenteriae type 1. The purification method involved selective extraction of MOMP with sodium dodecyl sulfate in the presence of 0.4 M sodium chloride followed by size exclusion chromatography with Sephacryl S-200 HR. MOMP was found to form hydrophilic diffusion pores by incorporation into artificial liposome vesicles composed of egg yolk phosphatidylcholine and dicetylphosphate, indicating that MOMP of S. dysenteriae type 1 exhibited significant porin activity. However, the liposomes containing heat-denatured MOMP were barely active. The molecular weight of MOMP found by size exclusion chromatography was 130,000, and in sodium dodecyl sulfate-10% polyacrylamide gel it moved as an oligomer of 78,000 molecular weight. Upon boiling, fully dissociated monomers of 38,000 molecular weight were seen for S. dysenteriae type 1. However, among the four Shigella spp., the monomeric MOMP generated upon boiling ranged from 38,000 to 35,000 in molecular weight. Antibody raised in BALB/c mice immunized with MOMP of S. dysenteriae type 1 reacted strongly with purified MOMP of S. dysenteriae type 1 in an enzyme-linked immunosorbent assay (ELISA). The antibody reacted with whole-cell preparations of S. dysenteriae type 1 in an ELISA, suggesting that MOMP possessed surface components. Moreover, MOMP could be visualized on the bacterial surface by immunoelectron microscopy with anti-MOMP antibody. S. dysenteriae type 1 MOMP-specific immunoglobulin eluted from MOMP bound to a nitrocellulose membrane was found to cross-react with MOMP preparations of S. flexneri, S. boydii, and S. sonnei, indicating that MOMPs were antigenically related among Shigella species. The strong immunogenicity, surface exposure, and antigenic relatedness make MOMP of Shigella species an immunologically significant macromolecule for study. Images PMID:7927692

  6. The β-Barrel Outer Membrane Protein Assembly Complex of Neisseria meningitidis▿

    PubMed Central

    Volokhina, Elena B.; Beckers, Frank; Tommassen, Jan; Bos, Martine P.

    2009-01-01

    The evolutionarily conserved protein Omp85 is required for outer membrane protein (OMP) assembly in gram-negative bacteria and in mitochondria. Its Escherichia coli homolog, designated BamA, functions with four accessory lipoproteins, BamB, BamC, BamD, and BamE, together forming the β-barrel assembly machinery (Bam). Here, we addressed the composition of this machinery and the function of its components in Neisseria meningitidis, a model organism for outer membrane biogenesis studies. Analysis of genome sequences revealed homologs of BamC, BamD (previously described as ComL), and BamE and a second BamE homolog, Mlp. No homolog of BamB was found. As in E. coli, ComL/BamD appeared essential for viability and for OMP assembly, and it could not be replaced by its E. coli homolog. BamE was not essential but was found to contribute to the efficiency of OMP assembly and to the maintenance of OM integrity. A bamC mutant showed only marginal OMP assembly defects, but the impossibility of creating a bamC bamE double mutant further indicated the function of BamC in OMP assembly. An mlp mutant was unaffected in OMP assembly. The results of copurification assays demonstrated the association of BamC, ComL, and BamE with Omp85. Semi-native gel electrophoresis identified the RmpM protein as an additional component of the Omp85 complex, which was confirmed in copurification assays. RmpM was not required for OMP folding but stabilized OMP complexes. Thus, the Bam complex in N. meningitidis consists of Omp85/BamA plus RmpM, BamC, ComL/BamD, and BamE, of which ComL/BamD and BamE appear to be the most important accessory components for OMP assembly. PMID:19767435

  7. The prediction and characterization of YshA, an unknown outer membrane protein from Salmonella typhimurium

    PubMed Central

    Freeman, Thomas C.; Landry, Samuel J.; Wimley, William C.

    2010-01-01

    We have developed an effective pathway for the prediction and characterization of novel transmembrane β-barrel proteins. The Freeman-Wimley algorithm, which is a highly accurate prediction method based on the physicochemical properties of experimentally characterized transmembrane β barrel (TMBB) structures, was used to predict TMBBs in the genome of Salmonella typhimurium LT2. The previously uncharacterized product of gene yshA was tested as a model for validating the algorithm. YshA is a highly conserved 230-residue protein that is predicted to have 10 transmembrane β-strands and an N-terminal signal sequence. All of the physicochemical and spectroscopic properties exhibited by YshA are consistent with the prediction that it is a TMBB. Specifically, recombinant YshA localizes to the outer membrane when expressed in Escherichia coli; YshA has β-sheet-rich secondary structure with stable tertiary contacts in the presence of detergent micelles or when reconstituted into a lipid bilayer; when in a lipid bilayer, YshA forms a membrane-spanning pore with an effective radius of ~0.7 nm. Taken together, these data substantiate the predictions made by the Freeman-Wimley algorithm by showing that YshA is a TMBB protein. PMID:20863811

  8. Dissecting Escherichia coli Outer Membrane Biogenesis Using Differential Proteomics

    PubMed Central

    Martorana, Alessandra M.; Motta, Sara; Di Silvestre, Dario; Falchi, Federica; Dehò, Gianni; Mauri, Pierluigi; Sperandeo, Paola; Polissi, Alessandra

    2014-01-01

    The cell envelope of Gram-negative bacteria is a complex multi-layered structure comprising an inner cytoplasmic membrane and an additional asymmetric lipid bilayer, the outer membrane, which functions as a selective permeability barrier and is essential for viability. Lipopolysaccharide, an essential glycolipid located in the outer leaflet of the outer membrane, greatly contributes to the peculiar properties exhibited by the outer membrane. This complex molecule is transported to the cell surface by a molecular machine composed of seven essential proteins LptABCDEFG that form a transenvelope complex and function as a single device. While advances in understanding the mechanisms that govern the biogenesis of the cell envelope have been recently made, only few studies are available on how bacterial cells respond to severe envelope biogenesis defects on a global scale. Here we report the use of differential proteomics based on Multidimensional Protein Identification Technology (MudPIT) to investigate how Escherichia coli cells respond to a block of lipopolysaccharide transport to the outer membrane. We analysed the envelope proteome of a lptC conditional mutant grown under permissive and non permissive conditions and identified 123 proteins whose level is modulated upon LptC depletion. Most such proteins belong to pathways implicated in cell envelope biogenesis, peptidoglycan remodelling, cell division and protein folding. Overall these data contribute to our understanding on how E. coli cells respond to LPS transport defects to restore outer membrane functionality. PMID:24967819

  9. Diversification of the AlpB Outer Membrane Protein of Helicobacter pylori Affects Biofilm Formation and Cellular Adhesion

    PubMed Central

    Osaki, Takako; Fukutomi, Toshiyuki; Hanawa, Tomoko; Kurata, Satoshi; Zaman, Cynthia; Hojo, Fuhito; Kamiya, Shigeru

    2016-01-01

    ABSTRACT Helicobacter pylori is one of the most common causes of bacterial infection in humans, and it forms biofilms on human gastric mucosal epithelium as well as on in vitro abiotic surfaces. Bacterial biofilm is critical not only for environmental survival but also for successful infection. We previously demonstrated that strain TK1402, which was isolated from a Japanese patient with duodenal and gastric ulcers, has high biofilm-forming ability in vitro relative to other strains. In addition, we showed that outer membrane vesicles (OMV) play an important role in biofilm formation. The aim of this study was to analyze which protein(s) in the OMV contributes to biofilm formation in TK1402. We obtained a spontaneous mutant strain derived from TK1402 lacking biofilm-forming ability. The protein profiles of the OMV were compared between this mutant strain and the wild type, and it was found that AlpB, an outer membrane protein in the OMV of the mutant strain, was markedly decreased compared to that of the wild type. Restoration of TK1402 alpB to the mutant strain fully recovered the ability to form biofilm. However, restoration with alpB from other strains demonstrated incomplete recovery of biofilm-forming ability. We therefore inferred that the variable region of AlpB (amino acid positions 121 to 146) was involved in TK1402 biofilm formation. In addition, diversification of the AlpB sequence was shown to affect the ability to adhere to AGS cells. These results demonstrate a new insight into the molecular mechanisms of host colonization by H. pylori. IMPORTANCE Bacterial biofilm is critical not only for environmental survival but also for successful infection. The mechanism of Helicobacter pylori adherence to host cells mediated by cell surface adhesins has been the focus of many studies, but little is known regarding factors involved in H. pylori biofilm formation. Our study demonstrated that AlpB plays an important role in biofilm formation and that this property

  10. Diversification of the AlpB Outer Membrane Protein of Helicobacter pylori Affects Biofilm Formation and Cellular Adhesion.

    PubMed

    Yonezawa, Hideo; Osaki, Takako; Fukutomi, Toshiyuki; Hanawa, Tomoko; Kurata, Satoshi; Zaman, Cynthia; Hojo, Fuhito; Kamiya, Shigeru

    2017-03-15

    Helicobacter pylori is one of the most common causes of bacterial infection in humans, and it forms biofilms on human gastric mucosal epithelium as well as on in vitro abiotic surfaces. Bacterial biofilm is critical not only for environmental survival but also for successful infection. We previously demonstrated that strain TK1402, which was isolated from a Japanese patient with duodenal and gastric ulcers, has high biofilm-forming ability in vitro relative to other strains. In addition, we showed that outer membrane vesicles (OMV) play an important role in biofilm formation. The aim of this study was to analyze which protein(s) in the OMV contributes to biofilm formation in TK1402. We obtained a spontaneous mutant strain derived from TK1402 lacking biofilm-forming ability. The protein profiles of the OMV were compared between this mutant strain and the wild type, and it was found that AlpB, an outer membrane protein in the OMV of the mutant strain, was markedly decreased compared to that of the wild type. Restoration of TK1402 alpB to the mutant strain fully recovered the ability to form biofilm. However, restoration with alpB from other strains demonstrated incomplete recovery of biofilm-forming ability. We therefore inferred that the variable region of AlpB (amino acid positions 121 to 146) was involved in TK1402 biofilm formation. In addition, diversification of the AlpB sequence was shown to affect the ability to adhere to AGS cells. These results demonstrate a new insight into the molecular mechanisms of host colonization by H. pyloriIMPORTANCE Bacterial biofilm is critical not only for environmental survival but also for successful infection. The mechanism of Helicobacter pylori adherence to host cells mediated by cell surface adhesins has been the focus of many studies, but little is known regarding factors involved in H. pylori biofilm formation. Our study demonstrated that AlpB plays an important role in biofilm formation and that this property depends

  11. Correlation between Resistance of Pseudomonas aeruginosa to Quaternary Ammonium Compounds and Expression of Outer Membrane Protein OprR

    PubMed Central

    Tabata, Atsushi; Nagamune, Hideaki; Maeda, Takuya; Murakami, Keiji; Miyake, Yoichiro; Kourai, Hiroki

    2003-01-01

    The adaptation mechanism of Pseudomonas aeruginosa ATCC 10145 to quaternary ammonium compounds (QACs) was investigated. A P. aeruginosa strain with adapted resistance to QACs was developed by a standard broth dilution method. It was revealed that P. aeruginosa exhibited remarkable resistance to N-dodecylpyridinium iodide (P-12), whose structure is similar to that of a common disinfectant, cetylpyridinium chloride. Adapted resistance to benzalkonium chloride (BAC), which is commonly used as a disinfectant, was also observed in P. aeruginosa. Moreover, the P-12-resistant strain exhibited cross-resistance to BAC. Analysis of the outer membrane protein of the P-12-resistant strain by two-dimensional polyacrylamide gel electrophoresis showed a significant increase in the level of expression of a protein (named OprR) whose molecular mass was approximately 26 kDa. The actual function of OprR is not yet clear; however, OprR was expected to be an outer membrane-associated protein with homology to lipoproteins of other bacterial species, according to a search of the National Center for Biotechnology Information website with the BLAST program by use of the N-terminal sequence of OprR. A correlation between the level of expression of OprR and the level of resistance of P. aeruginosa to QACs was observed by using a PA2800 gene knockout mutant derived from the P-12-resistant strain. The knockout mutant recovered susceptibility not only to P-12 but also to BAC. These results suggested that OprR significantly participated in the adaptation of P. aeruginosa to QACs, such as P-12 and BAC. PMID:12821452

  12. Immunochemical diversity of the major outer membrane protein of avian and mammalian Chlamydia psittaci.

    PubMed Central

    Fukushi, H; Hirai, K

    1988-01-01

    Immunochemical properties of the major outer membrane protein (MOMP) of 16 strains of Chlamydia psittaci isolated from psittacine birds, budgerigars, a pigeon, turkeys, humans, cats, a muskrat, sheep, and cattle and a strain of C. trachomatis, L2/434/Bu, were compared by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by immunoblotting analysis with hyperimmunized rabbit antisera to strains of parrot, turkey, feline, and bovine origin. The MOMPs of the strains showed variation in molecular weights and immunological specificities. Fifteen of the C. psittaci strains were classified into two avian and two mammalian types based on immunological specificity of the MOMP, whereas the other strain was not classified in this study. Immunological classification based on specificity of the MOMP by immunoblotting proved to be a valuable method to classify various strains of C. psittaci. Images PMID:3366861

  13. Topographic labelling of pore-forming proteins from the outer membrane of Escherichia coli.

    PubMed Central

    Page, M G; Rosenbusch, J P

    1986-01-01

    The topography of three pore-forming proteins from the outer membrane of Escherichia coli has been explored by using two labelling techniques. Firstly, the distribution of nucleophilic residues has been investigated by selective chemical modification using arylglyoxals (for arginine residues), isothiocyanates (for lysine residues), carbodi-imides (for carboxy residues) and diazonium salts. Secondly, the membrane-embedded domains have been investigated by labelling with photoactivatable phospholipid analogues and a reagent that partitions into the membrane. Few nucleophilic groups are found to be freely accessible to pore-impermeant probes reacting in the aqueous medium. More groups are accessible to small, pore-permeant probes, suggesting that several groups of each sort are contained within the pore. In addition, there appear to be a number of arginine, lysine, carboxyl and many tyrosine residues that are rather inaccessible and that react only with small, hydrophobic probes, if at all. Amongst these more deeply buried residues there are four arginine residues and an as-yet-undetermined number of carboxy residues that appear to be essential to the structural integrity of the oligomeric molecule. Images Fig. 4. PMID:2428354

  14. Deuterium Labeling Strategies for Creating Contrast in Structure-Function Studies of Model Bacterial Outer Membranes Using Neutron Reflectometry.

    PubMed

    Le Brun, Anton P; Clifton, Luke A; Holt, Stephen A; Holden, Peter J; Lakey, Jeremy H

    2016-01-01

    Studying the outer membrane of Gram-negative bacteria is challenging due to the complex nature of its structure. Therefore, simplified models are required to undertake structure-function studies of processes that occur at the outer membrane/fluid interface. Model membranes can be created by immobilizing bilayers to solid supports such as gold or silicon surfaces, or as monolayers on a liquid support where the surface pressure and fluidity of the lipids can be controlled. Both model systems are amenable to having their structure probed by neutron reflectometry, a technique that provides a one-dimensional depth profile through a membrane detailing its thickness and composition. One of the strengths of neutron scattering is the ability to use contrast matching, allowing molecules containing hydrogen and those enriched with deuterium to be highlighted or matched out against the bulk isotopic composition of the solvent. Lipopolysaccharides, a major component of the outer membrane, can be isolated for incorporation into model membranes. Here, we describe the deuteration of lipopolysaccharides from rough strains of Escherichia coli for incorporation into model outer membranes, and how the use of deuterated materials enhances structural analysis of model membranes by neutron reflectometry.

  15. [Bacterial Outer Membrane Nanovesicles: Structure, Biogenesis, Functions, and Application in Biotechnology and Medicine (Review)].

    PubMed

    Lusta, K A

    2015-01-01

    The review summarizes the comprehensive biochemical and physicochemical characteristics of extracellular membrane nanovesicles (EMN) derived from different kinds of bacteria. The EMN structure, composition, biogenesis, secretion mechanisms, formation conditions, functions, involvement in pathogenesis, and application in biotechnology and medicine are discussed.

  16. Immunodetection of Outer Membrane Proteins by Flow Cytometry of Isolated Mitochondria

    PubMed Central

    Pickles, Sarah; Arbour, Nathalie; Vande Velde, Christine

    2014-01-01

    Methods to detect and monitor mitochondrial outer membrane protein components in animal tissues are vital to study mitochondrial physiology and pathophysiology. This protocol describes a technique where mitochondria isolated from rodent tissue are immunolabeled and analyzed by flow cytometry. Mitochondria are isolated from rodent spinal cords and subjected to a rapid enrichment step so as to remove myelin, a major contaminant of mitochondrial fractions prepared from nervous tissue. Isolated mitochondria are then labeled with an antibody of choice and a fluorescently conjugated secondary antibody. Analysis by flow cytometry verifies the relative purity of mitochondrial preparations by staining with a mitochondrial specific dye, followed by detection and quantification of immunolabeled protein. This technique is rapid, quantifiable and high-throughput, allowing for the analysis of hundreds of thousands of mitochondria per sample. It is applicable to assess novel proteins at the mitochondrial surface under normal physiological conditions as well as the proteins that may become mislocalized to this organelle during pathology. Importantly, this method can be coupled to fluorescent indicator dyes to report on certain activities of mitochondrial subpopulations and is feasible for mitochondria from the central nervous system (brain and spinal cord) as well as liver. PMID:25285411

  17. The major outer membrane protein of Acidovorax delafieldii is an anion-selective porin.

    PubMed

    Brunen, M; Engelhardt, H; Schmid, A; Benz, R

    1991-07-01

    The major outer membrane protein (Omp34) of Acidovorax delafieldii (formerly Pseudomonas delafieldii) was purified to homogeneity and was characterized biochemically and functionally. The polypeptide has an apparent molecular weight (Mr) of 34,000, and it forms stable oligomers at pH 9.0 in the presence of 10% octylpolyoxyethylene or 2% lithium dodecyl sulfate below 70 degrees C. The intact protein has a characteristic secondary structure composition, as revealed by Fourier transforming infrared spectroscopy (about 60% beta sheet). These features and the amino acid composition are typical for porins. The purified Omp34 is associated with 1 to 2 mol of lipopolysaccharide per mol of the monomer. Pore-forming activity was demonstrated with lipid bilayer experiments. Single-channel and selectivity measurements showed that the protein forms highly anion-selective channels. The unusual dependence of the single-channel conductance on salt concentration suggests that the porin complexes bear positive surface charges, accumulating negatively charged counterions at the pore mouth.

  18. Differences in outer membrane proteins of the lymphogranuloma venereum and trachoma biovars of Chlamydia trachomatis

    SciTech Connect

    Batteiger, B.E.; Jones, R.B.

    1985-11-01

    The lymphogranuloma venereum (LGV) and trachoma biovars of Chlamydia trachomatis exhibit differences in biological properties both in vivo and in vitro. To identify analogous biochemical differences, the authors studied the molecular charges of chlamydial outer membrane proteins (OMPs) by means of isoelectric focusing and nonequilibrium pH gradient electrophoresis. Analysis of proteins of whole elementary bodies biosynthetically labeled with L-(35S)cysteine revealed that most chlamydial proteins were neutral or acidic. The major OMPs (MOMPs) of all strains tested were acidic and had apparent isoelectric points (pIs) that varied within narrow limits despite differences in molecular mass of up to 3,000 daltons (Da). However, a low-molecular-mass cysteine-rich OMP analogous to that previously described for Chlamydia psittaci varied consistently in molecular mass (12,500 versus 12,000 Da) and pI (5.4 versus 6.9) between LGV strains and trachoma strains, respectively. OMPs with a molecular mass of 60,000 Da in the trachoma biovar strains had pIs in the 7.3 to 7.7 range. However, analogous OMPs in the LGV strains existed as a doublet with a molecular mass of about 60,000 Da. These data indicate substantial differences in biochemical characteristics of analogous OMPs in the LGV and trachoma biovars. Such differences are the first structural differences described between LGV and trachoma strains which support their distinction into separate biovars and may be related to some of their biological differences.

  19. Two Outer Membrane Proteins Contribute to Caulobacter crescentus Cellular Fitness by Preventing Intracellular S-Layer Protein Accumulation

    SciTech Connect

    Overton, K. Wesley; Park, Dan M.; Yung, Mimi C.; Dohnalkova, Alice C.; Smit, John; Jiao, Yongqin

    2016-09-23

    Surface layers, or S-layers, are two-dimensional protein arrays that form the outermost layer of many bacteria and archaea. They serve several functions, including physical protection of the cell from environmental threats. The high abundance of S-layer proteins necessitates a highly efficient export mechanism to transport the S-layer protein from the cytoplasm to the cell exterior.Caulobacter crescentusis unique in that it has two homologous, seemingly redundant outer membrane proteins, RsaFaand RsaFb, which together with other components form a type I protein translocation pathway for S-layer export. These proteins have homology toEscherichia coliTolC, the outer membrane channel of multidrug efflux pumps. Here we provide evidence that, unlike TolC, RsaFaand RsaFbare not involved in either the maintenance of membrane stability or the active export of antimicrobial compounds. Rather, RsaFaand RsaFbare required to prevent intracellular accumulation and aggregation of the S-layer protein RsaA; deletion of RsaFaand RsaFbled to a general growth defect and lowered cellular fitness. Using Western blotting, transmission electron microscopy, and transcriptome sequencing (RNA-seq), we show that loss of both RsaFaand RsaFbled to accumulation of insoluble RsaA in the cytoplasm, which in turn caused upregulation of a number of genes involved in protein misfolding and degradation pathways. These findings provide new insight into the requirement for RsaFaand RsaFbin cellular fitness and tolerance to antimicrobial agents and further our understanding of the S-layer export mechanism on both the transcriptional and translational levels inC. crescentus.

  20. Two Outer Membrane Proteins Contribute to Caulobacter crescentus Cellular Fitness by Preventing Intracellular S-Layer Protein Accumulation

    SciTech Connect

    Overton, K. Wesley; Park, Dan M.; Yung, Mimi C.; Dohnalkova, Alice C.; Smit, John; Jiao, Yongqin; Parales, R. E.

    2016-09-23

    ABSTRACT

    Surface layers, or S-layers, are two-dimensional protein arrays that form the outermost layer of many bacteria and archaea. They serve several functions, including physical protection of the cell from environmental threats. The high abundance of S-layer proteins necessitates a highly efficient export mechanism to transport the S-layer protein from the cytoplasm to the cell exterior.Caulobacter crescentusis unique in that it has two homologous, seemingly redundant outer membrane proteins, RsaFaand RsaFb, which together with other components form a type I protein translocation pathway for S-layer export. These proteins have homology toEscherichia coliTolC, the outer membrane channel of multidrug efflux pumps. Here we provide evidence that, unlike TolC, RsaFaand RsaFbare not involved in either the maintenance of membrane stability or the active export of antimicrobial compounds. Rather, RsaFaand RsaFbare required to prevent intracellular accumulation and aggregation of the S-layer protein RsaA; deletion of RsaFaand RsaFbled to a general growth defect and lowered cellular fitness. Using Western blotting, transmission electron microscopy, and transcriptome sequencing (RNA-seq), we show that loss of both RsaFaand RsaFbled to accumulation of insoluble RsaA in the cytoplasm, which in turn caused upregulation of a number of genes involved in protein misfolding and degradation pathways. These findings provide new insight into the requirement for RsaFaand RsaFbin cellular fitness and tolerance to antimicrobial agents and further our understanding of the S-layer export mechanism on both the transcriptional and translational levels inC. crescentus

  1. Immunological characteristics of outer membrane protein omp31 of goat Brucella and its monoclonal antibody.

    PubMed

    Zheng, W Y; Wang, Y; Zhang, Z C; Yan, F

    2015-10-05

    We examined the immunological characteristics of outer membrane protein omp31 of goat Brucella and its monoclonal antibody. Genomic DNA from the M5 strain of goat Brucella was amplified by polymerase chain reaction and cloned into the prokaryotic expression vector pGEX-4T-1. The expression and immunological characteristics of the fusion protein GST-omp31 were subjected to preliminary western blot detection with goat Brucella rabbit immune serum. The Brucella immunized BALB/c mouse serum was detected using purified protein. The high-potency mouse splenocytes and myeloma Sp2/0 cells were fused. Positive clones were screened by enzyme-linked immunosorbent assay to establish a hybridoma cell line. Mice were inoculated intraperitoneally with hybridoma cells to prepare ascites. The mAb was purified using the n-caprylic acid-ammonium sulfate method. The characteristics of mAb were examined using western blotting and enzyme-linked immunosorbent assay. A 680-base pair band was observed after polymerase chain reaction. Enzyme digestion identification and sequencing showed that the pGEX-4T-1-omp31 prokaryotic expression vector was successfully established; a target band of approximately 57 kDa with an apparent molecular weight consistent with the size of the target fusion protein. At 25°C, the expression of soluble expression increased significantly; the fusion protein GST-omp31 was detected by western blotting. Anti-omp31 protein mAb was obtained from 2 strains of Brucella. The antibody showed strong specificity and sensitivity and did not cross-react with Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Mycobacterium tuberculosis, or Bacillus pyocyaneus. The pGEX-4T-1-omp31 prokaryotic expression vector was successfully established and showed good immunogenicity. The antibody also showed strong specificity and good sensitivity.

  2. Immunoprotective Efficacy of Acinetobacter baumannii Outer Membrane Protein, FilF, Predicted In silico as a Potential Vaccine Candidate

    PubMed Central

    Singh, Ravinder; Garg, Nisha; Shukla, Geeta; Capalash, Neena; Sharma, Prince

    2016-01-01

    Acinetobacter baumannii is emerging as a serious nosocomial pathogen with multidrug resistance that has made it difficult to cure and development of efficacious treatment against this pathogen is direly needed. This has led to investigate vaccine approach to prevent and treat A. baumannii infections. In this work, an outer membrane putative pilus assembly protein, FilF, was predicted as vaccine candidate by in silico analysis of A. baumannii proteome and was found to be conserved among the A. baumannii strains. It was cloned and expressed in E. coli BL21(DE3) and purified by Ni-NTA chromatography. Immunization with FilF generated high antibody titer (>64,000) and provided 50% protection against a standardized lethal dose (108 CFU) of A. baumannii in murine pneumonia model. FilF immunization reduced the bacterial load in lungs by 2 and 4 log cycles, 12 and 24 h post infection as compared to adjuvant control; reduced the levels of pro-inflammatory cytokines TNF-α, IL-6, IL-33, IFN-γ, and IL-1β significantly and histology of lung tissue supported the data by showing considerably reduced damage and infiltration of neutrophils in lungs. These results demonstrate the in vivo validation of immunoprotective efficacy of a protein predicted as a vaccine candidate by in silico proteomic analysis and open the possibilities for exploration of a large array of uncharacterized proteins. PMID:26904021

  3. Identification and Comparative Analysis of Genes Encoding Outer Membrane Proteins P2 and P5 in Haemophilus parsuis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Haemophilus parasuis is a serious swine pathogen but little is known about how it causes disease. A related human pathogen, Haemophilus influenzae, has been better studied and many of its virulence factors have been identified. Two of these, outer membrane proteins P2 and P5, have been shown to ha...

  4. The tolC locus of Escherichia coli affects the expression of three major outer membrane proteins.

    PubMed Central

    Morona, R; Reeves, P

    1982-01-01

    tolC mutants, which are resistant to colicin E1 and also highly sensitive to detergents and dyes, were shown to lack the OmpF outer membrane protein. There was little effect on transcription as judged by the use of an ompF-lac operon fusion strain, and the tolC effect was probably due to a post-transcriptional effect. The NmpC protein and protein 2 were also tolC dependent. Images PMID:6281230

  5. Characterization of New Members of the Group 3 Outer Membrane Protein Family of Brucella spp.

    PubMed Central

    Salhi, Imed; Boigegrain, Rose-Anne; Machold, Jan; Weise, Christoph; Cloeckaert, Axel; Rouot, Bruno

    2003-01-01

    Impairment of the omp25 gene in Brucella spp. leads to attenuated strains and confers protection to the host. Omp25 and Omp31, whose functions remain unknown, were the first characterized members of group 3 outer membrane proteins (Omps) (25 to 34 kDa). Recently, genomic and proteomic approaches identified five new putative members of this family, some of which are produced in B. melitensis or B. abortus. In the present study, using protein microsequencing, we identified new members of group 3 Omps proteins produced in B. suis. Since several monoclonal antibodies (MAbs) against Omp25 cross-reacted with other members of group 3 Omps, we also performed Western immunoblotting to compare wild-type B. suis with mutants systematically having B. suis omp25-related genes knocked out. We demonstrate the production of three paralogs of Omp31 and/or Omp25 in B. suis, and the existence of a common site of signal peptide cleavage (AXAAD), which is very similar to that present in the five homologous Omps of Bartonella quintana. The seven group 3 Omps were classified in four-subgroups on the basis of percentage amino acid sequence identities: Omp25 alone, the Omp25b-Omp25c-Omp25d cluster, the Omp31/31b subgroup, and the less related Omp22 protein (also called Omp3b). Together with previous data, our results demonstrate that all new members of group 3 Omps are produced in B. suis or in other Brucella species and we propose a nomenclature that integrates all of these proteins to facilitate the understanding of future Brucella interspecies study results. PMID:12874309

  6. Long-Term Stability of a Vaccine Formulated with the Amphipol-Trapped Major Outer Membrane Protein from Chlamydia trachomatis

    PubMed Central

    Feinstein, H. Eric; Tifrea, Delia; Sun, Guifeng; Popot, Jean-Luc; de la Maza, Luis M.

    2014-01-01

    Chlamydia trachomatis is a major bacterial pathogen throughout the world. Although antibiotic therapy can be implemented in the case of early detection, a majority of the infections are asymptomatic, requiring the development of preventive measures. Efforts have focused on the production of a vaccine using the C. trachomatis major outer membrane protein (MOMP). MOMP is purified in its native (n) trimeric form using the zwitterionic detergent Z3–14, but its stability in detergent solutions is limited. Amphipols (APols) are synthetic polymers that can stabilize membrane proteins (MPs) in detergent-free aqueous solutions. Preservation of protein structure and optimization of exposure of the most effective antigenic regions can avoid vaccination with misfolded, poorly protective protein. Previously, we showed that APols maintain nMOMP secondary structure and that nMOMP/APol vaccine formulations elicit better protection than formulations using either recombinant or nMOMP solubilized in Z3–14. To achieve a greater understanding of the structural behavior and stability of nMOMP in APols, we have used several spectroscopic techniques to characterize its secondary structure (circular dichroism), tertiary and quaternary structures (immunochemistry and gel electrophoresis) and aggregation state (light scattering) as a function of temperature and time. We have also recorded NMR spectra of 15N-labeled nMOMP and find that the exposed loops are detectable in APols but not in detergent. Our analyses show that APols protect nMOMP much better than Z3–14 against denaturation due to continuous heating, repeated freeze/thaw cycles, or extended storage at room temperature. These results indicate that APols can help improve MP-based vaccine formulations. PMID:24942817

  7. Peripheral-type benzodiazepine receptor: a protein of mitochondrial outer membranes utilizing porphyrins as endogenous ligands

    SciTech Connect

    Snyder, S.H.; Verma, A.; Trifiletti, R.R.

    1987-10-01

    The peripheral-type benzodiazepine receptor is a site identified by its nanomolar affinity for (/sup 3/H)diazepam, similar to the affinity of diazepam for the central-type benzodiazepine receptor in the brain. The peripheral type benzodiazepine receptor occurs in many peripheral tissues but has discrete localizations as indicated by autoradiographic studies showing uniquely high densities of the receptors in the adrenal cortex and in Leydig cells of the testes. Subcellular localization studies reveal a selective association of the receptors with the outer membrane of mitochondria. Photoaffinity labeling of the mitochondrial receptor with (/sup 3/H)flunitrazepam reveals two discrete labeled protein bands of 30 and 35 kDa, respectively. The 35-kDa band appears to be identical with the voltage-dependent anion channel protein porin. Fractionation of numerous peripheral tissues reveals a single principal endogenous ligand for the receptor, consisting of porphyrins, which display nanomolar affinity. Interactions of porphyrins with the mitochondrial receptor may clarify its physiological role and account for many pharmacological actions of benzodiazepines.

  8. Two outer membrane lipoproteins from Histophilus somni are immunogenic in rabbits and sheep and induce protection against bacterial challenge in mice.

    PubMed

    Guzmán-Brambila, Carolina; Rojas-Mayorquín, Argelia E; Flores-Samaniego, Beatriz; Ortuño-Sahagún, Daniel

    2012-11-01

    Histophilus somni is an economically important pathogen of cattle and other ruminants and is considered one of the key components of the bovine respiratory disease (BRD) complex, the leading cause of economic loss in the livestock industry. BRD is a multifactorial syndrome, in which a triad of agents, including bacteria, viruses, and predisposing factors or "stressors," combines to induce disease. Although vaccines against H. somni have been used for many decades, traditional bacterins have failed to demonstrate effective protection in vaccinated animals. Hence, the BRD complex continues to produce strong adverse effects on the health and well-being of stock and feeder cattle. The generation of recombinant proteins may facilitate the development of more effective vaccines against H. somni, which could confer better protection against BRD. In the present study, primers were designed to amplify, clone, express, and purify two recombinant lipoproteins from H. somni, p31 (Plp4) and p40 (LppB), which are structural proteins of the outer bacterial membrane. The results presented here demonstrate, to our knowledge for the first time, that when formulated, an experimental vaccine enriched with these two recombinant lipoproteins generates high antibody titers in rabbits and sheep and exerts a protective effect in mice against septicemia induced by H. somni bacterial challenge.

  9. Two Outer Membrane Lipoproteins from Histophilus somni Are Immunogenic in Rabbits and Sheep and Induce Protection against Bacterial Challenge in Mice

    PubMed Central

    Guzmán-Brambila, Carolina; Rojas-Mayorquín, Argelia E.; Flores-Samaniego, Beatriz

    2012-01-01

    Histophilus somni is an economically important pathogen of cattle and other ruminants and is considered one of the key components of the bovine respiratory disease (BRD) complex, the leading cause of economic loss in the livestock industry. BRD is a multifactorial syndrome, in which a triad of agents, including bacteria, viruses, and predisposing factors or “stressors,” combines to induce disease. Although vaccines against H. somni have been used for many decades, traditional bacterins have failed to demonstrate effective protection in vaccinated animals. Hence, the BRD complex continues to produce strong adverse effects on the health and well-being of stock and feeder cattle. The generation of recombinant proteins may facilitate the development of more effective vaccines against H. somni, which could confer better protection against BRD. In the present study, primers were designed to amplify, clone, express, and purify two recombinant lipoproteins from H. somni, p31 (Plp4) and p40 (LppB), which are structural proteins of the outer bacterial membrane. The results presented here demonstrate, to our knowledge for the first time, that when formulated, an experimental vaccine enriched with these two recombinant lipoproteins generates high antibody titers in rabbits and sheep and exerts a protective effect in mice against septicemia induced by H. somni bacterial challenge. PMID:22971783

  10. Immunochemical and biological characterization of outer membrane proteins of Porphyromonas endodontalis.

    PubMed

    Ogawa, T; Kuribayashi, S; Shimauchi, H; Toda, T; Hamada, S

    1992-11-01

    Outer membrane proteins (OMP) of Porphyromonas endodontalis HG 370 (ATCC 35406) were prepared from the cell envelope fraction of the organisms. The cell envelope that had been obtained by sonication of the whole cells was extracted in 2% lithium dodecyl sulfate and then successively chromatographed with Sephacryl S-200 HR and DEAE-Sepharose Fast Flow. Two OMP fractions, OMP-I and OMP-II, were obtained, and their immunochemical properties and induction of specific antibodies were examined. The OMP-I preparation consisted of a major protein with an apparent molecular mass of 31 kDa and other moderate to minor proteins of 40.3, 51.4, 67, and 71.6 kDa, while the OMP-II preparation contained 14-, 15.5-, 27-, and 44-kDa proteins as revealed by sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis. OMP-I was found to form hydrophilic diffusion pores by incorporation into artificial liposomes composed of egg yolk phosphatidylcholine and dicetylphosphate, indicating that OMP-I exhibited significant porin activity. However, the liposomes containing heat-denatured OMP-I were scarcely active. Spontaneous and antigen-specific immunoglobulin M (IgM)-, IgG-, and IgA-secreting spot-forming cells (SFC) enzymatically dissociated into single-cell suspensions from chronically inflamed periapical tissues and were enumerated by enzyme-linked immunospot assay. In patients with radicular cysts or dental granulomas, the major isotype of spontaneous SFC was IgG. In radicular cysts, the OMP-II-specific IgG SFC represented 0.13% of the total IgG SFC, while the antigen-specific IgA or IgM SFC was not observed. It was also found that none of these mononuclear cells produced antibodies specific for OMP-I or lipopolysaccharide of P. endodontalis.

  11. Immunochemical and biological characterization of outer membrane proteins of Porphyromonas endodontalis.

    PubMed Central

    Ogawa, T; Kuribayashi, S; Shimauchi, H; Toda, T; Hamada, S

    1992-01-01

    Outer membrane proteins (OMP) of Porphyromonas endodontalis HG 370 (ATCC 35406) were prepared from the cell envelope fraction of the organisms. The cell envelope that had been obtained by sonication of the whole cells was extracted in 2% lithium dodecyl sulfate and then successively chromatographed with Sephacryl S-200 HR and DEAE-Sepharose Fast Flow. Two OMP fractions, OMP-I and OMP-II, were obtained, and their immunochemical properties and induction of specific antibodies were examined. The OMP-I preparation consisted of a major protein with an apparent molecular mass of 31 kDa and other moderate to minor proteins of 40.3, 51.4, 67, and 71.6 kDa, while the OMP-II preparation contained 14-, 15.5-, 27-, and 44-kDa proteins as revealed by sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis. OMP-I was found to form hydrophilic diffusion pores by incorporation into artificial liposomes composed of egg yolk phosphatidylcholine and dicetylphosphate, indicating that OMP-I exhibited significant porin activity. However, the liposomes containing heat-denatured OMP-I were scarcely active. Spontaneous and antigen-specific immunoglobulin M (IgM)-, IgG-, and IgA-secreting spot-forming cells (SFC) enzymatically dissociated into single-cell suspensions from chronically inflamed periapical tissues and were enumerated by enzyme-linked immunospot assay. In patients with radicular cysts or dental granulomas, the major isotype of spontaneous SFC was IgG. In radicular cysts, the OMP-II-specific IgG SFC represented 0.13% of the total IgG SFC, while the antigen-specific IgA or IgM SFC was not observed. It was also found that none of these mononuclear cells produced antibodies specific for OMP-I or lipopolysaccharide of P. endodontalis. Images PMID:1328059

  12. Sequence and transcriptional start site of the Pseudomonas aeruginosa outer membrane porin protein F gene.

    PubMed Central

    Duchêne, M; Schweizer, A; Lottspeich, F; Krauss, G; Marget, M; Vogel, K; von Specht, B U; Domdey, H

    1988-01-01

    Porin F is one of the major proteins of the outer membrane of Pseudomonas aeruginosa. It forms water-filled pores of variable size. Porin F is a candidate for a vaccine against P. aeruginosa because it antigenically cross-reacts in all serotype strains of the International Antigenic Typing Scheme. We have isolated the gene for porin F from a lambda EMBL3 bacteriophage library by using oligodeoxynucleotide hybridization probes and have determined its nucleotide sequence. Different peptide sequences obtained from isolated porin F confirmed the deduced protein sequence. The mature protein consists of 326 amino acid residues and has a molecular weight of 35,250. The precursor contains an N-terminal signal peptide of 24 amino acid residues. S1 protection and primer extension experiments, together with Northern (RNA) blots, indicate that the mRNA coding for porin F is monocistronic with short untranslated regions of about 58 bases at the 5' end and about 47 bases at the 3' end. The sequences in the -10 and -35 regions upstream of the transcriptional start site are closely related to the Escherichia coli promoter consensus sequences, which explains why the porin F gene is expressed in E. coli under the control of its own promoter. The amino acid sequence of porin F is not homologous to the different E. coli porins OmpF, OmpC, LamB, and PhoE. On the other hand, a highly homologous region of 30 amino acids between the OmpA proteins of different enteric bacteria and porin F of P. aeruginosa was detected. The core region of the homology to E. coli OmpA had 11 of 12 amino acid residues in common. Images PMID:2447060

  13. Lymphocytic proliferative response to outer-membrane proteins isolated from Salmonella.

    PubMed

    González, C R; Isibasi, A; Ortiz-Navarrete, V; Paniagua, J; García, J A; Blanco, F; Kumate, J

    1993-01-01

    Porins isolated from Salmonella typhi have been demonstrated to protect against the challenge with this bacteria in mice. The mechanism has not been clarified, but could be associated with activation of both humoral and cellular immunity. In order to evaluate the induction of specific T cell responses, the lymphocytic proliferation to porins isolated from Salmonella typhimurium, Salmonella typhi and Escherichia coli was examined by 3H-thymidine incorporation assay in mice immunized with three different antigens: acetone-killed S. typhimurium, its porins, or outer-membrane proteins (OMPs) isolated from S. typhi. Higher proliferative responses were observed in mice immunized with porins and OMPs compared with those which received the acetone-killed bacteria. Although cross-reactivity was observed between porins, they were not mitogenic. Moreover, porins were able to activate T lymphocytes isolated from mice immunized with S. typhi OMPs. These results suggest that T cell activation, through the release of lymphokines, may play a role in the induction of protective immunity with porins.

  14. Expression of the major outer membrane protein of Chlamydia trachomatis in Escherichia coli.

    PubMed Central

    Manning, D S; Stewart, S J

    1993-01-01

    The major outer membrane protein (MOMP) of Chlamydia trachomatis was expressed in Escherichia coli. To assess whether it assembled into a conformationally correct structure at the cell surface, we characterized the recombinant MOMP (rMOMP) by Western immunoblot analysis, indirect immunofluorescence, and immunoprecipitation with monoclonal antibodies (MAbs) that recognize contiguous and conformational MOMP epitopes. Western blot analysis showed that most of the rMOMP comigrated with authentic monomer MOMP, indicating that its signal peptide was recognized and cleaved by E. coli. The rMOMP could not be detected on the cell surface of viable or formalin-killed E. coli organisms by indirect immunofluorescence staining with a MAb specific for a MOMP contiguous epitope. In contrast, the same MAb readily stained rMOMP-expressing E. coli cells that had been permeabilized by methanol fixation. A MAb that recognizes a conformational MOMP epitope and reacted strongly with formalin- or methanol-fixed elementary bodies failed to stain formalin- or methanol-fixed E. coli expressing rMOMP. Moreover, this MAb did not immunoprecipitate rMOMP from expressing E. coli cells even though it precipitated the authentic protein from lysates of C. trachomatis elementary bodies. Therefore we concluded that rMOMP was not localized to the E. coli cell surface and was not recognizable by a conformation-dependent antibody. These results indicate that rMOMP expressed by E. coli is unlikely to serve as an accurate model of MOMP structure and function. They also question the utility of rMOMP as a source of immunogen for eliciting neutralizing antibodies against conformational antigenic sites of the protein. Images PMID:8406797

  15. Recombinant outer membrane protein F-B subunit of LT protein as a prophylactic measure against Pseudomonas aeruginosa burn infection in mice

    PubMed Central

    Farsani, Hassan Heydari; Rasooli, Iraj; Gargari, Seyed Latif Mousavi; Nazarian, Shahram; Astaneh, Shakiba Darwish Alipour

    2015-01-01

    AIM: To study immunogenicity of outer membrane protein F (OprF) fused with B subunit of LT (LTB), against Pseudomonas aeruginosa (P. aeruginosa). METHODS: The OprF, a major surface exposed outer membrane protein that is antigenically conserved in various strains of P. aeruginosa, is a promising immunogen against P. aeruginosa. In the present study recombinant OprF and OprF-LTB fusion gene was cloned, expressed and purified. BALB/c mice and rabbits were immunized using recombinant OprF and OprF-LTB and challenged at the burn site with P. aeruginosa lethal dose of 104 CFU. The protective efficacy of rabbit anti OprF IgG against P. aeruginosa burn infection was investigated by passive immunization. RESULTS: It has been well established that the LTB is a powerful immunomodulator with strong adjuvant activity. LTB as a bacterial adjuvant enhanced immunogenicity of OprF and anti OprF IgG titer in serum was increased. Experimental findings showed significantly higher average survival rate in burned mice immunized with OprF-LTB than immunized with OprF or the control group. Rabbits anti OprF IgG brought about 75% survival of mice following challenge with P. aeruginosa. Post challenge hepatic and splenic tissues of mice group immunized with OprF-LTB had significantly lower bacterial load than those immunized with OprF or the control groups. CONCLUSION: These results demonstrate that LTB-fused OprF might be a potential candidate protein for a prophylactic measure against P. aeruginosa in burn infection. PMID:26713284

  16. Bipartite Topology of Treponema pallidum Repeat Proteins C/D and I: OUTER MEMBRANE INSERTION, TRIMERIZATION, AND PORIN FUNCTION REQUIRE A C-TERMINAL β-BARREL DOMAIN.

    PubMed

    Anand, Arvind; LeDoyt, Morgan; Karanian, Carson; Luthra, Amit; Koszelak-Rosenblum, Mary; Malkowski, Michael G; Puthenveetil, Robbins; Vinogradova, Olga; Radolf, Justin D

    2015-05-08

    We previously identified Treponema pallidum repeat proteins TprC/D, TprF, and TprI as candidate outer membrane proteins (OMPs) and subsequently demonstrated that TprC is not only a rare OMP but also forms trimers and has porin activity. We also reported that TprC contains N- and C-terminal domains (TprC(N) and TprC(C)) orthologous to regions in the major outer sheath protein (MOSP(N) and MOSP(C)) of Treponema denticola and that TprC(C) is solely responsible for β-barrel formation, trimerization, and porin function by the full-length protein. Herein, we show that TprI also possesses bipartite architecture, trimeric structure, and porin function and that the MOSP(C)-like domains of native TprC and TprI are surface-exposed in T. pallidum, whereas their MOSP(N)-like domains are tethered within the periplasm. TprF, which does not contain a MOSP(C)-like domain, lacks amphiphilicity and porin activity, adopts an extended inflexible structure, and, in T. pallidum, is tightly bound to the protoplasmic cylinder. By thermal denaturation, the MOSP(N) and MOSP(C)-like domains of TprC and TprI are highly thermostable, endowing the full-length proteins with impressive conformational stability. When expressed in Escherichia coli with PelB signal sequences, TprC and TprI localize to the outer membrane, adopting bipartite topologies, whereas TprF is periplasmic. We propose that the MOSP(N)-like domains enhance the structural integrity of the cell envelope by anchoring the β-barrels within the periplasm. In addition to being bona fide T. pallidum rare outer membrane proteins, TprC/D and TprI represent a new class of dual function, bipartite bacterial OMP.

