Sample records for bacterial pathogen chlamydia

  1. Human and Pathogen Factors Associated with Chlamydia trachomatis-Related Infertility in Women

    PubMed Central

    Menon, S.; Timms, P.; Allan, J. A.; Alexander, K.; Rombauts, L.; Horner, P.; Keltz, M.; Hocking, J.

    2015-01-01

    SUMMARY Chlamydia trachomatis is the most common bacterial sexually transmitted pathogen worldwide. Infection can result in serious reproductive pathologies, including pelvic inflammatory disease, ectopic pregnancy, and infertility, in women. However, the processes that result in these reproductive pathologies have not been well defined. Here we review the evidence for the human disease burden of these chlamydial reproductive pathologies. We then review human-based evidence that links Chlamydia with reproductive pathologies in women. We present data supporting the idea that host, immunological, epidemiological, and pathogen factors may all contribute to the development of infertility. Specifically, we review the existing evidence that host and pathogen genotypes, host hormone status, age of sexual debut, sexual behavior, coinfections, and repeat infections are all likely to be contributory factors in development of infertility. Pathogen factors such as infectious burden, treatment failure, and tissue tropisms or ascension capacity are also potential contributory factors. We present four possible processes of pathology development and how these processes are supported by the published data. We highlight the limitations of the evidence and propose future studies that could improve our understanding of how chlamydial infertility in women occurs and possible future interventions to reduce this disease burden. PMID:26310245

  2. Pathogenic Chlamydia Lack a Classical Sacculus but Synthesize a Narrow, Mid-cell Peptidoglycan Ring, Regulated by MreB, for Cell Division

    PubMed Central

    Packiam, Mathanraj; Hsu, Yen-Pang; Tekkam, Srinivas; Hall, Edward; Rittichier, Jonathan T.; VanNieuwenhze, Michael; Brun, Yves V.; Maurelli, Anthony T.

    2016-01-01

    The peptidoglycan (PG) cell wall is a peptide cross-linked glycan polymer essential for bacterial division and maintenance of cell shape and hydrostatic pressure. Bacteria in the Chlamydiales were long thought to lack PG until recent advances in PG labeling technologies revealed the presence of this critical cell wall component in Chlamydia trachomatis. In this study, we utilize bio-orthogonal D-amino acid dipeptide probes combined with super-resolution microscopy to demonstrate that four pathogenic Chlamydiae species each possess a ≤ 140 nm wide PG ring limited to the division plane during the replicative phase of their developmental cycles. Assembly of this PG ring is rapid, processive, and linked to the bacterial actin-like protein, MreB. Both MreB polymerization and PG biosynthesis occur only in the intracellular form of pathogenic Chlamydia and are required for cell enlargement, division, and transition between the microbe’s developmental forms. Our kinetic, molecular, and biochemical analyses suggest that the development of this limited, transient, PG ring structure is the result of pathoadaptation by Chlamydia to an intracellular niche within its vertebrate host. PMID:27144308

  3. Pathogenic Chlamydia Lack a Classical Sacculus but Synthesize a Narrow, Mid-cell Peptidoglycan Ring, Regulated by MreB, for Cell Division.

    PubMed

    Liechti, George; Kuru, Erkin; Packiam, Mathanraj; Hsu, Yen-Pang; Tekkam, Srinivas; Hall, Edward; Rittichier, Jonathan T; VanNieuwenhze, Michael; Brun, Yves V; Maurelli, Anthony T

    2016-05-01

    The peptidoglycan (PG) cell wall is a peptide cross-linked glycan polymer essential for bacterial division and maintenance of cell shape and hydrostatic pressure. Bacteria in the Chlamydiales were long thought to lack PG until recent advances in PG labeling technologies revealed the presence of this critical cell wall component in Chlamydia trachomatis. In this study, we utilize bio-orthogonal D-amino acid dipeptide probes combined with super-resolution microscopy to demonstrate that four pathogenic Chlamydiae species each possess a ≤ 140 nm wide PG ring limited to the division plane during the replicative phase of their developmental cycles. Assembly of this PG ring is rapid, processive, and linked to the bacterial actin-like protein, MreB. Both MreB polymerization and PG biosynthesis occur only in the intracellular form of pathogenic Chlamydia and are required for cell enlargement, division, and transition between the microbe's developmental forms. Our kinetic, molecular, and biochemical analyses suggest that the development of this limited, transient, PG ring structure is the result of pathoadaptation by Chlamydia to an intracellular niche within its vertebrate host.

  4. Polarized Cell Division of Chlamydia trachomatis

    PubMed Central

    Abdelrahman, Yasser; Ouellette, Scot P.; Belland, Robert J.; Cox, John V.

    2016-01-01

    Bacterial cell division predominantly occurs by a highly conserved process, termed binary fission, that requires the bacterial homologue of tubulin, FtsZ. Other mechanisms of bacterial cell division that are independent of FtsZ are rare. Although the obligate intracellular human pathogen Chlamydia trachomatis, the leading bacterial cause of sexually transmitted infections and trachoma, lacks FtsZ, it has been assumed to divide by binary fission. We show here that Chlamydia divides by a polarized cell division process similar to the budding process of a subset of the Planctomycetes that also lack FtsZ. Prior to cell division, the major outer-membrane protein of Chlamydia is restricted to one pole of the cell, and the nascent daughter cell emerges from this pole by an asymmetric expansion of the membrane. Components of the chlamydial cell division machinery accumulate at the site of polar growth prior to the initiation of asymmetric membrane expansion and inhibitors that disrupt the polarity of C. trachomatis prevent cell division. The polarized cell division of C. trachomatis is the result of the unipolar growth and FtsZ-independent fission of this coccoid organism. This mechanism of cell division has not been documented in other human bacterial pathogens suggesting the potential for developing Chlamydia-specific therapeutic treatments. PMID:27505160

  5. Emancipating Chlamydia: Advances in the Genetic Manipulation of a Recalcitrant Intracellular Pathogen

    PubMed Central

    Bastidas, Robert J.

    2016-01-01

    SUMMARY Chlamydia species infect millions of individuals worldwide and are important etiological agents of sexually transmitted disease, infertility, and blinding trachoma. Historically, the genetic intractability of this intracellular pathogen has hindered the molecular dissection of virulence factors contributing to its pathogenesis. The obligate intracellular life cycle of Chlamydia and restrictions on the use of antibiotics as selectable markers have impeded the development of molecular tools to genetically manipulate these pathogens. However, recent developments in the field have resulted in significant gains in our ability to alter the genome of Chlamydia, which will expedite the elucidation of virulence mechanisms. In this review, we discuss the challenges affecting the development of molecular genetic tools for Chlamydia and the work that laid the foundation for recent advancements in the genetic analysis of this recalcitrant pathogen. PMID:27030552

  6. Emancipating Chlamydia: Advances in the Genetic Manipulation of a Recalcitrant Intracellular Pathogen.

    PubMed

    Bastidas, Robert J; Valdivia, Raphael H

    2016-06-01

    Chlamydia species infect millions of individuals worldwide and are important etiological agents of sexually transmitted disease, infertility, and blinding trachoma. Historically, the genetic intractability of this intracellular pathogen has hindered the molecular dissection of virulence factors contributing to its pathogenesis. The obligate intracellular life cycle of Chlamydia and restrictions on the use of antibiotics as selectable markers have impeded the development of molecular tools to genetically manipulate these pathogens. However, recent developments in the field have resulted in significant gains in our ability to alter the genome of Chlamydia, which will expedite the elucidation of virulence mechanisms. In this review, we discuss the challenges affecting the development of molecular genetic tools for Chlamydia and the work that laid the foundation for recent advancements in the genetic analysis of this recalcitrant pathogen. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. [Chlamydia trachomatis proteasome protein as one of the significant pathogenicity factors of exciter].

    PubMed

    Davydov, D Iu; Zigangirova, N A

    2014-01-01

    Sex-related infections are a global problem. Such infections may lead to acute or chronic diseases. Chlamydia trachomatis is a dangerous and widespread pathogenicity factor that is not sensitive to conventional drugs and has no obvious symptoms. Protein CPAF is leading factor of pathogenesis. This protein inhibits the signaling pathways of host cell and supports long survival of the pathogen in the host cell. The goal of this work was to review general properties of the proteasome Chlamydia protein CPAF, its functions, and role in pathology. The role of protein CPAF in the anti-chlamydia immune reaction is discussed. The prospects of the development of promising anti-chlamydia vaccine, as well as new effective anti-chlamydia drugs are also discussed.

  8. Uptake of Biotin by Chlamydia Spp. through the Use of a Bacterial Transporter (BioY) and a Host-Cell Transporter (SMVT)

    PubMed Central

    Fisher, Derek J.; Fernández, Reinaldo E.; Adams, Nancy E.; Maurelli, Anthony T.

    2012-01-01

    Chlamydia spp. are obligate intracellular Gram-negative bacterial pathogens that cause disease in humans and animals. Minor variations in metabolic capacity between species have been causally linked to host and tissue tropisms. Analysis of the highly conserved genomes of Chlamydia spp. reveals divergence in the metabolism of the essential vitamin biotin with genes for either synthesis (bioF_2ADB) and/or transport (bioY). Streptavidin blotting confirmed the presence of a single biotinylated protein in Chlamydia. As a first step in unraveling the need for divergent biotin acquisition strategies, we examined BioY (CTL0613) from C. trachomatis 434/Bu which is annotated as an S component of the type II energy coupling-factor transporters (ECF). Type II ECFs are typically composed of a transport specific component (S) and a chromosomally unlinked energy module (AT). Intriguingly, Chlamydia lack recognizable AT modules. Using 3H-biotin and recombinant E. coli expressing CTL0613, we demonstrated that biotin was transported with high affinity (a property of Type II ECFs previously shown to require an AT module) and capacity (apparent K(m) of 3.35 nM and V(max) of 55.1 pmol×min−1×mg−1). Since Chlamydia reside in a host derived membrane vacuole, termed an inclusion, we also sought a mechanism for transport of biotin from the cell cytoplasm into the inclusion vacuole. Immunofluorescence microscopy revealed that the mammalian sodium multivitamin transporter (SMVT), which transports lipoic acid, biotin, and pantothenic acid into cells, localizes to the inclusion. Since Chlamydia also are auxotrophic for lipoic and pantothenic acids, SMVT may be subverted by Chlamydia to move multiple essential compounds into the inclusion where BioY and another transporter(s) would be present to facilitate transport into the bacterium. Collectively, our data validates the first BioY from a pathogenic organism and describes a two-step mechanism by which Chlamydia transport biotin from the

  9. Association of Bacterial Vaginosis With Chlamydia and Gonorrhea Among Women in the U.S. Army.

    PubMed

    Bautista, Christian T; Wurapa, Eyako K; Sateren, Warren B; Morris, Sara M; Hollingsworth, Bruce P; Sanchez, Jose L

    2017-05-01

    Bacterial vaginosis (BV) is a common vaginal condition in women of reproductive age, which has been associated with Chlamydia trachomatis and Neisseria gonorrhoeae among commercial sex workers and women attending sexually transmitted infection clinics. Pathogen-specific associations between BV and other sexually transmitted infections among U.S. military women have not been investigated. A population-based, nested case-control study was conducted of all incident chlamydia and gonorrhea cases reported to the Defense Medical Surveillance System during 2006-2012. Using a density sampling approach, for each chlamydia or gonorrhea case, 10 age-matched (±1 year) controls were randomly selected from those women who were never diagnosed with these infections. Incidence rate ratios were estimated using conditional logistic regression. Statistical analysis was carried out in December 2015. A total of 37,149 chlamydia cases and 4,987 gonorrhea cases were identified during the study period. Antecedent BV was associated with an increased risk of subsequent chlamydia (adjusted incidence rate ratio=1.51; 95% CI=1.47, 1.55) and gonorrhea (adjusted incidence rate ratio=2.42; 95% CI=2.27, 2.57) infections. For every one additional episode of BV, the risk of acquiring chlamydia and gonorrhea infections increased by 13% and 26%, respectively. A monotonic dose-response relationship was also noted between antecedent BV and subsequent chlamydia and gonorrhea infection. In addition, an effect modification on the additive scale was found between BV and African-American race for gonorrhea, but not for chlamydia. Among U.S. Army women, antecedent BV is associated with an increased risk of subsequent chlamydia and gonorrhea infection. Copyright © 2016 American Journal of Preventive Medicine. All rights reserved.

  10. Lipooligosaccharide is required for the generation of infectious elementary bodies in Chlamydia trachomatis

    PubMed Central

    Nguyen, Bidong D.; Cunningham, Doreen; Liang, Xiaofei; Chen, Xin; Toone, Eric J.; Raetz, Christian R. H.; Zhou, Pei; Valdivia, Raphael H.

    2011-01-01

    Lipopolysaccharides (LPS) and lipooligosaccharides (LOS) are the main lipid components of bacterial outer membranes and are essential for cell viability in most Gram-negative bacteria. Here we show that small molecule inhibitors of LpxC [UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc deacetylase], the enzyme that catalyzes the first committed step in the biosynthesis of lipid A, block the synthesis of LOS in the obligate intracellular bacterial pathogen Chlamydia trachomatis. In the absence of LOS, Chlamydia remains viable and establishes a pathogenic vacuole (“inclusion”) that supports robust bacterial replication. However, bacteria grown under these conditions were no longer infectious. In the presence of LpxC inhibitors, replicative reticulate bodies accumulated in enlarged inclusions but failed to express selected late-stage proteins and transition to elementary bodies, a Chlamydia developmental form that is required for invasion of mammalian cells. These findings suggest the presence of an outer membrane quality control system that regulates Chlamydia developmental transition to infectious elementary bodies and highlights the potential application of LpxC inhibitors as unique class of antichlamydial agents. PMID:21628561

  11. Chlamydia pneumoniae effector chlamydial outer protein N sequesters fructose bisphosphate aldolase A, providing a benefit to bacterial growth.

    PubMed

    Ishida, Kasumi; Matsuo, Junji; Yamamoto, Yoshimasa; Yamaguchi, Hiroyuki

    2014-12-21

    Pathogenic chlamydiae are obligate intracellular pathogens and have adapted successfully to human cells, causing sexually transmitted diseases or pneumonia. Chlamydial outer protein N (CopN) is likely a critical effector protein secreted by the type III secretion system in chlamydiae, which manipulates host cells. However, the mechanisms of its action remain to be clarified. In this work, we aimed to identify previously unidentified CopN effector target in host cells. We first performed a pull-down assay with recombinant glutathione S-transferase (GST) fusion CopN proteins (GST-CpCopN: Chlamydia pneumoniae TW183, GST-CtCopN: Chlamydia trachomatis D/UW-3/CX) as "bait" and soluble lysates obtained from human immortal epithelial HEp-2 cells as "prey", followed by SDS-PAGE with mass spectroscopy (MS). We found that a host cell protein specifically bound to GST-CpCopN, but not GST-CtCopN. MS revealed the host protein to be fructose bisphosphate aldolase A (aldolase A), which plays a key role in glycolytic metabolism. We also confirmed the role of aldolase A in chlamydia-infected HEp-2 cells by using two distinct experiments for gene knockdown with an siRNA specific to aldolase A transcripts, and for assessment of glycolytic enzyme gene expression levels. As a result, both the numbers of chlamydial inclusion-forming units and RpoD transcripts were increased in the chlamydia-infected aldolase A knockdown cells, as compared with the wild-type HEp-2 cells. Meanwhile, chlamydial infection tended to enhance expression of aldolase A. We discovered that one of the C. pneumoniae CopN targets is the glycolytic enzyme aldolase A. Sequestering aldolase A may be beneficial to bacterial growth in infected host cells.

  12. Molecular Genetic Analysis of Chlamydia Species.

    PubMed

    Sixt, Barbara S; Valdivia, Raphael H

    2016-09-08

    Species of Chlamydia are the etiologic agent of endemic blinding trachoma, the leading cause of bacterial sexually transmitted diseases, significant respiratory pathogens, and a zoonotic threat. Their dependence on an intracellular growth niche and their peculiar developmental cycle are major challenges to elucidating their biology and virulence traits. The last decade has seen tremendous advances in our ability to perform a molecular genetic analysis of Chlamydia species. Major achievements include the generation of large collections of mutant strains, now available for forward- and reverse-genetic applications, and the introduction of a system for plasmid-based transformation enabling complementation of mutations; expression of foreign, modified, or reporter genes; and even targeted gene disruptions. This review summarizes the current status of the molecular genetic toolbox for Chlamydia species and highlights new insights into their biology and new challenges in the nascent field of Chlamydia genetics.

  13. 9 CFR 113.71 - Chlamydia Psittaci Vaccine (Feline Pneumonitis), Live Chlamydia.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Chlamydia Psittaci Vaccine (Feline... VECTORS STANDARD REQUIREMENTS Live Bacterial Vaccines § 113.71 Chlamydia Psittaci Vaccine (Feline Pneumonitis), Live Chlamydia. Chlamydia Psittaci Vaccine (Feline Pneumonitis), Live Chlamydia, shall be...

  14. 9 CFR 113.71 - Chlamydia Psittaci Vaccine (Feline Pneumonitis), Live Chlamydia.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Chlamydia Psittaci Vaccine (Feline... VECTORS STANDARD REQUIREMENTS Live Bacterial Vaccines § 113.71 Chlamydia Psittaci Vaccine (Feline Pneumonitis), Live Chlamydia. Chlamydia Psittaci Vaccine (Feline Pneumonitis), Live Chlamydia, shall be...

  15. 9 CFR 113.71 - Chlamydia Psittaci Vaccine (Feline Pneumonitis), Live Chlamydia.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Chlamydia Psittaci Vaccine (Feline... VECTORS STANDARD REQUIREMENTS Live Bacterial Vaccines § 113.71 Chlamydia Psittaci Vaccine (Feline Pneumonitis), Live Chlamydia. Chlamydia Psittaci Vaccine (Feline Pneumonitis), Live Chlamydia, shall be...

  16. 9 CFR 113.71 - Chlamydia Psittaci Vaccine (Feline Pneumonitis), Live Chlamydia.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Chlamydia Psittaci Vaccine (Feline... VECTORS STANDARD REQUIREMENTS Live Bacterial Vaccines § 113.71 Chlamydia Psittaci Vaccine (Feline Pneumonitis), Live Chlamydia. Chlamydia Psittaci Vaccine (Feline Pneumonitis), Live Chlamydia, shall be...

  17. 9 CFR 113.71 - Chlamydia Psittaci Vaccine (Feline Pneumonitis), Live Chlamydia.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Chlamydia Psittaci Vaccine (Feline... VECTORS STANDARD REQUIREMENTS Live Bacterial Vaccines § 113.71 Chlamydia Psittaci Vaccine (Feline Pneumonitis), Live Chlamydia. Chlamydia Psittaci Vaccine (Feline Pneumonitis), Live Chlamydia, shall be...

  18. Toll like receptor 4: an important molecule in recognition and induction of appropriate immune responses against Chlamydia infection.

    PubMed

    Nosratababadi, Reza; Bagheri, Vahid; Zare-Bidaki, Mohammad; Hakimi, Hamid; Zainodini, Nahid; Kazemi Arababadi, Mohammad

    2017-04-01

    Chlamydia species are obligate intracellular pathogens causing different infectious diseases particularly asymptomatic genital infections and are also responsible for a wide range of complications. Previous studies showed that there are different immune responses to Chlamydia species and their infections are limited to some cases. Moreover, Chlamydia species are able to alter immune responses through modulating the expression of some immune system related molecules including cytokines. Toll like receptors (TLRs) belonge to pathogen recognition receptors (PRRs) and play vital roles in recognition of microbes and stimulation of appropriate immune responses. Therefore, it appears that TLRs may be considered as important sensors for recognition of Chlamydia and promotion of immune responses against these bacterial infections. Accordingly, TLR4 detects several microbial PAMPs such as bacterial lipopolysacharide (LPS) and subsequently activates transcription from pro-inflammatory cytokines in both MYD88 and TRIF pathways dependent manner. The purpose of this review is to provide the recent data about the status and major roles played by TLR4 in Chlamydia species recognition and promotion of immune responses against these infections and also the relationship between TLR4 activities and pathogenesis of Chlamydia infections. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Candidatus Syngnamydia Venezia, a Novel Member of the Phylum Chlamydiae from the Broad Nosed Pipefish, Syngnathus typhle

    PubMed Central

    Schmidt-Posthaus, Heike; Nufer, Lisbeth; Wilson, Anthony; Svercel, Miroslav; Richter, Denis; Segner, Helmut; Pospischil, Andreas; Vaughan, Lloyd

    2013-01-01

    Chlamydia are obligate intracellular bacteria and important pathogens of humans and animals. Chlamydia-related bacteria are also major fish pathogens, infecting epithelial cells of the gills and skin to cause the disease epitheliocystis. Given the wide distribution, ancient origins and spectacular diversity of bony fishes, this group offers a rich resource for the identification and isolation of novel Chlamydia. The broad-nosed pipefish (Syngnathus typhle) is a widely distributed and genetically diverse temperate fish species, susceptible to epitheliocystis across much of its range. We describe here a new bacterial species, Candidatus Syngnamydia venezia; epitheliocystis agent of S. typhle and close relative to other chlamydial pathogens which are known to infect diverse hosts ranging from invertebrates to humans. PMID:23951025

  20. Chlamydia trachomatis Cellular Exit Alters Interactions with Host Dendritic Cells

    PubMed Central

    Sherrid, Ashley M.

    2017-01-01

    ABSTRACT The strategies utilized by pathogens to exit host cells are an area of pathogenesis which has received surprisingly little attention, considering the necessity of this step for infections to propagate. Even less is known about how exit through these pathways affects downstream host-pathogen interactions and the generation of an immune response. Chlamydia trachomatis exits host epithelial cells through two equally active mechanisms: lysis and extrusion. Studies have characterized the outcome of interactions between host innate immune cells, such as dendritic cells and macrophages, and free, extracellular Chlamydia bacteria, such as those resulting from lysis. Exit via extrusion generates a distinct, host-membrane-bound compartment of Chlamydia separate from the original infected cell. In this study, we assessed the effect of containment within extrusions upon the interaction between Chlamydia and host dendritic cells. Extrusion dramatically affected the outcome of Chlamydia-dendritic cell interactions for both the bacterium and the host cell. Dendritic cells rapidly underwent apoptosis in response to engulfment of an extrusion, while uptake of an equivalent dose of free Chlamydia had no such effect. Containment within an extrusion also prolonged bacterial survival within dendritic cells and altered the initial innate immune signaling by the dendritic cell. PMID:28223346

  1. Conservation of extrusion as an exit mechanism for Chlamydia.

    PubMed

    Zuck, Meghan; Sherrid, Ashley; Suchland, Robert; Ellis, Tisha; Hybiske, Kevin

    2016-10-01

    Chlamydiae exit via membrane-encased extrusion or through lysis of the host cell. Extrusions are novel, pathogen-containing structures that confer infectious advantages to Chlamydia, and are hypothesized to promote cell-to-cell spread, dissemination to distant tissues and facilitate immune evasion. The extrusion phenomenon has been characterized for several Chlamydia trachomatis serovars, but a thorough investigation of extrusion for additional clinically relevant C. trachomatis strains and Chlamydia species has yet to be performed. The key parameters investigated in this study were: (i) the conservation of extrusion across the Chlamydia genus, (ii) the functional requirement for candidate Chlamydia genes in extrusion formation i.e. IncA and CT228 and (iii) extrusion-mediated uptake, and consequent survival of Chlamydia inside macrophages. Inclusion morphology was characterized by live fluorescence microscopy, using an inverted GFP strategy, at early and mid-stages of infection. Enriched extrusions were used to infect bone marrow-derived macrophages, and bacterial viability was measured following macrophage engulfment. Our results demonstrate that extrusion is highly conserved across chlamydiae, including ocular, STD and LGV biovars and divergent Chlamydia species. Consequently, this exit mechanism for Chlamydia may fulfill common advantages important for pathogenesis. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Intracellular Survival and Persistence of Chlamydia muridarum Is Determined by Macrophage Polarization

    PubMed Central

    Gracey, Eric; Lin, Aifeng; Akram, Ali; Chiu, Basil; Inman, Robert D.

    2013-01-01

    Macrophages can display a number of distinct phenotypes, known collectively as polarized macrophages. The best defined of these phenotypes are the classically-activated, interferon gamma (IFNγ)/LPS induced (M1) and alternatively-activated, IL-4 induced (M2) macrophages. The goal of this study is to characterize macrophage- Chlamydia interactions in the context of macrophage polarization. Here we use Chlamydia muridarum and murine bone-marrow derived macrophages to show Chlamydia does not induce M2 polarization in macrophages as a survival strategy. Unexpectedly, the infection of macrophages was silent with no upregulation of M1 macrophage-associated genes. We further demonstrate that macrophages polarized prior to infection have a differential capacity to control Chlamydia . M1 macrophages harbor up to 40-fold lower inclusion forming units (IFU) than non-polarized or M2 polarized macrophages. Gene expression analysis showed an increase in 16sRNA in M2 macrophages with no change in M1 macrophages. Suppressed Chlamydia growth in M1 macrophages correlated with the induction of a bacterial gene expression profile typical of persistence as evident by increased Euo expression and decreased Omp1 and Tal expression. Observations of permissive Chlamydia growth in non-polarized and M2 macrophages and persistence in M1 macrophages were supported through electron microscopy. This work supports the importance of IFNγ in the innate immune response to Chlamydia . However, demonstration that the M1 macrophages, despite an antimicrobial signature, fail to eliminate intracellular Chlamydia supports the notion that host–pathogen co-evolution has yielded a pathogen that can evade cellular defenses against this pathogen, and persist for prolonged periods of time in the host. PMID:23967058

  3. Intravaginal Chlamydia trachomatis Challenge Infection Elicits TH1 and TH17 Immune Responses in Mice That Promote Pathogen Clearance and Genital Tract Damage

    PubMed Central

    Quispe Calla, Nirk E.; Pavelko, Stephen D.; Cherpes, Thomas L.

    2016-01-01

    While ascension of Chlamydia trachomatis into the upper genital tract of women can cause pelvic inflammatory disease and Fallopian tube damage, most infections elicit no symptoms or overt upper genital tract pathology. Consistent with this asymptomatic clinical presentation, genital C. trachomatis infection of women generates robust TH2 immunity. As an animal model that modeled this response would be invaluable for delineating bacterial pathogenesis and human host defenses, herein we explored if pathogen-specific TH2 immunity is similarly elicited by intravaginal (ivag) infection of mice with oculogenital C. trachomatis serovars. Analogous to clinical infection, ascension of primary C. trachomatis infection into the mouse upper genital tract produced no obvious tissue damage. Clearance of ivag challenge infection was mediated by interferon (IFN)-γ-producing CD4+ T cells, while IFN-γ signaling blockade concomitant with a single ivag challenge promoted tissue damage by enhancing Chlamydia-specific TH17 immunity. Likewise, IFN-γ and IL-17 signaling blockade or CD4+ T cell depletion eliminated the genital pathology produced in untreated controls by multiple ivag challenge infections. Conversely, we were unable to detect formation of pathogen-specific TH2 immunity in C. trachomatis-infected mice. Together, our work revealed C. trachomatis infection of mice generates TH1 and TH17 immune responses that promote pathogen clearance and immunopathological tissue damage. Absence of Chlamydia-specific TH2 immunity in these mice newly highlights the need to identify experimental models of C. trachomatis genital infection that more closely recapitulate the human host response. PMID:27606424

  4. Chlamydiae interaction with the endoplasmic reticulum: contact, function and consequences.

    PubMed

    Derré, Isabelle

    2015-07-01

    Chlamydiae and chlamydiae-related organisms are obligate intracellular bacterial pathogens. They reside in a membrane-bound compartment termed the inclusion and have evolved sophisticated mechanisms to interact with cellular organelles. This review focuses on the nature, the function(s) and the consequences of chlamydiae-inclusion interaction with the endoplasmic reticulum (ER). The inclusion membrane establishes very close contact with the ER at specific sites termed ER-inclusion membrane contact sites (MCSs). These MCSs are constituted of a specific set of factors, including the C. trachomatis effector protein IncD and the host cell proteins CERT and VAPA/B. Because CERT and VAPA/B have a demonstrated role in the non-vesicular trafficking of lipids between the ER and the Golgi, it was proposed that Chlamydia establish MCSs with the ER to acquire host lipids. However, the recruitment of additional factors to ER-inclusion MCSs, such as the ER calcium sensor STIM1, may suggest additional functions unrelated to lipid acquisition. Finally, chlamydiae interaction with the ER appears to induce the ER stress response, but this response is quickly dampened by chlamydiae to promote host cell survival. © 2015 John Wiley & Sons Ltd.

  5. BACTERIAL WATERBORNE PATHOGENS

    EPA Science Inventory

    Bacterial pathogens are examples of classical etiological agents of waterborne disease. While these agents no longer serve as major threats to U.S. water supplies, they are still important pathogens in areas with substandard sanitation and poor water treatment facilities. In th...

  6. Detection of respiratory bacterial pathogens causing atypical pneumonia by multiplex Lightmix® RT-PCR.

    PubMed

    Wagner, Karoline; Springer, Burkard; Imkamp, Frank; Opota, Onya; Greub, Gilbert; Keller, Peter M

    2018-04-01

    Pneumonia is a severe infectious disease. In addition to common viruses and bacterial pathogens (e.g. Streptococcus pneumoniae), fastidious respiratory pathogens like Chlamydia pneumoniae, Mycoplasma pneumoniae and Legionella spp. can cause severe atypical pneumonia. They do not respond to penicillin derivatives, which may cause failure of antibiotic empirical therapy. The same applies for infections with B. pertussis and B. parapertussis, the cause of pertussis disease, that may present atypically and need to be treated with macrolides. Moreover, these fastidious bacteria are difficult to identify by culture or serology, and therefore often remain undetected. Thus, rapid and accurate identification of bacterial pathogens causing atypical pneumonia is crucial. We performed a retrospective method evaluation study to evaluate the diagnostic performance of the new, commercially available Lightmix ® multiplex RT-PCR assay that detects these fastidious bacterial pathogens causing atypical pneumonia. In this retrospective study, 368 clinical respiratory specimens, obtained from patients suffering from atypical pneumonia that have been tested negative for the presence of common agents of pneumonia by culture and viral PCR, were investigated. These clinical specimens have been previously characterized by singleplex RT-PCR assays in our diagnostic laboratory and were used to evaluate the diagnostic performance of the respiratory multiplex Lightmix ® RT-PCR. The multiplex RT-PCR displayed a limit of detection between 5 and 10 DNA copies for different in-panel organisms and showed identical performance characteristics with respect to specificity and sensitivity as in-house singleplex RT-PCRs for pathogen detection. The Lightmix ® multiplex RT-PCR assay represents a low-cost, time-saving and accurate diagnostic tool with high throughput potential. The time-to-result using an automated DNA extraction device for respiratory specimens followed by multiplex RT-PCR detection was

  7. [Pathogen distribution and bacterial resistance in children with severe community-acquired pneumonia].

    PubMed

    Lu, Yun-Yun; Luo, Rong; Fu, Zhou

    2017-09-01

    To investigate the distribution of pathogens and bacterial resistance in children with severe community-acquired pneumonia (CAP). A total of 522 children with severe CAP who were hospitalized in 2016 were enrolled as study subjects. According to their age, they were divided into infant group (402 infants aged 28 days to 1 year), young children group (73 children aged 1 to 3 years), preschool children group (35 children aged 3 to 6 years), and school-aged children group (12 children aged ≥6 years). According to the onset season, all children were divided into spring group (March to May, 120 children), summer group (June to August, 93 children), autumn group (September to November, 105 children), and winter group (December to February, 204 children). Sputum specimens from the deep airway were collected from all patients. The phoenix-100 automatic bacterial identification system was used for bacterial identification and drug sensitivity test. The direct immunofluorescence assay was used to detect seven common respiratory viruses. The quantitative real-time PCR was used to detect Mycoplasma pneumoniae (MP) and Chlamydia trachomatis (CT). Of all the 522 children with severe CAP, 419 (80.3%) were found to have pathogens, among whom 190 (45.3%) had mixed infection. A total of 681 strains of pathogens were identified, including 371 bacterial strains (54.5%), 259 viral strains (38.0%), 12 fungal strains (1.8%), 15 MP strains (2.2%), and 24 CT strains (3.5%). There were significant differences in the distribution of bacterial, viral, MP, and fungal infections between different age groups (P<0.05). There were significant differences in the incidence rate of viral infection between different season groups (P<0.05), with the highest incidence rate in winter. The drug-resistance rates of Streptococcus pneumoniae to erythromycin, tetracycline, and clindamycin reached above 85%, and the drug-resistance rates of Staphylococcus aureus to penicillin, erythromycin, and clindamycin

  8. Chlamydia cell biology and pathogenesis.

    PubMed

    Elwell, Cherilyn; Mirrashidi, Kathleen; Engel, Joanne

    2016-06-01

    Chlamydia spp. are important causes of human disease for which no effective vaccine exists. These obligate intracellular pathogens replicate in a specialized membrane compartment and use a large arsenal of secreted effectors to survive in the hostile intracellular environment of the host. In this Review, we summarize the progress in decoding the interactions between Chlamydia spp. and their hosts that has been made possible by recent technological advances in chlamydial proteomics and genetics. The field is now poised to decipher the molecular mechanisms that underlie the intimate interactions between Chlamydia spp. and their hosts, which will open up many exciting avenues of research for these medically important pathogens.

  9. Chlamydia cell biology and pathogenesis

    PubMed Central

    Elwell, Cherilyn; Mirrashidi, Kathleen; Engel, Joanne

    2016-01-01

    Chlamydia spp. are important causes of human disease for which no effective vaccine exists. These obligate intracellular pathogens replicate in a specialized membrane compartment and use a large arsenal of secreted effectors to survive in the hostile intracellular environment of the host. In this Review, we summarize the progress in decoding the interactions between Chlamydia spp. and their hosts that has been made possible by recent technological advances in chlamydial proteomics and genetics. The field is now poised to decipher the molecular mechanisms that underlie the intimate interactions between Chlamydia spp. and their hosts, which will open up many exciting avenues of research for these medically important pathogens. PMID:27108705

  10. Microbiology: Detection of Bacterial Pathogens and Their Occurrence.

    ERIC Educational Resources Information Center

    Reasoner, Donald J.

    1978-01-01

    Presents a literature review of bacterial pathogens that are related to water pollution, covering publications from 1976-77. This review includes: (1) bacterial pathogens in animals; and (2) detection and identification of waterborne bacterial pathogens. A list of 129 references is also presented. (HM)

  11. Considerations for the rational design of a Chlamydia vaccine.

    PubMed

    Liang, Steven; Bulir, David; Kaushic, Charu; Mahony, James

    2017-04-03

    Chlamydia trachomatis is the leading cause of preventable blindness and the most common bacterial sexually transmitted infection. Remarkable progress in vaccine research over the past six decades has led to the advancement of novel C. trachomatis vaccine candidates into clinical trials. However, many questions regarding the role of specific cellular populations and molecular mechanisms in protective immunity against human C. trachomatis genital tract infections remain unanswered. Biomarkers of vaccine induced protective immunity are elusive in humans, while a cautionary message on the translatability of data obtained from current animal models has emanated from vaccine research and development efforts against other important human pathogens. In this commentary, we highlight recent advances in Chlamydia vaccine development and discuss their implications in the context of a rational approach to the design of a human C. trachomatis vaccine.

  12. Emendation of the family Chlamydiaceae: proposal of a single genus, Chlamydia, to include all currently recognized species.

    PubMed

    Sachse, Konrad; Bavoil, Patrik M; Kaltenboeck, Bernhard; Stephens, Richard S; Kuo, Cho-Chou; Rosselló-Móra, Ramon; Horn, Matthias

    2015-03-01

    The family Chlamydiaceae (order Chlamydiales, phylum Chlamydiae) comprises important, obligate intracellular bacterial pathogens of humans and animals. Subdivision of the family into the two genera Chlamydia and Chlamydophila has been discussed controversially during the past decade. Here, we have revisited the current classification in the light of recent genomic data and in the context of the unique biological properties of these microorganisms. We conclude that neither generally used 16S rRNA sequence identity cut-off values nor parameters based on genomic similarity consistently separate the two genera. Notably, no easily recognizable phenotype such as host preference or tissue tropism is available that would support a subdivision. In addition, the genus Chlamydophila is currently not well accepted and not used by a majority of research groups in the field. Therefore, we propose the classification of all 11 currently recognized Chlamydiaceae species in a single genus, the genus Chlamydia. Finally, we provide emended descriptions of the family Chlamydiaceae, the genus Chlamydia, as well as the species Chlamydia abortus, Chlamydia caviae and Chlamydia felis. Copyright © 2015 Elsevier GmbH. All rights reserved.

  13. Searching for Helicobacter pylori and Chlamydia pneumoniae in primary endodontic infections.

    PubMed

    Rôças, Isabela N; Siqueira, José F

    2012-04-01

    The purpose of this study was to search samples from primary endodontic infections for the presence of two common human bacterial pathogens - Helicobacter pylori and Chlamydia pneumoniae. Genomic DNA isolated from samples taken from 25 root canals of teeth with asymptomatic (chronic) apical periodontitis and 25 aspirates from acute apical abscess was initially amplified by the multiple displacement amplification approach and then used as template in species-specific polymerase chain reaction (PCR) for detection of H. pylori and C. pneumoniae. All clinical samples were positive for the presence of bacterial DNA. However, no clinical sample was positive for either H. pylori or C. pneumoniae. Neither H. pylori nor C. pneumoniae were found in samples from primary endodontic infections. These findings suggest that these species are not candidate endodontic pathogens and that the necrotic root canal does not serve as a reservoir for these human pathogens in healthy patients.

  14. Pathogenic flora composition and overview of the trends used for bacterial pathogenicity identifications.

    PubMed

    Orji, Frank Anayo; Ugbogu, Ositadinma Chinyere; Ugbogu, Eziuche Amadike; Barbabosa-Pliego, Alberto; Monroy, Jose Cedillo; Elghandour, Mona M M Y; Salem, Abdelfattah Z M

    2018-05-05

    Over 250 species of resident flora in the class of bacteria are known to be associated with humans. These conventional flora compositions is often determined by factors which may not be limited to genetics, age, sex, stress and nutrition of humans. Man is constantly in contact with bacteria through media such as air, water, soil and food. This paper reviews the concept of bacterial pathogenesis from the sequential point of colonization to tissue injury. The paper in addition to examination of the factors which enhance virulence in bacterial pathogens also x-rayed the concept of pathogenicity islands and the next generation approaches or rather current trends/methods used in the bacterial pathogenicity investigations. In terms of pathogenicity which of course is the capacity to cause disease in animals, requires that the attacking bacterial strain is virulent, and has ability to bypass the host immune defensive mechanisms. In order to achieve or exhibit pathogenicity, the virulence factors required by microorganisms include capsule, pigments, enzymes, iron acquisition through siderophores. Bacterial Pathogenicity Islands as a distinct concept in bacterial pathogenesis are just loci on the chromosome or extra chromosomal units which are acquired by horizontal gene transfer within pathogens in a microbial community or biofilm. In the area of laboratory investigations, bacterial pathogenesis was initially carried out using culture dependent approaches, which can only detect about 1% of human and veterinary-important pathogens. However, in the recent paradigms shift, the use of proteomics, metagenomics, phylogenetic tree analyses, spooligotyping, and finger printing etc. have made it possible that 100% of the bacterial pathogens in nature can be extensively studied. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Animal models for studying female genital tract infection with Chlamydia trachomatis.

    PubMed

    De Clercq, Evelien; Kalmar, Isabelle; Vanrompay, Daisy

    2013-09-01

    Chlamydia trachomatis is a Gram-negative obligate intracellular bacterial pathogen. It is the leading cause of bacterial sexually transmitted disease in the world, with more than 100 million new cases of genital tract infections with C. trachomatis occurring each year. Animal models are indispensable for the study of C. trachomatis infections and the development and evaluation of candidate vaccines. In this paper, the most commonly used animal models to study female genital tract infections with C. trachomatis will be reviewed, namely, the mouse, guinea pig, and nonhuman primate models. Additionally, we will focus on the more recently developed pig model.

  16. Bacterial reproductive pathogens of cats and dogs.

    PubMed

    Graham, Elizabeth M; Taylor, David J

    2012-05-01

    With the notable exception of Brucella canis, exogenous bacterial pathogens are uncommon causes of reproductive disease in cats and dogs. Most bacterial reproductive infections are endogenous, and predisposing factors for infection are important. This article reviews the etiology, pathogenesis, clinical presentation, diagnosis, treatment, and public health significance of bacterial reproductive pathogens in cats and dogs.

  17. Thiazolino 2-Pyridone Amide Inhibitors of Chlamydia trachomatis Infectivity.

    PubMed

    Good, James A D; Silver, Jim; Núñez-Otero, Carlos; Bahnan, Wael; Krishnan, K Syam; Salin, Olli; Engström, Patrik; Svensson, Richard; Artursson, Per; Gylfe, Åsa; Bergström, Sven; Almqvist, Fredrik

    2016-03-10

    The bacterial pathogen Chlamydia trachomatis is a global health burden currently treated with broad-spectrum antibiotics which disrupt commensal bacteria. We recently identified a compound through phenotypic screening that blocked infectivity of this intracellular pathogen without host cell toxicity (compound 1, KSK 120). Herein, we present the optimization of 1 to a class of thiazolino 2-pyridone amides that are highly efficacious (EC50 ≤ 100 nM) in attenuating infectivity across multiple serovars of C. trachomatis without host cell toxicity. The lead compound 21a exhibits reduced lipophilicity versus 1 and did not affect the growth or viability of representative commensal flora at 50 μM. In microscopy studies, a highly active fluorescent analogue 37 localized inside the parasitiphorous inclusion, indicative of a specific targeting of bacterial components. In summary, we present a class of small molecules to enable the development of specific treatments for C. trachomatis.

  18. Transcriptome landscape of a bacterial pathogen under plant immunity.

    PubMed

    Nobori, Tatsuya; Velásquez, André C; Wu, Jingni; Kvitko, Brian H; Kremer, James M; Wang, Yiming; He, Sheng Yang; Tsuda, Kenichi

    2018-03-27

    Plant pathogens can cause serious diseases that impact global agriculture. The plant innate immunity, when fully activated, can halt pathogen growth in plants. Despite extensive studies into the molecular and genetic bases of plant immunity against pathogens, the influence of plant immunity in global pathogen metabolism to restrict pathogen growth is poorly understood. Here, we developed RNA sequencing pipelines for analyzing bacterial transcriptomes in planta and determined high-resolution transcriptome patterns of the foliar bacterial pathogen Pseudomonas syringae in Arabidopsis thaliana with a total of 27 combinations of plant immunity mutants and bacterial strains. Bacterial transcriptomes were analyzed at 6 h post infection to capture early effects of plant immunity on bacterial processes and to avoid secondary effects caused by different bacterial population densities in planta We identified specific "immune-responsive" bacterial genes and processes, including those that are activated in susceptible plants and suppressed by plant immune activation. Expression patterns of immune-responsive bacterial genes at the early time point were tightly linked to later bacterial growth levels in different host genotypes. Moreover, we found that a bacterial iron acquisition pathway is commonly suppressed by multiple plant immune-signaling pathways. Overexpression of a P. syringae sigma factor gene involved in iron regulation and other processes partially countered bacterial growth restriction during the plant immune response triggered by AvrRpt2. Collectively, this study defines the effects of plant immunity on the transcriptome of a bacterial pathogen and sheds light on the enigmatic mechanisms of bacterial growth inhibition during the plant immune response.

  19. Methods for Real-Time PCR-Based Diagnosis of Chlamydia pneumoniae, Chlamydia psittaci, and Chlamydia abortus Infections in an Opened Molecular Diagnostic Platform.

    PubMed

    Opota, Onya; Brouillet, René; Greub, Gilbert; Jaton, Katia

    2017-01-01

    The advances in molecular biology of the last decades have dramatically improved the field of diagnostic bacteriology. In particular, PCR-based technologies have impacted the diagnosis of infections caused by obligate intracellular bacteria such as pathogens from the Chlamydiacae family. Here, we describe a real-time PCR-based method using the Taqman technology for the diagnosis of Chlamydia pneumoniae, Chlamydia psittaci, and Chlamydia abortus infection. The method presented here can be applied to various clinical samples and can be adapted on opened molecular diagnostic platforms.

  20. Fluorocycline TP-271 Is Potent against Complicated Community-Acquired Bacterial Pneumonia Pathogens

    PubMed Central

    Fyfe, Corey; O’Brien, William; Hackel, Meredith; Minyard, Mary Beth; Waites, Ken B.; Dubois, Jacques; Murphy, Timothy M.; Slee, Andrew M.; Weiss, William J.; Sutcliffe, Joyce A.

    2017-01-01

    ABSTRACT TP-271 is a novel, fully synthetic fluorocycline antibiotic in clinical development for the treatment of respiratory infections caused by susceptible and multidrug-resistant pathogens. TP-271 was active in MIC assays against key community respiratory Gram-positive and Gram-negative pathogens, including Streptococcus pneumoniae (MIC90 = 0.03 µg/ml), methicillin-sensitive Staphylococcus aureus (MSSA; MIC90 = 0.25 µg/ml), methicillin-resistant S. aureus (MRSA; MIC90 = 0.12 µg/ml), Streptococcus pyogenes (MIC90 = 0.03 µg/ml), Haemophilus influenzae (MIC90 = 0.12 µg/ml), and Moraxella catarrhalis (MIC90 ≤0.016 µg/ml). TP-271 showed activity (MIC90 = 0.12 µg/ml) against community-acquired MRSA expressing Panton-Valentine leukocidin (PVL). MIC90 values against Mycoplasma pneumoniae, Legionella pneumophila, and Chlamydia pneumoniae were 0.004, 1, and 4 µg/ml, respectively. TP-271 was efficacious in neutropenic and immunocompetent animal pneumonia models, generally showing, compared to the burden at the start of dosing, ~2 to 5 log10 CFU reductions against MRSA, S. pneumoniae, and H. influenzae infections when given intravenously (i.v.) and ~1 to 4 log10 CFU reductions when given orally (p.o.). TP-271 was potent against key community-acquired bacterial pneumonia (CABP) pathogens and was minimally affected, or unaffected, by tetracycline-specific resistance mechanisms and fluoroquinolone or macrolide drug resistance phenotypes. IMPORTANCE Rising resistance rates for macrolides, fluoroquinolones, and β-lactams in the most common pathogens associated with community-acquired bacterial pneumonia (CABP) are of concern, especially for cases of moderate to severe infections in vulnerable populations such as the very young and the elderly. New antibiotics that are active against multidrug-resistant Streptococcus pneumoniae and Staphylococcus aureus are needed for use in the empirical treatment of the most severe forms of this disease. TP-271 is a promising

  1. A comparative study of RNA and DNA as internal gene expression controls early in the developmental cycle of Chlamydia pneumoniae.

    PubMed

    Engström, Patrik; Bailey, Leslie; Onskog, Thomas; Bergström, Sven; Johansson, Jörgen

    2010-03-01

    Many microbial pathogens invade and proliferate within host cells and the molecular mechanism underlying this behavior is currently being revealed for several bacterial species. Testing clinically relevant antibacterial compounds and elucidating their effects on gene expression requires adequate controls, especially when studying genetically intractable organisms such as Chlamydia spp., for which various gene fusions cannot be constructed. Until now, relative mRNA levels in Chlamydia have been measured using different internal gene expression controls, including 16S rRNA, mRNAs, and DNA. Here, we compared the advantages and disadvantages of various internal expression controls during the early phase of Chlamydia pneumoniae development. The relative abundance of target mRNAs varied using the different internal control RNAs. This was partly due to variation in the transcript stability of the RNA species. Also, seven out of nine of the analyzed RNAs increased fivefold or more between 2 and 14 h postinfection, while the amount of DNA and number of cells remained essentially unaltered. Our results suggest that RNA should not be used as a gene expression control during the early phase of Chlamydia development, and that intrinsic bacterial DNA is preferable for that purpose because it is stable, abundant, and its relative amount is generally correlated with bacterial numbers.

  2. Chlamydia muridarum evades growth restriction by the IFN-gamma-inducible host resistance factor Irgb10.

    PubMed

    Coers, Jörn; Bernstein-Hanley, Isaac; Grotsky, David; Parvanova, Iana; Howard, Jonathan C; Taylor, Gregory A; Dietrich, William F; Starnbach, Michael N

    2008-05-01

    Chlamydiae are obligate intracellular bacterial pathogens that exhibit a broad range of host tropism. Differences in host tropism between Chlamydia species have been linked to host variations in IFN-gamma-mediated immune responses. In mouse cells, IFN-gamma can effectively restrict growth of the human pathogen Chlamydia trachomatis but fails to control growth of the closely related mouse pathogen Chlamydia muridarum. The ability of mouse cells to resist C. trachomatis replication is largely dependent on the induction of a family of IFN-gamma-inducible GTPases called immunity-related GTPases or IRGs. In this study we demonstrate that C. muridarum can specifically evade IRG-mediated host resistance. It has previously been suggested that C. muridarum inactivates the IRG protein Irga6 (Iigp1) to dampen the murine immune response. However, we show that Irga6 is dispensable for the control of C. trachomatis replication. Instead, an effective IFN-gamma response to C. trachomatis requires the IRG proteins Irgm1 (Lrg47), Irgm3 (Igtp), and Irgb10. Ectopic expression of Irgb10 in the absence of IFN-gamma is sufficient to reduce intracellular growth of C. trachomatis but fails to restrict growth of C. muridarum, indicating that C. muridarum can specifically evade Irgb10-driven host responses. Importantly, we find that Irgb10 protein intimately associates with inclusions harboring C. trachomatis but is absent from inclusions formed by C. muridarum. These data suggest that C. muridarum has evolved a mechanism to escape the murine IFN-gamma response by restricting access of Irgb10 and possibly other IRG proteins to the inclusion.

  3. Chlamydia co-opts the rod shape-determining proteins MreB and Pbp2 for cell division.

    PubMed

    Ouellette, Scot P; Karimova, Gouzel; Subtil, Agathe; Ladant, Daniel

    2012-07-01

    Chlamydiae are obligate intracellular bacterial pathogens that have extensively reduced their genome in adapting to the intracellular environment. The chlamydial genome contains only three annotated cell division genes and lacks ftsZ. How this obligate intracellular pathogen divides is uncharacterized. Chlamydiae contain two high-molecular-weight (HMW) penicillin binding proteins (Pbp) implicated in peptidoglycan synthesis, Pbp2 and Pbp3/FtsI. We show here, using HMW Pbp-specific penicillin derivatives, that both Pbp2 and Pbp3 are essential for chlamydial cell division. Ultrastructural analyses of antibiotic-treated cultures revealed distinct phenotypes: Pbp2 inhibition induced internal cell bodies within a single outer membrane whereas Pbp3 inhibition induced elongated phenotypes with little internal division. Each HMW Pbp interacts with the Chlamydia cell division protein FtsK. Chlamydiae are coccoid yet contain MreB, a rod shape-determining protein linked to Pbp2 in bacilli. Using MreB-specific antibiotics, we show that MreB is essential for chlamydial growth and division. Importantly, co-treatment with MreB-specific and Pbp-specific antibiotics resulted in the MreB-inhibited phenotype, placing MreB upstream of Pbp function in chlamydial cell division. Finally, we showed that MreB also interacts with FtsK. We propose that, in Chlamydia, MreB acts as a central co-ordinator at the division site to substitute for the lack of FtsZ in this bacterium. © 2012 Blackwell Publishing Ltd.

  4. The Impact of Oxygen on Bacterial Enteric Pathogens.

    PubMed

    Wallace, N; Zani, A; Abrams, E; Sun, Y

    2016-01-01

    Bacterial enteric pathogens are responsible for a tremendous amount of foodborne illnesses every year through the consumption of contaminated food products. During their transit from contaminated food sources to the host gastrointestinal tract, these pathogens are exposed and must adapt to fluctuating oxygen levels to successfully colonize the host and cause diseases. However, the majority of enteric infection research has been conducted under aerobic conditions. To raise awareness of the importance in understanding the impact of oxygen, or lack of oxygen, on enteric pathogenesis, we describe in this review the metabolic and physiological responses of nine bacterial enteric pathogens exposed to environments with different oxygen levels. We further discuss the effects of oxygen levels on virulence regulation to establish potential connections between metabolic adaptations and bacterial pathogenesis. While not providing an exhaustive list of all bacterial pathogens, we highlight key differences and similarities among nine facultative anaerobic and microaerobic pathogens in this review to argue for a more in-depth understanding of the diverse impact oxygen levels have on enteric pathogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Bacterial Pathogens versus Autophagy: Implications for Therapeutic Interventions

    PubMed Central

    Kimmey, Jacqueline M.; Stallings, Christina L.

    2016-01-01

    Research in recent years has focused significantly on the role of selective macroautophagy in targeting intracellular pathogens for lysosomal degradation, a process termed xenophagy. In this review we evaluate the proposed roles for xenophagy in controlling bacterial infection, highlighting the concept that successful pathogens have evolved ways to subvert or exploit this defense, minimizing the actual effectiveness of xenophagy in innate immunity. Instead, studies in animal models have revealed that autophagy-associated proteins often function outside of xenophagy to influence bacterial pathogenesis. In light of current efforts to manipulate autophagy and the development of host-directed therapies to fight bacterial infections, we also discuss the implications stemming from the complicated relationship that exists between autophagy and bacterial pathogens. PMID:27866924

  6. Chlamydia prevalence in Polish pig herds.

    PubMed

    Rypuła, K; Kumala, A; Płoneczka-Janeczko, K; Karuga-Kuźniewska, E; Dudek, K; Chorbiński, P

    2016-09-01

    Chlamydiae are frequently encountered intracellular Gram-negative bacteria. In pigs, these bacteria in combination with other pathogens contribute to the induction of a multi-aetiological syndrome. One of the major characteristics of Chlamydia spp. is their ability to cause prolonged, often subclinical infections. While the economic consequences of Chlamydia spp. infections in pig farms are not fully established, we know that reproductive disorders and other syndromes correlated with Chlamydia infection can lead to financial loss as a result of a reduction in pork production. Additionally, Chlamydia spp. presents a potential zoonotic hazard, therefore determining the prevalence of Chlamydia in pig populations is critical. In the present study 97 pig herds from Poland were involved. To determine the prevalence of Chlamydia PCR and CFT tests were used. In total 797 vaginal samples, 797 conjunctival samples, and 235 serum samples were collected and tested. The study took place from 2011 to 2014. We found Chlamydia spp. present in 71·2% of all tested farms. The percentage of animals testing positive on any given farm varied from 20% to 100%.

  7. Study of the prevalence and association of ocular chlamydial conjunctivitis in women with genital infection by Chlamydia trachomatis, Mycoplasma genitalium and Candida albicans attending outpatient clinic.

    PubMed

    Khattab, Rania Abdelmonem; Abdelfattah, Maha Mohssen

    2016-01-01

    To determine the association between chlamydial conjunctivitis and genital infection by Chlamydia trachomatis, Mycoplasma genitalium and Candida albicans, in addition to the possible relationship between cultured bacterial pathogens and oculogenital chlamydial infection. This study was performed on 100 (50 symptomatic and 50 asymptomatic) women attending the Gynecological and Obstetric outpatient clinic of Alzahra hospital, Alazhar University. Simultaneously a conjunctival swab was taken from these patients. Polymerase chain reaction (PCR) was done on DNA extracted from both vaginal and conjunctival swab samples. Culture for both vaginal and conjunctival swabs was also done. Candida albicans was the predominant organism isolated by culture in 20% and 40% of conjunctival and vaginal swabs respectively. By the PCR method, ocular Chlamydia trachomatis was present in 60% of symptomatic women, while genital Chlamydia trachomatis infection was present in 30% of symptomatic women. The results of this method also indicated that 25/50 (50%) vaginal swabs were positive with PCR for Candida albicans versus 15/50 (30%) were PCR positive in conjunctival swab. Mycoplasma genitalium was present in only 10% of vaginal swabs. Concomitant oculogenital PCR positive results for Chlamydia trachomatis and Candida albicans were 30% and 28% respectively. Ocular Chlamydia trachomatis was associated with genital Chlamydia trachomatis in a high percentage of women followed by Candida albicans. Cultured bacterial organisms do not play a role in enhancement of Chlamydia trachomatis infection.

  8. Chlamydia trachomatis Is Resistant to Inclusion Ubiquitination and Associated Host Defense in Gamma Interferon-Primed Human Epithelial Cells.

    PubMed

    Haldar, Arun K; Piro, Anthony S; Finethy, Ryan; Espenschied, Scott T; Brown, Hannah E; Giebel, Amanda M; Frickel, Eva-Maria; Nelson, David E; Coers, Jörn

    2016-12-13

    The cytokine gamma interferon (IFN-γ) induces cell-autonomous immunity to combat infections with intracellular pathogens, such as the bacterium Chlamydia trachomatis The present study demonstrates that IFN-γ-primed human cells ubiquitinate and eliminate intracellular Chlamydia-containing vacuoles, so-called inclusions. We previously described how IFN-γ-inducible immunity-related GTPases (IRGs) employ ubiquitin systems to mark inclusions for destruction in mouse cells and, furthermore, showed that the rodent pathogen Chlamydia muridarum blocks ubiquitination of its inclusions by interfering with mouse IRG function. Here, we report that ubiquitination of inclusions in human cells is independent of IRG and thus distinct from the murine pathway. We show that C. muridarum is susceptible to inclusion ubiquitination in human cells, while the closely related human pathogen C. trachomatis is resistant. C. muridarum, but not C. trachomatis, inclusions attract several markers of cell-autonomous immunity, including the ubiquitin-binding protein p62, the ubiquitin-like protein LC3, and guanylate-binding protein 1. Consequently, we find that IFN-γ priming of human epithelial cells triggers the elimination of C. muridarum, but not C. trachomatis, inclusions. This newly described defense pathway is independent of indole-2,3-dioxygenase, a known IFN-γ-inducible anti-Chlamydia resistance factor. Collectively, our observations indicate that C. trachomatis evolved mechanisms to avoid a human-specific, ubiquitin-mediated response as part of its unique adaptation to its human host. Chlamydia trachomatis is the leading cause of sexually transmitted bacterial infections and responsible for significant morbidity, including pelvic inflammatory disease, infertility, and ectopic pregnancies in women. As an obligate intracellular pathogen, C. trachomatis is in perpetual conflict with cell-intrinsic defense programs executed by its human host. Our study defines a novel anti-Chlamydia

  9. Tetracycline Selective Pressure and Homologous Recombination Shape the Evolution of Chlamydia suis: A Recently Identified Zoonotic Pathogen.

    PubMed

    Joseph, Sandeep J; Marti, Hanna; Didelot, Xavier; Read, Timothy D; Dean, Deborah

    2016-09-02

    Species closely related to the human pathogen Chlamydia trachomatis (Ct) have recently been found to cause zoonotic infections, posing a public health threat especially in the case of tetracycline resistant Chlamydia suis (Cs) strains. These strains acquired a tet(C)-containing cassette via horizontal gene transfer (HGT). Genomes of 11 Cs strains from various tissues were sequenced to reconstruct evolutionary pathway(s) for tet(C) HGT. Cs had the highest recombination rate of Chlamydia species studied to date. Admixture occurred among Cs strains and with Chlamydia muridarum but not with Ct Although in vitro tet(C) cassette exchange with Ct has been documented, in vivo evidence may require examining human samples from Ct and Cs co-infected sites. Molecular-clock dating indicated that ancestral clades of resistant Cs strains predated the 1947 discovery of tetracycline, which was subsequently used in animal feed. The cassette likely spread throughout Cs strains by homologous recombination after acquisition from an external source, and our analysis suggests Betaproteobacteria as the origin. Selective pressure from tetracycline may be responsible for recent bottlenecks in Cs populations. Since tetracycline is an important antibiotic for treating Ct, zoonotic infections at mutual sites of infection indicate the possibility for cassette transfer and major public health repercussions. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Fierce Competition between Toxoplasma and Chlamydia for Host Cell Structures in Dually Infected Cells

    PubMed Central

    Romano, Julia D.; de Beaumont, Catherine; Carrasco, Jose A.; Ehrenman, Karen; Bavoil, Patrik M.

    2013-01-01

    The prokaryote Chlamydia trachomatis and the protozoan Toxoplasma gondii, two obligate intracellular pathogens of humans, have evolved a similar modus operandi to colonize their host cell and salvage nutrients from organelles. In order to gain fundamental knowledge on the pathogenicity of these microorganisms, we have established a cell culture model whereby single fibroblasts are coinfected by C. trachomatis and T. gondii. We previously reported that the two pathogens compete for the same nutrient pools in coinfected cells and that Toxoplasma holds a significant competitive advantage over Chlamydia. Here we have expanded our coinfection studies by examining the respective abilities of Chlamydia and Toxoplasma to co-opt the host cytoskeleton and recruit organelles. We demonstrate that the two pathogen-containing vacuoles migrate independently to the host perinuclear region and rearrange the host microtubular network around each vacuole. However, Toxoplasma outcompetes Chlamydia to the host microtubule-organizing center to the detriment of the bacterium, which then shifts to a stress-induced persistent state. Solely in cells preinfected with Chlamydia, the centrosomes become associated with the chlamydial inclusion, while the Toxoplasma parasitophorous vacuole displays growth defects. Both pathogens fragment the host Golgi apparatus and recruit Golgi elements to retrieve sphingolipids. This study demonstrates that the productive infection by both Chlamydia and Toxoplasma depends on the capability of each pathogen to successfully adhere to a finely tuned developmental program that aims to remodel the host cell for the pathogen's benefit. In particular, this investigation emphasizes the essentiality of host organelle interception by intravacuolar pathogens to facilitate access to nutrients. PMID:23243063

  11. Fierce competition between Toxoplasma and Chlamydia for host cell structures in dually infected cells.

    PubMed

    Romano, Julia D; de Beaumont, Catherine; Carrasco, Jose A; Ehrenman, Karen; Bavoil, Patrik M; Coppens, Isabelle

    2013-02-01

    The prokaryote Chlamydia trachomatis and the protozoan Toxoplasma gondii, two obligate intracellular pathogens of humans, have evolved a similar modus operandi to colonize their host cell and salvage nutrients from organelles. In order to gain fundamental knowledge on the pathogenicity of these microorganisms, we have established a cell culture model whereby single fibroblasts are coinfected by C. trachomatis and T. gondii. We previously reported that the two pathogens compete for the same nutrient pools in coinfected cells and that Toxoplasma holds a significant competitive advantage over Chlamydia. Here we have expanded our coinfection studies by examining the respective abilities of Chlamydia and Toxoplasma to co-opt the host cytoskeleton and recruit organelles. We demonstrate that the two pathogen-containing vacuoles migrate independently to the host perinuclear region and rearrange the host microtubular network around each vacuole. However, Toxoplasma outcompetes Chlamydia to the host microtubule-organizing center to the detriment of the bacterium, which then shifts to a stress-induced persistent state. Solely in cells preinfected with Chlamydia, the centrosomes become associated with the chlamydial inclusion, while the Toxoplasma parasitophorous vacuole displays growth defects. Both pathogens fragment the host Golgi apparatus and recruit Golgi elements to retrieve sphingolipids. This study demonstrates that the productive infection by both Chlamydia and Toxoplasma depends on the capability of each pathogen to successfully adhere to a finely tuned developmental program that aims to remodel the host cell for the pathogen's benefit. In particular, this investigation emphasizes the essentiality of host organelle interception by intravacuolar pathogens to facilitate access to nutrients.

  12. Glycosylation-dependent galectin-receptor interactions promote Chlamydia trachomatis infection.

    PubMed

    Lujan, Agustin L; Croci, Diego O; Gambarte Tudela, Julián A; Losinno, Antonella D; Cagnoni, Alejandro J; Mariño, Karina V; Damiani, María T; Rabinovich, Gabriel A

    2018-06-11

    Chlamydia trachomatis ( Ct ) constitutes the most prevalent sexually transmitted bacterium worldwide. Chlamydial infections can lead to severe clinical sequelae including pelvic inflammatory disease, ectopic pregnancy, and tubal infertility. As an obligate intracellular pathogen, Ct has evolved multiple strategies to promote adhesion and invasion of host cells, including those involving both bacterial and host glycans. Here, we show that galectin-1 (Gal1), an endogenous lectin widely expressed in female and male genital tracts, promotes Ct infection. Through glycosylation-dependent mechanisms involving recognition of bacterial glycoproteins and N -glycosylated host cell receptors, Gal1 enhanced Ct attachment to cervical epithelial cells. Exposure to Gal1, mainly in its dimeric form, facilitated bacterial entry and increased the number of infected cells by favoring Ct - Ct and Ct -host cell interactions. These effects were substantiated in vivo in mice lacking Gal1 or complex β1-6-branched N -glycans. Thus, disrupting Gal1- N -glycan interactions may limit the severity of chlamydial infection by inhibiting bacterial invasion of host cells.

  13. M2 Polarization of Human Macrophages Favors Survival of the Intracellular Pathogen Chlamydia pneumoniae.

    PubMed

    Buchacher, Tanja; Ohradanova-Repic, Anna; Stockinger, Hannes; Fischer, Michael B; Weber, Viktoria

    2015-01-01

    Intracellular pathogens have developed various strategies to escape immunity to enable their survival in host cells, and many bacterial pathogens preferentially reside inside macrophages, using diverse mechanisms to penetrate their defenses and to exploit their high degree of metabolic diversity and plasticity. Here, we characterized the interactions of the intracellular pathogen Chlamydia pneumoniae with polarized human macrophages. Primary human monocytes were pre-differentiated with granulocyte macrophage colony-stimulating factor or macrophage colony-stimulating factor for 7 days to yield M1-like and M2-like macrophages, which were further treated with interferon-γ and lipopolysaccharide or with interleukin-4 for 48 h to obtain fully polarized M1 and M2 macrophages. M1 and M2 cells exhibited distinct morphology with round or spindle-shaped appearance for M1 and M2, respectively, distinct surface marker profiles, as well as different cytokine and chemokine secretion. Macrophage polarization did not influence uptake of C. pneumoniae, since comparable copy numbers of chlamydial DNA were detected in M1 and M2 at 6 h post infection, but an increase in chlamydial DNA over time indicating proliferation was only observed in M2. Accordingly, 72±5% of M2 vs. 48±7% of M1 stained positive for chlamydial lipopolysaccharide, with large perinuclear inclusions in M2 and less clearly bordered inclusions for M1. Viable C. pneumoniae was present in lysates from M2, but not from M1 macrophages. The ability of M1 to restrict chlamydial replication was not observed in M1-like macrophages, since chlamydial load showed an equal increase over time for M1-like and M2-like macrophages. Our findings support the importance of macrophage polarization for the control of intracellular infection, and show that M2 are the preferred survival niche for C. pneumoniae. M1 did not allow for chlamydial proliferation, but failed to completely eliminate chlamydial infection, giving further evidence

  14. Xylella genomics and bacterial pathogenicity to plants.

    PubMed

    Dow, J M; Daniels, M J

    2000-12-01

    Xylella fastidiosa, a pathogen of citrus, is the first plant pathogenic bacterium for which the complete genome sequence has been published. Inspection of the sequence reveals high relatedness to many genes of other pathogens, notably Xanthomonas campestris. Based on this, we suggest that Xylella possesses certain easily testable properties that contribute to pathogenicity. We also present some general considerations for deriving information on pathogenicity from bacterial genomics. Copyright 2000 John Wiley & Sons, Ltd.

  15. Within-host evolution of bacterial pathogens

    PubMed Central

    Didelot, Xavier; Walker, A. Sarah; Peto, Tim E.; Crook, Derrick W.; Wilson, Daniel J.

    2016-01-01

    Whole genome sequencing has opened the way to investigating the dynamics and genomic evolution of bacterial pathogens during colonization and infection of humans. The application of this technology to the longitudinal study of adaptation in the infected host — in particular, the evolution of drug resistance and host adaptation in patients chronically infected with opportunistic pathogens — has revealed remarkable patterns of convergent evolution, pointing to an inherent repeatability of evolution. In this Review, we describe how these studies have advanced our understanding of the mechanisms and principles of within-host genome evolution, and we consider the consequences of findings such as a potent adaptive potential for pathogenicity. Finally, we discuss the possibility that genomics may be used in the future to predict the clinical progression of bacterial infections, and to suggest the best treatment option. PMID:26806595

  16. Within-host evolution of bacterial pathogens.

    PubMed

    Didelot, Xavier; Walker, A Sarah; Peto, Tim E; Crook, Derrick W; Wilson, Daniel J

    2016-03-01

    Whole-genome sequencing has opened the way for investigating the dynamics and genomic evolution of bacterial pathogens during the colonization and infection of humans. The application of this technology to the longitudinal study of adaptation in an infected host--in particular, the evolution of drug resistance and host adaptation in patients who are chronically infected with opportunistic pathogens--has revealed remarkable patterns of convergent evolution, suggestive of an inherent repeatability of evolution. In this Review, we describe how these studies have advanced our understanding of the mechanisms and principles of within-host genome evolution, and we consider the consequences of findings such as a potent adaptive potential for pathogenicity. Finally, we discuss the possibility that genomics may be used in the future to predict the clinical progression of bacterial infections and to suggest the best option for treatment.

  17. Chlamydia suis and Chlamydia trachomatis induce multifunctional CD4 T cells in pigs.

    PubMed

    Käser, T; Pasternak, J A; Delgado-Ortega, M; Hamonic, G; Lai, K; Erickson, J; Walker, S; Dillon, J R; Gerdts, V; Meurens, F

    2017-01-03

    Chlamydia trachomatis infections are the most prominent bacterial sexually-transmitted disease world-wide and a lot of effort is put into the development of an effective vaccine. Pigs have been shown to be a valuable animal model for C. trachomatis vaccine development. The aim of this study was to decipher the T-cell-mediated immune response to chlamydial infections including C. trachomatis and C. suis, the chlamydia species naturally infecting pigs with a demonstrated zoonotic potential. Vaginal infection of pigs with C. suis and C. trachomatis lasted from 3 to 21days and intra-uterine infection was still present after 21days in 3 out of 5 C. suis- and 4 out of 5 C. trachomatis-inoculated animals and caused severe pathological changes. Humoral immune responses including neutralizing antibodies were found predominantly in response to C. suis starting at 14days post inoculation. The T-cell-mediated immune responses to C. trachomatis and C. suis-infections started at 7days post inoculation and consisted mainly of CD4 + T cells which were either IFN-γ single cytokine-producing or IFN-γ/TNF-α double cytokine-producing T-helper 1 cells. IL-17-producing CD4 + T cells were rare or completely absent. The T-cell-mediated immune responses were triggered by both homologous or heterologous re-stimulation indicating that cross-protection between the two chlamydia species is possible. Thus, having access to a working genital C. suis and C. trachomatis infection model, efficient monitoring of the host-pathogen interactions, and being able to accurately assess the responses to infection makes the pig an excellent animal model for vaccine development which also could bridge the gap to the clinical phase for C. trachomatis vaccine research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Exploiting Quorum Sensing To Confuse Bacterial Pathogens

    PubMed Central

    LaSarre, Breah

    2013-01-01

    SUMMARY Cell-cell communication, or quorum sensing, is a widespread phenomenon in bacteria that is used to coordinate gene expression among local populations. Its use by bacterial pathogens to regulate genes that promote invasion, defense, and spread has been particularly well documented. With the ongoing emergence of antibiotic-resistant pathogens, there is a current need for development of alternative therapeutic strategies. An antivirulence approach by which quorum sensing is impeded has caught on as a viable means to manipulate bacterial processes, especially pathogenic traits that are harmful to human and animal health and agricultural productivity. The identification and development of chemical compounds and enzymes that facilitate quorum-sensing inhibition (QSI) by targeting signaling molecules, signal biogenesis, or signal detection are reviewed here. Overall, the evidence suggests that QSI therapy may be efficacious against some, but not necessarily all, bacterial pathogens, and several failures and ongoing concerns that may steer future studies in productive directions are discussed. Nevertheless, various QSI successes have rightfully perpetuated excitement surrounding new potential therapies, and this review highlights promising QSI leads in disrupting pathogenesis in both plants and animals. PMID:23471618

  19. Host-pathogen interactions in specific pathogen-free chickens following aerogenous infection with Chlamydia psittaci and Chlamydia abortus.

    PubMed

    Kalmar, Isabelle; Berndt, Angela; Yin, Lizi; Chiers, Koen; Sachse, Konrad; Vanrompay, Daisy

    2015-03-15

    Although Chlamydia (C.) psittaci infections are recognized as an important factor causing economic losses and impairing animal welfare in poultry production, the specific mechanisms leading to severe clinical outcomes are poorly understood. In the present study, we comparatively investigated pathology and host immune response, as well as systemic dissemination and expression of essential chlamydial genes in the course of experimental aerogeneous infection with C. psittaci and the closely related C. abortus, respectively, in specific pathogen-free chicks. Clinical signs appeared sooner and were more severe in the C. psittaci-infected group. Compared to C. abortus infection, more intense systemic dissemination of C. psittaci correlated with higher and faster infiltration of immune cells, as well as more macroscopic lesions and epithelial pathology, such as hyperplasia and erosion. In thoracic air sac tissue, mRNA expression of immunologically relevant factors, such as IFN-γ, IL-1β, IL-6, IL-17, IL-22, LITAF and iNOS was significantly stronger up-regulated in C. psittaci- than in C. abortus-infected birds between 3 and 14 days post-infection. Likewise, transcription rates of the chlamydial genes groEL, cpaf and ftsW were consistently higher in C. psittaci during the acute phase. These findings illustrate that the stronger replication of C. psittaci in its natural host also evoked a more intense immune response than in the case of C. abortus infection. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Chlamydia caviae infection alters abundance but not composition of the guinea pig vaginal microbiota

    PubMed Central

    Neuendorf, Elizabeth; Gajer, Pawel; Bowlin, Anne K.; Marques, Patricia X.; Ma, Bing; Yang, Hongqiu; Fu, Li; Humphrys, Michael S.; Forney, Larry J.; Myers, Garry S.A.; Bavoil, Patrik M.; Rank, Roger G.; Ravel, Jacques

    2015-01-01

    In humans, the vaginal microbiota is thought to be the first line of defense again pathogens including Chlamydia trachomatis. The guinea pig has been extensively used as a model to study chlamydial infection because it shares anatomical and physiological similarities with humans, such as a squamous vaginal epithelium as well as some of the long-term outcomes caused by chlamydial infection. In this study, we aimed to evaluate the guinea pig-C. caviae model of genital infection as a surrogate for studying the role of the vaginal microbiota in the early steps of C. trachomatis infection in humans. We used culture-independent molecular methods to characterize the relative and absolute abundance of bacterial phylotypes in the guinea pig vaginal microbiota in animals non-infected, mock-infected or infected by C. caviae. We showed that the guinea pig and human vaginal microbiotas are of different bacterial composition and abundance. Chlamydia caviae infection had a profound effect on the absolute abundance of bacterial phylotypes but not on the composition of the guinea pig vaginal microbiota. Our findings compromise the validity of the guinea pig-C. caviae model to study the role of the vaginal microbiota during the early steps of sexually transmitted infection. PMID:25761873

  1. Chlamydia caviae infection alters abundance but not composition of the guinea pig vaginal microbiota.

    PubMed

    Neuendorf, Elizabeth; Gajer, Pawel; Bowlin, Anne K; Marques, Patricia X; Ma, Bing; Yang, Hongqiu; Fu, Li; Humphrys, Michael S; Forney, Larry J; Myers, Garry S A; Bavoil, Patrik M; Rank, Roger G; Ravel, Jacques

    2015-06-01

    In humans, the vaginal microbiota is thought to be the first line of defense again pathogens including Chlamydia trachomatis. The guinea pig has been extensively used as a model to study chlamydial infection because it shares anatomical and physiological similarities with humans, such as a squamous vaginal epithelium as well as some of the long-term outcomes caused by chlamydial infection. In this study, we aimed to evaluate the guinea pig-C. caviae model of genital infection as a surrogate for studying the role of the vaginal microbiota in the early steps of C. trachomatis infection in humans. We used culture-independent molecular methods to characterize the relative and absolute abundance of bacterial phylotypes in the guinea pig vaginal microbiota in animals non-infected, mock-infected or infected by C. caviae. We showed that the guinea pig and human vaginal microbiotas are of different bacterial composition and abundance. Chlamydia caviae infection had a profound effect on the absolute abundance of bacterial phylotypes but not on the composition of the guinea pig vaginal microbiota. Our findings compromise the validity of the guinea pig-C. caviae model to study the role of the vaginal microbiota during the early steps of sexually transmitted infection. © FEMS 2015.

  2. Chlamydia trachomatis Intercepts Golgi-Derived Sphingolipids through a Rab14-Mediated Transport Required for Bacterial Development and Replication

    PubMed Central

    Capmany, Anahí; Damiani, María Teresa

    2010-01-01

    Chlamydia trachomatis are obligate intracellular bacteria that survive and replicate in a bacterial-modified phagosome called inclusion. As other intracellular parasites, these bacteria subvert the phagocytic pathway to avoid degradation in phagolysosomes and exploit trafficking pathways to acquire both energy and nutrients essential for their survival. Rabs are host proteins that control intracellular vesicular trafficking. Rab14, a Golgi-related Rab, controls Golgi to endosomes transport. Since Chlamydia establish a close relationship with the Golgi apparatus, the recruitment and participation of Rab14 on inclusion development and bacteria growth were analyzed. Time course analysis revealed that Rab14 associated with inclusions by 10 h post infection and was maintained throughout the entire developmental cycle. The recruitment was bacterial protein synthesis-dependent but independent of microtubules and Golgi integrity. Overexpression of Rab14 dominant negative mutants delayed inclusion enlargement, and impaired bacteria replication as determined by IFU. Silencing of Rab14 by siRNA also decreased bacteria multiplication and infectivity. By electron microscopy, aberrant bacteria were observed in cells overexpressing the cytosolic negative Rab14 mutant. Our results showed that Rab14 facilitates the delivery of sphingolipids required for bacterial development and replication from the Golgi to chlamydial inclusions. Novel anti-chlamydial therapies could be developed based on the knowledge of how bacteria subvert host vesicular transport events through Rabs manipulation. PMID:21124879

  3. Chlamydia trachomatis intercepts Golgi-derived sphingolipids through a Rab14-mediated transport required for bacterial development and replication.

    PubMed

    Capmany, Anahí; Damiani, María Teresa

    2010-11-22

    Chlamydia trachomatis are obligate intracellular bacteria that survive and replicate in a bacterial-modified phagosome called inclusion. As other intracellular parasites, these bacteria subvert the phagocytic pathway to avoid degradation in phagolysosomes and exploit trafficking pathways to acquire both energy and nutrients essential for their survival. Rabs are host proteins that control intracellular vesicular trafficking. Rab14, a Golgi-related Rab, controls Golgi to endosomes transport. Since Chlamydia establish a close relationship with the Golgi apparatus, the recruitment and participation of Rab14 on inclusion development and bacteria growth were analyzed. Time course analysis revealed that Rab14 associated with inclusions by 10 h post infection and was maintained throughout the entire developmental cycle. The recruitment was bacterial protein synthesis-dependent but independent of microtubules and Golgi integrity. Overexpression of Rab14 dominant negative mutants delayed inclusion enlargement, and impaired bacteria replication as determined by IFU. Silencing of Rab14 by siRNA also decreased bacteria multiplication and infectivity. By electron microscopy, aberrant bacteria were observed in cells overexpressing the cytosolic negative Rab14 mutant. Our results showed that Rab14 facilitates the delivery of sphingolipids required for bacterial development and replication from the Golgi to chlamydial inclusions. Novel anti-chlamydial therapies could be developed based on the knowledge of how bacteria subvert host vesicular transport events through Rabs manipulation.

  4. [Pathogens in expressed prostatic secretion and their correlation with serum prostate specific antigen: analysis of 320 cases].

    PubMed

    Wang, Shu-Xia; Zhang, Jia-Ming; Wu, Kai; Chen, Juan; Shi, Jian-Feng

    2014-08-01

    To investigate the pathogenic infection and its drug resistance in expressed prostatic secretion (EPS) and its correlation with serum PSA, and provide some evidence for the systematic and normalized diagnosis and treatment of prostatitis. Three EPS swabs were collected from each of the 320 prostatis patients following measurement of the serum PSA level, 1 for bacterial culture and identification, 1 for detection of Mycoplasma and drug sensitivity, and the other for examination of Chlamydia trachomatis antigen by colloidal gold immunoblot. Totally 244 strains were isolated from the 320 EPS samples, including 188 bacterial strains (dominated by Staphylococcus and sensitive to vancomycin or linezolid) and 44 Mycoplasma and Chlamydia strains (mainly Ureaplasma urealyticum and susceptible to josamycin or doxycycline). The serum PSA level was significantly higher in the pathogen-positive than in the pathogen-negative group ([6.98 +/- 0.56] microg/L vs [2.32 +/- 0.12] microg/L, P < 0.05). Prostatitis may lead to the elevation of the serum PSA level and the pathogens involved vary in their resistance to different antibacterial spectrums. Therefore, appropriate and individualized antibiotic therapy should be selected according to etiological diagnosis and the results of drug sensitivity test.

  5. Golgi-associated Rab14, a new regulator for Chlamydia trachomatis infection outcome.

    PubMed

    Capmany, Anahí; Leiva, Natalia; Damiani, María Teresa

    2011-09-01

    Chlamydia trachomatis is the causing agent of the most frequent bacterial sexually-transmitted diseases worldwide and is an underlying cause of chronic pelvic inflammatory diseases and cervical cancer. It is an obligate intracellular bacterium that establishes a close relationship with the Golgi complex and parasites the biosynthetic machinery of host cells. In a recent study, we have demonstrated that Rab14, a newly-described Golgi-associated Rab, is involved in the delivery of sphingolipids to the growing bacteria-containing vacuole. The interference with Rab14-controlled trafficking pathways delays chlamydial inclusion enlargement, decreases bacterial lipid uptake, negatively impact on bacterial differentiation, and reduces bacterial progeny and infectivity. C. trachomatis manipulation of host trafficking pathways for the acquisition of endogenously-biosynthesized nutrients arises as one of the characteristics of this highly evolved pathogen. The development of therapeutic strategies targeted to interfere with bacterium-host cell interaction is a new challenge for pharmacological approaches to control chlamydial infections.

  6. Golgi-associated Rab14, a new regulator for Chlamydia trachomatis infection outcome

    PubMed Central

    Capmany, Anahí; Leiva, Natalia

    2011-01-01

    Chlamydia trachomatis is the causing agent of the most frequent bacterial sexually-transmitted diseases worldwide and is an underlying cause of chronic pelvic inflammatory diseases and cervical cancer. It is an obligate intracellular bacterium that establishes a close relationship with the Golgi complex and parasites the biosynthetic machinery of host cells. In a recent study, we have demonstrated that Rab14, a newly-described Golgi-associated Rab, is involved in the delivery of sphingolipids to the growing bacteria-containing vacuole. The interference with Rab14-controlled trafficking pathways delays chlamydial inclusion enlargement, decreases bacterial lipid uptake, negatively impact on bacterial differentiation, and reduces bacterial progeny and infectivity. C. trachomatis manipulation of host trafficking pathways for the acquisition of endogenously-biosynthesized nutrients arises as one of the characteristics of this highly evolved pathogen. The development of therapeutic strategies targeted to interfere with bacterium-host cell interaction is a new challenge for pharmacological approaches to control chlamydial infections. PMID:22046472

  7. Cytosolic Access of Intracellular Bacterial Pathogens: The Shigella Paradigm.

    PubMed

    Mellouk, Nora; Enninga, Jost

    2016-01-01

    Shigella is a Gram-negative bacterial pathogen, which causes bacillary dysentery in humans. A crucial step of Shigella infection is its invasion of epithelial cells. Using a type III secretion system, Shigella injects several bacterial effectors ultimately leading to bacterial internalization within a vacuole. Then, Shigella escapes rapidly from the vacuole, it replicates within the cytosol and spreads from cell-to-cell. The molecular mechanism of vacuolar rupture used by Shigella has been studied in some detail during the recent years and new paradigms are emerging about the underlying molecular events. For decades, bacterial effector proteins were portrayed as main actors inducing vacuolar rupture. This includes the effector/translocators IpaB and IpaC. More recently, this has been challenged and an implication of the host cell in the process of vacuolar rupture has been put forward. This includes the bacterial subversion of host trafficking regulators, such as the Rab GTPase Rab11. The involvement of the host in determining bacterial vacuolar integrity has also been found for other bacterial pathogens, particularly for Salmonella. Here, we will discuss our current view of host factor and pathogen effector implications during Shigella vacuolar rupture and the steps leading to it.

  8. Diagnosis and treatment of bacterial prostatitis.

    PubMed

    Videčnik Zorman, Jerneja; Matičič, Mojca; Jeverica, Samo; Smrkolj, Tomaž

    2015-01-01

    Prostate inflammation is a common syndrome, especially in men under 50. It usually presents with voiding symptoms and pain in the genitourinary area, and sometimes as sexual dysfunction. Based on clinical and laboratory characteristics, prostatitis is classified as acute bacterial prostatitis, chronic bacterial prostatitis, chronic inflammatory and non-inflammatory prostatitis or chronic pelvic pain syndrome, and asymptomatic inflammatory prostatitis. Bacterial prostatitis is most often caused by infection with uropathogens, mainly Gram-negative bacilli, but Gram-positive and atypical microorganisms have also been identified as causative organisms of chronic prostatitis. According to reports by several authors, Chlamydia trachomatis and Trichomonas vaginalis are some of the most common pathogens, making chronic prostatitis a sexually transmitted disease. Diagnosis and treatment of acute and chronic bacterial prostatitis in particular can be challenging.