  17. Klebsiella pneumoniae outer membrane protein A is required to prevent the activation of airway epithelial cells.

    PubMed

    March, Catalina; Moranta, David; Regueiro, Verónica; Llobet, Enrique; Tomás, Anna; Garmendia, Junkal; Bengoechea, José A

    2011-03-25

    Outer membrane protein A (OmpA) is a class of proteins highly conserved among the Enterobacteriaceae family and throughout evolution. Klebsiella pneumoniae is a capsulated gram-negative pathogen. It is an important cause of community-acquired and nosocomial pneumonia. Evidence indicates that K. pneumoniae infections are characterized by a lack of an early inflammatory response. Data from our laboratory indicate that K. pneumoniae CPS helps to suppress the host inflammatory response. However, it is unknown whether K. pneumoniae employs additional factors to modulate host inflammatory responses. Here, we report that K. pneumoniae OmpA is important for immune evasion in vitro and in vivo. Infection of A549 and normal human bronchial cells with 52OmpA2, an ompA mutant, increased the levels of IL-8. 52145-Δwca(K2)ompA, which does not express CPS and ompA, induced the highest levels of IL-8. Both mutants could be complemented. In vivo, 52OmpA2 induced higher levels of tnfα, kc, and il6 than the wild type. ompA mutants activated NF-κB, and the phosphorylation of p38, p44/42, and JNK MAPKs and IL-8 induction was via NF-κB-dependent and p38- and p44/42-dependent pathways. 52OmpA2 engaged TLR2 and -4 to activate NF-κB, whereas 52145-Δwca(K2)ompA activated not only TLR2 and TLR4 but also NOD1. Finally, we demonstrate that the ompA mutant is attenuated in the pneumonia mouse model. The results of this study indicate that K. pneumoniae OmpA contributes to attenuate airway cell responses. This may facilitate pathogen survival in the hostile environment of the lung.

  18. Outer membrane protein OmpQ of Bordetella bronchiseptica is required for mature biofilm formation.

    PubMed

    Cattelan, Natalia; Villalba, María Inés; Parisi, Gustavo; Arnal, Laura; Serra, Diego Omar; Aguilar, Mario; Yantorno, Osvaldo

    2016-02-01

    Bordetella bronchiseptica, an aerobic Gram-negative bacterium, is capable of colonizing the respiratory tract of diverse animals and chronically persists inside the hosts by forming biofilm. Most known virulence factors in Bordetella species are regulated by the BvgAS two-component transduction system. The Bvg-activated proteins play a critical role during host infection. OmpQ is an outer membrane porin protein which is expressed under BvgAS control. Here, we studied the contribution of OmpQ to the biofilm formation process by B. bronchiseptica. We found that the lack of expression of OmpQ did not affect the growth kinetics and final biomass of B. bronchiseptica under planktonic growth conditions. The ΔompQ mutant strain displayed no differences in attachment level and in early steps of biofilm formation. However, deletion of the ompQ gene attenuated the ability of B. bronchiseptica to form a mature biofilm. Analysis of ompQ gene expression during the biofilm formation process by B. bronchiseptica showed a dynamic expression pattern, with an increase of biofilm culture at 48 h. Moreover, we demonstrated that the addition of serum anti-OmpQ had the potential to reduce the biofilm biomass formation in a dose-dependent manner. In conclusion, we showed for the first time, to the best of our knowledge, evidence of the contribution of OmpQ to a process of importance for B. bronchiseptica pathobiology. Our results indicate that OmpQ plays a role during the biofilm development process, particularly at later stages of development, and that this porin could be a potential target for strategies of biofilm formation inhibition.

  19. Computational redesign of the lipid-facing surface of the outer membrane protein OmpA.

    PubMed

    Stapleton, James A; Whitehead, Timothy A; Nanda, Vikas

    2015-08-04

    Advances in computational design methods have made possible extensive engineering of soluble proteins, but designed β-barrel membrane proteins await improvements in our understanding of the sequence determinants of folding and stability. A subset of the amino acid residues of membrane proteins interact with the cell membrane, and the design rules that govern this lipid-facing surface are poorly understood. We applied a residue-level depth potential for β-barrel membrane proteins to the complete redesign of the lipid-facing surface of Escherichia coli OmpA. Initial designs failed to fold correctly, but reversion of a small number of mutations indicated by backcross experiments yielded designs with substitutions to up to 60% of the surface that did support folding and membrane insertion.

  20. Sialylation of Outer Membrane Porin Protein D: A Mechanistic Basis of Antibiotic Uptake in Pseudomonas aeruginosa*

    PubMed Central

    Khatua, Biswajit; Vleet, Jeremy Van; Choudhury, Biswa Pronab; Chaudhry, Rama; Mandal, Chitra

    2014-01-01

    Pseudomonas aeruginosa (PA) is an environmentally ubiquitous, extracellular, opportunistic pathogen, associated with severe infections of immune-compromised host. We demonstrated earlier the presence of both α2,3- and α2,6-linked sialic acids (Sias) on PA (PA+Sias) and normal human serum is their source of Sias. PA+Sias showed decreased complement deposition and exhibited enhanced association with immune-cells through sialic acid binding immunoglobulin like lectins (Siglecs). Such Sias-siglec-9 interaction between PA+Sias and neutrophils helped to subvert host immunity. Additionally, PA+Sias showed more resistant to β-lactam antibiotics as reflected in their minimum inhibitory concentration required to inhibit the growth of 50% than PA−Sias. Accordingly, we have affinity purified sialoglycoproteins of PA+Sias. They were electrophoresed and identified by matrix-assisted laser desorption-ionization time-of-flight/time-of-flight mass spectrometry analysis. Sequence study indicated the presence of a few α2,6-linked, α2,3-linked, and both α2,3- and α2,6-linked sialylated proteins in PA. The outer membrane porin protein D (OprD), a specialized channel-forming protein, responsible for uptake of β-lactam antibiotics, is one such identified sialoglycoprotein. Accordingly, sialylated (OprD+Sias) and non-sialylated (OprD−Sias) porin proteins were separately purified by using anion exchange chromatography. Sialylation of purified OprD+Sias was confirmed by several analytical and biochemical procedures. Profiling of glycan structures revealed three sialylated N-glycans and two sialylated O-glycans in OprD+Sias. In contrast, OprD−Sias exhibit only one sialylated N-glycans. OprD−Sias interacts with β-lactam antibiotics more than OprD+Sias as demonstrated by surface plasmon resonance study. Lyposome-swelling assay further exhibited that antibiotics have more capability to penetrate through OprD−Sias purified from four clinical isolates of PA. Taken together, it

  1. Immunization with a 22-kDa outer membrane protein elicits protective immunity to multidrug-resistant Acinetobacter baumannii

    PubMed Central

    Huang, Weiwei; Yao, Yufeng; Wang, Shijie; Xia, Ye; Yang, Xu; Long, Qiong; Sun, Wenjia; Liu, Cunbao; Li, Yang; Chu, Xiaojie; Bai, Hongmei; Yao, Yueting; Ma, Yanbing

    2016-01-01

    A. baumannii infections are becoming more and more serious health issues with rapid emerging of multidrug and extremely drug resistant strains, and therefore, there is an urgent need for the development of nonantibiotic-based intervention strategies. This study aimed at identifying whether an outer membrane protein with molecular weight of about 22 kDa (Omp22) holds the potentials to be an efficient vaccine candidate and combat A. baumannii infection. Omp22 which has a molecule length of 217 amino acids kept more than 95% conservation in totally 851 reported A. baumannii strains. Recombinant Omp22 efficiently elicited high titers of specific IgG in mice. Both active and passive immunizations of Omp22 increased the survival rates of mice, suppressed the bacterial burdens in the organs and peripheral blood, and reduced the levels of serum inflammatory cytokines and chemokines. Opsonophagocytosis assays showed in vitro that Omp22 antiserum had highly efficient bactericidal activities on clonally distinct clinical A. baumannii isolates, which were partly complements-dependent and opsonophagocytic killing effects. Additionally, administration with as high as 500 μg of Omp22 didn’t cause obvious pathological changes in mice. In conclusion, Omp22 is a novel conserved and probably safe antigen for developing effective vaccines or antisera to control A. baumannii infections. PMID:26853590

  2. Immunization with a 22-kDa outer membrane protein elicits protective immunity to multidrug-resistant Acinetobacter baumannii.

    PubMed

    Huang, Weiwei; Yao, Yufeng; Wang, Shijie; Xia, Ye; Yang, Xu; Long, Qiong; Sun, Wenjia; Liu, Cunbao; Li, Yang; Chu, Xiaojie; Bai, Hongmei; Yao, Yueting; Ma, Yanbing

    2016-02-08

    A. baumannii infections are becoming more and more serious health issues with rapid emerging of multidrug and extremely drug resistant strains, and therefore, there is an urgent need for the development of nonantibiotic-based intervention strategies. This study aimed at identifying whether an outer membrane protein with molecular weight of about 22 kDa (Omp22) holds the potentials to be an efficient vaccine candidate and combat A. baumannii infection. Omp22 which has a molecule length of 217 amino acids kept more than 95% conservation in totally 851 reported A. baumannii strains. Recombinant Omp22 efficiently elicited high titers of specific IgG in mice. Both active and passive immunizations of Omp22 increased the survival rates of mice, suppressed the bacterial burdens in the organs and peripheral blood, and reduced the levels of serum inflammatory cytokines and chemokines. Opsonophagocytosis assays showed in vitro that Omp22 antiserum had highly efficient bactericidal activities on clonally distinct clinical A. baumannii isolates, which were partly complements-dependent and opsonophagocytic killing effects. Additionally, administration with as high as 500 μg of Omp22 didn't cause obvious pathological changes in mice. In conclusion, Omp22 is a novel conserved and probably safe antigen for developing effective vaccines or antisera to control A. baumannii infections.

  3. Synthesis of outer membrane proteins in cpxA cpxB mutants of Escherichia coli K-12.

    PubMed Central

    McEwen, J; Sambucetti, L; Silverman, P M

    1983-01-01

    Two major proteins, the murein lipoprotein and the OmpF matrix porin, are deficient in the outer membrane of cpxA cpxB mutants of Escherichia coli K-12. We present evidence that the cpx mutations prevent or retard the translocation of these proteins to the outer membrane. The mutations had no effect on the rate of lipoprotein synthesis. Mutant cells labeled for 5 min with radioactive arginine accumulated as much lipoprotein as otherwise isogenic cpxA+ cpxB+ cells. This lipoprotein accumulated as such; no material synthesized in mutant cells and reactive with antilipoprotein antibodies had the electrophoretic mobility of prolipoprotein. Hence, the initial stages of prolipoprotein insertion into the inner membrane leading to its cleavage to lipoprotein appeared normal. However, after a long labeling interval, mutant cells were deficient in free lipoprotein and lacked lipoprotein covalently bound to peptidoglycan, suggesting that little if any of the lipoprotein synthesized in mutant cells reaches the outer membrane. Immunoreactive OmpF protein could also be detected in extracts of mutant cells labeled for 5 min, but the amount that accumulated was severalfold less in mutant cells than in cpxA+ cpxB+ cells. Analysis of beta-galactosidase synthesis from ompF-lacZ fusion genes showed this difference to be the result of a reduced rate of ompF transcription in mutant cells. Even so, little or none of the ompF protein synthesized in mutant cells was incorporated into the outer membrane. Images PMID:6339479

  4. Purification of the outer membrane usher protein and periplasmic chaperone-subunit complexes from the P and type 1 pilus systems.

    PubMed

    Henderson, Nadine S; Thanassi, David G

    2013-01-01

    Understanding molecular mechanisms of protein secretion by bacteria requires the purification of secretion machinery components and the isolation of complexes between the secretion machinery and substrate proteins. Here, we describe methods for the purification of proteins from the chaperone/usher pathway, which is a conserved secretion pathway dedicated to the assembly of polymeric surface fibers termed pili or fimbriae in gram-negative bacteria. Specifically, we describe the isolation of the PapC and FimD usher proteins from the bacterial outer membrane, and the purification of PapD-PapG and FimC-FimH chaperone--subunit complexes from the periplasm. These Pap and Fim proteins belong to the P and type 1 pilus systems of uropathogenic Escherichia coli, respectively.

  5. Point mutations in the major outer membrane protein drive hypervirulence of a rapidly expanding clone of Campylobacter jejuni

    PubMed Central

    Wu, Zuowei; Periaswamy, Balamurugan; Sahin, Orhan; Yaeger, Michael; Plummer, Paul; Zhai, Weiwei; Shen, Zhangqi; Dai, Lei; Zhang, Qijing

    2016-01-01

    Infections due to clonal expansion of highly virulent bacterial strains are clear and present threats to human and animal health. Association of genetic changes with disease is now a routine, but identification of causative mutations that enable disease remains difficult. Campylobacter jejuni is an important zoonotic pathogen transmitted to humans mainly via the foodborne route. C. jejuni typically colonizes the gut, but a hypervirulent and rapidly expanding clone of C. jejuni recently emerged, which is able to translocate across the intestinal tract, causing systemic infection and abortion in pregnant animals. The genetic basis responsible for this hypervirulence is unknown. Here, we developed a strategy, termed “directed genome evolution,” by using hybridization between abortifacient and nonabortifacient strains followed by selection in an animal disease model and whole-genome sequence analysis. This strategy successfully identified SNPs in porA, encoding the major outer membrane protein, are responsible for the hypervirulence. Defined mutagenesis verified that these mutations were both necessary and sufficient for causing abortion. Furthermore, sequence analysis identified porA as the gene with the top genome-wide signal of adaptive evolution using Fu’s Fs, a population genetic metric for recent population size changes, which is consistent with the recent expansion of clone “sheep abortion.” These results identify a key virulence factor in Campylobacter and a potential target for the control of this zoonotic pathogen. Furthermore, this study provides general, unbiased experimental and computational approaches that are broadly applicable for efficient elucidation of disease-causing mutations in bacterial pathogens. PMID:27601641

  6. Construction and Immunogenicity of Recombinant Swinepox Virus Expressing Outer Membrane Protein L of Salmonella.

    PubMed

    Fang, Yizhen; Lin, Huixing; Ma, Zhe; Fan, Hongjie

    2016-07-28

    Salmonella spp. are gram-negative flagellated bacteria that cause a variety of diseases in humans and animals, ranging from mild gastroenteritis to severe systemic infection. To explore development of a potent vaccine against Salmonella infections, the gene encoding outer membrane protein L (ompL) was inserted into the swinepox virus (SPV) genome by homologous recombination. PCR, western blot, and immunofluorescence assays were used to verify the recombinant swinepox virus rSPV-OmpL. The immune responses and protection efficacy of rSPV-OmpL were assessed in a mouse model. Forty mice were assigned to four groups, which were immunized with rSPV-OmpL, inactive Salmonella (positive control), wildtype SPV (wtSPV; negative control), or PBS (challenge control), respectively. The OmpLspecific antibody in the rSPV-OmpL-immunized group increased dramatically and continuously over time post-vaccination, and was present at a significantly higher level than in the positive control group (p < 0.05). The concentrations of IFN-γ and IL-4, which represent Th1-type and Th2-type cytokine responses, were significantly higher (p < 0.05) in the rSPVOmpL- vaccinated group than in the other three groups. After intraperitoneal challenge with a lethal dose of Salmonella typhimurium CVCC542, eight out of ten mice in the rSPV-OmpLvaccinated group were protected, whereas all the mice in the negative control and challenge control groups died within 3 days. Passive immune protection assays showed that hyperimmune sera against OmpL could provide mice with effective protection against challenge from S. typhimurium. The recombinant swinepox virus rSPV-OmpL might serve as a promising vaccine against Salmonella infection.

  7. Outer membrane protein complex of Meningococcus enhances the antipolysaccharide antibody response to pneumococcal polysaccharide-CRM₁₉₇ conjugate vaccine.

    PubMed

    Lai, Zengzu; Schreiber, John R

    2011-05-01

    Bacterial polysaccharides (PS) are T cell-independent antigens that do not induce immunologic memory and are poor immunogens in infants. Conjugate vaccines in which the PS is covalently linked to a carrier protein have enhanced immunogenicity that resembles that of T cell-dependent antigens. The Haemophilus influenzae type b (Hib) conjugate vaccine, which uses the outer membrane protein complex (OMPC) from meningococcus as a carrier protein, elicits protective levels of anti-capsular PS antibody (Ab) after a single dose, in contrast to other conjugate vaccines, which require multiple doses. We have previously shown that OMPC robustly engages Toll-like receptor 2 (TLR2) and enhances the early anti-Hib PS Ab titer associated with an increase in TLR2-mediated induction of cytokines. We now show that the addition of OMPC to the 7-valent pneumococcal PS-CRM₁₉₇ conjugate vaccine during immunization significantly increases the anti-PS IgG and IgM responses to most serotypes of pneumococcus contained in the vaccine. The addition of OMPC also increased the likelihood of anti-PS IgG3 production against serotypes 4, 6B, 9V, 18C, 19F, and 23F. Splenocytes from mice who had received OMPC with the pneumococcal conjugate vaccine produced significantly more interleukin-2 (IL-2), IL-4, IL-6, IL-10, tumor necrosis factor alpha (TNF-α), and gamma interferon (IFN-γ) than splenocytes from mice who received phosphate-buffered saline (PBS) plus the conjugate vaccine. We conclude that OMPC enhances the anti-PS Ab response to pneumococcal PS-CRM₁₉₇ conjugate vaccine, an effect associated with a distinct change in cytokine profile. It may be possible to reduce the number of conjugate vaccine doses required to achieve protective Ab levels by priming with adjuvants that are TLR2 ligands.

  8. A comparison of the endotoxin biosynthesis and protein oxidation pathways in the biogenesis of the outer membrane of Escherichia coli and Neisseria meningitidis.

    PubMed

    Piek, Susannah; Kahler, Charlene M

    2012-01-01

    The Gram-negative bacterial cell envelope consists of an inner membrane (IM) that surrounds the cytoplasm and an asymmetrical outer-membrane (OM) that forms a protective barrier to the external environment. The OM consists of lipopolysaccahride (LPS), phospholipids, outer membrane proteins (OMPs), and lipoproteins. Oxidative protein folding mediated by periplasmic oxidoreductases is required for the biogenesis of the protein components, mainly constituents of virulence determinants such as pili, flagella, and toxins, of the Gram-negative OM. Recently, periplasmic oxidoreductases have been implicated in LPS biogenesis of Escherichia coli and Neisseria meningitidis. Differences in OM biogenesis, in particular the transport pathways for endotoxin to the OM, the composition and role of the protein oxidation, and isomerization pathways and the regulatory networks that control them have been found in these two Gram-negative species suggesting that although form and function of the OM is conserved, the pathways required for the biosynthesis of the OM and the regulatory circuits that control them have evolved to suit the lifestyle of each organism.

  9. Purification and Bicelle Crystallization for Structure Determination of the E. coli Outer Membrane Protein TamA.

    PubMed

    Gruss, Fabian; Hiller, Sebastian; Maier, Timm

    2015-01-01

    TamA is an Omp85 protein involved in autotransporter assembly in the outer membrane of Escherichia coli. It comprises a C-terminal 16-stranded transmembrane β-barrel as well as three periplasmic POTRA domains, and is a challenging target for structure determination. Here, we present a method for crystal structure determination of TamA, including recombinant expression in E. coli, detergent extraction, chromatographic purification, and bicelle crystallization in combination with seeding. As a result, crystals in space group P21212 are obtained, which diffract to 2.3 Å resolution. This protocol also serves as a template for structure determination of other outer membrane proteins, in particular of the Omp85 family.

  10. The three domains of the mitochondrial outer membrane protein Mim1 have discrete functions in assembly of the TOM complex.

    PubMed

    Lueder, Franziska; Lithgow, Trevor

    2009-05-06

    The assembly of mitochondrial outer membrane proteins is an essential process, mediated by the SAM complex and a set of additional protein modules. We show that one of these, Mim1, is anchored in the outer membrane with its N-terminus exposed to the cytosol and its C-terminus in the mitochondrial intermembrane space. Using an in vitro assay to measure the multi-step pathway for assembly of Tom40 into the TOM complex, we find that an "early reaction" mediated by the SAM complex is regulated by the N-terminal domain of Mim1. In addition, a "late reaction" catalysed by the Sam37 subunit of the SAM complex is also influenced by Mim1. Thus, Mim1 participates at multiple stages in the assembly of the TOM complex.

  11. Overexpression of an outer membrane protein associated with decreased susceptibility to carbapenems in Proteus mirabilis.

    PubMed

    Tsai, Yi-Lin; Wang, Min-Cheng; Hsueh, Po-Ren; Liu, Ming-Che; Hu, Rouh-Mei; Wu, Yue-Jin; Liaw, Shwu-Jen

    2015-01-01

    Proteus mirabilis isolates commonly have decreased susceptibility to imipenem. Previously, we found P. mirabilis hfq mutant was more resistant to imipenem and an outer membrane protein (OMP) could be involved. Therefore, we investigated the role of this OMP in carbapenem susceptibility. By SDS-PAGE we found this OMP (named ImpR) was increased in hfq mutant and LC-MS/MS revealed it to be the homologue of Salmonella YbfM, which is a porin for chitobiose and subject to MicM (a small RNA) regulation. We demonstrated that ImpR overexpression resulted in increased carbapenem MICs in the laboratory strain and clinical isolates. Chitobiose induced expression of chb (a chitobiose utilization operon). Real-time RT-PCR and SDS-PAGE were performed to elucidate the relationship of hfq, impR, chb and MicM in P. mirabilis. We found MicM RNA was decreased in hfq mutant and chbBC-intergenic region (chbBC-IGR) overexpression strain (chbIGRov), while impR mRNA was increased in hfq mutant, micM mutant and chbIGRov strain. In addition, mutation of hfq or micM and overexpression of chbBC-IGR increased ImpR protein level. Accordingly, chitobiose made wild-type have higher levels of ImpR protein and are more resistant to carbapenems. Hfq- and MicM-complemented strains restored wild-type MICs. Mutation of both impR and hfq eliminated the increase in carbapenem MICs observed in hfq mutant and ImpR-complementation of hfq/impR double mutant resulted in MICs as hfq mutant, indicating that the ImpR-dependent decreased carbapenem susceptibility of hfq mutant. These indicate MicM was antisense to impR mRNA and was negatively-regulated by chbBC-IGR. Together, overexpression of ImpR contributed to the decreased carbapenem susceptibility in P. mirabilis.

  12. Proteolysis of bacterial membrane proteins by Neisseria gonorrhoeae type 2 immunoglobulin A1 protease.

    PubMed Central

    Shoberg, R J; Mulks, M H

    1991-01-01

    The immunoglobulin A1 (IgA1) proteases of Neisseria gonorrhoeae have been defined as having human IgA1 as their single permissive substrate. However, in recent years there have been reports of other proteins which are susceptible to the proteolytic activity of these enzymes. To examine the possibility that gonococcal membrane proteins are potential substrates for these enzymes, isolated outer and cytoplasmic membranes of N. gonorrhoeae were treated in vitro with exogenous pure IgA1 protease. Analysis of silver-stained sodium dodecyl sulfate-polyacrylamide gels of outer membranes indicated that there were two outer membrane proteins of 78 and 68 kDa which were cleaved by IgA1 protease in vitro in GCM 740 (a wild-type strain) and in two isogenic IgA1 protease-negative variants. Similar results were observed with a second gonococcal strain, F62, and its isogenic IgA1 protease-negative derivative. When GCM 740 cytoplasmic membranes were treated with protease, three minor proteins of 24.5, 23.5, and 21.5 kDa were cleaved. In addition, when outer membranes of Escherichia coli DH1 were treated with IgA1 protease, several proteins were hydrolyzed. While the identities of all of these proteolyzed proteins are unknown, the data presented indicate that there are several proteins found in the isolated membranes of gram-negative bacteria which are permissive in vitro substrates for gonococcal IgA1 protease. Images PMID:1713195

  13. Salicylate-inducible antibiotic resistance in Pseudomonas cepacia associated with absence of a pore-forming outer membrane protein.

    PubMed Central

    Burns, J L; Clark, D K

    1992-01-01

    The most common mechanism of antibiotic resistance in multiply resistant Pseudomonas cepacia is decreased porin-mediated outer membrane permeability. In some gram-negative organisms this form of antibiotic resistance can be induced by growth in the presence of weak acids, such as salicylates, which suppress porin synthesis. To determine the effects of salicylates on outer membrane permeability of P. cepacia, a susceptible laboratory strain, 249-2, was grown in 10 mM sodium salicylate. Antibiotic susceptibility and uptake, as well as outer membrane protein patterns, were compared between strain 249-2 grown with and without salicylates. The MICs of chloramphenicol, trimethoprim, ciprofloxacin, and ceftazidime were compared between organisms grown in standard and salicylate-containing medium and are as follows: chloramphenicol, 12.5 versus 100 micrograms/ml; trimethoprim, 0.78 versus 3.125 micrograms/ml; ciprofloxacin, 0.4 versus 1.56 micrograms/ml; ceftazidime, 3.125 versus 3.125 micrograms/ml. The permeability of beta-lactam antibiotics was calculated from the rate of hydrolysis of the chromogenic cephalosporin, PADAC. There was no significant difference between strains grown in the presence and absence of salicylate. By using high-pressure liquid chromatography quantitation of loss from culture medium, the effect of 10 mM salicylate on the cellular permeability of chloramphenicol was measured in strain 249-2 by introduction of a plasmid which encodes production of chloramphenicol acetyltransferase. After 1 h of incubation, 18.5% +/- 1.54% versus 70.1% +/- 3.52%, and after 2 h, 4.20% +/- 1.65% versus 41.90% +/- 2.16% remained in supernatants from organisms grown in the absence and presence of 10 mM salicylate, respectively. Outer membrane protein pattern analysis demonstrated the absence of a protein of apparent molecular weight of 40,000 when strain 249-2 was grown in the presence of 10 mM salicylate. To determine whether this protein functioned as a porin

  14. Detergent disruption of bacterial inner membranes and recovery of protein translocation activity

    SciTech Connect

    Cunningham, K.; Wickner, W.T. )

    1989-11-01

    Isolation of the integral membrane components of protein translocation requires methods for fractionation and functional reconstitution. The authors treated inner-membrane vesicles of Escherichia coli with mixtures of octyl {beta}-D-glucoside, phospholipids, and an integral membrane carrier protein under conditions that extract most of the membrane proteins into micellar solution. Upon dialysis, proteoliposomes were reconstituted that supported translocation of radiochemically pure ({sup 35}S)pro-OmpA (the precursor of outer membrane protein A). Translocation into these proteoliposomes required ATP hydrolysis and membrane proteins, indicating that the reaction is that of the inner membrane. The suspension of membranes in detergent was separated into supernatant and pellet fractions by ultracentrifugation. After reconstitution, translocation activity was observed in both fractions, but processing by leader peptidase of translocated pro-OmpA to OmpA was not detectable in the reconstituted pellet fraction. Processing activity was restored by addition of pure leader peptidase as long as this enzyme was added before detergent removal, indicating that the translocation activity is not associated with detergent-resistant membrane vesicles. These results show that protein translocation activity can be recovered from detergent-disrupted membrane vesicles, providing a first step towards the goal of isolating the solubilized components.

  15. Adhesion of Type 1-Fimbriated Escherichia coli to Abiotic Surfaces Leads to Altered Composition of Outer Membrane Proteins

    PubMed Central

    Otto, Karen; Norbeck, Joakim; Larsson, Thomas; Karlsson, Karl-Anders; Hermansson, Malte

    2001-01-01

    Phenotypic differences between planktonic bacteria and those attached to abiotic surfaces exist, but the mechanisms involved in the adhesion response of bacteria are not well understood. By the use of two-dimensional (2D) polyacrylamide gel electrophoresis, we have demonstrated that attachment of Escherichia coli to abiotic surfaces leads to alteration in the composition of outer membrane proteins. A major decrease in the abundance of resolved proteins was observed during adhesion of type 1-fimbriated E. coli strains, which was at least partly caused by proteolysis. Moreover, a study of fimbriated and nonfimbriated mutants revealed that these changes were due mainly to type 1 fimbria-mediated surface contact and that only a few changes occurred in the outer membranes of nonfimbriated mutant strains. Protein synthesis and proteolytic degradation were involved to different extents in adhesion of fimbriated and nonfimbriated cells. While protein synthesis appeared to affect adhesion of only the nonfimbriated strain, proteolytic activity mostly seemed to contribute to adhesion of the fimbriated strain. Using matrix-assisted laser desorption ionization–time of flight mass spectrometry, six of the proteins resolved by 2D analysis were identified as BtuB, EF-Tu, OmpA, OmpX, Slp, and TolC. While the first two proteins were unaffected by adhesion, the levels of the last four were moderately to strongly reduced. Based on the present results, it may be suggested that physical interactions between type 1 fimbriae and the surface are part of a surface-sensing mechanism in which protein turnover may contribute to the observed change in composition of outer membrane proteins. This change alters the surface characteristics of the cell envelope and may thus influence adhesion. PMID:11274103

  16. FPOP-LC-MS/MS Suggests Differences in Interaction Sites of Amphipols and Detergents with Outer Membrane Proteins

    NASA Astrophysics Data System (ADS)

    Watkinson, Thomas G.; Calabrese, Antonio N.; Ault, James R.; Radford, Sheena E.; Ashcroft, Alison E.

    2017-01-01

    Amphipols are a class of novel surfactants that are capable of stabilizing the native state of membrane proteins. They have been shown to be highly effective, in some cases more so than detergent micelles, at maintaining the structural integrity of membrane proteins in solution, and have shown promise as vehicles for delivering native membrane proteins into the gas phase for structural interrogation. Here, we use fast photochemical oxidation of proteins (FPOP), which irreversibly labels the side chains of solvent-accessible residues with hydroxyl radicals generated by laser photolysis of hydrogen peroxide, to compare the solvent accessibility of the outer membrane protein OmpT when solubilized with the amphipol A8-35 or with n-dodecyl-β-maltoside (DDM) detergent micelles. Using quantitative mass spectrometry analyses, we show that fast photochemical oxidation reveals differences in the extent of solvent accessibility of residues between the A8-35 and DDM solubilized states, providing a rationale for the increased stability of membrane proteins solubilized with amphipol compared with detergent micelles, as a result of additional intermolecular contacts.

  17. Flexibility in targeting and insertion during bacterial membrane protein biogenesis

    SciTech Connect

    Bloois, Edwin van; Hagen-Jongman, Corinne M. ten; Luirink, Joen

    2007-10-26

    The biogenesis of Escherichia coli inner membrane proteins (IMPs) is assisted by targeting and insertion factors such as the signal recognition particle (SRP), the Sec-translocon and YidC with translocation of (large) periplasmic domains energized by SecA and the proton motive force (pmf). The use of these factors and forces is probably primarily determined by specific structural features of an IMP. To analyze these features we have engineered a set of model IMPs based on endogenous E. coli IMPs known to follow distinct targeting and insertion pathways. The modified model IMPs were analyzed for altered routing using an in vivo protease mapping approach. The data suggest a facultative use of different combinations of factors.

  18. Surface hydrolysis of sphingomyelin by the outer membrane protein Rv0888 supports replication of Mycobacterium tuberculosis in macrophages.

    PubMed

    Speer, Alexander; Sun, Jim; Danilchanka, Olga; Meikle, Virginia; Rowland, Jennifer L; Walter, Kerstin; Buck, Bradford R; Pavlenok, Mikhail; Hölscher, Christoph; Ehrt, Sabine; Niederweis, Michael

    2015-09-01

    Sphingomyelinases secreted by pathogenic bacteria play important roles in host-pathogen interactions ranging from interfering with phagocytosis and oxidative burst to iron acquisition. This study shows that the Mtb protein Rv0888 possesses potent sphingomyelinase activity cleaving sphingomyelin, a major lipid in eukaryotic cells, into ceramide and phosphocholine, which are then utilized by Mtb as carbon, nitrogen and phosphorus sources, respectively. An Mtb rv0888 deletion mutant did not grow on sphingomyelin as a sole carbon source anymore and replicated poorly in macrophages indicating that Mtb utilizes sphingomyelin during infection. Rv0888 is an unusual membrane protein with a surface-exposed C-terminal sphingomyelinase domain and a putative N-terminal channel domain that mediated glucose and phosphocholine uptake across the outer membrane in an M. smegmatis porin mutant. Hence, we propose to name Rv0888 as SpmT (sphingomyelinase of Mycobacterium tuberculosis). Erythrocyte membranes contain up to 27% sphingomyelin. The finding that Rv0888 accounts for half of Mtb's hemolytic activity is consistent with its sphingomyelinase activity and the observation that Rv0888 levels are increased in the presence of erythrocytes and sphingomyelin by 5- and 100-fold, respectively. Thus, Rv0888 is a novel outer membrane protein that enables Mtb to utilize sphingomyelin as a source of several essential nutrients during intracellular growth.

  19. Characterization of antigens from nontypable Haemophilus influenzae recognized by human bactericidal antibodies. Role of Haemophilus outer membrane proteins.

    PubMed Central

    Gnehm, H E; Pelton, S I; Gulati, S; Rice, P A

    1985-01-01

    Major outer membrane antigens, proteins, and lipopolysaccharides (LPSs), from nontypable Haemophilus influenzae were characterized and examined as targets for complement-dependent human bactericidal antibodies. Outer membranes from two nontypable H. influenzae isolates that caused otitis media and pneumonia (middle ear and transtracheal aspirates) were prepared by shearing organisms in EDTA. These membranes were compared with membranes prepared independently by spheroplasting and lysozyme treatment of whole cells and found to have: similar sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) patterns of the proteins; identical densities (rho = 1.22 g/cm3); and minimal d-lactose dehydrogenase activity indicating purity from cytoplasmic membranes. Outer membranes were solubilized in an LPS-disaggregating buffer and proteins were separated from LPS by molecular sieve chromatography. The SDS-PAGE patterns of outer membrane proteins (OMPs) from the two strains differed in the major band although other prominent bands appeared similar in molecular weight. LPS prepared by hot phenol water extraction of each of the strains contained 45% (pneumonia isolate) and 60% (otitis isolate) lipid (wt/wt), 49% and 50% carbohydrate (wt/wt), respectively, and less than 1%, 3-deoxy-manno octulosonic acid. Immunoglobulin M (IgM) purified from normal human serum (NHS) plus complement was bactericidal for both strains. Purified immunoglobulin G (IgG) from NHS killed the middle ear isolate and immune convalescent IgM from the serum of the patient with pneumonia killed his isolate. NHS or convalescent serum were absorbed with OMPs and LPS (0.6-110 micrograms) from each of the strains and immune specific inhibition of bactericidal antibody activity by each antigen was determined. OMPs from the pulmonary isolate inhibited bactericidal antibody activity directed against the isolate in both NHS (1.5 microgram of antigen) and immune serum (0.75 microgram of antigen). OMPs (60

  20. Helicobacter pylori outer membrane protein Q allele distribution is associated with distinct pathologies in Pakistan.

    PubMed

    Yakoob, Javed; Abbas, Zaigham; Khan, Rustam; Salim, Saima Azhar; Awan, Safia; Abrar, Ambar; Jafri, Wasim

    2016-01-01

    Helicobacter pylori (H. pylori) strains expressing outer membrane protein Q (HopQ) promote adherence to the gastric epithelial cell. We characterized HopQ alleles in relation to H. pylori-related disease, histology and virulence markers. Gastric biopsies were obtained at esophagogastroduodenoscopy from patients with upper gastrointestinal symptoms. H. pylori culture, histology and polymerase chain reaction (PCR) for HopQ types, cagA, cagA-promoter and vacA alleles were performed. DNA extracted was used for PCR. Sequencing of PCR products of HopQ types 1 and 2 was followed by BLAST query. We examined 241 H. pylori isolates. HopQ type 1 was positive in 70 (29%) isolates, type 2 in 60 (25%) isolates, while both type 1 and type 2 in 111 (46%) H. pylori isolates, respectively. Nonulcer dyspepsia (NUD) was associated with HopQ type 2 in 48 (41%) isolates, while gastric carcinoma (GC) in 37 (53%) (P<0.001) with type 1 isolates. Gastric ulcers (GU) were 39 (46%) (P<0.001) in H. pylori infection with multiple HopQ alleles compared to 6 (23%) in HopQ type 1. Multivariate analysis demonstrated that multiple HopQ alleles were associated with GU OR 2.9 (1.07-7.8) (P=0.03). HopQ type 1 was associated with cagA 58 (84%) (P<0.001) and cagA-promoter 58 (83%) (P<0.001) compared to 14 (23%) and 17 (28%) respectively, in type 2. VacAs1a was associated with HopQ type 1 in 59 (84%) isolates compared to HopQ type 2 in 35 (58%) (P=0.002) isolates. VacAm1 was associated with HopQ type 1 in 53 (76%) isolates compared to HopQ type 2 in 32 (53%) (P=0.004) isolates. H. pylori infection with multiple HopQ alleles was predominant. H. pylori infection with single HopQ type 1 was associated with GC in the presence of other H. pylori virulence markers.

  1. Membrane proteases in the bacterial protein secretion and quality control pathway.

    PubMed

    Dalbey, Ross E; Wang, Peng; van Dijl, Jan Maarten

    2012-06-01

    Proteolytic cleavage of proteins that are permanently or transiently associated with the cytoplasmic membrane is crucially important for a wide range of essential processes in bacteria. This applies in particular to the secretion of proteins and to membrane protein quality control. Major progress has been made in elucidating the structure-function relationships of many of the responsible membrane proteases, including signal peptidases, signal peptide hydrolases, FtsH, the rhomboid protease GlpG, and the site 1 protease DegS. These enzymes employ very different mechanisms to cleave substrates at the cytoplasmic and extracytoplasmic membrane surfaces or within the plane of the membrane. This review highlights the different ways that bacterial membrane proteases degrade their substrates, with special emphasis on catalytic mechanisms and substrate delivery to the respective active sites.

  2. Quinone-reactive proteins devoid of haem b form widespread membrane-bound electron transport modules in bacterial respiration.

    PubMed

    Simon, Jörg; Kern, Melanie

    2008-10-01

    Many quinone-reactive enzyme complexes that are part of membrane-integral eukaryotic or prokaryotic respiratory electron transport chains contain one or more haem b molecules embedded in the membrane. In recent years, various novel proteins have emerged that are devoid of haem b but are thought to fulfil a similar function in bacterial anaerobic respiratory systems. These proteins are encoded by genes organized in various genomic arrangements and are thought to form widespread membrane-bound quinone-reactive electron transport modules that exchange electrons with redox partner proteins located at the outer side of the cytoplasmic membrane. Prototypic representatives are the multihaem c-type cytochromes NapC, NrfH and TorC (NapC/NrfH family), the putative iron-sulfur protein NapH and representatives of the NrfD/PsrC family. Members of these protein families vary in the number of their predicted transmembrane segments and, consequently, diverse quinone-binding sites are expected. Only a few of these enzymes have been isolated and characterized biochemically and high-resolution structures are limited. This mini-review briefly summarizes predicted and experimentally demonstrated properties of the proteins in question and discusses their role in electron transport and bioenergetics of anaerobic respiration.

  3. Effects of Outer Membrane Protein TolC on the Transport of Escherichia coli within Saturated Quartz Sands

    PubMed Central

    Feriancikova, Lucia; Bardy, Sonia L.; Wang, Lixia; Li, Jin; Xu, Shangping

    2013-01-01

    The outer membrane protein (OMP) TolC is the cell surface component of several drug efflux pumps that are responsible for bacterial resistance against a variety of antibiotics. In this research, we investigated the effects of OMP TolC on E. coli transport within saturated sands through column experiments using a wide type E. coli K12 strain (with OMP TolC), as well as the corresponding transposon mutant (tolC∷kan) and the markerless deletion mutant (ΔtolC). Our results showed OMP TolC could significantly enhance the transport of E. coli when the ionic strength was 20 mM NaCl or higher. The deposition rate coefficients for the wild type E. coli strain (with OMP TolC) was usually >50% lower than those of the tolC-negative mutants. The measurements of contact angles using three probe liquids suggested that TolC altered the surface tension components of E. coli cells and lead to lower Hamaker constants for the cell-water-sand system. The interaction energy calculations using the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory suggested that the deposition of the E. coli cell primarily occurred at the secondary energy minimum. The depth of the secondary energy minimum increased with ionic strength, and was greater for the TolC-deletion strains under high ionic strength conditions. Overall, the transport behavior of three E. coli strain within saturated sands could be explained by the XDLVO calculations. Results from this research suggested that antibiotic resistant bacteria expressing OMP TolC could spread more widely within sandy aquifers. PMID:23627691

  4. Effects of outer membrane protein TolC on the transport of Escherichia coli within saturated quartz sands.

    PubMed

    Feriancikova, Lucia; Bardy, Sonia L; Wang, Lixia; Li, Jin; Xu, Shangping

    2013-06-04

    The outer membrane protein (OMP) TolC is the cell surface component of several drug efflux pumps that are responsible for bacterial resistance against a variety of antibiotics. In this research, we investigated the effects of OMP TolC on E. coli transport within saturated sands through column experiments using a wild-type E. coli K12 strain (with OMP TolC), as well as the corresponding transposon mutant (tolC::kan) and the markerless deletion mutant (ΔtolC). Our results showed OMP TolC could significantly enhance the transport of E. coli when the ionic strength was 20 mM NaCl or higher. The deposition rate coefficients for the wild-type E. coli strain (with OMP TolC) was usually >50% lower than those of the tolC-negative mutants. The measurements of contact angles using three probe liquids suggested that TolC altered the surface tension components of E. coli cells and lead to lower Hamaker constants for the cell-water-sand system. The interaction energy calculations using the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory suggested that the deposition of the E. coli cell primarily occurred at the secondary energy minimum. The depth of the secondary energy minimum increased with ionic strength, and was greater for the TolC-deletion strains under high ionic strength conditions. Overall, the transport behavior of three E. coli strains within saturated sands could be explained by the XDLVO calculations. Results from this research suggested that antibiotic resistant bacteria expressing OMP TolC could spread more widely within sandy aquifers.

  5. Identification of seven surface-exposed Brucella outer membrane proteins by use of monoclonal antibodies: immunogold labeling for electron microscopy and enzyme-linked immunosorbent assay.

    PubMed Central

    Cloeckaert, A; de Wergifosse, P; Dubray, G; Limet, J N

    1990-01-01

    A panel of monoclonal antibodies (MAbs) to seven Brucella outer membrane proteins were characterized. These antibodies were obtained by immunizing mice with sodium dodecyl sulfate-insoluble (SDS-I) fractions, cell walls, or whole bacterial cells of Brucella abortus or B. melitensis. Enzyme-linked immunosorbent assays were used to screen the hybridoma supernatants and to determine their binding at the surface of rough and smooth B. abortus and B. melitensis cells. The outer membrane proteins (OMPs) recognized by these antibodies were the proteins with molecular masses of 25 to 27 kDa and 36 to 38 kDa (porin) (major proteins) and the proteins with molecular masses of 10, 16.5, 19, 31 to 34, and 89 kDa (minor proteins). Surface exposure of these OMPs was visualized by electron microscopy by using the MAbs and immunogold labeling. Binding of the MAbs on whole rough bacterial cells indicates that the 10-, 16.5-, 19-, 25- to 27-, 31- to 34-, 36- to 38-, and 89-kDa OMPs are exposed at the cell surface. However, enzyme-linked immunosorbent assay results indicate a much better binding of the anti-OMP MAbs on rough strains than on the corresponding smooth strains except for the anti-19-kDa MAb. Immunoelectron microscopy showed that on smooth B. abortus cells only the 89- and 31- to 34-kDa OMPs were not accessible to the MAbs tested. Binding of the anti-31- to 34-kDa MAb at the cell surface was observed for the rough B. abortus cells and for the rough and smooth B. melitensis cells. These results indicate the importance of steric hindrance due to the presence of the long lipopolysaccharide O side chains in the accessibility of OMPs on smooth Brucella strains and should be considered when undertaking vaccine development. Images PMID:1701417

  6. BcsKC is an essential protein for the type VI secretion system activity in Burkholderia cenocepacia that forms an outer membrane complex with BcsLB.

    PubMed

    Aubert, Daniel; MacDonald, Douglas K; Valvano, Miguel A

    2010-11-12

    The type VI secretion system (T6SS) contributes to the virulence of Burkholderia cenocepacia, an opportunistic pathogen causing serious chronic infections in patients with cystic fibrosis. BcsK(C) is a highly conserved protein among the T6SSs in Gram-negative bacteria. Here, we show that BcsK(C) is required for Hcp secretion and cytoskeletal redistribution in macrophages upon bacterial infection. These two phenotypes are associated with a functional T6SS in B. cenocepacia. Experiments employing a bacterial two-hybrid system and pulldown assays demonstrated that BcsK(C) interacts with BcsL(B), another conserved T6SS component. Internal deletions within BcsK(C) revealed that its N-terminal domain is necessary and sufficient for interaction with BcsL(B). Fractionation experiments showed that BcsK(C) can be in the cytosol or tightly associated with the outer membrane and that BcsK(C) and BcsL(B) form a high molecular weight complex anchored to the outer membrane that requires BcsF(H) (a ClpV homolog) to be assembled. Together, our data show that BcsK(C)/BcsL(B) interaction is essential for the T6SS activity in B. cenocepacia.

  7. Characterization of a novel β-barrel protein (AtOM47) from the mitochondrial outer membrane of Arabidopsis thaliana

    PubMed Central

    Li, Lu; Kubiszewski-Jakubiak, Szymon; Radomiljac, Jordan; Wang, Yan; Law, Simon R.; Keech, Olivier; Narsai, Reena; Berkowitz, Oliver; Duncan, Owen; Murcha, Monika W.; Whelan, James

    2016-01-01

    In plant cells, mitochondria are major providers of energy and building blocks for growth and development as well as abiotic and biotic stress responses. They are encircled by two lipid membranes containing proteins that control mitochondrial function through the import of macromolecules and metabolites. Characterization of a novel β-barrel protein, OUTER MEMBRANE PROTEIN 47 (OM47), unique to the green lineage and related to the voltage-dependent anion channel (VDAC) protein family, showed that OM47 can complement a VDAC mutant in yeast. Mutation of OM47 in Arabidopsis thaliana by T-DNA insertion had no effect on the import of proteins, such as the β-barrel proteins translocase of the outer membrane 40 (TOM40) or sorting and assembly machinery 50 (SAM50), into mitochondria. Molecular and physiological analyses revealed a delay in chlorophyll breakdown, higher levels of starch, and a delay in the induction of senescence marker genes in the mutant lines. While there was a reduction of >90% in OM47 protein in mitochondria isolated from 3-week-old om47 mutants, in mitochondria isolated from 8-week-old plants OM47 levels were similar to that of the wild type. This recovery was achieved by an up-regulation of OM47 transcript abundance in the mutants. Combined, these results highlight a role in leaf senescence for this plant-specific β-barrel protein, probably mediating the recovery and recycling of chloroplast breakdown products by transporting metabolic intermediates into and out of mitochondria. PMID:27811077

  8. Proteome-scale identification of outer membrane proteins in Mycobacterium avium subspecies paratuberculosis using a structure based combined hierarchical approach.