  9. The Proteome of the Isolated Chlamydia trachomatis Containing Vacuole Reveals a Complex Trafficking Platform Enriched for Retromer Components

    PubMed Central

    Fischer, Martina; Jehmlich, Nico; Rose, Laura; Koch, Sophia; Laue, Michael; Renard, Bernhard Y.; Schmidt, Frank; Heuer, Dagmar

    2015-01-01

    Chlamydia trachomatis is an important human pathogen that replicates inside the infected host cell in a unique vacuole, the inclusion. The formation of this intracellular bacterial niche is essential for productive Chlamydia infections. Despite its importance for Chlamydia biology, a holistic view on the protein composition of the inclusion, including its membrane, is currently missing. Here we describe the host cell-derived proteome of isolated C. trachomatis inclusions by quantitative proteomics. Computational analysis indicated that the inclusion is a complex intracellular trafficking platform that interacts with host cells’ antero- and retrograde trafficking pathways. Furthermore, the inclusion is highly enriched for sorting nexins of the SNX-BAR retromer, a complex essential for retrograde trafficking. Functional studies showed that in particular, SNX5 controls the C. trachomatis infection and that retrograde trafficking is essential for infectious progeny formation. In summary, these findings suggest that C. trachomatis hijacks retrograde pathways for effective infection. PMID:26042774

  10. Cytosolic Access of Intracellular Bacterial Pathogens: The Shigella Paradigm

    PubMed Central

    Mellouk, Nora; Enninga, Jost

    2016-01-01

    Shigella is a Gram-negative bacterial pathogen, which causes bacillary dysentery in humans. A crucial step of Shigella infection is its invasion of epithelial cells. Using a type III secretion system, Shigella injects several bacterial effectors ultimately leading to bacterial internalization within a vacuole. Then, Shigella escapes rapidly from the vacuole, it replicates within the cytosol and spreads from cell-to-cell. The molecular mechanism of vacuolar rupture used by Shigella has been studied in some detail during the recent years and new paradigms are emerging about the underlying molecular events. For decades, bacterial effector proteins were portrayed as main actors inducing vacuolar rupture. This includes the effector/translocators IpaB and IpaC. More recently, this has been challenged and an implication of the host cell in the process of vacuolar rupture has been put forward. This includes the bacterial subversion of host trafficking regulators, such as the Rab GTPase Rab11. The involvement of the host in determining bacterial vacuolar integrity has also been found for other bacterial pathogens, particularly for Salmonella. Here, we will discuss our current view of host factor and pathogen effector implications during Shigella vacuolar rupture and the steps leading to it. PMID:27092296

  11. Molecular mechanisms of cell-cell spread of intracellular bacterial pathogens.

    PubMed

    Ireton, Keith

    2013-07-17

    Several bacterial pathogens, including Listeria monocytogenes, Shigella flexneri and Rickettsia spp., have evolved mechanisms to actively spread within human tissues. Spreading is initiated by the pathogen-induced recruitment of host filamentous (F)-actin. F-actin forms a tail behind the microbe, propelling it through the cytoplasm. The motile pathogen then encounters the host plasma membrane, forming a bacterium-containing protrusion that is engulfed by an adjacent cell. Over the past two decades, much progress has been made in elucidating mechanisms of F-actin tail formation. Listeria and Shigella produce tails of branched actin filaments by subverting the host Arp2/3 complex. By contrast, Rickettsia forms tails with linear actin filaments through a bacterial mimic of eukaryotic formins. Compared with F-actin tail formation, mechanisms controlling bacterial protrusions are less well understood. However, recent findings have highlighted the importance of pathogen manipulation of host cell-cell junctions in spread. Listeria produces a soluble protein that enhances bacterial protrusions by perturbing tight junctions. Shigella protrusions are engulfed through a clathrin-mediated pathway at 'tricellular junctions'--specialized membrane regions at the intersection of three epithelial cells. This review summarizes key past findings in pathogen spread, and focuses on recent developments in actin-based motility and the formation and internalization of bacterial protrusions.

  12. Impact of capsaicin, an active component of chili pepper, on pathogenic chlamydial growth (Chlamydia trachomatis and Chlamydia pneumoniae) in immortal human epithelial HeLa cells.

    PubMed

    Yamakawa, Kazuya; Matsuo, Junji; Okubo, Torahiko; Nakamura, Shinji; Yamaguchi, Hiroyuki

    2018-02-01

    Chlamydia trachomatis is the leading cause of sexually transmitted infections worldwide. Capsaicin, a component of chili pepper, which can stimulate actin remodeling via capsaicin receptor TRPV1 (transient receptor potential vanilloid 1) and anti-inflammatory effects via PPARγ (peroxisome proliferator-activated receptor-γ) and LXRα (liver X receptor α), is a potential candidate to control chlamydial growth in host cells. We examined whether capsaicin could inhibit C. trachomatis growth in immortal human epithelial HeLa cells. Inclusion forming unit and quantitative PCR assays showed that capsaicin significantly inhibited bacterial growth in cells in a dose-dependent manner, even in the presence of cycloheximide, a eukaryotic protein synthesis inhibitor. Confocal microscopic and transmission electron microscopic observations revealed an obvious decrease in bacterial numbers to inclusions bodies formed in the cells. Although capsaicin can stimulate the apoptosis of cells, no increase in cleaved PARP (poly (ADP-ribose) polymerase), an apoptotic indicator, was observed at a working concentration. All of the drugs tested (capsazepine, a TRPV1 antagonist; 5CPPSS-50, an LXRα inhibitor; and T0070907, a PPARγ inhibitor) had no effect on chlamydial inhibition in the presence of capsaicin. In addition, we also confirmed that capsaicin inhibited Chlamydia pneumoniae growth, indicating a phenomena not specific to C. trachomatis. Thus, we conclude that capsaicin can block chlamydial growth without the requirement of host cell protein synthesis, but by another, yet to be defined, mechanism. Copyright © 2017 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  13. Sequestration of host metabolism by an intracellular pathogen.

    PubMed

    Gehre, Lena; Gorgette, Olivier; Perrinet, Stéphanie; Prevost, Marie-Christine; Ducatez, Mathieu; Giebel, Amanda M; Nelson, David E; Ball, Steven G; Subtil, Agathe

    2016-03-16

    For intracellular pathogens, residence in a vacuole provides a shelter against cytosolic host defense to the cost of limited access to nutrients. The human pathogen Chlamydia trachomatis grows in a glycogen-rich vacuole. How this large polymer accumulates there is unknown. We reveal that host glycogen stores shift to the vacuole through two pathways: bulk uptake from the cytoplasmic pool, and de novo synthesis. We provide evidence that bacterial glycogen metabolism enzymes are secreted into the vacuole lumen through type 3 secretion. Our data bring strong support to the following scenario: bacteria co-opt the host transporter SLC35D2 to import UDP-glucose into the vacuole, where it serves as substrate for de novo glycogen synthesis, through a remarkable adaptation of the bacterial glycogen synthase. Based on these findings we propose that parasitophorous vacuoles not only offer protection but also provide a microorganism-controlled metabolically active compartment essential for redirecting host resources to the pathogens.

  14. Emerging bacterial pathogens: the past and beyond.

    PubMed

    Vouga, M; Greub, G

    2016-01-01

    Since the 1950s, medical communities have been facing with emerging and reemerging infectious diseases, and emerging pathogens are now considered to be a major microbiologic public health threat. In this review, we focus on bacterial emerging diseases and explore factors involved in their emergence as well as future challenges. We identified 26 major emerging and reemerging infectious diseases of bacterial origin; most of them originated either from an animal and are considered to be zoonoses or from water sources. Major contributing factors in the emergence of these bacterial infections are: (1) development of new diagnostic tools, such as improvements in culture methods, development of molecular techniques and implementation of mass spectrometry in microbiology; (2) increase in human exposure to bacterial pathogens as a result of sociodemographic and environmental changes; and (3) emergence of more virulent bacterial strains and opportunistic infections, especially affecting immunocompromised populations. A precise definition of their implications in human disease is challenging and requires the comprehensive integration of microbiological, clinical and epidemiologic aspects as well as the use of experimental models. It is now urgent to allocate financial resources to gather international data to provide a better understanding of the clinical relevance of these waterborne and zoonotic emerging diseases. Copyright © 2015. Published by Elsevier Ltd.

  15. Plant-bacterial pathogen interactions mediated by type III effectors.

    PubMed

    Feng, Feng; Zhou, Jian-Min

    2012-08-01

    Effectors secreted by the bacterial type III system play a central role in the interaction between Gram-negative bacterial pathogens and their host plants. Recent advances in the effector studies have helped cementing several key concepts concerning bacterial pathogenesis, plant immunity, and plant-pathogen co-evolution. Type III effectors use a variety of biochemical mechanisms to target specific host proteins or DNA for pathogenesis. The identifications of their host targets led to the identification of novel components of plant innate immune system. Key modules of plant immune signaling pathways such as immune receptor complexes and MAPK cascades have emerged as a major battle ground for host-pathogen adaptation. These modules are attacked by multiple type III effectors, and some components of these modules have evolved to actively sense the effectors and trigger immunity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Chlamydia felis: Lack of association between clinical signs and the presence of the cryptic plasmid.

    PubMed

    Gonsales, F F; Brandão, P E; Melville, P A; Zuniga, E; Benites, N R

    2016-08-01

    Chlamydia felis is an obligate intracellular bacterial pathogen that infects cats, causing severe conjunctivitis associated with upper respiratory tract disease (URTD). In the present study, 186 cats from three non-commercial catteries in São Paulo, SP, Brazil were evaluated. The detection of Chlamydia felis was performed by PCR. The clinical severity was scored from 1 to 4, with a score of 4 as the most severe manifestation. The total occurrence of C. felis was of 18.82% (35/186) of cats overall, but notably, 58.06% (18/31) of infected cats originated from a single cattery. All animals harboring C. felis had URTD clinical signs and higher scores (3 and 4). In addition, C. felis occurrence was associated with the presence of cryptic plasmid. However, the virulence and clinical severity were not correlated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. [Non-viral sexually transmitted infections - Epidemiology, clinical manifestations, diagnostics and therapy : Part 2: Chlamydia and mycoplasma].

    PubMed

    Nenoff, P; Manos, A; Ehrhard, I; Krüger, C; Paasch, U; Helmbold, P; Handrick, W

    2017-01-01

    Chlamydia trachomatis is the most common pathogen of sexually transmitted bacterial infections worldwide. Every year in Germany approximately 300,000 new infections are to be expected. Chlamydia infections occur nearly exclusively in the postpubertal period. The peak age group is 15-25 years. The infection usually runs an asymptomatic course and the diagnosis is made by nucleic acid amplification techniques (NAAT) often after chlamydial screening or if complications occur. For treatment of chlamydial infections oral doxycycline 100 mg twice daily over 7 days is initially used or alternatively oral azithromycin 1.5 g as a single dose is recommended. The sexual partner should also be investigated and treated. Genital Mycoplasma infections are caused by Ureaplasma urealyticum (pathogen of urethritis and vaginitis), Ureaplasma parvum (mostly saprophytic and rarely a cause of urethritis) and Mycoplasma hominis (facultative pathogenic). Mycoplasma genitalium represents a relatively new sexually transmitted Mycoplasma species. Doxycycline is effective in Ureaplasma infections or alternatively clarithromycin and azithromycin. Doxycycline can be ineffective in Mycoplasma hominis infections and an alternative is clindamycin. Non-gonococcal and non-chlamydial urethritis due to Mycoplasma genitalium can now be diagnosed by molecular biological techniques using PCR and should be treated by azithromycin.

  18. Bacterial pathogens of the bovine respiratory disease complex.

    PubMed

    Griffin, Dee; Chengappa, M M; Kuszak, Jennifer; McVey, D Scott

    2010-07-01

    Pneumonia caused by the bacterial pathogens discussed in this article is the most significant cause of morbidity and mortality of the BRDC. Most of these infectious bacteria are not capable of inducing significant disease without the presence of other predisposing environmental factors, physiologic stressors, or concurrent infections. Mannheimia haemolytica is the most common and serious of these bacterial agents and is therefore also the most highly characterized. There are other important bacterial pathogens of BRD, such as Pasteurella multocida, Histophulus somni, and Mycoplasma bovis. Mixed infections with these organisms do occur. These pathogens have unique and common virulence factors but the resulting pneumonic lesions may be similar. Although the amount and quality of research associated with BRD has increased, vaccination and therapeutic practices are not fully successful. A greater understanding of the virulence mechanisms of the infecting bacteria and pathogenesis of pneumonia, as well as the characteristics of the organisms that allow tissue persistence, may lead to improved management, therapeutics, and vaccines. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Bacterial genome engineering and synthetic biology: combating pathogens.

    PubMed

    Krishnamurthy, Malathy; Moore, Richard T; Rajamani, Sathish; Panchal, Rekha G

    2016-11-04

    The emergence and prevalence of multidrug resistant (MDR) pathogenic bacteria poses a serious threat to human and animal health globally. Nosocomial infections and common ailments such as pneumonia, wound, urinary tract, and bloodstream infections are becoming more challenging to treat due to the rapid spread of MDR pathogenic bacteria. According to recent reports by the World Health Organization (WHO) and Centers for Disease Control and Prevention (CDC), there is an unprecedented increase in the occurrence of MDR infections worldwide. The rise in these infections has generated an economic strain worldwide, prompting the WHO to endorse a global action plan to improve awareness and understanding of antimicrobial resistance. This health crisis necessitates an immediate action to target the underlying mechanisms of drug resistance in bacteria. The advent of new bacterial genome engineering and synthetic biology (SB) tools is providing promising diagnostic and treatment plans to monitor and treat widespread recalcitrant bacterial infections. Key advances in genetic engineering approaches can successfully aid in targeting and editing pathogenic bacterial genomes for understanding and mitigating drug resistance mechanisms. In this review, we discuss the application of specific genome engineering and SB methods such as recombineering, clustered regularly interspaced short palindromic repeats (CRISPR), and bacterial cell-cell signaling mechanisms for pathogen targeting. The utility of these tools in developing antibacterial strategies such as novel antibiotic production, phage therapy, diagnostics and vaccine production to name a few, are also highlighted. The prevalent use of antibiotics and the spread of MDR bacteria raise the prospect of a post-antibiotic era, which underscores the need for developing novel therapeutics to target MDR pathogens. The development of enabling SB technologies offers promising solutions to deliver safe and effective antibacterial therapies.

  20. Chlamydia Infection Across Host Species Boundaries Promotes Distinct Sets of Transcribed Anti-Apoptotic Factors

    PubMed Central

    Messinger, Joshua E.; Nelton, Emmalin; Feeney, Colleen; Gondek, David C.

    2015-01-01

    Chlamydiae, obligate intracellular bacteria, cause significant human and veterinary associated diseases. Having emerged an estimated 700-million years ago, these bacteria have twice adapted to humans as a host species, causing sexually transmitted infection (C. trachomatis) and respiratory associated disease (C. pneumoniae). The principle mechanism of host cell defense against these intracellular bacteria is the induction of cell death via apoptosis. However, in the “arms race” of co-evolution, Chlamydiae have developed mechanisms to promote cell viability and inhibit cell death. Herein we examine the impact of Chlamydiae infection across multiple host species on transcription of anti-apoptotic genes. We found mostly distinct patterns of gene expression (Mcl1 and cIAPs) elicited by each pathogen-host pair indicating Chlamydiae infection across host species boundaries does not induce a universally shared host response. Understanding species specific host-pathogen interactions is paramount to deciphering how potential pathogens become emerging diseases. PMID:26779446

  1. Evaluating bacterial pathogen DNA preservation in museum osteological collections

    PubMed Central

    Barnes, Ian; Thomas, Mark G

    2005-01-01

    Reports of bacterial pathogen DNA sequences obtained from archaeological bone specimens raise the possibility of greatly improving our understanding of the history of infectious diseases. However, the survival of pathogen DNA over long time periods is poorly characterized, and scepticism remains about the reliability of these data. In order to explore the survival of bacterial pathogen DNA in bone specimens, we analysed samples from 59 eighteenth and twentieth century individuals known to have been infected with either Mycobacterium tuberculosis or Treponema pallidum. No reproducible evidence of surviving pathogen DNA was obtained, despite the use of extraction and PCR-amplification methods determined to be highly sensitive. These data suggest that previous studies need to be interpreted with caution, and we propose that a much greater emphasis is placed on understanding how pathogen DNA survives in archaeological material, and how its presence can be properly verified and used. PMID:16608682

  2. Profile and Fate of Bacterial Pathogens in Sewage Treatment Plants Revealed by High-Throughput Metagenomic Approach.

    PubMed

    Li, Bing; Ju, Feng; Cai, Lin; Zhang, Tong

    2015-09-01

    The broad-spectrum profile of bacterial pathogens and their fate in sewage treatment plants (STPs) were investigated using high-throughput sequencing based metagenomic approach. This novel approach could provide a united platform to standardize bacterial pathogen detection and realize direct comparison among different samples. Totally, 113 bacterial pathogen species were detected in eight samples including influent, effluent, activated sludge (AS), biofilm, and anaerobic digestion sludge with the abundances ranging from 0.000095% to 4.89%. Among these 113 bacterial pathogens, 79 species were reported in STPs for the first time. Specially, compared to AS in bulk mixed liquor, more pathogen species and higher total abundance were detected in upper foaming layer of AS. This suggests that the foaming layer of AS might impose more threat to onsite workers and citizens in the surrounding areas of STPs because pathogens in foaming layer are easily transferred into air and cause possible infections. The high removal efficiency (98.0%) of total bacterial pathogens suggests that AS treatment process is effective to remove most bacterial pathogens. Remarkable similarities of bacterial pathogen compositions between influent and human gut indicated that bacterial pathogen profiles in influents could well reflect the average bacterial pathogen communities of urban resident guts within the STP catchment area.

  3. Identification, characterisation and expression analysis of natural killer receptor genes in Chlamydia pecorum infected koalas (Phascolarctos cinereus).

    PubMed

    Morris, Katrina M; Mathew, Marina; Waugh, Courtney; Ujvari, Beata; Timms, Peter; Polkinghorne, Adam; Belov, Katherine

    2015-10-15

    Koalas (Phascolarctos cinereus), an iconic Australian marsupial, are being heavily impacted by the spread of Chlamydia pecorum, an obligate intracellular bacterial pathogen. Koalas vary in their response to this pathogen, with some showing no symptoms, while others suffer severe symptoms leading to infertility, blindness or death. Little is known about the pathology of this disease and the immune response against it in this host. Studies have demonstrated that natural killer (NK) cells, key components of the innate immune system, are involved in the immune response to chlamydial infections in humans. These cells can directly lyse cells infected by intracellular pathogens and their ability to recognise these infected cells is mediated through NK receptors on their surface. These are encoded in two regions of the genome, the leukocyte receptor complex (LRC) and the natural killer complex (NKC). These two families evolve rapidly and different repertoires of genes, which have evolved by gene duplication, are seen in different species. In this study we aimed to characterise genes belonging to the NK receptor clusters in the koala by searching available koala transcriptomes using a combination of search methods. We developed a qPCR assay to quantify relative expression of four genes, two encoded within the NK receptor cluster (CLEC1B, CLEC4E) and two known to play a role in NK response to Chalmydia in humans (NCR3, PRF1). We found that the NK receptor repertoire of the koala closely resembles that of the Tasmanian devil, with minimal genes in the NKC, but with lineage specific expansions in the LRC. Additional genes important for NK cell activity, NCR3 and PRF1, were also identified and characterised. In a preliminary study to investigate whether these genes are involved in the koala immune response to infection by its chlamydial pathogen, C. pecorum, we investigated the expression of four genes in koalas with active chlamydia infection, those with past infection and

  4. Characterization and Evolution of Cell Division and Cell Wall Synthesis Genes in the Bacterial Phyla Verrucomicrobia, Lentisphaerae, Chlamydiae, and Planctomycetes and Phylogenetic Comparison with rRNA Genes▿ †

    PubMed Central

    Pilhofer, Martin; Rappl, Kristina; Eckl, Christina; Bauer, Andreas Peter; Ludwig, Wolfgang; Schleifer, Karl-Heinz; Petroni, Giulio

    2008-01-01

    In the past, studies on the relationships of the bacterial phyla Planctomycetes, Chlamydiae, Lentisphaerae, and Verrucomicrobia using different phylogenetic markers have been controversial. Investigations based on 16S rRNA sequence analyses suggested a relationship of the four phyla, showing the branching order Planctomycetes, Chlamydiae, Verrucomicrobia/Lentisphaerae. Phylogenetic analyses of 23S rRNA genes in this study also support a monophyletic grouping and their branching order—this grouping is significant for understanding cell division, since the major bacterial cell division protein FtsZ is absent from members of two of the phyla Chlamydiae and Planctomycetes. In Verrucomicrobia, knowledge about cell division is mainly restricted to the recent report of ftsZ in the closely related genera Prosthecobacter and Verrucomicrobium. In this study, genes of the conserved division and cell wall (dcw) cluster (ddl, ftsQ, ftsA, and ftsZ) were characterized in all verrucomicrobial subdivisions (1 to 4) with cultivable representatives (1 to 4). Sequence analyses and transcriptional analyses in Verrucomicrobia and genome data analyses in Lentisphaerae suggested that cell division is based on FtsZ in all verrucomicrobial subdivisions and possibly also in the sister phylum Lentisphaerae. Comprehensive sequence analyses of available genome data for representatives of Verrucomicrobia, Lentisphaerae, Chlamydiae, and Planctomycetes strongly indicate that their last common ancestor possessed a conserved, ancestral type of dcw gene cluster and an FtsZ-based cell division mechanism. This implies that Planctomycetes and Chlamydiae may have shifted independently to a non-FtsZ-based cell division mechanism after their separate branchings from their last common ancestor with Verrucomicrobia. PMID:18310338

  5. Lactobacilli-lactoferrin interplay in Chlamydia trachomatis infection.

    PubMed

    Sessa, Rosa; Di Pietro, Marisa; Filardo, Simone; Bressan, Alessia; Mastromarino, Paola; Biasucci, Alessandra Vittoria; Rosa, Luigi; Cutone, Antimo; Berlutti, Francesca; Paesano, Rosalba; Valenti, Piera

    2017-07-31

    In the cervicovaginal microenvironment, lactobacilli are known to protect against genital infections and, amongst the host defence compounds, lactoferrin has recently acquired importance for its anti-microbial and anti-inflammatory properties. An abnormal genital microenvironment facilitates the acquisition of pathogens like Chlamydia trachomatis, the leading cause of bacterial sexually transmitted infections worldwide. The aim of our study is to investigate the effects of Lactobacillus crispatus, Lactobacillus brevis and bovine lactoferrin on chlamydial infection, in order to shed light on the complex interplay between host defence mechanisms and C. trachomatis. We have also evaluated the effect of these defence factors to modulate the chlamydia-mediated inflammatory state. To this purpose, we have determined the infectivity and progeny production of C. trachomatis as well as interleukin-8 and interleukin-6 synthesis. The main result of our study is that the combination of L. brevis and bovine lactoferrin is the most effective in inhibiting the early phases (adhesion and invasion) of C. trachomatis infection of cervical epithelial cells and in decreasing the levels of both cytokines. In conclusion, the interaction between L. brevis and lactoferrin seems to play a role in the protection against C. trachomatis, reducing the infection and regulating the immunomodulatory activity, thus decreasing the risk of severe complications. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Increased detection of mastitis pathogens by real-time PCR compared to bacterial culture.

    PubMed

    Keane, O M; Budd, K E; Flynn, J; McCoy, F

    2013-09-21

    Rapid and accurate identification of mastitis pathogens is important for disease control. Bacterial culture and isolate identification is considered the gold standard in mastitis diagnosis but is time consuming and results in many culture-negative samples. Identification of mastitis pathogens by PCR has been proposed as a fast and sensitive alternative to bacterial culture. The results of bacterial culture and PCR for the identification of the aetiological agent of clinical mastitis were compared. The pathogen identified by traditional culture methods was also detected by PCR in 98 per cent of cases indicating good agreement between the positive results of bacterial culture and PCR. A mastitis pathogen could not be recovered from approximately 30 per cent of samples by bacterial culture, however, an aetiological agent was identified by PCR in 79 per cent of these samples. Therefore, a mastitis pathogen was detected in significantly more milk samples by PCR than by bacterial culture (92 per cent and 70 per cent, respectively) although the clinical relevance of PCR-positive culture-negative results remains controversial. A mixed infection of two or more mastitis pathogens was also detected more commonly by PCR. Culture-negative samples due to undetected Staphylococcus aureus infections were rare. The use of PCR technology may assist in rapid mastitis diagnosis, however, accurate interpretation of PCR results in the absence of bacterial culture remains problematic.

  7. Analysis of bacterial communities and bacterial pathogens in a biogas plant by the combination of ethidium monoazide, PCR and Ion Torrent sequencing.

    PubMed

    Luo, Gang; Angelidaki, Irini

    2014-09-01

    The present study investigated the changes of bacterial community composition including bacterial pathogens along a biogas plant, i.e. from the influent, to the biogas reactor and to the post-digester. The effects of post-digestion temperature and time on the changes of bacterial community composition and bacterial pathogens were also studied. Microbial analysis was made by Ion Torrent sequencing of the PCR amplicons from ethidium monoazide treated samples, and ethidium monoazide was used to cleave DNA from dead cells and exclude it from PCR amplification. Both similarity and taxonomic analysis showed that the bacterial community composition in the influent was changed after anaerobic digestion. Firmicutes were dominant in all the samples, while Proteobacteria decreased in the biogas reactor compared with the influent. Variations of bacterial community composition in the biogas reactor with time were also observed. This could be attributed to varying composition of the influent. Batch experiments showed that the methane recovery from the digested residues (obtained from biogas reactor) was mainly related with post-digestion temperature. However, post-digestion time rather than temperature had a significant effect on the changes of bacterial community composition. The changes of bacterial community composition were also reflected in the changes of relative abundance of bacterial pathogens. The richness and relative abundance of bacterial pathogens were reduced after anaerobic digestion in the biogas reactor. It was found in batch experiments that bacterial pathogens showed the highest relative abundance and richness after 30 days' post-digestion. Streptococcus bovis was found in all the samples. Our results showed that special attention should be paid to the post-digestion since the increase in relative abundance of bacterial pathogens after post-digestion might reflect regrowth of bacterial pathogens and limit biosolids disposal vectors. Copyright © 2014 Elsevier

  8. Poisons, ruffles and rockets: bacterial pathogens and the host cell cytoskeleton.

    PubMed

    Steele-Mortimer, O; Knodler, L A; Finlay, B B

    2000-02-01

    The cytoskeleton of eukaryotic cells is affected by a number of bacterial and viral pathogens. In this review we consider three recurring themes of cytoskeletal involvement in bacterial pathogenesis: 1) the effect of bacterial toxins on actin-regulating small GTP-binding proteins; 2) the invasion of non-phagocytic cells by the bacterial induction of ruffles at the plasma membrane; 3) the formation of actin tails and pedestals by intracellular and extracellular bacteria, respectively. Considerable progress has been made recently in the characterization of these processes. It is becoming clear that bacterial pathogens have developed a variety of sophisticated mechanisms for utilizing the complex cytoskeletal system of host cells. These bacterially-induced processes are now providing unique insights into the regulation of fundamental eukaryotic mechanisms.

  9. Subunit vaccines for the prevention of mucosal infection with Chlamydia trachomatis

    PubMed Central

    Yu, Hong; Karunakaran, Karuna P.; Jiang, Xiaozhou; Brunham, Robert C.

    2016-01-01

    Chlamydia trachomatis is the most common preventable cause of tubal infertility in women. In high-income countries, despite public health control efforts, C. trachomatis case rates continue to rise. Most medium and low-income countries lack any Chlamydia control program; therefore, a vaccine is essential for the control of Chlamydia infections. A rationally designed Chlamydia vaccine requires understanding of the immunological correlates of protective immunity, pathological responses to this mucosal pathogen, identification of optimal vaccine antigens and selection of suitable adjuvant delivery systems that engender protective immunity. Fortunately, Chlamydia vaccinology is facilitated by genomic knowledge and by murine models that reproduce many of the features of human C. trachomatis infection. This article reviews recent progress in these areas with a focus on subunit vaccine development. PMID:26938202

  10. Sequestration of host metabolism by an intracellular pathogen

    PubMed Central

    Gehre, Lena; Gorgette, Olivier; Perrinet, Stéphanie; Prevost, Marie-Christine; Ducatez, Mathieu; Giebel, Amanda M; Nelson, David E; Ball, Steven G; Subtil, Agathe

    2016-01-01

    For intracellular pathogens, residence in a vacuole provides a shelter against cytosolic host defense to the cost of limited access to nutrients. The human pathogen Chlamydia trachomatis grows in a glycogen-rich vacuole. How this large polymer accumulates there is unknown. We reveal that host glycogen stores shift to the vacuole through two pathways: bulk uptake from the cytoplasmic pool, and de novo synthesis. We provide evidence that bacterial glycogen metabolism enzymes are secreted into the vacuole lumen through type 3 secretion. Our data bring strong support to the following scenario: bacteria co-opt the host transporter SLC35D2 to import UDP-glucose into the vacuole, where it serves as substrate for de novo glycogen synthesis, through a remarkable adaptation of the bacterial glycogen synthase. Based on these findings we propose that parasitophorous vacuoles not only offer protection but also provide a microorganism-controlled metabolically active compartment essential for redirecting host resources to the pathogens. DOI: http://dx.doi.org/10.7554/eLife.12552.001 PMID:26981769

  11. [Biochemical characteristics and antigenic structures of Chlamydia].

    PubMed

    Puy, H; Fuentes, V; Eb, F; Orfila, J

    1989-01-01

    New biotechnology in immunology and molecular biology has enabled the identification and definition of the structure of glycolipids and especially membrane proteins of Chlamydia. Chlamydia antigen lipopolysaccharide, major outer membrane protein, protein 74 kDa, eukaryotic cell binding protein and cysteine rich proteins are all carriers of antigenic determinants, genus, species or type specific. They are very usefull for diagnosis of Chlamydial infections and epidemiological studies. These membranous antigens have an important role in the pathogenesis of these bacteries. Finally these studies have contributed to the isolation of a new species: C. pneumoniae (TWAR strains).

  12. Genetic diversity of Chlamydia among captive birds from central Argentina.

    PubMed

    Frutos, María C; Monetti, Marina S; Vaulet, Lucia Gallo; Cadario, María E; Fermepin, Marcelo Rodríguez; Ré, Viviana E; Cuffini, Cecilia G

    2015-01-01

    To study the occurrence of Chlamydia spp. and their genetic diversity, we analysed 793 cloacal swabs from 12 avian orders, including 76 genera, obtained from 80 species of asymptomatic wild and captive birds that were examined with conventional nested polymerase chain reaction and quantitative polymerase chain reaction. Chlamydia spp. were not detected in wild birds; however, four species (Chlamydia psittaci, Chlamydia pecorum, Chlamydia pneumoniae and Chlamydia gallinacea) were identified among captive birds (Passeriformes, n = 20; Psittaciformes, n = 15; Rheiformes, n = 8; Falconiformes n = 2; Piciformes n = 2; Anseriformes n = 1; Galliformes n = 1; Strigiformes n = 1). Two pathogens (C. pneumoniae and C. pecorum) were identified simultaneously in samples obtained from captive birds. Based on nucleotide-sequence variations of the ompA gene, three C. psittaci-positive samples detected were grouped into a cluster with the genotype WC derived from mammalian hosts. A single positive sample was phylogenetically related to a new strain of C. gallinacea. This report contributes to our increasing understanding of the abundance of Chlamydia in the animal kingdom.

  13. Genetic reprogramming of host cells by bacterial pathogens.

    PubMed

    Tran Van Nhieu, Guy; Arbibe, Laurence

    2009-10-29

    During the course of infection, pathogens often induce changes in gene expression in host cells and these changes can be long lasting and global or transient and of limited amplitude. Defining how, when, and why bacterial pathogens reprogram host cells represents an exciting challenge that opens up the opportunity to grasp the essence of pathogenesis and its molecular details.

  14. Manipulation of host membranes by the bacterial pathogens Listeria, Francisella, Shigella and Yersinia.

    PubMed

    Pizarro-Cerdá, Javier; Charbit, Alain; Enninga, Jost; Lafont, Frank; Cossart, Pascale

    2016-12-01

    Bacterial pathogens display an impressive arsenal of molecular mechanisms that allow survival in diverse host niches. Subversion of plasma membrane and cytoskeletal functions are common themes associated to infection by both extracellular and intracellular pathogens. Moreover, intracellular pathogens modify the structure/stability of their membrane-bound compartments and escape degradation from phagocytic or autophagic pathways. Here, we review the manipulation of host membranes by Listeria monocytogenes, Francisella tularensis, Shigella flexneri and Yersinia spp. These four bacterial model pathogens exemplify generalized strategies as well as specific features observed during bacterial infection processes. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. [Co-occurence of indol-producing bacterial strains in the vagina of women infected with Chlamydia trachomatis].

    PubMed

    Romanik, Małgorzata; Martirosian, Gayane; Wojciechowska-Wieja, Anna; Cieślik, Katarzyna; Kaźmierczak, Wojciech

    2007-08-01

    The aim of this study was to determine if cervicitis, caused by Chlamydia trachomatis (C. trachomatis), has an influence on the frequency of occurrence of selected aerobic and anaerobic bacterial strains, connected with etiology of aerobic vaginitis (AV) and bacterial vaginosis (BV). Indole-producing bacteria have received particular attention due to their possibly inductive role in chronic cervicitis caused by C. trachomatis. The swabs from vagina and cervical canal have been obtained from 122 women (aged 18-40). The presence of C. trachomatis antigen had been detected and diagnosed with the help of direct immunofluorescence, BV with Amesl and Nugent criteria, whereas the AV with Donders criteria. The identification of the bacterial strains isolated from vagina has been performed according to classical microbiological diagnostics. Disruption of vaginal microflora (4-10 in Nugent score) was determined in 11,5% of observed women. AV was diagnosed in 4.5% women with chlamydial cervicitis, BV was diagnosed in 10.9% and 5.45% of these women, on the basis of Amsel and Nugent criteria respectively. Indole-producing bacterial strains connected with BV and AV (Peptostreptococcus anaerobius, Propionibacterium acnes, Escherichia coli) have been isolated significantly more often from vagina of women infected with C trachomatis (p = 0.0405, chi2 = 4.20) and these findings confirm co-importance of indole-producing bacterial strains in cervicitis caused by C trachomatis .

  16. Incidence of bacterial respiratory pathogens and their susceptibility to common antibacterial agents.

    PubMed Central

    Qadri, S. M.; Lee, G. C.; Ueno, Y.; Burdette, J. M.

    1993-01-01

    Although most respiratory tract infections are caused by viruses, bacterial pathogens are responsible for higher morbidity and mortality. Because virtually nothing is known about the etiology of bacterial respiratory pathogens in Saudi Arabia, this study examined the incidence of these organisms in 5426 patients over a 1-year period. Of the bacterial pathogens isolated from 904 patients, the most common organism was Hemophilus influenzae (31%), followed by pneumococci (22%), Pseudomonas aeruginosa (16%), and others (31%). Because the first two organisms accounted for more than 50% of isolates, their susceptibility to commonly used antibiotics was also reviewed. The results are presented here. PMID:8496993

  17. Bacterial pathogen manipulation of host membrane trafficking.

    PubMed

    Asrat, Seblewongel; de Jesús, Dennise A; Hempstead, Andrew D; Ramabhadran, Vinay; Isberg, Ralph R

    2014-01-01

    Pathogens use a vast number of strategies to alter host membrane dynamics. Targeting the host membrane machinery is important for the survival and pathogenesis of several extracellular, vacuolar, and cytosolic bacteria. Membrane manipulation promotes bacterial replication while suppressing host responses, allowing the bacterium to thrive in a hostile environment. This review provides a comprehensive summary of various strategies used by both extracellular and intracellular bacteria to hijack host membrane trafficking machinery. We start with mechanisms used by bacteria to alter the plasma membrane, delve into the hijacking of various vesicle trafficking pathways, and conclude by summarizing bacterial adaptation to host immune responses. Understanding bacterial manipulation of host membrane trafficking provides insights into bacterial pathogenesis and uncovers the molecular mechanisms behind various processes within a eukaryotic cell.

  18. Investigation of magnetic microdiscs for bacterial pathogen detection

    NASA Astrophysics Data System (ADS)

    Castillo-Torres, Keisha Y.; Garraud, Nicolas; Arnold, David P.; McLamore, Eric S.

    2016-05-01

    Despite strict regulations to control the presence of human pathogens in our food supply, recent foodborne outbreaks have heightened public concern about food safety and created urgency to improve methods for pathogen detection. Herein we explore a potentially portable, low-cost system that uses magnetic microdiscs for the detection of bacterial pathogens in liquid samples. The system operates by optically measuring the rotational dynamics of suspended magnetic microdiscs functionalized with pathogen-binding aptamers. The soft ferromagnetic (Ni80Fe20) microdiscs exhibit a closed magnetic spin arrangement (i.e. spin vortex) with zero magnetic stray field, leading to no disc agglomeration when in free suspension. With very high surface area for functionalization and volumes 10,000x larger than commonly used superparamagnetic nanoparticles, these 1.5-μm-diameter microdiscs are well suited for tagging, trapping, actuating, or interrogating bacterial targets. This work reports a wafer-level microfabrication process for fabrication of 600 million magnetic microdiscs per substrate and measurement of their rotational dynamics response. Additionally, the biofunctionalization of the microdiscs with DNA aptamers, subsequent binding to E. coli bacteria, and their magnetic manipulation is reported.

  19. Prevalence of gastrointestinal bacterial pathogens in a population of zoo animals.

    PubMed

    Stirling, J; Griffith, M; Blair, I; Cormican, M; Dooley, J S G; Goldsmith, C E; Glover, S G; Loughrey, A; Lowery, C J; Matsuda, M; McClurg, R; McCorry, K; McDowell, D; McMahon, A; Cherie Millar, B; Nagano, Y; Rao, J R; Rooney, P J; Smyth, M; Snelling, W J; Xu, J; Moore, J E

    2008-04-01

    Faecal prevalence of gastrointestinal bacterial pathogens, including Campylobacter, Escherichia coli O157:H7, Salmonella, Shigella, Yersinia, as well as Arcobacter, were examined in 317 faecal specimens from 44 animal species in Belfast Zoological Gardens, during July-September 2006. Thermophilic campylobacters including Campylobacter jejuni, Campylobacter coli and Campylobacter lari, were the most frequently isolated pathogens, where members of this genus were isolated from 11 animal species (11 of 44; 25%). Yersinia spp. were isolated from seven animal species (seven of 44; 15.9%) and included, Yersinia enterocolitica (five of seven isolates; 71.4%) and one isolate each of Yersinia frederiksenii and Yersinia kristensenii. Only one isolate of Salmonella was obtained throughout the entire study, which was an isolate of Salmonella dublin (O 1,9,12: H g, p), originating from tiger faeces after enrichment. None of the animal species found in public contact areas of the zoo were positive for any gastrointestinal bacterial pathogens. Also, water from the lake in the centre of the grounds, was examined for the same bacterial pathogens and was found to contain C. jejuni. This study is the first report on the isolation of a number of important bacterial pathogens from a variety of novel host species, C. jejuni from the red kangaroo (Macropus rufus), C. lari from a maned wolf (Chrysocyon brachyurus), Y. kristensenii from a vicugna (Vicugna vicugna) and Y. enterocolitica from a maned wolf and red panda (Ailurus fulgens). In conclusion, this study demonstrated that the faeces of animals in public contact areas of the zoo were not positive for the bacterial gastrointestinal pathogens examined. This is reassuring for the public health of visitors, particularly children, who enjoy this educational and recreational resource.

  20. Recognition of bacterial plant pathogens: local, systemic and transgenerational immunity.

    PubMed

    Henry, Elizabeth; Yadeta, Koste A; Coaker, Gitta

    2013-09-01

    Bacterial pathogens can cause multiple plant diseases and plants rely on their innate immune system to recognize and actively respond to these microbes. The plant innate immune system comprises extracellular pattern recognition receptors that recognize conserved microbial patterns and intracellular nucleotide binding leucine-rich repeat (NLR) proteins that recognize specific bacterial effectors delivered into host cells. Plants lack the adaptive immune branch present in animals, but still afford flexibility to pathogen attack through systemic and transgenerational resistance. Here, we focus on current research in plant immune responses against bacterial pathogens. Recent studies shed light onto the activation and inactivation of pattern recognition receptors and systemic acquired resistance. New research has also uncovered additional layers of complexity surrounding NLR immune receptor activation, cooperation and sub-cellular localizations. Taken together, these recent advances bring us closer to understanding the web of molecular interactions responsible for coordinating defense responses and ultimately resistance. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  1. Water relations in the interaction of foliar bacterial pathogens with plants.

    PubMed

    Beattie, Gwyn A

    2011-01-01

    This review examines the many ways in which water influences the relations between foliar bacterial pathogens and plants. As a limited resource in aerial plant tissues, water is subject to manipulation by both plants and pathogens. A model is emerging that suggests that plants actively promote localized desiccation at the infection site and thus restrict pathogen growth as one component of defense. Similarly, many foliar pathogens manipulate water relations as one component of pathogenesis. Nonvascular pathogens do this using effectors and other molecules to alter hormonal responses and enhance intercellular watersoaking, whereas vascular pathogens use many mechanisms to cause wilt. Because of water limitations on phyllosphere surfaces, bacterial colonists, including pathogens, benefit from the protective effects of cellular aggregation, synthesis of hygroscopic polymers, and uptake and production of osmoprotective compounds. Moreover, these bacteria employ tactics for scavenging and distributing water to overcome water-driven barriers to nutrient acquisition, movement, and signal exchange on plant surfaces. Copyright © 2011 by Annual Reviews. All rights reserved.

  2. Evaluation of the presence and zoonotic transmission of Chlamydia suis in a pig slaughterhouse.

    PubMed

    De Puysseleyr, Kristien; De Puysseleyr, Leentje; Dhondt, Hendrik; Geens, Tom; Braeckman, Lutgart; Morré, Servaas A; Cox, Eric; Vanrompay, Daisy

    2014-10-30

    A significant number of studies on pig farms and wild boars worldwide, demonstrate the endemic presence of Chlamydia suis in pigs. However, the zoonotic potential of this pathogen, phylogenetically closely related to Chlamydia trachomatis, is still uninvestigated. Therefore, this study aims to examine the zoonotic transmission in a Belgian pig abattoir. Presence of Chlamydia suis in pigs, contact surfaces, air and employees was assessed using a Chlamydia suis specific real-time PCR and culture. Furthermore, Chlamydia suis isolates were tested for the presence of the tet(C) gene. Chlamydia suis bacteria could be demonstrated in samples from pigs, the air and contact surfaces. Moreover, eye swabs of two employees were positive for Chlamydia suis by both PCR and culture. The tet(C) gene was absent in both human Chlamydia suis isolates and no clinical signs were reported. These findings suggest the need for further epidemiological and clinical research to elucidate the significance of human ocular Chlamydia suis infections.

  3. The intrinsic resistome of bacterial pathogens

    PubMed Central

    Olivares, Jorge; Bernardini, Alejandra; Garcia-Leon, Guillermo; Corona, Fernando; B. Sanchez, Maria; Martinez, Jose L.

    2013-01-01

    Intrinsically resistant bacteria have emerged as a relevant health problem in the last years. Those bacterial species, several of them with an environmental origin, present naturally low-level susceptibility to several drugs. It has been proposed that intrinsic resistance is mainly the consequence of the impermeability of cellular envelopes, the activity of multidrug efflux pumps or the lack of appropriate targets for a given family of drugs. However, recently published articles indicate that the characteristic phenotype of susceptibility to antibiotics of a given bacterial species depends on the concerted activity of several elements, what has been named as intrinsic resistome. These determinants comprise not just classical resistance genes. Other elements, several of them involved in basic bacterial metabolic processes, are of relevance for the intrinsic resistance of bacterial pathogens. In the present review we analyze recent publications on the intrinsic resistomes of Escherichia coli and Pseudomonas aeruginosa. We present as well information on the role that global regulators of bacterial metabolism, as Crc from P. aeruginosa, may have on modulating bacterial susceptibility to antibiotics. Finally, we discuss the possibility of searching inhibitors of the intrinsic resistome in the aim of improving the activity of drugs currently in use for clinical practice. PMID:23641241

  4. The intrinsic resistome of bacterial pathogens.

    PubMed

    Olivares, Jorge; Bernardini, Alejandra; Garcia-Leon, Guillermo; Corona, Fernando; B Sanchez, Maria; Martinez, Jose L

    2013-01-01

    Intrinsically resistant bacteria have emerged as a relevant health problem in the last years. Those bacterial species, several of them with an environmental origin, present naturally low-level susceptibility to several drugs. It has been proposed that intrinsic resistance is mainly the consequence of the impermeability of cellular envelopes, the activity of multidrug efflux pumps or the lack of appropriate targets for a given family of drugs. However, recently published articles indicate that the characteristic phenotype of susceptibility to antibiotics of a given bacterial species depends on the concerted activity of several elements, what has been named as intrinsic resistome. These determinants comprise not just classical resistance genes. Other elements, several of them involved in basic bacterial metabolic processes, are of relevance for the intrinsic resistance of bacterial pathogens. In the present review we analyze recent publications on the intrinsic resistomes of Escherichia coli and Pseudomonas aeruginosa. We present as well information on the role that global regulators of bacterial metabolism, as Crc from P. aeruginosa, may have on modulating bacterial susceptibility to antibiotics. Finally, we discuss the possibility of searching inhibitors of the intrinsic resistome in the aim of improving the activity of drugs currently in use for clinical practice.

  5. The Effector TepP Mediates Recruitment and Activation of Phosphoinositide 3-Kinase on Early Chlamydia trachomatis Vacuoles.

    PubMed

    Carpenter, Victoria; Chen, Yi-Shan; Dolat, Lee; Valdivia, Raphael H

    2017-01-01

    Chlamydia trachomatis delivers multiple type 3 secreted effector proteins to host epithelial cells to manipulate cytoskeletal functions, membrane dynamics, and signaling pathways. TepP is the most abundant effector protein secreted early in infection, but its molecular function is poorly understood. In this report, we provide evidence that TepP is important for bacterial replication in cervical epithelial cells, activation of type I IFN genes, and recruitment of class I phosphoinositide 3-kinases (PI3K) and signaling adaptor protein CrkL to nascent pathogen-containing vacuoles (inclusions). We also show that TepP is a target of tyrosine phosphorylation by Src kinases but that these modifications do not appear to influence the recruitment of PI3K or CrkL. The translocation of TepP correlated with an increase in the intracellular pools of phosphoinositide-(3,4,5)-triphosphate but not the activation of the prosurvival kinase Akt, suggesting that TepP-mediated activation of PI3K is spatially restricted to early inclusions. Furthermore, we linked PI3K activity to the dampening of transcription of type I interferon (IFN)-induced genes early in infection. Overall, these findings indicate that TepP can modulate cell signaling and, potentially, membrane trafficking events by spatially restricted activation of PI3K. IMPORTANCE This article shows that Chlamydia recruits PI3K, an enzyme important for host cell survival and internal membrane functions, to the pathogens inside cells by secreting a scaffolding protein called TepP. TepP enhances Chlamydia replication and dampens the activation of immune responses.

  6. Microbiome analysis reveals the abundance of bacterial pathogens in Rousettus leschenaultii guano

    PubMed Central

    Banskar, Sunil; Bhute, Shrikant S.; Suryavanshi, Mangesh V.; Punekar, Sachin; Shouche, Yogesh S.

    2016-01-01

    Bats are crucial for proper functioning of an ecosystem. They provide various important services to ecosystem and environment. While, bats are well-known carrier of pathogenic viruses, their possible role as a potential carrier of pathogenic bacteria is under-explored. Here, using culture-based approach, employing multiple bacteriological media, over thousand bacteria were cultivated and identified from Rousettus leschenaultii (a frugivorous bat species), the majority of which were from the family Enterobacteriaceae and putative pathogens. Next, pathogenic potential of most frequently cultivated component of microbiome i.e. Escherichia coli was assessed to identify its known pathotypes which revealed the presence of virulent factors in many cultivated E. coli isolates. Applying in-depth bacterial community analysis using high-throughput 16 S rRNA gene sequencing, a high inter-individual variation was observed among the studied guano samples. Interestingly, a higher diversity of bacterial communities was observed in decaying guano representative. The search against human pathogenic bacteria database at 97% identity, a small proportion of sequences were found associated to well-known human pathogens. The present study thus indicates that this bat species may carry potential bacterial pathogens and advice to study the effect of these pathogens on bats itself and the probable mode of transmission to humans and other animals. PMID:27845426

  7. Microbiome analysis reveals the abundance of bacterial pathogens in Rousettus leschenaultii guano.

    PubMed

    Banskar, Sunil; Bhute, Shrikant S; Suryavanshi, Mangesh V; Punekar, Sachin; Shouche, Yogesh S

    2016-11-15

    Bats are crucial for proper functioning of an ecosystem. They provide various important services to ecosystem and environment. While, bats are well-known carrier of pathogenic viruses, their possible role as a potential carrier of pathogenic bacteria is under-explored. Here, using culture-based approach, employing multiple bacteriological media, over thousand bacteria were cultivated and identified from Rousettus leschenaultii (a frugivorous bat species), the majority of which were from the family Enterobacteriaceae and putative pathogens. Next, pathogenic potential of most frequently cultivated component of microbiome i.e. Escherichia coli was assessed to identify its known pathotypes which revealed the presence of virulent factors in many cultivated E. coli isolates. Applying in-depth bacterial community analysis using high-throughput 16 S rRNA gene sequencing, a high inter-individual variation was observed among the studied guano samples. Interestingly, a higher diversity of bacterial communities was observed in decaying guano representative. The search against human pathogenic bacteria database at 97% identity, a small proportion of sequences were found associated to well-known human pathogens. The present study thus indicates that this bat species may carry potential bacterial pathogens and advice to study the effect of these pathogens on bats itself and the probable mode of transmission to humans and other animals.

  8. Metabolic host responses to infection by intracellular bacterial pathogens

    PubMed Central

    Eisenreich, Wolfgang; Heesemann, Jürgen; Rudel, Thomas; Goebel, Werner

    2013-01-01

    The interaction of bacterial pathogens with mammalian hosts leads to a variety of physiological responses of the interacting partners aimed at an adaptation to the new situation. These responses include multiple metabolic changes in the affected host cells which are most obvious when the pathogen replicates within host cells as in case of intracellular bacterial pathogens. While the pathogen tries to deprive nutrients from the host cell, the host cell in return takes various metabolic countermeasures against the nutrient theft. During this conflicting interaction, the pathogen triggers metabolic host cell responses by means of common cell envelope components and specific virulence-associated factors. These host reactions generally promote replication of the pathogen. There is growing evidence that pathogen-specific factors may interfere in different ways with the complex regulatory network that controls the carbon and nitrogen metabolism of mammalian cells. The host cell defense answers include general metabolic reactions, like the generation of oxygen- and/or nitrogen-reactive species, and more specific measures aimed to prevent access to essential nutrients for the respective pathogen. Accurate results on metabolic host cell responses are often hampered by the use of cancer cell lines that already exhibit various de-regulated reactions in the primary carbon metabolism. Hence, there is an urgent need for cellular models that more closely reflect the in vivo infection conditions. The exact knowledge of the metabolic host cell responses may provide new interesting concepts for antibacterial therapies. PMID:23847769

  9. Copper transport and trafficking at the host-bacterial pathogen interface.

    PubMed

    Fu, Yue; Chang, Feng-Ming James; Giedroc, David P

    2014-12-16

    CONSPECTUS: The human innate immune system has evolved the means to reduce the bioavailability of first-row late d-block transition metal ions to invading microbial pathogens in a process termed "nutritional immunity". Transition metals from Mn(II) to Zn(II) function as metalloenzyme cofactors in all living cells, and the successful pathogen is capable of mounting an adaptive response to mitigate the effects of host control of transition metal bioavailability. Emerging evidence suggests that Mn, Fe, and Zn are withheld from the pathogen in classically defined nutritional immunity, while Cu is used to kill invading microorganisms. This Account summarizes new molecular-level insights into copper trafficking across cell membranes from studies of a number of important bacterial pathogens and model organisms, including Escherichia coli, Salmonella species, Mycobacterium tuberculosis, and Streptococcus pneumoniae, to illustrate general principles of cellular copper resistance. Recent highlights of copper chemistry at the host-microbial pathogen interface include the first high resolution structures and functional characterization of a Cu(I)-effluxing P1B-ATPase, a new class of bacterial copper chaperone, a fungal Cu-only superoxide dismutase SOD5, and the discovery of a small molecule Cu-bound SOD mimetic. Successful harnessing by the pathogen of host-derived bactericidal Cu to reduce the bacterial load of reactive oxygen species (ROS) is an emerging theme; in addition, recent studies continue to emphasize the importance of short lifetime protein-protein interactions that orchestrate the channeling of Cu(I) from donor to target without dissociation into bulk solution; this, in turn, mitigates the off-pathway effects of Cu(I) toxicity in both the periplasm in Gram negative organisms and in the bacterial cytoplasm. It is unclear as yet, outside of the photosynthetic bacteria, whether Cu(I) is trafficked to other cellular destinations, for example, to cuproenzymes or other

  10. Chlamydia muridarum Genital and Gastrointestinal Infection Tropism Is Mediated by Distinct Chromosomal Factors.

    PubMed

    Morrison, Sandra G; Giebel, Amanda M; Toh, Evelyn C; Spencer, Horace J; Nelson, David E; Morrison, Richard P

    2018-07-01

    Some members of the genus Chlamydia , including the human pathogen Chlamydia trachomatis , infect multiple tissues, including the genital and gastrointestinal (GI) tracts. However, it is unknown if bacterial targeting to these sites is mediated by multifunctional or distinct chlamydial factors. We previously showed that disruption of individual large clostridial toxin homologs encoded within the Chlamydia muridarum plasticity zone were not critical for murine genital tract infection. Here, we assessed whether cytotoxin genes contribute to C. muridarum GI tropism. Infectivity and shedding of wild-type (WT) C. muridarum and three mutants containing nonsense mutations in different cytotoxin genes, tc0437 , tc0438 , and tc0439 , were compared in mouse genital and GI infection models. One mutant, which had a nonsense mutation in tc0439 , was highly attenuated for GI infection and had a GI 50% infectious dose (ID 50 ) that was 1,000 times greater than that of the WT. GI inoculation with this mutant failed to elicit anti-chlamydial antibodies or to protect against subsequent genital tract infection. Genome sequencing of the tc0439 mutant revealed additional chromosomal mutations, and phenotyping of additional mutants suggested that the GI attenuation might be linked to a nonsense mutation in tc0600 The molecular mechanism underlying this dramatic difference in tissue-tropic virulence is not fully understood. However, isolation of these mutants demonstrates that distinct chlamydial chromosomal factors mediate chlamydial tissue tropism and provides a basis for vaccine initiatives to isolate chlamydia strains that are attenuated for genital infection but retain the ability to colonize the GI tract and elicit protective immune responses. Copyright © 2018 Morrison et al.

  11. The 1st EMBO workshop on PVC bacteria-Planctomycetes-Verrucomicrobia-Chlamydiae superphylum: exceptions to the bacterial definition?

    PubMed

    Devos, Damien P; Jogler, Christian; Fuerst, John A

    2013-10-01

    The PVC superphylum is a phylogenetically supported collection of various related bacterial phyla that comprise unusual characteristics and traits. The 'PVC' abbreviation derives from Planctomycetes, Verrucomicrobia and Chlamydiae as members of this superphylum, while additional bacterial phyla are related. There has recently been increasing and exciting interest in the cell biology, physiology and ecology of members of this superphylum, including evolutionary implications of the complex cell organization of some species. It is timely that international researchers in the PVC superphylum field met to discuss these developments. The first meeting entirely dedicated to those bacteria, the EMBO workshop "PVC superphylum: Exceptions to the bacterial definition" was held at the Heidelberg University to catalyze the formation of a vital scientific community supporting PVC-bacterial research. More than 45 investigators from more than 20 countries (PIs, senior scientists and students) attended the meeting and produced a great starting point for future collaborative research. This Special Issue will focus on the EMBO-PVC meeting. This Perspective briefly summarizes the history of PVC-research, focusing on the key findings and provides a brief summary of the meeting with a focus on the major questions that arose during discussion and that might influence the research in the years to come.

  12. High Prevalence of Mycoplasma pneumoniae and Chlamydia pneumoniae in Children with Acute Respiratory Infections from Lima, Peru

    PubMed Central

    del Valle-Mendoza, Juana; Orellana-Peralta, Fiorella; Marcelo-Rodríguez, Alvaro; Verne, Eduardo; Esquivel-Vizcarra, Mónica; Silva-Caso, Wilmer; Aguilar-Luis, Miguel Angel; Weilg, Pablo; Casabona-Oré, Verónica; Ugarte, Claudia; del Valle, Luis J.

    2017-01-01

    Background Mycoplasma pneumoniae and Chlamydia pneumoniae are atypical pathogens responsible for pneumonia and a leading cause of morbidity and mortality in low income countries. The study objective is to determine the prevalence of this pathogens in Peruvian children with acute respiratory infections. Methods A consecutive cross-sectional study was conducted in Lima, Peru from May 2009 to September 2010. A total of 675 children admitted with clinical diagnoses of acute respiratory infections were tested for Mycoplasma pneumoniae and Chlamydia pneumoniae detection by polymerase chain reaction (PCR), and clinical symptoms were registered by the attending physician. Results Mycoplasma pneumonia was detected in 25.19% (170/675) of nasopharyngeal samples and Chlamydia pneumonia in 10.52% (71/675). The most common symptoms in patients with these atypical pathogens were rhinorrhea, cough and fever. A higher prevalence of Mycoplasma pneumoniae cases were registered in summer, between December 2009 and March 2010. Conclusions Mycoplasma pneumoniae and Chlamydia pneumonia are a significant cause of morbidity in Peruvian children with acute respiratory infections (ARI). Further studies should evaluate the use of reliable techniques such as PCR in Peru in order to avoid underdiagnoses of these atypical pathogens. PMID:28129377

  13. Culture-independent genomic characterisation of Candidatus Chlamydia sanzinia, a novel uncultivated bacterium infecting snakes.

    PubMed

    Taylor-Brown, Alyce; Bachmann, Nathan L; Borel, Nicole; Polkinghorne, Adam

    2016-09-05

    Recent molecular studies have revealed considerably more diversity in the phylum Chlamydiae than was previously thought. Evidence is growing that many of these novel chlamydiae may be important pathogens in humans and animals. A significant barrier to characterising these novel chlamydiae is the requirement for culturing. We recently identified a range of novel uncultured chlamydiae in captive snakes in Switzerland, however, nothing is known about their biology. Using a metagenomics approach, the aim of this study was to characterise the genome of a novel chlamydial taxon from the choana of a captive snake. In doing so, we propose a new candidate species in the genus Chlamydia (Candidatus Chlamydia sanzinia) and reveal new information about the biological diversity of this important group of pathogens. We identified two chlamydial genomic contigs: a 1,113,073 bp contig, and a 7,504 bp contig, representing the chromosome and plasmid of Ca. Chlamydia sanzinia strain 2742-308, respectively. The 998 predicted coding regions include an expanded repertoire of outer membrane proteins (Pmps and Omps), some of which exhibited frameshift mutations, as well as several chlamydial virulence factors such as the translocating actin-recruitment phosphoprotein (Tarp) and macrophage inhibition potentiator (Mip). A suite of putative inclusion membrane proteins were also predicted. Notably, no evidence of a traditional chlamydial plasticity zone was identified. Phylogenetically, Ca. Chlamydia sanzinia forms a clade with C. pneumoniae and C. pecorum, distinct from former "Chlamydophila" species. Genomic characterisation of a novel uncultured chlamydiae from the first reptilian host has expanded our understanding of the diversity and biology of a genus that was thought to be the most well-characterised in this unique phylum. It is anticipated that this method will be suitable for characterisation of other novel chlamydiae.

  14. O Antigen Modulates Insect Vector Acquisition of the Bacterial Plant Pathogen Xylella fastidiosa

    PubMed Central

    Rapicavoli, Jeannette N.; Kinsinger, Nichola; Perring, Thomas M.; Backus, Elaine A.; Shugart, Holly J.; Walker, Sharon

    2015-01-01

    Hemipteran insect vectors transmit the majority of plant pathogens. Acquisition of pathogenic bacteria by these piercing/sucking insects requires intimate associations between the bacterial cells and insect surfaces. Lipopolysaccharide (LPS) is the predominant macromolecule displayed on the cell surface of Gram-negative bacteria and thus mediates bacterial interactions with the environment and potential hosts. We hypothesized that bacterial cell surface properties mediated by LPS would be important in modulating vector-pathogen interactions required for acquisition of the bacterial plant pathogen Xylella fastidiosa, the causative agent of Pierce's disease of grapevines. Utilizing a mutant that produces truncated O antigen (the terminal portion of the LPS molecule), we present results that link this LPS structural alteration to a significant decrease in the attachment of X. fastidiosa to blue-green sharpshooter foreguts. Scanning electron microscopy confirmed that this defect in initial attachment compromised subsequent biofilm formation within vector foreguts, thus impairing pathogen acquisition. We also establish a relationship between O antigen truncation and significant changes in the physiochemical properties of the cell, which in turn affect the dynamics of X. fastidiosa adhesion to the vector foregut. Lastly, we couple measurements of the physiochemical properties of the cell with hydrodynamic fluid shear rates to produce a Comsol model that predicts primary areas of bacterial colonization within blue-green sharpshooter foreguts, and we present experimental data that support the model. These results demonstrate that, in addition to reported protein adhesin-ligand interactions, O antigen is crucial for vector-pathogen interactions, specifically in the acquisition of this destructive agricultural pathogen. PMID:26386068

  15. Within-host evolution decreases virulence in an opportunistic bacterial pathogen.

    PubMed

    Mikonranta, Lauri; Mappes, Johanna; Laakso, Jouni; Ketola, Tarmo

    2015-08-19

    Pathogens evolve in a close antagonistic relationship with their hosts. The conventional theory proposes that evolution of virulence is highly dependent on the efficiency of direct host-to-host transmission. Many opportunistic pathogens, however, are not strictly dependent on the hosts due to their ability to reproduce in the free-living environment. Therefore it is likely that conflicting selection pressures for growth and survival outside versus within the host, rather than transmission potential, shape the evolution of virulence in opportunists. We tested the role of within-host selection in evolution of virulence by letting a pathogen Serratia marcescens db11 sequentially infect Drosophila melanogaster hosts and then compared the virulence to strains that evolved only in the outside-host environment. We found that the pathogen adapted to both Drosophila melanogaster host and novel outside-host environment, leading to rapid evolutionary changes in the bacterial life-history traits including motility, in vitro growth rate, biomass yield, and secretion of extracellular proteases. Most significantly, selection within the host led to decreased virulence without decreased bacterial load while the selection lines in the outside-host environment maintained the same level of virulence with ancestral bacteria. This experimental evidence supports the idea that increased virulence is not an inevitable consequence of within-host adaptation even when the epidemiological restrictions are removed. Evolution of attenuated virulence could occur because of immune evasion within the host. Alternatively, rapid fluctuation between outside-host and within-host environments, which is typical for the life cycle of opportunistic bacterial pathogens, could lead to trade-offs that lower pathogen virulence.

  16. Enhanced Direct Major Histocompatibility Complex Class I Self-Antigen Presentation Induced by Chlamydia Infection

    PubMed Central

    Cram, Erik D.; Simmons, Ryan S.; Palmer, Amy L.; Hildebrand, William H.; Rockey, Daniel D.

    2015-01-01

    The direct major histocompatibility complex (MHC) class I antigen presentation pathway ensures intracellular peptides are displayed at the cellular surface for recognition of infected or transformed cells by CD8+ cytotoxic T lymphocytes. Chlamydia spp. are obligate intracellular bacteria and, as such, should be targeted by CD8+ T cells. It is likely that Chlamydia spp. have evolved mechanisms to avoid the CD8+ killer T cell responses by interfering with MHC class I antigen presentation. Using a model system of self-peptide presentation which allows for posttranslational control of the model protein's stability, we tested the ability of various Chlamydia species to alter direct MHC class I antigen presentation. Infection of the JY lymphoblastoid cell line limited the accumulation of a model host protein and increased presentation of the model-protein-derived peptides. Enhanced self-peptide presentation was detected only when presentation was restricted to defective ribosomal products, or DRiPs, and total MHC class I levels remained unaltered. Skewed antigen presentation was dependent on a bacterial synthesized component, as evidenced by reversal of the observed phenotype upon preventing bacterial transcription, translation, and the inhibition of bacterial lipooligosaccharide synthesis. These data suggest that Chlamydia spp. have evolved to alter the host antigen presentation machinery to favor presentation of defective and rapidly degraded forms of self-antigen, possibly as a mechanism to diminish the presentation of peptides derived from bacterial proteins. PMID:26597986

  17. [Rapid identification of meningitis due to bacterial pathogens].

    PubMed

    Ubukata, Kimiko

    2013-01-01

    We constructed a new real-time PCR method to detect causative pathogens in cerebrospinal fluid (CSF) from patient due to bacterial meningitis. The eight pathogens targeted in the PCR are Streptococcus pneumoniae, Haemophilus influenzae, Streptococcus agalactiae, Staphylococcus aurues, Neisseria meningitides, Listeria monocytogenes, Esherichia coli, and Mycoplasma pneumoniae. The total time from DNA extraction from CSF to PCR analysis was 1.5 hour. The pathogens were detected in 72% of the CSF samples (n=115) by real-time PCR, but in only 48% by culture, although the microorganisms were completely concordant. The detection rate of pathogens with PCR was significantly better than that with cultures in patients with antibiotic administration.In conclusion, detection with real-time PCR is useful for rapidly identifying the causative pathogens of meningitis and for examining the clinical course of chemotherapy.

  18. Chlamydia pneumoniae exploits adipocyte lipid chaperone FABP4 to facilitate fat mobilization and intracellular growth in murine adipocytes.

    PubMed

    Walenna, Nirwana Fitriani; Kurihara, Yusuke; Chou, Bin; Ishii, Kazunari; Soejima, Toshinori; Itoh, Ryota; Shimizu, Akinori; Ichinohe, Takeshi; Hiromatsu, Kenji

    2018-01-01

    Fatty acid-binding protein 4 (FABP4), a cytosolic lipid chaperone predominantly expressed in adipocytes and macrophages, modulates lipid fluxes, trafficking, signaling, and metabolism. Recent studies have demonstrated that FABP4 regulates metabolic and inflammatory pathways, and in mouse models its inhibition can improve type 2 diabetes mellitus and atherosclerosis. However, the role of FABP4 in bacterial infection, metabolic crosstalk between host and pathogen, and bacterial pathogenesis have not been studied. As an obligate intracellular pathogen, Chlamydia pneumoniae needs to obtain nutrients such as ATP and lipids from host cells. Here, we show that C. pneumoniae successfully infects and proliferates in murine adipocytes by inducing hormone sensitive lipase (HSL)-mediated lipolysis. Chemical inhibition or genetic manipulation of HSL significantly abrogated the intracellular growth of C. pneumoniae in adipocytes. Liberated free fatty acids were utilized to generate ATP via β-oxidation, which C. pneumoniae usurped for its replication. Strikingly, chemical inhibition or genetic silencing of FABP4 significantly abrogated C. pneumoniae infection-induced lipolysis and mobilization of liberated FFAs, resulting in reduced bacterial growth in adipocytes. Collectively, these results demonstrate that C. pneumoniae exploits host FABP4 to facilitate fat mobilization and intracellular replication in adipocytes. This work uncovers a novel strategy used by intracellular pathogens for acquiring energy via hijacking of the host lipid metabolism pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Molecular assessment of bacterial pathogens - a contribution to drinking water safety.

    PubMed

    Brettar, Ingrid; Höfle, Manfred G

    2008-06-01

    Human bacterial pathogens are considered as an increasing threat to drinking water supplies worldwide because of the growing demand of high-quality drinking water and the decreasing quality and quantity of available raw water. Moreover, a negative impact of climate change on freshwater resources is expected. Recent advances in molecular detection technologies for bacterial pathogens in drinking water bear the promise in improving the safety of drinking water supplies by precise detection and identification of the pathogens. More importantly, the array of molecular approaches allows understanding details of infection routes of waterborne diseases, the effects of changes in drinking water treatment, and management of freshwater resources.

  20. [Influence of human gastrointestinal tract bacterial pathogens on host cell apoptosis].

    PubMed

    Wronowska, Weronika; Godlewska, Renata; Jagusztyn-Krynicka, Elzbieta Katarzyna

    2005-01-01

    Several pathogenic bacteria are able to trigger apoptosis in the host cell, but the mechanisms by which it occurs differ, and the resulting pathology can take different courses. Induction and/or blockage of programmed cell death upon infection is a result of complex interaction of bacterial proteins with cellular proteins involved in signal transduction and apoptosis. In this review we focus on pro/anti-apoptotic activities exhibited by two enteric pathogens Salmonella enterica, Yersinia spp. and gastric pathogen Helicobacter pylori. We present current knowledge on how interaction between mammalian and bacterial cell relates to the molecular pathways of apoptosis, and what is the role of apoptosis in pathogenesis.

  1. Pathogen espionage: multiple bacterial adrenergic sensors eavesdrop on host communication systems.

    PubMed

    Karavolos, Michail H; Winzer, Klaus; Williams, Paul; Khan, C M Anjam

    2013-02-01

    The interactions between bacterial pathogens and their eukaryotic hosts are vital in determining the outcome of infections. Bacterial pathogens employ molecular sensors to detect and facilitate adaptation to changes in their niche. The sensing of these extracellular signals enables the pathogen to navigate within mammalian hosts. Intercellular bacterial communication is facilitated by the production and sensing of autoinducer (AI) molecules via quorum sensing. More recently, AI-3 and the host neuroendocrine (NE) hormones adrenaline and noradrenaline were reported to display cross-talk for the activation of the same signalling pathways. Remarkably, there is increasing evidence to suggest that enteric bacteria sense and respond to the host NE stress hormones adrenaline and noradrenaline to modulate virulence. These responses can be inhibited by α and β-adrenergic receptor antagonists implying a bacterial receptor-based sensing and signalling cascade. In Escherichia coli O157:H7 and Salmonella, QseC has been proposed as the adrenergic receptor. Strikingly, there is an increasing body of evidence that not all the bacterial adrenergic responses require signalling through QseC. Here we provide additional hypotheses to reconcile these observations implicating the existence of alternative adrenergic receptors including BasS, QseE and CpxA and their associated signalling cascades with major roles in interkingdom communication. © 2012 Blackwell Publishing Ltd.

  2. Metabolic effectors secreted by bacterial pathogens: essential facilitators of plastid endosymbiosis?

    PubMed

    Ball, Steven G; Subtil, Agathe; Bhattacharya, Debashish; Moustafa, Ahmed; Weber, Andreas P M; Gehre, Lena; Colleoni, Christophe; Arias, Maria-Cecilia; Cenci, Ugo; Dauvillée, David

    2013-01-01

    Under the endosymbiont hypothesis, over a billion years ago a heterotrophic eukaryote entered into a symbiotic relationship with a cyanobacterium (the cyanobiont). This partnership culminated in the plastid that has spread to forms as diverse as plants and diatoms. However, why primary plastid acquisition has not been repeated multiple times remains unclear. Here, we report a possible answer to this question by showing that primary plastid endosymbiosis was likely to have been primed by the secretion in the host cytosol of effector proteins from intracellular Chlamydiales pathogens. We provide evidence suggesting that the cyanobiont might have rescued its afflicted host by feeding photosynthetic carbon into a chlamydia-controlled assimilation pathway.

  3. Microbial minimalism: genome reduction in bacterial pathogens.

    PubMed

    Moran, Nancy A

    2002-03-08

    When bacterial lineages make the transition from free-living or facultatively parasitic life cycles to permanent associations with hosts, they undergo a major loss of genes and DNA. Complete genome sequences are providing an understanding of how extreme genome reduction affects evolutionary directions and metabolic capabilities of obligate pathogens and symbionts.

  4. Direct detection of various pathogens by loop-mediated isothermal amplification assays on bacterial culture and bacterial colony.

    PubMed

    Yan, Muxia; Li, Weidong; Zhou, Zhenwen; Peng, Hongxia; Luo, Ziyan; Xu, Ling

    2017-01-01

    In this work, loop-mediated isothermal amplification based detection assay using bacterial culture and bacterial colony for various common pathogens direct detection had been established, evaluated and further applied. A total of five species of common pathogens and nine detection targets (tlh, tdh and trh for V. Parahaemolyticus, rfbE, stx1 and stx2 for E. coli, oprI for P. aeruginosa, invA for Salmonella and hylA for L. monocytogenes) were performed on bacterial culture and bacterial colony LAMP. To evaluate and optimize this assay, a total of 116 standard strains were included. Then, for each detected targets, 20 random selected strains were applied. Results were determined through both visual observation of the changed color by naked eye and electrophoresis, which increased the accuracy of survey. The minimum adding quantity of each primer had been confirmed, and the optimal amplification was obtained under 65 °C for 45 min with 25 μl reaction volume. The detection limit of bacterial culture LAMP and PCR assay were determined to be 10 2 and 10 4 or 10 5  CFU/reaction, respectively. No false positive amplification was observed when subjecting the bacterial -LAMP assay to 116 reference strains. This was the first report of colony-LAMP and culture-LAMP assay, which had been demonstrated to be a fast, reliable, cost-effective and simple method on detection of various common pathogens. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Bacterial Pathogens Associated with Community-acquired Pneumonia in Children Aged Below Five Years.

    PubMed

    Das, Anusmita; Patgiri, Saurav J; Saikia, Lahari; Dowerah, Pritikar; Nath, Reema

    2016-03-01

    To determine the spectrum of bacterial pathogens causing community-acquired pneumonia in children below 5 years of age. Children aged below 5 years satisfying the WHO criteria for pneumonia, severe pneumonia or very severe pneumonia, and with the presence of lung infiltrates on chest X-ray were enrolled. Two respiratory samples, one for culture and the other for PCR analysis, and a blood sample for culture were collected from every child. Of the 180 samples processed, bacterial pathogens were detected in 64.4%. Streptococcus pneumoniae and Hemophilus influenzae were most frequently detected. The performance of PCR analysis and culture were identical for the typical bacterial pathogens; atypical pathogens were detected by PCR analysis only. S. pneumoniae and H. influenza were the most commonly detected organisms from respiratory secretions of children with community acquired pneumonia.

  6. Encyclopedia of bacterial gene circuits whose presence or absence correlate with pathogenicity--a large-scale system analysis of decoded bacterial genomes.

    PubMed

    Shestov, Maksim; Ontañón, Santiago; Tozeren, Aydin

    2015-10-13

    Bacterial infections comprise a global health challenge as the incidences of antibiotic resistance increase. Pathogenic potential of bacteria has been shown to be context dependent, varying in response to environment and even within the strains of the same genus. We used the KEGG repository and extensive literature searches to identify among the 2527 bacterial genomes in the literature those implicated as pathogenic to the host, including those which show pathogenicity in a context dependent manner. Using data on the gene contents of these genomes, we identified sets of genes highly abundant in pathogenic but relatively absent in commensal strains and vice versa. In addition, we carried out genome comparison within a genus for the seventeen largest genera in our genome collection. We projected the resultant lists of ortholog genes onto KEGG bacterial pathways to identify clusters and circuits, which can be linked to either pathogenicity or synergy. Gene circuits relatively abundant in nonpathogenic bacteria often mediated biosynthesis of antibiotics. Other synergy-linked circuits reduced drug-induced toxicity. Pathogen-abundant gene circuits included modules in one-carbon folate, two-component system, type-3 secretion system, and peptidoglycan biosynthesis. Antibiotics-resistant bacterial strains possessed genes modulating phagocytosis, vesicle trafficking, cytoskeletal reorganization, and regulation of the inflammatory response. Our study also identified bacterial genera containing a circuit, elements of which were previously linked to Alzheimer's disease. Present study produces for the first time, a signature, in the form of a robust list of gene circuitry whose presence or absence could potentially define the pathogenicity of a microbiome. Extensive literature search substantiated a bulk majority of the commensal and pathogenic circuitry in our predicted list. Scanning microbiome libraries for these circuitry motifs will provide further insights into the complex

  7. An optimized, fast-to-perform mouse lung infection model with the human pathogen Chlamydia trachomatis for in vivo screening of antibiotics, vaccine candidates and modified host-pathogen interactions.

    PubMed

    Dutow, Pavel; Wask, Lea; Bothe, Miriam; Fehlhaber, Beate; Laudeley, Robert; Rheinheimer, Claudia; Yang, Zhangsheng; Zhong, Guangming; Glage, Silke; Klos, Andreas

    2016-03-01

    Chlamydia trachomatis causes sexually transmitted diseases with infertility, pelvic inflammatory disease and neonatal pneumonia as complications. The duration of urogenital mouse models with the strict mouse pathogen C. muridarum addressing vaginal shedding, pathological changes of the upper genital tract or infertility is rather long. Moreover, vaginal C. trachomatis application usually does not lead to the complications feared in women. A fast-to-perform mouse model is urgently needed to analyze new antibiotics, vaccine candidates, immune responses (in gene knockout animals) or mutants of C. trachomatis. To complement the valuable urogenital model with a much faster and quantifiable screening method, we established an optimized lung infection model for the human intracellular bacterium C. trachomatis serovar D (and L2) in immunocompetent C57BL/6J mice. We demonstrated its usefulness by sensitive determination of antibiotic effects characterizing advantages and limitations achievable by early or delayed short tetracycline treatment and single-dose azithromycin application. Moreover, we achieved partial acquired protection in reinfection with serovar D indicating usability for vaccine studies, and showed a different course of disease in absence of complement factor C3. Sensitive monitoring parameters were survival rate, body weight, clinical score, bacterial load, histological score, the granulocyte marker myeloperoxidase, IFN-γ, TNF-α, MCP-1 and IL-6. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. O antigen modulates insect vector acquisition of the bacterial plant pathogen Xylella fastidiosa.

    PubMed

    Rapicavoli, Jeannette N; Kinsinger, Nichola; Perring, Thomas M; Backus, Elaine A; Shugart, Holly J; Walker, Sharon; Roper, M Caroline

    2015-12-01

    Hemipteran insect vectors transmit the majority of plant pathogens. Acquisition of pathogenic bacteria by these piercing/sucking insects requires intimate associations between the bacterial cells and insect surfaces. Lipopolysaccharide (LPS) is the predominant macromolecule displayed on the cell surface of Gram-negative bacteria and thus mediates bacterial interactions with the environment and potential hosts. We hypothesized that bacterial cell surface properties mediated by LPS would be important in modulating vector-pathogen interactions required for acquisition of the bacterial plant pathogen Xylella fastidiosa, the causative agent of Pierce's disease of grapevines. Utilizing a mutant that produces truncated O antigen (the terminal portion of the LPS molecule), we present results that link this LPS structural alteration to a significant decrease in the attachment of X. fastidiosa to blue-green sharpshooter foreguts. Scanning electron microscopy confirmed that this defect in initial attachment compromised subsequent biofilm formation within vector foreguts, thus impairing pathogen acquisition. We also establish a relationship between O antigen truncation and significant changes in the physiochemical properties of the cell, which in turn affect the dynamics of X. fastidiosa adhesion to the vector foregut. Lastly, we couple measurements of the physiochemical properties of the cell with hydrodynamic fluid shear rates to produce a Comsol model that predicts primary areas of bacterial colonization within blue-green sharpshooter foreguts, and we present experimental data that support the model. These results demonstrate that, in addition to reported protein adhesin-ligand interactions, O antigen is crucial for vector-pathogen interactions, specifically in the acquisition of this destructive agricultural pathogen. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Engineered phage-based therapeutic materials inhibit Chlamydia trachomatis intracellular infection

    PubMed Central

    Bhattarai, Shanta Raj; Yoo, So Young; Lee, Seung-Wuk; Dean, Deborah

    2012-01-01

    Developing materials that are effective against sexually transmitted pathogens such as Chlamydia trachomatis (Ct) and HIV-1 is challenging both in terms of material selection and improving bio-membrane and cellular permeability at desired mucosal sites. Here, we engineered the prokaryotic bacterial virus (M13 phage) carrying two functional peptides, integrin binding peptide (RGD) and a segment of the polymorphic membrane protein D (PmpD) from Ct, as a phage-based material that can ameliorate Ct infection. Ct is a globally prevalent human pathogen for which there are no effective vaccines or microbicides. We show that engineered phage stably express both RGD motifs and Ct peptides and traffic intracellularly and into the lumen of the inclusion in which the organism resides within the host cell. Engineered phage were able to significantly reduce Ct infection in both HeLa and primary endocervical cells compared with Ct infection alone. Polyclonal antibodies raised against PmpD and co-incubated with constructs prior to infection did not alter the course of infection, indicating that PmpD is responsible for the observed decrease in Ct infection. Our results suggest that phage-based design approaches to vector delivery that overcome mucosal cellular barriers may be effective in preventing Ct and other sexually transmitted pathogens. PMID:22494890

  10. Impact of antiseptics on Chlamydia trachomatis growth.

    PubMed

    Párducz, L; Eszik, I; Wagner, G; Burián, K; Endrész, V; Virok, D P

    2016-10-01

    Bacterial vaginosis is a frequent dysbiosis, where the normal lactobacillus-dominated flora is replaced by an anaerob/aerob polymicrobial flora. Bacterial vaginosis increases the risk of acquiring sexually transmitted infections (STI) including the most frequent Chlamydia trachomatis infections. Intravaginal antiseptics are part of the bacterial vaginosis treatment, and ideally they should also inhibit the bacterial vaginosis-related STI. Therefore, we tested the antichlamydial activity of four antiseptics: iodine aqueous solution, povidone-iodine, chlorhexidine and borax. First, we measured the impact of antiseptics on the viability of the HeLa cervical epithelial cells, and calculated the maximum nontoxic concentrations. Next, we infected the cells with C. trachomatis preincubated for 1 h with the particular antiseptic. The chlamydial growth was measured by direct quantitative PCR (qPCR) of the infected cells. The minimal inhibitory concentrations (MIC) of chlorhexidine and povidone-iodine were 3·91 and 97 μg ml(-1) respectively; however, the MIC of chlorhexidine was close to its maximum nontoxic concentration. The iodine aqueous solution and the borax showed no antichlamydial activity. Our in vitro studies showed that chlorhexidine and particularly povidone-iodine are potentially able to limit the bacterial vaginosis-related C. trachomatis infection. We measured the antichlamydial effects of various antiseptics. These antiseptics are being used for the treatment of bacterial vaginosis, but their effect on the bacterial vaginosis-related sexually transmitted infections, particularly the most frequent Chlamydia trachomatis (C. trachomatis) infections has not been investigated. We showed that povidone-iodine (Betadine) inhibited the chlamydial growth in concentrations that was not toxic to the epithelial cells. We concluded that due to its additional antichlamydial effect, povidone-iodine could be a preferable antiseptic in bacterial vaginosis treatment.

  11. Assessment of bacterial pathogens in fresh rainwater and airborne particulate matter using Real-Time PCR

    NASA Astrophysics Data System (ADS)

    Kaushik, Rajni; Balasubramanian, Rajasekhar

    2012-01-01

    Bacterial pathogens in airborne particulate matter (PM) and in rainwater (RW) were detected using a robust and sensitive Real-Time PCR method. Both RW and PM were collected simultaneously in the tropical atmosphere of Singapore, which were then subjected to analysis for the presence of selected bacterial pathogens and potential pathogen of health concern ( Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Aeromonas hydrophila). These pathogens were found to be prevalent in both PM and RW samples with E. coli being the most prevalent potential pathogen in both types of samples. The temporal distribution of these pathogens in PM and RW was found to be similar to each other. Using the proposed microbiological technique, the atmospheric deposition (dry and wet deposition) of bacterial pathogens to lakes and reservoirs can be studied in view of growing concerns about the outbreak of waterborne diseases.

  12. Consequences of organ choice in describing bacterial pathogen assemblages in a rodent population.

    PubMed

    Villette, P; Afonso, E; Couval, G; Levret, A; Galan, M; Tatard, C; Cosson, J F; Giraudoux, P

    2017-10-01

    High-throughput sequencing technologies now allow for rapid cost-effective surveys of multiple pathogens in many host species including rodents, but it is currently unclear if the organ chosen for screening influences the number and identity of bacteria detected. We used 16S rRNA amplicon sequencing to identify bacterial pathogens in the heart, liver, lungs, kidneys and spleen of 13 water voles (Arvicola terrestris) collected in Franche-Comté, France. We asked if bacterial pathogen assemblages within organs are similar and if all five organs are necessary to detect all of the bacteria present in an individual animal. We identified 24 bacteria representing 17 genera; average bacterial richness for each organ ranged from 1·5 ± 0·4 (mean ± standard error) to 2·5 ± 0·4 bacteria/organ and did not differ significantly between organs. The average bacterial richness when organ assemblages were pooled within animals was 4·7 ± 0·6 bacteria/animal; Operational Taxonomic Unit accumulation analysis indicates that all five organs are required to obtain this. Organ type influences bacterial assemblage composition in a systematic way (PERMANOVA, 999 permutations, pseudo-F 4,51 = 1·37, P = 0·001). Our results demonstrate that the number of organs sampled influences the ability to detect bacterial pathogens, which can inform sampling decisions in public health and wildlife ecology.

  13. Systemic acquired tolerance to virulent bacterial pathogens in tomato.

    PubMed

    Block, Anna; Schmelz, Eric; O'Donnell, Phillip J; Jones, Jeffrey B; Klee, Harry J

    2005-07-01

    Recent studies on the interactions between plants and pathogenic microorganisms indicate that the processes of disease symptom development and pathogen growth can be uncoupled. Thus, in many instances, the symptoms associated with disease represent an active host response to the presence of a pathogen. These host responses are frequently mediated by phytohormones. For example, ethylene and salicylic acid (SA) mediate symptom development but do not influence bacterial growth in the interaction between tomato (Lycopersicon esculentum) and virulent Xanthomonas campestris pv vesicatoria (Xcv). It is not apparent why extensive tissue death is integral to a defense response if it does not have the effect of limiting pathogen proliferation. One possible function for this hormone-mediated response is to induce a systemic defense response. We therefore assessed the systemic responses of tomato to Xcv. SA- and ethylene-deficient transgenic lines were used to investigate the roles of these phytohormones in systemic signaling. Virulent and avirulent Xcv did induce a systemic response as evidenced by expression of defense-associated pathogenesis-related genes in an ethylene- and SA-dependent manner. This systemic response reduced cell death but not bacterial growth during subsequent challenge with virulent Xcv. This systemic acquired tolerance (SAT) consists of reduced tissue damage in response to secondary challenge with a virulent pathogen with no effect upon pathogen growth. SAT was associated with a rapid ethylene and pathogenesis-related gene induction upon challenge. SAT was also induced by infection with Pseudomonas syringae pv tomato. These data show that SAT resembles systemic acquired resistance without inhibition of pathogen growth.

  14. Reduced Set of Virulence Genes Allows High Accuracy Prediction of Bacterial Pathogenicity in Humans

    PubMed Central

    Iraola, Gregorio; Vazquez, Gustavo; Spangenberg, Lucía; Naya, Hugo

    2012-01-01

    Although there have been great advances in understanding bacterial pathogenesis, there is still a lack of integrative information about what makes a bacterium a human pathogen. The advent of high-throughput sequencing technologies has dramatically increased the amount of completed bacterial genomes, for both known human pathogenic and non-pathogenic strains; this information is now available to investigate genetic features that determine pathogenic phenotypes in bacteria. In this work we determined presence/absence patterns of different virulence-related genes among more than finished bacterial genomes from both human pathogenic and non-pathogenic strains, belonging to different taxonomic groups (i.e: Actinobacteria, Gammaproteobacteria, Firmicutes, etc.). An accuracy of 95% using a cross-fold validation scheme with in-fold feature selection is obtained when classifying human pathogens and non-pathogens. A reduced subset of highly informative genes () is presented and applied to an external validation set. The statistical model was implemented in the BacFier v1.0 software (freely available at ), that displays not only the prediction (pathogen/non-pathogen) and an associated probability for pathogenicity, but also the presence/absence vector for the analyzed genes, so it is possible to decipher the subset of virulence genes responsible for the classification on the analyzed genome. Furthermore, we discuss the biological relevance for bacterial pathogenesis of the core set of genes, corresponding to eight functional categories, all with evident and documented association with the phenotypes of interest. Also, we analyze which functional categories of virulence genes were more distinctive for pathogenicity in each taxonomic group, which seems to be a completely new kind of information and could lead to important evolutionary conclusions. PMID:22916122

  15. Questions about the behaviour of bacterial pathogens in vivo.

    PubMed Central

    Smith, H

    2000-01-01

    Bacterial pathogens cause disease in man and animals. They have unique biological properties, which enable them to colonize mucous surfaces, penetrate them, grow in the environment of the host, inhibit or avoid host defences and damage the host. The bacterial products responsible for these five biological requirements are the determinants of pathogenicity (virulence determinants). Current knowledge comes from studies in vitro, but now interest is increasing in how bacteria behave and produce virulence determinants within the infected host. There are three aspects to elucidate: bacterial activities, the host factors that affect them and the metabolic interactions between the two. The first is relatively easy to accomplish and, recently, new methods for doing this have been devised. The second is not easy because of the complexity of the environment in vivo and its ever-changing face. Nevertheless, some information can be gained from the literature and by new methodology. The third aspect is very difficult to study effectively unless some events in vivo can be simulated in vitro. The objectives of the Discussion Meeting were to describe the new methods and to show how they, and conventional studies, are revealing the activities of bacterial pathogens in vivo. This paper sets the scene by raising some questions and suggesting, with examples, how they might be answered. Bacterial growth in vivo is the primary requirement for pathogenicity. Without growth, determinants of the other four requirements are not formed. Results from the new methods are underlining this point. The important questions are as follows. What is the pattern of a developing infection and the growth rates and population sizes of the bacteria at different stages? What nutrients are present in vivo and how do they change as infection progresses and relate to growth rates and population sizes? How are these nutrients metabolized and by what bacterial mechanisms? Which bacterial processes handle

  16. The emerging role of ASC in dendritic cell metabolism during Chlamydia infection

    PubMed Central

    McKeithen, Danielle N.; Ryans, Khamia; Mu, Jing; Xie, Zhonglin; Simoneaux, Tankya; Blas-machado, Uriel; Eko, Francis O.; Black, Carolyn M.; Igietseme, Joseph U.; He, Qing

    2017-01-01

    Chlamydia trachomatis is a bacterial agent that causes sexually transmitted infections worldwide. The regulatory functions of dendritic cells (DCs) play a major role in protective immunity against Chlamydia infections. Here, we investigated the role of ASC in DCs metabolism and the regulation of DCs activation and function during Chlamydia infection. Following Chlamydia stimulation, maturation and antigen presenting functions were impaired in ASC-/- DCs compared to wild type (WT) DCs, in addition, ASC deficiency induced a tolerant phenotype in Chlamydia stimulated DCs. Using real-time extracellular flux analysis, we showed that activation in Chlamydia stimulated WT DCs is associated with a metabolic change in which mitochondrial oxidative phosphorylation (OXPHOS) is inhibited and the cells become committed to utilizing glucose through aerobic glycolysis for differentiation and antigen presenting functions. However, in ASC-/- DCs Chlamydia-induced metabolic change was prevented and there was a significant effect on mitochondrial morphology. The mitochondria of Chlamydia stimulated ASC-/- DCs had disrupted cristae compared to the normal narrow pleomorphic cristae found in stimulated WT DCs. In conclusion, our results suggest that Chlamydia-mediated activation of DCs is associated with a metabolic transition in which OXPHOS is inhibited, thereby dedicating the DCs to aerobic glycolysis, while ASC deficiency disrupts DCs function by inhibiting the reprogramming of DCs metabolism within the mitochondria, from glycolysis to electron transport chain. PMID:29216217

  17. Analysis of MreB interactors in Chlamydia reveals a RodZ homolog but fails to detect an interaction with MraY.

    PubMed

    Ouellette, Scot P; Rueden, Kelsey J; Gauliard, Emilie; Persons, Logan; de Boer, Piet A; Ladant, Daniel

    2014-01-01

    Chlamydia is an obligate intracellular bacterial pathogen that has significantly reduced its genome in adapting to the intracellular environment. One class of genes for which the bacterium has few annotated examples is cell division, and Chlamydia lacks FtsZ, a central coordinator of the division apparatus. We have previously implicated MreB as a potential substitute for FtsZ in Chlamydia (Ouellette et al., 2012). Thus, to identify new chlamydial cell division components, we searched for proteins that interacted with MreB. We performed a small-scale screen using a Gateway® compatible version of the Bacterial Adenylate Cyclase Two Hybrid (BACTH) system, BACTHGW, to detect proteins interacting with chlamydial MreB and identified a RodZ (YfgA) homolog. The chlamydial RodZ aligns well with the cytoplasmic domain of E. coli RodZ but lacks the periplasmic domain that is dispensable for rod cell shape maintenance in E. coli. The expression pattern of yfgA/rodZ was similar to that of mreB and ftsI, suggesting that these genes may operate in a common functional pathway. The chlamydial RodZ correctly localized to the membrane of E. coli but was unable to complement an E. coli rodZ mutant strain, likely because of the inability of chlamydial RodZ to interact with the native E. coli MreB. Finally, we also tested whether chlamydial MreB could interact with MraY, as suggested by Gaballah et al. (2011). However, we did not detect an interaction between these proteins even when using an implementation of the BACTH system to allow native orientation of the N- and C-termini of MraY in the periplasm. Thus, further work will be needed to establish this proposed interaction. In sum, we have added to the repertoire of potential cell division proteins of Chlamydia.

  18. Analysis of MreB interactors in Chlamydia reveals a RodZ homolog but fails to detect an interaction with MraY

    PubMed Central

    Ouellette, Scot P.; Rueden, Kelsey J.; Gauliard, Emilie; Persons, Logan; de Boer, Piet A.; Ladant, Daniel

    2014-01-01

    Chlamydia is an obligate intracellular bacterial pathogen that has significantly reduced its genome in adapting to the intracellular environment. One class of genes for which the bacterium has few annotated examples is cell division, and Chlamydia lacks FtsZ, a central coordinator of the division apparatus. We have previously implicated MreB as a potential substitute for FtsZ in Chlamydia (Ouellette et al., 2012). Thus, to identify new chlamydial cell division components, we searched for proteins that interacted with MreB. We performed a small-scale screen using a Gateway® compatible version of the Bacterial Adenylate Cyclase Two Hybrid (BACTH) system, BACTHGW, to detect proteins interacting with chlamydial MreB and identified a RodZ (YfgA) homolog. The chlamydial RodZ aligns well with the cytoplasmic domain of E. coli RodZ but lacks the periplasmic domain that is dispensable for rod cell shape maintenance in E. coli. The expression pattern of yfgA/rodZ was similar to that of mreB and ftsI, suggesting that these genes may operate in a common functional pathway. The chlamydial RodZ correctly localized to the membrane of E. coli but was unable to complement an E. coli rodZ mutant strain, likely because of the inability of chlamydial RodZ to interact with the native E. coli MreB. Finally, we also tested whether chlamydial MreB could interact with MraY, as suggested by Gaballah et al. (2011). However, we did not detect an interaction between these proteins even when using an implementation of the BACTH system to allow native orientation of the N- and C-termini of MraY in the periplasm. Thus, further work will be needed to establish this proposed interaction. In sum, we have added to the repertoire of potential cell division proteins of Chlamydia. PMID:24936201

  19. Probiotic E. coli Nissle 1917 biofilms on silicone substrates for bacterial interference against pathogen colonization.

    PubMed

    Chen, Quan; Zhu, Zhiling; Wang, Jun; Lopez, Analette I; Li, Siheng; Kumar, Amit; Yu, Fei; Chen, Haoqing; Cai, Chengzhi; Zhang, Lijuan

    2017-03-01

    Bacterial interference is an alternative strategy to fight against device-associated bacterial infections. Pursuing this strategy, a non-pathogenic bacterial biofilm is used as a live, protective barrier to fence off pathogen colonization. In this work, biofilms formed by probiotic Escherichia coli strain Nissle 1917 (EcN) are investigated for their potential for long-term bacterial interference against infections associated with silicone-based urinary catheters and indwelling catheters used in the digestive system, such as feeding tubes and voice prostheses. We have shown that EcN can form stable biofilms on silicone substrates, particularly those modified with a biphenyl mannoside derivative. These biofilms greatly reduced the colonization by pathogenic Enterococcus faecalis in Lysogeny broth (LB) for 11days. Bacterial interference is an alternative strategy to fight against device-associated bacterial infections. Pursuing this strategy, we use non-pathogenic bacteria to form a biofilm that serves as a live, protective barrier against pathogen colonization. Herein, we report the first use of preformed probiotic E. coli Nissle 1917 biofilms on the mannoside-presenting silicone substrates to prevent pathogen colonization. The biofilms serve as a live, protective barrier to fence off the pathogens, whereas current antimicrobial/antifouling coatings are subjected to gradual coverage by the biomass from the rapidly growing pathogens in a high-nutrient environment. It should be noted that E. coli Nissle 1917 is commercially available and has been used in many clinical trials. We also demonstrated that this probiotic strain performed significantly better than the non-commercial, genetically modified E. coli strain that we previously reported. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Autophagic clearance of bacterial pathogens: molecular recognition of intracellular microorganisms.

    PubMed

    Pareja, Maria Eugenia Mansilla; Colombo, Maria I

    2013-01-01

    Autophagy is involved in several physiological and pathological processes. One of the key roles of the autophagic pathway is to participate in the first line of defense against the invasion of pathogens, as part of the innate immune response. Targeting of intracellular bacteria by the autophagic machinery, either in the cytoplasm or within vacuolar compartments, helps to control bacterial proliferation in the host cell, controlling also the spreading of the infection. In this review we will describe the means used by diverse bacterial pathogens to survive intracellularly and how they are recognized by the autophagic molecular machinery, as well as the mechanisms used to avoid autophagic clearance.

  1. The disease complex of the gypsy moth. II. Aerobic bacterial pathogens

    Treesearch

    J.D. Podgwaite; R.W. Campbell

    1972-01-01

    Eighty-six pathogenic aerobic bacterial isolates from diseased gypsy moth larvae collected in both sparse and dense populations were characterized and identified as members of the families Bacillaceae, Enterobacteriaceae, Lactobacillaceae, Pseudomonadaceae, and Achromobacteraceae. The commonest pathogens were Streptococcus faecalis, Bacillus cereus, Bacillus...

  2. Screening for genital chlamydia infection.

    PubMed

    Low, Nicola; Redmond, Shelagh; Uusküla, Anneli; van Bergen, Jan; Ward, Helen; Andersen, Berit; Götz, Hannelore

    2016-09-13

    Genital infections caused by Chlamydia trachomatis are the most prevalent bacterial sexually transmitted infection worldwide. Screening of sexually active young adults to detect and treat asymptomatic infections might reduce chlamydia transmission and prevent reproductive tract morbidity, particularly pelvic inflammatory disease (PID) in women, which can cause tubal infertility and ectopic pregnancy. To assess the effects and safety of chlamydia screening versus standard care on chlamydia transmission and infection complications in pregnant and non-pregnant women and in men. We searched the Cochrane Sexually Transmitted Infections Group Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, LILACS, CINAHL, DARE, PsycINFO and Web of Science electronic databases up to 14 February 2016, together with World Health Organization International Clinical Trials Registry (ICTRP) and ClinicalTrials.gov. We also handsearched conference proceedings, contacted trial authors and reviewed the reference lists of retrieved studies. Randomised controlled trials (RCTs) in adult women (non-pregnant and pregnant) and men comparing a chlamydia screening intervention with usual care and reporting on a primary outcome (C. trachomatis prevalence, PID in women, epididymitis in men or incidence of preterm delivery). We included non-randomised controlled clinical trials if there were no RCTs for a primary outcome. Two review authors independently assessed trials for inclusion, extracted data and assessed the risk of bias. We resolved disagreements by consensus or adjudication by a third reviewer. We described results in forest plots and conducted meta-analysis where appropriate using a fixed-effect model to estimate risk ratios (RR with 95% confidence intervals, CI) in intervention vs control groups. We conducted a pre-specified sensitivity analysis of the primary outcome, PID incidence, according to the risks of selection and detection bias. We

  3. The role and regulation of catalase in respiratory tract opportunistic bacterial pathogens.

    PubMed

    Eason, Mia M; Fan, Xin

    2014-09-01

    Respiratory tract bacterial pathogens are the etiologic agents of a variety of illnesses. The ability of these bacteria to cause disease is imparted through survival within the host and avoidance of pathogen clearance by the immune system. Respiratory tract pathogens are continually bombarded by reactive oxygen species (ROS), which may be produced by competing bacteria, normal metabolic function, or host immunological responses. In order to survive and proliferate, bacteria have adapted defense mechanisms to circumvent the effects of ROS. Bacteria employ the use of anti-oxidant enzymes, catalases and catalase-peroxidases, to relieve the effects of the oxidative stressors to which they are continually exposed. The decomposition of ROS has been shown to provide favorable conditions in which respiratory tract opportunistic bacterial pathogens such as Haemophilus influenzae, Mycobacterium tuberculosis, Legionella pneumophila, and Neisseria meningitidis are able to withstand exposure to highly reactive molecules and yet survive. Bacteria possessing mutations in the catalase gene have a decreased survival rate, yet may be able to compensate for the lack of catalatic activity if peroxidatic activity is present. An incomplete knowledge of the mechanisms by which catalase and catalase-peroxidases are regulated still persists, however, in some bacterial species, a regulatory factor known as OxyR has been shown to either up-regulate or down-regulate catalase gene expression. Yet, more research is still needed to increase the knowledge base in relation to this enzyme class. As with this review, we focus on major respiratory tract opportunistic bacterial pathogens in order to elucidate the function and regulation of catalases. The importance of the research could lead to the development of novel treatments against respiratory bacterial infections. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Optimization of algorithm of coding of genetic information of Chlamydia

    NASA Astrophysics Data System (ADS)

    Feodorova, Valentina A.; Ulyanov, Sergey S.; Zaytsev, Sergey S.; Saltykov, Yury V.; Ulianova, Onega V.

    2018-04-01

    New method of coding of genetic information using coherent optical fields is developed. Universal technique of transformation of nucleotide sequences of bacterial gene into laser speckle pattern is suggested. Reference speckle patterns of the nucleotide sequences of omp1 gene of typical wild strains of Chlamydia trachomatis of genovars D, E, F, G, J and K and Chlamydia psittaci serovar I as well are generated. Algorithm of coding of gene information into speckle pattern is optimized. Fully developed speckles with Gaussian statistics for gene-based speckles have been used as criterion of optimization.

  5. Comprehensive global genome dynamics of Chlamydia trachomatis show ancient diversification followed by contemporary mixing and recent lineage expansion.

    PubMed

    Hadfield, James; Harris, Simon R; Seth-Smith, Helena M B; Parmar, Surendra; Andersson, Patiyan; Giffard, Philip M; Schachter, Julius; Moncada, Jeanne; Ellison, Louise; Vaulet, María Lucía Gallo; Fermepin, Marcelo Rodríguez; Radebe, Frans; Mendoza, Suyapa; Ouburg, Sander; Morré, Servaas A; Sachse, Konrad; Puolakkainen, Mirja; Korhonen, Suvi J; Sonnex, Chris; Wiggins, Rebecca; Jalal, Hamid; Brunelli, Tamara; Casprini, Patrizia; Pitt, Rachel; Ison, Cathy; Savicheva, Alevtina; Shipitsyna, Elena; Hadad, Ronza; Kari, Laszlo; Burton, Matthew J; Mabey, David; Solomon, Anthony W; Lewis, David; Marsh, Peter; Unemo, Magnus; Clarke, Ian N; Parkhill, Julian; Thomson, Nicholas R

    2017-07-01

    Chlamydia trachomatis is the world's most prevalent bacterial sexually transmitted infection and leading infectious cause of blindness, yet it is one of the least understood human pathogens, in part due to the difficulties of in vitro culturing and the lack of available tools for genetic manipulation. Genome sequencing has reinvigorated this field, shedding light on the contemporary history of this pathogen. Here, we analyze 563 full genomes, 455 of which are novel, to show that the history of the species comprises two phases, and conclude that the currently circulating lineages are the result of evolution in different genomic ecotypes. Temporal analysis indicates these lineages have recently expanded in the space of thousands of years, rather than the millions of years as previously thought, a finding that dramatically changes our understanding of this pathogen's history. Finally, at a time when almost every pathogen is becoming increasingly resistant to antimicrobials, we show that there is no evidence of circulating genomic resistance in C. trachomatis . © 2017 Hadfield et al.; Published by Cold Spring Harbor Laboratory Press.

  6. Multicenter Evaluation of the ePlex Respiratory Pathogen Panel for the Detection of Viral and Bacterial Respiratory Tract Pathogens in Nasopharyngeal Swabs

    PubMed Central

    England, Matthew R.; Jurcic Smith, Kristen L.; He, Taojun; Wijetunge, Dona Saumya; Chamberland, Robin R.; Menegus, Marilyn; Swierkosz, Ella M.; Jerris, Robert C.; Greene, Wallace

    2017-01-01

    ABSTRACT The performance of the new ePlex Respiratory Pathogen (RP) panel (GenMark Diagnostics) for the simultaneous detection of 19 viruses (influenza A virus; influenza A H1 virus; influenza A 2009 H1 virus; influenza A H3 virus; influenza B virus; adenovirus; coronaviruses [HKU1, OC43, NL63, and 229E]; human rhinovirus/enterovirus; human metapneumovirus; parainfluenza viruses 1, 2, 3, and 4; and respiratory syncytial virus [RSV] [RSV subtype A and RSV subtype B]) and 2 bacteria (Mycoplasma pneumoniae and Chlamydia pneumoniae) was evaluated. Prospectively and retrospectively collected nasopharyngeal swab (NPS) specimens (n = 2,908) were evaluated by using the ePlex RP panel, with the bioMérieux/BioFire FilmArray Respiratory Panel (BioFire RP) as the comparator method. Discordance analysis was performed by using target-specific PCRs and bidirectional sequencing. The reproducibility of the assay was evaluated by using reproducibility panels comprised of 6 pathogens. The overall agreement between the ePlex RP and BioFire RP results was >95% for all targets. Positive percent agreement with the BioFire RP result for viruses ranged from 85.1% (95% confidence interval [CI], 80.2% to 88.9%) to 95.1% (95% CI, 89.0% to 97.9%), while negative percent agreement values ranged from 99.5% (95% CI, 99.1% to 99.7%) to 99.8% (95% CI, 99.5% to 99.9%). Additional testing of discordant targets (12%; 349/2,908) confirmed the results of ePlex RP for 38% (131/349) of samples tested. Reproducibility was 100% for all targets tested, with the exception of adenovirus, for which reproducibilities were 91.6% at low virus concentrations and 100% at moderate virus concentrations. The ePlex RP panel offers a new, rapid, and sensitive “sample-to-answer” multiplex panel for the detection of the most common viral and bacterial respiratory pathogens. PMID:29212701

  7. Phages and the Evolution of Bacterial Pathogens: from Genomic Rearrangements to Lysogenic Conversion

    PubMed Central

    Brüssow, Harald; Canchaya, Carlos; Hardt, Wolf-Dietrich

    2004-01-01

    Comparative genomics demonstrated that the chromosomes from bacteria and their viruses (bacteriophages) are coevolving. This process is most evident for bacterial pathogens where the majority contain prophages or phage remnants integrated into the bacterial DNA. Many prophages from bacterial pathogens encode virulence factors. Two situations can be distinguished: Vibrio cholerae, Shiga toxin-producing Escherichia coli, Corynebacterium diphtheriae, and Clostridium botulinum depend on a specific prophage-encoded toxin for causing a specific disease, whereas Staphylococcus aureus, Streptococcus pyogenes, and Salmonella enterica serovar Typhimurium harbor a multitude of prophages and each phage-encoded virulence or fitness factor makes an incremental contribution to the fitness of the lysogen. These prophages behave like “swarms” of related prophages. Prophage diversification seems to be fueled by the frequent transfer of phage material by recombination with superinfecting phages, resident prophages, or occasional acquisition of other mobile DNA elements or bacterial chromosomal genes. Prophages also contribute to the diversification of the bacterial genome architecture. In many cases, they actually represent a large fraction of the strain-specific DNA sequences. In addition, they can serve as anchoring points for genome inversions. The current review presents the available genomics and biological data on prophages from bacterial pathogens in an evolutionary framework. PMID:15353570

  8. What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira

    PubMed Central

    Fouts, Derrick E.; Matthias, Michael A.; Adhikarla, Haritha; Adler, Ben; Amorim-Santos, Luciane; Berg, Douglas E.; Bulach, Dieter; Buschiazzo, Alejandro; Chang, Yung-Fu; Galloway, Renee L.; Haake, David A.; Haft, Daniel H.; Hartskeerl, Rudy; Ko, Albert I.; Levett, Paul N.; Matsunaga, James; Mechaly, Ariel E.; Monk, Jonathan M.; Nascimento, Ana L. T.; Nelson, Karen E.; Palsson, Bernhard; Peacock, Sharon J.; Picardeau, Mathieu; Ricaldi, Jessica N.; Thaipandungpanit, Janjira; Wunder, Elsio A.; Yang, X. Frank; Zhang, Jun-Jie; Vinetz, Joseph M.

    2016-01-01

    Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1) the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2) genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12) autotrophy as a bacterial virulence factor; 3) CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade’s refractoriness to gene targeting; 4) finding Leptospira pathogen-specific specialized protein secretion systems; 5) novel virulence-related genes/gene families such as the Virulence Modifying (VM) (PF07598 paralogs) proteins and pathogen-specific adhesins; 6) discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7) and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately pathogenic

  9. What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira.

    PubMed

    Fouts, Derrick E; Matthias, Michael A; Adhikarla, Haritha; Adler, Ben; Amorim-Santos, Luciane; Berg, Douglas E; Bulach, Dieter; Buschiazzo, Alejandro; Chang, Yung-Fu; Galloway, Renee L; Haake, David A; Haft, Daniel H; Hartskeerl, Rudy; Ko, Albert I; Levett, Paul N; Matsunaga, James; Mechaly, Ariel E; Monk, Jonathan M; Nascimento, Ana L T; Nelson, Karen E; Palsson, Bernhard; Peacock, Sharon J; Picardeau, Mathieu; Ricaldi, Jessica N; Thaipandungpanit, Janjira; Wunder, Elsio A; Yang, X Frank; Zhang, Jun-Jie; Vinetz, Joseph M

    2016-02-01

    Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1) the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2) genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12) autotrophy as a bacterial virulence factor; 3) CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade's refractoriness to gene targeting; 4) finding Leptospira pathogen-specific specialized protein secretion systems; 5) novel virulence-related genes/gene families such as the Virulence Modifying (VM) (PF07598 paralogs) proteins and pathogen-specific adhesins; 6) discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7) and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately pathogenic

  10. Water microbiology. Bacterial pathogens and water.

    PubMed

    Cabral, João P S

    2010-10-01

    Water is essential to life, but many people do not have access to clean and safe drinking water and many die of waterborne bacterial infections. In this review a general characterization of the most important bacterial diseases transmitted through water-cholera, typhoid fever and bacillary dysentery-is presented, focusing on the biology and ecology of the causal agents and on the diseases' characteristics and their life cycles in the environment. The importance of pathogenic Escherichia coli strains and emerging pathogens in drinking water-transmitted diseases is also briefly discussed. Microbiological water analysis is mainly based on the concept of fecal indicator bacteria. The main bacteria present in human and animal feces (focusing on their behavior in their hosts and in the environment) and the most important fecal indicator bacteria are presented and discussed (focusing on the advantages and limitations of their use as markers). Important sources of bacterial fecal pollution of environmental waters are also briefly indicated. In the last topic it is discussed which indicators of fecal pollution should be used in current drinking water microbiological analysis. It was concluded that safe drinking water for all is one of the major challenges of the 21st century and that microbiological control of drinking water should be the norm everywhere. Routine basic microbiological analysis of drinking water should be carried out by assaying the presence of Escherichia coli by culture methods. Whenever financial resources are available, fecal coliform determinations should be complemented with the quantification of enterococci. More studies are needed in order to check if ammonia is reliable for a preliminary screening for emergency fecal pollution outbreaks. Financial resources should be devoted to a better understanding of the ecology and behavior of human and animal fecal bacteria in environmental waters.

  11. Water Microbiology. Bacterial Pathogens and Water

    PubMed Central

    Cabral, João P. S.

    2010-01-01

    Water is essential to life, but many people do not have access to clean and safe drinking water and many die of waterborne bacterial infections. In this review a general characterization of the most important bacterial diseases transmitted through water—cholera, typhoid fever and bacillary dysentery—is presented, focusing on the biology and ecology of the causal agents and on the diseases’ characteristics and their life cycles in the environment. The importance of pathogenic Escherichia coli strains and emerging pathogens in drinking water-transmitted diseases is also briefly discussed. Microbiological water analysis is mainly based on the concept of fecal indicator bacteria. The main bacteria present in human and animal feces (focusing on their behavior in their hosts and in the environment) and the most important fecal indicator bacteria are presented and discussed (focusing on the advantages and limitations of their use as markers). Important sources of bacterial fecal pollution of environmental waters are also briefly indicated. In the last topic it is discussed which indicators of fecal pollution should be used in current drinking water microbiological analysis. It was concluded that safe drinking water for all is one of the major challenges of the 21st century and that microbiological control of drinking water should be the norm everywhere. Routine basic microbiological analysis of drinking water should be carried out by assaying the presence of Escherichia coli by culture methods. Whenever financial resources are available, fecal coliform determinations should be complemented with the quantification of enterococci. More studies are needed in order to check if ammonia is reliable for a preliminary screening for emergency fecal pollution outbreaks. Financial resources should be devoted to a better understanding of the ecology and behavior of human and animal fecal bacteria in environmental waters. PMID:21139855

  12. [Plasticity of bacterial genomes: pathogenicity islands and the locus of enterocyte effacement (LEE)].

    PubMed

    Kirsch, Petra; Jores, Jörg; Wieler, Lothar H

    2004-01-01

    Many bacterial virulence attributes, like toxins, adhesins, invasins, iron uptake systems, are encoded within specific regions of the bacterial genome. These in size varying regions are termed pathogenicity islands (PAIs) since they confer pathogenic properties to the respective micro-organism. Per definition PAIs are exclusively found in pathogenic strains and are often inserted near transfer-RNA genes. Nevertheless, non-pathogenic bacteria also possess foreign DNA elements that confer advantageous features, leading to improved fitness. These additional DNA elements as well as PAIs are termed genomic islands and were acquired during bacterial evolution. Significant G+C content deviation in pathogenicity islands with respect to the rest of the genome, the presence of direct repeat sequences at the flanking regions, the presence of integrase gene determinants as other mobility features,the particular insertion site (tRNA gene) as well as the observed genetic instability suggests that pathogenicity islands were acquired by horizontal gene transfer. PAIs are the fascinating proof of the plasticity of bacterial genomes. PAIs were originally described in human pathogenic Escherichia (E.) coli strains. In the meantime PAIs have been found in various pathogenic bacteria of humans, animals and even plants. The Locus of Enterocyte Effacement (LEE) is one particular widely distributed PAI of E coli. In addition, it also confers pathogenicity to the related species Citrobacter (C.) rodentium and Escherichia (E.) alvei. The LEE is an important virulence feature of several animal pathogens. It is an obligate PAI of all animal and human enteropathogenic E. coli (EPEC), and most enterohaemorrhegic E. coli (EHEC) also harbor the LEE. The LEE encodes a type III secretion system, an adhesion (intimin) that mediates the intimate contact between the bacterium and the epithelial cell, as well as various proteins which are secreted via the type III secretion system. The LEE encoded

  13. A cross sectional study on Dutch layer farms to investigate the prevalence and potential risk factors for different Chlamydia species.

    PubMed

    Heijne, Marloes; van der Goot, Jeanet A; Fijten, Helmi; van der Giessen, Joke W; Kuijt, Eric; Maassen, Catharina B M; van Roon, Annika; Wit, Ben; Koets, Ad P; Roest, Hendrik I J

    2018-01-01

    In poultry several Chlamydia species have been detected, but Chlamydia psittaci and Chlamydia gallinacea appear to be most prevalent and important. Chlamydia psittaci is a well-known zoonosis and is considered to be a pathogen of poultry. Chlamydia gallinacea has been described more recently. Its avian pathogenicity and zoonotic potential have to be further elucidated. Within the Netherlands no data were available on the presence of Chlamydia on poultry farms. As part of a surveillance programme for zoonotic pathogens in farm animals, we investigated pooled faecal samples from 151 randomly selected layer farms. On a voluntary base, 69 farmers, family members or farm workers from these 151 farms submitted a throat swab. All samples were tested with a generic 23S Chlamydiaceae PCR followed by a species specific PCR for C. avium, C. gallinacea and C. psittaci. C. avium and psittaci DNA was not detected at any of the farms. At 71 farms the positive result could be confirmed as C. gallinacea. Variables significantly associated with the presence of C. gallinacea in a final multivariable model were 'age of hens,' 'use of bedding material' and 'the presence of horses.' The presence of C. gallinacea was associated with neither clinical signs, varying from respiratory symptoms, nasal and ocular discharges to diarrhoea, nor with a higher mortality rate the day before the visit. All throat swabs from farmers, family members or farm workers tested negative for Chlamydia DNA, giving no further indication for possible bird-to-human (or human-to-bird) transmission.

  14. Nonactivated titanium-dioxide nanoparticles promote the growth of Chlamydia trachomatis and decrease the antimicrobial activity of silver nanoparticles.

    PubMed

    Bogdanov, A; Janovák, L; Lantos, I; Endrész, V; Sebők, D; Szabó, T; Dékány, I; Deák, J; Rázga, Z; Burián, K; Virok, D P

    2017-11-01

    Chlamydia trachomatis and herpes simplex virus (HSV) are the most prevalent bacterial and viral sexually transmitted infections. Due to the chronic nature of their infections, they are able to interact with titanium-dioxide (TiO 2 ) nanoparticles (NPs) applied as food additives or drug delivery vehicles. The aim of this study was to describe the interactions of these two prevalent pathogens with the TiO 2 NPs. Chlamydia trachomatis and HSV-2 were treated with nonactivated TiO 2 NPs, silver NPs and silver decorated TiO 2 NPs before infection of HeLa and Vero cells. Their intracellular growth was monitored by quantitative PCR. Unexpectedly, the TiO 2 NPs (100 μg ml -1 ) increased the growth of C. trachomatis by approximately fourfold, while the HSV-2 replication was not affected. Addition of TiO 2 to silver NPs decreased their antimicrobial activity against C. trachomatis up to 27·92-fold. In summary, nonactivated TiO 2 NPs could increase the replication of C. trachomatis and decrease the antimicrobial activity of silver NPs. The food industry or drug delivery use of TiO 2 NPs could enhance the growth of certain intracellular pathogens and potentially worsen disease symptoms, a feature that should be further investigated. © 2017 The Society for Applied Microbiology.

  15. Ironing Out the Unconventional Mechanisms of Iron Acquisition and Gene Regulation in Chlamydia

    PubMed Central

    Pokorzynski, Nick D.; Thompson, Christopher C.; Carabeo, Rey A.

    2017-01-01

    The obligate intracellular pathogen Chlamydia trachomatis, along with its close species relatives, is known to be strictly dependent upon the availability of iron. Deprivation of iron in vitro induces an aberrant morphological phenotype termed “persistence.” This persistent phenotype develops in response to various immunological and nutritional insults and may contribute to the development of sub-acute Chlamydia-associated chronic diseases in susceptible populations. Given the importance of iron to Chlamydia, relatively little is understood about its acquisition and its role in gene regulation in comparison to other iron-dependent bacteria. Analysis of the genome sequences of a variety of chlamydial species hinted at the involvement of unconventional mechanisms, being that Chlamydia lack many conventional systems of iron homeostasis that are highly conserved in other bacteria. Herein we detail past and current research regarding chlamydial iron biology in an attempt to provide context to the rapid progress of the field in recent years. We aim to highlight recent discoveries and innovations that illuminate the strategies involved in chlamydial iron homeostasis, including the vesicular mode of acquiring iron from the intracellular environment, and the identification of a putative iron-dependent transcriptional regulator that is synthesized as a fusion with a ABC-type transporter subunit. These recent findings, along with the noted absence of iron-related homologs, indicate that Chlamydia have evolved atypical approaches to the problem of iron homeostasis, reinvigorating research into the iron biology of this pathogen. PMID:28951853

  16. Detection of mastitis pathogens by analysis of volatile bacterial metabolites.

    PubMed

    Hettinga, K A; van Valenberg, H J F; Lam, T J G M; van Hooijdonk, A C M

    2008-10-01

    The ability to detect mastitis pathogens based on their volatile metabolites was studied. Milk samples from cows with clinical mastitis, caused by Staphylococcus aureus, coagulase-negative staphylococci, Streptococcus uberis, Streptococcus dysgalactiae, and Escherichia coli were collected. In addition, samples from cows without clinical mastitis and with low somatic cell count (SCC) were collected for comparison. All mastitis samples were examined by using classical microbiological methods, followed by headspace analysis for volatile metabolites. Milk from culture-negative samples contained a lower number and amount of volatile components compared with cows with clinical mastitis. Because of variability between samples within a group, comparisons between pathogens were not sufficient for classification of the samples by univariate statistics. Therefore, an artificial neural network was trained to classify the pathogen in the milk samples based on the bacterial metabolites. The trained network differentiated milk from uninfected and infected quarters very well. When comparing pathogens, Staph. aureus produced a very different pattern of volatile metabolites compared with the other samples. Samples with coagulase-negative staphylococci and E. coli had enough dissimilarity with the other pathogens, making it possible to separate these 2 pathogens from each other and from the other samples. The 2 streptococcus species did not show significant differences between each other but could be identified as a different group from the other pathogens. Five groups can thus be identified based on the volatile bacterial metabolites: Staph. aureus, coagulase-negative staphylococci, streptococci (Strep. uberis and Strep. dysgalactiae as one group), E. coli, and uninfected quarters.

  17. The FUN of identifying gene function in bacterial pathogens; insights from Salmonella functional genomics.

    PubMed

    Hammarlöf, Disa L; Canals, Rocío; Hinton, Jay C D

    2013-10-01

    The availability of thousands of genome sequences of bacterial pathogens poses a particular challenge because each genome contains hundreds of genes of unknown function (FUN). How can we easily discover which FUN genes encode important virulence factors? One solution is to combine two different functional genomic approaches. First, transcriptomics identifies bacterial FUN genes that show differential expression during the process of mammalian infection. Second, global mutagenesis identifies individual FUN genes that the pathogen requires to cause disease. The intersection of these datasets can reveal a small set of candidate genes most likely to encode novel virulence attributes. We demonstrate this approach with the Salmonella infection model, and propose that a similar strategy could be used for other bacterial pathogens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Plant immunity: a lesson from pathogenic bacterial effector proteins.

    PubMed

    Cui, Haitao; Xiang, Tingting; Zhou, Jian-Min

    2009-10-01

    Phytopathogenic bacteria inject an array of effector proteins into host cells to alter host physiology and assist the infection process. Some of these effectors can also trigger disease resistance as a result of recognition in the plant cell by cytoplasmic immune receptors. In addition to effector-triggered immunity, plants immunity can be triggered upon the detection of Pathogen/Microbe-Associated Molecular Patterns by surface-localized immune receptors. Recent progress indicates that many bacterial effector proteins use a variety of biochemical properties to directly attack key components of PAMP-triggered immunity and effector-triggered immunity, providing new insights into the molecular basis of plant innate immunity. Emerging evidence indicate that the evolution of disease resistance in plants is intimately linked to the mechanism by which bacterial effectors promote parasitism. This review focuses on how these studies have conceptually advanced our understanding of plant-pathogen interactions.

  19. Subverting Toll-Like Receptor Signaling by Bacterial Pathogens

    PubMed Central

    McGuire, Victoria A.; Arthur, J. Simon C.

    2015-01-01

    Pathogenic bacteria are detected by pattern-recognition receptors (PRRs) expressed on innate immune cells, which activate intracellular signal transduction pathways to elicit an immune response. Toll-like receptors are, perhaps, the most studied of the PRRs and can activate the mitogen-activated protein kinase (MAPK) and Nuclear Factor-κB (NF-κB) pathways. These pathways are critical for mounting an effective immune response. In order to evade detection and promote virulence, many pathogens subvert the host immune response by targeting components of these signal transduction pathways. This mini-review highlights the diverse mechanisms that bacterial pathogens have evolved to manipulate the innate immune response, with a particular focus on those that target MAPK and NF-κB signaling pathways. Understanding the elaborate strategies that pathogens employ to subvert the immune response not only highlights the importance of these proteins in mounting effective immune responses, but may also identify novel approaches for treatment or prevention of infection. PMID:26648936

  20. Genome-based approaches to develop vaccines against bacterial pathogens.

    PubMed

    Serruto, Davide; Serino, Laura; Masignani, Vega; Pizza, Mariagrazia

    2009-05-26

    Bacterial infectious diseases remain the single most important threat to health worldwide. Although conventional vaccinology approaches were successful in conferring protection against several diseases, they failed to provide efficacious solutions against many others. The advent of whole-genome sequencing changed the way to think about vaccine development, enabling the targeting of possible vaccine candidates starting from the genomic information of a single bacterial isolate, with a process named reverse vaccinology. As the genomic era progressed, reverse vaccinology has evolved with a pan-genome approach and multi-strain genome analysis became fundamental for the design of universal vaccines. This review describes the applications of genome-based approaches in the development of new vaccines against bacterial pathogens.

  1. Bacterial genome sequencing in clinical microbiology: a pathogen-oriented review.

    PubMed

    Tagini, F; Greub, G

    2017-11-01

    In recent years, whole-genome sequencing (WGS) has been perceived as a technology with the potential to revolutionise clinical microbiology. Herein, we reviewed the literature on the use of WGS for the most commonly encountered pathogens in clinical microbiology laboratories: Escherichia coli and other Enterobacteriaceae, Staphylococcus aureus and coagulase-negative staphylococci, streptococci and enterococci, mycobacteria and Chlamydia trachomatis. For each pathogen group, we focused on five different aspects: the genome characteristics, the most common genomic approaches and the clinical uses of WGS for (i) typing and outbreak analysis, (ii) virulence investigation and (iii) in silico antimicrobial susceptibility testing. Of all the clinical usages, the most frequent and straightforward usage was to type bacteria and to trace outbreaks back. A next step toward standardisation was made thanks to the development of several new genome-wide multi-locus sequence typing systems based on WGS data. Although virulence characterisation could help in various particular clinical settings, it was done mainly to describe outbreak strains. An increasing number of studies compared genotypic to phenotypic antibiotic susceptibility testing, with mostly promising results. However, routine implementation will preferentially be done in the workflow of particular pathogens, such as mycobacteria, rather than as a broadly applicable generic tool. Overall, concrete uses of WGS in routine clinical microbiology or infection control laboratories were done, but the next big challenges will be the standardisation and validation of the procedures and bioinformatics pipelines in order to reach clinical standards.

  2. Electrochemical Biosensor for Rapid and Sensitive Detection of Magnetically Extracted Bacterial Pathogens

    PubMed Central

    Setterington, Emma B.; Alocilja, Evangelyn C.

    2012-01-01

    Biological defense and security applications demand rapid, sensitive detection of bacterial pathogens. This work presents a novel qualitative electrochemical detection technique which is applied to two representative bacterial pathogens, Bacillus cereus (as a surrogate for B. anthracis) and Escherichia coli O157:H7, resulting in detection limits of 40 CFU/mL and 6 CFU/mL, respectively, from pure culture. Cyclic voltammetry is combined with immunomagnetic separation in a rapid method requiring approximately 1 h for presumptive positive/negative results. An immunofunctionalized magnetic/polyaniline core/shell nano-particle (c/sNP) is employed to extract target cells from the sample solution and magnetically position them on a screen-printed carbon electrode (SPCE) sensor. The presence of target cells significantly inhibits current flow between the electrically active c/sNPs and SPCE. This method has the potential to be adapted for a wide variety of target organisms and sample matrices, and to become a fully portable system for routine monitoring or emergency detection of bacterial pathogens. PMID:25585629

  3. Differential infection outcome of Chlamydia trachomatis in human blood monocytes and monocyte-derived dendritic cells

    PubMed Central

    2014-01-01

    Background Chlamydia trachomatis is an intracellular bacteria which consist of three biovariants; trachoma (serovars A-C), urogenital (serovars D-K) and lymphogranuloma venereum (L1-L3), causing a wide spectrum of disease in humans. Monocytes are considered to disseminate this pathogen throughout the body while dendritic cells (DCs) play an important role in mediating immune response against bacterial infection. To determine the fate of C. trachomatis within human peripheral blood monocytes and monocyte-derived DCs, these two sets of immune cells were infected with serovars Ba, D and L2, representative of the three biovariants of C. trachomatis. Results Our study revealed that the different serovars primarily infect monocytes and DCs in a comparable fashion, however undergo differential infection outcome, serovar L2 being the only candidate to inflict active infection. Moreover, the C. trachomatis serovars Ba and D become persistent in monocytes while the serovars predominantly suffer degradation within DCs. Effects of persistence gene Indoleamine 2, 3-dioxygenase (IDO) was not clearly evident in the differential infection outcome. The heightened levels of inflammatory cytokines secreted by the chlamydial infection in DCs compared to monocytes seemed to be instrumental for this consequence. The immune genes induced in monocytes and DCs against chlamydial infection involves a different set of Toll-like receptors, indicating that distinct intracellular signalling pathways are adopted for immune response. Conclusion Our results demonstrate that the host pathogen interaction in chlamydia infection is not only serovar specific but manifests cell specific features, inducing separate immune response cascade in monocytes and DCs. PMID:25123797

  4. Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans

    PubMed Central

    Caza, Mélissa; Kronstad, James W.

    2013-01-01

    Iron is the most abundant transition metal in the human body and its bioavailability is stringently controlled. In particular, iron is tightly bound to host proteins such as transferrin to maintain homeostasis, to limit potential damage caused by iron toxicity under physiological conditions and to restrict access by pathogens. Therefore, iron acquisition during infection of a human host is a challenge that must be surmounted by every successful pathogenic microorganism. Iron is essential for bacterial and fungal physiological processes such as DNA replication, transcription, metabolism, and energy generation via respiration. Hence, pathogenic bacteria and fungi have developed sophisticated strategies to gain access to iron from host sources. Indeed, siderophore production and transport, iron acquisition from heme and host iron-containing proteins such as hemoglobin and transferrin, and reduction of ferric to ferrous iron with subsequent transport are all strategies found in bacterial and fungal pathogens of humans. This review focuses on a comparison of these strategies between bacterial and fungal pathogens in the context of virulence and the iron limitation that occurs in the human body as a mechanism of innate nutritional defense. PMID:24312900

  5. Infection of Hysterectomized Mice with Chlamydia muridarum and Chlamydia trachomatis

    PubMed Central

    Yang, Chunfu; Whitmire, William M.; Sturdevant, Gail L.; Bock, Kevin; Moore, Ian

    2017-01-01

    ABSTRACT We studied infection and immunity of hysterectomized mice infected with Chlamydia muridarum and Chlamydia trachomatis to determine if there were differences between these species in their ability to infect vaginal squamous epithelial cells in vivo independently of proximal upper genital tract tissues. We found that C. muridarum readily colonized and infected vaginal squamous epithelial cells, whereas C. trachomatis did not. Primary infection of the vaginal epithelium with C. muridarum produced infections of a duration longer than that reported for normal mice. Infection resulted in an inflammatory response in the vagina characterized by neutrophils and infiltrating submucosal plasma cells consisting primarily of T cells. Despite the delayed clearance, rechallenged C. muridarum-infected mice were highly immune. Mice vaginally infected with C. muridarum produced serum and vaginal wash antibodies and an antigen-specific gamma interferon-dominated Th1-biased T cell response. By comparison, mice vaginally infected with C. trachomatis exhibited transient low-burden infections, produced no detectable tissue inflammatory response, and failed to seroconvert. We discuss how these marked differences in the biology of vaginal infection between these otherwise genetically similar species are possibly linked to pathogen-specific virulence genes and how they may influence pathology and immunity in the upper genital tract. PMID:28461392

  6. Clonality of Bacterial Pathogens Causing Hospital-Acquired Pneumonia.

    PubMed

    Pudová, V; Htoutou Sedláková, M; Kolář, M

    2016-09-01

    Hospital-acquired pneumonia (HAP) is one of the most serious complications in patients staying in intensive care units. This multicenter study of Czech patients with HAP aimed at assessing the clonality of bacterial pathogens causing the condition. Bacterial isolates were compared using pulsed-field gel electrophoresis. Included in this study were 330 patients hospitalized between May 1, 2013 and December 31, 2014 at departments of anesthesiology and intensive care medicine of four big hospitals in the Czech Republic. A total of 531 bacterial isolates were obtained, of which 267 were classified as etiological agents causing HAP. Similarity or identity was assessed in 231 bacterial isolates most frequently obtained from HAP patients. Over the study period, no significant clonal spread was noted. Most isolates were unique strains, and the included HAP cases may therefore be characterized as mostly endogenous. Yet there were differences in species and potential identical isolates between the participating centers. In three hospitals, Gram-negative bacteria (Enterobacteriaceae and Pseudomonas aeruginosa) prevailed as etiological agents, and Staphylococcus aureus was most prevalent in the fourth center.

  7. A cohort study of Chlamydia trachomatis treatment failure in women: a study protocol

    PubMed Central

    2013-01-01

    Background Chlamydia trachomatis is the most commonly diagnosed bacterial sexually transmitted infection in the developed world and diagnosis rates have increased dramatically over the last decade. Repeat infections of chlamydia are very common and may represent re-infection from an untreated partner or treatment failure. The aim of this cohort study is to estimate the proportion of women infected with chlamydia who experience treatment failure after treatment with 1 gram azithromycin. Methods/design This cohort study will follow women diagnosed with chlamydia for up to 56 days post treatment. Women will provide weekly genital specimens for further assay. The primary outcome is the proportion of women who are classified as having treatment failure 28, 42 or 56 days after recruitment. Comprehensive sexual behavior data collection and the detection of Y chromosome DNA and high discriminatory chlamydial genotyping will be used to differentiate between chlamydia re-infection and treatment failure. Azithromycin levels in high-vaginal specimens will be measured using a validated liquid chromatography – tandem mass spectrometry method to assess whether poor azithromycin absorption could be a cause of treatment failure. Chlamydia culture and minimal inhibitory concentrations will be performed to further characterize the chlamydia infections. Discussion Distinguishing between treatment failure and re-infection is important in order to refine treatment recommendations and focus infection control mechanisms. If a large proportion of repeat chlamydia infections are due to antibiotic treatment failure, then international recommendations on chlamydia treatment may need to be re-evaluated. If most are re-infections, then strategies to expedite partner treatment are necessary. PMID:23957327

  8. Effect of bovine lactoferrin on Chlamydia trachomatis infection and inflammation.

    PubMed

    Sessa, Rosa; Di Pietro, Marisa; Filardo, Simone; Bressan, Alessia; Rosa, Luigi; Cutone, Antimo; Frioni, Alessandra; Berlutti, Francesca; Paesano, Rosalba; Valenti, Piera

    2017-02-01

    Chlamydia trachomatis is an obligate, intracellular pathogen responsible for the most common sexually transmitted bacterial disease worldwide, causing acute and chronic infections. The acute infection is susceptible to antibiotics, whereas the chronic one needs prolonged therapies, thus increasing the risk of developing antibiotic resistance. Novel alternative therapies are needed. The intracellular development of C. trachomatis requires essential nutrients, including iron. Iron-chelating drugs inhibit C. trachomatis developmental cycle. Lactoferrin (Lf), a pleiotropic iron binding glycoprotein, could be a promising candidate against C. trachomatis infection. Similarly to the efficacy against other intracellular pathogens, bovine Lf (bLf) could both interfere with C. trachomatis entry into epithelial cells and exert an anti-inflammatory activity. In vitro and in vivo effects of bLf against C. trachomatis infectious and inflammatory process has been investigated. BLf inhibits C. trachomatis entry into host cells when incubated with cell monolayers before or at the moment of the infection and down-regulates IL-6/IL-8 synthesized by infected cells. Six out of 7 pregnant women asymptomatically infected by C. trachomatis, after 30 days of bLf intravaginal administration, were negative for C. trachomatis and showed a decrease of cervical IL-6 levels. This is the first time that the bLf protective effect against C. trachomatis infection has been demonstrated.

  9. Viable bacterial population and persistence of foodborne pathogens on the pear carpoplane.

    PubMed

    Duvenage, Francois J; Duvenage, Stacey; Du Plessis, Erika M; Volschenk, Quinton; Korsten, Lise

    2017-03-01

    Knowledge on the culturable bacteria and foodborne pathogen presence on pears is important for understanding the impact of postharvest practices on food safety assurance. Pear fruit bacteria were investigated from the point of harvest, following chlorine drenching and after controlled atmosphere (CA) storage to assess the impact on natural bacterial populations and potential foodborne pathogens. Salmonella spp. and Listeria monocytogenes were detected on freshly harvested fruit in season one. During season one, chemical drenching and CA storage did not have a significant effect on the bacterial load of orchard pears, except for two farms where the populations were lower 'after CA storage'. During season two, bacterial populations of orchard pears from three of the four farms increased significantly following drenching; however, the bacterial load decreased 'after CA storage'. Bacteria isolated following enumeration included Enterobacteriaceae, Microbacteriaceae, Pseudomonadaceae and Bacillaceae, with richness decreasing 'after drench' and 'after CA storage'. Salmonella spp. and L. monocytogenes were not detected after postharvest practices. Postharvest practices resulted in decreased bacterial species richness. Understanding how postharvest practices have an impact on the viable bacterial populations of pear fruit will contribute to the development of crop-specific management systems for food safety assurance. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Chlamydia trachomatis proctitis masquerading as carcinoma rectum: First case report from India.

    PubMed

    Dhawan, Benu; Makharia, Govind Kumar; Juyal, Deepak; Sebastian, Sujeesh; Bhatia, Riti; Khanna, Neena

    2017-01-01

    While proctitis is caused both by infectious and noninfectious causes, infectious causes are acquired typically sexually. Chlamydia trachomatis, which is the most frequent bacterial pathogen causing sexually transmitted infections worldwide, is one of the causative agents of proctitis. We report a case history of a bisexual male who presented to us with rectal bleeding. The colonoscopy showed a nodular ulcerated lesion in the rectum suggestive of rectal malignancy, but biopsies from rectal mass did not reveal malignancy. A rectal biopsy was positive for C. trachomatis by polymerase chain reaction assay, and a diagnosis of C. trachomatis proctitis was made. Considering the invasive anorectal disease and patient's sexual history, he was treated with prolonged doxycycline therapy as per Centres for Disease Control and Prevention's treatment recommendation for lymphogranuloma venereum. A high index of clinical suspicion along with appropriate microbiological testing can clinch the diagnosis of C. trachomatis infection.

  11. Development of Rare Bacterial Monosaccharide Analogs for Metabolic Glycan Labeling in Pathogenic Bacteria.

    PubMed

    Clark, Emily L; Emmadi, Madhu; Krupp, Katharine L; Podilapu, Ananda R; Helble, Jennifer D; Kulkarni, Suvarn S; Dube, Danielle H

    2016-12-16

    Bacterial glycans contain rare, exclusively bacterial monosaccharides that are frequently linked to pathogenesis and essentially absent from human cells. Therefore, bacterial glycans are intriguing molecular targets. However, systematic discovery of bacterial glycoproteins is hampered by the presence of rare deoxy amino sugars, which are refractory to traditional glycan-binding reagents. Thus, the development of chemical tools that label bacterial glycans is a crucial step toward discovering and targeting these biomolecules. Here, we explore the extent to which metabolic glycan labeling facilitates the studying and targeting of glycoproteins in a range of pathogenic and symbiotic bacterial strains. We began with an azide-containing analog of the naturally abundant monosaccharide N-acetylglucosamine and discovered that it is not broadly incorporated into bacterial glycans, thus revealing a need for additional azidosugar substrates to broaden the utility of metabolic glycan labeling in bacteria. Therefore, we designed and synthesized analogs of the rare deoxy amino d-sugars N-acetylfucosamine, bacillosamine, and 2,4-diacetamido-2,4,6-trideoxygalactose and established that these analogs are differentially incorporated into glycan-containing structures in a range of pathogenic and symbiotic bacterial species. Further application of these analogs will refine our knowledge of the glycan repertoire in diverse bacteria and may find utility in treating a variety of infectious diseases with selectivity.

  12. Evaluation of patients with dry eye disease for conjunctival Chlamydia trachomatis and Ureaplasma urealyticum.

    PubMed

    Abdelfattah, Maha Mohssen; Khattab, Rania Abdelmonem; Mahran, Magda H; Elborgy, Ebrahim S

    2016-01-01

    To determine the possibility of the development of dry eye disease (DED) as a result of persistent infection with Chlamydia trachomatis and Ureaplasma urealyticum in the conjunctiva of patients. This study was conducted on 58 patients of age range 20-50y, diagnosed with DED confirmed by Schirmer I test and tear breakup time. The non-dry eye control group included 27 subjects of the same age. Ocular specimens were collected as conjunctival scrapings and swabs divided into three groups: the first used for bacterial culture, the second and third taken to detect Chlamydia trachomatis and Ureaplasma urealyticum by direct fluorescent antibody (DFA) assay and polymerase chain reaction (PCR) method. Chlamydia trachomatis was detected in 65.5% and 76% of DED patients by DFA and PCR methods respectively. Ureaplasma urealyticum was found in 44.8% of DED infected patients using the PCR method. Both organisms were identified in only 37.9% of DED patients found to be infected. Control subjects had a 22% detection rate of Chlamydia trachomatis by DFA assay versus a 7% detection rate by PCR; while Ureaplasma urealyticum was detected in 3.7% of the controls by PCR method. The conjunctival culture revealed that gram positive microorganisms represented 75% of isolates with coagulase negative Staphylococci the most common (50%) followed by Staphylococcus aureus (20%), whereas gram negative microorganisms occurred in 25% of cases, isolating Moraxella spp. as the most frequent organism. Our results tend to point out that Chlamydia trachomatis and Ureaplasma urealyticum were detected in a moderate percentage of patients with DED, and could be a fair possibility for its development. PCR is more reliable in detecting Chlamydia trachomatis than DFA technique. The presence of isolated conjunctival bacterial microflora can be of some potential value.

  13. Effectiveness of Polyvalent Bacterial Lysate and Autovaccines Against Upper Respiratory Tract Bacterial Colonization by Potential Pathogens: A Randomized Study

    PubMed Central

    Zagólski, Olaf; Stręk, Paweł; Kasprowicz, Andrzej; Białecka, Anna

    2015-01-01

    Background Polyvalent bacterial lysate (PBL) is an oral immunostimulating vaccine consisting of bacterial standardized lysates obtained by lysis of different strains of bacteria. Autovaccines are individually prepared based on the results of smears obtained from the patient. Both types of vaccine can be used to treat an ongoing chronic infection. This study sought to determine which method is more effective against nasal colonization by potential respiratory tract pathogens. Material/Methods We enrolled 150 patients with aerobic Gram stain culture and count results indicating bacterial colonization of the nose and/or throat by potential pathogens. The participants were randomly assigned to each of the following groups: 1. administration of PBL, 2. administration of autovaccine, and 3. no intervention (controls). Results Reduction of the bacterial count in Streptococcus pneumoniae-colonized participants was significant after the autovaccine (p<0.001) and PBL (p<0.01). Reduction of the bacterial count of other β-hemolytic streptococcal strains after treatment with the autovaccine was significant (p<0.01) and was non-significant after PBL. In Haemophilus influenzae colonization, significant reduction in the bacterial count was noted in the PBL group (p<0.01). Methicillin-resistant Staphylococcus aureus colonization did not respond to either treatment. Conclusions The autovaccine is more effective than PBL for reducing bacterial count of Streptococcus pneumoniae and β-hemolytic streptococci, while PBL was more effective against Haemophilus influenzae colonization. PMID:26434686

  14. Dancing with the Stars: How Choreographed Bacterial Interactions Dictate Nososymbiocity and Give Rise to Keystone Pathogens, Accessory Pathogens, and Pathobionts.

    PubMed

    Hajishengallis, George; Lamont, Richard J

    2016-06-01

    Many diseases that originate on mucosal membranes ensue from the action of polymicrobial communities of indigenous organisms working in concert to disrupt homeostatic mechanisms. Multilevel physical and chemical communication systems among constituent organisms underlie polymicrobial synergy and dictate the community's pathogenic potential or nososymbiocity, that is, disease arising from living together with a susceptible host. Functional specialization of community participants, often originating from metabolic codependence, has given rise to several newly appreciated designations within the commensal-to-pathogen spectrum. Accessory pathogens, while inherently commensal in a particular microenvironment, nonetheless enhance the colonization or metabolic activity of pathogens. Keystone pathogens (bacterial drivers or alpha-bugs) exert their influence at low abundance by modulating both the composition and levels of community participants and by manipulating host responses. Pathobionts (or bacterial passengers) exploit disrupted host homeostasis to flourish and promote inflammatory disease. In this review we discuss how commensal or pathogenic properties of organisms are not intrinsic features, and have to be considered within the context of both the microbial community in which they reside and the host immune status. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A Rab-centric perspective of bacterial pathogen-occupied vacuoles.

    PubMed

    Sherwood, Racquel Kim; Roy, Craig R

    2013-09-11

    The ability to create and maintain a specialized organelle that supports bacterial replication is an important virulence property for many intracellular pathogens. Living in a membrane-bound vacuole presents inherent challenges, including the need to remodel a plasma membrane-derived organelle into a novel structure that will expand and provide essential nutrients to support replication, while also having the vacuole avoid membrane transport pathways that target bacteria for destruction in lysosomes. It is clear that pathogenic bacteria use different strategies to accomplish these tasks. The dynamics by which host Rab GTPases associate with pathogen-occupied vacuoles provide insight into the mechanisms used by different bacteria to manipulate host membrane transport. In this review we highlight some of the strategies bacteria use to maintain a pathogen-occupied vacuole by focusing on the Rab proteins involved in biogenesis and maintenance of these novel organelles. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Porcine retinal cell line VIDO R1 and Chlamydia suis to modelize ocular chlamydiosis.

    PubMed

    Käser, Tobias; Cnudde, Thomas; Hamonic, Glenn; Rieder, Meghanne; Pasternak, J Alex; Lai, Ken; Tikoo, Suresh K; Wilson, Heather L; Meurens, François

    2015-08-15

    Human ocular Chlamydia trachomatis infections can lead to trachoma, the major cause of infectious blindness worldwide. Trachoma control strategies are very helpful but logistically challenging, and a trachoma vaccine is needed but not available. Pigs are a valuable large animal model for various immunological questions and could facilitate the study of human ocular chlamydial infections. In addition, a recent study identified the zoonotic potential of Chlamydia suis, the natural pathogen of pigs. In terms of the One Health Initiative, understanding the host-pathogen-interactions and finding a vaccine for porcine chlamydia infections would also benefit human health. Thus, we infected the porcine retinal cell line VIDO R1 with C. suis and analyzed the chlamydial life cycle and the innate immune response of the infected cells. Our results indicate that C. suis completes its life cycle in VIDO R1 cells within 48 h, comparable to C. trachomatis in humans. C. suis infection of VIDO R1 cells led to increased levels of various innate immune mediators like pathogen recognition receptors, cytokines and chemokines including IL6, TNFα, and MMP9, also most relevant in human C. trachomatis infections. These results illustrate the first steps in the host-pathogen-interactions of ocular C. suis infections in pigs and show their similarity to C. trachomatis infections in humans, justifying further testing of pigs as an animal model for human trachoma. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Hemocytes from Pediculus humanus humanus are hosts for human bacterial pathogens

    PubMed Central

    Coulaud, Pierre-Julien; Lepolard, Catherine; Bechah, Yassina; Berenger, Jean-Michel; Raoult, Didier; Ghigo, Eric

    2015-01-01

    Pediculus humanus humanus is an human ectoparasite which represents a serious public health threat because it is vector for pathogenic bacteria. It is important to understand and identify where bacteria reside in human body lice to define new strategies to counterstroke the capacity of vectorization of the bacterial pathogens by body lice. It is known that phagocytes from vertebrates can be hosts or reservoirs for several microbes. Therefore, we wondered if Pediculus humanus humanus phagocytes could hide pathogens. In this study, we characterized the phagocytes from Pediculus humanus humanus and evaluated their contribution as hosts for human pathogens such as Rickettsia prowazekii, Bartonella Quintana, and Acinetobacter baumannii. PMID:25688336

  18. Bacterial Serine/Threonine Protein Kinases in Host-Pathogen Interactions*

    PubMed Central

    Canova, Marc J.; Molle, Virginie

    2014-01-01

    In bacterial pathogenesis, monitoring and adapting to the dynamically changing environment in the host and an ability to disrupt host immune responses are critical. The virulence determinants of pathogenic bacteria include the sensor/signaling proteins of the serine/threonine protein kinase (STPK) family that have a dual role of sensing the environment and subverting specific host defense processes. STPKs can sense a wide range of signals and coordinate multiple cellular processes to mount an appropriate response. Here, we review some of the well studied bacterial STPKs that are essential virulence factors and that modify global host responses during infection. PMID:24554701

  19. Bacterial serine/threonine protein kinases in host-pathogen interactions.

    PubMed

    Canova, Marc J; Molle, Virginie

    2014-04-04

    In bacterial pathogenesis, monitoring and adapting to the dynamically changing environment in the host and an ability to disrupt host immune responses are critical. The virulence determinants of pathogenic bacteria include the sensor/signaling proteins of the serine/threonine protein kinase (STPK) family that have a dual role of sensing the environment and subverting specific host defense processes. STPKs can sense a wide range of signals and coordinate multiple cellular processes to mount an appropriate response. Here, we review some of the well studied bacterial STPKs that are essential virulence factors and that modify global host responses during infection.

  20. Extracellular HtrA serine proteases: An emerging new strategy in bacterial pathogenesis.

    PubMed

    Backert, Steffen; Bernegger, Sabine; Skórko-Glonek, Joanna; Wessler, Silja

    2018-03-26

    The HtrA family of chaperones and serine proteases is important for regulating stress responses and controlling protein quality in the periplasm of bacteria. HtrA is also associated with infectious diseases since inactivation of htrA genes results in significantly reduced virulence properties by various bacterial pathogens. These virulence features of HtrA can be attributed to reduced fitness of the bacteria, higher susceptibility to environmental stress and/or diminished secretion of virulence factors. In some Gram-negative and Gram-positive pathogens, HtrA itself can be exposed to the extracellular environment promoting bacterial colonisation and invasion of host tissues. Most of our knowledge on the function of exported HtrAs stems from research on Helicobacter pylori, Campylobacter jejuni, Borrelia burgdorferi, Bacillus anthracis, and Chlamydia species. Here, we discuss recent progress showing that extracellular HtrAs are able to cleave cell-to-cell junction factors including E-cadherin, occludin, and claudin-8, as well as extracellular matrix proteins such as fibronectin, aggrecan, and proteoglycans, disrupting the epithelial barrier and producing substantial host cell damage. We propose that the export of HtrAs is a newly discovered strategy, also applied by additional bacterial pathogens. Consequently, exported HtrA proteases represent highly attractive targets for antibacterial treatment by inhibiting their proteolytic activity or application in vaccine development. © 2018 John Wiley & Sons Ltd.

  1. Bacteriophages for detection and control of bacterial pathogens in food and food-processing environment.

    PubMed

    Brovko, Lubov Y; Anany, Hany; Griffiths, Mansel W

    2012-01-01

    This chapter presents recent advances in bacteriophage research and their application in the area of food safety. Section 1 describes general facts on phage biology that are relevant to their application for control and detection of bacterial pathogens in food and environmental samples. Section 2 summarizes the recently acquired data on application of bacteriophages to control growth of bacterial pathogens and spoilage organisms in food and food-processing environment. Section 3 deals with application of bacteriophages for detection and identification of bacterial pathogens. Advantages of bacteriophage-based methods are presented and their shortcomings are discussed. The chapter is intended for food scientist and food product developers, and people in food inspection and health agencies with the ultimate goal to attract their attention to the new developing technology that has a tremendous potential in providing means for producing wholesome and safe food. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens

    PubMed Central

    Wittebole, Xavier; De Roock, Sophie; Opal, Steven M

    2014-01-01

    The seemingly inexorable spread of antibiotic resistance genes among microbial pathogens now threatens the long-term viability of our current antimicrobial therapy to treat severe bacterial infections such as sepsis. Antibiotic resistance is reaching a crisis situation in some bacterial pathogens where few therapeutic alternatives remain and pan-resistant strains are becoming more prevalent. Non-antibiotic therapies to treat bacterial infections are now under serious consideration and one possible option is the therapeutic use of specific phage particles that target bacterial pathogens. Bacteriophage therapy has essentially been re-discovered by modern medicine after widespread use of phage therapy in the pre-antibiotic era lost favor, at least in Western countries, after the introduction of antibiotics. We review the current therapeutic rationale and clinical experience with phage therapy as a treatment for invasive bacterial infection as novel alternative to antimicrobial chemotherapy. PMID:23973944

  3. Host-Directed Antimicrobial Drugs with Broad-Spectrum Efficacy against Intracellular Bacterial Pathogens

    PubMed Central

    Czyż, Daniel M.; Potluri, Lakshmi-Prasad; Jain-Gupta, Neeta; Riley, Sean P.; Martinez, Juan J.; Steck, Theodore L.; Crosson, Sean; Gabay, Joëlle E.

    2014-01-01

    ABSTRACT We sought a new approach to treating infections by intracellular bacteria, namely, by altering host cell functions that support their growth. We screened a library of 640 Food and Drug Administration (FDA)-approved compounds for agents that render THP-1 cells resistant to infection by four intracellular pathogens. We identified numerous drugs that are not antibiotics but were highly effective in inhibiting intracellular bacterial growth with limited toxicity to host cells. These compounds are likely to target three kinds of host functions: (i) G protein-coupled receptors, (ii) intracellular calcium signals, and (iii) membrane cholesterol distribution. The compounds that targeted G protein receptor signaling and calcium fluxes broadly inhibited Coxiella burnetii, Legionella pneumophila, Brucella abortus, and Rickettsia conorii, while those directed against cholesterol traffic strongly attenuated the intracellular growth of C. burnetii and L. pneumophila. These pathways probably support intracellular pathogen growth so that drugs that perturb them may be therapeutic candidates. Combining host- and pathogen-directed treatments is a strategy to decrease the emergence of drug-resistant intracellular bacterial pathogens. PMID:25073644

  4. Bithionol blocks pathogenicity of bacterial toxins, ricin, and Zika virus

    USDA-ARS?s Scientific Manuscript database

    Disease pathways form overlapping networks, and hub proteins represent attractive targets for broad-spectrum drugs. Using bacterial toxins as a proof of concept, we describe a new approach of discovering broad-spectrum therapies capable of inhibiting host proteins that mediate multiple pathogenic pa...

  5. Immune subversion by chromatin manipulation: a 'new face' of host-bacterial pathogen interaction.

    PubMed

    Arbibe, Laurence

    2008-08-01

    Bacterial pathogens have evolved various strategies to avoid immune surveillance, depending of their in vivo'lifestyle'. The identification of few bacterial effectors capable to enter the nucleus and modifying chromatin structure in host raises the fascinating questions of how pathogens modulate chromatin structure and why. Chromatin is a dynamic structure that maintains the stability and accessibility of the host DNA genome to the transcription machinery. This review describes the various strategies used by pathogens to interface with host chromatin. In some cases, chromatin injury can be a strategy to take control of major cellular functions, such as the cell cycle. In other cases, manipulation of chromatin structure at specific genomic locations by modulating epigenetic information provides a way for the pathogen to impose its own transcriptional signature onto host cells. This emerging field should strongly influence our understanding of chromatin regulation at interphase nucleus and may provide invaluable openings to the control of immune gene expression in inflammatory and infectious diseases.

  6. Kynetic resazurin assay (KRA) for bacterial quantification of foodborne pathogens

    NASA Astrophysics Data System (ADS)

    Arenas, Yaxal; Mandel, Arkady; Lilge, Lothar

    2012-03-01

    Fast detection of bacterial concentrations is important for the food industry and for healthcare. Early detection of infections and appropriate treatment is essential since, the delay of treatments for bacterial infections tends to be associated with higher mortality rates. In the food industry and in healthcare, standard procedures require the count of colony-forming units in order to quantify bacterial concentrations, however, this method is time consuming and reports require three days to be completed. An alternative is metabolic-colorimetric assays which provide time efficient in vitro bacterial concentrations. A colorimetric assay based on Resazurin was developed as a time kinetic assay (KRA) suitable for bacterial concentration measurements. An optimization was performed by finding excitation and emission wavelengths for fluorescent acquisition. A comparison of two non-related bacteria, foodborne pathogens Escherichia coli and Listeria monocytogenes, was performed in 96 well plates. A metabolic and clonogenic dependence was established for fluorescent kinetic signals.

  7. Amoebal Endosymbiont Parachlamydia acanthamoebae Bn9 Can Grow in Immortal Human Epithelial HEp-2 Cells at Low Temperature; An In Vitro Model System to Study Chlamydial Evolution

    PubMed Central

    Nakamura, Shinji; Matsuo, Junji; Ishida, Kasumi; Yamazaki, Sumire; Oguri, Satoshi; Shouji, Natsumi; Hayashi, Yasuhiro; Yoshida, Mitsutaka; Yimin; Yamaguchi, Hiroyuki

    2015-01-01

    Ancient chlamydiae diverged into pathogenic and environmental chlamydiae 0.7–1.4 billion years ago. However, how pathogenic chlamydiae adapted to mammalian cells that provide a stable niche at approximately 37°C, remains unknown, although environmental chlamydiae have evolved as endosymbionts of lower eukaryotes in harsh niches of relatively low temperatures. Hence, we assessed whether an environmental chlamydia, Parachlamydia Bn9, could grow in human HEp-2 cells at a low culture temperature of 30°C. The assessment of inclusion formation by quantitative RT-PCR revealed that the numbers of bacterial inclusion bodies and the transcription level of 16SrRNA significantly increased after culture at 30°C compared to at 37°C. Confocal microscopy showed that the bacteria were located close to HEp-2 nuclei and were actively replicative. Transmission electron microscopy also revealed replicating bacteria consisting of reticular bodies, but with a few elementary bodies. Cytochalasin D and rifampicin inhibited inclusion formation. Lactacystin slightly inhibited bacterial inclusion formation. KEGG analysis using a draft genome sequence of the bacteria revealed that it possesses metabolic pathways almost identical to those of pathogenic chlamydia. Interestingly, comparative genomic analysis with pathogenic chlamydia revealed that the Parachlamydia similarly possess the genes encoding Type III secretion system, but lacking genes encoding inclusion membrane proteins (IncA to G) required for inclusion maturation. Taken together, we conclude that ancient chlamydiae had the potential to grow in human cells, but overcoming the thermal gap was a critical event for chlamydial adaptation to human cells. PMID:25643359

  8. Amoebal endosymbiont Parachlamydia acanthamoebae Bn9 can grow in immortal human epithelial HEp-2 cells at low temperature; an in vitro model system to study chlamydial evolution.

    PubMed

    Yamane, Chikayo; Yamazaki, Tomohiro; Nakamura, Shinji; Matsuo, Junji; Ishida, Kasumi; Yamazaki, Sumire; Oguri, Satoshi; Shouji, Natsumi; Hayashi, Yasuhiro; Yoshida, Mitsutaka; Yimin; Yamaguchi, Hiroyuki

    2015-01-01

    Ancient chlamydiae diverged into pathogenic and environmental chlamydiae 0.7-1.4 billion years ago. However, how pathogenic chlamydiae adapted to mammalian cells that provide a stable niche at approximately 37 °C, remains unknown, although environmental chlamydiae have evolved as endosymbionts of lower eukaryotes in harsh niches of relatively low temperatures. Hence, we assessed whether an environmental chlamydia, Parachlamydia Bn9, could grow in human HEp-2 cells at a low culture temperature of 30 °C. The assessment of inclusion formation by quantitative RT-PCR revealed that the numbers of bacterial inclusion bodies and the transcription level of 16SrRNA significantly increased after culture at 30 °C compared to at 37 °C. Confocal microscopy showed that the bacteria were located close to HEp-2 nuclei and were actively replicative. Transmission electron microscopy also revealed replicating bacteria consisting of reticular bodies, but with a few elementary bodies. Cytochalasin D and rifampicin inhibited inclusion formation. Lactacystin slightly inhibited bacterial inclusion formation. KEGG analysis using a draft genome sequence of the bacteria revealed that it possesses metabolic pathways almost identical to those of pathogenic chlamydia. Interestingly, comparative genomic analysis with pathogenic chlamydia revealed that the Parachlamydia similarly possess the genes encoding Type III secretion system, but lacking genes encoding inclusion membrane proteins (IncA to G) required for inclusion maturation. Taken together, we conclude that ancient chlamydiae had the potential to grow in human cells, but overcoming the thermal gap was a critical event for chlamydial adaptation to human cells.

  9. Rapid, portable, multiplexed detection of bacterial pathogens directly from clinical sample matrices

    DOE PAGES

    Phaneuf, Christopher R.; Mangadu, Betty Lou Bosano; Piccini, Matthew E.; ...

    2016-09-23

    Enteric and diarrheal diseases are a major cause of childhood illness and death in countries with developing economies. Each year, more than half of a million children under the age of five die from these diseases. We have developed a portable, microfluidic platform capable of simultaneous, multiplexed detection of several of the bacterial pathogens that cause these diseases. Furthermore, this platform can perform fast, sensitive immunoassays directly from relevant, complex clinical matrices such as stool without extensive sample cleanup or preparation. Using only 1 µL of sample per assay, we demonstrate simultaneous multiplexed detection of four bacterial pathogens implicated inmore » diarrheal and enteric diseases in less than 20 min.« less

  10. Rapid, portable, multiplexed detection of bacterial pathogens directly from clinical sample matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phaneuf, Christopher R.; Mangadu, Betty Lou Bosano; Piccini, Matthew E.

    Enteric and diarrheal diseases are a major cause of childhood illness and death in countries with developing economies. Each year, more than half of a million children under the age of five die from these diseases. We have developed a portable, microfluidic platform capable of simultaneous, multiplexed detection of several of the bacterial pathogens that cause these diseases. Furthermore, this platform can perform fast, sensitive immunoassays directly from relevant, complex clinical matrices such as stool without extensive sample cleanup or preparation. Using only 1 µL of sample per assay, we demonstrate simultaneous multiplexed detection of four bacterial pathogens implicated inmore » diarrheal and enteric diseases in less than 20 min.« less

  11. Fluorescence spectroscopy for rapid detection and classification of bacterial pathogens.

    PubMed

    Sohn, Miryeong; Himmelsbach, David S; Barton, Franklin E; Fedorka-Cray, Paula J

    2009-11-01

    This study deals with the rapid detection and differentiation of Escherichia coli, Salmonella, and Campylobacter, which are the most commonly identified commensal and pathogenic bacteria in foods, using fluorescence spectroscopy and multivariate analysis. Each bacterial sample cultured under controlled conditions was diluted in physiologic saline for analysis. Fluorescence spectra were collected over a range of 200-700 nm with 0.5 nm intervals on the PerkinElmer Fluorescence Spectrometer. The synchronous scan technique was employed to find the optimum excitation (lambda(ex)) and emission (lambda(em)) wavelengths for individual bacteria with the wavelength interval (Deltalambda) being varied from 10 to 200 nm. The synchronous spectra and two-dimensional plots showed two maximum lambda(ex) values at 225 nm and 280 nm and one maximum lambda(em) at 335-345 nm (lambda(em) = lambda(ex) + Deltalambda), which correspond to the lambda(ex) = 225 nm, Deltalambda = 110-120 nm, and lambda(ex) = 280 nm, Deltalambda = 60-65 nm. For all three bacterial genera, the same synchronous scan results were obtained. The emission spectra from the three bacteria groups were very similar, creating difficulty in classification. However, the application of principal component analysis (PCA) to the fluorescence spectra resulted in successful classification of the bacteria by their genus as well as determining their concentration. The detection limit was approximately 10(3)-10(4) cells/mL for each bacterial sample. These results demonstrated that fluorescence spectroscopy, when coupled with PCA processing, has the potential to detect and to classify bacterial pathogens in liquids. The methodology is rapid (>10 min), inexpensive, and requires minimal sample preparation compared to standard analytical methods for bacterial detection.

  12. Quantifying school officials' exposure to bacterial pathogens at graduation ceremonies using repeated observational measures.

    PubMed

    Bishai, David; Liu, Liang; Shiau, Stephanie; Wang, Harrison; Tsai, Cindy; Liao, Margaret; Prakash, Shivaani; Howard, Tracy

    2011-06-01

    The purpose of this study was to estimate the risk of acquiring pathogenic bacteria as a result of shaking hands at graduation ceremonies. School officials participating in graduation ceremonies at elementary, secondary, and postsecondary schools were recruited. Specimens were collected before and immediately following graduation. Cultures identified any pathogenic bacteria in each specimen. Subjects shook a total of 5,209 hands. Staphylococcus aureus was separately detected on one pregraduation right hand, one postgraduation right hand, and one postgraduation left hand. Nonpathogenic bacteria were collected in 93% of specimens. Pregraduation and postgraduation specimens were of different strains. We measured a risk of one new bacterial acquisition in a sample exposed to 5,209 handshakes yielding an overall estimate of 0.019 pathogens acquired per handshake. We conclude that a single handshake at a graduation offers only a small risk of bacterial pathogen acquisition.

  13. Structure of a bacterial type III secretion system in contact with a host membrane in situ.

    PubMed

    Nans, Andrea; Kudryashev, Mikhail; Saibil, Helen R; Hayward, Richard D

    2015-12-11

    Many bacterial pathogens of animals and plants use a conserved type III secretion system (T3SS) to inject virulence effector proteins directly into eukaryotic cells to subvert host functions. Contact with host membranes is critical for T3SS activation, yet little is known about T3SS architecture in this state or the conformational changes that drive effector translocation. Here we use cryo-electron tomography and sub-tomogram averaging to derive the intact structure of the primordial Chlamydia trachomatis T3SS in the presence and absence of host membrane contact. Comparison of the averaged structures demonstrates a marked compaction of the basal body (4 nm) occurs when the needle tip contacts the host cell membrane. This compaction is coupled to a stabilization of the cytosolic sorting platform-ATPase. Our findings reveal the first structure of a bacterial T3SS from a major human pathogen engaged with a eukaryotic host, and reveal striking 'pump-action' conformational changes that underpin effector injection.

  14. Structure of a bacterial type III secretion system in contact with a host membrane in situ

    NASA Astrophysics Data System (ADS)

    Nans, Andrea; Kudryashev, Mikhail; Saibil, Helen R.; Hayward, Richard D.

    2015-12-01

    Many bacterial pathogens of animals and plants use a conserved type III secretion system (T3SS) to inject virulence effector proteins directly into eukaryotic cells to subvert host functions. Contact with host membranes is critical for T3SS activation, yet little is known about T3SS architecture in this state or the conformational changes that drive effector translocation. Here we use cryo-electron tomography and sub-tomogram averaging to derive the intact structure of the primordial Chlamydia trachomatis T3SS in the presence and absence of host membrane contact. Comparison of the averaged structures demonstrates a marked compaction of the basal body (4 nm) occurs when the needle tip contacts the host cell membrane. This compaction is coupled to a stabilization of the cytosolic sorting platform-ATPase. Our findings reveal the first structure of a bacterial T3SS from a major human pathogen engaged with a eukaryotic host, and reveal striking `pump-action' conformational changes that underpin effector injection.

  15. Importance of Soil Amendments: Survival of Bacterial Pathogens in Manure and Compost Used as Organic Fertilizers.

    PubMed

    Sharma, Manan; Reynnells, Russell

    2016-08-01

    Biological soil amendments (BSAs) such as manure and compost are frequently used as organic fertilizers to improve the physical and chemical properties of soils. However, BSAs have been known to be a reservoir for enteric bacterial pathogens such as enterohemorrhagic Escherichia coli (EHEC), Salmonella spp., and Listeria spp. There are numerous mechanisms by which manure may transfer pathogens to growing fruits and vegetables, and several outbreaks of infections have been linked to manure-related contamination of leafy greens. In the United States several commodity-specific guidelines and current and proposed federal rules exist to provide guidance on the application of BSAs as fertilizers to soils, some of which require an interval between the application of manure to soils and the harvest of fruits and vegetables. This review examines the survival, persistence, and regrowth/resuscitation of bacterial pathogens in manure, biosolids, and composts. Moisture, along with climate and the physicochemical properties of soil, manure, or compost, plays a significant role in the ability of pathogens to persist and resuscitate in amended soils. Adaptation of enteric bacterial pathogens to the nonhost environment of soils may also extend their persistence in manure- or compost-amended soils. The presence of antibiotic-resistance genes in soils may also be increased by manure application. Overall, BSAs applied as fertilizers to soils can support the survival and regrowth of pathogens. BSAs should be handled and applied in a manner that reduces the prevalence of pathogens in soils and the likelihood of transfer of food-borne pathogens to fruits and vegetables. This review will focus on two BSAs-raw manure and composted manure (and other feedstocks)-and predominantly on the survival of enteric bacterial pathogens in BSAs as applied to soils as organic fertilizers.

  16. Intra- and inter-species interactions within biofilms of important foodborne bacterial pathogens

    PubMed Central

    Giaouris, Efstathios; Heir, Even; Desvaux, Mickaël; Hébraud, Michel; Møretrø, Trond; Langsrud, Solveig; Doulgeraki, Agapi; Nychas, George-John; Kačániová, Miroslava; Czaczyk, Katarzyna; Ölmez, Hülya; Simões, Manuel

    2015-01-01

    A community-based sessile life style is the normal mode of growth and survival for many bacterial species. Under such conditions, cell-to-cell interactions are inevitable and ultimately lead to the establishment of dense, complex and highly structured biofilm populations encapsulated in a self-produced extracellular matrix and capable of coordinated and collective behavior. Remarkably, in food processing environments, a variety of different bacteria may attach to surfaces, survive, grow, and form biofilms. Salmonella enterica, Listeria monocytogenes, Escherichia coli, and Staphylococcus aureus are important bacterial pathogens commonly implicated in outbreaks of foodborne diseases, while all are known to be able to create biofilms on both abiotic and biotic surfaces. Particularly challenging is the attempt to understand the complexity of inter-bacterial interactions that can be encountered in such unwanted consortia, such as competitive and cooperative ones, together with their impact on the final outcome of these communities (e.g., maturation, physiology, antimicrobial resistance, virulence, dispersal). In this review, up-to-date data on both the intra- and inter-species interactions encountered in biofilms of these pathogens are presented. A better understanding of these interactions, both at molecular and biophysical levels, could lead to novel intervention strategies for controlling pathogenic biofilm formation in food processing environments and thus improve food safety. PMID:26347727

  17. Russian vaccines against especially dangerous bacterial pathogens

    PubMed Central

    Feodorova, Valentina A; Sayapina, Lidiya V; Corbel, Michael J; Motin, Vladimir L

    2014-01-01

    In response to the epidemiological situation, live attenuated or killed vaccines against anthrax, brucellosis, cholera, glanders, plague and tularemia were developed and used for immunization of at-risk populations in the Former Soviet Union. Certain of these vaccines have been updated and currently they are used on a selective basis, mainly for high risk occupations, in the Russian Federation. Except for anthrax and cholera these vaccines currently are the only licensed products available for protection against the most dangerous bacterial pathogens. Development of improved formulations and new products is ongoing. PMID:26038506

  18. [Immunization and bacterial pathogens in the oropharynx as risk factors for alopecia areata].

    PubMed

    Morales-Sánchez, M A; Domínguez-Gómez, M A; Jurado-Santa Cruz, F; Peralta-Pedrero, M L

    2010-06-01

    Alopecia areata is an autoimmune inflammatory disease affecting the hair follicles. Researchers are currently interested in whether the presence of bacterial pathogens and/or a history of immunization can trigger an autoimmune response in patients who are genetically predisposed. This study aimed to determine whether there is an association between the development of alopecia areata and throat carriage of bacterial pathogens or a history of immunization. Sixty-five men and women with alopecia areata and 65 control patients with other skin diseases were studied at the Dr Ladislao de la Pascua Dermatology Clinic between September 2008 and February 2009. The patients ranged in age from 18-59 years. Patients with scalp diseases were excluded from the control group. In all cases, the patient was questioned about immunizations received in the previous 6 months, and a throat swab was cultured. A history of immunization (odds ratio [OR], 3.3; 95% confidence interval [CI], 1.6-6.7; P=.001), the presence of bacterial pathogens in the oropharynx (OR, 2.6; 95% CI, 1.1-6.2; P=.033), and being a carrier of Streptococcus pyogenes (OR, 2.1; 95% CI, 1.7-2.5; P=.042) were risk factors for alopecia areata. Klebsiella pneumoniae, S. pyogenes, Pseudomonas aeruginosa, Streptococcus pneumoniae, Serratia marcescens and Escherichia coli were isolated from cultures. This is the first study to show an association between alopecia areata and throat carriage of bacterial pathogens or history of immunization, as risk factors for development of the disease. Given the characteristics of our study population, the association appears valid for patients with less than 25% hair loss and a course of disease under 1 year.