    PubMed

    Rana, Aarti; Rub, Abdur; Akhter, Yusuf

    2014-07-29

    Outer membrane proteins (OMPs) in eubacteria have several important roles, which range from membrane transport to the host-pathogen interactions. These are directly involved in pathogen attachment, entry and activation of several pathogen-induced signaling cascades in the cell. The cardinal structural features of OMPs include the presence of a β-barrel, a signal peptide and the absence of the transmembrane helix. This is the first report on proteome-wide identification of OMPs of ruminant pathogen, Mycobacterium avium subsp. paratuberculosis (MAP). The complete proteome of MAP was analyzed using a pipeline of algorithms, which screens the amino acid sequences and structural features shared by OMPs in other bacteria. Secondary structure of these proteins is also analyzed and scores are calculated for amphiphilic β-strands. From the set of 588 exported proteins, 264 proteins are predicted to be inner membrane proteins while 83 proteins are identified as potential OMPs in MAP. Finally, this study identified 57 proteins as top candidates, on the basis of computed isoelectric points, as the core set of OMPs. Significantly, the resulting data for OMPs are not only useful in designing novel vaccines but may also open avenues for the development of early serodiagnostic tools for MAP.

  9. Ultrastructure of a periodic protein layer in the outer membrane of Escherichia coli

    PubMed Central

    1977-01-01

    Matrix protein (36,500 daltons), one of the major polypeptides of the Escherichia coli cell envelope, is arranged in a periodic monolayer which covers the outer surface of the peptidoglycan. Although its association with the peptidoglycan layer is probably tight, the periodic structure of the peptidoglycan. Although its association with the peptidoglycan later is probably tight, the periodic structure is maintained in the absence of peptidoglycan, and is therefore based on strong protein-protein interactions. A detailed analysis of the ultrastructure of the matrix protein array by electron microscopy and image processing of specimens prepared by negative staining or by freeze-drying and shadowing shows that the molecules are arranged according to three fold symmetry on a hexagonal lattice whose repeat is 7.7 nm. The most pronounced feature of the unit cell, which probably contains three molecules of matrix protein, is a triplet of indentations, each approx. 2 nm in diameter, with a center-to-center spacing of 3nm. They are readily penetrated by stain and may represent channels which span the protein monolayer. PMID:319099

  10. FmvB: A Francisella tularensis Magnesium-Responsive Outer Membrane Protein that Plays a Role in Virulence

    PubMed Central

    Wu, Xiaojun; Ren, Guoping; Gunning, William T.; Weaver, David A.; Kalinoski, Andrea L.; Khuder, Sadik A.; Huntley, Jason F.

    2016-01-01

    Francisella tularensis is the causative agent of the lethal disease tularemia. Despite decades of research, little is understood about why F. tularensis is so virulent. Bacterial outer membrane proteins (OMPs) are involved in various virulence processes, including protein secretion, host cell attachment, and intracellular survival. Many pathogenic bacteria require metals for intracellular survival and OMPs often play important roles in metal uptake. Previous studies identified three F. tularensis OMPs that play roles in iron acquisition. In this study, we examined two previously uncharacterized proteins, FTT0267 (named fmvA, for Francisella metal and virulence) and FTT0602c (fmvB), which are homologs of the previously studied F. tularensis iron acquisition genes and are predicted OMPs. To study the potential roles of FmvA and FmvB in metal acquisition and virulence, we first examined fmvA and fmvB expression following pulmonary infection of mice, finding that fmvB was upregulated up to 5-fold during F. tularensis infection of mice. Despite sequence homology to previously-characterized iron-acquisition genes, FmvA and FmvB do not appear to be involved iron uptake, as neither fmvA nor fmvB were upregulated in iron-limiting media and neither ΔfmvA nor ΔfmvB exhibited growth defects in iron limitation. However, when other metals were examined in this study, magnesium-limitation significantly induced fmvB expression, ΔfmvB was found to express significantly higher levels of lipopolysaccharide (LPS) in magnesium-limiting medium, and increased numbers of surface protrusions were observed on ΔfmvB in magnesium-limiting medium, compared to wild-type F. tularensis grown in magnesium-limiting medium. RNA sequencing analysis of ΔfmvB revealed the potential mechanism for increased LPS expression, as LPS synthesis genes kdtA and wbtA were significantly upregulated in ΔfmvB, compared with wild-type F. tularensis. To provide further evidence for the potential role of FmvB in

  11. Comparative analysis of the structures of the outer membrane protein P1 genes from major clones of Haemophilus influenzae type b.

    PubMed Central

    Munson, R; Grass, S; Einhorn, M; Bailey, C; Newell, C

    1989-01-01

    P1 outer membrane proteins from Haemophilus influenzae type b are heterogeneous antigenically and with respect to apparent molecular weight in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. For determination of the molecular basis for the differences in the P1 proteins, the genes for the P1 proteins from strain 1613, representative of outer membrane protein subtype 3L, and strain 8358, representative of outer membrane protein subtype 6U, were cloned, sequenced, and compared with the previously reported gene for the P1 protein from strain MinnA, a strain with the outer membrane protein subtype 1H. These prototype strains are representatives of the three major clonal families of H. influenzae type b responsible for invasive disease in diverse areas of the world. The nucleotide sequences of the P1 genes from strains 1613 and 8358 were 94 and 90% identical to the MinnA sequence, respectively. The derived amino acid sequences were 91 and 86% identical, respectively. Heterogeneity between the MinnA and 1613 proteins was largely localized to two short variable regions; the protein from strain 8538 contained a third variable region not observed in the other P1 proteins. Thus, the outer membrane protein P1 genes are highly conserved; the variable regions may code for the previously demonstrated strain-specific antigenic determinants. Images PMID:2572549

  12. Outer membrane protein A, peptidoglycan-associated lipoprotein, and murein lipoprotein are released by Escherichia coli bacteria into serum.

    PubMed

    Hellman, J; Loiselle, P M; Tehan, M M; Allaire, J E; Boyle, L A; Kurnick, J T; Andrews, D M; Sik Kim, K; Warren, H S

    2000-05-01

    Complexes containing lipopolysaccharide (LPS) and three outer membrane proteins (OMPs) are released by gram-negative bacteria incubated in human serum and into the circulation in an experimental model of sepsis. The same OMPs are bound by immunoglobulin G (IgG) in the cross-protective antiserum raised to Escherichia coli J5 (anti-J5 IgG). This study was performed to identify the three OMPs. The 35-kDa OMP was identified as outer membrane protein A (OmpA) by immunoblotting studies using OmpA-deficient bacteria and recombinant OmpA protein. The 18-kDa OMP was identified as peptidoglycan-associated lipoprotein (PAL) based on peptide sequences from the purified protein and immunoblotting studies using PAL-deficient bacteria. The 5- to 9-kDa OMP was identified as murein lipoprotein (MLP) based on immunoblotting studies using MLP-deficient bacteria. The studies identify the OMPs released into human serum and into the circulation in an experimental model of sepsis as OmpA, PAL, and MLP.

  13. Superresolution Imaging Identifies That Conventional Trafficking Pathways Are Not Essential for Endoplasmic Reticulum to Outer Mitochondrial Membrane Protein Transport.

    PubMed

    Salka, Kyle; Bhuvanendran, Shivaprasad; Wilson, Kassandra; Bozidis, Petros; Mehta, Mansi; Rainey, Kristin; Sesaki, Hiromi; Patterson, George H; Jaiswal, Jyoti K; Colberg-Poley, Anamaris M

    2017-12-01

    Most nuclear-encoded mitochondrial proteins traffic from the cytosol to mitochondria. Some of these proteins localize at mitochondria-associated membranes (MAM), where mitochondria are closely apposed with the endoplasmic reticulum (ER). We have previously shown that the human cytomegalovirus signal-anchored protein known as viral mitochondria-localized inhibitor of apoptosis (vMIA) traffics from the ER to mitochondria and clusters at the outer mitochondrial membrane (OMM). Here, we have examined the host pathways by which vMIA traffics from the ER to mitochondria and clusters at the OMM. By disruption of phosphofurin acidic cluster sorting protein 2 (PACS-2), mitofusins (Mfn1/2), and dynamin related protein 1 (Drp1), we find these conventional pathways for ER to the mitochondria trafficking are dispensable for vMIA trafficking to OMM. Instead, mutations in vMIA that change its hydrophobicity alter its trafficking to mitochondria. Superresolution imaging showed that PACS-2- and Mfn-mediated membrane apposition or hydrophobic interactions alter vMIA's ability to organize in nanoscale clusters at the OMM. This shows that signal-anchored MAM proteins can make use of hydrophobic interactions independently of conventional ER-mitochondria pathways to traffic from the ER to mitochondria. Further, vMIA hydrophobic interactions and ER-mitochondria contacts facilitate proper organization of vMIA on the OMM.

  14. Enzymatic, outer membrane proteins and plasmid alterations of starved Vibrio parahaemolyticus and Vibrio alginolyticus cells in seawater.

    PubMed

    Abdallah, Fethi Ben; Kallel, Héla; Bakhrouf, Amina

    2009-06-01

    The marine bacteria Vibrio parahaemolyticus and V. alginolyticus were incubated in seawater for 8 months to evaluate their adaptative responses to starvation. The starved cells showed an altered biochemical and enzymatic profiles, respectively, on Api 20E and Api ZYM systems and an evolution to the filterable minicells state capable to pass membrane pore size 0.45 microm. Outer membrane proteins patterns of stressed bacteria were also altered. Indeed, these modifications were manifested by the appearance and/or disappearance of bands as well as in the level of expression of certain proteins. Plasmids profiles analysis showed that V. alginolyticus ATCC 33787 lost three plasmids, whereas other tested strains conserved their initial profiles.

  15. Studies on gonococcus infection. XVIII. 125I-labeled peptide mapping of the major protein of the gonococcal cell wall outer membrane.

    PubMed Central

    Swanson, J

    1979-01-01

    The major outer membrane proteins from 10 gonococcal strains were examined after 125I-labeling of the proteins as single bands resolved by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. These 125I-proteins were then treated with either trypsin or alpha-chymotrypsin, and the resultant 125I-peptides were visualized by autoradiography after two-dimensional electrophoretic and chromatographic separation on thin-layer cellulose sheets. Several 125I-peptides were present in all the major outer membrane proteins examined. The presence and absence of additional 125I-peptides segregated the major proteins into two pattern groups. One group consisted of major outer membranes with molecular weights of 34,000 or 33,000; major proteins with molecular weights of 32,000 constituted the other group. Two beta-lactamase-producing gonococcal isolates were examined. Their major outer membrane proteins were identical in apparent molecular weights and alpha-chymotryptic 125I-peptide fingerprints; these proteins contained 125I-peptides not found in other gonococcal major proteins. No 125I-peptide differences were found among the major outer membrane proteins of strain F62 gonococci that exhibited differences in piliation and/or colony opacity characteristics. Images PMID:110681

  16. Evidence of Distinct Channel Conformations and Substrate Binding Affinities for the Mitochondrial Outer Membrane Protein Translocase Pore Tom40.

    PubMed

    Kuszak, Adam J; Jacobs, Daniel; Gurnev, Philip A; Shiota, Takuya; Louis, John M; Lithgow, Trevor; Bezrukov, Sergey M; Rostovtseva, Tatiana K; Buchanan, Susan K

    2015-10-23

    Nearly all mitochondrial proteins are coded by the nuclear genome and must be transported into mitochondria by the translocase of the outer membrane complex. Tom40 is the central subunit of the translocase complex and forms a pore in the mitochondrial outer membrane. To date, the mechanism it utilizes for protein transport remains unclear. Tom40 is predicted to comprise a membrane-spanning β-barrel domain with conserved α-helical domains at both the N and C termini. To investigate Tom40 function, including the role of the N- and C-terminal domains, recombinant forms of the Tom40 protein from the yeast Candida glabrata, and truncated constructs lacking the N- and/or C-terminal domains, were functionally characterized in planar lipid membranes. Our results demonstrate that each of these Tom40 constructs exhibits at least four distinct conductive levels and that full-length and truncated Tom40 constructs specifically interact with a presequence peptide in a concentration- and voltage-dependent manner. Therefore, neither the first 51 amino acids of the N terminus nor the last 13 amino acids of the C terminus are required for Tom40 channel formation or for the interaction with a presequence peptide. Unexpectedly, substrate binding affinity was dependent upon the Tom40 state corresponding to a particular conductive level. A model where two Tom40 pores act in concert as a dimeric protein complex best accounts for the observed biochemical and electrophysiological data. These results provide the first evidence for structurally distinct Tom40 conformations playing a role in substrate recognition and therefore in transport function.

  17. Evidence of Distinct Channel Conformations and Substrate Binding Affinities for the Mitochondrial Outer Membrane Protein Translocase Pore Tom40*

    PubMed Central

    Kuszak, Adam J.; Jacobs, Daniel; Gurnev, Philip A.; Shiota, Takuya; Louis, John M.; Lithgow, Trevor; Bezrukov, Sergey M.; Rostovtseva, Tatiana K.; Buchanan, Susan K.

    2015-01-01

    Nearly all mitochondrial proteins are coded by the nuclear genome and must be transported into mitochondria by the translocase of the outer membrane complex. Tom40 is the central subunit of the translocase complex and forms a pore in the mitochondrial outer membrane. To date, the mechanism it utilizes for protein transport remains unclear. Tom40 is predicted to comprise a membrane-spanning β-barrel domain with conserved α-helical domains at both the N and C termini. To investigate Tom40 function, including the role of the N- and C-terminal domains, recombinant forms of the Tom40 protein from the yeast Candida glabrata, and truncated constructs lacking the N- and/or C-terminal domains, were functionally characterized in planar lipid membranes. Our results demonstrate that each of these Tom40 constructs exhibits at least four distinct conductive levels and that full-length and truncated Tom40 constructs specifically interact with a presequence peptide in a concentration- and voltage-dependent manner. Therefore, neither the first 51 amino acids of the N terminus nor the last 13 amino acids of the C terminus are required for Tom40 channel formation or for the interaction with a presequence peptide. Unexpectedly, substrate binding affinity was dependent upon the Tom40 state corresponding to a particular conductive level. A model where two Tom40 pores act in concert as a dimeric protein complex best accounts for the observed biochemical and electrophysiological data. These results provide the first evidence for structurally distinct Tom40 conformations playing a role in substrate recognition and therefore in transport function. PMID:26336107

  18. Cloning and sequencing of 28 kDa outer membrane protein gene of Brucella melitensis Rev. 1.

    PubMed

    Chaudhuri, Pallab; Kumar, S Vinoth; Prasad, Rajeev; Srivastava, S K; Yadav, M P

    2005-09-01

    Brucella melitensis is an organism of paramount zoonotic importance. The 28 kDa outer membrane protein (OMP) is one of the immunodominant antigens of B. melitensis. The gene encoding 28 kDa OMP (omp28) has been amplified from B. melitensis Rev. 1 strain. A PCR product of 753 bp, encoding complete omp28 gene of B. melitensis, was obtained. The gene was further cloned and sequenced. The nucleotide sequence of B. melitensis Rev. 1 strain showed substitution of 2 nucleotides from that of 16M strain.

  19. A Component of the Xanthomonadaceae Type IV Secretion System Combines a VirB7 Motif with a N0 Domain Found in Outer Membrane Transport Proteins

    PubMed Central

    Souza, Diorge P.; Andrade, Maxuel O.; Alvarez-Martinez, Cristina E.; Arantes, Guilherme M.; Farah, Chuck S.; Salinas, Roberto K.

    2011-01-01

    Type IV secretion systems (T4SS) are used by Gram-negative bacteria to translocate protein and DNA substrates across the cell envelope and into target cells. Translocation across the outer membrane is achieved via a ringed tetradecameric outer membrane complex made up of a small VirB7 lipoprotein (normally 30 to 45 residues in the mature form) and the C-terminal domains of the VirB9 and VirB10 subunits. Several species from the genera of Xanthomonas phytopathogens possess an uncharacterized type IV secretion system with some distinguishing features, one of which is an unusually large VirB7 subunit (118 residues in the mature form). Here, we report the NMR and 1.0 Å X-ray structures of the VirB7 subunit from Xanthomonas citri subsp. citri (VirB7XAC2622) and its interaction with VirB9. NMR solution studies show that residues 27–41 of the disordered flexible N-terminal region of VirB7XAC2622 interact specifically with the VirB9 C-terminal domain, resulting in a significant reduction in the conformational freedom of both regions. VirB7XAC2622 has a unique C-terminal domain whose topology is strikingly similar to that of N0 domains found in proteins from different systems involved in transport across the bacterial outer membrane. We show that VirB7XAC2622 oligomerizes through interactions involving conserved residues in the N0 domain and residues 42–49 within the flexible N-terminal region and that these homotropic interactions can persist in the presence of heterotropic interactions with VirB9. Finally, we propose that VirB7XAC2622 oligomerization is compatible with the core complex structure in a manner such that the N0 domains form an extra layer on the perimeter of the tetradecameric ring. PMID:21589901

  20. Protective role of E. coli outer membrane vesicles against antibiotics.

    PubMed

    Kulkarni, Heramb M; Nagaraj, R; Jagannadham, Medicharla V

    2015-12-01

    The outer membrane vesicles (OMVs) from bacteria are known to posses both defensive and protective functions and thus participate in community related functions. In the present study, outer membrane vesicles have been shown to protect the producer bacterium and two other bacterial species from the growth inhibitory effects of some antibiotics. The OMVs isolated from E. coli MG1655 protected the bacteria against membrane-active antibiotics colistin, melittin. The OMVs of E. coli MG1655 could also protect P. aeruginosa NCTC6751 and A. radiodioresistens MMC5 against these membrane-active antibiotics. However, OMVs could not protect any of these bacteria against the other antibiotics ciprofloxacin, streptomycin and trimethoprim. Hence, OMVs appears to protect the bacterial community against membrane-active antibiotics and not other antibiotics, which have different mechanism of actions. The OMVs of E. coli MG1655 sequester the antibiotic colistin, whereas their protein components degrade the antimicrobial peptide melittin. Proteomic analysis of OMVs revealed the presence of proteases and peptidases which appear to be involved in this process. Thus, the protection of bacteria by OMVs against antibiotics is situation dependent and the mechanism differs for different situations. These studies suggest that OMVs of bacteria form a common defense for the bacterial community against specific antibiotics.

  1. Chloroplast outer envelope protein CHUP1 is essential for chloroplast anchorage to the plasma membrane and chloroplast movement.

    PubMed

    Oikawa, Kazusato; Yamasato, Akihiro; Kong, Sam-Geun; Kasahara, Masahiro; Nakai, Masato; Takahashi, Fumio; Ogura, Yasunobu; Kagawa, Takatoshi; Wada, Masamitsu

    2008-10-01

    Chloroplasts change their intracellular distribution in response to light intensity. Previously, we isolated the chloroplast unusual positioning1 (chup1) mutant of Arabidopsis (Arabidopsis thaliana). This mutant is defective in normal chloroplast relocation movement and shows aggregation of chloroplasts at the bottom of palisade mesophyll cells. The isolated gene encodes a protein with an actin-binding motif. Here, we used biochemical analyses to determine the subcellular localization of full-length CHUP1 on the chloroplast outer envelope. A CHUP1-green fluorescent protein (GFP) fusion, which was detected at the outermost part of mesophyll cell chloroplasts, complemented the chup1 phenotype, but GFP-CHUP1, which was localized mainly in the cytosol, did not. Overexpression of the N-terminal hydrophobic region (NtHR) of CHUP1 fused with GFP (NtHR-GFP) induced a chup1-like phenotype, indicating a dominant-negative effect on chloroplast relocation movement. A similar pattern was found in chloroplast OUTER ENVELOPE PROTEIN7 (OEP7)-GFP transformants, and a protein containing OEP7 in place of NtHR complemented the mutant phenotype. Physiological analyses of transgenic Arabidopsis plants expressing truncated CHUP1 in a chup1 mutant background and cytoskeletal inhibitor experiments showed that the coiled-coil region of CHUP1 anchors chloroplasts firmly on the plasma membrane, consistent with the localization of coiled-coil GFP on the plasma membrane. Thus, CHUP1 localization on chloroplasts, with the N terminus inserted into the chloroplast outer envelope and the C terminus facing the cytosol, is essential for CHUP1 function, and the coiled-coil region of CHUP1 prevents chloroplast aggregation and participates in chloroplast relocation movement.

  2. Local and Global Dynamics in Klebsiella pneumoniae Outer Membrane Protein a in Lipid Bilayers Probed at Atomic Resolution.

    PubMed

    Saurel, Olivier; Iordanov, Iordan; Nars, Guillaume; Demange, Pascal; Le Marchand, Tanguy; Andreas, Loren B; Pintacuda, Guido; Milon, Alain

    2017-02-01

    The role of membrane proteins in cellular mechanism strongly depends on their dynamics, and solid-state magic-angle spinning (MAS) nuclear magnetic resonance (NMR) is a unique method to exhaustively characterize motions of proteins in a lipid environment. Herein, we make use of advances in (1)H-detected MAS NMR to describe the dynamics of the membrane domain of the Outer membrane protein A of Klebsiella pneumoniae (KpOmpA). By measuring (1)H-(15)N dipolar-coupling as well as (15)N R1 and R1ρ relaxation rates at fast (60 kHz) MAS and high magnetic field (1 GHz), we were able to describe the motions of the residues of the β-barrel as a collective rocking of low amplitude and of hundreds of nanoseconds time scale. Residual local motions at the edges of the strands, underscored by enhanced (15)N R1ρ relaxation rates, report on the mobility of the connected loops. In agreement with MAS NMR data, proteolysis experiments performed on the full length KpOmpA as well as on its membrane domain, reconstituted in liposomes or in detergent micelles, revealed in all cases the existence of a unique trypsin cleavage site within the membrane domain (out of 16 potential Lys and Arg sites). This site is located in the extracellular loop L3, showing that it is highly accessible to protein-protein interactions. KpOmpA is involved in cell-cell recognition, for adhesion and immune response mechanisms. The L3 region may therefore play a key role in pathogenicity.

  3. Monoclonal antibodies to serotype 2 and serotype 15 outer membrane proteins of Neisseria meningitidis and their use in serotyping.

    PubMed Central

    Zollinger, W D; Moran, E E; Connelly, H; Mandrell, R E; Brandt, B

    1984-01-01

    A series of murine monoclonal antibodies to serotype 2 and serotype 15 strains of Neisseria meningitidis were produced which were specific for outer membrane proteins of classes 1, 2, 3, and 5. A panel of eight monoclonal antibodies that exhibited a high degree of serotype specificity when reacted with prototype strains of known serotype were selected for study. Each of the corresponding epitopes was localized on a specific outer membrane protein by means of immunoprecipitation, electroblotting, or both. The serotype 2a-, 2b-, and 2c-specific antibodies bound to the class 2 protein, the serotype 15-specific antibody bound to the class 3 protein, two antibodies (3-1-P1.2 and 3-1-P1.16) bound to class 1 proteins, and two antibodies (1-1-P5.1 and 3-1-P5.2) bound to class 5 proteins. Six of these monoclonal antibodies were used in a spot-blot procedure to survey 122 case isolates (groups B, C, Y, and W135) and 363 carrier isolates (all serogroups) for the presence of the 2a, 2b, 2c, 15, P1.2, and P1.16 epitopes. A total of 66% of the case isolates and 30% of the carrier isolates reacted with one or more of the monoclonal antibodies. The use of monoclonal antibodies for serotyping of meningococci appears to be feasible and easy and appears to have significant advantages over the use of polyclonal typing sera. Images PMID:6434428

  4. Immunity Provided by an Outer Membrane Vesicle Cholera Vaccine Is Due to O-Antigen-Specific Antibodies Inhibiting Bacterial Motility.

    PubMed

    Wang, Zhu; Lazinski, David W; Camilli, Andrew

    2017-01-01

    An outer membrane vesicle (OMV)-based cholera vaccine is highly efficacious in preventing intestinal colonization in the suckling mouse model. Immunity from OMVs comes from immunoglobulin (Ig), particularly IgG, in the milk of mucosally immunized dams. Anti-OMV IgG renders Vibrio cholerae organisms immotile, thus they pass through the small intestine without colonizing. However, the importance of motility inhibition for protection and the mechanism by which motility is inhibited remain unclear. By using both in vitro and in vivo experiments, we found that IgG inhibits motility by specifically binding to the O-antigen of V. cholerae We demonstrate that the bivalent structure of IgG, although not required for binding to the O-antigen, is required for motility inhibition. Finally, we show using competition assays in suckling mice that inhibition of motility appears to be responsible for most, if not all, of the protection engendered by OMV vaccination, thus providing insight into the mechanism of immune protection.

  5. BH3-only proteins are tail-anchored in the outer mitochondrial membrane and can initiate the activation of Bax.

    PubMed

    Wilfling, F; Weber, A; Potthoff, S; Vögtle, F-N; Meisinger, C; Paschen, S A; Häcker, G

    2012-08-01

    During mitochondrial apoptosis, pro-apoptotic BH3-only proteins cause the translocation of cytosolic Bcl-2-associated X protein (Bax) to the outer mitochondrial membrane (OMM) where it is activated to release cytochrome c from the mitochondrial intermembrane space, but the mechanism is under dispute. We show that most BH3-only proteins are mitochondrial proteins that are imported into the OMM via a C-terminal tail-anchor domain in isolated yeast mitochondria, independently of binding to anti-apoptotic Bcl-2 proteins. This C-terminal domain acted as a classical mitochondrial targeting signal and was sufficient to direct green fluorescent protein to mitochondria in human cells. When expressed in mouse fibroblasts, these BH3-only proteins localised to mitochondria and were inserted in the OMM. The BH3-only proteins Bcl-2-interacting mediator of cell death (Bim), tBid and p53-upregulated modulator of apoptosis sensitised isolated mitochondria from Bax/Bcl-2 homologous antagonist/killer-deficient fibroblasts to cytochrome c-release by recombinant, extramitochondrial Bax. For Bim, this activity is shown to require the C-terminal-targeting signal and to be independent of binding capacity to and presence of anti-apoptotic Bcl-2 proteins. Bim further enhanced Bax-dependent killing in yeast. A model is proposed where OMM-tail-anchored BH3-only proteins permit passive 'recruitment' and catalysis-like activation of extra-mitochondrial Bax. The recognition of C-terminal membrane-insertion of BH3-only proteins will permit the development of a more detailed concept of the initiation of mitochondrial apoptosis.

  6. Outer membrane protein A of E. coli folds into detergent micelles, but not in the presence of monomeric detergent.

    PubMed Central

    Kleinschmidt, J. H.; Wiener, M. C.; Tamm, L. K.

    1999-01-01

    Outer membrane protein A (OmpA) of Escherichia coli is a beta-barrel membrane protein that unfolds in 8 M urea to a random coil. OmpA refolds upon urea dilution in the presence of certain detergents or lipids. To examine the minimal requirements for secondary and tertiary structure formation in beta-barrel membrane proteins, folding of OmpA was studied as a function of the hydrophobic chain length, the chemical structure of the polar headgroup, and the concentration of a large array of amphiphiles. OmpA folded in the presence of detergents only above a critical minimal chain length of the apolar chain as determined by circular dichroism spectroscopy and a SDS-PAGE assay that measures tertiary structure formation. Details of the chemical structure of the polar headgroup were unimportant for folding. The minimal chain length required for folding correlated with the critical micelle concentration in each detergent series. Therefore, OmpA requires preformed detergent micelles for folding and does not adsorb monomeric detergent to its perimeter after folding. Formation of secondary and tertiary structure is thermodynamically coupled and strictly dependent on the interaction with aggregated amphiphiles. PMID:10548052

  7. Immunogenic and invasive properties of Brucella melitensis 16M outer membrane protein vaccine candidates identified via a reverse vaccinology approach.

    PubMed

    Gomez, Gabriel; Pei, Jianwu; Mwangi, Waithaka; Adams, L Garry; Rice-Ficht, Allison; Ficht, Thomas A

    2013-01-01

    Brucella is the etiologic agent of brucellosis, one of the most common and widely distributed zoonotic diseases. Its highly infectious nature, the insidious, systemic, chronic, debilitating aspects of the disease and the lack of an approved vaccine for human use in the United States are features that make Brucella a viable threat to public health. One of the main impediments to vaccine development is identification of suitable antigens. In order to identify antigens that could potentially be used in a vaccine formulation, we describe a multi-step antigen selection approach. We initially used an algorithm (Vaxign) to predict ORF encoding outer membrane proteins with antigenic determinants. Differential gene expression during acute infection and published evidence for a role in virulence were used as criteria for down-selection of the candidate antigens that resulted from in silico prediction. This approach resulted in the identification of nine Brucella melitensis outer membrane proteins, 5 of which were recombinantly expressed and used for validation. Omp22 and Hia had the highest in silico scores for adhesin probability and also conferred invasive capacity to E. coli overexpressing recombinant proteins. With the exception of FlgK in the goat, all proteins reacted to pooled sera from exposed goats, mice, and humans. BtuB, Hia and FlgK stimulated a mixed Th1-Th2 response in splenocytes from immunized mice while BtuB and Hia elicited NO release from splenocytes of S19 immunized mice. The results support the applicability of the current approach to the identification of antigens with immunogenic and invasive properties. Studies to assess immunogenicity and protective efficacy of individual proteins in the mouse are currently underway.

  8. The Borrelia afzelii outer membrane protein BAPKO_0422 binds human factor-H and is predicted to form a membrane-spanning β-barrel

    PubMed Central

    Dyer, Adam; Brown, Gemma; Stejskal, Lenka; Laity, Peter R.; Bingham, Richard J.

    2015-01-01

    The deep evolutionary history of the Spirochetes places their branch point early in the evolution of the diderms, before the divergence of the present day Proteobacteria. As a spirochete, the morphology of the Borrelia cell envelope shares characteristics of both Gram-positive and Gram-negative bacteria. A thin layer of peptidoglycan, tightly associated with the cytoplasmic membrane, is surrounded by a more labile outer membrane (OM). This OM is rich in lipoproteins but with few known integral membrane proteins. The outer membrane protein A (OmpA) domain is an eight-stranded membrane-spanning β-barrel, highly conserved among the Proteobacteria but so far unknown in the Spirochetes. In the present work, we describe the identification of four novel OmpA-like β-barrels from Borrelia afzelii, the most common cause of erythema migrans (EM) rash in Europe. Structural characterization of one these proteins (BAPKO_0422) by SAXS and CD indicate a compact globular structure rich in β-strand consistent with a monomeric β-barrel. Ab initio molecular envelopes calculated from the scattering profile are consistent with homology models and demonstrate that BAPKO_0422 adopts a peanut shape with dimensions 25×45 Å (1 Å=0.1 nm). Deviations from the standard C-terminal signature sequence are apparent; in particular the C-terminal phenylalanine residue commonly found in Proteobacterial OM proteins is replaced by isoleucine/leucine or asparagine. BAPKO_0422 is demonstrated to bind human factor H (fH) and therefore may contribute to immune evasion by inhibition of the complement response. Encoded by chromosomal genes, these proteins are highly conserved between Borrelia subspecies and may be of diagnostic or therapeutic value. PMID:26181365

  9. Channel crossing: how are proteins shipped across the bacterial plasma membrane?

    PubMed Central

    Collinson, Ian; Corey, Robin A.; Allen, William J.

    2015-01-01

    The structure of the first protein-conducting channel was determined more than a decade ago. Today, we are still puzzled by the outstanding problem of protein translocation—the dynamic mechanism underlying the consignment of proteins across and into membranes. This review is an attempt to summarize and understand the energy transducing capabilities of protein-translocating machines, with emphasis on bacterial systems: how polypeptides make headway against the lipid bilayer and how the process is coupled to the free energy associated with ATP hydrolysis and the transmembrane protein motive force. In order to explore how cargo is driven across the membrane, the known structures of the protein-translocation machines are set out against the background of the historic literature, and in the light of experiments conducted in their wake. The paper will focus on the bacterial general secretory (Sec) pathway (SecY-complex), and its eukaryotic counterpart (Sec61-complex), which ferry proteins across the membrane in an unfolded state, as well as the unrelated Tat system that assembles bespoke channels for the export of folded proteins. PMID:26370937

  10. Outer membrane vesicles from Brucella abortus promote bacterial internalization by human monocytes and modulate their innate immune response.

    PubMed

    Pollak, Cora N; Delpino, M Victoria; Fossati, Carlos A; Baldi, Pablo C

    2012-01-01

    Outer membrane vesicles (OMVs) released by some gram-negative bacteria have been shown to exert immunomodulatory effects that favor the establishment of the infection. The aim of the present study was to assess the interaction of OMVs from Brucella abortus with human epithelial cells (HeLa) and monocytes (THP-1), and the potential immunomodulatory effects they may exert. Using confocal microscopy and flow cytometry, FITC-labeled OMVs were shown to be internalized by both cell types. Internalization was shown to be partially mediated by clathrin-mediated endocytosis. Pretreatment of THP-1 cells with Brucella OMVs inhibited some cytokine responses (TNF-α and IL-8) to E. coli LPS, Pam3Cys or flagellin (TLR4, TLR2 and TLR5 agonists, respectively). Similarly, pretreatment with Brucella OMVs inhibited the cytokine response of THP-1 cells to B. abortus infection. Treatment of THP-1 cells with OMVs during IFN-γ stimulation reduced significantly the inducing effect of this cytokine on MHC-II expression. OMVs induced a dose-dependent increase of ICAM-1 expression on THP-1 cells and an increased adhesion of these cells to human endothelial cells. The addition of OMVs to THP-1 cultures before the incubation with live B. abortus resulted in increased numbers of adhered and internalized bacteria as compared to cells not treated with OMVs. Overall, these results suggest that OMVs from B. abortus exert cellular effects that promote the internalization of these bacteria by human monocytes, but also downregulate the innate immune response of these cells to Brucella infection. These effects may favor the persistence of Brucella within host cells.

  11. Involvement and necessity of the Cpx regulon in the event of aberrant β-barrel outer membrane protein assembly

    PubMed Central

    Gerken, Henri; Leiser, Owen P.; Bennion, Drew; Misra, Rajeev

    2010-01-01

    Summary The Cpx and σE regulons help maintain outer membrane integrity; the Cpx pathway monitors the biogenesis of cell surface structures, such as pili, while the σE pathway monitors the biogenesis of β-barrel outer membrane proteins (OMPs). In this study we revealed the importance of the Cpx regulon in the event of β-barrel OMP mis-assembly, by utilizing mutants expressing either a defective β-barrel OMP assembly machinery (Bam) or assembly defective β-barrel OMPs. Analysis of specific mRNAs showed that ΔcpxR bam double mutants failed to induce degP expression beyond the wild type level, despite activation of the σE pathway. The synthetic conditional lethal phenotype of ΔcpxR in mutant Bam or β-barrel OMP backgrounds was reversed by wild type DegP expressed from a heterologous plasmid promoter. Consistent with the involvement of the Cpx regulon in the event of aberrant β-barrel OMP assembly, the expression of cpxP, the archetypal member of the cpx regulon, was upregulated in defective Bam backgrounds or in cells expressing a single assembly-defective β-barrel OMP species. Together, these results showed that both the Cpx and σE regulons are required to reduce envelope stress caused by aberrant β-barrel OMP assembly, with the Cpx regulon principally contributing by controlling degP expression. PMID:20487295

  12. The mitochondrial outer membrane protein hFis1 regulates mitochondrial morphology and fission through self-interaction

    SciTech Connect

    Serasinghe, Madhavika N.; Yoon, Yisang

    2008-11-15

    Mitochondrial fission in mammals is mediated by at least two proteins, DLP1/Drp1 and hFis1. DLP1 mediates the scission of mitochondrial membranes through GTP hydrolysis, and hFis1 is a putative DLP1 receptor anchored at the mitochondrial outer membrane by a C-terminal single transmembrane domain. The cytosolic domain of hFis1 contains six {alpha}-helices ({alpha}1-{alpha}6) out of which {alpha}2-{alpha}5 form two tetratricopeptide repeat (TPR) folds. In this study, by using chimeric constructs, we demonstrated that the cytosolic domain contains the necessary information for hFis1 function during mitochondrial fission. By using transient expression of different mutant forms of the hFis1 protein, we found that hFis1 self-interaction plays an important role in mitochondrial fission. Our results show that deletion of the {alpha}1 helix greatly increased the formation of dimeric and oligomeric forms of hFis1, indicating that {alpha}1 helix functions as a negative regulator of the hFis1 self-interaction. Further mutational approaches revealed that a tyrosine residue in the {alpha}5 helix and the linker between {alpha}3 and {alpha}4 helices participate in hFis1 oligomerization. Mutations causing oligomerization defect greatly reduced the ability to induce not only mitochondrial fragmentation by full-length hFis1 but also the formation of swollen ball-shaped mitochondria caused by {alpha}1-deleted hFis1. Our data suggest that oligomerization of hFis1 in the mitochondrial outer membrane plays a role in mitochondrial fission, potentially through participating in fission factor recruitment.

  13. Detection of IgG and IgM to meningococcal outer membrane proteins in relation to carriage of Neisseria meningitidis or Neisseria lactamica.

    PubMed

    Kremastinou, J; Tzanakaki, G; Pagalis, A; Theodondou, M; Weir, D M; Blackwell, C C

    1999-05-01

    Carriage of non-serogroupable Neisseria meningitidis or Neisseria lactamica induces antibodies protective against meningococcal disease. Antibodies directed against outer membrane proteins are bactericidal and the serotype and subtype outer membrane protein antigens are being examined for their value as vaccine candidates for serogroup B disease. The aim of this study was to examine the effect of carriage of these two Neisseria species among children and young adults on induction of antibodies to outer membrane components from strains causing disease in Greece. Among 53 patients with meningococcal disease, IgG or IgM antibodies were detected by ELISA in 9 of 13 (69%) from whom the bacteria were isolated and 27 of 40 (67%) who were culture-negative. For military recruits (n = 604), the proportion of carriers of meningococci with IgM or IgG to outer membrane proteins was higher than non-carriers, P < 0.05 and P = 0.000000, respectively. Among school children (n = 319), the proportion with IgM or IgG to outer membrane proteins for carriers of meningococci was higher compared with non-carriers, P = 0.000000 and P = 0000043, respectively. Carriage of N. lactamica was not associated with the presence of either IgM or IgG to the outer membrane proteins in the children. The higher proportion of children (50%) with IgM to outer membrane proteins compared with recruits (10%) might reflect more recent exposure and primary immune responses to the bacteria. The lack of association between antibodies to outer membrane proteins and carriage of N. lactamica could reflect observations that the majority of N. lactamica isolates from Greece and other countries do not react with monoclonal typing reagents. Bactericidal antibodies to meningococci associated with high levels of IgG to N. lactamica were found in a previous study; these are thought to be directed to antigens other than outer membrane proteins or capsules and imply antigens such as lipo-oligosaccharide are involved in

  14. Solute Transport Proteins and the Outer Membrane Protein NmpC Contribute to Heat Resistance of Escherichia coli AW1.7▿

    PubMed Central

    Ruan, Lifang; Pleitner, Aaron; Gänzle, Michael G.; McMullen, Lynn M.

    2011-01-01

    This study aimed to elucidate determinants of heat resistance in Escherichia coli by comparing the composition of membrane lipids, as well as gene expression, in heat-resistant E. coli AW1.7 and heat-sensitive E. coli GGG10 with or without heat shock. The survival of E. coli AW1.7 at late exponential phase was 100-fold higher than that of E. coli GGG10 after incubation at 60°C for 15 min. The cytoplasmic membrane of E. coli AW1.7 contained a higher proportion of saturated and cyclopropane fatty acids than that of E. coli GGG10. Microarray hybridization of cDNA libraries obtained from exponentially growing or heat-shocked cultures was performed to compare gene expression in these two strains. Expression of selected genes from different functional groups was quantified by quantitative PCR. DnaK and 30S and 50S ribosomal subunits were overexpressed in E. coli GGG10 relative to E. coli AW1.7 upon heat shock at 50°C, indicating improved ribosome stability. The outer membrane porin NmpC and several transport proteins were overexpressed in exponentially growing E. coli AW1.7. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of membrane properties confirmed that NmpC is present in the outer membrane of E. coli AW1.7 but not in that of E. coli GGG10. Expression of NmpC in E. coli GGG10 increased survival at 60°C 50- to 1,000-fold. In conclusion, the outer membrane porin NmpC contributes to heat resistance in E. coli AW1.7, but the heat resistance of this strain is dependent on additional factors, which likely include the composition of membrane lipids, as well as solute transport proteins. PMID:21398480

  15. MitoNEET Is a Uniquely Folded 2Fe-2S Outer Mitochondrial Membrane Protein Stabilized By Pioglitazone

    SciTech Connect

    Paddock, M.L.; Wiley, S.E.; Axelrod, H.L.; Cohen, A.E.; Roy, M.; Abresch, E.C.; Capraro, D.; Murphy, A.N.; Nechushtai, R.; Dixon, J.E.; Jennings, P.A.; /UC, San Diego /SLAC, SSRL /Hebrew U.

    2007-10-19

    Iron-sulfur (Fe-S) proteins are key players in vital processes involving energy homeostasis and metabolism from the simplest to most complex organisms. We report a 1.5 Angstrom x-ray crystal structure of the first identified outer mitochondrial membrane Fe-S protein, mitoNEET. Two protomers intertwine to form a unique dimeric structure that constitutes a new fold to not only the {approx}650 reported Fe-S protein structures but also to all known proteins. We name this motif the NEET fold. The protomers form a two-domain structure: a {beta}-cap domain and a cluster-binding domain that coordinates two acid-labile 2Fe-2S clusters. Binding of pioglitazone, an insulin-sensitizing thiazolidinedione used in the treatment of type 2 diabetes, stabilizes the protein against 2Fe-2S cluster release. The biophysical properties of mitoNEET suggest that it may participate in a redox-sensitive signaling and/or in Fe-S cluster transfer.

  16. Molecular cloning, expression, and primary sequence of outer membrane protein P2 of Haemophilus influenzae type b.

    PubMed Central

    Munson, R; Tolan, R W

    1989-01-01

    The structural gene for the porin of Haemophilus influenzae type b, designated outer membrane protein P2, was cloned, and the DNA sequence was determined. An oligonucleotide probe generated by reverse translation of N-terminal amino acid sequence data from the purified protein was used to screen genomic DNA. The probe detected a single EcoRI fragment of approximately 1,700 base pairs which was cloned to lambda gt11 and then into M13 and partially sequenced. The derived amino acid sequence indicated that we had cloned the N-terminal portion of the P2 gene. An overlapping approximately 1,600-base-pair PvuII genomic fragment was cloned into M13, and the sequence of the remainder of the P2 gene was determined. The gene for P2 was then reconstructed under the control of the T7 promoter and expressed in Escherichia coli. The N-terminal sequence of the purified protein corresponds to residues 21 through 34 of the derived amino acid sequence. Thus, the protein is synthesized with a 20-amino-acid leader peptide. The Mr of the processed protein is 37,782, in good agreement with the estimate of 37,000 from sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Images PMID:2535836

  17. Role of Tim50 in the transfer of precursor proteins from the outer to the inner membrane of mitochondria.

    PubMed

    Mokranjac, Dejana; Sichting, Martin; Popov-Celeketić, Dusan; Mapa, Koyeli; Gevorkyan-Airapetov, Lada; Zohary, Keren; Hell, Kai; Azem, Abdussalam; Neupert, Walter

    2009-03-01

    Transport of essentially all matrix and a number of inner membrane proteins is governed, entirely or in part, by N-terminal presequences and requires a coordinated action of the translocases of outer and inner mitochondrial membranes (TOM and TIM23 complexes). Here, we have analyzed Tim50, a subunit of the TIM23 complex that is implicated in transfer of precursors from TOM to TIM23. Tim50 is recruited to the TIM23 complex via Tim23 in an interaction that is essentially independent of the rest of the translocase. We find Tim50 in close proximity to the intermembrane space side of the TOM complex where it recognizes both types of TIM23 substrates, those that are to be transported into the matrix and those destined to the inner membrane, suggesting that Tim50 recognizes presequences. This function of Tim50 depends on its association with TIM23. We conclude that the efficient transfer of precursors between TOM and TIM23 complexes requires the concerted action of Tim50 with Tim23.

  18. Enzyme-linked immunosorbent assay with major outer membrane proteins of Brucella melitensis to measure immune response to Brucella species.

    PubMed Central

    Hunter, S B; Bibb, W F; Shih, C N; Kaufmann, A F; Mitchell, J R; McKinney, R M

    1986-01-01

    We developed an enzyme-linked immunosorbent assay (ELISA) system to measure human immunoglobulin G (IgG) and IgM response to the major outer membrane proteins of Brucella melitensis. The ELISA was more sensitive in detecting antibody than a standard microagglutination (MA) test with B. abortus antigen. Of 101 sera from persons with suspected brucellosis, 79 (78.2%) gave ELISA IgM titers greater than or equal to the B. abortus MA titer without 2-mercaptoethanol (2ME), which measures both IgM and IgG. Of the 101 sera, 97% gave ELISA IgG titers greater than or equal to the MA with 2ME titer. A total of 58 sera, drawn from 11 human patients from 1 to 29 weeks after onset of brucellosis, gave higher geometric mean titers for the ELISA IgG test than for the MA with 2ME test. These 58 sera also gave ELISA IgM geometric mean titers that were greater than or within one doubling dilution of the geometric mean titers of MA without 2ME. In addition to detecting antibody response to B. abortus, B. melitensis, and B. suis, the ELISA was sensitive to antibody response to human and canine infections with B. canis. The B. canis antibody response is not detected by the MA test with B. abortus antigen. The ELISA, with a standard preparation of major outer membrane proteins of B. melitensis as antigen, appears to be useful in measuring antibody response in humans to infections by all species of Brucella known to infect humans. PMID:3095364

  19. Biochemical characteristics of the outer membranes of plant mitochondria.

    PubMed

    Mannella, C A; Bonner, W D

    1975-12-01

    Like the outer membranes of liver mitochondria, those of plant mitochondria are impermeable to cytochrome c when intact and can be ruptured by osmotic shock. Isolated plant outer mitochondrial membranes are also similar to the corresponding liver membranes in terms of phospholipid and sterol content. Sodium dodecyl sulfate-polyacrylamide gradient gel electrophoresis experiments indicate that a single class of proteins (apparent molecular weight 30 000) comprises the bulk of the plant outer membrane protein. There are also considerable amounts of polysaccharide associated with these membranes, which may contribute to their osmotic stability.