  19. Zinc and Chlamydia trachomatis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugarman, B.; Epps, L.R.

    1985-07-01

    Zinc was noted to have significant effects upon the infection of McCoy cells by each of two strains of Chlamydia trachomatis. With a high or low Chlamydia inoculant, the number of infected cells increased up to 200% utilizing supplemental zinc (up to 1 x 10/sup -4/ M) in the inoculation media compared with standard Chlamydia cultivation media (8 x 10/sup -6/ M zinc). Ferric chloride and calcium chloride did not effect any such changes. Higher concentrations of zinc, after 2 hr of incubation with Chlamydia, significantly decreased the number of inclusions. This direct effect of zinc on the Chlamydia remainedmore » constant after further repassage of the Chlamydia without supplemental zinc, suggesting a lethal effect of the zinc. Supplemental zinc (up to 10/sup -4/ M) may prove to be a useful addition to inoculation media to increase the yield of culturing for Chlamydia trachomatis. Similarly, topical or oral zinc preparations used by people may alter their susceptibility to Chamydia trachomatis infections.« less

  20. Chlamydia trachomatis Is Responsible for Lipid Vacuolation in the Amniotic Epithelium of Fetal Gastroschisis.

    PubMed

    Feldkamp, Marcia L; Ward, Diane M; Pysher, Theodore J; Chambers, Christina T

    2017-07-17

    Vacuolated amniotic epithelium with lipid droplets in gastroschisis placentas is an unusual finding. Mass spectrometry of lipid droplets identified triglycerides, ester-linked to an unusual pattern of fatty acids. We hypothesize that these findings result from a Chlamydia trachomatis infection during the periconceptional period. The rising incidence of chlamydia infections has paralleled the increasing prevalence of gastroschisis among women less than 25 years of age. Histologically, young women are at greatest risk for a chlamydia infection due to their immature columnar epithelium, the preferential site for attachment of Chlamydia trachomatis infectious particle (elementary body). Chlamydia trachomatis survive in an inclusion, relying on its host to acquire essential nutrients, amino acids, and nucleotides for survival and replication. If essential nutrients are not available, the bacteria cannot replicate and may be trafficked to the lysosome for degradation or remain quiescent, within the inclusion, subverting innate immunologic clearance. Chlamydiae synthesize several lipids (phosphatidylethanolamine, phosphatidylserine, and phosphoatidylglycerol); however, their lipid content reveal eukaryotic lipids (sphingomyelin, cholesterol, phosphatidylcholine, and phosphatidylinositol), evidence that chlamydiae "hijack" host lipids for expansion and replication. The abnormal amniotic epithelial findings are supported by experimental evidence of the trafficking of host lipids into the chlamydiae inclusion. If not lethal, what harm will elementary bodies inflict to the developing embryo? Do these women have a greater pro-inflammatory response to an environmental exposure, whether cigarette smoking, change in partner, or a pathogen? Testing the hypothesis that Chlamydia trachomatis is responsible for amniotic epithelium vacuoles will be a critical first step. Birth Defects Research 109:1003-1010, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Prevalence of Chlamydia psittaci and Other Chlamydia Species in Wild Birds in Poland.

    PubMed

    Krawiec, Marta; Piasecki, Tomasz; Wieliczko, Alina

    2015-11-01

    Avian chlamydiosis is a zoonotic disease occurring in humans, poultry, and exotic birds. It has been suggested that some wild bird species play an important role as reservoirs for Chlamydia, especially Chlamydia psittaci. Whereas C. psittaci is the predominant chlamydial agent in birds, in the present study we have determined the prevalence of different species of Chlamydia among selected wild bird species in Poland using a rapid and sensitive real-time PCR method. In total, 369 free-living birds from 35 bird species and 15 orders were examined. Samples from 27 birds (7.3%) were positive for chlamydial DNA in the PCR; 22 positive samples (81.5%) belonged to C. psittaci, three to Chlamydia trachomatis (11.1%), and two (7.4%) classified only to the genus Chlamydia. Most of C. psittaci-positive samples belonged to five orders: Anseriformes, Columbiformes, Gruiformes, Phasianiformes, and Passeriformes. All C. trachomatis samples were obtained from Eurasian coots (Gruiformes). Two Chlamydia-positive samples not classified to any Chlamydia species were obtained from a common wood pigeon (Columbiformes) and a common buzzard (Accipitriformes). Detection of C. psittaci and C. trachomatis in free-living bird populations force to think on significance of birds as reservoir of varied Chlamydia species and their epidemiological importance.

  2. Improved Plaque Assay Identifies a Novel Anti-Chlamydia Ceramide Derivative with Altered Intracellular Localization

    PubMed Central

    Banhart, Sebastian; Saied, Essa M.; Martini, Andrea; Koch, Sophia; Aeberhard, Lukas; Madela, Kazimierz; Arenz, Christoph

    2014-01-01

    Chlamydia trachomatis is a medically important human pathogen causing different diseases, including trachoma, the leading cause of preventable blindness in developing countries, and sexually transmitted infections that can lead to infertility and ectopic pregnancies. There is no vaccine against C. trachomatis at present. Broad-spectrum antibiotics are used as standard therapy to treat the infection but have unwanted side effects, such as inducing persistent or recurring infections and affecting the host microbiome, necessitating the development of novel anti-Chlamydia therapies. Here, we describe the establishment of a robust, fast, and simple plaque assay using liquid overlay medium (LOM) for the identification of anti-Chlamydia compounds. Using the LOM plaque assay, we identified nitrobenzoxadiazole (NBD)-labeled 1-O-methyl-ceramide-C16 as a compound that efficiently inhibits C. trachomatis replication without affecting the viability of the host cell. Further detailed analyses indicate that 1-O-methyl-NBD-ceramide-C16 acts outside the inclusion. Thereby, 1-O-methyl-NBD-ceramide-C16 represents a lead compound for the development of novel anti-Chlamydia drugs and furthermore constitutes an agent to illuminate sphingolipid trafficking pathways in Chlamydia infections. PMID:25001308

  3. Detection of Bacterial Meningitis Pathogens by PCR-Mass Spectrometry in Cerebrospinal Fluid.

    PubMed

    Jing-Zi, Piao; Zheng-Xin, He; Wei-Jun, Chen; Yong-Qiang, Jiang

    2018-06-01

    Acute bacterial meningitis remains a life-threatening infectious disease with considerable morbidity and mortality. DNA-based detection methods are an urgent requisite for meningitis-causing bacterial pathogens for the prevention of outbreaks and control of infections. We proposed a novel PCR-mass spectrometry (PCR-Mass) assay for the simultaneous detection of four meningitis-causing agents, Neisseria meningitidis, Streptococcus pneumoniae, Haemophilus influenzae, and Mycobacterium tuberculosis in the present study. A total of 138 cerebrospinal fluid (CSF) samples (including 56 CSF culture positive, 44 CSF culture negative, and 38 CSF control) were enrolled and analyzed by PCR/Mass. Results were compared to real-time PCR detection. These four targeting pathogens could be discriminated without cross-reaction by the accurate detection of the corresponding extension products with different masses. The limits of detection were 102 copies/reaction for S. pneumoniae, H. influenzae, and N. meningitidis and 103 for M. tuberculosis. The evaluation of the culture-positive CSF specimens from the meningitis patients provided an overall agreement rate of 85.7% with PCR-Mass and real-time PCR. The PCR-Mass was also able to detect the targeting pathogens from culture-negative CSF specimens from meningitis patients receiving early antibiotic treatment. PCR-Mass could be used for the molecular detection of bacterial meningitis and tuberculosis, especially when early antibiotic treatment has been administered to the suspected patients.

  4. Genital Chlamydia trachomatis: An update

    PubMed Central

    Malhotra, Meenakshi; Sood, Seema; Mukherjee, Anjan; Muralidhar, Sumathi; Bala, Manju

    2013-01-01

    Chlamydia trachomatis is the most common cause of curable bacterial sexually transmitted infection (STI) worldwide. It manifests primarily as urethritis in males and endocervicitis in females. Untreated chlamydial infection in man can cause epididymitis and proctitis. Though most women with Chlamydia infection are asymptomatic or have minimal symptoms, some develop salpingitis, endometritis, pelvic inflammatory disease (PID), ectopic pregnancy and tubal factor infertility. It is associated with an increased risk for the transmission or acquisition of HIV and is also attributed to be a risk factor for the development of cervical carcinoma. Early diagnosis and treatment of infected individuals is required to prevent the spread of the disease and severe sequelae. Traditionally, tissue culture was considered the gold standard for the diagnosis. However, with the availability of newer diagnostic techniques particularly molecular methods which are not only highly sensitive and specific but are cost-effective also, the diagnosis has became fast and easy. The purpose of this review is to study the various aspects of genital C. trachomatis infection. Also the advances related to the clinical picture, various diagnostic modalities, prevention, treatment, drug resistance and control measures will be dealt with. PMID:24135174

  5. Molecular Evidence of Chlamydia-Like Organisms in the Feces of Myotis daubentonii Bats.

    PubMed

    Hokynar, K; Vesterinen, E J; Lilley, T M; Pulliainen, A T; Korhonen, S J; Paavonen, J; Puolakkainen, M

    2017-01-15

    Chlamydia-like organisms (CLOs) are recently identified members of the Chlamydiales order. CLOs share intracellular lifestyles and biphasic developmental cycles, and they have been detected in environmental samples as well as in various hosts such as amoebae and arthropods. In this study, we screened bat feces for the presence of CLOs by molecular analysis. Using pan-Chlamydiales PCR targeting the 16S rRNA gene, Chlamydiales DNA was detected in 54% of the specimens. PCR amplification, sequencing, and phylogenetic analysis of the 16S rRNA and 23S rRNA genes were used to classify positive specimens and infer their phylogenetic relationships. Most sequences matched best with Rhabdochlamydia species or uncultured Chlamydia sequences identified in ticks. Another set of sequences matched best with sequences of the Chlamydia genus or uncultured Chlamydiales from snakes. To gain evidence of whether CLOs in bat feces are merely diet borne, we analyzed insects trapped from the same location where the bats foraged. Interestingly, the CLO sequences resembling Rhabdochlamydia spp. were detected in insect material as well, but the other set of CLO sequences was not, suggesting that this set might not originate from prey. Thus, bats represent another potential host for Chlamydiales and could harbor novel, previously unidentified members of this order. Several pathogenic viruses are known to colonize bats, and recent analyses indicate that bats are also reservoir hosts for bacterial genera. Chlamydia-like organisms (CLOs) have been detected in several animal species. CLOs have high 16S rRNA sequence similarity to Chlamydiaceae and exhibit similar intracellular lifestyles and biphasic developmental cycles. Our study describes the frequent occurrence of CLO DNA in bat feces, suggesting an expanding host species spectrum for the Chlamydiales As bats can acquire various infectious agents through their diet, prey insects were also studied. We identified CLO sequences in bats that

  6. A bacterial siren song: intimate interactions between neutrophils and pathogenic Neisseria

    PubMed Central

    Criss, Alison K.; Seifert, H. Steven

    2012-01-01

    Preface Neisseria gonorrhoeae and Neisseria meningitidis are Gram-negative bacterial pathogens that are exquisitely adapted for growth at human mucosal surfaces and for efficient transmission between hosts. One factor that is essential to neisserial pathogenesis is the interaction between the bacteria and neutrophils, which are recruited in high numbers during infection. Although this vigorous host response could simply reflect effective immune recognition of the bacteria, there is mounting evidence that in fact these obligate human pathogens manipulate the innate immune response to promote infectious processes. This Review summarizes the mechanisms used by pathogenic neisseriae to resist and modulate the antimicrobial activities of neutrophils. It also details some of the major outstanding questions about the Neisseria–neutrophil relationship and proposes potential benefits of this relationship for the pathogen. PMID:22290508

  7. Antimicrobial inflammasomes: unified signalling against diverse bacterial pathogens.

    PubMed

    Eldridge, Matthew J G; Shenoy, Avinash R

    2015-02-01

    Inflammasomes - molecular platforms for caspase-1 activation - have emerged as common hubs for a number of pathways that detect and respond to bacterial pathogens. Caspase-1 activation results in the secretion of bioactive IL-1β and IL-18 and pyroptosis, and thus launches a systemic immune and inflammatory response. In this review we discuss signal transduction leading to 'canonical' and 'non-canonical' activation of caspase-1 through the involvement of upstream caspases. Recent studies have identified a growing number of regulatory networks involving guanylate binding proteins, protein kinases, ubiquitylation and necroptosis related pathways that modulate inflammasome responses and immunity to bacterial infection. By being able to respond to extracellular, vacuolar and cytosolic bacteria, their cytosolic toxins or ligands for cell surface receptors, inflammasomes have emerged as important sentinels of infection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Point detection of bacterial and viral pathogens using oral samples

    NASA Astrophysics Data System (ADS)

    Malamud, Daniel

    2008-04-01

    Oral samples, including saliva, offer an attractive alternative to serum or urine for diagnostic testing. This is particularly true for point-of-use detection systems. The various types of oral samples that have been reported in the literature are presented here along with the wide variety of analytes that have been measured in saliva and other oral samples. The paper focuses on utilizing point-detection of infectious disease agents, and presents work from our group on a rapid test for multiple bacterial and viral pathogens by monitoring a series of targets. It is thus possible in a single oral sample to identify multiple pathogens based on specific antigens, nucleic acids, and host antibodies to those pathogens. The value of such a technology for detecting agents of bioterrorism at remote sites is discussed.

  9. Interactions of Seedborne Bacterial Pathogens with Host and Non-Host Plants in Relation to Seed Infestation and Seedling Transmission

    PubMed Central

    Dutta, Bhabesh; Gitaitis, Ronald; Smith, Samuel; Langston, David

    2014-01-01

    The ability of seed-borne bacterial pathogens (Acidovorax citrulli, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, Xanthomonas euvesicatoria, and Pseudomonas syringae pv. glycinea) to infest seeds of host and non-host plants (watermelon, tomato, pepper, and soybean) and subsequent pathogen transmission to seedlings was investigated. A non-pathogenic, pigmented strain of Serratia marcescens was also included to assess a null-interacting situation with the same plant species. Flowers of host and non-host plants were inoculated with 1×106 colony forming units (CFUs)/flower for each bacterial species and allowed to develop into fruits or umbels (in case of onion). Seeds harvested from each host/non-host bacterial species combination were assayed for respective bacteria by plating on semi-selective media. Additionally, seedlots for each host/non-host bacterial species combination were also assayed for pathogen transmission by seedling grow-out (SGO) assays under greenhouse conditions. The mean percentage of seedlots infested with compatible and incompatible pathogens was 31.7 and 30.9% (by plating), respectively and they were not significantly different (P = 0.67). The percentage of seedlots infested with null-interacting bacterial species was 16.8% (by plating) and it was significantly lower than the infested lots generated with compatible and incompatible bacterial pathogens (P = 0.03). None of the seedlots with incompatible/null-interacting bacteria developed symptoms on seedlings; however, when seedlings were assayed for epiphytic bacterial presence, 19.5 and 9.4% of the lots were positive, respectively. These results indicate that the seeds of non-host plants can become infested with incompatible and null-interacting bacterial species through flower colonization and they can be transmitted via epiphytic colonization of seedlings. In addition, it was also observed that flowers and seeds of non-host plants can be colonized

  10. Clinical, diagnostic and pathologic features of presumptive cases of Chlamydia pecorum-associated arthritis in Australian sheep flocks.

    PubMed

    Walker, Evelyn; Moore, Cecily; Shearer, Patrick; Jelocnik, Martina; Bommana, Sankhya; Timms, Peter; Polkinghorne, Adam

    2016-09-08

    Arthritis is an economically significant disease in lambs and is usually the result of a bacterial infection. One of the known agents of this disease is Chlamydia pecorum, a globally recognised livestock pathogen associated with several diseases in sheep, cattle and other hosts. Relatively little published information is available on the clinical, diagnostic and pathologic features of C. pecorum arthritis in sheep, hindering efforts to enhance our understanding of this economically significant disease. In this case series, a combination of standard diagnostic testing used routinely by veterinarians, such as the Chlamydia complement fixation text (CFT), veterinary clinical examinations, and additional screening via C. pecorum specific qPCR was used to describe putative chlamydial infections in five sheep flocks with suspected ovine arthritis. Five separate cases involving multiple lambs (aged six to ten months) of different breeds with suspected C. pecorum arthritis are presented. In two of the five cases, arthritic lambs exhibited marked depression and lethargy. Arthritis with concurrent conjunctivitis was present in four out of five lamb flocks examined. Chlamydia CFT demonstrated medium to high positive antibody titres in all flocks examined. C. pecorum shedding was evident at multiple sites including the conjunctiva, rectum and vagina, as determined via qPCR. Two of the five flocks received antimicrobials and all flocks recovered uneventfully regardless of treatment. This case series highlights the features a field veterinarian may encounter in cases of suspected ovine chlamydial arthritis. Our analysis suggests a presumptive diagnosis of chlamydial arthritis in lambs can be made when there is evidence of joint stiffness with or without synovial effusion and elevated chlamydia antibody titres. C. pecorum-specific qPCR was found to be a useful ancillary diagnostic tool, detecting Chlamydia positivity in low or negative CFT titre animals. Variables such as symptom

  11. Chlamydia Pneumoniae Infections

    MedlinePlus

    ... Issues Listen Español Text Size Email Print Share Chlamydia Pneumoniae Infections Page Content Article Body When you hear the word chlamydia, you might think of the sexually transmitted disease ( ...

  12. Attitudes to Chlamydia screening elicited using the social networking site Facebook for subject recruitment.

    PubMed

    Ahmed, Navera; Jayasinghe, Yasmin; Wark, John D; Fenner, Yeshe; Moore, Elya E; Tabrizi, Sepehr N; Fletcher, Ashley; Garland, Suzanne M

    2013-07-01

    Chlamydia (Chlamydia trachomatis) is the commonest bacterial sexually transmissible infection worldwide and contributes to significant morbidity in females. We examined potential barriers and facilitating factors for screening in young Victorian women, using the social networking site, Facebook to recruit participants. This was part of a larger study on young women's health that assessed the feasibility of using social networking sites for recruitment. An advertisement was placed on Facebook between May and September 2010, and was visible to eligible women. Women who clicked on the advertisement and expressed their interest in participating were invited to complete a questionnaire either at a study site or online. In total, 278 participants completed the survey, with 76% reporting willingness to participate in chlamydia screening by recruitment via an online system. Overall, 73% of participants indicated they were comfortable providing a urine sample collected at home for chlamydia screening, with older participants less comfortable with this method (P=0.02, odds ratio (OR)=0.09, 95% confidence interval (CI)=0.01-0.7). Participants expressed comfort with their Pap smear and chlamydia screening being performed together (92.7%), especially those who were aware of human papillomavirus (P<0.01, OR=2.5, 95% CI=1.3-4.7). This study demonstrated willingness by young Victorian women using Facebook to participate in screening for chlamydia. There was strong acceptance of self-collected sampling, and of combined chlamydia and cervical cytology screening. Facebook may therefore be a feasible way for improving screening coverage at a population level.

  13. Chlamydia muridarum with Mutations in Chromosomal Genes tc0237 and/or tc0668 Is Deficient in Colonizing the Mouse Gastrointestinal Tract

    PubMed Central

    Shao, Lili; Zhang, Tianyuan; Liu, Quanzhong; Wang, Jie

    2017-01-01

    ABSTRACT Chlamydiae colonize the gastrointestinal tracts of both animals and humans. However, their medical significance remains unknown. We have previously shown that wild-type Chlamydia muridarum spreads to and establishes stable colonization of the gastrointestinal tract following intravaginal inoculation. In the present study, we found that C. muridarum with mutations in chromosomal genes tc0237 and/or tc0668 was defective in spreading to the mouse gastrointestinal tract, which correlated with its attenuated pathogenicity in the upper genital tract. This correlation was more consistent than that of chlamydial pathogenicity with ascending infection in the genital tract, since attenuated C. muridarum spread significantly less to the gastrointestinal tract but maintained robust ascending infection of the upper genital tract. Transcervical inoculation further confirmed the correlation between C. muridarum spreading to the gastrointestinal tract and its pathogenicity in the upper genital tract. Finally, defective spreading of C. muridarum mutants was due to their inability to colonize the gastrointestinal tract since intragastric inoculation did not rescue the mutants' colonization. Thus, promoting C. muridarum colonization of the gastrointestinal tract may represent a primary function of the TC0237 and TC0668 proteins. Correlation of chlamydial colonization of the gastrointestinal tract with chlamydial pathogenicity in the upper genital tract suggests a potential role for gastrointestinal chlamydiae in genital tract pathogenicity. PMID:28584162

  14. Infection of an Insect Vector with a Bacterial Plant Pathogen Increases Its Propensity for Dispersal

    PubMed Central

    Coy, Monique R.; Stelinski, Lukasz L.; Pelz-Stelinski, Kirsten S.

    2015-01-01

    The spread of vector-transmitted pathogens relies on complex interactions between host, vector and pathogen. In sessile plant pathosystems, the spread of a pathogen highly depends on the movement and mobility of the vector. However, questions remain as to whether and how pathogen-induced vector manipulations may affect the spread of a plant pathogen. Here we report for the first time that infection with a bacterial plant pathogen increases the probability of vector dispersal, and that such movement of vectors is likely manipulated by a bacterial plant pathogen. We investigated how Candidatus Liberibacter asiaticus (CLas) affects dispersal behavior, flight capacity, and the sexual attraction of its vector, the Asian citrus psyllid (Diaphorina citri Kuwayama). CLas is the putative causal agent of huanglongbing (HLB), which is a disease that threatens the viability of commercial citrus production worldwide. When D. citri developed on CLas-infected plants, short distance dispersal of male D. citri was greater compared to counterparts reared on uninfected plants. Flight by CLas-infected D. citri was initiated earlier and long flight events were more common than by uninfected psyllids, as measured by a flight mill apparatus. Additionally, CLas titers were higher among psyllids that performed long flights than psyllid that performed short flights. Finally, attractiveness of female D. citri that developed on infected plants to male conspecifics increased proportionally with increasing CLas bacterial titers measured within female psyllids. Our study indicates that the phytopathogen, CLas, may manipulate movement and mate selection behavior of their vectors, which is a possible evolved mechanism to promote their own spread. These results have global implications for both current HLB models of disease spread and control strategies. PMID:26083763

  15. Bacterial genomics reveal the complex epidemiology of an emerging pathogen in arctic and boreal ungulates

    USGS Publications Warehouse

    Forde, Taya L.; Orsel, Karin; Zadoks, Ruth N.; Biek, Roman; Adams, Layne G.; Checkley, Sylvia L.; Davison, Tracy; De Buck, Jeroen; Dumond, Mathieu; Elkin, Brett T.; Finnegan, Laura; Macbeth, Bryan J.; Nelson, Cait; Niptanatiak, Amanda; Sather, Shane; Schwantje, Helen M.; van der Meer, Frank; Kutz, Susan J.

    2016-01-01

    Northern ecosystems are currently experiencing unprecedented ecological change, largely driven by a rapidly changing climate. Pathogen range expansion, and emergence and altered patterns of infectious disease, are increasingly reported in wildlife at high latitudes. Understanding the causes and consequences of shifting pathogen diversity and host-pathogen interactions in these ecosystems is important for wildlife conservation, and for indigenous populations that depend on wildlife. Among the key questions are whether disease events are associated with endemic or recently introduced pathogens, and whether emerging strains are spreading throughout the region. In this study, we used a phylogenomic approach to address these questions of pathogen endemicity and spread for Erysipelothrix rhusiopathiae, an opportunistic multi-host bacterial pathogen associated with recent mortalities in arctic and boreal ungulate populations in North America. We isolated E. rhusiopathiae from carcasses associated with large-scale die-offs of muskoxen in the Canadian Arctic Archipelago, and from contemporaneous mortality events and/or population declines among muskoxen in northwestern Alaska and caribou and moose in western Canada. Bacterial genomic diversity differed markedly among these locations; minimal divergence was present among isolates from muskoxen in the Canadian Arctic, while in caribou and moose populations, strains from highly divergent clades were isolated from the same location, or even from within a single carcass. These results indicate that mortalities among northern ungulates are not associated with a single emerging strain of E. rhusiopathiae, and that alternate hypotheses need to be explored. Our study illustrates the value and limitations of bacterial genomic data for discriminating between ecological hypotheses of disease emergence, and highlights the importance of studying emerging pathogens within the broader context of environmental and host factors.

  16. Nested PCR Assay for Eight Pathogens: A Rapid Tool for Diagnosis of Bacterial Meningitis.

    PubMed

    Bhagchandani, Sharda P; Kubade, Sushant; Nikhare, Priyanka P; Manke, Sonali; Chandak, Nitin H; Kabra, Dinesh; Baheti, Neeraj N; Agrawal, Vijay S; Sarda, Pankaj; Mahajan, Parikshit; Ganjre, Ashish; Purohit, Hemant J; Singh, Lokendra; Taori, Girdhar M; Daginawala, Hatim F; Kashyap, Rajpal S

    2016-02-01

    Bacterial meningitis is a dreadful infectious disease with a high mortality and morbidity if remained undiagnosed. Traditional diagnostic methods for bacterial meningitis pose a challenge in accurate identification of pathogen, making prognosis difficult. The present study is therefore aimed to design and evaluate a specific and sensitive nested 16S rDNA genus-based polymerase chain reaction (PCR) assay using clinical cerebrospinal fluid (CSF) for rapid diagnosis of eight pathogens causing the disease. The present work was dedicated to development of an in-house genus specific 16S rDNA nested PCR covering pathogens of eight genera responsible for causing bacterial meningitis using newly designed as well as literature based primers for respective genus. A total 150 suspected meningitis CSF obtained from the patients admitted to Central India Institute of Medical Sciences (CIIMS), India during the period from August 2011 to May 2014, were used to evaluate clinical sensitivity and clinical specificity of optimized PCR assays. The analytical sensitivity and specificity of our newly designed genus-specific 16S rDNA PCR were found to be ≥92%. With such a high sensitivity and specificity, our in-house nested PCR was able to give 100% sensitivity in clinically confirmed positive cases and 100% specificity in clinically confirmed negative cases indicating its applicability in clinical diagnosis. Our in-house nested PCR system therefore can diagnose the accurate pathogen causing bacterial meningitis and therefore be useful in selecting a specific treatment line to minimize morbidity. Results are obtained within 24 h and high sensitivity makes this nested PCR assay a rapid and accurate diagnostic tool compared to traditional culture-based methods.

  17. Follicular Conjunctivitis due to Chlamydia felis-Case Report, Review of the Literature and Improved Molecular Diagnostics.

    PubMed

    Wons, Juliana; Meiller, Ralph; Bergua, Antonio; Bogdan, Christian; Geißdörfer, Walter

    2017-01-01

    A 29-year-old woman presented with unilateral, chronic follicular conjunctivitis since 6 weeks. While the conjunctival swab taken from the patient's eye was negative in a Chlamydia (C.) trachomatis -specific PCR, C. felis was identified as etiological agent using a pan- Chlamydia TaqMan-PCR followed by sequence analysis. A pet kitten of the patient was found to be the source of infection, as its conjunctival and pharyngeal swabs were also positive for C. felis . The patient was successfully treated with systemic doxycycline. This report, which presents one of the few documented cases of human C. felis infection, illustrates that standard PCR tests are designed to detect the most frequently seen species of a bacterial genus but might fail to be reactive with less common species. We developed a modified pan- Chlamydia / C. felis duplex TaqMan-PCR assay that detects C. felis without the need of subsequent sequencing. The role of chlamydiae-specific serum antibody titers for the diagnosis of follicular conjunctivitis is discussed.

  18. Host-Cell Survival and Death During Chlamydia Infection

    PubMed Central

    Ying, Songmin; Pettengill, Matthew; Ojcius, David M.; Häcker, Georg

    2008-01-01

    Different Chlamydia trachomatis strains are responsible for prevalent bacterial sexually-transmitted disease and represent the leading cause of preventable blindness worldwide. Factors that predispose individuals to disease and mechanisms by which chlamydiae cause inflammation and tissue damage remain unclear. Results from recent studies indicate that prolonged survival and subsequent death of infected cells and their effect on immune effector cells during chlamydial infection may be important in determining the outcome. Survival of infected cells is favored at early times of infection through inhibition of the mitochondrial pathway of apoptosis. Death at later times displays features of both apoptosis and necrosis, but pro-apoptotic caspases are not involved. Most studies on chlamydial modulation of host-cell death until now have been performed in cell lines. The consequences for pathogenesis and the immune response will require animal models of chlamydial infection, preferably mice with targeted deletions of genes that play a role in cell survival and death. PMID:18843378

  19. AUTOMATED BIOCHEMICAL IDENTIFICATION OF BACTERIAL FISH PATHOGENS USING THE ABBOTT QUANTUM II

    EPA Science Inventory

    The Quantum II, originally designed by Abbott Diagnostics for automated rapid identification of members of Enterobacteriaceae, was adapted for the identification of bacterial fish pathogens. he instrument operates as a spectrophotometer at a wavelength of 492.600 nm. ample cartri...

  20. Ozone disinfection of home nebulizers effectively kills common cystic fibrosis bacterial pathogens.

    PubMed

    Towle, Dana; Baker, Vanisha; Schramm, Craig; O'Brien, Matthew; Collins, Melanie S; Feinn, Richard; Murray, Thomas S

    2018-05-01

    The Cystic Fibrosis Foundation (CFF) recommends routine nebulizer disinfection for patients but compliance is challenging due to the heavy burden of home care. SoClean® is a user friendly ozone based home disinfection device currently for home respiratory equipment. The objective of this study was to determine whether SoClean® has potential as a disinfection device for families with CF by killing CF associated bacteria without altering nebulizer output. Ozone based disinfection effectively kills bacterial pathogens inoculated to home nebulizer equipment without gross changes in nebulizer function. Common bacterial pathogens associated with CF were inoculated onto the PariLC® jet nebulizer and bacterial recovery compared with or without varied ozone exposure. In separate experiments, nebulizer output was estimated after repeated ozone exposure by weighing the nebulizer. Ozone disinfection was time dependent with a 5 min infusion time and 120 min dwell time effectively killing >99.99% bacteria tested including Pseudomonas aeruginosa and Staphylococcus aureus. Over 250 h of repeat ozone exposure did not alter nebulizer output. This suggests SoClean® has potential as a user-friendly disinfection technique for home respiratory equipment. © 2018 Wiley Periodicals, Inc.

  1. Differences in Chlamydia trachomatis Serovar E Growth Rate in Polarized Endometrial and Endocervical Epithelial Cells Grown in Three-Dimensional Culture▿

    PubMed Central

    Guseva, Natalia V.; Dessus-Babus, Sophie; Moore, Cheryl G.; Whittimore, Judy D.; Wyrick, Priscilla B.

    2007-01-01

    In vitro studies of obligate intracellular chlamydia biology and pathogenesis are highly dependent on the use of experimental models and growth conditions that mimic the mucosal architecture and environment these pathogens encounter during natural infections. In this study, the growth of Chlamydia trachomatis genital serovar E was monitored in mouse fibroblast McCoy cells and compared to more relevant host human epithelial endometrium-derived HEC-1B and cervix-derived HeLa cells, seeded and polarized on collagen-coated microcarrier beads, using a three-dimensional culture system. Microscopy analysis of these cell lines prior to infection revealed morphological differences reminiscent of their in vivo architecture. Upon infection, early chlamydial inclusion distribution was uniform in McCoy cells but patchy in both epithelial cell lines. Although no difference in chlamydial attachment to or entry into the two genital epithelial cell lines was noted, active bacterial genome replication and transcription, as well as initial transformation of elementary bodies to reticulate bodies, were detected earlier in HEC-1B than in HeLa cells, suggesting a faster growth, which led to higher progeny counts and titers in HEC-1B cells upon completion of the developmental cycle. Chlamydial development in the less relevant McCoy cells was very similar to that in HeLa cells, although higher progeny counts were obtained. In conclusion, this three-dimensional bead culture system represents an improved model for harvesting large quantities of infectious chlamydia progeny from their more natural polarized epithelial host cells. PMID:17088348

  2. Killing of diverse eye pathogens (Acanthamoeba spp., Fusarium solani, and Chlamydia trachomatis) with alcohols.

    PubMed

    Aqeel, Yousuf; Rodriguez, Raquel; Chatterjee, Aparajita; Ingalls, Robin R; Samuelson, John

    2017-02-01

    Blindness is caused by eye pathogens that include a free-living protist (Acanthamoeba castellanii, A. byersi, and/or other Acanthamoeba spp.), a fungus (Fusarium solani), and a bacterium (Chlamydia trachomatis). Hand-eye contact is likely a contributor to the spread of these pathogens, and so hand washing with soap and water or alcohol-based hand sanitizers (when water is not available) might reduce their transmission. Recently we showed that ethanol and isopropanol in concentrations present in hand sanitizers kill walled cysts of Giardia and Entamoeba, causes of diarrhea and dysentery, respectively. The goal here was to determine whether these alcohols might kill infectious forms of representative eye pathogens (trophozoites and cysts of Acanthamoeba, conidia of F. solani, or elementary bodies of C. trachomatis). We found that treatment with 63% ethanol or 63% isopropanol kills >99% of Acanthamoeba trophozoites after 30 sec exposure, as shown by labeling with propidium iodide (PI) and failure to grow in culture. In contrast, Acanthamoeba cysts, which contain cellulose fibers in their wall, are relatively more resistant to these alcohols, particularly isopropanol. Depending upon the strain tested, 80 to 99% of Acanthamoeba cysts were killed by 63% ethanol after 2 min and 95 to 99% were killed by 80% ethanol after 30 sec, as shown by PI labeling and reduced rates of excystation in vitro. Both ethanol and isopropanol (63% for 30 sec) kill >99% of F. solani conidia, which have a wall of chitin and glucan fibrils, as demonstrated by PI labeling and colony counts on nutrient agar plates. Both ethanol and isopropanol (63% for 60 sec) inactivate 96 to 99% of elementary bodies of C. trachomatis, which have a wall of lipopolysaccharide but lack peptidoglycan, as measured by quantitative cultures to calculate inclusion forming units. In summary, alcohols kill infectious forms of Acanthamoeba, F. solani, and C. trachomatis, although longer times and higher ethanol

  3. Killing of diverse eye pathogens (Acanthamoeba spp., Fusarium solani, and Chlamydia trachomatis) with alcohols

    PubMed Central

    2017-01-01

    Background Blindness is caused by eye pathogens that include a free-living protist (Acanthamoeba castellanii, A. byersi, and/or other Acanthamoeba spp.), a fungus (Fusarium solani), and a bacterium (Chlamydia trachomatis). Hand-eye contact is likely a contributor to the spread of these pathogens, and so hand washing with soap and water or alcohol–based hand sanitizers (when water is not available) might reduce their transmission. Recently we showed that ethanol and isopropanol in concentrations present in hand sanitizers kill walled cysts of Giardia and Entamoeba, causes of diarrhea and dysentery, respectively. The goal here was to determine whether these alcohols might kill infectious forms of representative eye pathogens (trophozoites and cysts of Acanthamoeba, conidia of F. solani, or elementary bodies of C. trachomatis). Methodology/Principal findings We found that treatment with 63% ethanol or 63% isopropanol kills >99% of Acanthamoeba trophozoites after 30 sec exposure, as shown by labeling with propidium iodide (PI) and failure to grow in culture. In contrast, Acanthamoeba cysts, which contain cellulose fibers in their wall, are relatively more resistant to these alcohols, particularly isopropanol. Depending upon the strain tested, 80 to 99% of Acanthamoeba cysts were killed by 63% ethanol after 2 min and 95 to 99% were killed by 80% ethanol after 30 sec, as shown by PI labeling and reduced rates of excystation in vitro. Both ethanol and isopropanol (63% for 30 sec) kill >99% of F. solani conidia, which have a wall of chitin and glucan fibrils, as demonstrated by PI labeling and colony counts on nutrient agar plates. Both ethanol and isopropanol (63% for 60 sec) inactivate 96 to 99% of elementary bodies of C. trachomatis, which have a wall of lipopolysaccharide but lack peptidoglycan, as measured by quantitative cultures to calculate inclusion forming units. Conclusions/Significance In summary, alcohols kill infectious forms of Acanthamoeba, F. solani, and

  4. Elucidation of Bacterial Pneumonia-Causing Pathogens in Patients with Respiratory Viral Infection.

    PubMed

    Jung, Hwa Sik; Kang, Byung Ju; Ra, Seung Won; Seo, Kwang Won; Jegal, Yangjin; Jun, Jae Bum; Jung, Jiwon; Jeong, Joseph; Jeon, Hee Jeong; Ahn, Jae Sung; Lee, Taehoon; Ahn, Jong Joon

    2017-10-01

    Bacterial pneumonia occurring after respiratory viral infection is common. However, the predominant bacterial species causing pneumonia secondary to respiratory viral infections other than influenza remain unknown. The purpose of this study was to know whether the pathogens causing post-viral bacterial pneumonia vary according to the type of respiratory virus. Study subjects were 5,298 patients, who underwent multiplex real-time polymerase chain reaction for simultaneous detection of respiratory viruses, among who visited the emergency department or outpatient clinic with respiratory symptoms at Ulsan University Hospital between April 2013 and March 2016. The patients' medical records were retrospectively reviewed. A total of 251 clinically significant bacteria were identified in 233 patients with post-viral bacterial pneumonia. Mycoplasma pneumoniae was the most frequent bacterium in patients aged <16 years, regardless of the preceding virus type (p=0.630). In patients aged ≥16 years, the isolated bacteria varied according to the preceding virus type. The major results were as follows (p<0.001): pneumonia in patients with influenza virus (type A/B), rhinovirus, and human metapneumovirus infections was caused by similar bacteria, and the findings indicated that Staphylococcus aureus pneumonia was very common in these patients. In contrast, coronavirus, parainfluenza virus, and respiratory syncytial virus infections were associated with pneumonia caused by gram-negative bacteria. The pathogens causing post-viral bacterial pneumonia vary according to the type of preceding respiratory virus. This information could help in selecting empirical antibiotics in patients with post-viral pneumonia. Copyright©2017. The Korean Academy of Tuberculosis and Respiratory Diseases

  5. Elucidation of Bacterial Pneumonia-Causing Pathogens in Patients with Respiratory Viral Infection

    PubMed Central

    Jung, Hwa Sik; Kang, Byung Ju; Ra, Seung Won; Seo, Kwang Won; Jegal, Yangjin; Jun, Jae-Bum; Jung, Jiwon; Jeong, Joseph; Jeon, Hee-Jeong; Ahn, Jae-Sung

    2017-01-01

    Background Bacterial pneumonia occurring after respiratory viral infection is common. However, the predominant bacterial species causing pneumonia secondary to respiratory viral infections other than influenza remain unknown. The purpose of this study was to know whether the pathogens causing post-viral bacterial pneumonia vary according to the type of respiratory virus. Methods Study subjects were 5,298 patients, who underwent multiplex real-time polymerase chain reaction for simultaneous detection of respiratory viruses, among who visited the emergency department or outpatient clinic with respiratory symptoms at Ulsan University Hospital between April 2013 and March 2016. The patients' medical records were retrospectively reviewed. Results A total of 251 clinically significant bacteria were identified in 233 patients with post-viral bacterial pneumonia. Mycoplasma pneumoniae was the most frequent bacterium in patients aged <16 years, regardless of the preceding virus type (p=0.630). In patients aged ≥16 years, the isolated bacteria varied according to the preceding virus type. The major results were as follows (p<0.001): pneumonia in patients with influenza virus (type A/B), rhinovirus, and human metapneumovirus infections was caused by similar bacteria, and the findings indicated that Staphylococcus aureus pneumonia was very common in these patients. In contrast, coronavirus, parainfluenza virus, and respiratory syncytial virus infections were associated with pneumonia caused by gram-negative bacteria. Conclusion The pathogens causing post-viral bacterial pneumonia vary according to the type of preceding respiratory virus. This information could help in selecting empirical antibiotics in patients with post-viral pneumonia. PMID:28905531

  6. Relationship between lactobacilli and opportunistic bacterial pathogens associated with vaginitis.

    PubMed

    Razzak, Mohammad Sabri A; Al-Charrakh, Alaa H; Al-Greitty, Bara Hamid

    2011-04-01

    Vaginitis, is an infectious inflammation of the vaginal mucosa, which sometimes involves the vulva. The balance of the vaginal flora is maintained by the Lactobacilli and its protective and probiotic role in treating and preventing vaginal infection by producing antagonizing compounds which are regarded as safe for humans. The aim of this study was to evaluate the protective role of Lactobacilli against common bacterial opportunistic pathogens in vaginitis and study the effects of some antibiotics on Lactobacilli isolates. In this study (110) vaginal swabs were obtained from women suffering from vaginitis who admitted to Babylon Hospital of Maternity and Paediatrics in Babylon province, Iraq. The study involved the role of intrauterine device among married women with vaginitis and also involved isolation of opportunistic bacterial isolates among pregnant and non pregnant women. This study also involved studying probiotic role of Lactobacilli by production of some defense factors like hydrogen peroxide, bacteriocin, and lactic acid. Results revealed that a total of 130 bacterial isolates were obtained. Intrauterine device was a predisposing factor for vaginitis. The most common opportunistic bacterial isolates were Staphylococcus aureus, Escherichia coli, Streptococcus agalactiae, and Klebsiella pneumoniae. All Lactobacilli were hydrogen peroxide producers while some isolates were bacteriocin producers that inhibited some of opportunistic pathogens (S. aureus, E. coli). Lactobacilli were sensitive to erythromycin while 93.3% of them were resistant to ciprofloxacin and (40%, 53.3%) of them were resistant to amoxicillin and gentamycin respectively. Results revealed that there was an inverse relationship between Lactobacilli presence and organisms causing vaginitis. This may be attributed to the production of defense factors by Lactobacilli. The types of antibiotics used to treat vaginitis must be very selective in order not to kill the beneficial bacteria

  7. Relationship between lactobacilli and opportunistic bacterial pathogens associated with vaginitis

    PubMed Central

    Razzak, Mohammad Sabri A.; Al-Charrakh, Alaa H.; AL-Greitty, Bara Hamid

    2011-01-01

    Background: Vaginitis, is an infectious inflammation of the vaginal mucosa, which sometimes involves the vulva. The balance of the vaginal flora is maintained by the Lactobacilli and its protective and probiotic role in treating and preventing vaginal infection by producing antagonizing compounds which are regarded as safe for humans. Aim: The aim of this study was to evaluate the protective role of Lactobacilli against common bacterial opportunistic pathogens in vaginitis and study the effects of some antibiotics on Lactobacilli isolates. Materials and Methods: In this study (110) vaginal swabs were obtained from women suffering from vaginitis who admitted to Babylon Hospital of Maternity and Paediatrics in Babylon province, Iraq. The study involved the role of intrauterine device among married women with vaginitis and also involved isolation of opportunistic bacterial isolates among pregnant and non pregnant women. This study also involved studying probiotic role of Lactobacilli by production of some defense factors like hydrogen peroxide, bacteriocin, and lactic acid. Results: Results revealed that a total of 130 bacterial isolates were obtained. Intrauterine device was a predisposing factor for vaginitis. The most common opportunistic bacterial isolates were Staphylococcus aureus, Escherichia coli, Streptococcus agalactiae, and Klebsiella pneumoniae. All Lactobacilli were hydrogen peroxide producers while some isolates were bacteriocin producers that inhibited some of opportunistic pathogens (S. aureus, E. coli). Lactobacilli were sensitive to erythromycin while 93.3% of them were resistant to ciprofloxacin and (40%, 53.3%) of them were resistant to amoxicillin and gentamycin respectively. Results revealed that there was an inverse relationship between Lactobacilli presence and organisms causing vaginitis. This may be attributed to the production of defense factors by Lactobacilli. Conclusion: The types of antibiotics used to treat vaginitis must be very

  8. Bacterial-like PPP protein phosphatases: novel sequence alterations in pathogenic eukaryotes and peculiar features of bacterial sequence similarity.

    PubMed

    Kerk, David; Uhrig, R Glen; Moorhead, Greg B

    2013-01-01

    Reversible phosphorylation is a widespread modification affecting the great majority of eukaryotic cellular proteins, and whose effects influence nearly every cellular function. Protein phosphatases are increasingly recognized as exquisitely regulated contributors to these changes. The PPP (phosphoprotein phosphatase) family comprises enzymes, which catalyze dephosphorylation at serine and threonine residues. Nearly a decade ago, "bacterial-like" enzymes were recognized with similarity to proteins from various bacterial sources: SLPs (Shewanella-like phosphatases), RLPHs (Rhizobiales-like phosphatases), and ALPHs (ApaH-like phosphatases). A recent article from our laboratory appearing in Plant Physiology characterizes their extensive organismal distribution, abundance in plant species, predicted subcellular localization, motif organization, and sequence evolution. One salient observation is the distinct evolutionary trajectory followed by SLP genes and proteins in photosynthetic eukaryotes vs. animal and plant pathogens derived from photosynthetic ancestors. We present here a closer look at sequence data that emphasizes the distinctiveness of pathogen SLP proteins and that suggests that they might represent novel drug targets. A second observation in our original report was the high degree of similarity between the bacterial-like PPPs of eukaryotes and closely related proteins of the "eukaryotic-like" phyla Myxococcales and Planctomycetes. We here reflect on the possible implications of these observations and their importance for future research.

  9. Clinical and pathogenic analysis of 507 children with bacterial meningitis in Beijing, 2010-2014.

    PubMed

    Guo, Ling-Yun; Zhang, Zhi-Xiao; Wang, Xi; Zhang, Ping-Ping; Shi, Wei; Yao, Kai-Hu; Liu, Lin-Lin; Liu, Gang; Yang, Yong-Hong

    2016-09-01

    To explore the clinical characteristics and analyze the pathogens of bacterial meningitis in children. Bacterial meningitis cases occurring from January 2010 through December 2014 at Beijing Children's Hospital were reviewed retrospectively. The records of all patients, including data on clinical features and laboratory information, were obtained and analyzed. In total, the cases of 507 pediatric patients seen over a 5-year period were analyzed; 220 of these cases were etiologically confirmed. These patients were classified into four age groups: 29 days to 1 year (n=373, 73.6%), 1-3 years (n=61, 12.0%), 3-6 years (n=41, 8.1%), and >6 years (n=32, 6.3%). The main pathogens identified in this study were Streptococcus pneumoniae (n=73, 33.2%), Escherichia coli (n=24, 10.9%), Enterococcus (n=22, 10.0%), and group B Streptococcus (n=18, 8.2%). All Gram-positive bacteria were sensitive to vancomycin and linezolid. All Gram-negative bacteria were sensitive to meropenem. The total non-susceptibility rate of S. pneumoniae to penicillin was 47.6% (20/42). The resistance rates to ceftriaxone, cefepime, and ceftazidime were 75% (9/12), 55.6% (5/9), and 40% (4/10), respectively. The main pathogen of bacterial meningitis in this study was S. pneumoniae. The antibiotic resistance rates among children with bacterial meningitis are of serious concern. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  10. Detection of bacterial pathogens including potential new species in human head lice from Mali.

    PubMed

    Amanzougaghene, Nadia; Fenollar, Florence; Sangaré, Abdoul Karim; Sissoko, Mahamadou S; Doumbo, Ogobara K; Raoult, Didier; Mediannikov, Oleg

    2017-01-01

    In poor African countries, where no medical and biological facilities are available, the identification of potential emerging pathogens of concern at an early stage is challenging. Head lice, Pediculus humanus capitis, have a short life, feed only on human blood and do not transmit pathogens to their progeny. They are, therefore, a perfect tool for the xenodiagnosis of current or recent human infection. This study assessed the occurrence of bacterial pathogens from head lice collected in two rural villages from Mali, where a high frequency of head lice infestation had previously been reported, using molecular methods. Results show that all 600 head lice, collected from 117 individuals, belonged to clade E, specific to West Africa. Bartonella quintana, the causative agent of trench fever, was identified in three of the 600 (0.5%) head lice studied. Our study also shows, for the first time, the presence of the DNA of two pathogenic bacteria, namely Coxiella burnetii (5.1%) and Rickettsia aeschlimannii (0.6%), detected in human head lice, as well as the DNA of potential new species from the Anaplasma and Ehrlichia genera of unknown pathogenicity. The finding of several Malian head lice infected with B. quintana, C. burnetii, R. aeschlimannii, Anaplasma and Ehrlichia is alarming and highlights the need for active survey programs to define the public health consequences of the detection of these emerging bacterial pathogens in human head lice.

  11. Quorum sensing and Bacterial Pathogenicity: From Molecules to Disease

    PubMed Central

    Deep, Antariksh; Chaudhary, Uma; Gupta, Varsha

    2011-01-01

    Quorum sensing in prokaryotic biology refers to the ability of a bacterium to sense information from other cells in the population when they reach a critical concentration (i.e. a Quorum) and communicate with them. The “language” used for this intercellular communication is based on small, self-generated signal molecules called as autoinducers. Quorum sensing is thought to afford pathogenic bacteriaa mechanism to minimize host immune responses by delaying theproduction of tissue-damaging virulence factors until sufficientbacteria have amassed and are prepared to overwhelm host defensemechanisms and establish infection. Quorum sensing systems are studied in a large number of gram-negative bacterial species belonging to α, β, and γ subclasses of proteobacteria. Among the pathogenic bacteria, Pseudomonas aeruginosa is perhaps the best understood in terms of the virulence factors regulated and the role the Quorum sensing plays in pathogenicity. Presently, Quorum sensing is considered as a potential novel target for antimicrobial therapy to control multi/all drug-resistant infections. This paper reviews Quorum sensing in gram positive and gram negative bacteria and its role in biofilm formation. PMID:21701655

  12. [Newer diagnostic procedures for chlamydial diseases (author's transl)].

    PubMed

    Edlinger, E; Ardoin, P

    1982-06-17

    Chlamydiales are bacteries showing a growth cycle unique among procaryotes. The two species Chlamydia trachomatis and Chlamydia psittaci are genetically very distant and their pathogenicity for man is very distinct. Human chlamydia infections by Chlamydia trachomatis are diseases chiefly sexually transmitted and their epidemiological importance is growing. The relationship between chlamydial infections, Reiter disease, and cat scratch disease are discussed. The various laboratory diagnostic procedures are reported, including the techniques and their indications; the method of choice is in the majority of cases the isolation of Chlamydia on cell culture.

  13. Recent Developments in Copper and Zinc Homeostasis in Bacterial Pathogens

    PubMed Central

    Braymer, Joseph J.; Giedroc, David P.

    2014-01-01

    Copper and zinc homeostasis systems in pathogenic bacteria are required to resist host efforts to manipulate the availability and toxicity of these metal ions. Central to this microbial adaptive response is the involvement of metal-trafficking and -sensing proteins that ultimately exercise control of metal speciation in the cell. Cu- and Zn-specific metalloregulatory proteins regulate the transcription of metal-responsive genes while metallochaperones and related proteins ensure that these metals are appropriately buffered by the intracellular milieu and delivered to correct intracellular targets. In this review, we summarize recent findings on how bacterial pathogens mount a metal-specific response to derail host efforts to win the “fight over metals.” PMID:24463765

  14. Estimation of decay rates for fecal indicator bacteria and bacterial pathogens in agricultural field-applied manure

    EPA Science Inventory

    Field-applied manure is an important source of pathogenic exposure in surface water bodies for humans and ecological receptors. We analyzed the persistence and decay of fecal indicator bacteria and bacterial pathogens from three sources (cattle, poultry, swine) for agricultural f...

  15. Defense reactions of bean genotypes to bacterial pathogens in controlled conditions

    NASA Astrophysics Data System (ADS)

    Uysal, B.; Bastas, K. K.

    2018-03-01

    This study was focused on the role of antioxidant enzymes and total protein in imparting resistance against common bacterial blight caused by Xanthomonas axonopodis pv. phaseoli (Xap) and halo blight caused by Pseudomonas syringae pv. phaseolicola (Psp) in bean. Activities of Ascorbate peroxidase (APX), Catalase (CAT) and total protein were studied in resistant and susceptible bean genotypes. Five-day-old seedlings were inoculated with a bacterial suspension (108 CFU ml-1) and harvested at different time intervals (0, 12, 24 and 36 up to 72 h) under controlled growing conditions and assayed for antioxidant enzymes and total protein. Temporal increase of CAT, APX enzymes activities showed maximum activity at 12 h after both pathogens inoculation (hpi) in resistant cultivar, whereas in susceptible it increased at 72 h after both pathogens inoculation for CAT and 12, 24 h for APX enzymes. Maximum total protein activities were observed at 12 h and 24 h respectively after Xap, Psp inoculation (hpi) in resistant and maximum activities were observed at 24 h and 72 h respectively after Xap, Psp inoculation (hpi) in susceptible. Increase of antioxidant enzyme and total protein activities might be an important component in the defense strategy of resistance and susceptible bean genotypes against the bacterial infection. These findings suggest that disease protection is proportional to the amount of enhanced CAT, APX enzyme and total protein activity.

  16. Biochemical and Genetic Analysis of the Chlamydia GroEL Chaperonins

    PubMed Central

    Illingworth, Melissa; Hooppaw, Anna J.; Ruan, Lu

    2017-01-01

    ABSTRACT Chaperonins are essential for cellular growth under normal and stressful conditions and consequently represent one of the most conserved and ancient protein classes. The paradigm Escherichia coli chaperonin, EcGroEL, and its cochaperonin, EcGroES, assist in the folding of proteins via an ATP-dependent mechanism. In addition to the presence of groEL and groES homologs, groEL paralogs are found in many bacteria, including pathogens, and have evolved poorly understood species-specific functions. Chlamydia spp., which are obligate intracellular bacteria, have reduced genomes that nonetheless contain three groEL genes, Chlamydia groEL (ChgroEL), ChgroEL2, and ChgroEL3. We hypothesized that ChGroEL is the bona fide chaperonin and that the paralogs perform novel Chlamydia-specific functions. To test our hypothesis, we investigated the biochemical properties of ChGroEL and its cochaperonin, ChGroES, and queried the in vivo essentiality of the three ChgroEL genes through targeted mutagenesis in Chlamydia trachomatis. ChGroEL hydrolyzed ATP at a rate 25% of that of EcGroEL and bound with high affinity to ChGroES, and the ChGroEL-ChGroES complex could refold malate dehydrogenase (MDH). The chlamydial ChGroEL was selective for its cognate cochaperonin, ChGroES, while EcGroEL could function with both EcGroES and ChGroES. A P35T ChGroES mutant (ChGroESP35T) reduced ChGroEL-ChGroES interactions and MDH folding activities but was tolerated by EcGroEL. Both ChGroEL-ChGroES and EcGroEL-ChGroESP35T could complement an EcGroEL-EcGroES mutant. Finally, we successfully inactivated both paralogs but not ChgroEL, leading to minor growth defects in cell culture that were not exacerbated by heat stress. Collectively, our results support novel functions for the paralogs and solidify ChGroEL as a bona fide chaperonin that is biochemically distinct from EcGroEL. IMPORTANCE Chlamydia is an important cause of human diseases, including pneumonia, sexually transmitted infections, and

  17. Defining species-specific immunodominant B cell epitopes for molecular serology of Chlamydia species.

    PubMed

    Rahman, K Shamsur; Chowdhury, Erfan U; Poudel, Anil; Ruettger, Anke; Sachse, Konrad; Kaltenboeck, Bernhard

    2015-05-01

    Urgently needed species-specific enzyme-linked immunosorbent assays (ELISAs) for the detection of antibodies against Chlamydia spp. have been elusive due to high cross-reactivity of chlamydial antigens. To identify Chlamydia species-specific B cell epitopes for such assays, we ranked the potential epitopes of immunodominant chlamydial proteins that are polymorphic among all Chlamydia species. High-scoring peptides were synthesized with N-terminal biotin, followed by a serine-glycine-serine-glycine spacer, immobilized onto streptavidin-coated microtiter plates, and tested with mono-specific mouse hyperimmune sera against each Chlamydia species in chemiluminescent ELISAs. For each of nine Chlamydia species, three to nine dominant polymorphic B cell epitope regions were identified on OmpA, CT618, PmpD, IncA, CT529, CT442, IncG, Omp2, TarP, and IncE proteins. Peptides corresponding to 16- to 40-amino-acid species-specific sequences of these epitopes reacted highly and with absolute specificity with homologous, but not heterologous, Chlamydia monospecies-specific sera. Host-independent reactivity of such epitopes was confirmed by testing of six C. pecorum-specific peptides from five proteins with C. pecorum-reactive sera from cattle, the natural host of C. pecorum. The probability of cross-reactivity of peptide antigens from closely related chlamydial species or strains correlated with percent sequence identity and declined to zero at <50% sequence identity. Thus, phylograms of B cell epitope regions predict the specificity of peptide antigens for rational use in the genus-, species-, or serovar-specific molecular serology of Chlamydia spp. We anticipate that these peptide antigens will improve chlamydial serology by providing easily accessible assays to nonspecialist laboratories. Our approach also lends itself to the identification of relevant epitopes of other microbial pathogens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Defining Species-Specific Immunodominant B Cell Epitopes for Molecular Serology of Chlamydia Species

    PubMed Central

    Rahman, K. Shamsur; Chowdhury, Erfan U.; Poudel, Anil; Ruettger, Anke; Sachse, Konrad

    2015-01-01

    Urgently needed species-specific enzyme-linked immunosorbent assays (ELISAs) for the detection of antibodies against Chlamydia spp. have been elusive due to high cross-reactivity of chlamydial antigens. To identify Chlamydia species-specific B cell epitopes for such assays, we ranked the potential epitopes of immunodominant chlamydial proteins that are polymorphic among all Chlamydia species. High-scoring peptides were synthesized with N-terminal biotin, followed by a serine-glycine-serine-glycine spacer, immobilized onto streptavidin-coated microtiter plates, and tested with mono-specific mouse hyperimmune sera against each Chlamydia species in chemiluminescent ELISAs. For each of nine Chlamydia species, three to nine dominant polymorphic B cell epitope regions were identified on OmpA, CT618, PmpD, IncA, CT529, CT442, IncG, Omp2, TarP, and IncE proteins. Peptides corresponding to 16- to 40-amino-acid species-specific sequences of these epitopes reacted highly and with absolute specificity with homologous, but not heterologous, Chlamydia monospecies-specific sera. Host-independent reactivity of such epitopes was confirmed by testing of six C. pecorum-specific peptides from five proteins with C. pecorum-reactive sera from cattle, the natural host of C. pecorum. The probability of cross-reactivity of peptide antigens from closely related chlamydial species or strains correlated with percent sequence identity and declined to zero at <50% sequence identity. Thus, phylograms of B cell epitope regions predict the specificity of peptide antigens for rational use in the genus-, species-, or serovar-specific molecular serology of Chlamydia spp. We anticipate that these peptide antigens will improve chlamydial serology by providing easily accessible assays to nonspecialist laboratories. Our approach also lends itself to the identification of relevant epitopes of other microbial pathogens. PMID:25761461

  19. An Overview of the Control of Bacterial Pathogens in Cattle Manure

    PubMed Central

    Manyi-Loh, Christy E.; Mamphweli, Sampson N.; Meyer, Edson L.; Makaka, Golden; Simon, Michael; Okoh, Anthony I.

    2016-01-01

    Cattle manure harbors microbial constituents that make it a potential source of pollution in the environment and infections in humans. Knowledge of, and microbial assessment of, manure is crucial in a bid to prevent public health and environmental hazards through the development of better management practices and policies that should govern manure handling. Physical, chemical and biological methods to reduce pathogen population in manure do exist, but are faced with challenges such as cost, odor pollution, green house gas emission, etc. Consequently, anaerobic digestion of animal manure is currently one of the most widely used treatment method that can help to salvage the above-mentioned adverse effects and in addition, produces biogas that can serve as an alternative/complementary source of energy. However, this method has to be monitored closely as it could be fraught with challenges during operation, caused by the inherent characteristics of the manure. In addition, to further reduce bacterial pathogens to a significant level, anaerobic digestion can be combined with other methods such as thermal, aerobic and physical methods. In this paper, we review the bacterial composition of cattle manure as well as methods engaged in the control of pathogenic microbes present in manure and recommendations that need to be respected and implemented in order to prevent microbial contamination of the environment, animals and humans. PMID:27571092

  20. Sequences of multiple bacterial genomes and a Chlamydia trachomatis genotype from direct sequencing of DNA derived from a vaginal swab diagnostic specimen.

    PubMed

    Andersson, P; Klein, M; Lilliebridge, R A; Giffard, P M

    2013-09-01

    Ultra-deep Illumina sequencing was performed on whole genome amplified DNA derived from a Chlamydia trachomatis-positive vaginal swab. Alignment of reads with reference genomes allowed robust SNP identification from the C. trachomatis chromosome and plasmid. This revealed that the C. trachomatis in the specimen was very closely related to the sequenced urogenital, serovar F, clade T1 isolate F-SW4. In addition, high genome-wide coverage was obtained for Prevotella melaninogenica, Gardnerella vaginalis, Clostridiales genomosp. BVAB3 and Mycoplasma hominis. This illustrates the potential of metagenome data to provide high resolution bacterial typing data from multiple taxa in a diagnostic specimen. ©2013 The Authors Clinical Microbiology and Infection ©2013 European Society of Clinical Microbiology and Infectious Diseases.

  1. Survival of the Fittest: How Bacterial Pathogens Utilize Bile To Enhance Infection

    PubMed Central

    Sistrunk, Jeticia R.; Nickerson, Kourtney P.; Chanin, Rachael B.; Rasko, David A.

    2016-01-01

    SUMMARY Bacterial pathogens have coevolved with humans in order to efficiently infect, replicate within, and be transmitted to new hosts to ensure survival and a continual infection cycle. For enteric pathogens, the ability to adapt to numerous host factors under the harsh conditions of the gastrointestinal tract is critical for establishing infection. One such host factor readily encountered by enteric bacteria is bile, an innately antimicrobial detergent-like compound essential for digestion and nutrient absorption. Not only have enteric pathogens evolved to resist the bactericidal conditions of bile, but these bacteria also utilize bile as a signal to enhance virulence regulation for efficient infection. This review provides a comprehensive and up-to-date analysis of bile-related research with enteric pathogens. From common responses to the unique expression of specific virulence factors, each pathogen has overcome significant challenges to establish infection in the gastrointestinal tract. Utilization of bile as a signal to modulate virulence factor expression has led to important insights for our understanding of virulence mechanisms for many pathogens. Further research on enteric pathogens exposed to this in vivo signal will benefit therapeutic and vaccine development and ultimately enhance our success at combating such elite pathogens. PMID:27464994

  2. [Association of human papillomavirus infection with other microbial pathogens in gynecology].

    PubMed

    Zheng, Mei-yun; Zhao, He-lan; Di, Jun-ping; Lin, Gan; Lin, Ying; Lin, Xi; Zheng, Min-qiao

    2010-06-01

    To Investigate correlation between screening assay of human papillomavirus (HPV) and microbial pathogens in gynecology. Cervical samples were collected to search for HPV, bacteria and yeast infections in gynecologic outpatients. HPV typing was carried out by PCR and sequencing on cervical brush specimens. Chlamydia trachomatis was identified by strand displacement amplification (SDA) and the other microorganisms were detected by conventional methods. All data were analyzed to investigate the correlation among them. In this cross-sectional study, among 857 enrolled outpatients, there were 266 cases with positive HPV DNA, and the rate of infection was 31.0% (266/857). HPV genotype showed that thirty-five different HPV types were identified, of which HPV16 was the most prevalent (14.5%, 38/262), followed by HPV58 (9.2%, 24/262), HPV53 (8.0%, 21/262) and HPV42 (6.1%, 16/262); while other genotypes were present in less than 5% of HPV positive women. According to the reclassification, the aggregated percentage (high-risk and probably high-risk) of detected HPV was 58.8% (154/262), 27.9% (73/262) for low-risk and 13.4% (35/262) for unknown-risk HPV types. Among HPV positive women, cervical brush specimens results showed that more than 60% cases with normal cytology, 3.8% (10/266) with high-grade squamous intraepithelial lesions (HSIL), 29.7% (79/266) with low-grade squamous intraepithelial lesions (LSIL) and 3.0% (8/266) with atypical squamous cells of undetermined significance (ASCUS), respectively. Statistical analyses revealed there was a significant association between the infected HPV and Chlamydia trachomatis or Ureaplasma urealyticum (> 10,000 CCU/ml; all P < 0.01), while no correlation was found between HPV infection and bacterial vaginosis, streptococcus agalactiae, candida, Trichomonas vaginalis or Ureaplasma urealyticum (≤ 10 000 CCU/ml; all P > 0.05). Among the cases with bacterial vaginosis, the positive rate of HPV infected was 42.6%. Chlamydia trachomatis

  3. Chronic Infection of the Prostate by Chlamydia muridarum Is Accompanied by Local Inflammation and Pelvic Pain Development.

    PubMed

    Sanchez, Leonardo R; Breser, Maria L; Godoy, Gloria J; Salazar, Florencia C; Mackern-Oberti, Juan P; Cuffini, Cecilia; Motrich, Ruben D; Rivero, Virginia E

    2017-04-01

    Chlamydia trachomatis urogenital infections are the leading cause of sexually transmitted bacterial infections. Although the prevalence of chlamydial infection is similar in men and women, current research is mainly focused on women, neglecting the study of male genital tract infections. We, therefore, investigated Chlamydia infection in the rodent male genital tract. Male NOD and C57BL/6 mice were inoculated in the meatus urethra with C. muridarum. Bacterial DNA, leukocyte infiltration of male genital tract tissues, pelvic pain, and Chlamydia-specific immune responses were analyzed at different time points. The inoculation of C. muridarum in the meatus urethra of male mice resulted in an ascending and widely disseminated infection of the male genital tract. C. muridarum remained longer and with the highest bacterial burdens in the prostate, thus showing a special tropism for this organ. Infection caused leukocyte infiltration, mainly composed by neutrophils, and also induced early pelvic pain development that rapidly dropped and resolved as the infection became chronic. Bacterial load and leukocyte infiltration was observed in all prostate lobes, although dorsolateral prostate was the most affected lobe. Interestingly, immune responses induced by both mice strains were characterized by the production of high levels of IL-10 during early stages of the infection, with highest and sustained levels observed in NOD mice, which showed to be less efficient in clearing the infection. Chronic infection of the prostate accompanied by local inflammation and pelvic pain development described herein have important implications for the improvement of the diagnosis and for the design of new efficient therapies. Prostate 77:517-529, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Is your lunch salad safe to eat? Occurrence of bacterial pathogens and potential for pathogen growth in pre-packed ready-to-eat mixed-ingredient salads.

    PubMed

    Söderqvist, Karin

    2017-01-01

    As part of a trend toward healthy convenience foods, ready-to-eat (RTE) mixed-ingredient salads have become popular products among consumers. A mixed-ingredient salad contains combinations of raw ( e.g . leafy vegetables and tomatoes) and processed ( e.g . chicken, salmon, ham, pasta and couscous) ingredients. Contamination of leafy vegetables can occur during any step in the production chain and, since there is no step that kills pathogens, a completely safe final product can never be guaranteed. Meat ingredients, for example poultry meat and ham, are generally heat-treated before preparation, but may be contaminated after this treatment, e.g . when diced or sliced. When several ingredients are mixed together, cross-contamination may occur. Preparation of mixed-ingredient salads requires human handling, which presents an additional risk of bacterial contamination. With high-protein ingredients, e.g . cooked meat, the mixed-ingredient salad represents an excellent substrate for bacterial growth. This article reviews current knowledge regarding human bacterial pathogen prevalence in mixed-ingredient salads and the potential for pathogen growth in this product during storage.

  5. Is your lunch salad safe to eat? Occurrence of bacterial pathogens and potential for pathogen growth in pre-packed ready-to-eat mixed-ingredient salads

    PubMed Central

    Söderqvist, Karin

    2017-01-01

    ABSTRACT As part of a trend toward healthy convenience foods, ready-to-eat (RTE) mixed-ingredient salads have become popular products among consumers. A mixed-ingredient salad contains combinations of raw (e.g. leafy vegetables and tomatoes) and processed (e.g. chicken, salmon, ham, pasta and couscous) ingredients. Contamination of leafy vegetables can occur during any step in the production chain and, since there is no step that kills pathogens, a completely safe final product can never be guaranteed. Meat ingredients, for example poultry meat and ham, are generally heat-treated before preparation, but may be contaminated after this treatment, e.g. when diced or sliced. When several ingredients are mixed together, cross-contamination may occur. Preparation of mixed-ingredient salads requires human handling, which presents an additional risk of bacterial contamination. With high-protein ingredients, e.g. cooked meat, the mixed-ingredient salad represents an excellent substrate for bacterial growth. This article reviews current knowledge regarding human bacterial pathogen prevalence in mixed-ingredient salads and the potential for pathogen growth in this product during storage. PMID:29230273

  6. Detection of bacterial pathogens including potential new species in human head lice from Mali

    PubMed Central

    Amanzougaghene, Nadia; Fenollar, Florence; Sangaré, Abdoul Karim; Sissoko, Mahamadou S.; Doumbo, Ogobara K.; Raoult, Didier

    2017-01-01

    In poor African countries, where no medical and biological facilities are available, the identification of potential emerging pathogens of concern at an early stage is challenging. Head lice, Pediculus humanus capitis, have a short life, feed only on human blood and do not transmit pathogens to their progeny. They are, therefore, a perfect tool for the xenodiagnosis of current or recent human infection. This study assessed the occurrence of bacterial pathogens from head lice collected in two rural villages from Mali, where a high frequency of head lice infestation had previously been reported, using molecular methods. Results show that all 600 head lice, collected from 117 individuals, belonged to clade E, specific to West Africa. Bartonella quintana, the causative agent of trench fever, was identified in three of the 600 (0.5%) head lice studied. Our study also shows, for the first time, the presence of the DNA of two pathogenic bacteria, namely Coxiella burnetii (5.1%) and Rickettsia aeschlimannii (0.6%), detected in human head lice, as well as the DNA of potential new species from the Anaplasma and Ehrlichia genera of unknown pathogenicity. The finding of several Malian head lice infected with B. quintana, C. burnetii, R. aeschlimannii, Anaplasma and Ehrlichia is alarming and highlights the need for active survey programs to define the public health consequences of the detection of these emerging bacterial pathogens in human head lice. PMID:28931077

  7. Bacterial and viral pathogen spectra of acute respiratory infections in under-5 children in hospital settings in Dhaka city

    PubMed Central

    Bhuyan, Golam Sarower; Hossain, Mohammad Amir; Sarker, Suprovath Kumar; Rahat, Asifuzzaman; Islam, Md Tarikul; Haque, Tanjina Noor; Begum, Noorjahan; Qadri, Syeda Kashfi; Muraduzzaman, A. K. M.; Islam, Nafisa Nawal; Islam, Mohammad Sazzadul; Sultana, Nusrat; Jony, Manjur Hossain Khan; Khanam, Farhana; Mowla, Golam; Matin, Abdul; Begum, Firoza; Shirin, Tahmina; Ahmed, Dilruba; Saha, Narayan; Qadri, Firdausi

    2017-01-01

    The study aimed to examine for the first time the spectra of viral and bacterial pathogens along with the antibiotic susceptibility of the isolated bacteria in under-5 children with acute respiratory infections (ARIs) in hospital settings of Dhaka, Bangladesh. Nasal swabs were collected from 200 under-five children hospitalized with clinical signs of ARIs. Nasal swabs from 30 asymptomatic children were also collected. Screening of viral pathogens targeted ten respiratory viruses using RT-qPCR. Bacterial pathogens were identified by bacteriological culture methods and antimicrobial susceptibility of the isolates was determined following CLSI guidelines. About 82.5% (n = 165) of specimens were positive for pathogens. Of 165 infected cases, 3% (n = 6) had only single bacterial pathogens, whereas 43.5% (n = 87) cases had only single viral pathogens. The remaining 36% (n = 72) cases had coinfections. In symptomatic cases, human rhinovirus was detected as the predominant virus (31.5%), followed by RSV (31%), HMPV (13%), HBoV (11%), HPIV-3 (10.5%), and adenovirus (7%). Streptococcus pneumoniae was the most frequently isolated bacterial pathogen (9%), whereas Klebsiella pneumaniae, Streptococcus spp., Enterobacter agglomerans, and Haemophilus influenzae were 5.5%, 5%, 2%, and 1.5%, respectively. Of 15 multidrug-resistant bacteria, a Klebsiella pneumoniae isolate and an Enterobacter agglomerans isolate exhibited resistance against more than 10 different antibiotics. Both ARI incidence and predominant pathogen detection rates were higher during post-monsoon and winter, peaking in September. Pathogen detection rates and coinfection incidence in less than 1-year group were significantly higher (P = 0.0034 and 0.049, respectively) than in 1–5 years age group. Pathogen detection rate (43%) in asymptomatic cases was significantly lower compared to symptomatic group (P<0.0001). Human rhinovirus, HPIV-3, adenovirus, Streptococcus pneumonia, and Klebsiella pneumaniae had

  8. Analysis of apple (Malus) responses to bacterial pathogens using an oligo microarray

    USDA-ARS?s Scientific Manuscript database

    Fire blight is a devastating disease of apple (Malus x domestica) caused by the bacterial pathogen Erwinia amylovora (Ea). When infiltrated into host leaves, Ea induces reactions similar to a hypersensitive response (HR). Type III (T3SS) associated effectors, especially DspA/E, are suspected to ha...

  9. Pathogenic Leptospira species express surface-exposed proteins belonging to the bacterial immunoglobulin superfamily

    PubMed Central

    Matsunaga, James; Barocchi, Michele A.; Croda, Julio; Young, Tracy A.; Sanchez, Yolanda; Siqueira, Isadora; Bolin, Carole A.; Reis, Mitermayer G.; Riley, Lee W.; Haake, David A.; Ko, Albert I.

    2005-01-01

    Summary Proteins with bacterial immunoglobulin-like (Big) domains, such as the Yersinia pseudotuberculosis invasin and Escherichia coli intimin, are surface-expressed proteins that mediate host mammalian cell invasion or attachment. Here, we report the identification and characterization of a new family of Big domain proteins, referred to as Lig (leptospiral Ig-like) proteins, in pathogenic Leptospira. Screening of L. interrogans and L. kirschneri expression libraries with sera from leptospirosis patients identified 13 lambda phage clones that encode tandem repeats of the 90 amino acid Big domain. Two lig genes, designated ligA and ligB, and one pseudo-gene, ligC, were identified. The ligA and ligB genes encode amino-terminal lipoprotein signal peptides followed by 10 or 11 Big domain repeats and, in the case of ligB, a unique carboxy-terminal non-repeat domain. The organization of ligC is similar to that of ligB but contains mutations that disrupt the reading frame. The lig sequences are present in pathogenic but not saprophytic Leptospira species. LigA and LigB are expressed by a variety of virulent leptospiral strains. Loss of Lig protein and RNA transcript expression is correlated with the observed loss of virulence during culture attenuation of pathogenic strains. High-pressure freeze substitution followed by immunocytochemical electron microscopy confirmed that the Lig proteins were localized to the bacterial surface. Immunoblot studies with patient sera found that the Lig proteins are a major antigen recognized during the acute host infection. These observations demonstrate that the Lig proteins are a newly identified surface protein of pathogenic Leptospira, which by analogy to other bacterial immunoglobulin superfamily virulence factors, may play a role in host cell attachment and invasion during leptospiral pathogenesis. PMID:12890019

  10. Pathogenic Leptospira species express surface-exposed proteins belonging to the bacterial immunoglobulin superfamily.

    PubMed

    Matsunaga, James; Barocchi, Michele A; Croda, Julio; Young, Tracy A; Sanchez, Yolanda; Siqueira, Isadora; Bolin, Carole A; Reis, Mitermayer G; Riley, Lee W; Haake, David A; Ko, Albert I

    2003-08-01

    Proteins with bacterial immunoglobulin-like (Big) domains, such as the Yersinia pseudotuberculosis invasin and Escherichia coli intimin, are surface-expressed proteins that mediate host mammalian cell invasion or attachment. Here, we report the identification and characterization of a new family of Big domain proteins, referred to as Lig (leptospiral Ig-like) proteins, in pathogenic Leptospira. Screening of L. interrogans and L. kirschneri expression libraries with sera from leptospirosis patients identified 13 lambda phage clones that encode tandem repeats of the 90 amino acid Big domain. Two lig genes, designated ligA and ligB, and one pseudogene, ligC, were identified. The ligA and ligB genes encode amino-terminal lipoprotein signal peptides followed by 10 or 11 Big domain repeats and, in the case of ligB, a unique carboxy-terminal non-repeat domain. The organization of ligC is similar to that of ligB but contains mutations that disrupt the reading frame. The lig sequences are present in pathogenic but not saprophytic Leptospira species. LigA and LigB are expressed by a variety of virulent leptospiral strains. Loss of Lig protein and RNA transcript expression is correlated with the observed loss of virulence during culture attenuation of pathogenic strains. High-pressure freeze substitution followed by immunocytochemical electron microscopy confirmed that the Lig proteins were localized to the bacterial surface. Immunoblot studies with patient sera found that the Lig proteins are a major antigen recognized during the acute host infection. These observations demonstrate that the Lig proteins are a newly identified surface protein of pathogenic Leptospira, which by analogy to other bacterial immunoglobulin superfamily virulence factors, may play a role in host cell attachment and invasion during leptospiral pathogenesis.

  11. Antimicrobial Resistance in Bacterial Poultry Pathogens: A Review

    PubMed Central

    Nhung, Nguyen Thi; Chansiripornchai, Niwat; Carrique-Mas, Juan J.

    2017-01-01

    monitor the evolution of AMR in poultry bacterial pathogens. PMID:28848739

  12. Phosphoproteomic analysis of the Chlamydia caviae elementary body and reticulate body forms

    PubMed Central

    Adams, Nancy E.; Maurelli, Anthony T.

    2015-01-01

    Chlamydia are Gram-negative, obligate intracellular bacteria responsible for significant diseases in humans and economically important domestic animals. These pathogens undergo a unique biphasic developmental cycle transitioning between the environmentally stable elementary body (EB) and the replicative intracellular reticulate body (RB), a conversion that appears to require extensive regulation of protein synthesis and function. However, Chlamydia possess a limited number of canonical mechanisms of transcriptional regulation. Ser/Thr/Tyr phosphorylation of proteins in bacteria has been increasingly recognized as an important mechanism of post-translational control of protein function. We utilized 2D gel electrophoresis coupled with phosphoprotein staining and MALDI-TOF/TOF analysis to map the phosphoproteome of the EB and RB forms of Chlamydia caviae. Forty-two non-redundant phosphorylated proteins were identified (some proteins were present in multiple locations within the gels). Thirty-four phosphorylated proteins were identified in EBs, including proteins found in central metabolism and protein synthesis, Chlamydia-specific hypothetical proteins and virulence-related proteins. Eleven phosphorylated proteins were identified in RBs, mostly involved in protein synthesis and folding and a single virulence-related protein. Only three phosphoproteins were found in both EB and RB phosphoproteomes. Collectively, 41 of 42 C. caviae phosphoproteins were present across Chlamydia species, consistent with the existence of a conserved chlamydial phosphoproteome. The abundance of stage-specific phosphoproteins suggests that protein phosphorylation may play a role in regulating the function of developmental-stage-specific proteins and/or may function in concert with other factors in directing EB–RB transitions. PMID:25998263

  13. Phosphoproteomic analysis of the Chlamydia caviae elementary body and reticulate body forms.

    PubMed

    Fisher, Derek J; Adams, Nancy E; Maurelli, Anthony T

    2015-08-01

    Chlamydia are Gram-negative, obligate intracellular bacteria responsible for significant diseases in humans and economically important domestic animals. These pathogens undergo a unique biphasic developmental cycle transitioning between the environmentally stable elementary body (EB) and the replicative intracellular reticulate body (RB), a conversion that appears to require extensive regulation of protein synthesis and function. However, Chlamydia possess a limited number of canonical mechanisms of transcriptional regulation. Ser/Thr/Tyr phosphorylation of proteins in bacteria has been increasingly recognized as an important mechanism of post-translational control of protein function. We utilized 2D gel electrophoresis coupled with phosphoprotein staining and MALDI-TOF/TOF analysis to map the phosphoproteome of the EB and RB forms of Chlamydia caviae. Forty-two non-redundant phosphorylated proteins were identified (some proteins were present in multiple locations within the gels). Thirty-four phosphorylated proteins were identified in EBs, including proteins found in central metabolism and protein synthesis, Chlamydia-specific hypothetical proteins and virulence-related proteins. Eleven phosphorylated proteins were identified in RBs, mostly involved in protein synthesis and folding and a single virulence-related protein. Only three phosphoproteins were found in both EB and RB phosphoproteomes. Collectively, 41 of 42 C. caviae phosphoproteins were present across Chlamydia species, consistent with the existence of a conserved chlamydial phosphoproteome. The abundance of stage-specific phosphoproteins suggests that protein phosphorylation may play a role in regulating the function of developmental-stage-specific proteins and/or may function in concert with other factors in directing EB-RB transitions.

  14. Detection of Chlamydiaceae and Chlamydia-like organisms on the ocular surface of children and adults from a trachoma-endemic region.

    PubMed

    Ghasemian, Ehsan; Inic-Kanada, Aleksandra; Collingro, Astrid; Tagini, Florian; Stein, Elisabeth; Alchalabi, Hadeel; Schuerer, Nadine; Keše, Darja; Babiker, Balgesa Elkheir; Borel, Nicole; Greub, Gilbert; Barisani-Asenbauer, Talin

    2018-05-09

    Trachoma, the leading infectious cause of blindness, is caused by Chlamydia trachomatis (Ct), a bacterium of the phylum Chlamydiae. Recent investigations revealed the existence of additional families within the phylum Chlamydiae, also termed Chlamydia-like organisms (CLOs). In this study, the frequency of Ct and CLOs was examined in the eyes of healthy Sudanese (control) participants and those with trachoma (case). We tested 96 children (54 cases and 42 controls) and 93 adults (51 cases and 42 controls) using broad-range Chlamydiae and Ct-specific (omcB) real-time PCR. Samples positive by broad-range Chlamydiae testing were subjected to DNA sequencing. Overall Chlamydiae prevalence was 36%. Sequences corresponded to unclassified and classified Chlamydiae. Ct infection rate was significantly higher in children (31.5%) compared to adults (0%) with trachoma (p < 0.0001). In general, 21.5% of adults and 4.2% of children tested positive for CLOs (p = 0.0003). Our findings are consistent with previous investigations describing the central role of Ct in trachoma among children. This is the first study examining human eyes for the presence of CLOs. We found an age-dependent distribution of CLO DNA in human eyes with significantly higher positivity in adults. Further studies are needed to understand the impact of CLOs in trachoma pathogenicity and/or protection.

  15. Analysis of bacterial metagenomes from the Southwestern Gulf of Mexico for pathogens detection.

    PubMed

    Escobedo-Hinojosa, Wendy; Pardo-López, Liliana

    2017-07-31

    Little is known about the diversity of bacteria in the Southwestern Gulf of Mexico. The aim of the study illustrated in this perspective was to search for the presence of bacterial pathogens in this ecosystem, using metagenomic data recently generated by the Mexican research group known as the Gulf of Mexico Research Consortium. Several genera of bacteria annotated as pathogens were detected in water and sediment marine samples. As expected, native and ubiquitous pathogenic bacteria genera such as Burkolderia, Halomonas, Pseudomonas, Shewanella and Vibrio were highly represented. Surprisingly, non-native genera of public health concern were also detected, including Borrelia, Ehrlichia, Leptospira, Mycobacterium, Mycoplasma, Salmonella, Staphylococcus, Streptococcus and Treponema. While there are no previous metagenomics studies of this environment, the potential influences of natural, anthropogenic and ecological factors on the diversity of putative pathogenic bacteria found in it are reviewed. The taxonomic annotation herein reported provides a starting point for an improved understanding of bacterial biodiversity in the Southwestern Gulf of Mexico. It also represents a useful tool in public health as it may help identify infectious diseases associated with exposure to marine water and ingestion of fish or shellfish, and thus may be useful in predicting and preventing waterborne disease outbreaks. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Vector-Borne Bacterial Plant Pathogens: Interactions with Hemipteran Insects and Plants

    PubMed Central

    Perilla-Henao, Laura M.; Casteel, Clare L.

    2016-01-01

    Hemipteran insects are devastating pests of crops due to their wide host range, rapid reproduction, and ability to transmit numerous plant-infecting pathogens as vectors. While the field of plant–virus–vector interactions has flourished in recent years, plant–bacteria–vector interactions remain poorly understood. Leafhoppers and psyllids are by far the most important vectors of bacterial pathogens, yet there are still significant gaps in our understanding of their feeding behavior, salivary secretions, and plant responses as compared to important viral vectors, such as whiteflies and aphids. Even with an incomplete understanding of plant–bacteria–vector interactions, some common themes have emerged: (1) all known vector-borne bacteria share the ability to propagate in the plant and insect host; (2) particular hemipteran families appear to be incapable of transmitting vector-borne bacteria; (3) all known vector-borne bacteria have highly reduced genomes and coding capacity, resulting in host-dependence; and (4) vector-borne bacteria encode proteins that are essential for colonization of specific hosts, though only a few types of proteins have been investigated. Here, we review the current knowledge on important vector-borne bacterial pathogens, including Xylella fastidiosa, Spiroplasma spp., Liberibacter spp., and ‘Candidatus Phytoplasma spp.’. We then highlight recent approaches used in the study of vector-borne bacteria. Finally, we discuss the application of this knowledge for control and future directions that will need to be addressed in the field of vector–plant–bacteria interactions. PMID:27555855

  17. An overview of bacterial nomenclature with special reference to plant pathogens.

    PubMed

    Young, J M

    2008-12-01

    The nomenclature of plant pathogenic bacteria is regulated by the International Code of Nomenclature of Prokaryotes and the International Standards for Naming Pathovars of Phytopathogenic Bacteria. The object of these regulations is to ensure that nomenclature is unambiguous, with correct designations in genera and species and, for many plant pathogens, in infrasubspecies as pathovars. Failure to apply these regulations or to apply them carelessly introduces confusion and misunderstanding over the intended identity of particular pathogens. In this review, bacterial nomenclature is introduced in the context of general communication, with a brief history of the origins of modern bacterial nomenclature. A critical overview of the Code pays most attention to those Rules that are relevant to naming new taxa and new combinations, with comments on common misunderstandings. There follows an account of the application of infrasubspecies, specifically of pathovars as regulated by the Standards for Naming Pathovars. Both the Code and Standards, written almost 30 years ago in response to the exigencies of the time, could be revised to improve clarity. It is not possible for either the Code or the Standards to give formal guidance to the process of translation of pathovars, governed by the Standards, to higher taxonomic ranks, governed by the Code. If the introduction of ambiguity of names is to be avoided in making such translations, then it is the responsibility of individual bacteriologists to consider carefully the nomenclatural implications and outcomes of their proposals.

  18. Clueing in on Chlamydia.

    ERIC Educational Resources Information Center

    Gibbons, Wendy

    1991-01-01

    Chlamydia's role in female infertility is discussed. The relationship of this organism to other diseases such as leprosy and tuberculosis is explained. Conditions caused by Chlamydia such as Pelvic Inflammatory Disease (PID) are described. (KR)

  19. Modulation of Intestinal Paracellular Transport by Bacterial Pathogens.

    PubMed

    Roxas, Jennifer Lising; Viswanathan, V K

    2018-03-25

    The passive and regulated movement of ions, solutes, and water via spaces between cells of the epithelial monolayer plays a critical role in the normal intestinal functioning. This paracellular pathway displays a high level of structural and functional specialization, with the membrane-spanning complexes of the tight junctions, adherens junctions, and desmosomes ensuring its integrity. Tight junction proteins, like occludin, tricellulin, and the claudin family isoforms, play prominent roles as barriers to unrestricted paracellular transport. The past decade has witnessed major advances in our understanding of the architecture and function of epithelial tight junctions. While it has been long appreciated that microbes, notably bacterial and viral pathogens, target and disrupt junctional complexes and alter paracellular permeability, the precise mechanisms remain to be defined. Notably, renewed efforts will be required to interpret the available data on pathogen-mediated barrier disruption in the context of the most recent findings on tight junction structure and function. While much of the focus has been on pathogen-induced dysregulation of junctional complexes, commensal microbiota and their products may influence paracellular permeability and contribute to the normal physiology of the gut. Finally, microbes and their products have become important tools in exploring host systems, including the junctional properties of epithelial cells. © 2018 American Physiological Society. Compr Physiol 8:823-842, 2018. Copyright © 2018 American Physiological Society. All rights reserved.

  20. Thienopyrimidine-type compounds protect Arabidopsis plants against the hemibiotrophic fungal pathogen Colletotrichum higginsianum and bacterial pathogen Pseudomonas syringae pv. maculicola.

    PubMed

    Narusaka, Mari; Narusaka, Yoshihiro

    2017-03-04

    Plant activators activate systemic acquired resistance-like defense responses or induced systemic resistance, and thus protect plants from pathogens. We screened a chemical library composed of structurally diverse small molecules. We isolated six plant immune-inducing thienopyrimidine-type compounds and their analogous compounds. It was observed that the core structure of thienopyrimidine plays a role in induced resistance in plants. Furthermore, we highlight the protective effect of thienopyrimidine-type compounds against both hemibiotrophic fungal pathogen, Colletotrichum higginsianum, and bacterial pathogen, Pseudomonas syringae pv. maculicola, in Arabidopsis thaliana. We suggest that thienopyrimidine-type compounds could be potential lead compounds as novel plant activators, and can be useful and effective agrochemicals against various plant diseases.

  1. Detection of Chlamydia trachomatis in rectal specimens in women and its association with anal intercourse: a systematic review and meta-analysis.

    PubMed

    Chandra, Nastassya L; Broad, Claire; Folkard, Kate; Town, Katy; Harding-Esch, Emma M; Woodhall, Sarah C; Saunders, John M; Sadiq, S Tariq; Dunbar, J Kevin

    2018-02-03

    Chlamydia trachomatis is the most commonly diagnosed bacterial STI. Lack of prevalence and risk factor data for rectal chlamydia in women has testing and treatment implications, as azithromycin (a first-line urogenital chlamydia treatment) may be less effective for rectal chlamydia. We conducted a systematic review of studies on women in high-income countries to estimate rectal chlamydia prevalence, concurrency with urogenital chlamydia and associations with reported anal intercourse (AI). Systematic review and four meta-analyses conducted using random-effects modelling. Medline, Embase, Cumulative Index to Nursing and Allied Health Literature, PsycINFO and the Cochrane Database were searched for articles published between January 1997 and October 2017. Studies reporting rectal chlamydia positivity in heterosexual women aged ≥15 years old in high-income countries were included. Studies must have used nucleic acid amplification tests and reported both the total number of women tested for rectal chlamydia and the number of rectal chlamydia infections detected. Conference abstracts, case reports and studies with self-reported diagnoses were excluded. Data extracted included setting, rectal and urogenital chlamydia testing results, AI history, and demographics. Fourteen eligible studies were identified, all among diverse populations attending sexual health services. Among routine clinic-attending women, summary rectal chlamydia positivity was 6.0% (95% CI 3.2% to 8.9%); summary concurrent rectal chlamydia infection was 68.1% in those who tested positive for urogenital chlamydia (95% CI 56.6% to 79.6%); and of those who tested negative for urogenital chlamydia, 2.2% (95% CI 0% to 5.2%) were positive for rectal chlamydia. Reported AI was not associated with rectal chlamydia (summary risk ratio 0.90; 95% CI 0.75 to 1.10). High levels of rectal chlamydia infection have been shown in women with urogenital chlamydia infection. The absence of association between

  2. Genital Chlamydia trachomatis: Understanding the Roles of Innate and Adaptive Immunity in Vaccine Research

    PubMed Central

    Vasilevsky, Sam; Greub, Gilbert; Nardelli-Haefliger, Denise

    2014-01-01

    SUMMARY Chlamydia trachomatis is the leading cause of bacterial sexually transmitted disease worldwide, and despite significant advances in chlamydial research, a prophylactic vaccine has yet to be developed. This Gram-negative obligate intracellular bacterium, which often causes asymptomatic infection, may cause pelvic inflammatory disease (PID), ectopic pregnancies, scarring of the fallopian tubes, miscarriage, and infertility when left untreated. In the genital tract, Chlamydia trachomatis infects primarily epithelial cells and requires Th1 immunity for optimal clearance. This review first focuses on the immune cells important in a chlamydial infection. Second, we summarize the research and challenges associated with developing a chlamydial vaccine that elicits a protective Th1-mediated immune response without inducing adverse immunopathologies. PMID:24696438

  3. Antibacterial activity of plant extracts on foodborne bacterial pathogens and food spoilage bacteria

    USDA-ARS?s Scientific Manuscript database

    Bacterial foodborne diseases are caused by consumption of foods contaminated with bacteria and/or their toxins. In this study, we evaluated antibacterial properties of twelve different extracts including turmeric, lemon and different kinds of teas against four major pathogenic foodborne bacteria inc...

  4. Microbiological food safety issues in Brazil: bacterial pathogens.

    PubMed

    Gomes, Bruna Carrer; Franco, Bernadette Dora Gombossy de Melo; De Martinis, Elaine Cristina Pereira

    2013-03-01

    The globalization of food supply impacts patterns of foodborne disease outbreaks worldwide, and consumers are having increased concern about microbiological food safety. In this sense, the assessment of epidemiological data of foodborne diseases in different countries has not only local impact, but it can also be of general interest, especially in the case of major global producers and exporters of several agricultural food products, such as Brazil. In this review, the most common agents of foodborne illnesses registered in Brazil will be presented, compiled mainly from official databases made available to the public. In addition, some representative examples of studies on foodborne bacterial pathogens commonly found in Brazilian foods are provided.

  5. Diverse mechanisms of metaeffector activity in an intracellular bacterial pathogen, Legionella pneumophila.

    PubMed

    Urbanus, Malene L; Quaile, Andrew T; Stogios, Peter J; Morar, Mariya; Rao, Chitong; Di Leo, Rosa; Evdokimova, Elena; Lam, Mandy; Oatway, Christina; Cuff, Marianne E; Osipiuk, Jerzy; Michalska, Karolina; Nocek, Boguslaw P; Taipale, Mikko; Savchenko, Alexei; Ensminger, Alexander W

    2016-12-16

    Pathogens deliver complex arsenals of translocated effector proteins to host cells during infection, but the extent to which these proteins are regulated once inside the eukaryotic cell remains poorly defined. Among all bacterial pathogens, Legionella pneumophila maintains the largest known set of translocated substrates, delivering over 300 proteins to the host cell via its Type IVB, Icm/Dot translocation system. Backed by a few notable examples of effector-effector regulation in L. pneumophila, we sought to define the extent of this phenomenon through a systematic analysis of effector-effector functional interaction. We used Saccharomyces cerevisiae, an established proxy for the eukaryotic host, to query > 108,000 pairwise genetic interactions between two compatible expression libraries of ~330 L. pneumophila-translocated substrates. While capturing all known examples of effector-effector suppression, we identify fourteen novel translocated substrates that suppress the activity of other bacterial effectors and one pair with synergistic activities. In at least nine instances, this regulation is direct-a hallmark of an emerging class of proteins called metaeffectors, or "effectors of effectors". Through detailed structural and functional analysis, we show that metaeffector activity derives from a diverse range of mechanisms, shapes evolution, and can be used to reveal important aspects of each cognate effector's function. Metaeffectors, along with other, indirect, forms of effector-effector modulation, may be a common feature of many intracellular pathogens-with unrealized potential to inform our understanding of how pathogens regulate their interactions with the host cell. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  6. PathogenFinder--distinguishing friend from foe using bacterial whole genome sequence data.

    PubMed

    Cosentino, Salvatore; Voldby Larsen, Mette; Møller Aarestrup, Frank; Lund, Ole

    2013-01-01

    Although the majority of bacteria are harmless or even beneficial to their host, others are highly virulent and can cause serious diseases, and even death. Due to the constantly decreasing cost of high-throughput sequencing there are now many completely sequenced genomes available from both human pathogenic and innocuous strains. The data can be used to identify gene families that correlate with pathogenicity and to develop tools to predict the pathogenicity of newly sequenced strains, investigations that previously were mainly done by means of more expensive and time consuming experimental approaches. We describe PathogenFinder (http://cge.cbs.dtu.dk/services/PathogenFinder/), a web-server for the prediction of bacterial pathogenicity by analysing the input proteome, genome, or raw reads provided by the user. The method relies on groups of proteins, created without regard to their annotated function or known involvement in pathogenicity. The method has been built to work with all taxonomic groups of bacteria and using the entire training-set, achieved an accuracy of 88.6% on an independent test-set, by correctly classifying 398 out of 449 completely sequenced bacteria. The approach here proposed is not biased on sets of genes known to be associated with pathogenicity, thus the approach could aid the discovery of novel pathogenicity factors. Furthermore the pathogenicity prediction web-server could be used to isolate the potential pathogenic features of both known and unknown strains.

  7. Effects of Lactobacillus rhamnosus and Lactobacillus acidophilus on bacterial vaginal pathogens.

    PubMed

    Bertuccini, Lucia; Russo, Rosario; Iosi, Francesca; Superti, Fabiana

    2017-06-01

    The human vagina is colonized by a variety of microbes. Lactobacilli are the most common, mainly in healthy women; however, the microbiota composition can change rapidly, leading to infection or to a state in which potential pathogenic microorganisms co-exist with other commensals. In premenopausal women, urogenital infections, such as bacterial vaginosis and aerobic vaginitis, remain an important health problem. Treatment of these infections involves different kind of antibiotics; however, the recurrence rate remains high, and it must be also underlined that antibiotics are unable to spontaneously restore normal flora characterized by an abundant community of Lactobacilli. The main limitation is the inability to offer a long-term defensive barrier, thus facilitating relapses and recurrences. We report here the antimicrobial activities of two commercially existing Lactobacillus strains, Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus GLA-14 strains and their combination (Respecta® probiotic blend) against four different pathogens responsible for both bacterial vaginosis ( Gardenerella vaginalis and Atopobium vaginae) and aerobic vaginitis ( Staphylococcus aureus and Escherichia coli) by co-culturing assay. The probiotic combination, even if resulting in a different microbicidal activity against the different strains tested, demonstrated the efficacy of combined Lactobacillus strain treatment.

  8. Effects of Lactobacillus rhamnosus and Lactobacillus acidophilus on bacterial vaginal pathogens

    PubMed Central

    Bertuccini, Lucia; Russo, Rosario; Iosi, Francesca; Superti, Fabiana

    2017-01-01

    The human vagina is colonized by a variety of microbes. Lactobacilli are the most common, mainly in healthy women; however, the microbiota composition can change rapidly, leading to infection or to a state in which potential pathogenic microorganisms co-exist with other commensals. In premenopausal women, urogenital infections, such as bacterial vaginosis and aerobic vaginitis, remain an important health problem. Treatment of these infections involves different kind of antibiotics; however, the recurrence rate remains high, and it must be also underlined that antibiotics are unable to spontaneously restore normal flora characterized by an abundant community of Lactobacilli. The main limitation is the inability to offer a long-term defensive barrier, thus facilitating relapses and recurrences. We report here the antimicrobial activities of two commercially existing Lactobacillus strains, Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus GLA-14 strains and their combination (Respecta® probiotic blend) against four different pathogens responsible for both bacterial vaginosis (Gardenerella vaginalis and Atopobium vaginae) and aerobic vaginitis (Staphylococcus aureus and Escherichia coli) by co-culturing assay. The probiotic combination, even if resulting in a different microbicidal activity against the different strains tested, demonstrated the efficacy of combined Lactobacillus strain treatment. PMID:28580872

  9. Chlamydia gallinacea: a widespread emerging Chlamydia agent with zoonotic potential in backyard poultry.

    PubMed

    Li, L; Luther, M; Macklin, K; Pugh, D; Li, J; Zhang, J; Roberts, J; Kaltenboeck, B; Wang, C

    2017-10-01

    Chlamydia gallinacea, a new chlamydial agent, has been reported in four European countries as well as Argentina and China. Experimentally infected chickens with C. gallinacea in previous study showed no clinical signs but had significantly reduced gains in body weight (6·5-11·4%). Slaughterhouse workers exposed to infected chickens have developed atypical pneumonia, indicating C. gallinacea is likely a zoonotic agent. In this study, FRET-PCR confirmed that C. gallinacea was present in 12·4% (66/531) of oral-pharyngeal samples from Alabama backyard poultry. Phylogenetic comparisons based on ompA variable domain showed that 16 sequenced samples represented 14 biotypes. We report for the first time the presence of C. gallinacea in North America, and this warrants further research on the organism's pathogenicity, hosts, transmission, and zoonotic potential.

  10. Occurrence and antibacterial susceptibility pattern of bacterial pathogens isolated from diarrheal patients in Pakistan.

    PubMed

    Rasool, Muhammad H; Siddique, Abu B; Saqalein, Muhammad; Asghar, Muhammad J; Zahoor, Muhammad A; Aslam, Bilal; Shafiq, Humerah B; Nisar, Muhammad A

    2016-03-01

    To determine the occurrence of bacterial pathogens responsible for diarrhea and to engender information regarding the effectiveness of commonly used antibiotic against diarrhea. This cross-sectional study was conducted between April and July 2014. Samples were collected from the Divisional Headquarter and Allied Hospital, Faisalabad, Pakistan. The differential and selective media were used to isolate bacterial pathogens, which were identified through cultural characteristics, microscopy, and biochemical tests. Disc diffusion assay was carried out using Muller Hinton agar medium, and minimum inhibitory concentration was determined using broth dilution method against isolated pathogens. One hundred and forty-one (100%) samples were positive for some bacteria. Frequency of occurrence was Bacillus cereus (B. cereus) (66%), Escherichia coli (E.coli) (48.5%), Salmonella typhi (S. Typhi) (27.7%), Pseudomonas aeruginosa (P. aeruginosa) (8.5%), and Staphylococcus aureus (S. aureus) (4.3%). Single pathogen was detected in 20 (14.2%) samples whereas combinations were found in 121 (85.8%) samples. Bacillus cereus and E.coli were the most frequently detected pathogens followed by the S. Typhi, P. aeruginosa, and Staph. aureus. The percentage occurrence of isolated pathogens was 31% in B. cereus, 31% in E. coli, 18% in S. Typhi, 5% in P. aeruginosa, and 3% in Staph. aureus. Pseudomonas aeruginosa showed resistance against Amoxicillin and Cefotaxime, whereas S. aureus was found resistant against Cefotaxime. Statistical analysis using one way Analysis of Variance revealed that Ofloxacin and Gentamicin had significant (p less than 0.05) differences against all isolates as compared with other antibiotics used in this study.

  11. Development of a single-tube loop-mediated isothermal amplification assay for detection of four pathogens of bacterial meningitis.

    PubMed

    Huy, Nguyen Tien; Hang, Le Thi Thuy; Boamah, Daniel; Lan, Nguyen Thi Phuong; Van Thanh, Phan; Watanabe, Kiwao; Huong, Vu Thi Thu; Kikuchi, Mihoko; Ariyoshi, Koya; Morita, Kouichi; Hirayama, Kenji

    2012-12-01

    Several loop-mediated isothermal amplification (LAMP) assays have been developed to detect common causative pathogens of bacterial meningitis (BM). However, no LAMP assay is reported to detect Streptococcus agalactiae and Streptococcus suis, which are also among common pathogens of BM. Moreover, it is laborious and expensive by performing multiple reactions for each sample to detect bacterial pathogen. Thus, we aimed to design and develop a single-tube LAMP assay capable of detecting multiple bacterial species, based on the nucleotide sequences of the 16S rRNA genes of the bacteria. The nucleotide sequences of the 16S rRNA genes of main pathogens involved in BM were aligned to identify conserved regions, which were further used to design broad range specific LAMP assay primers. We successfully designed a set of broad range specific LAMP assay primers for simultaneous detection of four species including Staphylococcus aureus, Streptococcus pneumoniae, S. suis and S. agalactiae. The broad range LAMP assay was highly specific without cross-reactivity with other bacteria including Haemophilus influenzae, Neisseria meningitidis and Escherichia coli. The sensitivity of our LAMP assay was 100-1000 times higher compared with the conventional PCR assay. The bacterial species could be identified after digestion of the LAMP products with restriction endonuclease DdeI and HaeIII. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  12. Synoviocyte-packaged Chlamydia trachomatis induces a chronic aseptic arthritis.

    PubMed Central

    Inman, R D; Chiu, B

    1998-01-01

    The basic mechanisms underlying reactive arthritis and specifically the joint injury that follows intra-articular Chlamydia trachomatis infection have not been defined. The present study addresses this question through the development of an experimental model. Stable cell lines were generated from synoviocytes harvested from the knee joints of Lewis rats. The synoviocytes were cocultivated with C. trachomatis to allow invasion by the microbe and were then transferred by intra-articular injection into the knee joints of Lewis rats. The ensuing arthritis could be subdivided into an early phase (Chlamydia to liver and spleen; and viable Chlamydia in the joints. The late phase was marked by mixed mononuclear lymphocyte infiltration in the joint; dysplastic cartilage injury and repair; absence of viable organisms; and development of a distinctive humoral response. Western blot analysis comparing reactive arthritis patients to the experimental model indicates that candidate arthritogenic chlamydial antigens are comparable between the two. This model demonstrates that an intense synovitis can be induced by this intracellular pathogen, and that chronic inflammation can persist well beyond the culture-positive phase. Furthermore, these data show that the synoviocyte is a suitable host cell for C. trachomatis and can function as a reservoir of microbial antigens sufficient to perpetuate joint injury. PMID:9819362

  13. Extraction of Total Nucleic Acids From Ticks for the Detection of Bacterial and Viral Pathogens

    PubMed Central

    Crowder, Chris D.; Rounds, Megan A.; Phillipson, Curtis A.; Picuri, John M.; Matthews, Heather E.; Halverson, Justina; Schutzer, Steven E.; Ecker, David J.; Eshoo, Mark W.

    2010-01-01

    Ticks harbor numerous bacterial, protozoal, and viral pathogens that can cause serious infections in humans and domestic animals. Active surveillance of the tick vector can provide insight into the frequency and distribution of important pathogens in the environment. Nucleic-acid based detection of tick-borne bacterial, protozoan, and viral pathogens requires the extraction of both DNA and RNA (total nucleic acids) from ticks. Traditional methods for nucleic acid extraction are limited to extraction of either DNA or the RNA from a sample. Here we present a simple bead-beating based protocol for extraction of DNA and RNA from a single tick and show detection of Borrelia burgdorferi and Powassan virus from individual, infected Ixodes scapularis ticks. We determined expected yields for total nucleic acids by this protocol for a variety of adult tick species. The method is applicable to a variety of arthropod vectors, including fleas and mosquitoes, and was partially automated on a liquid handling robot. PMID:20180313

  14. Development of an in vivo model of Chlamydia abortus chronic infection in mice overexpressing IL-10.

    PubMed

    Del Río, Laura; Murcia, Antonio; Buendía, Antonio J; Álvarez, Daniel; Ortega, Nieves; Navarro, José A; Salinas, Jesús; Caro, María Rosa

    2018-01-01

    Chlamydia abortus, like other members of the family Chlamydiaceae, have a unique intracellular developmental cycle that is characterized by its chronic nature. Infection of a flock can remain undetected for months, until abortion occurs the following reproductive season but, to date, neither the location nor the mechanisms that maintain this latent phase are fully understood. Studies have shown that IL-10 produced as a response to certain micro-organisms sustains the intracellular survival of pathogens and increases host susceptibility to chlamydial infections. In order to induce a sustained infection C. abortus, transgenic mice that constitutively express IL-10 were infected and the immunological mechanisms that maintain infection in these mice were compared with the mechanisms of a resistant wild-type mouse strain. Viable bacteria could be detected in different tissues of transgenic mice up to 28 days after infection, as analysed by bacterial isolation and immunohistochemistry. Chronic infection in these mice was associated with an impaired recruitment of macrophages, decreased iNOS activity at the site of infection and a more diffuse distribution of inflammatory cells in the liver. This murine model can be of great help for understanding the immunological and bacterial mechanisms that lead to chronic chlamydial infections. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. [Newer diagnostic procedures for chlamydial diseases (author's transl)].

    PubMed

    Edlinger, E; Ardoin, P

    1981-12-01

    Chlamydiales are bacteries showing a growth cycle unique among procaryotes. The two species Chlamydia trachomatis and Chlamydia psittaci are genetically very distant and their pathogenicity for man is very distinct. Human chlamydial infections by Chlamydia trachomatis are diseases chiefly sexually transmitted and their epidemiological importance is growing. The relationship between chlamydial infections, Reiter disease, and cat scratch disease are discussed. The various laboratory diagnostic procedures are reported, including the techniques and their indications; the method of choice is in the majority of cases the isolation of Chlamydia on cell culture.

  16. Population-level intervention to promote chlamydia screening. Moving toward implementation of chlamydia hedis 2000 measure

    PubMed

    Oh; Grimley; Heudebert

    2000-05-01

    Background: HEDIS 2000 measure includes chlamydia screening in women which is designed to assess the percentage of sexually active women 15 to 25 years who have received at least one screening test for chlamydia during the reporting year. This study is being undertaken to determine feasibility of implementing a population-level intervention within HMOs to promote chlamydia screening. This abstract presents preliminary findings from the Birmingham project of this multicenter study.Methods: In partnerships with two HMOs, series of outreach methods were used in a stepwise fashion to determine potential barriers and enabling factors for the implementation of chlamydia HEDIS measure in a conservative social environment. Mail outreach was sequentially combined with newspaper, TV, radio advertisements and poster displays. Both qualitative and quantitative impact of the outreach efforts were measured across the timeline. The measures included reporting for chlamydia screening (urine LCR) and infection rate, monitoring chlamydia hotline and staffed phoneline use, and assessment of untoward effects and cost-analysis of the chlamydia outreach campaign.Results: The key findings are: the benefit of chlamydia screening is not understood by general public, letters send by Health Plans to their members are not read by many subscribers, and there are wide gaps between adolescents and their parents, in knowledge, attitudes, beliefs in regard to obtaining information and accessing the screening services (teens prefer hotline, brochure in an envelop addressed to teens, incentives for reporting to the clinic for screening, vs. parents prefer staffed phone consults, "exposed" brochure addressed to parents, and no incentives). A month of sustained and repeat multi-media campaign resulted in 330 hotline calls, 83 phone calls and only 17 subjects being tested (3 were positive) though many more intended to come. Cumulative effects and cost of various outreach efforts are being monitored

  17. Chlamydia trachomatis in non-specific urethritis.

    PubMed Central

    Terho, P

    1978-01-01

    Chlamydia trachomatis was isolated from 58.5% of 159 patients with non-specific urethritis (NSU) using irradiated McCoy cell cultures. Patients with persistent Chlamydia-positive NSU remained Chlamydia-positive each time they were examined before treatment and patients with Chlamydia-negative NSU remained Chlamydia-negative during the course of the illness. Neither the duration of symptoms of urethritis nor a history of previous urethritis affected the chlamydial isolation rate significantly. Of 40 patients with severe discharge 30 (75%) harboured C. trachomatis. One-third of the Chlamydia-positive patients had a severe urethral discharge, while this was present in only 15% of Chlamydia-negative patients. Complications--such as conjunctivitis, arthritis, and epididymitis--were more severe in men with Chlamdia-positive NSU than in those with Chlamydia-negative NSU. Of 64 men matched for sexual promiscuity but without urethritis, none harboured C. trachomatis in his urethra. This differs significantly (P less than 0.001) when compared with patients with NSU. C. trachomatis was isolated from the urogenital tract in 24 (42%) out of 57 female sexual contacts of patients with NSU. The presence of C. trachomatis in the women correlated significantly (P less than 0.001) with the isolation of the agent from their male contacts. These findings give further evidence for the aetiological role of C. trachomatis in non-specific urethritis and its sexual transmission. PMID:678958

  18. Rapid pathogen detection with bacterial-assembled magnetic mesoporous silica.

    PubMed

    Lee, Soo Youn; Lee, Jiho; Lee, Hye Sun; Chang, Jeong Ho

    2014-03-15

    We report rapid and accurate pathogen detection by coupling with high efficiency magnetic separation of pathogen by Ni(2+)-heterogeneous magnetic mesoporous silica (Ni-HMMS) and real time-polymerase chain reaction (RT-PCR) technique. Ni-HMMS was developed with a significant incorporation of Fe particles within the silica mesopores by programmed thermal hydrogen reaction and functionalized with Ni(2+) ion on the surface by the wet impregnation process. High abundant Ni(2+) ions on the Ni-HMMS surface were able to assemble with cell wall component protein NikA (nickel-binding membrane protein), which contains several pathogenic bacteria including Escherichia coli O157:H7. NikA protein expression experiment showed the outstanding separation rate of the nikA gene-overexpressed E. coli (pSY-Nik) when comparing with wild-type E. coli (44.5 ± 13%) or not over-expressed E. coli (pSY-Nik) (53.2 ± 2.7%). Moreover, Ni-HMMS showed lower obstacle effect by large reaction volume (10 mL) than spherical core/shell-type silica magnetic nanoparticles functionalized with Ni(2+) (ca. 40 nm-diameters). Finally, the Ni-HMMS was successfully assessed to separate pathogenic E. coli O157:H7 and applied to direct and rapid RT-PCR to quantitative detection at ultralow concentration (1 Log10 cfu mL(-1)) in the real samples (milk and Staphylococcus aureus culture broth) without bacterial amplification and DNA extraction step. © 2013 Elsevier B.V. All rights reserved.

  19. General and specialized media routinely employed for primary isolation of bacterial pathogens of fishes

    USGS Publications Warehouse

    Starliper, C.E.

    2008-01-01

    There are a number of significant diseases among cultured and free-ranging freshwater fishes that have a bacterial etiology; these represent a variety of gram-negative and gram-positive genera. Confirmatory diagnosis of these diseases involves primary isolation of the causative bacterium on bacteriologic media. Frequently used "general" bacteriologic media simply provide the essential nutrients for growth. For most of the major pathogens, however, there are differential and/or selective media that facilitate primary recovery. Some specialized media are available as "ready-to-use" from suppliers, while others must be prepared. Differential media employ various types of indicator systems, such as pH indicators, that allow diagnosticians to observe assimilation of selected substrates. An advantage to the use of differential media for primary isolation is that they hasten bacterial characterization by yielding the appropriate positive or negative result for a particular substrate, often leading to a presumptive identification. Selective media also incorporate agent(s) that inhibit the growth of contaminants typically encountered with samples from aquatic environments. Media that incorporate differential and/or selective components are ideally based on characters that are unique to the targeted bacterium, and their use can reduce the time associated with diagnosis and facilitate early intervention in affected fish populations. In this review, the concepts of general and differential/selective bacteriologic media and their use and development for fish pathogens are discussed. The media routinely employed for primary isolation of the significant bacterial pathogens of fishes are presented. ?? Wildlife Disease Association 2008.

  20. Phage-based biomolecular filter for the capture of bacterial pathogens in liquid streams

    NASA Astrophysics Data System (ADS)

    Du, Songtao; Chen, I.-Hsuan; Horikawa, Shin; Lu, Xu; Liu, Yuzhe; Wikle, Howard C.; Suh, Sang Jin; Chin, Bryan A.

    2017-05-01

    This paper investigates a phage-based biomolecular filter that enables the evaluation of large volumes of liquids for the presence of small quantities of bacterial pathogens. The filter is a planar arrangement of phage-coated, strip-shaped magnetoelastic (ME) biosensors (4 mm × 0.8 mm × 0.03 mm), magnetically coupled to a filter frame structure, through which a liquid of interest flows. This "phage filter" is designed to capture specific bacterial pathogens and allow non-specific debris to pass, eliminating the common clogging issue in conventional bead filters. ANSYS Maxwell was used to simulate the magnetic field pattern required to hold ME biosensors densely and to optimize the frame design. Based on the simulation results, a phage filter structure was constructed, and a proof-in-concept experiment was conducted where a Salmonella solution of known concentration were passed through the filter, and the number of captured Salmonella was quantified by plate counting.

  1. Comparison of Pathogen Eradication Rate and Safety of Anti-Bacterial Agents for Bronchitis: A Network Meta-Analysis.

    PubMed

    Wang, Jinghua; Xu, Haiyang; Wang, Dunwei; Li, Mingxian

    2017-10-01

    A large number of population in both developing and developed countries are affected by bronchitis, among all the factors, bacterial infection was considered as a critical cause of acute exacerbations of chronic bronchitis. Although several anti-bacterial agents were proved to have the effect of alleviating bronchitis, their relative efficacies and potential side effects remained not clear. We are keen to compare the pathogen eradication rate and safety of anti-bacterial agents for bronchitis. Relevant studies were searched in multiple sources and data were extracted from eligible studies. Then conventional meta-analysis and network meta-analysis (NMA) were conducted to determine the relative efficacy and safety of bronchitis medications. The efficacy of bronchitis medications was determined by using the outcome of pathogen eradication, including total pathogen eradication, pathogen eradication of Haemophilus influenzae, pathogen eradication of Moraxella catarrhalis, and pathogen eradication of Streptococcus pneumoniae. In addition, safety was assessed by using the outcome of adverse effects and diarrhoea. A 27 RCTs with 9,414 participants were included in the study. Among the medications, gatifloxacin and moxifloxacin exhibited better performance than clarithromycin with respect to pathogen eradication of H. influenzae (OR = 21.37, CI: 1.22-541.28; OR = 7.43, CI: 1.79-30.50). Clarithromycin, gemifloxacin, levofloxacin, moxifloxacin, and telithromycin appeared to be more preferable than amoxicillin + clavulanate and azithromycin with respect to diarrhoea (all OR <1). The surface under the cumulative ranking curve (SUCRA) results suggested that gemifloxacin and levofloxacin had a relatively high ranking in total pathogen eradication, whereas amoxicillin + clavulanate and azithromycin exhibited relatively lower ranking with respect to adverse effects and diarrhoea. Gemifloxacin and levofloxacin are more preferable than others for lowering respiratory

  2. A transient expression assay for the in planta efficacy screening of an antimicrobial peptide against grapevine bacterial pathogens.

    PubMed

    Visser, M; Stephan, D; Jaynes, J M; Burger, J T

    2012-06-01

    Natural and synthetic antimicrobial peptides (AMPs) are of increasing interest as potential resistance conferring elements in plants against pathogen infection. The efficacy of AMPs against pathogens is prescreened by in vitro assays, and promising AMP candidates are introduced as transgenes into plants. As in vitro and in planta environments differ, a prescreening procedure of the AMP efficacy in the plant environment is desired. Here, we report the efficacy of the purified synthetic peptide D4E1 against the grapevine-infecting bacterial pathogens Agrobacterium vitis and Xylophilus ampelinus in vitro and describe for the first time an in planta prescreening procedure based on transiently expressed D4E1. The antimicrobial effect of D4E1 against Ag. vitis and X. ampelinus was shown by a reduction in colony-forming units in vitro in a traditional plate-based assay and by a reduction in bacterial titres in planta as measured by quantitative real-time PCR (qPCR) in grapevine leaves transiently expressing D4E1. A statistically significant reduction in titre was shown for X. ampelinus, but for Ag. vitis, a significant reduction in titre was only observed in a subset of plants. The titres of both grapevine-infecting bacterial pathogens were reduced in an in vitro assay and for X. ampelinus in an in planta assay by D4E1 application. This widens the applicability of D4E1 as a potential resistance-enhancing element to additional pathogens and in a novel plant species. D4E1 is a promising candidate to confer enhanced resistance against the two tested grapevine bacterial pathogens, and the applied transient expression system proved to be a valuable tool for prescreening of D4E1 efficacy in an in planta environment. The described prescreening procedure can be used for other AMPs and might be adapted to other plant species and pathogens before the expensive and tedious development of stably transgenic lines is started. © 2012 The Authors. Letters in Applied Microbiology © 2012

  3. Ligand-free palladium-mediated site-specific protein labeling inside gram-negative bacterial pathogens.

    PubMed

    Li, Jie; Lin, Shixian; Wang, Jie; Jia, Shang; Yang, Maiyun; Hao, Ziyang; Zhang, Xiaoyu; Chen, Peng R

    2013-05-15

    Palladium, a key transition metal in advancing modern organic synthesis, mediates diverse chemical conversions including many carbon-carbon bond formation reactions between organic compounds. However, expanding palladium chemistry for conjugation of biomolecules such as proteins, particularly within their native cellular context, is still in its infancy. Here we report the site-specific protein labeling inside pathogenic Gram-negative bacterial cells via a ligand-free palladium-mediated cross-coupling reaction. Two rationally designed pyrrolysine analogues bearing an aliphatic alkyne or an iodophenyl handle were first encoded in different enteric bacteria, which offered two facial handles for palladium-mediated Sonogashira coupling reaction on proteins within these pathogens. A GFP-based bioorthogonal reaction screening system was then developed, allowing evaluation of both the efficiency and the biocompatibilty of various palladium reagents in promoting protein-small molecule conjugation. The identified simple compound-Pd(NO3)2 exhibited high efficiency and biocompatibility for site-specific labeling of proteins in vitro and inside living E. coli cells. This Pd-mediated protein coupling method was further utilized to label and visualize a Type-III Secretion (T3S) toxin-OspF in Shigella cells. Our strategy may be generally applicable for imaging and tracking various virulence proteins within Gram-negative bacterial pathogens.

  4. Origin and Proliferation of Multiple-Drug Resistance in Bacterial Pathogens

    PubMed Central

    Chang, Hsiao-Han; Cohen, Ted; Grad, Yonatan H.; Hanage, William P.; O'Brien, Thomas F.

    2015-01-01

    SUMMARY Many studies report the high prevalence of multiply drug-resistant (MDR) strains. Because MDR infections are often significantly harder and more expensive to treat, they represent a growing public health threat. However, for different pathogens, different underlying mechanisms are traditionally used to explain these observations, and it is unclear whether each bacterial taxon has its own mechanism(s) for multidrug resistance or whether there are common mechanisms between distantly related pathogens. In this review, we provide a systematic overview of the causes of the excess of MDR infections and define testable predictions made by each hypothetical mechanism, including experimental, epidemiological, population genomic, and other tests of these hypotheses. Better understanding the cause(s) of the excess of MDR is the first step to rational design of more effective interventions to prevent the origin and/or proliferation of MDR. PMID:25652543

  5. Phytosterols Play a Key Role in Plant Innate Immunity against Bacterial Pathogens by Regulating Nutrient Efflux into the Apoplast1[C][W][OA

    PubMed Central

    Wang, Keri; Senthil-Kumar, Muthappa; Ryu, Choong-Min; Kang, Li; Mysore, Kirankumar S.

    2012-01-01

    Bacterial pathogens colonize a host plant by growing between the cells by utilizing the nutrients present in apoplastic space. While successful pathogens manipulate the plant cell membrane to retrieve more nutrients from the cell, the counteracting plant defense mechanism against nonhost pathogens to restrict the nutrient efflux into the apoplast is not clear. To identify the genes involved in nonhost resistance against bacterial pathogens, we developed a virus-induced gene-silencing-based fast-forward genetics screen in Nicotiana benthamiana. Silencing of N. benthamiana SQUALENE SYNTHASE, a key gene in phytosterol biosynthesis, not only compromised nonhost resistance to few pathovars of Pseudomonas syringae and Xanthomonas campestris, but also enhanced the growth of the host pathogen P. syringae pv tabaci by increasing nutrient efflux into the apoplast. An Arabidopsis (Arabidopsis thaliana) sterol methyltransferase mutant (sterol methyltransferase2) involved in sterol biosynthesis also compromised plant innate immunity against bacterial pathogens. The Arabidopsis cytochrome P450 CYP710A1, which encodes C22-sterol desaturase that converts β-sitosterol to stigmasterol, was dramatically induced upon inoculation with nonhost pathogens. An Arabidopsis Atcyp710A1 null mutant compromised both nonhost and basal resistance while overexpressors of AtCYP710A1 enhanced resistance to host pathogens. Our data implicate the involvement of sterols in plant innate immunity against bacterial infections by regulating nutrient efflux into the apoplast. PMID:22298683

  6. Chlamydia Test: MedlinePlus Lab Test Information

    MedlinePlus

    ... page: https://medlineplus.gov/labtests/chlamydiatest.html Chlamydia Test To use the sharing features on this page, please enable JavaScript. What is a Chlamydia Test? Chlamydia is one of the most common sexually ...

  7. National Institute of Allergy and Infectious Disease (NIAID) Funding for Studies of Hospital-Associated Bacterial Pathogens: Are Funds Proportionate to Burden of Disease?

    PubMed

    Kwon, Seunghyug; Schweizer, Marin L; Perencevich, Eli N

    2012-01-26

    Hospital-associated infections (HAIs) are associated with a considerable burden of disease and direct costs greater than $17 billion. The pathogens that cause the majority of serious HAIs are Enterococcus faecium, Staphylococcus aureus, Clostridium difficile, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species, referred as ESCKAPE. We aimed to determine the amount of funding the National Institute of Health (NIH) National Institute of Allergy and Infectious Diseases (NIAID) allocates to research on antimicrobial resistant pathogens, particularly ESCKAPE pathogens. The NIH Research Portfolio Online Reporting Tools (RePORT) database was used to identify NIAID antimicrobial resistance research grants funded in 2007-2009 using the terms "antibiotic resistance," "antimicrobial resistance," and "hospital-associated infection." Funding for antimicrobial resistance grants has increased from 2007-2009. Antimicrobial resistance funding for bacterial pathogens has seen a smaller increase than non-bacterial pathogens. The total funding for all ESKCAPE pathogens was $ 22,005,943 in 2007, $ 30,810,153 in 2008 and $ 49,801,227 in 2009. S. aureus grants received $ 29,193,264 in FY2009, the highest funding amount of all the ESCKAPE pathogens. Based on 2009 funding data, approximately $1,565 of research money was spent per S. aureus related death and $750 of was spent per C. difficile related death. Although the funding for ESCKAPE pathogens has increased from 2007 to 2009, funding levels for antimicrobial resistant bacteria-related grants is still lower than funding for antimicrobial resistant non-bacterial pathogens. Efforts may be needed to improve research funding for resistant-bacterial pathogens, particularly as their clinical burden increases.

  8. Synthesis of protein in host-free reticulate bodies of Chlamydia psittaci and Chlamydia trachomatis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatch, T.P.; Miceli, M.; Silverman, J.A.

    1985-06-01

    Synthesis of protein by the obligate intracellular parasitic bacteria Chlamydia psittaci (6BC) and Chlamydia trachomatis (serovar L2) isolated from host cells (host-free chlamydiae) was demonstrated for the first time. Incorporation of (/sup 35/S)methionine and (/sup 35/S)cysteine into trichloroacetic acid-precipitable material by reticulate bodies of chlamydiae persisted for 2 h and was dependent upon a exogenous source of ATP, an ATP-regenerating system, and potassium or sodium ions. Magnesium ions and amino acids stimulated synthesis; chloramphenicol, rifampin, oligomycin, and carbonyl cyanide p-trifluoromethoxyphenylhydrazone (a proton ionophore) inhibited incorporation. Ribonucleoside triphosphates (other than ATP) had little stimulatory effect. The optimum pH for host-free synthesismore » was between 7.0 and 7.5. The molecular weights of proteins synthesized by host-free reticulate bodies closely resembled the molecular weights of proteins synthesized by reticulate bodies in an intracellular environment, and included outer membrane proteins. Elementary bodies of chlamydiae were unable to synthesize protein even when incubated in the presence of 10 mM dithiothreitol, a reducing agent which converted the highly disulfide bond cross-linked major outer membrane protein to monomeric form.« less

  9. Spaceflight and Simulated Microgravity Increases Virulence of the Known Bacterial Pathogen S. Marcescens

    NASA Technical Reports Server (NTRS)

    Clemens-Grisham, Rachel Andrea; Bhattacharya, Sharmila; Wade, William

    2016-01-01

    After spaceflight, the number of immune cells is reduced in humans. In other research models, including Drosophila, not only is there a reduction in the number of plasmatocytes, but expression of immune-related genes is also changed after spaceflight. These observations suggest that the immune system is compromised after exposure to microgravity. It has also been reported that there is a change in virulence of some bacterial pathogens after spaceflight. We recently observed that samples of gram-negative S. marcescens retrieved from spaceflight is more virulent than ground controls, as determined by reduced survival and increased bacterial growth in the host. We were able to repeat this finding of increased virulence after exposure to simulated microgravity using the rotating wall vessel, a ground based analog to microgravity. With the ground and spaceflight samples, we looked at involvement of the Toll and Imd pathways in the Drosophila host in fighting infection by ground and spaceflight samples. We observed that Imd-pathway mutants were more susceptible to infection by the ground bacterial samples, which aligns with the known role of this pathway in fighting infections by gram-negative bacteria. When the Imd-pathway mutants were infected with the spaceflight sample, however, they exhibited the same susceptibility as seen with the ground control bacteria. Interestingly, all mutant flies show the same susceptibility to the spaceflight bacterial sample as do wild type flies. This suggests that neither humoral immunity pathway is effectively able to counter the increased pathogenicity of the space-flown S. marcescens bacteria.

  10. Antibacterial screening of traditional herbal plants and standard antibiotics against some human bacterial pathogens.

    PubMed

    Awan, Uzma Azeem; Andleeb, Saiqa; Kiyani, Ayesha; Zafar, Atiya; Shafique, Irsa; Riaz, Nazia; Azhar, Muhammad Tehseen; Uddin, Hafeez

    2013-11-01

    Chloroformic and isoamyl alcohol extracts of Cinnnamomum zylanicum, Cuminum cyminum, Curcuma long Linn, Trachyspermum ammi and selected standard antibiotics were investigated for their in vitro antibacterial activity against six human bacterial pathogens. The antibacterial activity was evaluated and based on the zone of inhibition using agar disc diffusion method. The tested bacterial strains were Streptococcus pyogenes, Staphylococcus epidermidis, Klebsiella pneumonia, Staphylococcus aurues, Serratia marcesnces, and Pseudomonas aeruginosa. Ciprofloxacin showed highly significant action against K. pneumonia and S. epidermidis while Ampicillin and Amoxicillin indicated lowest antibacterial activity against tested pathogens. Among the plants chloroform and isoamyl alcohol extracts of C. cyminum, S. aromaticum and C. long Linn had significant effect against P. aeruginosa, S. marcesnces and S. pyogenes. Comparison of antibacterial activity of medicinal herbs and standard antibiotics was also recorded via activity index. Used medicinal plants have various phytochemicals which reasonably justify their use as antibacterial agent.

  11. A retrospective analysis of antimicrobial resistance in bacterial pathogens in an equine hospital (2012-2015).

    PubMed

    van Spijk, J N; Schmitt, S; Fürst, A E; Schoster, A

    2016-06-01

    Antimicrobial resistance has become an important concern in veterinary medicine. The aim of this study was to describe the rate of antimicrobial resistance in common equine pathogens and to determine the occurrence of multidrug-resistant isolates. A retrospective analysis of all susceptibility testing results from bacterial pathogens cultured from horses at the University of Zurich Equine Hospital (2012-2015) was performed. Strains exhibiting resistance to 3 or more antimicrobial categories were defined as multidrug-resistant. Susceptibility results from 303 bacterial pathogens were analyzed, most commonly Escherichia coli (60/303, 20%) and Staphylococcus aureus (40/303, 13%). High rates of acquired resistance against commonly used antimicrobials were found in most of the frequently isolated equine pathogens. The highest rate of multidrug resistance was found in isolates of Acinetobacter baumannii (23/24, 96%), followed by Enterobacter cloacae complex (24/28, 86%) and Escherichia coli (48/60, 80%). Overall, 60% of Escherichia coli isolates were phenotypically ESBL-producing and 68% of Staphylococcus spp. were phenotypically methicillin-resistant. High rates of acquired antimicrobial resistance towards commonly used antibiotics are concerning and underline the importance of individual bacteriological and antimicrobial susceptibility testing to guide antimicrobial therapy. Minimizing and optimizing antimicrobial therapy in horses is needed.

  12. Chlamydia infection in individuals reporting contact with sexual partners with chlamydia: a cross-sectional study of sexual health clinic attendees.

    PubMed

    Huffam, Sarah; Chow, Eric P F; Fairley, Christopher K; Hocking, Jane; Peel, Joanne; Chen, Marcus

    2015-09-01

    We aimed to ascertain the proportion of positive, and predictive factors of chlamydia infection among females, heterosexual males and men who have sex with men (MSM) presenting to a sexual health service reporting contact with a chlamydia infected sexual partner. A cross-sectional analysis of patients attending the Melbourne Sexual Health Centre from October 2010 to September 2013. Behavioural data obtained using computer assisted self-interview were analysed to determine factors predictive of chlamydia. Of the 491 female, 808 heterosexual male, and 268 MSM chlamydia contacts, the proportion diagnosed with chlamydia were 39.9% (95% CI 35.7% to 44.3%), 36.1% (95% CI 32.9% to 39.9%) and 23.5% (95% CI 18.8% to 29.0%), respectively. Female chlamydia contacts were more likely to have chlamydia if age <25 (adjusted OR (AOR) 1.86, 95% CI 1.12 to 3.10) or if they reported inconsistent condom use during vaginal sex with a regular male partner (AOR 2.5, 95% CI 1.12 to 6.14). Heterosexual male contacts were more likely to have chlamydia if age <25 (AOR 1.69, 95% CI 1.25 to 2.28) or if they had a regular female sexual partner (AOR 1.38, 95% CI 1.03 to 1.85). In MSM urethral chlamydia was diagnosed in 8.8%, rectal chlamydia in 20.2%, and 3.9% at both sites. MSM were more likely to have chlamydia if they had a regular male sexual partner (OR 2.12, 95% CI 1.18 to 3.81). This study of female, heterosexual male, and MSM presentations with self-reported chlamydia contact provides insight into the likelihood and predictive factors of infection. The data may inform policy and individual clinical decision making regarding presumptive treatment of chlamydia contacts. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  13. Novel aptamer-linked nanoconjugate approach for detection of waterborne bacterial pathogens: an update

    NASA Astrophysics Data System (ADS)

    Singh, Gulshan; Manohar, Murli; Adegoke, Anthony Ayodeji; Stenström, Thor Axel; Shanker, Rishi

    2017-01-01

    The lack of microbiologically safe water in underdeveloped nations is the prime cause of infectious disease outbreaks. The need for the specific identification and detection of microorganisms encourages the development of advanced, rapid, sensitive and highly specific methods for the monitoring of pathogens and management of potential risk to human health. The rapid molecular assays based on detection of specific molecular signatures offer advantages over conventional methods in terms of specificity and sensitivity but require complex instrumentation and skilled personnel. Nanotechnology is an emerging area and provides a robust approach for the identification of pathogenic microorganism utilizing the peculiar properties of nanomaterials, i.e. small size (1-100 nm) and large surface area. This emerging technology promises to fulfill the urgent need of a novel strategy to enhance the bacterial identification and quantitation in the environment. In this context, the peculiar properties of gold nanoparticles, their plasmonic shifts, and changes in magnetic properties have been utilized for the simple and cost-effective detection of bacterial nucleic acids, antigens and toxins with quite improved sensitivity. One of the promising leads to develop an advance detection method might be the coupling of nucleic acid aptamers (capable of interacting specifically with bacteria, protozoa, and viruses) with nanomaterials. Such aptamer-nano conjugate can be used for the specific recognition of infectious agents in different environmental matrices. This review summarizes the application of nanotechnology in the area of pathogen detection and discusses the prospects of coupling nucleic acid aptamers with nanoparticles for the specific detection of targeted pathogens.

  14. Baby bottle steam sterilizers disinfect home nebulizers inoculated with bacterial respiratory pathogens.

    PubMed

    Towle, Dana; Callan, Deborah A; Farrel, Patricia A; Egan, Marie E; Murray, Thomas S

    2013-09-01

    Contaminated nebulizers are a potential source of bacterial infection but no single method is universally accepted for disinfection. We hypothesized that baby-bottle steam sterilizers effectively disinfect home nebulizers. Home nebulizers were inoculated with the common CF respiratory pathogens methicillin resistant Staphylococcus aureus, Burkholderia cepacia, Haemophilus influenzae, mucoid and non mucoid Pseudomonas aeruginosa, and Stenotrophomonas maltophilia. The nebulizers were swabbed for bacterial growth, treated with either the AVENT (Philips), the NUK Quick & Ready (Gerber) or DRY-POD (Camera Baby) baby bottle steam sterilizer and reswabbed for bacterial growth. All steam sterilizers were effective at disinfecting all home nebulizers. Viable bacteria were not recovered from any inoculated site after steam treatment, under any conditions tested. Steam treatment is an effective disinfection method. Additional studies are needed to confirm whether these results are applicable to the clinical setting. Copyright © 2012 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  15. Bacteriocin from Bacillus subtilis as a novel drug against diabetic foot ulcer bacterial pathogens

    PubMed Central

    Joseph, Baby; Dhas, Berlina; Hena, Vimalin; Raj, Justin

    2013-01-01

    Objective To isolate and identify Bacillus subtilis (B. subtilis) from soil and to characterize and partially purify the bacteriocin. To evaluate the antimicrobial activity against four diabetic foot ulcer bacterial pathogens. Methods Genotypic identification was done based on Bergey's manual of systemic bacteriology. Antimicrobial susceptibility test was done by Kirby-Bauer disc diffusion method. Colonies were identified by colony morphology and biochemical characterization and also compared with MTCC 121 strain. Further identification was done by 16S rRNA sequencing. Inhibitory activities of partially purified bacteriocin on all the DFU isolates were done by agar well diffusion method. The strain was identified to produce bacteriocin by stab overlay assay. Bacteriocin was extracted by organic solvent extraction using chloroform, further purified by HPLC and physical, and chemical characterization was performed. Results The four isolates showed high level of resistance to amoxyclav and sensitivity to ciprofloxacin. HPLC purification revealed that the extracts are bacteriocin. The phylogenetic tree analysis results showed that the isolate was 99% related to B. subtilis BSF01. The results reveled activity to all the four isolates and high level of activity was seen in case of Klebsiella sp. Conclusions Partially purified bacteriocin was found to have antimicrobial activity against the four diabetic foot ulcer bacterial pathogens, which can thus be applied as a better drug molecule on further studies. The strain B. subtilis are found to be safe for use and these antimicrobial peptides can be used as an antimicrobial in humans to treat DFU bacterial pathogens. PMID:24093784

  16. Bacteriocin from Bacillus subtilis as a novel drug against diabetic foot ulcer bacterial pathogens.

    PubMed

    Joseph, Baby; Dhas, Berlina; Hena, Vimalin; Raj, Justin

    2013-12-01

    To isolate and identify Bacillus subtilis (B. subtilis) from soil and to characterize and partially purify the bacteriocin. To evaluate the antimicrobial activity against four diabetic foot ulcer bacterial pathogens. Genotypic identification was done based on Bergey's manual of systemic bacteriology. Antimicrobial susceptibility test was done by Kirby-Bauer disc diffusion method. Colonies were identified by colony morphology and biochemical characterization and also compared with MTCC 121 strain. Further identification was done by 16S rRNA sequencing. Inhibitory activities of partially purified bacteriocin on all the DFU isolates were done by agar well diffusion method. The strain was identified to produce bacteriocin by stab overlay assay. Bacteriocin was extracted by organic solvent extraction using chloroform, further purified by HPLC and physical, and chemical characterization was performed. The four isolates showed high level of resistance to amoxyclav and sensitivity to ciprofloxacin. HPLC purification revealed that the extracts are bacteriocin. The phylogenetic tree analysis results showed that the isolate was 99% related to B. subtilis BSF01. The results reveled activity to all the four isolates and high level of activity was seen in case of Klebsiella sp. Partially purified bacteriocin was found to have antimicrobial activity against the four diabetic foot ulcer bacterial pathogens, which can thus be applied as a better drug molecule on further studies. The strain B. subtilis are found to be safe for use and these antimicrobial peptides can be used as an antimicrobial in humans to treat DFU bacterial pathogens. Copyright © 2013 Asian Pacific Tropical Biomedical Magazine. Published by Elsevier B.V. All rights reserved.

  17. Enteric bacterial pathogen detection in southern sea otters (Enhydra lutris nereis) is associated with coastal urbanization and freshwater runoff

    PubMed Central

    Miller, Melissa A.; Byrne, Barbara A.; Jang, Spencer S.; Dodd, Erin M.; Dorfmeier, Elene; Harris, Michael D.; Ames, Jack; Paradies, David; Worcester, Karen; Jessup, David A.; Miller, Woutrina A.

    2009-01-01

    Although protected for nearly a century, California’s sea otters have been slow to recover, in part due to exposure to fecally-associated protozoal pathogens like Toxoplasma gondii and Sarcocystis neurona. However, potential impacts from exposure to fecal bacteria have not been systematically explored. Using selective media, we examined feces from live and dead sea otters from California for specific enteric bacterial pathogens (Campylobacter, Salmonella, Clostridium perfringens, C. difficile and Escherichia coli O157:H7), and pathogens endemic to the marine environment (Vibrio cholerae, V. parahaemolyticus and Plesiomonas shigelloides). We evaluated statistical associations between detection of these pathogens in otter feces and demographic or environmental risk factors for otter exposure, and found that dead otters were more likely to test positive for C. perfringens, Campylobacter and V. parahaemolyticus than were live otters. Otters from more urbanized coastlines and areas with high freshwater runoff (near outflows of rivers or streams) were more likely to test positive for one or more of these bacterial pathogens. Other risk factors for bacterial detection in otters included male gender and fecal samples collected during the rainy season when surface runoff is maximal. Similar risk factors were reported in prior studies of pathogen exposure for California otters and their invertebrate prey, suggesting that land-sea transfer and/or facilitation of pathogen survival in degraded coastal marine habitat may be impacting sea otter recovery. Because otters and humans share many of the same foods, our findings may also have implications for human health. PMID:19720009

  18. Chlamydia trachomatis CT771 (nudH) is an asymmetric Ap4A hydrolase.

    PubMed

    Barta, Michael L; Lovell, Scott; Sinclair, Amy N; Battaile, Kevin P; Hefty, P Scott

    2014-01-14

    Asymmetric diadenosine 5',5‴-P(1),P(4)-tetraphosphate (Ap4A) hydrolases are members of the Nudix superfamily that asymmetrically cleave the metabolite Ap4A into ATP and AMP while facilitating homeostasis. The obligate intracellular mammalian pathogen Chlamydia trachomatis possesses a single Nudix family protein, CT771. As pathogens that rely on a host for replication and dissemination typically have one or zero Nudix family proteins, this suggests that CT771 could be critical for chlamydial biology and pathogenesis. We identified orthologues to CT771 within environmental Chlamydiales that share active site residues suggesting a common function. Crystal structures of both apo- and ligand-bound CT771 were determined to 2.6 Å and 1.9 Å resolution, respectively. The structure of CT771 shows a αβα-sandwich motif with many conserved elements lining the putative Nudix active site. Numerous aspects of the ligand-bound CT771 structure mirror those observed in the ligand-bound structure of the Ap4A hydrolase from Caenorhabditis elegans. These structures represent only the second Ap4A hydrolase enzyme member determined from eubacteria and suggest that mammalian and bacterial Ap4A hydrolases might be more similar than previously thought. The aforementioned structural similarities, in tandem with molecular docking, guided the enzymatic characterization of CT771. Together, these studies provide the molecular details for substrate binding and specificity, supporting the analysis that CT771 is an Ap4A hydrolase (nudH).

  19. How Bacterial Pathogens Eat Host Lipids: Implications for the Development of Fatty Acid Synthesis Therapeutics*

    PubMed Central

    Yao, Jiangwei; Rock, Charles O.

    2015-01-01

    Bacterial type II fatty acid synthesis (FASII) is a target for the development of novel therapeutics. Bacteria incorporate extracellular fatty acids into membrane lipids, raising the question of whether pathogens use host fatty acids to bypass FASII and defeat FASII therapeutics. Some pathogens suppress FASII when exogenous fatty acids are present to bypass FASII therapeutics. FASII inhibition cannot be bypassed in many bacteria because essential fatty acids cannot be obtained from the host. FASII antibiotics may not be effective against all bacteria, but a broad spectrum of Gram-negative and -positive pathogens can be effectively treated with FASII inhibitors. PMID:25648887

  20. Screening for sexually transmitted infection pathogens in semen samples

    PubMed Central

    Peeling, RW; Embree, J

    2005-01-01

    The transmission of sexually transmitted infection (STI) pathogens from an infected donor to the recipient of a semen donation in assisted conception may result not only in acute infection but also in long-term reproductive complications or adverse outcomes of pregnancy, including infection of the offspring. Screening for bacterial STI pathogens, Chlamydia trachomatis and Neisseria gonorrhoeae is strongly recommended because these pathogens can cause serious reproductive complications in the recipients of semen donations and infection in their offspring. Screening for these pathogens should be performed using the most sensitive methods, such as nucleic acid amplified tests. False-negative results due to inhibitory substances in the semen sample should be monitored using amplification controls. Where specimen transport is not a problem and culture facilities are available, N gonorrhoeae can also be detected by culture. Laboratories performing screening should subscribe to proficiency programs and have strict quality controls. Although Trichomonas vaginalis, group B streptococcus and genital mycoplasmas have been associated with adverse outcomes of pregnancy, the frequent finding of these organisms in healthy individuals brings into question the validity of mandatory inclusion of these organisms in the screening panel. Although viral STI pathogens and Treponema pallidum - the causative agent of syphilis - may be detected in semen, their presence may be more sensitively detected through antibody testing of the donor. Screening donors for HIV, hepatitis B and syphilis by serology is uniformly recommended in all of the guidelines, but the value of screening either donors or semen samples for cytomegalovirus, herpes simplex viruses and human papilloma viruses is less clear. PMID:18159531

  1. Antimicrobial activities of Streptomyces pulcher, S. canescens and S. citreofluorescens against fungal and bacterial pathogens of tomato in vitro.

    PubMed

    el-Abyad, M S; el-Sayed, M A; el-Shanshoury, A R; el-Sabbagh, S M

    1996-01-01

    Thirty-seven actinomycete species isolated from fertile cultivated soils in Egypt were screened for the production of antimicrobial compounds against a variety of test organisms. Most of the isolates exhibited antimicrobial activities against Gram-positive, Gram-negative, and acid-fast bacteria, yeasts and filamentous fungi, with special attention to fungal and bacterial pathogens of tomato. On starch-nitrate agar, 14 strains were active against Fusarium oxysporum f.sp. lycopersici (the cause of Fusarium wilt), 18 against Verticillium albo-atrum (the cause of Verticillium wilt), and 18 against Alternaria solani (the cause of early blight). In liquid media, 14 isolates antagonized Pseudomonas solanacearum (the cause of bacterial wilt) and 20 antagonized Clavibacter michiganensis ssp. michiganensis (the cause of bacterial canker). The most active antagonists of the pathogenic microorganisms studied were found to be Streptomyces pulcher, S. canescens (syn. S. albidoflavus) and S. citreofluorescens (syn. S. anulatus). The antagonistic activities of S. pulcher and S. canescens against pathogenic fungi were assessed on solid media, and those of S. pulcher and S. citreofluorescens against pathogenic bacteria in liquid media under shaking conditions. The optimum culture conditions were determined.

  2. Comparison of direct-plating and broth-enrichment culture methods for detection of potential bacterial pathogens in respiratory secretions.

    PubMed

    Kaur, Ravinder; Wischmeyer, Jareth; Morris, Matthew; Pichichero, Michael E

    2017-11-01

    We compared the recovery of potential respiratory bacterial pathogens and normal flora from nasopharyngeal specimens collected from children during health and at the onset of acute otitis media (AOM) by selective direct-plating and overnight broth-enrichment. Overall, 3442 nasal wash (NW) samples collected from young children were analysed from a 10-year prospective study. NWs were cultured by (1) direct-plating to TSAII/5 % sheep blood agar and chocolate agar plates and (2) overnight broth-enrichment in BacT/ALERT SA-broth followed by plating. Standard microbiology techniques were applied to identify three dominant respiratory bacterial pathogens: Streptococcus pneumoniae (Spn), Haemophilus influenzae (Hflu) and Moraxella catarrhalis (Mcat) as well as two common nasal flora, Staphylococcus aureus (SA) and alpha-haemolytic Streptococci (AHS).Results/Key findings. Direct-plating of NW resulted in isolation of Spn from 37.8 %, Hflu from 13.6 % and Mcat from 33.2 % of samples. In comparison, overnight broth-enrichment isolated fewer Spn (30.1 %), Hflu (6.2 %) and Mcat (16.2 %) (P<0.001-0.0001). Broth-enrichment resulted in significant increased isolation of SA (6.0 %) and AHS (30.1 %) (P<0.0001). Competition between bacterial species in broth when both species were detected by direct-plating was assessed, and it was found that SA and AHS out-competed other species during broth-enrichment when samples were collected from healthy children but not during AOM. In middle ear fluids (MEF) at the onset of AOM, broth-enrichment resulted in higher recovery of Spn (+10.4 %, P<0.001), Hflu (+4.4 %, P=0.39) and Mcat (+13.5 %, <0.001). Broth-enrichment significantly reduces the accurate detection of bacterial respiratory pathogens and increases identification of SA and AHS in NW. Broth-enrichment improves detection of bacterial respiratory pathogens in MEF samples.

  3. Update on Chlamydia trachomatis Vaccinology

    PubMed Central

    Zhong, Guangming; Brunham, Robert C.

    2017-01-01

    ABSTRACT Attempts to produce a vaccine to protect against Chlamydia trachomatis-induced trachoma were initiated more than 100 years ago and continued for several decades. Using whole organisms, protective responses were obtained. However, upon exposure to C. trachomatis, disease exacerbation developed in some immunized individuals, precluding the implementation of the vaccine. Evidence of the role of C. trachomatis as a sexually transmitted pathogen started to emerge in the 1960s, and it soon became evident that it can cause acute infections and long-term sequelae in women, men, and newborns. The main focus of this minireview is to summarize recent findings and discuss formulations, including antigens, adjuvants, routes, and delivery systems for immunization, primarily explored in the female mouse model, with the goal of implementing a vaccine against C. trachomatis genital infections. PMID:28228394

  4. Identification of causative pathogens in mouse eyes with bacterial keratitis by sequence analysis of 16S rDNA libraries

    PubMed Central

    Song, Hong-Yan; Qiu, Bao-Feng; Liu, Chun; Zhu, Shun-Xing; Wang, Sheng-Cun; Miao, Jin; Jing, Jing; Shao, Yi-Xiang

    2014-01-01

    The clone library method using PCR amplification of the 16S ribosomal RNA (rRNA) gene was used to identify pathogens from corneal scrapings of C57BL/6-corneal opacity (B6-Co) mice with bacterial keratitis. All 10 samples from the eyes with bacterial keratitis showed positive PCR results. All 10 samples from the normal cornea showed negative PCR results. In all 10 PCR-positive samples, the predominant and second most predominant species accounted for 20.9 to 40.6% and 14.7 to 26.1%, respectively, of each clone library. The predominant species were Staphylococcus lentus, Pseudomonas aeruginosa, and Staphylococcus epidermidis. The microbiota analysis detected a diverse group of microbiota in the eyes of B6-Co mice with bacterial keratitis and showed that the causative pathogens could be determined based on percentages of bacterial species in the clone libraries. The bacterial species detected in this study were mostly in accordance with results of studies on clinical bacterial keratitis in human eyes. Based on the results of our previous studies and this study, the B6-Co mouse should be considered a favorable model for studying bacterial keratitis. PMID:25312507

  5. Extended semen for artificial insemination in swine as a potential transmission mechanism for infectious Chlamydia suis.

    PubMed

    Hamonic, G; Pasternak, J A; Käser, T; Meurens, F; Wilson, H L

    2016-09-01

    Although typically unnoticed, Chlamydia infections in swine have been shown to be both widespread and may impact production characteristics and reproductive performance in swine. Serum titers suggest Chlamydia infection within boar studs is common, and infected boars are known to shed chlamydia in their ejaculates. Although the transmission of viruses in chilled extended semen (ES) is well established, the inclusion of antibiotics in commercially available extender is generally believed to limit or preclude the transmission of infectious bacteria. The objective of this study was to evaluate the potential of ES used in artificial insemination to support transmission of the obligate intracellular bacteria Chlamydia suis (C suis) under standard industry conditions. First, the effect of C suis on sperm quality during storage was assessed by flow cytometry. Only concentrations above 5 × 10(5) viable C suis/mL caused significant spermicidal effects which only became evident after 7 days of storage at 17 °C. No significant effect on acrosome reaction was observed using any chlamydial concentration. Next, an in vitro infection model of swine testicular fibroblast cells was established and used to evaluate the effect of chilled storage on C suis viability under variable conditions. Storage in Androhep ES reduced viability by 34.4% at a multiplicity of infection of 1.25, an effect which increased to 53.3% when the multiplicity of infection decreased to 0.1. Interestingly, storage in semen extender alone (SE) or ES with additional antibiotics had no effect on bacterial viability. To rule out a secondary effect on extender resulting from metabolically active sperm, C suis was stored in fresh and expended SE and again no significant effect on bacterial viability was observed. Fluorescent microscopy of C suis in ES shows an association between bacteria and the remaining gel fraction after storage suggesting that the apparent reduction of bacterial viability in the presence

  6. Chlamydia

    MedlinePlus

    In men, chlamydia may cause symptoms similar to gonorrhea . Symptoms may include: Burning feeling during urination Discharge ... of sexually transmitted infection (STIs). Common STIs are gonorrhea, HIV, syphilis, hepatitis, and herpes . Even if you ...

  7. Chlamydia

    MedlinePlus

    ... single type of STI. Can women who have sex with women get chlamydia? Yes. It is possible ... Awareness Day National Women's Health Week Supporting Nursing Moms at Work Popular Topics Autoimmune diseases Breastfeeding Carpal ...

  8. Chlamydia gallinacea, not C. psittaci, is the endemic chlamydial species in chicken (Gallus gallus).

    PubMed

    Guo, Weina; Li, Jing; Kaltenboeck, Bernhard; Gong, Jiansen; Fan, Weixing; Wang, Chengming

    2016-01-18

    To investigate the prevalence and diversity of Chlamydia spp. in domestic birds in China, oral and cloacal swabs of healthy chickens, ducks, geese and pigeons were collected nationwide from live-animal markets and examined by Chlamydia spp. 23 S rRNA gene FRET-PCR followed by high-resolution melting curve analysis and confirmatory sequencing. Overall, 26.2% of the birds (602/2,300) were positive for Chlamydia spp. and five Chlamydia spp. were identified. While occasional detection of C. suis and C. muridarum in poultry is reported here for the first time, the predominant chlamydial agent was C. gallinacea representing 63.8% of all positives (384/602) and 81.2% of positive chickens (359/442). Analysis of the C. gallinacea ompA phylogeny revealed at least 13 well segregated variants (serovars). Seven-month monitoring of C. gallinacea-infected chickens indicated that the infection was persistent. C. gallinacea-infected chickens remained without overt clinical disease, but showed body weight gains significantly reduced by 6.5-11.4% beginning in week 3 post-infection. This study indicates that C. gallinacea is the endemic chlamydial species in chickens, whereas C. psittaci dominates only in pigeons. Further studies are required to address the specific conditions under which C. gallinacea could act as an avian pathogen and possibly also a zoonotic agent.

  9. Chlamydia gallinacea, not C. psittaci, is the endemic chlamydial species in chicken (Gallus gallus)

    PubMed Central

    Guo, Weina; Li, Jing; Kaltenboeck, Bernhard; Gong, Jiansen; Fan, Weixing; Wang, Chengming

    2016-01-01

    To investigate the prevalence and diversity of Chlamydia spp. in domestic birds in China, oral and cloacal swabs of healthy chickens, ducks, geese and pigeons were collected nationwide from live-animal markets and examined by Chlamydia spp. 23 S rRNA gene FRET-PCR followed by high-resolution melting curve analysis and confirmatory sequencing. Overall, 26.2% of the birds (602/2,300) were positive for Chlamydia spp. and five Chlamydia spp. were identified. While occasional detection of C. suis and C. muridarum in poultry is reported here for the first time, the predominant chlamydial agent was C. gallinacea representing 63.8% of all positives (384/602) and 81.2% of positive chickens (359/442). Analysis of the C. gallinacea ompA phylogeny revealed at least 13 well segregated variants (serovars). Seven-month monitoring of C. gallinacea-infected chickens indicated that the infection was persistent. C. gallinacea-infected chickens remained without overt clinical disease, but showed body weight gains significantly reduced by 6.5–11.4% beginning in week 3 post-infection. This study indicates that C. gallinacea is the endemic chlamydial species in chickens, whereas C. psittaci dominates only in pigeons. Further studies are required to address the specific conditions under which C. gallinacea could act as an avian pathogen and possibly also a zoonotic agent. PMID:26778053

  10. Dynamics of fecal indicator bacteria, bacterial pathogen genes, and organic wastewater contaminants in the Little Calumet River: Portage Burns Waterway, Indiana

    USGS Publications Warehouse

    Haack, Sheridan K.; Duris, Joseph W.

    2013-01-01

    Little information exists on the co-occurrence of fecal indicator bacteria (FIB), bacterial pathogens, and organic wastewater-associated chemicals (OWCs) within Great Lakes tributaries. Fifteen watershed sites and one beach site adjacent to the Little Calumet River–Portage Burns Waterway (LCRPBW) on Lake Michigan were tested on four dates for pH, dissolved oxygen, specific conductance, chloride, color, ammonia- and nitrate-nitrogen, soluble phosphorus, sulfate, turbidity, and atrazine; for concentrations of FIB; and for genes indicating the presence of human-pathogenic enterococci (ENT) and of Shiga-toxin producing Escherichia coli (EC) from various animal sources. Nineteen samples were also tested for 60 OWCs. Half of the watershed samples met EC recreational water quality standards; none met ENT standards. Human-wastewater-associated OWC detections were correlated with human-influence indicators such as population/km2, chloride concentrations, and the presence of WWTP effluents, but EC and ENT concentrations were not. Bacterial pathogen genes indicated rural human and several potential animal sources. OWCs of human or ecosystem health concern (musk fragrances AHTN and HHCB, alkylphenols, carbamazepine) and 3 bacterial pathogen genes were detected at the mouth of the LCRPBW, but no such OWCs and only 1 pathogen gene were detected at the beach. The LCRPBW has significant potential to deliver FIB, potential bacterial pathogens, and OWCs of human or ecosystem health concern to the nearshore of Lake Michigan, under conditions enhancing nearshore transport of the river plume. Nearshore mixing of lake and river water, and the lack of relationship between OWCs and FIB or pathogen genes, pose numerous challenges for watershed and nearshore assessment and remediation.

  11. The Sit-and-Wait Hypothesis in Bacterial Pathogens: A Theoretical Study of Durability and Virulence.

    PubMed

    Wang, Liang; Liu, Zhanzhong; Dai, Shiyun; Yan, Jiawei; Wise, Michael J

    2017-01-01

    The intriguing sit-and-wait hypothesis predicts that bacterial durability in the external environment is positively correlated with their virulence. Since its first proposal in 1987, the hypothesis has been spurring debates in terms of its validity in the field of bacterial virulence. As a special case of the vector-borne transmission versus virulence tradeoff, where vector is now replaced by environmental longevity, there are only sporadic studies over the last three decades showing that environmental durability is possibly linked with virulence. However, no systematic study of these works is currently available and epidemiological analysis has not been updated for the sit-and-wait hypothesis since the publication of Walther and Ewald's (2004) review. In this article, we put experimental evidence, epidemiological data and theoretical analysis together to support the sit-and-wait hypothesis. According to the epidemiological data in terms of gain and loss of virulence (+/-) and durability (+/-) phenotypes, we classify bacteria into four groups, which are: sit-and-wait pathogens (++), vector-borne pathogens (+-), obligate-intracellular bacteria (--), and free-living bacteria (-+). After that, we dive into the abundant bacterial proteomic data with the assistance of bioinformatics techniques in order to investigate the two factors at molecular level thanks to the fast development of high-throughput sequencing technology. Sequences of durability-related genes sourced from Gene Ontology and UniProt databases and virulence factors collected from Virulence Factor Database are used to search 20 corresponding bacterial proteomes in batch mode for homologous sequences via the HMMER software package. Statistical analysis only identified a modest, and not statistically significant correlation between mortality and survival time for eight non-vector-borne bacteria with sit-and-wait potentials. Meanwhile, through between-group comparisons, bacteria with higher host-mortality are

  12. The Sit-and-Wait Hypothesis in Bacterial Pathogens: A Theoretical Study of Durability and Virulence

    PubMed Central

    Wang, Liang; Liu, Zhanzhong; Dai, Shiyun; Yan, Jiawei; Wise, Michael J.

    2017-01-01

    The intriguing sit-and-wait hypothesis predicts that bacterial durability in the external environment is positively correlated with their virulence. Since its first proposal in 1987, the hypothesis has been spurring debates in terms of its validity in the field of bacterial virulence. As a special case of the vector-borne transmission versus virulence tradeoff, where vector is now replaced by environmental longevity, there are only sporadic studies over the last three decades showing that environmental durability is possibly linked with virulence. However, no systematic study of these works is currently available and epidemiological analysis has not been updated for the sit-and-wait hypothesis since the publication of Walther and Ewald’s (2004) review. In this article, we put experimental evidence, epidemiological data and theoretical analysis together to support the sit-and-wait hypothesis. According to the epidemiological data in terms of gain and loss of virulence (+/-) and durability (+/-) phenotypes, we classify bacteria into four groups, which are: sit-and-wait pathogens (++), vector-borne pathogens (+-), obligate-intracellular bacteria (--), and free-living bacteria (-+). After that, we dive into the abundant bacterial proteomic data with the assistance of bioinformatics techniques in order to investigate the two factors at molecular level thanks to the fast development of high-throughput sequencing technology. Sequences of durability-related genes sourced from Gene Ontology and UniProt databases and virulence factors collected from Virulence Factor Database are used to search 20 corresponding bacterial proteomes in batch mode for homologous sequences via the HMMER software package. Statistical analysis only identified a modest, and not statistically significant correlation between mortality and survival time for eight non-vector-borne bacteria with sit-and-wait potentials. Meanwhile, through between-group comparisons, bacteria with higher host

  13. Role of viral and bacterial pathogens in causing pneumonia among Western Australian children: a case–control study protocol

    PubMed Central

    Bhuiyan, Mejbah Uddin; Snelling, Thomas L; West, Rachel; Lang, Jurissa; Rahman, Tasmina; Borland, Meredith L; Thornton, Ruth; Kirkham, Lea-Ann; Sikazwe, Chisha; Martin, Andrew C; Richmond, Peter C; Smith, David W; Jaffe, Adam; Blyth, Christopher C

    2018-01-01

    Introduction Pneumonia is the leading cause of childhood morbidity and mortality globally. Introduction of the conjugate Haemophilus influenzae B and multivalent pneumococcal vaccines in developed countries including Australia has significantly reduced the overall burden of bacterial pneumonia. With the availability of molecular diagnostics, viruses are frequently detected in children with pneumonia either as primary pathogens or predispose to secondary bacterial infection. Many respiratory pathogens that are known to cause pneumonia are also identified in asymptomatic children, so the true contribution of these pathogens to childhood community-acquired pneumonia (CAP) remains unclear. Since the introduction of pneumococcal vaccines, very few comprehensive studies from developed countries have attempted to determine the bacterial and viral aetiology of pneumonia. We aim to determine the contribution of bacteria and viruses to childhood CAP to inform further development of effective diagnosis, treatment and preventive strategies. Methods and analysis We are conducting a prospective case–control study (PneumoWA) where cases are children with radiologically confirmed pneumonia admitted to Princess Margaret Hospital for Children (PMH) and controls are healthy children identified from PMH outpatient clinics and from local community immunisation clinics. The case–control ratio is 1:1 with 250 children to be recruited in each arm. Nasopharyngeal swabs are collected from both cases and controls to detect the presence of viruses and bacteria by PCR; pathogen load will be assessed by quantitative PCR. The prevalence of pathogens detected in cases and controls will be compared, the OR of detection and population attributable fraction to CAP for each pathogen will be determined; relationships between pathogen load and disease status and severity will be explored. Ethics and dissemination This study has been approved by the human research ethics committees of PMH, Perth

  14. Insights into the Emergent Bacterial Pathogen Cronobacter spp., Generated by Multilocus Sequence Typing and Analysis

    PubMed Central

    Joseph, Susan; Forsythe, Stephen J.

    2012-01-01

    Cronobacter spp. (previously known as Enterobacter sakazakii) is a bacterial pathogen affecting all age groups, with particularly severe clinical complications in neonates and infants. One recognized route of infection being the consumption of contaminated infant formula. As a recently recognized bacterial pathogen of considerable importance and regulatory control, appropriate detection, and identification schemes are required. The application of multilocus sequence typing (MLST) and analysis (MLSA) of the seven alleles atpD, fusA, glnS, gltB, gyrB, infB, and ppsA (concatenated length 3036 base pairs) has led to considerable advances in our understanding of the genus. This approach is supported by both the reliability of DNA sequencing over subjective phenotyping and the establishment of a MLST database which has open access and is also curated; http://www.pubMLST.org/cronobacter. MLST has been used to describe the diversity of the newly recognized genus, instrumental in the formal recognition of new Cronobacter species (C. universalis and C. condimenti) and revealed the high clonality of strains and the association of clonal complex 4 with neonatal meningitis cases. Clearly the MLST approach has considerable benefits over the use of non-DNA sequence based methods of analysis for newly emergent bacterial pathogens. The application of MLST and MLSA has dramatically enabled us to better understand this opportunistic bacterium which can cause irreparable damage to a newborn baby’s brain, and has contributed to improved control measures to protect neonatal health. PMID:23189075

  15. Global analysis of gene expression reveals mRNA superinduction is required for the inducible immune response to a bacterial pathogen

    PubMed Central

    Barry, Kevin C; Ingolia, Nicholas T; Vance, Russell E

    2017-01-01

    The inducible innate immune response to infection requires a concerted process of gene expression that is regulated at multiple levels. Most global analyses of the innate immune response have focused on transcription induced by defined immunostimulatory ligands, such as lipopolysaccharide. However, the response to pathogens involves additional complexity, as pathogens interfere with virtually every step of gene expression. How cells respond to pathogen-mediated disruption of gene expression to nevertheless initiate protective responses remains unclear. We previously discovered that a pathogen-mediated blockade of host protein synthesis provokes the production of specific pro-inflammatory cytokines. It remains unclear how these cytokines are produced despite the global pathogen-induced block of translation. We addressed this question by using parallel RNAseq and ribosome profiling to characterize the response of macrophages to infection with the intracellular bacterial pathogen Legionella pneumophila. Our results reveal that mRNA superinduction is required for the inducible immune response to a bacterial pathogen. DOI: http://dx.doi.org/10.7554/eLife.22707.001 PMID:28383283

  16. Chlamydia trachomatis dapF Encodes a Bifunctional Enzyme Capable of Both d-Glutamate Racemase and Diaminopimelate Epimerase Activities

    PubMed Central

    2018-01-01

    ABSTRACT Peptidoglycan is a sugar/amino acid polymer unique to bacteria and essential for division and cell shape maintenance. The d-amino acids that make up its cross-linked stem peptides are not abundant in nature and must be synthesized by bacteria de novo. d-Glutamate is present at the second position of the pentapeptide stem and is strictly conserved in all bacterial species. In Gram-negative bacteria, d-glutamate is generated via the racemization of l-glutamate by glutamate racemase (MurI). Chlamydia trachomatis is the leading cause of infectious blindness and sexually transmitted bacterial infections worldwide. While its genome encodes a majority of the enzymes involved in peptidoglycan synthesis, no murI homologue has ever been annotated. Recent studies have revealed the presence of peptidoglycan in C. trachomatis and confirmed that its pentapeptide includes d-glutamate. In this study, we show that C. trachomatis synthesizes d-glutamate by utilizing a novel, bifunctional homologue of diaminopimelate epimerase (DapF). DapF catalyzes the final step in the synthesis of meso-diaminopimelate, another amino acid unique to peptidoglycan. Genetic complementation of an Escherichia coli murI mutant demonstrated that Chlamydia DapF can generate d-glutamate. Biochemical analysis showed robust activity, but unlike canonical glutamate racemases, activity was dependent on the cofactor pyridoxal phosphate. Genetic complementation, enzymatic characterization, and bioinformatic analyses indicate that chlamydial DapF shares characteristics with other promiscuous/primordial enzymes, presenting a potential mechanism for d-glutamate synthesis not only in Chlamydia but also numerous other genera within the Planctomycetes-Verrucomicrobiae-Chlamydiae superphylum that lack recognized glutamate racemases. PMID:29615498

  17. Chlamydia Screening Decision Study

    DTIC Science & Technology

    2000-05-01

    United States Center for Disease Control and Prevention (CDC) reports 3 million genital chlamydia infections annually (Eradication, 1998). Many infected...trachomatis infection of the genital tract Clinician A professional health care provider, regardless of educational preparation who has credentials to...available literature on genital chlamydia infection in women. Civilian population studies and military population studies are presented. Research

  18. Interaction of antimicrobial peptides with bacterial polysaccharides from lung pathogens.

    PubMed

    Herasimenka, Yury; Benincasa, Monica; Mattiuzzo, Maura; Cescutti, Paola; Gennaro, Renato; Rizzo, Roberto

    2005-07-01

    The interaction of two cathelicidin antimicrobial peptides, LL-37 and SMAP-29, with three bacterial polysaccharides, respectively, produced by Pseudomonas aeruginosa, Burkholderia cepacia and Klebsiella pneumoniae, was investigated to identify possible mechanisms adopted by lung pathogens to escape the action of innate immunity effectors. In vitro assays indicated that the antibacterial activity of both peptides was inhibited to a variable extent by the three polysaccharides. Circular dichroism experiments showed that these induced an alpha-helical conformation in the two peptides, with the polysaccharides from K. pneumoniae and B. cepacia showing, respectively, the highest and the lowest effect. Fluorescence measurements also indicated the presence of peptide-polysaccharide interactions. A model is proposed in which the binding of peptides to the polysaccharide molecules induces, at low polysaccharide to peptide ratios, a higher order of aggregation, due to peptide-peptide interactions. Overall, these results suggest that binding of the peptides by the polysaccharides produced by lung pathogens can contribute to the impairment of peptide-based innate defenses of airway surface.

  19. Diverse mechanisms of metaeffector activity in an intracellular bacterial pathogen, Legionella pneumophila

    DOE PAGES

    Urbanus, Malene L.; Quaile, Andrew T.; Stogios, Peter J.; ...

    2016-12-16

    Pathogens deliver complex arsenals of translocated effector proteins to host cells during infection, but the extent to which these proteins are regulated once inside the eukaryotic cell remains poorly defined. Among all bacterial pathogens, Legionella pneumophila maintains the largest known set of translocated substrates, delivering over 300 proteins to the host cell via its Type IVB, Icm/Dot translocation system. Backed by a few notable examples of effector–effector regulation in L. pneumophila, we sought to define the extent of this phenomenon through a systematic analysis of effector–effector functional interaction. We used Saccharomyces cerevisiae, an established proxy for the eukaryotic host, tomore » query > 108,000 pairwise genetic interactions between two compatible expression libraries of ~330 L. pneumophila–translocated substrates. While capturing all known examples of effector–effector suppression, we identify fourteen novel translocated substrates that suppress the activity of other bacterial effectors and one pair with synergistic activities. In at least nine instances, this regulation is direct—a hallmark of an emerging class of proteins called metaeffectors, or “effectors of effectors”. Through detailed structural and functional analysis, we show that metaeffector activity derives from a diverse range of mechanisms, shapes evolution, and can be used to reveal important aspects of each cognate effector's function. Here, metaeffectors, along with other, indirect, forms of effector–effector modulation, may be a common feature of many intracellular pathogens—with unrealized potential to inform our understanding of how pathogens regulate their interactions with the host cell.« less

  20. Evidence for the existence of two new members of the family Chlamydiaceae and proposal of Chlamydia avium sp. nov. and Chlamydia gallinacea sp. nov.

    PubMed

    Sachse, Konrad; Laroucau, Karine; Riege, Konstantin; Wehner, Stefanie; Dilcher, Meik; Creasy, Heather Huot; Weidmann, Manfred; Myers, Garry; Vorimore, Fabien; Vicari, Nadia; Magnino, Simone; Liebler-Tenorio, Elisabeth; Ruettger, Anke; Bavoil, Patrik M; Hufert, Frank T; Rosselló-Móra, Ramon; Marz, Manja

    2014-03-01

    The family Chlamydiaceae with the recombined single genus Chlamydia currently comprises nine species, all of which are obligate intracellular organisms distinguished by a unique biphasic developmental cycle. Anecdotal evidence from epidemiological surveys in flocks of poultry, pigeons and psittacine birds have indicated the presence of non-classified chlamydial strains, some of which may act as pathogens. In the present study, phylogenetic analysis of ribosomal RNA and ompA genes, as well as multi-locus sequence analysis of 11 field isolates were conducted. All independent analyses assigned the strains into two different clades of monophyletic origin corresponding to pigeon and psittacine strains or poultry isolates, respectively. Comparative genome analysis involving the type strains of currently accepted Chlamydiaceae species and the designated type strains representing the two new clades confirmed that the latter could be classified into two different species as their average nucleotide identity (ANI) values were always below 94%, both with the closest relative species and between themselves. In view of the evidence obtained from the analyses, we propose the addition of two new species to the current classification: Chlamydia avium sp. nov. comprising strains from pigeons and psittacine birds (type strain 10DC88(T); DSMZ: DSM27005(T), CSUR: P3508(T)) and Chlamydia gallinacea sp. nov. comprising strains from poultry (type strain 08-1274/3(T); DSMZ: DSM27451(T), CSUR: P3509(T)). Copyright © 2014 Elsevier GmbH. All rights reserved.