  20. Production of Recombinant Injectosome and Outer Membrane Proteins from Yersinia Pestis KIM5

    DTIC Science & Technology

    2009-06-01

    7 2.2 Threat Assessment from WMD ............................................................ 7 2.3 Bacterial Based Biological Weapons (BBBW...Introduction 1.1 Chapter Overview Yersinia pestis, formerly Pasteurella pestis, has long been a blight upon the human species. As the causative agent of...Centers for Disease Control has classified Y. pestis as a Category A Agent (CDC 2009). This bacterial disease is endemic in a large portion of the

  1. Mitochondrial-bacterial hybrids of BamA/Tob55 suggest variable requirements for the membrane integration of β-barrel proteins

    PubMed Central

    Pfitzner, Anna-Katharina; Steblau, Nadja; Ulrich, Thomas; Oberhettinger, Philipp; Autenrieth, Ingo B.; Schütz, Monika; Rapaport, Doron

    2016-01-01

    β-Barrel proteins are found in the outer membrane (OM) of Gram-negative bacteria, chloroplasts and mitochondria. The assembly of these proteins into the corresponding OM is facilitated by a dedicated protein complex that contains a central conserved β-barrel protein termed BamA in bacteria and Tob55/Sam50 in mitochondria. BamA and Tob55 consist of a membrane-integral C-terminal domain that forms a β-barrel pore and a soluble N-terminal portion comprised of one (in Tob55) or five (in BamA) polypeptide transport-associated (POTRA) domains. Currently the functional significance of this difference and whether the homology between BamA and Tob55 can allow them to replace each other are unclear. To address these issues we constructed hybrid Tob55/BamA proteins with differently configured N-terminal POTRA domains. We observed that constructs harboring a heterologous C-terminal domain could not functionally replace the bacterial BamA or the mitochondrial Tob55 demonstrating species-specific requirements. Interestingly, the various hybrid proteins in combination with the bacterial chaperones Skp or SurA supported to a variable extent the assembly of bacterial β-barrel proteins into the mitochondrial OM. Collectively, our findings suggest that the membrane assembly of various β-barrel proteins depends to a different extent on POTRA domains and periplasmic chaperones. PMID:27982054

  2. Sorting of an integral outer membrane protein via the lipoprotein-specific Lol pathway and a dedicated lipoprotein pilotin.

    PubMed

    Collin, Séverine; Guilvout, Ingrid; Nickerson, Nicholas N; Pugsley, Anthony P

    2011-05-01

    The lipoprotein PulS is a dedicated chaperone that is required to target the secretin PulD to the outer membrane in Klebsiella or Escherichia coli, and to protect it from proteolysis. Here, we present indirect evidence that PulD protomers do not assemble into the secretin dodecamer before they reach the outer membrane, and that PulS reaches the outer membrane in a soluble heterodimer with the general lipoprotein chaperone LolA. However, we could not find any direct evidence for PulD protomer association with the PulS-LolA heterodimer. Instead, in cells producing PulD and a permanently locked PulS-LolA dimer (in which LolA carries an R43L substitution that prevents lipoprotein transfer to LolB in the outer membrane), LolAR43L was found in the inner membrane, probably still associated with PulS bound to PulD that had been incorrectly targeted because of the LolAR43L substitution. It is speculated that PulD protomers normally cross the periplasm together with PulS bound to LolA but when the latter cannot be separated (due to the mutation in lolA), the PulD protomers form dodecamers that insert into the inner membrane.

  3. VCP cooperates with UBXD1 to degrade mitochondrial outer membrane protein MCL1 in model of Huntington's disease.

    PubMed

    Guo, Xing; Qi, Xin

    2017-02-01

    Proteasome-dependent turnover of mitochondrial outer membrane (OMM)-associated proteins is one of the mechanisms for maintaining proper mitochondrial quality and function. However, the underlying pathways and their implications in human disease are poorly understood. Huntington's disease (HD) is a fatal, inherited neurodegenerative disorder caused by expanded CAG repeats in the N terminal of the huntingtin gene (mutant Huntingtin, mtHtt). In this study, we show an extensive degradation of the OMM protein MCL1 (Myeloid cell leukemia sequence 1) in both HD mouse striatal cells and HD patient fibroblasts. The decrease in MCL1 level is associated with mitochondrial and cellular damage. Valosin-containing-protein (VCP) is an AAA-ATPase central to protein turnover via the ubiquitin proteasome system (UPS). We found that VCP translocates to mitochondria and promotes MCL1 degradation in HD cell cultures. Either down-regulation of VCP by RNA interference or inhibition of VCP by a dominant negative mutant abolishes MCL1 degradation in HD cell cultures. We further show that UBX-domain containing protein 1 (UBXD1), a known co-factor of VCP assisting in the recognition of substrates for protein degradation, selectively binds to MCL1 and interacts with VCP to mediate MCL1 extraction from the mitochondria. These results indicate that the OMM protein MCL1 is degraded by the VCP-UBXD1 complex and that the process is promoted by the presence of mtHtt. Therefore, our finding provides a new insight into the mechanism of mitochondrial dysfunction in HD.

  4. Protective Immunity and Reduced Renal Colonization Induced by Vaccines Containing Recombinant Leptospira interrogans Outer Membrane Proteins and Flagellin Adjuvant

    PubMed Central

    Monaris, D.; Sbrogio-Almeida, M. E.; Dib, C. C.; Canhamero, T. A.; Souza, G. O.; Vasconcellos, S. A.; Ferreira, L. C. S.

    2015-01-01

    Leptospirosis is a global zoonotic disease caused by different Leptospira species, such as Leptospira interrogans, that colonize the renal tubules of wild and domestic animals. Thus far, attempts to develop effective leptospirosis vaccines, both for humans and animals, have failed to induce immune responses capable of conferring protection and simultaneously preventing renal colonization. In this study, we evaluated the protective immunity induced by subunit vaccines containing seven different recombinant Leptospira interrogans outer membrane proteins, including the carboxy-terminal portion of the immunoglobulinlike protein A (LigAC) and six novel antigens, combined with aluminum hydroxide (alum) or Salmonella flagellin (FliC) as adjuvants. Hamsters vaccinated with the different formulations elicited high antigen-specific antibody titers. Immunization with LigAC, either with alum or flagellin, conferred protective immunity but did not prevent renal colonization. Similarly, animals immunized with LigAC or LigAC coadministered with six leptospiral proteins with alum adjuvant conferred protection but did not reduce renal colonization. In contrast, immunizing animals with the pool of seven antigens in combination with flagellin conferred protection and significantly reduced renal colonization by the pathogen. The present study emphasizes the relevance of antigen composition and added adjuvant in the efficacy of antileptospirosis subunit vaccines and shows the complex relationship between immune responses and renal colonization by the pathogen. PMID:26108285

  5. Protective Immunity and Reduced Renal Colonization Induced by Vaccines Containing Recombinant Leptospira interrogans Outer Membrane Proteins and Flagellin Adjuvant.

    PubMed

    Monaris, D; Sbrogio-Almeida, M E; Dib, C C; Canhamero, T A; Souza, G O; Vasconcellos, S A; Ferreira, L C S; Abreu, P A E

    2015-08-01

    Leptospirosis is a global zoonotic disease caused by different Leptospira species, such as Leptospira interrogans, that colonize the renal tubules of wild and domestic animals. Thus far, attempts to develop effective leptospirosis vaccines, both for humans and animals, have failed to induce immune responses capable of conferring protection and simultaneously preventing renal colonization. In this study, we evaluated the protective immunity induced by subunit vaccines containing seven different recombinant Leptospira interrogans outer membrane proteins, including the carboxy-terminal portion of the immunoglobulinlike protein A (LigA(C)) and six novel antigens, combined with aluminum hydroxide (alum) or Salmonella flagellin (FliC) as adjuvants. Hamsters vaccinated with the different formulations elicited high antigen-specific antibody titers. Immunization with LigA(C), either with alum or flagellin, conferred protective immunity but did not prevent renal colonization. Similarly, animals immunized with LigA(C) or LigA(C) coadministered with six leptospiral proteins with alum adjuvant conferred protection but did not reduce renal colonization. In contrast, immunizing animals with the pool of seven antigens in combination with flagellin conferred protection and significantly reduced renal colonization by the pathogen. The present study emphasizes the relevance of antigen composition and added adjuvant in the efficacy of antileptospirosis subunit vaccines and shows the complex relationship between immune responses and renal colonization by the pathogen.

  6. A multi-epitope vaccine based on Chlamydia trachomatis major outer membrane protein induces specific immunity in mice.

    PubMed

    Tu, Jianxin; Hou, Bailong; Wang, Bingbing; Lin, Xiaoyun; Gong, Wenci; Dong, Haiyan; Zhu, Shanli; Chen, Shao; Xue, Xiangyang; Zhao, Kong-Nan; Zhang, Lifang

    2014-05-01

    We evaluated the immunogenicity and efficacy of a candidate vaccine comprising the major outer membrane protein (MOMP) multi-epitope of Chlamydia trachomatis. A short gene of multi-epitope derived from MOMP containing multiple T- and B-cell epitopes was artificially synthesized. The recombinant plasmid pET32a(+) containing codon optimized MOMP multi-epitope gene was constructed. Expression of the fusion protein Trx-His-MOMP multi-epitope in Escherichia coli was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blot analysis. Balb/c mice were inoculated with the purified fusion protein subcutaneously three times with 2-week intervals. Results showed that the MOMP multi-epitope elicited not only strong humoral immune responses to C. trachomatis by generating significantly high levels of specific antibodies (IgG1 and IgG2a), but also a cellular immune response by inducing robust cytotoxic T lymphocyte responses in mice. Furthermore, the MOMP multi-epitope substantially primed secretion of IFN-γ, revealing that this vaccine could induce a strong Th1 response. Finally, the mice vaccinated with the MOMP multi-epitope displayed a reduction of C. trachomatis shedding upon a chlamydial challenge and an accelerated clearance of the infected C. trachomatis. In conclusion, the MOMP multi-epitope vaccine may have the potentiality for the development of effective prophylactic and therapeutic vaccines against the C. trachomatis infection.

  7. Detecting the form of selection in the outer membrane protein C of Enterobacter aerogenes strains and Salmonella species.

    PubMed

    Padhi, Abinash; Verghese, Bindhu; Otta, Subhendu K

    2009-01-01

    The types of selective pressure operating on the outer membrane protein C (ompC) of Enterobacter aerogenes strains, the causative agent for nosocomial infections, and Salmonella sp., the hazardous pathogen are investigated using the maximum likelihood-based codon substitution models. Although the rate of amino acid replacement to the silent substitution (omega) across the entire codon sites of ompC of E. aerogenes (omega=0.3194) and Salmonella sp. (omega=0.2047) indicate that the gene is subjected to purifying selection (i.e. omega<1), approximately 3.7% of ompC codon sites in E. aerogenes (omega=21.52) are under the influence of positive Darwinian selection (i.e. omega>1). Such contrast in the intensity of selective pressures in both pathogens could be associated with the differential response to the adverse environmental changes. In E. aerogenes, majority of the positively selected sites are located in the hypervariable cell-surface-exposed domains whereas the trans-membrane domains are functionally highly constrained.

  8. Outer membrane vesicles of Pasteurella multocida contain virulence factors

    PubMed Central

    Fernández-Rojas, Miguel A; Vaca, Sergio; Reyes-López, Magda; de la Garza, Mireya; Aguilar-Romero, Francisco; Zenteno, Edgar; Soriano-Vargas, Edgardo; Negrete-Abascal, Erasmo

    2014-01-01

    Pasteurella multocida (Pm) is a gram-negative bacterium able to infect different animal species, including human beings. This bacterium causes economic losses to the livestock industry because of its high morbidity and mortality in animals. In this work, we report the characterization of outer membrane vesicles (OMVs) released into the culture medium by different Pm serogroups. Purified OMVs in the range of 50–300 nm were observed by electron microscopy. Serum obtained from chickens infected with Pm recognized several proteins from Pm OMVs. Additionally, rabbit antiserum directed against a secreted protease from Actinobacillus pleuropneumoniae recognized a similar protein in the Pm OVMs, suggesting that OMVs from these bacterial species contain common immunogenic proteins. OmpA, a multifunctional protein, was identified in OMVs from different Pm serogroups, and its concentration was twofold higher in OMVs from Pm serogroups B and D than in OMVs from other serogroups. Three outer membrane proteins were also identified: OmpH, OmpW, and transferrin-binding protein. Three bands of 65, 110, and 250 kDa with proteolytic activity were detected in Pm OMVs of serogroups A and E. Additionally, β-lactamase activity was detected only in OMVs from Pm 12945 Ampr (serogroup A). Pm OMVs may be involved in different aspects of disease pathogenesis. PMID:25065983

  9. Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response

    PubMed Central

    McBroom, Amanda J; Kuehn, Meta J

    2007-01-01

    Conditions that impair protein folding in the Gram-negative bacterial envelope cause stress. The destabilizing effects of stress in this compartment are recognized and countered by a number of signal transduction mechanisms. Data presented here reveal another facet of the complex bacterial stress response, release of outer membrane vesicles. Native vesicles are composed of outer membrane and periplasmic material, and they are released from the bacterial surface without loss of membrane integrity. Here we demonstrate that the quantity of vesicle release correlates directly with the level of protein accumulation in the cell envelope. Accumulation of material occurs under stress, and is exacerbated upon impairment of the normal housekeeping and stress-responsive mechanisms of the cell. Mutations that cause increased vesiculation enhance bacterial survival upon challenge with stressing agents or accumulation of toxic misfolded proteins. Preferential packaging of a misfolded protein mimic into vesicles for removal indicates that the vesiculation process can act to selectively eliminate unwanted material. Our results demonstrate that production of bacterial outer membrane vesicles is a fully independent, general envelope stress response. In addition to identifying a novel mechanism for alleviating stress, this work provides physiological relevance for vesicle production as a protective mechanism. PMID:17163978

  10. Immunogenicity and protective role of antigenic regions from five outer membrane proteins of Flavobacterium columnare in grass carp Ctenopharyngodon idella

    NASA Astrophysics Data System (ADS)

    Luo, Zhang; Liu, Zhixin; Fu, Jianping; Zhang, Qiusheng; Huang, Bei; Nie, Pin

    2016-11-01

    Flavobacterium columnare causes columnaris disease in freshwater fish. In the present study, the antigenic regions of five outer membrane proteins (OMPs), including zinc metalloprotease, prolyl oligopeptidase, thermolysin, collagenase and chondroitin AC lyase, were bioinformatically analyzed, fused together, and then expressed as a recombinant fusion protein in Escherichia coli. The expressed protein of 95.6 kDa, as estimated by 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was consistent with the molecular weight deduced from the amino acid sequence. The purified recombinant protein was used to vaccinate the grass carp, Ctenopharyngodon idella. Following vaccination of the fish their IgM antibody levels were examined, as was the expression of IgM, IgD and IgZ immunoglobulin genes and other genes such as MHC Iα and MHC IIβ, which are also involved in adaptive immunity. Interleukin genes ( IL), including IL-1β, IL-8 and IL-10, and type I and type II interferon ( IFN) genes were also examined. At 3 and 4 weeks post-vaccination (wpv), significant increases in IgM antibody levels were observed in the fish vaccinated with the recombinant fusion protein, and an increase in the expression levels of IgM, IgD and IgZ genes was also detected following the vaccinations, thus indicating that an adaptive immune response was induced by the vaccinations. Early increases in the expression levels of IL and IFN genes were also observed in the vaccinated fish. At four wpv, the fish were challenged with F. columnare, and the vaccinated fish showed a good level of protection against this pathogen, with 39% relative percent survival (RPS) compared with the control group. It can be concluded, therefore, that the five OMPs, in the form of a recombinant fusion protein vaccine, induced an immune response in fish and protection against F. columnare.

  11. The outer membrane phospholipase A is essential for membrane integrity and type III secretion in Shigella flexneri.

    PubMed

    Wang, Xia; Jiang, Feng; Zheng, Jianhua; Chen, Lihong; Dong, Jie; Sun, Lilian; Zhu, Yafang; Liu, Bo; Yang, Jian; Yang, Guowei; Jin, Qi

    2016-09-01

    Outer membrane phospholipase A (OMPLA) is an enzyme located in the outer membrane of Gram-negative bacteria. OMPLA exhibits broad substrate specificity, and some of its substrates are located in the cellular envelope. Generally, the enzymatic activity can only be induced by perturbation of the cell envelope integrity through diverse methods. Although OMPLA has been thoroughly studied as a membrane protein in Escherichia coli and is constitutively expressed in many other bacterial pathogens, little is known regarding the functions of OMPLA during the process of bacterial infection. In this study, the proteomic and transcriptomic data indicated that OMPLA in Shigella flexneri, termed PldA, both stabilizes the bacterial membrane and is involved in bacterial infection under ordinary culture conditions. A series of physiological assays substantiated the disorganization of the bacterial outer membrane and the periplasmic space in the ΔpldA mutant strain. Furthermore, the ΔpldA mutant strain showed decreased levels of type III secretion system expression, contributing to the reduced internalization efficiency in host cells. The results of this study support that PldA, which is widespread across Gram-negative bacteria, is an important factor for the bacterial life cycle, particularly in human pathogens.

  12. Bacteriophage T5 gene A2 protein alters the outer membrane of Escherichia coli.

    PubMed Central

    Snyder, C E

    1984-01-01

    Evidence for changes in Escherichia coli envelope structure caused by the bacteriophage T5 gene A2 protein was obtained by the use of mutant bacteriophages, envelope fractionation procedures, electrophoretic analysis, and in vitro binding studies with purified gene A2 protein. The results suggested that the T5 gene A2 protein perturbs the host envelope as it functions to promote DNA transfer. Images PMID:6389511

  13. Isolation and Characterization of the Outer Membrane of Borrelia hermsii

    PubMed Central

    Shang, Ellen S.; Skare, Jonathan T.; Exner, Maurice M.; Blanco, David R.; Kagan, Bruce L.; Miller, James N.; Lovett, Michael A.

    1998-01-01

    The outer membrane of Borrelia hermsii has been shown by freeze-fracture analysis to contain a low density of membrane-spanning outer membrane proteins which have not yet been isolated or identified. In this study, we report the purification of outer membrane vesicles (OMV) from B. hermsii HS-1 and the subsequent identification of their constituent outer membrane proteins. The B. hermsii outer membranes were released by vigorous vortexing of whole organisms in low-pH, hypotonic citrate buffer and isolated by isopycnic sucrose gradient centrifugation. The isolated OMV exhibited porin activities ranging from 0.2 to 7.2 nS, consistent with their outer membrane origin. Purified OMV were shown to be relatively free of inner membrane contamination by the absence of measurable β-NADH oxidase activity and the absence of protoplasmic cylinder-associated proteins observed by Coomassie blue staining. Approximately 60 protein spots (some of which are putative isoelectric isomers) with 25 distinct molecular weights were identified as constituents of the OMV enrichment. The majority of these proteins were also shown to be antigenic with sera from B. hermsii-infected mice. Seven of these antigenic proteins were labeled with [3H]palmitate, including the surface-exposed glycerophosphodiester phosphodiesterase, the variable major proteins 7 and 33, and proteins of 15, 17, 38, 42, and 67 kDa, indicating that they are lipoprotein constituents of the outer membrane. In addition, immunoblot analysis of the OMV probed with antiserum to the Borrelia garinii surface-exposed p66/Oms66 porin protein demonstrated the presence of a p66 (Oms66) outer membrane homolog. Treatment of intact B. hermsii with proteinase K resulted in the partial proteolysis of the Oms66/p66 homolog, indicating that it is surface exposed. This identification and characterization of the OMV proteins should aid in further studies of pathogenesis and immunity of tick-borne relapsing fever. PMID:9488399

  14. Evaluation of a real-time polymerase chain reaction assay of the outer membrane protein P2 gene for the detection of Haemophilus parasuis in clinical samples

    PubMed Central

    McDowall, Rebeccah; Slavic, Durda; MacInnes, Janet I.; Cai, Hugh Y.

    2014-01-01

    A real-time polymerase chain reaction (PCR) assay of the outer membrane protein (OMP) P2 gene was developed and used to test 97 putative Haemophilus parasuis pure cultures and 175 clinical tissue samples. With standard culture isolation as the gold standard, the diagnostic sensitivity and specificity of the PCR assay were determined to be 83% and 80%, respectively. PMID:24688178

  15. Identification of Yersinia pestis and Escherichia coli strains by whole cell and outer membrane protein extracts with mass spectrometry-based proteomics.

    PubMed

    Jabbour, Rabih E; Wade, Mary Margaret; Deshpande, Samir V; Stanford, Michael F; Wick, Charles H; Zulich, Alan W; Snyder, A Peter

    2010-07-02

    Whole cell protein and outer membrane protein (OMP) extracts were compared for their ability to differentiate and delineate the correct database organism to an experimental sample and for the degree of dissimilarity to the nearest neighbor database organism strains. These extracts were isolated from pathogenic and nonpathogenic strains of Yersinia pestis and Escherichia coli using ultracentrifugation and a sarkosyl extraction method followed by protein digestion and analysis using liquid chromatography tandem mass spectrometry (MS). Whole cell protein extracts contain many different types of proteins resident in an organism at a given phase in its growth cycle. OMPs, however, are often associated with virulence in Gram-negative pathogens and could prove to be model biomarkers for strain differentiation among bacteria. The mass spectra of bacterial peptides were searched, using the SEQUEST algorithm, against a constructed proteome database of microorganisms in order to determine the identity and number of unique peptides for each bacterial sample. Data analysis was performed with the in-house BACid software. It calculated the probabilities that a peptide sequence assignment to a product ion mass spectrum was correct and used accepted spectrum-to-sequence matches to generate a sequence-to-bacterium (STB) binary matrix of assignments. Validated peptide sequences, either present or absent in various strains (STB matrices), were visualized as assignment bitmaps and analyzed by the BACid module that used phylogenetic relationships among bacterial species as part of a decision tree process. The bacterial classification and identification algorithm used assignments of organisms to taxonomic groups (phylogenetic classification) based on an organized scheme that begins at the phylum level and follows through the class, order, family, genus, and species to the strain level. For both Gram-negative organisms, the number of unique distinguishing proteins arrived at by the whole

  16. The Fusobacterium nucleatum major outer-membrane protein (FomA) forms trimeric, water-filled channels in lipid bilayer membranes.

    PubMed

    Kleivdal, H; Benz, R; Jensen, H B

    1995-10-01

    The pore-forming activity of the major outer-membrane protein FomA of the anaerobic Fusobacterium nucleatum was studied in artificial lipid bilayer membranes. FomA was isolated from F. nucleatum strains Fev1, ATCC 10953, and ATCC 25586 by extraction with lithium dodecyl sulfate and lithium chloride and had an apparent molecular mass of about 40 kDa. When solubilized at low temperatures, the protein ran with an apparent molecular mass of about 62 kDa on SDS/PAGE. Cross-linking experiments and two-dimensional SDS/PAGE gave evidence that the 62-kDa protein band represented the trimeric form of FomA. The protein trimers were susceptible to SDS and temperature. The stability of the porin trimers varied among the strains. The properties of the FomA channels were studied in reconstitution experiments with black lipid bilayer membranes. The F. nucleatum porins formed channels with single-channel conductances in the range 0.66-1.30 nS in M KCl. The single-channel conductance was a function of the mobilities of the ions present in the aqueous solution bathing the bilayer membrane. This means that FomA forms general diffusion channels since (a) the conductance showed a linear dependence on the salt concentration, (b) the ion selectivity was small and varied for the three strains, and (c) the channels did not exhibit any binding site for maltotriose or triglycine. The water-filled channel was voltage dependent, and conductance decrements were observed at transmembrane potentials of +/- 50 mV. The conductance decrement steps were about one-third of the total conductance of a functional unit in its fully 'open' state. This strongly suggests that the trimer is the functional unit of the porin.

  17. Association of the Cytoplasmic Membrane Protein XpsN with the Outer Membrane Protein XpsD in the Type II Protein Secretion Apparatus of Xanthomonas campestris pv. Campestris

    PubMed Central

    Lee, Hsien-Ming; Wang, Kuan-Cheng; Liu, Yi-Ling; Yew, Hsin-Yan; Chen, Ling-Yun; Leu, Wei-Ming; Chen, David Chanhen; Hu, Nien-Tai

    2000-01-01

    An xps gene cluster composed of 11 open reading frames is required for the type II protein secretion in Xanthomonas campestris pv. campestris. Immediately upstream of the xpsD gene, which encodes an outer membrane protein that serves as the secretion channel by forming multimers, there exists an open reading frame (previously designated ORF2) that could encode a protein of 261 amino acid residues. Its N-terminal hydrophobic region is a likely membrane-anchoring sequence. Antibody raised against this protein could detect in the wild-type strain of X. campestris pv. campestris a protein band with an apparent molecular mass of 36 kDa by Western blotting. Its aberrant slow migration in sodium dodecyl sulfate-polyacrylamide gels might be due to its high proline content. We designated this protein XpsN. By constructing a mutant strain with an in-frame deletion of the chromosomal xpsN gene, we demonstrated that it is required for the secretion of extracellular enzyme by X. campestris pv. campestris. Subcellular fractionation studies indicated that the XpsN protein was tightly associated with the membrane. Sucrose gradient sedimentation followed by immunoblot analysis revealed that it primarily appeared in the cytoplasmic membrane fractions. Immune precipitation experiments indicated that the XpsN protein was coprecipitated with the XpsD protein. In addition, the XpsN protein was co-eluted with the (His)6-tagged XpsD protein from the metal affinity chromatography column. All observations suggested that the XpsN protein forms a stable complex with the XpsD protein. In addition, immune precipitation analysis of the XpsN protein with various truncated XpsD proteins revealed that the C-terminal region of the XpsD protein between residues 650 and 759 was likely to be involved in complex formation between the two. PMID:10692359

  18. Isolation and characterization of an outer membrane protein of Salmonella paratyphi B: a mitogen and polyclonal activator of human B lymphocytes.

    PubMed Central

    Sager, S; Virella, G; Chen, W Y; Fudenberg, H H

    1984-01-01

    Salmonella paratyphi B (S. paratyphi B) has been previously characterized as a human T-independent polyclonal B cell activator. To define further the nature of the bacterial structure responsible for these properties, we studied the effects of autoclaving and enzyme treatment of S. paratyphi B on its stimulatory capacity. We found that both autoclaving and papain treatment decreased the ability of S. paratyphi B to induce B cell activation, while trypsin treatment did not affect this capacity. Neither type of treatment affected the binding of S. paratyphi B to lymphocytes, suggesting that binding and B cell stimulation are mediated by different structures. The observation that B cell stimulation was significantly reduced by papain treatment led us to attempt to purify membrane proteins so that we could investigate whether they shared the stimulating capacity of S. paratyphi B. A water-insoluble, 43-45,000 mol. wt. protein, rich in aspartic acid, glutamine, glycine, alanine and leucine, similar in mol. wt. and physicochemical chemical properties to the porins of other gram negative bacteria, was isolated and designated as outer membrane protein (OMP). This protein was equally efficient to S. paratyphi B in inducing T-independent B cell activation. By performing time-course studies of [3H]-thymidine incorporation we observed a burst of mitogenic activity after stimulation of PBL or purified B cells with both S. paratyphi B and OMP peaking at 48-96 hr of culture (compared to 96-120 hr for the PWM proliferation peak), and with a magnitude of roughly 10% of that observed after PWM stimulation. Given the fact that the proportion of B lymphocytes in PBL is 4-12%, it appears likely that the proliferation burst seen with S. paratyphi B and OMP corresponds to a mitogenic effect mainly restricted to the B cell population. Images Figure 1 PMID:6370841

  19. An Outer Membrane Protein Involved in the Uptake of Glucose Is Essential for Cytophaga hutchinsonii Cellulose Utilization

    PubMed Central

    Zhou, Hong; Wang, Xia; Yang, Tengteng; Zhang, Weixin; Chen, Guanjun

    2016-01-01

    Cytophaga hutchinsonii specializes in cellulose digestion by employing a collection of novel cell-associated proteins. Here, we identified a novel gene locus, CHU_1276, that is essential for C. hutchinsonii cellulose utilization. Disruption of CHU_1276 in C. hutchinsonii resulted in complete deficiency in cellulose degradation, as well as compromised assimilation of cellobiose or glucose at a low concentration. Further analysis showed that CHU_1276 was an outer membrane protein that could be induced by cellulose and low concentrations of glucose. Transcriptional profiling revealed that CHU_1276 exerted a profound effect on the genome-wide response to both glucose and Avicel and that the mutant lacking CHU_1276 displayed expression profiles very different from those of the wild-type strain under different culture conditions. Specifically, comparison of their transcriptional responses to cellulose led to the identification of a gene set potentially regulated by CHU_1276. These results suggest that CHU_1276 plays an essential role in cellulose utilization, probably by coordinating the extracellular hydrolysis of cellulose substrate with the intracellular uptake of the hydrolysis product in C. hutchinsonii. PMID:26773084

  20. Studies of the Outer Membrane Proteins of Campylobacter Jejuni for Vaccine Development

    DTIC Science & Technology

    1991-11-26

    serologic tests for diagnosing Campylobacter infection, which could be useful in field settings. 3 4. Identification, purification, and characterization ...response to purified lipopolysaccharide from four Campylobacter strains in 34 adults with inflammatory enteritis in Denver, using an enzyme -linked...Mycobacterium tuberculosis, and M.leprae (66%) and mitochondrial protein p1 precursor of human and Chinese hamster cells (64%), and rubisco subunit binding

  1. The chloroplast outer membrane protein CHUP1 interacts with actin and profilin.

    PubMed

    Schmidt von Braun, Serena; Schleiff, Enrico

    2008-04-01

    Chloroplasts accumulate in response to low light, whereas high light induces an actin-dependent avoidance movement. This is a long known process, but its molecular base is barely understood. Only recently first components of the blue light perceiving signal cascade initiating this process were described. Among these, a protein was identified by the analysis of a deletion mutant in the corresponding gene resulting in a chloroplast unusual positioning phenotype. The protein was termed CHUP1 and initial results suggested chloroplast localization. We demonstrate that the protein is indeed exclusively and directly targeted to the chloroplast surface. The analysis of the deletion mutant of CHUP1 using microarray analysis shows an influence on the expression of genes found to be up-regulated, but not on genes found to be down-regulated upon high light exposure in wild-type. Analyzing a putative role of CHUP1 as a linker between chloroplasts and the cytoskeleton, we demonstrate an interaction with actin, which is independent on the filamentation status of actin. Moreover, binding of CHUP1 to profilin -- an actin modifying protein -- could be shown and an enhancing effect of CHUP1 on the interaction of profilin to actin is demonstrated. Therefore, a role of CHUP1 in bridging chloroplasts to actin filaments and a regulatory function in actin polymerization can be discussed.

  2. DNA sequence and expression of the 36-kilodalton outer membrane protein gene of Brucella abortus.

    PubMed Central

    Ficht, T A; Bearden, S W; Sowa, B A; Adams, L G

    1989-01-01

    The cloning of the gene(s) encoding a 36-kilodalton (kDa) cell envelope protein of Brucella abortus has been previously described (T. A. Ficht, S. W. Bearden, B. A. Sowa, and L. G. Adams, Infect, Immun. 56:2036-2046, 1988). In an attempt to define the nature of the previously described duplication at this locus we have sequenced 3,500 base pairs of genomic DNA encompassing this region. The duplication represented two similar open reading frames which shared more than 85% homology at the nucleotide level but differed primarily because of the absence of 108 nucleotides from one of the two gene copies. These two genes were read from opposite strands and potentially encoded proteins which are 96% homologous. The predicted gene products were identical over the first 100 amino acids, including 22-amino-acid-long signal sequences. The amino acid composition of the predicted proteins was similar to that obtained for the Brucella porin isolated by Verstreate et al. (D. R. Verstreate, M. T. Creasy, N. T. Caveney, C. L. Baldwin, M. W. Blab, and A. J. Winter, Infect. Immun. 35:979-989, 1982) and presumably represented two copies of the porin gene, tentatively identified as omp 2a (silent) and omp 2b (expressed). The homology between the two genes extended to and included Shine-Dalgarno sequences 7 base pairs upstream from the ATG start codons. Homology at the 3' ends extended only as far as the termination codon, but both genes had putative rho-independent transcription termination sites. Localization of the promoters proved more difficult, since the canonical procaryotic sequences could not be identified in the region upstream of either gene. Promoter activity was demonstrated by ligation to a promoterless lacZ gene in pMC1871. However, only one active promoter could be identified by using this system. A 36-kDa protein was synthesized in E. coli with the promoter in the native orientation and was identical in size to the protein produced in laboratory-grown B. abortus. When

  3. Shigella outer membrane protein PSSP-1 is broadly protective against Shigella infection.

    PubMed

    Kim, Jae-Ouk; Rho, Semi; Kim, Su Hee; Kim, Heejoo; Song, Hyo Jin; Kim, Eun Jin; Kim, Ryang Yeo; Kim, Eun Hye; Sinha, Anuradha; Dey, Ayan; Yang, Jae Seung; Song, Man Ki; Nandy, Ranjan Kumar; Czerkinsky, Cecil; Kim, Dong Wook

    2015-04-01

    In developing countries, Shigella is a primary cause of diarrhea in infants and young children. Although antibiotic therapy is an effective treatment for shigellosis, therapeutic options are narrowing due to the emergence of antibiotic resistance. Thus, preventive vaccination could become the most efficacious approach for controlling shigellosis. We have identified several conserved protein antigens that are shared by multiple Shigella serotypes and species. Among these, one antigen induced cross-protection against experimental shigellosis, and we have named it pan-Shigella surface protein 1 (PSSP-1). PSSP-1-induced protection requires a mucosal administration route and coadministration of an adjuvant. When PSSP-1 was administered intranasally, it induced cross-protection against Shigella flexneri serotypes 2a, 5a, and 6, Shigella boydii, Shigella sonnei, and Shigella dysenteriae serotype 1. Intradermally administered PSSP-1 induced strong serum antibody responses but failed to induce protection in the mouse lung pneumonia model. In contrast, intranasal administration elicited efficient local and systemic antibody responses and production of interleukin 17A and gamma interferon. Interestingly, blood samples from patients with recent-onset shigellosis showed variable but significant mucosal antibody responses to other conserved Shigella protein antigens but not to PSSP-1. We suggest that PSSP-1 is a promising antigen for a broadly protective vaccine against Shigella.

  4. Identification of a CD4 T cell epitope that is globally conserved among outer membrane proteins (OMPs) OMP7, OMP8, and OMP9 of anaplasma marginale strains and with OMP7 from the A. marginale subsp. centrale vaccine strain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Within the protective outer membrane fraction of Anaplasma marginale, several vaccine candidates have emerged, including a family of outer membrane proteins (OMPs) 7-9, which share sequence identity with each other and with the single protein OMP7 in the vaccine strain A. marginale subsp. centrale. ...

  5. Cloning and sequencing of a gene encoding a 21-kilodalton outer membrane protein from Bordetella avium and expression of the gene in Salmonella typhimurium.

    PubMed Central

    Gentry-Weeks, C R; Hultsch, A L; Kelly, S M; Keith, J M; Curtiss, R

    1992-01-01

    Three gene libraries of Bordetella avium 197 DNA were prepared in Escherichia coli LE392 by using the cosmid vectors pCP13 and pYA2329, a derivative of pCP13 specifying spectinomycin resistance. The cosmid libraries were screened with convalescent-phase anti-B. avium turkey sera and polyclonal rabbit antisera against B. avium 197 outer membrane proteins. One E. coli recombinant clone produced a 56-kDa protein which reacted with convalescent-phase serum from a turkey infected with B. avium 197. In addition, five E. coli recombinant clones were identified which produced B. avium outer membrane proteins with molecular masses of 21, 38, 40, 43, and 48 kDa. At least one of these E. coli clones, which encoded the 21-kDa protein, reacted with both convalescent-phase turkey sera and antibody against B. avium 197 outer membrane proteins. The gene for the 21-kDa outer membrane protein was localized by Tn5seq1 mutagenesis, and the nucleotide sequence was determined by dideoxy sequencing. DNA sequence analysis of the 21-kDa protein revealed an open reading frame of 582 bases that resulted in a predicted protein of 194 amino acids. Comparison of the predicted amino acid sequence of the gene encoding the 21-kDa outer membrane protein with protein sequences in the National Biomedical Research Foundation protein sequence data base indicated significant homology to the OmpA proteins of Shigella dysenteriae, Enterobacter aerogenes, E. coli, and Salmonella typhimurium and to Neisseria gonorrhoeae outer membrane protein III, Haemophilus influenzae protein P6, and Pseudomonas aeruginosa porin protein F. The gene (ompA) encoding the B. avium 21-kDa protein hybridized with 4.1-kb DNA fragments from EcoRI-digested, chromosomal DNA of Bordetella pertussis and Bordetella bronchiseptica and with 6.0- and 3.2-kb DNA fragments from EcoRI-digested, chromosomal DNA of B. avium and B. avium-like DNA, respectively. A 6.75-kb DNA fragment encoding the B. avium 21-kDa protein was subcloned into the

  6. Neonatal, urogenital isolates of biotype 4 nontypeable Haemophilus influenzae express a variant P6 outer membrane protein molecule.

    PubMed Central

    Murphy, T F; Kirkham, C; Sikkema, D J

    1992-01-01

    The P6 outer membrane protein is a highly conserved molecule which is present on the surface of all strains of Haemophilus influenzae. Sixty strains of nontypeable H. influenzae which caused invasive disease or colonized the female urogenital tract were studied with monoclonal antibodies 7F3 and 4G4, which recognize different surface-exposed epitopes on the P6 molecule. All 60 strains expressed the epitope recognized by 4G4, whereas 47 of 60 strains expressed the epitope recognized by antibody 7F3. The 7F3-nonreactive strains were all biotype 4 and were recovered from the blood of neonates or postpartum women or from the female urogenital tract. The P6 genes from two 7F3-nonreactive strains were cloned, and the nucleotide sequences were determined. Analysis of amino acid sequences, immunoassays with synthetic peptides, and site-directed mutation of the P6 gene indicate that the epitope recognized by antibody 7F3 is conformational and that the sequence Asp-Ile-Thr is critical in maintaining the conformation of the epitope. We conclude that the unusually virulent clone family of biotype 4 strains of nontypeable H. influenzae express a variant P6 molecule which has an alteration in a highly conserved surface-exposed epitope. Images PMID:1373403

  7. Outer Membrane Proteins and DNA Profiles in Strains of Haemophilus parasuis Recovered from Systemic and Respiratory Sites

    PubMed Central

    Ruiz, Alvaro; Oliveira, Simone; Torremorell, Montserrat; Pijoan, Carlos

    2001-01-01

    Polyserositis caused by Haemophilus parasuis is an important disease that affects mostly weaned pigs. Recent studies have shown that virulence can differ among strains recovered from distinct body sites and also that it may be related to the presence of certain outer membrane proteins (OMPs). The objective of this study was to compare the OMP and DNA profiles of H. parasuis strains isolated from systemic and respiratory sites from diseased and healthy pigs. Strains evaluated in this study were processed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and repetitive-PCR techniques. Two experiments were conducted in order to better define the relationship among genotype, phenotype, and site of isolation. Experiment 1 included 53 H. parasuis isolates recovered from healthy and diseased pigs from unrelated herds. Experiment 2 included 31 isolates of H. parasuis obtained from diseased pigs involved in an outbreak in a large, multifarm system. Results showed that strains recovered from systemic sites had more homogeneous OMP and DNA profiles than those isolated from respiratory sites. Evaluation of isolates involved in the multifarm outbreak showed that only two H. parasuis strains were causing disease. These strains had homogeneous OMP and DNA profiles. However, it was noted that these two parameters were unrelated, since strains classified in the same genotype group expressed different OMP profiles. The homogeneity of OMP and DNA profiles of strains isolated from systemic sites strongly suggests the existence of clonal relationships between virulent strains and also suggests that expression of certain OMP profiles may be related to virulence. PMID:11325986

  8. Development of a subunit vaccine containing recombinant Riemerella anatipestifer outer membrane protein A and CpG ODN adjuvant.

    PubMed

    Chu, Chun-Yen; Liu, Chia-Hui; Liou, Jhong-Jie; Lee, Jai-Wei; Cheng, Li-Ting

    2015-01-01

    Riemerella anatipestifer, a Gram-negative bacillus, causes septicemia that can result in high mortality for ducklings. In this study, we evaluated the immune response and protective efficacy provided by a subunit vaccine containing recombinant outer membrane protein A (rOmpA) and plasmid constructs containing CpG oligodeoxynucleotides (ODN). Results showed that CpG ODN enhanced both humoral and cell-mediated immunity elicited by rOmpA as early as two weeks after primary immunization. When compared to ducks immunized with rOmpA, ducks immunized with rOmpA+CpG ODN showed higher levels (p<0.05) of antibody titer, T cell proliferation, and percentages of CD4(+) and CD8(+) T cell in peripheral blood mononuclear cells (PBMCs). The relative fold inductions of mRNA expression of Th1-type (IFN-γ and IL-12), and Th2-type (IL-6) cytokines in PBMCs isolated from ducks immunized with rOmpA+CpG ODN were significantly higher than those of the rOmpA group. Homologous challenge result showed that the rOmpA+CpG ODN vaccine reduced the pathological score by 90% in comparison with the saline control. In conclusion, our study found that CpG ODN can enhance both humoral and cellular immunity elicited by a rOmpA vaccine. The rOmpA+CpG ODN vaccine can be further developed as a subunit vaccine against R. anatipestifer.

  9. A study of Helicobacter pylori outer-membrane proteins (hom) A and B in Iraq and Turkey.

    PubMed

    Hussein, Nawfal R

    2011-08-01

    Helicobacter pylori outer-membrane proteins (hom), especially the homB gene, have been suggested as a novel virulence factor. However, no study has been conducted in Middle Eastern countries regarding the association between these genes and clinical outcome. Gastric biopsies were obtained from 70 and 64 unselected H. pylori+ patients from Iraq and Turkey, respectively. PCR was performed to study the presence of the homA, homB, and cagA. No association was found between homA or homB and clinical outcomes. When Iraqi and Turkish strains were combined as Middle Eastern samples, cagA positivity was significantly higher in patients with peptic ulcer disease (PUD) than those with non-peptic ulcer disease (NPUD) (p=0.003, OR=3.6, CI=1.5-8.8). Two Iraqi strains showed intermediate, non-homA non-homB, length PCR products. The function of such gene is yet to be determined. In conclusion, hom genes might not be a good indicator for disease prediction in the Middle East. More studies are needed to confirm these results and determine the function of intermediate length hom.

  10. Multiple conformational states and gate opening of outer membrane protein TolC revealed by molecular dynamics simulations.

    PubMed

    Wang, Beibei; Weng, Jingwei; Wang, Wenning

    2014-09-01

    Outer membrane protein TolC serves as an exit duct for exporting substances out of cell. The occluded periplasmic entrance of TolC is required to open for substrate transport, although the opening mechanism remains elusive. In this study, systematic molecular dynamics (MD) simulations for wild type TolC and six mutants were performed to explore the conformational dynamics of TolC. The periplasmic gate was shown to sample multiple conformational states with various degrees of gating opening. The gate opening was facilitated by all mutations except Y362F, which adopts an even more closed state than wild type TolC. The interprotomer salt-bridge R367-D153 is turned out to be crucial for periplasmic gate opening. The mutations that disrupt the interactions at the periplasmic tip may affect the stability of the trimeric assembly of TolC. Structural asymmetry of the periplasmic gate was observed to be opening size dependent. Asymmetric conformations are found in moderately opening states, while the most and the least opening states are often more symmetric. Finally, it is shown that lowering pH can remarkably stabilize the closed state of the periplasmic gate.

  11. Outer membrane protein profiles and multilocus enzyme electrophoresis analysis for differentiation of clinical isolates of Proteus mirabilis and Proteus vulgaris.

    PubMed

    Kappos, T; John, M A; Hussain, Z; Valvano, M A

    1992-10-01

    Outer membrane protein (MP) profiles and multilocus enzyme electrophoresis (MEE) analysis were used as tools for differentiating clinical isolates of Proteus spp. Fourteen distinct MP profiles were established by sodium dodecyl sulfate-urea polyacrylamide gel electrophoresis in 54 clinical isolates of Proteus spp. (44 strains identified as P. mirabilis and 10 strains identified as P. vulgaris). Forty-one isolates of P. mirabilis and eight isolates of P. vulgaris were grouped within six and three MP profiles, respectively. The remaining P. mirabilis and P. vulgaris isolates had unique profiles. MEE analysis was used to further discriminate among the strains belonging to the same MP groups. Thirty-five distinct electrophoretic types (ETs) were identified among P. mirabilis isolates. The isolates of P. mirabilis from the four most common MP groups were subgrouped into 30 ETs. All of the P. vulgaris strains had unique ETs. The results suggest that upon biochemical classification of Proteus isolates as P. mirabilis or P. vulgaris, further differentiation among strains of the same species can be obtained by the initial determination of MP profiles followed by MEE analysis of strains with identical MPs.

  12. Membrane frizzled-related protein is necessary for the normal development and maintenance of photoreceptor outer segments.

    PubMed

    Won, Jungyeon; Smith, Richard S; Peachey, Neal S; Wu, Jiang; Hicks, Wanda L; Naggert, Jürgen K; Nishina, Patsy M

    2008-01-01

    A 4 base pair deletion in a splice donor site of the Mfrp (membrane-type frizzled-related protein) gene, herein referred to as Mfrprd6/rd6, is predicted to lead to the skipping of exon 4 and photoreceptor degeneration in retinal degeneration 6 (rd6) mutant mice. Little, however, is known about the function of the protein or how the mutation causes the degenerative retinal phenotype. Here we examine ultrastructural changes in the retina of Mfrprd6/rd6 mice to determine the earliest effects of the mutation. We also extend the reported observations of the expression pattern of the dicistronic Mfrp/C1qtnf5 message and the localization of these and other retinal pigment epithelium (RPE) and retinal proteins during development and assess the ability of RPE cells to phagocytize outer segments (OSs) in mutant and wild-type (WT) mice. At the ultrastructural level, OSs do not develop normally in Mfrprd6/rd6 mutants. They are disorganized and become progressively shorter as mutant mice age. Additionally, there are focal areas in which there is a reduction of apical RPE microvilli. At P25, the rod electroretinogram (ERG) a-wave of Mfrprd6/rd6 mice is reduced in amplitude by ~50% as are ERG components generated by the RPE. Examination of beta-catenin localization and Fos and Tcf-1 expression, intermediates of the canonical Wnt pathway, showed that they were not different between mutant and WT mice, suggesting that MFRP may operate through an alternative pathway. Finally, impaired OS phagocytosis was observed in Mfrprd6/rd6 mice both in standard ambient lighting conditions and with bright light exposure when compared to WT controls.

  13. Secretory Leukocyte Protease Inhibitor Binds to Neisseria gonorrhoeae Outer Membrane Opacity Protein and is Bactericidal

    PubMed Central

    Cooper, Morris D.; Roberts, Melissa H.; Barauskas, Ona L.; Jarvis, Gary A.