  1. Strategic targeting of essential host-pathogen interactions in chlamydial disease.

    PubMed

    Coombes, B K; Johnson, D L; Mahony, J B

    2002-09-01

    The chlamydiae are obligate intracellular gram-negative bacteria that are exquisitely adapted for exploitation of their hosts and contribute to a wide range of acute and chronic human diseases. Acute infections treated with non-cidal antibiotics can lead to the development of persistent, non-replicating bacteria with the corollary that these persistent (yet viable) chlamydiae can resist eradication by further antimicrobial treatment and cause chronic disease. These findings highlight an urgent need for therapeutics that are effective against persistent infections and call for creative approaches to identify potential drug targets. The C. pneumoniae and C. trachomatis genome projects have greatly expanded our knowledge of chlamydial pathogenesis and have provided an enormous potential for the identification and characterization of unknown genes and potential virulence factors in these bacteria. As intracellular pathogens, chlamydiae rely on host cells for all aspects of their survival, from the initial attachment with host cell membranes, to cellular invasion, acquisition of host cell metabolites and intracellular replication. As such, the molecules participating in interactions with the host could be attractive targets for therapeutic intervention. This review describes recent advances in chlamydial genomics, proteomics and cell biology that have cast light on host-pathogen relations that are essential for chlamydial survival. Using this knowledge, we discuss how strategically interfering with essential interactions between chlamydiae and the host cell could be exploited to develop an innovative, and potentially more relevant arsenal of therapeutic compounds.

  2. A Bacterial Pathogen uses Distinct Type III Secretion Systems to Alternate between Host Kingdom

    USDA-ARS?s Scientific Manuscript database

    Gram-negative bacterial pathogens of eukaryotes often secrete proteins directly into host cells via a needle-like protein channel called a ‘type III secretion system’ (T3SS). Bacteria that are adapted to either animal or plant hosts use phylogenetically distinct T3SSs for secreting proteins. Here, ...

  3. Nucleotide and phylogenetic analyses of the Chlamydia trachomatis ompA gene indicates it is a hotspot for mutation

    USDA-ARS?s Scientific Manuscript database

    Background: Serovars of the human pathogen Chlamydia trachomatis occupy one of three specific tissue niches. Genomic analyses indicate that the serovars have a phylogeny congruent with their pathobiology and have an average substitution rate of less than one nucleotide per kilobase. The ompA gene, h...

  4. Characterization of bacterial pathogens in rural and urban irrigation water.

    PubMed

    Aijuka, Matthew; Charimba, George; Hugo, Celia J; Buys, Elna M

    2015-03-01

    The study aimed to compare the bacteriological quality of an urban and rural irrigation water source. Bacterial counts, characterization, identification and diversity of aerobic bacteria were determined. Escherichia coli isolated from both sites was subjected to antibiotic susceptibility testing, virulence gene (Stx1/Stx2 and eae) determination and (GTG)5 Rep-PCR fingerprinting. Low mean monthly counts for aerobic spore formers, anaerobic spore formers and Staphylococcus aureus were noted although occasional spikes were observed. The most prevalent bacterial species at both sites were Bacillus spp., E. coli and Enterobacter spp. In addition, E. coli and Bacillus spp. were most prevalent in winter and summer respectively. Resistance to at least one antibiotic was 84% (rural) and 83% (urban). Highest resistance at both sites was to cephalothin and ampicillin. Prevalence of E. coli possessing at least one virulence gene (Stx1/Stx2 and eae) was 15% (rural) and 42% (urban). All (rural) and 80% (urban) of E. coli possessing virulence genes showed antibiotic resistance. Complete genetic relatedness (100%) was shown by 47% of rural and 67% of urban E. coli isolates. Results from this study show that surface irrigation water sources regardless of geographical location and surrounding land-use practices can be reservoirs of similar bacterial pathogens.

  5. Impact of Active Metabolism on Chlamydia trachomatis Elementary Body Transcript Profile and Infectivity.

    PubMed

    Grieshaber, Scott; Grieshaber, Nicole; Yang, Hong; Baxter, Briana; Hackstadt, Ted; Omsland, Anders

    2018-07-15

    Bacteria of the genus Chlamydia include the significant human pathogens Chlamydia trachomatis and C. pneumoniae All chlamydiae are obligate intracellular parasites that depend on infection of a host cell and transition through a biphasic developmental cycle. Following host cell invasion by the infectious elementary body (EB), the pathogen transitions to the replicative but noninfectious reticulate body (RB). Differentiation of the RB back to the EB is essential to generate infectious progeny. While the EB form has historically been regarded as metabolically inert, maintenance of infectivity during incubation with specific nutrients has revealed active maintenance of the infectious phenotype. Using transcriptome sequencing, we show that the transcriptome of extracellular EBs incubated under metabolically stimulating conditions does not cluster with germinating EBs but rather with the transcriptome of EBs isolated directly from infected cells. In addition, the transcriptional profile of the extracellular metabolizing EBs more closely resembled that of EB production than germination. Maintenance of infectivity of extracellular EBs was achieved by metabolizing chemically diverse compounds, including glucose 6-phosphate, ATP, and amino acids, all of which can be found in extracellular environments, including mucosal secretions. We further show that the EB cell type actively maintains infectivity in the inclusion after terminal differentiation. Overall, these findings contribute to the emerging understanding that the EB cell form is actively maintained through metabolic processes after terminal differentiation to facilitate prolonged infectivity within the inclusion and under host cell free conditions, for example, following deposition at mucosal surfaces. IMPORTANCE Chlamydiae are obligate intracellular Gram-negative bacteria that are responsible for a wide range of diseases in both animal and human hosts. According to the Centers for Disease Control and Prevention, C

  6. SIGIRR, a negative regulator of TLR/IL-1R signalling promotes Microbiota dependent resistance to colonization by enteric bacterial pathogens.

    PubMed

    Sham, Ho Pan; Yu, Emily Yi Shan; Gulen, Muhammet F; Bhinder, Ganive; Stahl, Martin; Chan, Justin M; Brewster, Lara; Morampudi, Vijay; Gibson, Deanna L; Hughes, Michael R; McNagny, Kelly M; Li, Xiaoxia; Vallance, Bruce A

    2013-01-01

    Enteric bacterial pathogens such as enterohemorrhagic E. coli (EHEC) and Salmonella Typhimurium target the intestinal epithelial cells (IEC) lining the mammalian gastrointestinal tract. Despite expressing innate Toll-like receptors (TLRs), IEC are innately hypo-responsive to most bacterial products. This is thought to prevent maladaptive inflammatory responses against commensal bacteria, but it also limits antimicrobial responses by IEC to invading bacterial pathogens, potentially increasing host susceptibility to infection. One reason for the innate hypo-responsiveness of IEC is their expression of Single Ig IL-1 Related Receptor (SIGIRR), a negative regulator of interleukin (IL)-1 and TLR signaling. To address whether SIGIRR expression and the innate hypo-responsiveness of IEC impacts on enteric host defense, Sigirr deficient (-/-) mice were infected with the EHEC related pathogen Citrobacter rodentium. Sigirr -/- mice responded with accelerated IEC proliferation and strong pro-inflammatory and antimicrobial responses but surprisingly, Sigirr -/- mice proved dramatically more susceptible to infection than wildtype mice. Through haematopoietic transplantation studies, it was determined that SIGIRR expression by non-haematopoietic cells (putative IEC) regulated these responses. Moreover, the exaggerated responses were found to be primarily dependent on IL-1R signaling. Whilst exploring the basis for their susceptibility, Sigirr -/- mice were found to be unusually susceptible to intestinal Salmonella Typhimurium colonization, developing enterocolitis without the typical requirement for antibiotic based removal of competing commensal microbes. Strikingly, the exaggerated antimicrobial responses seen in Sigirr -/- mice were found to cause a rapid and dramatic loss of commensal microbes from the infected intestine. This depletion appears to reduce the ability of the microbiota to compete for space and nutrients (colonization resistance) with the invading pathogens

  7. Chlamydia screening interventions from community pharmacies: a systematic review.

    PubMed

    Gudka, Sajni; Afuwape, Folasade E; Wong, Bessie; Yow, Xuan Li; Anderson, Claire; Clifford, Rhonda M

    2013-07-01

    Chlamydia (Chlamydia trachomatis) is the most commonly notified sexually transmissible infection in Australia. Increasing the number of people aged 16-25 years being tested for chlamydia has become a key objective. The strategy recommends that chlamydia screening sites should be easy to access. Community pharmacies are conveniently located and easily accessible. This review aimed to determine the different types of pharmacy-based chlamydia screening interventions, describe their uptake rates, and understand issues around the acceptability of and barriers to testing. Seven electronic databases were searched for peer-reviewed articles published up to 30 October 2011 for studies that reported chlamydia screening interventions from community pharmacies, or had qualitative evidence on acceptability or barriers linked with interventions. Of the 163 publications identified, 12 met the inclusion criteria. Nine reported chlamydia screening interventions in a pharmacy setting, whereas three focussed on perspectives on chlamydia screening. Pharmacists could offer a chlamydia test to consumers attending the pharmacy for a sexual health-related consultation, or consumers could request a chlamydia test as part of a population-based intervention. Participating consumers said pharmacies were accessible and convenient, and pharmacists were competent when offering a chlamydia test. Pharmacists reported selectively offering tests to women they thought would be most at risk, undermining the principles of opportunistic interventions. Chlamydia screening from community pharmacies is feasible, and can provide an accessible, convenient venue to get a test. Professional implementation support, alongside resources, education and training programs, and incentives may overcome the issue of pharmacists selectively offering the test.

  8. Nitrate, nitrite and nitric oxide reductases: from the last universal common ancestor to modern bacterial pathogens

    PubMed Central

    Vázquez-Torres, Andrés; Bäumler, Andreas

    2016-01-01

    The electrochemical gradient that ensues from the enzymatic activity of cytochromes such as nitrate reductase, nitric oxide reductase, and quinol oxidase contributes to the bioenergetics of the bacterial cell. Reduction of nitrogen oxides by bacterial pathogens can, however, be uncoupled from proton translocation and biosynthesis of ATP or NH4+, but still linked to quinol and NADH oxidation. Ancestral nitric oxide reductases, as well as cytochrome coxidases and quinol bo oxidases evolved from the former, are capable of binding and detoxifying nitric oxide to nitrous oxide. The NO-metabolizing activity associated with these cytochromes can be a sizable source of antinitrosative defense in bacteria during their associations with host cells. Nitrosylation of terminal cytochromes arrests respiration, reprograms bacterial metabolism, stimulates antioxidant defenses and alters antibiotic cytotoxicity. Collectively, the bioenergetics and regulation of redox homeostasis that accompanies the utilization of nitrogen oxides and detoxification of nitric oxide by cytochromes of the electron transport chain increases fitness of many Gram-positive and –negative pathogens during their associations with invertebrate and vertebrate hosts. PMID:26426528

  9. Regulation of transcription by eukaryotic-like serine-threonine kinases and phosphatases in Gram-positive bacterial pathogens

    PubMed Central

    Wright, David P; Ulijasz, Andrew T

    2014-01-01

    Bacterial eukaryotic-like serine threonine kinases (eSTKs) and serine threonine phosphatases (eSTPs) have emerged as important signaling elements that are indispensable for pathogenesis. Differing considerably from their histidine kinase counterparts, few eSTK genes are encoded within the average bacterial genome, and their targets are pleiotropic in nature instead of exclusive. The growing list of important eSTK/P substrates includes proteins involved in translation, cell division, peptidoglycan synthesis, antibiotic tolerance, resistance to innate immunity and control of virulence factors. Recently it has come to light that eSTK/Ps also directly modulate transcriptional machinery in many microbial pathogens. This novel form of regulation is now emerging as an additional means by which bacteria can alter their transcriptomes in response to host-specific environmental stimuli. Here we focus on the ability of eSTKs and eSTPs in Gram-positive bacterial pathogens to directly modulate transcription, the known mechanistic outcomes of these modifications, and their roles as an added layer of complexity in controlling targeted RNA synthesis to enhance virulence potential. PMID:25603430

  10. Cultivation and qPCR Detection of Pathogenic and Antibiotic-Resistant Bacterial Establishment in Naive Broiler Houses.

    PubMed

    Brooks, J P; McLaughlin, M R; Adeli, A; Miles, D M

    2016-05-01

    Conventional commercial broiler production involves the rearing of more than 20,000 broilers in a single confined space for approximately 6.5 wk. This environment is known for harboring pathogens and antibiotic-resistant bacteria, but studies have focused on previously established houses with mature litter microbial populations. In the current study, a set of three naive houses were followed from inception through 11 broiler flocks and monitored for ambient climatic conditions, bacterial pathogens, and antibiotic resistance. Within the first 3 wk of the first flock cycle, 100% of litter samples were positive for and , whereas was cultivation negative but PCR positive. Antibiotic resistance genes were ubiquitously distributed throughout the litter within the first flock, approaching 10 to 10 genomic units g. Preflock litter levels were approximately 10 CFU g for heterotrophic plate count bacteria, whereas midflock levels were >10 colony forming units (CFU) g; other indicators demonstrated similar increases. The influence of intrahouse sample location was minor. In all likelihood, given that preflock levels were negative for pathogens and antibiotic resistance genes and 4 to 5 Log lower than flock levels for indicators, incoming birds most likely provided the colonizing microbiome, although other sources were not ruled out. Most bacterial groups experienced a cyclical pattern of litter contamination seen in other studies, whereas microbial stabilization required approximately four flocks. This study represents a first-of-its-kind view into the time required for bacterial pathogens and antibiotic resistance to colonize and establish in naive broiler houses. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Bacterial Pathogens and Community Composition in Advanced Sewage Treatment Systems Revealed by Metagenomics Analysis Based on High-Throughput Sequencing

    PubMed Central

    Lu, Xin; Zhang, Xu-Xiang; Wang, Zhu; Huang, Kailong; Wang, Yuan; Liang, Weigang; Tan, Yunfei; Liu, Bo; Tang, Junying

    2015-01-01

    This study used 454 pyrosequencing, Illumina high-throughput sequencing and metagenomic analysis to investigate bacterial pathogens and their potential virulence in a sewage treatment plant (STP) applying both conventional and advanced treatment processes. Pyrosequencing and Illumina sequencing consistently demonstrated that Arcobacter genus occupied over 43.42% of total abundance of potential pathogens in the STP. At species level, potential pathogens Arcobacter butzleri, Aeromonas hydrophila and Klebsiella pneumonia dominated in raw sewage, which was also confirmed by quantitative real time PCR. Illumina sequencing also revealed prevalence of various types of pathogenicity islands and virulence proteins in the STP. Most of the potential pathogens and virulence factors were eliminated in the STP, and the removal efficiency mainly depended on oxidation ditch. Compared with sand filtration, magnetic resin seemed to have higher removals in most of the potential pathogens and virulence factors. However, presence of the residual A. butzleri in the final effluent still deserves more concerns. The findings indicate that sewage acts as an important source of environmental pathogens, but STPs can effectively control their spread in the environment. Joint use of the high-throughput sequencing technologies is considered a reliable method for deep and comprehensive overview of environmental bacterial virulence. PMID:25938416

  12. Phage-protease-peptide: a novel trifecta enabling multiplex detection of viable bacterial pathogens.

    PubMed

    Alcaine, S D; Tilton, L; Serrano, M A C; Wang, M; Vachet, R W; Nugen, S R

    2015-10-01

    Bacteriophages represent rapid, readily targeted, and easily produced molecular probes for the detection of bacterial pathogens. Molecular biology techniques have allowed researchers to make significant advances in the bioengineering of bacteriophage to further improve speed and sensitivity of detection. Despite their host specificity, bacteriophages have not been meaningfully leveraged in multiplex detection of bacterial pathogens. We propose a proof-of-principal phage-based scheme to enable multiplex detection. Our scheme involves bioengineering bacteriophage to carry a gene for a specific protease, which is expressed during infection of the target cell. Upon lysis, the protease is released to cleave a reporter peptide, and the signal detected. Here we demonstrate the successful (i) modification of T7 bacteriophage to carry tobacco etch virus (TEV) protease; (ii) expression of TEV protease by Escherichia coli following infection by our modified T7, an average of 2000 units of protease per phage are produced during infection; and (iii) proof-of-principle detection of E. coli in 3 h after a primary enrichment via TEV protease activity using a fluorescent peptide and using a designed target peptide for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis (MALDI-TOF MS) analysis. This proof-of-principle can be translated to other phage-protease-peptide combinations to enable multiplex bacterial detection and readily adopted on multiple platforms, like MALDI-TOF MS or fluorescent readers, commonly found in labs.

  13. How can we eradicate chlamydia?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rousser, Margaret; He, Wei

    Chlamydia is the most commonly contracted STI and affects millions of people worldwide, but it's not just hurting humans--it's also decimating koala populations! Find out how researches at the Lab are working toward developing the first vaccine against chlamydia--good news for humans and koalas.

  14. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment.

    PubMed

    Davin-Regli, Anne; Pagès, Jean-Marie

    2015-01-01

    Enterobacter aerogenes and E. cloacae have been reported as important opportunistic and multiresistant bacterial pathogens for humans during the last three decades in hospital wards. These Gram-negative bacteria have been largely described during several outbreaks of hospital-acquired infections in Europe and particularly in France. The dissemination of Enterobacter sp. is associated with the presence of redundant regulatory cascades that efficiently control the membrane permeability ensuring the bacterial protection and the expression of detoxifying enzymes involved in antibiotic degradation/inactivation. In addition, these bacterial species are able to acquire numerous genetic mobile elements that strongly contribute to antibiotic resistance. Moreover, this particular fitness help them to colonize several environments and hosts and rapidly and efficiently adapt their metabolism and physiology to external conditions and environmental stresses. Enterobacter is a versatile bacterium able to promptly respond to the antibiotic treatment in the colonized patient. The balance of the prevalence, E. aerogenes versus E. cloacae, in the reported hospital infections during the last period, questions about the horizontal transmission of mobile elements containing antibiotic resistance genes, e.g., the efficacy of the exchange of resistance genes Klebsiella pneumoniae to Enterobacter sp. It is also important to mention the possible role of antibiotic use in the treatment of bacterial infectious diseases in this E. aerogenes/E. cloacae evolution.

  15. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment

    PubMed Central

    Davin-Regli, Anne; Pagès, Jean-Marie

    2015-01-01

    Enterobacter aerogenes and E. cloacae have been reported as important opportunistic and multiresistant bacterial pathogens for humans during the last three decades in hospital wards. These Gram-negative bacteria have been largely described during several outbreaks of hospital-acquired infections in Europe and particularly in France. The dissemination of Enterobacter sp. is associated with the presence of redundant regulatory cascades that efficiently control the membrane permeability ensuring the bacterial protection and the expression of detoxifying enzymes involved in antibiotic degradation/inactivation. In addition, these bacterial species are able to acquire numerous genetic mobile elements that strongly contribute to antibiotic resistance. Moreover, this particular fitness help them to colonize several environments and hosts and rapidly and efficiently adapt their metabolism and physiology to external conditions and environmental stresses. Enterobacter is a versatile bacterium able to promptly respond to the antibiotic treatment in the colonized patient. The balance of the prevalence, E. aerogenes versus E. cloacae, in the reported hospital infections during the last period, questions about the horizontal transmission of mobile elements containing antibiotic resistance genes, e.g., the efficacy of the exchange of resistance genes Klebsiella pneumoniae to Enterobacter sp. It is also important to mention the possible role of antibiotic use in the treatment of bacterial infectious diseases in this E. aerogenes/E. cloacae evolution. PMID:26042091

  16. Detection of human bacterial pathogens in ticks collected from Louisiana black bears (Ursus americanus luteolus)

    PubMed Central

    Leydet, Brian F.; Liang, Fang-Ting

    2013-01-01

    There are 4 major human-biting tick species in the northeastern United States, which include: Amblyomma americanum, Amblyomma maculatum, Dermacentor variabilis, and Ixodes scapularis. The black bear is a large mammal that has been shown to be parasitized by all the aforementioned ticks. We investigated the bacterial infections in ticks collected from Louisiana black bears (Ursus americanus subspecies luteolus). Eighty-six ticks were collected from 17 black bears in Louisiana from June 2010 to March 2011. All 4 common human-biting tick species were represented. Each tick was subjected to polymerase chain reaction (PCR) targeting select bacterial pathogens and symbionts. Bacterial DNA was detected in 62% of ticks (n=53). Rickettsia parkeri, the causative agent of an emerging spotted fever group rickettsiosis, was identified in 66% of A. maculatum, 28% of D. variabilis, and 11% of I. scapularis. The Lyme disease bacterium, Borrelia burgdorferi, was detected in 2 I. scapularis, while one Am. americanum was positive for Borrelia bissettii, a putative human pathogen. The rickettsial endosymbionts Candidatus Rickettsia andeanae, rickettsial endosymbiont of I. scapularis, and Rickettsia amblyommii were detected in their common tick hosts at 21%, 39%, and 60%, respectively. All ticks were PCR-negative for Anaplasma phagocytophilum, Ehrlichia spp., and Babesia microti. This is the first reported detection of R. parkeri in vector ticks in Louisiana; we also report the novel association of R. parkeri with I. scapularis. Detection of both R. parkeri and Bo. burgdorferi in their respective vectors in Louisiana demands further investigation to determine potential for human exposure to these pathogens. PMID:23415850

  17. The immune response against Chlamydia suis genital tract infection partially protects against re-infection.

    PubMed

    De Clercq, Evelien; Devriendt, Bert; Yin, Lizi; Chiers, Koen; Cox, Eric; Vanrompay, Daisy

    2014-09-25

    The aim of the present study was to reveal the characteristic features of genital Chlamydia suis infection and re-infection in female pigs by studying the immune response, pathological changes, replication of chlamydial bacteria in the genital tract and excretion of viable bacteria. Pigs were intravaginally infected and re-infected with C. suis strain S45, the type strain of this species. We demonstrated that S45 is pathogenic for the female urogenital tract. Chlamydia replication occurred throughout the urogenital tract, causing inflammation and pathology. Furthermore, genital infection elicited both cellular and humoral immune responses. Compared to the primo-infection of pigs with C. suis, re-infection was characterized by less severe macroscopic lesions and less chlamydial elementary bodies and inclusions in the urogenital tract. This indicates the development of a certain level of protection following the initial infection. Protective immunity against re-infection coincided with higher Chlamydia-specific IgG and IgA antibody titers in sera and vaginal secretions, higher proliferative responses of peripheral blood mononuclear cells (PBMC), higher percentages of blood B lymphocytes, monocytes and CD8⁺ T cells and upregulated production of IFN-γ and IL-10 by PBMC.

  18. Pathogenic outcome following experimental infection of sheep with Chlamydia abortus variant strains LLG and POS.

    PubMed

    Livingstone, Morag; Wheelhouse, Nicholas; Ensor, Hannah; Rocchi, Mara; Maley, Stephen; Aitchison, Kevin; Wattegedera, Sean; Wilson, Kim; Sait, Michelle; Siarkou, Victoria; Vretou, Evangelia; Entrican, Gary; Dagleish, Mark; Longbottom, David

    2017-01-01

    This study investigated the pathogenesis of two variant strains (LLG and POS) of Chlamydia abortus, in comparison to a typical wild-type strain (S26/3) which is known to be responsible for late term abortion in small ruminants. Challenge with the three strains at mid-gestation resulted in similar pregnancy outcomes, with abortion occurring in approximately 50-60% of ewes with the mean gestational lengths also being similar. However, differences were observed in the severity of placental pathology, with infection appearing milder for strain LLG, which was reflected in the lower number of organisms shed in vaginal swabs post-partum and less gross pathology and organisms present in placental smears. Results for strain POS were somewhat different than LLG with a more focal restriction of infection observed. Post-abortion antibody responses revealed prominent differences in seropositivity to the major outer membrane protein (MOMP) present in elementary body (EB) preparations under denaturing conditions, most notably with anti-LLG and anti-POS convalescent sera where there was no or reduced detection of MOMP present in EBs derived from the three strains. These results and additional analysis of whole EB and chlamydial outer membrane complex preparations suggest that there are conformational differences in MOMP for the three strains. Overall, the results suggest that gross placental pathology and clinical outcome is not indicative of bacterial colonization and the severity of infection. The results also highlight potential conformational differences in MOMP epitopes that perhaps impact on disease diagnosis and the development of new vaccines.

  19. Virulence and pathogen multiplication: a serial passage experiment in the hypervirulent bacterial insect-pathogen Xenorhabdus nematophila.

    PubMed

    Chapuis, Élodie; Pagès, Sylvie; Emelianoff, Vanya; Givaudan, Alain; Ferdy, Jean-Baptiste

    2011-01-31

    The trade-off hypothesis proposes that the evolution of pathogens' virulence is shaped by a link between virulence and contagiousness. This link is often assumed to come from the fact that pathogens are contagious only if they can reach high parasitic load in the infected host. In this paper we present an experimental test of the hypothesis that selection on fast replication can affect virulence. In a serial passage experiment, we selected 80 lines of the bacterial insect-pathogen Xenorhabdus nematophila to multiply fast in an artificial culture medium. This selection resulted in shortened lag phase in our selected bacteria. We then injected these bacteria into insects and observed an increase in virulence. This could be taken as a sign that virulence in Xenorhabdus is linked to fast multiplication. But we found, among the selected lineages, either no link or a positive correlation between lag duration and virulence: the most virulent bacteria were the last to start multiplying. We then surveyed phenotypes that are under the control of the flhDC super regulon, which has been shown to be involved in Xenorhabdus virulence. We found that, in one treatment, the flhDC regulon has evolved rapidly, but that the changes we observed were not connected to virulence. All together, these results indicate that virulence is, in Xenorhabdus as in many other pathogens, a multifactorial trait. Being able to grow fast is one way to be virulent. But other ways exist which renders the evolution of virulence hard to predict.

  20. Transport of selected bacterial pathogens in agricultural soil and quartz sand.

    PubMed

    Schinner, Tim; Letzner, Adrian; Liedtke, Stefan; Castro, Felipe D; Eydelnant, Irwin A; Tufenkji, Nathalie

    2010-02-01

    The protection of groundwater supplies from microbial contamination necessitates a solid understanding of the key factors controlling the migration and retention of pathogenic organisms through the subsurface environment. The transport behavior of five waterborne pathogens was examined using laboratory-scale columns packed with clean quartz at two solution ionic strengths (10 mM and 30 mM). Escherichia coli O157:H7 and Yersinia enterocolitica were selected as representative Gram-negative pathogens, Enterococcus faecalis was selected as a representative Gram-positive organism, and two cyanobacteria (Microcystis aeruginosa and Anabaena flos-aquae) were also studied. The five organisms exhibit differing attachment efficiencies to the quartz sand. The surface (zeta) potential of the microorganisms was characterized over a broad range of pH values (2-8) at two ionic strengths (10 mM and 30 mM). These measurements are used to evaluate the observed attachment behavior within the context of the DLVO theory of colloidal stability. To better understand the possible link between bacterial transport in model quartz sand systems and natural soil matrices, additional experiments were conducted with two of the selected organisms using columns packed with loamy sand obtained from an agricultural field. This investigation highlights the need for further characterization of waterborne pathogen surface properties and transport behavior over a broader range of environmentally relevant conditions. Copyright 2008 Elsevier Ltd. All rights reserved.

  1. The Impact of Protein Phosphorylation on Chlamydial Physiology

    PubMed Central

    Claywell, Ja E.; Matschke, Lea M.; Fisher, Derek J.

    2016-01-01

    Chlamydia are Gram negative bacterial pathogens responsible for disease in humans and economically important domesticated animals. As obligate intracellular bacteria, they must gain entry into a host cell where they propagate within a parasitophorous organelle that serves as an interactive interface between the bacterium and the host. Nutrient acquisition, growth, and evasion of host defense mechanisms occur from this location. In addition to these cellular and bacterial dynamics, Chlamydia differentiate between two morphologically distinct forms, the elementary body and reticulate body, that are optimized for either extracellular or intracellular survival, respectively. The mechanisms regulating and mediating these diverse physiological events remain largely unknown. Reversible phosphorylation, including classical two-component signaling systems, partner switching mechanisms, and the more recently appreciated bacterial Ser/Thr/Tyr kinases and phosphatases, has gained increasing attention for its role in regulating important physiological processes in bacteria including metabolism, development, and virulence. Phosphorylation modulates these events via rapid and reversible modification of protein substrates leading to changes in enzyme activity, protein oligomerization, cell signaling, and protein localization. The characterization of several conserved chlamydial protein kinases and phosphatases along with phosphoproteome analysis suggest that Chlamydia are capable of global and growth stage-specific protein phosphorylation. This mini review will highlight the current knowledge of protein phosphorylation in Chlamydia and its potential role in chlamydial physiology and, consequently, virulence. Comparisons with other minimal genome intracellular bacterial pathogens also will be addressed with the aim of illustrating the importance of this understudied regulatory mechanism on pathogenesis and the principle questions that remain unanswered. PMID:28066729

  2. A unified method to process biosolids samples for the recovery of bacterial, viral, and helminths pathogens.

    PubMed

    Alum, Absar; Rock, Channah; Abbaszadegan, Morteza

    2014-01-01

    For land application, biosolids are classified as Class A or Class B based on the levels of bacterial, viral, and helminths pathogens in residual biosolids. The current EPA methods for the detection of these groups of pathogens in biosolids include discrete steps. Therefore, a separate sample is processed independently to quantify the number of each group of the pathogens in biosolids. The aim of the study was to develop a unified method for simultaneous processing of a single biosolids sample to recover bacterial, viral, and helminths pathogens. At the first stage for developing a simultaneous method, nine eluents were compared for their efficiency to recover viruses from a 100 gm spiked biosolids sample. In the second stage, the three top performing eluents were thoroughly evaluated for the recovery of bacteria, viruses, and helminthes. For all three groups of pathogens, the glycine-based eluent provided higher recovery than the beef extract-based eluent. Additional experiments were performed to optimize performance of glycine-based eluent under various procedural factors such as, solids to eluent ratio, stir time, and centrifugation conditions. Last, the new method was directly compared with the EPA methods for the recovery of the three groups of pathogens spiked in duplicate samples of biosolids collected from different sources. For viruses, the new method yielded up to 10% higher recoveries than the EPA method. For bacteria and helminths, recoveries were 74% and 83% by the new method compared to 34% and 68% by the EPA method, respectively. The unified sample processing method significantly reduces the time required for processing biosolids samples for different groups of pathogens; it is less impacted by the intrinsic variability of samples, while providing higher yields (P = 0.05) and greater consistency than the current EPA methods.

  3. Diet and Environment Shape Fecal Bacterial Microbiota Composition and Enteric Pathogen Load of Grizzly Bears

    PubMed Central

    Schwab, Clarissa; Cristescu, Bogdan; Northrup, Joseph M.; Stenhouse, Gordon B.; Gänzle, Michael

    2011-01-01

    Background Diet and environment impact the composition of mammalian intestinal microbiota; dietary or health disturbances trigger alterations in intestinal microbiota composition and render the host susceptible to enteric pathogens. To date no long term monitoring data exist on the fecal microbiota and pathogen load of carnivores either in natural environments or in captivity. This study investigates fecal microbiota composition and the presence of pathogenic Escherichia coli and toxigenic clostridia in wild and captive grizzly bears (Ursus arctos) and relates these to food resources consumed by bears. Methodology/Principal Findings Feces were obtained from animals of two wild populations and from two captive animals during an active bear season. Wild animals consumed a diverse diet composed of plant material, animal prey and insects. Captive animals were fed a regular granulated diet with a supplement of fruits and vegetables. Bacterial populations were analyzed using quantitative PCR. Fecal microbiota composition fluctuated in wild and in captive animals. The abundance of Clostridium clusters I and XI, and of C. perfringens correlated to regular diet protein intake. Enteroaggregative E. coli were consistently present in all populations. The C. sordellii phospholipase C was identified in three samples of wild animals and for the first time in Ursids. Conclusion This is the first longitudinal study monitoring the fecal microbiota of wild carnivores and comparing it to that of captive individuals of the same species. Location and diet affected fecal bacterial populations as well as the presence of enteric pathogens. PMID:22194798

  4. Diet and environment shape fecal bacterial microbiota composition and enteric pathogen load of grizzly bears.

    PubMed

    Schwab, Clarissa; Cristescu, Bogdan; Northrup, Joseph M; Stenhouse, Gordon B; Gänzle, Michael

    2011-01-01

    Diet and environment impact the composition of mammalian intestinal microbiota; dietary or health disturbances trigger alterations in intestinal microbiota composition and render the host susceptible to enteric pathogens. To date no long term monitoring data exist on the fecal microbiota and pathogen load of carnivores either in natural environments or in captivity. This study investigates fecal microbiota composition and the presence of pathogenic Escherichia coli and toxigenic clostridia in wild and captive grizzly bears (Ursus arctos) and relates these to food resources consumed by bears. Feces were obtained from animals of two wild populations and from two captive animals during an active bear season. Wild animals consumed a diverse diet composed of plant material, animal prey and insects. Captive animals were fed a regular granulated diet with a supplement of fruits and vegetables. Bacterial populations were analyzed using quantitative PCR. Fecal microbiota composition fluctuated in wild and in captive animals. The abundance of Clostridium clusters I and XI, and of C. perfringens correlated to regular diet protein intake. Enteroaggregative E. coli were consistently present in all populations. The C. sordellii phospholipase C was identified in three samples of wild animals and for the first time in Ursids. This is the first longitudinal study monitoring the fecal microbiota of wild carnivores and comparing it to that of captive individuals of the same species. Location and diet affected fecal bacterial populations as well as the presence of enteric pathogens.

  5. Importance of amoebae as a tool to isolate amoeba-resisting microorganisms and for their ecology and evolution: the Chlamydia paradigm.

    PubMed

    Kebbi-Beghdadi, Carole; Greub, Gilbert

    2014-08-01

    Free-living amoebae are distributed worldwide and are frequently in contact with humans and animals. As cysts, they can survive in very harsh conditions and resist biocides and most disinfection procedures. Several microorganisms, called amoeba-resisting microorganisms (ARMs), have evolved to survive and multiply within these protozoa. Among them are many important pathogens, such as Legionella and Mycobacteria, and also several newly discovered Chlamydia-related bacteria, such as Parachlamydia acanthamoebae, Estrella lausannensis, Simkania negevensis or Waddlia chondrophila whose pathogenic role towards human or animal is strongly suspected. Amoebae represent an evolutionary crib for their resistant microorganisms since they can exchange genetic material with other ARMs and develop virulence traits that will be further used to infect other professional phagocytes. Moreover, amoebae constitute an ideal tool to isolate strict intracellular microorganisms from complex microbiota, since they will feed on other fast-growing bacteria, such as coliforms potentially present in the investigated samples. The paradigm that ARMs are likely resistant to macrophages, another phagocytic cell, and that they are likely virulent towards humans and animals is only partially true. Indeed, we provide examples of the Chlamydiales order that challenge this assumption and suggest that the ability to multiply in protozoa does not strictly correlate with pathogenicity and that we should rather use the ability to replicate in multiple and diverse eukaryotic cells as an indirect marker of virulence towards mammals. Thus, cell-culture-based microbial culturomics should be used in the future to try to discover new pathogenic bacterial species. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. High co-occurrence of anorectal chlamydia with urogenital chlamydia in women visiting an STI clinic revealed by routine universal testing in an observational study; a recommendation towards a better anorectal chlamydia control in women.

    PubMed

    van Liere, Geneviève A F S; Hoebe, Christian J P A; Wolffs, Petra F G; Dukers-Muijrers, Nicole H T M

    2014-05-19

    Symptom- and sexual history-based testing i.e., testing on indication, for anorectal sexually transmitted infections (STIs) in women is common. Yet, it is unknown whether this strategy is effective. Moreover, little is known about alternative transmission routes i.e. by fingers/toys. This study assesses anorectal STI prevalence and infections missed by current testing practice, thereby informing the optimal control strategy for anorectal STIs in women. Women (n = 663) attending our STI-clinic between May 2012-July 2013 were offered routine testing for anorectal and urogenital Chlamydia trachomatis and Neisseria gonorrhoeae. Data were collected on demographics, sexual behaviour and symptoms. Women were assigned to one of the categories: indication (reported anal sex/symptoms), fingers/toys (only reported use of fingers/toys), or without indication. Of women, 92% (n = 654) participated. There were 203 reports (31.0%) of anal sex and/or symptoms (indication), 48 reports (7.3%) of only using fingers/toys (fingers/toys), and 403 reports (61.6%) of no anal symptoms, no anal sex and no anal use of fingers/toys (without indication). The overall prevalence was 11.2% (73/654) for urogenital chlamydia and 8.4% (55/654) for anorectal chlamydia. Gonorrhoea infections were not observed. Prevalence of anorectal chlamydia was 7.9% (16/203) for women with indication and 8.6% (39/451) for all other women (P = 0.74). Two-thirds (39/55) of anorectal infections were diagnosed in women without indication. Isolated anorectal chlamydia was rare (n = 3): of all women with an anorectal infection, 94.5% (52/55) also had co-occurrence of urogenital chlamydia. Of all women with urogenital chlamydia, 71.2% (52/73) also had anorectal chlamydia. Current selective testing on indication of symptoms and sexual history is not an appropriate control strategy for anorectal chlamydia in women visiting an STI clinic. Routine universal anorectal testing is feasible and may be a possible

  7. High co-occurrence of anorectal chlamydia with urogenital chlamydia in women visiting an STI clinic revealed by routine universal testing in an observational study; a recommendation towards a better anorectal chlamydia control in women

    PubMed Central

    2014-01-01

    Background Symptom- and sexual history-based testing i.e., testing on indication, for anorectal sexually transmitted infections (STIs) in women is common. Yet, it is unknown whether this strategy is effective. Moreover, little is known about alternative transmission routes i.e. by fingers/toys. This study assesses anorectal STI prevalence and infections missed by current testing practice, thereby informing the optimal control strategy for anorectal STIs in women. Methods Women (n = 663) attending our STI-clinic between May 2012-July 2013 were offered routine testing for anorectal and urogenital Chlamydia trachomatis and Neisseria gonorrhoeae. Data were collected on demographics, sexual behaviour and symptoms. Women were assigned to one of the categories: indication (reported anal sex/symptoms), fingers/toys (only reported use of fingers/toys), or without indication. Results Of women, 92% (n = 654) participated. There were 203 reports (31.0%) of anal sex and/or symptoms (indication), 48 reports (7.3%) of only using fingers/toys (fingers/toys), and 403 reports (61.6%) of no anal symptoms, no anal sex and no anal use of fingers/toys (without indication). The overall prevalence was 11.2% (73/654) for urogenital chlamydia and 8.4% (55/654) for anorectal chlamydia. Gonorrhoea infections were not observed. Prevalence of anorectal chlamydia was 7.9% (16/203) for women with indication and 8.6% (39/451) for all other women (P = 0.74). Two-thirds (39/55) of anorectal infections were diagnosed in women without indication. Isolated anorectal chlamydia was rare (n = 3): of all women with an anorectal infection, 94.5% (52/55) also had co-occurrence of urogenital chlamydia. Of all women with urogenital chlamydia, 71.2% (52/73) also had anorectal chlamydia. Conclusions Current selective testing on indication of symptoms and sexual history is not an appropriate control strategy for anorectal chlamydia in women visiting an STI clinic. Routine universal anorectal

  8. Effect of time since exposure to Chlamydia trachomatis on chlamydia antibody detection in women: a cross-sectional study.

    PubMed

    Horner, Patrick J; Wills, Gillian S; Reynolds, Rosy; Johnson, Anne M; Muir, David A; Winston, Alan; Broadbent, Andrew J; Parker, David; McClure, Myra O

    2013-08-01

    To investigate what factors influence the detection of Chlamydia trachomatis antibody following genital tract infection. One hundred and sixty-four women with a previous history of C trachomatis infection contributed to an earlier report on the performance of chlamydia antibody ELISA assays. We undertook further analysis to explore how chlamydia antibody assay sensitivity changes with time since infection. Chlamydia antibody was detected in more women soon after the last detection of chlamydia at the lower genital tract than at later times. This holds true for all tests, but the Anilabsystems IgG EIA, Medac pELISA plus ELISA and the Savyon SeroCT-IgG ELISA were less sensitive than the pgp3 ELISA and the Anilabsystems microimmunofluorescence (MIF) assay at all time points except during current infection. Fall in seropositivity in women generally occurred in the early weeks and months following the last episode of chlamydia infection. There was no clear pattern of further reduction in seropositivity after 6 months. Multiple previous episodes were associated with increased seropositivity in the pgp3 assay (two or more vs one, OR 19, p<0.001) and other tests, but the effect was significantly smaller for the Anilabs, Medac and SeroCT MOMP peptide ELISAs, but not for the MIF assay. Chlamydia antibody detection decreases with time since infection and this is most apparent in the first 6 months. In women who have had more than one infection, antibody remained detectable longer for all tests, but this was more marked for the pgp3 ELISA and MIF assay.

  9. Chlamydia trachomatis screening in young women.

    PubMed

    Baraitser, Paula; Alexander, Sarah; Sheringham, Jessica

    2011-10-01

    As the number of chlamydia screening programmes implemented worldwide increases, we summarize current understanding of the epidemiology, natural history, and management of chlamydia, focusing on screening in young women. Chlamydia diagnoses continue to rise, with young women at high risk. Recently published trials show that the risk of serious reproductive health outcomes is lower than previously thought. They illustrate that significant barriers - both practical and cultural - remain to engaging young people and health professionals in routine testing for sexually transmitted infections. Chlamydia control efforts have driven innovative approaches to testing including new approaches to engaging young people in discussions of sexual health and screening accessed via the Internet. Chlamydia is highly prevalent among young women and may cause serious reproductive sequelae. Gaps in our knowledge of the epidemiology, natural history and immunology of this organism continue to hamper efforts to control it. Sexual health promotion and screening of young people remain the mainstay of population control, although there is as yet no strong evidence of health screening benefits. Control efforts will require new strategies to engage young people and health professionals to normalize sexual health testing. (C) 2011 Lippincott Williams & Wilkins, Inc.

  10. Comparative in vitro susceptibility studies of FCE 22250 and rifampicin on Legionella and Chlamydia trachomatis strains.

    PubMed

    Zanetti, S; Ungheri, D; Castellani Pastoris, M; Fadda, G

    1987-01-01

    The in vitro activities of rifampicin and the new rifamycin FCE 22250 were evaluated against the intracellular pathogens Legionella and Chlamydia trachomatis. The data reported in this study give evidence that FCE 22250 shows excellent in vitro results, even better than those obtained with rifampicin, leading to the possibility of clinical applications of this new drug on Legionnaire's disease and chlamydial infections.

  11. Comparison of individual and pooled sampling methods for detecting bacterial pathogens of fish

    USGS Publications Warehouse

    Mumford, Sonia; Patterson, Chris; Evered, J.; Brunson, Ray; Levine, J.; Winton, J.

    2005-01-01

    Examination of finfish populations for viral and bacterial pathogens is an important component of fish disease control programs worldwide. Two methods are commonly used for collecting tissue samples for bacteriological culture, the currently accepted standards for detection of bacterial fish pathogens. The method specified in the Office International des Epizooties Manual of Diagnostic Tests for Aquatic Animals permits combining renal and splenic tissues from as many as 5 fish into pooled samples. The American Fisheries Society (AFS) Blue Book/US Fish and Wildlife Service (USFWS) Inspection Manual specifies the use of a bacteriological loop for collecting samples from the kidney of individual fish. An alternative would be to more fully utilize the pooled samples taken for virology. If implemented, this approach would provide substantial savings in labor and materials. To compare the relative performance of the AFS/USFWS method and this alternative approach, cultures of Yersinia ruckeri were used to establish low-level infections in groups of rainbow trout (Oncorhynchus mykiss) that were sampled by both methods. Yersinia ruckeri was cultured from 22 of 37 groups by at least 1 method. The loop method yielded 18 positive groups, with 1 group positive in the loop samples but negative in the pooled samples. The pooled samples produced 21 positive groups, with 4 groups positive in the pooled samples but negative in the loop samples. There was statistically significant agreement (Spearman coefficient 0.80, P < 0.001) in the relative ability of the 2 sampling methods to permit detection of low-level bacterial infections of rainbow trout.

  12. Molecular Pathogenesis of Chlamydia Disease Complications: Epithelial-Mesenchymal Transition and Fibrosis.

    PubMed

    Igietseme, Joseph U; Omosun, Yusuf; Nagy, Tamas; Stuchlik, Olga; Reed, Matthew S; He, Qing; Partin, James; Joseph, Kahaliah; Ellerson, Debra; George, Zenas; Goldstein, Jason; Eko, Francis O; Bandea, Claudiu; Pohl, Jan; Black, Carolyn M

    2018-01-01

    The reproductive system complications of genital chlamydial infection include fallopian tube fibrosis and tubal factor infertility. However, the molecular pathogenesis of these complications remains poorly understood. The induction of pathogenic epithelial-mesenchymal transition (EMT) through microRNA (miRNA) dysregulation was recently proposed as the pathogenic basis of chlamydial complications. Focusing on fibrogenesis, we investigated the hypothesis that chlamydia-induced fibrosis is caused by EMT-driven generation of myofibroblasts, the effector cells of fibrosis that produce excessive extracellular matrix (ECM) proteins. The results revealed that the targets of a major category of altered miRNAs during chlamydial infection are key components of the pathophysiological process of fibrogenesis; these target molecules include collagen types I, III, and IV, transforming growth factor β (TGF-β), TGF-β receptor 1 (TGF-βR1), connective tissue growth factor (CTGF), E-cadherin, SRY-box 7 (SOX7), and NFAT (nuclear factor of activated T cells) kinase dual-specificity tyrosine (Y) phosphorylation-regulated kinase 1a (Dyrk1a). Chlamydial induction of EMT resulted in the generation of α-smooth muscle actin (α-SMA)-positive myofibroblasts that produced ECM proteins, including collagen types I and III and fibronectin. Furthermore, the inhibition of EMT prevented the generation of myofibroblasts and production of ECM proteins during chlamydial infection. These findings may provide useful avenues for targeting EMT or specific components of the EMT pathways as a therapeutic intervention strategy to prevent chlamydia-related complications. Copyright © 2017 American Society for Microbiology.

  13. Isolation and identification of bacterial pathogen from mastitis milk in Central Java Indonesia

    NASA Astrophysics Data System (ADS)

    Harjanti, D. W.; Ciptaningtyas, R.; Wahyono, F.; Setiatin, ET

    2018-01-01

    Mastitis is a multi-etiologic disease of the mammary gland characterized mainly by reduction in milk production and milk quality due to intramammary infection by pathogenic bacteria. Nearly 83% of lactating dairy cows in Indonesia are infected with mastitis in various inflammation degrees. This study was conducted to isolate and identify the pathogen in milk collected from mastitis-infected dairy cows. The study was carried out in ten smallholder dairy farms in Central Java Indonesia based on animal examination, California mastitis test, isolation bacterial pathogens, Gram staining, Catalase and Coagulase test, and identification of bacteria species using Vitek. Bacteriological examination of milk samples revealed 15 isolates where Streptococcus was predominant species (73.3%) and the coagulase negative Staphylococcus species was identified at the least bacteria (26.7%). The Streptococcus bacteria found were Streptococcus uberis (2 isolates), Streptococcus sanguinis(6 isolates), Streptococcus dysgalactiaessp dysgalactiae(1 isolate) , Streptococcus mitis (1 isolate) and Streptococcus agalactiae (1 isolate). The Staphylococcus isolates comprising of Staphylococcus simulans (1 isolate) and Staphylococcus chromogens (3 isolates). Contamination of raw milkwith pathogenic bacteria can cause outbreaks of human disease (milk borne disease). Thus, proper milk processing method that couldinhibit the growth or kill these pathogenic bacteria is important to ensure the safety of milk and milk products.

  14. Characterization of the bacterial stem blight pathogen of alfalfa, Pseudomonas syringae pv. syringae ALF3

    USDA-ARS?s Scientific Manuscript database

    Bacterial stem blight of alfalfa occurs sporadically in the central and western U.S. Yield losses of up to 50% of the first harvest can occur with some cultivars. Developing resistant cultivars is hampered by lack of information on the pathogen and a standard test for evaluating plant germplasm. Bac...

  15. Factors related to occurrence and distribution of selected bacterial and protozoan pathogens in Pennsylvania streams

    USGS Publications Warehouse

    Duris, Joseph W.; Reif, Andrew G.; Donna A. Crouse,; Isaacs, Natasha M.

    2013-01-01

    The occurrence and distribution of fecal indicator bacteria (FIB) and bacterial and protozoan pathogens are controlled by diverse factors. To investigate these factors in Pennsylvania streams, 217 samples were collected quarterly from a 27-station water-quality monitoring network from July 2007 through August 2009. Samples were analyzed for concentrations of Escherichia coli (EC) and enterococci (ENT) indicator bacteria, concentrations of Cryptosporidium oocysts and Giardia cysts, and the presence of four genes related to pathogenic types of EC (eaeA, stx2, stx1, rfbO157) plus three microbial source tracking (MST) gene markers that are also associated with pathogenic ENT and EC (esp, LTIIa, STII). Water samples were concurrently analyzed for basic water chemistry, physical measures of water quality, nutrients, metals, and a suite of 79 organic compounds that included hormones, pharmaceuticals, and antibiotics. For each sample location, stream discharge was measured by using standardized methods at the time of sample collection, and ancillary sample site information, such as land use and geological characteristics, was compiled. Samples exceeding recreational water quality criteria were more likely to contain all measured pathogen genes but notCryptosporidium or Giardia (oo)cysts. FIB and Giardia density and frequency of eaeA gene occurrence were significantly related to season. When discharge at a sampling location was high (>75th percentile of daily mean discharge), there were greater densities of FIB and Giardia, and the stx2, rfbO157, STII, and esp genes were found more frequently than at other discharge conditions. Giardia occurrence was likely related to nonpoint sources, which are highly influential during seasonal overland transport resulting from snowmelt and elevated precipitation in late winter and spring in Pennsylvania. When MST markers of human, swine, or bovine origin were present, samples more frequently carried the eaeA, stx2

  16. A household LOC device for online monitoring bacterial pathogens in drinking water with green design concept.

    PubMed

    Zhao, Xinyan; Dong, Tao

    2013-01-01

    Bacterial waterborne pathogens often threaten the water safety of the drinking water system. In order to protect the health of home users, a household lab-on-a-chip (LOC) device was developed for online monitoring bacterial pathogens in drinking water, which are in accord with green design concept. The chip integrated counter-flow micromixers, a T-junction droplet generator and time-delay channels (TD-Cs), which can mix water sample and reactants into droplets in air flow and incubate the droplets in the LOC for about 18 hours before observation. The detection module was simplified into a transparent observation chamber, from which the home users can evaluate the qualitative result by naked eyes. The liquid waste generated by the LOC system was sterilized and absorbed by quicklime powders. No secondary pollution was found. The preliminary test of the prototype system met its design requirements.

  17. Molecular analysis of bacterial communities and detection of potential pathogens in a recirculating aquaculture system for Scophthalmus maximus and Solea senegalensis.

    PubMed

    Martins, Patrícia; Cleary, Daniel F R; Pires, Ana C C; Rodrigues, Ana Maria; Quintino, Victor; Calado, Ricardo; Gomes, Newton C M

    2013-01-01

    The present study combined a DGGE and barcoded 16S rRNA pyrosequencing approach to assess bacterial composition in the water of a recirculating aquaculture system (RAS) with a shallow raceway system (SRS) for turbot (Scophthalmus maximus) and sole (Solea senegalensis). Barcoded pyrosequencing results were also used to determine the potential pathogen load in the RAS studied. Samples were collected from the water supply pipeline (Sup), fish production tanks (Pro), sedimentation filter (Sed), biofilter tank (Bio), and protein skimmer (Ozo; also used as an ozone reaction chamber) of twin RAS operating in parallel (one for each fish species). Our results revealed pronounced differences in bacterial community composition between turbot and sole RAS, suggesting that in the systems studied there is a strong species-specific effect on water bacterial communities. Proteobacteria was the most abundant phylum in the water supply and all RAS compartments. Other important taxonomic groups included the phylum Bacteriodetes. The saltwater supplied displayed a markedly lower richness and appeared to have very little influence on bacterial composition. The following potentially pathogenic species were detected: Photobacterium damselae in turbot (all compartments), Tenacibaculum discolor in turbot and sole (all compartments), Tenacibaculum soleae in turbot (all compartments) and sole (Pro, Sed and Bio), and Serratia marcescens in turbot (Sup, Sed, Bio and Ozo) and sole (only Sed) RAS. Despite the presence of these pathogens, no symptomatic fish were observed. Although we were able to identify potential pathogens, this approach should be employed with caution when monitoring aquaculture systems, as the required phylogenetic resolution for reliable identification of pathogens may not always be possible to achieve when employing 16S rRNA gene fragments.

  18. Molecular Analysis of Bacterial Communities and Detection of Potential Pathogens in a Recirculating Aquaculture System for Scophthalmus maximus and Solea senegalensis

    PubMed Central

    Martins, Patrícia; Cleary, Daniel F. R.; Pires, Ana C. C.; Rodrigues, Ana Maria; Quintino, Victor; Calado, Ricardo; Gomes, Newton C. M.

    2013-01-01

    The present study combined a DGGE and barcoded 16S rRNA pyrosequencing approach to assess bacterial composition in the water of a recirculating aquaculture system (RAS) with a shallow raceway system (SRS) for turbot (Scophthalmus maximus) and sole (Solea senegalensis). Barcoded pyrosequencing results were also used to determine the potential pathogen load in the RAS studied. Samples were collected from the water supply pipeline (Sup), fish production tanks (Pro), sedimentation filter (Sed), biofilter tank (Bio), and protein skimmer (Ozo; also used as an ozone reaction chamber) of twin RAS operating in parallel (one for each fish species). Our results revealed pronounced differences in bacterial community composition between turbot and sole RAS, suggesting that in the systems studied there is a strong species-specific effect on water bacterial communities. Proteobacteria was the most abundant phylum in the water supply and all RAS compartments. Other important taxonomic groups included the phylum Bacteriodetes. The saltwater supplied displayed a markedly lower richness and appeared to have very little influence on bacterial composition. The following potentially pathogenic species were detected: Photobacterium damselae in turbot (all compartments), Tenacibaculum discolor in turbot and sole (all compartments), Tenacibaculum soleae in turbot (all compartments) and sole (Pro, Sed and Bio), and Serratia marcescens in turbot (Sup, Sed, Bio and Ozo) and sole (only Sed) RAS. Despite the presence of these pathogens, no symptomatic fish were observed. Although we were able to identify potential pathogens, this approach should be employed with caution when monitoring aquaculture systems, as the required phylogenetic resolution for reliable identification of pathogens may not always be possible to achieve when employing 16S rRNA gene fragments. PMID:24278329

  19. Regulation of Chlamydia Gene Expression by Tandem Promoters with Different Temporal Patterns.

    PubMed

    Rosario, Christopher J; Tan, Ming

    2016-01-15

    Chlamydia is a genus of pathogenic bacteria with an unusual intracellular developmental cycle marked by temporal waves of gene expression. The three main temporal groups of chlamydial genes are proposed to be controlled by separate mechanisms of transcriptional regulation. However, we have noted genes with discrepancies, such as the early gene dnaK and the midcycle genes bioY and pgk, which have promoters controlled by the late transcriptional regulators EUO and σ(28). To resolve this issue, we analyzed the promoters of these three genes in vitro and in Chlamydia trachomatis bacteria grown in cell culture. Transcripts from the σ(28)-dependent promoter of each gene were detected only at late times in the intracellular infection, bolstering the role of σ(28) RNA polymerase in late gene expression. In each case, however, expression prior to late times was due to a second promoter that was transcribed by σ(66) RNA polymerase, which is the major form of chlamydial polymerase. These results demonstrate that chlamydial genes can be transcribed from tandem promoters with different temporal profiles, leading to a composite expression pattern that differs from the expression profile of a single promoter. In addition, tandem promoters allow a gene to be regulated by multiple mechanisms of transcriptional regulation, such as DNA supercoiling or late regulation by EUO and σ(28). We discuss how tandem promoters broaden the repertoire of temporal gene expression patterns in the chlamydial developmental cycle and can be used to fine-tune the expression of specific genes. Chlamydia is a pathogenic bacterium that is responsible for the majority of infectious disease cases reported to the CDC each year. It causes an intracellular infection that is characterized by coordinated expression of chlamydial genes in temporal waves. Chlamydial transcription has been shown to be regulated by DNA supercoiling, alternative forms of RNA polymerase, and transcription factors, but the number

  20. Clinical characteristics of genital chlamydia infection in pelvic inflammatory disease.

    PubMed

    Park, Sung Taek; Lee, Suk Woo; Kim, Min Jeong; Kang, Young Mo; Moon, Hye Min; Rhim, Chae Chun

    2017-01-13

    Chlamydia infection in acute pelvic inflammatory disease (PID) is associated with serious complications including ectopic pregnancy, tubal infertility, Fitz-Hugh-Curtis syndrome and tubo-ovarian abscess (TOA). This study compared clinical and laboratory data between PID with and without chlamydia infection. The medical records of 497 women who were admitted with PID between 2002 and 2011 were reviewed. The patients were divided into two groups (PID with and without chlamydia infection), which were compared in terms of the patients' characteristics, clinical presentation, and laboratory findings, including inflammatory markers. The chlamydia and non-chlamydia groups comprised 175 and 322 women, respectively. The patients in the chlamydia group were younger and had a higher rate of TOA, a longer mean hospital stay, and had undergone more surgeries than the patients in the non- chlamydia group. The erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and CA-125 level were higher in the chlamydia group than in the non-chlamydia group, but there was no significant difference in the white blood cell count between the two groups. The CA-125 level was the strongest predictor of chlamydia infection, followed by the ESR and CRP level. The area under the receiving operating curve for CA-125, ESR, and CRP was 0.804, 0.755, and 0.663, respectively. Chlamydia infection in acute PID is associated with increased level of inflammatory markers, such as CA-125, ESR and CRP, incidence of TOA, operation risk, and longer hospitalization.

  1. [New insight into bacterial zoonotic pathogens posing health hazards to humans].

    PubMed

    Ciszewski, Marcin; Czekaj, Tomasz; Szewczyk, Eligia Maria

    2014-01-01

    This article presents the problem of evolutionary changes of zoonotic pathogens responsible for human diseases. Everyone is exposed to the risk of zoonotic infection, particularly employees having direct contact with animals, i.e. veterinarians, breeders, butchers and workers of animal products' processing industry. The article focuses on pathogens monitored by the European Centre for Disease Prevention and Control (ECDC), which has been collecting statistical data on zoonoses from all European Union countries for 19 years and publishing collected data in annual epidemiological reports. Currently, the most important 11 pathogens responsible for causing human zoonotic diseases are being monitored, of which seven are bacteria: Salmonella spp., Campylobacter spp., Listeria monocytogenes, Mycobacterium bovis, Brucella spp., Coxiella burnetti and Verotoxin-producing E. coli (VTEC)/Shiga-like toxin producing E. coli (STEC). As particularly important are considered foodborne pathogens. The article also includes new emerging zoonotic bacteria, which are not currently monitored by ECDC but might pose a serious epidemiological problem in a foreseeable future: Streptococcus iniae, S. suis, S. dysgalactiae and staphylococci: Staphylococcus intermedius, S. pseudintermedius. Those species have just crossed the animal-human interspecies barrier. The exact mechanism of this phenomenon remains unknown, it is connected, however, with genetic variability, capability to survive in changing environment. These abilities derive from DNA rearrangement and horizontal gene transfer between bacterial cells. Substantial increase in the number of scientific publications on this subject, observed over the last few years, illustrates the importance of the problem.

  2. Metabolic pathways of Pseudomonas aeruginosa involved in competition with respiratory bacterial pathogens

    PubMed Central

    Beaume, Marie; Köhler, Thilo; Fontana, Thierry; Tognon, Mikael; Renzoni, Adriana; van Delden, Christian

    2015-01-01

    Background: Chronic airway infection by Pseudomonas aeruginosa considerably contributes to lung tissue destruction and impairment of pulmonary function in cystic-fibrosis (CF) patients. Complex interplays between P. aeruginosa and other co-colonizing pathogens including Staphylococcus aureus, Burkholderia sp., and Klebsiella pneumoniae may be crucial for pathogenesis and disease progression. Methods: We generated a library of PA14 transposon insertion mutants to identify P. aeruginosa genes required for exploitative and direct competitions with S. aureus, Burkholderia cenocepacia, and K. pneumoniae. Results: Whereas wild-type PA14 inhibited S. aureus growth, two transposon insertions located in pqsC and carB, resulted in reduced growth inhibition. PqsC is involved in the synthesis of 4-hydroxy-2-alkylquinolines (HAQs), a family of molecules having antibacterial properties, while carB is a key gene in pyrimidine biosynthesis. The carB mutant was also unable to grow in the presence of B. cepacia and K. pneumoniae but not Escherichia coli and S. epidermidis. We further identified a transposon insertion in purF, encoding a key enzyme of purine metabolism. This mutant displayed a severe growth deficiency in the presence of Gram-negative but not of Gram-positive bacteria. We identified a beneficial interaction in a bioA transposon mutant, unable to grow on rich medium. This growth defect could be restored either by addition of biotin or by co-culturing the mutant in the presence of K. pneumoniae or E. coli. Conclusion: Complex interactions take place between the various bacterial species colonizing CF-lungs. This work identified both detrimental and beneficial interactions occurring between P. aeruginosa and three other respiratory pathogens involving several major metabolic pathways. Manipulating these pathways could be used to interfere with bacterial interactions and influence the colonization by respiratory pathogens. PMID:25954256

  3. Healthcare and patient costs of a proactive chlamydia screening programme: the Chlamydia Screening Studies project.

    PubMed

    Robinson, Suzanne; Roberts, Tracy; Barton, Pelham; Bryan, Stirling; Macleod, John; McCarthy, Anne; Egger, Matthias; Sanford, Emma; Low, Nicola

    2007-07-01

    Most economic evaluations of chlamydia screening do not include costs incurred by patients. The objective of this study was to estimate both the health service and private costs of patients who participated in proactive chlamydia screening, using mailed home-collected specimens as part of the Chlamydia Screening Studies project. Data were collected on the administrative costs of the screening study, laboratory time and motion studies and patient-cost questionnaire surveys were conducted. The cost for each screening invitation and for each accepted offer was estimated. One-way sensitivity analysis was conducted to explore the effects of variations in patient costs and the number of patients accepting the screening offer. The time and costs of processing urine specimens and vulvo-vaginal swabs from women using two nucleic acid amplification tests were similar. The total cost per screening invitation was 20.37 pounds (95% CI 18.94 pounds to 24.83). This included the National Health Service cost per individual screening invitation 13.55 pounds (95% CI 13.15 pounds to 14.33) and average patient costs of 6.82 pounds (95% CI 5.48 pounds to 10.22). Administrative costs accounted for 50% of the overall cost. The cost of proactive chlamydia screening is comparable to those of opportunistic screening. Results from this study, which is the first to collect private patient costs associated with a chlamydia screening programme, could be used to inform future policy recommendations and provide unique primary cost data for economic evaluations.

  4. Isolation of single Chlamydia-infected cells using laser microdissection.

    PubMed

    Podgorny, Oleg V; Polina, Nadezhda F; Babenko, Vladislav V; Karpova, Irina Y; Kostryukova, Elena S; Govorun, Vadim M; Lazarev, Vassili N

    2015-02-01

    Chlamydia are obligate intracellular parasites of humans and animals that cause a wide range of acute and chronic infections. To elucidate the genetic basis of chlamydial parasitism, several approaches for making genetic modifications to Chlamydia have recently been reported. However, the lack of the available methods for the fast and effective selection of genetically modified bacteria restricts the application of genetic tools. We suggest the use of laser microdissection to isolate of single live Chlamydia-infected cells for the re-cultivation and whole-genome sequencing of single inclusion-derived Chlamydia. To visualise individual infected cells, we made use of the vital labelling of inclusions with the fluorescent Golgi-specific dye BODIPY® FL C5-ceramide. We demonstrated that single Chlamydia-infected cells isolated by laser microdissection and placed onto a host cell monolayer resulted in new cycles of infection. We also demonstrated the successful use of whole-genome sequencing to study the genomic variability of Chlamydia derived from a single inclusion. Our work provides the first evidence of the successful use of laser microdissection for the isolation of single live Chlamydia-infected cells, thus demonstrating that this method can help overcome the barriers to the fast and effective selection of Chlamydia. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Importance of soil amendments: survival of bacterial pathogens in manure and compost used as organic fertizliers

    USDA-ARS?s Scientific Manuscript database

    Biological soil amendments (BSA’s) like manure and compost are frequently used as organic fertilizers to soils to improve its physical and chemical properties. However, BSAs have been known to be a reservoir for enteric bacterial pathogens like enterohemorrhagic E. coli, Salmonella spp, and Listeri...

  6. Liquid based formulations of bacteriophages for the management of waterborne bacterial pathogens in water microcosms.

    PubMed

    Ahiwale, Sangeeta; Tagunde, Sujata; Khopkar, Sushama; Karni, Mrudula; Gajbhiye, Milind; Kapadnis, Balasaheb

    2013-11-01

    Water resources are contaminated by life-threatening multidrug resistant pathogenic bacteria. Unfortunately, these pathogenic bacteria do not respond to the traditional water purification methods. Therefore, there is a need of environmentally friendly strategies to overcome the problems associated with the antimicrobial resistant bacterial pathogens. In the present study, highly potent lytic phages against multidrug-resistant Salmonella enterica serovar Paratyphi B, Pseudomonas aeruginosa and Klebsiella pneumoniae were isolated from the Pavana river water. They belonged to the Podoviridae and Siphoviridae families. These phages were purified and enriched in the laboratory. Monovalent formulations of phiSPB, BVPaP-3 and KPP phages were prepared in three different liquids viz., phage broth, saline and distilled water. The phages were stable for almost 8-10 months in the phage broth at 4 degrees C. The stability of the phages in saline and distilled water was 5-6 months at 4 degrees C. All of the phages were stable only for 4-6 months in the phage broth at 30 degrees C. The monovalent phage formulation of psiSPB was applied at MOI < 1, as disinfectant against an exponential and stationary phase cells of Salmonella enterica serovar Paratyphi B in various water microcosms. The results indicated that there was almost 80 % reduction in the log phase cells of Salmonella serovar Paratyphi B in 24 h. In stationary phase cells, the reduction was comparatively less within same period. At the same time, there was concomitant increase in the phage population by 80% in all the microcosms indicating that psiSPB phage is highly potent in killing pathogen in water. Results strongly support that the formulation of psiSPB in the phage broth in monovalent form could be used as an effective biological disinfectant for preventing transmission of water-borne bacterial pathogens, including antimicrobial resistant ones.

  7. Antibacterial Activity of Polyphenolic Fraction of Kombucha Against Enteric Bacterial Pathogens.

    PubMed

    Bhattacharya, Debanjana; Bhattacharya, Semantee; Patra, Madhu Manti; Chakravorty, Somnath; Sarkar, Soumyadev; Chakraborty, Writachit; Koley, Hemanta; Gachhui, Ratan

    2016-12-01

    The emergence of multi-drug-resistant enteric pathogens has prompted the scientist community to explore the therapeutic potentials of traditional foods and beverages. The present study was undertaken to investigate the efficacy of Kombucha, a fermented beverage of sugared black tea, against enterotoxigenic Escherichia coli, Vibrio cholerae, Shigella flexneri and Salmonella Typhimurium followed by the identification of the antibacterial components present in Kombucha. The antibacterial activity was evaluated by determining the inhibition zone diameter, minimal inhibitory concentration and minimal bactericidal concentration. Kombucha fermented for 14 days showed maximum activity against the bacterial strains. Its ethyl acetate extract was found to be the most effective upon sequential solvent extraction of the 14-day Kombucha. This potent ethyl acetate extract was then subjected to thin layer chromatography for further purification of antibacterial ingredients which led to the isolation of an active polyphenolic fraction. Catechin and isorhamnetin were detected as the major antibacterial compounds present in this polyphenolic fraction of Kombucha by High Performance Liquid Chromatography. Catechin, one of the primary antibacterial polyphenols in tea was also found to be present in Kombucha. But isorhamnetin is not reported to be present in tea, which may thereby suggest the role of fermentation process of black tea for its production in Kombucha. To the best of our knowledge, this is the first report on the presence of isorhamnetin in Kombucha. The overall study suggests that Kombucha can be used as a potent antibacterial agent against entero-pathogenic bacterial infections, which mainly is attributed to its polyphenolic content.

  8. Comparative Genomic and Phenotypic Characterization of Pathogenic and Non-Pathogenic Strains of Xanthomonas arboricola Reveals Insights into the Infection Process of Bacterial Spot Disease of Stone Fruits

    PubMed Central

    Garita-Cambronero, Jerson; Palacio-Bielsa, Ana; López, María M.

    2016-01-01

    Xanthomonas arboricola pv. pruni is the causal agent of bacterial spot disease of stone fruits, a quarantinable pathogen in several areas worldwide, including the European Union. In order to develop efficient control methods for this disease, it is necessary to improve the understanding of the key determinants associated with host restriction, colonization and the development of pathogenesis. After an initial characterization, by multilocus sequence analysis, of 15 strains of X. arboricola isolated from Prunus, one strain did not group into the pathovar pruni or into other pathovars of this species and therefore it was identified and defined as a X. arboricola pv. pruni look-a-like. This non-pathogenic strain and two typical strains of X. arboricola pv. pruni were selected for a whole genome and phenotype comparative analysis in features associated with the pathogenesis process in Xanthomonas. Comparative analysis among these bacterial strains isolated from Prunus spp. and the inclusion of 15 publicly available genome sequences from other pathogenic and non-pathogenic strains of X. arboricola revealed variations in the phenotype associated with variations in the profiles of TonB-dependent transporters, sensors of the two-component regulatory system, methyl accepting chemotaxis proteins, components of the flagella and the type IV pilus, as well as in the repertoire of cell-wall degrading enzymes and the components of the type III secretion system and related effectors. These variations provide a global overview of those mechanisms that could be associated with the development of bacterial spot disease. Additionally, it pointed out some features that might influence the host specificity and the variable virulence observed in X. arboricola. PMID:27571391

  9. Legacy effects of anaerobic soil disinfestation on soil bacterial community composition and production of pathogen-suppressing volatiles

    PubMed Central

    van Agtmaal, Maaike; van Os, Gera J.; Hol, W.H. Gera; Hundscheid, Maria P.J.; Runia, Willemien T.; Hordijk, Cornelis A.; de Boer, Wietse

    2015-01-01

    There is increasing evidence that microbial volatiles (VOCs) play an important role in natural suppression of soil-borne diseases, but little is known on the factors that influence production of suppressing VOCs. In the current study we examined whether a stress-induced change in soil microbial community composition would affect the production by soils of VOCs suppressing the plant-pathogenic oomycete Pythium. Using pyrosequencing of 16S ribosomal gene fragments we compared the composition of bacterial communities in sandy soils that had been exposed to anaerobic disinfestation (AD), a treatment used to kill harmful soil organisms, with the composition in untreated soils. Three months after the AD treatment had been finished, there was still a clear legacy effect of the former anaerobic stress on bacterial community composition with a strong increase in relative abundance of the phylum Bacteroidetes and a significant decrease of the phyla Acidobacteria, Planctomycetes, Nitrospirae, Chloroflexi, and Chlorobi. This change in bacterial community composition coincided with loss of production of Pythium suppressing soil volatiles (VOCs) and of suppression of Pythium impacts on Hyacinth root development. One year later, the composition of the bacterial community in the AD soils was reflecting that of the untreated soils. In addition, both production of Pythium-suppressing VOCs and suppression of Pythium in Hyacinth bioassays had returned to the levels of the untreated soil. GC/MS analysis identified several VOCs, among which compounds known to be antifungal, that were produced in the untreated soils but not in the AD soils. These compounds were again produced 15 months after the AD treatment. Our data indicate that soils exposed to a drastic stress can temporarily lose pathogen suppressive characteristics and that both loss and return of these suppressive characteristics coincides with shifts in the soil bacterial community composition. Our data are supporting the

  10. Short term memory of Caenorhabditis elegans against bacterial pathogens involves CREB transcription factor.

    PubMed

    Prithika, Udayakumar; Vikneswari, Ramaraj; Balamurugan, Krishnaswamy

    2017-04-01

    One of the key issues pertaining to the control of memory is to respond to a consistently changing environment or microbial niche present in it. Human cyclic AMP response element binding protein (CREB) transcription factor which plays a crucial role in memory has a homolog in C. elegans, crh-1. crh-1 appears to influence memory processes to certain extent by habituation of the host to a particular environment. The discrimination between the pathogen and a non-pathogen is essential for C. elegans in a microbial niche which determines its survival. Training the nematodes in the presence of a virulent pathogen (S. aureus) and an opportunistic pathogen (P. mirabilis) separately exhibits a different behavioural paradigm. This appears to be dependent on the CREB transcription factor. Here we show that C. elegans homolog crh-1 helps in memory response for a short term against the interacting pathogens. Following conditioning of the nematodes to S. aureus and P. mirabilis, the wild type nematodes exhibited a positive response towards the respective pathogens which diminished slowly after 2h. By contrast, the crh-1 deficient nematodes had a defective memory post conditioning. The molecular data reinforces the importance of crh-1 gene in retaining the memory of nematode. Our results also suggest that involvement of neurotransmitters play a crucial role in modulating the memory of the nematode with the assistance of CREB. Therefore, we elucidate that CREB is responsible for the short term memory response in C. elegans against bacterial pathogens. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Laboratory diagnosis of Chlamydia pneumoniae infections

    PubMed Central

    Peeling, Rosanna W

    1995-01-01

    Chlamydia pneumoniae is an important cause of respiratory illness. There is a need for accurate and rapid laboratory diagnostic methods that will lead to improved patient care, appropriate use of antimicrobial therapy and a better understanding of the epidemiology of this emerging pathogen. Culture is highly specific but is technically demanding, expensive, has a long turnaround time and its sensitivity is highly dependent on transport conditions. Antigen detection tests such as enzyme immunoassay and direct fluorescent antibody assay, and molecular detection methods such as the polymerase chain reaction assay, may provide a rapid diagnosis without the requirement for stringent transport conditions. The results of these tests should be interpreted with caution until more thorough evaluation is available. Serology remains the method of choice. The limitations of different serological methods for the laboratory diagnosis of C pneumoniae are discussed. PMID:22514397

  12. Rapid and direct detection of Invivo kinetics of pathogenic bacterial infection from mouse blood and urine.

    PubMed

    Gopal, Judy; Lee, Chia-Hsun; Wu, Hui-Fen

    2012-06-06

    This study demonstrates the first use of matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) to trace the Invivo infection kinetics of the well known deadly pathogen Staphylococcus aureus in Swiss albino mice. The growth curve of the bacteria from the point of injection (200μL of bacterial suspension (10(8)cfu/mL)) into the mouse blood till mortality (death) was periodically analyzed using the plate counting method and MALDI-MS. Bacterial counts of 10(3)cfu/mL were observed in the log phase of the growth curve in the blood and 10(2)cfu/mL were observed in the urine samples. Death occurred in the log phase of the growth curve, where the bacterial counts showed steady increase. In other cases, the bacteria counts started decreasing after 48h and by 96h the bacteria got totally eliminated from the mouse and these mice survived. Direct MALDI-MS was not feasible for tracking the bacteria in the infected blood. However, ionic liquid 1-Butyl-3-methylimidazolium tetrafluoroborate was successful in enabling bacterial detection amidst the strong blood peaks. But, in the case of the urine analysis, it was observed that direct MALDI-MS was adequate to enable detection. The results obtained prove the efficacy of MALDI-MS for analyzing pathogenic bacteria in clinical samples. This article is part of a Special Issue entitled: Proteomics: The clinical link. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. [Investigation of Chlamydia trachomatis seropositivity in patients with cervical cancer].

    PubMed

    Onel, Mustafa; Küçücük, Seden; Töre, Gökhan; Ağaçfidan, Ali

    2013-10-01

    Chlamydia trachomatis is the most frequent bacterial pathogen causing sexually transmitted diseases worldwide. Many studies emphasize that chlamydial infections may play role as a cofactor in cervical cancers caused by high risk human papillomavirus types. The aim of this study was to investigate the presence of antibodies specific for C.trachomatis in patients with cervical cancer in order to detect the frequency of chlamydial infections. A total of 77 patients diagnosed as cervical cancer who have undergone surgery and on treatment at Oncology Institute of Istanbul Faculty of Medicine were included in the study, together with 20 healthy women as the control group. Serum samples obtained from patient and control groups were investigated by a commercial microimmunofluorescence kit (Orgenium Laboratories, Finland) for the detection of C.trachomatis IgG, IgA and IgM antibodies. All of the control subjects (mean age: 30.25 ± 6.4 years) were found seronegative, however the seropositivity rate detected in patients with cervical cancer was 9.1% (7/77). Serological data were interpreted as previous infections in four patients with single IgG positivity (titers: 1/16 in three and 1/32 in one patient), acute infections in two patients with IgG + IgM positivity (titers: IgG 1/64 and IgM 1/64 for both patients), and chronic infection in one patient with IgG + IgA positivity (titers: IgG 1/128 and IgA 1/20). The mean age of seven seropositive patients was 53.88 ± 12.1 years, and three of them had antibodies against FGK, three against BDE and one against CHIJ serogroups of C.trachomatis. None of the cases had the history of sexually transmitted disease. No statistically significance was found between patient and control groups regarding C.trachomatis IgG, IgA and IgM seropositivity (for IgG; p= 0.339, for IgA; p= 1.000, for IgM; p= 1.000). However, it was thought that the statistical evaluations may not be conclusive due to the small number of study groups. In conclusion

  14. Inactivation of bacterial pathogenic load in compost against vermicompost of organic solid waste aiming to achieve sanitation goals: A review.

    PubMed

    Soobhany, Nuhaa; Mohee, Romeela; Garg, Vinod Kumar

    2017-06-01

    Waste management strategies for organic residues, such as composting and vermicomposting, have been implemented in some developed and developing countries to solve the problem of organic solid waste (OSW). Yet, these biological treatment technologies do not always result in good quality compost or vermicompost with regards to sanitation capacity owing to the presence of bacterial pathogenic substances in objectionable concentrations. The presence of pathogens in soil conditioners poses a potential health hazard and their occurrence is of particular significance in composts and/or vermicomposts produced from organic materials. Past and present researches demonstrated a high-degree of agreement that various pathogens survive after the composting of certain OSW but whether similar changes in bacterial pathogenic loads arise during vermitechnology has not been thoroughly elucidated. This review garners information regarding the status of various pathogenic bacteria which survived or diffused after the composting process compared to the status of these pathogens after the vermicomposting of OSW with the aim of achieving sanitation goals. This work is also indispensable for the specification of compost quality guidelines concerning pathogen loads which would be specific to treatment technology. It was hypothesized that vermicomposting process for OSW can be efficacious in sustaining the existence of pathogenic organisms most specifically; human pathogens under safety levels. In summary, earthworms can be regarded as a way of obliterating pathogenic bacteria from OSW in a manner equivalent to earthworm gut transit mechanism which classifies vermicomposting as a promising sanitation technique in comparison to composting processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A Bacterial Pathogen Targets a Host Rab-Family GTPase Defense Pathway with a GAP.

    PubMed

    Spanò, Stefania; Gao, Xiang; Hannemann, Sebastian; Lara-Tejero, María; Galán, Jorge E

    2016-02-10

    Cell-autonomous defense mechanisms are potent strategies that protect individual cells against intracellular pathogens. The Rab-family GTPase Rab32 was previously shown to restrict the intracellular human pathogen Salmonella Typhi, but its potential broader role in antimicrobial defense remains unknown. We show that Rab32 represents a general cell-autonomous, antimicrobial defense that is counteracted by two Salmonella effectors. Mice lacking Rab-32 or its nucleotide exchange factor BLOC-3 are permissive to S. Typhi infection and exhibit increased susceptibility to S. Typhimurium. S. Typhimurium counters this defense pathway by delivering two type III secretion effectors, SopD2, a Rab32 GAP, and GtgE, a specific Rab32 protease. An S. Typhimurium mutant strain lacking these two effectors exhibits markedly reduced virulence, which is fully restored in BLOC-3-deficient mice. These results demonstrate that a cell-autonomous, Rab32-dependent host defense pathway plays a central role in the defense against vacuolar pathogens and describe a mechanism evolved by a bacterial pathogen to counter it. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Identification of unusual Chlamydia pecorum genotypes in Victorian koalas (Phascolarctos cinereus) and clinical variables associated with infection.

    PubMed

    Legione, Alistair R; Patterson, Jade L S; Whiteley, Pam L; Amery-Gale, Jemima; Lynch, Michael; Haynes, Leesa; Gilkerson, James R; Polkinghorne, Adam; Devlin, Joanne M; Sansom, Fiona M

    2016-05-01

    Chlamydia pecorum infection is a threat to the health of free-ranging koalas (Phascolarctos cinereus) in Australia. Utilizing an extensive sample archive we determined the prevalence of C. pecorum in koalas within six regions of Victoria, Australia. The ompA genotypes of the detected C. pecorum were characterized to better understand the epidemiology of this pathogen in Victorian koalas. Despite many studies in northern Australia (i.e. Queensland and New South Wales), prior Chlamydia studies in Victorian koalas are limited. We detected C. pecorum in 125/820 (15 %) urogenital swabs, but in only one ocular swab. Nucleotide sequencing of the molecular marker C. pecorum ompA revealed that the majority (90/114) of C. pecorum samples typed were genotype B. This genotype has not been reported in northern koalas. In general, Chlamydia infection in Victorian koalas is associated with milder clinical signs compared with infection in koalas in northern populations. Although disease pathogenesis is likely to be multifactorial, the high prevalence of genotype B in Victoria may suggest it is less pathogenic. All but three koalas had C. pecorum genotypes unique to southern koala populations (i.e. Victoria and South Australia). These included a novel C. pecorum ompA genotype and two genotypes associated with livestock. Regression analysis determined that significant factors for the presence of C. pecorum infection were sex and geographical location. The presence of 'wet bottom' in males and the presence of reproductive tract pathology in females were significantly associated with C. pecorum infection, suggesting variation in clinical disease manifestations between sexes.

  17. Bacterial avirulence genes.

    PubMed

    Leach, J E; White, F F

    1996-01-01

    Although more than 30 bacterial avirulence genes have been cloned and characterized, the function of the gene products in the elictitation of resistance is unknown in all cases but one. The product of avrD from Pseudomonas syringae pv. glycinea likely functions indirectly to elicit resistance in soybean, that is, evidence suggests the gene product is an enzyme involved in elicitor production. In most if not all cases, bacterial avirulence gene function is dependent on interactions with the hypersensitive response and pathogenicity (hrp) genes. Many hrp genes are similar to genes involved in delivery of pathogenicity factors in mammalian bacterial pathogens. Thus, analogies between mammalian and plant pathogens may provide needed clues to elucidate how virulence gene products control induction of resistance.

  18. Comparative and bioinformatics analyses of pathogenic bacterial secretomes identified by mass spectrometry in Burkholderia species.

    PubMed

    Nguyen, Thao Thi; Chon, Tae-Soo; Kim, Jaehan; Seo, Young-Su; Heo, Muyoung

    2017-07-01

    Secreted proteins (secretomes) play crucial roles during bacterial pathogenesis in both plant and human hosts. The identification and characterization of secretomes in the two plant pathogens Burkholderia glumae BGR1 and B. gladioli BSR3, which cause diseases in rice such as seedling blight, panicle blight, and grain rot, are important steps to not only understand the disease-causing mechanisms but also find remedies for the diseases. Here, we identified two datasets of secretomes in B. glumae BGR1 and B. gladioli BSR3, which consist of 118 and 111 proteins, respectively, using mass spectrometry approach and literature curation. Next, we characterized the functional properties, potential secretion pathways and sequence information properties of secretomes of two plant pathogens in a comparative analysis by various computational approaches. The ratio of potential non-classically secreted proteins (NCSPs) to classically secreted proteins (CSPs) in B. glumae BGR1 was greater than that in B. gladioli BSR3. For CSPs, the putative hydrophobic regions (PHRs) which are essential for secretion process of CSPs were screened in detail at their N-terminal sequences using hidden Markov model (HMM)-based method. Total 31 pairs of homologous proteins in two bacterial secretomes were indicated based on the global alignment (identity ≥ 70%). Our results may facilitate the understanding of the species-specific features of secretomes in two plant pathogenic Burkholderia species.

  19. Decay Of Bacterial Pathogens, Fecal Indicators, And Real-Time Quantitative PCR Genetic Markers In Manure-Amended Soils

    EPA Science Inventory

    This study examined persistence and decay of bacterial pathogens, fecal indicator bacteria (FIB), and emerging real-time quantitative PCR (qPCR) genetic markers for rapid detection of fecal pollution in manure-amended agricultural soils. Known concentrations of transformed green...

  20. Decay Of Bacterial Pathogen, Fecal Indicators, And Real-Time Quantitative PCR Genetic Markers In Manure Amended Soils

    EPA Science Inventory

    This study examined persistence and decay of bacterial pathogens, fecal indicator bacteria, and emerging real-time quantitative PCR (qPCR) genetic markers for rapid detection of fecal pollution in manre-amended agricultural soils. Known concentrations of transformed green fluore...

  1. Are Bacterial Volatile Compounds Poisonous Odors to a Fungal Pathogen Botrytis cinerea, Alarm Signals to Arabidopsis Seedlings for Eliciting Induced Resistance, or Both?

    PubMed Central

    Sharifi, Rouhallah; Ryu, Choong-Min

    2016-01-01

    Biological control (biocontrol) agents act on plants via numerous mechanisms, and can be used to protect plants from pathogens. Biocontrol agents can act directly as pathogen antagonists or competitors or indirectly to promote plant induced systemic resistance (ISR). Whether a biocontrol agent acts directly or indirectly depends on the specific strain and the pathosystem type. We reported previously that bacterial volatile organic compounds (VOCs) are determinants for eliciting plant ISR. Emerging data suggest that bacterial VOCs also can directly inhibit fungal and plant growth. The aim of the current study was to differentiate direct and indirect mechanisms of bacterial VOC effects against Botrytis cinerea infection of Arabidopsis. Volatile emissions from Bacillus subtilis GB03 successfully protected Arabidopsis seedlings against B. cinerea. First, we investigated the direct effects of bacterial VOCs on symptom development and different phenological stages of B. cinerea including spore germination, mycelial attachment to the leaf surface, mycelial growth, and sporulation in vitro and in planta. Volatile emissions inhibited hyphal growth in a dose-dependent manner in vitro, and interfered with fungal attachment on the hydrophobic leaf surface. Second, the optimized bacterial concentration that did not directly inhibit fungal growth successfully protected Arabidopsis from fungal infection, which indicates that bacterial VOC-elicited plant ISR has a more important role in biocontrol than direct inhibition of fungal growth on Arabidopsis. We performed qRT-PCR to investigate the priming of the defense-related genes PR1, PDF1.2, and ChiB at 0, 12, 24, and 36 h post-infection and 14 days after the start of plant exposure to bacterial VOCs. The results indicate that bacterial VOCs potentiate expression of PR1 and PDF1.2 but not ChiB, which stimulates SA- and JA-dependent signaling pathways in plant ISR and protects plants against pathogen colonization. This study

  2. Microbiological and pathological examination of fatal calf pneumonia cases induced by bacterial and viral respiratory pathogens.

    PubMed

    Szeredi, Levente; Jánosi, Szilárd; Pálfi, Vilmos

    2010-09-01

    The infectious origin of fatal cases of calf pneumonia was studied in 48 calves from 27 different herds on postmortem examination. Lung tissue samples were examined by pathological, histological, bacterial culture, virus isolation and immunohistochemical methods for the detection of viral and bacterial infections. Pneumonia was diagnosed in 47/48 cases and infectious agents were found in 40/47 (85%) of those cases. The presence of multiple respiratory pathogens in 23/40 (57.5%) cases indicated the complex origin of fatal calf pneumonia. The most important respiratory pathogens were Mannheimia-Pasteurella in 36/40 (90%) cases, followed by Arcanobacterium pyogenes in 16/40 (40%) cases, Mycoplasma bovis in 12/40 (30%) cases, and bovine respiratory syncytial virus in 4/40 (10%) cases. Histophilus somni was detected in 2/40 (5%) cases, while bovine herpesvirus-1, bovine viral diarrhoea virus and parainfluenza virus-3 were each found in 1/40 (2.5%) case. Mastadenovirus, bovine coronavirus, influenza A virus or Chlamydiaceae were not detected.

  3. Drivers of bacterial genomes plasticity and roles they play in pathogen virulence, persistence and drug resistance.

    PubMed

    Patel, Seema

    2016-11-01

    Despite the advent of next-generation sequencing (NGS) technologies, sophisticated data analysis and drug development efforts, bacterial drug resistance persists and is escalating in magnitude. To better control the pathogens, a thorough understanding of their genomic architecture and dynamics is vital. Bacterial genome is extremely complex, a mosaic of numerous co-operating and antagonizing components, altruistic and self-interested entities, behavior of which are predictable and conserved to some extent, yet largely dictated by an array of variables. In this regard, mobile genetic elements (MGE), DNA repair systems, post-segregation killing systems, toxin-antitoxin (TA) systems, restriction-modification (RM) systems etc. are dominant agents and horizontal gene transfer (HGT), gene redundancy, epigenetics, phase and antigenic variation etc. processes shape the genome. By illegitimate recombinations, deletions, insertions, duplications, amplifications, inversions, conversions, translocations, modification of intergenic regions and other alterations, bacterial genome is modified to tackle stressors like drugs, and host immune effectors. Over the years, thousands of studies have investigated this aspect and mammoth amount of insights have been accumulated. This review strives to distillate the existing information, formulate hypotheses and to suggest directions, that might contribute towards improved mitigation of the vicious pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Summary: The natural history and immunobiology of Chlamydia trachomatis genital infection and implications for Chlamydia control.

    PubMed

    Gottlieb, Sami L; Martin, David H; Xu, Fujie; Byrne, Gerald I; Brunham, Robert C

    2010-06-15

    In 2008, the US Centers for Disease Control and Prevention held the Chlamydia Immunology and Control Expert Advisory Meeting to foster a dialogue among basic scientists, clinical researchers, and epidemiologists studying genital Chlamydia trachomatis infection. The objectives of the meeting were to determine key questions related to C. trachomatis natural history and immunobiology, with implications for control programs;to review existing data on these key questions; and to delineate research needs to address remaining gaps in knowledge. The 9 articles in this supplement to The Journal of Infectious Diseases describe salient findings presented at the 2008 meeting, and this commentary summarizes and synthesizes these articles and discusses implications for chlamydia control efforts and future research priorities.

  5. Bacterial Colonization of Host Cells in the Absence of Cholesterol

    PubMed Central

    Gilk, Stacey D.; Cockrell, Diane C.; Luterbach, Courtney; Hansen, Bryan; Knodler, Leigh A.; Ibarra, J. Antonio; Steele-Mortimer, Olivia; Heinzen, Robert A.

    2013-01-01

    Reports implicating important roles for cholesterol and cholesterol-rich lipid rafts in host-pathogen interactions have largely employed sterol sequestering agents and biosynthesis inhibitors. Because the pleiotropic effects of these compounds can complicate experimental interpretation, we developed a new model system to investigate cholesterol requirements in pathogen infection utilizing DHCR24−/− mouse embryonic fibroblasts (MEFs). DHCR24−/− MEFs lack the Δ24 sterol reductase required for the final enzymatic step in cholesterol biosynthesis, and consequently accumulate desmosterol into cellular membranes. Defective lipid raft function by DHCR24−/− MEFs adapted to growth in cholesterol-free medium was confirmed by showing deficient uptake of cholera-toxin B and impaired signaling by epidermal growth factor. Infection in the absence of cholesterol was then investigated for three intracellular bacterial pathogens: Coxiella burnetii, Salmonella enterica serovar Typhimurium, and Chlamydia trachomatis. Invasion by S. Typhimurium and C. trachomatis was unaltered in DHCR24−/− MEFs. In contrast, C. burnetii entry was significantly decreased in −cholesterol MEFs, and also in +cholesterol MEFs when lipid raft-associated αVβ3 integrin was blocked, suggesting a role for lipid rafts in C. burnetii uptake. Once internalized, all three pathogens established their respective vacuolar niches and replicated normally. However, the C. burnetii-occupied vacuole within DHCR24−/− MEFs lacked the CD63-postive material and multilamellar membranes typical of vacuoles formed in wild type cells, indicating cholesterol functions in trafficking of multivesicular bodies to the pathogen vacuole. These data demonstrate that cholesterol is not essential for invasion and intracellular replication by S. Typhimurium and C. trachomatis, but plays a role in C. burnetii-host cell interactions. PMID:23358892

  6. Population-attributable fraction of tubal factor infertility associated with chlamydia.

    PubMed

    Gorwitz, Rachel J; Wiesenfeld, Harold C; Chen, Pai-Lien; Hammond, Karen R; Sereday, Karen A; Haggerty, Catherine L; Johnson, Robert E; Papp, John R; Kissin, Dmitry M; Henning, Tara C; Hook, Edward W; Steinkampf, Michael P; Markowitz, Lauri E; Geisler, William M

    2017-09-01

    Chlamydia trachomatis infection is highly prevalent among young women in the United States. Prevention of long-term sequelae of infection, including tubal factor infertility, is a primary goal of chlamydia screening and treatment activities. However, the population-attributable fraction of tubal factor infertility associated with chlamydia is unclear, and optimal measures for assessing tubal factor infertility and prior chlamydia in epidemiological studies have not been established. Black women have increased rates of chlamydia and tubal factor infertility compared with White women but have been underrepresented in prior studies of the association of chlamydia and tubal factor infertility. The objectives of the study were to estimate the population-attributable fraction of tubal factor infertility associated with Chlamydia trachomatis infection by race (Black, non-Black) and assess how different definitions of Chlamydia trachomatis seropositivity and tubal factor infertility affect population-attributable fraction estimates. We conducted a case-control study, enrolling infertile women attending infertility practices in Birmingham, AL, and Pittsburgh, PA, during October 2012 through June 2015. Tubal factor infertility case status was primarily defined by unilateral or bilateral fallopian tube occlusion (cases) or bilateral fallopian tube patency (controls) on hysterosalpingogram. Alternate tubal factor infertility definitions incorporated history suggestive of tubal damage or were based on laparoscopic evidence of tubal damage. We aimed to enroll all eligible women, with an expected ratio of 1 and 3 controls per case for Black and non-Black women, respectively. We assessed Chlamydia trachomatis seropositivity with a commercial assay and a more sensitive research assay; our primary measure of seropositivity was defined as positivity on either assay. We estimated Chlamydia trachomatis seropositivity and calculated Chlamydia trachomatis-tubal factor infertility odds

  7. Preclinical Investigations Reveal the Broad-Spectrum Neutralizing Activity of Peptide Pep19-2.5 on Bacterial Pathogenicity Factors

    PubMed Central

    Sánchez-Gómez, Susana; Martinez de Tejada, Guillermo; Dömming, Sabine; Brandenburg, Julius; Kaconis, Yani; Hornef, Mathias; Dupont, Aline; Marwitz, Sebastian; Goldmann, Torsten; Ernst, Martin; Gutsmann, Thomas; Schürholz, Tobias

    2013-01-01

    Bacterial infections are known to cause severe health-threatening conditions, including sepsis. All attempts to get this disease under control failed in the past, and especially in times of increasing antibiotic resistance, this leads to one of the most urgent medical challenges of our times. We designed a peptide to bind with high affinity to endotoxins, one of the most potent pathogenicity factors involved in triggering sepsis. The peptide Pep19-2.5 reveals high endotoxin neutralization efficiency in vitro, and here, we demonstrate its antiseptic/anti-inflammatory effects in vivo in the mouse models of endotoxemia, bacteremia, and cecal ligation and puncture, as well as in an ex vivo model of human tissue. Furthermore, we show that Pep19-2.5 can bind and neutralize not only endotoxins but also other bacterial pathogenicity factors, such as those from the Gram-positive bacterium Staphylococcus aureus. This broad neutralization efficiency and the additive action of the peptide with common antibiotics makes it an exceptionally appropriate drug candidate against bacterial sepsis and also offers multiple other medication opportunities. PMID:23318793

  8. Large scale genomic analysis shows no evidence for pathogen adaptation between the blood and cerebrospinal fluid niches during bacterial meningitis

    PubMed Central

    Lees, John A.; Kremer, Philip H. C.; Manso, Ana S.; Croucher, Nicholas J.; Ferwerda, Bart; Serón, Mercedes Valls; Oggioni, Marco R.; Parkhill, Julian; Brouwer, Matthijs C.; van der Ende, Arie; van de Beek, Diederik

    2017-01-01

    Recent studies have provided evidence for rapid pathogen genome diversification, some of which could potentially affect the course of disease. We have previously described such variation seen between isolates infecting the blood and cerebrospinal fluid (CSF) of a single patient during a case of bacterial meningitis. Here, we performed whole-genome sequencing of paired isolates from the blood and CSF of 869 meningitis patients to determine whether such variation frequently occurs between these two niches in cases of bacterial meningitis. Using a combination of reference-free variant calling approaches, we show that no genetic adaptation occurs in either invaded niche during bacterial meningitis for two major pathogen species, Streptococcus pneumoniae and Neisseria meningitidis. This study therefore shows that the bacteria capable of causing meningitis are already able to do this upon entering the blood, and no further sequence change is necessary to cross the blood–brain barrier. Our findings place the focus back on bacterial evolution between nasopharyngeal carriage and invasion, or diversity of the host, as likely mechanisms for determining invasiveness. PMID:28348877

  9. Factor H-IgG Chimeric Proteins as a Therapeutic Approach against the Gram-Positive Bacterial Pathogen Streptococcus pyogenes.

    PubMed

    Blom, Anna M; Magda, Michal; Kohl, Lisa; Shaughnessy, Jutamas; Lambris, John D; Ram, Sanjay; Ermert, David

    2017-12-01

    Bacteria can cause life-threatening infections, such as pneumonia, meningitis, or sepsis. Antibiotic therapy is a mainstay of treatment, although antimicrobial resistance has drastically increased over the years. Unfortunately, safe and effective vaccines against most pathogens have not yet been approved, and thus developing alternative treatments is important. We analyzed the efficiency of factor H (FH)6-7/Fc, a novel antibacterial immunotherapeutic protein against the Gram-positive bacterium Streptococcus pyogenes This protein is composed of two domains of complement inhibitor human FH (FH complement control protein modules 6 and 7) that bind to S. pyogenes , linked to the Fc region of IgG (FH6-7/Fc). FH6-7/Fc has previously been shown to enhance complement-dependent killing of, and facilitate bacterial clearance in, animal models of the Gram-negative pathogens Haemophilus influenzae and Neisseria meningitidis We hypothesized that activation of complement by FH6-7/Fc on the surface of Gram-positive bacteria such as S. pyogenes will enable professional phagocytes to eliminate the pathogen. We found that FH6-7/Fc alleviated S. pyogenes- induced sepsis in a transgenic mouse model expressing human FH ( S. pyogenes binds FH in a human-specific manner). Furthermore, FH6-7/Fc, which binds to protein H and selected M proteins, displaced FH from the bacterial surface, enhanced alternative pathway activation, and reduced bacterial blood burden by opsonophagocytosis in a C3-dependent manner in an ex vivo human whole-blood model. In conclusion, FH-Fc chimeric proteins could serve as adjunctive treatments against multidrug-resistant bacterial infections. Copyright © 2017 by The American Association of Immunologists, Inc.

  10. High rates of chlamydia found among 12- to 16-year-olds attending a rural sexual health clinic: implications for practice.

    PubMed

    Tomnay, Jane Elizabeth; Coelli, Lauren; Hocking, Jane Simone

    2016-04-01

    Background Chlamydia is the most commonly diagnosed bacterial sexually transmissible infection (STI) and is asymptomatic in ~80% of women. If untreated, potential consequences include pelvic inflammatory disease, ectopic pregnancy and infertility. In 2014, a retrospective audit was undertaken at a rural service to determine what proportion of patients were aged 12-16 years, infected with chlamydia and their reasons for attending the clinic. There were 111 patients aged 12-16 years attending during 2011-2014; 104 (95%) were female. One hundred and ninety-four chlamydia tests were conducted, with the proportion of patients having at least one test annually being 100% in 2011, 81% in 2012, 72% in 2013 and 78% in 2014. There was no difference in the proportion tested by age during the study (P=0.59). Forty-six tests were positive for chlamydia (23.7%; 95%CI: 17.8%, 30.9%) with proportions decreasing with increasing age from 46.7% (95%CI: 16.4%, 79.5%) in 12- or 13-year-olds to 15.5% (95%CI: 9.4%, 24.2%) in 16-year-olds (P=0.02). The reasons for attending when a chlamydia test was ordered included: (i) fear of pregnancy (18.3%, 34/185); (ii) symptoms (16.7%, 31/185); (iii) STI test/treatment (32.4%, 60/185); and (iv) contraception (32.4%, 60/185). Only 29.7% (33/111) would have been tested if symptoms or requesting a test were impetus. Sexually active 12- to 16-year-olds should be tested for chlamydia, and establishing their sexual history is crucial. Amending the current Australian guidelines to annual testing of any sexually active person under the age of 30 years should be considered.

  11. Chemical communication in the gut: Effects of microbiota-generated metabolites on gastrointestinal bacterial pathogens.

    PubMed

    Vogt, Stefanie L; Peña-Díaz, Jorge; Finlay, B Brett

    2015-08-01

    Gastrointestinal pathogens must overcome many obstacles in order to successfully colonize a host, not the least of which is the presence of the gut microbiota, the trillions of commensal microorganisms inhabiting mammals' digestive tracts, and their products. It is well established that a healthy gut microbiota provides its host with protection from numerous pathogens, including Salmonella species, Clostridium difficile, diarrheagenic Escherichia coli, and Vibrio cholerae. Conversely, pathogenic bacteria have evolved mechanisms to establish an infection and thrive in the face of fierce competition from the microbiota for space and nutrients. Here, we review the evidence that gut microbiota-generated metabolites play a key role in determining the outcome of infection by bacterial pathogens. By consuming and transforming dietary and host-produced metabolites, as well as secreting primary and secondary metabolites of their own, the microbiota define the chemical environment of the gut and often determine specific host responses. Although most gut microbiota-produced metabolites are currently uncharacterized, several well-studied molecules made or modified by the microbiota are known to affect the growth and virulence of pathogens, including short-chain fatty acids, succinate, mucin O-glycans, molecular hydrogen, secondary bile acids, and the AI-2 quorum sensing autoinducer. We also discuss challenges and possible approaches to further study of the chemical interplay between microbiota and gastrointestinal pathogens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Development of a panel of recombinase polymerase amplification assays for detection of common bacterial urinary tract infection pathogens.

    PubMed

    Raja, B; Goux, H J; Marapadaga, A; Rajagopalan, S; Kourentzi, K; Willson, R C

    2017-08-01

    To develop and evaluate the performance of a panel of isothermal real-time recombinase polymerase amplification (RPA) assays for detection of common bacterial urinary tract infection (UTI) pathogens. The panel included RPAs for Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa and Enterococcus faecalis. All five RPAs required reaction times of under 12 min to reach their lower limit of detection of 100 genomes per reaction or less, and did not cross-react with high concentrations of nontarget bacterial genomic DNA. In a 50-sample retrospective clinical study, the five-RPA assay panel was found to have a specificity of 100% (95% CI, 78-100%) and a sensitivity of 89% (95% CI, 75-96%) for UTI detection. The analytical and clinical validity of RPA for the rapid and sensitive detection of common UTI pathogens was established. Rapid identification of the causative pathogens of UTIs can be valuable in preventing serious complications by helping avoid the empirical treatment necessitated by traditional urine culture's 48-72-h turnaround time. The routine and widespread use of RPA to supplement or replace culture-based methods could profoundly impact UTI management and the emergence of multidrug-resistant pathogens. © 2017 The Society for Applied Microbiology.

  13. National Institute of Allergy and Infectious Diseases workshop report: "Chlamydia vaccines: The way forward".

    PubMed

    Zhong, Guangming; Brunham, Robert C; de la Maza, Luis M; Darville, Toni; Deal, Carolyn

    2017-10-31

    Chlamydia trachomatis (Ct), an intracellular pathogen, is the most common bacterial sexually transmitted infection. In addition to acute cervicitis and urethritis, Ct can lead to serious sequelae of significant public health burden including pelvic inflammatory disease (PID) and infertility. Ct control efforts have not resulted in desired outcomes such as reduced incidence and reinfection, and this highlights the need for the development of an effective Ct vaccine. To this end, NIAID organized a workshop to consider the current status of Ct vaccine research and address critical questions in Ct vaccine design and clinical testing. Topics included the goal(s) of a vaccine and the feasibility of achieving these goals, animal models of infection including mouse and nonhuman primate (NHP) models, and correlates of protection to guide vaccine design. Decades of research have provided both whole cell-based and subunit vaccine candidates for development. At least one is currently in clinical development and efforts now need to be directed toward further development of the most attractive candidates. Overall, the discussions and presentations from the workshop highlighted optimism about the current status of Ct vaccine research and detailed the remaining gaps and questions needed to move vaccines forward. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Protective Effect of Vaccine Promoted Neutralizing Antibodies against the Intracellular Pathogen Chlamydia trachomatis.

    PubMed

    Olsen, Anja Weinreich; Lorenzen, Emma Kathrine; Rosenkrands, Ida; Follmann, Frank; Andersen, Peter

    2017-01-01

    There is an unmet need for a vaccine to control Chlamydia trachomatis ( C.t .) infections. We have recently designed a multivalent heterologous immuno-repeat 1 (Hirep1) vaccine construct based on major outer membrane protein variable domain (VD) 4 regions from C.t . serovars (Svs) D-F. Hirep1 administered in the Cationic Adjuvant Formulation no. 1 (CAF01) promoted neutralizing antibodies in concert with CD4 + T cells and protected against genital infection. In the current study, we examined the protective role of the antibody (Ab) response in detail. Mice were vaccinated with either Hirep1 or a vaccine construct based on a homologous multivalent construct of extended VD4's from SvF (extVD4 F *4), adjuvanted in CAF01. Hirep1 and extVD4 F *4 induced similar levels of Ab and cell-mediated immune responses but differed in the fine specificity of the B cell epitopes targeted in the VD4 region. Hirep1 induced a strong response toward a neutralizing epitope (LNPTIAG) and the importance of this epitope for neutralization was demonstrated by competitive inhibition with the corresponding peptide. Immunization with extVD4 F *4 skewed the response to a non-neutralizing epitope slightly upstream in the sequence. Vaccination with Hirep1 as opposed to extVD4 F *4 induced significant protection against infection in mice both in short- and long-term vaccination experiments, signifying a key role for Hirep1 neutralizing antibodies during protection against C.t . Finally, we show that passive immunization of Rag1 knockout mice with Hirep1 antibodies completely prevented the establishment of infection in 48% of the mice, demonstrating an isolated role for neutralizing antibodies in controlling infection. Our data emphasize the role of antibodies in early protection against C.t . and support the inclusion of neutralizing targets in chlamydia vaccines.

  15. Protective Effect of Vaccine Promoted Neutralizing Antibodies against the Intracellular Pathogen Chlamydia trachomatis

    PubMed Central

    Olsen, Anja Weinreich; Lorenzen, Emma Kathrine; Rosenkrands, Ida; Follmann, Frank; Andersen, Peter

    2017-01-01

    There is an unmet need for a vaccine to control Chlamydia trachomatis (C.t.) infections. We have recently designed a multivalent heterologous immuno-repeat 1 (Hirep1) vaccine construct based on major outer membrane protein variable domain (VD) 4 regions from C.t. serovars (Svs) D–F. Hirep1 administered in the Cationic Adjuvant Formulation no. 1 (CAF01) promoted neutralizing antibodies in concert with CD4+ T cells and protected against genital infection. In the current study, we examined the protective role of the antibody (Ab) response in detail. Mice were vaccinated with either Hirep1 or a vaccine construct based on a homologous multivalent construct of extended VD4’s from SvF (extVD4F*4), adjuvanted in CAF01. Hirep1 and extVD4F*4 induced similar levels of Ab and cell-mediated immune responses but differed in the fine specificity of the B cell epitopes targeted in the VD4 region. Hirep1 induced a strong response toward a neutralizing epitope (LNPTIAG) and the importance of this epitope for neutralization was demonstrated by competitive inhibition with the corresponding peptide. Immunization with extVD4F*4 skewed the response to a non-neutralizing epitope slightly upstream in the sequence. Vaccination with Hirep1 as opposed to extVD4F*4 induced significant protection against infection in mice both in short- and long-term vaccination experiments, signifying a key role for Hirep1 neutralizing antibodies during protection against C.t. Finally, we show that passive immunization of Rag1 knockout mice with Hirep1 antibodies completely prevented the establishment of infection in 48% of the mice, demonstrating an isolated role for neutralizing antibodies in controlling infection. Our data emphasize the role of antibodies in early protection against C.t. and support the inclusion of neutralizing targets in chlamydia vaccines. PMID:29312283

  16. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations

    PubMed Central

    Law, Jodi Woan-Fei; Ab Mutalib, Nurul-Syakima; Chan, Kok-Gan; Lee, Learn-Han

    2015-01-01

    The incidence of foodborne diseases has increased over the years and resulted in major public health problem globally. Foodborne pathogens can be found in various foods and it is important to detect foodborne pathogens to provide safe food supply and to prevent foodborne diseases. The conventional methods used to detect foodborne pathogen are time consuming and laborious. Hence, a variety of methods have been developed for rapid detection of foodborne pathogens as it is required in many food analyses. Rapid detection methods can be categorized into nucleic acid-based, biosensor-based and immunological-based methods. This review emphasizes on the principles and application of recent rapid methods for the detection of foodborne bacterial pathogens. Detection methods included are simple polymerase chain reaction (PCR), multiplex PCR, real-time PCR, nucleic acid sequence-based amplification (NASBA), loop-mediated isothermal amplification (LAMP) and oligonucleotide DNA microarray which classified as nucleic acid-based methods; optical, electrochemical and mass-based biosensors which classified as biosensor-based methods; enzyme-linked immunosorbent assay (ELISA) and lateral flow immunoassay which classified as immunological-based methods. In general, rapid detection methods are generally time-efficient, sensitive, specific and labor-saving. The developments of rapid detection methods are vital in prevention and treatment of foodborne diseases. PMID:25628612

  17. CHLAMYDIA TRACHOMATIS TARP IS PHOSPHORYLATED BY SRC FAMILY TYROSINE KINASES

    PubMed Central

    Jewett, Travis J.; Dooley, Cheryl A.; Mead, David J.; Hackstadt, Ted

    2008-01-01

    The translocated actin recruiting phosphoprotein (Tarp) is injected into the cytosol shortly after Chlamydia trachomatis attachment to a target cell and subsequently phosphorylated by an unidentified tyrosine kinase. A role for Tarp phosphorylation in bacterial entry is unknown. In this study, recombinant C. trachomatis Tarp was employed to identify the host cell kinase(s) required for phosphorylation. Each tyrosine rich repeat of L2 Tarp harbors a sequence similar to a Src and Abl kinase consensus target. Furthermore, purified p60-src, Yes, Fyn, and Abl kinases were able to phosphorylate Tarp. Mutagenesis of potential tyrosines within a single tyrosine rich repeat peptide indicated that both Src and Abl kinases phosphorylate the same residues suggesting that C. trachomatis Tarp may serve as a substrate for multiple host cell kinases. Surprisingly, chemical inhibition of Src and Abl kinases prevented Tarp phosphorylation in culture and had no measurable effect on bacterial entry into host cells. PMID:18442471

  18. Chlamydia trachomatis infection of the male genital tract: an update.

    PubMed

    Mackern-Oberti, Juan Pablo; Motrich, Rubén Darío; Breser, María Laura; Sánchez, Leonardo Rodolfo; Cuffini, Cecilia; Rivero, Virginia Elena

    2013-11-01

    Chlamydia trachomatis (CT) is the most prevalent cause of sexually transmitted diseases. Although the prevalence of chlamydial infection is similar in men and women, current research and screening are still focused on women, who develop the most severe complications, leaving the study of male genital tract (MGT) infection underrated. Herein, we reviewed the literature on genital CT infection with special focus on the MGT. Data indicate that CT certainly infects different parts of the MGT such as the urethra, seminal vesicles, prostate, epididymis and testis. However, whether or not CT infection has detrimental effects on male fertility is still controversial. The most important features of CT infection are its chronic nature and the presence of a mild inflammation that remains subclinical in most individuals. Chlamydia antigens and pathogen recognition receptors (PRR), expressed on epithelial cells and immune cells from the MGT, have been studied in the last years. Toll-like receptor (TLR) expression has been observed in the testis, epididymis, prostate and vas deferens. It has been demonstrated that recognition of chlamydial antigens is associated with TLR2, TLR4, and possibly, other PRRs. CT recognition by PRRs induces a local production of cytokines/chemokines, which, in turn, provoke chronic inflammation that might evolve in the onset of an autoimmune process in genetically susceptible individuals. Understanding local immune response along the MGT, as well as the crosstalk between resident leukocytes, epithelial, and stromal cells, would be crucial in inducing a protective immunity, thus adding to the design of new therapeutic approaches to a Chlamydia vaccine. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Gram Stains: A Resource for Retrospective Analysis of Bacterial Pathogens in Clinical Studies

    PubMed Central

    Srinivasan, Usha; Ponnaluri, Sreelatha; Villareal, Lisa; Gillespie, Brenda; Wen, Ai; Miles, Arianna; Bucholz, Brigette; Marrs, Carl F.; Iyer, Ram K.; Misra, Dawn; Foxman, Betsy

    2012-01-01

    We demonstrate the feasibility of using qPCR on DNA extracted from vaginal Gram stain slides to estimate the presence and relative abundance of specific bacterial pathogens. We first tested Gram stained slides spiked with a mix of 108 cfu/ml of Escherichia coli and 105 cfu/ml of Lactobacillus acidophilus. Primers were designed for amplification of total and species-specific bacterial DNA based on 16S ribosomal gene regions. Sample DNA was pre-amplified with nearly full length 16S rDNA ribosomal gene fragment, followed by quantitative PCR with genera and species-specific 16S rDNA primers. Pre-amplification PCR increased the bacterial amounts; relative proportions of Escherichia coli and Lactobacillus recovered from spiked slides remained unchanged. We applied this method to forty two archived Gram stained slides available from a clinical trial of cerclage in pregnant women at high risk of preterm birth. We found a high correlation between Nugent scores based on bacterial morphology of Lactobacillus, Gardenerella and Mobiluncus and amounts of quantitative PCR estimated genus specific DNA (rrn copies) from Gram stained slides. Testing of a convenience sample of eight paired vaginal swabs and Gram stains freshly collected from healthy women found similar qPCR generated estimates of Lactobacillus proportions from Gram stained slides and vaginal swabs. Archived Gram stained slides collected from large scale epidemiologic and clinical studies represent a valuable, untapped resource for research on the composition of bacterial communities that colonize human mucosal surfaces. PMID:23071487

  20. Gram stains: a resource for retrospective analysis of bacterial pathogens in clinical studies.

    PubMed

    Srinivasan, Usha; Ponnaluri, Sreelatha; Villareal, Lisa; Gillespie, Brenda; Wen, Ai; Miles, Arianna; Bucholz, Brigette; Marrs, Carl F; Iyer, Ram K; Misra, Dawn; Foxman, Betsy

    2012-01-01

    We demonstrate the feasibility of using qPCR on DNA extracted from vaginal Gram stain slides to estimate the presence and relative abundance of specific bacterial pathogens. We first tested Gram stained slides spiked with a mix of 10(8) cfu/ml of Escherichia coli and 10(5) cfu/ml of Lactobacillus acidophilus. Primers were designed for amplification of total and species-specific bacterial DNA based on 16S ribosomal gene regions. Sample DNA was pre-amplified with nearly full length 16S rDNA ribosomal gene fragment, followed by quantitative PCR with genera and species-specific 16S rDNA primers. Pre-amplification PCR increased the bacterial amounts; relative proportions of Escherichia coli and Lactobacillus recovered from spiked slides remained unchanged. We applied this method to forty two archived Gram stained slides available from a clinical trial of cerclage in pregnant women at high risk of preterm birth. We found a high correlation between Nugent scores based on bacterial morphology of Lactobacillus, Gardenerella and Mobiluncus and amounts of quantitative PCR estimated genus specific DNA (rrn copies) from Gram stained slides. Testing of a convenience sample of eight paired vaginal swabs and Gram stains freshly collected from healthy women found similar qPCR generated estimates of Lactobacillus proportions from Gram stained slides and vaginal swabs. Archived Gram stained slides collected from large scale epidemiologic and clinical studies represent a valuable, untapped resource for research on the composition of bacterial communities that colonize human mucosal surfaces.

  1. Transmission of Bacterial Zoonotic Pathogens between Pets and Humans: The Role of Pet Food.

    PubMed

    Lambertini, Elisabetta; Buchanan, Robert L; Narrod, Clare; Pradhan, Abani K

    2016-01-01

    Recent Salmonella outbreaks associated with dry pet food and treats raised the level of concern for these products as vehicle of pathogen exposure for both pets and their owners. The need to characterize the microbiological and risk profiles of this class of products is currently not supported by sufficient specific data. This systematic review summarizes existing data on the main variables needed to support an ingredients-to-consumer quantitative risk model to (1) describe the microbial ecology of bacterial pathogens in the dry pet food production chain, (2) estimate pet exposure to pathogens through dry food consumption, and (3) assess human exposure and illness incidence due to contact with pet food and pets in the household. Risk models populated with the data here summarized will provide a tool to quantitatively address the emerging public health concerns associated with pet food and the effectiveness of mitigation measures. Results of such models can provide a basis for improvements in production processes, risk communication to consumers, and regulatory action.

  2. Gene regulation mediates host specificity of a bacterial pathogen.

    PubMed

    Killiny, Nabil; Almeida, Rodrigo P P

    2011-12-01

    Many bacterial plant pathogens have a gene-for-gene relationship that determines host specificity. However, there are pathogens such as the xylem-limited bacterium Xylella fastidiosa that do not carry genes considered essential for the gene-for-gene model, such as those coding for a type III secretion system and effector molecules. Nevertheless, X. fastidiosa subspecies are host specific. A comparison of symptom development and host colonization after infection of plants with several mutant strains in two hosts, grapevines and almonds, indicated that X. fastidiosa virulence mechanisms are similar in those plants. Thus, we tested if modification of gene regulation patterns, by affecting the production of a cell-cell signalling molecule (DSF), impacted host specificity in X. fastidiosa. Results show that disruption of the rpfF locus, required for DSF synthesis, in a strain incapable of causing disease in grapevines, leads to symptom development in that host. These data are indicative that the core machinery required for the colonization of grapevines is present in that strain, and that changes in gene regulation alone can lead X. fastidiosa to exploit a novel host. The study of the evolution and mechanisms of host specificity mediated by gene regulation at the genome level could lead to important insights on the emergence of new diseases. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  3. Common themes in microbial pathogenicity revisited.

    PubMed Central

    Finlay, B B; Falkow, S

    1997-01-01

    Bacterial pathogens employ a number of genetic strategies to cause infection and, occasionally, disease in their hosts. Many of these virulence factors and their regulatory elements can be divided into a smaller number of groups based on the conservation of similar mechanisms. These common themes are found throughout bacterial virulence factors. For example, there are only a few general types of toxins, despite a large number of host targets. Similarly, there are only a few conserved ways to build the bacterial pilus and nonpilus adhesins used by pathogens to adhere to host substrates. Bacterial entry into host cells (invasion) is a complex mechanism. However, several common invasion themes exist in diverse microorganisms. Similarly, once inside a host cell, pathogens have a limited number of ways to ensure their survival, whether remaining within a host vacuole or by escaping into the cytoplasm. Avoidance of the host immune defenses is key to the success of a pathogen. Several common themes again are employed, including antigenic variation, camouflage by binding host molecules, and enzymatic degradation of host immune components. Most virulence factors are found on the bacterial surface or secreted into their immediate environment, yet virulence factors operate through a relatively small number of microbial secretion systems. The expression of bacterial pathogenicity is dependent upon complex regulatory circuits. However, pathogens use only a small number of biochemical families to express distinct functional factors at the appropriate time that causes infection. Finally, virulence factors maintained on mobile genetic elements and pathogenicity islands ensure that new strains of pathogens evolve constantly. Comprehension of these common themes in microbial pathogenicity is critical to the understanding and study of bacterial virulence mechanisms and to the development of new "anti-virulence" agents, which are so desperately needed to replace antibiotics. PMID

  4. Chlamydia trachomatis Infection in Pregnancy: The Global Challenge of Preventing Adverse Pregnancy and Infant Outcomes in Sub-Saharan Africa and Asia

    PubMed Central

    Adachi, Kristina; Nielsen-Saines, Karin

    2016-01-01

    Screening and treatment of sexually transmitted infections (STIs) in pregnancy represents an overlooked opportunity to improve the health outcomes of women and infants worldwide. Although Chlamydia trachomatis is the most common treatable bacterial STI, few countries have routine pregnancy screening and treatment programs. We reviewed the current literature surrounding Chlamydia trachomatis in pregnancy, particularly focusing on countries in sub-Saharan Africa and Asia. We discuss possible chlamydial adverse pregnancy and infant health outcomes (miscarriage, stillbirth, ectopic pregnancy, preterm birth, neonatal conjunctivitis, neonatal pneumonia, and other potential effects including HIV perinatal transmission) and review studies of chlamydial screening and treatment in pregnancy, while simultaneously highlighting research from resource-limited countries in sub-Saharan Africa and Asia. PMID:27144177

  5. Lactobacilli Inactivate Chlamydia trachomatis through Lactic Acid but Not H2O2

    PubMed Central

    Gong, Zheng; Luna, Yesmin; Yu, Ping; Fan, Huizhou

    2014-01-01

    Lactobacillus species dominate the microbiome in the lower genital tract of most reproductive-age women. Producing lactic acid and H2O2, lactobacilli are believed to play an important role in prevention of colonization by and growth of pathogens. However, to date, there have been no reported studies characterizing how lactobacilli interact with Chlamydia trachomatis, a leading sexually transmitted bacterium. In this report, we demonstrate inactivation of C. trachomatis infectivity by culture media conditioned by Lactobacillus crispatus, L. gasseri and L. jensenii, known to be dominating organisms in the human vaginal microbiome. Lactobacillus still cultures produced lactic acid, leading to time- and concentration-dependent killing of C. trachomatis. Neutralization of the acidic media completely reversed chlamydia killing. Addition of lactic acid into Lactobacillus-unconditioned growth medium recapitulated the chlamydiacidal activity of conditioned media. The H2O2 concentrations in the still cultures were found to be comparable to those reported for the cervicovaginal fluid, but insufficient to inactivate chlamydiae. Aeration of Lactobacillus cultures by shaking markedly induced H2O2 production, but strongly inhibited Lactobacillus growth and lactic acid production, and thus severely affected acidification, leading to significantly reduced chlamydiacidal efficiency. These observations indicate lactobacilli inactivate chlamydiae primarily through maintaining acidity in a relatively hypoxic environment in the vaginal lumen with limited H2O2, which is consistent with the notion that women with higher vaginal pH are more prone to sexually transmitted C. trachomatis infection. In addition to lactic acid, formic acid and acetic acid also exhibited potent chlamydiacidal activities. Taken together, our findings imply that lowering the vaginal pH through engineering of the vaginal microbiome and other means will make women less susceptible to C. trachomatis infection. PMID

  6. Significant roles played by IL-10 in Chlamydia infections.

    PubMed

    Hakimi, Hamid; Zare-Bidaki, Mohammad; Zainodini, Nahid; Assar, Shokrollah; Arababadi, Mohammad Kazemi

    2014-06-01

    Chlamydia species are obligate intracellular parasites which cause usually asymptomatic genital tract infections and also are associated with several complications. Previous studies demonstrated that immune responses to Chlamydia species are different and the diseases will be limited to some cases. Additionally, Chlamydia species are able to modulate immune responses via regulating expression of some immune system molecules including cytokines. IL-10, as the main anti-inflammatory cytokine, plays important roles in the induction of immune-tolerance against self-antigen and also immune-homeostasis after microbe elimination. Furthermore, it has been documented that ectopic expression of IL-10 is associated with several chronic infectious diseases. Therefore, it can be hypothesized that changes in the regulation of this cytokine can be associated with infection with several species of Chlamydia and their associated complications. This review collected the recent information regarding the association and relationship of IL-10 with Chlamydia infections. Another aim of this review article is to address recent data regarding the association of genetic variations (polymorphisms) of IL-10 and Chlamydia infections.

  7. Animals devoid of pulmonary system as infection models in the study of lung bacterial pathogens

    PubMed Central

    López Hernández, Yamilé; Yero, Daniel; Pinos-Rodríguez, Juan M.; Gibert, Isidre

    2015-01-01

    Biological disease models can be difficult and costly to develop and use on a routine basis. Particularly, in vivo lung infection models performed to study lung pathologies use to be laborious, demand a great time and commonly are associated with ethical issues. When infections in experimental animals are used, they need to be refined, defined, and validated for their intended purpose. Therefore, alternative and easy to handle models of experimental infections are still needed to test the virulence of bacterial lung pathogens. Because non-mammalian models have less ethical and cost constraints as a subjects for experimentation, in some cases would be appropriated to include these models as valuable tools to explore host–pathogen interactions. Numerous scientific data have been argued to the more extensive use of several kinds of alternative models, such as, the vertebrate zebrafish (Danio rerio), and non-vertebrate insects and nematodes (e.g., Caenorhabditis elegans) in the study of diverse infectious agents that affect humans. Here, we review the use of these vertebrate and non-vertebrate models in the study of bacterial agents, which are considered the principal causes of lung injury. Curiously none of these animals have a respiratory system as in air-breathing vertebrates, where respiration takes place in lungs. Despite this fact, with the present review we sought to provide elements in favor of the use of these alternative animal models of infection to reveal the molecular signatures of host–pathogen interactions. PMID:25699030

  8. Bacterial pneumonia as an influenza complication.

    PubMed

    Martin-Loeches, Ignacio; van Someren Gréve, Frank; Schultz, Marcus J

    2017-04-01

    The pathogenesis and impact of coinfection, in particular bacterial coinfection, in influenza are incompletely understood. This review summarizes results from studies on bacterial coinfection in the recent pandemic influenza outbreak. Systemic immune mechanisms play a key role in the development of coinfection based on the complexity of the interaction of the host and the viral and bacterial pathogens. Several studies were performed to determine the point prevalence of bacterial coinfection in influenza. Coinfection in influenza is frequent in critically ill patients with Streptococcus pneumoniae being the most frequent bacterial pathogen and higher rates of potentially resistant pathogens over the years. Bacterial pneumonia is certainly an influenza complication. The recent epidemiology findings have helped to partially resolve the contribution of different pathogens. Immunosuppression is a risk factor for bacterial coinfection in influenza, and the epidemiology of coinfection has changed over the years during the last influenza pandemic, and these recent findings should be taken into account during present outbreaks.

  9. Targeting of a chlamydial protease impedes intracellular bacterial growth.

    PubMed

    Christian, Jan G; Heymann, Julia; Paschen, Stefan A; Vier, Juliane; Schauenburg, Linda; Rupp, Jan; Meyer, Thomas F; Häcker, Georg; Heuer, Dagmar

    2011-09-01

    Chlamydiae are obligate intracellular bacteria that propagate in a cytosolic vacuole. Recent work has shown that growth of Chlamydia induces the fragmentation of the Golgi apparatus (GA) into ministacks, which facilitates the acquisition of host lipids into the growing inclusion. GA fragmentation results from infection-associated cleavage of the integral GA protein, golgin-84. Golgin-84-cleavage, GA fragmentation and growth of Chlamydia trachomatis can be blocked by the peptide inhibitor WEHD-fmk. Here we identify the bacterial protease chlamydial protease-like activity factor (CPAF) as the factor mediating cleavage of golgin-84 and as the target of WEHD-fmk-inhibition. WEHD-fmk blocked cleavage of golgin-84 as well as cleavage of known CPAF targets during infection with C. trachomatis and C. pneumoniae. The same effect was seen when active CPAF was expressed in non-infected cells and in a cell-free system. Ectopic expression of active CPAF in non-infected cells was sufficient for GA fragmentation. GA fragmentation required the small GTPases Rab6 and Rab11 downstream of CPAF-activity. These results define CPAF as the first protein that is essential for replication of Chlamydia. We suggest that this role makes CPAF a potential anti-infective therapeutic target.

  10. Comparison between ICT and PCR for diagnosis of Chlamydia trachomatis.

    PubMed

    Khan, E R; Hossain, M A; Paul, S K; Mahmud, C; Hasan, M M; Rahman, M M; Nahar, K; Kubayashi, N

    2012-04-01

    Chlamydia trachomatis is an obligate intracellular gram-negative bacterium which is the most prevalent cause of bacterial sexually transmitted infections (STI). The present study was carried to diagnose genital Chlamydia trachomatis infection among women of reproductive age, attending Mymensingh Medical College Hospital, during July 2009 to June 2010 by Immunochromatographic test (ICT) and Polymerase chain reaction (PCR). A total of 70 females were included in this study. Out of 70 cases 56 were symptomatic and 14 asymptomatic. Endocervical swabs were collected from each of the cases and examined by Immunochromatographic test (ICT) for antigen detection and Polymerase chain reaction (PCR) for detection of endogenous plasmid-based nucleic acid. A total 29(41.4%) of the cases were found positive for C. trachomatis either by ICT or PCR. Of the 56 symptomatic cases, 19(33.9%) were found ICT positive and 17(30.4%) were PCR positive. Among 14 asymptomatic females, 2(14.3%) were ICT positive and none were PCR positive. Though PCR is highly sensitive but a total of twelve cases were found ICT positive but PCR negative. It may be due to presence of plasmid deficient strain of C trachomatis which could be amplified by ompA based (Chromosomal gene) multiplex PCR.

  11. Evaluation of the Seeplex® Meningitis ACE Detection kit for the detection of 12 common bacterial and viral pathogens of acute meningitis.

    PubMed

    Shin, So Youn; Kwon, Kye Chul; Park, Jong Woo; Kim, Ji Myung; Shin, So Young; Koo, Sun Hoe

    2012-01-01

    Bacterial meningitis is an infectious disease with high rates of mortality and high frequency of severe sequelae. Early identification of causative bacterial and viral pathogens is important for prompt and proper treatment of meningitis and for prevention of life-threatening clinical outcomes. In the present study, we evaluated the value of the Seeplex Meningitis ACE Detection kit (Seegene Inc., Korea), a newly developed multiplex PCR kit employing dual priming oligonucleotide methods, for diagnosing acute meningitis. Analytical sensitivity of the kit was studied using reference strains for each pathogen targeted by the kit, while it's analytical specificity was studied using the human genome DNA and 58 clinically well-identified reference strains. For clinical validation experiment, we used 27 control cerebrospinal fluid (CSF) samples and 78 clinical CSF samples collected from patients at the time of diagnosis of acute meningitis. The lower detection limits ranged from 10(1) copies/µL to 5×10(1) copies/µL for the 12 viral and bacterial pathogens targeted. No cross-reaction was observed. In the validation study, high detection rate of 56.4% was obtained. None of the control samples tested positive, i.e., false-positive results were absent. The Seeplex Meningitis ACE Detection kit showed high sensitivity, specificity, and detection rate for the identification of pathogens in clinical CSF samples. This kit may be useful for rapid identification of important acute meningitis-causing pathogens.

  12. Evaluation of the Seeplex® Meningitis ACE Detection Kit for the Detection of 12 Common Bacterial and Viral Pathogens of Acute Meningitis

    PubMed Central

    Shin, So Youn; Kwon, Kye Chul; Park, Jong Woo; Kim, Ji Myung; Shin, So Young

    2012-01-01

    Background Bacterial meningitis is an infectious disease with high rates of mortality and high frequency of severe sequelae. Early identification of causative bacterial and viral pathogens is important for prompt and proper treatment of meningitis and for prevention of life-threatening clinical outcomes. In the present study, we evaluated the value of the Seeplex Meningitis ACE Detection kit (Seegene Inc., Korea), a newly developed multiplex PCR kit employing dual priming oligonucleotide methods, for diagnosing acute meningitis. Methods Analytical sensitivity of the kit was studied using reference strains for each pathogen targeted by the kit, while it's analytical specificity was studied using the human genome DNA and 58 clinically well-identified reference strains. For clinical validation experiment, we used 27 control cerebrospinal fluid (CSF) samples and 78 clinical CSF samples collected from patients at the time of diagnosis of acute meningitis. Results The lower detection limits ranged from 101 copies/µL to 5×101 copies/µL for the 12 viral and bacterial pathogens targeted. No cross-reaction was observed. In the validation study, high detection rate of 56.4% was obtained. None of the control samples tested positive, i.e., false-positive results were absent. Conclusions The Seeplex Meningitis ACE Detection kit showed high sensitivity, specificity, and detection rate for the identification of pathogens in clinical CSF samples. This kit may be useful for rapid identification of important acute meningitis-causing pathogens. PMID:22259778

  13. The Effect of Antibiotic Exposure and Specimen Volume on the Detection of Bacterial Pathogens in Children With Pneumonia.

    PubMed

    Driscoll, Amanda J; Deloria Knoll, Maria; Hammitt, Laura L; Baggett, Henry C; Brooks, W Abdullah; Feikin, Daniel R; Kotloff, Karen L; Levine, Orin S; Madhi, Shabir A; O'Brien, Katherine L; Scott, J Anthony G; Thea, Donald M; Howie, Stephen R C; Adrian, Peter V; Ahmed, Dilruba; DeLuca, Andrea N; Ebruke, Bernard E; Gitahi, Caroline; Higdon, Melissa M; Kaewpan, Anek; Karani, Angela; Karron, Ruth A; Mazumder, Razib; McLellan, Jessica; Moore, David P; Mwananyanda, Lawrence; Park, Daniel E; Prosperi, Christine; Rhodes, Julia; Saifullah, Md; Seidenberg, Phil; Sow, Samba O; Tamboura, Boubou; Zeger, Scott L; Murdoch, David R

    2017-06-15

    Antibiotic exposure and specimen volume are known to affect pathogen detection by culture. Here we assess their effects on bacterial pathogen detection by both culture and polymerase chain reaction (PCR) in children. PERCH (Pneumonia Etiology Research for Child Health) is a case-control study of pneumonia in children aged 1-59 months investigating pathogens in blood, nasopharyngeal/oropharyngeal (NP/OP) swabs, and induced sputum by culture and PCR. Antibiotic exposure was ascertained by serum bioassay, and for cases, by a record of antibiotic treatment prior to specimen collection. Inoculated blood culture bottles were weighed to estimate volume. Antibiotic exposure ranged by specimen type from 43.5% to 81.7% in 4223 cases and was detected in 2.3% of 4863 controls. Antibiotics were associated with a 45% reduction in blood culture yield and approximately 20% reduction in yield from induced sputum culture. Reduction in yield of Streptococcus pneumoniae from NP culture was approximately 30% in cases and approximately 32% in controls. Several bacteria had significant but marginal reductions (by 5%-7%) in detection by PCR in NP/OP swabs from both cases and controls, with the exception of S. pneumoniae in exposed controls, which was detected 25% less frequently compared to nonexposed controls. Bacterial detection in induced sputum by PCR decreased 7% for exposed compared to nonexposed cases. For every additional 1 mL of blood culture specimen collected, microbial yield increased 0.51% (95% confidence interval, 0.47%-0.54%), from 2% when volume was ≤1 mL to approximately 6% for ≥3 mL. Antibiotic exposure and blood culture volume affect detection of bacterial pathogens in children with pneumonia and should be accounted for in studies of etiology and in clinical management. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  14. Assessment of best single sample for finding chlamydia in women with and without symptoms: a diagnostic test study.

    PubMed

    Schoeman, Sarah A; Stewart, Catherine M W; Booth, Russell A; Smith, Susan D; Wilcox, Mark H; Wilson, Janet D

    2012-12-12

    To compare vulvovaginal swabs with endocervical swabs as optimal diagnostic sample for detection of Chlamydia trachomatis infection. A diagnostic test study. An urban sexual health centre. 3973 women aged ≥ 16 years requesting testing for sexually transmitted infections. Participants took a vulvovaginal swab before routine examination, and clinicians took an endocervical swab during examination. Diagnosis of chlamydia infection with samples analysed using the Aptima Combo-2 assay; positive results confirmed with the Aptima CT assay. Of the 3973 participants, 410 (10.3%) were infected with C trachomatis. Infected women were significantly younger (22 v 25 years, P<0.0001) and more likely to have symptoms suggestive of a bacterial sexually transmitted infection (53% v 41%, odds ratio 1.63 (95% CI 1.30 to 2.04)), be a contact of someone with a sexually transmitted infection (25% v 5%, odds ratio 6.18 (4.61 to 8.30)), clinically diagnosed with cervicitis (17% v 4%, odds ratio 4.92 (3.50 to 6.91)), and have pelvic inflammatory disease (9% v 3%, odds ratio 2.85 (1.87 to 4.33)). When women co-infected with gonorrhoea were included in the analysis, there was an association with mixed ethnicity (10% v 7%, odds ratio 1.53 (1.07 to 2.17)); but when those with gonorrhoea were removed, women of white ethnicity were significantly more likely to have chlamydia (85% v 80%, odds ratio 1.40 (1.03 to 1.91)). On analysis of complete paired results, vulvovaginal swabs were significantly more sensitive than endocervical swabs (97% (95% CI 95% to 98%) v 88% (85% to 91%), P<0.00001); corresponding specificities were 99.9% and 100%. In women with symptoms suggestive of a bacterial sexually transmitted infection, vulvovaginal swabs were significantly more sensitive than endocervical swabs (97% (93% to 98%) v 88% (83% to 92%), P=0.0008), as they were in women without symptoms (97% (94% to 99%) v 89% (84% to 93%), P=0.002). Vulvovaginal swabs are significantly better than endocervical swabs

  15. Population structure of the bacterial pathogen Xylella fastidiosa among street trees in Washington D.C.

    PubMed

    Harris, Jordan Lee; Balci, Yilmaz

    2015-01-01

    Bacterial leaf scorch, associated with the bacterial pathogen Xylella fastidiosa, is a widely established and problematic disease of landscape ornamentals in Washington D.C. A multi-locus sequence typing analysis was performed using 10 housekeeping loci for X. fastidiosa strains in order to better understand the epidemiology of leaf scorch disease in this municipal environment. Samples were collected from 7 different tree species located throughout the District of Columbia, consisting of 101 samples of symptomatic and asymptomatic foliage from 84 different trees. Five strains of the bacteria were identified. Consistent with prior data, these strains were host specific, with only one strain associated with members of the red oak family, one strain associated with American elm, one strain associated with American sycamore, and two strains associated with mulberry. Strains found for asymptomatic foliage were the same as strains from the symptomatic foliage on individual trees. Cross transmission of the strains was not observed at sites with multiple species of infected trees within an approx. 25 m radius of one another. X. fastidiosa strain specificity observed for each genus of tree suggests a highly specialized host-pathogen relationship.

  16. Population Structure of the Bacterial Pathogen Xylella fastidiosa among Street Trees in Washington D.C.

    PubMed Central

    Harris, Jordan Lee; Balci, Yilmaz

    2015-01-01

    Bacterial leaf scorch, associated with the bacterial pathogen Xylella fastidiosa, is a widely established and problematic disease of landscape ornamentals in Washington D.C. A multi-locus sequence typing analysis was performed using 10 housekeeping loci for X. fastidiosa strains in order to better understand the epidemiology of leaf scorch disease in this municipal environment. Samples were collected from 7 different tree species located throughout the District of Columbia, consisting of 101 samples of symptomatic and asymptomatic foliage from 84 different trees. Five strains of the bacteria were identified. Consistent with prior data, these strains were host specific, with only one strain associated with members of the red oak family, one strain associated with American elm, one strain associated with American sycamore, and two strains associated with mulberry. Strains found for asymptomatic foliage were the same as strains from the symptomatic foliage on individual trees. Cross transmission of the strains was not observed at sites with multiple species of infected trees within an approx. 25 m radius of one another. X. fastidiosa strain specificity observed for each genus of tree suggests a highly specialized host-pathogen relationship. PMID:25815838

  17. Molecular epidemiological survey of bacterial and parasitic pathogens in hard ticks from eastern China.

    PubMed

    Liu, Xiang-Ye; Gong, Xiang-Yao; Zheng, Chen; Song, Qi-Yuan; Chen, Ting; Wang, Jing; Zheng, Jie; Deng, Hong-Kuan; Zheng, Kui-Yang

    2017-03-01

    Ticks are able to transmit various pathogens-viruses, bacteria, and parasites-to their host during feeding. Several molecular epidemiological surveys have been performed to evaluate the risk of tick-borne pathogens in China, but little is known about pathogens circulating in ticks from eastern China. Therefore, this study aimed to investigate the presence of bacteria and parasites in ticks collected from Xuzhou, a 11258km 2 region in eastern China. In the present study, ticks were collected from domestic goats and grasses in urban districts of Xuzhou region from June 2015 to July 2016. After tick species identification, the presence of tick-borne bacterial and parasitic pathogens, including Anaplasma phagocytophilum, Borrelia burgdorferi, Rickettsia sp., Bartonella sp., Babesia sp., and Theileria sp., was established via conventional or nested polymerase chain reaction assays (PCR) and sequence analysis. Finally, a total of 500 questing adult ticks, identified as Haemaphysalis longicornis, were investigated. Among them, 28/500 tick samples (5.6%) were infected with A. phagocytophilum, and 23/500 (4.6%) with Theileria luwenshuni, whereas co-infection with these pathogens was detected in only 1/51 (2%) of all infected ticks. In conclusion, H. longicornis is the dominant tick species in the Xuzhou region and plays an important role in zoonotic pathogen transmission. Both local residents and animals are at a significant risk of exposure to anaplasmosis and theileriosis, due to the high rates of A. phagocytophilum and T. luwenshuni tick infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Inactivation of selected bacterial pathogens in dairy cattle manure by mesophilic anaerobic digestion (balloon type digester).

    PubMed

    Manyi-Loh, Christy E; Mamphweli, Sampson N; Meyer, Edson L; Okoh, Anthony I; Makaka, Golden; Simon, Michael

    2014-07-14

    Anaerobic digestion of animal manure in biogas digesters has shown promise as a technology in reducing the microbial load to safe and recommended levels. We sought to treat dairy manure obtained from the Fort Hare Dairy Farm by investigating the survival rates of bacterial pathogens, through a total viable plate count method, before, during and after mesophilic anaerobic digestion. Different microbiological media were inoculated with different serial dilutions of manure samples that were withdrawn from the biogas digester at 3, 7 and 14 day intervals to determine the viable cells. Data obtained indicated that the pathogens of public health importance were 90%-99% reduced in the order: Campylobacter sp. (18 days) < Escherichia coli sp. (62 days) < Salmonella sp. (133 days) from a viable count of 10.1 × 103, 3.6 × 105, 7.4 × 103 to concentrations below the detection limit (DL = 102 cfu/g manure), respectively. This disparity in survival rates may be influenced by the inherent characteristics of these bacteria, available nutrients as well as the stages of the anaerobic digestion process. In addition, the highest p-value i.e., 0.957 for E. coli showed the statistical significance of its model and the strongest correlation between its reductions with days of digestion. In conclusion, the results demonstrated that the specific bacterial pathogens in manure can be considerably reduced through anaerobic digestion after 133 days.

  19. Validity of self-reported history of Chlamydia trachomatis infection.

    PubMed

    Frisse, Ann C; Marrazzo, Jeanne M; Tutlam, Nhial T; Schreiber, Courtney A; Teal, Stephanie B; Turok, David K; Peipert, Jeffrey F

    2017-04-01

    Chlamydia trachomatis infection is common and largely asymptomatic in women. If untreated, it can lead to sequelae such as pelvic inflammatory disease and infertility. It is unknown whether a patient's self-reported history of Chlamydia trachomatis infection is a valid marker of past infection. Our objective was to evaluate the validity of women's self-reported history of Chlamydia trachomatis infection compared with Chlamydia trachomatis serology, a marker for previous infection. We analyzed data from the Fertility After Contraception Termination study. We compared participants' survey responses with the question, "Have you ever been told by a health care provider that you had Chlamydia?" to serological test results indicating the presence or absence of antibodies to Chlamydia trachomatis as assessed by a microimmunofluorescence assay. Prevalence of past infection, sensitivity, specificity, predictive values, and likelihood ratios were calculated. The Cohen's kappa statistic was computed to assess agreement between self-report and serology. Among 409 participants, 108 (26%) reported having a history of Chlamydia trachomatis infection, whereas 146 (36%) had positive serological test results. Relative to positive microimmunofluorescence assay, the sensitivity and specificity of self-reported history of Chlamydia trachomatis infection were 52.1% (95% confidence interval, 43.6-60.4%) and 87.8% (95% confidence interval, 83.3-91.5%), respectively. The positive predictive value of the self-report was 70.4% (95% confidence interval, 60.8-78.8%), and the negative predictive value was 76.7% (95% confidence interval, 71.6-81.4%). The likelihood ratio was found to be 4.28. Agreement between self-report and serology was found to be moderate (kappa = 0.42, P < .001). Self-reported history of Chlamydia trachomatis infection commonly yields false-negative and false-positive results. When definitive status of past Chlamydia trachomatis infection is needed, serology should be

  20. The Opportunistic Pathogen Serratia marcescens Utilizes Type VI Secretion To Target Bacterial Competitors ▿†

    PubMed Central

    Murdoch, Sarah L.; Trunk, Katharina; English, Grant; Fritsch, Maximilian J.; Pourkarimi, Ehsan; Coulthurst, Sarah J.

    2011-01-01

    The type VI secretion system (T6SS) is the most recently described and least understood of the protein secretion systems of Gram-negative bacteria. It is widely distributed and has been implicated in the virulence of various pathogens, but its mechanism and exact mode of action remain to be defined. Additionally there have been several very recent reports that some T6SSs can target bacteria rather than eukaryotic cells. Serratia marcescens is an opportunistic enteric pathogen, a class of bacteria responsible for a significant proportion of hospital-acquired infections. We describe the identification of a functional T6SS in S. marcescens strain Db10, the first report of type VI secretion by an opportunist enteric bacterium. The T6SS of S. marcescens Db10 is active, with secretion of Hcp to the culture medium readily detected, and is expressed constitutively under normal growth conditions from a large transcriptional unit. Expression of the T6SS genes did not appear to be dependent on the integrity of the T6SS. The S. marcescens Db10 T6SS is not required for virulence in three nonmammalian virulence models. It does, however, exhibit dramatic antibacterial killing activity against several other bacterial species and is required for S. marcescens to persist in a mixed culture with another opportunist pathogen, Enterobacter cloacae. Importantly, this antibacterial killing activity is highly strain specific, with the S. marcescens Db10 T6SS being highly effective against another strain of S. marcescens with a very similar and active T6SS. We conclude that type VI secretion plays a crucial role in the competitiveness, and thus indirectly the virulence, of S. marcescens and other opportunistic bacterial pathogens. PMID:21890705

  1. Chlamydia trachomatis infection in African American women who exclusively have sex with women.

    PubMed

    Muzny, Christina A; Kapil, Richa; Austin, Erika L; Brown, LaDraka; Hook, Edward W; Geisler, William M

    2016-10-01

    Little is known about whether Chlamydia trachomatis can be sexually transmitted between women or how often it occurs in women who have sex with women (WSW). We investigated Chlamydia trachomatis prevalence and serum Chlamydia trachomatis-specific antibody responses among African American WSW who reported a lifetime history of sex only with women (exclusive WSW) (n = 21) vs. an age-matched group of women reporting sex with women and men (WSWM) (n = 42). Participants completed a survey, underwent a pelvic examination in which a cervical swab was collected for Chlamydia trachomatis nucleic acid amplification testing (NAAT), and had serum tested for anti-Chlamydia trachomatis IgG1 and IgG3 antibodies using a Chlamydia trachomatis elementary body-based ELISA. No exclusive WSW had a positive Chlamydia trachomatis NAAT vs. 5 (11.9%) WSWM having a positive Chlamydia trachomatis NAAT (p = 0.16). Compared with WSWM, WSW were significantly less likely to be Chlamydia trachomatis seropositive (7 [33.3%] vs. 29 [69%], p = 0.007). Among Chlamydia trachomatis seropositive women, all were seropositive by IgG1, and the magnitude of Chlamydia trachomatis-specific IgG1 responses did not differ in Chlamydia trachomatis-seropositive WSW vs. WSWM. In conclusion, Chlamydia trachomatis seropositivity was relatively common in exclusive African American WSW, though significantly less common than in African American WSWM. © The Author(s) 2016.

  2. Amoeba host-Legionella synchronization of amino acid auxotrophy and its role in bacterial adaptation and pathogenic evolution

    PubMed Central

    Price, Christopher T. D.; Richards, Ashley M.; Von Dwingelo, Juanita E.; Samara, Hala A.; Kwaik, Yousef Abu

    2013-01-01

    Summary Legionella pneumophila, the causative agent of Legionnaires’ disease, invades and proliferates within a diverse range of free-living amoeba in the environment but upon transmission to humans the bacteria hijack alveolar macrophages. Intracellular proliferation of L. pneumophila in two evolutionarily distant hosts is facilitated by bacterial exploitation of conserved host processes that are targeted by bacterial protein effectors injected into the host cell. A key aspect of microbe-host interaction is microbial extraction of nutrients from the host but understanding of this is still limited. AnkB functions as a nutritional virulence factor and promotes host proteasomal degradation of polyubiquitinated proteins generating gratuitous levels of limiting host cellular amino acids. L. pneumophila is auxotrophic for several amino acids including cysteine, which is a metabolically preferred source of carbon and energy during intracellular proliferation, but is limiting in both amoebae and humans. We propose that synchronization of bacterial amino acids auxotrophy with the host is a driving force in pathogenic evolution and nutritional adaptation of L. pneumophila and other intracellular bacteria to life within the host cell. Understanding microbial strategies of nutrient generation and acquisition in the host will provide novel antimicrobial strategies to disrupt pathogen access to essential sources of carbon and energy. PMID:24112119

  3. Suitability of partial 16S ribosomal RNA gene sequence analysis for the identification of dangerous bacterial pathogens.

    PubMed

    Ruppitsch, W; Stöger, A; Indra, A; Grif, K; Schabereiter-Gurtner, C; Hirschl, A; Allerberger, F

    2007-03-01

    In a bioterrorism event a rapid tool is needed to identify relevant dangerous bacteria. The aim of the study was to assess the usefulness of partial 16S rRNA gene sequence analysis and the suitability of diverse databases for identifying dangerous bacterial pathogens. For rapid identification purposes a 500-bp fragment of the 16S rRNA gene of 28 isolates comprising Bacillus anthracis, Brucella melitensis, Burkholderia mallei, Burkholderia pseudomallei, Francisella tularensis, Yersinia pestis, and eight genus-related and unrelated control strains was amplified and sequenced. The obtained sequence data were submitted to three public and two commercial sequence databases for species identification. The most frequent reason for incorrect identification was the lack of the respective 16S rRNA gene sequences in the database. Sequence analysis of a 500-bp 16S rDNA fragment allows the rapid identification of dangerous bacterial species. However, for discrimination of closely related species sequencing of the entire 16S rRNA gene, additional sequencing of the 23S rRNA gene or sequencing of the 16S-23S rRNA intergenic spacer is essential. This work provides comprehensive information on the suitability of partial 16S rDNA analysis and diverse databases for rapid and accurate identification of dangerous bacterial pathogens.

  4. Bacterial and viral pathogens detected in sea turtles stranded along the coast of Tuscany, Italy.

    PubMed

    Fichi, G; Cardeti, G; Cersini, A; Mancusi, C; Guarducci, M; Di Guardo, G; Terracciano, G

    2016-03-15

    During 2014, six loggerhead turtles, Caretta caretta and one green turtle, Chelonia mydas, found stranded on the Tuscany coast of Italy, were examined for the presence of specific bacterial and viral agents, along with their role as carriers of fish and human pathogens. Thirteen different species of bacteria, 10 Gram negative and 3 Gram positive, were identified. Among them, two strains of Vibrio parahaemolyticus and one strain of Lactococcus garviae were recovered and confirmed by specific PCR protocols. No trh and tdh genes were detected in V. parahaemolyticus. The first isolation of L. garviae and the first detection of Betanodavirus in sea turtles indicate the possibility for sea turtles to act as carriers of fish pathogens. Furthermore, the isolation of two strains of V. parahaemolyticus highlights the possible role of these animals in human pathogens' diffusion. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Galleria mellonella as an in vivo model for assessing the protective activity of probiotics against gastrointestinal bacterial pathogens.

    PubMed

    Scalfaro, Concetta; Iacobino, Angelo; Nardis, Chiara; Franciosa, Giovanna

    2017-04-01

    The antagonistic activity against gastrointestinal bacterial pathogens is an important property of probiotic bacteria and a desirable feature for pre-selection of novel strains with probiotic potential. Pre-screening of candidate probiotics for antibacterial activity should be based on in vitro and in vivo tests. This study investigated whether the protective activity of probiotic bacteria against gastrointestinal bacterial pathogens can be evaluated using Galleria mellonella larvae as an in vivo model. Larvae were pre-inoculated with either of two widely used probiotic bacteria, Lactobacillus rhamnosus GG or Clostridium butyricum Miyairi 588, and then challenged with Salmonella enterica Typhimurium, enteropathogenic Escherichia coli or Listeria monocytogenes. Survival rates increased in the probiotic pretreated larvae compared with control larvae inoculated with pathogens only. The hemocyte density increased as well in the probiotic pretreated larvae, indicating that both probiotics induce an immune response in the larvae. The antibacterial activity of probiotics against the pathogens was also assayed by an in vitro agar spot test: results were partially consistent with those obtained by the G. mellonella protection assay. The results obtained, as a whole, suggest that G. mellonella larvae are a potentially useful in vivo model that can complement in vitro assays for pre-screening of candidate probiotics. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Exploring Chlamydia Positivity among Females on College Campuses, 2008-2010

    ERIC Educational Resources Information Center

    Habel, Melissa A.; Leichliter, Jami S.; Torrone, Elizabeth

    2016-01-01

    Objective: Describe chlamydia positivity among young women tested at college health centers by student characteristics: age, race/ethnicity, and institution type. Participants: During 2008-2010, colleges participating in a national infertility prevention program provided chlamydia testing data from females aged 18-24. Methods: Chlamydia positivity…

  7. 21 CFR 866.3120 - Chlamydia serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Chlamydia serological reagents. 866.3120 Section 866.3120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3120 Chlamydia...

  8. 21 CFR 866.3120 - Chlamydia serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Chlamydia serological reagents. 866.3120 Section 866.3120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3120 Chlamydia...

  9. 21 CFR 866.3120 - Chlamydia serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Chlamydia serological reagents. 866.3120 Section 866.3120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3120 Chlamydia...

  10. 21 CFR 866.3120 - Chlamydia serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Chlamydia serological reagents. 866.3120 Section 866.3120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3120 Chlamydia...

  11. 21 CFR 866.3120 - Chlamydia serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Chlamydia serological reagents. 866.3120 Section 866.3120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3120 Chlamydia...

  12. Apoptosis, Toll-like, RIG-I-like and NOD-like Receptors Are Pathways Jointly Induced by Diverse Respiratory Bacterial and Viral Pathogens

    PubMed Central

    Martínez, Isidoro; Oliveros, Juan C.; Cuesta, Isabel; de la Barrera, Jorge; Ausina, Vicente; Casals, Cristina; de Lorenzo, Alba; García, Ernesto; García-Fojeda, Belén; Garmendia, Junkal; González-Nicolau, Mar; Lacoma, Alicia; Menéndez, Margarita; Moranta, David; Nieto, Amelia; Ortín, Juan; Pérez-González, Alicia; Prat, Cristina; Ramos-Sevillano, Elisa; Regueiro, Verónica; Rodriguez-Frandsen, Ariel; Solís, Dolores; Yuste, José; Bengoechea, José A.; Melero, José A.

    2017-01-01

    Lower respiratory tract infections are among the top five leading causes of human death. Fighting these infections is therefore a world health priority. Searching for induced alterations in host gene expression shared by several relevant respiratory pathogens represents an alternative to identify new targets for wide-range host-oriented therapeutics. With this aim, alveolar macrophages were independently infected with three unrelated bacterial (Streptococcus pneumoniae, Klebsiella pneumoniae, and Staphylococcus aureus) and two dissimilar viral (respiratory syncytial virus and influenza A virus) respiratory pathogens, all of them highly relevant for human health. Cells were also activated with bacterial lipopolysaccharide (LPS) as a prototypical pathogen-associated molecular pattern. Patterns of differentially expressed cellular genes shared by the indicated pathogens were searched by microarray analysis. Most of the commonly up-regulated host genes were related to the innate immune response and/or apoptosis, with Toll-like, RIG-I-like and NOD-like receptors among the top 10 signaling pathways with over-expressed genes. These results identify new potential broad-spectrum targets to fight the important human infections caused by the bacteria and viruses studied here. PMID:28298903

  13. Chlamydia-induced septic polyarthritis in a dog.

    PubMed

    Lambrechts, N; Picard, J; Tustin, R C

    1999-03-01

    A systemic disease associated with pyrexia, lymphadenopathy, and arthropathy of several joints of the appendicular skeleton in a dog is described. Chlamydia-like organisms were detected on light-microscopic examination of a smear made from joint fluid aspirated from one of the affected joints. A group-specific lipopolysaccharide antigen shared by all Chlamydia spp. was demonstrated by direct fluorescent antibody staining of joint fluid, which also proved positive for chlamydia by means of the relevant polymerase chain reaction test. An indirect fluorescent antibody test on serum was also positive, although the complement fixation test was negative. Attempts to grow the organism from joint aspirates in the yolk sac of embryonating hens' eggs and on appropriate tissue cultures, however, failed. Chlamydia spp. are considered to have played an aetiological role in this case, making it the first substantiated case of naturally-occurring arthropathy in a dog due to chlamydiosis. The origin of the infection could not be traced.

  14. Towards a Chlamydia trachomatis vaccine: how close are we?

    PubMed

    Cochrane, Melanie; Armitage, Charles W; O'Meara, Connor P; Beagley, Kenneth W

    2010-12-01

    Chlamydia trachomatis is the leading cause of bacterial sexually transmitted infections and preventable blindness worldwide. The incidence of chlamydial sexually transmitted infections has increased rapidly and current antibiotic therapy has failed as an intervention strategy. The most accepted strategy for protection and/or control of chlamydial infections is a vaccine that induces both local neutralizing antibodies to prevent infections by the extracellular elementary bodies and a cell-mediated immune response to target the intracellular infection. This article will discuss the challenges in vaccine design for the prevention of chlamydial urogenital infection and/or disease, including selection of target antigens, discussion of effective delivery systems, immunization routes and adjuvants for induction of protective immunity at the targeted mucosal surface whilst minimizing severe inflammatory disease sequelae.

  15. Bacterial 'immunity' against bacteriophages.

    PubMed

    Abedon, Stephen T

    2012-01-01

    Vertebrate animals possess multiple anti-pathogen defenses. Individual mechanisms usually are differentiated into those that are immunologically adaptive vs. more "primitive" anti-pathogen phenomena described as innate responses. Here I frame defenses used by bacteria against bacteriophages as analogous to these animal immune functions. Included are numerous anti-phage defenses in addition to the adaptive immunity associated with CRISPR/cas systems. As these other anti-pathogen mechanisms are non-adaptive they can be described as making up an innate bacterial immunity. This exercise was undertaken in light of the recent excitement over the discovery that CRISPR/cas systems can serve, as noted, as a form of bacterial adaptive immunity. The broader goal, however, is to gain novel insight into bacterial defenses against phages by fitting these mechanisms into considerations of how multicellular organisms also defend themselves against pathogens. This commentary can be viewed in addition as a bid toward integrating these numerous bacterial anti-phage defenses into a more unified immunology.

  16. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands.

    PubMed

    Vercoe, Reuben B; Chang, James T; Dy, Ron L; Taylor, Corinda; Gristwood, Tamzin; Clulow, James S; Richter, Corinna; Przybilski, Rita; Pitman, Andrew R; Fineran, Peter C

    2013-04-01

    In prokaryotes, clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated (Cas) proteins constitute a defence system against bacteriophages and plasmids. CRISPR/Cas systems acquire short spacer sequences from foreign genetic elements and incorporate these into their CRISPR arrays, generating a memory of past invaders. Defence is provided by short non-coding RNAs that guide Cas proteins to cleave complementary nucleic acids. While most spacers are acquired from phages and plasmids, there are examples of spacers that match genes elsewhere in the host bacterial chromosome. In Pectobacterium atrosepticum the type I-F CRISPR/Cas system has acquired a self-complementary spacer that perfectly matches a protospacer target in a horizontally acquired island (HAI2) involved in plant pathogenicity. Given the paucity of experimental data about CRISPR/Cas-mediated chromosomal targeting, we examined this process by developing a tightly controlled system. Chromosomal targeting was highly toxic via targeting of DNA and resulted in growth inhibition and cellular filamentation. The toxic phenotype was avoided by mutations in the cas operon, the CRISPR repeats, the protospacer target, and protospacer-adjacent motif (PAM) beside the target. Indeed, the natural self-targeting spacer was non-toxic due to a single nucleotide mutation adjacent to the target in the PAM sequence. Furthermore, we show that chromosomal targeting can result in large-scale genomic alterations, including the remodelling or deletion of entire pre-existing pathogenicity islands. These features can be engineered for the targeted deletion of large regions of bacterial chromosomes. In conclusion, in DNA-targeting CRISPR/Cas systems, chromosomal interference is deleterious by causing DNA damage and providing a strong selective pressure for genome alterations, which may have consequences for bacterial evolution and pathogenicity.

  17. First Report of Chlamydia Seroprevalence in Farmed Wild Boars in China.

    PubMed

    Nie, Lan-Bi; Liang, Qin-Li; Zou, Yang; Gao, Yun-Hang; Zhao, Quan; Hu, Gui-Xue; Zhu, Xing-Quan

    2018-04-24

    Chlamydia is Gram-negative obligate bacterium, which can cause human diseases worldwide and has huge economic impact on animals. It is yet to know whether farmed wild boars are infected with Chlamydia in China. To assess risk factors of Chlamydia infection in farmed wild boars in China, from April 2015 to February 2016, a total of 837 serum samples of farmed wild boars were collected in Jilin province, northeastern China, and antibodies against Chlamydia were examined by the indirect hemagglutination assay. The investigation showed that antibodies to Chlamydia were detected in 332 (39.67%, 95% CI 33.36-42.98) of 837 serum samples of farmed wild boars, seroprevalence ranged from 33.71% to 44.42% among different regions and the differences were statistically significant by SPSS analysis (p = 0.0248). These results indicated that Chlamydia is highly prevalent in farmed wild boars in Jilin province, northeastern China, and may pose a potential risk for human health. To our knowledge, this is the first report of Chlamydia seroprevalence in farmed wild boars in China, which provided baseline data for preventing and controlling Chlamydia infection in wild boars in China.

  18. Chlorhexidine digluconate effects on planktonic growth and biofilm formation in some field isolates of animal bacterial pathogens.

    PubMed

    Ebrahimi, Azizollah; Hemati, Majid; Habibian Dehkordi, Saeed; Bahadoran, Shahab; Khoshnood, Sheida; Khubani, Shahin; Dokht Faraj, Mahdi; Hakimi Alni, Reza

    2014-05-01

    To study chlorhexidine digluconate disinfectant effects on planktonic growth and biofilm formation in some bacterial field isolates from animals. The current study investigated chlorhexidine digluconate effects on planktonic growth and biofilm formation in some field isolates of veterinary bacterial pathogens. Forty clinical isolates of Escherichia coli, Salmonella serotypes, Staphylococcus. aureus and Streptococcus agalactiae (10 isolates for each) were examined for chlorhexidine digluconate effects on biofilm formation and planktonic growth using microtiter plates. In all of the examined strains in the presence of chlorhexidine digluconate, biofilm development and planktonic growth were affected at the same concentrations of the disinfectant. Chlorhexidine digluconate inhibited the planktonic growth of different bacterial species at sub-MICs. But they were able to induce biofilm development of the E. coli, Salmonella spp., S. aureus and Str. agalactiae strains. Bacterial resistance against chlorhexidine is increasing. Sub-MIC doses of chlorhexidine digluconate can stimulate the formation of biofilm strains.

  19. A Protective Vaccine against Chlamydia Genital Infection Using Vault Nanoparticles without an Added Adjuvant.

    PubMed

    Jiang, Janina; Liu, Guangchao; Kickhoefer, Valerie A; Rome, Leonard H; Li, Lin-Xi; McSorley, Stephen J; Kelly, Kathleen A

    2017-01-19

    Chlamydia trachomatis genital infection is the most common sexually transmitted bacterial disease, causing a significant burden to females due to reproductive dysfunction. Intensive screening and antibiotic treatment are unable to completely prevent female reproductive dysfunction, thus, efforts have become focused on developing a vaccine. A major impediment is identifying a safe and effective adjuvant which induces cluster of differentiation 4 (CD4) cells with attributes capable of halting genital infection and inflammation. Previously, we described a natural nanocapsule called the vault which was engineered to contain major outer membrane protein (MOMP) and was an effective vaccine which significantly reduced early infection and favored development of a cellular immune response in a mouse model. In the current study, we used another chlamydial antigen, a polymorphic membrane protein G-1 (PmpG) peptide, to track antigen-specific cells and evaluate, in depth, the vault vaccine for its protective capacity in the absence of an added adjuvant. We found PmpG-vault immunized mice significantly reduced the genital bacterial burden and histopathologic parameters of inflammation following a C. muridarum challenge. Immunization boosted antigen-specific CD4 cells with a multiple cytokine secretion pattern and reduced the number of inflammatory cells in the genital tract making the vault vaccine platform safe and effective for chlamydial genital infection. We conclude that vaccination with a Chlamydia -vault vaccine boosts antigen-specific immunities that are effective at eradicating infection and preventing reproductive tract inflammation.

  20. Dysuria in the emergency department: missed diagnosis of Chlamydia trachomatis.

    PubMed

    Wilbanks, Morgan D; Galbraith, James W; Geisler, William M

    2014-03-01

    The clinical presentation of genital Chlamydia trachomatis infection (chlamydia) in women is often indistinguishable from a urinary tract infection. While merited in the setting of dysuria, emergency department (ED) clinicians do not routinely test for chlamydia in women. The primary aim of our study was to evaluate the frequency of chlamydia testing among women presenting to the ED with dysuria. We conducted a retrospective chart review of women 19-25 years of age presenting with dysuria to an urban ED and who had been coded with urinary tract infection (UTI) as their primary diagnosis (ICD-9 599.0) from October 2005 to March 2011. We excluded women who were pregnant, had underlying anatomical or neurological urinary system pathology, had continuation of symptoms from UTI or a sexually transmitted infection (STI) diagnosed elsewhere, or were already on antibiotics for a UTI or STI. We identified the rates of sexual history screening, pelvic examination and chlamydia assay testing and evaluated predictors using univariate and multivariate analyses. Of 280 women with dysuria and a UTI diagnosis, 17% were asked about their sexual history, with 94% reporting recent sexual activity. Pelvic examination was performed in 23%. We were unable to determine the overall chlamydia prevalence as only 20% of women in the cohort were tested. Among the 20% of women tested for chlamydia infection, 21% tested positive. Only 42% of chlamydia-positive women were prescribed treatment effective for chlamydia (azithromycin or doxycycline) at their visit; the remaining were prescribed UTI treatment not effective against chlamydia. Predictors of sexual history screening included vaginal bleeding (OR 5.4, 95% CI=1.5 to 19.6) and discharge (OR 2.8, 95% CI=1.1 to 6.9). Predictors of a pelvic examination being performed included having a complaint of vaginal discharge (OR 11.8, 95% CI=4.2 to 32.9), a sexual history performed (OR 2.5, 95% CI=1.1 to 5.8), abdominal pain (OR 2.2, 95% CI=1.1 to 4

  1. Simultaneous Detection of 13 Key Bacterial Respiratory Pathogens by Combination of Multiplex PCR and Capillary Electrophoresis.

    PubMed

    Jiang, Lu Xi; Ren, Hong Yu; Zhou, Hai Jian; Zhao, Si Hong; Hou, Bo Yan; Yan, Jian Ping; Qin, Tian; Chen, Yu

    2017-08-01

    Lower respiratory tract infections continue to pose a significant threat to human health. It is important to accurately and rapidly detect respiratory bacteria. To compensate for the limits of current respiratory bacteria detection methods, we developed a combination of multiplex polymerase chain reaction (PCR) and capillary electrophoresis (MPCE) assay to detect thirteen bacterial pathogens responsible for lower respiratory tract infections, including Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Mycoplasma pneumoniae, Legionella spp., Bordetella pertussis, Mycobacterium tuberculosis complex, Corynebacterium diphtheriae, and Streptococcus pyogenes. Three multiplex PCR reactions were built, and the products were analyzed by capillary electrophoresis using the high-throughput DNA analyzer. The specificity of the MPCE assay was examined and the detection limit was evaluated using DNA samples from each bacterial strain and the simulative samples of each strain. This assay was further evaluated using 152 clinical specimens and compared with real-time PCR reactions. For this assay, three nested-multiplex-PCRs were used to detect these clinical specimens. The detection limits of the MPCE assay for the 13 pathogens were very low and ranged from 10-7 to 10-2 ng/μL. Furthermore, analysis of the 152 clinical specimens yielded a specificity ranging from 96.5%-100.0%, and a sensitivity of 100.0% for the 13 pathogens. This study revealed that the MPCE assay is a rapid, reliable, and high-throughput method with high specificity and sensitivity. This assay has great potential in the molecular epidemiological survey of respiratory pathogens. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  2. Isolation of hydroquinone (benzene-1,4-diol) metabolite from halotolerant Bacillus methylotrophicus MHC10 and its inhibitory activity towards bacterial pathogens.

    PubMed

    Jeyanthi, Venkadapathi; Anbu, Periasamy; Vairamani, Mariappanadar; Velusamy, Palaniyandi

    2016-03-01

    A halotolerant bacterial isolate-MHC10 with broad spectrum antibacterial activity against clinical pathogens was isolated from saltpans located in Tuticorin and Chennai (India). 16S rRNA gene analysis of MHC10 revealed close similarity to that of Bacillus methylotrophicus. The culture conditions of B. methylotrophicus MHC10 strain were optimized for antibacterial production using different carbon and nitrogen sources, as well as varying temperature, pH, sodium chloride (NaCl) concentrations and incubation periods. The maximum antibacterial activity of B. methylotrophicus MHC10 was attained when ZMB was optimized with 1 % (w/v) glucose, 0.1 % (w/v) soybean meal which corresponded to a C/N ratio of 38.83, temperature at 37 °C, pH 7.0 and 8 % NaCl. The activity remained stable between 72 and 96 h and then drastically decreased after 96 h. Solvent extraction followed by chromatographic purification steps led to the isolation of hydroquinone (benzene-1,4-diol). The structure of the purified compound was elucidated based on FTIR, (1)H NMR, and (13)C NMR spectroscopy. The compound exhibited efficient antibacterial activity against both Gram-positive and Gram-negative bacterial pathogens. The minimum inhibitory concentration (MIC) for Gram-positive pathogens ranged from 15.625 to 62.5 µg/mL(-1), while it was between 7.81 and 250 µg/mL(-1) for Gram-negative bacterial pathogens. This is the first report of hydroquinone produced by halotolerant B. methylotrophicus exhibiting promising antibacterial activity.

  3. Microplastics as a vector for the transport of the bacterial fish pathogen species Aeromonas salmonicida.

    PubMed

    Viršek, Manca Kovač; Lovšin, Marija Nika; Koren, Špela; Kržan, Andrej; Peterlin, Monika

    2017-12-15

    Microplastics is widespread in the marine environment where it can cause numerous negative effects. It can provide space for the growth of organisms and serves as a vector for the long distance transfer of marine microorganisms. In this study, we examined the sea surface concentrations of microplastics in the North Adriatic and characterized bacterial communities living on the microplastics. DNA from microplastics particles was isolated by three different methods, followed by PCR amplification of 16S rDNA, clone libraries preparation and phylogenetic analysis. 28 bacterial species were identified on the microplastics particles including Aeromonas spp. and hydrocarbon-degrading bacterial species. Based on the 16S rDNA sequences the pathogenic fish bacteria Aeromonas salmonicida was identified for the first time on microplastics. Because A. salmonicida is responsible for illnesses in fish, it is crucial to get answers if and how microplastics pollution is responsible for spreading of diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The role of unusual pathogens in prostatitis syndrome.

    PubMed

    Skerk, Visnja; Krhen, Ivan; Schonwald, Slavko; Cajic, Vjeran; Markovinovic, Leo; Roglic, Srdan; Zekan, Sime; Andracevic, Arjana Tambic; Kruzic, Vladimira

    2004-09-01

    A total of 1442 patients with symptoms of chronic prostatitis were examined over a 4-year period at the Outpatient Department for Urogenital Infections, University Hospital for Infectious Diseases "Dr. Fran Mihaljevic", Zagreb, Croatia. An infectious aetiology was determined in 1070 (74.2%) patients. In 561 of 1070 (52.4%) patients the inflammatory finding (>10 WBC/hpf) was found in expressed prostatic secretions (EPS) or voided bladder urine (VB(3)). Normal, <10 WBCs/hpf was found in 362 of 536 (67.5%) patients with symptoms of chronic prostatitis in whom Chlamydia trachomatis was detected in EPS or VB(3), in 51 of 151 (33.8%) patients with isolated Trichomonas vaginalis and in 40 of 72 (55.6%) patients with isolated Ureaplasma urealyticum. Escherichia coli was the causative pathogen in 95, Enterococcus in 68, Proteus mirabilis in 37, Klebsiella pneumoniae in 16, Streptococcus agalactiae in 19, and Pseudomonas aeruginosa in 3 patients with chronic prostatitis. Other patients had a mixed infection. In patients with chronic bacterial prostatitis (CBP) caused by E. coli, P. mirabilis, K. pneumoniae, E. or S. agalactiae, an inflammatory finding was regularly found in EPS or VB(3).