    2012-01-01

    Problem Secretory leukocyte protease inhibitor (SLPI) is an innate immune peptide present on the genitourinary tract mucosa which has antimicrobial activity. In this study, we investigated the interaction of SLPI with Neisseria gonorrhoeae. Method of study ELISA and far-western blots were used to analyze binding of SLPI to gonococci. The binding site for SLPI was identified by tryptic digests and mass spectrometry. Antimicrobial activity of SLPI for gonococci was determined using bactericidal assays. SLPI protein levels in cell supernatants were measured by ELISA, and SLPI mRNA levels were assessed by quantitative RT-PCR. Results SLPI bound directly to the gonococcal Opa protein and was bactericidal. Epithelial cells from the reproductive tract constitutively expressed SLPI at different levels. Gonococcal infection of cells did not affect SLPI expression. Conclusion We conclude that SLPI is bactericidal for gonococci and is expressed by reproductive tract epithelial cells and thus is likely to play a role in the pathogenesis of gonococcal infection. PMID:22537232

  14. Agarose isoelectric focusing can improve resolution of membrane proteins in the two-dimensional electrophoresis of bacterial proteins.

    PubMed

    Altenhofer, Pia; Schierhorn, Angelika; Fricke, Beate

    2006-10-01

    2-D separation of bacterial membrane proteins is still difficult despite using high-resolution IPG-IEF/SDS-PAGE. We were searching for alternative methods to avoid typical problems such as precipitation, low solubility, and aggregation of membrane proteins in the 1-D separation with IPG-IEF. Blue native electrophoresis (BNE) and agarose IEF (A-IEF) were tested for their separation capacity and their capability of replacing IPG-IEF in the first dimension. SDS-PAGE was chosen for the second dimension on account of its outstanding resolution. We could confirm that only A-IEF was a useful replacement for the IPG-IEF in the first dimension resulting in 2-D protein distributions with additional membrane protein spots not being found after IPG-IEF/SDS-PAGE. A second interesting result was that the agarose IEF mediates the possibility of separation of membrane proteins in a partially native state in the first dimension. This native A-IEF resulted in drastically changed spot patterns with an acidic shift of nearly all spots and divergent distribution of proteins compared to non-native A-IEF and IPG-IEF. We found out that native and non-native A-IEF are powerful tools to supplement IPG-IEF/SDS-PAGE.

  15. New insights into the targeting of a sub-set of tail-anchored proteins to the outer mitochondrial membrane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tail-anchored (TA) proteins are a unique class of functionally diverse membrane proteins that are defined by their single C-terminal membrane-spanning domain and their ability to insert post-translationally into specific organelles with an Nout-Cin orientation. The molecular mechanisms by which TA p...

  16. Induction of immune responses by two recombinant proteins of brucella abortus, outer membrane proteins 2b porin and Cu/Zn superoxide dismutase, in mouse model.

    PubMed

    Sung, Kyung Yong; Jung, Myunghwan; Shin, Min-Kyoung; Park, Hyun-Eui; Lee, Jin Ju; Kim, Suk; Yoo, Han Sang

    2014-06-28

    The diagnosis of Brucella abortus is mainly based on serological methods using antibody against LPS, which has diagnostic problems. Therefore, to solve this problem, we evaluated two proteins of B. abortus, Cu/Zn superoxide dismutase (SodC) and outer membrane proteins 2b porin (Omp2b). The genes were cloned and expressed in a pMAL system, and the recombinant proteins, rOmp2b and rSodC, were purified as fusion forms with maltosebinding protein. The identity of the proteins was confirmed by SDS-PAGE and Western blot analysis with sera of mice infected with B. abortus. Production of cytokines and nitric oxide (NO) was investigated in RAW 264.7 cells and mouse splenocytes after stimulation with the proteins. Moreover, cellular and humoral immune responses were investigated in BALB/c mice after immunization with the proteins. TNF-α, IL-6, and NO were significantly inducible in RAW 264.7 cells. Splenocytes of naive mice produced IFN-γ and IL-4 significantly by stimulation. Moreover, number of IgG, IFN-γ, and IL-4 producing cells were increased in immunized mice with the two proteins. Production of IgG and IgM with rOmp2b was higher than those with rSodC in immunized mice. These results suggest that the two recombinant proteins of B. abortus may be potential LPS-free proteins for diagnosis.

  17. Formation of oligomeric rings by XcpQ and PilQ, which are involved in protein transport across the outer membrane of Pseudomonas aeruginosa.

    PubMed

    Bitter, W; Koster, M; Latijnhouwers, M; de Cock, H; Tommassen, J

    1998-01-01

    Pseudomonas aeruginosa is able to translocate proteins across both membranes of the cell envelope. Many of these proteins are transported via the type II secretion pathway and adopt their tertiary conformation in the periplasm, which implies the presence of a large transport channel in the outer membrane. The outer membrane protein, XcpQ, which is involved in transport of folded proteins across the outer membrane of P. aeruginosa, was purified as a highly stable homomultimer. Insertion and deletion mutagenesis of xcpQ revealed that the C-terminal part of XcpQ is sufficient for the formation of the multimer. However, linker insertions in the N-terminal part can disturb complex formation completely. Furthermore, complex formation is strictly correlated with lethality, caused by overexpression of xcpQ. Electron microscopic evaluation of the XcpQ multimers revealed large, ring-shaped structures with an apparent central cavity of 95 A. Purified PilQ, a homologue of XcpQ involved in the biogenesis of type IV pili, formed similar structures. However, the apparent cavity formed by PilQ was somewhat smaller, 53 A. The size of this cavity could allow for the transport of intact type IV pili.

  18. Mechanistic studies of the biogenesis and folding of outer membrane proteins in vitro and in vivo: What have we learned to date?

    PubMed Central

    McMorran, Lindsay M.; Brockwell, David J.; Radford, Sheena E.

    2014-01-01

    Research into the mechanisms by which proteins fold into their native structures has been on-going since the work of Anfinsen in the 1960s. Since that time, the folding mechanisms of small, water-soluble proteins have been well characterised. By contrast, progress in understanding the biogenesis and folding mechanisms of integral membrane proteins has lagged significantly because of the need to create a membrane mimetic environment for folding studies in vitro and the difficulties in finding suitable conditions in which reversible folding can be achieved. Improved knowledge of the factors that promote membrane protein folding and disfavour aggregation now allows studies of folding into lipid bilayers in vitro to be performed. Consequently, mechanistic details and structural information about membrane protein folding are now emerging at an ever increasing pace. Using the panoply of methods developed for studies of the folding of water-soluble proteins. This review summarises current knowledge of the mechanisms of outer membrane protein biogenesis and folding into lipid bilayers in vivo and in vitro and discusses the experimental techniques utilised to gain this information. The emerging knowledge is beginning to allow comparisons to be made between the folding of membrane proteins with current understanding of the mechanisms of folding of water-soluble proteins. PMID:24613287

  19. Pivotal Roles of the Outer Membrane Polysaccharide Export and Polysaccharide Copolymerase Protein Families in Export of Extracellular Polysaccharides in Gram-Negative Bacteria

    PubMed Central

    Cuthbertson, Leslie; Mainprize, Iain L.; Naismith, James H.; Whitfield, Chris

    2009-01-01

    Summary: Many bacteria export extracellular polysaccharides (EPS) and capsular polysaccharides (CPS). These polymers exhibit remarkably diverse structures and play important roles in the biology of free-living, commensal, and pathogenic bacteria. EPS and CPS production represents a major challenge because these high-molecular-weight hydrophilic polymers must be assembled and exported in a process spanning the envelope, without compromising the essential barrier properties of the envelope. Emerging evidence points to the existence of molecular scaffolds that perform these critical polymer-trafficking functions. Two major pathways with different polymer biosynthesis strategies are involved in the assembly of most EPS/CPS: the Wzy-dependent and ATP-binding cassette (ABC) transporter-dependent pathways. They converge in an outer membrane export step mediated by a member of the outer membrane auxiliary (OMA) protein family. OMA proteins form outer membrane efflux channels for the polymers, and here we propose the revised name outer membrane polysaccharide export (OPX) proteins. Proteins in the polysaccharide copolymerase (PCP) family have been implicated in several aspects of polymer biogenesis, but there is unequivocal evidence for some systems that PCP and OPX proteins interact to form a trans-envelope scaffold for polymer export. Understanding of the precise functions of the OPX and PCP proteins has been advanced by recent findings from biochemistry and structural biology approaches and by parallel studies of other macromolecular trafficking events. Phylogenetic analyses reported here also contribute important new insight into the distribution, structural relationships, and function of the OPX and PCP proteins. This review is intended as an update on progress in this important area of microbial cell biology. PMID:19258536

  20. Proteome analysis of mitochondrial outer membrane from Neurospora crassa

    SciTech Connect

    Schmitt, Simone; Prokisch, Holger; Schlunk, Tilman; Camp, David G.; Ahting, Uwe; Waizenegger, Thomas; Scharfe, Curt M.; Meitinger, Thomas; Imhof, Axel; Neupert, Walter; Oefner, Peter J.; Rapaport, Doron

    2006-01-01

    The mitochondrial outer membrane mediates numerous interactions between the metabolic and genetic systems of mitochondria and the rest of the eukaryotic cell. We performed a proteomic study to discover novel functions of components of the mitochondrial outer membrane. Proteins of highly pure outer membrane vesicles (OMV) from Neurospora crassa were identified by a combination of liquid chromatography tandem mass spectrometry of tryptic peptide digests and gel electrophoresis of solubilized OMV proteins, followed by their identification using MALDI-MS peptide fingerprinting. Among the 30 proteins found in at least three of four separate analyses were 23 proteins with known functions in the outer membrane. These included components of the import machinery (the TOM and TOB complexes), a pore-forming component (Porin), and proteins that control fusion and fission of the organelle. In addition, proteins playing a role in various biosynthetic pathways, whose intracellular location had not been established previously, could be localized to the mitochondrial outer membrane. Thus, the proteome of the outer membrane can help in identifying new mitochondria-related functions.

  1. Cloning and Characterization of Multigenes Encoding the Immunodominant 30-Kilodalton Major Outer Membrane Proteins of Ehrlichia canis and Application of the Recombinant Protein for Serodiagnosis

    PubMed Central

    Ohashi, Norio; Unver, Ahmet; Zhi, Ning; Rikihisa, Yasuko

    1998-01-01

    A 30-kDa major outer membrane protein of Ehrlichia canis, the agent of canine ehrlichiosis, is the major antigen recognized by both naturally and experimentally infected dog sera. The protein cross-reacts with a serum against a recombinant 28-kDa protein (rP28), one of the outer membrane proteins of a gene (omp-1) family of Ehrlichia chaffeensis. Two DNA fragments of E. canis were amplified by PCR with two primer pairs based on the sequences of E. chaffeensis omp-1 genes, cloned, and sequenced. Each fragment contained a partial 30-kDa protein gene of E. canis. Genomic Southern blot analysis with the partial gene probes revealed the presence of multiple copies of these genes in the E. canis genome. Three copies of the entire gene (p30, p30-1, and p30a) were cloned and sequenced from the E. canis genomic DNA. The open reading frames of the two copies (p30 and p30-1) were tandemly arranged with an intergenic space. The three copies were similar but not identical and contained a semivariable region and three hypervariable regions in the protein molecules. The following genes homologous to three E. canis 30-kDa protein genes and the E. chaffeensis omp-1 family were identified in the closely related rickettsiae: wsp from Wolbachia sp., p44 from the agent of human granulocytic ehrlichiosis, msp-2 and msp-4 from Anaplasma marginale, and map-1 from Cowdria ruminantium. Phylogenetic analysis among the three E. canis 30-kDa proteins and the major surface proteins of the rickettsiae revealed that these proteins are divided into four clusters and the two E. canis 30-kDa proteins are closely related but that the third 30-kDa protein is not. The p30 gene was expressed as a fusion protein, and the antibody to the recombinant protein (rP30) was raised in a mouse. The antibody reacted with rP30 and a 30-kDa protein of purified E. canis. Twenty-nine indirect fluorescent antibody (IFA)-positive dog plasma specimens strongly recognized the rP30 of E. canis. To evaluate whether the rP30

  2. Invasive Escherichia coli vaccines expressing Brucella melitensis outer membrane proteins 31 or 16 or periplasmic protein BP26 confer protection in mice challenged with B. melitensis.

    PubMed

    Gupta, V K; Radhakrishnan, G; Harms, J; Splitter, G

    2012-06-08

    Because of the serious economic and medical consequences of brucellosis, efforts are to prevent infection of domestic animals through vaccines. Many disadvantages are associated with the current Brucella melitensis Rev.1 vaccine prompting development of alternative vaccines and delivery. Escherichia coli (DH5α) was engineered to express a plasmid containing the inv gene from Yersinia pseudotuberculosis and the hly gene from Listeria monocytogenes. These recombinant invasive E. coli expressing B. melitensis outer membrane proteins (Omp31 or 16) or the periplasmic protein BP26 were evaluated for protection of mice against virulent B. melitensis. Importantly, these invasive E. coli vaccines induced significant protection against B. melitensis challenged mice. Invasive E. coli may be an ideal vaccine platform with natural adjuvant properties for application against B. melitensis since the E. coli delivery system is non-pathogenic and can deliver antigens to antigen-presenting cells promoting cellular immune responses.

  3. Analysis of Transcriptionally Active Gene Clusters of Major Outer Membrane Protein Multigene Family in Ehrlichia canis and E. chaffeensis

    PubMed Central

    Ohashi, Norio; Rikihisa, Yasuko; Unver, Ahmet

    2001-01-01

    Ehrlichia canis and E. chaffeensis are tick-borne obligatory intramonocytic ehrlichiae that cause febrile systemic illness in humans and dogs, respectively. The current study analyzed the pleomorphic multigene family encoding approximately 30-kDa major outer membrane proteins (OMPs) of E. canis and E. chaffeensis. Upstream from secA and downstream of hypothetical transcriptional regulator, 22 paralogs of the omp gene family were found to be tandemly arranged except for one or two genes with opposite orientations in a 28- and a 27-kb locus in the E. canis and E. chaffeensis genomes, respectively. Each locus consisted of three highly repetitive regions with four nonrepetitive intervening regions. E. canis, in addition, had a 6.9-kb locus which contained a repeat of three tandem paralogs in the 28-kb locus. These total 47 paralogous and orthologous genes encoded OMPs of approximately 30 to 35 kDa consisting of several hypervariable regions alternating with conserved regions. In the 5′-end half of the 27-kb locus or the 28-kb locus of each Ehrlichia species, 14 paralogs were linked by short intergenic spaces ranging from −8 bp (overlapped) to 27 bp, and 8 remaining paralogs in the 3′-end half were connected by longer intergenic spaces ranging from 213 to 632 bp. All 22 paralogs, five unknown genes, and secA in the omp cluster in E. canis were transcriptionally active in the monocyte culture, and the paralogs with short intergenic spaces were cotranscribed with their adjacent genes, including the respective intergenic spaces at both the 5′ and the 3′ sides. Although omp genes are diverse, our results suggest that the gene organization of the clusters and the gene locus are conserved between two species of Ehrlichia to maintain a unique transcriptional mechanism for adaptation to environmental changes common to them. PMID:11254561

  4. Helicobacter pylori outer membrane protein, HomC, shows geographic dependent polymorphism that is influenced by the Bab family.

    PubMed

    Kim, Aeryun; Servetas, Stephanie L; Kang, Jieun; Kim, Jinmoon; Jang, Sungil; Choi, Yun Hui; Su, Hanfu; Jeon, Yeong-Eui; Hong, Youngmin A; Yoo, Yun-Jung; Merrell, D Scott; Cha, Jeong-Heon

    2016-12-01

    The array of outer membrane proteins (OMPs) found in Helicobacter pylori provides a crucial component for persistent colonization within the gastric niche. Not only does H. pylori harbor a wide number of OMPs, but these OMPs often vary across strains; this likely contributes to immune evasion, adaptation during long term colonization, and potentially differential disease progression. Previous work from our group described OMP differences among the Bab family (babA, babB, and babC) and Hom family (homA and homB) from 80 American H. pylori clinical isolates (AH) and 80 South Korean H. pylori clinical isolates (KH). In the current study, we expanded our investigation to include the less well characterized Hom family member, HomC.Overall, we identified and genotyped three homC variants: homC (S) , homC (L) , and homC (M) , in both populations. Similar to other polymorphic genes, the KH group showed less overall diversity, with 97.5% of strains harboring homC (L) . In contrast, a more heterogeneous profile was observed in strains derived from an American population; we found nearly equal distribution of homC (S) and homC (L) . Further analysis of the AH group identified associations between homC polymorphism and bab genotype; in AH strains, there was a significant association between homC (L) and carriage of babA at locus A. Since babA is an important virulence factor for the development of severe gastric disease, these data may suggest that homC polymorphism plays a role in H. pylori pathogenesis.

  5. Rickettsia rickettsii outer membrane protein YbgF induces protective immunity in C3H/HeN mice.

    PubMed

    Gong, Wenping; Qi, Yong; Xiong, Xiaolu; Jiao, Jun; Duan, Changsong; Wen, Bohai

    2015-01-01

    Rickettsia rickettsii is the etiological agent of Rocky Mountain spotted fever (RMSF). YbgF and TolC are outer membrane-associated proteins of R. rickettsii that play important roles in its interaction with host cells. We investigated the immunogenicity of YbgF and TolC for protection against RMSF. We immunized C3H/HeN mice with recombinant R. rickettsii YbgF (rYbgF) or TolC (rTolC). Rickettsial burden and impairment in the lungs, spleens, and livers of rYbgF-immunized mice were significantly lower than in rTolC-immunized mice. The ratio of IgG2a to IgG1 in rYbgF-immunized mice continued to increase over the course of our experiments, while that in rTolC-immunized mice was reduced. The proliferation and cytokine secretion of CD4(+) and CD8(+) T cells isolated from R. rickettsii-infected mice were analyzed following antigen stimulation. The results indicated that proliferation and interferon (IFN)-γ secretion of CD4(+) or CD8(+) T cells in R. rickettsii-infected mice were significantly greater than in uninfected mice after stimulation with rYbgF. YbgF is a novel protective antigen of R. rickettsii. Protection conferred by YbgF is dependent upon IFN-γ-producing CD4(+) and CD8(+) T cells and IgG2a, which act in synergy to control R. rickettsii infection.

  6. High prevalence of OXA-143 and alteration of outer membrane proteins in carbapenem-resistant Acinetobacter spp. isolates in Brazil.

    PubMed

    Mostachio, Anna Karina; Levin, Anna Sara; Rizek, Camila; Rossi, Flavia; Zerbini, Jessika; Costa, Silvia Figueiredo

    2012-05-01

    Carbapenem resistance amongst Acinetobacter spp. has been increasing in the last decade. This study evaluated the outer membrane protein (OMP) profile and production of carbapenemases in 50 carbapenem-resistant Acinetobacter spp. isolates from bloodstream infections. Isolates were identified by API20NE. Minimum inhibitory concentrations (MICs) for carbapenems were determined by broth microdilution. Carbapenemases were studied by phenotypic tests, detection of their encoding gene by polymerase chain reaction (PCR) amplification, and imipenem hydrolysis. Nucleotide sequencing confirming the enzyme gene type was performed using MegaBACE 1000. The presence of OMPs was studied by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and PCR. Molecular typing was performed using pulsed-field gel electrophoresis (PFGE). All isolates were resistant to carbapenems. Moreover, 98% of the isolates were positive for the gene encoding the enzyme OXA-51-like, 18% were positive for OXA-23-like (only one isolate did not show the presence of the insertion sequence ISAba1 adjacent to this gene) and 76% were positive for OXA-143 enzyme. Five isolates (10%) showed the presence of the IMP-1 gene. Imipenem hydrolysing activity was detected in only three strains containing carbapenemase genes, comprising two isolates containing the bla(IMP) gene and one containing the bla(OXA-51/OXA-23-like) gene. The OMP of 43 kDa was altered in 17 of 25 strains studied, and this alteration was associated with a high meropenem MIC (256 μg/mL) in 5 of 7 strains without 43 kDa OMP. On the other hand, decreased OMP 33-36 kDa was found in five strains. The high prevalence of OXA-143 and alteration of OMPs might have been associated with a high level of carbapenem resistance.

  7. Iron regulated outer membrane proteins of Escherichia coli: variations in expression due to the chelator used to restrict the availability of iron.

    PubMed

    Chart, H; Buck, M; Stevenson, P; Griffiths, E

    1986-05-01

    Iron restriction was induced in Escherichia coli O 111, E. coli O 164 and E. coli C by growing the organisms in trypticase soy broth containing ovotransferrin, desferal, EDDA (ethylenediamine-dihydroxyphenylacetic acid) or alpha,alpha'-dipyridyl. There were marked qualitative and quantitative differences in the iron regulated outer membrane proteins expressed in the presence of the various iron chelators. Differences in the kinetics of growth were also noted. E. coli C was devoid of a ferric enterobactin iron uptake system.

  8. The pro-apoptotic BH3-only protein Bim interacts with components of the translocase of the outer mitochondrial membrane (TOM).

    PubMed

    Frank, Daniel O; Dengjel, Jörn; Wilfling, Florian; Kozjak-Pavlovic, Vera; Häcker, Georg; Weber, Arnim

    2015-01-01

    The pro-apoptotic Bcl-2-family protein Bim belongs to the BH3-only proteins known as initiators of apoptosis. Recent data show that Bim is constitutively inserted in the outer mitochondrial membrane via a C-terminal transmembrane anchor from where it can activate the effector of cytochrome c-release, Bax. To identify regulators of Bim-activity, we conducted a search for proteins interacting with Bim at mitochondria. We found an interaction of Bim with Tom70, Tom20 and more weakly with Tom40, all components of the Translocase of the Outer Membrane (TOM). In vitro import assays performed on tryptically digested yeast mitochondria showed reduced Bim insertion into the outer mitochondrial membrane (OMM) indicating that protein receptors may be involved in the import process. However, RNAi against components of TOM (Tom40, Tom70, Tom22 or Tom20) by siRNA, individually or in combination, did not consistently change the amount of Bim on HeLa mitochondria, either at steady state or upon de novo-induction. In support of this, the individual or combined knock-downs of TOM receptors also failed to alter the susceptibility of HeLa cells to Bim-induced apoptosis. In isolated yeast mitochondria, lack of Tom70 or the TOM-components Tom20 or Tom22 alone did not affect the import of Bim into the outer mitochondrial membrane. In yeast, expression of Bim can sensitize the cells to Bax-dependent killing. This sensitization was unaffected by the absence of Tom70 or by an experimental reduction in Tom40. Although thus the physiological role of the Bim-TOM-interaction remains unclear, TOM complex components do not seem to be essential for Bim insertion into the OMM. Nevertheless, this association should be noted and considered when the regulation of Bim in other cells and situations is investigated.

  9. Antibody-producing cell responses to an isolated outer membrane protein and to complexes of this antigen with lipopolysaccharide or with vesicles of phospholipids from Proteus mirabilis.

    PubMed Central

    Karch, H; Nixdorff, K

    1981-01-01

    Antibody-producing cell responses of mice to a protein isolated from the outer membrane of Proteus mirabilis were typical of the responses to a thymus-dependent antigen. The immunoglobulin G antibody-producing cell responses to the protein were increased after administration of the antigen complexed with either lipopolysaccharide or with vesicles of phospholipids extracted from P. mirabilis. The protein in turn significantly increased the immune response to lipopolysaccharide and also converted this response from predominantly immunoglobulin M to predominantly immunoglobulin G. PMID:6164651

  10. Multiple Lines of Evidence Localize Signaling, Morphology, and Lipid Biosynthesis Machinery to the Mitochondrial Outer Membrane of Arabidopsis[W][OA

    PubMed Central

    Duncan, Owen; Taylor, Nicolas L.; Carrie, Chris; Eubel, Holger; Kubiszewski-Jakubiak, Szymon; Zhang, Botao; Narsai, Reena; Millar, A. Harvey; Whelan, James

    2011-01-01

    The composition of the mitochondrial outer membrane is notoriously difficult to deduce by orthology to other organisms, and biochemical enrichments are inevitably contaminated with the closely associated inner mitochondrial membrane and endoplasmic reticulum. In order to identify novel proteins of the outer mitochondrial membrane in Arabidopsis (Arabidopsis thaliana), we integrated a quantitative mass spectrometry analysis of highly enriched and prefractionated samples with a number of confirmatory biochemical and cell biology approaches. This approach identified 42 proteins, 27 of which were novel, more than doubling the number of confirmed outer membrane proteins in plant mitochondria and suggesting novel functions for the plant outer mitochondrial membrane. The novel components identified included proteins that affected mitochondrial morphology and/or segregation, a protein that suggests the presence of bacterial type lipid A in the outer membrane, highly stress-inducible proteins, as well as proteins necessary for embryo development and several of unknown function. Additionally, proteins previously inferred via orthology to be present in other compartments, such as an NADH:cytochrome B5 reductase required for hydroxyl fatty acid accumulation in developing seeds, were shown to be located in the outer membrane. These results also revealed novel proteins, which may have evolved to fulfill plant-specific requirements of the mitochondrial outer membrane, and provide a basis for the future functional characterization of these proteins in the context of mitochondrial intracellular interaction. PMID:21896887

  11. Peptidoglycan-associated outer membrane protein Mep45 of rumen anaerobe Selenomonas ruminantium forms a non-specific diffusion pore via its C-terminal transmembrane domain

    PubMed Central

    Kojima, Seiji; Hayashi, Kanako; Tochigi, Saeko; Kusano, Tomonobu; Kaneko, Jun; Kamio, Yoshiyuki

    2016-01-01

    The major outer membrane protein Mep45 of Selenomonas ruminantium, an anaerobic Gram-negative bacterium, comprises two distinct domains: the N-terminal S-layer homologous (SLH) domain that protrudes into the periplasm and binds to peptidoglycan, and the remaining C-terminal transmembrane domain, whose function has been unknown. Here, we solubilized and purified Mep45 and characterized its function using proteoliposomes reconstituted with Mep45. We found that Mep45 forms a nonspecific diffusion channel via its C-terminal region. The channel was permeable to solutes smaller than a molecular weight of roughly 600, and the estimated pore radius was 0.58 nm. Truncation of the SLH domain did not affect the channel property. On the basis of the fact that Mep45 is the most abundant outer membrane protein in S. ruminantium, we conclude that Mep45 serves as a main pathway through which small solutes diffuse across the outer membrane of this bacterium. PMID:27310312

  12. The Antitoxin Protein of a Toxin-Antitoxin System from Xylella fastidiosa Is Secreted via Outer Membrane Vesicles

    PubMed Central

    Santiago, André da Silva; Mendes, Juliano S.; dos Santos, Clelton A.; de Toledo, Marcelo A. S.; Beloti, Lilian L.; Crucello, Aline; Horta, Maria A. C.; Favaro, Marianna T. de Pinho; Munar, Duber M. M.; de Souza, Alessandra A.; Cotta, Mônica A.; de Souza, Anete P.

    2016-01-01

    The Xylella fastidiosa subsp pauca strain 9a5c is a Gram-negative, xylem-limited bacterium that is able to form a biofilm and affects citrus crops in Brazil. Some genes are considered to be involved in biofilm formation, but the specific mechanisms involved in this process remain unknown. This limited understanding of how some bacteria form biofilms is a major barrier to our comprehension of the progression of diseases caused by biofilm-producing bacteria. Several investigations have shown that the toxin-antitoxin (TA) operon is related to biofilm formation. This operon is composed of a toxin with RNAse activity and its cognate antitoxin. Previous reports have indicated that the antitoxin is able to inhibit toxin activity and modulate the expression of the operon as well as other target genes involved in oxidative stress and mobility. In this study, we characterize a toxin-antitoxin system consisting of XfMqsR and XfYgiT, respectively, from X. fastidiosa subsp. pauca strain 9a5c. These proteins display a high similarity to their homologs in X. fastidiosa strain Temecula and a predicted tridimensional structure that is similar to MqsR-YgiT from Escherichia coli. The characterization was performed using in vitro assays such as analytical ultracentrifugation (AUC), size exclusion chromatography, isothermal titration calorimetry, and Western blotting. Using a fluorometric assay to detect RNAses, we demonstrated that XfMqsR is thermostable and can degrade RNA. XfMqsR is inhibited by XfYgiT, which interacts with its own promoter. XfYgiT is known to be localized in the intracellular compartment; however, we provide strong evidence that X. fastidiosa secretes wild-type XfYgiT into the extracellular environment via outer membrane vesicles, as confirmed by Western blotting and specific immunofluorescence labeling visualized by fluorescence microscopy. Taken together, our results characterize the TA system from X. fastidiosa strain 9a5c, and we also discuss the possible

  13. Outer membrane lipoprotein biogenesis: Lol is not the end.

    PubMed

    Konovalova, Anna; Silhavy, Thomas J

    2015-10-05

    Bacterial lipoproteins are lipid-anchored proteins that contain acyl groups covalently attached to the N-terminal cysteine residue of the mature protein. Lipoproteins are synthesized in precursor form with an N-terminal signal sequence (SS) that targets translocation across the cytoplasmic or inner membrane (IM). Lipid modification and SS processing take place at the periplasmic face of the IM. Outer membrane (OM) lipoproteins take the localization of lipoproteins (Lol) export pathway, which ends with the insertion of the N-terminal lipid moiety into the inner leaflet of the OM. For many lipoproteins, the biogenesis pathway ends here. We provide examples of lipoproteins that adopt complex topologies in the OM that include transmembrane and surface-exposed domains. Biogenesis of such lipoproteins requires additional steps beyond the Lol pathway. In at least one case, lipoprotein sequences reach the cell surface by being threaded through the lumen of a beta-barrel protein in an assembly reaction that requires the heteropentomeric Bam complex. The inability to predict surface exposure reinforces the importance of experimental verification of lipoprotein topology and we will discuss some of the methods used to study OM protein topology.

  14. Molecular cloning and sequence analysis of the gene encoding OmpL1, a transmembrane outer membrane protein of pathogenic Leptospira spp.

    PubMed Central

    Haake, D A; Champion, C I; Martinich, C; Shang, E S; Blanco, D R; Miller, J N; Lovett, M A

    1993-01-01

    Pathogenic Leptospira spp. are spirochetes that have a low transmembrane outer membrane protein content relative to that of enteric gram-negative bacteria. In a previous study we identified a 31-kDa surface protein that was present in strains of Leptospira alstoni in amounts which correlated with the outer membrane particle density observed by freeze fracture electron microscopy (D. A. Haake, E. M. Walker, D. R. Blanco, C. A. Bolin, J. N. Miller, and M. A. Lovett, Infect. Immun. 59:1131-1140, 1991). The N-terminal amino acid sequence was used to design a pair of oligonucleotides which were utilized to screen a lambda ZAP II library containing EcoRI fragments of L. alstoni DNA. A 2.5-kb DNA fragment which contained the entire structural ompL1 gene was identified. The structural gene deduced from the sequence of this DNA fragment would encode a 320-amino-acid polypeptide with a 24-amino-acid leader peptide and a leader peptidase I cleavage site. Processing of OmpL1 results in a mature protein with a predicted molecular mass of 31,113 Da. Secondary-structure prediction identified repeated stretches of amphipathic beta-sheets typical of outer membrane protein membrane-spanning sequences. A topological model of OmpL1 containing 10 transmembrane segments is suggested. A recombinant OmpL1 fusion protein was expressed in Escherichia coli in order to immunize rabbits with the purified protein. Upon Triton X-114 extraction of L. alstoni and phase separation, anti-OmpL1 antiserum recognized a single band on immunoblots of the hydrophobic detergent fraction which was not present in the hydrophilic aqueous fraction. Immunoelectron microscopy with anti-OmpL1 antiserum demonstrates binding to the surface of intact L. alstoni. DNA hybridization studies indicate that the ompL1 gene is present in a single copy in all pathogenic Leptospira species that have been tested and is absent in nonpathogenic Leptospira species. OmpL1 may be the first spirochetal transmembrane outer membrane

  15. Proteomic analysis of Vibrio cholerae outer membrane vesicles

    PubMed Central

    Altindis, Emrah; Fu, Yang; Mekalanos, John J.

    2014-01-01

    Outer membrane vesicles (OMVs) produced by Gram-negative bacteria provide an interesting research material for defining cell-envelope proteins without experimental cell disruption. OMVs are also promising immunogenic platforms and may play important roles in bacterial survival and pathogenesis. We used in-solution trypsin digestion coupled to mass spectrometry to identify 90 proteins present in OMVs of Vibrio cholerae when grown under conditions that activate the TCP pilus virulence regulatory protein (ToxT) virulence regulon. The ToxT expression profile and potential contribution to virulence of these proteins were assessed using ToxT and in vivo RNA-seq, Tn-seq, and cholera stool proteomic and other genome-wide data sets. Thirteen OMV-associated proteins appear to be essential for cell growth, and therefore may represent antibacterial drug targets. Another 12 nonessential OMV proteins, including DegP protease, were required for intestinal colonization in rabbits. Comparative proteomics of a degP mutant revealed the importance of DegP in the incorporation of nine proteins into OMVs, including ones involved in biofilm matrix formation and various substrates of the type II secretion system. Taken together, these results suggest that DegP plays an important role in determining the content of OMVs and also affects phenotypes such as intestinal colonization, proper function of the type II secretion system, and formation of biofilm matrix. PMID:24706774

  16. Membrane stiffness is modified by integral membrane proteins.

    PubMed

    Fowler, Philip W; Hélie, Jean; Duncan, Anna; Chavent, Matthieu; Koldsø, Heidi; Sansom, Mark S P

    2016-09-20

    The ease with which a cell membrane can bend and deform is important for a wide range of biological functions. Peripheral proteins that induce curvature in membranes (e.g. BAR domains) have been studied for a number of years. Little is known, however, about the effect of integral membrane proteins on the stiffness of a membrane (characterised by the bending rigidity, Kc). We demonstrate by computer simulation that adding integral membrane proteins at physiological densities alters the stiffness of the membrane. First we establish that the coarse-grained MARTINI forcefield is able to accurately reproduce the bending rigidity of a small patch of 1500 phosphatidyl choline lipids by comparing the calculated value to both experiment and an atomistic simulation of the same system. This enables us to simulate the dynamics of large (ca. 50 000 lipids) patches of membrane using the MARTINI coarse-grained description. We find that altering the lipid composition changes the bending rigidity. Adding integral membrane proteins to lipid bilayers also changes the bending rigidity, whilst adding a simple peripheral membrane protein has no effect. Our results suggest that integral membrane proteins can have different effects, and in the case of the bacterial outer membrane protein, BtuB, the greater the density of protein, the larger the reduction in stiffness.

  17. Comparison of clinical performance of antigen based-enzyme immunoassay (EIA) and major outer membrane protein (MOMP)-PCR for detection of genital Chlamydia trachomatis infection

    PubMed Central

    Nateghi Rostami, Mahmoud; Hossein Rashidi, Batool; Aghsaghloo, Fatemeh; Nazari, Razieh

    2016-01-01

    Background: Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen worldwide. Early detection and treatment of C.trachomatis genital infection prevent serious reproductive complications. Objective: Performances of enzyme immunoassay (EIA) and major outer membrane protein (MOMP)-polymerase chain reaction (PCR) for diagnosis of genital C.trachomatis infection in women were compared. Materials and Methods: In this cross sectional study a total of 518 women volunteers were included (33.67±8.3 yrs) who had been referred to Gynecology clinics of Qom province, Iran, were included. Endocervical swab specimens were collected to detect lipopolysaccharide (LPS) antigen in EIA and to amplify MOMP gene of C.trachomatis in PCR. Results were confirmed using ompI nested-PCR. Sensitivity, specificity, positive (PPV) and negative predictive values (NPV) were calculated for performance of the tests. Odds ratios were determined using binary logistic regression analysis. Results: In total, 37 (7.14%) cases were positive by EIA and/or MOMP-PCR. All discrepant results were confirmed by nested-PCR. Sensitivity, specificity, PPV and NPV values of EIA were 59.46%, 100%, 100% and 96.98%, and those of MOMP-PCR were 97.30%, 100%, 100%, 99.79%, respectively. Reproductive complications including 2.7% ectopic pregnancy, 5.4% stillbirth, 5.4% infertility, and 10.8% PROM were recorded. The risk of developing chlamydiosis was increased 4.8-fold in volunteers with cervicitis (p<0.05; OR 4.80; 95% CI 1.25-18.48). Conclusion: C.trachomatis infection should be regarded in women of reproductive ages especially those with cervicitis. Primary screening of women by using the low cost antigen-EIA is recommended; however, due to the low sensitivity of Ag-EIA, verification of the negative results by a DNA amplification method is needed. PMID:27525325

  18. Identification of FkpA as a key quality control factor for the biogenesis of outer membrane proteins under heat shock conditions.

    PubMed

    Ge, Xi; Lyu, Zhi-Xin; Liu, Yang; Wang, Rui; Zhao, Xin Sheng; Fu, Xinmiao; Chang, Zengyi

    2014-02-01

    The outer membrane proteins (OMPs) of Gram-negative bacterial cells, as well as the mitochondrion and chloroplast organelles, possess unique and highly stable β-barrel structures. Biogenesis of OMPs in Escherichia coli involves such periplasmic chaperones as SurA and Skp. In this study, we found that the ΔsurA Δskp double-deletion strain of E. coli, although lethal and defective in the biogenesis of OMPs at the normal growth temperature, is viable and effective at the heat shock temperature. We identified FkpA as the multicopy suppressor for the lethal phenotype of the ΔsurA Δskp strain. We also demonstrated that the deletion of fkpA from the ΔsurA cells resulted in only a mild decrease in the levels of folded OMPs at the normal temperature but a severe decrease as well as lethality at the heat shock temperature, whereas the deletion of fkpA from the Δskp cells had no detectable effect on OMP biogenesis at either temperature. These results strongly suggest a functional redundancy between FkpA and SurA for OMP biogenesis under heat shock stress conditions. Mechanistically, we found that FkpA becomes a more efficient chaperone for OMPs under the heat shock condition, with increases in both binding rate and affinity. In light of these observations and earlier reports, we propose a temperature-responsive OMP biogenesis mechanism in which the degrees of functional importance of the three chaperones are such that SurA > Skp > FkpA at the normal temperature but FkpA ≥ SurA > Skp at the heat shock temperature.

  19. Outer Membrane Protein C (ompC) Gene as the Target for Diagnosis of Salmonella Species Isolated from Human and Animal Sources

    PubMed Central

    Jawad, Alaa Abdel-Kadhim; Al-Charrakh, Alaa H.

    2016-01-01

    Background: The use of selective and differential plating media is a simple method for the isolation of Salmonella spp. Recently, there has been a general move toward molecular methods of Salmonella detection and typing. Methods: A total of 1200 different specimens collected from human and animal sources were involved in his study. 600 stool specimens from patients suffering from diarrhea and 600 specimens from gall bladder (bile) of cattle from Al-Diwaniya slaughter house, Iraq were used. Salmonella spp. were isolated and identified using bacterial culturing on selective media and colonies were tested by API 20Eand then serotyping through polyvalent antisera and conformation by Polymerase Chain Reaction (PCR). PCR was used to detect ompC gene encoding biosynthesis of outer membrane protein C of Salmonella genus. Results: The results revealed that the rate of Salmonella isolates was 0.5% (3/600) from human and 1% (6/600) from animals. The PCR technique revealed that 9 isolates of Salmonella spp. harbored ompC gene. The results of this study revealed that the PCR technique had a high specificity in detection of Salmonella spp., in comparison to culture and biochemical test, Mini API 20 E and serological tests. The present study found no significant differences between human and animal isolates. Conclusion: Detection of ompC gene is a good method for detection of Salmonella species isolated from clinical specimens. It has a high specificity in comparison with other tests, with its advantages of greater speed and effectiveness than conventional detection methods. PMID:26855735

  20. Comparison of Protection in Rabbits against Host-Adapted and Cultivated Borrelia burgdorferi following Infection-Derived Immunity or Immunization with Outer Membrane Vesicles or Outer Surface Protein A

    PubMed Central

    Shang, Ellen S.; Champion, Cheryl I.; Wu, Xiao-Yang; Skare, Jonathan T.; Blanco, David R.; Miller, James N.; Lovett, Michael A.

    2000-01-01

    In this study, infection-derived immunity in the rabbit model of Lyme disease was compared to immunity following immunization with purified outer membrane vesicles (OMV) isolated from Borrelia burgdorferi and recombinant outer surface protein A (OspA). Immunization of rabbits with OMV isolated from virulent strain B31 and its avirulent derivative B313 (lacking OspA and DbpA) conferred highly significant protection against intradermal injection with 6 × 104 in vitro-cultivated virulent B. burgdorferi. This is the first demonstration of protective immunogenicity induced by OMV. While immunization with OspA and avirulent B31 OMV provided far less protection against this challenge, rabbits with infection-derived immunity were completely protected. Protection against host-adapted B. burgdorferi was assessed by implantation of skin biopsies taken from rabbit erythema migrans (a uniquely rich source of B. burgdorferi in vertebrate tissue) containing up to 108 spirochetes. While all of the OMV- and OspA-immunized rabbits were fully susceptible to skin and disseminated infection, rabbits with infection-derived immunity were completely protected. Analysis of the antibody responses to outer membrane proteins, including DbpA, OspA, and OspC, suggests that the remarkable protection exhibited by the infection-immune rabbits is due to antibodies directed at antigens unique to or markedly up-regulated in host-adapted B. burgdorferi. PMID:10858236

  1. Recruitment of an alternatively spliced form of synaptojanin 2 to mitochondria by the interaction with the PDZ domain of a mitochondrial outer membrane protein.

    PubMed Central

    Nemoto, Y; De Camilli, P

    1999-01-01

    Synaptojanin 1 is an inositol 5'-phosphatase highly enriched in nerve terminals with a putative role in recycling of synaptic vesicles. We have previously described synaptojanin 2, which is more broadly expressed as multiple alternatively spliced forms. Here we have identified and characterized a novel mitochondrial outer membrane protein, OMP25, with a single PDZ domain that specifically binds to a unique motif in the C-terminus of synaptojanin 2A. This motif is encoded by the exon sequence specific to synaptojanin 2A. OMP25 mRNA is widely expressed in rat tissues. OMP25 is localized to the mitochondrial outer membrane via the C-terminal transmembrane region, with the PDZ domain facing the cytoplasm. Overexpression of OMP25 results in perinuclear clustering of mitochondria in transfected cells. This effect is mimicked by enforced expression of synaptojanin 2A on the mitochondrial outer membrane, but not by the synaptojanin 2A mutants lacking the inositol 5'-phosphatase domain. Our findings provide evidence that OMP25 mediates recruitment of synaptojanin 2A to mitochondria and that modulation of inositol phospholipids by synaptojanin 2A may play a role in maintenance of the intracellular distribution of mitochondria. PMID:10357812

  2. Proteomics of Aggregatibacter actinomycetemcomitans Outer Membrane Vesicles.

    PubMed

    Kieselbach, Thomas; Zijnge, Vincent; Granström, Elisabeth; Oscarsson, Jan

    2015-01-01

    Aggregatibacter actinomycetemcomitans is an oral and systemic pathogen associated with aggressive forms of periodontitis and with endocarditis. Outer membrane vesicles (OMVs) released by this species have been demonstrated to deliver effector proteins such as cytolethal distending toxin (CDT) and leukotoxin (LtxA) into human host cells and to act as triggers of innate immunity upon carriage of NOD1- and NOD2-active pathogen-associated molecular patterns (PAMPs). To improve our understanding of the pathogenicity-associated functions that A. actinomycetemcomitans exports via OMVs, we studied the proteome of density gradient-purified OMVs from a rough-colony type clinical isolate, strain 173 (serotype e) using liquid chromatography-tandem mass spectrometry (LC-MS/MS). This analysis yielded the identification of 151 proteins, which were found in at least three out of four independent experiments. Data are available via ProteomeXchange with identifier PXD002509. Through this study, we not only confirmed the vesicle-associated release of LtxA, and the presence of proteins, which are known to act as immunoreactive antigens in the human host, but we also identified numerous additional putative virulence-related proteins in the A. actinomycetemcomitans OMV proteome. The known and putative functions of these proteins include immune evasion, drug targeting, and iron/nutrient acquisition. In summary, our findings are consistent with an OMV-associated proteome that exhibits several offensive and defensive functions, and they provide a comprehensive basis to further disclose roles of A. actinomycetemcomitans OMVs in periodontal and systemic disease.

  3. The lethal cargo of Myxococcus xanthus outer membrane vesicles

    PubMed Central

    Berleman, James E.; Allen, Simon; Danielewicz, Megan A.; Remis, Jonathan P.; Gorur, Amita; Cunha, Jack; Hadi, Masood Z.; Zusman, David R.; Northen, Trent R.; Witkowska, H. Ewa; Auer, Manfred

    2014-01-01

    Myxococcus xanthus is a bacterial micro-predator known for hunting other microbes in a wolf pack-like manner. Outer membrane vesicles (OMVs) are produced in large quantities by M. xanthus and have a highly organized structure in the extracellular milieu, sometimes occurring in chains that link neighboring cells within a biofilm. OMVs may be a vehicle for mediating wolf pack activity by delivering hydrolytic enzymes and antibiotics aimed at killing prey microbes. Here, both the protein and small molecule cargo of the OMV and membrane fractions of M. xanthus were characterized and compared. Our analysis indicates a number of proteins that are OMV-specific or OMV-enriched, including several with putative hydrolytic function. Secondary metabolite profiling of OMVs identifies 16 molecules, many associated with antibiotic activities. Several hydrolytic enzyme homologs were identified, including the protein encoded by MXAN_3564 (mepA), an M36 protease homolog. Genetic disruption of mepA leads to a significant reduction in extracellular protease activity suggesting MepA is part of the long-predicted (yet to date undetermined) extracellular protease suite of M. xanthus. PMID:25250022

  4. Cloning of the gene coding for the outer membrane receptor protein for ferric pseudobactin, a siderophore from a plant growth-promoting Pseudomonas strain.

    PubMed

    Magazin, M D; Moores, J C; Leong, J

    1986-01-15

    Plant growth-promoting Pseudomonas B10 produces its yellow-green, fluorescent siderophore (microbial iron transport agent) pseudobactin under iron-limiting conditions. A structural gene encoding the 85,000-Da putative outer membrane receptor protein for ferric pseudobactin was identified in a gene bank from Pseudomonas B10 prepared with the broad host-range conjugative cosmid cloning vector pLAFR1. Transposon Tn5 mutagenesis of recombinant plasmid pJLM300 localized the functional gene to a region of approximately 2.4 kilobases consistent with the apparent molecular weight of the receptor protein. Mobilization of pJLM300 into Pseudomonas A124 and A225, whose growth was inhibited by Pseudomonas B10 or pseudobactin, rendered these strains no longer susceptible to iron starvation by pseudobactin because they were now able to transport ferric pseudobactin. Pseudobactin biosynthetic genes flanked this receptor gene on both sides and were on separate operons. Transposon Tn5 insertion mutants of Pseudomonas B10 lacking this receptor protein were generated by a marker exchange technique and were defective in ferric pseudobactin transport. Such mutants could be complemented in trans by pJLM300. The production of pseudobactin, the receptor protein, and four other outer membrane proteins in Pseudomonas B10 was coordinately regulated by the level of intracellular iron.

  5. Trichoderma reesei cellobiohydrolase II is associated with the outer membrane when overexpressed in Escherichia coli.

    PubMed

    Abdeljabbar, Diya M; Song, Hank J; Link, A James

    2012-01-01

    Cellulose degradation is essential for the future production of many advanced biofuels. Cellulases from the filamentous fungus Trichoderma reesei are among the most efficient enzymes for the hydrolysis of cellulosic materials. One of the cellulases from T. reesei, cellobiohydrolase II (CBH2), was studied because of its industrial relevance and proven enzymatic activity. Using both crude and rigorous membrane fractionation methods we show that full length T. reesei CBH2 is exclusively localized to the outer membrane when expressed recombinantly in Escherichia coli. Even fusing signal sequence-free maltose-binding protein to the N-terminus of CBH2, which has been shown to increase solubility of other proteins, did not prevent the outer membrane localization of CBH2. These results highlight the difficulties in producing fungal cellulases in bacterial hosts and provide a stepping stone for future cellulase engineering efforts.

  6. A role for N-myristoylation in protein targeting: NADH-cytochrome b5 reductase requires myristic acid for association with outer mitochondrial but not ER membranes

    PubMed Central

    1996-01-01

    N-myristoylation is a cotranslational modification involved in protein- protein interactions as well as in anchoring polypeptides to phospholipid bilayers; however, its role in targeting proteins to specific subcellular compartments has not been clearly defined. The mammalian myristoylated flavoenzyme NADH-cytochrome b5 reductase is integrated into ER and mitochondrial outer membranes via an anchor containing a stretch of 14 uncharged amino acids downstream to the NH2- terminal myristoylate glycine. Since previous studies suggested that the anchoring function could be adequately carried out by the 14 uncharged residues, we investigated a possible role for myristic acid in reductase targeting. The wild type (wt) and a nonmyristoylatable reductase mutant (gly2-->ala) were stably expressed in MDCK cells, and their localization was investigated by immunofluorescence, immuno-EM, and cell fractionation. By all three techniques, the wt protein localized to ER and mitochondria, while the nonmyristoylated mutant was found only on ER membranes. Pulse-chase experiments indicated that this altered steady state distribution was due to the mutant's inability to target to mitochondria, and not to its enhanced instability in that location. Both wt and mutant reductase were resistant to Na2CO3 extraction and partitioned into the detergent phase after treatment of a membrane fraction with Triton X-114, demonstrating that myristic acid is not required for tight anchoring of reductase to membranes. Our results indicate that myristoylated reductase localizes to ER and mitochondria by different mechanisms, and reveal a novel role for myristic acid in protein targeting. PMID:8978818

  7. Parenteral immunization of PLA/PLGA nanoparticle encapsulating outer membrane protein (Omp) from Aeromonas hydrophila: Evaluation of immunostimulatory action in Labeo rohita (rohu).

    PubMed

    Rauta, Pradipta Ranjan; Nayak, Bismita

    2015-05-01

    Advanced vaccine research approaches needs to explore on biodegradable nanoparticles (NPs) based vaccine carrier that can serve as antigen delivery systems as well as immuno-stimulatory action to induce both innate and adaptive immune response in fish. Immunogenicity of PLA and PLGA NPs encapsulating outer membrane protein (Omp) antigen of Aeromonas hydrophila were evaluated through intra-peritoneal injection in fish, Labeo rohita. Antigen loaded PLA-Omp (223.5 ± 13.19 nm) and PLGA-Omp (166.4 ± 21.23 nm) NPs were prepared using double emulsion method by efficiently encapsulating the antigen reaching the encapsulation efficiency 44 ± 4.58% and 59.33 ± 5.13% respectively. Our formulated PLA Omp and PLGA-Omp NPs were in nanometer range (<500 nm) and could be successfully endocyted in the body. Despite low antigen loading in PLA-Omp, it showed considerably slower antigen release in vitro than PLGA-Omp NPs. Other physical properties like zetapotential values and poly dispersity index (PDI) confirmed the stability as well as monodisperse nature of the formulated nanoparticles. The spherical and isolated nature of PLA-Omp and PLGA-Omp NPs were revealed by SEM analysis. Upon immunization of all antigenic formulations (PLA-Omp NP, PLGA-Omp NP, FIA-Omp, PLA NP, PLGA NP, PBS as control), significant higher bacterial agglutination titre and haemolytic activity were observed in case of PLA-Omp and PLGA-Omp immunized groups than rest groups at both 21 days and 42 days. The specific antibody response was significantly increased and persisted up to 42 days of post immunization by PLA-Omp, PLGA-Omp, FIA-Omp. PLA-Omp NPs showed better immune response (higher bacterial agglutination titre, haemolytic activity, specific antibody titre, higher percent survival upon A. hydrophila challenge) than PLGA-Omp in L. rohita confirming its better efficacy. Comparable antibody response of PLA-Omp and PLGA-Omp with FIA-Omp treated groups suggested that PLA and PLGA could be replacement for

  8. Small-Molecule Transport by CarO, an Abundant Eight-Stranded β-Barrel Outer Membrane Protein from Acinetobacter baumannii.

    PubMed

    Zahn, Michael; D'Agostino, Tommaso; Eren, Elif; Baslé, Arnaud; Ceccarelli, Matteo; van den Berg, Bert

    2015-07-17

    Outer membrane (OM) β-barrel proteins composed of 12-18 β-strands mediate cellular entry of small molecules in Gram-negative bacteria. Small OM proteins with barrels of 10 strands or less are not known to transport small molecules. CarO (carbapenem-associated outer membrane protein) from Acinetobacter baumannii is a small OM protein that has been implicated in the uptake of ornithine and carbapenem antibiotics. Here we report crystal structures of three isoforms of CarO. The structures are very similar and show a monomeric eight-stranded barrel lacking an open channel. CarO has a substantial extracellular domain resembling a glove that contains all the divergent residues between the different isoforms. Liposome swelling experiments demonstrate that full-length CarO and a "loop-less" truncation mutant mediate small-molecule uptake at low levels but that they are unlikely to mediate passage of carbapenem antibiotics. These results are confirmed by biased molecular dynamics simulations that allowed us to quantitatively model the transport of selected small molecules.

  9. Characterization of In Vitro Interactions between a Truncated TonB Protein from Escherichia coli and the Outer Membrane Receptors FhuA and FepA

    PubMed Central

    Moeck, Gregory S.; Letellier, Lucienne

    2001-01-01

    High-affinity iron uptake in gram-negative bacteria depends upon TonB, a protein which couples the proton motive force in the cytoplasmic membrane to iron chelate receptors in the outer membrane. To advance studies on TonB structure and function, we expressed a recombinant form of Escherichia coli TonB lacking the N-terminal cytoplasmic membrane anchor. This protein (H6-′TonB; Mr, 24,880) was isolated in a soluble fraction of lysed cells and was purified by virtue of a hexahistidine tag located at its N terminus. Sedimentation experiments indicated that the H6-′TonB preparation was almost monodisperse and the protein was essentially monomeric. The value found for the Stokes radius (3.8 nm) is in good agreement with the value calculated by size exclusion chromatography. The frictional ratio (2.0) suggested that H6-′TonB adopts a highly asymmetrical form with an axial ratio of 15. H6-′TonB captured both the ferrichrome-iron receptor FhuA and the ferric enterobactin receptor FepA from detergent-solubilized outer membranes in vitro. Capture was enhanced by preincubation of the receptors with their cognate ligands. Cross-linking assays with the purified proteins in vitro demonstrated that there was preferential interaction between TonB and ligand-loaded FhuA. Purified H6-′TonB was found to be stable and thus shows promise for high-resolution structural studies. PMID:11292793

  10. Outer membrane protein OlpA contributes to Moraxella catarrhalis serum resistance via interaction with factor H and the alternative pathway.

    PubMed

    Bernhard, Sara; Fleury, Christophe; Su, Yu-Ching; Zipfel, Peter F; Koske, Iris; Nordström, Therése; Riesbeck, Kristian

    2014-10-15

    Factor H is an important complement regulator of the alternative pathway commonly recruited by pathogens to achieve increased rates of survival in the human host. The respiratory pathogen Moraxella catarrhalis, which resides in the mucosa, is highly resistant to the bactericidal activity of serum and causes otitis media in children and respiratory tract infections in individuals with underlying diseases. In this study, we show that M. catarrhalis binds factor H via the outer membrane protein OlpA. M. catarrhalis serum resistance was dramatically decreased in the absence of either OlpA or factor H, demonstrating that this inhibition of the alternative pathway significantly contributes to the virulence of M. catarrhalis.

  11. Identification of Protective Epitopes by Sequencing of the Major Outer Membrane Protein Gene of a Variant Strain of Chlamydia psittaci Serotype 1 (Chlamydophila abortus)

    PubMed Central

    Vretou, Evangelia; Psarrou, Evgenia; Kaisar, Maria; Vlisidou, Isabella; Salti-Montesanto, Viviane; Longbottom, David

    2001-01-01

    Protective monoclonal antibodies (MAbs) to the major outer membrane protein (MOMP) of species of the family Chlamydiaceae, which is the primary vaccine candidate antigen, recognize nonlinear epitopes conferred by the oligomeric conformation of the molecule. Protective MAbs failed to recognize oligomeric MOMP of the variant strain LLG, which bears amino acid substitutions in variable segments (VSs) 1, 2, and 4, and competed with monomer-specific MAbs mapping to these VSs in reference strain 577. The results suggest that multiple sites located in the three VSs contribute to the epitope of protective MAbs. PMID:11119563

  12. Substrate Specificity within a Family of Outer Membrane Carboxylate Channels

    SciTech Connect

    Eren, Elif; Vijayaraghavan, Jagamya; Liu, Jiaming; Cheneke, Belete R.; Touw, Debra S.; Lepore, Bryan W.; Indic, Mridhu; Movileanu, Liviu; van den Berg, Bert; Dutzler, Raimund

    2012-01-17

    Many Gram-negative bacteria, including human pathogens such as Pseudomonas aeruginosa, do not have large-channel porins. This results in an outer membrane (OM) that is highly impermeable to small polar molecules, making the bacteria intrinsically resistant towards many antibiotics. In such microorganisms, the majority of small molecules are taken up by members of the OprD outer membrane protein family. Here we show that OprD channels require a carboxyl group in the substrate for efficient transport, and based on this we have renamed the family Occ, for outer membrane carboxylate channels. We further show that Occ channels can be divided into two subfamilies, based on their very different substrate specificities. Our results rationalize how certain bacteria can efficiently take up a variety of substrates under nutrient-poor conditions without compromising membrane permeability. In addition, they explain how channel inactivation in response to antibiotics can cause resistance but does not lead to decreased fitness.

  13. Identification of an iron-regulated outer membrane protein of Neisseria meningitidis involved in the utilization of hemoglobin complexed to haptoglobin.

    PubMed Central

    Lewis, L A; Dyer, D W

    1995-01-01

    Hemoglobin complexed to the plasma protein haptoglobin can be used by Neisseria meningitidis as a source of iron to support growth in vitro. An N meningitidis mutant, DNM2E4, was generated by insertion of the mini-Tn3erm transposon into the gene coding for an 85-kDa iron-regulated outer membrane protein. Membrane proteins prepared from DNM2E4 were identical to those of the wild-type strain except that the 85-kDa protein was not produced. This mutant was unable to use hemoglobin-haptoglobin complexes as an iron source to support growth and was also impaired in the utilization of free hemoglobin. The mutant failed to bind free hemoglobin, hemoglobin-haptoglobin complexes, or apo-haptoglobin in a solid-phase dot blot assay. The 85-kDa protein was affinity purified when hemoglobin-haptoglobin complexes were used as a ligand but was not purified when free hemoglobin was used. We hypothesize that the 85-kDa iron-regulated protein is the hemoglobin-haptoglobin receptor and designate this protein Hpu (for hemoglobin-haptoglobin utilization). PMID:7868605

  14. Agents that increase the permeability of the outer membrane.

    PubMed Central

    Vaara, M

    1992-01-01

    The outer membrane of gram-negative bacteria provides the cell with an effective permeability barrier against external noxious agents, including antibiotics, but is itself a target for antibacterial agents such as polycations and chelators. Both groups of agents weaken the molecular interactions of the lipopolysaccharide constituent of the outer membrane. Various polycations are able, at least under certain conditions, to bind to the anionic sites of lipopolysaccharide. Many of these disorganize and cross the outer membrane and render it permeable to drugs which permeate the intact membrane very poorly. These polycations include polymyxins and their derivatives, protamine, polymers of basic amino acids, compound 48/80, insect cecropins, reptilian magainins, various cationic leukocyte peptides (defensins, bactenecins, bactericidal/permeability-increasing protein, and others), aminoglycosides, and many more. However, the cationic character is not the sole determinant required for the permeabilizing activity, and therefore some of the agents are much more effective permeabilizers than others. They are useful tools in studies in which the poor permeability of the outer membrane poses problems. Some of them undoubtedly have a role as natural antibiotic substances, and they or their derivatives might have some potential as pharmaceutical agents in antibacterial therapy as well. Also, chelators (such as EDTA, nitrilotriacetic acid, and sodium hexametaphosphate), which disintegrate the outer membrane by removing Mg2+ and Ca2+, are effective and valuable permeabilizers. PMID:1406489

  15. The yeast dynamin-like protein, Mgm1p, functions on the mitochondrial outer membrane to mediate mitochondrial inheritance.

    PubMed

    Shepard, K A; Yaffe, M P

    1999-02-22

    The mdm17 mutation causes temperature-dependent defects in mitochondrial inheritance, mitochondrial morphology, and the maintenance of mitochondrial DNA in the yeast Saccharomyces cerevisiae. Defects in mitochondrial transmission to daughter buds and changes in mitochondrial morphology were apparent within 30 min after shifting cells to 37 degrees C, while loss of the mitochondrial genome occurred after 4-24 h at the elevated temperature. The mdm17 lesion mapped to MGM1, a gene encoding a dynamin-like GTPase previously implicated in mitochondrial genome maintenance, and the cloned MGM1 gene complements all of the mdm17 mutant phenotypes. Cells with an mgm1-null mutation displayed aberrant mitochondrial inheritance and morphology. A version of mgm1 mutated in a conserved residue in the putative GTP-binding site was unable to complement any of the mutant defects. It also caused aberrant mitochondrial distribution and morphology when expressed at high levels in cells that also contained a wild-type copy of the gene. Mgm1p was localized to the mitochondrial outer membrane and fractionated as a component of a high molecular weight complex. These results indicate that Mgm1p is a mitochondrial inheritance and morphology component that functions on the mitochondrial surface.

  16. Helicobacter pylori outer inflammatory protein DNA vaccine-loaded bacterial ghost enhances immune protective efficacy in C57BL/6 mice.

    PubMed

    Chen, Jiansen; Li, Neng; She, Feifei

    2014-10-21

    Helicobacter pylori (H. pylori) infection is associated with incidents of gastrointestinal diseases in half of the human population. However, management of its infection remains a challenge. Hence, it is necessary to develop an efficient vaccine to fight against this pathogen. In the present study, a novel vaccine based on the production of attenuated Salmonella typhimurium bacterial ghost (SL7207-BG), delivering H. pylori outer inflammatory protein gene (oipA) encoded DNA vaccine was developed, and the efficiency was evaluated in C57BL/6 mice. Significant higher levels of IgG2a/IgG1 antibodies and IFN-γ/IL-4 cytokines were detected after mice were oral administered with oipA DNA vaccine loaded SL7207-BG, indicating that a mixed Th1/Th2 immune response was elicited. When challenged with infective doses H. pylori strain SS1, the ghost based vaccine was capable of reducing bacterium colonization in the vaccinated mice. In addition, codon-optimized oipA plasmid loaded SL7207-BG significantly eliminates H. pylori colonization density in mice model. Thus, it has been demonstrated that this novel bacterial ghost based DNA vaccine could be used as a promising vaccine candidate for the control of H. pylori infection.

  17. Structure of TonB in Complex with FhuA, E. Coli Outer Membrane Receptor

    SciTech Connect

    Pawelek,P.; Croteau, N.; Ng-Thow-Hing, C.; Khursigara, C.; Moiseeva, N.; Allaire, M.; Coulton, J.

    2006-01-01

    The cytoplasmic membrane protein TonB spans the periplasm of the Gram-negative bacterial cell envelope, contacts cognate outer membrane receptors, and facilitates siderophore transport. The outer membrane receptor FhuA from Escherichia coli mediates TonB-dependent import of ferrichrome. We report the 3.3 angstrom resolution crystal structure of the TonB carboxyl-terminal domain in complex with FhuA. TonB contacts stabilize FhuA's amino-terminal residues, including those of the consensus Ton box sequence that form an interprotein {beta} sheet with TonB through strand exchange. The highly conserved TonB residue arginine-166 is oriented to form multiple contacts with the FhuA cork, the globular domain enclosed by the {beta} barrel.

  18. Structure analysis of OmpC, one of the major proteins in the outer membrane of E. coli, by high resolution electron microscopy

    SciTech Connect

    Chang, C.F.

    1983-07-01

    This dissertation is concerned with the structure analysis of a pore-forming membrane protein, OmpC, which is one of the major proteins in the outer membrane of Escherichia coli. In order to obtain structural information it was necessary to develop a suitable technique for preparing two-dimensional crystalline arrays of this membrane protein in an unfixed, unstained and hydrated condition. Electron micrographs were recorded at exposures of less than 5 electrons/A/sup 2/ in order to avoid severe radiation damage. The resulting images were crystallographically averaged, in order to overcome the statistical limitations associated with the low electron exposures. The resulting images, which extend to a resolution of approx. 13.5 A, lend themselves to a natural interpretation that is consistent with the mass density of protein, water and lipid, prior data from 2-D and 3-D structure studies of negatively stained specimens at approx. = 20 A resolution, and published spectroscopic data on the peptide chain secondary structure.

  19. Membrane protein insertion and assembly by the bacterial holo-translocon SecYEG–SecDF–YajC–YidC

    PubMed Central

    Komar, Joanna; Alvira, Sara; Schulze, Ryan J.; Martin, Remy; Lycklama a Nijeholt, Jelger A.; Lee, Sarah C.; Dafforn, Tim R.; Deckers-Hebestreit, Gabriele; Berger, Imre; Schaffitzel, Christiane; Collinson, Ian

    2016-01-01

    Protein secretion and membrane insertion occur through the ubiquitous Sec machinery. In this system, insertion involves the targeting of translating ribosomes via the signal recognition particle and its cognate receptor to the SecY (bacteria and archaea)/Sec61 (eukaryotes) translocon. A common mechanism then guides nascent transmembrane helices (TMHs) through the Sec complex, mediated by associated membrane insertion factors. In bacteria, the membrane protein ‘insertase’ YidC ushers TMHs through a lateral gate of SecY to the bilayer. YidC is also thought to incorporate proteins into the membrane independently of SecYEG. Here, we show the bacterial holo-translocon (HTL) — a supercomplex of SecYEG–SecDF–YajC–YidC — is a bona fide resident of the Escherichia coli inner membrane. Moreover, when compared with SecYEG and YidC alone, the HTL is more effective at the insertion and assembly of a wide range of membrane protein substrates, including those hitherto thought to require only YidC. PMID:27435098

  20. Mechanisms of outer membrane vesicle entry into host cells

    PubMed Central

    O'Donoghue, Eloise J.

    2016-01-01

    Abstract Bacterial outer membrane vesicles (OMVs) are nano‐sized compartments consisting of a lipid bilayer that encapsulates periplasm‐derived, luminal content. OMVs, which pinch off of Gram‐negative bacteria, are now recognized as a generalized secretion pathway which provides a means to transfer cargo to other bacterial cells as well as eukaryotic cells. Compared with other secretion systems, OMVs can transfer a chemically extremely diverse range of cargo, including small molecules, nucleic acids, proteins, and lipids to proximal cells. Although it is well recognized that OMVs can enter and release cargo inside host cells during infection, the mechanisms of host association and uptake are not well understood. This review highlights existing studies focusing on OMV‐host cell interactions and entry mechanisms, and how these entry routes affect cargo processing within the host. It further compares the wide range of methods currently used to dissect uptake mechanisms, and discusses potential sources of discrepancy regarding the mechanism of OMV uptake across different studies. PMID:27529760

  1. Folding studies of Purified LamB Protein, the Maltoporin from the Escherichia coli Outer Membrane: Trimer Dissociation can be separated from Unfolding

    PubMed Central

    Baldwin, Valerie; Bhatia, Mandeep; Luckey, Mary

    2011-01-01

    The folding mechanisms for β-barrel membrane proteins present unique challenges because acquisition of both secondary and tertiary structure is coupled with insertion into the bilayer. For the porins in Escherichia coli outer membrane, the assembly pathway also includes association into homotrimers. We study the folding pathway for purified LamB protein in detergent and observe extreme hysteresis in unfolding and refolding, as indicated by the shift in intrinsic fluorescence. The strong hysteresis is not seen in unfolding and refolding a mutant LamB protein lacking the disulfide bond, as it unfolds at much lower denaturant concentrations than wild type LamB protein. The disulfide bond is proposed to stabilize the structure of LamB protein by clasping together the two sides of Loop 1 as it lines the inner cavity of the barrel. In addition we find that low pH promotes dissociation of the LamB trimer to folded monomers, which run at about one third the size of the native trimer during SDS PAGE and are much more resistant to trypsin than the unfolded protein. We postulate the loss at low pH of two salt bridges between Loop 2 of the neighboring subunit and the inner wall of the monomer barrel destabilizes the quaternary structure. PMID:21640073

  2. In Vivo Identification of the Outer Membrane Protein OmcA-MtrC Interaction Network in Shewanella oneidensis MR-1 Cells Using Novel Hydrophobic Chemical Cross-Linkers

    SciTech Connect

    Zhang, Haizhen; Tang, Xiaoting; Munske, Gerhard R.; Zakharova, Natalia L.; Yang, Li; Zheng, Chunxiang; Wolff, Meagan A.; Tolic, Nikola; Anderson, Gordon A.; Shi, Liang; Marshall, Matthew J.; Fredrickson, Jim K.; Bruce, James E.

    2008-04-01

    Outer membrane (OM) cytochromes OmcA (SO1779) and MtrC (SO1778) are the integral components of electron transfer used by Shewanella oneidensis for anaerobic respiration of metal (hydr)oxides. Here the OmcA-MtrC interaction was identified in vivo using a novel hydrophobic chemical cross-linker (MRN) combined with immunoprecipitation techniques. In addition, identification of other OM proteins from the cross-linked complexes allows first visualization of the OmcA-MtrC interaction network. Further experiments on omcA and mtrC mutant cells showed OmcA plays a central role in the network interaction. For comparison, two commercial cross-linkers were also used in parallel and both resulted in fewer OM protein identifications, indicating the superior properties of MRN for identification of membrane protein interactions. Finally, comparison experiments of in vivo cross-linking and cell lysate cross-linking resulted in significantly different protein interaction data, demonstrating the importance of in vivo cross-linking for study of protein-protein interactions in cells.

  3. Folding studies of purified LamB protein, the maltoporin from the Escherichia coli outer membrane: trimer dissociation can be separated from unfolding.

    PubMed

    Baldwin, Valerie; Bhatia, Mandeep; Luckey, Mary

    2011-09-01

    The folding mechanisms for β-barrel membrane proteins present unique challenges because acquisition of both secondary and tertiary structure is coupled with insertion into the bilayer. For the porins in Escherichia coli outer membrane, the assembly pathway also includes association into homotrimers. We study the folding pathway for purified LamB protein in detergent and observe extreme hysteresis in unfolding and refolding, as indicated by the shift in intrinsic fluorescence. The strong hysteresis is not seen in unfolding and refolding a mutant LamB protein lacking the disulfide bond, as it unfolds at much lower denaturant concentrations than wild type LamB protein. The disulfide bond is proposed to stabilize the structure of LamB protein by clasping together the two sides of Loop 1 as it lines the inner cavity of the barrel. In addition we find that low pH promotes dissociation of the LamB trimer to folded monomers, which run at about one third the size of the native trimer during SDS PAGE and are much more resistant to trypsin than the unfolded protein. We postulate the loss at low pH of two salt bridges between Loop 2 of the neighboring subunit and the inner wall of the monomer barrel destabilizes the quaternary structure.

  4. Regulation of the mitochondrial permeability transition pore by the outer membrane does not involve the peripheral benzodiazepine receptor (Translocator Protein of 18 kDa (TSPO)).

    PubMed

    Šileikytė, Justina; Blachly-Dyson, Elizabeth; Sewell, Randall; Carpi, Andrea; Menabò, Roberta; Di Lisa, Fabio; Ricchelli, Fernanda; Bernardi, Paolo; Forte, Michael

    2014-05-16

    Translocator protein of 18 kDa (TSPO) is a highly conserved, ubiquitous protein localized in the outer mitochondrial membrane, where it is thought to play a key role in the mitochondrial transport of cholesterol, a key step in the generation of steroid hormones. However, it was first characterized as the peripheral benzodiazepine receptor because it appears to be responsible for high affinity binding of a number of benzodiazepines to non-neuronal tissues. Ensuing studies have employed natural and synthetic ligands to assess the role of TSPO function in a number of natural and pathological circumstances. Largely through the use of these compounds and biochemical associations, TSPO has been proposed to play a role in the mitochondrial permeability transition pore (PTP), which has been associated with cell death in many human pathological conditions. Here, we critically assess the role of TSPO in the function of the PTP through the generation of mice in which the Tspo gene has been conditionally eliminated. Our results show that 1) TSPO plays no role in the regulation or structure of the PTP, 2) endogenous and synthetic ligands of TSPO do not regulate PTP activity through TSPO, 3) outer mitochondrial membrane regulation of PTP activity occurs though a mechanism that does not require TSPO, and 4) hearts lacking TSPO are as sensitive to ischemia-reperfusion injury as hearts from control mice. These results call into question a wide variety of studies implicating TSPO in a number of pathological processes through its actions on the PTP.

  5. Chloroform-Methanol Residue of Coxiella burnetii Markedly Potentiated the Specific Immunoprotection Elicited by a Recombinant Protein Fragment rOmpB-4 Derived from Outer Membrane Protein B of Rickettsia rickettsii in C3H/HeN Mice

    PubMed Central

    Gong, Wenping; Wang, Pengcheng; Xiong, Xiaolu; Jiao, Jun; Yang, Xiaomei; Wen, Bohai

    2015-01-01

    The obligate intracellular bacteria, Rickettsia rickettsii and Coxiella burnetii, are the potential agents of bio-warfare/bio-terrorism. Here C3H/HeN mice were immunized with a recombinant protein fragment rOmp-4 derived from outer membrane protein B, a major protective antigen of R. rickettsii, combined with chloroform-methanol residue (CMR) extracted from phase I C. burnetii organisms, a safer Q fever vaccine. These immunized mice had significantly higher levels of IgG1 and IgG2a to rOmpB-4 and interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α), two crucial cytokines in resisting intracellular bacterial infection, as well as significantly lower rickettsial loads and slighter pathological lesions in organs after challenge with R. rickettsii, compared with mice immunized with rOmpB-4 or CMR alone. Additionally, after challenge with C. burnetii, the coxiella loads in the organs of these mice were significantly lower than those of mice immunized with rOmpB-4 alone. Our results prove that CMR could markedly potentiate enhance the rOmpB-4-specific immunoprotection by promoting specific and non-specific immunoresponses and the immunization with the protective antigen of R. rickettsii combined with CMR of C. burnetii could confer effective protection against infection of R. rickettsii or C. burnetii. PMID:25909586

  6. Chloroform-Methanol Residue of Coxiella burnetii Markedly Potentiated the Specific Immunoprotection Elicited by a Recombinant Protein Fragment rOmpB-4 Derived from Outer Membrane Protein B of Rickettsia rickettsii in C3H/HeN Mice.

    PubMed

    Gong, Wenping; Wang, Pengcheng; Xiong, Xiaolu; Jiao, Jun; Yang, Xiaomei; Wen, Bohai

    2015-01-01

    The obligate intracellular bacteria, Rickettsia rickettsii and Coxiella burnetii, are the potential agents of bio-warfare/bio-terrorism. Here C3H/HeN mice were immunized with a recombinant protein fragment rOmp-4 derived from outer membrane protein B, a major protective antigen of R. rickettsii, combined with chloroform-methanol residue (CMR) extracted from phase I C. burnetii organisms, a safer Q fever vaccine. These immunized mice had significantly higher levels of IgG1 and IgG2a to rOmpB-4 and interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α), two crucial cytokines in resisting intracellular bacterial infection, as well as significantly lower rickettsial loads and slighter pathological lesions in organs after challenge with R. rickettsii, compared with mice immunized with rOmpB-4 or CMR alone. Additionally, after challenge with C. burnetii, the coxiella loads in the organs of these mice were significantly lower than those of mice immunized with rOmpB-4 alone. Our results prove that CMR could markedly potentiate enhance the rOmpB-4-specific immunoprotection by promoting specific and non-specific immunoresponses and the immunization with the protective antigen of R. rickettsii combined with CMR of C. burnetii could confer effective protection against infection of R. rickettsii or C. burnetii.

  7. Calcineurin B-like Protein CBL10 Directly Interacts with TOC34 (Translocon of the Outer Membrane of the Chloroplasts) and Decreases Its GTPase Activity in Arabidopsis

    PubMed Central

    Cho, Joo Hyuk; Lee, Jeong Hwan; Park, Yoon Kook; Choi, Mi Na; Kim, Kyung-Nam

    2016-01-01

    As calcium sensor relays in plants, calcineurin B-like (CBL) proteins provide an important contribution to decoding Ca2+ signatures elicited by a variety of abiotic stresses. Currently, it is well known that CBLs perceive and transmit the Ca2+ signals mainly to a group of serine/threonine protein kinases called CBL-interacting protein kinases (CIPKs). In this study, we report that the CBL10 member of this family has a novel interaction partner besides the CIPK proteins. Yeast two-hybrid screening with CBL10 as bait identified an Arabidopsis cDNA clone encoding a TOC34 protein, which is a member of the TOC (Translocon of the Outer membrane of the Chloroplasts) complex and possesses the GTPase activity. Further analyses showed that in addition to CBL10, CBL7 also interacts with TOC34 at much lower strength in the yeast two-hybrid system. However, the rest of the CBL family members failed to interact with TOC34. Bimolecular fluorescence complementation (BiFC) analysis verified that the CBL10-TOC34 interaction occurs at the outer membrane of chloroplasts in vivo. In addition, we also demonstrated that CBL10 physically associates with TOC34 in vitro, resulting in a significant decrease in the GTPase activity of the TOC34 protein. Taken together, our findings clearly indicate that a member of the CBL family, CBL10, can modulate not only the CIPK members but also TOC34, allowing the CBL family to relay the Ca2+ signals in more diverse ways than currently known. PMID:28018422

  8. One-step purification and porin transport activity of the major outer membrane proteins P2 from Haemophilus influenzae, FomA from Fusobacterium nucleatum and PorB from Neisseria meningitidis.

    PubMed

    Kattner, Christof; Pfennig, Sabrina; Massari, Paola; Tanabe, Mikio

    2015-03-01

    Bacterial porins are major outer membrane proteins that function as essential solute transporters between the bacteria and the extracellular environment. Structural features of porins are also recognized by eukaryotic cell receptors involved in innate and adaptive immunity. To better investigate the function of porins, proper refolding is necessary following purification from inclusion bodies [1, 2]. Using a single-step size exclusion chromatographic method, we have purified three major porins from pathogenic bacteria, the OmpP2 (P2) from Haemophilus influenzae, FomA from Fusobacterium nucleatum and PorB from Neisseria meningitidis, at high yield and report their unique solute transport activity with size exclusion limit. Furthermore, we have optimized their purification method and achieved improvement of their thermostability for facilitating functional and structural analyses.

  9. Deuterium Labeling Together with Contrast Variation Small-Angle Neutron Scattering Suggests How Skp Captures and Releases Unfolded Outer Membrane Proteins.

    PubMed

    Zaccai, Nathan R; Sandlin, Clifford W; Hoopes, James T; Curtis, Joseph E; Fleming, Patrick J; Fleming, Karen G; Krueger, Susan

    2016-01-01

    In Gram-negative bacteria, the chaperone protein Skp forms specific and stable complexes with membrane proteins while they are transported across the periplasm to the outer membrane. The jellyfish-like architecture of Skp is similar to the eukaryotic and archaeal prefoldins and the mitochondrial Tim chaperones, that is the α-helical "tentacles" extend from a β-strand "body" to create an internal cavity. Contrast variation small-angle neutron scattering (SANS) experiments on Skp alone in solution and bound in two different complexes to unfolded outer membrane proteins (uOMPs), OmpA and OmpW, demonstrate that the helical tentacles of Skp bind their substrate in a clamp-like mechanism in a conformation similar to that previously observed in the apo crystal structure of Skp. Deuteration of the uOMP component combined with contrast variation analysis allowed the shapes of Skp and uOMP as well as the location of uOMP with respect to Skp to be determined in both complexes. This represents unique information that could not be obtained without deuterium labeling of the uOMPs. The data yield the first direct structural evidence that the α-helical Skp tentacles move closer together on binding its substrate and that the structure of Skp is different when binding different uOMPs. This work presents, by example, a tutorial on performing SANS experiments using both deuterium labeling and contrast variation, including SANS theory, sample preparation, data collection, sample quality validation, data analysis, and structure modeling.

  10. Deuterium Labeling Together with Contrast Variation Small-angle Neutron Scattering Suggests How Skp Captures and Releases Unfolded Outer Membrane Proteins

    PubMed Central

    Zaccai, Nathan R.; Sandlin, Clifford W.; Hoopes, James T.; Curtis, Joseph E.; Fleming, Patrick J.; Fleming, Karen G.; Krueger, Susan

    2016-01-01

    In gram-negative bacteria, the chaperone protein Skp forms specific and stable complexes with membrane proteins while they are transported across the periplasm to the outer membrane. The jellyfish-like architecture of Skp is similar to the eukaryotic and archeal prefoldins and the mitochondrial Tim chaperones, that is α-helical ‘tentacles’ extend from a β-strand ‘body’ to create an internal cavity. Contrast variation small-angle neutron scattering (SANS) experiments on Skp alone in solution and bound in two different complexes to unfolded outer membrane proteins (uOMPs), OmpA and OmpW, demonstrate that the helical tentacles of Skp bind their substrate in a clamp-like mechanism in a conformation similar to that previously observed in the apo crystal structure of Skp. Deuteration of the uOMP component combined with contrast variation analysis allowed the shapes of Skp and uOMP as well as the location of uOMP with respect to Skp to be determined in both complexes. This represents unique information that could not be obtained without deuterium labeling of the uOMPs. The data yield the first direct structural evidence that the α-helical Skp tentacles move closer together on binding its substrate and that the structure of Skp is different when binding different uOMPs. This work presents, by example, a tutorial on performing SANS experiments using both deuterium labeling and contrast variation, including SANS theory, sample preparation, data collection, sample quality validation, data analysis and structure modeling. PMID:26791979

  11. Effect of natural polymorphism on structure and function of the Yersinia pestis outer membrane porin F (OmpF protein): a computational study.

    PubMed

    Shaban, Hiba; Na, Insing; Kislichkina, Angelina A; Dentovskaya, Svetlana V; Anisimov, Andrey P; Uversky, Vladimir N

    2016-09-03

    The Yersinia pestis outer membrane porin F (OmpF) is a transmembrane protein located in the outer membrane of this Gram-negative bacterium which is the causative agent of plague, where it plays a significant role in controlling the selective permeability of the membrane. The amino acid sequences of OmpF proteins from 48 Y. pestis strains representing all currently available phylogenetic groups of this Gram-negative bacterium were recently deduced. Comparison of these amino acid sequences revealed that the OmpF can be present in four isoforms, the pestis-pestis type, and the pestis-microtus types I, II, and III. OmpF of the most recent pestis-pestis type has an alanine residue at the position 148, where all the pestis-microtus types have threonine there (T148A polymorphism). The variability of different pestis-microtus types is caused by an additional polymorphism at the 193rd position, where the OmpFs of the pestis-microtus type II and type III have isoleucine-glycine (IG(+)193) or isoleucine-glycine-isoleucine-glycine (IGIG(+)193) insertions, respectively (IG(+)193 and IGIG(+)193 polymorphism). To investigate potential effects of these sequence polymorphisms on the structural properties of the OmpF protein, we conducted multi-level computational analysis of its isoforms. Analysis of the I-TASSER-generated 3D-models revealed that the Yersinia OmpF is very similar to other non-specific enterobacterial porins. The T148A polymorphism affected a loop located in the external vestibule of the OmpF channel, whereas IG(+)193 and IGIG(+)193 polymorphisms affected one of its β-strands. Our analysis also suggested that polymorphism has moderate effect on the predicted local intrinsic disorder predisposition of OmpF, but might have some functional implementations.

  12. The Fusobacterium nucleatum Outer Membrane Protein RadD Is an Arginine-Inhibitable Adhesin Required for Inter-Species Adherence and the Structured Architecture of Multi-Species Biofilm

    PubMed Central

    Kaplan, Christopher W.; Lux, Renate; Haake, Susan Kinder; Shi, Wenyuan

    2009-01-01

    Summary A defining characteristic of the suspected periodontal pathogen Fusobacterium nucleatum is its ability to adhere to a plethora of oral bacteria. This distinguishing feature is suggested to play an important role in oral biofilm formation and pathogenesis, with fusobacteria proposed to serve as central “bridging organisms” in the architecture of the oral biofilm bringing together species which would not interact otherwise. Previous studies indicate that these bacterial interactions are mediated by galactose- or arginine-inhibitable adhesins although genetic evidence for the role and nature of these proposed adhesins remains elusive. To characterize these adhesins at the molecular level, the genetically transformable F. nucleatum strain ATCC 23726 was screened for adherence properties, and arginine inhibitable adhesion was evident, while galactose-inhibitable adhesion was not detected. Six potential arginine binding proteins were isolated from the membrane fraction of F. nucleatum ATCC 23726 and identified via mass spectroscopy as members of the outer membrane family of proteins in F. nucleatum. Inactivation of the genes encoding these six candidates for arginine-inhibitable adhesion and two additional homologues revealed that only a mutant derivative carrying an insertion in Fn1526 (now designated as radD) demonstrated significantly decreased co-aggregation with representatives of the Gram-positive “early oral colonizers”. Lack of the 350 kDa outer membrane protein encoded by radD resulted in the failure to form the extensive structured biofilm observed with the parent strain when grown in the presence of Streptococcus sanguinis ATCC 10556. These findings indicate that radD is responsible for arginine-inhibitable adherence of F. nucleatum and provides definitive molecular evidence that F. nucleatum adhesins play a vital role in inter-species adherence and multispecies biofilm formation. PMID:19007407

  13. Differential permeabilization effects of Ca2+ and valinomycin on the inner and outer mitochondrial membranes as revealed by proteomics analysis of proteins released from mitochondria.

    PubMed

    Yamada, Akiko; Yamamoto, Takenori; Yamazaki, Naoshi; Yamashita, Kikuji; Kataoka, Masatoshi; Nagata, Toshihiko; Terada, Hiroshi; Shinohara, Yasuo

    2009-06-01

    It is well established that cytochrome c is released from mitochondria when the permeability transition (PT) of this organelle is induced by Ca2+. Our previous study showed that valinomycin also caused the release of cytochrome c from mitochondria but without inducing this PT (Shinohara, Y., Almofti, M. R., Yamamoto, T., Ishida, T., Kita, F., Kanzaki, H., Ohnishi, M., Yamashita, K., Shimizu, S., and Terada, H. (2002) Permeability transition-independent release of mitochondrial cytochrome c induced by valinomycin. Eur. J. Biochem. 269, 5224-5230). These results indicate that cytochrome c may be released from mitochondria with or without the induction of PT. In the present study, we examined the protein species released from valinomycin- and Ca2+-treated mitochondria by LC-MS/MS analysis. As a result, the proteins located in the intermembrane space were found to be specifically released from valinomycin-treated mitochondria, whereas those in the intermembrane space and in the matrix were released from Ca2+-treated mitochondria. These results were confirmed by Western analysis. Furthermore to examine how the protein release occurred, we examined the correlation between the species of released proteins and those of the abundant proteins in mitochondria. Consequently most of the proteins released from mitochondria treated with either agent were highly expressed proteins in mitochondria, indicating that the release occurred not selectively but in a manner dependent on the concentration of the proteins. Based on these results, the permeabilization effects of Ca2+ and valinomycin on the inner and outer mitochondrial membranes are discussed.

  14. Properties of a Pseudomonas stutzeri outer membrane channel-forming protein (NosA) required for production of copper-containing N sub 2 O reductase

    SciTech Connect

    Lee, H.S.; Ingraham, J.L. ); Hancock, R.E.W. )

    1989-04-01

    A protein (NosA) in the outer membrane of Pseudomonas stutzeri that is required for copper to be inserted into N{sub 2}O reductase has been extracted and purified to homogeneity. The purified protein could form channels in black lipid bilayers. Line N{sub 2}O reductase, NosA contained copper and was only made anaerobically. In contrast to N{sub 2}O reductase, its synthesis was repressed by exogenous copper (but not by Mn, Co, Ni, Zn, or Fe). Also in contrast to N{sub 2}O reductase, NosA homologs were not immunologically detectable in Pseudomonas aeruginosa, Pseudomonas mendocina, Pseudomonas alcaligenes, or other strains of P. stutzeri.

  15. Porin Loss Impacts the Host Inflammatory Response to Outer Membrane Vesicles of Klebsiella pneumoniae

    PubMed Central

    Turner, Kelli L.; Cahill, Bethaney K.; Dilello, Sarah K.; Gutel, Dedra; Brunson, Debra N.; Albertí, Sebastián

    2015-01-01

    Antibiotic-resistant strains of Klebsiella pneumoniae often exhibit porin loss. In this study, we investigated how porin loss impacted the composition of secreted outer membrane vesicles as well as their ability to trigger proinflammatory cytokine secretion by macrophages. We hypothesize that porin loss associated with antibiotic resistance will directly impact both the composition of outer membrane vesicles and their interactions with phagocytic cells. Using clonally related clinical isolates of extended-spectrum beta-lactamase (ESBL)-positive Klebsiella pneumoniae with different patterns of porin expression, we demonstrated that altered expression of OmpK35 and OmpK36 results in broad alterations to the protein profile of secreted vesicles. Additionally, the level of OmpA incorporation was elevated in strains lacking a single porin. Porin loss significantly impacted macrophage inflammatory responses to purified vesicles. Outer membrane vesicles lacking both OmpK35 and OmpK36 elicited significantly lower levels of proinflammatory cytokine secretion than vesicles from strains expressing one or both porins. These data demonstrate that antibiotic resistance-associated porin loss has a broad and significant effect on both the composition of outer membrane vesicles and their interactions with phagocytic cells, which may impact bacterial survival and inflammatory reactions in the host. PMID:26666932

  16. Bacterial expression, correct membrane targeting and functional folding of the HIV-1 membrane protein Vpu using a periplasmic signal peptide.

    PubMed

    Deb, Arpan; Johnson, William A; Kline, Alexander P; Scott, Boston J; Meador, Lydia R; Srinivas, Dustin; Martin-Garcia, Jose M; Dörner, Katerina; Borges, Chad R; Misra, Rajeev; Hogue, Brenda G; Fromme, Petra; Mor, Tsafrir S

    2017-01-01

    Viral protein U (Vpu) is a type-III integral membrane protein encoded by Human Immunodeficiency Virus-1 (HIV- 1). It is expressed in infected host cells and plays several roles in viral progeny escape from infected cells, including down-regulation of CD4 receptors. But key structure/function questions remain regarding the mechanisms by which the Vpu protein contributes to HIV-1 pathogenesis. Here we describe expression of Vpu in bacteria, its purification and characterization. We report the successful expression of PelB-Vpu in Escherichia coli using the leader peptide pectate lyase B (PelB) from Erwinia carotovora. The protein was detergent extractable and could be isolated in a very pure form. We demonstrate that the PelB signal peptide successfully targets Vpu to the cell membranes and inserts it as a type I membrane protein. PelB-Vpu was biophysically characterized by circular dichroism and dynamic light scattering experiments and was shown to be an excellent candidate for elucidating structural models.

  17. Bacterial expression, correct membrane targeting and functional folding of the HIV-1 membrane protein Vpu using a periplasmic signal peptide

    PubMed Central

    Deb, Arpan; Johnson, William A.; Kline, Alexander P.; Scott, Boston J.; Meador, Lydia R.; Srinivas, Dustin; Martin-Garcia, Jose M.; Dörner, Katerina; Borges, Chad R.; Misra, Rajeev; Hogue, Brenda G.; Fromme, Petra

    2017-01-01

    Viral protein U (Vpu) is a type-III integral membrane protein encoded by Human Immunodeficiency Virus-1 (HIV- 1). It is expressed in infected host cells and plays several roles in viral progeny escape from infected cells, including down-regulation of CD4 receptors. But key structure/function questions remain regarding the mechanisms by which the Vpu protein contributes to HIV-1 pathogenesis. Here we describe expression of Vpu in bacteria, its purification and characterization. We report the successful expression of PelB-Vpu in Escherichia coli using the leader peptide pectate lyase B (PelB) from Erwinia carotovora. The protein was detergent extractable and could be isolated in a very pure form. We demonstrate that the PelB signal peptide successfully targets Vpu to the cell membranes and inserts it as a type I membrane protein. PelB-Vpu was biophysically characterized by circular dichroism and dynamic light scattering experiments and was shown to be an excellent candidate for elucidating structural models. PMID:28225803

  18. Antibacterial properties of the sperm-binding proteins and peptides of human epididymis 2 (HE2) family; salt sensitivity, structural dependence and their interaction with outer and cytoplasmic membranes of Escherichia coli.

    PubMed Central

    Yenugu, Suresh; Hamil, Katherine G; Birse, Charles E; Ruben, Steven M; French, Frank S; Hall, Susan H

    2003-01-01

    During passage through the epididymis, sperm interact with secreted epididymal proteins that promote maturation, including the acquisition of motility and fertilization competence. Viewed previously as distinct from sperm maturation, host defence capabilities are now recognized functions of the human epididymis 2 (HE2) family of sperm-binding proteins. We analysed the potent dose and time-dependent bactericidal activity of recombinant HE2alpha, HE2beta1 and HE2beta2 and found that the full-length proteins (10 microg/ml or approximately 1 microM) caused more than a 50% decrease in Escherichia coli colony forming units within 15 min. By contrast, human beta-defensin-1, at a similar concentration, required more than 90 min to exhibit similar antibacterial activity. The epididymis-specific lipocalin, LCN6, failed to kill bacteria. Higher concentrations (25-100 microg/ml) of HE2 proteins and a longer duration of treatment resulted in near total inhibition of bacterial growth. The C-terminal peptides of HE2alpha, HEbeta1 and HEbeta2 proteins exhibited antibacterial activity similar to their full-length counterparts, indicating that the antibacterial activity of HE2 proteins resides in these C-terminal regions. Antibacterial activities of HE2 proteins and peptides were slightly inhibited by NaCl concentrations of up to 150 mM, while human beta-defensin-1 activity was nearly eliminated. Reduction and alkylation of disulphide bonds in HE2 proteins and their C-terminal peptides abolished their antibacterial activity. Consistent with the ability to kill bacteria, full-length HE2 proteins and C-terminal peptides caused rapid dose-dependent permeabilization of outer and cytoplasmic E. coli membranes. A much longer exposure time was required for human beta-defensin-1-mediated permeabilization of membranes, suggesting a possible difference in mode of action compared with the HE2 antibacterial peptides. PMID:12628001

  19. The mechanisms of complement activation in normal bovine serum and normal horse serum against Yersinia enterocolitica O:9 strains with different outer membrane proteins content.

    PubMed

    Miętka, K; Brzostek, K; Guz-Regner, K; Bugla-Płoskońska, G

    2016-01-01

    Yersinia enterocolitica is a common zoonotic pathogen and facultative intracellular bacterium which can survive within blood cells. Cattle and horses are considered a reservoir of Y. enterocolitica which often causes several serious syndromes associated with yersiniosis such as abortions, premature births or infertility. The aim of our investigation was to determine the vitality of Y. enterocolitica O:9 strains (Ye9) in bovine and horse sera (NBS and NHrS) and explain the role of outer membrane proteins (OMPs) in serum resistance of these bacteria. Our previous studies demonstrated moderate human serum (NHS) resistance of the wild type Ye9 strain, whereas mutants lacking YadA, Ail or OmpC remained sensitive to the bactericidal activity of NHS. The present study showed that the wild type of Ye9 strain was resistant to the bactericidal activity of both NHrS and NBS, while Ye9 mutants lacking the YadA, Ail and OmpC proteins were sensitive to NHrS and NBS as well as to NHS. The mechanisms of complement activation against Ye9 strains lacking Ail and YadA were distinguished, i.e. activation of the classical/lectin pathways decisive in the bactericidal mechanism of complement activation of NBS, parallel activation of the classical/lectin and alternative pathways of NHrS. In this research the mechanism of independent activation of the classical/lectin or the alternative pathway of NBS and NHrS against Ye9 lacking OmpC porin was also established. The results indicate that serum resistance of Ye9 is multifactorial, in which extracellular structures, i.e. outer membrane proteins (OMPs) such as Ail, OmpC or YadA, play the main role.

  20. Mitochondria and cell death: outer membrane permeabilization and beyond.

    PubMed

    Tait, Stephen W G; Green, Douglas R

    2010-09-01

    Mitochondrial outer membrane permeabilization (MOMP) is often required for activation of the caspase proteases that cause apoptotic cell death. Various intermembrane space (IMS) proteins, such as cytochrome c, promote caspase activation following their mitochondrial release. As a consequence, mitochondrial outer membrane integrity is highly controlled, primarily through interactions between pro- and anti-apoptotic members of the B cell lymphoma 2 (BCL-2) protein family. Following MOMP by pro-apoptotic BCL-2-associated X protein (BAX) or BCL-2 antagonist or killer (BAK), additional regulatory mechanisms govern the mitochondrial release of IMS proteins and caspase activity. MOMP typically leads to cell death irrespective of caspase activity by causing a progressive decline in mitochondrial function, although cells can survive this under certain circumstances, which may have pathophysiological consequences.

  1. Nucleoid occlusion protein Noc recruits DNA to the bacterial cell membrane.

    PubMed

    Adams, David William; Wu, Ling Juan; Errington, Jeff

    2015-02-12

    To proliferate efficiently, cells must co-ordinate division with chromosome segregation. In Bacillus subtilis, the nucleoid occlusion protein Noc binds to specific DNA sequences (NBSs) scattered around the chromosome and helps to protect genomic integrity by coupling the initiation of division to the progression of chromosome replication and segregation. However, how it inhibits division has remained unclear. Here, we demonstrate that Noc associates with the cell membrane via an N-terminal amphipathic helix, which is necessary for function. Importantly, the membrane-binding affinity of this helix is weak and requires the assembly of nucleoprotein complexes, thus establishing a mechanism for DNA-dependent activation of Noc. Furthermore, division inhibition by Noc requires recruitment of NBS DNA to the cell membrane and is dependent on its ability to bind DNA and membrane simultaneously. Indeed, Noc production in a heterologous system is sufficient for recruitment of chromosomal DNA to the membrane. Our results suggest a simple model in which the formation of large membrane-associated nucleoprotein complexes physically occludes assembly of the division machinery.

  2. Transcriptional analysis of in vitro expression patterns of Chlamydophila abortus polymorphic outer membrane proteins during the chlamydial developmental cycle

    PubMed Central

    Wheelhouse, Nicholas; Aitchison, Kevin; Spalding, Lucy; Livingstone, Morag; Longbottom, David

    2009-01-01

    Chlamydophila abortus is the aetiological agent of ovine enzootic abortion. Sequencing, annotation and comparative analysis of the genome of C. abortus strain S26/3 has revealed variation in the loci encoding the polymorphic membrane proteins (Pmps). These Pmps resemble autotransporter proteins of the type V secretion system, suggesting an important role in chlamydial pathogenesis. The purpose of this study was to characterise the transcriptional expression patterns of this family during the developmental cycle of C. abortus. McCoy cells were infected with C. abortus and analysed for pmp mRNA expression over a 72 h period. Few pmp transcripts were detected in the early stages of the developmental cycle. Peak expression occurred at 48 h post-infection (p.i.) other than for pmp5E, where it was observed at 24 h p.i. Overall, expression of pmps 5E, 18D and 10G were found to be 40 to 100-fold higher than the lowest expressing pmps (6H, 13G and 15G) at 24 h p.i., while pmps 18D and 17G were 14 to 16-fold higher than the lowest (11G, 14G and 15G) at 48 h. Levels of expression for all the other pmp genes were below one copy per genome at any time point. The expression of all the pmps reduced to near base-line levels by 60 h p.i. These results demonstrate that pmp expression in C. abortus is mid to late cycle, consistent with conversion of the reticulate body to the elementary body. The low level of pmp transcription may be indicative of heterogeneity in expression, suggesting a possible role for some of the Pmps in antigenic variation and chlamydial pathogenesis. PMID:19454212

  3. Overexpression of human SOD1 in VDAC1-less yeast restores mitochondrial functionality modulating beta-barrel outer membrane protein genes.

    PubMed

    Magrì, Andrea; Di Rosa, Maria Carmela; Tomasello, Marianna Flora; Guarino, Francesca; Reina, Simona; Messina, Angela; De Pinto, Vito

    2016-06-01

    Cu/Zn Superoxide Dismutase (SOD1), the most important antioxidant defense against ROS in eukaryotic cells, localizes in cytosol and intermembrane space of mitochondria (IMS). Several evidences show a SOD1 intersection with both fermentative and respiratory metabolism. The Voltage Dependent Anion Channel (VDAC) is the main pore-forming protein in the mitochondrial outer membrane (MOM), and is considered the gatekeeper of mitochondrial metabolism. Saccharomyces cerevisiae lacking VDAC1 (Δpor1) is a very convenient model system, since it shows an impaired growth rate on non-fermentable carbon source. Transformation of Δpor1 yeast with human SOD1 completely restores the cell growth deficit in non-fermentative conditions and re-establishes the physiological levels of ROS, as well as the mitochondrial membrane potential. No similar result was found upon yeast SOD1 overexpression. A previous report highlighted the action of SOD1 as a transcription factor. Quantitative Real-Time PCR showed that β-barrel outer-membrane encoding-genes por2, tom40, sam50 are induced by hSOD1, but the same effect was not obtained in Δpor1Δpor2 yeast, indicating a crucial function for yVDAC2. Since the lack of VDAC1 in yeast can be considered a stress factor for the cell, hSOD1 could relieve it stimulating the expression of genes bringing to the recovery of the MOM function. Our results suggest a direct influence of SOD1 on VDAC.

  4. The host outer membrane proteins OmpA and OmpC are associated with the Shigella phage Sf6 virion

    SciTech Connect

    Zhao Haiyan; Sequeira, Reuben D.; Galeva, Nadezhda A.; Tang Liang

    2011-01-20

    Assembly of dsDNA bacteriophage is a precisely programmed process. Potential roles of host cell components in phage assembly haven't been well understood. It was previously reported that two unidentified proteins were present in bacteriophage Sf6 virion (Casjens et al, 2004, J.Mol.Biol. 339, 379-394, Fig. 2A). Using tandem mass spectrometry, we have identified the two proteins as outer membrane proteins (OMPs) OmpA and OmpC from its host Shigella flexneri. The transmission electron cryo-microscopy structure of Sf6 shows significant density at specific sites at the phage capsid inner surface. This density fit well with the characteristic beta-barrel domains of OMPs, thus may be due to the two host proteins. Locations of this density suggest a role in Sf6 morphogenesis reminiscent of phage-encoded cementing proteins. These data indicate a new, OMP-related phage:host linkage, adding to previous knowledge that some lambdoid bacteriophage genomes contain OmpC-like genes that express phage-encoded porins in the lysogenic state.

  5. Serological Diagnosis of Ovine Enzootic Abortion by Enzyme-Linked Immunosorbent Assay with a Recombinant Protein Fragment of the Polymorphic Outer Membrane Protein POMP90 of Chlamydophila abortus

    PubMed Central

    Longbottom, David; Fairley, Susan; Chapman, Stephanie; Psarrou, Evgenia; Vretou, Evangelia; Livingstone, Morag

    2002-01-01

    Ovine enzootic abortion (OEA) resulting from infection of sheep and goats with Chlamydophila abortus is of major economic importance worldwide. Over the last 50 years the serological diagnosis of infection has been based mainly on the complement fixation test (CFT), which lacks both sensitivity and specificity because of cross-reactive antibodies to other gram-negative bacteria, including another common chlamydial pathogen of sheep, Chlamydophila pecorum. In the present study, a series of overlapping recombinant antigens representing the polymorphic outer membrane protein POMP90 of C. abortus was assessed by enzyme-linked immunosorbent assay (ELISA) with a panel of 143 serum samples from sheep experimentally infected with C. abortus, from sheep clinically free of OEA, and from specific-pathogen-free lambs experimentally infected with different subtypes of C. pecorum. The results were compared to those obtained by CFT and another recently described test, an indirect ELISA (iELISA) with the recombinant OMP91B (rOMP91B) fragment (rOMP91B iELISA) (D. Longbottom, E. Psarrou, M. Livingstone, and E. Vretou, FEMS Microbiol. Lett. 195:157-161, 2001). The rOMP90-3 and rOMP90-4 ELISAs were identified as being more sensitive and specific than CFT. Assays with both fragments were evaluated further with a panel of 294 field serum samples from flocks with documented histories of abortion, from flocks with no clinical histories of abortion but which had a high proportion of samples seropositive by CFT, and from animals with no histories of abortion but from which various C. pecorum subtypes had been isolated. ELISAs with both POMP90 fragments outperformed CFT with serum samples from C. pecorum-infected animals, producing no false-positive results. However, the ELISA with the rOMP90-4 fragment appeared to be more sensitive than the one with rOMP90-3, as it identified more of the OEA-positive samples. The ELISA with the rOMP90-4 fragment was also able to identify apparently healthy

  6. Immunoblot detection of class-specific humoral immune response to outer membrane proteins isolated from Salmonella typhi in humans with typhoid fever.

    PubMed Central

    Ortiz, V; Isibasi, A; García-Ortigoza, E; Kumate, J

    1989-01-01

    The studies reported here were undertaken to assess the ability of the outer membrane proteins (OMPs) of Salmonella typhi to induce a humoral immune response in humans with typhoid fever. OMPs were isolated with the nonionic detergent Triton X-100 and were found to be contaminated with approximately 4% lipopolysaccharide. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis patterns showed protein bands with molecular size ranges from 17 to 70 kilodaltons; the major groups of proteins were those that correspond to the porins and OmpA of gram-negative bacteria. Rabbit antiserum to OMPs or to S. typhi recognized OMPs after absorption with lipopolysaccharide. Sera from patients with typhoid fever contained immunoglobulin M antibodies which reacted with a protein of 28 kilodaltons and immunoglobulin G antibodies which reacted mainly with the porins, as determined by immunoblotting. These results indicate that the porins are the major immunogenic OMPs from S. typhi and that the immune response induced in the infection could be related to the protective status. Images PMID:2768450

  7. Immunoblot detection of class-specific humoral immune response to outer membrane proteins isolated from Salmonella typhi in humans with typhoid fever.

    PubMed

    Ortiz, V; Isibasi, A; García-Ortigoza, E; Kumate, J

    1989-07-01

    The studies reported here were undertaken to assess the ability of the outer membrane proteins (OMPs) of Salmonella typhi to induce a humoral immune response in humans with typhoid fever. OMPs were isolated with the nonionic detergent Triton X-100 and were found to be contaminated with approximately 4% lipopolysaccharide. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis patterns showed protein bands with molecular size ranges from 17 to 70 kilodaltons; the major groups of proteins were those that correspond to the porins and OmpA of gram-negative bacteria. Rabbit antiserum to OMPs or to S. typhi recognized OMPs after absorption with lipopolysaccharide. Sera from patients with typhoid fever contained immunoglobulin M antibodies which reacted with a protein of 28 kilodaltons and immunoglobulin G antibodies which reacted mainly with the porins, as determined by immunoblotting. These results indicate that the porins are the major immunogenic OMPs from S. typhi and that the immune response induced in the infection could be related to the protective status.

  8. Interaction of FUN14 domain containing 1, a mitochondrial outer membrane protein, with kinesin light chain 1 via the tetratricopeptide repeat domain

    PubMed Central

    Jang, Won Hee; Jeong, Young Joo; Choi, Sun Hee; Urm, Sang-Hwa; Seog, Dae-Hyun

    2017-01-01

    Kinesin 1 is a member of the kinesin superfamily proteins (KIFs) of microtubule-dependent molecular motor proteins that transport organelles and protein complexes in cells. Kinesin 1 consists of a homo- or hetero-dimer of kinesin heavy chains (KHCs), often, although not always, associated with two kinesin light chains (KLCs). KLCs are non-motor proteins that associate with many different binding proteins and cargoes, but their binding partners have not yet been fully identified. In the present study, a yeast two-hybrid system was used to identify proteins that interact with the tetratricopeptide repeat (TPR) domain of KLC1. The results of the current study revealed an interaction between the TPR domain of KLC1 and FUN14 domain-containing protein 1 (FUNDC1), which is a mitochondrial outer membrane protein mediating hypoxia-induced mitophagy. FUNDC1 bound to the six TPR motif-containing regions of KLC1 and did not interact with KIF5B (a motor subunit of kinesin 1) and KIF3A (a motor subunit of kinesin 2) in the yeast two-hybrid assay. The cytoplasmic amino N-terminal domain of FUNDC1 is essential for interaction with KLC1. When co-expressed in HEK-293T cells, FUNDC1 co-localized with KLC1 and co-immunoprecipitated with KLC1, but not KIF5B. Collectively, these results indicate that KLC1 may potentially compete with LC3, a key component for autophagosome formation, to interact with FUNDC1. PMID:28123706

  9. Evolution of outer membrane beta-barrels from an ancestral beta beta hairpin.

    PubMed

    Remmert, M; Biegert, A; Linke, D; Lupas, A N; Söding, J

    2010-06-01

    Outer membrane beta-barrels (OMBBs) are the major class of outer membrane proteins from Gram-negative bacteria, mitochondria, and plastids. Their transmembrane domains consist of 8-24 beta-strands forming a closed, barrel-shaped beta-sheet around a central pore. Despite their obvious structural regularity, evidence for an origin by duplication or for a common ancestry has not been found. We use three complementary approaches to show that all OMBBs from Gram-negative bacteria evolved from a single, ancestral beta beta hairpin. First, we link almost all families of known single-chain bacterial OMBBs with each other through transitive profile searches. Second, we identify a clear repeat signature in the sequences of many OMBBs in which the repeating sequence unit coincides with the structural beta beta hairpin repeat. Third, we show that the observed sequence similarity between OMBB hairpins cannot be explained by structural or membrane constraints on their sequences. The third approach addresses a longstanding problem in protein evolution: how to distinguish between a very remotely homologous relationship and the opposing scenario of "sequence convergence." The origin of a diverse group of proteins from a single hairpin module supports the hypothesis that, around the time of transition from the RNA to the protein world, proteins arose by amplification and recombination of short peptide modules that had previously evolved as cofactors of RNAs.

  10. A novel O-linked glycan modulates Campylobacter jejuni major outer membrane protein-mediated adhesion to human histo-blood group antigens and chicken colonization

    PubMed Central

    Mahdavi, Jafar; Pirinccioglu, Necmettin; Oldfield, Neil J.; Carlsohn, Elisabet; Stoof, Jeroen; Aslam, Akhmed; Self, Tim; Cawthraw, Shaun A.; Petrovska, Liljana; Colborne, Natalie; Sihlbom, Carina; Borén, Thomas; Wooldridge, Karl G.; Ala'Aldeen, Dlawer A. A.

    2014-01-01

    Campylobacter jejuni is an important cause of human foodborne gastroenteritis; strategies to prevent infection are hampered by a poor understanding of the complex interactions between host and pathogen. Previous work showed that C. jejuni could bind human histo-blood group antigens (BgAgs) in vitro and that BgAgs could inhibit the binding of C. jejuni to human intestinal mucosa ex vivo. Here, the major flagella subunit protein (FlaA) and the major outer membrane protein (MOMP) were identified as BgAg-binding adhesins in C. jejuni NCTC11168. Significantly, the MOMP was shown to be O-glycosylated at Thr268; previously only flagellin proteins were known to be O-glycosylated in C. jejuni. Substitution of MOMP Thr268 led to significantly reduced binding to BgAgs. The O-glycan moiety was characterized as Gal(β1–3)-GalNAc(β1–4)-GalNAc(β1–4)-GalNAcα1-Thr268; modelling suggested that O-glycosylation has a notable effect on the conformation of MOMP and this modulates BgAg-binding capacity. Glycosylation of MOMP at Thr268 promoted cell-to-cell binding, biofilm formation and adhesion to Caco-2 cells, and was required for the optimal colonization of chickens by C. jejuni, confirming the significance of this O-glycosylation in pathogenesis. PMID:24451549

  11. Outer membrane proteomics of kanamycin-resistant Escherichia coli identified MipA as a novel antibiotic resistance-related protein.

    PubMed

    Li, Hui; Zhang, Dan-feng; Lin, Xiang-min; Peng, Xuan-xian

    2015-06-01

    Antibiotic-resistant bacteria are a great threat to human health and food safety and there is an urgent need to understand the mechanisms of resistance for combating these bacteria. In the current study, comparative proteomic methodologies were applied to identify Escherichia coli K-12 outer membrane (OM) proteins related to kanamycin resistance. Mass spectrometry and western blotting results revealed that OM proteins TolC, Tsx and OstA were up-regulated, whereas MipA, OmpA, FadL and OmpW were down-regulated in kanamycin-resistant E. coli K-12 strain. Genetic deletion of tolC (ΔtolC-Km) led to a 2-fold decrease in the minimum inhibitory concentration (MIC) of kanamycin and deletion of mipA (ΔmipA-Km) resulted in a 4-fold increase in the MIC of kanamycin. Changes in the MICs for genetically modified strains could be completely recovered by gene complementation. Compared with the wild-type strain, the survival capability of ΔompA-Km was significantly increased and that of Δtsx-Km was significantly decreased. We further evaluated the role and expression of MipA in response to four other antibiotics including nalidixic acid, streptomycin, chloramphenicol and aureomycin, which suggested that MipA was a novel OM protein related to antibiotic resistance.

  12. DNA Inversion Regulates Outer Membrane Vesicle Production in Bacteroides fragilis

    PubMed Central

    Nakayama-Imaohji, Haruyuki; Hirota, Katsuhiko; Yamasaki, Hisashi; Yoneda, Saori; Nariya, Hirofumi; Suzuki, Motoo; Secher, Thomas; Miyake, Yoichiro; Oswald, Eric; Hayashi, Tetsuya; Kuwahara, Tomomi

    2016-01-01

    Phase changes in Bacteroides fragilis, a member of the human colonic microbiota, mediate variations in a vast array of cell surface molecules, such as capsular polysaccharides and outer membrane proteins through DNA inversion. The results of the present study show that outer membrane vesicle (OMV) formation in this anaerobe is also controlled by DNA inversions at two distantly localized promoters, IVp-I and IVp-II that are associated with extracellular polysaccharide biosynthesis and the expression of outer membrane proteins. These promoter inversions are mediated by a single tyrosine recombinase encoded by BF2766 (orthologous to tsr19 in strain NCTC9343) in B. fragilis YCH46, which is located near IVp-I. A series of BF2766 mutants were constructed in which the two promoters were locked in different configurations (IVp-I/IVp-II = ON/ON, OFF/OFF, ON/OFF or OFF/ON). ON/ON B. fragilis mutants exhibited hypervesiculating, whereas the other mutants formed only a trace amount of OMVs. The hypervesiculating ON/ON mutants showed higher resistance to treatment with bile, LL-37, and human β-defensin 2. Incubation of wild-type cells with 5% bile increased the population of cells with the ON/ON genotype. These results indicate that B. fragilis regulates the formation of OMVs through DNA inversions at two distantly related promoter regions in response to membrane stress, although the mechanism underlying the interplay between the two regions controlled by the invertible promoters remains unknown. PMID:26859882

  13. Outer membrane and porin characteristics of Serratia marcescens grown in vitro and in rat intraperitoneal diffusion chambers.

    PubMed Central

    Malouin, F; Campbell, G D; Halpenny, M; Becker, G W; Parr, T R

    1990-01-01

    The composition and antibiotic permeability barrier of the outer membrane of Serratia marcescens were assessed in cells grown in vivo and in vitro. Intraperitoneal diffusion chambers implanted in rats were used for the in vivo cultivation of bacteria. Outer membranes isolated from log-phase bacterial cells recovered from these chambers were compared with membranes isolated from cells grown in vitro. Analysis revealed that the suspected 41-kilodalton porin and the OmpA protein were recovered on sodium dodecyl sulfate-polyacrylamide gels in equal quantities. Several high-molecular-weight proteins, thought to be iron starvation induced, appeared in the diffusion chamber-grown cells. The outer membrane permeability barriers to cephaloridine were similar in in vivo- and in vitro-grown cells based on permeability coefficient calculations. The permeability coefficient of cephaloridine in S. marcescens cells (30.3 x 10(-5) to 38.9 x 10(-5) cm s-1) was greater than that obtained for an Escherichia coli strain expressing only porin OmpC but smaller than those obtained for the E. coli wild type and a strain expressing only porin OmpF. Functional characterization of the suspected porin was performed by using the planar lipid bilayer technology. The sodium dodecyl sulfate-0.4 M NaCl-soluble porin from both in vitro- and in vivo-grown cells showed an average single-channel conductance in 1 M KCl of 1.6. A partial amino acid sequence (19 residues) was obtained for the S. marcescens porin. The sequence showed a very high homology to the E. coli OmpC porin. These data identified the S. marcescens outer membrane 41-kilodalton protein as a porin by both functional and amino acid analyses. Also, the methodology used allowed for efficient growth and recovery of diffusion chamber-grown bacterial cells and permitted identification of specific in vivo-induced changes in bacterial cell membrane composition. Images PMID:2157667

  14. Plasmid-determined resistance to serum bactericidal activity: a major outer membrane protein, the traT gene product, is responsible for plasmid-specified serum resistance in Escherichia coli.

    PubMed Central

    Moll, A; Manning, P A; Timmis, K N

    1980-01-01

    Resistance to the bactericidal activity of serum appears to be an important virulence property of invasive bacteria. The conjugative multiple-antibiotic-resistance plasmid R6-5 was found to confer upon Escherichia coli host bacteria increased resistance against rabbit serum. Gene-cloning techniques were used to localize the serum resistance determinant of R6-5 to a segment of the plasmid that encodes conjugal transfer functions, and a pACYC184 hybrid plasmid, designated pKT107, that contains this segment was constructed. The generation and analysis of deletion and insertion mutant derivatives of the pKT107 plasmid that no longer specify serum resistance permitted precise localization of the serum-resistance cistron on the R6-5 map and demonstrated that this locus is coincident with that of traT, one of the two surface exclusion genes of R6-5. Examination of the proteins synthesized in E. coli minicells of pKT107 and its serum-sensitive mutant derivative plasmids confirmed that the serum-resistance gene product of R6-5 is the traT protein and showed that this protein is a major structural component (about 21,000 copies per cell) of the bacterial outer membrane. Images Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:6995306

  15. Preliminary Extraction and Identification of the 44.5 kDa Outer Membrane Proteins Isolated from Bovine Fusobacterium necrophorum (AB).

    PubMed

    Xu, Jing; Chen, Li-Zhi; Liu, Xiao-Ying; Feng, Er-Kai; Wang, Sun-Jie; Cao, Yue

    2013-12-01

    Fusobacterium necrophorum (AB) in the pharynx, respiratory tract, female reproductive tract or urinary system is the causative agent of footrot and hepatic abscesses in animals and acute Lemierre's syndrome in humans. Current methods do not effectively protect animals and humans against F. necrophorum (AB). The outer membrane proteins (OMP) of F. necrophorum (AB) can be used as new material to protect against the diseases induced by F. necrophorum (AB). The aim of this study was to extract OMP and examine the immunogenic response of OMP. The preliminary extraction of OMP of F. necrophorum (AB) was identified by SDS-PAGE and stained by Coomassie Brilliant Blue R-250 (CB B R-250) and silver staining methods. The results showed that only a major band of 44.5 kDa was observed when staining the gel using CB B R-250. This band represented the target protein. In contrast, many small bands were observed by the silver staining method. The OMP also exhibited immune biological activities according to western blot analysis. The brightest band among the multi-banding observed was the OMP. Thus, the OMP was obtained and had immunogenic activity. The results provide a new direction to protect animals and humans against F. necrophorum (AB) in the clinical setting.

  16. Cloning, expression and purification of outer membrane protein (OmpA) of Burkholderia pseudomallei and evaluation of its potential for serodiagnosis of melioidosis.

    PubMed

    Arora, Sonia; Thavaselvam, Duraipandian; Kumar, Ashu; Prakash, Archana; Barua, Anita; Sathyaseelan, Kannusamy

    2015-02-01

    Melioidosis is an emerging infectious disease in India and caused by gram-negative, soil saprophyte bacteria Burkholderia pseudomallei. This disease is endemic in Southeast Asia and northern Australia, and sporadic cases of melioidosis are also reported from southern states of India. The present study reports the cloning, expression, and purification of recombinant protein outer membrane protein A (OmpA) of B. pseudomallei and its evaluation in indirect enzyme-linked immunosorbent assay (ELISA) format with 87 serum samples collected from Manipal, Karnataka, India. Twenty-three samples from culture confirmed cases (n=23) of melioidosis, 25 serum samples from patients of other febrile illness and pyrexia of unknown origin (n=25), and 39 serum samples from healthy blood donors (n=39) from Kasturba Medical College, Manipal, were tested in this assay format. The assay showed sensitivity of 82.6% and specificity of 93.75%. The recombinant OmpA based indirect ELISA will be a useful tool for serodiagnosis of melioidosis in large scale rapid screening of clinical samples.

  17. Induction of immune response in mice with a DNA vaccine encoding outer membrane protein (omp31) of Brucella melitensis 16M.

    PubMed

    Gupta, V K; Rout, P K; Vihan, V S

    2007-06-01

    Brucellosis causes serious economic losses to goat farmers by way of reproductive losses in the form of abortions and stillbirths. Nucleic acid vaccines provide an exciting approach for antigen presentation to the immune system. In this study, we evaluated the ability of DNA vaccine encoding the omp31 protein of Brucella melitensis 16M to induce cellular and humoral immune responses in mice. We constructed eukaryotic expression vectors called pTargeTomp31, encoding outer membrane protein (omp31) of B. melitensis 16M. pTargeTomp31 was injected intramuscularly three times, at 3-week intervals in groups of mice 6 weeks of age. pTargeTomp31 induced good antibody response in ELISA . pTargeTomp31 elicited a T-cell-proliferative response and also induced a strong gamma interferon production upon restimulation with either the omp31 antigen or B. melitensis 16M extract. We also demonstrate that animals immunized with this plasmid elicited a strong and long-lived memory immune response. Furthermore, pTargeTomp31 elicited a typical T-helper 1-dominated immune response in mice, as determined by immunoglobulin G isotype analysis. This vaccine also provided the moderate degree of protection to the mice. This study for the first time focuses on DNA immunization of a gene from B. melitensis. These results may lead to the development of a DNA-based vaccine for the control of brucellosis in goats.

  18. Antibody and Cytokine Responses of Koalas (Phascolarctos cinereus) Vaccinated with Recombinant Chlamydial Major Outer Membrane Protein (MOMP) with Two Different Adjuvants

    PubMed Central

    Khan, Shahneaz Ali; Desclozeaux, Marion; Waugh, Courtney; Hanger, Jon; Loader, Jo; Gerdts, Volker; Potter, Andrew; Polkinghorne, Adam; Beagley, Kenneth; Timms, Peter

    2016-01-01

    Developing a vaccine against Chlamydia is key to combating widespread mortalities and morbidities associated with this infection in koalas (Phascolarctos cinereus). In previous studies, we have shown that two or three doses of a Recombinant Major Outer Membrane Protein (rMOMP) antigen-based vaccine, combined with immune stimulating complex (ISC) adjuvant, results in strong cellular and humoral immune responses in koalas. We have also separately evaluated a single dose vaccine, utilising a tri-adjuvant formula that comprises polyphosphazine based poly I: C and host defense peptides, with the same antigen. This formulation also produced strong cellular and humoral immune responses in captive koalas. In this current study, we directly compared the host immune responses of two sub-groups of wild Chlamydia negative koalas in one population vaccinated with the rMOMP protein antigen and adjuvanted with either the ISC or tri-adjuvant formula. Overall, both adjuvants produced strong Chlamydia-specific cellular (IFN-γ and IL-17A) responses in circulating PBMCs as well as MOMP-specific and functional, in vitro neutralising antibodies. While the immune responses were similar, there were adjuvant-specific immune differences between the two adjuvants, particularly in relation to the specificity of the MOMP epitope antibody responses. PMID:27219467

  19. Yeast Mitochondria as a Model System to Study the Biogenesis of Bacterial β-Barrel Proteins.

    PubMed

    Ulrich, Thomas; Oberhettinger, Philipp; Autenrieth, Ingo B; Rapaport, Doron

    2015-01-01

    Beta-barrel proteins are found in the outer membrane of Gram-negative bacteria, mitochondria, and chloroplasts. The evolutionary conservation in the biogenesis of these proteins allows mitochondria to assemble bacterial β-barrel proteins in their functional form. In this chapter, we describe exemplarily how the capacity of yeast mitochondria to process the trimeric autotransporter YadA can be used to study the role of bacterial periplasmic chaperones in this process.

  20. Outer membrane proteome and antigens of Tannerella forsythia.

    PubMed

    Veith, Paul D; O'Brien-Simpson, Neil M; Tan, Yan; Djatmiko, Deasy C; Dashper, Stuart G; Reynolds, Eric C

    2009-09-01

    Tannerella forsythia is a Gram-negative, anaerobic, fusiform bacterium implicated as a periodontal pathogen. With use of 2D PAGE, SDS PAGE, and LC-MALDI-TOF/TOF MS, 221 proteins of T. forsythia outer membrane preparations were identified, of which 197 were predicted to be localized to the cell envelope. Fifty-six proteins were reproducibly mapped by 2D PAGE and included several highly abundant proteins in the MW range 140-250 kDa that exhibited C-terminal sequence similarity to the CTD family of Porphyromonas gingivalis. Two-dimensional Western blot analyses revealed that these CTD family proteins together with several other outer membrane proteins were antigenic. The CTD family proteins exhibited a higher than expected MW, and were strongly reactive with the fluorescent glycoprotein stain, ProQ Emerald. This group included BspA and surface layer proteins A and B. TonB-dependent receptors (TDRs) (46) were identified together with 28 putative lipoproteins whose genes are immediately downstream of a TDR gene. The major OmpA-like protein was found to be TF1331. Uniquely, it was found to exist as a homodimer held together by up to three disulfide bridges as demonstrated by MS/MS of a tryptic peptide derived from unreduced TF1331.

  1. Cell envelope of Bordetella pertussis: immunological and biochemical analyses and characterization of a major outer membrane porin protein

    SciTech Connect

    Armstrong, S.K.

    1986-01-01

    Surface molecules of Bordetella pertussis which may be important in metabolism, pathogenesis, and immunity to whooping cough were examined using cell fractionation and /sup 125/I cell surface labeling. Antigenic envelope proteins were examined by immunofluorescence microscopy and Western blotting procedures using monoclonal antibodies and convalescent sera. A surface protein with a high M/sub r/, missing in a mutant lacking the filamentous hemagglutinin, was identified in virulent Bordetella pertussis but was absent in virulent B. pertussis strains. At least three envelope proteins were found only in virulent B. pertussis strains and were absent or diminished in avirulent and most phenotypically modulated strains. Transposon-induced mutants unable to produce hemolysin, dermonecrotic toxin, pertussis toxin, and filamentous hemagglutinin also lacked these three envelope proteins, confirming that virulence-associated envelope proteins were genetically regulated with other virulence-associated traits. Two dimensional gel electrophoresis revealed at least five heat modifiable proteins which migrated as higher or lower M/sub r/ moieties if solubilized at 25/sup 0/C instead of 100/sup 0/C.

  2. Study on the resistance mechanism via outer membrane protein OprD2 and metal β-lactamase expression in the cell wall of Pseudomonas aeruginosa.

    PubMed

    Cai, Shuangqi; Chen, Yiqiang; Song, Dezhi; Kong, Jinliang; Wu, Yanbin; Lu, Huasong

    2016-11-01

    The aim of the present study was to evaluate the imipenem-resistant mechanism via the outer membrane protein (OMP) OprD2 and metal β-lactamase expression in the cell wall of Pseudomonas aeruginosa. The Pseudomonas aeruginosa was clinically separated and validated by VITEK-2 full-automatic bacteria analyzer. Drug resistance, sensitive antibiotics and minimum inhibitory concentration (MIC) were tested using the drug sensitivity analysis system. The phenotype positive strains of MBL genes were screened using the Kirby-Bauer diffusion method by adding metal ion-chelating agent EDTA on the imipenem susceptibility paper. IMP-1, VIM-1 and SPM metaloenzyme genes were tested by polymerase chain reaction (PCR)-telomeric repeat amplification protocol (TRAP). The OMP OprD2 genes were tested by PCR-TRAP, and the protein expression was tested using western blot analysis. The location of OMP OprD2 was confirmed using the sodium salicylate inhibition test. The results showed that 80 portions (40%) of MBL-positive strains were screened out of 200 specimens. Imipenem-resistant Pseudomonas aeruginosa (IRPA) and MIC values were significantly higher than quality control bacteria and control bacteria (P<0.05). A total of 35 cases with IMP-1 positive, 20 with VIM-1 positive, 16 with SPM positive, 5 with 2 positive genes and 4 with 3 positive genes were screened among MBL positive strains. A total of 150 portions (75%) of OprD2 deficiencies were screened from 200 specimens. The standard strains and sensitive strains showed OprD2 protein bands at 45 kDa while no OprD2 protein bands appeared in OprD2 deficiency strains. It was in accordance with gene detection. In conclusion, OMP OprD2 deficiency and MBL phenotype positivity may be important mechanisms of IRPA.

  3. Outer membrane vesicles of Tannerella forsythia: biogenesis, composition, and virulence.

    PubMed

    Friedrich, V; Gruber, C; Nimeth, I; Pabinger, S; Sekot, G; Posch, G; Altmann, F; Messner, P; Andrukhov, O; Schäffer, C

    2015-12-01

    Tannerella forsythia is the only 'red-complex' bacterium covered by an S-layer, which has been shown to affect virulence. Here, outer membrane vesicles (OMVs) enriched with putative glycoproteins are described as a new addition to the virulence repertoire of T. forsythia. Investigations of this bacterium are hampered by its fastidious growth requirements and the recently discovered mismatch of the available genome sequence (92A2 = ATCC BAA-2717) and the widely used T. forsythia strain (ATCC 43037). T. forsythia was grown anaerobically in serum-free medium and biogenesis of OMVs was analyzed by electron and atomic force microscopy. This revealed OMVs with a mean diameter of ~100 nm budding off from the outer membrane while retaining the S-layer. An LC-ESI-TOF/TOF proteomic analysis of OMVs from three independent biological replicates identified 175 proteins. Of these, 14 exhibited a C-terminal outer membrane translocation signal that directs them to the cell/vesicle surface, 61 and 53 were localized to the outer membrane and periplasm, respectively, 22 were predicted to be extracellular, and 39 to originate from the cytoplasm. Eighty proteins contained the Bacteroidales O-glycosylation motif, 18 of which were confirmed as glycoproteins. Release of pro-inflammatory mediators from the human monocytic cell line U937 and periodontal ligament fibroblasts upon stimulation with OMVs followed a concentration-dependent increase that was more pronounced in the presence of soluble CD14 in conditioned media. The inflammatory response was significantly higher than that caused by whole T. forsythia cells. Our study represents the first characterization of T. forsythia OMVs, their proteomic composition and immunogenic potential.

  4. Escherichia coli Outer Membrane Protein TolC Is Involved in Production of the Peptide Antibiotic Microcin J25

    PubMed Central

    Delgado, Mónica A.; Solbiati, José O.; Chiuchiolo, María J.; Farías, Ricardo N.; Salomón, Raúl A.

    1999-01-01

    A Tn5 insertion in tolC eliminated microcin J25 production. The mutation had little effect on the expression of the microcin structural gene and presumably acted by blocking microcin secretion. The tolC mutants carrying multiple copies of the microcin genes were less immune to the microcin. TolC is thus likely a component of a microcin export complex containing the McjD immunity protein, an ABC exporter. PMID:10074099

  5. An immunogenic, surface-exposed domain of Haemophilus ducreyi outer membrane protein HgbA is involved in hemoglobin binding.

    PubMed

    Nepluev, Igor; Afonina, Galyna; Fusco, William G; Leduc, Isabelle; Olsen, Bonnie; Temple, Brenda; Elkins, Christopher

    2009-07-01

    HgbA is the sole TonB-dependent receptor for hemoglobin (Hb) acquisition of Haemophilus ducreyi. Binding of Hb to HgbA is the initial step in heme acquisition from Hb. To better understand this step, we mutagenized hgbA by deletion of each of the 11 putative surface-exposed loops and expressed each of the mutant proteins in trans in host strain H. ducreyi FX547 hgbA. All mutant proteins were expressed, exported, and detected on the surface by anti-HgbA immunoglobulin G (IgG). Deletion of sequences in loops 5 and 7 of HgbA abolished Hb binding in two different formats. In contrast, HgbA proteins containing deletions in the other nine loops retained the ability to bind Hb. None of the clones expressing mutant proteins were able to grow on plates containing low concentrations of Hb. Previously we demonstrated in a swine model of chancroid infection that an HgbA vaccine conferred complete protection from a challenge infection. Using anti-HgbA IgG from this study and the above deletion mutants, we show that loops 4, 5, and 7 of HgbA were immunogenic and surface exposed and that IgG directed against loops 4 and 5 blocked Hb binding. Furthermore, loop 6 was cleaved by protease on intact H. ducreyi, suggesting surface exposure. These data implicate a central domain of HgbA (in respect to the primary amino acid sequence) as important in Hb binding and suggest that this region of the molecule might have potential as a subunit vaccine.

  6. Super Resolution Fluorescence Microscopy and Tracking of Bacterial Flotillin (Reggie) Paralogs Provide Evidence for Defined-Sized Protein Microdomains within the Bacterial Membrane but Absence of Clusters Containing Detergent-Resistant Proteins

    PubMed Central

    Dempwolff, Felix; Schmidt, Felix K.; Hervás, Ana B.; Stroh, Alex; Rösch, Thomas C.; Riese, Cornelius N.; Dersch, Simon; Heimerl, Thomas; Lucena, Daniella; Hülsbusch, Nikola; Stuermer, Claudia A. O.; Takeshita, Norio; Fischer, Reinhard; Graumann, Peter L.

    2016-01-01

    Biological membranes have been proposed to contain microdomains of a specific lipid composition, in which distinct groups of proteins are clustered. Flotillin-like proteins are conserved between pro—and eukaryotes, play an important function in several eukaryotic and bacterial cells, and define in vertebrates a type of so-called detergent-resistant microdomains. Using STED microscopy, we show that two bacterial flotillins, FloA and FloT, form defined assemblies with an average diameter of 85 to 110 nm in the model bacterium Bacillus subtilis. Interestingly, flotillin microdomains are of similar size in eukaryotic cells. The soluble domains of FloA form higher order oligomers of up to several hundred kDa in vitro, showing that like eukaryotic flotillins, bacterial assemblies are based in part on their ability to self-oligomerize. However, B. subtilis paralogs show significantly different diffusion rates, and consequently do not colocalize into a common microdomain. Dual colour time lapse experiments of flotillins together with other detergent-resistant proteins in bacteria show that proteins colocalize for no longer than a few hundred milliseconds, and do not move together. Our data reveal that the bacterial membrane contains defined-sized protein domains rather than functional microdomains dependent on flotillins. Based on their distinct dynamics, FloA and FloT confer spatially distinguishable activities, but do not serve as molecular scaffolds. PMID:27362352

  7. The outer membrane protein TolC is required for phytoalexin resistance and virulence of the fire blight pathogen Erwinia amylovora.

    PubMed

    Al-Karablieh, Nehaya; Weingart, Helge; Ullrich, Matthias S

    2009-07-01

    Erwinia amylovora causes fire blight on several plant species such as apple and pear, which produce diverse phytoalexins as defence mechanisms. An evolutionary successful pathogen thus must develop resistance mechanisms towards these toxic compounds. The E. amylovora outer membrane protein, TolC, might mediate phytoalexin resistance through its interaction with the multidrug efflux pump, AcrAB. To prove this, a tolC mutant and an acrB/tolC double mutant were constructed. The minimal inhibitory concentrations of diverse antimicrobials and phytoalexins were determined for these mutants and compared with that of a previously generated acrB mutant. The tolC and arcB/tolC mutants were considerably more susceptible than the wild type but showed similar levels as the acrB mutant. The results clearly indicated that neither TolC nor AcrAB significantly interacted with other transport systems during the efflux of the tested toxic compounds. Survival and virulence assays on inoculated apple plants showed that pathogenicity and the ability of E. amylovora to colonize plant tissue were equally impaired by mutations of tolC and acrB/tolC. Our results allowed the conclusion that TolC plays an important role as a virulence and fitness factor of E. amylovora by mediating resistance towards phytoalexins through its exclusive interaction with AcrAB.

  8. Protection against Salmonella typhi infection in mice after immunization with outer membrane proteins isolated from Salmonella typhi 9,12,d, Vi.

    PubMed Central

    Isibasi, A; Ortiz, V; Vargas, M; Paniagua, J; González, C; Moreno, J; Kumate, J

    1988-01-01

    The current studies were undertaken to assess the ability of the outer membrane proteins (OMPs) of Salmonella typhi to induce protection against challenge with the bacteria in mucin. OMPs were isolated as described by Schnaitman (J. Bacteriol. 108:553-556, 1971) and were found to be contaminated with approximately 4% lipopolysaccharide (LPS). Immunization with as little as 30 micrograms of OMPs conferred 100% protection to mice challenged with up to 1,000 50% lethal doses (LD50) of two strains of S. typhi (9,12,d, Vi and Ty2). In addition, 30% protection against challenge with up to 500 LD50 of Salmonella typhimurium was achieved. Immunization with LPS at doses equivalent to those found in the OMPs was considerably inferior to the OMPs in the induction of an immune status. Moreover, LPS was effective only when the challenge was performed with S. typhi 9,12,d, Vi (40% protection to 100 LD50). An antiserum raised in rabbits reacted mainly against the bands of the molecular weights corresponding to the so-called porins contained in the OMP preparation as shown by Western blotting (immunoblotting). This rabbit antiserum protected 100% of mice against challenge with 100 LD50 of either strain of S. typhi and 80% of mice against challenge with the same LD50 of S. typhimurium. These results indicate the usefulness of OMPs in the induction of active immunity against S. typhi in mice. Images PMID:2844676

  9. AbuO, a TolC-Like Outer Membrane Protein of Acinetobacter baumannii, Is Involved in Antimicrobial and Oxidative Stress Resistance

    PubMed Central

    Srinivasan, Vijaya Bharathi; Vaidyanathan, Vasanth

    2014-01-01

    Although Acinetobacter baumannii is well accepted as a nosocomial pathogen, only a few of the outer membrane proteins (OMPs) have been functionally characterized. In this study, we demonstrate the biological functions of AbuO, a homolog of TolC from Escherichia coli. Inactivation of abuO led to increased sensitivity to high osmolarity and oxidative stress challenge. The ΔabuO mutant displayed increased susceptibility to antibiotics, such as amikacin, carbenicillin, ceftriaxone, meropenem, streptomycin, and tigecycline, and hospital-based disinfectants, such as benzalkonium chloride and chlorhexidine. The reverse transcription (RT)-PCR analysis indicated increased expression of efflux pumps (resistance nodulation cell division [RND] efflux pump acrD, 8-fold; SMR-type emrE homolog, 12-fold; and major facilitator superfamily [MFS]-type ampG homolog, 2.7-fold) and two-component response regulators (baeR, 4.67-fold; ompR, 10.43-fold) in the ΔabuO mutant together with downregulation of rstA (4.22-fold) and the pilin chaperone (9-fold). The isogenic mutant displayed lower virulence in a nematode model (P < 0.01). Experimental evidence for the binding of MerR-type transcriptional regulator SoxR to radiolabeled abuO promoter suggests regulation of abuO by SoxR in A. baumannii. PMID:25512405

  10. In silico design of an immunogen against Acinetobacter baumannii based on a novel model for native structure of Outer membrane protein A.

    PubMed

    Jahangiri, Abolfazl; Rasooli, Iraj; Owlia, Parviz; Fooladi, Abbas Ali Imani; Salimian, Jafar

    2017-04-01

    Outer membrane protein A (OmpA) is the most promising vaccine candidate against one of the most successful nosocomial pathogens, A. baumannii. Despite advantages of the antigen, its cytotoxicity could be considered as a challenge in clinical trials. In order to improve this effective immunogen, rational vaccine design strategies such as structure-based vaccinology should be assessed. However, native structure of OmpA remains controversial. The present study is conducted to address the native structure of OmpA; then, a novel immunogen with lower toxicity and higher antigenicity was designed based on structural vaccinology. Various bioinformatic and immunoinformatic tools were harnessed to perform analyses such as topology, secondary structure, and tertiary structure predictions as well as B-cell epitope predictions. A novel 12-stranded model is suggested for OmpA. K320 and K322 were substituted by Alanine, "NADEEFWN" sequence was replaced by "YKYDFDGVNRGTRGTSEEGTL", Position 1-24 at the N-terminus and the C-terminal sequence "VVQPGQEAAAPAAAQ" were removed. The designed construct has more epitope density and antigenic properties with higher immunogenicity while its cytotoxicity is decreased. Moreover, this single cross-protective antigen could trigger antibodies rendering protection against two important nosocomial pathogens i.e. Pseudomonas aeruginosa and A. baumannii.

  11. An Application of Outer Membrane Protein P6-Specific Enzyme-Linked Immunosorbent Assay for Detection of Haemophilus influenzae in Middle Ear Fluids and Nasopharyngeal Secretions

    PubMed Central

    Hotomi, Muneki; Togawa, Akihisa; Kono, Masamitsu; Sugita, Gen; Sugita, Rinya; Fujimaki, Yutaka; Kamide, Yosuke; Uchizono, Akihiro; Kanesada, Keiko; Sawada, Shoichi; Okitsu, Naohiro; Masuda, Hisayo; Tanaka, Hideaki; Tanaka, Yumi; Yamanaka, Noboru

    2013-01-01

    An enzyme-linked immunosorbent assay specific to outer membrane protein P6 (P6-ELISA) was applied for detecting Haemophilus influenzae in middle ear fluids (MEFs) from acute otitis media (AOM) patients and in nasopharyngeal secretions (NPSs) from acute rhinosinusitis patients. P6-ELISA had a sensitivity of 83.3% for MEFs and 71.5% for NPSs and a specificity of 85.6% for MEFs and 92.5% for NPSs, respectively. Real-time PCR exhibited significant differences in the number of ompP1 gene copies among samples determined by P6-ELISA to be positive and negative for H. influenzae. However, because the P6-ELISA test has the reactivity in Haemophilus species include two commensals H. haemolyticus and H. parainfluenzae, it is thus a weak method in order to detect only NTHi correctly. Consequently, diagnosis using the P6-ELISA should be based on an overall evaluation, including the results of other related examinations and clinical symptoms to prevent misleading conclusions in clinical setting. PMID:24015192

  12. A comparison of multiple regimens of pneumococcal polysaccharide-meningococcal outer membrane protein complex conjugate vaccine and pneumococcal polysaccharide vaccine in toddlers.

    PubMed

    Blum, M D; Dagan, R; Mendelman, P M; Pinsk, V; Giordani, M; Li, S; Bohidar, N; McNeely, T B

    2000-05-08

    Children who had been randomized to receive one dose of either heptavalent pneumococcal polysaccharide-meningococcal outer membrane protein complex conjugate vaccine (PCV) or 23-valent pneumococcal polysaccharide vaccine (PN23) at 12, 15, or 18 months of age were subsequently randomized to receive a booster injection of either PCV or PN23 12 months later. For those children who received a priming dose of PCV (N=75) compared to PN23 (N=48) at 12, 15, or 18 months of age, higher serum antibody concentrations were achieved 1 month following a booster injection of either PCV or PN23 for all serotypes tested (p<0.001). Within the group of children receiving a priming dose of PCV, those children who received a booster dose of PN23 developed higher serum antibody concentrations for four of the seven serotypes tested and similar opsonic antibody titers to serotype 6B, yet more frequent erythema (p=0.030) and pain or soreness (p=0.024) at the injection site compared to those boosted with PCV. In conclusion, a single dose of PCV at 12-18 months of age primed for responses to booster doses of either PCV or PN23 12 months later. For those children who received a priming dose of PCV, boosting with PN23 resulted in more frequent injection site pain and erythema than boosting with PCV, yet higher antibody concentrations for most of the serotypes tested.

  13. Isolation and nucleotide sequence of the gene (aniA) encoding the major anaerobically induced outer membrane protein of Neisseria gonorrhoeae.

    PubMed Central

    Hoehn, G T; Clark, V L

    1992-01-01

    When grown under anaerobic conditions, Neisseria gonorrhoeae, the etiologic agent of the sexually transmitted disease gonorrhea, expresses several novel outer membrane proteins. One of these, Pan 1, has an apparent molecular mass of 54 kDa in electrophoresis and is recognized by serum samples from patients with gonococcal infection. The presence of antibodies to this protein in patient sera suggests that Pan 1 is expressed during gonococcal infection and, more importantly, that N. gonorrhoeae grows anaerobically in vivo. We have cloned the Pan 1 structural gene, aniA, by screening a gonococcal lambda gt11 expression library with monospecific, polyclonal anti-Pan 1 antiserum. Three distinct immunoreactive recombinants, containing overlapping fragments of DNA, were isolated and confirmed to be coding for Pan 1 protein sequences. Northern (RNA blot) hybridization of an insert from an aniA recombinant to total gonococcal cellular RNA revealed the presence of a 1.5-kb transcript that was specific to RNA from anaerobically grown gonococci, indicating that the aniA gene is regulated at the transcriptional level and is monocistronic. To characterize the aniA gene, we have sequenced the entire 2-kb region spanned by the overlapping recombinants. We have also performed primer extension analysis on RNA isolated from aerobically and anaerobically grown gonococci in order to define the aniA promoter region. Two putative primer extension products specific to organisms grown anaerobically were identified by homology to known Escherichia coli promoter sequences, suggesting that the regulation of aniA expression involves multiple promoter regions. Images PMID:1383156

  14. Vaccination of koalas with a recombinant Chlamydia pecorum major outer membrane protein induces antibodies of different specificity compared to those following a natural live infection.

    PubMed

    Kollipara, Avinash; Polkinghorne, Adam; Beagley, Kenneth W; Timms, Peter

    2013-01-01

    Chlamydial infection in koalas is common across the east coast of Australia and causes significant morbidity, infertility and mortality. An effective vaccine to prevent the adverse consequences of chlamydial infections in koalas (particularly blindness and infertility in females) would provide an important management tool to prevent further population decline of this species. An important step towards developing a vaccine in koalas is to understand the host immune response to chlamydial infection. In this study, we used the Pepscan methodology to identify B cell epitopes across the Major Outer Membrane Protein (MOMP) of four C. pecorum strains/genotypes that are recognized, either following (a) natural live infection or (b) administration of a recombinant MOMP vaccine. Plasma antibodies from the koalas naturally infected with a C. pecorum G genotype strain recognised the epitopes located in the variable domain (VD) four of MOMP G and also VD4 of MOMP H. By comparison, plasma antibodies from an animal infected with a C. pecorum F genotype strain recognised epitopes in VD1, 2 and 4 of MOMP F, but not from other genotype MOMPs. When Chlamydia-free koalas were immunised with recombinant MOMP protein they produced antibodies not only against epitopes in the VDs but also in conserved domains of MOMP. Naturally infected koalas immunised with recombinant MOMP protein also produced antibodies against epitopes in the conserved domains. This work paves the way for further refinement of a MOMP-based Chlamydia vaccine that will offer wide cross-protection against the variety of chlamydial infections circulating in wild koala populations.

  15. Protective immunity against Chlamydia trachomatis genital infection induced by a vaccine based on the major outer membrane multi-epitope human papillomavirus major capsid protein L1.

    PubMed

    Xu, Wen; Liu, Jianxiao; Gong, Wenci; Chen, Jun; Zhu, Shanli; Zhang, Lifang

    2011-03-24

    The administration of an efficacious vaccine is the most effective long-term measure to control the genital tract infection caused by Chlamydia trachomatis (Ct) in humans. The current challenge for Ct vaccine development is to develop an effective delivery vehicle for induction of a high level of mucosal T and complementary B cell responses. We evaluated the immunogenicity and efficacy of a candidate vaccine comprising the major outer membrane protein (MOMP) multiepitope of Ct delivered with the human papillomavirus (HPV) major capsid protein L1 as a vehicle with adjuvant properties, in a murine model of chlamydial genital infection. A recombinant plasmid pcDNA3.1(+) containing mammalian codon-optimization HPV6b L1 gene and Ct MOMP multiepitope was constructed. The Ct MOMP multiepitope containing T- and B-cell epitope-rich peptides was inserted into C-terminal of HPV6b L1-coding sequence. The constructed plasmid after verified by enzyme restriction assay and DNA sequencing was transfected into COS-7 cells. Expression of the chimeric gene in COS-7 cells was confirmed by RT-PCR, Western blot analysis and immunofluorescence assay. Results revealed successful expression of the chimeric HPV6b L1/Ct MOMP multiepitope gene both at the mRNA and protein levels in transfected COS-7 cells. Intramuscular (IM) administration in mice was able to elicit not only antibodies against Ct MOMP, but also Th1 and cytotoxic T lymphocyte activity against the Ct MOMP epitopes. In addition, recipients of IM immunization of HPV6b L1/Ct MOMP multiepitope were highly resistant to infection. Altogether, the results suggested that IM delivery of HPV6b L1-MOMP multiepitope may be a suitable vaccine regimen potentially capable of inducing protective mucosal immunity against Ct infection.

  16. Mutation of the gene encoding a major outer-membrane protein in Xanthomonas campestris pv. campestris causes pleiotropic effects, including loss of pathogenicity.

    PubMed

    Chen, Yih-Yuan; Wu, Chieh-Hao; Lin, Juey-Wen; Weng, Shu-Fen; Tseng, Yi-Hsiung

    2010-09-01

    Xanthomonas campestris pv. campestris (Xcc) is the phytopathogen that causes black rot in crucifers. The xanthan polysaccharide and extracellular enzymes produced by this organism are virulence factors, the expression of which is upregulated by Clp (CRP-like protein) and DSF (diffusible signal factor), which is synthesized by RpfF. It is also known that biofilm formation/dispersal, regulated by the effect of controlled synthesis of DSF on cell-cell signalling, is required for virulence. Furthermore, a deficiency in DSF causes cell aggregation with concomitant production of a gum-like substance that can be dispersed by addition of DSF or digested by exogenous endo-beta-1,4-mannanase expressed by Xcc. In this study, Western blotting of proteins from a mopB mutant (XcMopB) showed Xcc MopB to be the major outer-membrane protein (OMP); Xcc MopB shared over 97 % identity with homologues from other members of Xanthomonas. Similarly to the rpfF mutant, XcMopB formed aggregates with simultaneous production of a gummy substance, but these aggregates could not be dispersed by DSF or endo-beta-1,4-mannanase, indicating that different mechanisms were involved in aggregation. In addition, XcMopB showed surface deformation, altered OMP composition, impaired xanthan production, increased sensitivity to stressful conditions including SDS, elevated temperature and changes in pH, reduced adhesion and motility and defects in pathogenesis. The finding that the major OMP is required for pathogenicity is unprecedented in phytopathogenic bacteria.

  17. Characterization of Francisella tularensis Outer Membrane Proteins▿ †

    PubMed Central

    Huntley, Jason F.; Conley, Patrick G.; Hagman, Kayla E.; Norgard, Michael V.

    2007-01-01

    Francisella tularensis is a gram-negative coccobacillus that is capable of causing severe, fatal disease in a number of mammalian species, including humans. Little is known about the proteins that are surface exposed on the outer membrane (OM) of F. tularensis, yet identification of such proteins is potentially fundamental to understanding the initial infection process, intracellular survival, virulence, immune evasion and, ultimately, vaccine development. To facilitate the identification of putative F. tularensis outer membrane proteins (OMPs), the genomes of both the type A strain (Schu S4) and type B strain (LVS) were subjected to six bioinformatic analyses for OMP signatures. Compilation of the bioinformatic predictions highlighted 16 putative OMPs, which were cloned and expressed for the generation of polyclonal antisera. Total membranes were extracted from both Schu S4 and LVS by spheroplasting and osmotic lysis, followed by sucrose density gradient centrifugation, which separated OMs from cytoplasmic (inner) membrane and other cellular compartments. Validation of OM separation and enrichment was confirmed by probing sucrose gradient fractions with antibodies to putative OMPs and inner membrane proteins. F. tularensis OMs typically migrated in sucrose gradients between densities of 1.17 and 1.20 g/ml, which differed from densities typically observed for other gram-negative bacteria (1.21 to 1.24 g/ml). Finally, the identities of immunogenic proteins were determined by separation on two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass spectrometric analysis. This is the first report of a direct method for F. tularensis OM isolation that, in combination with computational predictions, offers a more comprehensive approach for the characterization of F. tularensis OMPs. PMID:17114266

  18. Cationic lipid enhances assembly of bacterial cell division protein FtsZ: a possible role of bacterial membrane in FtsZ assembly dynamics.

    PubMed

    Kuchibhatla, Anuradha; Bellare, Jayesh; Panda, Dulal

    2011-11-01

    The assembly of FtsZ plays an important role in bacterial cell division. Lipids in the bacterial cell membrane have been suggested to play a role in directing the site of FtsZ assembly. Using lipid monolayer and bilayer (liposome) systems, we directly examined the effects of cationic lipids on FtsZ assembly. We found that cationic lipids enhanced the assembly of FtsZ in association with an increase in the GTPase activity of FtsZ. The system consisting of lipid monolayer and bilayer (liposome) may mimic the bacterial membrane and therefore, the data might indicate the influence of bacterial membrane on the assembly of FtsZ protofilaments.

  19. TonB-dependent outer membrane transport: going for Baroque?

    PubMed

    Wiener, Michael C

    2005-08-01

    The import of essential organometallic micronutrients (such as iron-siderophores and vitamin B(12)) across the outer membrane of Gram-negative bacteria proceeds via TonB-dependent outer membrane transporters (TBDTs). The TBDT couples to the TonB protein, which is part of a multiprotein complex in the plasma (inner) membrane. Five crystal structures of TBDTs illustrate clearly the architecture of the protein in energy-independent substrate-free and substrate-bound states. In each of the TBDT structures, an N-terminal hatch (or plug or cork) domain occludes the lumen of a 22-stranded beta barrel. The manner by which substrate passes through the transporter (the "hatch-barrel problem") is currently unknown. Solution NMR and X-ray crystallographic structures of various TonB domains indicate a striking structural plasticity of this protein. Thermodynamic, biochemical and bacteriological studies of TonB and TBDTs indicate further that existing structures do not yet capture critical energy-dependent and in vivo conformations of the transport cycle. The reconciliation of structural and non-structural experimental data, and the unambiguous experimental elucidation of a detailed molecular mechanism of transport are current challenges for this field.

  20. In silico studies of outer membrane of Neisseria meningitidis por a: its expression and immunogenic properties.

    PubMed

    Behrouzi, Ava; Bouzari, Saeid; Siadat, Seyed Davar; Irani, Shiva

    2014-01-01

    Neisseria meningitidis is a major causative agent of bacterial septicemia and meningitis in humans. Currently, there are no vaccines to prevent disease caused by strains of N.meningitidis serogroup B. The Class 1 Outer Membrane Protein (OMP) has been named porA which is a cation selective transmembrane protein of 45 KDa that forms trimeric pore in the meningococcal outer membrane. PorA from serogroup B N. meningitidis was cloned into prokaryotic expression vector pBAD-gIIIA. Recombinant protein was expressed with arabinose and affinity purified by Ni-NTA agarose, SDS-PAGE and western blotting were performed for protein determination and verification. BALB/c mice were immunized subcutaneously with purified rPorA together with alum adjuvant. Serum antibody responses to serogroups B N.meningitidis were determined by ELISA. Serum IgG response significantly increased in the group immunized with rPorA together with alum adjuvant in comparison with control groups. These results suggest that rPorA can be a potential vaccine candidate for serogroup B N.meningitidis.

  1. In Silico Studies of Outer Membrane of Neisseria Meningitidis Por A: Its Expression and Immunogenic Properties

    PubMed Central

    Behrouzi, Ava; Bouzari, Saeid; Siadat, Seyed Davar; Irani, Shiva

    2014-01-01

    Neisseria meningitidis is a major causative agent of bacterial septicemia and meningitis in humans. Currently, there are no vaccines to prevent disease caused by strains of N.meningitidis serogroup B. The Class 1 Outer Membrane Protein (OMP) has been named porA which is a cation selective transmembrane protein of 45 KDa that forms trimeric pore in the meningococcal outer membrane. PorA from serogroup B N. meningitidis was cloned into prokaryotic expression vector pBAD-gIIIA. Recombinant protein was expressed with arabinose and affinity purified by Ni-NTA agarose, SDS-PAGE and western blotting were performed for protein determination and verification. BALB/c mice were immunized subcutaneously with purified rPorA together with alum adjuvant. Serum antibody responses to serogroups B N.meningitidis were determined by ELISA. Serum IgG response significantly increased in the group immunized with rPorA together with alum adjuvant in comparison with control groups. These results suggest that rPorA can be a potential vaccine candidate for serogroup B N.meningitidis. PMID:25317403

  2. Major Outer Membrane Protein Omp25 of Brucella suis Is Involved in Inhibition of Tumor Necrosis Factor Alpha Production during Infection of Human Macrophages

    PubMed Central

    Jubier-Maurin, Véronique; Boigegrain, Rose-Anne; Cloeckaert, Axel; Gross, Antoine; Alvarez-Martinez, Maria-Teresa; Terraza, Annie; Liautard, Janny; Köhler, Stephan; Rouot, Bruno; Dornand, Jacques; Liautard, Jean Pierre

    2001-01-01

    Brucella spp. can establish themselves and cause disease in humans and animals. The mechanisms by which Brucella spp. evade the antibacterial defenses of their host, however, remain largely unknown. We have previously reported that live brucellae failed to induce tumor necrosis factor alpha (TNF-α) production upon human macrophage infection. This inhibition is associated with a nonidentified protein that is released into culture medium. Outer membrane proteins (OMPs) of gram-negative bacteria have been shown to modulate macrophage functions, including cytokine production. Thus, we have analyzed the effects of two major OMPs (Omp25 and Omp31) of Brucella suis 1330 (wild-type [WT] B. suis) on TNF-α production. For this purpose, omp25 and omp31 null mutants of B. suis (Δomp25 B. suis and Δomp31 B. suis, respectively) were constructed and analyzed for the ability to activate human macrophages to secrete TNF-α. We showed that, in contrast to WT B. suis or Δomp31 B. suis, Δomp25 B. suis induced TNF-α production when phagocytosed by human macrophages. The complementation of Δomp25 B. suis with WT omp25 (Δomp25-omp25 B. suis mutant) significantly reversed this effect: Δomp25-omp25 B. suis-infected macrophages secreted significantly less TNF-α than did macrophages infected with the Δomp25 B. suis mutant. Furthermore, pretreatment of WT B. suis with an anti-Omp25 monoclonal antibody directed against an epitope exposed at the surface of the bacteria resulted in substancial TNF-α production during macrophage infection. These observations demonstrated that Omp25 of B. suis is involved in the negative regulation of TNF-α production upon infection of human macrophages. PMID:11447156

  3. A shared antigen among Vibrio species: outer membrane protein-OmpK as a versatile Vibriosis vaccine candidate in Orange-spotted grouper (Epinephelus coioides).

    PubMed

    Li, Ningqiu; Yang, Zhihui; Bai, Junjie; Fu, Xiaozhe; Liu, Lihui; Shi, Cunbin; Wu, Shuqin

    2010-01-01

    The outer membrane protein-OmpK has been considered as a vaccine candidate for the prevention of infections due to Vibrio harveyi, Vibrio alginolyticus and Vibrio parahaemolyticus in fish. Interestingly, the polyclonal antibody raised against the recombinant OmpK from V. harveyi strain EcGs020802 recognized the OmpK homologues from other strains of Vibrio species by immunoblotting. The ompK genes from 19 Vibrio strains including V. harveyi (11), V. alginolyticus (6) and V. parahaemolyticus (2) were then cloned and sequenced. Alignment analysis based on the amino acid sequences indicated that the OmpK from V. harveyi strain EcGs020802 had 71.7-99.2% of identities with those from V. harveyi, V. alginolyticus and V. parahaemolyticus. Western blot analysis revealed that the corresponding native proteins ranged between 28 and 31 kDa, consistent with predicated molecular weight of OmpK in Vibrio strains. Furthermore, the cross-protective property of recombinant OmpK was evaluated through challenge with heterogeneous virulent Vibrio strains in Orange-spotted groupers (Epinephelus coioides). Orange-spotted groupers vaccinated with recombinant OmpK were more tolerant of the infection by virulent Vibrio strains and their relative percentage survival (RPS) was correlative with the degree of the identity of deduced amino acid sequences of their OmpK. Taken together, the OmpK is a conserved protective antigen among tested Vibrio species and might be a potentially versatile vaccine candidate for the prevention of infections due to V. harveyi, V. alginolyticus and V. parahaemolyticus.

  4. Role of outer membrane protein H (OmpH)- and OmpA-specific monoclonal antibodies from hybridoma tumors in protection of mice against Pasteurella multocida.

    PubMed Central

    Vasfi Marandi, M; Mittal, K R

    1997-01-01

    Two major outer membrane proteins of Pasteurella multocida, designated OmpH and OmpA, were characterized and shown to be related to the families of porin and heat-modifiable proteins, respectively. The backpack hybridoma tumor system in BALB/c mice was used to continuously deliver immunoglobulin G2b (IgG2b) monoclonal antibodies (MAbs) specific for OmpH (MAb MT1) and OmpA (MAb MT4.1). MAbs were detected in serum and peritoneal lavage samples of mice bearing hybridoma tumors by an enzyme-linked immunosorbent assay and an immunoblot assay. Highly significant protection was observed in mice bearing MT1 hybridoma tumors against both intraperitoneal and intranasal challenge infections with homologous nontoxigenic P. multocida strains possessing MAb MT1-reacting epitopes, whereas the mice bearing MT4.1 hybridoma tumors were not protected. The numbers of P. multocida organisms in the lungs of mice bearing MT1 hybridoma tumors were significantly less than those in lungs of mice bearing MT4.1 hybridoma tumors at 48 h postchallenge. These results indicate that the OmpH-specific MAb inhibited proliferation of P. multocida in the lungs. MAb MT1 was unable to kill P. multocida in vitro in the presence of complement. However, an enhanced phagocytosis by polymorphonuclear cells (PMNs) was observed in mice bearing MT1 hybridoma tumors. P. multocida induced a more extensive and rapid influx of PMNs into the peritoneal cavity of mice bearing MT1 hybridoma tumors than of mice bearing MT4.1 hybridoma tumors. The results of this study demonstrate for the first time that IgG MAbs against OmpH of P. multocida are involved in the protection of mice against lethal challenge infection by means of opsonization and inhibition of proliferation of P. multocida as a result of increased influx of PMNs into the infection site. PMID:9353026

  5. Expression of Haemophilus ducreyi collagen binding outer membrane protein NcaA is required for virulence in swine and human challenge models of chancroid.

    PubMed

    Fulcher, Robert A; Cole, Leah E; Janowicz, Diane M; Toffer, Kristen L; Fortney, Kate R; Katz, Barry P; Orndorff, Paul E; Spinola, Stanley M; Kawula, Thomas H

    2006-05-01

    Haemophilus ducreyi, the etiologic agent of the sexually transmitted genital ulcer disease chancroid, has been shown to associate with dermal collagen fibers within infected skin lesions. Here we describe NcaA, a previously uncharacterized outer membrane protein that is important for H. ducreyi collagen binding and host colonization. An H. ducreyi strain lacking the ncaA gene was impaired in adherence to type I collagen but not fibronectin (plasma or cellular form) or heparin. The mutation had no effect on serum resistance or binding to HaCaT keratinocytes or human foreskin fibroblasts in vitro. Escherichia coli expressing H. ducreyi NcaA bound to type I collagen, demonstrating that NcaA is sufficient to confer collagen attachment. The importance of NcaA in H. ducreyi pathogenesis was assessed using both swine and human experimental models of chancroid. In the swine model, 20% of lesions from sites inoculated with the ncaA mutant were culture positive for H. ducreyi 7 days after inoculation, compared to 73% of wild-type-inoculated sites. The average number of CFU recovered from mutant-inoculated lesions was also significantly reduced compared to that recovered from wild-type-inoculated sites at both 2 and 7 days after inoculation. In the human challenge model, 8 of 30 sites inoculated with wild-type H. ducreyi progressed to the pustular stage, compared to 0 of 30 sites inoculated with the ncaA mutant. Together these results demonstrate that the collagen binding protein NcaA is required for H. ducreyi infection.

  6. Anaplasma marginale Outer Membrane Protein A Is an Adhesin That Recognizes Sialylated and Fucosylated Glycans and Functionally Depends on an Essential Binding Domain.

    PubMed

    Hebert, Kathryn S; Seidman, David; Oki, Aminat T; Izac, Jerilyn; Emani, Sarvani; Oliver, Lee D; Miller, Daniel P; Tegels, Brittney K; Kannagi, Reiji; Marconi, Richard T; Carlyon, Jason A

    2017-03-01

    Anaplasma marginale causes bovine anaplasmosis, a debilitating and potentially fatal tick-borne infection of cattle. Because A. marginale is an obligate intracellular organism, its adhesins that mediate entry into host cells are essential for survival. Here, we demonstrate that A. marginale outer membrane protein A (AmOmpA; AM854) contributes to the invasion of mammalian and tick host cells. AmOmpA exhibits predicted structural homology to OmpA of A. phagocytophilum (ApOmpA), an adhesin that uses key lysine and glycine residues to interact with α2,3-sialylated and α1,3-fucosylated glycan receptors, including 6-sulfo-sialyl Lewis x (6-sulfo-sLe(x)). Antisera against AmOmpA or its predicted binding domain inhibits A. marginale infection of host cells. Residues G55 and K58 are contributory, and K59 is essential for recombinant AmOmpA to bind to host cells. Enzymatic removal of α2,3-sialic acid and α1,3-fucose residues from host cell surfaces makes them less supportive of AmOmpA binding. AmOmpA is both an adhesin and an invasin, as coating inert beads with it confers adhesiveness and invasiveness. Recombinant forms of AmOmpA and ApOmpA competitively antagonize A. marginale infection of host cells, but a monoclonal antibody against 6-sulfo-sLe(x) fails to inhibit AmOmpA adhesion and A. marginale infection. Thus, the two OmpA proteins bind related but structurally distinct receptors. This study provides a detailed understanding of AmOmpA function, identifies its essential residues that can be targeted by blocking antibody to reduce infection, and determines that it binds to one or more α2,3-sialylated and α1,3-fucosylated glycan receptors that are unique from those targeted by ApOmpA.

  7. Preferential packing of acidic glycosidases and proteases into Bacteroides outer membrane vesicles.

    PubMed

    Elhenawy, Wael; Debelyy, Mykhaylo O; Feldman, Mario F

    2014-03-11

    Outer membrane vesicles (OMV) are spherical membranous structures released from the outer membrane (OM) of Gram-negative bacteria. OMV have been proposed to play several different roles during both pathogenesis and symbiosis. Despite the fact that OMV were described several decades ago, their biogenesis is a poorly characterized process. Whether OMV are produced by an active mechanism or by passive disintegration of the OM is a still matter of controversy. Bacteroides fragilis and Bacteroides thetaiotaomicron are important members of the human microbiota. In this work, we determined and compared the protein compositions of OM and OMV from B. fragilis and B. thetaiotaomicron. SDS-PAGE analysis of both fractions revealed dramatically different protein profiles. Proteomic analysis of OM and OMV in B. fragilis identified more than 40 proteins found exclusively in OMV and more than 30 proteins detectable only in the OM. The OMV-specific proteome showed a high prevalence of glycosidases and proteases, some of which were shown to be active in vitro. Similar results were obtained for B. thetaiotaomicron. Most of the OMV-exclusive proteins were acidic. Based on these results, we propose that these species possess machinery devoted to selectively pack acidic proteins into the OMV. These OMV equipped with hydrolytic enzymes could help in securing nutrients for the benefit of the whole bacterial community present in the microbiota, uncovering a novel function for bacterial OMV. IMPORTANCE The members of genus Bacteroides are key players in the symbiosis between the human host and the gut microbiota. It is known for its ability to degrade a wide variety of glycans that are not substrates for human glycosidases. The cleaved glycans can be utilized by Bacteroides and other microbiota members, resulting in the production of short-chain fatty acids that are beneficial for the host. Although members of the genus Bacteroides are known to secrete different hydrolases, their secretion

  8. Enhancement of uptake of lipopolysaccharide in macrophages by the major outer membrane protein OmpA of gram-negative bacteria.

    PubMed Central

    Korn, A; Rajabi, Z; Wassum, B; Ruiner, W; Nixdorff, K

    1995-01-01

    Monoclonal antibodies (MAb) to lipopolysaccharide (LPS) and to the major outer membrane protein OmpA from Proteus mirabilis were generated and used to monitor the kinetics of uptake in macrophages of LPS as well as LPS bound to OmpA. Uptake was measured by a modified enzyme-linked immunosorbent assay (ELISA) in a microtiter culture system. The MAb were of various immunoglobulin G subclasses and showed strong reactivities with their antigens. Four hybridoma clones recognizing LPS and three recognizing OmpA from P. mirabilis 19 were selected for the present study on the basis of reactions in ELISA and Western blot (immunoblot) analyses. In the uptake assay, it was possible to differentiate between antigen on the cell surface and antigen which had been internalized. Uptake of LPS by macrophages was relatively rapid during the first 4 h of culture and then progressed more slowly over the remaining 24-h observation period. The level of detection of LPS in this assay system was in the nanogram range. When macrophages were pulsed with LPS for 30 min and subsequently washed to remove antigen not bound to the cells, the amount of LPS detectable on the macrophage surface decreased progressively for 3 h after the pulse, which indicated internalization of the antigen. Thereafter, LPS rose to an increased level on the cell surface. The rate of uptake of LPS was more rapid when it was in complex with OmpA. When the fate of OmpA was monitored in the same LPS-protein complexes by use of MAb to OmpA in a pulse experiment, the level of protein measured on the cell surface decreased after an initial rise, which again indicated internalization, but the protein did not reappear on the cell surface in a form detectable with the MAb. Compared with the LPS monitoring system, detection of OmpA associated with macrophages was weak, although the MAb to OmpA reacted strongly with the protein in the ELISA and Western blot analyses. PMID:7790087

  9. Voltage- and Tension-Dependent Lipid Mobility in the Outer Hair Cell Plasma Membrane

    NASA Astrophysics Data System (ADS)

    Oghalai, John S.; Zhao, Hong-Bo; Kutz, J. Walter; Brownell, William E.

    2000-01-01

    The mechanism responsible for electromotility of outer hair cells in the ear is unknown but is thought to reside within the plasma membrane. Lipid lateral diffusion in the outer hair cell plasma membrane is a sigmoidal function of transmembrane potential and bathing media osmolality. Cell depolarization or hyposmotic challenge shorten the cell and reduce membrane fluidity by half. Changing the membrane tension with amphipathic drugs results in similar reductions. These dynamic changes in membrane fluidity represent the modulation of membrane tension by lipid-protein interactions. The voltage dependence may be associated with the force-generating motors that contribute to the exquisite sensitivity of mammalian hearing.

  10. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions

    PubMed Central

    Schwechheimer, Carmen; Kuehn, Meta J.

    2017-01-01

    Outer-membrane vesicles (OMVs) are spherical buds of the outer membrane filled with periplasmic content and are commonly produced by Gram-negative bacteria. The production of OMVs allows bacteria to interact with their environment, and OMVs have been found to mediate diverse functions, including promoting pathogenesis, enabling bacterial survival during stress conditions and regulating microbial interactions within bacterial communities. Additionally, because of this functional versatility, researchers have begun to explore OMVs as a platform for bioengineering applications. In this Review, we discuss recent advances in the study of OMVs, focusing on new insights into the mechanisms of biogenesis and the functions of these vesicles. PMID:26373371

  11. 2D and 3D crystallization of a bacterial homologue of human vitamin C membrane transport proteins.

    PubMed

    Jeckelmann, Jean-Marc; Harder, Daniel; Ucurum, Zöhre; Fotiadis, Dimitrios

    2014-10-01

    Most organisms are able to synthesize vitamin C whereas humans are not. In order to contribute to the elucidation of the molecular working mechanism of vitamin C transport through biological membranes, we cloned, overexpressed, purified, functionally characterized, and 2D- and 3D-crystallized a bacterial protein (UraDp) with 29% of amino acid sequence identity to the human sodium-dependent vitamin C transporter 1 (SVCT1). Ligand-binding experiments by scintillation proximity assay revealed that uracil is a substrate preferably bound to UraDp. For structural analysis, we report on the production of tubular 2D crystals and present a first projection structure of UraDp from negatively stained tubes. On the other hand the successful growth of UraDp 3D crystals and their crystallographic analysis is described. These 3D crystals, which diffract X-rays to 4.2Å resolution, pave the way towards the high-resolution crystal structure of a bacterial homologue with high amino acid sequence identity to human SVCT1.

  12. Nodulation outer proteins: double-edged swords of symbiotic rhizobia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizobia are nitrogen-fixing bacteria that establish a nodule symbiosis with legumes. Nodule formation is the result of a complex bacterial infection process, which depends on signals and surface determinants produced by both symbiotic partners. Among them, rhizobial nodulation outer proteins (Nops)...

  13. Detection of outer membrane vesicles in Synechocystis PCC 6803

    PubMed Central

    Pardo, Yehudah A.; Florez, Catalina; Baker, Kristopher M.; Schertzer, Jeffrey W.; Mahler, Gretchen J.

    2015-01-01

    It has been well established that many species of Gram-negative bacteria release nanoscale outer membrane vesicles (OMVs) during normal growth. Furthermore, the roles of these structures in heterotrophic bacteria have been extensively characterized. However, little is known about the existence or function of OMVs in photoautotrophs. In the present study, we report for the first time the production of OMVs by the model photosynthetic organism Synechocystis sp. PCC 6803, a species of biotechnological importance. We detected extracellular proteins and lipids in cell-free supernatants derived from Synechocystis culture, yet the cytoplasmic and thylakoid membrane markers NADH oxidase and chlorophyll were absent. This indicated that the extracellular proteins and lipids derived from the outer membrane, and not from cell lysis. Furthermore, we identified spherical structures within the expected size range of OMVs in Synechocystis culture using scanning electron microscopy. Taken together, these results suggest that the repertoire of Gram-negative bacteria that are known to produce OMVs may be expanded to include Synechocystis PCC6803. Because of the considerable genetic characterization of Synechocystis in particular, our discovery has the potential to support novel biotechnological applications as well. PMID:26363014

  14. Antimicrobial peptides activate the Rcs regulon through the outer membrane lipoprotein RcsF.

    PubMed

    Farris, Carol; Sanowar, Sarah; Bader, Martin W; Pfuetzner, Richard; Miller, Samuel I

    2010-10-01

    Salmonella enterica species are exposed to envelope stresses due to their environmental and infectious lifestyles. Such stresses include amphipathic cationic antimicrobial peptides (CAMPs), and resistance to these peptides is an important property for microbial virulence for animals. Bacterial mechanisms used to sense and respond to CAMP-induced envelope stress include the RcsFCDB phosphorelay, which contributes to survival from polymyxin B exposure. The Rcs phosphorelay includes two inner membrane (IM) proteins, RcsC and RcsD; the response regulator RcsB; the accessory coregulator RcsA; and an outer membrane bound lipoprotein, RcsF. Transcriptional activation of the Rcs regulon occurred within minutes of exposure to CAMP and during the first detectable signs of CAMP-induced membrane disorder. Rcs transcriptional activation by CAMPs required RcsF and preservation of its two internal disulfide linkages. The rerouting of RcsF to the inner membrane or its synthesis as an unanchored periplasmic protein resulted in constitutive activation of the Rcs regulon and RcsCD-dependent phosphorylation. These findings suggest that RcsFCDB activation in response to CAMP-induced membrane disorder is a result of a change in structure or availability of RcsF to the IM signaling constituents of the Rcs phosphorelay.

  15. Outer Membrane Vesicle Production Facilitates LPS Remodeling and Outer Membrane Maintenance in Salmonella during Environmental Transitions

    PubMed Central

    Bonnington, Katherine E.

    2016-01-01

    ABSTRACT The ability of Gram-negative bacteria to carefully modulate outer membrane (OM) composition is essential to their survival. However, the asymmetric and heterogeneous structure of the Gram-negative OM poses unique challenges to the cell’s successful adaption to rapid environmental transitions. Although mechanisms to recycle and degrade OM phospholipid material exist, there is no known mechanism by which to remove unfavorable lipopolysaccharide (LPS) glycoforms, except slow dilution through cell growth. As all Gram-negative bacteria constitutively shed OM vesicles (OMVs), we propose that cells may utilize OMV formation as a way to selectively remove environmentally disadvantageous LPS species. We examined the native kinetics of OM composition during physiologically relevant environmental changes in Salmonella enterica, a well-characterized model system for activation of PhoP/Q and PmrA/B two-component systems (TCSs). In response to acidic pH, toxic metals, antimicrobial peptides, and lack of divalent cations, these TCSs modify the LPS lipid A and core, lengthen the O antigen, and upregulate specific OM proteins. An environmental change to PhoP/Q- and PmrA/B-activating conditions simultaneously induced the addition of modified species of LPS to the OM, downregulation of previously dominant species of LPS, greater OMV production, and increased OMV diameter. Comparison of the relative abundance of lipid A species present in the OM and the newly budded OMVs following two sets of rapid environmental shifts revealed the retention of lipid A species with modified phosphate moieties in the OM concomitant with the selective loss of palmitoylated species via vesiculation following exposure to moderately acidic environmental conditions. PMID:27795394

  16. Outer membrane vesicles as platform vaccine technology

    PubMed Central

    Stork, Michiel; van der Ley, Peter

    2015-01-01

    Abstract Outer membrane vesicles (OMVs) are released spontaneously during growth by many Gram‐negative bacteria. They present a range of surface antigens in a native conformation and have natural properties like immunogenicity, self‐adjuvation and uptake by immune cells which make them attractive for application as vaccines against pathogenic bacteria. In particular with Neisseria meningitidis, they have been investigated extensively and an OMV‐containing meningococcal vaccine has recently been approved by regulatory agencies. Genetic engineering of the OMV‐producing bacteria can be used to improve and expand their usefulness as vaccines. Recent work on meningitis B vaccines shows that OMVs can be modified, such as for lipopolysaccharide reactogenicity, to yield an OMV product that is safe and effective. The overexpression of crucial antigens or simultaneous expression of multiple antigenic variants as well as the expression of heterologous antigens enable expansion of their range of applications. In addition, modifications may increase the yield of OMV production and can be combined with specific production processes to obtain high amounts of well‐defined, stable and uniform OMV particle vaccine products. Further improvement can facilitate the development of OMVs as platform vaccine product for multiple applications. PMID:26912077

  17. Hopanoids as functional analogues of cholesterol in bacterial membranes

    PubMed Central

    Sáenz, James P.; Grosser, Daniel; Bradley, Alexander S.; Lagny, Thibaut J.; Lavrynenko, Oksana; Broda, Martyna; Simons, Kai

    2015-01-01

    The functionality of cellular membranes relies on the molecular order imparted by lipids. In eukaryotes, sterols such as cholesterol modulate membrane order, yet they are not typically found in prokaryotes. The structurally similar bacterial hopanoids exhibit similar ordering properties as sterols in vitro, but their exact physiological role in living bacteria is relatively uncharted. We present evidence that hopanoids interact with glycolipids in bacterial outer membranes to form a highly ordered bilayer in a manner analogous to the interaction of sterols with sphingolipids in eukaryotic plasma membranes. Furthermore, multidrug transport is impaired in a hopanoid-deficient mutant of the gram-negative Methylobacterium extorquens, which introduces a link between membrane order and an energy-dependent, membrane-associated function in prokaryotes. Thus, we reveal a convergence in the architecture of bacterial and eukaryotic membranes and implicate the biosynthetic pathways of hopanoids and other order-modulating lipids as potential targets to fight pathogenic multidrug resistance. PMID:26351677

  18. Rapid characterization of outer-membrane proteins in Neisseria lactamica by SELDI-TOF-MS (surface-enhanced laser desorption ionization-time-of-flight MS) for use in a meningococcal vaccine.

    PubMed

    Mukhopadhyay, Tarit Kumar; Halliwell, Denise; O'Dwyer, Cliona; Shamlou, Parviz Ayazi; Levy, Myriam Susana; Allison, Nigel; Gorringe, Andrew; Reddin, Karen M

    2005-04-01

    Immunological and epidemiological evidence suggests that the development of natural immunity to meningococcal disease results from colonization of the nasopharynx by commensal Neisseria species, particularly with Neisseria lactamica. We have reported previously that immunization with N. lactamica outer-membrane vesicles containing the major OMPs (outer-membrane proteins) protected mice against lethal challenge with meningococci of diverse serogroups and serotypes and has the potential to form the basis of a vaccine against meningococcal diseases [Oliver, Reddin, Bracegirdle et al. (2002) Infect. Immun. 70, 3621-3626]. In the present study, we have shown that biomass production and the profile of outer-membrane vesicle proteins may be affected by fermentation conditions and, in particular, media composition. Ciphergen SELDI-TOF Protein Chips were used as a rapid and sensitive new method in comparison with conventional SDS/PAGE. SELDI-TOF-MS (surface-enhanced laser-desorption ionization-time-of-flight MS) reproducibly identified three major OMPs (NspA, RmpM and PorB) and detected the changes in the protein profile when the growth medium was altered. The findings of this work indicate that SELDI-TOF-MS is a useful tool for the rapid optimization of OMP production in industrial fermentation processes and can be adapted as a Process Analytical Technology.

  19. Using major outer membrane protein typing as an epidemiological tool to investigate outbreaks caused by milk-borne Campylobacter jejuni isolates in California.

    PubMed

    Jay-Russell, Michele T; Mandrell, Robert E; Yuan, Jean; Bates, Anna; Manalac, Rosa; Mohle-Boetani, Janet; Kimura, Akiko; Lidgard, Janice; Miller, William G

    2013-01-01

    We describe using major outer membrane protein (MOMP) typing as a screen to compare the Campylobacter jejuni porA gene sequences of clinical outbreak strains from human stool with the porA sequences of dairy farm strains isolated during two milk-borne campylobacteriosis outbreak investigations in California. The genetic relatedness of clinical and environmental strains with identical or closely related porA sequences was confirmed by multilocus sequence typing and pulsed-field gel electrophoresis analysis. The first outbreak involved 1,644 C. jejuni infections at 11 state correctional facilities and was associated with consumption of pasteurized milk supplied by an on-site dairy (dairy A) at a prison in the central valley. The second outbreak involved eight confirmed and three suspect C. jejuni cases linked to consumption of commercial raw milk and raw chocolate colostrum at another central valley dairy (dairy B). Both dairies bottled fluid milk on the farm and distributed the finished product to off-site locations. Altogether, C. jejuni was isolated from 7 of 15 (46.7%) bovine fecal, 12 of 20 (60%) flush alley water, and 1 of 20 (5%) lagoon samples collected on dairy A. At dairy B, C. jejuni was cultured from 9 of 26 (34.6%) bovine fecal samples. Environmental strains indistinguishable from the clinical outbreak strains were found in five flush alley water samples (dairy A) and four bovine fecal samples (dairy B). The findings demonstrate that MOMP typing is a useful tool to triage environmental isolates prior to conducting more labor-intensive molecular typing methods.

  20. Evaluation of immunogenicity and protective efficacy of a liposome containing Brucella abortus S19 outer membrane protein in BALB/c mice

    PubMed Central

    Mukherjee, F.; Prasad, A.; Bahekar, V. S.; Rana, S. K.; Rajendra, L.; Sharma, G. K.; Srinivasan, V. A.

    2016-01-01

    The use of liposome as an adjuvant and a vaccine carrier has been cited previously in the literature. It has also been shown to be effective in enhancing the immunogenicity of vaccine candidates. BALB/c mice immunized subcutaneously with outer membrane protein (OMP) of Brucella abortus S19 vaccine strain entrapped in a commercial cationic liposome (S19-OMP-liposome) for vaccine delivery, showed enhanced protection (P<0.05) compared to groups of mice inoculated with S19 OMP alone, S19 live B. abortus vaccine and liposome alone, when challenged intra-peritoneally with virulent B. abortus strain 544 at 30 days post-immunization (DPI). The S19-OMP-liposome preparation was found to be safer compared to the live B. abortus S19 vaccine at 15 days post challenge (DPC), as evidenced by the significant difference in spleen weight between S19-OMP-liposome, S19 OMP and S19 live as well as the liposome control groups (P<0.01). Antibody isotype response profiles of the experimental groups indicated that the immune response was Th1 cell mediated. The protective advantage conferred to mice immunized with S19-OMP entrapped in liposome over those immunized with the live B. abortus S19 version, could probably be related to the significantly different response of IgG2b at 30 DPI (P<0.01), IgG2a (P<0.01), IgG2b (P<0.01) and IgG3 (P<0.05) at the DPC stages, respectively. PMID:27656221

  1. Roles of the outer membrane protein AsmA of Salmonella enterica in the control of marRAB expression and invasion of epithelial cells.

    PubMed

    Prieto, Ana I; Hernández, Sara B; Cota, Ignacio; Pucciarelli, M Graciela; Orlov, Yuri; Ramos-Morales, Francisco; García-del Portillo, Francisco; Casadesús, Josep

    2009-06-01

    A genetic screen for suppressors of bile sensitivity in DNA adenine methylase (dam) mutants of Salmonella enterica serovar Typhimurium yielded insertions in an uncharacterized locus homologous to the Escherichia coli asmA gene. Disruption of asmA suppressed bile sensitivity also in phoP and wec mutants of S. enterica and increased the MIC of sodium deoxycholate for the parental strain ATCC 14028. Increased levels of marA mRNA were found in asmA, asmA dam, asmA phoP, and asmA wec strains of S. enterica, suggesting that lack of AsmA activates expression of the marRAB operon. Hence, asmA mutations may enhance bile resistance by inducing gene expression changes in the marRAB-controlled Mar regulon. In silico analysis of AsmA structure predicted the existence of one transmembrane domain. Biochemical analysis of subcellular fractions revealed that the asmA gene of S. enterica encodes a protein of approximately 70 kDa located in the outer membrane. Because AsmA is unrelated to known transport and/or efflux systems, we propose that activation of marRAB in asmA mutants may be a consequence of envelope reorganization. Competitive infection of BALB/c mice with asmA(+) and asmA isogenic strains indicated that lack of AsmA attenuates Salmonella virulence by the oral route but not by the intraperitoneal route. Furthermore, asmA mutants showed a reduced ability to invade epithelial cells in vitro.

  2. Genetic diversity of Chlamydia pecorum strains in wild koala locations across Australia and the implications for a recombinant C. pecorum major outer membrane protein bas