  5. Molecular evidence for bacterial and protozoan pathogens in hard ticks from Romania.

    PubMed

    Ionita, Mariana; Mitrea, Ioan Liviu; Pfister, Kurt; Hamel, Dietmar; Silaghi, Cornelia

    2013-09-01

    The aim of the present study was to provide a preliminary insight into the diversity of tick-borne pathogens circulating at the domestic host-tick interface in Romania. For this, feeding and questing ticks were analyzed by real-time polymerase chain reaction (PCR) for the presence of Anaplasma phagocytophilum, Anaplasma platys, Ehrlichia canis, Borrelia burgdorferi sensu latu, and by PCR and subsequent sequencing for Rickettsia spp., Babesia spp. and Theileria spp. A total of 382 ticks, encompassing 5 species from 4 genera, were collected in April-July 2010 from different areas of Romania; of them, 40 were questing ticks and the remainder was collected from naturally infested cattle, sheep, goats, horses or dogs. Tick species analyzed included Ixodes ricinus, Dermacentor marginatus, Hyalomma marginatum, Rhipicephalus bursa, and Rhipicephalus sanguineus. Four rickettsiae of the spotted fever group of zoonotic concern were identified for the first time in Romania: Rickettsia monacensis and Rickettsia helvetica in I. ricinus, and Rickettsia slovaca and Rickettsia raoultii in D. marginatus. Other zoonotic pathogens such as A. phagocytophilum, Borrelia afzelii, and Babesia microti were found in I. ricinus. Pathogens of veterinary importance were also identified, including Theileria equi in H. marginatum, Babesia occultans in D. marginatus and H. marginatum, Theileria orientalis/sergenti/buffeli-group in I. ricinus and in H. marginatum and E. canis in R. sanguineus. These findings show a wide distribution of very diverse bacterial and protozoan pathogens at the domestic host-tick interface in Romania, with the potential of causing both animal and human diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Extragenital Chlamydia and Gonorrhea in Young Black Men Who Have Sex With Men: Missed Treatment Opportunities for Human Immunodeficiency Virus-Infected Men Who Have Sex With Men?

    PubMed

    Mena, Leandro; Crosby, Richard A; Chamberlain, Nicholas

    2018-05-01

    This study of young black men who have sex with men (YBMSM) assessed the prevalence of extragenital chlamydia and gonorrhea among those testing negative for urethral infections, and compared prevalence of both by human immunodeficiency virus (HIV) status. A convenience sample of 609 YBMSM was recruited for a cross-sectional study from 2 sexual health clinics located in Jackson, MS. To detect Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG), nucleic acid amplification testing was performed on urine, rectal swabs, and oral swabs. OraSure was used to detect HIV. Seventy-three percent of all chlamydia infections and 77% of gonorrhea infections were found from anal and oral swabs in the absence of urethral positivity. Compared with HIV-uninfected men, HIV-infected men were significantly more likely to have pharyngeal chlamydia (P = 0.03), multiple CT infections (P = 0.02), rectal NG (P < 0.001), multiple NG infections (P = 0.04), both CT/NG rectal infections (P = 0.001). As much as three quarters of all chlamydia and gonorrhea infections may be missed when only urine-based nucleic acid amplification testing is used to screen YBMSM for bacterial sexually transmitted infections. These missed opportunities for diagnosis may be particularly likely among HIV-infected YBMSM.

  7. Multiplex PCR detection of problematic pathogens of clinically heterogeneous bacterial vaginosis in Bulgarian women

    PubMed

    Tosheva-Daskalova, Konstantsa; Strateva, Tanya Vasileva; Mitov, Ivan Gergov; Gergova, Raina Tzvetanova

    2017-11-13

    Background/aim: This study aimed to investigate the correlation between the prevalence of problematic pathogens and the clinical status of women with bacterial vaginosis (BV). Materials and methods: Gardnerella vaginalis, Atopobium vaginae, and Mobiluncus spp. were detected using a multiplex PCR assay, and their role in the infection of Bulgarian women with clinically heterogeneous BV was evaluated. Results: The predominant BV-associated pathogen identified was G. vaginalis with an incidence of 98.39%, followed by A. vaginae (68.05%) and Mobiluncus spp. at 17.01%. The coexistence of A. vaginae and G. vaginalis was more common in women with discharge (in 72.04%) and in patients with chronic recurrent BV than among asymptomatic or newly diagnosed BV cases (P < 0.05). Mobiluncus spp. was detected mostly in coinfections, in association with Trichomonas vaginalis. The coinfections were predominantly related to recurrent BV and with complications (P < 0.05). Conclusion: This is the first study about the correlation between problematic pathogens and clinically heterogeneous BV in Bulgarian women. High frequency of infection with key BV-related pathogens was observed in childbearing women. The incidence was shown to often correlate with coexistent T. vaginalis, with severity of infection, and with complicated and recurrent BV after unsuccessful treatments. Screening should be considered in reproductive health programs.

  8. Effect of cold water-induced stress on immune response, pathology and fertility in mice during Chlamydia muridarum genital infection

    PubMed Central

    Belay, Tesfaye; Woart, Anthony; Graffeo, Vincent

    2017-01-01

    Abstract Genital infection by Chlamydia trachomatis is the most common bacterial sexually transmitted disease worldwide. It causes serious reproductive health complications, including pelvic inflammatory disease and infertility. Stress is implicated as a risk factor for various infections; however, its effect on chlamydia genital infection is unknown. We previously showed that repeated exposure of mice to cold water results in increased severity of chlamydia genital infection. In this study, cold water-induced stress resulted in (i) elevated levels of norepinephrine (NE) and epinephrine in the spleen and genital tract of stressed mice; (ii) elevated IL-1β, TNF-α, IL-6 and nitric oxide production in macrophage-rich peritoneal cells of mice; (iii) supplement of NE in vitro exerts an immunosuppressive effect on splenic T-cell production of cytokines; (iv) decreased C. muridarum shedding in the genital tract of β1Adr/β2Adr receptor KO mice; and (v) a higher rate of infertility in infected mice. These results suggest that cold water stress induces the production of catecholamines, which may play a critical role in the modulation of the immune system leading to increased intensity of C. muridarum genital infection. PMID:28431099

  9. The RNA-binding protein tristetraprolin schedules apoptosis of pathogen-engaged neutrophils during bacterial infection

    PubMed Central

    Ebner, Florian; Ivin, Masa; Kratochvill, Franz; Gratz, Nina; Villunger, Andreas; Sixt, Michael

    2017-01-01

    Protective responses against pathogens require a rapid mobilization of resting neutrophils and the timely removal of activated ones. Neutrophils are exceptionally short-lived leukocytes, yet it remains unclear whether the lifespan of pathogen-engaged neutrophils is regulated differently from that in the circulating steady-state pool. Here, we have found that under homeostatic conditions, the mRNA-destabilizing protein tristetraprolin (TTP) regulates apoptosis and the numbers of activated infiltrating murine neutrophils but not neutrophil cellularity. Activated TTP-deficient neutrophils exhibited decreased apoptosis and enhanced accumulation at the infection site. In the context of myeloid-specific deletion of Ttp, the potentiation of neutrophil deployment protected mice against lethal soft tissue infection with Streptococcus pyogenes and prevented bacterial dissemination. Neutrophil transcriptome analysis revealed that decreased apoptosis of TTP-deficient neutrophils was specifically associated with elevated expression of myeloid cell leukemia 1 (Mcl1) but not other antiapoptotic B cell leukemia/lymphoma 2 (Bcl2) family members. Higher Mcl1 expression resulted from stabilization of Mcl1 mRNA in the absence of TTP. The low apoptosis rate of infiltrating TTP-deficient neutrophils was comparable to that of transgenic Mcl1-overexpressing neutrophils. Our study demonstrates that posttranscriptional gene regulation by TTP schedules the termination of the antimicrobial engagement of neutrophils. The balancing role of TTP comes at the cost of an increased risk of bacterial infections. PMID:28504646

  10. Increased incidence of gonorrhoea and chlamydia in Greenland 1990-2012.

    PubMed

    Johansen, Mila Broby; Koch, Anders; Wohlfahrt, Jan; Kamper-Jørgensen, Mads; Hoffmann, Steen; Soborg, Bolette

    2017-01-01

    Since the 1970s, Greenland has presented the highest reported incidence rates of the sexually transmitted infections (STIs) gonorrhoea and chlamydia in the Arctic regions. This study aims to describe sex- and age-specific incidence rates of gonorrhoea and chlamydia from 1990 to 2012 in Greenland, and to evaluate if changes in case definitions, diagnostic procedures and implementation of STI interventions during the period coincide with rate changes. Gonorrhoea and chlamydia cases were identified from the national STI surveillance. For 1990-2008, STI cases were identified from weekly notified aggregated data. For 2009-2012, cases were identified in person-identifiable national registers. We used log-linear Poisson regression to calculate incidence rates (IRs) and incidence rate ratios (IRRs) with 95% confidence intervals (95% CI). Analyses were stratified according to sex, age and calendar period. Gonorrhoea and chlamydia incidence rates have increased since 1995 to reach 2,555 per 100,000 person-years (PY) for gonorrhoea and 6,403 per 100,000 PY for chlamydia in 2012. From 2006 to 2012, the incidence rates among young adults aged 15-19 years were 8,187 and 22,515 per 100,000 PY for gonorrhoea and chlamydia, respectively. Changes in surveillance reporting did not seem to influence the incidence rates for either disease, whereas a change in diagnostic test coincided with an increased incidence of chlamydia. Overall, the incidence of chlamydia in Greenland increased during the study period, whereas the incidence of gonorrhoea decreased until 1995 but increased thereafter. Young adults aged 15-24 years were at highest risk of infection. The increase in incidence rates was independent of changes in case definitions, whereas an observed increase in chlamydia incidence in 2005 coincided with a change in diagnostic test. None of the STI interventions launched after 1995 seemed to coincide with decreasing national incidence rates.

  11. Presence of pathogenic Escherichia coli is correlated with bacterial community diversity and composition on pre-harvest cattle hides.

    PubMed

    Chopyk, Jessica; Moore, Ryan M; DiSpirito, Zachary; Stromberg, Zachary R; Lewis, Gentry L; Renter, David G; Cernicchiaro, Natalia; Moxley, Rodney A; Wommack, K Eric

    2016-03-22

    Since 1982, specific serotypes of Shiga toxin-producing Escherichia coli (STEC) have been recognized as significant foodborne pathogens acquired from contaminated beef and, more recently, other food products. Cattle are the major reservoir hosts of these organisms, and while there have been advancements in food safety practices and industry standards, STEC still remains prevalent within beef cattle operations with cattle hides implicated as major sources of carcass contamination. To investigate whether the composition of hide-specific microbial communities are associated with STEC prevalence, 16S ribosomal RNA (rRNA) bacterial community profiles were obtained from hide and fecal samples collected from a large commercial feedlot over a 3-month period. These community data were examined amidst an extensive collection of prevalence data on a subgroup of STEC that cause illness in humans, referred to as enterohemorrhagic E. coli (EHEC). Fecal 16S rRNA gene OTUs (operational taxonomic units) were subtracted from the OTUs found within each hide 16S rRNA amplicon library to identify hide-specific bacterial populations. Comparative analysis of alpha diversity revealed a significant correlation between low bacterial diversity and samples positive for the presence of E. coli O157:H7 and/or the non-O157 groups: O26, O111, O103, O121, O45, and O145. This trend occurred regardless of diversity metric or fecal OTU presence. The number of EHEC serogroups present in the samples had a compounding effect on the inverse relationship between pathogen presence and bacterial diversity. Beta diversity data showed differences in bacterial community composition between samples containing O157 and non-O157 populations, with certain OTUs demonstrating significant changes in relative abundance. The cumulative prevalence of the targeted EHEC serogroups was correlated with low bacterial community diversity on pre-harvest cattle hides. Understanding the relationship between indigenous hide

  12. Chlamydia (For Parents)

    MedlinePlus

    ... the risk of STDs, including chlamydia. Latex condoms provide greater protection than natural-membrane condoms. The female condom, made ... pills offer no protection against STDs, they may provide some protection against PID by causing the body to create ...

  13. Nanoparticle targeting of Gram-positive and Gram-negative bacteria for magnetic-based separations of bacterial pathogens

    NASA Astrophysics Data System (ADS)

    Lu, Hoang D.; Yang, Shirley S.; Wilson, Brian K.; McManus, Simon A.; Chen, Christopher V. H.-H.; Prud'homme, Robert K.

    2017-04-01

    Antimicrobial resistance is a healthcare problem of increasing significance, and there is increasing interest in developing new tools to address bacterial infections. Bacteria-targeting nanoparticles hold promise to improve drug efficacy, compliance, and safety. In addition, nanoparticles can also be used for novel applications, such as bacterial imaging or bioseperations. We here present the use of a scalable block-copolymer-directed self-assembly process, Flash NanoPrecipitation, to form zinc(II)-bis(dipicolylamine) modified nanoparticles that bind to both Gram-positive and Gram-negative bacteria with specificity. Particles have tunable surface ligand densities that change particle avidity and binding efficacy. A variety of materials can be encapsulated into the core of the particles, such as optical dyes or iron oxide colloids, to produce imageable and magnetically active bacterial targeting constructs. As a proof-of-concept, these particles are used to bind and separate bacteria from solution in a magnetic column. Magnetic manipulation and separation would translate to a platform for pathogen identification or removal. These magnetic and targeted nanoparticles enable new methods to address bacterial infections.

  14. Inactivation of Selected Bacterial Pathogens in Dairy Cattle Manure by Mesophilic Anaerobic Digestion (Balloon Type Digester)

    PubMed Central

    Manyi-Loh, Christy E.; Mamphweli, Sampson N.; Meyer, Edson L.; Okoh, Anthony I.; Makaka, Golden; Simon, Michael

    2014-01-01

    Anaerobic digestion of animal manure in biogas digesters has shown promise as a technology in reducing the microbial load to safe and recommended levels. We sought to treat dairy manure obtained from the Fort Hare Dairy Farm by investigating the survival rates of bacterial pathogens, through a total viable plate count method, before, during and after mesophilic anaerobic digestion. Different microbiological media were inoculated with different serial dilutions of manure samples that were withdrawn from the biogas digester at 3, 7 and 14 day intervals to determine the viable cells. Data obtained indicated that the pathogens of public health importance were 90%–99% reduced in the order: Campylobacter sp. (18 days) < Escherichia coli sp. (62 days) < Salmonella sp. (133 days) from a viable count of 10.1 × 103, 3.6 × 105, 7.4 × 103 to concentrations below the detection limit (DL = 102 cfu/g manure), respectively. This disparity in survival rates may be influenced by the inherent characteristics of these bacteria, available nutrients as well as the stages of the anaerobic digestion process. In addition, the highest p-value i.e., 0.957 for E. coli showed the statistical significance of its model and the strongest correlation between its reductions with days of digestion. In conclusion, the results demonstrated that the specific bacterial pathogens in manure can be considerably reduced through anaerobic digestion after 133 days. PMID:25026086

  15. Chlorhexidine Digluconate Effects on Planktonic Growth and Biofilm Formation in Some Field Isolates of Animal Bacterial Pathogens

    PubMed Central

    Ebrahimi, Azizollah; Hemati, Majid; Habibian Dehkordi, Saeed; Bahadoran, Shahab; Khoshnood, Sheida; Khubani, Shahin; Dokht Faraj, Mahdi; Hakimi Alni, Reza

    2014-01-01

    Background: To study chlorhexidine digluconate disinfectant effects on planktonic growth and biofilm formation in some bacterial field isolates from animals. Objectives: The current study investigated chlorhexidine digluconate effects on planktonic growth and biofilm formation in some field isolates of veterinary bacterial pathogens. Materials and Methods: Forty clinical isolates of Escherichia coli, Salmonella serotypes, Staphylococcus. aureus and Streptococcus agalactiae (10 isolates for each) were examined for chlorhexidine digluconate effects on biofilm formation and planktonic growth using microtiter plates. In all of the examined strains in the presence of chlorhexidine digluconate, biofilm development and planktonic growth were affected at the same concentrations of the disinfectant. Results: Chlorhexidine digluconate inhibited the planktonic growth of different bacterial species at sub-MICs. But they were able to induce biofilm development of the E. coli, Salmonella spp., S. aureus and Str. agalactiae strains. Conclusions: Bacterial resistance against chlorhexidine is increasing. Sub-MIC doses of chlorhexidine digluconate can stimulate the formation of biofilm strains. PMID:24872940

  16. Host-pathogen interactions: A cholera surveillance system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Aaron T.

    2016-02-22

    Bacterial pathogen-secreted proteases may play a key role in inhibiting a potentially widespread host-pathogen interaction. Activity-based protein profiling enabled the identification of a major Vibrio cholerae serine protease that limits the ability of a host-derived intestinal lectin to bind to the bacterial pathogen in vivo.

  17. A novel multiplex PCR assay for simultaneous detection of nine clinically significant bacterial pathogens associated with bovine mastitis.

    PubMed

    Ashraf, Aqeela; Imran, Muhammad; Yaqub, Tahir; Tayyab, Muhammad; Shehzad, Wasim; Thomson, Peter C

    2017-06-01

    For rapid and simultaneous detection of nine bovine mastitic pathogens, a sensitive and specific multiplex PCR assay was developed. The assay was standardized using reference strains and validated on mastitic milk cultures which were identified to species level based on 16S rRNA sequencing. Multiplex PCR assay also efficiently detected the target bacterial strains directly from milk. The detection limit of the assay was up to 50 pg for DNA isolated from pure cultures and 10 4  CFU/ml for spiked milk samples. As estimated by latent class analysis, the assay was sensitive up to 88% and specific up to 98% for targeted mastitic pathogens, compared with the bacterial culture method and the 16S rRNA sequence analysis. This novel molecular assay could be useful for monitoring and maintaining the bovine udder health, ensuring the bacteriological safety of milk, and conducting epidemiological studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Amoeba host-Legionella synchronization of amino acid auxotrophy and its role in bacterial adaptation and pathogenic evolution.

    PubMed

    Price, Christopher T D; Richards, Ashley M; Von Dwingelo, Juanita E; Samara, Hala A; Abu Kwaik, Yousef

    2014-02-01

    Legionella pneumophila, the causative agent of Legionnaires' disease, invades and proliferates within a diverse range of free-living amoeba in the environment, but upon transmission to humans, the bacteria hijack alveolar macrophages. Intracellular proliferation of L. pneumophila in two evolutionarily distant hosts is facilitated by bacterial exploitation of conserved host processes that are targeted by bacterial protein effectors injected into the host cell. A key aspect of microbe-host interaction is microbial extraction of nutrients from the host, but understanding of this is still limited. AnkB functions as a nutritional virulence factor and promotes host proteasomal degradation of polyubiquitinated proteins generating gratuitous levels of limiting host cellular amino acids. Legionella pneumophila is auxotrophic for several amino acids including cysteine, which is a metabolically preferred source of carbon and energy during intracellular proliferation, but is limiting in both amoebae and humans. We propose that synchronization of bacterial amino acids auxotrophy with the host is a driving force in pathogenic evolution and nutritional adaptation of L. pneumophila and other intracellular bacteria to life within the host cell. Understanding microbial strategies of nutrient generation and acquisition in the host will provide novel antimicrobial strategies to disrupt pathogen access to essential sources of carbon and energy. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Investigation of environmental drivers of antimicrobial resistance in foodborne bacterial pathogens in antibiotic-free, all natural, pastured poultry flocks.

    USDA-ARS?s Scientific Manuscript database

    Question: In the absence of antibiotic use within pastured poultry production, what are potential environmental variables that drive the antimicrobial sensitivity patterns of bacterial foodborne pathogens isolated from these flocks? Purpose: The objective of this study is to examine environmental f...

  20. Cytotoxic Chromosomal Targeting by CRISPR/Cas Systems Can Reshape Bacterial Genomes and Expel or Remodel Pathogenicity Islands

    PubMed Central

    Vercoe, Reuben B.; Chang, James T.; Dy, Ron L.; Taylor, Corinda; Gristwood, Tamzin; Clulow, James S.; Richter, Corinna; Przybilski, Rita; Pitman, Andrew R.; Fineran, Peter C.

    2013-01-01

    In prokaryotes, clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated (Cas) proteins constitute a defence system against bacteriophages and plasmids. CRISPR/Cas systems acquire short spacer sequences from foreign genetic elements and incorporate these into their CRISPR arrays, generating a memory of past invaders. Defence is provided by short non-coding RNAs that guide Cas proteins to cleave complementary nucleic acids. While most spacers are acquired from phages and plasmids, there are examples of spacers that match genes elsewhere in the host bacterial chromosome. In Pectobacterium atrosepticum the type I-F CRISPR/Cas system has acquired a self-complementary spacer that perfectly matches a protospacer target in a horizontally acquired island (HAI2) involved in plant pathogenicity. Given the paucity of experimental data about CRISPR/Cas–mediated chromosomal targeting, we examined this process by developing a tightly controlled system. Chromosomal targeting was highly toxic via targeting of DNA and resulted in growth inhibition and cellular filamentation. The toxic phenotype was avoided by mutations in the cas operon, the CRISPR repeats, the protospacer target, and protospacer-adjacent motif (PAM) beside the target. Indeed, the natural self-targeting spacer was non-toxic due to a single nucleotide mutation adjacent to the target in the PAM sequence. Furthermore, we show that chromosomal targeting can result in large-scale genomic alterations, including the remodelling or deletion of entire pre-existing pathogenicity islands. These features can be engineered for the targeted deletion of large regions of bacterial chromosomes. In conclusion, in DNA–targeting CRISPR/Cas systems, chromosomal interference is deleterious by causing DNA damage and providing a strong selective pressure for genome alterations, which may have consequences for bacterial evolution and pathogenicity. PMID:23637624

  1. Antibacterial efficacy of the seed extracts of Melia azedarach against some hospital isolated human pathogenic bacterial strains

    PubMed Central

    Khan, Abdul Viqar; Ahmed, Qamar Uddin; Mir, M Ramzan; Shukla, Indu; Khan, Athar Ali

    2011-01-01

    Objective To investigate the antibacterial potential of the polar and non-polar extracts of the seeds of Melia azedarach (M. azedarach) L. (Meliaceae) against eighteen hospital isolated human pathogenic bacterial strains. Methods Petrol, benzene, ethyl acetate, methanol, and aqueous extracts at five different concentrations (1, 2, 5, 10 and 15 mg/mL) were evaluated. Disk diffusion method was followed to evaluate the antibacterial efficacy. Results All extracts of the seeds demonstrated significant antibacterial activity against tested pathogens. Among all extracts, ethyl acetate extract revealed the highest inhibition comparatively. The present study also favored the traditional uses reported earlier. Conclusions Results of this study strongly confirm that the seed extracts of M. azedarach could be effective antibiotics, both in controlling gram-positive and gram-negative human pathogenic infections. PMID:23569812

  2. The Netherlands Chlamydia cohort study (NECCST) protocol to assess the risk of late complications following Chlamydia trachomatis infection in women.

    PubMed

    Hoenderboom, B M; van Oeffelen, A A M; van Benthem, B H B; van Bergen, J E A M; Dukers-Muijrers, N H T M; Götz, H M; Hoebe, C J P A; Hogewoning, A A; van der Klis, F R M; van Baarle, D; Land, J A; van der Sande, M A B; van Veen, M G; de Vries, F; Morré, S A; van den Broek, I V F

    2017-04-11

    Chlamydia trachomatis (CT), the most common bacterial sexually transmitted infection (STI) among young women, can result in serious sequelae. Although the course of infection is often asymptomatic, CT may cause pelvic inflammatory disease (PID), leading to severe complications, such as prolonged time to pregnancy, ectopic pregnancy, and tubal factor subfertility. The risk of and risk factors for complications following CT-infection have not been assessed in a long-term prospective cohort study, the preferred design to define infections and complications adequately. In the Netherlands Chlamydia Cohort Study (NECCST), a cohort of women of reproductive age with and without a history of CT-infection is followed over a minimum of ten years to investigate (CT-related) reproductive tract complications. This study is a follow-up of the Chlamydia Screening Implementation (CSI) study, executed between 2008 and 2011 in the Netherlands. For NECCST, female CSI participants who consented to be approached for follow-up studies (n = 14,685) are invited, and prospectively followed until 2022. Four data collection moments are foreseen every two consecutive years. Questionnaire data and blood samples for CT-Immunoglobulin G (IgG) measurement are obtained as well as host DNA to determine specific genetic biomarkers related to susceptibility and severity of infection. CT-history will be based on CSI test outcomes, self-reported infections and CT-IgG presence. Information on (time to) pregnancies and the potential long-term complications (i.e. PID, ectopic pregnancy and (tubal factor) subfertility), will be acquired by questionnaires. Reported subfertility will be verified in medical registers. Occurrence of these late complications and prolonged time to pregnancy, as a proxy for reduced fertility due to a previous CT-infection, or other risk factors, will be investigated using longitudinal statistical procedures. In the proposed study, the occurrence of late complications following

  3. Prevalence of Chlamydia trachomatis, Trichomonas vaginalis and Neisseria gonorrhoeae Based on Data Collected by a Network of Clinical Microbiology Laboratories, in Italy.

    PubMed

    Salfa, Maria Cristina; Suligoi, Barbara

    Bacterial and protozoal sexually transmitted infections (STIs), such as Chlamydia trachomatis, Trichomonas vaginalis and Neisseria gonorrhoeae, may cause acute symptoms, chronic infections and severe long-term complications. The complications of these infections in women include pelvic inflammatory disease, chronic pelvic pain, tubal infertility, ectopic pregnancy, and infertility. Moreover, infection during pregnancy is associated with premature rupture of the membranes, low birth weight and miscarriage.In Italy, Chlamydia trachomatis and Trichomonas vaginalis infections are not subject to mandatory reporting; while gonorrhoea is subject to mandatory reporting.To extend surveillance to STIs that are widespread yet often asymptomatic and to improve the knowledge on the epidemiology of these infections in Italy, in 2009 the "Centro Operativo AIDS of the Istituto Superiore di SanitÁ", in collaboration with the Association of Italian Clinical Microbiologists (AMCLI, Associazione Microbiologi Clinici Italiani), launched the sentinel STIs surveillance system based on a network of 13 clinical microbiology laboratories.The main objective of the surveillance was to assess the prevalence and risk factors associated with Chlamydia trachomatis, Trichomonas vaginalis and Neisseria gonorrhoea infections among individuals attending microbiology laboratories in Italy.

  4. Comparison of the population excess fraction of Chlamydia trachomatis infection on pelvic inflammatory disease at 12-months in the presence and absence of chlamydia testing and treatment: Systematic review and retrospective cohort analysis

    PubMed Central

    Turner, Katy M. E.; Leung, Stella; Yu, B. Nancy; Frølund, Maria; Benfield, Thomas; Blanchard, James; Westh, Henrik; Ward, Helen

    2017-01-01

    Background The impact of Chlamydia trachomatis (chlamydia) control on the incidence of pelvic inflammatory disease (PID) is theoretically limited by the proportion of PID caused by chlamydia. We estimate the population excess fraction (PEF) of treated chlamydia infection on PID at 12-months in settings with widespread chlamydia control (testing and treatment) and compare this to the estimated PEF of untreated chlamydia. Methods We used two large retrospective population-based cohorts of women of reproductive age from settings with widespread chlamydia control to calculate the PEF of treated chlamydia on PID at 12-months. We undertook a systematic review to identify further studies that reported the risk of PID in women who were tested for chlamydia (infected and uninfected). We used the same method to calculate the PEF in eligible studies then compared all estimates of PEF. Results The systematic review identified a single study, a randomised controlled trial of chlamydia screening (POPI-RCT). In the presence of testing and treatment <10% of PID at 12-months was attributable to treated (baseline) chlamydia infections (Manitoba: 8.86%(95%CI 7.15–10.75); Denmark: 3.84%(3.26–4.45); screened-arm POPI-RCT: 0.99%(0.00–29.06)). In the absence of active chlamydia treatment 26.44%(11.57–46.32) of PID at 12-months was attributable to untreated (baseline) chlamydia infections (deferred-arm POPI-RCT). The PEFs suggest that eradicating baseline chlamydia infections could prevent 484 cases of PID at 12-months per 100,000 women in the untreated setting and 13–184 cases of PID per 100,000 tested women in the presence of testing and treatment. Conclusion Testing and treating chlamydia reduced the PEF of chlamydia on PID by 65% compared to the untreated setting. But in the presence of testing and treatment over 90% of PID could not be attributed to a baseline chlamydia infection. More information is needed about the aetiology of PID to develop effective strategies for

  5. Bacterial detection: from microscope to smartphone.

    PubMed

    Gopinath, Subash C B; Tang, Thean-Hock; Chen, Yeng; Citartan, Marimuthu; Lakshmipriya, Thangavel

    2014-10-15

    The ubiquitous nature of bacteria enables them to survive in a wide variety of environments. Hence, the rise of various pathogenic species that are harmful to human health raises the need for the development of accurate sensing systems. Sensing systems are necessary for diagnosis and epidemiological control of pathogenic organism, especially in the food-borne pathogen and sanitary water treatment facility' bacterial populations. Bacterial sensing for the purpose of diagnosis can function in three ways: bacterial morphological visualization, specific detection of bacterial component and whole cell detection. This paper provides an overview of the currently available bacterial detection systems that ranges from microscopic observation to state-of-the-art smartphone-based detection. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. DETECTION OF ZOONOTIC PATHOGENS IN WILD BIRDS IN THE CROSS-BORDER REGION AUSTRIA - CZECH REPUBLIC.

    PubMed

    Konicek, Cornelia; Vodrážka, Pavel; Barták, Pavel; Knotek, Zdenek; Hess, Claudia; Račka, Karol; Hess, Michael; Troxler, Salome

    2016-10-01

    To assess the importance of wild birds as a reservoir of zoonotic pathogens in Austria and the Czech Republic, we sampled 1,325 wild birds representing 13 orders, 32 families, and 81 species. The majority belonged to orders Columbiformes (43%), Passeriformes (25%), and to birds of prey: Accipitriformes, Strigiformes, and Falconiformes (15%). We collected cloacal swabs from 1,191 birds for bacterial culture and 1,214 triple swabs (conjunctiva, choana, cloaca) for DNA and RNA isolation. The cloacal swabs were processed by classical bacteriologic methods for isolation of Escherichia coli , Salmonella spp., methicillin-resistant Staphylococcus aureus (MRSA), and thermophilic Campylobacter spp. Nucleic acids isolated from triple swabs were investigated by PCR for West Nile virus, avian influenza viruses, and Chlamydia spp. We also tested tissue samples from 110 fresh carcasses for Mycobacterium spp. by PCR and we cultured fresh droppings from 114 birds for Cryptococcus spp. The most-frequently detected zoonotic bacteria were thermophilic Campylobacter spp. (12.5%) and Chlamydia spp. (10.3%). From 79.2% of the sampled birds we isolated E. coli , while 8.7% and 0.2% of E. coli isolates possessed the virulence genes for intimin (eaeA) and Shiga toxins (stx 1 and stx 2 ), respectively. Salmonella spp. were rarely found in the sampled birds (2.2%), similar to findings of MRSA (0.3%). None of the samples were positive for Cryptococcus neoformans , Mycobacterium spp., avian influenza viruses, or West Nile virus.

  7. Influence of the tryptophan-indole-IFNγ axis on human genital Chlamydia trachomatis infection: role of vaginal co-infections.

    PubMed

    Aiyar, Ashok; Quayle, Alison J; Buckner, Lyndsey R; Sherchand, Shardulendra P; Chang, Theresa L; Zea, Arnold H; Martin, David H; Belland, Robert J

    2014-01-01

    The natural history of genital Chlamydia trachomatis infections can vary widely; infections can spontaneously resolve but can also last from months to years, potentially progressing to cause significant pathology. The host and bacterial factors underlying this wide variation are not completely understood, but emphasize the bacterium's capacity to evade/adapt to the genital immune response, and/or exploit local environmental conditions to survive this immune response. IFNγ is considered to be a primary host protective cytokine against endocervical C. trachomatis infections. IFNγ acts by inducing the host enzyme indoleamine 2,3-dioxgenase, which catabolizes tryptophan, thereby depriving the bacterium of this essential amino acid. In vitro studies have revealed that tryptophan deprivation causes Chlamydia to enter a viable but non-infectious growth pattern that is termed a persistent growth form, characterized by a unique morphology and gene expression pattern. Provision of tryptophan can reactivate the bacterium to the normal developmental cycle. There is a significant difference in the capacity of ocular and genital C. trachomatis serovars to counter tryptophan deprivation. The latter uniquely encode a functional tryptophan synthase to synthesize tryptophan via indole salvage, should indole be available in the infection microenvironment. In vitro studies have confirmed the capacity of indole to mitigate the effects of IFNγ; it has been suggested that a perturbed vaginal microbiome may provide a source of indole in vivo. Consistent with this hypothesis, the microbiome associated with bacterial vaginosis includes species that encode a tryptophanase to produce indole. In this review, we discuss the natural history of genital chlamydial infections, morphological and molecular changes imposed by IFNγ on Chlamydia, and finally, the microenvironmental conditions associated with vaginal co-infections that can ameliorate the effects of IFNγ on C. trachomatis.

  8. Inhibition of Wnt Signaling Pathways Impairs Chlamydia trachomatis Infection in Endometrial Epithelial Cells

    PubMed Central

    Kintner, Jennifer; Moore, Cheryl G.; Whittimore, Judy D.; Butler, Megan; Hall, Jennifer V.

    2017-01-01

    Chlamydia trachomatis infections represent the predominant cause of bacterial sexually transmitted infections. As an obligate intracellular bacterium, C. trachomatis is dependent on the host cell for survival, propagation, and transmission. Thus, factors that affect the host cell, including nutrition, cell cycle, and environmental signals, have the potential to impact chlamydial development. Previous studies have demonstrated that activation of Wnt/β-catenin signaling benefits C. trachomatis infections in fallopian tube epithelia. In cervical epithelial cells chlamydiae sequester β-catenin within the inclusion. These data indicate that chlamydiae interact with the Wnt signaling pathway in both the upper and lower female genital tract (FGT). However, hormonal activation of canonical and non-canonical Wnt signaling pathways is an essential component of cyclic remodeling in another prominent area of the FGT, the endometrium. Given this information, we hypothesized that Wnt signaling would impact chlamydial infection in endometrial epithelial cells. To investigate this hypothesis, we analyzed the effect of Wnt inhibition on chlamydial inclusion development and elementary body (EB) production in two endometrial cell lines, Ishikawa (IK) and Hec-1B, in nonpolarized cell culture and in a polarized endometrial epithelial (IK)/stromal (SHT-290) cell co-culture model. Inhibition of Wnt by the small molecule inhibitor (IWP2) significantly decreased inclusion size in IK and IK/SHT-290 cultures (p < 0.005) and chlamydial infectivity (p ≤ 0.01) in both IK and Hec-1B cells. Confocal and electron microscopy analysis of chlamydial inclusions revealed that Wnt inhibition caused chlamydiae to become aberrant in morphology. EB formation was also impaired in IK, Hec-1B and IK/SHT-290 cultures regardless of whether Wnt inhibition occurred throughout, in the middle (24 hpi) or late (36 hpi) during the development cycle. Overall, these data lead us to conclude that Wnt signaling in

  9. Evaluation of bacterial pathogen diversity, abundance and health risks in urban recreational water by amplicon next-generation sequencing and quantitative PCR.

    PubMed

    Cui, Qijia; Fang, Tingting; Huang, Yong; Dong, Peiyan; Wang, Hui

    2017-07-01

    The microbial quality of urban recreational water is of great concern to public health. The monitoring of indicator organisms and several pathogens alone is not sufficient to accurately and comprehensively identify microbial risks. To assess the levels of bacterial pathogens and health risks in urban recreational water, we analyzed pathogen diversity and quantified four pathogens in 46 water samples collected from waterbodies in Beijing Olympic Forest Park in one year. The pathogen diversity revealed by 16S rRNA gene targeted next-generation sequencing (NGS) showed that 16 of 40 genera and 13 of 76 reference species were present. The most abundant species were Acinetobacter johnsonii, Mycobacterium avium and Aeromonas spp. Quantitative polymerase chain reaction (qPCR) of Escherichia coli (uidA), Aeromonas (aerA), M. avium (16S rRNA), Pseudomonas aeruginosa (oaa) and Salmonella (invA) showed that the aerA genes were the most abundant, occurring in all samples with concentrations of 10 4-6 genome copies/100mL, followed by oaa, invA and M. avium. In total, 34.8% of the samples harbored all genes, indicating the prevalence of these pathogens in this recreational waterbody. Based on the qPCR results, a quantitative microbial risk assessment (QMRA) showed that the annual infection risks of Salmonella, M. avium and P. aeruginosa in five activities were mostly greater than the U.S. EPA risk limit for recreational contacts, and children playing with water may be exposed to the greatest infection risk. Our findings provide a comprehensive understanding of bacterial pathogen diversity and pathogen abundance in urban recreational water by applying both NGS and qPCR. Copyright © 2016. Published by Elsevier B.V.

  10. Epidemiology of bacterial pathogens associated with infectious diarrhea in Djibouti.

    PubMed Central

    Mikhail, I A; Fox, E; Haberberger, R L; Ahmed, M H; Abbatte, E A

    1990-01-01

    During a survey examining the causes of diarrhea in the East African country of Djibouti, 140 bacterial pathogens were recovered from 209 diarrheal and 100 control stools. The following pathogens were isolated at comparable frequencies from both diarrheal and control stools: enteroadherent Escherichia coli (EAEC) (10.6 versus 13%), enterotoxigenic E. coli (ETEC) (11 versus 10%), enteropathogenic E. coli (EPEC) (7.7 versus 12%), Salmonella spp. (2.9 versus 3%), and Campylobacter jejuni-C. coli (3.3 versus 5%). Surprisingly, the EAEC strains isolated did not correspond to well-recognized EPEC serogroups. No Yersinia spp., enteroinvasive E. coli, or enterohemorrhagic E. coli were isolated during the course of this study. Only the following two genera were recovered from diarrheal stools exclusively: Shigella spp. (7.7%) and Aeromonas hydrophila group organisms (3.3%). Shigella flexneri was the most common Shigella species isolated. Patients with Shigella species were of a higher average age than were controls (27 versus 13 years), while subjects with Campylobacter or Salmonella species belonged to younger age groups (2.6 and 1.6 years, respectively). Salmonella cases were more often in females. Shigella diarrhea was associated with fecal blood or mucus and leukocytes. ETEC was not associated with nausea or vomiting. Anorexia, weight loss, and fever were associated with the isolation of Salmonella and Aeromonas species. EAEC, ETEC, EPEC, and Shigella species were resistant to most drugs used for treating diarrhea in Africa, while the antibiotic most active against all bacteria tested was norfloxacin. We conclude that in Djibouti in 1989, Shigella and Aeromonas species must be considered as potential pathogens whenever they are isolated from diarrheal stools and that norfloxacin should be considered the drug of choice in adults for treating severe shigellosis and for diarrhea prophylaxis in travelers. PMID:2351738

  11. A Bacteriophage Capsid Protein Is an Inhibitor of a Conserved Transcription Terminator of Various Bacterial Pathogens.

    PubMed

    Ghosh, Gairika; Reddy, Jayavardhana; Sambhare, Susmit; Sen, Ranjan

    2018-01-01

    Rho is a hexameric molecular motor that functions as a conserved transcription terminator in the majority of bacterial species and is a potential drug target. Psu is a bacteriophage P4 capsid protein that inhibits Escherichia coli Rho by obstructing its ATPase and translocase activities. In this study, we explored the anti-Rho activity of Psu for Rho proteins from different pathogens. Sequence alignment and homology modeling of Rho proteins from pathogenic bacteria revealed the conserved nature of the Psu-interacting regions in all these proteins. We chose Rho proteins from various pathogens, including Mycobacterium smegmatis , Mycobacterium bovis , Mycobacterium tuberculosis , Xanthomonas campestris , Xanthomonas oryzae , Corynebacterium glutamicum , Vibrio cholerae , Salmonella enterica , and Pseudomonas syringae The purified recombinant Rho proteins of these organisms showed variable rates of ATP hydrolysis on poly(rC) as the substrate and were capable of releasing RNA from the E. coli transcription elongation complexes. Psu was capable of inhibiting these two functions of all these Rho proteins. In vivo pulldown assays revealed direct binding of Psu with many of these Rho proteins. In vivo expression of psu induced killing of M. smegmatis , M. bovis , X. campestris , and E. coli expressing S. enterica Rho indicating Psu-induced inhibition of Rho proteins of these strains under physiological conditions. We propose that the "universal" inhibitory function of the Psu protein against the Rho proteins from both Gram-negative and Gram-positive bacteria could be useful for designing peptides with antimicrobial functions and that these peptides could contribute to synergistic antibiotic treatment of the pathogens by compromising the Rho functions. IMPORTANCE Bacteriophage-derived protein factors modulating different bacterial processes could be converted into unique antimicrobial agents. Bacteriophage P4 capsid protein Psu is an inhibitor of the E. coli transcription

  12. Synthetic analogs of bacterial quorum sensors

    DOEpatents

    Iyer, Rashi [Los Alamos, NM; Ganguly, Kumkum [Los Alamos, NM; Silks, Louis A [Los Alamos, NM

    2011-12-06

    Bacterial quorum-sensing molecule analogs having the following structures: ##STR00001## and methods of reducing bacterial pathogenicity, comprising providing a biological system comprising pathogenic bacteria which produce natural quorum-sensing molecule; providing a synthetic bacterial quorum-sensing molecule having the above structures and introducing the synthetic quorum-sensing molecule into the biological system comprising pathogenic bacteria. Further is provided a method of targeted delivery of an antibiotic, comprising providing a synthetic quorum-sensing molecule; chemically linking the synthetic quorum-sensing molecule to an antibiotic to produce a quorum-sensing molecule-antibiotic conjugate; and introducing the conjugate into a biological system comprising pathogenic bacteria susceptible to the antibiotic.

  13. Synthetic analogs of bacterial quorum sensors

    DOEpatents

    Iyer, Rashi S.; Ganguly, Kumkum; Silks, Louis A.

    2013-01-08

    Bacterial quorum-sensing molecule analogs having the following structures: ##STR00001## and methods of reducing bacterial pathogenicity, comprising providing a biological system comprising pathogenic bacteria which produce natural quorum-sensing molecule; providing a synthetic bacterial quorum-sensing molecule having the above structures and introducing the synthetic quorum-sensing molecule into the biological system comprising pathogenic bacteria. Further is provided a method of targeted delivery of an antibiotic, comprising providing a synthetic quorum-sensing molecule; chemically linking the synthetic quorum-sensing molecule to an antibiotic to produce a quorum-sensing molecule-antibiotic conjugate; and introducing the conjugate into a biological system comprising pathogenic bacteria susceptible to the antibiotic.

  14. Bacterial community dynamics in a cooling tower with emphasis on pathogenic bacteria and Legionella species using universal and genus-specific deep sequencing.

    PubMed

    Pereira, Rui P A; Peplies, Jörg; Höfle, Manfred G; Brettar, Ingrid

    2017-10-01

    Cooling towers are the major source of outbreaks of legionellosis in Europe and worldwide. These outbreaks are mostly associated with Legionella species, primarily L. pneumophila, and its surveillance in cooling tower environments is of high relevance to public health. In this study, a combined NGS-based approach was used to study the whole bacterial community, specific waterborne and water-based bacterial pathogens, especially Legionella species, targeting the 16S rRNA gene. This approach was applied to water from a cooling tower obtained by monthly sampling during two years. The studied cooling tower was an open circuit cooling tower with lamellar cooling situated in Braunschweig, Germany. A highly diverse bacterial community was observed with 808 genera including 25 potentially pathogenic taxa using universal 16S rRNA primers. Sphingomonas and Legionella were the most abundant pathogenic genera. By applying genus-specific primers for Legionella, a diverse community with 85 phylotypes, and a representative core community with substantial temporal heterogeneity was observed. A high percentage of sequences (65%) could not be affiliated to an acknowledged species. L. pneumophila was part of the core community and the most abundant Legionella species reinforcing the importance of cooling towers as its environmental reservoir. Major temperature shifts (>10 °C) were the key environmental factor triggering the reduction or dominance of the Legionella species in the Legionella community dynamics. In addition, interventions by chlorine dioxide had a strong impact on the Legionella community composition but not on the whole bacterial community. Overall, the presented results demonstrated the value of a combined NGS approach for the molecular monitoring and surveillance of health related pathogens in man-made freshwater systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Bacterial Pathogen Emergence Requires More than Direct Contact with a Novel Passerine Host

    PubMed Central

    Hill, Geoffrey E.; Josefson, Chloe C.; Armbruster, Jonathan W.

    2018-01-01

    ABSTRACT While direct contact may sometimes be sufficient to allow a pathogen to jump into a new host species, in other cases, fortuitously adaptive mutations that arise in the original donor host are also necessary. Viruses have been the focus of most host shift studies, so less is known about the importance of ecological versus evolutionary processes to successful bacterial host shifts. Here we tested whether direct contact with the novel host was sufficient to enable the mid-1990s jump of the bacterium Mycoplasma gallisepticum from domestic poultry to house finches (Haemorhous mexicanus). We experimentally inoculated house finches with two genetically distinct M. gallisepticum strains obtained either from poultry (Rlow) or from house finches (HF1995) during an epizootic outbreak. All 15 house finches inoculated with HF1995 became infected, whereas Rlow successfully infected 12 of 15 (80%) inoculated house finches. Comparisons among infected birds showed that, relative to HF1995, Rlow achieved substantially lower bacterial loads in the host respiratory mucosa and was cleared faster. Furthermore, Rlow-infected finches were less likely to develop clinical symptoms than HF1995-infected birds and, when they did, displayed milder conjunctivitis. The lower infection success of Rlow relative to HF1995 was not, however, due to a heightened host antibody response to Rlow. Taken together, our results indicate that contact between infected poultry and house finches was not, by itself, sufficient to explain the jump of M. gallisepticum to house finches. Instead, mutations arising in the original poultry host would have been necessary for successful pathogen emergence in the novel finch host. PMID:29311238

  16. Improving the molecular diagnosis of Chlamydia psittaci and Chlamydia abortus infection with a species-specific duplex real-time PCR.

    PubMed

    Opota, Onya; Jaton, Katia; Branley, James; Vanrompay, Daisy; Erard, Veronique; Borel, Nicole; Longbottom, David; Greub, Gilbert

    2015-10-01

    Chlamydia psittaci and Chlamydia abortus are closely related intracellular bacteria exhibiting different tissue tropism that may cause severe but distinct infection in humans. C. psittaci causes psittacosis, a respiratory zoonotic infection transmitted by birds. C. abortus is an abortigenic agent in small ruminants, which can also colonize the human placenta and lead to foetal death and miscarriage. Infections caused by C. psittaci and C. abortus are underestimated mainly due to diagnosis difficulties resulting from their strict intracellular growth. We developed a duplex real-time PCR to detect and distinguish these two bacteria in clinical samples. The first PCR (PCR1) targeted a sequence of the 16S-23S rRNA operon allowing the detection of both C. psittaci and C. abortus. The second PCR (PCR2) targeted the coding DNA sequence CPSIT_0607 unique to C. psittaci. The two PCRs showed 100 % detection for ≥ 10 DNA copies per reaction (1000 copies ml(- 1)). Using a set of 120 samples, including bacterial reference strains, clinical specimens and infected cell culture material, we monitored 100 % sensitivity and 100 % specificity for the detection of C. psittaci and C. abortus for PCR1. When PCR1 was positive, PCR2 could discriminate C. psittaci from C. abortus with a positive predictive value of 100 % and a negative predictive value of 88 %. In conclusion, this new duplex PCR represents a low-cost and time-saving method with high-throughput potential, expected to improve the routine diagnosis of psittacosis and pregnancy complication in large-scale screening programs and also during outbreaks.

  17. Cost-benefit analysis of Chlamydia trachomatis screening in pregnant women in a high burden setting in the United States.

    PubMed

    Ditkowsky, Jared; Shah, Khushal H; Hammerschlag, Margaret R; Kohlhoff, Stephan; Smith-Norowitz, Tamar A

    2017-02-18

    Chlamydia trachomatis is the most common bacterial sexually transmitted infection (STI) in the United States (U.S.) [1] and remains a major public health problem. We determined the cost- benefit of screening all pregnant women aged 15-24 for Chlamydia trachomatis infection compared with no screening. We developed a decision analysis model to estimate costs and health-related effects of screening pregnant women for C. trachomatis in a high burden setting (Brooklyn, NY). Outcome data was from literature for pregnant women in the 2015 US population. A virtual cohort of 6,444,686 pregnant women, followed for 1 year was utilized. Using outcomes data from the literature, we predicted the number of C. trachomatis cases, associated morbidity, and related costs. Two comparison arms were developed: pregnant women who received chlamydia screening, and those who did not. Costs and morbidity of a pregnant woman-infant pair with C. trachomatis were calculated and compared. Cost and benefit of screening relied on the prevalence of C. trachomatis; when rates are above 16.9%, screening was proven to offer net cost savings. At a pre-screening era prevalence of 8%, a screening program has an increased expense of $124.65 million ($19.34/individual), with 328 thousand more cases of chlamydia treated, and significant reduction in morbidity. At a current estimate of prevalence, 6.7%, net expenditure for screening is $249.08 million ($38.65/individual), with 204.63 thousand cases of treated chlamydia and reduced morbidity. Considering a high prevalence region, prenatal screening for C. trachomatis resulted in increased expenditure, with a significant reduction in morbidity to woman-infant pairs. Screening programs are appropriate if the cost per individual is deemed acceptable to prevent the morbidity associated with C. trachomatis.

  18. [Chlamydia pneumoniae--etiology of ophthalmia neonatorum].

    PubMed

    Krásný, J; Borovanská, J; Hrubá, D

    2003-07-01

    The authors observed mucous discharge in palpebral aperture, accompanied by a different degree of effusion of eyelids and chemosis of conjunctivae, particularly the tarsal ones, in 12 physiological newborns. Chlamydia pneumoniae proved to be the etiological agent in the newborn ophthalmia. The eye infection was not detected in the same period of time and in the same maternity hospital in the period of observation from September 1999 to March 2001. The detection of Chlamydia pneumoniae was performed in conjunctiva smears. The impression films on slides were examined by the method of indirect immunofluorescence with the use of specific monoclonal antibodies (medac, Germany). In the early stages the secretion included a sanguineous component, which was then changing into a mucoid or mucopurulent form. The character of conjunctival symptoms was changing in the course of inflammation. Effusion of the lower transitory fold (plica) was gradually accompanied by a picture of pseudofollicular changes on the tarsal conjunctiva. Clarithromycin in the form of syrup at daily doses of 15 mg/kg/day for the period of two weeks offered an efficient therapy of the affection. Control smears after 14 days were always negative and, at the same time, the pathological finding on the conjunctivae disappeared. The nasolacrimal obstruction was the only complication of this chlamydia infection, taking place in seven sucklings, i.e. in 58%. The passage through lacrimal drainage system reappeared in all the affected infants until they reached one year of age. The remaining question to be answered is the way the newborns encountered the infection. A nosocomial infection may be the case, but Chlamydia pneumoniae could also be present in the urogenital tract of mothers and transferred to the newborn via the birth canal similarly as is the case of Chlamydia trachomatis infection. The mode of infection deserves further investigation.

  19. Prevalence of Chlamydia psittaci in the feral pigeon population of Basel, Switzerland.

    PubMed

    Geigenfeind, Ila; Vanrompay, Daisy; Haag-Wackernagel, Daniel

    2012-02-01

    Feral pigeons (Columba livia) are commonly infected with Chlamydia psittaci, the agent of psittacosis in humans. To assess the risk of zoonosis posed by feral pigeons in the urban environment, we determined the prevalence of Chlamydia psittaci by detection of the outer-membrane protein A (ompA) gene of this pathogen in pharyngeal and cloacal samples of 202 feral pigeons present in a loft in Basel, Switzerland. Additionally, we examined 620 fresh faecal droppings of feral pigeons at six public sites in Basel. The ompA gene of C. psittaci could be detected in only 17 (8.4 %) of the 202 feral pigeons in the loft. C. psittaci DNA was present in nine (2.0 %) of 447 of the pharyngeal swabs and 11 (3.2 %) of the 348 cloacal swabs. Genotyping of the ompA gene revealed genotype B in seven of the birds. In one bird, a mixed infection was detected with the genotypes A, B and E/B, which, to our knowledge is the first time such an infection has been reported. Some of these birds immigrated into the loft as adults. To our knowledge, this is the first study to document how the interconnectedness between feral pigeon subpopulations favours the spread of C. psittaci. C. psittaci DNA was not detected in any of the faecal droppings collected at the six public areas. In spite of the low levels of C. psittaci shedding by feral pigeons in Basel, close contact to feral pigeons bears the risk of zoonotic transmission of C. psittaci. Feral pigeon management programmes and public education should be implemented to reduce the risk of a pigeon-to-human transmission of such pathogenic agents.

  20. Genomic survey of pathogenicity determinants and VNTR markers in the cassava bacterial pathogen Xanthomonas axonopodis pv. Manihotis strain CIO151.

    PubMed

    Arrieta-Ortiz, Mario L; Rodríguez-R, Luis M; Pérez-Quintero, Álvaro L; Poulin, Lucie; Díaz, Ana C; Arias Rojas, Nathalia; Trujillo, Cesar; Restrepo Benavides, Mariana; Bart, Rebecca; Boch, Jens; Boureau, Tristan; Darrasse, Armelle; David, Perrine; Dugé de Bernonville, Thomas; Fontanilla, Paula; Gagnevin, Lionel; Guérin, Fabien; Jacques, Marie-Agnès; Lauber, Emmanuelle; Lefeuvre, Pierre; Medina, Cesar; Medina, Edgar; Montenegro, Nathaly; Muñoz Bodnar, Alejandra; Noël, Laurent D; Ortiz Quiñones, Juan F; Osorio, Daniela; Pardo, Carolina; Patil, Prabhu B; Poussier, Stéphane; Pruvost, Olivier; Robène-Soustrade, Isabelle; Ryan, Robert P; Tabima, Javier; Urrego Morales, Oscar G; Vernière, Christian; Carrere, Sébastien; Verdier, Valérie; Szurek, Boris; Restrepo, Silvia; López, Camilo; Koebnik, Ralf; Bernal, Adriana

    2013-01-01

    Xanthomonas axonopodis pv. manihotis (Xam) is the causal agent of bacterial blight of cassava, which is among the main components of human diet in Africa and South America. Current information about the molecular pathogenicity factors involved in the infection process of this organism is limited. Previous studies in other bacteria in this genus suggest that advanced draft genome sequences are valuable resources for molecular studies on their interaction with plants and could provide valuable tools for diagnostics and detection. Here we have generated the first manually annotated high-quality draft genome sequence of Xam strain CIO151. Its genomic structure is similar to that of other xanthomonads, especially Xanthomonas euvesicatoria and Xanthomonas citri pv. citri species. Several putative pathogenicity factors were identified, including type III effectors, cell wall-degrading enzymes and clusters encoding protein secretion systems. Specific characteristics in this genome include changes in the xanthomonadin cluster that could explain the lack of typical yellow color in all strains of this pathovar and the presence of 50 regions in the genome with atypical nucleotide composition. The genome sequence was used to predict and evaluate 22 variable number of tandem repeat (VNTR) loci that were subsequently demonstrated as polymorphic in representative Xam strains. Our results demonstrate that Xanthomonas axonopodis pv. manihotis strain CIO151 possesses ten clusters of pathogenicity factors conserved within the genus Xanthomonas. We report 126 genes that are potentially unique to Xam, as well as potential horizontal transfer events in the history of the genome. The relation of these regions with virulence and pathogenicity could explain several aspects of the biology of this pathogen, including its ability to colonize both vascular and non-vascular tissues of cassava plants. A set of 16 robust, polymorphic VNTR loci will be useful to develop a multi-locus VNTR analysis

  1. Genomic Survey of Pathogenicity Determinants and VNTR Markers in the Cassava Bacterial Pathogen Xanthomonas axonopodis pv. Manihotis Strain CIO151

    PubMed Central

    Arrieta-Ortiz, Mario L.; Rodríguez-R, Luis M.; Pérez-Quintero, Álvaro L.; Poulin, Lucie; Díaz, Ana C.; Arias Rojas, Nathalia; Trujillo, Cesar; Restrepo Benavides, Mariana; Bart, Rebecca; Boch, Jens; Boureau, Tristan; Darrasse, Armelle; David, Perrine; Dugé de Bernonville, Thomas; Fontanilla, Paula; Gagnevin, Lionel; Guérin, Fabien; Jacques, Marie-Agnès; Lauber, Emmanuelle; Lefeuvre, Pierre; Medina, Cesar; Medina, Edgar; Montenegro, Nathaly; Muñoz Bodnar, Alejandra; Noël, Laurent D.; Ortiz Quiñones, Juan F.; Osorio, Daniela; Pardo, Carolina; Patil, Prabhu B.; Poussier, Stéphane; Pruvost, Olivier; Robène-Soustrade, Isabelle; Ryan, Robert P.; Tabima, Javier; Urrego Morales, Oscar G.; Vernière, Christian; Carrere, Sébastien; Verdier, Valérie; Szurek, Boris; Restrepo, Silvia; López, Camilo

    2013-01-01

    Xanthomonas axonopodis pv. manihotis (Xam) is the causal agent of bacterial blight of cassava, which is among the main components of human diet in Africa and South America. Current information about the molecular pathogenicity factors involved in the infection process of this organism is limited. Previous studies in other bacteria in this genus suggest that advanced draft genome sequences are valuable resources for molecular studies on their interaction with plants and could provide valuable tools for diagnostics and detection. Here we have generated the first manually annotated high-quality draft genome sequence of Xam strain CIO151. Its genomic structure is similar to that of other xanthomonads, especially Xanthomonas euvesicatoria and Xanthomonas citri pv. citri species. Several putative pathogenicity factors were identified, including type III effectors, cell wall-degrading enzymes and clusters encoding protein secretion systems. Specific characteristics in this genome include changes in the xanthomonadin cluster that could explain the lack of typical yellow color in all strains of this pathovar and the presence of 50 regions in the genome with atypical nucleotide composition. The genome sequence was used to predict and evaluate 22 variable number of tandem repeat (VNTR) loci that were subsequently demonstrated as polymorphic in representative Xam strains. Our results demonstrate that Xanthomonas axonopodis pv. manihotis strain CIO151 possesses ten clusters of pathogenicity factors conserved within the genus Xanthomonas. We report 126 genes that are potentially unique to Xam, as well as potential horizontal transfer events in the history of the genome. The relation of these regions with virulence and pathogenicity could explain several aspects of the biology of this pathogen, including its ability to colonize both vascular and non-vascular tissues of cassava plants. A set of 16 robust, polymorphic VNTR loci will be useful to develop a multi-locus VNTR analysis

  2. Effects of Benzalkonium Chloride on Planktonic Growth and Biofilm Formation by Animal Bacterial Pathogens

    PubMed Central

    Ebrahimi, Azizollah; Hemati, Majid; Shabanpour, Ziba; Habibian Dehkordi, Saeed; Bahadoran, Shahab; Lotfalian, Sharareh; Khubani, Shahin

    2015-01-01

    Background: Resistance toward quaternary ammonium compounds (QACs) is widespread among a diverse range of microorganisms and is facilitated by several mechanisms such as biofilm formation. Objectives: In this study, the effects of benzalkonium chloride on planktonic growth and biofilm formation by some field isolates of animal bacterial pathogens were investigated. Materials and Methods: Forty clinical isolates of Escherichia coli, Salmonella serotypes, Staphylococcus aureus and Streptococcus agalactiae (10 isolates of each) were examined for effects of benzalkonium chloride on biofilm formation and planktonic growth using microtiter plates. For all the examined strains in the presence of benzalkonium chloride, biofilm development and planktonic growth were affected at the same concentrations of disinfectant. Results: The means of strains growth increase after the minimal inhibitory concentration (MIC) were significant in all the bacteria (except for E. coli in 1/32 and S. agalactiae in of 1/8 MIC). Biofilm formation increased with decrease of antiseptics concentration; a significant increase was found in all the samples. The most turbidity related to S. aureus and the least to Salmonella. Conclusions: Bacterial resistance against quaternary ammonium compounds is increasing which can increase the bacterial biofilm formation. PMID:25793094

  3. Zoonotic bacterial meningitis in human adults.

    PubMed

    van Samkar, Anusha; Brouwer, Matthijs C; van der Ende, Arie; van de Beek, Diederik

    2016-09-13

    To describe the epidemiology, etiology, clinical characteristics, treatment, outcome, and prevention of zoonotic bacterial meningitis in human adults. We identified 16 zoonotic bacteria causing meningitis in adults. Zoonotic bacterial meningitis is uncommon compared to bacterial meningitis caused by human pathogens, and the incidence has a strong regional distribution. Zoonotic bacterial meningitis is mainly associated with animal contact, consumption of animal products, and an immunocompromised state of the patient. In a high proportion of zoonotic bacterial meningitis cases, CSF analysis showed only a mildly elevated leukocyte count. The recommended antibiotic therapy differs per pathogen, and the overall mortality is low. Zoonotic bacterial meningitis is uncommon but is associated with specific complications. The suspicion should be raised in patients with bacterial meningitis who have recreational or professional contact with animals and in patients living in regions endemic for specific zoonotic pathogens. An immunocompromised state is associated with a worse prognosis. Identification of risk factors and underlying disease is necessary to improve treatment. © 2016 American Academy of Neurology.

  4. Septins arrange F-actin-containing fibers on the Chlamydia trachomatis inclusion and are required for normal release of the inclusion by extrusion.

    PubMed

    Volceanov, Larisa; Herbst, Katharina; Biniossek, Martin; Schilling, Oliver; Haller, Dirk; Nölke, Thilo; Subbarayal, Prema; Rudel, Thomas; Zieger, Barbara; Häcker, Georg

    2014-10-07

    Chlamydia trachomatis is an obligate intracellular human pathogen that grows inside a membranous, cytosolic vacuole termed an inclusion. Septins are a group of 13 GTP-binding proteins that assemble into oligomeric complexes and that can form higher-order filaments. We report here that the septins SEPT2, -9, -11, and probably -7 form fibrillar structures around the chlamydial inclusion. Colocalization studies suggest that these septins combine with F actin into fibers that encase the inclusion. Targeting the expression of individual septins by RNA interference (RNAi) prevented the formation of septin fibers as well as the recruitment of actin to the inclusion. At the end of the developmental cycle of C. trachomatis, newly formed, infectious elementary bodies are released, and this release occurs at least in part through the organized extrusion of intact inclusions. RNAi against SEPT9 or against the combination of SEPT2/7/9 substantially reduced the number of extrusions from a culture of infected HeLa cells. The data suggest that a higher-order structure of four septins is involved in the recruitment or stabilization of the actin coat around the chlamydial inclusion and that this actin recruitment by septins is instrumental for the coordinated egress of C. trachomatis from human cells. The organization of F actin around parasite-containing vacuoles may be a broader response mechanism of mammalian cells to the infection by intracellular, vacuole-dwelling pathogens. Importance: Chlamydia trachomatis is a frequent bacterial pathogen throughout the world, causing mostly eye and genital infections. C. trachomatis can develop only inside host cells; it multiplies inside a membranous vacuole in the cytosol, termed an inclusion. The inclusion is covered by cytoskeletal "coats" or "cages," whose organization and function are poorly understood. We here report that a relatively little-characterized group of proteins, septins, is required to organize actin fibers on the

  5. Broad activity of diphenyleneiodonium analogues against Mycobacterium tuberculosis, malaria parasites and bacterial pathogens.

    PubMed

    Nguyen, Nghi; Wilson, Danny W; Nagalingam, Gayathri; Triccas, James A; Schneider, Elena K; Li, Jian; Velkov, Tony; Baell, Jonathan

    2018-03-25

    In this study, a structure-activity relationship (SAR) compound series based on the NDH-2 inhibitor diphenyleneiodonium (DPI) was synthesised. Compounds were evaluated primarily for in vitro efficacy against Gram-positive and Gram-negative bacteria, commonly responsible for nosocomial and community acquired infections. In addition, we also assessed the activity of these compounds against Mycobacterium tuberculosis (Tuberculosis) and Plasmodium spp. (Malaria). This led to the discovery of highly potent compounds active against bacterial pathogens and malaria parasites in the low nanomolar range, several of which were significantly less toxic to mammalian cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Chlamydiae in the ejaculate: their influence on the quality and morphology of sperm.

    PubMed

    Veznik, Zdenek; Pospisil, Leopold; Svecova, Drahomira; Zajicova, Atanaska; Unzeitig, Vit

    2004-07-01

    Given the lack of information concerning the role of Chlamydia trachomatis in male fertility, the aim of this study was to ascertain and analyze the quality of Chlamydiae-positive and -negative semen. Sperm count was performed according to the 1999 World Health Organization (WHO) laboratory manual for examination of human semen and sperm-cervical mucus interaction, and sperm survival was assessed by a 120-min test. The evaluation of the morphological examination of ejaculates was carried out using the sasmo (strict morphological analysis of ejaculates) computer program. Chlamydiae were detected by immunofluorescent reaction using the Progen Biotechnik GmbH diagnostic set. Fisher's exact test and the chi-quadrate test were used for statistical analysis. Of the total of 627 sperm samples examined, Chlamydiae were detected in 136 cases (21.7%). Sperm analysis showed significant differences between Chlamydiae-positive and -negative samples. The Chlamydiae-contaminated group showed normal sperm morphology 14.4% lower, volume 6.4% lower, concentration 8.3% lower, motility 7.8% and velocity 9.3% lower than in Chlamydiae-negative samples. The average values for normal spermatozoa and motility in the Chlamydiae-positive group were also significantly reduced. Chlamydia trachomatis was found to be a possible factor in sperm pathology. These results could help to elucidate the role of Chlamydia trachomatis in male infertility.

  7. Chlamydia trachomatis growth and development requires the activity of host Long-chain Acyl-CoA Synthetases (ACSLs).

    PubMed

    Recuero-Checa, Maria A; Sharma, Manu; Lau, Constance; Watkins, Paul A; Gaydos, Charlotte A; Dean, Deborah

    2016-03-18

    The obligate-intracellular pathogen Chlamydia trachomatis (Ct) has undergone considerable genome reduction with consequent dependence on host biosynthetic pathways, metabolites and enzymes. Long-chain acyl-CoA synthetases (ACSLs) are key host-cell enzymes that convert fatty acids (FA) into acyl-CoA for use in metabolic pathways. Here, we show that the complete host ACSL family [ACSL1 and ACSL3-6] translocates into the Ct membrane-bound vacuole, termed inclusion, and remains associated with membranes of metabolically active forms of Ct throughout development. We discovered that three different pharmacologic inhibitors of ACSL activity independently impede Ct growth in a dose-dependent fashion. Using an FA competition assay, host ACSLs were found to activate Ct branched-chain FAs, suggesting that one function of the ACSLs is to activate Ct FAs and host FAs (recruited from the cytoplasm) within the inclusion. Because the ACSL inhibitors can deplete lipid droplets (LD), we used a cell line where LD synthesis was switched off to evaluate whether LD deficiency affects Ct growth. In these cells, we found no effect on growth or on translocation of ACSLs into the inclusion. Our findings support an essential role for ACSL activation of host-cell and bacterial FAs within the inclusion to promote Ct growth and development, independent of LDs.

  8. Chlamydia pecorum is the endemic intestinal species in cattle while C. gallinacea, C. psittaci and C. pneumoniae associate with sporadic systemic infection.

    PubMed

    Li, Jing; Guo, Weina; Kaltenboeck, Bernhard; Sachse, Konrad; Yang, Yi; Lu, Guangwu; Zhang, Jilei; Luan, Lu; You, Jinfeng; Huang, Ke; Qiu, Haixiang; Wang, Yaoyao; Li, Min; Yang, Zhangping; Wang, Chengming

    2016-09-25

    To investigate the prevalence and diversity of bovine Chlamydia spp. in cattle, whole blood from dairy and beef cattle in 11 provinces of China (n=2003) and vaginal swabs, whole blood samples, feces, milk samples from cows in a Yangzhou dairy farm (n=108) were examined using genus- and species-specific PCRs. In cattle from 11 provinces, 2.4% (48/2003) of whole-blood samples were positive for Chlamydia spp., and four Chlamydia species (C. pneumoniae, 41.7%, 20/48; C. psittaci, 22.9%, 11/48; C. gallinacea, 20.8%, 10/48; C. pecorum, 6.3%, 3/48) were identified. In a further study on a Yangzhou dairy farm, 64.8% (70/108) of the cows were positive for Chlamydia spp. C. pecorum was the intestinal endemic species (51/51, 100%), and C. gallinacea was the most frequent species in vaginal swabs (24/27, 88.9%), whole blood buffy coats (5/8, 62.5%) and milk (4/6, 66.7%). C. psittaci and C. pneumoniae were infrequently detected. DNA sequencing of the ompA gene demonstrated the presence of multiple in-herd C. pecorum serovars and single C. gallinacea and C. psittaci serovars which were identical with those of poultry from Yangzhou. This is the first report of C. gallinacea and C. pneumoniae in cattle. Further study is required to address the transmission of Chlamydia spp., in particular of C. gallinacea and C. pneumoniae from their natural hosts, and their potential pathogenic effect on health and production of cattle. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Evolution of bacterial virulence.

    PubMed

    Diard, Médéric; Hardt, Wolf-Dietrich

    2017-09-01

    Bacterial virulence is highly dynamic and context-dependent. For this reason, it is challenging to predict how molecular changes affect the growth of a pathogen in a host and its spread in host population. Two schools of thought have taken quite different directions to decipher the underlying principles of bacterial virulence. While molecular infection biology is focusing on the basic mechanisms of the pathogen-host interaction, evolution biology takes virulence as one of several parameters affecting pathogen spread in a host population. We review both approaches and discuss how they can complement each other in order to obtain a comprehensive understanding of bacterial virulence, its emergence, maintenance and evolution. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Novel HLA-B27-restricted epitopes from Chlamydia trachomatis generated upon endogenous processing of bacterial proteins suggest a role of molecular mimicry in reactive arthritis.

    PubMed

    Alvarez-Navarro, Carlos; Cragnolini, Juan J; Dos Santos, Helena G; Barnea, Eilon; Admon, Arie; Morreale, Antonio; López de Castro, José A

    2013-09-06

    Reactive arthritis (ReA) is an HLA-B27-associated spondyloarthropathy that is triggered by diverse bacteria, including Chlamydia trachomatis, a frequent intracellular parasite. HLA-B27-restricted T-cell responses are elicited against this bacterium in ReA patients, but their pathogenetic significance, autoimmune potential, and relevant epitopes are unknown. High resolution and sensitivity mass spectrometry was used to identify HLA-B27 ligands endogenously processed and presented by HLA-B27 from three chlamydial proteins for which T-cell epitopes were predicted. Fusion protein constructs of ClpC, Na(+)-translocating NADH-quinone reductase subunit A, and DNA primase were expressed in HLA-B27(+) cells, and their HLA-B27-bound peptidomes were searched for endogenous bacterial ligands. A non-predicted peptide, distinct from the predicted T-cell epitope, was identified from ClpC. A peptide recognized by T-cells in vitro, NQRA(330-338), was detected from the reductase subunit. This is the second HLA-B27-restricted T-cell epitope from C. trachomatis with relevance in ReA demonstrated to be processed and presented in live cells. A novel peptide from the DNA primase, DNAP(211-223), was also found. This was a larger variant of a known epitope and was highly homologous to a self-derived natural ligand of HLA-B27. All three bacterial peptides showed high homology with human sequences containing the binding motif of HLA-B27. Molecular dynamics simulations further showed a striking conformational similarity between DNAP(211-223) and its homologous and much more flexible human-derived HLA-B27 ligand. The results suggest that molecular mimicry between HLA-B27-restricted bacterial and self-derived epitopes is frequent and may play a role in ReA.

  11. Novel HLA-B27-restricted Epitopes from Chlamydia trachomatis Generated upon Endogenous Processing of Bacterial Proteins Suggest a Role of Molecular Mimicry in Reactive Arthritis*

    PubMed Central

    Alvarez-Navarro, Carlos; Cragnolini, Juan J.; Dos Santos, Helena G.; Barnea, Eilon; Admon, Arie; Morreale, Antonio; López de Castro, José A.

    2013-01-01

    Reactive arthritis (ReA) is an HLA-B27-associated spondyloarthropathy that is triggered by diverse bacteria, including Chlamydia trachomatis, a frequent intracellular parasite. HLA-B27-restricted T-cell responses are elicited against this bacterium in ReA patients, but their pathogenetic significance, autoimmune potential, and relevant epitopes are unknown. High resolution and sensitivity mass spectrometry was used to identify HLA-B27 ligands endogenously processed and presented by HLA-B27 from three chlamydial proteins for which T-cell epitopes were predicted. Fusion protein constructs of ClpC, Na+-translocating NADH-quinone reductase subunit A, and DNA primase were expressed in HLA-B27+ cells, and their HLA-B27-bound peptidomes were searched for endogenous bacterial ligands. A non-predicted peptide, distinct from the predicted T-cell epitope, was identified from ClpC. A peptide recognized by T-cells in vitro, NQRA(330–338), was detected from the reductase subunit. This is the second HLA-B27-restricted T-cell epitope from C. trachomatis with relevance in ReA demonstrated to be processed and presented in live cells. A novel peptide from the DNA primase, DNAP(211–223), was also found. This was a larger variant of a known epitope and was highly homologous to a self-derived natural ligand of HLA-B27. All three bacterial peptides showed high homology with human sequences containing the binding motif of HLA-B27. Molecular dynamics simulations further showed a striking conformational similarity between DNAP(211–223) and its homologous and much more flexible human-derived HLA-B27 ligand. The results suggest that molecular mimicry between HLA-B27-restricted bacterial and self-derived epitopes is frequent and may play a role in ReA. PMID:23867464

  12. Chlamydia and lymphogranuloma venereum in Canada: 2003-2012 Summary Report

    PubMed Central

    Totten, S; MacLean, R; Payne, E; Severini, A

    2015-01-01

    Background Chlamydia continues to be the most commonly reported sexually transmitted infection in Canada. Lymphogranuloma venereum (LGV), caused by certain serovars of Chlamydia trachomatis, is becoming established in some populations in a number of Western countries. Objective To identify trends in reported cases of chlamydia and LGV in Canada from January 1, 2003 to December 31, 2012. Methods Notifiable disease data on chlamydia were submitted to the Public Health Agency of Canada by provincial and territorial epidemiological units and summarized at the national level by age and sex. Confirmatory testing for suspected LGV cases and serovar subtyping were performed by the National Microbiology Laboratory (NML). Where possible, provincial/territorial health authorities use a standardized national case report form to collect enhanced epidemiological data on each case and to submit the data to the Agency. Results Rates of reported cases of chlamydia increased by 57.6%, from 189.6 to 298.7 per 100,000 between 2003 and 2012. The rate of reported cases of chlamydia among females (383.5 per 100,000) was almost twice as high as that among males (212.0 per 100,000), although the highest relative rate increase occurred among males. In both males and females, the rates of chlamydia were highest in those aged 20 to 24 years. From 2004 to 2012, 170 cases of LGV were reported to the Agency by provincial health authorities (including 104 confirmed and 66 probable cases). In 2012, case reports were received on 12 confirmed and probable cases, compared to 38 laboratory-positive cases confirmed by the NML. Conclusion In Canada, as in many countries, chlamydia rates have markedly increased over the last 10 years, in part due to improved diagnosis through nucleic acid amplification (NAAT) testing. Consistent with trends in Europe and other countries, LGV is emerging in Canada among men who have sex with men (MSM). PMID:29769927

  13. Frontiers for research on the ecology of plant-pathogenic bacteria: fundamentals for sustainability: Challenges in Bacterial Molecular Plant Pathology.

    PubMed

    Morris, Cindy E; Barny, Marie-Anne; Berge, Odile; Kinkel, Linda L; Lacroix, Christelle

    2017-02-01

    Methods to ensure the health of crops owe their efficacy to the extent to which we understand the ecology and biology of environmental microorganisms and the conditions under which their interactions with plants lead to losses in crop quality or yield. However, in the pursuit of this knowledge, notions of the ecology of plant-pathogenic microorganisms have been reduced to a plant-centric and agro-centric focus. With increasing global change, i.e. changes that encompass not only climate, but also biodiversity, the geographical distribution of biomes, human demographic and socio-economic adaptations and land use, new plant health problems will emerge via a range of processes influenced by these changes. Hence, knowledge of the ecology of plant pathogens will play an increasingly important role in the anticipation and response to disease emergence. Here, we present our opinion on the major challenges facing the study of the ecology of plant-pathogenic bacteria. We argue that the discovery of markedly novel insights into the ecology of plant-pathogenic bacteria is most likely to happen within a framework of more extensive scales of space, time and biotic interactions than those that currently guide much of the research on these bacteria. This will set a context that is more propitious for the discovery of unsuspected drivers of the survival and diversification of plant-pathogenic bacteria and of the factors most critical for disease emergence, and will set the foundation for new approaches to the sustainable management of plant health. We describe the contextual background of, justification for and specific research questions with regard to the following challenges: Development of terminology to describe plant-bacterial relationships in terms of bacterial fitness. Definition of the full scope of the environments in which plant-pathogenic bacteria reside or survive. Delineation of pertinent phylogenetic contours of plant-pathogenic bacteria and naming of strains

  14. Frequency and risk factors for incident and redetected Chlamydia trachomatis infection in sexually active, young, multi-ethnic women: a community based cohort study.

    PubMed

    Aghaizu, Adamma; Reid, Fiona; Kerry, Sally; Hay, Phillip E; Mallinson, Harry; Jensen, Jorgen S; Kerry, Sarah; Kerry, Sheila; Oakeshott, Pippa

    2014-11-01

    To investigate the frequency and risk factors for incident and redetected Chlamydia trachomatis infection in sexually active, young, multi-ethnic women in the community. Cohort study. 20 London universities and Further Education colleges. 954 sexually experienced women, mean age 21.5 years (range 16-27), 26% from ethnic minorities, who were recruited to the Prevention of Pelvic Infection (POPI) chlamydia screening trial between 2004 and 2006, and returned repeat postal self-taken vaginal swabs 11-32 (median 16) months after recruitment. The estimated annual incidence of chlamydia infection among 907 women who tested negative at baseline was 3.4 per 100 person-years (95% CI 2.5 to 4.6 per 100 person-years), but 6.6 per 100 person-years (95% CI 4.5 to 9.3 per 100 person-years) in the 326 teenagers (<20 years). Predictors of incident chlamydia infection were age <20 years (relative risk (RR) 4.0, 95% CI 2.1 to 7.5), and (after adjusting for age) a new sexual partner during 12 months follow-up (RR 4.4, 95% CI 2.0 to 9.9), smoking (RR 2.2 95% CI 1.2 to 3.9), concurrent bacterial vaginosis (RR 2.0 95% CI 1.1 to 3.9) and high risk carcinogenic human papillomavirus (RR 2.2, 95% CI 1.1 to 4.3). Of 47 women positive for chlamydia at baseline, 12 (25.5%, 95% CI 13.9% to 40.3%) had redetected infection at a median of 16 months follow-up. Taking into account follow-up time (65 person-years), the annual redetection rate was 18.5 per 100 person-years (95% CI 9.9 to 30.0 per 100 person-years). One in four women with chlamydia infection at baseline retested positive, supporting recent recommendations to routinely retest chlamydia positives. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  15. Assessment of Chlamydia suis Infection in Pig Farmers.

    PubMed

    De Puysseleyr, L; De Puysseleyr, K; Braeckman, L; Morré, S A; Cox, E; Vanrompay, D

    2017-06-01

    Chlamydia suis infections are endemic in domestic pigs in Europe and can lead to conjunctivitis, pneumonia, enteritis and reproductive failure. Currently, the knowledge on the zoonotic potential of C. suis is limited. Moreover, the last decades, porcine tetracycline resistant C. suis strains have been isolated, which interfere with treatment of chlamydial infections. In this study, the presence of C. suis was examined on nine Belgian pig farms, using Chlamydia culture and a C. suis specific real-time PCR in both pigs and farmers. In addition to diagnosis for C. suis, the farmers' samples were examined using a Chlamydia trachomatis PCR. Additionally, the Chlamydia isolates were tested for the presence of the tet(C) resistance gene. C. DNA was demonstrated in pigs on all farms, and eight of nine farmers were positive in at least one anatomical site. None of the farmers tested positive for C. trachomatis. Chlamydia suis isolates were obtained from pigs of eight farms. Nine porcine C. suis isolates possessing a tet(C) gene were retrieved, originating from three farms. Moreover, C. suis isolates were identified in three human samples, including one pharyngeal and two rectal samples. These findings suggest further research on the zoonotic transfer of C. suis from pigs to humans is needed. © 2015 Blackwell Verlag GmbH.

  16. Gold Nanoparticles: An Efficient Antimicrobial Agent against Enteric Bacterial Human Pathogen

    PubMed Central

    Shamaila, Shahzadi; Zafar, Noshin; Riaz, Saira; Sharif, Rehana; Nazir, Jawad; Naseem, Shahzad

    2016-01-01

    Enteric bacterial human pathogens, i.e., Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Klebsiella pneumoniae, are the major cause of diarrheal infections in children and adults. Their structure badly affects the human immune system. It is important to explore new antibacterial agents instead of antibiotics for treatment. This project is an attempt to explain how gold nanoparticles affect these bacteria. We investigated the important role of the mean particle size, and the inhibition of a bacterium is dose-dependent. Ultra Violet (UV)-visible spectroscopy revealed the size of chemically synthesized gold nanoparticle as 6–40 nm. Atomic force microscopy (AFM) analysis confirmed the size and X-ray diffractometry (XRD) analysis determined the polycrystalline nature of gold nanoparticles. The present findings explained how gold nanoparticles lyse Gram-negative and Gram-positive bacteria. PMID:28335198

  17. Pathogen-specific risk of chronic gastrointestinal disorders following bacterial causes of foodborne illness

    PubMed Central

    2013-01-01

    Background The US CDC estimates over 2 million foodborne illnesses are annually caused by 4 major enteropathogens: non-typhoid Salmonella spp., Campylobacter spp., Shigella spp. and Yersinia enterocoltica. While data suggest a number of costly and morbid chronic sequelae associated with these infections, pathogen-specific risk estimates are lacking. We utilized a US Department of Defense medical encounter database to evaluate the risk of several gastrointestinal disorders following select foodborne infections. Methods We identified subjects with acute gastroenteritis between 1998 to 2009 attributed to Salmonella (nontyphoidal) spp., Shigella spp., Campylobacter spp. or Yersinia enterocolitica and matched each with up to 4 unexposed subjects. Medical history was analyzed for the duration of military service time (or a minimum of 1 year) to assess for incident chronic gastrointestinal disorders. Relative risks were calculated using modified Poisson regression while controlling for the effect of covariates. Results A total of 1,753 pathogen-specific gastroenteritis cases (Campylobacter: 738, Salmonella: 624, Shigella: 376, Yersinia: 17) were identified and followed for a median of 3.8 years. The incidence (per 100,000 person-years) of PI sequelae among exposed was as follows: irritable bowel syndrome (IBS), 3.0; dyspepsia, 1.8; constipation, 3.9; gastroesophageal reflux disease (GERD), 9.7. In multivariate analyses, we found pathogen-specific increased risk of IBS, dyspepsia, constipation and GERD. Conclusions These data confirm previous studies demonstrating risk of chronic gastrointestinal sequelae following bacterial enteric infections and highlight additional preventable burden of disease which may inform better food security policies and practices, and prompt further research into pathogenic mechanisms. PMID:23510245

  18. Effect of cold water-induced stress on immune response, pathology and fertility in mice during Chlamydia muridarum genital infection.

    PubMed

    Belay, Tesfaye; Woart, Anthony; Graffeo, Vincent

    2017-07-31

    Genital infection by Chlamydia trachomatis is the most common bacterial sexually transmitted disease worldwide. It causes serious reproductive health complications, including pelvic inflammatory disease and infertility. Stress is implicated as a risk factor for various infections; however, its effect on chlamydia genital infection is unknown. We previously showed that repeated exposure of mice to cold water results in increased severity of chlamydia genital infection. In this study, cold water-induced stress resulted in (i) elevated levels of norepinephrine (NE) and epinephrine in the spleen and genital tract of stressed mice; (ii) elevated IL-1β, TNF-α, IL-6 and nitric oxide production in macrophage-rich peritoneal cells of mice; (iii) supplement of NE in vitro exerts an immunosuppressive effect on splenic T-cell production of cytokines; (iv) decreased C. muridarum shedding in the genital tract of β1Adr/β2Adr receptor KO mice; and (v) a higher rate of infertility in infected mice. These results suggest that cold water stress induces the production of catecholamines, which may play a critical role in the modulation of the immune system leading to increased intensity of C. muridarum genital infection. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. USGS/EPA collection protocol for bacterial pathogens in soil

    USGS Publications Warehouse

    Griffin, Dale W.; Shaefer, F.L.; Charlena Bowling,; Dino Mattorano,; Tonya Nichols,; Erin Silvestri,

    2014-01-01

    This Sample Collection Procedure (SCP) describes the activities and considerations for the collection of bacterial pathogens from representative surface soil samples (0-5 cm). This sampling depth can be reached without the use of a drill rig, direct-push technology, or other mechanized equipment. This procedure can be used in most soil types but is limited to sampling at or near the ground surface. This protocol has components for two different types of sampling applications: (1) typical sampling, when there is no suspicion of contamination (e.g., surveillance or background studies); and (2) in response to known or suspected accidental contamination (e.g., the presence of animal carcasses). This protocol does not cover sampling in response to a suspected bioterrorist or intentional release event. Surface material is removed to the required depth (0-5 cm) and clean trowel or 50 ml sample tube is used to collect the sample. Sample containers are sealed, bagged, and shipped to the laboratory for analysis. Associated documentation, including a Field Data Log and Chain-of-Custody are also included in this document.

  20. Parallel evolution of a type IV secretion system in radiating lineages of the host-restricted bacterial pathogen Bartonella.

    PubMed

    Engel, Philipp; Salzburger, Walter; Liesch, Marius; Chang, Chao-Chin; Maruyama, Soichi; Lanz, Christa; Calteau, Alexandra; Lajus, Aurélie; Médigue, Claudine; Schuster, Stephan C; Dehio, Christoph

    2011-02-10

    Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens