Sample records for bacterial population present

  1. Raw Cow Milk Bacterial Population Shifts Attributable to Refrigeration

    PubMed Central

    Lafarge, Véronique; Ogier, Jean-Claude; Girard, Victoria; Maladen, Véronique; Leveau, Jean-Yves; Gruss, Alexandra; Delacroix-Buchet, Agnès

    2004-01-01

    We monitored the dynamic changes in the bacterial population in milk associated with refrigeration. Direct analyses of DNA by using temporal temperature gel electrophoresis (TTGE) and denaturing gradient gel electrophoresis (DGGE) allowed us to make accurate species assignments for bacteria with low-GC-content (low-GC%) (<55%) and medium- or high-GC% (>55%) genomes, respectively. We examined raw milk samples before and after 24-h conservation at 4°C. Bacterial identification was facilitated by comparison with an extensive bacterial reference database (∼150 species) that we established with DNA fragments of pure bacterial strains. Cloning and sequencing of fragments missing from the database were used to achieve complete species identification. Considerable evolution of bacterial populations occurred during conservation at 4°C. TTGE and DGGE are shown to be a powerful tool for identifying the main bacterial species of the raw milk samples and for monitoring changes in bacterial populations during conservation at 4°C. The emergence of psychrotrophic bacteria such as Listeria spp. or Aeromonas hydrophila is demonstrated. PMID:15345453

  2. Bacterial computing with engineered populations.

    PubMed

    Amos, Martyn; Axmann, Ilka Maria; Blüthgen, Nils; de la Cruz, Fernando; Jaramillo, Alfonso; Rodriguez-Paton, Alfonso; Simmel, Friedrich

    2015-07-28

    We describe strategies for the construction of bacterial computing platforms by describing a number of results from the recently completed bacterial computing with engineered populations project. In general, the implementation of such systems requires a framework containing various components such as intracellular circuits, single cell input/output and cell-cell interfacing, as well as extensive analysis. In this overview paper, we describe our approach to each of these, and suggest possible areas for future research. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  3. Exploring bacterial infections: theoretical and experimental studies of the bacterial population dynamics and antibiotic treatment

    NASA Astrophysics Data System (ADS)

    Shao, Xinxian

    Bacterial infections are very common in human society. Thus extensive research has been conducted to reveal the molecular mechanisms of the pathogenesis and to evaluate the antibiotics' efficacy against bacteria. Little is known, however, about the population dynamics of bacterial populations and their interactions with the host's immune system. In this dissertation, a stochatic model is developed featuring stochastic phenotypic switching of bacterial individuals to explain the single-variant bottleneck discovered in multi strain bacterial infections. I explored early events in a bacterial infection establishment using classical experiments of Moxon and Murphy on neonatal rats. I showed that the minimal model and its simple variants do not work. I proposed modifications to the model that could explain the data quantitatively. The bacterial infections are also commonly established in physical structures, as biofilms or 3-d colonies. In contrast, most research on antibiotic treatment of bacterial infections has been conducted in well-mixed liquid cultures. I explored the efficacy of antibiotics to treat such bacterial colonies, a broadly applicable method is designed and evaluated where discrete bacterial colonies on 2-d surfaces were exposed to antibiotics. I discuss possible explanations and hypotheses for the experimental results. To verify these hypotheses, we investigated the dynamics of bacterial population as 3-d colonies. We showed that a minimal mathematical model of bacterial colony growth in 3-d was able to account for the experimentally observed presence of a diffusion-limited regime. The model further revealed highly loose packing of the cells in 3-d colonies and smaller cell sizes in colonies than plancktonic cells in corresponding liquid culture. Further experimental tests of the model predictions have revealed that the ratio of the cell size in liquid culture to that in colony cultures was consistent with the model prediction, that the dead cells

  4. Validation of the bacterial meningitis score in adults presenting to the ED with meningitis.

    PubMed

    McArthur, Robert; Edlow, Jonathan A; Nigrovic, Lise E

    2016-07-01

    The Bacterial Meningitis Score classifies children with meningitis and none of the following high-risk predictors at very low risk for bacterial meningitis: positive cerebrospinal fluid (CSF) Gram stain, CSF protein ≥80mg/dL, CSF absolute neutrophil count (ANC) ≥1000 cells/mm(3), peripheral ANC ≥10,000 cells/mm(3), and seizure at or prior to presentation. Although extensively validated in children, the Bacterial Meningitis Score has not been rigorously evaluated in adults. We performed a single-center cross-sectional retrospective study of adults presenting to the emergency department between 2003 and 2013 with meningitis (defined by CSF white blood cell count ≥10 cells/mm(3)). We defined a case of bacterial meningitis with either a positive CSF or blood culture. We report the performance of the Bacterial Meningitis Score in the study population. We identified 441 eligible patients of which, 4 (1%) had bacterial meningitis. The Bacterial Meningitis Score had a sensitivity of 100% [95% confidence interval (CI) 40%-100%], specificity 51% (95% CI, 46%-56%) and negative predictive value of 100% (95% CI, 98%-100%). None of the low risk adults had bacterial meningitis. If Bacterial Meningitis Score had been applied prospectively, the hospital admission rate would have dropped from 84% to 49% without missing any patients with bacterial meningitis. The Bacterial Meningitis Score accurately identified patients at low risk for bacterial meningitis and could assist clinical decision-making for adults with meningitis. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. The Population Biology of Bacterial Plasmids: A PRIORI Conditions for the Existence of Conjugationally Transmitted Factors

    PubMed Central

    Stewart, Frank M.; Levin, Bruce R.

    1977-01-01

    A mathematical model for the population dynamics of conjugationally transmitted plasmids in bacterial populations is presented and its properties analyzed. Consideration is given to nonbacteriocinogenic factors that are incapable of incorporation into the chromosome of their host cells, and to bacterial populations maintained in either continuous (chemostat) or discrete (serial transfer) culture. The conditions for the establishment and maintenance of these infectious extrachromosomal elements and equilibrium frequencies of cells carrying them are presented for different values of the biological parameters: population growth functions, conjugational transfer and segregation rate constants. With these parameters in a biologically realistic range, the theory predicts a broad set of physical conditions, resource concentrations and dilution rates, where conjugationally transmitted plasmids can become established and where cells carrying them will maintain high frequencies in bacterial populations. This can occur even when plasmid-bearing cells are much less fit (i.e., have substantially lower growth rates) than cells free of these factors. The implications of these results and the reality and limitations of the model are discussed and the values of its parameters in natural populations speculated upon. PMID:17248761

  6. Bacterial meningitis in patients with HIV: A population-based prospective study.

    PubMed

    van Veen, Kiril E B; Brouwer, Matthijs C; van der Ende, Arie; van de Beek, Diederik

    2016-03-01

    We studied occurrence, disease course, and prognosis of community-acquired bacterial meningitis in HIV-infected adults in the Netherlands. We performed a nationwide, prospective cohort study. Patients over 16 years old with bacterial meningitis were included. Data on patient history, symptoms and signs on admission, laboratory findings, radiologic examination, treatment, and outcome were collected prospectively. For HIV-positive patients additional information was collected retrospectively. From March 2006 to December 2013, 1354 episodes of community-acquired meningitis were included in the cohort. Thirteen patients were HIV-infected (1.0%). The annual incidence of bacterial meningitis was 8.3-fold higher (95%CI 4.6-15.1, P < 0.001) among HIV-infected patients as compared to the general population (10.79 [95%CI 5.97-19.48] vs 1.29 [95%CI 1.22-1.37] per 100.000 patients per year). Predisposing factors (other than HIV), clinical symptoms and signs, ancillary investigations, causative organisms and outcome were comparable between HIV-infected and patients without HIV infection. HIV-infected patients in the Netherlands have a 8.3-fold higher risk for bacterial meningitis as compared to the general population despite cART therapy. Clinical presentation and outcome of patients with acute bacterial meningitis with and without HIV are similar. Copyright © 2016 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  7. The impact of natural transformation on adaptation in spatially structured bacterial populations.

    PubMed

    Moradigaravand, Danesh; Engelstädter, Jan

    2014-06-20

    Recent studies have demonstrated that natural transformation and the formation of highly structured populations in bacteria are interconnected. In spite of growing evidence about this connection, little is known about the dynamics of natural transformation in spatially structured bacterial populations. In this work, we model the interdependency between the dynamics of the bacterial gene pool and those of environmental DNA in space to dissect the effect of transformation on adaptation. Our model reveals that even with only a single locus under consideration, transformation with a free DNA fragment pool results in complex adaptation dynamics that do not emerge in previous models focusing only on the gene shuffling effect of transformation at multiple loci. We demonstrate how spatial restriction on population growth and DNA diffusion in the environment affect the impact of transformation on adaptation. We found that in structured bacterial populations intermediate DNA diffusion rates predominantly cause transformation to impede adaptation by spreading deleterious alleles in the population. Overall, our model highlights distinctive evolutionary consequences of bacterial transformation in spatially restricted compared to planktonic bacterial populations.

  8. Population dynamics on heterogeneous bacterial substrates

    NASA Astrophysics Data System (ADS)

    Mobius, Wolfram; Murray, Andrew W.; Nelson, David R.

    2012-02-01

    How species invade new territories and how these range expansions influence the population's genotypes are important questions in the field of population genetics. The majority of work addressing these questions focuses on homogeneous environments. Much less is known about the population dynamics and population genetics when the environmental conditions are heterogeneous in space. To better understand range expansions in two-dimensional heterogeneous environments, we employ a system of bacteria and bacteriophage, the viruses of bacteria. Thereby, the bacteria constitute the environment in which a population of bacteriophages expands. The spread of phage constitutes itself in lysis of bacteria and thus formation of clear regions on bacterial lawns, called plaques. We study the population dynamics and genetics of the expanding page for various patterns of environments.

  9. Population-based surveillance for bacterial meningitis in China, September 2006-December 2009.

    PubMed

    Li, Yixing; Yin, Zundong; Shao, Zhujun; Li, Manshi; Liang, Xiaofeng; Sandhu, Hardeep S; Hadler, Stephen C; Li, Junhong; Sun, Yinqi; Li, Jing; Zou, Wenjing; Lin, Mei; Zuo, Shuyan; Mayer, Leonard W; Novak, Ryan T; Zhu, Bingqing; Xu, Li; Luo, Huiming

    2014-01-01

    During September 2006-December 2009, we conducted active population and sentinel laboratory-based surveillance for bacterial meningitis pathogens, including Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae type b, in 4 China prefectures. We identified 7,876 acute meningitis and encephalitis syndrome cases, including 6,388 among prefecture residents. A total of 833 resident cases from sentinel hospitals met the World Health Organization case definition for probable bacterial meningitis; 339 of these cases were among children <5 years of age. Laboratory testing confirmed bacterial meningitis in 74 of 3,391 tested cases. The estimated annual incidence (per 100,000 population) of probable bacterial meningitis ranged from 1.84 to 2.93 for the entire population and from 6.95 to 22.30 for children <5 years old. Active surveillance with laboratory confirmation has provided a population-based estimate of the number of probable bacterial meningitis cases in China, but more complete laboratory testing is needed to better define the epidemiology of the disease in this country.

  10. Abundance of three bacterial populations in selected streams

    Treesearch

    O.A. Olapade; X. Gao; L.G. LEff

    2005-01-01

    The population sizes of three bacterial species, Acinetobacter calcoaceticw, Burkholderia cepacia, and Pseudomonas putida, were examined in water and sediment from nine streams in different parts of the United States using fluorescent in situ hybridization (FISH). Population sizes were determined from three sites (upstream,...

  11. Phage selection for bacterial cheats leads to population decline

    PubMed Central

    Vasse, Marie; Torres-Barceló, Clara; Hochberg, Michael E.

    2015-01-01

    While predators and parasites are known for their effects on bacterial population biology, their impact on the dynamics of bacterial social evolution remains largely unclear. Siderophores are iron-chelating molecules that are key to the survival of certain bacterial species in iron-limited environments, but their production can be subject to cheating by non-producing genotypes. In a selection experiment conducted over approximately 20 bacterial generations and involving 140 populations of the pathogenic bacterium Pseudomonas aeruginosa PAO1, we assessed the impact of a lytic phage on competition between siderophore producers and non-producers. We show that the presence of lytic phages favours the non-producing genotype in competition, regardless of whether iron use relies on siderophores. Interestingly, phage pressure resulted in higher siderophore production, which constitutes a cost to the producers and may explain why they were outcompeted by non-producers. By the end of the experiment, however, cheating load reduced the fitness of mixed populations relative to producer monocultures, and only monocultures of producers managed to grow in the presence of phage in situations where siderophores were necessary to access iron. These results suggest that public goods production may be modulated in the presence of natural enemies with consequences for the evolution of social strategies. PMID:26538598

  12. Urban aerosols harbor diverse and dynamic bacterial populations

    PubMed Central

    Brodie, Eoin L.; DeSantis, Todd Z.; Parker, Jordan P. Moberg; Zubietta, Ingrid X.; Piceno, Yvette M.; Andersen, Gary L.

    2007-01-01

    Considering the importance of its potential implications for human health, agricultural productivity, and ecosystem stability, surprisingly little is known regarding the composition or dynamics of the atmosphere's microbial inhabitants. Using a custom high-density DNA microarray, we detected and monitored bacterial populations in two U.S. cities over 17 weeks. These urban aerosols contained at least 1,800 diverse bacterial types, a richness approaching that of some soil bacterial communities. We also reveal the consistent presence of bacterial families with pathogenic members including environmental relatives of select agents of bioterrorism significance. Finally, using multivariate regression techniques, we demonstrate that temporal and meteorological influences can be stronger factors than location in shaping the biological composition of the air we breathe. PMID:17182744

  13. Design and Evaluation of PCR Primers for Analysis of Bacterial Populations in Wine by Denaturing Gradient Gel Electrophoresis

    PubMed Central

    Lopez, Isabel; Ruiz-Larrea, Fernanda; Cocolin, Luca; Orr, Erica; Phister, Trevor; Marshall, Megan; VanderGheynst, Jean; Mills, David A.

    2003-01-01

    Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified ribosomal DNA (rDNA) is routinely used to compare levels of diversity of microbial communities and to monitor population dynamics. While using PCR-DGGE to examine the bacteria in wine fermentations, we noted that several commonly used PCR primers for amplifying bacterial 16S rDNA also coamplified yeast, fungal, or plant DNA present in samples. Unfortunately, amplification of nonbacterial DNA can result in a masking of bacterial populations in DGGE profiles. To surmount this problem, we developed two new primer sets for specific amplification of bacterial 16S rDNA in wine fermentation samples without amplification of eukaryotic DNA. One primer set, termed WLAB1 and WLAB2, amplified lactic acid bacteria, while another, termed WBAC1 and WBAC2, amplified both lactic acid bacterial and acetic acid bacterial populations found in wine. Primer specificity and efficacy were examined with DNA isolated from numerous bacterial, yeast, and fungal species commonly found in wine and must samples. Importantly, both primer sets effectively distinguished bacterial species in wine containing mixtures of yeast and bacteria. PMID:14602643

  14. Bacterial Population Genetics in a Forensic Context

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velsko, S P

    This report addresses the recent Department of Homeland Security (DHS) call for a Phase I study to (1) assess gaps in the forensically relevant knowledge about the population genetics of eight bacterial agents of concern, (2) formulate a technical roadmap to address those gaps, and (3) identify new bioinformatics tools that would be necessary to analyze and interpret population genetic data in a forensic context. The eight organisms that were studied are B. anthracis, Y. pestis, F. tularensis, Brucella spp., E. coli O157/H7, Burkholderia mallei, Burkholderia pseudomallei, and C. botulinum. Our study focused on the use of bacterial population geneticsmore » by forensic investigators to test hypotheses about the possible provenance of an agent that was used in a crime or act of terrorism. Just as human population genetics underpins the calculations of match probabilities for human DNA evidence, bacterial population genetics determines the level of support that microbial DNA evidence provides for or against certain well-defined hypotheses about the origins of an infecting strain. Our key findings are: (1) Bacterial population genetics is critical for answering certain types of questions in a probabilistic manner, akin (but not identical) to 'match probabilities' in DNA forensics. (2) A basic theoretical framework for calculating likelihood ratios or posterior probabilities for forensic hypotheses based on microbial genetic comparisons has been formulated. This 'inference-on-networks' framework has deep but simple connections to the population genetics of mtDNA and Y-STRs in human DNA forensics. (3) The 'phylogeographic' approach to identifying microbial sources is not an adequate basis for understanding bacterial population genetics in a forensic context, and has limited utility, even for generating 'leads' with respect to strain origin. (4) A collection of genotyped isolates obtained opportunistically from international locations augmented by phylogenetic

  15. Bacterial population dynamics in recycled mushroom compost leachate.

    PubMed

    Safianowicz, Katarzyna; Bell, Tina L; Kertesz, Michael A

    2018-06-01

    Mushrooms are an important food crop throughout the world. The most important edible mushroom is the button mushroom (Agaricus bisporus), which comprises about 30% of the global mushroom market. This species is cultivated commercially on a selective compost that is produced predominantly from wheat straw/stable bedding and chicken manure, at a moisture content of around 70% (w/w) and temperatures of up to 80 °C. Large volumes of water are required to achieve this moisture content, and many producers therefore collect leachate from the composting windrows and bunkers (known in the industry as "goody water") and reuse it to wet the raw ingredients. This has the benefit of recycling and saving water and has the potential to enrich beneficial microorganisms that stimulate composting, but also the risk of enhancing pathogen populations that could reduce productivity. Here, we show by 16S rRNA gene sequencing that mushroom compost leachate contains a high diversity of unknown microbes, with most of the species found affiliated with the phyla Firmicutes and Proteobacteria. However, by far the most abundant species was the thermophile Thermus thermophilus, which made up approximately 50% of the bacterial population present. Although the leachate was routinely collected and stored in an aerated central storage tank, many of the bacterial species found in leachate were facultative anaerobes. However, there was no evidence for sulfide production, and no sulfate-reducing bacterial species were detected. Because T. thermophilus is important in the high temperature phase of composting, the use of recycled leachate as an inoculum for the raw materials is likely to be beneficial for the composting process.

  16. Compositional stability of a salivary bacterial population against supragingival microbiota shift following periodontal therapy.

    PubMed

    Yamanaka, Wataru; Takeshita, Toru; Shibata, Yukie; Matsuo, Kazuki; Eshima, Nobuoki; Yokoyama, Takeshi; Yamashita, Yoshihisa

    2012-01-01

    Supragingival plaque is permanently in contact with saliva. However, the extent to which the microbiota contributes to the salivary bacterial population remains unclear. We compared the compositional shift in the salivary bacterial population with that in supragingival plaque following periodontal therapy. Samples were collected from 19 patients with periodontitis before and after periodontal therapy (mean sample collection interval, 25.8 ± 2.6 months), and their bacterial composition was investigated using barcoded pyrosequencing analysis of the 16S rRNA gene. Phylogenetic community analysis using the UniFrac distance metric revealed that the overall bacterial community composition of saliva is distinct from that of supragingival plaque, both pre- and post-therapy. Temporal variation following therapy in the salivary bacterial population was significantly smaller than in the plaque microbiota, and the post-therapy saliva sample was significantly more similar to that pre-therapy from the same individual than to those from other subjects. Following periodontal therapy, microbial richness and biodiversity were significantly decreased in the plaque microbiota, but not in the salivary bacterial population. The operational taxonomic units whose relative abundances changed significantly after therapy were not common to the two microbiotae. These results reveal the compositional stability of salivary bacterial populations against shifts in the supragingival microbiota, suggesting that the effect of the supragingival plaque microbiota on salivary bacterial population composition is limited.

  17. Viable bacterial population and persistence of foodborne pathogens on the pear carpoplane.

    PubMed

    Duvenage, Francois J; Duvenage, Stacey; Du Plessis, Erika M; Volschenk, Quinton; Korsten, Lise

    2017-03-01

    Knowledge on the culturable bacteria and foodborne pathogen presence on pears is important for understanding the impact of postharvest practices on food safety assurance. Pear fruit bacteria were investigated from the point of harvest, following chlorine drenching and after controlled atmosphere (CA) storage to assess the impact on natural bacterial populations and potential foodborne pathogens. Salmonella spp. and Listeria monocytogenes were detected on freshly harvested fruit in season one. During season one, chemical drenching and CA storage did not have a significant effect on the bacterial load of orchard pears, except for two farms where the populations were lower 'after CA storage'. During season two, bacterial populations of orchard pears from three of the four farms increased significantly following drenching; however, the bacterial load decreased 'after CA storage'. Bacteria isolated following enumeration included Enterobacteriaceae, Microbacteriaceae, Pseudomonadaceae and Bacillaceae, with richness decreasing 'after drench' and 'after CA storage'. Salmonella spp. and L. monocytogenes were not detected after postharvest practices. Postharvest practices resulted in decreased bacterial species richness. Understanding how postharvest practices have an impact on the viable bacterial populations of pear fruit will contribute to the development of crop-specific management systems for food safety assurance. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. A network-based approach for resistance transmission in bacterial populations.

    PubMed

    Gehring, Ronette; Schumm, Phillip; Youssef, Mina; Scoglio, Caterina

    2010-01-07

    Horizontal transfer of mobile genetic elements (conjugation) is an important mechanism whereby resistance is spread through bacterial populations. The aim of our work is to develop a mathematical model that quantitatively describes this process, and to use this model to optimize antimicrobial dosage regimens to minimize resistance development. The bacterial population is conceptualized as a compartmental mathematical model to describe changes in susceptible, resistant, and transconjugant bacteria over time. This model is combined with a compartmental pharmacokinetic model to explore the effect of different plasma drug concentration profiles. An agent-based simulation tool is used to account for resistance transfer occurring when two bacteria are adjacent or in close proximity. In addition, a non-linear programming optimal control problem is introduced to minimize bacterial populations as well as the drug dose. Simulation and optimization results suggest that the rapid death of susceptible individuals in the population is pivotal in minimizing the number of transconjugants in a population. This supports the use of potent antimicrobials that rapidly kill susceptible individuals and development of dosage regimens that maintain effective antimicrobial drug concentrations for as long as needed to kill off the susceptible population. Suggestions are made for experiments to test the hypotheses generated by these simulations.

  19. In Situ Hydrocarbon Degradation by Indigenous Nearshore Bacterial Populations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherrier, J.

    Potential episodic hydrocarbon inputs associated with oil mining and transportation together with chronic introduction of hydrocarbons via urban runoff into the relatively pristine coastal Florida waters poses a significant threat to Florida's fragile marine environment. It is therefore important to understand the extent to which indigenous bacterial populations are able to degrade hydrocarbon compounds and also determine factors that could potentially control and promote the rate at which these compounds are broken down in situ. Previous controlled laboratory experiments carried out by our research group demonstrated that separately both photo-oxidation and cometabolism stimulate bacterial hydrocarbon degradation by natural bacterial assemblagesmore » collected from a chronically petroleum contaminated site in Bayboro Bay, Florida. Additionally, we also demonstrated that stable carbon and radiocarbon abundances of respired CO{sub 2} could be used to trace in situ hydrocarbon degradation by indigenous bacterial populations at this same site. This current proposal had two main objectives: (a) to evaluate the cumulative impact of cometabolism and photo-oxidation on hydrocarbon degradation by natural bacterial assemblages collected the same site in Bayboro Bay, Florida and (b) to determine if in situ hydrocarbon degradation by indigenous bacterial populations this site could be traced using natural radiocarbon and stable carbon abundances of assimilated bacterial carbon. Funds were used for 2 years of full support for one ESI Ph.D. student, April Croxton. To address our first objective a series of closed system bacterial incubations were carried out using photo-oxidized petroleum and pinfish (i.e. cometabolite). Bacterial production of CO{sub 2} was used as the indicator of hydrocarbon degradation and {delta}{sup 13}C analysis of the resultant CO{sub 2} was used to evaluate the source of the respired CO{sub 2} (i.e. petroleum hydrocarbons or the pinfish cometabolite

  20. Detection of Only Viable Bacterial Spores Using a Live/Dead Indicator in Mixed Populations

    NASA Technical Reports Server (NTRS)

    Behar, Alberto E.; Stam, Christina N.; Smiley, Ronald

    2013-01-01

    This method uses a photoaffinity label that recognizes DNA and can be used to distinguish populations of bacterial cells from bacterial spores without the use of heat shocking during conventional culture, and live from dead bacterial spores using molecular-based methods. Biological validation of commercial sterility using traditional and alternative technologies remains challenging. Recovery of viable spores is cumbersome, as the process requires substantial incubation time, and the extended time to results limits the ability to quickly evaluate the efficacy of existing technologies. Nucleic acid amplification approaches such as PCR (polymerase chain reaction) have shown promise for improving time to detection for a wide range of applications. Recent real-time PCR methods are particularly promising, as these methods can be made at least semi-quantitative by correspondence to a standard curve. Nonetheless, PCR-based methods are rarely used for process validation, largely because the DNA from dead bacterial cells is highly stable and hence, DNA-based amplification methods fail to discriminate between live and inactivated microorganisms. Currently, no published method has been shown to effectively distinguish between live and dead bacterial spores. This technology uses a DNA binding photoaffinity label that can be used to distinguish between live and dead bacterial spores with detection limits ranging from 109 to 102 spores/mL. An environmental sample suspected of containing a mixture of live and dead vegetative cells and bacterial endospores is treated with a photoaffinity label. This step will eliminate any vegetative cells (live or dead) and dead endospores present in the sample. To further determine the bacterial spore viability, DNA is extracted from the spores and total population is quantified by real-time PCR. The current NASA standard assay takes 72 hours for results. Part of this procedure requires a heat shock step at 80 degC for 15 minutes before the

  1. Population-based Surveillance for Bacterial Meningitis in China, September 2006–December 2009

    PubMed Central

    Li, Yixing; Yin, Zundong; Shao, Zhujun; Li, Manshi; Liang, Xiaofeng; Sandhu, Hardeep S.; Hadler, Stephen C.; Li, Junhong; Sun, Yinqi; Li, Jing; Zou, Wenjing; Lin, Mei; Zuo, Shuyan; Mayer, Leonard W.; Novak, Ryan T.; Zhu, Bingqing; Xu, Li

    2014-01-01

    During September 2006–December 2009, we conducted active population and sentinel laboratory–based surveillance for bacterial meningitis pathogens, including Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae type b, in 4 China prefectures. We identified 7,876 acute meningitis and encephalitis syndrome cases, including 6,388 among prefecture residents. A total of 833 resident cases from sentinel hospitals met the World Health Organization case definition for probable bacterial meningitis; 339 of these cases were among children <5 years of age. Laboratory testing confirmed bacterial meningitis in 74 of 3,391 tested cases. The estimated annual incidence (per 100,000 population) of probable bacterial meningitis ranged from 1.84 to 2.93 for the entire population and from 6.95 to 22.30 for children <5 years old. Active surveillance with laboratory confirmation has provided a population-based estimate of the number of probable bacterial meningitis cases in China, but more complete laboratory testing is needed to better define the epidemiology of the disease in this country. PMID:24377388

  2. CRISPR-based herd immunity can limit phage epidemics in bacterial populations

    PubMed Central

    Geyrhofer, Lukas; Barton, Nicholas H

    2018-01-01

    Herd immunity, a process in which resistant individuals limit the spread of a pathogen among susceptible hosts has been extensively studied in eukaryotes. Even though bacteria have evolved multiple immune systems against their phage pathogens, herd immunity in bacteria remains unexplored. Here we experimentally demonstrate that herd immunity arises during phage epidemics in structured and unstructured Escherichia coli populations consisting of differing frequencies of susceptible and resistant cells harboring CRISPR immunity. In addition, we develop a mathematical model that quantifies how herd immunity is affected by spatial population structure, bacterial growth rate, and phage replication rate. Using our model we infer a general epidemiological rule describing the relative speed of an epidemic in partially resistant spatially structured populations. Our experimental and theoretical findings indicate that herd immunity may be important in bacterial communities, allowing for stable coexistence of bacteria and their phages and the maintenance of polymorphism in bacterial immunity. PMID:29521625

  3. Bacterial meningitis in solid organ transplant recipients: a population-based prospective study.

    PubMed

    van Veen, K E B; Brouwer, M C; van der Ende, A; van de Beek, D

    2016-10-01

    Solid organ transplant (SOT) recipients are at risk of infections of the central nervous system. However, the incidence and clinical course of bacterial meningitis in SOT recipients are unclear. We studied occurrence, disease course, and prognosis of bacterial meningitis in SOT recipients in the Netherlands. All patients with a medical history of solid organ transplantation were selected from our nationwide prospective cohort study on community-acquired bacterial meningitis in patients >16 years old, performed from March 1, 2006 to October 31, 2014. Data on patient history, symptoms and signs on admission, treatment, and outcome were collected prospectively. For transplant recipients, additional information was collected retrospectively. We identified 6 SOT recipients, all receiving renal transplants. The annual incidence of bacterial meningitis was 7-fold higher (95% confidence interval [CI] 2.94-17.02, P < 0.001) for renal transplant recipients as compared with the general population (9.56 [95% CI 3.98-22.96] vs. 1.35 [95% CI 1.28-1.43] per 100,000 patients per year). One of the 6 patients (17%) presented with the classic presentation of bacterial meningitis (fever, neck stiffness, and change in mental status). Seizures were common, occurring in 33% of patients. Streptococcus pneumoniae and Listeria monocytogenes were identified in 2 patients each, and Escherichia coli and Pseudomonas aeruginosa were both identified once. Four of 6 patients (67%) had an unfavorable functional outcome. Bacterial meningitis is a rare but devastating complication of solid organ transplantation. SOT recipients are at high risk for developing meningitis, and recognition of this condition may be difficult, owing to atypical clinical manifestation. © 2016 The Authors. Transplant Infectious Disease Published by John Wiley & Sons Ltd.

  4. Differential resistance of drinking water bacterial populations to monochloramine disinfection.

    PubMed

    Chiao, Tzu-Hsin; Clancy, Tara M; Pinto, Ameet; Xi, Chuanwu; Raskin, Lutgarde

    2014-04-01

    The impact of monochloramine disinfection on the complex bacterial community structure in drinking water systems was investigated using culture-dependent and culture-independent methods. Changes in viable bacterial diversity were monitored using culture-independent methods that distinguish between live and dead cells based on membrane integrity, providing a highly conservative measure of viability. Samples were collected from lab-scale and full-scale drinking water filters exposed to monochloramine for a range of contact times. Culture-independent detection of live cells was based on propidium monoazide (PMA) treatment to selectively remove DNA from membrane-compromised cells. Quantitative PCR (qPCR) and pyrosequencing of 16S rRNA genes was used to quantify the DNA of live bacteria and characterize the bacterial communities, respectively. The inactivation rate determined by the culture-independent PMA-qPCR method (1.5-log removal at 664 mg·min/L) was lower than the inactivation rate measured by the culture-based methods (4-log removal at 66 mg·min/L). Moreover, drastic changes in the live bacterial community structure were detected during monochloramine disinfection using PMA-pyrosequencing, while the community structure appeared to remain stable when pyrosequencing was performed on samples that were not subject to PMA treatment. Genera that increased in relative abundance during monochloramine treatment include Legionella, Escherichia, and Geobacter in the lab-scale system and Mycobacterium, Sphingomonas, and Coxiella in the full-scale system. These results demonstrate that bacterial populations in drinking water exhibit differential resistance to monochloramine, and that the disinfection process selects for resistant bacterial populations.

  5. Bacterial population dynamics during the ensiling of Medicago sativa (alfalfa) and subsequent exposure to air.

    PubMed

    McGarvey, J A; Franco, R B; Palumbo, J D; Hnasko, R; Stanker, L; Mitloehner, F M

    2013-06-01

    To describe, at high resolution, the bacterial population dynamics and chemical transformations during the ensiling of alfalfa and subsequent exposure to air. Samples of alfalfa, ensiled alfalfa and silage exposed to air were collected and their bacterial population structures compared using 16S rRNA gene libraries containing approximately 1900 sequences each. Cultural and chemical analyses were also performed to complement the 16S gene sequence data. Sequence analysis revealed significant differences (P < 0·05) in the bacterial populations at each time point. The alfalfa-derived library contained mostly sequences associated with the Gammaproteobacteria (including the genera: Enterobacter, Erwinia and Pantoea); the ensiled material contained mostly sequences associated with the lactic acid bacteria (LAB) (including the genera: Lactobacillus, Pediococcus and Lactococcus). Exposure to air resulted in even greater percentages of LAB, especially among the genus Lactobacillus, and a significant drop in bacterial diversity. In-depth 16S rRNA gene sequence analysis revealed significant bacterial population structure changes during ensiling and again during exposure to air. This in-depth description of the bacterial population dynamics that occurred during ensiling and simulated feed out expands our knowledge of these processes. © 2013 The Society for Applied Microbiology No claim to US Government works.

  6. On a Mathematical Model with Noncompact Boundary Conditions Describing Bacterial Population

    NASA Astrophysics Data System (ADS)

    Boulanouar, Mohamed

    2013-04-01

    In this work, we are concerned with the well-posedness of a mathematical model describing a maturation-velocity structured bacterial population. Each bacterium is distinguished by its degree of maturity and its maturation velocity. The bacterial mitosis is mathematically described by noncompact boundary conditions. We show that the mathematical model is governed by a positive strongly continuous semigroup.

  7. Bacterial Populations Associated with Smokeless Tobacco Products

    PubMed Central

    Han, Jing; Sanad, Yasser M.; Deck, Joanna; Sutherland, John B.; Li, Zhong; Walters, Matthew J.; Duran, Norma; Holman, Matthew R.

    2016-01-01

    ABSTRACT There are an estimated 8 million users of smokeless tobacco products (STPs) in the United States, and yet limited data on microbial populations within these products exist. To better understand the potential microbiological risks associated with STP use, a study was conducted to provide a baseline microbiological profile of STPs. A total of 90 samples, representing 15 common STPs, were purchased in metropolitan areas in Little Rock, AR, and Washington, DC, in November 2012, March 2013, and July 2013. Bacterial populations were evaluated using culture, pyrosequencing, and denaturing gradient gel electrophoresis (DGGE). Moist-snuff products exhibited higher levels of bacteria (average of 1.05 × 106 CFU/g STP) and diversity of bacterial populations than snus (average of 8.33 × 101 CFU/g STP) and some chewing tobacco products (average of 2.54 × 105 CFU/g STP). The most common species identified by culturing were Bacillus pumilus, B. licheniformis, B. safensis, and B. subtilis, followed by members of the genera Oceanobacillus, Staphylococcus, and Tetragenococcus. Pyrosequencing analyses of the 16S rRNA genes identified the genera Tetragenococcus, Carnobacterium, Lactobacillus, Geobacillus, Bacillus, and Staphylococcus as the predominant taxa. Several species identified are of possible concern due to their potential to cause opportunistic infections and reported abilities to reduce nitrates to nitrites, which may be an important step in the formation of carcinogenic tobacco-specific N′-nitrosamines. This report provides a microbiological baseline to help fill knowledge gaps associated with microbiological risks of STPs and to inform potential regulations regarding manufacture and testing of STPs. IMPORTANCE It is estimated that there 8 million users of smokeless tobacco products (STPs) in the United States; however, there are limited data on microbial populations that exist within these products. The current study was undertaken to better understand the

  8. Distribution and life strategies of two bacterial populations in a eutrophic lake

    PubMed

    Weinbauer; Hofle

    1998-10-01

    Monoclonal antibodies and epifluorescence microscopy were used to determine the depth distribution of two indigenous bacterial populations in the stratified Lake Plusssee and characterize their life strategies. Populations of Comamonas acidovorans PX54 showed a depth distribution with maximum abundances in the oxic epilimnion, whereas Aeromonas hydrophila PU7718 showed a depth distribution with maximum abundances in the anoxic thermocline layer (metalimnion), i. e., in the water layer with the highest microbial activity. Resistance of PX54 to protist grazing and high metabolic versatility and growth rate of PU7718 were the most important life strategy traits for explaining the depth distribution of the two bacterial populations. Maximum abundance of PX54 was 16,000 cells per ml, and maximum abundance of PU7718 was 20,000 cells per ml. Determination of bacterial productivity in dilution cultures with different-size fractions of dissolved organic matter (DOM) from lake water indicates that low-molecular-weight (LMW) DOM is less bioreactive than total DOM (TDOM). The abundance and growth rate of PU7718 were highest in the TDOM fractions, whereas those of PX54 were highest in the LMW DOM fraction, demonstrating that PX54 can grow well on the less bioreactive DOM fraction. We estimated that 13 to 24% of the entire bacterial community and 14% of PU7718 were removed by viral lysis, whereas no significant effect of viral lysis on PX54 could be detected. Growth rates of PX54 (0.11 to 0.13 h-1) were higher than those of the entire bacterial community (0.04 to 0.08 h-1) but lower than those of PU7718 (0.26 to 0.31 h-1). In undiluted cultures, the growth rates were significantly lower, pointing to density effects such as resource limitation or antibiosis, and the effects were stronger for PU7718 and the entire bacterial community than for PX54. Life strategy characterizations based on data from literature and this study revealed that the fast-growing and metabolically

  9. Photometric Application of the Gram Stain Method To Characterize Natural Bacterial Populations in Aquatic Environments

    PubMed Central

    Saida, H.; Ytow, N.; Seki, H.

    1998-01-01

    The Gram stain method was applied to the photometric characterization of aquatic bacterial populations with a charge-coupled device camera and an image analyzer. Escherichia coli and Bacillus subtilis were used as standards of typical gram-negative and gram-positive bacteria, respectively. A mounting agent to obtain clear images of Gram-stained bacteria on Nuclepore membrane filters was developed. The bacterial stainability by the Gram stain was indicated by the Gram stain index (GSI), which was applicable not only to the dichotomous classification of bacteria but also to the characterization of cell wall structure. The GSI spectra of natural bacterial populations in water with various levels of eutrophication showed a distinct profile, suggesting possible staining specificity that indicates the presence of a particular bacterial population in the aquatic environment. PMID:9464416

  10. Plasmid Frequency Fluctuations in Bacterial Populations from Chemically Stressed Soil Communities

    PubMed Central

    Wickham, Gene S.; Atlas, Ronald M.

    1988-01-01

    The frequency of plasmids in chemically stressed bacterial populations was investigated by individually adding various concentration of kanamycin, ampicillin, and mercuric chloride to soil samples. Viable bacterial populations were enumerated, soil respiration was monitored for up to 6 weeks as an indicator of physiological stress, and bacterial isolates from stressed and control soils were screened for the presence of plasmids. Low levels of the chemical stress factors did not for the most part significantly alter population viability, soil respiration, or plasmid frequency. Exposure to high stress levels of mercury and ampicillin, however, resulted in altered numbers of viable organisms, soil respiration, and plasmid frequency. Plasmid frequency increased in response to ampicillin exposure but was not significantly changed after exposure to kanamycin. In mercuric chloride-stressed soils, there was a decrease in plasmid frequency despite an increase in overall mercury resistance of the isolates, suggesting that mercury resistance in these populations is largely, if not completely, chromosome encoded. Chemical stress did not cause an increase in plasmid-mediated multiple resistance. A genetic response (change in plasmid frequency) was not found unless a physiological (phenotypic) response (change in viable cells and respiratory activity) was also observed. The results indicate that a change in plasmid frequency is dependent on both the amount and type of chemical stress. PMID:16347730

  11. Analysis of bacterial populations in the environment using two-dimensional gel electrophoresis of genomic DNA and complementary DNA.

    PubMed

    Liu, Guo-Hua; Nakamura, Tatsuo; Amemiya, Takashi; Rajendran, Narasimmalu; Itoh, Kiminori

    2011-01-01

    Two-dimensional gel electrophoresis (2-DGE) mapping of genomic DNA and complementary DNA (cDNA) amplicons was attempted to analyze total and active bacterial populations within soil and activated sludge samples. Distinct differences in the number and species of bacterial populations and those that were metabolically active at the time of sampling were visually observed especially for the soil community. Statistical analyses and sequencing based on the 2-DGE data further revealed the relationships between total and active bacterial populations within each community. This high-resolution technique would be useful for obtaining a better understanding of bacterial population structures in the environment.

  12. Bacterial recombination promotes the evolution of multi-drug-resistance in functionally diverse populations

    PubMed Central

    Perron, Gabriel G.; Lee, Alexander E. G.; Wang, Yun; Huang, Wei E.; Barraclough, Timothy G.

    2012-01-01

    Bacterial recombination is believed to be a major factor explaining the prevalence of multi-drug-resistance (MDR) among pathogenic bacteria. Despite extensive evidence for exchange of resistance genes from retrospective sequence analyses, experimental evidence for the evolutionary benefits of bacterial recombination is scarce. We compared the evolution of MDR between populations of Acinetobacter baylyi in which we manipulated both the recombination rate and the initial diversity of strains with resistance to single drugs. In populations lacking recombination, the initial presence of multiple strains resistant to different antibiotics inhibits the evolution of MDR. However, in populations with recombination, the inhibitory effect of standing diversity is alleviated and MDR evolves rapidly. Moreover, only the presence of DNA harbouring resistance genes promotes the evolution of resistance, ruling out other proposed benefits for recombination. Together, these results provide direct evidence for the fitness benefits of bacterial recombination and show that this occurs by mitigation of functional interference between genotypes resistant to single antibiotics. Although analogous to previously described mechanisms of clonal interference among alternative beneficial mutations, our results actually highlight a different mechanism by which interactions among co-occurring strains determine the benefits of recombination for bacterial evolution. PMID:22048956

  13. Relationship between Oral Malodor and the Global Composition of Indigenous Bacterial Populations in Saliva ▿

    PubMed Central

    Takeshita, Toru; Suzuki, Nao; Nakano, Yoshio; Shimazaki, Yoshihiro; Yoneda, Masahiro; Hirofuji, Takao; Yamashita, Yoshihisa

    2010-01-01

    Oral malodor develops mostly from the metabolic activities of indigenous bacterial populations within the oral cavity, but whether healthy or oral malodor-related patterns of the global bacterial composition exist remains unclear. In this study, the bacterial compositions in the saliva of 240 subjects complaining of oral malodor were divided into groups based on terminal-restriction fragment length polymorphism (T-RFLP) profiles using hierarchical cluster analysis, and the patterns of the microbial community composition of those exhibiting higher and lower malodor were explored. Four types of bacterial community compositions were detected (clusters I, II, III, and IV). Two parameters for measuring oral malodor intensity (the concentration of volatile sulfur compounds in mouth air and the organoleptic score) were noticeably lower in cluster I than in the other clusters. Using multivariate analysis, the differences in the levels of oral malodor were significant after adjustment for potential confounding factors such as total bacterial count, mean periodontal pocket depth, and tongue coating score (P < 0.001). Among the four clusters with different proportions of indigenous members, the T-RFLP profiles of cluster I were implicated as the bacterial populations with higher proportions of Streptococcus, Granulicatella, Rothia, and Treponema species than those of the other clusters. These results clearly correlate the global composition of indigenous bacterial populations with the severity of oral malodor. PMID:20228112

  14. [Effects of grape-replanting on soil bacterial and fungal populations].

    PubMed

    Li, Kun; Guo, Xiu-wu; Sun, Ying-ni; Zhang, Li-heng; Hu, Xi-xi

    2009-12-01

    Rhizosphere and non-rhizosphere soil samples were collected from the vineyards having been planted for 3 and 30 years, and PCR-DGGE technique was adopted to study the effects of grape-replanting on the population structure and diversity of soil bacteria and fungi. The bacterial and fungal diversities were higher in 30-year-planted vineyard than in 3-year-planted vineyard, and higher in rhizosphere soil than in non-rhizosphere soil. After 30 years replanting, the population structure of bacteria and fungi approached the same in rhizosphere soil and non-rhizosphere soil but differed from that in fallow soil; while in the 3-year-planted vineyard, the population structure in rhizosphere soil was different from that in non-rhizosphere soil and fallow soil. Comparing with that in 3-year-planted vineyard, the rhizosphere soil microbial population in 30-year-planted vineyard had a greater change. In bacterial population, Flavobacterium sp. (DQ339585) and Bacillus sp. (AY039821) decreased while Pedobacter sp. (AJ871084) increased; in fungal population, Omphalina farinolens (EF413029) appeared, Pestalotiopsis sp. (DQ657877, DQ657875, DQ657871), Phacidium lacerum (DQ470976), and Lecythophora decumbens (AF353597) decreased, while Pilidium acerinum voucher (AY48709) increased. Bacillus sp., Flavobacterium sp. , and Pestalotiopsis sp. had antagonism to pathogen, and their decrease reduced the resistance of grape against pathogen. The increase of Pilidium acerinum voucher might relate to the severe disease after grape-replanting.

  15. Collective Motion in Bacterial Populations with Mixed Phenotypic Behaviors

    NASA Astrophysics Data System (ADS)

    Hoeger, Kentaro; Strickland, Ben; Shoup, Daniel; Ursell, Tristan

    The motion of large, densely packed groups of organisms is often qualitatively distinct from the motion of individuals, yet hinges on individual properties and behaviors. Collective motion of bacteria depends strongly on the phenotypic behaviors of individual cells, the physical interactions between cells, and the geometry of their environment, often with multiple phenotypes coexisting in a population. Thus, to characterize how these selectively important interactions affect group traits, such as cell dispersal, spatial segregation of phenotypes, and material transport in groups, we use a library of Bacillus subtilis mutants that modulate chemotaxis, motility, and biofilm formation. By mixing phenotypes and observing bacterial behaviors and motion at single cell resolution, we probe collective motion as a function of phenotypic mixture and environmental geometry. Our work demonstrates that collective microbial motion exhibits a transition, from `turbulence' to semiballistic burrowing, as phenotypic composition varies. This work illuminates the role that individual cell behaviors play in the emergence of collective motion, and may signal qualitatively distinct regimes of material transport in bacterial populations. University of Oregon.

  16. Lysozyme as a recognition element for monitoring of bacterial population.

    PubMed

    Zheng, Laibao; Wan, Yi; Yu, Liangmin; Zhang, Dun

    2016-01-01

    Bacterial infections remain a significant challenge in biomedicine and environment safety. Increasing worldwide demand for point-of-care techniques and increasing concern on their safe development and use, require a simple and sensitive bioanalysis for pathogen detection. However, this goal is not yet achieved. A design for fluorescein isothiocyanate-labeled lysozyme (FITC-LYZ), which provides quantitative binding information for gram-positive bacteria, Micrococcus luteus, and detects pathogen concentration, is presented. The functional lysozyme is used not only as the pathogenic detection platform, but also as a tracking reagent for microbial population in antibacterial tests. A nonlinear relationship between the system response and the logarithm of the bacterial concentration was observed in the range of 1.2×10(2)-1.2×10(5) cfu mL(-1). The system has a potential for further applications and provides a facile and simple method for detection of pathogenic bacteria. Meanwhile, the fluorescein isothiocyanate -labeled lysozyme is also employed as the tracking agent for antibacterial dynamic assay, which show a similar dynamic curve compared with UV-vis test. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Differences in bacterial diversity of host-associated populations of Phylloxera notabilis Pergande (Hemiptera: Phylloxeridae) in pecan and water hickory.

    PubMed

    Medina, R F; Nachappa, P; Tamborindeguy, C

    2011-04-01

    Host-associated differentiation (HAD) is the presence of genetically divergent, host-associated populations. It has been suggested that microbial symbionts of insect herbivores may play a role in HAD by allowing their insect hosts to use different plant species. The objective of this study was to document if host-associated populations of Phylloxera notabilis Pergande (Hemiptera: Phylloxeridae) in pecan and water hickory corresponded with differences in the composition of their associated bacteria. To test this hypothesis, we characterized the symbionts present in P. notabilis associated with these two tree species through metagenomic analyses using 454 sequencing. Differences in bacterial diversity were found between P. notabilis populations associated with pecan and water hickory. The bacteria, Pantoea agglomerans and Serratia marcescens, were absent in the P. notabilis water hickory population, whereas both species accounted for more than 69.72% of bacterial abundance in the pecan population. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  18. Microbial Diversity Analysis of the Bacterial and Archaeal Population in Present Day Stromatolites

    NASA Technical Reports Server (NTRS)

    Ortega, Maya C.

    2011-01-01

    Stromatolites are layered sedimentary structures resulting from microbial mat communities that remove carbon dioxide from their environment and biomineralize it as calcium carbonate. Although prevalent in the fossil record, stromatolites are rare in the modem world and are only found in a few locations including Highbome Cay in the Bahamas. The stromatolites found at this shallow marine site are analogs to ancient microbial mat ecosystems abundant in the Precambrian period on ancient Earth. To understand how stromatolites form and develop, it is important to identify what microorganisms are present in these mats, and how these microbes contribute to geological structure. These results will provide insight into the molecular and geochemical processes of microbial communities that prevailed on ancient Earth. Since stromatolites are formed by lithifying microbial mats that are able to mineralize calcium carbonate, understanding the biological mechanisms involved may lead to the development of carbon sequestration technologies that will be applicable in human spaceflight, as well as improve our understanding of global climate and its sustainability. The objective of my project was to analyze the archaeal and bacterial dIversity in stromatolites from Highborn Cay in the Bahamas. The first step in studying the molecular processes that the microorganisms carry out is to ascertain the microbial complexity within the mats, which includes identifying and estimating the numbers of different microbes that comprise these mats.

  19. Mathematical Modelling of Bacterial Populations in Bio-remediation Processes

    NASA Astrophysics Data System (ADS)

    Vasiliadou, Ioanna A.; Vayenas, Dimitris V.; Chrysikopoulos, Constantinos V.

    2011-09-01

    An understanding of bacterial behaviour concerns many field applications, such as the enhancement of water, wastewater and subsurface bio-remediation, the prevention of environmental pollution and the protection of human health. Numerous microorganisms have been identified to be able to degrade chemical pollutants, thus, a variety of bacteria are known that can be used in bio-remediation processes. In this study the development of mathematical models capable of describing bacterial behaviour considered in bio-augmentation plans, such as bacterial growth, consumption of nutrients, removal of pollutants, bacterial transport and attachment in porous media, is presented. The mathematical models may be used as a guide in designing and assessing the conditions under which areas contaminated with pollutants can be better remediated.

  20. Dynamics of adaptive immunity against phage in bacterial populations

    NASA Astrophysics Data System (ADS)

    Bradde, Serena; Vucelja, Marija; Tesileanu, Tiberiu; Balasubramanian, Vijay

    The CRISPR (clustered regularly interspaced short palindromic repeats) mechanism allows bacteria to adaptively defend against phages by acquiring short genomic sequences (spacers) that target specific sequences in the viral genome. We propose a population dynamical model where immunity can be both acquired and lost. The model predicts regimes where bacterial and phage populations can co-exist, others where the populations oscillate, and still others where one population is driven to extinction. Our model considers two key parameters: (1) ease of acquisition and (2) spacer effectiveness in conferring immunity. Analytical calculations and numerical simulations show that if spacers differ mainly in ease of acquisition, or if the probability of acquiring them is sufficiently high, bacteria develop a diverse population of spacers. On the other hand, if spacers differ mainly in their effectiveness, their final distribution will be highly peaked, akin to a ``winner-take-all'' scenario, leading to a specialized spacer distribution. Bacteria can interpolate between these limiting behaviors by actively tuning their overall acquisition rate.

  1. [Effect of penicillin and the habitat medium in the body of bacterial carriers on the intercellular bonds in populations of the meningococcus and pertussis microbe].

    PubMed

    Vysotskiĭ, V V; Smirnova-Mutusheva, M A; Efimova, O G; Bakulina, N A

    1983-04-01

    The relationship of the bacterial cells in populations and their adhesion activity is at present one of the research priorities in microbiological studies. The stimulating effect of penicillin on the development of morphologically different intercellular bonds (IB) in populations of the pertussis causative agent and first of all derivatives or evaginates of the cell wall membranes was observed. Morphologically similar systems and polytubular IB were detected in populations of meningococcal strains isolated from carriers having no signs of the disease. Correlation between the after-effect of penicillin and the presence of the causative agent in bacterial carriers was shown. Unknown systems of interlacing tubular structures not directly bound with the cells, the walls of which were single contour membranes were determined in the meningococcal populations treated with penicillin. IB were observed in the population in the form of transpopulation cords. Morphologically different IB playing the role of specialized organelles might be considered as factors of the functional unity of the bacterial population as a multicellular system.

  2. Bioconvection as a Consequence of Bio-Stratification in Bacterial Populations

    NASA Astrophysics Data System (ADS)

    Shoup, Daniel; Strickland, Benjamin; Hoeger, Kentaro; Ursell, Tristan

    The collective motion of bacterial populations in solution can generate convective currents that significantly alter fluid motion and material transport. Known as bioconvection, this process is highly influenced by stimuli such as nutrients and toxins that can attract or repel bacteria via chemotaxis. Despite its prevalence in natural environments, ranging from the ocean floor to fluid in the human gut, this dynamic process and the physical and biological factors that influence it remain largely unexplored. To close this gap, we measure and analyze spontaneous bioconvection arising from the collective movement of dense populations of bacteria, such as Escherichia coli and Bacillus subtilis. By combining microscopy and image analysis, we find that modulations of the fluid volume geometry, erasure of the air-liquid interface, chemical perturbations like nutrients or antibiotics all alter the development of these dense bacterial masses and in turn the bio-convective currents and corresponding transport phenomena they generate. Our work suggests biophysical principles of material and organismal transport that apply to a broad range of systems where organisms can sense gradients and move within their environments.

  3. Towards in vivo bacterial detection in human lung(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Choudhary, Tushar R.; Bradley, Mark; Duncan, Rory R.; Dhaliwal, Kevin

    2017-04-01

    Antibiotic resistance is a serious global concern. One way to tackle this problem is to develop new and sensitive approaches to diagnose bacterial infections and prevent unnecessary antibiotic use. With recent developments in optical molecular imaging, we are one step closer to in situ rapid detection of bacterial infections. We present here bespoke fluorescent probes for bacterial detection in ex vivo human lung tissue using fluorescence lifetime imaging microscopy (FLIM). Two in-house synthesised bespoke probes were used in this study to detect and differentiate between Gram positive and Gram negative bacterial strain using their fluorescence lifetime in the ex vivo human lung tissue. The average fluorescence lifetime of Gram positive probe (n=12) was 2.40 ± 0.25 ns and Gram negative (n=12) was 6.73 ± 0.49 ns. The human lung tissue (n=12) average fluorescence lifetime value was found to be 3.43 ± 0.19 ns. Furthermore we were also able to distinguish between dead or alive bacteria in ex vivo lung tissue based on difference in their lifetime. We have developped Fibre-FLIM methods to enable clinical translation within the Proteus Project (www.proteus.ac.uk).

  4. French invasive Asian tiger mosquito populations harbor reduced bacterial microbiota and genetic diversity compared to Vietnamese autochthonous relatives

    PubMed Central

    Minard, G.; Tran, F. H.; Van, Van Tran; Goubert, C.; Bellet, C.; Lambert, G.; Kim, Khanh Ly Huynh; Thuy, Trang Huynh Thi; Mavingui, P.; Valiente Moro, C.

    2015-01-01

    The Asian tiger mosquito Aedes albopictus is one of the most significant pathogen vectors of the twenty-first century. Originating from Asia, it has invaded a wide range of eco-climatic regions worldwide. The insect-associated microbiota is now recognized to play a significant role in host biology. While genetic diversity bottlenecks are known to result from biological invasions, the resulting shifts in host-associated microbiota diversity has not been thoroughly investigated. To address this subject, we compared four autochthonous Ae. albopictus populations in Vietnam, the native area of Ae. albopictus, and three populations recently introduced to Metropolitan France, with the aim of documenting whether these populations display differences in host genotype and bacterial microbiota. Population-level genetic diversity (microsatellite markers and COI haplotype) and bacterial diversity (16S rDNA metabarcoding) were compared between field-caught mosquitoes. Bacterial microbiota from the whole insect bodies were largely dominated by Wolbachia pipientis. Targeted analysis of the gut microbiota revealed a greater bacterial diversity in which a fraction was common between French and Vietnamese populations. The genus Dysgonomonas was the most prevalent and abundant across all studied populations. Overall genetic diversities of both hosts and bacterial microbiota were significantly reduced in recently established populations of France compared to the autochthonous populations of Vietnam. These results open up many important avenues of investigation in order to link the process of geographical invasion to shifts in commensal and symbiotic microbiome communities, as such shifts may have dramatic impacts on the biology and/or vector competence of invading hematophagous insects. PMID:26441903

  5. Soil Bacterial Diversity Is Associated with Human Population Density in Urban Greenspaces.

    PubMed

    Wang, Haitao; Cheng, Minying; Dsouza, Melissa; Weisenhorn, Pamela; Zheng, Tianling; Gilbert, Jack A

    2018-05-01

    Urban greenspaces provide extensive ecosystem services, including pollutant remediation, water management, carbon maintenance, and nutrient cycling. However, while the urban soil microbiota underpin these services, we still have limited understanding of the factors that influence their distribution. We characterized soil bacterial communities from turf-grasses associated with urban parks, streets, and residential sites across a major urban environment, including a gradient of human population density. Bacterial diversity was significantly positively correlated with the population density; and species diversity was greater in park and street soils, compared to residential soils. Population density and greenspace type also led to significant differences in the microbial community composition that was also significantly correlated with soil pH, moisture, and texture. Co-occurrence network analysis revealed that microbial guilds in urban soils were well correlated. Abundant soil microbes in high density population areas had fewer interactions, while abundant bacteria in high moisture soils had more interactions. These results indicate the significant influence of changes in urban demographics and land-use on soil microbial communities. As urbanization is rapidly growing across the planet, it is important to improve our understanding of the consequences of urban zoning on the soil microbiota.

  6. Combinations of bacterial species associated with symptomatic endodontic infections in a Chinese population.

    PubMed

    Qi, Z; Cao, H; Jiang, H; Zhao, J; Tang, Z

    2016-01-01

    To use microarrays to detect 11 selected bacteria in infected root canals, revealing bacterial combinations that are associated with clinical symptoms and signs of primary endodontic infections in a Chinese population. DNA was extracted from 90 samples collected from the root canals of teeth with primary endodontic infections in a Chinese population, and the 16S rRNA gene was amplified by polymerase chain reaction (PCR). The PCR products were hybridized to microarrays containing specific oligonucleotide probes targeting 11 species, and the arrays were screened with a confocal laser scanner. Pearson's chi-squared test and cluster analysis were performed to investigate the associations between the bacterial combinations and clinical symptoms and signs using SAS 8.02. Seventy-seven samples (86%) yielded at least one of the 11 target species. Parvimonas micra (56%), Porphyromonas endodontalis (51%), Tannerella forsythia (48%), Prevotella intermedia (44%) and Porphyromonas gingivalis (37%) were the most prevalent taxa and were often concomitant. The following positive associations were found between the bacterial combinations and clinical features: P. endodontalis and T. forsythia with abscess; P. gingivalis and P. micra with sinus tract; P. gingivalis and P. endodontalis or P. micra and P. endodontalis with abscess and sinus tract; and the combination of P. endodontalis, P. micra, T. forsythia and P. gingivalis with sinus tract (P < 0.05). Various combinations of P. micra, P. endodontalis, T. forsythia and P. gingivalis may contribute to abscesses or sinus tracts of endodontic origin with bacterial synergism in a Chinese population. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  7. Bacterial populations associated with the dirty area of a South African poultry abattoir.

    PubMed

    Geornaras, I; de Jesus, A E; von Holy, A

    1998-06-01

    Bacterial populations associated with three sample types from the neck region of poultry carcasses in the dirty area of an abattoir were characterized. Sample types before and after scalding were skin only, feathers only, and a skin and feather combination. The neck skin of carcasses after the defeathering processing stage was also sampled. Bacterial populations associated with water from the scald tank, rubber fingers at the exit of the defeathering machine, and air in the dirty area were also characterized. Bacterial colonies (751) were randomly isolated from yeast extract-supplemented tryptone soya agar plates exhibiting 30 to 300 colonies. Micrococcus spp. were isolated in the highest proportion from pre-and postscalded carcass samples (63.5 to 86.1% of isolates), regardless of the sample type. Conversely, Enterobacteriaceae (40.3%), Acinetobacter (19.4%), and Aeromonas/Vibrio (12.5%) species predominated on neck skin samples taken from mechanically defeathered carcasses. Isolates from the rubber fingers were, however, predominantly Micrococcus spp. (94.4%). Bacterial groups isolated in the highest proportion from scald tank water samples were Micrococcus spp. (38.3%), species of Enterobacteriaceae (29.1%), and lactic acid bacteria (17.0%). Corynebacterium spp., species of Enterobacteriaceae, and Micrococcus spp. were dominant on air settle plates.

  8. Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations

    DOE PAGES

    Bendall, Matthew L.; Stevens, Sarah L.R.; Chan, Leong-Keat; ...

    2016-01-08

    Multiple models describe the formation and evolution of distinct microbial phylogenetic groups. These evolutionary models make different predictions regarding how adaptive alleles spread through populations and how genetic diversity is maintained. Processes predicted by competing evolutionary models, for example, genome-wide selective sweeps vs gene-specific sweeps, could be captured in natural populations using time-series metagenomics if the approach were applied over a sufficiently long time frame. Direct observations of either process would help resolve how distinct microbial groups evolve. Using a 9-year metagenomic study of a freshwater lake (2005–2013), we explore changes in single-nucleotide polymorphism (SNP) frequencies and patterns of genemore » gain and loss in 30 bacterial populations. SNP analyses revealed substantial genetic heterogeneity within these populations, although the degree of heterogeneity varied by >1000-fold among populations. SNP allele frequencies also changed dramatically over time within some populations. Interestingly, nearly all SNP variants were slowly purged over several years from one population of green sulfur bacteria, while at the same time multiple genes either swept through or were lost from this population. Furthermore, these patterns were consistent with a genome-wide selective sweep in progress, a process predicted by the ‘ecotype model’ of speciation but not previously observed in nature. In contrast, other populations contained large, SNP-free genomic regions that appear to have swept independently through the populations prior to the study without purging diversity elsewhere in the genome. Finally, evidence for both genome-wide and gene-specific sweeps suggests that different models of bacterial speciation may apply to different populations coexisting in the same environment.« less

  9. Bacterial charity work leads to population-wide resistance.

    PubMed

    Lee, Henry H; Molla, Michael N; Cantor, Charles R; Collins, James J

    2010-09-02

    Bacteria show remarkable adaptability in the face of antibiotic therapeutics. Resistance alleles in drug target-specific sites and general stress responses have been identified in individual end-point isolates. Less is known, however, about the population dynamics during the development of antibiotic-resistant strains. Here we follow a continuous culture of Escherichia coli facing increasing levels of antibiotic and show that the vast majority of isolates are less resistant than the population as a whole. We find that the few highly resistant mutants improve the survival of the population's less resistant constituents, in part by producing indole, a signalling molecule generated by actively growing, unstressed cells. We show, through transcriptional profiling, that indole serves to turn on drug efflux pumps and oxidative-stress protective mechanisms. The indole production comes at a fitness cost to the highly resistant isolates, and whole-genome sequencing reveals that this bacterial altruism is made possible by drug-resistance mutations unrelated to indole production. This work establishes a population-based resistance mechanism constituting a form of kin selection whereby a small number of resistant mutants can, at some cost to themselves, provide protection to other, more vulnerable, cells, enhancing the survival capacity of the overall population in stressful environments.

  10. Bacterial genospecies that are not ecologically coherent: population genomics of Rhizobium leguminosarum

    PubMed Central

    Kumar, Nitin; Lad, Ganesh; Giuntini, Elisa; Kaye, Maria E.; Udomwong, Piyachat; Shamsani, N. Jannah; Young, J. Peter W.; Bailly, Xavier

    2015-01-01

    Biological species may remain distinct because of genetic isolation or ecological adaptation, but these two aspects do not always coincide. To establish the nature of the species boundary within a local bacterial population, we characterized a sympatric population of the bacterium Rhizobium leguminosarum by genomic sequencing of 72 isolates. Although all strains have 16S rRNA typical of R. leguminosarum, they fall into five genospecies by the criterion of average nucleotide identity (ANI). Many genes, on plasmids as well as the chromosome, support this division: recombination of core genes has been largely within genospecies. Nevertheless, variation in ecological properties, including symbiotic host range and carbon-source utilization, cuts across these genospecies, so that none of these phenotypes is diagnostic of genospecies. This phenotypic variation is conferred by mobile genes. The genospecies meet the Mayr criteria for biological species in respect of their core genes, but do not correspond to coherent ecological groups, so periodic selection may not be effective in purging variation within them. The population structure is incompatible with traditional ‘polyphasic taxonomy′ that requires bacterial species to have both phylogenetic coherence and distinctive phenotypes. More generally, genomics has revealed that many bacterial species share adaptive modules by horizontal gene transfer, and we envisage a more consistent taxonomic framework that explicitly recognizes this. Significant phenotypes should be recognized as ‘biovars' within species that are defined by core gene phylogeny. PMID:25589577

  11. Bacterial Communities Differ among Drosophila melanogaster Populations and Affect Host Resistance against Parasitoids.

    PubMed

    Chaplinska, Mariia; Gerritsma, Sylvia; Dini-Andreote, Francisco; Falcao Salles, Joana; Wertheim, Bregje

    2016-01-01

    In Drosophila, diet is considered a prominent factor shaping the associated bacterial community. However, the host population background (e.g. genotype, geographical origin and founder effects) is a factor that may also exert a significant influence and is often overlooked. To test for population background effects, we characterized the bacterial communities in larvae of six genetically differentiated and geographically distant D. melanogaster lines collected from natural populations across Europe. The diet for these six lines had been identical for ca. 50 generations, thus any differences in the composition of the microbiome originates from the host populations. We also investigated whether induced shifts in the microbiome-in this case by controlled antibiotic administration-alters the hosts' resistance to parasitism. Our data revealed a clear signature of population background on the diversity and composition of D. melanogaster microbiome that differed across lines, even after hosts had been maintained at the same diet and laboratory conditions for over 4 years. In particular, the number of bacterial OTUs per line ranged from 8 to 39 OTUs. Each line harboured 2 to 28 unique OTUs, and OTUs that were highly abundant in some lines were entirely missing in others. Moreover, we found that the response to antibiotic treatment differed among the lines and significantly altered the host resistance to the parasitoid Asobara tabida in one of the six lines. Wolbachia, a widespread intracellular endosymbiont associated with parasitoid resistance, was lacking in this line, suggesting that other components of the Drosophila microbiome caused a change in host resistance. Collectively, our results revealed that lines that originate from different population backgrounds show significant differences in the established Drosophila microbiome, outpacing the long-term effect of diet. Perturbations on these naturally assembled microbiomes to some degree influenced the hosts' resistance

  12. Humpback whale populations share a core skin bacterial community: towards a health index for marine mammals?

    PubMed

    Apprill, Amy; Robbins, Jooke; Eren, A Murat; Pack, Adam A; Reveillaud, Julie; Mattila, David; Moore, Michael; Niemeyer, Misty; Moore, Kathleen M T; Mincer, Tracy J

    2014-01-01

    Microbes are now well regarded for their important role in mammalian health. The microbiology of skin--a unique interface between the host and environment--is a major research focus in human health and skin disorders, but is less explored in other mammals. Here, we report on a cross-population study of the skin-associated bacterial community of humpback whales (Megaptera novaeangliae), and examine the potential for a core bacterial community and its variability with host (endogenous) or geographic/environmental (exogenous) specific factors. Skin biopsies or freshly sloughed skin from 56 individuals were sampled from populations in the North Atlantic, North Pacific and South Pacific oceans and bacteria were characterized using 454 pyrosequencing of SSU rRNA genes. Phylogenetic and statistical analyses revealed the ubiquity and abundance of bacteria belonging to the Flavobacteria genus Tenacibaculum and the Gammaproteobacteria genus Psychrobacter across the whale populations. Scanning electron microscopy of skin indicated that microbial cells colonize the skin surface. Despite the ubiquity of Tenacibaculum and Psychrobater spp., the relative composition of the skin-bacterial community differed significantly by geographic area as well as metabolic state of the animals (feeding versus starving during migration and breeding), suggesting that both exogenous and endogenous factors may play a role in influencing the skin-bacteria. Further, characteristics of the skin bacterial community from these free-swimming individuals were assembled and compared to two entangled and three dead individuals, revealing a decrease in the central or core bacterial community members (Tenacibaculum and Psychrobater spp.), as well as the emergence of potential pathogens in the latter cases. This is the first discovery of a cross-population, shared skin bacterial community. This research suggests that the skin bacteria may be connected to humpback health and immunity and could possibly serve

  13. Humpback Whale Populations Share a Core Skin Bacterial Community: Towards a Health Index for Marine Mammals?

    PubMed Central

    Apprill, Amy; Robbins, Jooke; Eren, A. Murat; Pack, Adam A.; Reveillaud, Julie; Mattila, David; Moore, Michael; Niemeyer, Misty; Moore, Kathleen M. T.; Mincer, Tracy J.

    2014-01-01

    Microbes are now well regarded for their important role in mammalian health. The microbiology of skin – a unique interface between the host and environment - is a major research focus in human health and skin disorders, but is less explored in other mammals. Here, we report on a cross-population study of the skin-associated bacterial community of humpback whales (Megaptera novaeangliae), and examine the potential for a core bacterial community and its variability with host (endogenous) or geographic/environmental (exogenous) specific factors. Skin biopsies or freshly sloughed skin from 56 individuals were sampled from populations in the North Atlantic, North Pacific and South Pacific oceans and bacteria were characterized using 454 pyrosequencing of SSU rRNA genes. Phylogenetic and statistical analyses revealed the ubiquity and abundance of bacteria belonging to the Flavobacteria genus Tenacibaculum and the Gammaproteobacteria genus Psychrobacter across the whale populations. Scanning electron microscopy of skin indicated that microbial cells colonize the skin surface. Despite the ubiquity of Tenacibaculum and Psychrobater spp., the relative composition of the skin-bacterial community differed significantly by geographic area as well as metabolic state of the animals (feeding versus starving during migration and breeding), suggesting that both exogenous and endogenous factors may play a role in influencing the skin-bacteria. Further, characteristics of the skin bacterial community from these free-swimming individuals were assembled and compared to two entangled and three dead individuals, revealing a decrease in the central or core bacterial community members (Tenacibaculum and Psychrobater spp.), as well as the emergence of potential pathogens in the latter cases. This is the first discovery of a cross-population, shared skin bacterial community. This research suggests that the skin bacteria may be connected to humpback health and immunity and could possibly

  14. Bacterial meningitis in Finland, 1995-2014: a population-based observational study.

    PubMed

    Polkowska, Aleksandra; Toropainen, Maija; Ollgren, Jukka; Lyytikäinen, Outi; Nuorti, J Pekka

    2017-06-06

    Bacterial meningitis remains an important cause of morbidity and mortality worldwide. Its epidemiological characteristics, however, are changing due to new vaccines and secular trends. Conjugate vaccines against Haemophilus influenzae type b and Streptococcus pneumoniae (10-valent) were introduced in 1986 and 2010 in Finland. We assessed the disease burden and long-term trends of five common causes of bacterial meningitis in a population-based observational study. A case was defined as isolation of S. pneumoniae , Neisseria meningitidis , Streptococcus agalactiae , Listeria monocytogenes or H. influenzae from cerebrospinal fluid and reported to national, population-based laboratory surveillance system during 1995-2014. We evaluated changes in incidence rates (Poisson or negative binomial regression), case fatality proportions (χ 2 ) and age distribution of cases (Wilcoxon rank-sum). During 1995-2014, S. pneumoniae and N. meningitidis accounted for 78% of the total 1361 reported bacterial meningitis cases. H. influenzae accounted for 4% of cases (92% of isolates were non-type b). During the study period, the overall rate of bacterial meningitis per 1 00 000 person-years decreased from 1.88 cases in 1995 to 0.70 cases in 2014 (4% annual decline (95% CI 3% to 5%). This was primarily due to a 9% annual reduction in rates of N. meningitidis (95% CI 7% to 10%) and 2% decrease in S. pneumoniae (95% CI 1% to 4%). The median age of cases increased from 31 years in 1995-2004 to 43 years in 2005-2014 (p=0.0004). Overall case fatality proportion (10%) did not change from 2004 to 2009 to 2010-2014. Substantial decreases in bacterial meningitis were associated with infant conjugate vaccination against pneumococcal meningitis and secular trend in meningococcal meningitis in the absence of vaccination programme. Ongoing epidemiological surveillance is needed to identify trends, evaluate serotype distribution, assess vaccine impact and develop future vaccination strategies

  15. Intestinal Epithelial Cells Modulate Antigen-Presenting Cell Responses to Bacterial DNA

    PubMed Central

    Campeau, J. L.; Salim, S. Y.; Albert, E. J.; Hotte, N.

    2012-01-01

    Intestinal epithelial cells and antigen-presenting cells orchestrate mucosal innate immunity. This study investigated the role of bacterial DNA in modulating epithelial and bone marrow-derived antigen-presenting cells (BM-APCs) and subsequent T-lymphocyte responses. Murine MODE-K epithelial cells and BM-APCs were treated with DNA from either Bifidobacterium breve or Salmonella enterica serovar Dublin directly and under coculture conditions with CD4+ T cells. Apical stimulation of MODE-K cells with S. Dublin DNA enhanced secretion of cytokines from underlying BM-APCs and induced interleukin-17 (IL-17) and gamma interferon (IFN-γ) secretion from CD4+ T cells. Bacterial DNA isolated from either strain induced maturation and increased cytokine secretion from BM-APCs. Conditioned medium from S. Dublin-treated MODE-K cells elicited an increase in cytokine secretion similar to that seen for S. Dublin DNA. Treatment of conditioned medium from MODE-K cells with RNase and protease prevented the S. Dublin-induced increased cytokine secretion. Oral feeding of mice with B. breve DNA resulted in enhanced levels of colonic IL-10 and transforming growth factor β (TGFβ) compared with what was seen for mice treated with S. Dublin DNA. In contrast, feeding mice with S. Dublin DNA increased levels of colonic IL-17 and IL-12p70. T cells from S. Dublin DNA-treated mice secreted high levels of IL-12 and IFN-γ compared to controls and B. breve DNA-treated mice. These results demonstrate that intestinal epithelial cells are able to modulate subsequent antigen-presenting and T-cell responses to bacterial DNA with pathogenic but not commensal bacterial DNA inducing effector CD4+ T lymphocytes. PMID:22615241

  16. Plasmids foster diversification and adaptation of bacterial populations in soil.

    PubMed

    Heuer, Holger; Smalla, Kornelia

    2012-11-01

    It is increasingly being recognized that the transfer of conjugative plasmids across species boundaries plays a vital role in the adaptability of bacterial populations in soil. There are specific driving forces and constraints of plasmid transfer within bacterial communities in soils. Plasmid-mediated genetic variation allows bacteria to respond rapidly with adaptive responses to challenges such as irregular antibiotic or metal concentrations, or opportunities such as the utilization of xenobiotic compounds. Cultivation-independent detection and capture of plasmids from soil bacteria, and complete sequencing have provided new insights into the role and ecology of plasmids. Broad host range plasmids such as those belonging to IncP-1 transfer a wealth of accessory functions which are carried by similar plasmid backbones. Plasmids with a narrower host range can be more specifically adapted to particular species and often transfer genes which complement chromosomally encoded functions. Plasmids seem to be an ancient and successful strategy to ensure survival of a soil population in spatial and temporal heterogeneous conditions with various environmental stresses or opportunities that occur irregularly or as a novel challenge in soil. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  17. Contact-dependent growth inhibition induces high levels of antibiotic-tolerant persister cells in clonal bacterial populations.

    PubMed

    Ghosh, Anirban; Baltekin, Özden; Wäneskog, Marcus; Elkhalifa, Dina; Hammarlöf, Disa L; Elf, Johan; Koskiniemi, Sanna

    2018-05-02

    Bacterial populations can use bet-hedging strategies to cope with rapidly changing environments. One example is non-growing cells in clonal bacterial populations that are able to persist antibiotic treatment. Previous studies suggest that persisters arise in bacterial populations either stochastically through variation in levels of global signalling molecules between individual cells, or in response to various stresses. Here, we show that toxins used in contact-dependent growth inhibition (CDI) create persisters upon direct contact with cells lacking sufficient levels of CdiI immunity protein, which would otherwise bind to and neutralize toxin activity. CDI-mediated persisters form through a feedforward cycle where the toxic activity of the CdiA toxin increases cellular (p)ppGpp levels, which results in Lon-mediated degradation of the immunity protein and more free toxin. Thus, CDI systems mediate a population density-dependent bet-hedging strategy, where the fraction of non-growing cells is increased only when there are many cells of the same genotype. This may be one of the mechanisms of how CDI systems increase the fitness of their hosts. © 2018 The Authors.

  18. Acute appendicitis presenting with Klebsiella pneumoniae septicemia due to bacterial translocation.

    PubMed

    Salemis, Nikolaos S

    2009-10-01

    Bacterial translocation (BT) is defined as the passage of viable bacteria from the gastrointestinal tract, across the intestinal wall, to the mesenteric lymph nodes or other extranodal sites and bloodstream. It has been shown in both animal and human studies and has been implicated as a source of sepsis in susceptible patients. Herein, a rare case of acute appendicitis in a nonimmunocompromised patient who presented with manifestations of Klebsiella pneumoniae septicemia, is described. Translocation of Klebsiella pneumoniae through the compromised appendix mucosa leading in dissemination of the infection into the bloodstream was likely the main causative factor for the atypical and toxic presentation of acute appendicitis. Thorough clinical investigation ruled out other sources of infection. Emergency physicians should be aware that septicemia may be the dominant presentation of acute appendicitis, due to dissemination of the infection into the bloodstream, secondary to bacterial translocation.

  19. How Bacterial Population Soliton Waves Can Defeat a Funnel Ring

    NASA Astrophysics Data System (ADS)

    Austin, Robert; Morris, Ryan; Phan, Average; Black, Matthew; Lin, Ke-Chih; Bos, Julia

    We have constructed using microfabrication a circular corral for bacteria made of rings of concentric funnels which channel motile bacteria outwards via non-hydrodynamic interactions with the funnel walls. Although initially bacteria do move rapidly outwards with the funnels, they are able with increasing cell density on the perimeter to defeat the physical constraints of the funnel by launching collective, soliton like waves of bacteria inwards against the funnel ring. We present the basic data and some non-linear modeling which can explain the basic way that bacterial population solitons propagate across a funnel landscape. There are three surprising aspects to the experiments: (1) The bifurcation of the population into motile bacteria which are pumped by the funnels and bacteria which are non-motile (i.e., not pumped); (2) The launching of a collective wave which rapidly circles the device and radiates inwards against the pumping action of the funnel; (3) the subsequent loss of motility by all the bacteria after this burst of very high motility. Engineering and Physical Sciences Research Council [EP/J007404/1], National Cancer Institute (Grant No U54CA143803), and NSF PoLS program NSF PHY1521553.

  20. Bacterial populations and adaptations in the mucus layers on living corals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ducklow, H.W.; Mitchell, R.

    1979-07-01

    The external mucus layers of the stony coral Porites astreoides and the soft corals Palythoa sp. and Heteroxenia fuscesens are inhabited by communities of marine heterotrophic bacteria. Population levels of bacteria in coral mucus may be regulated by the self-cleaning behavior of the host. Bacterial populations in coral mucus respond to stresses applied to the host coral by growing to higher population levels in the mucus, indicating that these are populations of viable organisms closely attuned to host metabolism. Members of these microbial populations utilize the mucus compounds and may play a role in processing coral mucus for reef detritusmore » feeders. One such species, Vibrio alginolyticus, grows rapidly on Heteroxenia mucus, is attracted to dissolved mucus, and possesses a mechanism to maintain itself on the coral surface.« less

  1. Bacterial Pneumonia in Elderly Japanese Populations

    PubMed Central

    Miyashita, Naoya; Yamauchi, Yasuhiro

    2018-01-01

    Bacterial pneumonia is one of the most important infectious diseases in terms of incidence, effect on quality of life, mortality, and impact on society. Pneumonia was the third leading cause of death in Japan in 2011. In 2016, 119 650 Japanese people died of pneumonia, 96% of whom were aged 65 years and above. The symptoms of pneumonia in elderly people are often atypical. Aspiration pneumonia is seen more frequently than in young people because of swallowing dysfunction in the elderly. The mortality rate is also higher in the elderly than in young people. In Japan, the population is aging at an unprecedented rate, and pneumonia in the elderly will be increasingly important in medicine and medical economics in the future. To manage pneumonia in the elderly, it is important to accurately evaluate its severity, administer appropriate antibiotic treatment, and implement effective preventive measures. PMID:29434484

  2. Spatio-temporal transitions in the dynamics of bacterial populations

    NASA Astrophysics Data System (ADS)

    Lin, Anna; Lincoln, Bryan; Mann, Bernward; Torres, Gelsy; Kas, Josef; Swinney, Harry

    2001-03-01

    We experimentally investigate the population dynamics of a strain of E. coli bacteria living under spatially inhomogeneous growth conditions. A localized perturbation that moves with a well-defined drift velocity is imposed on the system. A reaction-diffusion model of this situation^1 predicts that an abrupt transition between spatial localization and extinction of the colony occurs for a fixed average growth rate when the drift velocity exceeds a critical value. Also, a transition between localized and delocalized populations is predicted to occur at a fixed drift velocity when the spatially averaged growth rate is varied. We create a spatially localized perturbation with UV light and vary the strength and drift velocity of the perturbation to investigate the existence of the different bacterial population distributions and the transitions between them. Numerical simulations of a 250 mm by 20 mm system guide our experiments. ^1K. A. Dahmen, D. R. Nelson, N. M. Shnerb, Jour. Math. Bio., 41 1 (2000).

  3. Identification of Population Bottlenecks and Colonization Factors during Assembly of Bacterial Communities within the Zebrafish Intestine

    PubMed Central

    Wiles, Travis J.; Martinez, Emily S.; Jemielita, Matthew; Burns, Adam R.; Parthasarathy, Raghuveer; Bohannan, Brendan J. M.

    2015-01-01

    ABSTRACT The zebrafish, Danio rerio, is a powerful model for studying bacterial colonization of the vertebrate intestine, but the genes required by commensal bacteria to colonize the zebrafish gut have not yet been interrogated on a genome-wide level. Here we apply a high-throughput transposon mutagenesis screen to Aeromonas veronii Hm21 and Vibrio sp. strain ZWU0020 during their colonization of the zebrafish intestine alone and in competition with each other, as well as in different colonization orders. We use these transposon-tagged libraries to track bacterial population sizes in different colonization regimes and to identify gene functions required during these processes. We show that intraspecific, but not interspecific, competition with a previously established bacterial population greatly reduces the ability of these two bacterial species to colonize. Further, using a simple binomial sampling model, we show that under conditions of interspecific competition, genes required for colonization cannot be identified because of the population bottleneck experienced by the second colonizer. When bacteria colonize the intestine alone or at the same time as the other species, we find shared suites of functional requirements for colonization by the two species, including a prominent role for chemotaxis and motility, regardless of the presence of another species. PMID:26507229

  4. Impact of Bioreactor Environment and Recovery Method on the Profile of Bacterial Populations from Water Distribution Systems.

    PubMed

    Luo, Xia; Jellison, Kristen L; Huynh, Kevin; Widmer, Giovanni

    2015-01-01

    Multiple rotating annular reactors were seeded with biofilms flushed from water distribution systems to assess (1) whether biofilms grown in bioreactors are representative of biofilms flushed from the water distribution system in terms of bacterial composition and diversity, and (2) whether the biofilm sampling method affects the population profile of the attached bacterial community. Biofilms were grown in bioreactors until thickness stabilized (9 to 11 weeks) and harvested from reactor coupons by sonication, stomaching, bead-beating, and manual scraping. High-throughput sequencing of 16S rRNA amplicons was used to profile bacterial populations from flushed biofilms seeded into bioreactors as well as biofilms recovered from bioreactor coupons by different methods. β diversity between flushed and reactor biofilms was compared to β diversity between (i) biofilms harvested from different reactors and (ii) biofilms harvested by different methods from the same reactor. These analyses showed that average diversity between flushed and bioreactor biofilms was double the diversity between biofilms from different reactors operated in parallel. The diversity between bioreactors was larger than the diversity associated with different biofilm recovery methods. Compared to other experimental variables, the method used to recover biofilms had a negligible impact on the outcome of water biofilm analyses based on 16S amplicon sequencing. Results from this study show that biofilms grown in reactors over 9 to 11 weeks are not representative models of the microbial populations flushed from a distribution system. Furthermore, the bacterial population profile of biofilms grown in replicate reactors from the same flushed water are likely to diverge. However, four common sampling protocols, which differ with respect to disruption of bacterial cells, provide similar information with respect to the 16S rRNA population profile of the biofilm community.

  5. The Structure of Resting Bacterial Populations in Soil and Subsoil Permafrost

    NASA Astrophysics Data System (ADS)

    Soina, Vera S.; Mulyukin, Andrei L.; Demkina, Elena V.; Vorobyova, Elena A.; El-Registan, Galina I.

    2004-09-01

    The structure of individual cells in microbial populations in situ of the Arctic and Antarctic permafrost was studied by scanning and transmission electron microscopy methods and compared with that of cyst-like resting forms generated under special conditions by the non-sporeforming bacteria Arthrobacter and Micrococcus isolated from the permafrost. Electron microscopy examination of microorganisms in situ revealed several types of bacterial cells having no signs of damage, including "dwarf" curved forms similar to nanoforms. Intact bacterial cells in situ and frozen cultures of the permafrost isolates differed from vegetative cells by thickened cell walls, the altered structure of cytoplasm, and the compact nucleoid, and were similar in these features to cyst-like resting forms of non-spore-forming "permafrost" bacterial strains of Arthrobacter and Micrococcus spp. Cyst-like cells, being resistant to adverse external factors, are regarded as being responsible for survival of the non-spore-formers under prolonged exposure to subzero temperatures and can be a target to search for living microorganisms in natural environments both on the Earth and on extraterrestrial bodies.

  6. Imaging the Population Dynamics of Bacterial Communities in the Zebrafish Gut

    NASA Astrophysics Data System (ADS)

    Jemielita, Matthew; Taormina, Michael; Burns, Adam; Zac Stephens, W.; Hampton, Jennifer; Guillemin, Karen; Parthasarathy, Raghuveer

    2013-03-01

    The vertebrate gut is home to a diverse microbial ecosystem whose composition has a strong influence on the development and health of the host organism. While researchers are increasingly able to identify the constituent members of the microbiome, very little is known about the spatial and temporal dynamics of commensal microbial communities, including the mechanisms by which communities nucleate, grow, and interact. We address these issues using a model organism: the larval zebrafish (Danio rerio) prepared microbe-free and inoculated with controlled compositions of fluorophore-expressing bacteria. Live imaging with light sheet fluorescence microscopy enables visualization of individual bacterial cells as well as growing colonies over the entire volume of the gut over periods up to 24 hours. We analyze the structure and dynamics of imaged bacterial communities, uncovering correlations between population size, growth rates, and the timing of inoculations that suggest the existence of active changes in the host environment induced by early bacterial exposure. Our data provide the first visualizations of gut microbiota development over an extended period of time in a vertebrate.

  7. Dynamics of Genome Rearrangement in Bacterial Populations

    PubMed Central

    Darling, Aaron E.; Miklós, István; Ragan, Mark A.

    2008-01-01

    first characterization of genome arrangement evolution in a bacterial population evolving outside laboratory conditions. Insight into the process of genomic rearrangement may further the understanding of pathogen population dynamics and selection on the architecture of circular bacterial chromosomes. PMID:18650965

  8. Bacterial meningitis in Finland, 1995–2014: a population-based observational study

    PubMed Central

    Polkowska, Aleksandra; Toropainen, Maija; Ollgren, Jukka; Lyytikäinen, Outi; Nuorti, J. Pekka

    2017-01-01

    Objectives Bacterial meningitis remains an important cause of morbidity and mortality worldwide. Its epidemiological characteristics, however, are changing due to new vaccines and secular trends. Conjugate vaccines against Haemophilus influenzae type b and Streptococcus pneumoniae (10-valent) were introduced in 1986 and 2010 in Finland. We assessed the disease burden and long-term trends of five common causes of bacterial meningitis in a population-based observational study. Methods A case was defined as isolation of S. pneumoniae, Neisseria meningitidis, Streptococcus agalactiae, Listeria monocytogenes or H. influenzae from cerebrospinal fluid and reported to national, population-based laboratory surveillance system during 1995–2014. We evaluated changes in incidence rates (Poisson or negative binomial regression), case fatality proportions (χ2) and age distribution of cases (Wilcoxon rank-sum). Results During 1995–2014, S. pneumoniae and N. meningitidis accounted for 78% of the total 1361 reported bacterial meningitis cases. H. influenzae accounted for 4% of cases (92% of isolates were non-type b). During the study period, the overall rate of bacterial meningitis per 1 00 000 person-years decreased from 1.88 cases in 1995 to 0.70 cases in 2014 (4% annual decline (95% CI 3% to 5%). This was primarily due to a 9% annual reduction in rates of N. meningitidis (95% CI 7% to 10%) and 2% decrease in S. pneumoniae (95% CI 1% to 4%). The median age of cases increased from 31 years in 1995–2004 to 43 years in 2005–2014 (p=0.0004). Overall case fatality proportion (10%) did not change from 2004 to 2009 to 2010–2014. Conclusions Substantial decreases in bacterial meningitis were associated with infant conjugate vaccination against pneumococcal meningitis and secular trend in meningococcal meningitis in the absence of vaccination programme. Ongoing epidemiological surveillance is needed to identify trends, evaluate serotype distribution, assess vaccine

  9. Differentiation of etiologic agents of bacterial keratitis from presentation characteristics.

    PubMed

    Mascarenhas, Jeena; Srinivasan, Muthiah; Chen, Michael; Rajaraman, Revathi; Ravindran, Meenakshi; Lalitha, Prajna; Oldenburg, Catherine E; Ray, Kathryn J; Glidden, David V; Costanza, Stephanie; Lietman, Thomas M; Acharya, Nisha R

    2012-12-01

    Presenting characteristics of bacterial corneal ulcers may suggest particular causative organisms, helping to guide treatment decisions before cultures become available. In this study, we analyze the association between presentation demographic and clinical characteristics, using data collected as part of a randomized, controlled clinical trial. Data for this study were collected as part of the Steroids for Corneal Ulcers Trial, a randomized, placebo-controlled, double-masked trial. All patients had a culture-proven bacterial corneal ulcer. Patient history, clinical examination, and photography were performed in a standardized fashion at enrollment. Analysis of variance or Fisher's exact test was used to compare characteristics by organism. Univariate logistic regression was used to analyze predictors of the most common organisms. Five hundred patients were enrolled in the trial, of whom 488 were included in this analysis. The most common organism was Streptococcus pneumoniae (N = 248, 51 %) followed by Pseudomonas aeruginosa (N = 110, 23 %). Compared to other organisms, P. aeruginosa was significantly associated with a larger baseline infiltrate/scar size [odds ratio (OR) 1.6, 95 % confidence interval (CI) 1.4-1.8] and deeper infiltrate (OR 2.4, 95 % CI 1.5-3.8). S. pneumoniae was significantly associated with a smaller baseline infiltrate/scar size (OR 0.8, 95 % CI 0.7-0.9) and dacryocystitis (OR 7.3, 95 % CI 4.1-13.3). Nocardia spp. were significantly associated with longer duration of symptoms prior to presentation (OR 1.4, 95 % CI 1.2-1.6), more shallow infiltrate (OR 0.3, 95 % CI 0.2-0.5), and better baseline visual acuity (OR 0.4, 95 % CI 0.2-0.65). Staphylococcus spp. were less likely to be central in location (OR 0.16, 95 % CI 0.08-0.3). Baseline characteristics of bacterial ulcers may suggest the likely etiology and guide early management.

  10. Spatial structure and nutrients promote invasion of IncP-1 plasmids in bacterial populations

    PubMed Central

    Fox, Randal E; Zhong, Xue; Krone, Stephen M; Top, Eva M

    2008-01-01

    In spite of the importance of plasmids in bacterial adaptation, we have a poor understanding of their dynamics. It is not known if or how plasmids persist in and spread through (invade) a bacterial population when there is no selection for plasmid-encoded traits. Moreover, the differences in dynamics between spatially structured and mixed populations are poorly understood. Through a joint experimental/theoretical approach, we tested the hypothesis that self-transmissible IncP-1 plasmids can invade a bacterial population in the absence of selection when initially very rare, but only in spatially structured habitats and when nutrients are regularly replenished. Using protocols that differed in the degree of spatial structure and nutrient levels, the invasiveness of plasmid pB10 in Escherichia coli was monitored during at least 15 days, with an initial fraction of plasmid-bearing (p+) cells as low as 10−7. To further explore the mechanisms underlying plasmid dynamics, we developed a spatially explicit mathematical model. When cells were grown on filters and transferred to fresh medium daily, the p+ fraction increased to 13%, whereas almost complete invasion occurred when the population structure was disturbed daily. The plasmid was unable to invade in liquid. When carbon source levels were lower or not replenished, plasmid invasion was hampered. Simulations of the mathematical model closely matched the experimental results and produced estimates of the effects of alternative experimental parameters. This allowed us to isolate the likely mechanisms most responsible for the observations. In conclusion, spatial structure and nutrient availability can be key determinants in the invasiveness of plasmids. PMID:18528415

  11. Bacterial finite-size effects for population expansion under flow

    NASA Astrophysics Data System (ADS)

    Toschi, Federico; Tesser, Francesca; Zeegers, Jos C. H.; Clercx, Herman J. H.; Brunsveld, Luc

    2016-11-01

    For organisms living in a liquid ecosystem, flow and flow gradients have a dual role as they transport nutrient while, at the same time, dispersing the individuals. In absence of flow and under homogeneous conditions, the growth of a population towards an empty region is usually described by a reaction-diffusion equation. The effect of fluid flow is not yet well understood and the interplay between transport of individuals and growth opens a wide scenario of possible behaviors. In this work, we study experimentally the dynamics of non-motile E. coli bacteria colonies spreading inside rectangular channels, in PDMS microfluidic devices. By use of a fluorescent microscope we analyze the dynamics of the population density subjected to different co- and counter-flow conditions and shear rates. A simple model incorporating growth, dispersion and drift of finite size beads is able to explain the experimental findings. This indicates that models based on the Fisher-Kolmogorov-Petrovsky-Piscounov equation (FKPP) may have to be supplemented with bacterial finite-size effects in order to be able to accurately reproduce experimental results for population spatial growth.

  12. Identical bacterial populations colonize premature infant gut, skin, and oral microbiomes and exhibit different in situ growth rates

    PubMed Central

    Olm, Matthew R.; Brown, Christopher T.; Brooks, Brandon; Firek, Brian; Baker, Robyn; Burstein, David; Soenjoyo, Karina; Thomas, Brian C.; Morowitz, Michael; Banfield, Jillian F.

    2017-01-01

    The initial microbiome impacts the health and future development of premature infants. Methodological limitations have led to gaps in our understanding of the habitat range and subpopulation complexity of founding strains, as well as how different body sites support microbial growth. Here, we used metagenomics to reconstruct genomes of strains that colonized the skin, mouth, and gut of two hospitalized premature infants during the first month of life. Seven bacterial populations, considered to be identical given whole-genome average nucleotide identity of >99.9%, colonized multiple body sites, yet none were shared between infants. Gut-associated Citrobacter koseri genomes harbored 47 polymorphic sites that we used to define 10 subpopulations, one of which appeared in the gut after 1 wk but did not spread to other body sites. Differential genome coverage was used to measure bacterial population replication rates in situ. In all cases where the same bacterial population was detected in multiple body sites, replication rates were faster in mouth and skin compared to the gut. The ability of identical strains to colonize multiple body sites underscores the habit flexibility of initial colonists, whereas differences in microbial replication rates between body sites suggest differences in host control and/or resource availability. Population genomic analyses revealed microdiversity within bacterial populations, implying initial inoculation by multiple individual cells with distinct genotypes. Overall, however, the overlap of strains across body sites implies that the premature infant microbiome can exhibit very low microbial diversity. PMID:28073918

  13. Detection of bacterial-reactive natural IgM antibodies in desert bighorn sheep populations

    PubMed Central

    Palmer, Amy L.; Zielke, Ryszard A.; Sikora, Aleksandra E.; Beechler, Brianna R.; Jolles, Anna E.; Epps, Clinton W.

    2017-01-01

    Ecoimmunology is a burgeoning field of ecology which studies immune responses in wildlife by utilizing general immune assays such as the detection of natural antibody. Unlike adaptive antibodies, natural antibodies are important in innate immune responses and often recognized conserved epitopes present in pathogens. Here, we describe a procedure for measuring natural antibodies reactive to bacterial antigens that may be applicable to a variety of organisms. IgM from desert bighorn sheep plasma samples was tested for reactivity to outer membrane proteins from Vibrio coralliilyticus, a marine bacterium to which sheep would have not been exposed. Immunoblotting demonstrated bighorn sheep IgM could bind to a variety of bacterial cell envelope proteins while ELISA analysis allowed for rapid determination of natural antibody levels in hundreds of individual animals. Natural antibody levels were correlated with the ability of plasma to kill laboratory strains of E. coli bacteria. Finally, we demonstrate that natural antibody levels varied in two distinct populations of desert bighorn sheep. These data demonstrate a novel and specific measure of natural antibody function and show that this varies in ecologically relevant ways. PMID:28662203

  14. Outcome in patients with bacterial meningitis presenting with a minimal Glasgow Coma Scale score

    PubMed Central

    Lucas, Marjolein J.; Brouwer, Matthijs C.; van der Ende, Arie

    2014-01-01

    Objective: In bacterial meningitis, a decreased level of consciousness is predictive for unfavorable outcome, but the clinical features and outcome in patients presenting with a minimal score on the Glasgow Coma Scale are unknown. Methods: We assessed the incidence, clinical characteristics, and outcome of patients with bacterial meningitis presenting with a minimal score on the Glasgow Coma Scale from a nationwide cohort study of adults with community-acquired bacterial meningitis in the Netherlands from 2006 to 2012. Results: Thirty of 1,083 patients (3%) presented with a score of 3 on the Glasgow Coma Scale. In 22 of 30 patients (73%), the minimal Glasgow Coma Scale score could be explained by use of sedative medication or complications resulting from meningitis such as seizures, cerebral edema, and hydrocephalus. Systemic (86%) and neurologic (47%) complications occurred frequently, leading to a high proportion of patients with unfavorable outcome (77%). However, 12 of 30 patients (40%) survived and 7 patients (23%) had a good functional outcome, defined as a score of 5 on the Glasgow Outcome Scale. Patients presenting with a minimal Glasgow Coma Scale score on admission and bilaterally absent pupillary light responses, bilaterally absent corneal reflexes, or signs of septic shock on admission all died. Conclusions: Patients with community-acquired bacterial meningitis rarely present with a minimal score on the Glasgow Coma Scale, but this condition is associated with high rates of morbidity and mortality. However, 1 out of 5 of these severely ill patients will make a full recovery, stressing the continued need for aggressive supportive care in these patients. PMID:25340065

  15. Differentiation of etiologic agents of bacterial keratitis from presentation characteristics

    PubMed Central

    Mascarenhas, Jeena; Srinivasan, Muthiah; Chen, Michael; Rajaraman, Revathi; Ravindran, Meenakshi; Lalitha, Prajna; Oldenburg, Catherine E.; Ray, Kathryn J.; Glidden, David V.; Costanza, Stephanie; Lietman, Thomas M.

    2013-01-01

    Presenting characteristics of bacterial corneal ulcers may suggest particular causative organisms, helping to guide treatment decisions before cultures become available. In this study, we analyze the association between presentation demographic and clinical characteristics, using data collected as part of a randomized, controlled clinical trial. Data for this study were collected as part of the Steroids for Corneal Ulcers Trial, a randomized, placebo-controlled, double-masked trial. All patients had a culture-proven bacterial corneal ulcer. Patient history, clinical examination, and photography were performed in a standardized fashion at enrollment. Analysis of variance or Fisher’s exact test was used to compare characteristics by organism. Univariate logistic regression was used to analyze predictors of the most common organisms. Five hundred patients were enrolled in the trial, of whom 488 were included in this analysis. The most common organism was Streptococcus pneumoniae (N = 248, 51 %) followed by Pseudomonas aeruginosa (N = 110, 23 %). Compared to other organisms, P. aeruginosa was significantly associated with a larger baseline infiltrate/scar size [odds ratio (OR) 1.6, 95 % confidence interval (CI) 1.4–1.8] and deeper infiltrate (OR 2.4, 95 % CI 1.5–3.8). S. pneumoniae was significantly associated with a smaller baseline infiltrate/scar size (OR 0.8, 95 % CI 0.7–0.9) and dacryocystitis (OR 7.3, 95 % CI 4.1–13.3). Nocardia spp. were significantly associated with longer duration of symptoms prior to presentation (OR 1.4, 95 % CI 1.2–1.6), more shallow infiltrate (OR 0.3, 95 % CI 0.2–0.5), and better baseline visual acuity (OR 0.4, 95 % CI 0.2–0.65). Staphylococcus spp. were less likely to be central in location (OR 0.16, 95 % CI 0.08–0.3). Baseline characteristics of bacterial ulcers may suggest the likely etiology and guide early management. PMID:22752605

  16. Bacterial meningitis in alcoholic patients: A population-based prospective study.

    PubMed

    van Veen, Kiril E B; Brouwer, Matthijs C; van der Ende, Arie; van de Beek, Diederik

    2017-04-01

    To study clinical features and outcome of community-acquired bacterial meningitis in alcoholic patients. Patients with a history of alcoholism were selected from our nationwide, prospective cohort on community-acquired bacterial meningitis performed from March 2006 to October 2014. Data on patient history, symptoms and signs on admission, treatment, and outcome were prospectively collected. Of 1359 included episodes, 88 episodes (6%) occurred in 88 alcoholic patients. Seizures as presenting symptom were present in 18% alcoholic patients, and 23% presented with co-existing pneumonia. Causative organisms were Streptococcus pneumoniae in 76%, Listeria monocytogenes in 8%, and Neisseria meningitidis in 6% of patients. A high rate of systemic complications occurred with respiratory failure in 40% and endocarditis in 9% of patients. Outcome was unfavorable in 58% of alcoholic patients, and 25% died. Alcoholism was associated with unfavorable outcome in a multivariate analysis (OR 1.96; 95% CI 1.12-3.46; P = 0.019), but not with death (OR 0.76; 95% CI 0.35-1.68; P = 0.762). Alcoholic bacterial meningitis patients often have an unfavorable outcome, which appears to result from a high rate of systemic complications, mainly respiratory failure. Seizures are common in alcoholic patients and warrant caution of development of an alcohol withdrawal syndrome. Copyright © 2017. Published by Elsevier Ltd.

  17. Of the Phrensy: an update on the epidemiology and pathogenesis of bacterial meningitis in the pediatric population.

    PubMed

    Janowski, Andrew; Newland, Jason

    2017-01-01

    In the past century, advances in antibiotics and vaccination have dramatically altered the incidence and clinical outcomes of bacterial meningitis. We review the shifting epidemiology of meningitis in children, including after the implementation of vaccines that target common meningitic pathogens and the introduction of intrapartum antibiotic prophylaxis offered to mothers colonized with Streptococcus agalactiae . We also discuss what is currently known about the pathogenesis of meningitis. Recent studies of the human microbiome have illustrated dynamic relationships of bacterial and viral populations with the host, which may potentiate the risk of bacterial meningitis.

  18. Widespread bacterial populations at glacier beds and their relationship to rock weathering and carbon cycling

    NASA Astrophysics Data System (ADS)

    Sharp, Martin; Parkes, John; Cragg, Barry; Fairchild, Ian J.; Lamb, Helen; Tranter, Martyn

    1999-02-01

    Bacterial populations found in subglacial meltwaters and basal ice are comparable to those in the active layer of permafrost and orders of magnitude larger than those found in ice cores from large ice sheets. Populations increase with sediment concentration, and 5% 24% of the bacteria are dividing or have just divided, suggesting that the populations are active. These findings (1) support inferences from recent studies of basal ice and meltwater chemistry that microbially mediated redox reactions may be important at glacier beds, (2) challenge the view that chemical weathering in glacial environments arises from purely inorganic reactions, and (3) raise the possibilities that redox reactions are a major source of protons consumed in subglacial weathering and that these reactions may be the dominant proton source beneath ice sheets where meltwaters are isolated from an atmospheric source of CO2. Microbial mediation may increase the rate of sulfide oxidation under subglacial conditions, a suggestion supported by the results of simple weathering experiments. If subglacial bacterial populations can oxidize and ferment organic carbon, it is important to reconsider the fate of soil organic carbon accumulated under interglacial conditions in areas subsequently overridden by Pleistocene ice sheets.

  19. Characterization of Metabolically Active Bacterial Populations in Subseafloor Nankai Trough Sediments above, within, and below the Sulfate–Methane Transition Zone

    PubMed Central

    Mills, Heath J.; Reese, Brandi Kiel; Shepard, Alicia K.; Riedinger, Natascha; Dowd, Scot E.; Morono, Yuki; Inagaki, Fumio

    2012-01-01

    A remarkable number of microbial cells have been enumerated within subseafloor sediments, suggesting a biological impact on geochemical processes in the subseafloor habitat. However, the metabolically active fraction of these populations is largely uncharacterized. In this study, an RNA-based molecular approach was used to determine the diversity and community structure of metabolically active bacterial populations in the upper sedimentary formation of the Nankai Trough seismogenic zone. Samples used in this study were collected from the slope apron sediment overlying the accretionary prism at Site C0004 during the Integrated Ocean Drilling Program Expedition 316. The sediments represented microbial habitats above, within, and below the sulfate–methane transition zone (SMTZ), which was observed approximately 20 m below the seafloor (mbsf). Small subunit ribosomal RNA were extracted, quantified, amplified, and sequenced using high-throughput 454 pyrosequencing, indicating the occurrence of metabolically active bacterial populations to a depth of 57 mbsf. Transcript abundance and bacterial diversity decreased with increasing depth. The two communities below the SMTZ were similar at the phylum level, however only a 24% overlap was observed at the genus level. Active bacterial community composition was not confined to geochemically predicted redox stratification despite the deepest sample being more than 50 m below the oxic/anoxic interface. Genus-level classification suggested that the metabolically active subseafloor bacterial populations had similarities to previously cultured organisms. This allowed predictions of physiological potential, expanding understanding of the subseafloor microbial ecosystem. Unique community structures suggest very diverse active populations compared to previous DNA-based diversity estimates, providing more support for enhancing community characterizations using more advanced sequencing techniques. PMID:22485111

  20. Visualizing the response of a gut bacterial population to antibiotic perturbations

    NASA Astrophysics Data System (ADS)

    Schlomann, Brandon; Wiles, Travis; Guillemin, Karen; Parthasarathy, Raghuveer

    Each of our intestines is home to a vast ecosystem composed of trillions of bacteria in a dynamic environment. Bacterial communities face fluctuations in nutrient influx, invasions by new microbes, physical disturbances from peristalsis, and, perhaps, the arrival of antibiotic drugs. Metagenomic profiling has shown that antibiotic treatments can cause major changes in the composition of species present in the gut, at timescales shorter than a day. How this happens is unknown, as these dynamics have never been observed directly. I'll present recent work that addresses this by using well-defined microbial communities in a model organism, the zebrafish. Light Sheet Fluorescence Microscopy is used to image a commensal species of Vibrioresponding to antibiotic perturbations in the guts of live, larval fish. We find that sub-lethal concentrations of different classes of antibiotics induce similar physical responses in Vibrio, namely filamentation and reduction of motility. The arrested bacteria then aggregate and can be ejected via peristalsis, resulting in large population collapses. These observations suggest that antibiotics can cause large disruptions to gut ecosystems even in low concentrations, and that physical processes may be important drivers of response dynamics.

  1. Viral-bacterial coinfection affects the presentation and alters the prognosis of severe community-acquired pneumonia.

    PubMed

    Voiriot, Guillaume; Visseaux, Benoit; Cohen, Johana; Nguyen, Liem Binh Luong; Neuville, Mathilde; Morbieu, Caroline; Burdet, Charles; Radjou, Aguila; Lescure, François-Xavier; Smonig, Roland; Armand-Lefèvre, Laurence; Mourvillier, Bruno; Yazdanpanah, Yazdan; Soubirou, Jean-Francois; Ruckly, Stephane; Houhou-Fidouh, Nadhira; Timsit, Jean-François

    2016-10-25

    Multiplex polymerase chain reaction (mPCR) enables recovery of viruses from airways of patients with community-acquired pneumonia (CAP), although their clinical impact remains uncertain. Among consecutive adult patients who had undergone a mPCR within 72 hours following their admission to one intensive care unit (ICU), we retrospectively included those with a final diagnosis of CAP. Four etiology groups were clustered: bacterial, viral, mixed (viral-bacterial) and no etiology. A composite criterion of complicated course (hospital death or mechanical ventilation > 7 days) was used. A subgroup analysis compared patients with bacterial and viral-bacterial CAP matched on the bacterial pathogens. Among 174 patients (132 men [76 %], age 63 [53-75] years, SAPSII 38 [27;55], median PSI score 106 [78;130]), bacterial, viral, mixed and no etiology groups gathered 46 (26 %), 53 (31 %), 45 (26 %) and 30 (17 %) patients, respectively. Virus-infected patients displayed a high creatine kinase serum level, a low platelet count, and a trend toward more frequent alveolar-interstitial infiltrates. A complicated course was more frequent in the mixed group (31/45, 69 %), as compared to bacterial (18/46, 39 %), viral (15/53, 28 %) and no etiology (12/30, 40 %) groups (p < 0.01). In multivariate analysis, the mixed (viral-bacterial) infection was independently associated with complicated course (reference: bacterial pneumonia; OR, 3.58; CI 95 %, 1.16-11; p = 0.03). The subgroup analysis of bacteria-matched patients confirmed these findings. Viral-bacterial coinfection during severe CAP in adults is associated with an impaired presentation and a complicated course.

  2. Bacterial Meningitis in Patients using Immunosuppressive Medication: a Population-based Prospective Nationwide Study.

    PubMed

    van Veen, Kiril E B; Brouwer, Matthijs C; van der Ende, Arie; van de Beek, Diederik

    2017-06-01

    We studied occurrence, presentation, disease course, effect of adjunctive dexamethasone, and prognosis of bacterial meningitis in patients using immunosuppressive medication. Patients were selected from our nationwide, prospective cohort on community-acquired bacterial meningitis performed from March 1, 2006 through October 31, 2014. Eighty-seven of 1447 episodes (6 %) of bacterial meningitis occurred in patients using immunosuppressive medication, and consisted of corticosteroids in 82 %. Patients with bacterial meningitis using immunosuppressive medication were less likely to present with headache (P = 0.02) or neck stiffness (P = 0.005), as compared those not on immunosuppressive medication. In 46 % of episodes CSF leukocyte count was below 1000/mm 3 . CSF cultures revealed S. pneumoniae in 41 % and L. monocytogenes in 40 % of episodes. Outcome was unfavorable in 39 of 87 episodes (45 %) and death occurred in 22 of 87 episodes (25 %). Adjunctive dexamethasone was administered in 52 of 87 (60 %) episodes, and mortality tended to be lower in those on adjunctive dexamethasone therapy as compared to those without dexamethasone therapy (10 of 52 [19 %] vs 12 of 35 [34 %], P = 0.14). We conclude that bacterial meningitis in patients using immunosuppressive medication is likely to present with atypical clinical and laboratory features, and is often caused by atypical bacteria, mainly L. monocytogenes. Adjunctive dexamethasone is widely prescribed in these patients and was not associated with harm in this study.

  3. Role of antimicrobial peptides in controlling symbiotic bacterial populations.

    PubMed

    Mergaert, P

    2018-04-25

    Covering: up to 2018 Antimicrobial peptides (AMPs) have been known for well over three decades as crucial mediators of the innate immune response in animals and plants, where they are involved in the killing of infecting microbes. However, AMPs have now also been found to be produced by eukaryotic hosts during symbiotic interactions with bacteria. These symbiotic AMPs target the symbionts and therefore have a more subtle biological role: not eliminating the microbial symbiont population but rather keeping it in check. The arsenal of AMPs and the symbionts' adaptations to resist them are in a careful balance, which contributes to the establishment of the host-microbe homeostasis. Although in many cases the biological roles of symbiotic AMPs remain elusive, for a number of symbiotic interactions, precise functions have been assigned or proposed to the AMPs, which are discussed here. The microbiota living on epithelia in animals, from the most primitive ones to the mammals, are challenged by a cocktail of AMPs that determine the specific composition of the bacterial community as well as its spatial organization. In the symbiosis of legume plants with nitrogen-fixing rhizobium bacteria, the host deploys an extremely large panel of AMPs - called nodule-specific cysteine-rich (NCR) peptides - that drive the bacteria into a terminally differentiated state and manipulate the symbiont physiology to maximize the benefit for the host. The NCR peptides are used as tools to enslave the bacterial symbionts, limiting their reproduction but keeping them metabolically active for nitrogen fixation. In the nutritional symbiotic interactions of insects and protists that have vertically transmitted bacterial symbionts with reduced genomes, symbiotic AMPs could facilitate the integration of the endosymbiont and host metabolism by favouring the flow of metabolites across the symbiont membrane through membrane permeabilization.

  4. Probing Prokaryotic Social Behaviors with Bacterial “Lobster Traps”

    PubMed Central

    Connell, Jodi L.; Wessel, Aimee K.; Parsek, Matthew R.; Ellington, Andrew D.; Whiteley, Marvin; Shear, Jason B.

    2010-01-01

    Bacteria are social organisms that display distinct behaviors/phenotypes when present in groups. These behaviors include the abilities to construct antibiotic-resistant sessile biofilm communities and to communicate with small signaling molecules (quorum sensing [QS]). Our understanding of biofilms and QS arises primarily from in vitro studies of bacterial communities containing large numbers of cells, often greater than 108 bacteria; however, in nature, bacteria often reside in dense clusters (aggregates) consisting of significantly fewer cells. Indeed, bacterial clusters containing 101 to 105 cells are important for transmission of many bacterial pathogens. Here, we describe a versatile strategy for conducting mechanistic studies to interrogate the molecular processes controlling antibiotic resistance and QS-mediated virulence factor production in high-density bacterial clusters. This strategy involves enclosing a single bacterium within three-dimensional picoliter-scale microcavities (referred to as bacterial “lobster traps”) defined by walls that are permeable to nutrients, waste products, and other bioactive small molecules. Within these traps, bacteria divide normally into extremely dense (1012 cells/ml) clonal populations with final population sizes similar to that observed in naturally occurring bacterial clusters. Using these traps, we provide strong evidence that within low-cell-number/high-density bacterial clusters, QS is modulated not only by bacterial density but also by population size and flow rate of the surrounding medium. We also demonstrate that antibiotic resistance develops as cell density increases, with as few as ~150 confined bacteria exhibiting an antibiotic-resistant phenotype similar to biofilm bacteria. Together, these findings provide key insights into clinically relevant phenotypes in low-cell-number/high-density bacterial populations. PMID:21060734

  5. An EPA pilot study characterizing fungal and bacterial populations at homes after flooding events at the Martin Peña Channel community-Puerto Rico

    EPA Science Inventory

    The overall objective of this program is to characterize fungal and bacterial populations in the MPC residences in San Juan, Puerto Rico, following flooding events. These profiles will be generated by comparing the fungal and bacterial populations in two groups of residences: hom...

  6. Neptune: a bioinformatics tool for rapid discovery of genomic variation in bacterial populations

    PubMed Central

    Marinier, Eric; Zaheer, Rahat; Berry, Chrystal; Weedmark, Kelly A.; Domaratzki, Michael; Mabon, Philip; Knox, Natalie C.; Reimer, Aleisha R.; Graham, Morag R.; Chui, Linda; Patterson-Fortin, Laura; Zhang, Jian; Pagotto, Franco; Farber, Jeff; Mahony, Jim; Seyer, Karine; Bekal, Sadjia; Tremblay, Cécile; Isaac-Renton, Judy; Prystajecky, Natalie; Chen, Jessica; Slade, Peter

    2017-01-01

    Abstract The ready availability of vast amounts of genomic sequence data has created the need to rethink comparative genomics algorithms using ‘big data’ approaches. Neptune is an efficient system for rapidly locating differentially abundant genomic content in bacterial populations using an exact k-mer matching strategy, while accommodating k-mer mismatches. Neptune’s loci discovery process identifies sequences that are sufficiently common to a group of target sequences and sufficiently absent from non-targets using probabilistic models. Neptune uses parallel computing to efficiently identify and extract these loci from draft genome assemblies without requiring multiple sequence alignments or other computationally expensive comparative sequence analyses. Tests on simulated and real datasets showed that Neptune rapidly identifies regions that are both sensitive and specific. We demonstrate that this system can identify trait-specific loci from different bacterial lineages. Neptune is broadly applicable for comparative bacterial analyses, yet will particularly benefit pathogenomic applications, owing to efficient and sensitive discovery of differentially abundant genomic loci. The software is available for download at: http://github.com/phac-nml/neptune. PMID:29048594

  7. Iris abscess as an unusual presentation of endogenous endophthalmitis in a patient with bacterial endocarditis.

    PubMed

    Ramonas, Krista M; Freilich, Benjamin D

    2003-02-01

    To report the clinical findings and management of a case of endogenous endophthalmitis in a patient with bacterial endocarditis presenting with a septic metastasis to the iris. Observational case report. Review of clinical findings and treatment. A 37-year-old intravenous drug user hospitalized with bacterial endocarditis secondary to methicillin-sensitive Staphylococcus aureus bacteremia presented with a painful red left eye, hypopyon, and iris abscess. Roth spots were noted in the fundus of the right eye. Aqueous culture was positive for methicillin-sensitive S aureus. The patient was treated with intravitreal, topical, and intravenous antibiotics. The hypopyon and iris abscess resolved within 2 weeks, and the patient achieved a final visual acuity of 20/25 in the left eye. Septic metastasis to the iris is a rare occurrence. To our knowledge this is the first reported case of an iris abscess secondary to bacterial endocarditis.

  8. Bacterial Profile of Dentine Caries and the Impact of pH on Bacterial Population Diversity

    PubMed Central

    Kianoush, Nima; Adler, Christina J.; Nguyen, Ky-Anh T.; Browne, Gina V.; Simonian, Mary; Hunter, Neil

    2014-01-01

    Dental caries is caused by the release of organic acids from fermentative bacteria, which results in the dissolution of hydroxyapatite matrices of enamel and dentine. While low environmental pH is proposed to cause a shift in the consortium of oral bacteria, favouring the development of caries, the impact of this variable has been overlooked in microbial population studies. This study aimed to detail the zonal composition of the microbiota associated with carious dentine lesions with reference to pH. We used 454 sequencing of the 16S rRNA gene (V3–V4 region) to compare microbial communities in layers ranging in pH from 4.5–7.8 from 25 teeth with advanced dentine caries. Pyrosequencing of the amplicons yielded 449,762 sequences. Nine phyla, 97 genera and 409 species were identified from the quality-filtered, de-noised and chimera-free sequences. Among the microbiota associated with dentinal caries, the most abundant taxa included Lactobacillus sp., Prevotella sp., Atopobium sp., Olsenella sp. and Actinomyces sp. We found a disparity between microbial communities localised at acidic versus neutral pH strata. Acidic conditions were associated with low diversity microbial populations, with Lactobacillus species including L. fermentum, L. rhamnosus and L. crispatus, being prominent. In comparison, the distinctive species of a more diverse flora associated with neutral pH regions of carious lesions included Alloprevotella tanerrae, Leptothrix sp., Sphingomonas sp. and Streptococcus anginosus. While certain bacteria were affected by the pH gradient, we also found that ∼60% of the taxa associated with caries were present across the investigated pH range, representing a substantial core. We demonstrated that some bacterial species implicated in caries progression show selective clustering with respect to pH gradient, providing a basis for specific therapeutic strategies. PMID:24675997

  9. Interlinkages between bacterial populations dynamics and the operational parameters in a moving bed membrane bioreactor treating urban sewage.

    PubMed

    Reboleiro-Rivas, P; Martín-Pascual, J; Morillo, J A; Juárez-Jiménez, B; Poyatos, J M; Rodelas, B; González-López, J

    2016-01-01

    Bacteria are key players in biological wastewater treatments (WWTs), thus a firm knowledge of the bacterial population dynamics is crucial to understand environmental/operational factors affecting the efficiency and stability of the biological depuration process. Unfortunately, little is known about the microbial ecology of the advanced biological WWTs combining suspended biomass (SB) and attached biofilms (AB). This study explored in depth the bacterial community structure and population dynamics in each biomass fraction from a pilot-scale moving bed membrane bioreactor (MBMBR) treating municipal sewage, by means of temperature-gradient gel electrophoresis (TGGE) and 454-pyrosequencing. Eight experimental phases were conducted, combining different carrier filling ratios, hydraulic retention times and concentrations of mixed liquor total suspended solids. The bacterial community, dominated by Proteobacteria (20.9-53.8%) and Actinobacteria (20.6-57.6%), was very similar in both biomass fractions and able to maintain its functional stability under all the operating conditions, ensuring a successful and steady depuration process. Multivariate statistical analysis demonstrated that solids concentration, carrier filling ratio, temperature and organic matter concentration in the influent were the significant factors explaining population dynamics. Bacterial diversity increased as carrier filling ratio increased (from 20% to 35%, v/v), and solids concentration was the main factor triggering the shifts of the community structure. These findings provide new insights on the influence of operational parameters on the biology of the innovative MBMBRs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Bacterial meningitis in hematopoietic stem cell transplant recipients: a population-based prospective study.

    PubMed

    van Veen, K E B; Brouwer, M C; van der Ende, A; van de Beek, D

    2016-11-01

    We performed a nationwide prospective cohort study on the epidemiology and clinical features of community-acquired bacterial meningitis. Patients with a medical history of autologous or allogeneic hematopoietic stem cell transplantation (HSCT) were identified from the cohort performed from March 2006 to October 2014. Fourteen of 1449 episodes (1.0%) of bacterial meningitis occurred in patients with a history of HSCT. The incidence of bacterial meningitis in HSCT recipients was 40.4 per 100 000 patients per year (95% confidence interval (CI) 23.9-62.2), which is 30-fold (95% CI 18-51; P<0.001) higher compared with persons without HSCT. Incidence was higher in allogeneic HSCT compared with autologous HSCT (70.0 vs 15.8 per 100 000 patients per year). Causative organisms were Streptococcus pneumoniae in 11 patients, Neisseria meningitidis in two and Streptococcus mitis in one patient. Mortality was 3 of 14 (21%) and 6 of 11 (55%) survivors had sequelae. Nine of 11 patients (82%) with pneumococcal meningitis were infected with a serotype included in the 23-valent pneumococcal polysaccharide vaccine, of whom four developed meningitis despite vaccination. In conclusion, HSCT recipients have a substantially increased risk compared with the general population of acquiring bacterial meningitis, which is mostly due to S. pneumoniae, and disease is associated with high mortality and morbidity. Vaccination is important to prevent disease although vaccine failures did occur.

  11. The epidemiology of bacterial meningitis in Kosovo.

    PubMed

    Namani, Sadie A; Koci, Remzie A; Qehaja-Buçaj, Emine; Ajazaj-Berisha, Lindita; Mehmeti, Murat

    2014-07-14

    The purpose of this study was to present the epidemiologic features of bacterial meningitis in the developing country of Kosovo. Data were collected from active surveillance of bacterial meningitis cases treated at the University Clinical Center of Kosovo in the years 2000 (first post-war year) and 2010. Meningitis cases in 2000 compared with 2010 showed a 35.5% decline in incidence (from 4.8 to 3.1 cases per 100,000 population) and a decrease in the case fatality rate from 10% to 5%. In children, there was a lower mortality rate (5% versus 2%) and a lower incidence of neurological complications (13% versus 16%) as compared to adults (32% versus 10% and 16% versus 35%, respectively). Neisseria meningitidis was the most common pathogen of bacterial meningitis in both study periods. Bacterial meningitis was most prevalent in the pediatric population, and showed an increase in the median age, from three years in 2000 to seven years in 2010. A steady number of bacterial meningitis cases in adults throughout last decade (around 20 cases per year) was recorded. During the last decade, gradual changes have been observed in the epidemiology of bacterial meningitis that are unrelated to the introduction of new vaccines, but are partly due to the improvement of living conditions.

  12. Comparison of fermentation of diets of variable composition and microbial populations in the rumen of sheep and Rusitec fermenters. II. Protozoa population and diversity of bacterial communities.

    PubMed

    Martínez, M E; Ranilla, M J; Tejido, M L; Saro, C; Carro, M D

    2010-08-01

    Four ruminally and duodenally cannulated sheep and 8 Rusitec fermenters were used to determine the effects of dietary characteristics on microbial populations and bacterial diversity. The purpose of the study was to assess how closely fermenters can mimic the differences between diets found in vivo. The 4 experimental diets contained forage to concentrate (F:C) ratios of 70:30 (high forage; HF) or 30:70 (high concentrate; HC) with either alfalfa hay (A) or grass hay (G) as the forage. Total bacterial numbers were greater in the rumen of sheep fed HF diets compared with those fed HC diets, whereas the opposite was found in fermenters. The numbers of cellulolytic bacteria were not affected by F:C ratio in any fermentation system, but cellulolytic numbers were 2.7 and 1.8 times greater in sheep than in fermenters for HF and HC diets, respectively. Neither total bacterial nor cellulolytic numbers were affected by the type of forage in sheep or fermenters. Decreasing F:C ratio increased total protozoa and Entodiniae numbers in sheep by about 29 and 25%, respectively, but it had no effect in fermenters. Isotrichidae and Ophryoscolecinae numbers in sheep were not affected by changing F:C ratio, but both disappeared completely from fermenters fed HC diets. Total protozoa and Entodiniae numbers were greater in sheep fed A diets than in those fed G diets, whereas the opposite was found in fermenters. Results indicate that under the conditions of the present study, protozoa population in Rusitec fermenters was not representative of that in the rumen of sheep fed the same diets. In addition, protozoa numbers in fermenters were 121 and 226 times lower than those in the sheep rumen for HF and HC diets, respectively. The automated ribosomal intergenic spacer analysis of the 16S ribosomal DNA was used to analyze the diversity of liquid- and solid-associated bacteria in both systems. A total of 170 peaks were detected in the automated ribosomal intergenic spacer analysis

  13. The clinical presentation of acute bacterial meningitis varies with age, sex and duration of illness.

    PubMed

    Johansson Kostenniemi, Urban; Norman, David; Borgström, Malin; Silfverdal, Sven Arne

    2015-11-01

    This Swedish study reviewed differences in clinical presentation and laboratory findings of acute bacterial meningitis in children aged one month to 17 years in Västerbotten County, Sweden. A register-based study was performed for the period 1986 to 2013 using the Västerbotten County Council's patient registration and laboratory records at the Department of Laboratory Medicine at Umeå University Hospital. The medical records were reviewed to extract data and confirm the diagnosis. We found 103 cases of acute bacterial meningitis, and Haemophilus influenzae was the most common pathogen, causing 40.8% of all cases, followed by Streptococcus pneumoniae at 30.1% and Neisseria meningitidis at 9.7%. Significant differences in clinical presentation and laboratory findings were found. Younger children were more unwell than older ones and had more diffuse symptoms on admission. In addition, important sex-related differences were found that might explain the higher case fatality rates for boys than girls. For example, boys tended to have a higher disturbance in the blood-brain barrier, which is known to be a negative prognostic factor. This study showed that clinical presentation for acute bacterial meningitis varied with age and sex and, to a lesser extent, on the duration of the illness. ©2015 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  14. Identification of 16S Ribosomal DNA-Defined Bacterial Populations at a Shallow Submarine Hydrothermal Vent near Milos Island (Greece)

    PubMed Central

    Sievert, Stefan M.; Kuever, Jan; Muyzer, Gerard

    2000-01-01

    In a recent publication (S. M. Sievert, T. Brinkhoff, G. Muyzer, W. Ziebis, and J. Kuever, Appl. Environ. Microbiol. 65:3834–3842, 1999) we described spatiotemporal changes in the bacterial community structure at a shallow-water hydrothermal vent in the Aegean Sea near the isle of Milos (Greece). Here we describe identification and phylogenetic analysis of the predominant bacterial populations at the vent site and their distribution at the vent site as determined by sequencing of DNA molecules (bands) excised from denaturing gradient gels. A total of 36 bands could be sequenced, and there were representatives of eight major lineages of the domain Bacteria. Cytophaga-Flavobacterium and Acidobacterium were the most frequently retrieved bacterial groups. Less than 33% of the sequences exhibited 90% or more identity with cultivated organisms. The predominance of putative heterotrophic populations in the sequences retrieved is explained by the input of allochthonous organic matter at the vent site. PMID:10877814

  15. Identifying currents in the gene pool for bacterial populations using an integrative approach.

    PubMed

    Tang, Jing; Hanage, William P; Fraser, Christophe; Corander, Jukka

    2009-08-01

    The evolution of bacterial populations has recently become considerably better understood due to large-scale sequencing of population samples. It has become clear that DNA sequences from a multitude of genes, as well as a broad sample coverage of a target population, are needed to obtain a relatively unbiased view of its genetic structure and the patterns of ancestry connected to the strains. However, the traditional statistical methods for evolutionary inference, such as phylogenetic analysis, are associated with several difficulties under such an extensive sampling scenario, in particular when a considerable amount of recombination is anticipated to have taken place. To meet the needs of large-scale analyses of population structure for bacteria, we introduce here several statistical tools for the detection and representation of recombination between populations. Also, we introduce a model-based description of the shape of a population in sequence space, in terms of its molecular variability and affinity towards other populations. Extensive real data from the genus Neisseria are utilized to demonstrate the potential of an approach where these population genetic tools are combined with an phylogenetic analysis. The statistical tools introduced here are freely available in BAPS 5.2 software, which can be downloaded from http://web.abo.fi/fak/mnf/mate/jc/software/baps.html.

  16. Genome-wide Selective Sweeps in Natural Bacterial Populations Revealed by Time-series Metagenomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Leong-Keat; Bendall, Matthew L.; Malfatti, Stephanie

    2014-06-18

    Multiple evolutionary models have been proposed to explain the formation of genetically and ecologically distinct bacterial groups. Time-series metagenomics enables direct observation of evolutionary processes in natural populations, and if applied over a sufficiently long time frame, this approach could capture events such as gene-specific or genome-wide selective sweeps. Direct observations of either process could help resolve how distinct groups form in natural microbial assemblages. Here, from a three-year metagenomic study of a freshwater lake, we explore changes in single nucleotide polymorphism (SNP) frequencies and patterns of gene gain and loss in populations of Chlorobiaceae and Methylophilaceae. SNP analyses revealedmore » substantial genetic heterogeneity within these populations, although the degree of heterogeneity varied considerably among closely related, co-occurring Methylophilaceae populations. SNP allele frequencies, as well as the relative abundance of certain genes, changed dramatically over time in each population. Interestingly, SNP diversity was purged at nearly every genome position in one of the Chlorobiaceae populations over the course of three years, while at the same time multiple genes either swept through or were swept from this population. These patterns were consistent with a genome-wide selective sweep, a process predicted by the ‘ecotype model’ of diversification, but not previously observed in natural populations.« less

  17. Genome-wide Selective Sweeps in Natural Bacterial Populations Revealed by Time-series Metagenomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Leong-Keat; Bendall, Matthew L.; Malfatti, Stephanie

    2014-05-12

    Multiple evolutionary models have been proposed to explain the formation of genetically and ecologically distinct bacterial groups. Time-series metagenomics enables direct observation of evolutionary processes in natural populations, and if applied over a sufficiently long time frame, this approach could capture events such as gene-specific or genome-wide selective sweeps. Direct observations of either process could help resolve how distinct groups form in natural microbial assemblages. Here, from a three-year metagenomic study of a freshwater lake, we explore changes in single nucleotide polymorphism (SNP) frequencies and patterns of gene gain and loss in populations of Chlorobiaceae and Methylophilaceae. SNP analyses revealedmore » substantial genetic heterogeneity within these populations, although the degree of heterogeneity varied considerably among closely related, co-occurring Methylophilaceae populations. SNP allele frequencies, as well as the relative abundance of certain genes, changed dramatically over time in each population. Interestingly, SNP diversity was purged at nearly every genome position in one of the Chlorobiaceae populations over the course of three years, while at the same time multiple genes either swept through or were swept from this population. These patterns were consistent with a genome-wide selective sweep, a process predicted by the ecotype model? of diversification, but not previously observed in natural populations.« less

  18. Consequences of organ choice in describing bacterial pathogen assemblages in a rodent population.

    PubMed

    Villette, P; Afonso, E; Couval, G; Levret, A; Galan, M; Tatard, C; Cosson, J F; Giraudoux, P

    2017-10-01

    High-throughput sequencing technologies now allow for rapid cost-effective surveys of multiple pathogens in many host species including rodents, but it is currently unclear if the organ chosen for screening influences the number and identity of bacteria detected. We used 16S rRNA amplicon sequencing to identify bacterial pathogens in the heart, liver, lungs, kidneys and spleen of 13 water voles (Arvicola terrestris) collected in Franche-Comté, France. We asked if bacterial pathogen assemblages within organs are similar and if all five organs are necessary to detect all of the bacteria present in an individual animal. We identified 24 bacteria representing 17 genera; average bacterial richness for each organ ranged from 1·5 ± 0·4 (mean ± standard error) to 2·5 ± 0·4 bacteria/organ and did not differ significantly between organs. The average bacterial richness when organ assemblages were pooled within animals was 4·7 ± 0·6 bacteria/animal; Operational Taxonomic Unit accumulation analysis indicates that all five organs are required to obtain this. Organ type influences bacterial assemblage composition in a systematic way (PERMANOVA, 999 permutations, pseudo-F 4,51 = 1·37, P = 0·001). Our results demonstrate that the number of organs sampled influences the ability to detect bacterial pathogens, which can inform sampling decisions in public health and wildlife ecology.

  19. Coexisting bacterial populations responsible for multiphasic mineralization kinetics in soil. [Janthinobacterium sp. Rhodococcus sp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, S.K.; Gier, M.J.

    1990-09-01

    Experiments were conducted to study populations of indigenous microorganisms capable of mineralizing 2,4-dinitrophenol (DNP) in two soils. Previous kinetic analyses indicated the presence of two coexisting populations of DNP-mineralizing microorganisms in a forest soil (soil 1). Studies in which eucaryotic and procaryotic inhibitors were added to this soil indicated that both populations were bacterial. Most-probable-number counts with media containing different concentrations of DNP indicated that more bacteria could mineralize low concentrations of DNP than could metabolize high concentrations of it. Enrichments with varying concentrations of DNP and various combinations of inhibitors consistently resulted in the isolation of the same twomore » species of bacteria from soil 1. This soil contained a large number and variety of fungi, but no fungi capable of mineralizing DNP were isolated. The two bacterial isolates were identified as a Janthinobacterium sp. and a Rhodococcus sp. The Janthinobacterium sp. had a low {mu}{sub max} and a low K{sub m} for DNP mineralization, whereas the Rhodococcus sp. had much higher values for both parameters. These differences between the two species of bacteria were similar to differences seen when soil was incubated with different concentrations of DNP. Values for {mu}{sub max} from soil incubations were similar to {mu}{sub max} values obtained in pure culture studies. In contrast, K{sub s} and K{sub m} values showed greater variation between soil and pure culture studies.« less

  20. A quantitative test of population genetics using spatiogenetic patterns in bacterial colonies.

    PubMed

    Korolev, Kirill S; Xavier, João B; Nelson, David R; Foster, Kevin R

    2011-10-01

    It is widely accepted that population-genetics theory is the cornerstone of evolutionary analyses. Empirical tests of the theory, however, are challenging because of the complex relationships between space, dispersal, and evolution. Critically, we lack quantitative validation of the spatial models of population genetics. Here we combine analytics, on- and off-lattice simulations, and experiments with bacteria to perform quantitative tests of the theory. We study two bacterial species, the gut microbe Escherichia coli and the opportunistic pathogen Pseudomonas aeruginosa, and show that spatiogenetic patterns in colony biofilms of both species are accurately described by an extension of the one-dimensional stepping-stone model. We use one empirical measure, genetic diversity at the colony periphery, to parameterize our models and show that we can then accurately predict another key variable: the degree of short-range cell migration along an edge. Moreover, the model allows us to estimate other key parameters, including effective population size (density) at the expansion frontier. While our experimental system is a simplification of natural microbial community, we argue that it constitutes proof of principle that the spatial models of population genetics can quantitatively capture organismal evolution.

  1. Influence of zinc on bacterial populations and their proteolytic enzyme activities in freshwater environments: a cross-site comparison.

    PubMed

    Rasmussen, Lauren; Olapade, Ola A

    2016-04-01

    Temporal responses of indigenous bacterial populations and proteolytic enzyme (i.e., aminopeptidase) activities in the bacterioplankton assemblages from 3 separate freshwater environments were examined after exposure to various zinc (Zn) concentrations under controlled microcosm conditions. Zn concentrations (ranging from 0 to 10 μmol/L) were added to water samples collected from the Kalamazoo River, Rice Creek, and Huron River and examined for bacterial abundance and aminopeptidase activities at various time intervals over a 48 h incubation period in the dark. The results showed that the Zn concentrations did not significantly influence total bacterial counts directly; however, aminopeptidase activities varied significantly to increasing zinc treatments over time. Also, analysis of variance and linear regression analyses revealed significant positive relationships between bacterial numbers and their hydrolytic enzyme activities, suggesting that both probably co-vary with increasing Zn concentrations in aquatic systems. The results from this study serve as additional evidence of the ecological role of Zn as an extracellular peptidase cofactor on the dynamics of bacterial assemblages in aquatic environments.

  2. Association between Toll-like receptor 9 gene polymorphisms and risk of bacterial meningitis in a Chinese population.

    PubMed

    Wang, X H; Shi, H P; Li, F J

    2016-07-25

    We determined whether two common single nucleotide polymorphisms (SNPs) in the Toll-like receptor 9 gene (TLR9) (TLR9+2848 rs352140 and TLR9-1237 rs5743836) influenced susceptibility to bacterial meningitis in a Chinese population. The study comprised 126 patients with bacterial meningitis and 252 control subjects, all of whom were recruited from the Tuberculosis Hospital of Shanxi Province. Genotyping of TLR9+2848 rs352140 and TLR9-1237 rs5743836 was performed by polymerase chain reaction coupled with restriction fragment length polymorphism. Using logistic regression analysis, we found that individuals with the AA genotype were associated with an increased risk of bacterial meningitis compared with those with the GG genotype (OR = 0.43, 95%CI = 0.19-0.95; P = 0.03). In a recessive model, the AA genotype was correlated with an elevated risk of bacterial meningitis compared with the GG+GA genotype (OR = 0.49, 95%CI = 0.22-0.99; P = 0.04). However, no significant differences were observed in the association between the TLR9-1237 rs5743836 polymorphism and the risk of bacterial meningitis in the codominant, dominant, or recessive models. In conclusion, the results of our study suggest an association between the TLR9+2848 polymorphism and a reduced risk of bacterial meningitis in the codominant and recessive models.

  3. Estimate of blow-up and relaxation time for self-gravitating Brownian particles and bacterial populations.

    PubMed

    Chavanis, P-H; Sire, C

    2004-08-01

    We determine an exact asymptotic expression of the blow-up time t(coll) for self-gravitating Brownian particles or bacterial populations (chemotaxis) close to the critical point in d=3. We show that t(coll) = t(*) (eta- eta(c) )(-1/2) with t(*) =0.917 677 02..., where eta represents the inverse temperature (for Brownian particles) or the mass (for bacterial colonies), and eta(c) is the critical value of eta above which the system blows up. This result is in perfect agreement with the numerical solution of the Smoluchowski-Poisson system. We also determine the exact asymptotic expression of the relaxation time close to but above the critical temperature and derive a large time asymptotic expansion for the density profile exactly at the critical point.

  4. Agricultural Freshwater Pond Supports Diverse and Dynamic Bacterial and Viral Populations

    PubMed Central

    Chopyk, Jessica; Allard, Sarah; Nasko, Daniel J.; Bui, Anthony; Mongodin, Emmanuel F.; Sapkota, Amy R.

    2018-01-01

    Agricultural ponds have a great potential as a means of capture and storage of water for irrigation. However, pond topography (small size, shallow depth) leaves them susceptible to environmental, agricultural, and anthropogenic exposures that may influence microbial dynamics. Therefore, the aim of this project was to characterize the bacterial and viral communities of pond water in the Mid-Atlantic United States with a focus on the late season (October–December), where decreasing temperature and nutrient levels can affect the composition of microbial communities. Ten liters of freshwater from an agricultural pond were sampled monthly, and filtered sequentially through 1 and 0.2 μm filter membranes. Total DNA was then extracted from each filter, and the bacterial communities were characterized using 16S rRNA gene sequencing. The remaining filtrate was chemically concentrated for viruses, DNA-extracted, and shotgun sequenced. Bacterial community profiling showed significant fluctuations over the sampling period, corresponding to changes in the condition of the pond freshwater (e.g., pH, nutrient load). In addition, there were significant differences in the alpha-diversity and core bacterial operational taxonomic units (OTUs) between water fractions filtered through different pore sizes. The viral fraction was dominated by tailed bacteriophage of the order Caudovirales, largely those of the Siphoviridae family. Moreover, while present, genes involved in virulence/antimicrobial resistance were not enriched within the viral fraction during the study period. Instead, the viral functional profile was dominated by phage associated proteins, as well as those related to nucleotide production. Overall, these data suggest that agricultural pond water harbors a diverse core of bacterial and bacteriophage species whose abundance and composition are influenced by environmental variables characteristic of pond topology and the late season. PMID:29740420

  5. Biomimicry of quorum sensing using bacterial lifecycle model.

    PubMed

    Niu, Ben; Wang, Hong; Duan, Qiqi; Li, Li

    2013-01-01

    Recent microbiologic studies have shown that quorum sensing mechanisms, which serve as one of the fundamental requirements for bacterial survival, exist widely in bacterial intra- and inter-species cell-cell communication. Many simulation models, inspired by the social behavior of natural organisms, are presented to provide new approaches for solving realistic optimization problems. Most of these simulation models follow population-based modelling approaches, where all the individuals are updated according to the same rules. Therefore, it is difficult to maintain the diversity of the population. In this paper, we present a computational model termed LCM-QS, which simulates the bacterial quorum-sensing (QS) mechanism using an individual-based modelling approach under the framework of Agent-Environment-Rule (AER) scheme, i.e. bacterial lifecycle model (LCM). LCM-QS model can be classified into three main sub-models: chemotaxis with QS sub-model, reproduction and elimination sub-model and migration sub-model. The proposed model is used to not only imitate the bacterial evolution process at the single-cell level, but also concentrate on the study of bacterial macroscopic behaviour. Comparative experiments under four different scenarios have been conducted in an artificial 3-D environment with nutrients and noxious distribution. Detailed study on bacterial chemotatic processes with quorum sensing and without quorum sensing are compared. By using quorum sensing mechanisms, artificial bacteria working together can find the nutrient concentration (or global optimum) quickly in the artificial environment. Biomimicry of quorum sensing mechanisms using the lifecycle model allows the artificial bacteria endowed with the communication abilities, which are essential to obtain more valuable information to guide their search cooperatively towards the preferred nutrient concentrations. It can also provide an inspiration for designing new swarm intelligence optimization algorithms

  6. Biomimicry of quorum sensing using bacterial lifecycle model

    PubMed Central

    2013-01-01

    Background Recent microbiologic studies have shown that quorum sensing mechanisms, which serve as one of the fundamental requirements for bacterial survival, exist widely in bacterial intra- and inter-species cell-cell communication. Many simulation models, inspired by the social behavior of natural organisms, are presented to provide new approaches for solving realistic optimization problems. Most of these simulation models follow population-based modelling approaches, where all the individuals are updated according to the same rules. Therefore, it is difficult to maintain the diversity of the population. Results In this paper, we present a computational model termed LCM-QS, which simulates the bacterial quorum-sensing (QS) mechanism using an individual-based modelling approach under the framework of Agent-Environment-Rule (AER) scheme, i.e. bacterial lifecycle model (LCM). LCM-QS model can be classified into three main sub-models: chemotaxis with QS sub-model, reproduction and elimination sub-model and migration sub-model. The proposed model is used to not only imitate the bacterial evolution process at the single-cell level, but also concentrate on the study of bacterial macroscopic behaviour. Comparative experiments under four different scenarios have been conducted in an artificial 3-D environment with nutrients and noxious distribution. Detailed study on bacterial chemotatic processes with quorum sensing and without quorum sensing are compared. By using quorum sensing mechanisms, artificial bacteria working together can find the nutrient concentration (or global optimum) quickly in the artificial environment. Conclusions Biomimicry of quorum sensing mechanisms using the lifecycle model allows the artificial bacteria endowed with the communication abilities, which are essential to obtain more valuable information to guide their search cooperatively towards the preferred nutrient concentrations. It can also provide an inspiration for designing new swarm

  7. Bacteriophages and Bacterial Plant Diseases

    PubMed Central

    Buttimer, Colin; McAuliffe, Olivia; Ross, R. P.; Hill, Colin; O’Mahony, Jim; Coffey, Aidan

    2017-01-01

    Losses in crop yields due to disease need to be reduced in order to meet increasing global food demands associated with growth in the human population. There is a well-recognized need to develop new environmentally friendly control strategies to combat bacterial crop disease. Current control measures involving the use of traditional chemicals or antibiotics are losing their efficacy due to the natural development of bacterial resistance to these agents. In addition, there is an increasing awareness that their use is environmentally unfriendly. Bacteriophages, the viruses of bacteria, have received increased research interest in recent years as a realistic environmentally friendly means of controlling bacterial diseases. Their use presents a viable control measure for a number of destructive bacterial crop diseases, with some phage-based products already becoming available on the market. Phage biocontrol possesses advantages over chemical controls in that tailor-made phage cocktails can be adapted to target specific disease-causing bacteria. Unlike chemical control measures, phage mixtures can be easily adapted for bacterial resistance which may develop over time. In this review, we will examine the progress and challenges for phage-based disease biocontrol in food crops. PMID:28163700

  8. Bacterial Population Changes in a Membrane Bioreactor for Graywater Treatment Monitored by Denaturing Gradient Gel Electrophoretic Analysis of 16S rRNA Gene Fragments

    PubMed Central

    Stamper, David M.; Walch, Marianne; Jacobs, Rachel N.

    2003-01-01

    The bacterial population of a graywater treatment system was monitored over the course of 100 days, along with several wastewater biochemical parameters. The graywater treatment system employed an 1,800-liter membrane bioreactor (MBR) to process the waste, with essentially 100% recycling of the biomass. Graywater feed consisting of 10% galley water and 90% laundry water, selected to approximate the graywater composition on board U.S. Navy ships, was collected offsite. Five-day biological oxygen demand (BOD5), oils and greases (O/G), nitrogen, and phosphorus were monitored in the feed and were found to vary greatly day to day. Changes in the bacterial population were monitored by PCR amplification of region 332 to 518 (Escherichia coli numbering) of the 16S rRNA gene and denaturing gradient gel electrophoresis (DGGE) analysis of the resultant PCR products. DGGE analysis indicated a diverse and unstable bacterial population throughout the 100-day period, with spikes in feed strength causing significant changes in community structure. Long-term similarity between the communities was 0 to 25%, depending on the method of analysis. In spite of the unstable bacterial population, the MBR system was able to meet effluent quality parameters approximately 90% of the time. PMID:12571004

  9. Bacterial population changes in a membrane bioreactor for graywater treatment monitored by denaturing gradient gel electrophoretic analysis of 16S rRNA gene fragments.

    PubMed

    Stamper, David M; Walch, Marianne; Jacobs, Rachel N

    2003-02-01

    The bacterial population of a graywater treatment system was monitored over the course of 100 days, along with several wastewater biochemical parameters. The graywater treatment system employed an 1,800-liter membrane bioreactor (MBR) to process the waste, with essentially 100% recycling of the biomass. Graywater feed consisting of 10% galley water and 90% laundry water, selected to approximate the graywater composition on board U.S. Navy ships, was collected offsite. Five-day biological oxygen demand (BOD(5)), oils and greases (O/G), nitrogen, and phosphorus were monitored in the feed and were found to vary greatly day to day. Changes in the bacterial population were monitored by PCR amplification of region 332 to 518 (Escherichia coli numbering) of the 16S rRNA gene and denaturing gradient gel electrophoresis (DGGE) analysis of the resultant PCR products. DGGE analysis indicated a diverse and unstable bacterial population throughout the 100-day period, with spikes in feed strength causing significant changes in community structure. Long-term similarity between the communities was 0 to 25%, depending on the method of analysis. In spite of the unstable bacterial population, the MBR system was able to meet effluent quality parameters approximately 90% of the time.

  10. Bacterial population in intestines of the black tiger shrimp (Penaeus monodon) under different growth stages.

    PubMed

    Rungrassamee, Wanilada; Klanchui, Amornpan; Chaiyapechara, Sage; Maibunkaew, Sawarot; Tangphatsornruang, Sithichoke; Jiravanichpaisal, Pikul; Karoonuthaisiri, Nitsara

    2013-01-01

    Intestinal bacterial communities in aquaculture have been drawn to attention due to potential benefit to their hosts. To identify core intestinal bacteria in the black tiger shrimp (Penaeus monodon), bacterial populations of disease-free shrimp were characterized from intestines of four developmental stages (15-day-old post larvae (PL15), 1- (J1), 2- (J2), and 3-month-old (J3) juveniles) using pyrosequencing, real-time PCR and denaturing gradient gel electrophoresis (DGGE) approaches. A total of 25,121 pyrosequencing reads (reading length = 442±24 bases) were obtained, which were categorized by barcode for PL15 (7,045 sequences), J1 (3,055 sequences), J2 (13,130 sequences) and J3 (1,890 sequences). Bacteria in the phyla Bacteroides, Firmicutes and Proteobacteria were found in intestines at all four growth stages. There were 88, 14, 27, and 20 bacterial genera associated with the intestinal tract of PL15, J1, J2 and J3, respectively. Pyrosequencing analysis revealed that Proteobacteria (class Gammaproteobacteria) was a dominant bacteria group with a relative abundance of 89% for PL15 and 99% for J1, J2 and J3. Real-time PCR assay also confirmed that Gammaproteobacteria had the highest relative abundance in intestines from all growth stages. Intestinal bacterial communities from the three juvenile stages were more similar to each other than that of the PL shrimp based on PCA analyses of pyrosequencing results and their DGGE profiles. This study provides descriptive bacterial communities associated to the black tiger shrimp intestines during these growth development stages in rearing facilities.

  11. Role of quorum sensing in bacterial infections

    PubMed Central

    Castillo-Juárez, Israel; Maeda, Toshinari; Mandujano-Tinoco, Edna Ayerim; Tomás, María; Pérez-Eretza, Berenice; García-Contreras, Silvia Julieta; Wood, Thomas K; García-Contreras, Rodolfo

    2015-01-01

    Quorum sensing (QS) is cell communication that is widely used by bacterial pathogens to coordinate the expression of several collective traits, including the production of multiple virulence factors, biofilm formation, and swarming motility once a population threshold is reached. Several lines of evidence indicate that QS enhances virulence of bacterial pathogens in animal models as well as in human infections; however, its relative importance for bacterial pathogenesis is still incomplete. In this review, we discuss the present evidence from in vitro and in vivo experiments in animal models, as well as from clinical studies, that link QS systems with human infections. We focus on two major QS bacterial models, the opportunistic Gram negative bacteria Pseudomonas aeruginosa and the Gram positive Staphylococcus aureus, which are also two of the main agents responsible of nosocomial and wound infections. In addition, QS communication systems in other bacterial, eukaryotic pathogens, and even immune and cancer cells are also reviewed, and finally, the new approaches proposed to combat bacterial infections by the attenuation of their QS communication systems and virulence are also discussed. PMID:26244150

  12. Population Dynamics of a Salmonella Lytic Phage and Its Host: Implications of the Host Bacterial Growth Rate in Modelling

    PubMed Central

    Santos, Sílvio B.; Carvalho, Carla; Azeredo, Joana; Ferreira, Eugénio C.

    2014-01-01

    The prevalence and impact of bacteriophages in the ecology of bacterial communities coupled with their ability to control pathogens turn essential to understand and predict the dynamics between phage and bacteria populations. To achieve this knowledge it is essential to develop mathematical models able to explain and simulate the population dynamics of phage and bacteria. We have developed an unstructured mathematical model using delay-differential equations to predict the interactions between a broad-host-range Salmonella phage and its pathogenic host. The model takes into consideration the main biological parameters that rule phage-bacteria interactions likewise the adsorption rate, latent period, burst size, bacterial growth rate, and substrate uptake rate, among others. The experimental validation of the model was performed with data from phage-interaction studies in a 5 L bioreactor. The key and innovative aspect of the model was the introduction of variations in the latent period and adsorption rate values that are considered as constants in previous developed models. By modelling the latent period as a normal distribution of values and the adsorption rate as a function of the bacterial growth rate it was possible to accurately predict the behaviour of the phage-bacteria population. The model was shown to predict simulated data with a good agreement with the experimental observations and explains how a lytic phage and its host bacteria are able to coexist. PMID:25051248

  13. Temporal Relationships Exist Between Cecum, Ileum, and Litter Bacterial Microbiomes in a Commercial Turkey Flock, and Subtherapeutic Penicillin Treatment Impacts Ileum Bacterial Community Establishment

    PubMed Central

    Danzeisen, Jessica L.; Clayton, Jonathan B.; Huang, Hu; Knights, Dan; McComb, Brian; Hayer, Shivdeep S.; Johnson, Timothy J.

    2015-01-01

    Gut health is paramount for commercial poultry production, and improved methods to assess gut health are critically needed to better understand how the avian gastrointestinal tract matures over time. One important aspect of gut health is the totality of bacterial populations inhabiting different sites of the avian gastrointestinal tract, and associations of these populations with the poultry farm environment, since these bacteria are thought to drive metabolism and prime the developing host immune system. In this study, a single flock of commercial turkeys was followed over the course of 12 weeks to examine bacterial microbiome inhabiting the ceca, ileum, and corresponding poultry litter. Furthermore, the effects of low-dose, growth-promoting penicillin treatment (50 g/ton) in feed on the ileum bacterial microbiome were also examined during the early brood period. The cecum and ileum bacterial communities of turkeys were distinct, yet shifted in parallel to one another over time during bird maturation. Corresponding poultry litter was also distinct yet more closely represented the ileal bacterial populations than cecal bacterial populations, and also changed parallel to ileum bacterial populations over time. Penicillin applied at low dose in feed significantly enhanced early weight gain in commercial poults, and this correlated with predictable shifts in the ileum bacterial populations in control versus treatment groups. Overall, this study identified the dynamics of the turkey gastrointestinal microbiome during development, correlations between bacterial populations in the gastrointestinal tract and the litter environment, and the impact of low-dose penicillin on modulation of bacterial communities in the ileum. Such modulations provide a target for alternatives to low-dose antibiotics. PMID:26664983

  14. EFFECT OF SITE ON BACTERIAL POPULATIONS IN THE SAPWOOD OF COARSE WOODY DEBRIS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, Emma, G.,; Waldrop, Thomas, A.; McElreath, Susan, D.

    1998-01-01

    Porter, Emma G., T.A. Waldrop, Susan D. McElreath, and Frank H. Tainter. 1998. Effect of site on bacterial populations in the sapwood of coarse woody debris. Pp. 480-484. In: Proc. 9th Bienn. South. Silv. Res. Conf. T.A. Waldrop (ed). USDA Forest Service, Southern Research Station. Gen. Tech. Rep. SRS-20. Abstract: Coarse woody debris (CWD) is an important structural component of southeastern forest ecosystems, yet little is known about its dynamics in these systems. This project identified bacterial populations associated with CWD and their dynamics across landscape ecosystem classification (LEC) units. Bolts of red oak and loblolly pine were placed onmore » plots at each of three hydric, mesic, and xeric sites at the Savannah River Station. After the controls were processed, samples were taken at four intervals over a 16-week period. Samples were ground within an anaerobe chamber using nonselective media. Aerobic and facultative anaerobic bacteria were identified using the Biolog system and the anaerobes were identified using the API 20A system. Major genera isolated were: Bacillus, Buttiauxella, Cedecea, Enterobacter, Erwinia, Escherichia, Klebsiella, Pantoea, Pseudomonas, Serratia, and Xanthomonas. The mean total isolates were determined by LEC units and sample intervals. Differences occurred between the sample intervals with total isolates of 6.67, 13.33, 10.17, and 9.50 at 3, 6, 10, and 16 weeks, respectively. No significant differences in the numbers of bacteria isolated were found between LEC units.« less

  15. Emergence of Competitive Dominant Ammonia-Oxidizing Bacterial Populations in a Full-Scale Industrial Wastewater Treatment Plant

    PubMed Central

    Layton, Alice C.; Dionisi, Hebe; Kuo, H.-W.; Robinson, Kevin G.; Garrett, Victoria M.; Meyers, Arthur; Sayler, Gary S.

    2005-01-01

    Ammonia-oxidizing bacterial populations in an industrial wastewater treatment plant were investigated with amoA and 16S rRNA gene real-time PCR assays. Nitrosomonas nitrosa initially dominated, but over time RI-27-type ammonia oxidizers, also within the Nitrosomonas communis lineage, increased from below detection to codominance. This shift occurred even though nitrification remained constant. PMID:15691975

  16. Variation in bacterial endosymbionts associated with the date palm hopper, Ommatissus lybicus populations.

    PubMed

    Karimi, S; Izadi, H; Askari Seyahooei, M; Bagheri, A; Khodaygan, P

    2018-04-01

    The date palm hopper, Ommatissus lybicus, is a key pest of the date palm, which is expected to be comprised of many allopatric populations. The current study was carried out to determine bacterial endosymbiont diversity in the different populations of this pest. Ten date palm hopper populations were collected from the main date palm growing regions in Iran and an additional four samples from Pakistan, Oman, Egypt and Tunisia for detection of primary and secondary endosymbionts using polymerase chain reaction (PCR) assay with their specific primers. The PCR products were directly sequenced and edited using SeqMan software. The consensus sequences were subjected to a BLAST similarity search. The results revealed the presence of 'Candidatus Sulcia muelleri' (primary endosymbiont) and Wolbachia, Arsenophonus and Enterobacter (secondary endosymbionts) in all populations. This assay failed to detect 'Candidatus Nasuia deltocephalinicola' and Serratia in these populations. 'Ca. S. muelleri' exhibited a 100% infection frequency in populations and Wolbachia, Arsenophonus and Enterobacter demonstrated 100, 93.04 and 97.39% infection frequencies, respectively. The infection rate of Arsenophonus and Enterobacter ranged from 75 to 100% and 62.5 to 100%, respectively, in different populations of the insect. The results demonstrated multiple infections by 'Ca. Sulcia muelleri', Wolbachia, Arsenophonus and Enterobacter in the populations and may suggest significant roles for these endosymbionts on date palm hopper population fitness. This study provides an insight to endosymbiont variation in the date palm hopper populations; however, further investigation is needed to examine how these endosymbionts may affect host fitness.

  17. Precise, High-throughput Analysis of Bacterial Growth.

    PubMed

    Kurokawa, Masaomi; Ying, Bei-Wen

    2017-09-19

    Bacterial growth is a central concept in the development of modern microbial physiology, as well as in the investigation of cellular dynamics at the systems level. Recent studies have reported correlations between bacterial growth and genome-wide events, such as genome reduction and transcriptome reorganization. Correctly analyzing bacterial growth is crucial for understanding the growth-dependent coordination of gene functions and cellular components. Accordingly, the precise quantitative evaluation of bacterial growth in a high-throughput manner is required. Emerging technological developments offer new experimental tools that allow updates of the methods used for studying bacterial growth. The protocol introduced here employs a microplate reader with a highly optimized experimental procedure for the reproducible and precise evaluation of bacterial growth. This protocol was used to evaluate the growth of several previously described Escherichia coli strains. The main steps of the protocol are as follows: the preparation of a large number of cell stocks in small vials for repeated tests with reproducible results, the use of 96-well plates for high-throughput growth evaluation, and the manual calculation of two major parameters (i.e., maximal growth rate and population density) representing the growth dynamics. In comparison to the traditional colony-forming unit (CFU) assay, which counts the cells that are cultured in glass tubes over time on agar plates, the present method is more efficient and provides more detailed temporal records of growth changes, but has a stricter detection limit at low population densities. In summary, the described method is advantageous for the precise and reproducible high-throughput analysis of bacterial growth, which can be used to draw conceptual conclusions or to make theoretical observations.

  18. Evolution of bacterial virulence.

    PubMed

    Diard, Médéric; Hardt, Wolf-Dietrich

    2017-09-01

    Bacterial virulence is highly dynamic and context-dependent. For this reason, it is challenging to predict how molecular changes affect the growth of a pathogen in a host and its spread in host population. Two schools of thought have taken quite different directions to decipher the underlying principles of bacterial virulence. While molecular infection biology is focusing on the basic mechanisms of the pathogen-host interaction, evolution biology takes virulence as one of several parameters affecting pathogen spread in a host population. We review both approaches and discuss how they can complement each other in order to obtain a comprehensive understanding of bacterial virulence, its emergence, maintenance and evolution. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. The effect of wheat prebiotics on the gut bacterial population and iron status of iron deficient broiler chickens

    PubMed Central

    2014-01-01

    Background Currently, there is a lot of interest in improving gut health, and consequently increasing Fe absorption, by managing the colonic microbial population. This is traditionally done by the consumption of probiotics, live microbial food supplements. However, an alternative, and often very effective approach, is the consumption of food ingredients known as prebiotics. Fructans and arabinoxylans are naturally occurring non-digestible oligosaccharides in wheat that exhibit prebiotic properties and may enhance intestinal iron (Fe) absorption. The aim of this study was to assess the effect of prebiotics from wheat on Fe bioavailability in vitro (Caco-2 cells) and in vivo (broiler chickens, Gallus gallus). Methods In the current study, the effect of intra-amniotic administration of wheat samples extracts at 17 d of embryonic incubation on the Fe status and possible changes in the bacterial population in intestinal content of broiler hatchlings were investigated. A group of 144 eggs were injected with the specified solution (1 ml per egg) into the amniotic fluid. Immediately after hatch (21 d) and from each treatment group, 10 chicks were euthanized and their small intestine, liver and cecum were removed for relative mRNA abundance of intestinal Fe related transporters, relative liver ferritin amounts and bacterial analysis of cecal content, respectively. Results The in vivo results are in agreement with the in vitro observations, showing no differences in the hatchling Fe status between the treatment groups, as Fe bioavailability was not increased in vitro and no significant differences were measured in the intestinal expression of DMT1, Ferroportin and DcytB in vivo. However, there was significant variation in relative amounts of bifidobacteria and lactobacilli in the intestinal content between the treatments groups, with generally more bifidobacteria being produced with increased prebiotic content. Conclusions In this study we showed that prebiotics naturally

  20. The effect of wheat prebiotics on the gut bacterial population and iron status of iron deficient broiler chickens.

    PubMed

    Tako, Elad; Glahn, Raymond P; Knez, Marija; Stangoulis, James Cr

    2014-06-13

    Currently, there is a lot of interest in improving gut health, and consequently increasing Fe absorption, by managing the colonic microbial population. This is traditionally done by the consumption of probiotics, live microbial food supplements. However, an alternative, and often very effective approach, is the consumption of food ingredients known as prebiotics. Fructans and arabinoxylans are naturally occurring non-digestible oligosaccharides in wheat that exhibit prebiotic properties and may enhance intestinal iron (Fe) absorption. The aim of this study was to assess the effect of prebiotics from wheat on Fe bioavailability in vitro (Caco-2 cells) and in vivo (broiler chickens, Gallus gallus). In the current study, the effect of intra-amniotic administration of wheat samples extracts at 17 d of embryonic incubation on the Fe status and possible changes in the bacterial population in intestinal content of broiler hatchlings were investigated. A group of 144 eggs were injected with the specified solution (1 ml per egg) into the amniotic fluid. Immediately after hatch (21 d) and from each treatment group, 10 chicks were euthanized and their small intestine, liver and cecum were removed for relative mRNA abundance of intestinal Fe related transporters, relative liver ferritin amounts and bacterial analysis of cecal content, respectively. The in vivo results are in agreement with the in vitro observations, showing no differences in the hatchling Fe status between the treatment groups, as Fe bioavailability was not increased in vitro and no significant differences were measured in the intestinal expression of DMT1, Ferroportin and DcytB in vivo. However, there was significant variation in relative amounts of bifidobacteria and lactobacilli in the intestinal content between the treatments groups, with generally more bifidobacteria being produced with increased prebiotic content. In this study we showed that prebiotics naturally found in wheat grains/bread products

  1. Bacterial Population in Intestines of the Black Tiger Shrimp (Penaeus monodon) under Different Growth Stages

    PubMed Central

    Rungrassamee, Wanilada; Klanchui, Amornpan; Chaiyapechara, Sage; Maibunkaew, Sawarot; Tangphatsornruang, Sithichoke; Jiravanichpaisal, Pikul; Karoonuthaisiri, Nitsara

    2013-01-01

    Intestinal bacterial communities in aquaculture have been drawn to attention due to potential benefit to their hosts. To identify core intestinal bacteria in the black tiger shrimp (Penaeus monodon), bacterial populations of disease-free shrimp were characterized from intestines of four developmental stages (15-day-old post larvae (PL15), 1- (J1), 2- (J2), and 3-month-old (J3) juveniles) using pyrosequencing, real-time PCR and denaturing gradient gel electrophoresis (DGGE) approaches. A total of 25,121 pyrosequencing reads (reading length = 442±24 bases) were obtained, which were categorized by barcode for PL15 (7,045 sequences), J1 (3,055 sequences), J2 (13,130 sequences) and J3 (1,890 sequences). Bacteria in the phyla Bacteroides, Firmicutes and Proteobacteria were found in intestines at all four growth stages. There were 88, 14, 27, and 20 bacterial genera associated with the intestinal tract of PL15, J1, J2 and J3, respectively. Pyrosequencing analysis revealed that Proteobacteria (class Gammaproteobacteria) was a dominant bacteria group with a relative abundance of 89% for PL15 and 99% for J1, J2 and J3. Real-time PCR assay also confirmed that Gammaproteobacteria had the highest relative abundance in intestines from all growth stages. Intestinal bacterial communities from the three juvenile stages were more similar to each other than that of the PL shrimp based on PCA analyses of pyrosequencing results and their DGGE profiles. This study provides descriptive bacterial communities associated to the black tiger shrimp intestines during these growth development stages in rearing facilities. PMID:23577162

  2. Structure and Origin of Xanthomonas arboricola pv. pruni Populations Causing Bacterial Spot of Stone Fruit Trees in Western Europe.

    PubMed

    Boudon, Sylvain; Manceau, Charles; Nottéghem, Jean-Loup

    2005-09-01

    ABSTRACT Xanthomonas arboricola pv. pruni, the causal agent of bacterial spot on stone fruit, was found in 1995 in several orchards in southeastern France. We studied population genetics of this emerging pathogen in comparison with populations from the United States, where the disease was first described, and from Italy, where the disease has occurred since 1920. Four housekeeping genes (atpD, dnaK, efp, and glnA) and the intergenic transcribed spacer region were sequenced from a total of 3.9 kb of sequences, and fluorescent amplified fragment length polymorphism (FAFLP) analysis was performed. A collection of 64 X. arboricola pv. pruni strains, including 23 strains from France, was analyzed. The X. arboricola pv. pruni population had a low diversity because no sequence polymorphisms were observed. Population diversity revealed by FAFLP was lower for the West European population than for the American population. The same bacterial genotype was detected from five countries on three continents, a geographic distribution that can be explained by human-aided migration of bacteria. Our data support the hypothesis that the pathogen originated in the United States and subsequently has been disseminated to other stone-fruit-growing regions of the world. In France, emergence of this disease was due to a recent introduction of the most prevalent genotype of the bacterium found worldwide.

  3. Selective labelling and eradication of antibiotic-tolerant bacterial populations in Pseudomonas aeruginosa biofilms

    PubMed Central

    Chua, Song Lin; Yam, Joey Kuok Hoong; Hao, Piliang; Adav, Sunil S.; Salido, May Margarette; Liu, Yang; Givskov, Michael; Sze, Siu Kwan; Tolker-Nielsen, Tim; Yang, Liang

    2016-01-01

    Drug resistance and tolerance greatly diminish the therapeutic potential of antibiotics against pathogens. Antibiotic tolerance by bacterial biofilms often leads to persistent infections, but its mechanisms are unclear. Here we use a proteomics approach, pulsed stable isotope labelling with amino acids (pulsed-SILAC), to quantify newly expressed proteins in colistin-tolerant subpopulations of Pseudomonas aeruginosa biofilms (colistin is a ‘last-resort' antibiotic against multidrug-resistant Gram-negative pathogens). Migration is essential for the formation of colistin-tolerant biofilm subpopulations, with colistin-tolerant cells using type IV pili to migrate onto the top of the colistin-killed biofilm. The colistin-tolerant cells employ quorum sensing (QS) to initiate the formation of new colistin-tolerant subpopulations, highlighting multicellular behaviour in antibiotic tolerance development. The macrolide erythromycin, which has been previously shown to inhibit the motility and QS of P. aeruginosa, boosts biofilm eradication by colistin. Our work provides insights on the mechanisms underlying the formation of antibiotic-tolerant populations in bacterial biofilms and indicates research avenues for designing more efficient treatments against biofilm-associated infections. PMID:26892159

  4. Selective labelling and eradication of antibiotic-tolerant bacterial populations in Pseudomonas aeruginosa biofilms.

    PubMed

    Chua, Song Lin; Yam, Joey Kuok Hoong; Hao, Piliang; Adav, Sunil S; Salido, May Margarette; Liu, Yang; Givskov, Michael; Sze, Siu Kwan; Tolker-Nielsen, Tim; Yang, Liang

    2016-02-19

    Drug resistance and tolerance greatly diminish the therapeutic potential of antibiotics against pathogens. Antibiotic tolerance by bacterial biofilms often leads to persistent infections, but its mechanisms are unclear. Here we use a proteomics approach, pulsed stable isotope labelling with amino acids (pulsed-SILAC), to quantify newly expressed proteins in colistin-tolerant subpopulations of Pseudomonas aeruginosa biofilms (colistin is a 'last-resort' antibiotic against multidrug-resistant Gram-negative pathogens). Migration is essential for the formation of colistin-tolerant biofilm subpopulations, with colistin-tolerant cells using type IV pili to migrate onto the top of the colistin-killed biofilm. The colistin-tolerant cells employ quorum sensing (QS) to initiate the formation of new colistin-tolerant subpopulations, highlighting multicellular behaviour in antibiotic tolerance development. The macrolide erythromycin, which has been previously shown to inhibit the motility and QS of P. aeruginosa, boosts biofilm eradication by colistin. Our work provides insights on the mechanisms underlying the formation of antibiotic-tolerant populations in bacterial biofilms and indicates research avenues for designing more efficient treatments against biofilm-associated infections.

  5. Stable Regulation of Cell Cycle Events in Mycobacteria: Insights From Inherently Heterogeneous Bacterial Populations.

    PubMed

    Logsdon, Michelle M; Aldridge, Bree B

    2018-01-01

    Model bacteria, such as E. coli and B. subtilis , tightly regulate cell cycle progression to achieve consistent cell size distributions and replication dynamics. Many of the hallmark features of these model bacteria, including lateral cell wall elongation and symmetric growth and division, do not occur in mycobacteria. Instead, mycobacterial growth is characterized by asymmetric polar growth and division. This innate asymmetry creates unequal birth sizes and growth rates for daughter cells with each division, generating a phenotypically heterogeneous population. Although the asymmetric growth patterns of mycobacteria lead to a larger variation in birth size than typically seen in model bacterial populations, the cell size distribution is stable over time. Here, we review the cellular mechanisms of growth, division, and cell cycle progression in mycobacteria in the face of asymmetry and inherent heterogeneity. These processes coalesce to control cell size. Although Mycobacterium smegmatis and Mycobacterium bovis Bacillus Calmette-Guérin (BCG) utilize a novel model of cell size control, they are similar to previously studied bacteria in that initiation of DNA replication is a key checkpoint for cell division. We compare the regulation of DNA replication initiation and strategies used for cell size homeostasis in mycobacteria and model bacteria. Finally, we review the importance of cellular organization and chromosome segregation relating to the physiology of mycobacteria and consider how new frameworks could be applied across the wide spectrum of bacterial diversity.

  6. Effect of Hydrogenase and Mixed Sulfate-Reducing Bacterial Populations on the Corrosion of Steel

    PubMed Central

    Bryant, Richard D.; Jansen, Wayne; Boivin, Joe; Laishley, Edward J.; Costerton, J. William

    1991-01-01

    The importance of hydrogenase activity to corrosion of steel was assessed by using mixed populations of sulfate-reducing bacteria isolated from corroded and noncorroded oil pipelines. Biofilms which developed on the steel studs contained detectable numbers of sulfate-reducing bacteria (104 increasing to 107/0.5 cm2). However, the biofilm with active hydrogenase activity (i.e., corrosion pipeline organisms), as measured by a semiquantitative commercial kit, was associated with a significantly higher corrosion rate (7.79 mm/year) relative to noncorrosive biofilm (0.48 mm/year) with 105 sulfate-reducing bacteria per 0.5 cm2 but no measurable hydrogenase activity. The importance of hydrogenase and the microbial sulfate-reducing bacterial population making up the biofilm are discussed relative to biocorrosion. Images PMID:16348560

  7. Bacterial meningitis in diabetes patients: a population-based prospective study

    PubMed Central

    van Veen, Kiril E. B.; Brouwer, Matthijs C.; van der Ende, Arie; van de Beek, Diederik

    2016-01-01

    Diabetes mellitus is associated with increased infection rates. We studied clinical features and outcome of community-acquired bacterial meningitis in diabetes patients. Patients were selected from a nationwide, prospective cohort on community-acquired bacterial meningitis performed from March 2006 to October 2014. Data on patient history, symptoms and signs on admission, treatment, and outcome were prospectively collected. A total of 183 of 1447 episodes (13%) occurred in diabetes patients. The incidence of bacterial meningitis in diabetes patients was 3.15 per 100,000 patients per year and the risk of acquiring bacterial meningitis was 2.2-fold higher for diabetes patients. S. pneumoniae was the causative organism in 139 of 183 episodes (76%) and L. monocytogenes in 11 of 183 episodes (6%). Outcome was unfavourable in 82 of 183 episodes (45%) and in 43 of 183 episodes (23%) the patient died. Diabetes was associated with death with an odds ratio of 1.63 (95% CI 1.12–2.37, P = 0.011), which remained after adjusting for known predictors of death in a multivariable analysis (OR 1.98 [95% CI 1.13–3.48], P = 0.017). In conclusion, diabetes is associated with a 2-fold higher risk of acquiring bacterial meningitis. Diabetes is a strong independent risk factor for death in community-acquired adult bacterial meningitis. PMID:27845429

  8. Bacterial meningitis in diabetes patients: a population-based prospective study.

    PubMed

    van Veen, Kiril E B; Brouwer, Matthijs C; van der Ende, Arie; van de Beek, Diederik

    2016-11-15

    Diabetes mellitus is associated with increased infection rates. We studied clinical features and outcome of community-acquired bacterial meningitis in diabetes patients. Patients were selected from a nationwide, prospective cohort on community-acquired bacterial meningitis performed from March 2006 to October 2014. Data on patient history, symptoms and signs on admission, treatment, and outcome were prospectively collected. A total of 183 of 1447 episodes (13%) occurred in diabetes patients. The incidence of bacterial meningitis in diabetes patients was 3.15 per 100,000 patients per year and the risk of acquiring bacterial meningitis was 2.2-fold higher for diabetes patients. S. pneumoniae was the causative organism in 139 of 183 episodes (76%) and L. monocytogenes in 11 of 183 episodes (6%). Outcome was unfavourable in 82 of 183 episodes (45%) and in 43 of 183 episodes (23%) the patient died. Diabetes was associated with death with an odds ratio of 1.63 (95% CI 1.12-2.37, P = 0.011), which remained after adjusting for known predictors of death in a multivariable analysis (OR 1.98 [95% CI 1.13-3.48], P = 0.017). In conclusion, diabetes is associated with a 2-fold higher risk of acquiring bacterial meningitis. Diabetes is a strong independent risk factor for death in community-acquired adult bacterial meningitis.

  9. Weighted ssGBLUP improves genomic selection accuracy for bacterial cold water disease resistance in a rainbow trout population

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to compare methods for genomic evaluation in a Rainbow Trout (Oncorhynchus mykiss) population for survival when challenged by Flavobacterium psychrophilum, the causative agent of bacterial cold water disease (BCWD). The used methods were: 1)regular ssGBLUP that assume...

  10. Bacterial Enzymes and Antibiotic Resistance- Oral Presentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maltz, Lauren

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure ofmore » the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β-lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes.« less

  11. Plant-associated bacterial populations on native and invasive plant species: comparisons between 2 freshwater environments.

    PubMed

    Olapade, Ola A; Pung, Kayleigh

    2012-06-01

    Plant-microbial interactions have been well studied because of the ecological importance of such relationships in aquatic systems. However, general knowledge regarding the composition of these biofilm communities is still evolving, partly as a result of several confounding factors that are attributable to plant host properties and to hydrodynamic conditions in aquatic environments. In this study, the occurrences of various bacterial phylogenetic taxa on 2 native plants, i.e., mayapple (Podophyllum peltatum L.) and cow parsnip (Heracleum maximum Bartram), and on an invasive species, i.e., garlic mustard (Alliaria petiolata (M. Bieb.) Cavara & Grande), were quantitatively examined using nucleic acid staining and fluorescence in situ hybridization. The plants were incubated in triplicates for about a week within the Kalamazoo River and Pierce Cedar Creek as well as in microcosms. The bacterial groups targeted for enumeration are known to globally occur in relatively high abundance and are also ubiquitously distributed in freshwater environments. Fluorescence in situ hybridization analyses of the bacterioplankton assemblages revealed that the majority of bacterial cells that hybridized with the different probes were similar between the 2 sites. In contrast, the plant-associated populations while similar on the 3 plants incubated in Kalamazoo River, their representations were highest on the 2 native plants relative to the invasive species in Pierce Cedar Creek. Overall, our results further suggested that epiphytic bacterial assemblages are probably under the influences of and probably subsequently respond to multiple variables and conditions in aquatic milieus.

  12. Bacterial population and biodegradation potential in chronically crude oil-contaminated marine sediments are strongly linked to temperature.

    PubMed

    Bargiela, Rafael; Mapelli, Francesca; Rojo, David; Chouaia, Bessem; Tornés, Jesús; Borin, Sara; Richter, Michael; Del Pozo, Mercedes V; Cappello, Simone; Gertler, Christoph; Genovese, María; Denaro, Renata; Martínez-Martínez, Mónica; Fodelianakis, Stilianos; Amer, Ranya A; Bigazzi, David; Han, Xifang; Chen, Jianwei; Chernikova, Tatyana N; Golyshina, Olga V; Mahjoubi, Mouna; Jaouanil, Atef; Benzha, Fatima; Magagnini, Mirko; Hussein, Emad; Al-Horani, Fuad; Cherif, Ameur; Blaghen, Mohamed; Abdel-Fattah, Yasser R; Kalogerakis, Nicolas; Barbas, Coral; Malkawi, Hanan I; Golyshin, Peter N; Yakimov, Michail M; Daffonchio, Daniele; Ferrer, Manuel

    2015-06-29

    Two of the largest crude oil-polluted areas in the world are the semi-enclosed Mediterranean and Red Seas, but the effect of chronic pollution remains incompletely understood on a large scale. We compared the influence of environmental and geographical constraints and anthropogenic forces (hydrocarbon input) on bacterial communities in eight geographically separated oil-polluted sites along the coastlines of the Mediterranean and Red Seas. The differences in community compositions and their biodegradation potential were primarily associated (P < 0.05) with both temperature and chemical diversity. Furthermore, we observed a link between temperature and chemical and biological diversity that was stronger in chronically polluted sites than in pristine ones where accidental oil spills occurred. We propose that low temperature increases bacterial richness while decreasing catabolic diversity and that chronic pollution promotes catabolic diversification. Our results further suggest that the bacterial populations in chronically polluted sites may respond more promptly in degrading petroleum after accidental oil spills.

  13. Bacterial population and biodegradation potential in chronically crude oil-contaminated marine sediments are strongly linked to temperature

    PubMed Central

    Bargiela, Rafael; Mapelli, Francesca; Rojo, David; Chouaia, Bessem; Tornés, Jesús; Borin, Sara; Richter, Michael; Del Pozo, Mercedes V.; Cappello, Simone; Gertler, Christoph; Genovese, María; Denaro, Renata; Martínez-Martínez, Mónica; Fodelianakis, Stilianos; Amer, Ranya A.; Bigazzi, David; Han, Xifang; Chen, Jianwei; Chernikova, Tatyana N.; Golyshina, Olga V.; Mahjoubi, Mouna; Jaouanil, Atef; Benzha, Fatima; Magagnini, Mirko; Hussein, Emad; Al-Horani, Fuad; Cherif, Ameur; Blaghen, Mohamed; Abdel-Fattah, Yasser R.; Kalogerakis, Nicolas; Barbas, Coral; Malkawi, Hanan I.; Golyshin, Peter N.; Yakimov, Michail M.; Daffonchio, Daniele; Ferrer, Manuel

    2015-01-01

    Two of the largest crude oil-polluted areas in the world are the semi-enclosed Mediterranean and Red Seas, but the effect of chronic pollution remains incompletely understood on a large scale. We compared the influence of environmental and geographical constraints and anthropogenic forces (hydrocarbon input) on bacterial communities in eight geographically separated oil-polluted sites along the coastlines of the Mediterranean and Red Seas. The differences in community compositions and their biodegradation potential were primarily associated (P < 0.05) with both temperature and chemical diversity. Furthermore, we observed a link between temperature and chemical and biological diversity that was stronger in chronically polluted sites than in pristine ones where accidental oil spills occurred. We propose that low temperature increases bacterial richness while decreasing catabolic diversity and that chronic pollution promotes catabolic diversification. Our results further suggest that the bacterial populations in chronically polluted sites may respond more promptly in degrading petroleum after accidental oil spills. PMID:26119183

  14. Detrimental effects of commercial zinc oxide and silver nanomaterials on bacterial populations and performance of wastewater systems

    NASA Astrophysics Data System (ADS)

    Mboyi, Anza-vhudziki; Kamika, Ilunga; Momba, MaggyN. B.

    2017-08-01

    The widespread use of commercial nanomaterials (NMs) in consumer products has raised environmental concerns as they can enter and affect the efficiency of the wastewater treatment plants. In this study the effect of various concentrations of zinc oxide NMs (nZnO) and silver NMs (nAg) on the selected wastewater bacterial species (Bacillus licheniformis, Brevibacillus laterosporus and Pseudomonas putida) was ascertained at different pH levels (pH 2, 7 and 10). Lethal concentrations (LC) of NMs and parameters such as chemical oxygen demand (COD) and dissolved oxygen (DO) were taken into consideration to assess the performance of a wastewater batch reactor. Bacterial isolates were susceptible to varying concentrations of both nZnO and nAg at pH 2, 7 and 10. It was found that a change in pH did not significantly affect the toxicity of test NMs towards target bacterial isolates. All bacterial species were significantly inhibited (p < 0.05) in the presence of 0.65 g/L of nZnO and nAg. In contrast, there was no significant difference (p > 0.05) in COD removal in the presence of increasing concentrations of NMs, which resulted in increasing releases of COD. Noticeably, there was no significant difference (p > 0.05) in the decrease in DO uptake in the presence of increasing NM concentrations for all bacterial isolates. The toxic effects of the target NMs on bacterial populations in wastewater may negatively impact the performance of biological treatment processes and may thus affect the efficiency of wastewater treatment plants in producing effluent of high quality.

  15. Cell-to-cell variation and specialization in sugar metabolism in clonal bacterial populations

    PubMed Central

    Schreiber, Frank; Dal Co, Alma; Kiviet, Daniel J.; Littmann, Sten

    2017-01-01

    While we have good understanding of bacterial metabolism at the population level, we know little about the metabolic behavior of individual cells: do single cells in clonal populations sometimes specialize on different metabolic pathways? Such metabolic specialization could be driven by stochastic gene expression and could provide individual cells with growth benefits of specialization. We measured the degree of phenotypic specialization in two parallel metabolic pathways, the assimilation of glucose and arabinose. We grew Escherichia coli in chemostats, and used isotope-labeled sugars in combination with nanometer-scale secondary ion mass spectrometry and mathematical modeling to quantify sugar assimilation at the single-cell level. We found large variation in metabolic activities between single cells, both in absolute assimilation and in the degree to which individual cells specialize in the assimilation of different sugars. Analysis of transcriptional reporters indicated that this variation was at least partially based on cell-to-cell variation in gene expression. Metabolic differences between cells in clonal populations could potentially reduce metabolic incompatibilities between different pathways, and increase the rate at which parallel reactions can be performed. PMID:29253903

  16. Life history correlates of fecal bacterial species richness in a wild population of the blue tit Cyanistes caeruleus

    PubMed Central

    Benskin, Clare McW H; Rhodes, Glenn; Pickup, Roger W; Mainwaring, Mark C; Wilson, Kenneth; Hartley, Ian R

    2015-01-01

    Very little is known about the normal gastrointestinal flora of wild birds, or how it might affect or reflect the host's life-history traits. The aim of this study was to survey the species richness of bacteria in the feces of a wild population of blue tits Cyanistes caeruleus and to explore the relationships between bacterial species richness and various life-history traits, such as age, sex, and reproductive success. Using PCR-TGGE, 55 operational taxonomic units (OTUs) were identified in blue tit feces. DNA sequencing revealed that the 16S rRNA gene was amplified from a diverse range of bacteria, including those that shared closest homology with Bacillus licheniformis, Campylobacter lari, Pseudomonas spp., and Salmonella spp. For adults, there was a significant negative relationship between bacterial species richness and the likelihood of being detected alive the following breeding season; bacterial richness was consistent across years but declined through the breeding season; and breeding pairs had significantly more similar bacterial richness than expected by chance alone. Reduced adult survival was correlated with the presence of an OTU most closely resembling C. lari; enhanced adult survival was associated with an OTU most similar to Arthrobacter spp. For nestlings, there was no significant change in bacterial species richness between the first and second week after hatching, and nestlings sharing the same nest had significantly more similar bacterial richness. Collectively, these results provide compelling evidence that bacterial species richness was associated with several aspects of the life history of their hosts. PMID:25750710

  17. Bacterial Abundance and Activity across Sites within Two Northern Wisconsin Sphagnum Bogs.

    PubMed

    Fisher; Graham; Graham

    1998-11-01

    Abstract Bacterial abundance, temperature, pH, and dissolved organic carbon (DOC) concentration were compared across surface sites within and between two northern Wisconsin Sphagnum peatlands over the summer seasons in 1995 and 1996. Sites of interest were the Sphagnum mat surface, the water-filled moat (lagg) at the bog margin, and the bog lake littoral zone. Significant differences in both bacterial populations and water chemistry were observed between sites. pH was highest in the lake and lowest in the mat at both bogs; the opposite was true for DOC. Large populations of bacteria were present in surface interstitial water from the mat; abundance in this site was consistently higher than in the moat or lake. Bacterial abundance also increased across sites of increasing DOC concentration and declining pH. Bacterial activities (rates of [3H]leucine incorporation) and growth in dilution cultures (with grazers removed) were also assessed in lake, moat, and mat sites. Results using these measures generally supported the trends observed in abundance, although high rates of [3H]leucine incorporation were recorded in the moat at one of the bogs. Our results indicate that bacterial populations in Sphagnum peatlands are not adversely affected by acidity, and that DOC may be more important than pH in determining bacterial abundance in these environments.

  18. Conventional CD4+ T cells present bacterial antigens to induce cytotoxic and memory CD8+ T cell responses.

    PubMed

    Cruz-Adalia, Aránzazu; Ramirez-Santiago, Guillermo; Osuna-Pérez, Jesús; Torres-Torresano, Mónica; Zorita, Virgina; Martínez-Riaño, Ana; Boccasavia, Viola; Borroto, Aldo; Martínez Del Hoyo, Gloria; González-Granado, José María; Alarcón, Balbino; Sánchez-Madrid, Francisco; Veiga, Esteban

    2017-11-17

    Bacterial phagocytosis and antigen cross-presentation to activate CD8 + T cells are principal functions of professional antigen presenting cells. However, conventional CD4 + T cells also capture and kill bacteria from infected dendritic cells in a process termed transphagocytosis (also known as transinfection). Here, we show that transphagocytic T cells present bacterial antigens to naive CD8 + T cells, which proliferate and become cytotoxic in response. CD4 + T-cell-mediated antigen presentation also occurs in vivo in the course of infection, and induces the generation of central memory CD8 + T cells with low PD-1 expression. Moreover, transphagocytic CD4 + T cells induce protective anti-tumour immune responses by priming CD8 + T cells, highlighting the potential of CD4 + T cells as a tool for cancer immunotherapy.

  19. Instability in bacterial populations and the curvature tensor

    NASA Astrophysics Data System (ADS)

    Melgarejo, Augusto; Langoni, Laura; Ruscitti, Claudia

    2016-09-01

    In the geometry associated with equilibrium thermodynamics the scalar curvature Rs is a measure of the volume of correlation, and therefore the singularities of Rs indicates the system instabilities. We explore the use of a similar approach to study instabilities in non-equilibrium systems and we choose as a test example, a colony of bacteria. In this regard we follow the proposal made by Obata et al. of using the curvature tensor for studying system instabilities. Bacterial colonies are often found in nature in concentrated biofilms, or other colony types, which can grow into spectacular patterns visible under the microscope. For instance, it is known that a decrease of bacterial motility with density can promote separation into bulk phases of two coexisting densities; this is opposed to the logistic law for birth and death that allows only a single uniform density to be stable. Although this homogeneous configuration is stable in the absence of bacterial interactions, without logistic growth, a density-dependent swim speed v(ρ) leads to phase separation via a spinodal instability. Thus we relate the singularities in the curvature tensor R to the spinodal instability, that is the appearance of regions of different densities of bacteria.

  20. Active Marine Subsurface Bacterial Population Composition in Low Organic Carbon Environments from IODP Expedition 320

    NASA Astrophysics Data System (ADS)

    Shepard, A.; Reese, B. K.; Mills, H. J.; IODP Expedition 320 Shipboard Science Party

    2011-12-01

    The marine subsurface environment contains abundant and active microorganisms. These microbial populations are considered integral players in the marine subsurface biogeochemical system with significance in global geochemical cycles and reservoirs. However, variations in microbial community structure, activity and function associated with the wide-ranging sedimentary and geochemical environments found globally have not been fully resolved. Integrated Ocean Drilling Program Expedition 320 recovered sediments from site U1332. Two sampling depths were selected for analysis that spanned differing lithological units in the sediment core. Sediments were composed of mostly clay with zeolite minerals at 8 meters below sea floor (mbsf). At 27 mbsf, sediments were composed of alternating clayey radiolarian ooze and nannofossil ooze. The concentration of SO42- had little variability throughout the core and the concentration of Fe2+ remained close to, or below, detection limits (0.4 μM). Total organic carbon content ranged from a low of 0.03 wt% to a high of 0.07 wt% between 6 and 30 mbsf providing an opportunity to evaluate marine subsurface microbial communities under extreme electron donor limiting conditions. The metabolically active fraction of the bacterial population was isolated by the extraction and amplification of 16S ribosomal RNA. Pyrosequencing of 16S rRNA transcripts and subsequent bioinformatic analyses provided a robust data set (15,931 total classified sequences) to characterize the community at a high resolution. As observed in other subsurface environments, the overall diversity of active bacterial populations decreased with depth. The population shifted from a diverse but evenly distributed community at approximately 8 mbsf to a Firmicutes dominated population at 27 mbsf (80% of sequences). A total of 95% of the sequences at 27 mbsf were grouped into three genera: Lactobacillus (phylum Firmicutes) at 80% of the total sequences, Marinobacter (phylum

  1. Antagonistic interactions are sufficient to explain self-assemblage of bacterial communities in a homogeneous environment: a computational modeling approach

    PubMed Central

    Zapién-Campos, Román; Olmedo-Álvarez, Gabriela; Santillán, Moisés

    2015-01-01

    Most of the studies in Ecology have been devoted to analyzing the effects the environment has on individuals, populations, and communities, thus neglecting the effects of biotic interactions on the system dynamics. In the present work we study the structure of bacterial communities in the oligotrophic shallow water system of Churince, Cuatro Cienegas, Mexico. Since the physicochemical conditions of this water system are homogeneous and quite stable in time, it is an excellent candidate to study how biotic factors influence the structure of bacterial communities. In a previous study, the binary antagonistic interactions of 78 bacterial strains, isolated from Churince, were experimentally determined. We employ these data to develop a computer algorithm to simulate growth experiments in a cellular grid representing the pond. Remarkably, in our model, the dynamics of all the simulated bacterial populations is determined solely by antagonistic interactions. Our results indicate that all bacterial strains (even those that are antagonized by many other bacteria) survive in the long term, and that the underlying mechanism is the formation of bacterial community patches. Patches corresponding to less antagonistic and highly susceptible strains are consistently isolated from the highly-antagonistic bacterial colonies by patches of neutral strains. These results concur with the observed features of the bacterial community structure previously reported. Finally, we study how our findings depend on factors like initial population size, differential population growth rates, homogeneous population death rates, and enhanced bacterial diffusion. PMID:26052318

  2. Human Lung Fibroblasts Present Bacterial Antigens to Autologous Lung Th Cells.

    PubMed

    Hutton, Andrew J; Polak, Marta E; Spalluto, C Mirella; Wallington, Joshua C; Pickard, Chris; Staples, Karl J; Warner, Jane A; Wilkinson, Tom M A

    2017-01-01

    Lung fibroblasts are key structural cells that reside in the submucosa where they are in contact with large numbers of CD4 + Th cells. During severe viral infection and chronic inflammation, the submucosa is susceptible to bacterial invasion by lung microbiota such as nontypeable Haemophilus influenzae (NTHi). Given their proximity in tissue, we hypothesized that human lung fibroblasts play an important role in modulating Th cell responses to NTHi. We demonstrate that fibroblasts express the critical CD4 + T cell Ag-presentation molecule HLA-DR within the human lung, and that this expression can be recapitulated in vitro in response to IFN-γ. Furthermore, we observed that cultured lung fibroblasts could internalize live NTHi. Although unable to express CD80 and CD86 in response to stimulation, fibroblasts expressed the costimulatory molecules 4-1BBL, OX-40L, and CD70, all of which are related to memory T cell activation and maintenance. CD4 + T cells isolated from the lung were predominantly (mean 97.5%) CD45RO + memory cells. Finally, cultured fibroblasts activated IFN-γ and IL-17A cytokine production by autologous, NTHi-specific lung CD4 + T cells, and cytokine production was inhibited by a HLA-DR blocking Ab. These results indicate a novel role for human lung fibroblasts in contributing to responses against bacterial infection through activation of bacteria-specific CD4 + T cells. Copyright © 2016 by The American Association of Immunologists, Inc.

  3. Bacterial meningitis in adults in Iceland, 1995-2010.

    PubMed

    Thornórðardóttir, Asgerður; Erlendsdóttir, Helga; Sigurðardóttir, Bryndís; Harðardóttir, Hjördís; Reynisson, Ingi Karl; Gottfreðsson, Magnús; Guðmundsson, Sigurður

    2014-05-01

    Bacterial meningitis is a serious disease with a mortality rate of 15-20% in adults. We conducted a population-based study of bacterial meningitis in adults (≥ 16 y) in Iceland, 1995-2010. Cases were identified based on positive bacterial cultures from cerebrospinal fluid (CSF) and/or the ICD codes for bacterial meningitis. Medical charts were reviewed and outcomes were assessed using the national population registry. The study period was divided into 2 equal parts, 1995-2002 and 2003-2010, before and after implementation of routine childhood vaccination against serogroup C meningococci, respectively. In total, 111 episodes occurred in 110 individuals. The most common causative organisms were Neisseria meningitidis (41%) and Streptococcus pneumoniae (30%). Only 30% of the patients presented with the classical symptom triad of fever, neck stiffness, and an altered mental status. The overall incidence was 3.2/100,000 inhabitants/y, and dropped significantly between the first and second halves of the study (p = 0.03). This drop was due to a reduced incidence of N. meningitidis meningitis: 34 and 12 cases in the first and second periods, respectively (p = 0.006). The incidence of meningitis caused by S. pneumoniae remained unchanged. The case fatality rates were 18% and 13% in the first and second halves of the study, respectively (difference not significant). The incidence of bacterial meningitis has decreased since the implementation of meningococcal C vaccination in 2002. However, the case fatality rate has remained unchanged.

  4. Bacterial pericarditis in a cat.

    PubMed

    LeBlanc, Nicole; Scollan, Katherine F

    2015-01-01

    A 4-year-old male neutered domestic shorthair cat was presented to the Oregon State University cardiology service for suspected pericardial effusion. Cardiac tamponade was documented and pericardiocentesis yielded purulent fluid with cytologic results supportive of bacterial pericarditis. The microbial population consisted of Pasteurella multocida, Actinomyces canis, Fusobacterium and Bacteroides species. Conservative management was elected consisting of intravenous antibiotic therapy with ampicillin sodium/sulbactam sodium and metronidazole for 48 h followed by 4 weeks of oral antibiotics. Re-examination 3 months after the initial incident indicated no recurrence of effusion and the cat remained free of clinical signs 2 years after presentation. Bacterial pericarditis is a rare cause of pericardial effusion in cats. Growth of P multocida, A canis, Fusobacterium and Bacteroides species has not previously been documented in feline septic pericarditis. Conservative management with broad-spectrum antibiotics may be considered when further diagnostic imaging or exploratory surgery to search for a primary nidus of infection is not feasible or elected.

  5. Influence of milk processing temperature on growth performance, nitrogen retention, and hindgut's inflammatory status and bacterial populations in a calf model.

    PubMed

    Bach, Alex; Aris, Anna; Vidal, Maria; Fàbregas, Francesc; Terré, Marta

    2017-08-01

    This research communication describes a study aimed at evaluating the effects of heat treatment of milk on growth performance, N retention, and hindgut's inflammatory status and bacterial populations using young dairy calves as a model. Twenty-one Holstein calves were randomly allocated to one of three treatments: raw milk (RM), pasteurised milk (PAST), or UHT milk (UHT). Calves were submitted to a N balance study, and a biopsy from the distal colon and a faecal sample were obtained from 5 animals per treatment to determine expression of several genes and potential changes in the hindgut's bacterial population. Milk furosine content was 33-fold greater in UHT than in RM and PAST milks. Calves receiving RM grew more than those fed UHT, and urinary N excretion was greatest in calves fed UHT. Quantification of Lactobacillus was lower in calves consuming PAST or UHT, and Gram negative bacteria were greater in UHT than in PAST calves. The expression of IL-8 in the hindgut's mucosa was lowest and that of IL-10 tended to be lowest in RM calves, and expression of claudin-4 tended to be greatest in UHT calves. In conclusion, the nutritional value of UHT-treated milk may be hampered because it compromises growth and increases N excretion in young calves and may have deleterious effects on the gut's bacterial population and inflammation status.

  6. Diversity of Hindgut Bacterial Population in Subterranean Termite, Reticulitermes flavipes

    Treesearch

    Olanrewaju Raji; Dragica Jeremic-Nikolic; Juliet D. Tang

    2017-01-01

    The termite hindgut contains a bacterial community that symbiotically aids in digestion of cellulosic materials. For this paper, a species survey of bacterial hindgut symbionts in termites collected from Saucier, Mississippi was examined. Two methods were tested for optimal genetic material isolation. Genomic DNA was isolated from the hindgut luminal contents of five...

  7. MULTISCALE MODELS OF TAXIS-DRIVEN PATTERNING IN BACTERIAL POPULATIONS

    PubMed Central

    XUE, CHUAN; OTHMER, HANS G.

    2009-01-01

    Spatially-distributed populations of various types of bacteria often display intricate spatial patterns that are thought to result from the cellular response to gradients of nutrients or other attractants. In the past decade a great deal has been learned about signal transduction, metabolism and movement in E. coli and other bacteria, but translating the individual-level behavior into population-level dynamics is still a challenging problem. However, this is a necessary step because it is computationally impractical to use a strictly cell-based model to understand patterning in growing populations, since the total number of cells may reach 1012 - 1014 in some experiments. In the past phenomenological equations such as the Patlak-Keller-Segel equations have been used in modeling the cell movement that is involved in the formation of such patterns, but the question remains as to how the microscopic behavior can be correctly described by a macroscopic equation. Significant progress has been made for bacterial species that employ a “run-and-tumble” strategy of movement, in that macroscopic equations based on simplified schemes for signal transduction and turning behavior have been derived [14, 15]. Here we extend previous work in a number of directions: (i) we allow for time-dependent signals, which extends the applicability of the equations to natural environments, (ii) we use a more general turning rate function that better describes the biological behavior, and (iii) we incorporate the effect of hydrodynamic forces that arise when cells swim in close proximity to a surface. We also develop a new approach to solving the moment equations derived from the transport equation that does not involve closure assumptions. Numerical examples show that the solution of the lowest-order macroscopic equation agrees well with the solution obtained from a Monte Carlo simulation of cell movement under a variety of temporal protocols for the signal. We also apply the method to

  8. Distinct Habitats Select Particular Bacterial Communities in Mangrove Sediments.

    PubMed

    Rocha, Lidianne L; Colares, Geórgia B; Nogueira, Vanessa L R; Paes, Fernanda A; Melo, Vânia M M

    2016-01-01

    We investigated the relationship among environmental variables, composition, and structure of bacterial communities in different habitats in a mangrove located nearby to an oil exploitation area, aiming to retrieve the natural pattern of bacterial communities in this ecosystem. The T-RFLP analysis showed a high diversity of bacterial populations and an increase in the bacterial richness from habitats closer to the sea and without vegetation (S1) to habitats covered by Avicennia schaueriana (S2) and Rhizophora mangle (S3). Environmental variables in S1 and S2 were more similar than in S3; however, when comparing the bacterial compositions, S2 and S3 shared more OTUs between them, suggesting that the presence of vegetation is an important factor in shaping these bacterial communities. In silico analyses of the fragments revealed a high diversity of the class Gammaproteobacteria in the 3 sites, although in general they presented quite different bacterial composition, which is probably shaped by the specificities of each habitat. This study shows that microhabitats inside of a mangrove ecosystem harbor diverse and distinct microbiota, reinforcing the need to conserve these ecosystems as a whole.

  9. Distinct Habitats Select Particular Bacterial Communities in Mangrove Sediments

    PubMed Central

    Rocha, Lidianne L.; Colares, Geórgia B.; Nogueira, Vanessa L. R.; Paes, Fernanda A.; Melo, Vânia M. M.

    2016-01-01

    We investigated the relationship among environmental variables, composition, and structure of bacterial communities in different habitats in a mangrove located nearby to an oil exploitation area, aiming to retrieve the natural pattern of bacterial communities in this ecosystem. The T-RFLP analysis showed a high diversity of bacterial populations and an increase in the bacterial richness from habitats closer to the sea and without vegetation (S1) to habitats covered by Avicennia schaueriana (S2) and Rhizophora mangle (S3). Environmental variables in S1 and S2 were more similar than in S3; however, when comparing the bacterial compositions, S2 and S3 shared more OTUs between them, suggesting that the presence of vegetation is an important factor in shaping these bacterial communities. In silico analyses of the fragments revealed a high diversity of the class Gammaproteobacteria in the 3 sites, although in general they presented quite different bacterial composition, which is probably shaped by the specificities of each habitat. This study shows that microhabitats inside of a mangrove ecosystem harbor diverse and distinct microbiota, reinforcing the need to conserve these ecosystems as a whole. PMID:26989418

  10. Phage Life Cycles Behind Bacterial Biodiversity.

    PubMed

    Olszak, Tomasz; Latka, Agnieszka; Roszniowski, Bartosz; Valvano, Miguel A; Drulis-Kawa, Zuzanna

    2017-11-24

    Bacteriophages (phages or bacterial viruses) are the most abundant biological entities in our planet; their influence reaches far beyond the microorganisms they parasitize. Phages are present in every environment and shape up every bacterial population in both active and passive ways. They participate in the circulation of organic matter and drive the evolution of microorganisms by horizontal gene transfer at unprecedented scales. The mass flow of genetic information in the microbial world influences the biosphere and poses challenges for science and medicine. The genetic flow, however, depends on the fate of the viral DNA injected into the bacterial cell. The archetypal notion of phages only engaging in predatorprey relationships is slowly fading. Because of their varied development cycles, environmental conditions, and the diversity of microorganisms they parasitize, phages form a dense and highly complex web of dependencies, which has important consequences for life on Earth. The sophisticated phage-bacteria interplay includes both aggressive action (bacterial lysis) and "diplomatic negotiations" (prophage domestication). Here, we review the most important mechanisms of interactions between phages and bacteria and their evolutionary consequences influencing their biodiversity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Bacterial gene transfer by natural genetic transformation in the environment.

    PubMed Central

    Lorenz, M G; Wackernagel, W

    1994-01-01

    Natural genetic transformation is the active uptake of free DNA by bacterial cells and the heritable incorporation of its genetic information. Since the famous discovery of transformation in Streptococcus pneumoniae by Griffith in 1928 and the demonstration of DNA as the transforming principle by Avery and coworkers in 1944, cellular processes involved in transformation have been studied extensively by in vitro experimentation with a few transformable species. Only more recently has it been considered that transformation may be a powerful mechanism of horizontal gene transfer in natural bacterial populations. In this review the current understanding of the biology of transformation is summarized to provide the platform on which aspects of bacterial transformation in water, soil, and sediments and the habitat of pathogens are discussed. Direct and indirect evidence for gene transfer routes by transformation within species and between different species will be presented, along with data suggesting that plasmids as well as chromosomal DNA are subject to genetic exchange via transformation. Experiments exploring the prerequisites for transformation in the environment, including the production and persistence of free DNA and factors important for the uptake of DNA by cells, will be compiled, as well as possible natural barriers to transformation. The efficiency of gene transfer by transformation in bacterial habitats is possibly genetically adjusted to submaximal levels. The fact that natural transformation has been detected among bacteria from all trophic and taxonomic groups including archaebacteria suggests that transformability evolved early in phylogeny. Probable functions of DNA uptake other than gene acquisition will be discussed. The body of information presently available suggests that transformation has a great impact on bacterial population dynamics as well as on bacterial evolution and speciation. PMID:7968924

  12. Hydration dynamics promote bacterial coexistence on rough surfaces

    PubMed Central

    Wang, Gang; Or, Dani

    2013-01-01

    Identification of mechanisms that promote and maintain the immense microbial diversity found in soil is a central challenge for contemporary microbial ecology. Quantitative tools for systematic integration of complex biophysical and trophic processes at spatial scales, relevant for individual cell interactions, are essential for making progress. We report a modeling study of competing bacterial populations cohabiting soil surfaces subjected to highly dynamic hydration conditions. The model explicitly tracks growth, motion and life histories of individual bacterial cells on surfaces spanning dynamic aqueous networks that shape heterogeneous nutrient fields. The range of hydration conditions that confer physical advantages for rapidly growing species and support competitive exclusion is surprisingly narrow. The rapid fragmentation of soil aqueous phase under most natural conditions suppresses bacterial growth and cell dispersion, thereby balancing conditions experienced by competing populations with diverse physiological traits. In addition, hydration fluctuations intensify localized interactions that promote coexistence through disproportional effects within densely populated regions during dry periods. Consequently, bacterial population dynamics is affected well beyond responses predicted from equivalent and uniform hydration conditions. New insights on hydration dynamics could be considered in future designs of soil bioremediation activities, affect longevity of dry food products, and advance basic understanding of bacterial diversity dynamics and its role in global biogeochemical cycles. PMID:23051694

  13. Enhancement of Population Size of a Biological Control Agent and Efficacy in Control of Bacterial Speck of Tomato through Salicylate and Ammonium Sulfate Amendments

    PubMed Central

    Ji, Pingsheng; Wilson, Mark

    2003-01-01

    Sodium salicylate and ammonium sulfate were applied to leaf surfaces along with suspensions of the biological control agents Pseudomonas syringae Cit7(pNAH7), which catabolizes salicylate, and Cit7, which does not catabolize salicylate, to determine whether enhanced biological control of bacterial speck of tomato could be achieved. Foliar amendment with salicylate alone significantly enhanced the population size and the efficacy of Cit7(pNAH7), but not of Cit7, on tomato leaves. Application of ammonium sulfate alone did not result in enhanced population size or biological control efficacy of either Cit7(pNAH7) or Cit7; however, when foliar amendments with both sodium salicylate and ammonium sulfate were applied, a trend toward further increases in population size and biological control efficacy of Cit7(pNAH7) was observed. This study demonstrates the potential of using a selective carbon source to improve the efficacy of a bacterial biological control agent in the control of a bacterial plant disease and supports previous conclusions that the growth of P. syringae in the phyllosphere is primarily carbon limited and secondarily nitrogen limited. PMID:12571060

  14. Bacterial vaginosis: Etiology and modalities of treatment—A brief note

    PubMed Central

    Kumar, Nikhil; Behera, Beauty; Sagiri, Sai S.; Pal, Kunal; Ray, Sirsendu S.; Roy, Saroj

    2011-01-01

    A large women population of the world is suffering from a vaginal infection commonly known as bacterial vaginosis. The disease is associated with the decrease in the lactobacilli count in the vagina. Till date, there is a lack of full proof treatment modalities for the cure of the disease. The treatment includes the use of antimicrobials and/or acidifying agents and probiotics, either separately or in combination. This note discusses about the etiology and the various present-day modalities of treatment of bacterial vaginosis. PMID:22219582

  15. Host Biomarkers for Distinguishing Bacterial from Non-Bacterial Causes of Acute Febrile Illness: A Comprehensive Review

    PubMed Central

    Kapasi, Anokhi J.; Dittrich, Sabine; González, Iveth J.; Rodwell, Timothy C.

    2016-01-01

    Background In resource limited settings acute febrile illnesses are often treated empirically due to a lack of reliable, rapid point-of-care diagnostics. This contributes to the indiscriminate use of antimicrobial drugs and poor treatment outcomes. The aim of this comprehensive review was to summarize the diagnostic performance of host biomarkers capable of differentiating bacterial from non-bacterial infections to guide the use of antibiotics. Methods Online databases of published literature were searched from January 2010 through April 2015. English language studies that evaluated the performance of one or more host biomarker in differentiating bacterial from non-bacterial infection in patients were included. Key information extracted included author information, study methods, population, pathogens, clinical information, and biomarker performance data. Study quality was assessed using a combination of validated criteria from the QUADAS and Lijmer checklists. Biomarkers were categorized as hematologic factors, inflammatory molecules, cytokines, cell surface or metabolic markers, other host biomarkers, host transcripts, clinical biometrics, and combinations of markers. Findings Of the 193 citations identified, 59 studies that evaluated over 112 host biomarkers were selected. Most studies involved patient populations from high-income countries, while 19% involved populations from low- and middle-income countries. The most frequently evaluated host biomarkers were C-reactive protein (61%), white blood cell count (44%) and procalcitonin (34%). Study quality scores ranged from 23.1% to 92.3%. There were 9 high performance host biomarkers or combinations, with sensitivity and specificity of ≥85% or either sensitivity or specificity was reported to be 100%. Five host biomarkers were considered weak markers as they lacked statistically significant performance in discriminating between bacterial and non-bacterial infections. Discussion This manuscript provides a summary

  16. Nonlinearity in bacterial population dynamics: Proposal for experiments for the observation of abrupt transitions in patches

    PubMed Central

    Kenkre, V. M.; Kumar, Niraj

    2008-01-01

    An explicit proposal for experiments leading to abrupt transitions in spatially extended bacterial populations in a Petri dish is presented on the basis of an exact formula obtained through an analytic theory. The theory provides accurately the transition expressions despite the fact that the actual solutions, which involve strong nonlinearity, are inaccessible to it. The analytic expressions are verified through numerical solutions of the relevant nonlinear equation. The experimental setup suggested uses opaque masks in a Petri dish bathed in ultraviolet radiation [Lin A-L, et al. (2004) Biophys J 87:75–80 and Perry N (2005) J R Soc Interface 2:379–387], but is based on the interplay of two distances the bacteria must traverse, one of them favorable and the other adverse. As a result of this interplay feature, the experiments proposed introduce highly enhanced reliability in interpretation of observations and in the potential for extraction of system parameters. PMID:19033185

  17. Metatranscriptomic Analysis of Groundwater Reveals an Active Anammox Bacterial Population

    NASA Astrophysics Data System (ADS)

    Jewell, T. N. M.; Karaoz, U.; Thomas, B. C.; Banfield, J. F.; Brodie, E.; Williams, K. H.; Beller, H. R.

    2014-12-01

    Groundwater is a major natural resource, yet little is known about the contribution of microbial anaerobic ammonium oxidation (anammox) activity to subsurface nitrogen cycling. During anammox, energy is generated as ammonium is oxidized under anaerobic conditions to dinitrogen gas, using nitrite as the final electron acceptor. This process is a global sink for fixed nitrogen. Only a narrow range of monophyletic bacteria within the Planctomycetes carries out anammox, and the full extent of their metabolism, and subsequent impact on nitrogen cycling and microbial community structure, is still unknown. Here, we employ a metatranscriptomic analysis on enriched mRNA to identify the abundance and activity of a population of anammox bacteria within an aquifer at Rifle, CO. Planktonic biomass was collected over a two-month period after injection of up to 1.5 mM nitrate. Illumina-generated sequences were mapped to a phylogenetically binned Rifle metagenome database. We identified transcripts for genes with high protein sequence identities (81-98%) to those of anammox strain KSU-1 and to two of the five anammox bacteria genera, Brocadia and Kuenenia, suggesting an active, if not diverse, anammox population. Many of the most abundant anammox transcripts mapped to a single scaffold, indicative of a single dominant anammox species. Transcripts of the genes necessary for the anammox pathway were present, including an ammonium transporter (amtB), nitrite/formate transporter, nitrite reductase (nirK), and hydrazine oxidoreductase (hzoB). The form of nitrite reductase encoded by anammox is species-dependent, and we only identified nirK, with no evidence of anammox nirS. In addition to the anammox pathway we saw evidence of the anammox bacterial dissimilatory nitrate reduction to ammonium pathway (narH, putative nrfA, and nrfB), which provides an alternate means of generating substrates for anammox from nitrate, rather than relying on an external pool. Transcripts for hydroxylamine

  18. Collective Functionality through Bacterial Individuality

    NASA Astrophysics Data System (ADS)

    Ackermann, Martin

    According to the conventional view, the properties of an organism are a product of nature and nurture - of its genes and the environment it lives in. Recent experiments with unicellular organisms have challenged this view: several molecular mechanisms generate phenotypic variation independently of environmental signals, leading to variation in clonal groups. My presentation will focus on the causes and consequences of this microbial individuality. Using examples from bacterial genetic model systems, I will first discuss different molecular and cellular mechanisms that give rise to bacterial individuality. Then, I will discuss the consequences of individuality, and focus on how phenotypic variation in clonal populations of bacteria can promote interactions between individuals, lead to the division of labor, and allow clonal groups of bacteria to cope with environmental uncertainty. Variation between individuals thus provides clonal groups with collective functionality.

  19. Quantification of intestinal bacterial populations by real-time PCR with a universal primer set and minor groove binder probes: a global approach to the enteric flora.

    PubMed

    Ott, Stephan J; Musfeldt, Meike; Ullmann, Uwe; Hampe, Jochen; Schreiber, Stefan

    2004-06-01

    The composition of the human intestinal flora is important for the health status of the host. The global composition and the presence of specific pathogens are relevant to the effects of the flora. Therefore, accurate quantification of all major bacterial populations of the enteric flora is needed. A TaqMan real-time PCR-based method for the quantification of 20 dominant bacterial species and groups of the intestinal flora has been established on the basis of 16S ribosomal DNA taxonomy. A PCR with conserved primers was used for all reactions. In each real-time PCR, a universal probe for quantification of total bacteria and a specific probe for the species in question were included. PCR with conserved primers and the universal probe for total bacteria allowed relative and absolute quantification. Minor groove binder probes increased the sensitivity of the assays 10- to 100-fold. The method was evaluated by cross-reaction experiments and quantification of bacteria in complex clinical samples from healthy patients. A sensitivity of 10(1) to 10(3) bacterial cells per sample was achieved. No significant cross-reaction was observed. The real-time PCR assays presented may facilitate understanding of the intestinal bacterial flora through a normalized global estimation of the major contributing species.

  20. Bacterial and archaeal symbionts in the South China Sea sponge Phakellia fusca: community structure, relative abundance, and ammonia-oxidizing populations.

    PubMed

    Han, Minqi; Liu, Fang; Zhang, Fengli; Li, Zhiyong; Lin, Houwen

    2012-12-01

    Many biologically active natural products have been isolated from Phakellia fusca, an indigenous sponge in the South China Sea; however, the microbial symbionts of Phakellia fusca remain unknown. The present investigations on sponge microbial community are mainly based on qualitative analysis, while quantitative analysis, e.g., relative abundance, is rarely carried out, and little is known about the roles of microbial symbionts. In this study, the community structure and relative abundance of bacteria, actinobacteria, and archaea associated with Phakellia fusca were revealed by 16S rRNA gene library-based sequencing and quantitative real time PCR (qRT-PCR). The ammonia-oxidizing populations were investigated based on amoA gene and anammox-specific 16S rRNA gene libraries. As a result, it was found that bacterial symbionts of sponge Phakellia fusca consist of Proteobacteria including Gamma-, Alpha-, and Delta-proteobacteria, Cyanobacteria with Gamma-proteobacteria as the predominant components. In particular, the diversity of actinobacterial symbionts in Phakellia fusca is high, which is composed of Corynebacterineae, Acidimicrobidae, Frankineae, Micrococcineae, and Streptosporangineae. All the observed archaea in sponge Phakellia fusca belong to Crenarchaeota, and the detected ammonia-oxidizing populations are ammonia-oxidizing archaea, suggesting the nitrification function of sponge archaeal symbionts. According to qRT-PCR analysis, bacterial symbionts dominated the microbial community, while archaea represented the second predominant symbionts, followed by actinobacteria. The revealed diverse prokaryotic symbionts of Phakellia fusca are valuable for the understanding and in-depth utilization of Phakellia fusca microbial symbionts. This study extends our knowledge of the community, especially the relative abundance of microbial symbionts in sponges.

  1. Effect of dietary probiotic, prebiotic and synbiotic supplementation on performance, immune responses, intestinal morphology and bacterial populations in broilers.

    PubMed

    Salehimanesh, A; Mohammadi, M; Roostaei-Ali Mehr, M

    2016-08-01

    This study was conducted to investigate the effects of probiotic (Primalac), prebiotic (TechnoMos) and synbiotic (Primalac + TechnoMos) supplementation on performance, immune responses, intestinal morphology and bacterial populations of ileum in broilers. A total of 240 one-day-old broiler chicks were randomly divided into four treatment groups which included 60 birds. Control group did not receive any treatment. The chicks in the second, third and fourth groups were fed probiotic (0.9 g/kg), prebiotic (0.9 g/kg) and probiotic (0.9 g/kg) plus probiotic (0.9 g/kg; synbiotic), respectively, at entire period. Daily feed intake, daily weight gain and feed conversion ratio were evaluated. The birds were immunized by sheep red blood cell (SRBC) on days 12 and 29 of age and serum antibody titres were measured on days 28, 35 and 42. Newcastle vaccines administered on days 9, 18 and 27 to chicks and blood samples were collected on day 42. Intestinal morphometric assessment and enumeration of intestinal bacterial populations were performed on day 42. The results indicated that consumption of probiotic, prebiotic and synbiotic had no significant effect on daily feed intake, daily body weight gain, feed conversion ratio, carcass traits, intestinal morphology and bacterial populations of ileum (p > 0.05). Consumption of prebiotic increased total and IgM anti-SRBC titres on days 28 and 42 and antibody titre against Newcastle virus disease on day 42 (p < 0.05). Synbiotic increased only total anti-SRBC on day 28 (p < 0.05). It is concluded that consumption of prebiotic increased humoral immunity in broilers. Therefore, supplementation of diet with prebiotic for improvement of humoral immune responses is superior to synbiotic supplementation. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  2. Giant anterior sacral meningocele presenting as bacterial meningitis in a previously healthy adult.

    PubMed

    Miletic, D; Poljak, I; Eskinja, N; Valkovic, P; Sestan, B; Troselj-Vukic, B

    2008-02-01

    Meningocele may be asymptomatic and incidentally discovered. Presenting as a retrorectal mass, sacral meningocele may produce urinary, rectal, and menstrual pain. Anterior sacral meningocele may be the cause of tethered cord syndrome. This article presents a case of a previously healthy 39-year-old man with large meningeal herniation that occupied the entire pelvis who developed symptoms of bacterial meningitis. A 39-year-old man was admitted with fever, chills, headache and photophobia. Escherichia coli was isolated from cerebrospinal fluid culture. Moderate improvement regarding meningeal symptoms was noted due to intravenous antibiotic therapy, but intense pain in the lower back associated with constipation, fecal and urinary incontinence, and saddle anesthesia developed. Abdominal ultrasound was negative. Plain radiographs and computed tomography demonstrated sacral bone defect and retrorectal expansive mass. MRI confirmed anterior sacral meningocele with cord tethering. After posterior laminectomy and dural opening, communication between meningocele and intrathecal compartment was obliterated. Computed tomography-guided percutaneous drainage through the ischiorectal fossa was performed to treat residual presacral cyst. Delayed diagnosis in our patient was related to misleading signs of bacterial meningitis without symptoms of intrapelvic expansion until the second week of illness. In our patient, surgical treatment was unavoidable due to resistive meningitis, acute back pain, and symptoms of space-occupying pelvic lesion. Neurosurgical approach was successful in treatment of meningitis and neurological disorders. Computed tomography-guided evacuation of the residual retrorectal cyst was less invasive than laparotomy, resulting in normalization of defecation and miction despite incomplete evacuation. Further follow-up studies may provide insight into the most effective treatment of such conditions.

  3. SIMPLAS: A Simulation of Bacterial Plasmid Maintenance.

    ERIC Educational Resources Information Center

    Dunn, A.; And Others

    1988-01-01

    This article describes a computer simulation of bacterial physiology during growth in a chemostat. The program was designed to help students to appreciate and understand the related effects of parameters which influence plasmid persistence in bacterial populations. (CW)

  4. Variability in bacterial community structure during upwelling in the coastal ocean

    USGS Publications Warehouse

    Kerkhof, L.J.; Voytek, M.A.; Sherrell, Robert M.; Millie, D.; Schofield, O.

    1999-01-01

    Over the last 30 years, investigations at the community level of marine bacteria and phytoplankton populations suggest they are tightly coupled. However, traditional oceanographic approaches cannot assess whether associations between specific bacteria and phytoplankton exist. Recently, molecular based approaches have been implemented to characterize specific members of different marine bacterial communities. Yet, few molecular-based studies have examined coastal upwelling situations. This is important since upwelling systems provide a unique opportunity for analyzing the association between specific bacteria and specific phytoplankton in the ocean. It is widely believed that upwelling can lead to changes in phytoplankton populations (blooms). Thus, if specific associations exist, we would expect to observe changes in the bacterial population triggered by the bloom. In this paper, we present preliminary data from coastal waters off New Jersey that confirm a shift in bacterial communities during a 1995 upwelling event recorded at a long-term earth observatory (LEO-15) in the Mid-Atlantic Bight. Using PCR amplification and cloning, specific bacterial 16S ribosomal RNA sequences were found which were present in upwelling samples during a phytoplankton bloom, but were not detected in non-bloom samples (surface seawater, offshore sites or sediment samples) collected at the same time or in the same area. These findings are consistent with the notion of specific associations between bacteria and phytoplankton in the ocean. However, further examination of episodic events, such as coastal upwelling, are needed to confirm the existence of specific associations. Additionally, experiments need to be performed to elucidate the mechanisms leading to the specific linkages between a group of bacteria and a group of phytoplankton.

  5. Bacterial pericarditis in a cat

    PubMed Central

    LeBlanc, Nicole; Scollan, Katherine F

    2015-01-01

    Case summary A 4-year-old male neutered domestic shorthair cat was presented to the Oregon State University cardiology service for suspected pericardial effusion. Cardiac tamponade was documented and pericardiocentesis yielded purulent fluid with cytologic results supportive of bacterial pericarditis. The microbial population consisted of Pasteurella multocida, Actinomyces canis, Fusobacterium and Bacteroides species. Conservative management was elected consisting of intravenous antibiotic therapy with ampicillin sodium/sulbactam sodium and metronidazole for 48 h followed by 4 weeks of oral antibiotics. Re-examination 3 months after the initial incident indicated no recurrence of effusion and the cat remained free of clinical signs 2 years after presentation. Relevance and novel information Bacterial pericarditis is a rare cause of pericardial effusion in cats. Growth of P multocida, A canis, Fusobacterium and Bacteroides species has not previously been documented in feline septic pericarditis. Conservative management with broad-spectrum antibiotics may be considered when further diagnostic imaging or exploratory surgery to search for a primary nidus of infection is not feasible or elected. PMID:28491384

  6. Dynamics of Legionella spp. and bacterial populations during the proliferation of L. pneumophila in a cooling tower facility.

    PubMed

    Wéry, Nathalie; Bru-Adan, Valérie; Minervini, Céline; Delgénes, Jean-Philippe; Garrelly, Laurent; Godon, Jean-Jacques

    2008-05-01

    The dynamics of Legionella spp. and of dominant bacteria were investigated in water from a cooling tower plant over a 9-month period which included several weeks when Legionella pneumophila proliferated. The structural diversity of both the bacteria and the Legionella spp. was monitored by a fingerprint technique, single-strand conformation polymorphism, and Legionella spp. and L. pneumophila were quantified by real-time quantitative PCR. The structure of the bacterial community did not change over time, but it was perturbed periodically by chemical treatment or biofilm detachment. In contrast, the structure of the Legionella sp. population changed in different periods, its dynamics at times showing stability but also a rapid major shift during the proliferation of L. pneumophila in July. The dynamics of the Legionella spp. and of dominant bacteria were not correlated. In particular, no change in the bacterial community structure was observed during the proliferation of L. pneumophila. Legionella spp. present in the cooling tower system were identified by cloning and sequencing of 16S rRNA genes. A high diversity of Legionella spp. was observed before proliferation, including L. lytica, L. fallonii, and other Legionella-like amoebal pathogen types, along with as-yet-undescribed species. During the proliferation of L. pneumophila, Legionella sp. diversity decreased significantly, L. fallonii and L. pneumophila being the main species recovered.

  7. Dynamics of Legionella spp. and Bacterial Populations during the Proliferation of L. pneumophila in a Cooling Tower Facility▿

    PubMed Central

    Wéry, Nathalie; Bru-Adan, Valérie; Minervini, Céline; Delgénes, Jean-Philippe; Garrelly, Laurent; Godon, Jean-Jacques

    2008-01-01

    The dynamics of Legionella spp. and of dominant bacteria were investigated in water from a cooling tower plant over a 9-month period which included several weeks when Legionella pneumophila proliferated. The structural diversity of both the bacteria and the Legionella spp. was monitored by a fingerprint technique, single-strand conformation polymorphism, and Legionella spp. and L. pneumophila were quantified by real-time quantitative PCR. The structure of the bacterial community did not change over time, but it was perturbed periodically by chemical treatment or biofilm detachment. In contrast, the structure of the Legionella sp. population changed in different periods, its dynamics at times showing stability but also a rapid major shift during the proliferation of L. pneumophila in July. The dynamics of the Legionella spp. and of dominant bacteria were not correlated. In particular, no change in the bacterial community structure was observed during the proliferation of L. pneumophila. Legionella spp. present in the cooling tower system were identified by cloning and sequencing of 16S rRNA genes. A high diversity of Legionella spp. was observed before proliferation, including L. lytica, L. fallonii, and other Legionella-like amoebal pathogen types, along with as-yet-undescribed species. During the proliferation of L. pneumophila, Legionella sp. diversity decreased significantly, L. fallonii and L. pneumophila being the main species recovered. PMID:18390683

  8. An EPA pilot study characterizing fungal and bacterial ...

    EPA Pesticide Factsheets

    The overall objective of this program is to characterize fungal and bacterial populations in the MPC residences in San Juan, Puerto Rico, following flooding events. These profiles will be generated by comparing the fungal and bacterial populations in two groups of residences: homes with flooding events and non-flooded homes. Dust and air samples from indoors and outdoors will be collected at all homes participating in the study. The characterization of fungal and bacterial populations from the dust and air samples will be done using culture-independent molecular technologies and conventional volumetric microbiological methods. This study will attempt to address the following environmental questions: (1) how do flooding events impact the types of fungal and bacterial populations inside affected homes? (2) are there any differences in the absolute abundances of fungi and bacteria in flooded relative to non-flooded homes? and (3) if there are noticeable effects of flooding on the fungal and bacterial composition and/or abundance, can the effects of flooding be correlated with other environmental variables such as % relative humidity, air exchange rate and temperature inside the homes? The proposed study has selected the Martin Peña Channel (MPC) urban community located within the San Juan National Estuary in the northeastern region of the island as a case study to advance the research into indoor air quality improvement at MPC residences with flooding events. T

  9. Similar effects of QTL Haplotypes for Bacterial Cold Water Disease resistance across two generations in a commercial rainbow trout breeding population

    USDA-ARS?s Scientific Manuscript database

    Previously we have demonstrated that genomic selection (GS) for bacterial cold water disease (BCWD) resistance can double the accuracy of traditional pedigree-based selection in a commercial rainbow trout breeding population. The objective of this study was to evaluate the effectiveness of marker ...

  10. Time-series analysis of two hydrothermal plumes at 9°50'N East Pacific Rise reveals distinct, heterogeneous bacterial populations.

    PubMed

    Sylvan, J B; Pyenson, B C; Rouxel, O; German, C R; Edwards, K J

    2012-03-01

    We deployed sediment traps adjacent to two active hydrothermal vents at 9°50'N on the East Pacific Rise (EPR) to assess the variability in bacterial community structure associated with plume particles on the timescale of weeks to months, to determine whether an endemic population of plume microbes exists, and to establish ecological relationships between bacterial populations and vent chemistry. Automated rRNA intergenic spacer analysis (ARISA) indicated that there are separate communities at the two different vents and temporal community variations between each vent. Correlation analysis between chemistry and microbiology indicated that shifts in the coarse particulate (>1 mm) Fe/(Fe+Mn+Al), Cu, V, Ca, Al, (232) Th, and Ti as well as fine-grained particulate (<1 mm) Fe/(Fe+Mn+Al), Fe, Ca, and Co are reflected in shifts in microbial populations. 16S rRNA clone libraries from each trap at three time points revealed a high percentage of Epsilonproteobacteria clones and hyperthermophilic Aquificae. There is a shift toward the end of the experiment to more Gammaproteobacteria and Alphaproteobacteria, many of whom likely participate in Fe and S cycling. The particle-attached plume environment is genetically distinct from the surrounding seawater. While work to date in hydrothermal environments has focused on determining the microbial communities on hydrothermal chimneys and the basaltic lavas that form the surrounding seafloor, little comparable data exist on the plume environment that physically and chemically connects them. By employing sediment traps for a time-series approach to sampling, we show that bacterial community composition on plume particles changes on timescales much shorter than previously known. © 2012 Blackwell Publishing Ltd.

  11. Cytokine patterns in paediatric patients presenting serious gastrointestinal and respiratory bacterial infections

    PubMed Central

    Palacios-Martínez, Monika; Rodríguez-Cruz, Leonor; Cortés-Bejar, Consuelo Del Carmen; Valencia-Chavarría, Fernando; Martínez-Gómez, Daniel; González-Torres, María Cristina

    2014-01-01

    In the adaptive immune response, the types of cytokines produced define whether there is a cellular (T1) or a humoral (T2) response. Specifically, in the T1 response, interleukin 2 (IL-2), interferon γ (IFN-γ) and tumor necrosis factor β (TNF-β) are produced, whereas in the T2 response, IL-4, IL-5, IL- 6, IL-10 and IL-13 are primarily produced. Cytokines are primarily involved in the regulation of immune system cells. The aim of the present study was to evaluate the cytokine patterns (Type 1/Type 2) and TNF-α expression levels in children with severe gastrointestinal and respiratory bacterial infections. The enzyme-linked immunosorbent assay (ELISA) technique was used to identify the cytokines and the infectious agents. The results obtained demonstrated that, in general, children with bacterial infections experienced an increase in IL-2, IFN-γ and IL-4 concentrations and a decrease in TNF-α, IL-5 and IL-6 concentrations when compared to healthy children. Specifically, type 1 cytokines and an increased TNF-α concentration were found in children with gastrointestinal infections. However, patients with respiratory infections showed increased concentrations of both T2 (IL-4, IL-6 and IL-10) and T1 (IL-2 and IFN-γ) components. Thus, it was concluded that children with gastrointestinal infections exclusively developed a T1 response, whereas children with respiratory infections developed a T1/T2 response to fight the infection. PMID:26155128

  12. Effect of partially replacing a barley-based concentrate with flaxseed-based products on the rumen bacterial population of lactating Holstein dairy cows.

    PubMed

    Castillo-Lopez, E; Moats, J; Aluthge, N D; Ramirez Ramirez, H A; Christensen, D A; Mutsvangwa, T; Penner, G B; Fernando, S C

    2018-01-01

    The effects of partial replacement of a barley-based concentrate with flaxseed-based products on the rumen bacterial population of lactating Holstein dairy cows were evaluated. Treatments fed were CONT, a normal diet that included barley silage, alfalfa hay and a barley-based concentrate that contained no flaxseed or faba beans; FLAX, inclusion of a nonextruded flaxseed-based product containing 55·0% flaxseed, 37·8% field peas and 6·9% alfalfa; EXT, similar to FLAX, but the product was extruded and EXTT, similar to FLAX, but product was extruded and field peas were replaced by high-tannin faba beans. The rumen bacterial population was evaluated by utilizing 16S rRNA gene sequencing. Most abundant phyla, families and genera were unaffected. However, some taxa were affected; for example, unsaturated fatty acid content was negatively correlated with Clostridiaceae, and tannin content was negatively correlated with BS11 and Paraprevotellaceae. Predominant rumen bacterial taxa were not affected, but the abundance of some taxa found in lower proportions shifted, possibly due to sensitivity to unsaturated fatty acids or tannins. Flaxseed-based products were effective for partially replacing barley-based concentrate in rations of lactating dairy cows. No negative effects of these products were observed on the abundance of predominant rumen bacterial taxa, with only minor shifts in less abundant bacteria. © 2017 The Authors. Journal of Applied Microbiology published by John Wiley & Sons Ltd on behalf of Society for Applied Microbiology.

  13. Characterization of bacterial symbionts in Frankliniella occidentalis (Pergande), Western flower thrips.

    PubMed

    Chanbusarakum, Lisa; Ullman, Diane

    2008-11-01

    Many insects have associations with bacteria, although it is often difficult to determine the intricacies of the relationships. In one such case, facultative bacteria have been discovered in a major crop pest and virus vector, the Western flower thrips (WFT), Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Several bacterial isolates have been studied in Netherlands greenhouse thrips populations, with molecular data indicating that these bacteria were similar to Escherichia coli, although biochemical properties suggested these microbes might actually be most similar to plant pathogenic bacteria in the genus Erwinia. We focused on the bacterial flora of the Hawaiian Islands thrips population where these gut bacteria were first reported in 1989. We also analyzed a German population and a 1965 California population preserved in ethanol. Culture and culture-independent techniques revealed a consistent microflora that was similar to the Netherlands isolates studied. The similarity among thrips microbes from multiple populations and environments suggested these bacteria and their hosts share a widespread association. Molecular phylogeny based on the 16S rRNA gene and biochemical analysis of thrips bacteria suggested two distinctive groups of microbes are present in thrips. Phylogenetic analysis also revealed support for one thrips bacterial group having a shared ancestry with Erwinia, whereas the second group of thrips bacteria fell out with E. coli, but without support. Although species-specific relationships were indeterminable due to the conservative nature of 16S, there is strong indication that thrips symbionts belong to two different genera and originated from environmental microbes.

  14. Bacterial detection: from microscope to smartphone.

    PubMed

    Gopinath, Subash C B; Tang, Thean-Hock; Chen, Yeng; Citartan, Marimuthu; Lakshmipriya, Thangavel

    2014-10-15

    The ubiquitous nature of bacteria enables them to survive in a wide variety of environments. Hence, the rise of various pathogenic species that are harmful to human health raises the need for the development of accurate sensing systems. Sensing systems are necessary for diagnosis and epidemiological control of pathogenic organism, especially in the food-borne pathogen and sanitary water treatment facility' bacterial populations. Bacterial sensing for the purpose of diagnosis can function in three ways: bacterial morphological visualization, specific detection of bacterial component and whole cell detection. This paper provides an overview of the currently available bacterial detection systems that ranges from microscopic observation to state-of-the-art smartphone-based detection. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Role of Clinical Presentations and Routine CSF Analysis in the Rapid Diagnosis of Acute Bacterial Meningitis in Cases of Negative Gram Stained Smears

    PubMed Central

    Fouad, Rabab; El-Kholy, Badawy; Yosry, Ayman

    2014-01-01

    Background and Aim. Bacterial meningitis is a lethal, disabling endemic disease needing prompt antibiotic management. Gram stained smears is rapid accurate method for diagnosis of bacterial meningitis. In cases of negative gram stained smears diagnosis is delayed till culture results. We aim to assess the role of clinical presentations and routine CSF analysis in the cost-effective rapid diagnosis of negative gram stained smears bacterial meningitis. Methods. Cross sectional study including 623 acute meningitis patients divided into two groups: bacterial meningitis and nonbacterial meningitis groups. The clinical presentations, systemic inflammatory parameters, and CSF analysis were evaluated and compared in both groups. Results. Altered conscious level, localizing neurological signs, Kernig's and Brudzinski's signs together with peripheral leucocytosis (>10.000/mm3), high CRP (>6) together with high CSF protein (>50 gl/dL), CSF neutrophilic count (≥50% of total CSF leucocytic count), and low CSF glucose level (<45 gm/dL) and CSF/serum glucose ≤0.6 were significantly diagnostic in bacterial meningitis patients. From the significant CSF analysis variables CSF protein carried the higher accuracy of diagnosis 78% with sensitivity 88% and specificity 72%. Conclusions. High CSF protein (>50 mg/dL) together with plasma inflammatory markers and CSF cytochemical parameters can diagnose bacterial meningitis in gram stain negative smear till culture results. PMID:24803939

  16. Effect of disinfection upon dissolved organic carbon (DOC) in wastewater: bacterial bioassays.

    PubMed

    Arana, I; Santorum, P; Muela, A; Barcina, I

    2000-08-01

    Quantitative and qualitative changes in organic matter content of wastewater effluents attributable to chlorination and ozonation have been analysed using bioassays as well as organic carbon direct measures. Bioassays were carried out using the bacterial populations of wastewater and two Escherichia coli strains as test micro-organisms. Our results indicate that pure strains present some advantages over indigenous bacteria. Although wastewater bacterial populations are better adapted to growth in wastewater, E. coli strains are more sensitive to changes in dissolved organic carbon (DOC) content. Moreover, the use of pure cultures allows estimation of the portion of DOC which can be converted in cell biomass, the assimilable organic carbon (AOC). Finally, the results obtained using prototrophic and the auxotrophic strains of E. coli suggested that ozonation alters the amino acid composition of wastewater while chlorination does not change the quantity nor the quality of the DOC present in effluents.

  17. Effects of bacterial pollution caused by a strong typhoon event and the restoration of a recreational beach: Transitions of fecal bacterial counts and bacterial flora in beach sand.

    PubMed

    Suzuki, Yoshihiro; Teranishi, Kotaro; Matsuwaki, Tomonori; Nukazawa, Kei; Ogura, Yoshitoshi

    2018-05-28

    To determine the effects of bacteria pollution associated with a strong typhoon event and to assess the restoration of the normal bacterial flora, we used conventional filtration methods and nextgeneration sequencing of 16S rRNA genes to analyze the transition of fecal and total bacterial counts in water and core sand samples collected from a recreational beach. Immediately after the typhoon event, Escherichia coli counts increased to 82 CFU/100 g in the surface beach sand. E. coli was detected through the surface to sand 85-cm deep at the land side point (10-m land side from the high-water line). However, E. coli disappeared within a month from the land side point. The composition of the bacterial flora in the beach sand at the land point was directly influenced by the typhoon event. Pseudomonas was the most prevalent genus throughout the sand layers (0-102-cm deep) during the typhoon event. After 3 months, the population of Pseudomonas significantly decreased, and the predominant genus in the surface layer was Kaistobacter, although Pseudomonas was the major genus in the 17- to 85-cm layer. When the beach conditions stabilized, the number of pollutant Pseudomonas among the 10 most abundant genera decreased to lower than the limit of detection. The bacterial population of the sand was subsequently restored to the most populous pre-event orders at the land point. A land-side beach, where users directly contact the sand, was significantly affected by bacterial pollution caused by a strong typhoon event. We show here that the normal bacterial flora of the surface sand was restored within 1 month. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Effect of bacterial growth rate on bacteriophage population growth rate.

    PubMed

    Nabergoj, Dominik; Modic, Petra; Podgornik, Aleš

    2018-04-01

    It is important to understand how physiological state of the host influence propagation of bacteriophages (phages), due to the potential higher phage production needs in the future. In our study, we tried to elucidate the effect of bacterial growth rate on adsorption constant (δ), latent period (L), burst size (b), and bacteriophage population growth rate (λ). As a model system, a well-studied phage T4 and Escherichia coli K-12 as a host was used. Bacteria were grown in a continuous culture operating at dilution rates in the range between 0.06 and 0.98 hr -1 . It was found that the burst size increases linearly from 8 PFU·cell -1 to 89 PFU·cell -1 with increase in bacteria growth rate. On the other hand, adsorption constant and latent period were both decreasing from 2.6∙10 -9  ml·min -1 and 80 min to reach limiting values of 0.5 × 10 -9  ml·min -1 and 27 min at higher growth rates, respectively. Both trends were mathematically described with Michaelis-Menten based type of equation and reasons for such form are discussed. By applying selected equations, a mathematical equation for prediction of bacteriophage population growth rate as a function of dilution rate was derived, reaching values around 8 hr -1 at highest dilution rate. Interestingly, almost identical description can be obtained using much simpler Monod type equation and possible reasons for this finding are discussed. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  19. Intrinsic bacterial burden associated with intensive care unit hospital beds: effects of disinfection on population recovery and mitigation of potential infection risk.

    PubMed

    Attaway, Hubert H; Fairey, Sarah; Steed, Lisa L; Salgado, Cassandra D; Michels, Harold T; Schmidt, Michael G

    2012-12-01

    Commonly touched items are likely reservoirs from which patients, health care workers, and visitors may encounter and transfer microbes. A quantitative assessment was conducted of the risk represented by the intrinsic bacterial burden associated with bed rails in a medical intensive care unit (MICU), and how disinfection might mitigate this risk. Bacteria present on the rails from 36 patient beds in the MICU were sampled immediately before cleaning and at 0.5, 2.5, 4.5, and 6.5 hours after cleaning. Beds were sanitized with either a bottled disinfectant (BD; CaviCide) or an automated bulk-diluted disinfectant (ABDD; Virex II 256). The majority of bacteria recovered from the bed rails in the MICU were staphylococci, but not methicillin-resistant Staphylococcus aureus. Vancomycin-resistant enterococci were recovered from 3 beds. Bottled disinfectant reduced the average bacterial burden on the rails by 99%. However, the burden rebounded to 30% of that found before disinfection by 6.5 hours after disinfection. ABDD reduced the burden by an average of 45%, but levels rebounded within 2.5 hours. The effectiveness of both disinfectants was reflected in median reductions to burden of 98% for BD and 95% for ABDD. Cleaning with hospital-approved disinfectants reduced the intrinsic bacterial burden on bed rail surfaces by up to 99%, although the population, principally staphylococci, rebounded quickly to predisinfection levels. Copyright © 2012 Association for Professionals in Infection Control and Epidemiology, Inc. All rights reserved.

  20. Effects of gamma-irradiation before and after cooking on bacterial population and sensory quality of Dakgalbi

    NASA Astrophysics Data System (ADS)

    Yoon, Young Min; Park, Jong-Heum; Lee, Ji-Hye; Park, Jae-Nam; Park, Jin-Kyu; Sung, Nak-Yun; Song, Beom-Seok; Kim, Jae-Hun; Yoon, Yohan; Gao, Meixu; Yook, Hong-Sun; Lee, Ju-Woon

    2012-08-01

    The purpose of this study was to compare the effect of gamma irradiation on the total bacterial population and the sensory quality of Dakgalbi irradiated before and after cooking. Fresh chicken meat was cut into small pieces and used to prepare Dakgalbi. For the preparation of Dakgalbi cooked with gamma-irradiated chicken meat and sauce (IBC), raw chicken meat and Dakgalbi sauce were irradiated and then stir-fried. For the preparation of Dakgalbi irradiated after cooking with raw chicken meat and sauce (IAC), raw chicken meat and Dakgalbi sauce were first cooked and subsequently irradiated. Under the accelerated storage condition of 35 °C for 7 days, bacteria in IBC were below the detection limit (1 log CFU/g) on day 1 but were detected on day 2 and gradually increased hereafter. In IAC, on the other hand, bacteria were not detected at all. Evaluation of sensory quality also decreased on both samples. However, IAC showed a better trend. Our results indicate that IAC protocol was a more effective method for reducing bacterial growth in Dakgalbi.

  1. Bacterial communities in the fruit bodies of ground basidiomycetes

    NASA Astrophysics Data System (ADS)

    Zagryadskaya, Yu. A.; Lysak, L. V.; Chernov, I. Yu.

    2015-06-01

    Fruit bodies of basidiomycetes at different stages of decomposition serve as specific habitats in forest biocenoses for bacteria and differ significantly with respect to the total bacterial population and abundance of particular bacterial genera. A significant increase in the total bacterial population estimated by the direct microscopic method with acridine orange staining and in the population of saprotrophic bacteria (inoculation of glucose peptone yeast agar) in fruit bodies of basidiomycetes Armillaria mellea and Coprinus comatus was recorded at the final stage of their decomposition in comparison with the initial stage. Gramnegative bacteria predominated in the tissues of fruit bodies at all the stages of decomposition and were represented at the final stage by the Aeromonas, Vibrio, and Pseudomonas genera (for fruit bodies of A. mellea) the Pseudomonas genus (for fruit bodies of C. comatus). The potential influence of bacterial communities in the fruit bodies of soil basidiomycetes on the formation of bacterial communities in the upper soil horizons in forest biocenoses is discussed. The loci connected with the development and decomposition of fruit bodies of basidiomycetes on the soil surface are promising for targeted search of Gram-negative bacteria, the important objects of biotechnology.

  2. Self-organization of bacterial communities against environmental pH variation: Controlled chemotactic motility arranges cell population structures in biofilms

    PubMed Central

    Nakayama, Madoka; Shoji, Wataru

    2017-01-01

    As with many living organisms, bacteria often live on the surface of solids, such as foods, organisms, buildings and soil. Compared with dispersive behavior in liquid, bacteria on surface environment exhibit significantly restricted mobility. They have access to only limited resources and cannot be liberated from the changing environment. Accordingly, appropriate collective strategies are necessarily required for long-term growth and survival. However, in spite of our deepening knowledge of the structure and characteristics of individual cells, strategic self-organizing dynamics of their community is poorly understood and therefore not yet predictable. Here, we report a morphological change in Bacillus subtilis biofilms due to environmental pH variations, and present a mathematical model for the macroscopic spatio-temporal dynamics. We show that an environmental pH shift transforms colony morphology on hard agar media from notched ‘volcano-like’ to round and front-elevated ‘crater-like’. We discover that a pH-dependent dose-response relationship between nutritional resource level and quantitative bacterial motility at the population level plays a central role in the mechanism of the spatio-temporal cell population structure design in biofilms. PMID:28253348

  3. Self-organization of bacterial communities against environmental pH variation: Controlled chemotactic motility arranges cell population structures in biofilms.

    PubMed

    Tasaki, Sohei; Nakayama, Madoka; Shoji, Wataru

    2017-01-01

    As with many living organisms, bacteria often live on the surface of solids, such as foods, organisms, buildings and soil. Compared with dispersive behavior in liquid, bacteria on surface environment exhibit significantly restricted mobility. They have access to only limited resources and cannot be liberated from the changing environment. Accordingly, appropriate collective strategies are necessarily required for long-term growth and survival. However, in spite of our deepening knowledge of the structure and characteristics of individual cells, strategic self-organizing dynamics of their community is poorly understood and therefore not yet predictable. Here, we report a morphological change in Bacillus subtilis biofilms due to environmental pH variations, and present a mathematical model for the macroscopic spatio-temporal dynamics. We show that an environmental pH shift transforms colony morphology on hard agar media from notched 'volcano-like' to round and front-elevated 'crater-like'. We discover that a pH-dependent dose-response relationship between nutritional resource level and quantitative bacterial motility at the population level plays a central role in the mechanism of the spatio-temporal cell population structure design in biofilms.

  4. [Bacterial meningitis].

    PubMed

    Brouwer, M C; van de Beek, D

    2012-05-01

    Bacterial meningitis is a severe disease which affects 35.000 Europeans each year and has a mortality rate of about 20%. During the past 25 years the epidemiology of bacterial meningitis has changed significantly due to the implementation of vaccination against Haemophilus influenzae, Neisseria meningtidis group C and Streptococcus pneumoniae. Due to these vaccines, meningitis is now predominantly a disease occurring in adults, caused especially by Streptococcus pneumoniae, while it was formerly a child disease which was largely caused by Haemophilus influenzae. Bacterial meningitis is often difficult to recognize since the classical presentation with neck stiffness, reduced awareness and fever occurs in less than half of the patients. The only way to diagnose or exclude bacterial meningitis is by performing low-threshold cerebrospinal fluid examination with a suspicion of bacterial meningitis. The treatment consists of the prescription of antibiotics and dexamethasone.

  5. Modeling physiological resistance in bacterial biofilms.

    PubMed

    Cogan, N G; Cortez, Ricardo; Fauci, Lisa

    2005-07-01

    A mathematical model of the action of antimicrobial agents on bacterial biofilms is presented. The model includes the fluid dynamics in and around the biofilm, advective and diffusive transport of two chemical constituents and the mechanism of physiological resistance. Although the mathematical model applies in three dimensions, we present two-dimensional simulations for arbitrary biofilm domains and various dosing strategies. The model allows the prediction of the spatial evolution of bacterial population and chemical constituents as well as different dosing strategies based on the fluid motion. We find that the interaction between the nutrient and the antimicrobial agent can reproduce survival curves which are comparable to other model predictions as well as experimental results. The model predicts that exposing the biofilm to low concentration doses of antimicrobial agent for longer time is more effective than short time dosing with high antimicrobial agent concentration. The effects of flow reversal and the roughness of the fluid/biofilm are also investigated. We find that reversing the flow increases the effectiveness of dosing. In addition, we show that overall survival decreases with increasing surface roughness.

  6. Chemical sensing in mammalian host-bacterial commensal associations

    USDA-ARS?s Scientific Manuscript database

    The mammalian gastrointestinal (GI) tract is colonized by a complex consortium of bacterial species. Bacteria engage in chemical signaling to coordinate population-wide behavior. However, it is unclear if chemical sensing plays a role in establishing mammalian host–bacterial commensal relationships....

  7. Bacterial genomes in epidemiology—present and future

    PubMed Central

    Croucher, Nicholas J.; Harris, Simon R.; Grad, Yonatan H.; Hanage, William P.

    2013-01-01

    Sequence data are well established in the reconstruction of the phylogenetic and demographic scenarios that have given rise to outbreaks of viral pathogens. The application of similar methods to bacteria has been hindered in the main by the lack of high-resolution nucleotide sequence data from quality samples. Developing and already available genomic methods have greatly increased the amount of data that can be used to characterize an isolate and its relationship to others. However, differences in sequencing platforms and data analysis mean that these enhanced data come with a cost in terms of portability: results from one laboratory may not be directly comparable with those from another. Moreover, genomic data for many bacteria bear the mark of a history including extensive recombination, which has the potential to greatly confound phylogenetic and coalescent analyses. Here, we discuss the exacting requirements of genomic epidemiology, and means by which the distorting signal of recombination can be minimized to permit the leverage of growing datasets of genomic data from bacterial pathogens. PMID:23382424

  8. Bacterial diversity in three distinct sub-habitats within the pitchers of the northern pitcher plant, Sarracenia purpurea.

    PubMed

    Krieger, Joseph R; Kourtev, Peter S

    2012-03-01

    Pitcher plants have been widely used in ecological studies of food webs; however, their bacterial communities are poorly characterized. Pitchers of Sarracenia purpurea contain several distinct sub-habitats, namely the bottom sediment, the liquid, and the internal pitcher wall. We hypothesized that those three sub-habitats within pitcher plants are inhabited by distinct bacterial populations. We used denaturing gradient gel electrophoresis and 16S rRNA gene sequencing to characterize bacterial populations in pitchers from three bogs. DGGE and sequencing revealed that in any given pitcher, the three sub-habitats contain significantly different bacterial populations. However, there was significant variability between bacterial populations inhabiting the same type of habitat in different pitchers, even at the same site. Therefore, no consistent set of bacterial populations was enriched in any of the three sub-habitats. All sub-habitats appeared to be dominated by alpha- and betaproteobacteria in differing proportions. In addition, sequences from the Bacteroidetes and Firmicutes were obtained from all three sub-habitats. We conclude that container aquatic habitats such as the pitchers of S. purpurea possess a very high bacterial diversity, with many unique bacterial populations enriched in individual pitchers. Within an individual pitcher, populations of certain bacterial families may be enriched in one of the three studied sub-habitats. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  9. Effects of plant tannins supplementation on animal response and in vivo ruminal bacterial populations associated with bloat in heifers grazing wheat forage

    USDA-ARS?s Scientific Manuscript database

    Research was conducted to determine the effects of sources of tannins on in vitro ruminal gas and foam production, in vivo ruminal bacterial populations, bloat dynamics and ADG of heifers grazing wheat forage. Two experiments were conducted to 1) enumerate the effect of tannins supplementation on bi...

  10. Characterization of Batrachochytrium dendrobatidis Inhibiting Bacteria from Amphibian Populations in Costa Rica

    PubMed Central

    Madison, Joseph D.; Berg, Elizabeth A.; Abarca, Juan G.; Whitfield, Steven M.; Gorbatenko, Oxana; Pinto, Adrian; Kerby, Jacob L.

    2017-01-01

    Global amphibian declines and extinction events are occurring at an unprecedented rate. While several factors are responsible for declines and extinction, the fungal pathogen Batrachochytrium dendrobatidis (Bd) has been cited as a major constituent in these events. While the effects of this chytrid fungus have been shown to cause broad scale population declines and extinctions, certain individuals and relict populations have shown resistance. This resistance has been attributed in part to the cutaneous bacterial microbiome. Here, we present the first study characterizing anti-Bd bacterial isolates from amphibian populations in Costa Rica, including the characterization of two strains of Serratia marcescens presenting strong anti-Bd activity. Transcriptome sequencing was utilized for delineation of shifts in gene expression of the two previously uncharacterized strains of S. marcescens grown in three different treatments comprising Bd, heat-killed Bd, and a no Bd control. These results revealed up- and down-regulation of key genes associated with different metabolic and regulatory pathways. This information will be valuable in continued efforts to develop a bacterial-based approach for amphibian protection as well as providing direction for continued mechanistic inquiries of the bacterial anti-Bd response. PMID:28293222

  11. Prevalence of gastrointestinal bacterial pathogens in a population of zoo animals.

    PubMed

    Stirling, J; Griffith, M; Blair, I; Cormican, M; Dooley, J S G; Goldsmith, C E; Glover, S G; Loughrey, A; Lowery, C J; Matsuda, M; McClurg, R; McCorry, K; McDowell, D; McMahon, A; Cherie Millar, B; Nagano, Y; Rao, J R; Rooney, P J; Smyth, M; Snelling, W J; Xu, J; Moore, J E

    2008-04-01

    Faecal prevalence of gastrointestinal bacterial pathogens, including Campylobacter, Escherichia coli O157:H7, Salmonella, Shigella, Yersinia, as well as Arcobacter, were examined in 317 faecal specimens from 44 animal species in Belfast Zoological Gardens, during July-September 2006. Thermophilic campylobacters including Campylobacter jejuni, Campylobacter coli and Campylobacter lari, were the most frequently isolated pathogens, where members of this genus were isolated from 11 animal species (11 of 44; 25%). Yersinia spp. were isolated from seven animal species (seven of 44; 15.9%) and included, Yersinia enterocolitica (five of seven isolates; 71.4%) and one isolate each of Yersinia frederiksenii and Yersinia kristensenii. Only one isolate of Salmonella was obtained throughout the entire study, which was an isolate of Salmonella dublin (O 1,9,12: H g, p), originating from tiger faeces after enrichment. None of the animal species found in public contact areas of the zoo were positive for any gastrointestinal bacterial pathogens. Also, water from the lake in the centre of the grounds, was examined for the same bacterial pathogens and was found to contain C. jejuni. This study is the first report on the isolation of a number of important bacterial pathogens from a variety of novel host species, C. jejuni from the red kangaroo (Macropus rufus), C. lari from a maned wolf (Chrysocyon brachyurus), Y. kristensenii from a vicugna (Vicugna vicugna) and Y. enterocolitica from a maned wolf and red panda (Ailurus fulgens). In conclusion, this study demonstrated that the faeces of animals in public contact areas of the zoo were not positive for the bacterial gastrointestinal pathogens examined. This is reassuring for the public health of visitors, particularly children, who enjoy this educational and recreational resource.

  12. The DinJ/RelE Toxin-Antitoxin System Suppresses Bacterial Proliferation and Virulence of Xylella fastidiosa in Grapevine.

    PubMed

    Burbank, Lindsey P; Stenger, Drake C

    2017-04-01

    Xylella fastidiosa, the causal agent of Pierce's disease of grapes, is a slow-growing, xylem-limited, bacterial pathogen. Disease progression is characterized by systemic spread of the bacterium through xylem vessel networks, causing leaf-scorching symptoms, senescence, and vine decline. It appears to be advantageous to this pathogen to avoid excessive blockage of xylem vessels, because living bacterial cells are generally found in plant tissue with low bacterial cell density and minimal scorching symptoms. The DinJ/RelE toxin-antitoxin system is characterized here for a role in controlling bacterial proliferation and population size during plant colonization. The DinJ/RelE locus is transcribed from two separate promoters, allowing for coexpression of antitoxin DinJ with endoribonuclease toxin RelE, in addition to independent expression of RelE. The ratio of antitoxin/toxin expressed is dependent on bacterial growth conditions, with lower amounts of antitoxin present under conditions designed to mimic grapevine xylem sap. A knockout mutant of DinJ/RelE exhibits a hypervirulent phenotype, with higher bacterial populations and increased symptom development and plant decline. It is likely that DinJ/RelE acts to prevent excessive population growth, contributing to the ability of the pathogen to spread systemically without completely blocking the xylem vessels and increasing probability of acquisition by the insect vector.

  13. Using experimental evolution to explore natural patterns between bacterial motility and resistance to bacteriophages

    PubMed Central

    Koskella, Britt; Taylor, Tiffany B; Bates, Jennifer; Buckling, Angus

    2011-01-01

    Resistance of bacteria to phages may be gained by alteration of surface proteins to which phages bind, a mechanism that is likely to be costly as these molecules typically have critical functions such as movement or nutrient uptake. To address this potential trade-off, we combine a systematic study of natural bacteria and phage populations with an experimental evolution approach. We compare motility, growth rate and susceptibility to local phages for 80 bacteria isolated from horse chestnut leaves and, contrary to expectation, find no negative association between resistance to phages and bacterial motility or growth rate. However, because correlational patterns (and their absence) are open to numerous interpretations, we test for any causal association between resistance to phages and bacterial motility using experimental evolution of a subset of bacteria in both the presence and absence of naturally associated phages. Again, we find no clear link between the acquisition of resistance and bacterial motility, suggesting that for these natural bacterial populations, phage-mediated selection is unlikely to shape bacterial motility, a key fitness trait for many bacteria in the phyllosphere. The agreement between the observed natural pattern and the experimental evolution results presented here demonstrates the power of this combined approach for testing evolutionary trade-offs. PMID:21509046

  14. Drastic changes in aquatic bacterial populations from the Cuatro Cienegas Basin (Mexico) in response to long-term environmental stress.

    PubMed

    Pajares, Silvia; Eguiarte, Luis E; Bonilla-Rosso, German; Souza, Valeria

    2013-12-01

    Understanding the changes of aquatic microbial community composition in response to changes in temperature and ultraviolet irradiation is relevant for predicting biogeochemical modifications in the functioning of natural microbial communities under global climate change scenarios. Herein we investigate shifts in the bacterioplankton composition in response to long-term changes in temperature and UV radiation. For this purpose, 15 mesocosms were seeded with composite aquatic microbial communities from natural pools within the Cuatro Cienegas Basin (Mexican Chihuahuan desert) and were subject to different temperatures and UV conditions. 16S rRNA gene clone libraries were obtained from water samples at the mid-point (4 months) and the end of the experiment (8 months). An increase in bacterial diversity over time was found in the treatment of constant temperature and UV protection, which suggests that stable environments promote the establishment of complex and diverse bacterial community. Drastic changes in the phylogenetic bacterioplankton composition and structure were observed in response to fluctuating temperature and increasing UV radiation and temperature. Fluctuating temperature induced the largest decrease of bacterial richness during the experiment, indicating that frequent temperature changes drive the reduction in abundance of several species, most notably autotrophs. The long-term impact of these environmental stresses reduced diversity and selected for generalist aquatic bacterial populations, such as Porphyrobacter. These changes at the community level occur at an ecological time scale, suggesting that under global warming scenarios cascade effects on the food web are possible if the microbial diversity is modified.

  15. Effects of dietary protein levels and 2-methylbutyrate on ruminal fermentation, nutrient degradability, bacterial populations and urinary purine derivatives in Simmental steers.

    PubMed

    Wang, C; Liu, Q; Guo, G; Huo, W J; Pei, C X; Zhang, S L; Yang, W Z

    2018-06-01

    The objective of this study was to evaluate the effects of dietary crude protein (CP) levels and 2-methylbutyrate (MB) supplementation on ruminal fermentation, bacterial populations, microbial enzyme activity and urinary excretion of purine derivatives (PD) in Simmental steers. Eight ruminally cannulated Simmental steers, averaging 18 months of age and 465 ± 8.6 kg of body weight (BW), were used in a replicated 4 × 4 Latin square design by a 2 × 2 factorial arrangement. Low protein (98.5 g CP/kg dry matter [LP] or high protein (128.7 g CP/kg dry matter [HP]) diets were fed with MB supplementation (0 g [MB-] or 16.8 g steer -1  day -1 [MB+]). Steers were fed a total mixed ration with dietary corn straw to concentrate ratio of 50:50 (dry matter [DM] basis). The CP × MB interaction was observed for ruminal total VFA, molar proportions of acetate and propionate, acetate to propionate ratio, ammonia-N, effective degradability of neutral detergent fibre (NDF) and CP, microbial enzyme activity, bacterial populations and total PD excretion (p < .05). Ruminal pH decreased (p < .05), but ruminal total VFA concentration increased (p < .05) with increasing dietary CP level or MB supplementation. Acetate molar proportion increased (p = .043) with MB supplementation, but was not affected by dietary CP level. Propionate molar proportion decreased (p < .05) with increasing dietary CP level or MB supplementation. Consequently, acetate-to-propionate ratio increased (p = .001) with MB supplementation, but was not affected by dietary CP level. Ruminal ammonia-N content increased (p = .034) with increasing dietary CP level, but decreased (p = .012) with MB supplementation. The effective degradability of NDF and CP increased (p < .05) with increasing dietary CP level or MB supplementation. Microbial enzyme activity, bacterial populations and total PD excretion also increased (p < .05) with increasing dietary CP level or MB supplementation. The

  16. Diversity in ATP concentrations in a single bacterial cell population revealed by quantitative single-cell imaging

    PubMed Central

    Yaginuma, Hideyuki; Kawai, Shinnosuke; Tabata, Kazuhito V.; Tomiyama, Keisuke; Kakizuka, Akira; Komatsuzaki, Tamiki; Noji, Hiroyuki; Imamura, Hiromi

    2014-01-01

    Recent advances in quantitative single-cell analysis revealed large diversity in gene expression levels between individual cells, which could affect the physiology and/or fate of each cell. In contrast, for most metabolites, the concentrations were only measureable as ensemble averages of many cells. In living cells, adenosine triphosphate (ATP) is a critically important metabolite that powers many intracellular reactions. Quantitative measurement of the absolute ATP concentration in individual cells has not been achieved because of the lack of reliable methods. In this study, we developed a new genetically-encoded ratiometric fluorescent ATP indicator “QUEEN”, which is composed of a single circularly-permuted fluorescent protein and a bacterial ATP binding protein. Unlike previous FRET-based indicators, QUEEN was apparently insensitive to bacteria growth rate changes. Importantly, intracellular ATP concentrations of numbers of bacterial cells calculated from QUEEN fluorescence were almost equal to those from firefly luciferase assay. Thus, QUEEN is suitable for quantifying the absolute ATP concentration inside bacteria cells. Finally, we found that, even for a genetically-identical Escherichia coli cell population, absolute concentrations of intracellular ATP were significantly diverse between individual cells from the same culture, by imaging QUEEN signals from single cells. PMID:25283467

  17. Hydrogeochemistry and coal-associated bacterial populations from a methanogenic coal bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnhart, Elliott P.; Weeks, Edwin P.; Jones, Elizabeth J. P.

    Biogenic coalbed methane (CBM), a microbially-generated source of natural gas trapped within coal beds, is an important energy resource in many countries. Specific bacterial populations and enzymes involved in coal degradation, the potential rate-limiting step of CBM formation, are relatively unknown. The U.S. Geological Survey (USGS) has established a field site, (Birney test site), in an undeveloped area of the Powder River Basin (PRB), with four wells completed in the Flowers-Goodale coal bed, one in the overlying sandstone formation, and four in overlying and underlying coal beds (Knoblach, Nance, and Terret). The nine wells were positioned to characterize the hydraulicmore » conductivity of the Flowers-Goodale coal bed and were selectively cored to investigate the hydrogeochemistry and microbiology associated with CBM production at the Birney test site. Aquifer-test results indicated the Flowers-Goodale coal bed, in a zone from about 112-120 m below land surface at the test site, had very low hydraulic conductivity (0.005 m/d) compared to other PRB coal beds examined. Consistent with microbial methanogenesis, groundwater in the coal bed and overlying sandstone contain dissolved methane (46 mg/L average) with low δ 13C values (-67‰ average), high alkalinity values (22 meq/kg average), relatively positive δ 13C-DIC values (4‰ average), and no detectable higher chain hydrocarbons, NO 3 -, or SO 4 2-. Bioassay methane production was greatest at the upper interface of the Flowers-Goodale coal bed near the overlying sandstone. Pyrotag analysis identified Aeribacillus as a dominant in situ bacterial community member in the coal near the sandstone and statistical analysis indicated Actinobacteria predominated coal core samples compared to claystone or sandstone cores. These bacteria, which previously have been correlated with hydrocarbon-containing environments such as oil reservoirs, have demonstrated the ability to produce biosurfactants to break down

  18. Hydrogeochemistry and coal-associated bacterial populations from a methanogenic coal bed

    DOE PAGES

    Barnhart, Elliott P.; Weeks, Edwin P.; Jones, Elizabeth J. P.; ...

    2016-05-04

    Biogenic coalbed methane (CBM), a microbially-generated source of natural gas trapped within coal beds, is an important energy resource in many countries. Specific bacterial populations and enzymes involved in coal degradation, the potential rate-limiting step of CBM formation, are relatively unknown. The U.S. Geological Survey (USGS) has established a field site, (Birney test site), in an undeveloped area of the Powder River Basin (PRB), with four wells completed in the Flowers-Goodale coal bed, one in the overlying sandstone formation, and four in overlying and underlying coal beds (Knoblach, Nance, and Terret). The nine wells were positioned to characterize the hydraulicmore » conductivity of the Flowers-Goodale coal bed and were selectively cored to investigate the hydrogeochemistry and microbiology associated with CBM production at the Birney test site. Aquifer-test results indicated the Flowers-Goodale coal bed, in a zone from about 112-120 m below land surface at the test site, had very low hydraulic conductivity (0.005 m/d) compared to other PRB coal beds examined. Consistent with microbial methanogenesis, groundwater in the coal bed and overlying sandstone contain dissolved methane (46 mg/L average) with low δ 13C values (-67‰ average), high alkalinity values (22 meq/kg average), relatively positive δ 13C-DIC values (4‰ average), and no detectable higher chain hydrocarbons, NO 3 -, or SO 4 2-. Bioassay methane production was greatest at the upper interface of the Flowers-Goodale coal bed near the overlying sandstone. Pyrotag analysis identified Aeribacillus as a dominant in situ bacterial community member in the coal near the sandstone and statistical analysis indicated Actinobacteria predominated coal core samples compared to claystone or sandstone cores. These bacteria, which previously have been correlated with hydrocarbon-containing environments such as oil reservoirs, have demonstrated the ability to produce biosurfactants to break down

  19. Temperature variation, bacterial diversity and fungal infection dynamics in the amphibian skin.

    PubMed

    Longo, Ana V; Zamudio, Kelly R

    2017-09-01

    Host-associated bacterial communities on the skin act as the first line of defence against invading pathogens. Yet, for most natural systems, we lack a clear understanding of how temperature variability affects structure and composition of skin bacterial communities and, in turn, promotes or limits the colonization of opportunistic pathogens. Here, we examine how natural temperature fluctuations might be related to changes in skin bacterial diversity over time in three amphibian populations infected by the pathogenic fungus Batrachochytrium dendrobatidis (Bd). Our focal host species (Eleutherodactylus coqui) is a direct-developing frog that has suffered declines at some populations in the last 20 years, while others have not experienced any changes. We quantified skin bacterial alpha- and beta-diversity at four sampling time points, a period encompassing two seasons and ample variation in natural infections and environmental conditions. Despite the different patterns of infection across populations, we detected an overall increase in bacterial diversity through time, characterized by the replacement of bacterial operational taxonomic units (OTUs). Increased frog body temperatures possibly allowed the colonization of bacteria as well as the recruitment of a subset of indicator OTUs, which could have promoted the observed changes in diversity patterns. Our results suggest that natural environmental fluctuations might be involved in creating opportunities for bacterial replacement, potentially attenuating pathogen transmission and thus contributing to host persistence in E. coqui populations. © 2017 John Wiley & Sons Ltd.

  20. Ericoid Roots and Mycospheres Govern Plant-Specific Bacterial Communities in Boreal Forest Humus.

    PubMed

    Timonen, Sari; Sinkko, Hanna; Sun, Hui; Sietiö, Outi-Maaria; Rinta-Kanto, Johanna M; Kiheri, Heikki; Heinonsalo, Jussi

    2017-05-01

    In this study, the bacterial populations of roots and mycospheres of the boreal pine forest ericoid plants, heather (Calluna vulgaris), bilberry (Vaccinium myrtillus), and lingonberry (Vaccinium vitis-idaea), were studied by qPCR and next-generation sequencing (NGS). All bacterial communities of mycosphere soils differed from soils uncolonized by mycorrhizal mycelia. Colonization by mycorrhizal hyphae increased the total number of bacterial 16S ribosomal DNA (rDNA) gene copies in the humus but decreased the number of different bacterial operational taxonomic units (OTUs). Nevertheless, ericoid roots and mycospheres supported numerous OTUs not present in uncolonized humus. Bacterial communities in bilberry mycospheres were surprisingly similar to those in pine mycospheres but not to bacterial communities in heather and lingonberry mycospheres. In contrast, bacterial communities of ericoid roots were more similar to each other than to those of pine roots. In all sample types, the relative abundances of bacterial sequences belonging to Alphaproteobacteria and Acidobacteria were higher than the sequences belonging to other classes. Soil samples contained more Actinobacteria, Deltaproteobacteria, Opitutae, and Planctomycetia, whereas Armatimonadia, Betaproteobacteria, Gammaproteobacteria, and Sphingobacteriia were more common to roots. All mycosphere soils and roots harbored bacteria unique to that particular habitat. Our study suggests that the habitation by ericoid plants increases the overall bacterial diversity of boreal forest soils.

  1. Factors contributing to bacterial bulb rots of onion

    USDA-ARS?s Scientific Manuscript database

    The incidence of bacterial rots of onion bulbs is increasing and has become a serious problem for growers. This increase is likely due to a combination of factors, such as high bacterial populations in soils and irrigation water, heavy rains flooding production fields, higher temperatures, etc. It m...

  2. Culturable endophytic bacterial communities associated with field-grown soybean.

    PubMed

    de Almeida Lopes, K B; Carpentieri-Pipolo, V; Oro, T H; Stefani Pagliosa, E; Degrassi, G

    2016-03-01

    Assess the diversity of the culturable endophytic bacterial population associated with transgenic and nontransgenic soybean grown in field trial sites in Brazil and characterize them phenotypically and genotypically focusing on characteristics related to plant growth promotion. Endophytic bacteria were isolated from roots, stems and leaves of soybean cultivars (nontransgenic (C) and glyphosate-resistant (GR) transgenic soybean), including the isogenic BRS133 and BRS245RR. Significant differences were observed in bacterial densities in relation to genotype and tissue from which the isolates were obtained. The highest number of bacteria was observed in roots and in GR soybean. Based on characteristics related to plant growth promotion, 54 strains were identified by partial 16S rRNA sequence analysis, with most of the isolates belonging to the species Enterobacter ludwigii and Variovorax paradoxus. Among the isolates, 44·4% were able to either produce indoleacetic acid (IAA) or solubilize phosphates, and 9·2% (all from GR soybean) presented both plant growth-promoting activities. The results from this study indicate that the abundance of endophytic bacterial communities of soybean differs between cultivars and in general it was higher in the transgenic cultivars than in nontransgenic cultivars. BRS 245 RR exhibited no significant difference in abundance compared to nontransgenic BRS133. This suggests that the impact of the management used in the GR soybean fields was comparable with the impacts of some enviromental factors. However, the bacterial endophytes associated to GR and nontransgenic soybean were different. The soybean-associated bacteria showing characteristics related to plant growth promotion were identified as belonging to the species Pantoea agglomerans and Variovorax paradoxus. Our study demonstrated differences concerning compostion of culturable endophytic bacterial population in nontransgenic and transgenic soybean. © 2016 The Society for Applied

  3. Interactions Between QTL SAP6 and SU91 on Resistance to Common Bacterial Blight in Red Kidney Bean and Pinto Bean Populations

    USDA-ARS?s Scientific Manuscript database

    Resistance to common bacterial blight in common bean is a complex trait that is quantitatively inherited. We examined the interaction between two independent QTL, SAP6 and SU91, which condition resistance to CBB.The QTL were studied in a pinto bean F2 population a cross between Othello (sap6 sap6 //...

  4. Jellyfish modulate bacterial dynamic and community structure.

    PubMed

    Tinta, Tinkara; Kogovšek, Tjaša; Malej, Alenka; Turk, Valentina

    2012-01-01

    Jellyfish blooms have increased in coastal areas around the world and the outbreaks have become longer and more frequent over the past few decades. The Mediterranean Sea is among the heavily affected regions and the common bloom-forming taxa are scyphozoans Aurelia aurita s.l., Pelagia noctiluca, and Rhizostoma pulmo. Jellyfish have few natural predators, therefore their carcasses at the termination of a bloom represent an organic-rich substrate that supports rapid bacterial growth, and may have a large impact on the surrounding environment. The focus of this study was to explore whether jellyfish substrate have an impact on bacterial community phylotype selection. We conducted in situ jellyfish-enrichment experiment with three different jellyfish species. Bacterial dynamic together with nutrients were monitored to assess decaying jellyfish-bacteria dynamics. Our results show that jellyfish biomass is characterized by protein rich organic matter, which is highly bioavailable to 'jellyfish-associated' and 'free-living' bacteria, and triggers rapid shifts in bacterial population dynamics and composition. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed a rapid shift in community composition from unculturable Alphaproteobacteria to culturable species of Gammaproteobacteria and Flavobacteria. The results of sequence analyses of bacterial isolates and of total bacterial community determined by culture independent genetic analysis showed the dominance of the Pseudoalteromonadaceae and the Vibrionaceae families. Elevated levels of dissolved proteins, dissolved organic and inorganic nutrient release, bacterial abundance and carbon production as well as ammonium concentrations characterized the degradation process. The biochemical composition of jellyfish species may influence changes in the amount of accumulated dissolved organic and inorganic nutrients. Our results can contribute insights into possible changes in

  5. A size-structured model of bacterial growth and reproduction.

    PubMed

    Ellermeyer, S F; Pilyugin, S S

    2012-01-01

    We consider a size-structured bacterial population model in which the rate of cell growth is both size- and time-dependent and the average per capita reproduction rate is specified as a model parameter. It is shown that the model admits classical solutions. The population-level and distribution-level behaviours of these solutions are then determined in terms of the model parameters. The distribution-level behaviour is found to be different from that found in similar models of bacterial population dynamics. Rather than convergence to a stable size distribution, we find that size distributions repeat in cycles. This phenomenon is observed in similar models only under special assumptions on the functional form of the size-dependent growth rate factor. Our main results are illustrated with examples, and we also provide an introductory study of the bacterial growth in a chemostat within the framework of our model.

  6. Temporal variability of bacterial communities in cryoconite on an alpine glacier.

    PubMed

    Franzetti, Andrea; Navarra, Federico; Tagliaferri, Ilario; Gandolfi, Isabella; Bestetti, Giuseppina; Minora, Umberto; Azzoni, Roberto Sergio; Diolaiuti, Guglielmina; Smiraglia, Claudio; Ambrosini, Roberto

    2017-04-01

    Cryoconite holes, that is, small ponds that form on glacier surface, are considered the most biologically active environments on glaciers. Bacterial communities in these environments have been extensively studied, but often through snapshot studies based on the assumption of a general stability of community structure. In this study, the temporal variation of bacterial communities in cryoconite holes on the Forni Glacier (Italian Alps) was investigated by high throughput DNA sequencing. A temporal change of bacterial communities was observed with autotrophic Cyanobacteria populations dominating communities after snowmelt, and heterotrophic Sphingobacteriales populations increasing in abundance later in the season. Bacterial communities also varied according to hole depth and area, amount of organic matter in the cryoconite and oxygen concentration. However, variation in environmental features explained a lower fraction of the variation in bacterial communities than temporal variation. Temporal change along ablation season seems therefore more important than local environmental conditions in shaping bacterial communities of cryoconite of the Forni Glacier. These findings challenge the assumption that bacterial communities of cryoconite holes are stable. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Prophage-mediated dynamics of 'Candidatus Liberibacter asiaticus' populations, the destructive bacterial pathogens of citrus huanglongbing.

    PubMed

    Zhou, Lijuan; Powell, Charles A; Li, Wenbin; Irey, Mike; Duan, Yongping

    2013-01-01

    Prophages are highly dynamic components in the bacterial genome and play an important role in intraspecies variations. There are at least two prophages in the chromosomes of Candidatus Liberibacter asiaticus' (Las) Floridian isolates. Las is both unculturable and the most prevalent species of Liberibacter pathogens that cause huanglongbing (HLB), a worldwide destructive disease of citrus. In this study, seven new prophage variants resulting from two hyper-variable regions were identified by screening clone libraries of infected citrus, periwinkle and psyllids. Among them, Types A and B share highly conserved sequences and localize within the two prophages, FP1 and FP2, respectively. Although Types B and C were abundant in all three libraries, Type A was much more abundant in the libraries from the Las-infected psyllids than from the Las-infected plants, and Type D was only identified in libraries from the infected host plants but not from the infected psyllids. Sequence analysis of these variants revealed that the variations may result from recombination and rearrangement events. Conventional PCR results using type-specific molecular markers indicated that A, B, C and D are the four most abundant types in Las-infected citrus and periwinkle. However, only three types, A, B and C are abundant in Las-infected psyllids. Typing results for Las-infected citrus field samples indicated that mixed populations of Las bacteria present in Floridian isolates, but only the Type D population was correlated with the blotchy mottle symptom. Extended cloning and sequencing of the Type D region revealed a third prophage/phage in the Las genome, which may derive from the recombination of FP1 and FP2. Dramatic variations in these prophage regions were also found among the global Las isolates. These results are the first to demonstrate the prophage/phage-mediated dynamics of Las populations in plant and insect hosts, and their correlation with insect transmission and disease development.

  8. Bacterial uptake of antibiotics in model unsaturated systems

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Chen, Z.; Zhang, Y.; Zhao, Z.; Wang, G.; Gao, Y.; Boyd, S. A.; Zhu, D.; Li, H.

    2016-12-01

    Anthropogenic antibiotics are ubiquitously present in the environment due to large uses in human medicine and animal agriculture, and are causing unintended consequence to human and ecosystem health. Bacterial uptake of antibiotics could exert selection pressure on antibiotic resistance development among bacteria population. Therefore, understanding environmental factors controlling bioavailability of antibiotics to bacteria is critical to better assessing exposure risks and developing mitigation strategies. Nonetheless, conventional bioavailability assays are often performed in water-saturated systems that do not represent unsaturated soils where most bacteria live, therefore neglecting soil water as a controlling factor in determining the extent of antibiotic bacterial uptake. Therefore, we propose to study bacterial uptake of antibiotics in model unsaturated systems using GFP-tagged Escherichia coli bioreporter for tetracyclines. Our preliminary studies demonstrated the important role of water content (or water matric potential) in determining the bioavailability of antibiotics, and complex interactions of water potential, tetracycline diffusion, and E. coli growth. Therefore, unsaturated processes are important for understanding antibiotic resistance development and developing mitigation strategies.

  9. Individual based simulations of bacterial growth on agar plates

    NASA Astrophysics Data System (ADS)

    Ginovart, M.; López, D.; Valls, J.; Silbert, M.

    2002-03-01

    The individual based simulator, INDividual DIScrete SIMulations (INDISIM) has been used to study the behaviour of the growth of bacterial colonies on a finite dish. The simulations reproduce the qualitative trends of pattern formation that appear during the growth of Bacillus subtilis on an agar plate under different initial conditions of nutrient peptone concentration, the amount of agar on the plate, and the temperature. The simulations are carried out by imposing closed boundary conditions on a square lattice divided into square spatial cells. The simulator studies the temporal evolution of the bacterial population possible by setting rules of behaviour for each bacterium, such as its uptake, metabolism and reproduction, as well as rules for the medium in which the bacterial cells grow, such as concentration of nutrient particles and their diffusion. The determining factors that characterize the structure of the bacterial colony patterns in the presents simulations, are the initial concentrations of nutrient particles, that mimic the amount of peptone in the experiments, and the set of values for the microscopic diffusion parameter related, in the experiments, to the amount of the agar medium.

  10. Evaluation of gastrointestinal bacterial population for the production of holocellulose enzymes for biomass deconstruction

    PubMed Central

    Asem, Dhaneshwaree; Leo, Vincent Vineeth; Passari, Ajit Kumar; Tonsing, Mary Vanlalhruaii; Joshi, J. Beslin; Uthandi, Sivakumar; Hashem, Abeer; Abd_Allah, Elsayed Fathi

    2017-01-01

    The gastrointestinal (GI) habitat of ruminant and non-ruminant animals sustains a vast ensemble of microbes that are capable of utilizing lignocellulosic plant biomass. In this study, an indigenous swine (Zovawk) and a domesticated goat (Black Bengal) were investigated to isolate bacteria having plant biomass degrading enzymes. After screening and enzymatic quantification of eighty-one obtained bacterial isolates, Serratia rubidaea strain DBT4 and Aneurinibacillus aneurinilyticus strain DBT87 were revealed as the most potent strains, showing both cellulase and xylanase production. A biomass utilization study showed that submerged fermentation (SmF) of D2 (alkaline pretreated pulpy biomass) using strain DBT4 resulted in the most efficient biomass deconstruction with maximum xylanase (11.98 U/mL) and FPase (0.5 U/mL) activities (55°C, pH 8). The present study demonstrated that bacterial strains residing in the gastrointestinal region of non-ruminant swine are a promising source for lignocellulose degrading microorganisms that could be used for biomass conversion. PMID:29023528

  11. Evaluation of gastrointestinal bacterial population for the production of holocellulose enzymes for biomass deconstruction.

    PubMed

    Asem, Dhaneshwaree; Leo, Vincent Vineeth; Passari, Ajit Kumar; Tonsing, Mary Vanlalhruaii; Joshi, J Beslin; Uthandi, Sivakumar; Hashem, Abeer; Abd Allah, Elsayed Fathi; Singh, Bhim Pratap

    2017-01-01

    The gastrointestinal (GI) habitat of ruminant and non-ruminant animals sustains a vast ensemble of microbes that are capable of utilizing lignocellulosic plant biomass. In this study, an indigenous swine (Zovawk) and a domesticated goat (Black Bengal) were investigated to isolate bacteria having plant biomass degrading enzymes. After screening and enzymatic quantification of eighty-one obtained bacterial isolates, Serratia rubidaea strain DBT4 and Aneurinibacillus aneurinilyticus strain DBT87 were revealed as the most potent strains, showing both cellulase and xylanase production. A biomass utilization study showed that submerged fermentation (SmF) of D2 (alkaline pretreated pulpy biomass) using strain DBT4 resulted in the most efficient biomass deconstruction with maximum xylanase (11.98 U/mL) and FPase (0.5 U/mL) activities (55°C, pH 8). The present study demonstrated that bacterial strains residing in the gastrointestinal region of non-ruminant swine are a promising source for lignocellulose degrading microorganisms that could be used for biomass conversion.

  12. Epidemiology of bacterial meningitis in the USA from 1997 to 2010: a population-based observational study.

    PubMed

    Castelblanco, Rodrigo Lopez; Lee, MinJae; Hasbun, Rodrigo

    2014-09-01

    Bacterial meningitis continues to be a substantial cause of morbidity and mortality, but the epidemiological trends after adjunctive dexamethasone recommendations are unknown in the USA. We aimed to describe the changing patterns among the most common bacterial causes in the USA after conjugate vaccination and to assess the association between adjunctive dexamethasone and mortality. For this population-based observational study, we searched information available from hospital discharges about incidence and inpatient mortality for the most important causes of community and nosocomial bacterial meningitis based on International Classification of Diseases coding across all hospitals in the USA between 1997 and 2010 with the HealthCare Cost Utilization Project (HCUP) network database. We calculated incidences according to US Census Bureau data and used a negative binomial regression model to evaluate the significance of changes over time. We assessed mortality from pneumococcus for three periods 1997-2001 (baseline), 2002-04 (transition years), and 2005-08 (after corticosteroid recommendations were available). Streptococcus pneumoniae incidence fell from 0·8 per 100 000 people in 1997, to 0·3 per 100 000 people by the end of 2010 (RR 0·3737, 95% CI 0·1825-0·7656). Mortality from pneumococcal meningitis decreased between 2005 (0·049 per 100 000 people) and 2008 (0·024 per 100 000 people) compared with between 2002 (0·073 per 100 000 people) and 2004 (0·063 per 100 000 people; RR 0·5720, 95% CI 0·4303-0·7582). The incidence of Neisseria meningitidis infection decreased from 0·721 per 100 000 people in 1997, to 0·123 per 100 000 people in 2010 (RR 0·1386, 95% CI 0·048-0·4284), which has placed this pathogen close to common bacterial causes of nosocomial meningitis such as staphylococcus and Gram-negative bacteria and to Haemophilus influenzae. S pneumoniae continues to be the leading identifiable cause of bacterial meningitis in the USA

  13. In vitro bacterial growth and in vivo ruminal microbiota populations associated with bloat in steers grazing wheat forage.

    PubMed

    Min, B R; Pinchak, W E; Anderson, R C; Hume, M E

    2006-10-01

    on d 50 for bloated than for nonbloated steers when grazing wheat forage. The molecular analysis of the 16S rDNA showed that 2 different ruminal microbiota populations developed between bloated and nonbloated animals grazing wheat forage. Bloat in cattle grazing wheat pastures may be caused by increased production of biofilm, resulting from a diet-influenced switch in the rumen bacterial population.

  14. Dynamics of indigenous bacterial communities associated with crude oil degradation in soil microcosms during nutrient-enhanced bioremediation.

    PubMed

    Chikere, Chioma B; Surridge, Karen; Okpokwasili, Gideon C; Cloete, Thomas E

    2012-03-01

    Bacterial population dynamics were examined during bioremediation of an African soil contaminated with Arabian light crude oil and nutrient enrichment (biostimulation). Polymerase chain reaction followed by denaturing gradient gel electrophoresis (DGGE) were used to generate bacterial community fingerprints of the different treatments employing the 16S ribosomal ribonucleic acid (rRNA) gene as molecular marker. The DGGE patterns of the nutrient-amended soils indicated the presence of distinguishable bands corresponding to the oil-contaminated-nutrient-enriched soils, which were not present in the oil-contaminated and pristine control soils. Further characterization of the dominant DGGE bands after excision, reamplification and sequencing revealed that Corynebacterium spp., Dietzia spp., Rhodococcus erythropolis sp., Nocardioides sp., Low G+C (guanine plus cytosine) Gram positive bacterial clones and several uncultured bacterial clones were the dominant bacterial groups after biostimulation. Prominent Corynebacterium sp. IC10 sequence was detected across all nutrient-amended soils but not in oil-contaminated control soil. Total heterotrophic and hydrocarbon utilizing bacterial counts increased significantly in the nutrient-amended soils 2 weeks post contamination whereas oil-contaminated and pristine control soils remained fairly stable throughout the experimental period. Gas chromatographic analysis of residual hydrocarbons in biostimulated soils showed marked attenuation of contaminants starting from the second to the sixth week after contamination whereas no significant reduction in hydrocarbon peaks were seen in the oil-contaminated control soil throughout the 6-week experimental period. Results obtained indicated that nutrient amendment of oil-contaminated soil selected and enriched the bacterial communities mainly of the Actinobacteria phylogenetic group capable of surviving in toxic contamination with concomitant biodegradation of the hydrocarbons. The

  15. Suggested guidelines for using systemic antimicrobials in bacterial skin infections: part 1—diagnosis based on clinical presentation, cytology and culture

    PubMed Central

    Beco, L.; Guaguère, E.; Méndez, C. Lorente; Noli, C.; Nuttall, T.; Vroom, M.

    2013-01-01

    Systemic antimicrobials are critically important in veterinary healthcare, and resistance is a major concern. Antimicrobial stewardship will be important in maintaining clinical efficacy by reducing the development and spread of antimicrobial resistance. Bacterial skin infections are one of the most common reasons for using systemic antimicrobials in dogs and cats. Appropriate management of these infections is, therefore, crucial in any policy for responsible antimicrobial use. The goals of therapy are to confirm that an infection is present, identify the causative bacteria, select the most appropriate antimicrobial, ensure that the infection is treated correctly, and to identify and manage any underlying conditions. This is the first of two articles that will provide evidence-led guidelines to help practitioners address these issues. This article covers diagnosis, including descriptions of the different clinical presentations of surface, superficial and deep bacterial skin infections, how to perform and interpret cytology, and how to best use bacterial culture and sensitivity testing. Part 2 will discuss therapy, including choice of drug and treatment regimens. PMID:23292951

  16. Protozoan, Bacterial, and Volatile Fatty Acid Changes Associated with Feeding Tylosin

    PubMed Central

    Satapathy, N.; Purser, D. B.

    1967-01-01

    Tylosin was fed to two of six wethers for 79 days, to a second two for only 28 days, and not at all to a third pair (controls). The addition of tylosin to the daily feed resulted in a rapid twofold increase in protozoal concentration and a change in the composition or characteristics, or both, of the bacterial population. The results indicate that the bacterial population was modified to the extent of about 80%. Total acid concentrations were initially depressed but appeared to be greater than those in control animals at the termination of the experiment. Deletion of tylosin from the ration resulted in a rapid decrease in protozoal concentrations, whereas changes in the bacterial population did not occur for a further 30 days. PMID:16349756

  17. Molecular bacterial community analysis of clean rooms where spacecraft are assembled.

    PubMed

    Moissl, Christine; Osman, Shariff; La Duc, Myron T; Dekas, Anne; Brodie, Eoin; DeSantis, Todd; Desantis, Tadd; Venkateswaran, Kasthuri

    2007-09-01

    Molecular bacterial community composition was characterized from three geographically distinct spacecraft-associated clean rooms to determine whether such populations are influenced by the surrounding environment or the maintenance of the clean rooms. Samples were collected from facilities at the Jet Propulsion Laboratory (JPL), Kennedy Space Flight Center (KSC), and Johnson Space Center (JSC). Nine clone libraries representing different surfaces within the spacecraft facilities and three libraries from the surrounding air were created. Despite the highly desiccated, nutrient-bare conditions within these clean rooms, a broad diversity of bacteria was detected, covering all the main bacterial phyla. Furthermore, the bacterial communities were significantly different from each other, revealing only a small subset of microorganisms common to all locations (e.g. Sphingomonas, Staphylococcus). Samples from JSC assembly room surfaces showed the greatest diversity of bacteria, particularly within the Alpha- and Gammaproteobacteria and Actinobacteria. The bacterial community structure of KSC assembly surfaces revealed a high presence of proteobacterial groups, whereas the surface samples collected from the JPL assembly facility showed a predominance of Firmicutes. Our study presents the first extended molecular survey and comparison of NASA spacecraft assembly facilities, and provides new insights into the bacterial diversity of clean room environments .

  18. Seasonal effects of heat shock on bacterial populations, including artificial Vibrio parahaemolyticus exposure, in the Pacific oyster, Crassostrea gigas.

    PubMed

    Aagesen, Alisha M; Häse, Claudia C

    2014-04-01

    During the warmer summer months, oysters are conditioned to spawn, resulting in massive physiological efforts for gamete production. Moreover, the higher temperatures during the summer typically result in increased bacteria populations in oysters. We hypothesized that these animals are under multiple stresses that lead to possible immune system impairments during the summer months that can possibly lead to death. Here we show that in the summer and the fall animals exposed to a short heat stress respond similarly, resulting in a general trend of more bacteria being found in heat shocked animals than their non-heat shocked counterparts. We also show that naturally occurring bacterial populations are effected by a heat shock. In addition, oysters artificially contaminated with Vibrio parahaemolyticus were also affected by a heat shock. Heat shocked animals contained higher concentrations of V. parahaemolyticus in their tissues and hemolymph than control animals and this was consistent for animals examined during summer and fall. Finally, oyster hemocyte interactions with V. parahaemolyticus differed based on the time of the year. Overall, these findings demonstrate that seasonal changes and/or a short heat shock is sufficient to impact bacterial retention, particularly V. parahaemolyticus, in oysters and this line of research might lead to important considerations for animal harvesting procedures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. The Weak Shall Inherit: Bacteriocin-Mediated Interactions in Bacterial Populations

    PubMed Central

    Majeed, Hadeel; Lampert, Adam; Ghazaryan, Lusine; Gillor, Osnat

    2013-01-01

    Background Evolutionary arms race plays a major role in shaping biological diversity. In microbial systems, competition often involves chemical warfare and the production of bacteriocins, narrow-spectrum toxins aimed at killing closely related strains by forming pores in their target’s membrane or by degrading the target’s RNA or DNA. Although many empirical and theoretical studies describe competitive exclusion of bacteriocin-sensitive strains by producers of bacteriocins, the dynamics among producers are largely unknown. Methodology/Principal findings We used a reporter-gene assay to show that the bacterial response to bacteriocins’ treatment mirrors the inflicted damage Potent bacteriocins are lethal to competing strains, but at sublethal doses can serve as strong inducing agents, enhancing their antagonists’ bacteriocin production. In contrast, weaker bacteriocins are less toxic to their competitors and trigger mild bacteriocin expression. We used empirical and numerical models to explore the role of cross-induction in the arms race between bacteriocin-producing strains. We found that in well-mixed, unstructured environments where interactions are global, producers of weak bacteriocins are selectively advantageous and outcompete producers of potent bacteriocins. However, in spatially structured environments, where interactions are local, each producer occupies its own territory, and competition takes place only in “no man’s lands” between territories, resulting in much slower dynamics. Conclusion/Significance The models we present imply that producers of potent bacteriocins that trigger a strong response in neighboring bacteriocinogenic strains are doomed, while producers of weak bacteriocins that trigger a mild response in bacteriocinogenic strains flourish. This counter-intuitive outcome might explain the preponderance of weak bacteriocin producers in nature. However, the described scenario is prolonged in spatially structured environments thus

  20. Spatial distribution of marine airborne bacterial communities

    PubMed Central

    Seifried, Jasmin S; Wichels, Antje; Gerdts, Gunnar

    2015-01-01

    The spatial distribution of bacterial populations in marine bioaerosol samples was investigated during a cruise from the North Sea to the Baltic Sea via Skagerrak and Kattegat. The analysis of the sampled bacterial communities with a pyrosequencing approach revealed that the most abundant phyla were represented by the Proteobacteria (49.3%), Bacteroidetes (22.9%), Actinobacteria (16.3%), and Firmicutes (8.3%). Cyanobacteria were assigned to 1.5% of all bacterial reads. A core of 37 bacterial OTUs made up more than 75% of all bacterial sequences. The most abundant OTU was Sphingomonas sp. which comprised 17% of all bacterial sequences. The most abundant bacterial genera were attributed to distinctly different areas of origin, suggesting highly heterogeneous sources for bioaerosols of marine and coastal environments. Furthermore, the bacterial community was clearly affected by two environmental parameters – temperature as a function of wind direction and the sampling location itself. However, a comparison of the wind directions during the sampling and calculated backward trajectories underlined the need for more detailed information on environmental parameters for bioaerosol investigations. The current findings support the assumption of a bacterial core community in the atmosphere. They may be emitted from strong aerosolizing sources, probably being mixed and dispersed over long distances. PMID:25800495

  1. Instability of the Present LEO Satellite Populations

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi; Johnson, Nicholas L.

    2006-01-01

    Several studies conducted during 1991-2001 demonstrated, with some assumed launch rates, the future unintended growth potential of the Earth satellite population, resulting from random, accidental collisions among resident space objects. In some low Earth orbit (LEO) altitude regimes where the number density of satellites is above a critical spatial density, the production rate of new breakup debris due to collisions would exceed the loss of objects due to orbital decay. A new study has been conducted in the Orbital Debris Program Office at the NASA Lyndon B. Johnson Space Center, using higher fidelity models to evaluate the current debris environment. The study assumed no satellites were launched after December 2005. A total of 150 Monte Carlo runs were carried out and analyzed. Each Monte Carlo run simulated the current debris environment and projected it 200 years into the future. The results indicate that the LEO debris environment has reached a point such that even if no further space launches were conducted, the Earth satellite population would remain relatively constant for only the next 50 years or so. Beyond that, the debris population would begin to increase noticeably, due to the production of collisional debris. Detailed analysis shows that this growth is primarily driven by high collision activities around 900 to 1000 km altitude - the region which has a very high concentration of debris at present. In reality, the satellite population growth in LEO will undoubtedly be worse than this study indicates, since spacecraft and their orbital stages will continue to be launched into space. Postmission disposal of vehicles (e.g., limiting postmission orbital lifetimes to less than 25 years) will help, but will be insufficient to constrain the Earth satellite population. To preserve better the near-Earth environment for future space activities, it might be necessary to remove existing large and massive objects from regions where high collision activities are

  2. Bacterial Community Dynamics in Dichloromethane-Contaminated Groundwater Undergoing Natural Attenuation

    PubMed Central

    Wright, Justin; Kirchner, Veronica; Bernard, William; Ulrich, Nikea; McLimans, Christopher; Campa, Maria F.; Hazen, Terry; Macbeth, Tamzen; Marabello, David; McDermott, Jacob; Mackelprang, Rachel; Roth, Kimberly; Lamendella, Regina

    2017-01-01

    The uncontrolled release of the industrial solvent methylene chloride, also known as dichloromethane (DCM), has resulted in widespread groundwater contamination in the United States. Here we investigate the role of groundwater bacterial communities in the natural attenuation of DCM at an undisclosed manufacturing site in New Jersey. This study investigates the bacterial community structure of groundwater samples differentially contaminated with DCM to better understand the biodegradation potential of these autochthonous bacterial communities. Bacterial community analysis was completed using high-throughput sequencing of the 16S rRNA gene of groundwater samples (n = 26) with DCM contamination ranging from 0.89 to 9,800,000 μg/L. Significant DCM concentration-driven shifts in overall bacterial community structure were identified between samples, including an increase in the abundance of Firmicutes within the most contaminated samples. Across all samples, a total of 6,134 unique operational taxonomic units (OTUs) were identified, with 16 taxa having strong correlations with increased DCM concentration. Putative DCM degraders such as Pseudomonas, Dehalobacterium and Desulfovibrio were present within groundwater across all levels of DCM contamination. Interestingly, each of these taxa dominated specific DCM contamination ranges respectively. Potential DCM degrading lineages yet to be cited specifically as a DCM degrading organisms, such as the Desulfosporosinus, thrived within the most heavily contaminated groundwater samples. Co-occurrence network analysis revealed aerobic and anaerobic bacterial taxa with DCM-degrading potential were present at the study site. Our 16S rRNA gene survey serves as the first in situ bacterial community assessment of contaminated groundwater harboring DCM concentrations ranging over seven orders of magnitude. Diversity analyses revealed known as well as potentially novel DCM degrading taxa within defined DCM concentration ranges

  3. Bacterial Community Dynamics in Dichloromethane-Contaminated Groundwater Undergoing Natural Attenuation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Justin; Kirchner, Veronica; Bernard, William

    The uncontrolled release of the industrial solvent methylene chloride, also known as dichloromethane (DCM), has resulted in widespread groundwater contamination in the United States. Here we investigate the role of groundwater bacterial communities in the natural attenuation of DCM at an undisclosed manufacturing site in New Jersey. Here, we investigate the bacterial community structure of groundwater samples differentially contaminated with DCM to better understand the biodegradation potential of these autochthonous bacterial communities. Bacterial community analysis was completed using high-throughput sequencing of the 16S rRNA gene of groundwater samples (n = 26) with DCM contamination ranging from 0.89 to 9,800,000 μg/L.more » Significant DCM concentration-driven shifts in overall bacterial community structure were identified between samples, including an increase in the abundance of Firmicutes within the most contaminated samples. And across all samples, a total of 6,134 unique operational taxonomic units (OTUs) were identified, with 16 taxa having strong correlations with increased DCM concentration. Putative DCM degraders such as Pseudomonas, Dehalobacterium and Desulfovibrio were present within groundwater across all levels of DCM contamination. Interestingly, each of these taxa dominated specific DCM contamination ranges respectively. Potential DCM degrading lineages yet to be cited specifically as a DCM degrading organisms, such as the Desulfosporosinus, thrived within the most heavily contaminated groundwater samples. Co-occurrence network analysis revealed aerobic and anaerobic bacterial taxa with DCM-degrading potential were present at the study site. Our 16S rRNA gene survey serves as the first in situ bacterial community assessment of contaminated groundwater harboring DCM concentrations ranging over seven orders of magnitude. Diversity analyses revealed known as well as potentially novel DCM degrading taxa within defined DCM concentration ranges

  4. Bacterial Community Dynamics in Dichloromethane-Contaminated Groundwater Undergoing Natural Attenuation

    DOE PAGES

    Wright, Justin; Kirchner, Veronica; Bernard, William; ...

    2017-11-22

    The uncontrolled release of the industrial solvent methylene chloride, also known as dichloromethane (DCM), has resulted in widespread groundwater contamination in the United States. Here we investigate the role of groundwater bacterial communities in the natural attenuation of DCM at an undisclosed manufacturing site in New Jersey. Here, we investigate the bacterial community structure of groundwater samples differentially contaminated with DCM to better understand the biodegradation potential of these autochthonous bacterial communities. Bacterial community analysis was completed using high-throughput sequencing of the 16S rRNA gene of groundwater samples (n = 26) with DCM contamination ranging from 0.89 to 9,800,000 μg/L.more » Significant DCM concentration-driven shifts in overall bacterial community structure were identified between samples, including an increase in the abundance of Firmicutes within the most contaminated samples. And across all samples, a total of 6,134 unique operational taxonomic units (OTUs) were identified, with 16 taxa having strong correlations with increased DCM concentration. Putative DCM degraders such as Pseudomonas, Dehalobacterium and Desulfovibrio were present within groundwater across all levels of DCM contamination. Interestingly, each of these taxa dominated specific DCM contamination ranges respectively. Potential DCM degrading lineages yet to be cited specifically as a DCM degrading organisms, such as the Desulfosporosinus, thrived within the most heavily contaminated groundwater samples. Co-occurrence network analysis revealed aerobic and anaerobic bacterial taxa with DCM-degrading potential were present at the study site. Our 16S rRNA gene survey serves as the first in situ bacterial community assessment of contaminated groundwater harboring DCM concentrations ranging over seven orders of magnitude. Diversity analyses revealed known as well as potentially novel DCM degrading taxa within defined DCM concentration ranges

  5. Synchronization and survival of connected bacterial populations

    NASA Astrophysics Data System (ADS)

    Gokhale, Shreyas; Conwill, Arolyn; Ranjan, Tanvi; Gore, Jeff

    Migration plays a vital role in controlling population dynamics of species occupying distinct habitat patches. While local populations are vulnerable to extinction due to demographic or environmental stochasticity, migration from neighboring habitat patches can rescue these populations through colonization of uninhabited regions. However, a large migratory flux can synchronize the population dynamics in connected patches, thereby enhancing the risk of global extinction during periods of depression in population size. Here, we investigate this trade-off between local rescue and global extinction experimentally using laboratory populations of E. coli bacteria. Our model system consists of co-cultures of ampicillin resistant and chloramphenicol resistant strains that form a cross-protection mutualism and exhibit period-3 oscillations in the relative population density in the presence of both antibiotics. We quantify the onset of synchronization of oscillations in a pair of co-cultures connected by migration and demonstrate that period-3 oscillations can be disturbed for moderate rates of migration. These features are consistent with simulations of a mechanistic model of antibiotic deactivation in our system. The simulations further predict that the probability of survival of connected populations in high concentrations of antibiotics is maximized at intermediate migration rates. We verify this prediction experimentally and show that survival is enhanced through a combination of disturbance of period-3 oscillations and stochastic re-colonization events.

  6. Bacterial interactions in dental biofilm development.

    PubMed

    Hojo, K; Nagaoka, S; Ohshima, T; Maeda, N

    2009-11-01

    Recent analyses with ribosomal RNA-based technologies have revealed the diversity of bacterial populations within dental biofilms, and have highlighted their important contributions to oral health and disease. Dental biofilms are exceedingly complex and multispecies ecosystems, where oral bacteria interact cooperatively or competitively with other members. Bacterial interactions that influence dental biofilm communities include various different mechanisms. During the early stage of biofilm formation, it is known that planktonic bacterial cells directly attach to surfaces of the oral cavity or indirectly bind to other bacterial cells that have already colonized. Adherence through co-aggregation may be critical for the temporary retention of bacteria on dental surfaces, and may facilitate eventual bacterial colonization. It is likely that metabolic communication, genetic exchange, production of inhibitory factors (e.g., bacteriocins, hydrogen peroxide, etc.), and quorum-sensing are pivotal regulatory factors that determine the bacterial composition and/or metabolism. Since each bacterium can easily access a neighboring bacterial cell and its metabolites, genetic exchanges and metabolic communication may occur frequently in dental biofilms. Quorum-sensing is defined as gene regulation in response to cell density, which influences various functions, e.g., virulence and bacteriocin production. In this review, we discuss these important interactions among oral bacteria within the dental biofilm communities.

  7. Bacterial surface adaptation

    NASA Astrophysics Data System (ADS)

    Utada, Andrew

    2014-03-01

    Biofilms are structured multi-cellular communities that are fundamental to the biology and ecology of bacteria. Parasitic bacterial biofilms can cause lethal infections and biofouling, but commensal bacterial biofilms, such as those found in the gut, can break down otherwise indigestible plant polysaccharides and allow us to enjoy vegetables. The first step in biofilm formation, adaptation to life on a surface, requires a working knowledge of low Reynolds number fluid physics, and the coordination of biochemical signaling, polysaccharide production, and molecular motility motors. These crucial early stages of biofilm formation are at present poorly understood. By adapting methods from soft matter physics, we dissect bacterial social behavior at the single cell level for several prototypical bacterial species, including Pseudomonas aeruginosa and Vibrio cholerae.

  8. Bacterial Communities of Diverse Drosophila Species: Ecological Context of a Host–Microbe Model System

    PubMed Central

    Bhatnagar, Srijak; Eisen, Jonathan A.; Kopp, Artyom

    2011-01-01

    Drosophila melanogaster is emerging as an important model of non-pathogenic host–microbe interactions. The genetic and experimental tractability of Drosophila has led to significant gains in our understanding of animal–microbial symbiosis. However, the full implications of these results cannot be appreciated without the knowledge of the microbial communities associated with natural Drosophila populations. In particular, it is not clear whether laboratory cultures can serve as an accurate model of host–microbe interactions that occur in the wild, or those that have occurred over evolutionary time. To fill this gap, we characterized natural bacterial communities associated with 14 species of Drosophila and related genera collected from distant geographic locations. To represent the ecological diversity of Drosophilids, examined species included fruit-, flower-, mushroom-, and cactus-feeders. In parallel, wild host populations were compared to laboratory strains, and controlled experiments were performed to assess the importance of host species and diet in shaping bacterial microbiome composition. We find that Drosophilid flies have taxonomically restricted bacterial communities, with 85% of the natural bacterial microbiome composed of only four bacterial families. The dominant bacterial taxa are widespread and found in many different host species despite the taxonomic, ecological, and geographic diversity of their hosts. Both natural surveys and laboratory experiments indicate that host diet plays a major role in shaping the Drosophila bacterial microbiome. Despite this, the internal bacterial microbiome represents only a highly reduced subset of the external bacterial communities, suggesting that the host exercises some level of control over the bacteria that inhabit its digestive tract. Finally, we show that laboratory strains provide only a limited model of natural host–microbe interactions. Bacterial taxa used in experimental studies are rare or absent in

  9. Population Density Modulates Drug Inhibition and Gives Rise to Potential Bistability of Treatment Outcomes for Bacterial Infections.

    PubMed

    Karslake, Jason; Maltas, Jeff; Brumm, Peter; Wood, Kevin B

    2016-10-01

    The inoculum effect (IE) is an increase in the minimum inhibitory concentration (MIC) of an antibiotic as a function of the initial size of a microbial population. The IE has been observed in a wide range of bacteria, implying that antibiotic efficacy may depend on population density. Such density dependence could have dramatic effects on bacterial population dynamics and potential treatment strategies, but explicit measures of per capita growth as a function of density are generally not available. Instead, the IE measures MIC as a function of initial population size, and population density changes by many orders of magnitude on the timescale of the experiment. Therefore, the functional relationship between population density and antibiotic inhibition is generally not known, leaving many questions about the impact of the IE on different treatment strategies unanswered. To address these questions, here we directly measured real-time per capita growth of Enterococcus faecalis populations exposed to antibiotic at fixed population densities using multiplexed computer-automated culture devices. We show that density-dependent growth inhibition is pervasive for commonly used antibiotics, with some drugs showing increased inhibition and others decreased inhibition at high densities. For several drugs, the density dependence is mediated by changes in extracellular pH, a community-level phenomenon not previously linked with the IE. Using a simple mathematical model, we demonstrate how this density dependence can modulate population dynamics in constant drug environments. Then, we illustrate how time-dependent dosing strategies can mitigate the negative effects of density-dependence. Finally, we show that these density effects lead to bistable treatment outcomes for a wide range of antibiotic concentrations in a pharmacological model of antibiotic treatment. As a result, infections exceeding a critical density often survive otherwise effective treatments.

  10. Population Density Modulates Drug Inhibition and Gives Rise to Potential Bistability of Treatment Outcomes for Bacterial Infections

    PubMed Central

    Maltas, Jeff; Brumm, Peter; Wood, Kevin B.

    2016-01-01

    The inoculum effect (IE) is an increase in the minimum inhibitory concentration (MIC) of an antibiotic as a function of the initial size of a microbial population. The IE has been observed in a wide range of bacteria, implying that antibiotic efficacy may depend on population density. Such density dependence could have dramatic effects on bacterial population dynamics and potential treatment strategies, but explicit measures of per capita growth as a function of density are generally not available. Instead, the IE measures MIC as a function of initial population size, and population density changes by many orders of magnitude on the timescale of the experiment. Therefore, the functional relationship between population density and antibiotic inhibition is generally not known, leaving many questions about the impact of the IE on different treatment strategies unanswered. To address these questions, here we directly measured real-time per capita growth of Enterococcus faecalis populations exposed to antibiotic at fixed population densities using multiplexed computer-automated culture devices. We show that density-dependent growth inhibition is pervasive for commonly used antibiotics, with some drugs showing increased inhibition and others decreased inhibition at high densities. For several drugs, the density dependence is mediated by changes in extracellular pH, a community-level phenomenon not previously linked with the IE. Using a simple mathematical model, we demonstrate how this density dependence can modulate population dynamics in constant drug environments. Then, we illustrate how time-dependent dosing strategies can mitigate the negative effects of density-dependence. Finally, we show that these density effects lead to bistable treatment outcomes for a wide range of antibiotic concentrations in a pharmacological model of antibiotic treatment. As a result, infections exceeding a critical density often survive otherwise effective treatments. PMID:27764095

  11. Insight into the effects of different cropping systems on soil bacterial community and tobacco bacterial wilt rate.

    PubMed

    Niu, Jiaojiao; Chao, Jin; Xiao, Yunhua; Chen, Wu; Zhang, Chao; Liu, Xueduan; Rang, Zhongwen; Yin, Huaqun; Dai, Linjian

    2017-01-01

    Rotation is an effective strategy to control crop disease and improve plant health. However, the effects of crop rotation on soil bacterial community composition and structure, and crop health remain unclear. In this study, using 16S rRNA gene sequencing, we explored the soil bacterial communities under four different cropping systems, continuous tobacco cropping (control group), tobacco-maize rotation, tobacco-lily rotation, and tobacco-turnip rotation. Results of detrended correspondence analysis and dissimilarity tests showed that soil bacterial community composition and structure changed significantly among the four groups, such that Acidobacteria and Actinobacteria were more abundant in the maize rotation group (16.6 and 11.5%, respectively) than in the control (8.5 and 7.1%, respectively). Compared with the control group (57.78%), maize and lily were effective rotation crops in controlling tobacco bacterial wilt (about 23.54 and 48.67%). On the other hand, tobacco bacterial wilt rate was increased in the turnip rotation (59.62%) relative to the control. Further study revealed that the abundances of several bacterial populations were directly correlated with tobacco bacterial wilt. For example, Acidobacteria and Actinobacteria were significantly negatively correlated to the tobacco bacterial wilt rate, so they may be probiotic bacteria. Canonical correspondence analysis showed that soil pH and calcium content were key factors in determining soil bacterial communities. In conclusion, our study revealed the composition and structure of bacterial communities under four different cropping systems and may unveil molecular mechanisms for the interactions between soil microorganisms and crop health. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Sampling the light-organ microenvironment of Euprymna scolopes: description of a population of host cells in association with the bacterial symbiont Vibrio fischeri.

    PubMed

    Nyholm, S V; McFall-Ngai, M J

    1998-10-01

    The symbiosis between the squid Euprymna scolopes and the luminous bacterium Vibrio fischeri has a pronounced diel rhythm, one component of which is the venting of the contents of the light organ into the surrounding seawater each day at dawn. In this study, we explored the use of this behavior to sample the microenvironment of the light-organ crypts. Intact crypt contents, which emerge from the lateral pores of the organ as a thick paste-like exudate, were collected from anesthetized host animals that had been exposed to a light cue. Microscopy revealed that the expelled material is composed of a conspicuous population of host cells in association with the bacterial symbionts, all of which are embedded in a dense acellular matrix that strongly resembles the bacteria-based biofilms described in other systems. Assays of the viability of expelled crypt cells revealed no dead bacterial symbionts and a mixture of live and dead host cells. Analyses of the ultrastructure, biochemistry, and phagocytic activity of a subset of the host cell population suggested that some of these cells are macrophage-like molluscan hemocytes.

  13. Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples.

    PubMed

    Marsh, Alan J; O'Sullivan, Orla; Hill, Colin; Ross, R Paul; Cotter, Paul D

    2014-04-01

    Kombucha is a sweetened tea beverage that, as a consequence of fermentation, contains ethanol, carbon dioxide, a high concentration of acid (gluconic, acetic and lactic) as well as a number of other metabolites and is thought to contain a number of health-promoting components. The sucrose-tea solution is fermented by a symbiosis of bacteria and yeast embedded within a cellulosic pellicle, which forms a floating mat in the tea, and generates a new layer with each successful fermentation. The specific identity of the microbial populations present has been the focus of attention but, to date, the majority of studies have relied on culture-based analyses. To gain a more comprehensive insight into the kombucha microbiota we have carried out the first culture-independent, high-throughput sequencing analysis of the bacterial and fungal populations of 5 distinct pellicles as well as the resultant fermented kombucha at two time points. Following the analysis it was established that the major bacterial genus present was Gluconacetobacter, present at >85% in most samples, with only trace populations of Acetobacter detected (<2%). A prominent Lactobacillus population was also identified (up to 30%), with a number of sub-dominant genera, not previously associated with kombucha, also being revealed. The yeast populations were found to be dominated by Zygosaccharomyces at >95% in the fermented beverage, with a greater fungal diversity present in the cellulosic pellicle, including numerous species not identified in kombucha previously. Ultimately, this study represents the most accurate description of the microbiology of kombucha to date. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Bioorganic Fertilizer Enhances Soil Suppressive Capacity against Bacterial Wilt of Tomato

    PubMed Central

    Liu, Shuangri; Chai, Rushan; Huang, Weiqing; Liu, Xingxing; Tang, Caixian; Zhang, Yongsong

    2015-01-01

    Tomato bacterial wilt caused by Ralstonia solanacearum is one of the most destructive soil-borne diseases. Many strategies have been taken to improve soil suppressiveness against this destructive disease, but limited success has been achieved. In this study, a novel bioorganic fertilizer revealed a higher suppressive ability against bacterial wilt compared with several soil management methods in the field over four growing seasons from March 2011 to July 2013. The application of the bioorganic fertilizer significantly (P<0.05) reduced disease incidence of tomato and increased fruit yields in four independent trials. The association among the level of disease incidence, soil physicochemical and biological properties was investigated. The soil treated with the bioorganic fertilizer increased soil pH value, electric conductivity, organic carbon, NH4 +-N, NO3 --N and available K content, microbial activities and microbial biomass carbon content, which were positively related with soil suppressiveness. Bacterial and actinomycete populations assessed using classical plate counts were highest, whereas R. solanacearum and fungal populations were lowest in soil applied with the bioorganic fertilizer. Microbial community diversity and richness were assessed using denaturing gel gradient electrophoresis profile analysis. The soil treated with the bioorganic fertilizer exhibited higher bacterial community diversity but lower fungal community diversity. Redundancy analysis showed that bacterial community diversity and richness negatively related with bacterial wilt suppressiveness, while fungal community richness positively correlated with R. solanacearum population. We concluded that the alteration of soil physicochemical and biological properties in soil treated with the bioorganic fertilizer induced the soil suppressiveness against tomato bacterial wilt. PMID:25830639

  15. Bacterial flora of the eye and contact lens. Cases during hydrogel lens wear.

    PubMed

    Callender, M G; Tse, L S; Charles, A M; Lutzi, D

    1986-03-01

    Bacteriological comparisons between the tear fluids of soft contact lens wearers and noncontact lens wearers indicate that there is an increase in the bacterial population in contact lens wearers but not a significant change in the varieties present. Differences between groups of contact lens wearers appear to depend on the method of disinfection used.

  16. Antibiotic use and bacterial complications following upper respiratory tract infections: a population-based study

    PubMed Central

    Cars, Thomas; Eriksson, Irene; Granath, Anna; Wettermark, Björn; Hellman, Jenny; Norman, Christer; Ternhag, Anders

    2017-01-01

    Objectives To investigate if use of antibiotics was associated with bacterial complications following upper respiratory tract infections (URTIs). Design Ecological time-trend analysis and a prospective cohort study. Setting Primary, outpatient specialist and inpatient care in Stockholm County, Sweden. All analyses were based on administrative healthcare data on consultations, diagnoses and dispensed antibiotics from January 2006 to January 2016. Main outcome measures Ecological time-trend analysis: 10-year trend analyses of the incidence of URTIs, bacterial infections/complications and respiratory antibiotic use. Prospective cohort study: Incidence of bacterial complications following URTIs in antibiotic-exposed and non-exposed patients. Results The utilisation of respiratory tract antibiotics decreased by 22% from 2006 to 2015, but no increased trend for mastoiditis (p=0.0933), peritonsillar abscess (p=0.0544), invasive group A streptococcal disease (p=0.3991), orbital abscess (p=0.9637), extradural and subdural abscesses (p=0.4790) and pansinusitis (p=0.3971) was observed. For meningitis and acute ethmoidal sinusitis, a decrease in the numbers of infections from 2006 to 2015 was observed (p=0.0038 and p=0.0003, respectively), and for retropharyngeal and parapharyngeal abscesses, an increase was observed (p=0.0214). Bacterial complications following URTIs were uncommon in both antibiotic-exposed (less than 1.5 per 10 000 episodes) and non-exposed patients (less than 1.3 per 10 000 episodes) with the exception of peritonsillar abscess after tonsillitis (risk per 10 000 tonsillitis episodes: 32.4 and 41.1 in patients with no antibiotic treatment and patients treated with antibiotics, respectively). Conclusions Bacterial complications following URTIs are rare, and antibiotics may lack protective effect in preventing bacterial complications. Analyses of routinely collected administrative healthcare data can provide valuable information on the number of URTIs

  17. Past, Present and Future: Immigration, High Fertility Fuel State's Population Growth.

    ERIC Educational Resources Information Center

    Clark, William A. V.

    2000-01-01

    Presents demographic information on California's increasing population and ethnic diversity. Describes age pyramids and fertility rates by ethnic group, indicating that Asians and Hispanics will comprise over two-thirds of the state's population by 2030. Discusses implications for education, teenage pregnancy, political representation, prenatal…

  18. Culture History and Population Heterogeneity as Determinants of Bacterial Adaptation: the Adaptomics of a Single Environmental Transition

    PubMed Central

    Ryall, Ben; Eydallin, Gustavo

    2012-01-01

    Summary: Diversity in adaptive responses is common within species and populations, especially when the heterogeneity of the frequently large populations found in environments is considered. By focusing on events in a single clonal population undergoing a single transition, we discuss how environmental cues and changes in growth rate initiate a multiplicity of adaptive pathways. Adaptation is a comprehensive process, and stochastic, regulatory, epigenetic, and mutational changes can contribute to fitness and overlap in timing and frequency. We identify culture history as a major determinant of both regulatory adaptations and microevolutionary change. Population history before a transition determines heterogeneities due to errors in translation, stochastic differences in regulation, the presence of aged, damaged, cheating, or dormant cells, and variations in intracellular metabolite or regulator concentrations. It matters whether bacteria come from dense, slow-growing, stressed, or structured states. Genotypic adaptations are history dependent due to variations in mutation supply, contingency gene changes, phase variation, lateral gene transfer, and genome amplifications. Phenotypic adaptations underpin genotypic changes in situations such as stress-induced mutagenesis or prophage induction or in biofilms to give a continuum of adaptive possibilities. Evolutionary selection additionally provides diverse adaptive outcomes in a single transition and generally does not result in single fitter types. The totality of heterogeneities in an adapting population increases the chance that at least some individuals meet immediate or future challenges. However, heterogeneity complicates the adaptomics of single transitions, and we propose that subpopulations will need to be integrated into future population biology and systems biology predictions of bacterial behavior. PMID:22933562

  19. Prophage-Mediated Dynamics of ‘Candidatus Liberibacter asiaticus’ Populations, the Destructive Bacterial Pathogens of Citrus Huanglongbing

    PubMed Central

    Zhou, Lijuan; Powell, Charles A.; Li, Wenbin; Irey, Mike; Duan, Yongping

    2013-01-01

    Prophages are highly dynamic components in the bacterial genome and play an important role in intraspecies variations. There are at least two prophages in the chromosomes of Candidatus Liberibacter asiaticus’ (Las) Floridian isolates. Las is both unculturable and the most prevalent species of Liberibacter pathogens that cause huanglongbing (HLB), a worldwide destructive disease of citrus. In this study, seven new prophage variants resulting from two hyper-variable regions were identified by screening clone libraries of infected citrus, periwinkle and psyllids. Among them, Types A and B share highly conserved sequences and localize within the two prophages, FP1 and FP2, respectively. Although Types B and C were abundant in all three libraries, Type A was much more abundant in the libraries from the Las-infected psyllids than from the Las-infected plants, and Type D was only identified in libraries from the infected host plants but not from the infected psyllids. Sequence analysis of these variants revealed that the variations may result from recombination and rearrangement events. Conventional PCR results using type-specific molecular markers indicated that A, B, C and D are the four most abundant types in Las-infected citrus and periwinkle. However, only three types, A, B and C are abundant in Las-infected psyllids. Typing results for Las-infected citrus field samples indicated that mixed populations of Las bacteria present in Floridian isolates, but only the Type D population was correlated with the blotchy mottle symptom. Extended cloning and sequencing of the Type D region revealed a third prophage/phage in the Las genome, which may derive from the recombination of FP1 and FP2. Dramatic variations in these prophage regions were also found among the global Las isolates. These results are the first to demonstrate the prophage/phage-mediated dynamics of Las populations in plant and insect hosts, and their correlation with insect transmission and disease

  20. BACTERIAL INHIBITORS IN LAKE WATER

    EPA Science Inventory

    The populations of six bacterial genera fell rapidly after their addition to sterile lake water but not after their addition to buffer. The decline in numbers of two species that were studied further, Klebsiella pneumoniae and Micrococcus flavus, occurred even when the buffer was...

  1. Impact of water quality on the bacterial populations and off-flavours in recirculating aquaculture systems.

    PubMed

    Auffret, Marc; Yergeau, Étienne; Pilote, Alexandre; Proulx, Émilie; Proulx, Daniel; Greer, Charles W; Vandenberg, Grant; Villemur, Richard

    2013-05-01

    A variety of factors affecting water quality in recirculating aquaculture systems (RAS) are associated with the occurrence of off-flavours. In this study, we report the impact of water quality on the bacterial diversity and the occurrence of the geosmin-synthesis gene (geoA) in two RAS units operated for 252 days. Unit 2 displayed a higher level of turbidity and phosphate, which affected the fresh water quality compared with unit 1. In the biofilter, nitrification is one of the major processes by which high water quality is maintained. The bacterial population observed in the unit 1 biofilter was more stable throughout the experiment, with a higher level of nitrifying bacteria compared with the unit 2 biofilter. Geosmin appeared in fish flesh after 84 days in unit 2, whereas it appeared in unit 1 after 168 days, but at a much lower level. The geoA gene was detected in both units, 28 days prior to the detection of geosmin in fish flesh. In addition, we detected sequences associated with Sorangium and Nannocystis (Myxococcales): members of these genera are known to produce geosmin. These sequences were observed at an earlier time in unit 2 and at a higher level than in unit 1. This study confirms the advantages of new molecular methods to understand the occurrence of geosmin production in RAS. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  2. Light Suppresses Bacterial Population through the Accumulation of Hydrogen Peroxide in Tobacco Leaves Infected with Pseudomonas syringae pv. tabaci

    PubMed Central

    Cheng, Dan-Dan; Liu, Mei-Jun; Sun, Xing-Bin; Zhao, Min; Chow, Wah S.; Sun, Guang-Yu; Zhang, Zi-Shan; Hu, Yan-Bo

    2016-01-01

    Pseudomonas syringae pv. tabaci (Pst) is a hemibiotrophic bacterial pathogen responsible for tobacco wildfire disease. Although considerable research has been conducted on the tobacco plant’s tolerance to Pst, the role of light in the responses of the photosystems to Pst infection is poorly understood. This study aimed to elucidate the underlying mechanisms of the reduced photosystem damage in tobacco leaves due to Pst infection under light conditions. Compared to dark conditions, Pst infection under light conditions resulted in less chlorophyll degradation and a smaller decline in photosynthetic function. Although the maximal quantum yield of photosystem II (PSII) and the activity of the photosystem I (PSI) complex decreased as Pst infection progressed, damage to PSI and PSII after infection was reduced under light conditions compared to dark conditions. Pst was 17-fold more abundant in tobacco leaves under dark compared to light conditions at 3 days post inoculation (dpi). Additionally, H2O2 accumulated to a high level in tobacco leaves after Pst infection under light conditions; although to a lesser extent, H2O2 accumulation was also significant under dark conditions. Pretreatment with H2O2 alleviated chlorotic lesions and decreased Pst abundance in tobacco leaves at 3 dpi under dark conditions. MV pretreatment had the same effects under light conditions, whereas 3-(3,4-dichlorophenyl)-1,1-dimethylurea pretreatment aggravated chlorotic lesions and increased the Pst population. These results indicate that chlorotic symptoms and the size of the bacterial population are each negatively correlated with H2O2 accumulation. In other words, light appears to suppress the Pst population in tobacco leaves through the accumulation of H2O2 during infection. PMID:27148334

  3. Effect of DNA extraction and sample preservation method on rumen bacterial population.

    PubMed

    Fliegerova, Katerina; Tapio, Ilma; Bonin, Aurelie; Mrazek, Jakub; Callegari, Maria Luisa; Bani, Paolo; Bayat, Alireza; Vilkki, Johanna; Kopečný, Jan; Shingfield, Kevin J; Boyer, Frederic; Coissac, Eric; Taberlet, Pierre; Wallace, R John

    2014-10-01

    The comparison of the bacterial profile of intracellular (iDNA) and extracellular DNA (eDNA) isolated from cow rumen content stored under different conditions was conducted. The influence of rumen fluid treatment (cheesecloth squeezed, centrifuged, filtered), storage temperature (RT, -80 °C) and cryoprotectants (PBS-glycerol, ethanol) on quality and quantity parameters of extracted DNA was evaluated by bacterial DGGE analysis, real-time PCR quantification and metabarcoding approach using high-throughput sequencing. Samples clustered according to the type of extracted DNA due to considerable differences between iDNA and eDNA bacterial profiles, while storage temperature and cryoprotectants additives had little effect on sample clustering. The numbers of Firmicutes and Bacteroidetes were lower (P < 0.01) in eDNA samples. The qPCR indicated significantly higher amount of Firmicutes in iDNA sample frozen with glycerol (P < 0.01). Deep sequencing analysis of iDNA samples revealed the prevalence of Bacteroidetes and similarity of samples frozen with and without cryoprotectants, which differed from sample stored with ethanol at room temperature. Centrifugation and consequent filtration of rumen fluid subjected to the eDNA isolation procedure considerably changed the ratio of molecular operational taxonomic units (MOTUs) of Bacteroidetes and Firmicutes. Intracellular DNA extraction using bead-beating method from cheesecloth sieved rumen content mixed with PBS-glycerol and stored at -80 °C was found as the optimal method to study ruminal bacterial profile. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Modeling population exposures to silver nanoparticles present in consumer products

    NASA Astrophysics Data System (ADS)

    Royce, Steven G.; Mukherjee, Dwaipayan; Cai, Ting; Xu, Shu S.; Alexander, Jocelyn A.; Mi, Zhongyuan; Calderon, Leonardo; Mainelis, Gediminas; Lee, KiBum; Lioy, Paul J.; Tetley, Teresa D.; Chung, Kian Fan; Zhang, Junfeng; Georgopoulos, Panos G.

    2014-11-01

    Exposures of the general population to manufactured nanoparticles (MNPs) are expected to keep rising due to increasing use of MNPs in common consumer products (PEN 2014). The present study focuses on characterizing ambient and indoor population exposures to silver MNPs (nAg). For situations where detailed, case-specific exposure-related data are not available, as in the present study, a novel tiered modeling system, Prioritization/Ranking of Toxic Exposures with GIS (geographic information system) Extension (PRoTEGE), has been developed: it employs a product life cycle analysis (LCA) approach coupled with basic human life stage analysis (LSA) to characterize potential exposures to chemicals of current and emerging concern. The PRoTEGE system has been implemented for ambient and indoor environments, utilizing available MNP production, usage, and properties databases, along with laboratory measurements of potential personal exposures from consumer spray products containing nAg. Modeling of environmental and microenvironmental levels of MNPs employs probabilistic material flow analysis combined with product LCA to account for releases during manufacturing, transport, usage, disposal, etc. Human exposure and dose characterization further employ screening microenvironmental modeling and intake fraction methods combined with LSA for potentially exposed populations, to assess differences associated with gender, age, and demographics. Population distributions of intakes, estimated using the PRoTEGE framework, are consistent with published individual-based intake estimates, demonstrating that PRoTEGE is capable of capturing realistic exposure scenarios for the US population. Distributions of intakes are also used to calculate biologically relevant population distributions of uptakes and target tissue doses through human airway dosimetry modeling that takes into account product MNP size distributions and age-relevant physiological parameters.

  5. Endosymbiont Dominated Bacterial Communities in a Dwarf Spider

    PubMed Central

    Vanthournout, Bram; Hendrickx, Frederik

    2015-01-01

    The microbial community of spiders is little known, with previous studies focussing primarily on the medical importance of spiders as vectors of pathogenic bacteria and on the screening of known cytoplasmic endosymbiont bacteria. These screening studies have been performed by means of specific primers that only amplify a selective set of endosymbionts, hampering the detection of unreported species in spiders. In order to have a more complete overview of the bacterial species that can be present in spiders, we applied a combination of a cloning assay, DGGE profiling and high-throughput sequencing on multiple individuals of the dwarf spider Oedothorax gibbosus. This revealed a co-infection of at least three known (Wolbachia, Rickettsia and Cardinium) and the detection of a previously unreported endosymbiont bacterium (Rhabdochlamydia) in spiders. 16S rRNA gene sequences of Rhabdochlamydia matched closely with those of Candidatus R. porcellionis, which is currently only reported as a pathogen from a woodlouse and with Candidatus R. crassificans reported from a cockroach. Remarkably, this bacterium appears to present in very high proportions in one of the two populations only, with all investigated females being infected. We also recovered Acinetobacter in high abundance in one individual. In total, more than 99% of approximately 4.5M high-throughput sequencing reads were restricted to these five bacterial species. In contrast to previously reported screening studies of terrestrial arthropods, our results suggest that the bacterial communities in this spider species are dominated by, or even restricted to endosymbiont bacteria. Given the high prevalence of endosymbiont species in spiders, this bacterial community pattern could be widespread in the Araneae order. PMID:25706947

  6. Acute bacterial skin infections in pediatric medicine: current issues in presentation and treatment.

    PubMed

    Hedrick, James

    2003-01-01

    Bacterial skin and skin structure infections commonly encountered in children include impetigo, folliculitis, furunculosis, carbuncles, wound infections, abscesses, cellulitis, erysipelas, scarlet fever, acute paronychia, and staphylococcal scalded skin syndrome. If diagnosed early and treated appropriately, these infections are almost always curable, but some have the potential to cause serious complications such as septicemia, nephritis, carditis and arthritis if diagnosis is delayed and/or treatment is inadequate. During the initial evaluation, it is important to determine whether the infection is superficial or deep, and whether it is localized or spreading. Prompt treatment is essential if the infection appears to be spreading, as the sequelae can be life threatening. Once the proper diagnosis is made, the next important step is selecting the most appropriate therapy. In children presenting with mild or moderately severe bacterial skin and skin structure infections and not requiring inpatient management or urgent operative débridement, prompt provision of oral antimicrobial therapy avoids the risk of worsening infection or hospitalization. Empiric antimicrobial therapy should be directed at the most likely pathogens, (e.g. Staphylococcus aureus or Streptococcus pyogenes), although some infections (e.g. subcutaneous abscesses and cellulitis following animal or human bites) may have a polymicrobial origin. In choosing the appropriate antimicrobial therapy, one must take into account the resistance profile of the target pathogen, the agent's antibacterial profile and intrinsic activity against the target pathogen, and its pharmacokinetic properties (including absorption, elimination, and extent of tissue penetration). Other factors to consider include tolerability of the drug, convenience of the dosing regimen, and acceptability and palatability of the oral formulation administered. Any treatment plan for bacterial skin and skin structure infections should aim

  7. Population PK Modeling and Target Attainment Simulations to Support Dosing of Ceftaroline Fosamil in Pediatric Patients With Acute Bacterial Skin and Skin Structure Infections and Community-Acquired Bacterial Pneumonia.

    PubMed

    Riccobene, Todd A; Khariton, Tatiana; Knebel, William; Das, Shampa; Li, James; Jandourek, Alena; Carrothers, Timothy J; Bradley, John S

    2017-03-01

    Ceftaroline, the active form of the prodrug ceftaroline fosamil, is approved for use in adults with community-acquired bacterial pneumonia (CABP) or acute bacterial skin and skin structure infections (ABSSSI) in the United States and for similar indications in Europe. Pharmacokinetic (PK) data from 5 pediatric (birth to <18 years) studies of ceftaroline fosamil were combined with PK data from adults to update a population PK model for ceftaroline and ceftaroline fosamil. This model, based on a data set including 305 children, was used to conduct simulations to estimate ceftaroline exposures and percentage of time that free drug concentrations were above the minimum inhibitory concentration (%fT>MIC) for pediatric dose regimens. With dose regimens of 8 mg/kg every 8 hours (q8h) in children aged 2 months to <2 years and 12 mg/kg (up to a maximum of 400 mg) q8h in children aged 2 years to <18 years or 600 mg q12h in children aged 12 to <18 years, >90% of children were predicted to achieve a target of 36% fT>MIC at an MIC of 2 mg/L, and >97% were predicted to achieve 44% fT>MIC at an MIC of 1 mg/L. Thus, high PK/pharmacodynamic target attainment would be maintained in children for targets associated with 1-log kill of Staphylococcus aureus and Streptococcus pneumoniae. The predicted ceftaroline exposures for these dose regimens were similar to those in adults given 600 mg q12h ceftaroline fosamil. This work contributed to the approval of dose regimens for children aged 2 months to <18 years by the FDA and EMA, which are presented. © 2016, The American College of Clinical Pharmacology.

  8. Engineering of bacterial phytochromes for in vivo imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Verkhusha, Vladislav; Shcherbakova, Daria M.; Kaberniuk, Andrii A.; Baloban, Mikhail

    2017-03-01

    Genetically encoded probes with absorbance and fluorescence spectra within a near-infrared tissue transparency window are preferable for deep-tissue imaging. On the basis of bacterial phytochromes we engineered several types of near-infrared absorbing probes for photoacoustic tomography and fluorescent probes for purely optical imaging. They can be used as protein and cell labels and as building blocks for biosensors. The probes enabled imaging of tumors and metastases, protein-protein interactions, RNA visualization, detection of apoptosis, cellular metabolites, signaling pathways and cell proliferation. The developed probes allow non-invasive visualization of biological processes across scales, from super-resolution microscopy to tissue and whole-body animal imaging.

  9. Bacterial cheating limits antibiotic resistance

    NASA Astrophysics Data System (ADS)

    Xiao Chao, Hui; Yurtsev, Eugene; Datta, Manoshi; Artemova, Tanya; Gore, Jeff

    2012-02-01

    The widespread use of antibiotics has led to the evolution of resistance in bacteria. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removing the antibiotic. The cooperative nature of this growth suggests that a cheater strain---which does not contribute to breaking down the antibiotic---may be able to take advantage of cells cooperatively inactivating the antibiotic. Here we find experimentally that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We observe stable coexistence between the two strains and find that a simple model successfully explains the behavior as a function of antibiotic concentration and cell density. We anticipate that our results will provide insight into the evolutionary origin of phenotypic diversity and cooperative behaviors.

  10. Formation of complex bacterial colonies via self-generated vortices

    NASA Astrophysics Data System (ADS)

    Czirók, András; Ben-Jacob, Eshel; Cohen, Inon; Vicsek, Tamás

    1996-08-01

    Depending on the environmental conditions bacterial colonies growing on agar surfaces can exhibit complex colony formation and various types of collective motion. Experimental results are presented concerning the hydrodynamics (vortices, migration of bacteria in clusters) and colony formation of a morphotype of Bacillus subtilis. Some of these features are not specific to this morphotype but also have been observed in several other bacterial strains, suggesting the presence of universal effects. A simple model of self-propelled particles is proposed, which is capable of describing the hydrodynamics on the intermediate level, including the experimentally observed rotating disks of bacteria. The colony formation is captured by a complex generic model taking into account nutrient diffusion, reproduction, and sporulation of bacteria, extracellular slime deposition, chemoregulation, and inhomogeneous population. Our model also sheds light on some possible biological benefits of this ``multicellular behavior.''

  11. Microbiology: Detection of Bacterial Pathogens and Their Occurrence.

    ERIC Educational Resources Information Center

    Reasoner, Donald J.

    1978-01-01

    Presents a literature review of bacterial pathogens that are related to water pollution, covering publications from 1976-77. This review includes: (1) bacterial pathogens in animals; and (2) detection and identification of waterborne bacterial pathogens. A list of 129 references is also presented. (HM)

  12. Plumage bacterial assemblages in a breeding wild passerine: relationships with ecological factors and body condition.

    PubMed

    Saag, Pauli; Tilgar, Vallo; Mänd, Raivo; Kilgas, Priit; Mägi, Marko

    2011-05-01

    Microorganisms have been shown to play an important role in shaping the life histories of animals, and it has recently been suggested that feather-degrading bacteria influence the trade-off between parental effort and self-preening behavior in birds. We studied a wild breeding population of great tits (Parus major) to explore habitat-, seasonal-, and sex-related variation in feather-degrading and free-living bacteria inhabiting the birds' yellow ventral feathers and to investigate associations with body condition. The density and species richness of bacterial assemblages was studied using flow cytometry and ribosomal intergenic spacer analysis. The density of studied bacteria declined between the nest-building period and the first brood. The number of bacterial phylotypes per bird was higher in coniferous habitat, while bacterial densities were higher in deciduous habitat. Free-living bacterial density was positively correlated with female mass; conversely, there was a negative correlation between attached bacterial density and female mass during the period of peak reproductive effort. Bacterial species richness was sex dependent, with more diverse bacterial assemblages present on males than females. Thus, this study revealed that bacterial assemblages on the feathers of breeding birds are affected both by life history and ecological factors and are related to body condition.

  13. [Bacterial vaginosis].

    PubMed

    Romero Herrero, Daniel; Andreu Domingo, Antonia

    2016-07-01

    Bacterial vaginosis (BV) is the main cause of vaginal dysbacteriosis in the women during the reproductive age. It is an entity in which many studies have focused for years and which is still open for discussion topics. This is due to the diversity of microorganisms that cause it and therefore, its difficult treatment. Bacterial vaginosis is probably the result of vaginal colonization by complex bacterial communities, many of them non-cultivable and with interdependent metabolism where anaerobic populations most likely play an important role in its pathogenesis. The main symptoms are an increase of vaginal discharge and the unpleasant smell of it. It can lead to serious consequences for women, such as an increased risk of contracting sexually transmitted infections including human immunodeficiency virus and upper genital tract and pregnancy complications. Gram stain is the gold standard for microbiological diagnosis of BV, but can also be diagnosed using the Amsel clinical criteria. It should not be considered a sexually transmitted disease but it is highly related to sex. Recurrence is the main problem of medical treatment. Apart from BV, there are other dysbacteriosis less characterized like aerobic vaginitis of which further studies are coming slowly but are achieving more attention and consensus among specialists. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  14. Effect of Condensed Tannins on Bacterial Diversity and Metabolic Activity in the Rat Gastrointestinal Tract

    PubMed Central

    Smith, Alexandra H.; Mackie, Roderick I.

    2004-01-01

    The effect of dietary condensed tannins (proanthocyanidins) on rat fecal bacterial populations was ascertained in order to determine whether the proportion on tannin-resistant bacteria increased and if there was a change in the predominant bacterial populations. After 3 weeks of tannin diets the proportion of tannin-resistant bacteria increased significantly (P < 0.05) from 0.3% ± 5.5% to 25.3% ± 8.3% with a 0.7% tannin diet and to 47.2% ± 5.1% with a 2% tannin diet. The proportion of tannin-resistant bacteria returned to preexposure levels in the absence of dietary tannins. A shift in bacterial populations was confirmed by molecular fingerprinting of fecal bacterial populations by denaturing gradient gel electrophoresis (DGGE). Posttreatment samples were generally still distinguishable from controls after 3.5 weeks. Sequence analysis of DGGE bands and characterization of tannin-resistant isolates indicated that tannins selected for Enterobacteriaceae and Bacteroides species. Dot blot quantification confirmed that these gram-negative bacterial groups predominated in the presence of dietary tannins and that there was a corresponding decrease in the gram-positive Clostridium leptum group and other groups. Metabolic fingerprint patterns revealed that functional activities of culturable fecal bacteria were affected by the presence of tannins. Condensed tannins of Acacia angustissima altered fecal bacterial populations in the rat gastrointestinal tract, resulting in a shift in the predominant bacteria towards tannin-resistant gram-negative Enterobacteriaceae and Bacteroides species. PMID:14766594

  15. The intrinsic resistome of bacterial pathogens

    PubMed Central

    Olivares, Jorge; Bernardini, Alejandra; Garcia-Leon, Guillermo; Corona, Fernando; B. Sanchez, Maria; Martinez, Jose L.

    2013-01-01

    Intrinsically resistant bacteria have emerged as a relevant health problem in the last years. Those bacterial species, several of them with an environmental origin, present naturally low-level susceptibility to several drugs. It has been proposed that intrinsic resistance is mainly the consequence of the impermeability of cellular envelopes, the activity of multidrug efflux pumps or the lack of appropriate targets for a given family of drugs. However, recently published articles indicate that the characteristic phenotype of susceptibility to antibiotics of a given bacterial species depends on the concerted activity of several elements, what has been named as intrinsic resistome. These determinants comprise not just classical resistance genes. Other elements, several of them involved in basic bacterial metabolic processes, are of relevance for the intrinsic resistance of bacterial pathogens. In the present review we analyze recent publications on the intrinsic resistomes of Escherichia coli and Pseudomonas aeruginosa. We present as well information on the role that global regulators of bacterial metabolism, as Crc from P. aeruginosa, may have on modulating bacterial susceptibility to antibiotics. Finally, we discuss the possibility of searching inhibitors of the intrinsic resistome in the aim of improving the activity of drugs currently in use for clinical practice. PMID:23641241

  16. The intrinsic resistome of bacterial pathogens.

    PubMed

    Olivares, Jorge; Bernardini, Alejandra; Garcia-Leon, Guillermo; Corona, Fernando; B Sanchez, Maria; Martinez, Jose L

    2013-01-01

    Intrinsically resistant bacteria have emerged as a relevant health problem in the last years. Those bacterial species, several of them with an environmental origin, present naturally low-level susceptibility to several drugs. It has been proposed that intrinsic resistance is mainly the consequence of the impermeability of cellular envelopes, the activity of multidrug efflux pumps or the lack of appropriate targets for a given family of drugs. However, recently published articles indicate that the characteristic phenotype of susceptibility to antibiotics of a given bacterial species depends on the concerted activity of several elements, what has been named as intrinsic resistome. These determinants comprise not just classical resistance genes. Other elements, several of them involved in basic bacterial metabolic processes, are of relevance for the intrinsic resistance of bacterial pathogens. In the present review we analyze recent publications on the intrinsic resistomes of Escherichia coli and Pseudomonas aeruginosa. We present as well information on the role that global regulators of bacterial metabolism, as Crc from P. aeruginosa, may have on modulating bacterial susceptibility to antibiotics. Finally, we discuss the possibility of searching inhibitors of the intrinsic resistome in the aim of improving the activity of drugs currently in use for clinical practice.

  17. Bacterial Extracellular Polysaccharides in Biofilm Formation and Function

    PubMed Central

    Limoli, Dominique H.; Jones, Christopher J.; Wozniak, Daniel J.

    2015-01-01

    Microbes produce a biofilm matrix consisting of proteins, extracellular DNA, and polysaccharides that is integral in the formation of bacterial communities. Historical studies of polysaccharides revealed that their overproduction often alters the colony morphology and can be diagnostic in identifying certain species. The polysaccharide component of the matrix can provide many diverse benefits to the cells in the biofilm, including adhesion, protection, and structure. Aggregative polysaccharides act as molecular glue, allowing the bacterial cells to adhere to each other as well as surfaces. Adhesion facilitates the colonization of both biotic and abiotic surfaces by allowing the bacteria to resist physical stresses imposed by fluid movement that could separate the cells from a nutrient source. Polysaccharides can also provide protection from a wide range of stresses, such as desiccation, immune effectors, and predators such as phagocytic cells and amoebae. Finally, polysaccharides can provide structure to biofilms, allowing stratification of the bacterial community and establishing gradients of nutrients and waste products. This can be advantageous for the bacteria by establishing a heterogeneous population that is prepared to endure stresses created by the rapidly changing environments that many bacteria encounter. The diverse range of polysaccharide structures, properties, and roles highlight the importance of this matrix constituent to the successful adaptation of bacteria to nearly every niche. Here, we present an overview of the current knowledge regarding the diversity and benefits that polysaccharide production provides to bacterial communities within biofilms. PMID:26185074

  18. Bacterial Extracellular Polysaccharides in Biofilm Formation and Function.

    PubMed

    Limoli, Dominique H; Jones, Christopher J; Wozniak, Daniel J

    2015-06-01

    Microbes produce a biofilm matrix consisting of proteins, extracellular DNA, and polysaccharides that is integral in the formation of bacterial communities. Historical studies of polysaccharides revealed that their overproduction often alters the colony morphology and can be diagnostic in identifying certain species. The polysaccharide component of the matrix can provide many diverse benefits to the cells in the biofilm, including adhesion, protection, and structure. Aggregative polysaccharides act as molecular glue, allowing the bacterial cells to adhere to each other as well as surfaces. Adhesion facilitates the colonization of both biotic and abiotic surfaces by allowing the bacteria to resist physical stresses imposed by fluid movement that could separate the cells from a nutrient source. Polysaccharides can also provide protection from a wide range of stresses, such as desiccation, immune effectors, and predators such as phagocytic cells and amoebae. Finally, polysaccharides can provide structure to biofilms, allowing stratification of the bacterial community and establishing gradients of nutrients and waste products. This can be advantageous for the bacteria by establishing a heterogeneous population that is prepared to endure stresses created by the rapidly changing environments that many bacteria encounter. The diverse range of polysaccharide structures, properties, and roles highlight the importance of this matrix constituent to the successful adaptation of bacteria to nearly every niche. Here, we present an overview of the current knowledge regarding the diversity and benefits that polysaccharide production provides to bacterial communities within biofilms.

  19. Active bacterial community structure along vertical redox gradients in Baltic Sea sediment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jansson, Janet; Edlund, Anna; Hardeman, Fredrik

    Community structures of active bacterial populations were investigated along a vertical redox profile in coastal Baltic Sea sediments by terminal-restriction fragment length polymorphism (T-RFLP) and clone library analysis. According to correspondence analysis of T-RFLP results and sequencing of cloned 16S rRNA genes, the microbial community structures at three redox depths (179 mV, -64 mV and -337 mV) differed significantly. The bacterial communities in the community DNA differed from those in bromodeoxyuridine (BrdU)-labeled DNA, indicating that the growing members of the community that incorporated BrdU were not necessarily the most dominant members. The structures of the actively growing bacterial communities weremore » most strongly correlated to organic carbon followed by total nitrogen and redox potentials. Bacterial identification by sequencing of 16S rRNA genes from clones of BrdU-labeled DNA and DNA from reverse transcription PCR (rt-PCR) showed that bacterial taxa involved in nitrogen and sulfur cycling were metabolically active along the redox profiles. Several sequences had low similarities to previously detected sequences indicating that novel lineages of bacteria are present in Baltic Sea sediments. Also, a high number of different 16S rRNA gene sequences representing different phyla were detected at all sampling depths.« less

  20. Antibiotic-induced population fluctuations and stochastic clearance of bacteria

    PubMed Central

    Le, Dai; Şimşek, Emrah; Chaudhry, Waqas

    2018-01-01

    Effective antibiotic use that minimizes treatment failures remains a challenge. A better understanding of how bacterial populations respond to antibiotics is necessary. Previous studies of large bacterial populations established the deterministic framework of pharmacodynamics. Here, characterizing the dynamics of population extinction, we demonstrated the stochastic nature of eradicating bacteria with antibiotics. Antibiotics known to kill bacteria (bactericidal) induced population fluctuations. Thus, at high antibiotic concentrations, the dynamics of bacterial clearance were heterogeneous. At low concentrations, clearance still occurred with a non-zero probability. These striking outcomes of population fluctuations were well captured by our probabilistic model. Our model further suggested a strategy to facilitate eradication by increasing extinction probability. We experimentally tested this prediction for antibiotic-susceptible and clinically-isolated resistant bacteria. This new knowledge exposes fundamental limits in our ability to predict bacterial eradication. Additionally, it demonstrates the potential of using antibiotic concentrations that were previously deemed inefficacious to eradicate bacteria. PMID:29508699

  1. Response of single bacterial cells to stress gives rise to complex history dependence at the population level

    PubMed Central

    Mathis, Roland; Ackermann, Martin

    2016-01-01

    Most bacteria live in ever-changing environments where periods of stress are common. One fundamental question is whether individual bacterial cells have an increased tolerance to stress if they recently have been exposed to lower levels of the same stressor. To address this question, we worked with the bacterium Caulobacter crescentus and asked whether exposure to a moderate concentration of sodium chloride would affect survival during later exposure to a higher concentration. We found that the effects measured at the population level depended in a surprising and complex way on the time interval between the two exposure events: The effect of the first exposure on survival of the second exposure was positive for some time intervals but negative for others. We hypothesized that the complex pattern of history dependence at the population level was a consequence of the responses of individual cells to sodium chloride that we observed: (i) exposure to moderate concentrations of sodium chloride caused delays in cell division and led to cell-cycle synchronization, and (ii) whether a bacterium would survive subsequent exposure to higher concentrations was dependent on the cell-cycle state. Using computational modeling, we demonstrated that indeed the combination of these two effects could explain the complex patterns of history dependence observed at the population level. Our insight into how the behavior of single cells scales up to processes at the population level provides a perspective on how organisms operate in dynamic environments with fluctuating stress exposure. PMID:26960998

  2. Bacterial infections in alcoholic and nonalcoholic liver cirrhosis.

    PubMed

    Sargenti, Konstantina; Prytz, Hanne; Nilsson, Emma; Bertilsson, Sara; Kalaitzakis, Evangelos

    2015-09-01

    Longitudinal, population-based data on the occurrence, localization, and severity of bacterial infections over time in patients with alcoholic compared with nonalcoholic cirrhosis are limited. All patients with incident cirrhosis diagnosed in 2001-2010 (area of 600,000 inhabitants) were retrospectively identified. All bacterial infections resulting in or occurring during an inpatient hospital episode during this period were registered. The etiology of cirrhosis (alcoholic vs. nonalcoholic), infection localization, and outcome as well as bacterial resistance patterns were analyzed. Patients were followed until death, transplant, or the end of 2011. In all, 633 cirrhotics (363 alcoholic, 270 nonalcoholic) experienced a total of 398 infections (2276 patient-years). Among patients diagnosed with cirrhosis each year from 2001 to 2010, increasing trends were noted in the occurrence of infection (from 13 to 27%, P<0.001) and infection-related in-hospital mortality (from 2 to 7%, P=0.05), the latter mainly in the alcoholic group. Although alcoholic etiology was related to the occurrence of more frequent infection (Kaplan-Meier, P<0.001), this relationship was not significant after adjustment for confounders in Cox regression analysis (P=0.056). Resistance to piperacilin-tazobactam and carbapenems was more common in infections occurring in alcoholic versus nonalcoholic cirrhosis (13 vs. 5%, P=0.057 and 12 vs. 2%, P=0.009). Alcoholic etiology predicted pneumonia and infections caused by Gram-positive bacteria in multivariate analysis (P<0.05 for both). In a population-based cirrhotic cohort, bacterial infections increased over time, which, in the case of alcoholic cirrhosis, was associated with pneumonia and bacterial resistance to antibiotics. However, alcoholic etiology was not related indepedently to the occurrence of bacterial infections.

  3. [Bacterial flora of the conjunctival sac of the horse].

    PubMed

    Cattabiani, F; Cabassi, E; Allodi, C; Gianelli, F

    1976-01-01

    The AA. report the results of taxonomic research conducted on the conjunctival sac of 59 horses for identification of the present bacterial flora. In the controlled animals, it was observed, at the level of the considered niche, a community constituted of normal bacterial populations, but not autochtonous in the significance they attributed from DUBOS et al., relative to the characterization of the indigenous microbiota of the intestine. The isolated normal bacterial flora seems to be constituted of: Micrococcus (subgroup 6 of Baird-Parker, M. luteus, Micrococcus spp.) isolated in 49,15% of the samples; Staphylococcus aureus and St. epidermidis (18,64%); Moraxella osloensis, M. phenylpiruvica, M. equi and Moraxella spp. (11,86%); Bacillus cereus (11,86%); Neisseria catarrhalis (8,47%); Streptococcus equi and Str. zooepidemicus (6,77%); Corynebacterium spp. (6,77%) and Acinetobacter lwoffi (5,08%). The AA. have found, besides, a particular group of bacteria of uncertain classification, attributed to the coryneforms and found in 30,50% of the examined horses. So-called transient bacteria taxa have been considered are Streptomyces spp., isolated in the 10,16% of the controlled subjects, Aerococcus viridans and Bacillus spp. found in only one equine.

  4. Assigning ecological roles to the populations belonging to a phenanthrene-degrading bacterial consortium using omic approaches

    PubMed Central

    Coppotelli, Bibiana Marina; Madueño, Laura; Loviso, Claudia Lorena; Macchi, Marianela; Neme Tauil, Ricardo Martin; Valacco, María Pía; Morelli, Irma Susana

    2017-01-01

    The present study describes the behavior of a natural phenanthrene-degrading consortium (CON), a synthetic consortium (constructed with isolated strains from CON) and an isolated strain form CON (Sphingobium sp. AM) in phenanthrene cultures to understand the interactions among the microorganisms present in the natural consortium during phenanthrene degradation as a sole carbon and energy source in liquid cultures. In the contaminant degradation assay, the defined consortium not only achieved a major phenanthrene degradation percentage (> 95%) but also showed a more efficient elimination of the intermediate metabolite. The opposite behavior occurred in the CON culture where the lowest phenanthrene degradation and the highest HNA accumulation were observed, which suggests the presence of positive and also negative interaction in CON. To consider the uncultured bacteria present in CON, a metagenomic library was constructed with total CON DNA. One of the resulting scaffolds (S1P3) was affiliated with the Betaproteobacteria class and resulted in a significant similarity with a genome fragment from Burkholderia sp. HB1 chromosome 1. A complete gene cluster, which is related to one of the lower pathways (meta-cleavage of catechol) involved in PAH degradation (ORF 31–43), mobile genetic elements and associated proteins, was found. These results suggest the presence of at least one other microorganism in CON besides Sphingobium sp. AM, which is capable of degrading PAH through the meta-cleavage pathway. Burkholderiales order was further found, along with Sphingomonadales order, by a metaproteomic approach, which indicated that both orders were metabolically active in CON. Our results show the presence of negative interactions between bacterial populations found in a natural consortium selected by enrichment techniques; moreover, the synthetic syntrophic processing chain with only one microorganism with the capability of degrading phenanthrene was more efficient in

  5. Bacterial communities in the phylloplane of Prunus species.

    PubMed

    Jo, Yeonhwa; Cho, Jin Kyong; Choi, Hoseong; Chu, Hyosub; Lian, Sen; Cho, Won Kyong

    2015-04-01

    Bacterial populations in the phylloplane of four different Prunus species were investigated by 16 S rRNA pyrosequencing. Bioinformatic analysis identified an average of 510 operational taxonomic units belonging to 159 genera in 76 families. The two genera, Sphingomonas and Methylobacterium, were dominant in the phylloplane of four Prunus species. Twenty three genera were commonly identified in the four Prunus species, indicating a high level of bacterial diversity dependent on the plant species. Our study based on 16 S rRNA sequencing reveals the complexity of bacterial diversity in the phylloplane of Prunus species in detail. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Bacterial Diversity and Community Structure in Korean Ginseng Field Soil Are Shifted by Cultivation Time

    PubMed Central

    Hoang, Van-An; Subramaniyam, Sathiyamoorthy; Kang, Jong-Pyo; Kang, Chang Ho; Yang, Deok-Chun

    2016-01-01

    Traditional molecular methods have been used to examine bacterial communities in ginseng-cultivated soil samples in a time-dependent manner. Despite these efforts, our understanding of the bacterial community is still inadequate. Therefore, in this study, a high-throughput sequencing approach was employed to investigate bacterial diversity in various ginseng field soil samples over cultivation times of 2, 4, and 6 years in the first and second rounds of cultivation. We used non-cultivated soil samples to perform a comparative study. Moreover, this study assessed changes in the bacterial community associated with soil depth and the health state of the ginseng. Bacterial richness decreased through years of cultivation. This study detected differences in relative abundance of bacterial populations between the first and second rounds of cultivation, years of cultivation, and health states of ginseng. These bacterial populations were mainly distributed in the classes Acidobacteria, Alphaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, and Sphingobacteria. In addition, we found that pH, available phosphorus, and exchangeable Ca+ seemed to have high correlations with bacterial class in ginseng cultivated soil. PMID:27187071

  7. Bacterial Diversity and Community Structure in Korean Ginseng Field Soil Are Shifted by Cultivation Time.

    PubMed

    Nguyen, Ngoc-Lan; Kim, Yeon-Ju; Hoang, Van-An; Subramaniyam, Sathiyamoorthy; Kang, Jong-Pyo; Kang, Chang Ho; Yang, Deok-Chun

    2016-01-01

    Traditional molecular methods have been used to examine bacterial communities in ginseng-cultivated soil samples in a time-dependent manner. Despite these efforts, our understanding of the bacterial community is still inadequate. Therefore, in this study, a high-throughput sequencing approach was employed to investigate bacterial diversity in various ginseng field soil samples over cultivation times of 2, 4, and 6 years in the first and second rounds of cultivation. We used non-cultivated soil samples to perform a comparative study. Moreover, this study assessed changes in the bacterial community associated with soil depth and the health state of the ginseng. Bacterial richness decreased through years of cultivation. This study detected differences in relative abundance of bacterial populations between the first and second rounds of cultivation, years of cultivation, and health states of ginseng. These bacterial populations were mainly distributed in the classes Acidobacteria, Alphaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, and Sphingobacteria. In addition, we found that pH, available phosphorus, and exchangeable Ca+ seemed to have high correlations with bacterial class in ginseng cultivated soil.

  8. Recombination-Driven Genome Evolution and Stability of Bacterial Species.

    PubMed

    Dixit, Purushottam D; Pang, Tin Yau; Maslov, Sergei

    2017-09-01

    While bacteria divide clonally, horizontal gene transfer followed by homologous recombination is now recognized as an important contributor to their evolution. However, the details of how the competition between clonality and recombination shapes genome diversity remains poorly understood. Using a computational model, we find two principal regimes in bacterial evolution and identify two composite parameters that dictate the evolutionary fate of bacterial species. In the divergent regime, characterized by either a low recombination frequency or strict barriers to recombination, cohesion due to recombination is not sufficient to overcome the mutational drift. As a consequence, the divergence between pairs of genomes in the population steadily increases in the course of their evolution. The species lacks genetic coherence with sexually isolated clonal subpopulations continuously formed and dissolved. In contrast, in the metastable regime, characterized by a high recombination frequency combined with low barriers to recombination, genomes continuously recombine with the rest of the population. The population remains genetically cohesive and temporally stable. Notably, the transition between these two regimes can be affected by relatively small changes in evolutionary parameters. Using the Multi Locus Sequence Typing (MLST) data, we classify a number of bacterial species to be either the divergent or the metastable type. Generalizations of our framework to include selection, ecologically structured populations, and horizontal gene transfer of nonhomologous regions are discussed as well. Copyright © 2017 by the Genetics Society of America.

  9. Bacterial predator–prey dynamics in microscale patchy landscapes

    PubMed Central

    Rotem, Or; Jurkevitch, Edouard; Dekker, Cees

    2016-01-01

    Soil is a microenvironment with a fragmented (patchy) spatial structure in which many bacterial species interact. Here, we explore the interaction between the predatory bacterium Bdellovibrio bacteriovorus and its prey Escherichia coli in microfabricated landscapes. We ask how fragmentation influences the prey dynamics at the microscale and compare two landscape geometries: a patchy landscape and a continuous landscape. By following the dynamics of prey populations with high spatial and temporal resolution for many generations, we found that the variation in predation rates was twice as large in the patchy landscape and the dynamics was correlated over shorter length scales. We also found that while the prey population in the continuous landscape was almost entirely driven to extinction, a significant part of the prey population in the fragmented landscape persisted over time. We observed significant surface-associated growth, especially in the fragmented landscape and we surmise that this sub-population is more resistant to predation. Our results thus show that microscale fragmentation can significantly influence bacterial interactions. PMID:26865299

  10. Molecular diversity analysis and bacterial population dynamics of an adapted seawater microbiota during the degradation of Tunisian zarzatine oil.

    PubMed

    Zrafi-Nouira, Ines; Guermazi, Sonda; Chouari, Rakia; Safi, Nimer M D; Pelletier, Eric; Bakhrouf, Amina; Saidane-Mosbahi, Dalila; Sghir, Abdelghani

    2009-07-01

    The indigenous microbiota of polluted coastal seawater in Tunisia was enriched by increasing the concentration of zarzatine crude oil. The resulting adapted microbiota was incubated with zarzatine crude oil as the only carbon and energy source. Crude oil biodegradation capacity and bacterial population dynamics of the microbiota were evaluated every week for 28 days (day 7, day 14, day 21, and day 28). Results show that the percentage of petroleum degradation was 23.9, 32.1, 65.3, and 77.8%, respectively. At day 28, non-aromatic and aromatic hydrocarbon degradation rates reached 92.6 and 68.7%, respectively. Bacterial composition of the adapted microflora was analysed by 16S rRNA gene cloning and sequencing, using total genomic DNA extracted from the adapted microflora at days 0, 7, 14, 21, and 28. Five clone libraries were constructed and a total of 430 sequences were generated and grouped into OTUs using the ARB software package. Phylogenetic analysis of the adapted microbiota shows the presence of four phylogenetic groups: Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. Diversity indices show a clear decrease in bacterial diversity of the adapted microflora according to the incubation time. The Proteobacteria are the most predominant (>80%) at day 7, day 14 and day 21 but not at day 28 for which the microbiota was reduced to only one OTU affiliated with the genus Kocuria of the Actinobacteria. This study shows that the degradation of zarzatine crude oil components depends on the activity of a specialized and dynamic seawater consortium composed of different phylogenetic taxa depending on the substrate complexity.

  11. Advances in Bacterial Methionine Aminopeptidase Inhibition

    PubMed Central

    Helgren, Travis R.; Wangtrakuldee, Phumvadee; Staker, Bart L.; Hagen, Timothy J.

    2016-01-01

    Methionine aminopeptidases (MetAPs) are metalloenzymes that cleave the N-terminal methionine from newly synthesized peptides and proteins. These MetAP enzymes are present in bacteria, and knockout experiments have shown that MetAP activity is essential for cell life, suggesting that MetAPs are good antibacterial drug targets. MetAP enzymes are also present in the human host and selectivity is essential. There have been significant structural biology efforts and over 65 protein crystal structures of bacterial MetAPs are deposited into the PDB. This review highlights the available crystallographic data for bacterial MetAPs. Structural comparison of bacterial MetAPs with human MetAPs highlights differences that can lead to selectivity. In addition, this review includes the chemical diversity of molecules that bind and inhibit the bacterial MetAP enzymes. Analysis of the structural biology and chemical space of known bacterial MetAP inhibitors leads to a greater understanding of this antibacterial target and the likely development of potential antibacterial agents. PMID:26268344

  12. A world without bacterial meningitis: how genomic epidemiology can inform vaccination strategy.

    PubMed

    Rodrigues, Charlene M C; Maiden, Martin C J

    2018-01-01

    Bacterial meningitis remains an important cause of global morbidity and mortality. Although effective vaccinations exist and are being increasingly used worldwide, bacterial diversity threatens their impact and the ultimate goal of eliminating the disease. Through genomic epidemiology, we can appreciate bacterial population structure and its consequences for transmission dynamics, virulence, antimicrobial resistance, and development of new vaccines. Here, we review what we have learned through genomic epidemiological studies, following the rapid implementation of whole genome sequencing that can help to optimise preventative strategies for bacterial meningitis.

  13. Bacterial agents causing meningitis during 2013-2014 in Turkey: A multi-center hospital-based prospective surveillance study.

    PubMed

    Ceyhan, Mehmet; Ozsurekci, Yasemin; Gürler, Nezahat; Karadag Oncel, Eda; Camcioglu, Yıldız; Salman, Nuran; Celik, Melda; Emiroglu, Melike Keser; Akin, Fatih; Tezer, Hasan; Parlakay, Aslinur Ozkaya; Tuygun, Nilden; Tamburaci, Diyar; Dinleyici, Ener Cagri; Karbuz, Adem; Uluca, Ünal; Alhan, Emre; Çay, Ümmühan; Kurugol, Zafer; Hatipoğlu, Nevin; Şiraneci, Rengin; İnce, Tolga; Sensoy, Gülnar; Belet, Nursen; Coskun, Enes; Yilmaz, Fatih; Hacimustafaoglu, Mustafa; Celebi, Solmaz; Celik, Ümit; Ozen, Metehan; Akaslan, Aybüke; Devrim, İlker; Kuyucu, Necdet; Öz, Fatmanur; Bozdemir, Sefika Elmas; Kara, Ahu

    2016-11-01

    This is an observational epidemiological study to describe causes of bacterial meningitis among persons between 1 month and 18 y of age who are hospitalized with suspected bacterial meningitis in 7 Turkish regions. covering 32% of the entire population of Turkey. We present here the results from 2013 and 2014. A clinical case with meningitis was defined according to followings: any sign of meningitis including fever, vomiting, headache, and meningeal irritation in children above one year of age and fever without any documented source, impaired consciousness, prostration and seizures in those < 1 y of age. Single tube multiplex PCR assay was performed for the simultaneous identification of bacterial agents. The specific gene targets were ctrA, bex, and ply for N. meningitidis, Hib, and S. pneumoniae, respectively. PCR positive samples were recorded as laboratory-confirmed acute bacterial meningitis. A total of 665 children were hospitalized for suspected acute meningitis. The annual incidences of acute laboratory-confirmed bacterial meningitis were 0.3 cases / 100,000 population in 2013 and 0.9 cases/100,000 in 2014. Of the 94 diagnosed cases of bacterial meningitis by PCR, 85 (90.4%) were meningococcal and 9 (9.6%) were pneumococcal. Hib was not detected in any of the patients. Among meningococcal meningitis, cases of serogroup Y, A, B and W-135 were 2.4% (n = 2), 3.5% (n = 3), 32.9% (n = 28), and 42.4% (n = 36). No serogroup C was detected among meningococcal cases. Successful vaccination policies for protection from bacterial meningitis are dependent on accurate determination of the etiology of bacterial meningitis. Additionally, the epidemiology of meningococcal disease is dynamic and close monitoring of serogroup distribution is comprehensively needed to assess the benefit of adding meningococcal vaccines to the routine immunization program.

  14. Sequence-Specific Affinity Chromatography of Bacterial Small Regulatory RNA-Binding Proteins from Bacterial Cells.

    PubMed

    Gans, Jonathan; Osborne, Jonathan; Cheng, Juliet; Djapgne, Louise; Oglesby-Sherrouse, Amanda G

    2018-01-01

    Bacterial small RNA molecules (sRNAs) are increasingly recognized as central regulators of bacterial stress responses and pathogenesis. In many cases, RNA-binding proteins are critical for the stability and function of sRNAs. Previous studies have adopted strategies to genetically tag an sRNA of interest, allowing isolation of RNA-protein complexes from cells. Here we present a sequence-specific affinity purification protocol that requires no prior genetic manipulation of bacterial cells, allowing isolation of RNA-binding proteins bound to native RNA molecules.

  15. Bacterial membrane proteomics.

    PubMed

    Poetsch, Ansgar; Wolters, Dirk

    2008-10-01

    About one quarter to one third of all bacterial genes encode proteins of the inner or outer bacterial membrane. These proteins perform essential physiological functions, such as the import or export of metabolites, the homeostasis of metal ions, the extrusion of toxic substances or antibiotics, and the generation or conversion of energy. The last years have witnessed completion of a plethora of whole-genome sequences of bacteria important for biotechnology or medicine, which is the foundation for proteome and other functional genome analyses. In this review, we discuss the challenges in membrane proteome analysis, starting from sample preparation and leading to MS-data analysis and quantification. The current state of available proteomics technologies as well as their advantages and disadvantages will be described with a focus on shotgun proteomics. Then, we will briefly introduce the most abundant proteins and protein families present in bacterial membranes before bacterial membrane proteomics studies of the last years will be presented. It will be shown how these works enlarged our knowledge about the physiological adaptations that take place in bacteria during fine chemical production, bioremediation, protein overexpression, and during infections. Furthermore, several examples from literature demonstrate the suitability of membrane proteomics for the identification of antigens and different pathogenic strains, as well as the elucidation of membrane protein structure and function.

  16. Diversity, geographic distribution, and habitat-specific variations of microbiota in natural populations of the chicken mite, Dermanyssus gallinae.

    PubMed

    Moro, Claire Valiente; Thioulouse, Jean; Chauve, Claude; Zenner, Lionel

    2011-07-01

    Dermanyssus gallinae is considered to be the most economically significant ectoparasite to affect egg-laying poultry in Europe. This mite can also act as a vector for a number of pathogens. The array of bacteria associated with D. gallinae mites could provide insight into the biology and population dynamics of arthropods, but at the present time little information is available. To understand the intra- and interpopulation diversity of its associated microbiota, we analyzed the whole internal bacterial community of natural populations of D. gallinae originating from two types of poultry farm habitats (standard and free-range) in two regions of France (Brittany and the Rhone-Alpes). Total DNA was extracted from individual or pooled mites, and polymerase chain reaction temporal temperature gradient gel electrophoresis of 16S rRNA was then done to separate bacterial DNA fragments associated with the host arthropod. A large diversity of bacteria was detected, but principally firmicutes and gamma-Proteobacteria. Between-group analyses of temporal temperature gradient gel electrophoresis-banding patterns revealed that bacterial populations clustered into categories according to their geographic origin and the habitat specifics of the farms. Some degree of stability of bacterial populations was observed within a specific time scale. These results suggest that environmental factors either recent (e.g., poultry farming practices) or long-standing (e.g., geographic isolation) may affect the bacterial communities present in D. gallinae. Further knowledge of the microbiota associated with D. gallinae and its variation would indeed offer new perspectives for biological control methods to prevent the establishment, proliferation, and transmission of pathogenic bacteria.

  17. Gut bacterial diversity of the tribes of India and comparison with the worldwide data

    PubMed Central

    Dehingia, Madhusmita; Thangjam devi, Kanchal; Talukdar, Narayan C.; Talukdar, Rupjyoti; Reddy, Nageshwar; Mande, Sharmila S.; Deka, Manab; Khan, Mojibur R.

    2015-01-01

    The gut bacteria exert phenotypic traits to the host but the factors which determine the gut bacterial profile (GBP) is poorly understood. This study aimed to understand the effect of ethnicity and geography on GBP of Mongoloid and Proto-Australoid tribes of India. Fecal bacterial diversity was studied in fifteen tribal populations representing four geographic regions (Assam, Telangana, Manipur and Sikkim) by DGGE followed by NGS analysis on Illumina MiSeq platform. Geography and diet had significant effect on GBP of the Indian tribes which was dominated by Prevotella. The effects were more prominent with lower taxonomic levels, indicating probable functional redundancy of the core GBP. A comparison with the worldwide data revealed that GBP of the Indian population was similar to the Mongolian population (Mongolia). The bacterial genera Faecalibacterium, Eubacterium, Clostridium, Blautia, Ruminococcus and Roseburia were found to be core genera in the representative populations of the world. PMID:26689136

  18. Evaluation of bacterial communities belonging to natural whey starters for Grana Padano cheese by length heterogeneity-PCR.

    PubMed

    Lazzi, C; Rossetti, L; Zago, M; Neviani, E; Giraffa, G

    2004-01-01

    To detect bacteria present in controlled dairy ecosystems with defined composition by length-heterogeneity (LH)-PCR. LH-PCR allows to distinguish different organisms on the basis of natural variations in the length of 16S rRNA gene sequences. LH-PCR was applied to depict population structure of the lactic acid bacteria (LAB) species recoverable from Grana Padano cheese whey starters. Typical bacterial species present in the LAB community were evidenced and well discriminated. Small differences in species composition, e.g. the frequent finding of Streptococcus thermophilus and the constant presence of thermophilic lactobacilli (Lactobacillus helveticus, Lact. delbrueckii subsp. lactis/bulgaricus and Lact. fermentum) were reliably highlighted. Specificity of LH-PCR was confirmed by species-specific PCR from total DNA of the cultures. LH-PCR is a useful tool to monitor microbial composition and population dynamics in dairy starter cultures. When present, non-dominant bacterial species present in the whey starters, such as Strep. thermophilus, can easily be visualized and characterized without isolating and cultivating single strains. A similar approach can be applied to more complex dairy ecosystems such as milk or cheese curd. Community members and differences in population structure of controlled dairy ecosystems such as whey starters for hard cheeses can be evaluated and compared in a relative easy, fast, reliable and highly reproducible way.

  19. Bacterial Cheating Limits the Evolution of Antibiotic Resistance

    NASA Astrophysics Data System (ADS)

    Yurtsev, Eugene; Xiao Chao, Hui; Datta, Manoshi; Artemova, Tatiana; Gore, Jeff

    2012-02-01

    The emergence of antibiotic resistance in bacteria is a significant health concern. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removal of the antibiotic. The presence of a cooperative mechanism of resistance suggests that a cheater strain - which does not contribute to breaking down the antibiotic - may be able to take advantage of resistant cells. We find experimentally that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We use a simple model in conjunction with difference equations to explain the observed population dynamics as a function of cell density and antibiotic concentration. Our experimental difference equations resemble the logistic map, raising the possibility of oscillations or even chaotic dynamics.

  20. Mutant number distribution in an exponentially growing population

    NASA Astrophysics Data System (ADS)

    Keller, Peter; Antal, Tibor

    2015-01-01

    We present an explicit solution to a classic model of cell-population growth introduced by Luria and Delbrück (1943 Genetics 28 491-511) 70 years ago to study the emergence of mutations in bacterial populations. In this model a wild-type population is assumed to grow exponentially in a deterministic fashion. Proportional to the wild-type population size, mutants arrive randomly and initiate new sub-populations of mutants that grow stochastically according to a supercritical birth and death process. We give an exact expression for the generating function of the total number of mutants at a given wild-type population size. We present a simple expression for the probability of finding no mutants, and a recursion formula for the probability of finding a given number of mutants. In the ‘large population-small mutation’ limit we recover recent results of Kessler and Levine (2014 J. Stat. Phys. doi:10.1007/s10955-014-1143-3) for a fully stochastic version of the process.

  1. Transcriptome landscape of a bacterial pathogen under plant immunity.

    PubMed

    Nobori, Tatsuya; Velásquez, André C; Wu, Jingni; Kvitko, Brian H; Kremer, James M; Wang, Yiming; He, Sheng Yang; Tsuda, Kenichi

    2018-03-27

    Plant pathogens can cause serious diseases that impact global agriculture. The plant innate immunity, when fully activated, can halt pathogen growth in plants. Despite extensive studies into the molecular and genetic bases of plant immunity against pathogens, the influence of plant immunity in global pathogen metabolism to restrict pathogen growth is poorly understood. Here, we developed RNA sequencing pipelines for analyzing bacterial transcriptomes in planta and determined high-resolution transcriptome patterns of the foliar bacterial pathogen Pseudomonas syringae in Arabidopsis thaliana with a total of 27 combinations of plant immunity mutants and bacterial strains. Bacterial transcriptomes were analyzed at 6 h post infection to capture early effects of plant immunity on bacterial processes and to avoid secondary effects caused by different bacterial population densities in planta We identified specific "immune-responsive" bacterial genes and processes, including those that are activated in susceptible plants and suppressed by plant immune activation. Expression patterns of immune-responsive bacterial genes at the early time point were tightly linked to later bacterial growth levels in different host genotypes. Moreover, we found that a bacterial iron acquisition pathway is commonly suppressed by multiple plant immune-signaling pathways. Overexpression of a P. syringae sigma factor gene involved in iron regulation and other processes partially countered bacterial growth restriction during the plant immune response triggered by AvrRpt2. Collectively, this study defines the effects of plant immunity on the transcriptome of a bacterial pathogen and sheds light on the enigmatic mechanisms of bacterial growth inhibition during the plant immune response.

  2. Impedimetric biosensor based on cell-mediated bioimprinted films for bacterial detection.

    PubMed

    Qi, Peng; Wan, Yi; Zhang, Dun

    2013-01-15

    This work presents the synthesis of bacteria-mediated bioimprinted films for selective bacterial detection. Marine pathogen sulfate-reducing bacteria (SRB) were chosen as the template bacteria. Chitosan (CS) doped with reduced graphene sheets (RGSs) was electrodeposited on an indium tin oxide electrode, and the resulting RGSs-CS hybrid film served as a platform for bacterial attachment. The electrodeposition conditions were optimized to obtain RGSs-CS hybrid films with excellent electrochemical performance. A layer of nonconductive CS film was deposited to embed the pathogen, and acetone was used to wash away the bacterial templates. Electrochemical impedance spectroscopy was performed to characterize the stepwise modification process and monitor the SRB population. Faradic impedance measurements revealed that the charge transfer resistance (R(ct)) increased with increased SRB concentration. A linear relationship between ΔR(ct) and the logarithm of SRB concentration was obtained within the concentration range of 1.0×10(4)cfum L(-1) to 1.0×10(8)cfum L(-1). The impedimetric sensor showed good selectivity towards SRB based on size and shape. Hence, selectivity for bacterial detection can be improved if the bioimprinting technique is combined with other bio-recognition elements. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Characterization of Epiphytic Bacterial Communities from Grapes, Leaves, Bark and Soil of Grapevine Plants Grown, and Their Relations

    PubMed Central

    Martins, Guilherme; Lauga, Béatrice; Miot-Sertier, Cécile; Mercier, Anne; Lonvaud, Aline; Soulas, Marie-Louise; Soulas, Guy; Masneuf-Pomarède, Isabelle

    2013-01-01

    Despite its importance in plant health and crop quality, the diversity of epiphytic bacteria on grape berries and other plant parts, like leaves and bark, remains poorly described, as does the role of telluric bacteria in plant colonization. In this study, we compare the bacterial community size and structure in vineyard soils, as well as on grapevine bark, leaves and berries. Analyses of culturable bacteria revealed differences in the size and structure of the populations in each ecosystem. The highest bacteria population counts and the greatest diversity of genera were found in soil samples, followed by bark, grapes and leaves. The identification of isolates revealed that some genera – Pseudomonas, Curtobacterium, and Bacillus – were present in all ecosystems, but in different amounts, while others were ecosystem-specific. About 50% of the genera were common to soil and bark, but absent from leaves and grapes. The opposite was also observed: grape and leaf samples presented 50% of genera in common that were absent from trunk and soil. The bacterial community structure analyzed by T-RFLP indicated similarities between the profiles of leaves and grapes, on the one hand, and bark and soil, on the other, reflecting the number of shared T-RFs. The results suggest an interaction between telluric bacterial communities and the epiphytic bacteria present on the different grapevine parts. PMID:24023666

  4. Molecular analysis and conventional cytology: association between HPV and bacterial vaginosis in the cervical abnormalities of a Brazilian population.

    PubMed

    Peres, A L; Camarotti, J R S L; Cartaxo, M; Alencar, N; Stocco, R C; Beçak, W; Pontes-Filho, N T; Araújo, R F F; Lima-Filho, J L; Martins, D B G

    2015-08-14

    We investigated the association between bacterial vaginosis (BV) and human papillomavirus (HPV) infection in Papanicolaou smears in a Brazilian population. Cross-sectional analysis was performed on 673 samples collected from women attending public health centers in Olinda (PE, Brazil) by conventional cytology methodology and molecular analysis, PCR tests (GP5+/6+ and MY09/11). Cytological abnormalities, BV, and HPV-DNA were detected in 23 (3.4%) samples, 189 samples (28.1%), and 210 samples (31.2%), respectively. GP5+/6+ primers resulted in higher detection performance than MY09/11 primers, with 81% concordance between both primers (P < 0.0001). The occurrence of HPV-DNA and BV had ORs of 8.59 (P < 0.0001) and 2.91 (P = 0.0089) for abnormal cytology, respectively, whereas the concomitant presence of both infections showed an OR equal to 3.82 (P = 0.0054). Therefore, we observed an association between abnormal cervical cytology and HPV infection, BV, or both HPV infection and BV. These results highlight the necessity of monitoring patients presenting not only HPV, but also BV, as risk factors for cervical lesion development.

  5. A distinct bacterial dysbiosis associated skin inflammation in ovine footrot

    NASA Astrophysics Data System (ADS)

    Maboni, Grazieli; Blanchard, Adam; Frosth, Sara; Stewart, Ceri; Emes, Richard; Tötemeyer, Sabine

    2017-03-01

    Ovine footrot is a highly prevalent bacterial disease caused by Dichelobacter nodosus and characterised by the separation of the hoof horn from the underlying skin. The role of innate immune molecules and other bacterial communities in the development of footrot lesions remains unclear. This study shows a significant association between the high expression of IL1β and high D. nodosus load in footrot samples. Investigation of the microbial population identified distinct bacterial populations in the different disease stages and also depending on the level of inflammation. Treponema (34%), Mycoplasma (29%) and Porphyromonas (15%) were the most abundant genera associated with high levels of inflammation in footrot. In contrast, Acinetobacter (25%), Corynebacteria (17%) and Flavobacterium (17%) were the most abundant genera associated with high levels of inflammation in healthy feet. This demonstrates for the first time there is a distinct microbial community associated with footrot and high cytokine expression.

  6. Irrigation water quality in southern Mexico City based on bacterial and heavy metal analyses

    NASA Astrophysics Data System (ADS)

    Solís, C.; Sandoval, J.; Pérez-Vega, H.; Mazari-Hiriart, M.

    2006-08-01

    Xochimilco is located in southern Mexico City and represents the reminiscence of the pre-Columbian farming system, the "chinampa" agriculture. "Chinampas" are island plots surrounded by a canal network. At present the area is densely urbanized and populated, with various contaminant sources contributing to the water quality degradation. The canal system is recharged by a combination of treated-untreated wastewater, and precipitation during the rainy season. Over 40 agricultural species, including vegetables, cereals and flowers, are produced in the "chinampas". In order to characterize the quality of Xochimilcos' water used for irrigation, spatial and temporal contaminant indicators such as microorganisms and heavy metals were investigated. Bacterial indicators (fecal coliforms, fecal enterococcus) were analyzed by standard analytical procedures, and heavy metals (such as Fe, Cu, Zn and Pb) were analyzed by particle induced X-ray emission (PIXE). The more contaminated sites coincide with the heavily populated areas. Seasonal variation of contaminants was observed, with the higher bacterial counts and heavy metal concentrations reported during the rainy season.

  7. Presence of pathogenic Escherichia coli is correlated with bacterial community diversity and composition on pre-harvest cattle hides.

    PubMed

    Chopyk, Jessica; Moore, Ryan M; DiSpirito, Zachary; Stromberg, Zachary R; Lewis, Gentry L; Renter, David G; Cernicchiaro, Natalia; Moxley, Rodney A; Wommack, K Eric

    2016-03-22

    Since 1982, specific serotypes of Shiga toxin-producing Escherichia coli (STEC) have been recognized as significant foodborne pathogens acquired from contaminated beef and, more recently, other food products. Cattle are the major reservoir hosts of these organisms, and while there have been advancements in food safety practices and industry standards, STEC still remains prevalent within beef cattle operations with cattle hides implicated as major sources of carcass contamination. To investigate whether the composition of hide-specific microbial communities are associated with STEC prevalence, 16S ribosomal RNA (rRNA) bacterial community profiles were obtained from hide and fecal samples collected from a large commercial feedlot over a 3-month period. These community data were examined amidst an extensive collection of prevalence data on a subgroup of STEC that cause illness in humans, referred to as enterohemorrhagic E. coli (EHEC). Fecal 16S rRNA gene OTUs (operational taxonomic units) were subtracted from the OTUs found within each hide 16S rRNA amplicon library to identify hide-specific bacterial populations. Comparative analysis of alpha diversity revealed a significant correlation between low bacterial diversity and samples positive for the presence of E. coli O157:H7 and/or the non-O157 groups: O26, O111, O103, O121, O45, and O145. This trend occurred regardless of diversity metric or fecal OTU presence. The number of EHEC serogroups present in the samples had a compounding effect on the inverse relationship between pathogen presence and bacterial diversity. Beta diversity data showed differences in bacterial community composition between samples containing O157 and non-O157 populations, with certain OTUs demonstrating significant changes in relative abundance. The cumulative prevalence of the targeted EHEC serogroups was correlated with low bacterial community diversity on pre-harvest cattle hides. Understanding the relationship between indigenous hide

  8. The Effects of a Probiotic Yeast on the Bacterial Diversity and Population Structure in the Rumen of Cattle

    PubMed Central

    Pinloche, Eric; McEwan, Neil; Marden, Jean-Philippe; Bayourthe, Corinne; Auclair, Eric; Newbold, C. Jamie

    2013-01-01

    It has been suggested that the ability of live yeast to improve milk yield and weight gain in cattle is because the yeast stimulates bacterial activity within the rumen. However it remains unclear if this is a general stimulation of all species or a specific stimulation of certain species. Here we characterised the change in the bacterial population within the rumen of cattle fed supplemental live yeast. Three cannulated lactating cows received a daily ration (24 kg/d) of corn silage (61% of DM), concentrates (30% of DM), dehydrated alfalfa (9% of DM) and a minerals and vitamins mix (1% of DM). The effect of yeast (BIOSAF SC 47, Lesaffre Feed Additives, France; 0.5 or 5 g/d) was compared to a control (no additive) in a 3×3 Latin square design. The variation in the rumen bacterial community between treatments was assessed using Serial Analysis of V1 Ribosomal Sequence Tag (SARST-V1) and 454 pyrosequencing based on analysis of the 16S rRNA gene. Compared to the control diet supplementation of probiotic yeast maintained a healthy fermentation in the rumen of lactating cattle (higher VFA concentration [high yeast dose only], higher rumen pH, and lower Eh and lactate). These improvements were accompanied with a shift in the main fibrolytic group (Fibrobacter and Ruminococcus) and lactate utilising bacteria (Megasphaera and Selenomonas). In addition we have shown that the analysis of short V1 region of 16s rRNA gene (50–60 bp) could give as much phylogenetic information as a longer read (454 pyrosequencing of 250 bp). This study also highlights the difficulty of drawing conclusions on composition and diversity of complex microbiota because of the variation caused by the use of different methods (sequencing technology and/or analysis). PMID:23844101

  9. Stratification Modelling of Key Bacterial Taxa Driven by Metabolic Dynamics in Meromictic Lakes.

    PubMed

    Zhu, Kaicheng; Lauro, Federico M; Su, Haibin

    2018-06-22

    In meromictic lakes, the water column is stratified into distinguishable steady layers with different physico-chemical properties. The bottom portion, known as monimolimnion, has been studied for the functional stratification of microbial populations. Recent experiments have reported the profiles of bacterial and nutrient spatial distributions, but quantitative understanding is invoked to unravel the underlying mechanism of maintaining the discrete spatial organization. Here a reaction-diffusion model is developed to highlight the spatial pattern coupled with the light-driven metabolism of bacteria, which is resilient to a wide range of dynamical correlation between bacterial and nutrient species at the molecular level. Particularly, exact analytical solutions of the system are presented together with numerical results, in a good agreement with measurements in Ace lake and Rogoznica lake. Furthermore, one quantitative prediction is reported here on the dynamics of the seasonal stratification patterns in Ace lake. The active role played by the bacterial metabolism at microscale clearly shapes the biogeochemistry landscape of lake-wide ecology at macroscale.

  10. The type VI secretion system impacts bacterial invasion and population dynamics in a model intestinal microbiota

    NASA Astrophysics Data System (ADS)

    Logan, Savannah L.; Shields, Drew S.; Hammer, Brian K.; Xavier, Joao B.; Parthasarathy, Raghuveer

    Animal gastrointestinal tracts are home to a diverse community of microbes. The mechanisms by which microbial species interact and compete in this dense, physically dynamic space are poorly understood, limiting our understanding of how natural communities are assembled and how different communities could be engineered. Here, we focus on a physical mechanism for competition: the type VI secretion system (T6SS). The T6SS is a syringe-like organelle used by certain bacteria to translocate effector proteins across the cell membranes of target bacterial cells, killing them. Here, we use T6SS+ and T6SS- strains of V. cholerae, the pathogen that causes cholera in humans, and light sheet fluorescence microscopy for in vivo imaging to show that the T6SS provides an advantage to strains colonizing the larval zebrafish gut. Furthermore, we show that T6SS+ bacteria can invade and alter an existing population of a different species in the zebrafish gut, reducing its abundance and changing the form of its population dynamics. This work both demonstrates a mechanism for altering the gut microbiota with an invasive species and explores the processes controlling the stability and dynamics of the gut ecosystem. Research Corporation, Gordon and Betty Moore Foundation, and the Simons Foundation.

  11. Exploring the plant-associated bacterial communities in Medicago sativa L

    PubMed Central

    2012-01-01

    Background Plant-associated bacterial communities caught the attention of several investigators which study the relationships between plants and soil and the potential application of selected bacterial species in crop improvement and protection. Medicago sativa L. is a legume crop of high economic importance as forage in temperate areas and one of the most popular model plants for investigations on the symbiosis with nitrogen fixing rhizobia (mainly belonging to the alphaproteobacterial species Sinorhizobium meliloti). However, despite its importance, no studies have been carried out looking at the total bacterial community associated with the plant. In this work we explored for the first time the total bacterial community associated with M. sativa plants grown in mesocosms conditions, looking at a wide taxonomic spectrum, from the class to the single species (S. meliloti) level. Results Results, obtained by using Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis, quantitative PCR and sequencing of 16 S rRNA gene libraries, showed a high taxonomic diversity as well as a dominance by members of the class Alphaproteobacteria in plant tissues. Within Alphaproteobacteria the families Sphingomonadaceae and Methylobacteriaceae were abundant inside plant tissues, while soil Alphaproteobacteria were represented by the families of Hyphomicrobiaceae, Methylocystaceae, Bradyirhizobiaceae and Caulobacteraceae. At the single species level, we were able to detect the presence of S. meliloti populations in aerial tissues, nodules and soil. An analysis of population diversity on nodules and soil showed a relatively low sharing of haplotypes (30-40%) between the two environments and between replicate mesocosms, suggesting drift as main force shaping S. meliloti population at least in this system. Conclusions In this work we shed some light on the bacterial communities associated with M. sativa plants, showing that Alphaproteobacteria may constitute an important

  12. Isolation and identification of bacterial populations of zoonotic importance from captive non-venomous snakes in Malaysia.

    PubMed

    Abba, Yusuf; Ilyasu, Yusuf Maina; Noordin, Mustapha Mohamed

    2017-07-01

    Captivity of non-venomous snakes such as python and boa are common in zoos, aquariums and as pets in households. Poor captivity conditions expose these reptiles to numerous pathogens which may result in disease conditions. The purpose of this study was to investigate the common bacteria isolated from necropsied captive snakes in Malaysia over a five year period. A total of 27 snake carcasses presented for necropsy at the Universiti Putra Malaysia (UPM) were used in this survey. Samples were aseptically obtained at necropsy from different organs/tissues (lung, liver, heart, kindey, oesophagus, lymph node, stomach, spinal cord, spleen, intestine) and cultured onto 5% blood and McConkey agar, respectively. Gram staining, morphological evaluation and biochemical test such as oxidase, catalase and coagulase were used to tentatively identify the presumptive bacterial isolates. Pythons had the highest number of cases (81.3%) followed by anaconda (14.8%) and boa (3.7%). Mixed infection accounted for 81.5% in all snakes and was highest in pythons (63%). However, single infection was only observed in pythons (18.5%). A total of 82.7%, 95.4% and 100% of the bacterial isolates from python, anaconda and boa, respectively were gram negative. Aeromonas spp was the most frequently isolated bacteria in pythons and anaconda with incidences of 25 (18%) and 8 (36.6%) with no difference (p > 0.05) in incidence, respectively, while Salmonella spp was the most frequently isolated in boa and significantly higher (p < 0.05) than in python and anaconda. Bacteria species were most frequently isolated from the kidney of pythons 35 (25.2%), intestines of anacondas 11 (50%) and stomach of boa 3 (30%). This study showed that captive pythons harbored more bacterial species than anaconda or boa. Most of the bacterial species isolated from these snakes have public health importance and have been incriminated in human infections worldwide. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Dynamics of Vaginal Bacterial Communities in Women Developing Bacterial Vaginosis, Candidiasis, or No Infection, Analyzed by PCR-Denaturing Gradient Gel Electrophoresis and Real-Time PCR▿

    PubMed Central

    Vitali, Beatrice; Pugliese, Ciro; Biagi, Elena; Candela, Marco; Turroni, Silvia; Bellen, Gert; Donders, Gilbert G. G.; Brigidi, Patrizia

    2007-01-01

    The microbial flora of the vagina plays a major role in preventing genital infections, including bacterial vaginosis (BV) and candidiasis (CA). An integrated approach based on PCR-denaturing gradient gel electrophoresis (PCR-DGGE) and real-time PCR was used to study the structure and dynamics of bacterial communities in vaginal fluids of healthy women and patients developing BV and CA. Universal eubacterial primers and Lactobacillus genus-specific primers, both targeted at 16S rRNA genes, were used in DGGE and real-time PCR analysis, respectively. The DGGE profiles revealed that the vaginal flora was dominated by Lactobacillus species under healthy conditions, whereas several potentially pathogenic bacteria were present in the flora of women with BV. Lactobacilli were the predominant bacterial population in the vagina for patients affected by CA, but changes in the composition of Lactobacillus species were observed. Real-time PCR analysis allowed the quantitative estimation of variations in lactobacilli associated with BV and CA diseases. A statistically significant decrease in the relative abundance of lactobacilli was found in vaginal fluids of patients with BV compared to the relative abundance of lactobacilli in the vaginal fluids of healthy women and patients with CA. PMID:17644631

  14. Dynamics of vaginal bacterial communities in women developing bacterial vaginosis, candidiasis, or no infection, analyzed by PCR-denaturing gradient gel electrophoresis and real-time PCR.

    PubMed

    Vitali, Beatrice; Pugliese, Ciro; Biagi, Elena; Candela, Marco; Turroni, Silvia; Bellen, Gert; Donders, Gilbert G G; Brigidi, Patrizia

    2007-09-01

    The microbial flora of the vagina plays a major role in preventing genital infections, including bacterial vaginosis (BV) and candidiasis (CA). An integrated approach based on PCR-denaturing gradient gel electrophoresis (PCR-DGGE) and real-time PCR was used to study the structure and dynamics of bacterial communities in vaginal fluids of healthy women and patients developing BV and CA. Universal eubacterial primers and Lactobacillus genus-specific primers, both targeted at 16S rRNA genes, were used in DGGE and real-time PCR analysis, respectively. The DGGE profiles revealed that the vaginal flora was dominated by Lactobacillus species under healthy conditions, whereas several potentially pathogenic bacteria were present in the flora of women with BV. Lactobacilli were the predominant bacterial population in the vagina for patients affected by CA, but changes in the composition of Lactobacillus species were observed. Real-time PCR analysis allowed the quantitative estimation of variations in lactobacilli associated with BV and CA diseases. A statistically significant decrease in the relative abundance of lactobacilli was found in vaginal fluids of patients with BV compared to the relative abundance of lactobacilli in the vaginal fluids of healthy women and patients with CA.

  15. Time-dependent effect of graphene on the structure, abundance, and function of the soil bacterial community.

    PubMed

    Ren, Wenjie; Ren, Gaidi; Teng, Ying; Li, Zhengao; Li, Lina

    2015-10-30

    The increased application of graphene raises concerns about its environmental impact, but little information is available on the effect of graphene on the soil microbial community. This study evaluated the impact of graphene on the structure, abundance and function of the soil bacterial community based on quantitative real-time polymerase chain reaction (qPCR), pyrosequencing and soil enzyme activities. The results show that the enzyme activities of dehydrogenase and fluorescein diacetate (FDA) esterase and the biomass of the bacterial populations were transiently promoted by the presence of graphene after 4 days of exposure, but these parameters recovered completely after 21 days. Pyrosequencing analysis suggested a significant shift in some bacterial populations after 4 days, and the shift became weaker or disappeared as the exposure time increased to 60 days. During the entire exposure process, the majority of bacterial phylotypes remained unaffected. Some bacterial populations involved in nitrogen biogeochemical cycles and the degradation of organic compounds can be affected by the presence of graphene. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Multiple micro-predators controlling bacterial communities in the environment.

    PubMed

    Johnke, Julia; Cohen, Yossi; de Leeuw, Marina; Kushmaro, Ariel; Jurkevitch, Edouard; Chatzinotas, Antonis

    2014-06-01

    Predator-prey interactions are a main issue in ecological theory, including multispecies predator-prey relationships and intraguild predation. This knowledge is mainly based on the study of plants and animals, while its relevance for microorganisms is not well understood. The three key groups of micro-predators include protists, predatory bacteria and bacteriophages. They greatly differ in size, in prey specificity, in hunting strategies and in the resulting population dynamics. Yet, their potential to jointly control bacterial populations and reducing biomass in complex environments such as wastewater treatment plants is vast. Here, we present relevant ecological concepts and recent findings on micropredators, and propose that an integrative approach to predation at the microscale should be developed enabling the exploitation of this potential. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. A cross-sectional comparative study of gut bacterial community of Indian and Finnish children.

    PubMed

    Kumbhare, Shreyas V; Kumar, Himanshu; Chowdhury, Somak P; Dhotre, Dhiraj P; Endo, Akihito; Mättö, Jaana; Ouwehand, Arthur C; Rautava, Samuli; Joshi, Ruchi; Patil, Nitinkumar P; Patil, Ravindra H; Isolauri, Erika; Bavdekar, Ashish R; Salminen, Seppo; Shouche, Yogesh S

    2017-09-05

    The human gut microbiome plays a crucial role in the compositional development of gut microbiota. Though well documented in western pediatrics population, little is known about how various host conditions affect populations in different geographic locations such as the Indian subcontinent. Given the impact of distinct environmental conditions, our study assess the gut bacterial diversity of a small cohort of Indian and Finnish children and investigated the influence of FUT2 secretor status and birth mode on the gut microbiome of these populations. Using multiple profiling techniques, we show that the gut bacterial community structure in 13-14-year-old Indian (n = 47) and Finnish (n = 52) children differs significantly. Specifically, Finnish children possessed higher Blautia and Bifidobacterium, while genera Prevotella and Megasphaera were predominant in Indian children. Our study also demonstrates a strong influence of FUT2 and birth mode variants on specific gut bacterial taxa, influence of which was noticed to differ between the two populations under study.

  18. Temperate bacterial viruses as double-edged swords in bacterial warfare.

    PubMed

    Gama, João Alves; Reis, Ana Maria; Domingues, Iolanda; Mendes-Soares, Helena; Matos, Ana Margarida; Dionisio, Francisco

    2013-01-01

    It has been argued that bacterial cells may use their temperate viruses as biological weapons. For instance, a few bacterial cells among a population of lysogenic cells could release the virus and kill susceptible non-lysogenic competitors, while their clone mates would be immune. Because viruses replicate inside their victims upon infection, this process would amplify their number in the arena. Sometimes, however, temperate viruses spare recipient cells from death by establishing themselves in a dormant state inside cells. This phenomenon is called lysogenization and, for some viruses such as the λ virus, the probability of lysogenization increases with the multiplicity of infection. Therefore, the amplification of viruses leads to conflicting predictions about the efficacy of temperate viruses as biological weapons: amplification can increase the relative advantage of clone mates of lysogens but also the likelihood of saving susceptible cells from death, because the probability of lysogenization is higher. To test the usefulness of viruses as biological weapons, we performed competition experiments between lysogenic Escherichia coli cells carrying the λ virus and susceptible λ-free E. coli cells, either in a structured or unstructured habitat. In structured and sometimes in unstructured habitats, the λ virus qualitatively behaved as a "replicating toxin". However, such toxic effect of λ viruses ceased after a few days of competition. This was due to the fact that many of initially susceptible cells became lysogenic. Massive lysogenization of susceptible cells occurred precisely under the conditions where the amplification of the virus was substantial. From then on, these cells and their descendants became immune to the λ virus. In conclusion, if at short term bacterial cells may use temperate viruses as biological weapons, after a few days only the classical view of temperate bacterial viruses as parasitic agents prevails.

  19. Temperate Bacterial Viruses as Double-Edged Swords in Bacterial Warfare

    PubMed Central

    Gama, João Alves; Reis, Ana Maria; Domingues, Iolanda; Mendes-Soares, Helena; Matos, Ana Margarida; Dionisio, Francisco

    2013-01-01

    It has been argued that bacterial cells may use their temperate viruses as biological weapons. For instance, a few bacterial cells among a population of lysogenic cells could release the virus and kill susceptible non-lysogenic competitors, while their clone mates would be immune. Because viruses replicate inside their victims upon infection, this process would amplify their number in the arena. Sometimes, however, temperate viruses spare recipient cells from death by establishing themselves in a dormant state inside cells. This phenomenon is called lysogenization and, for some viruses such as the λ virus, the probability of lysogenization increases with the multiplicity of infection. Therefore, the amplification of viruses leads to conflicting predictions about the efficacy of temperate viruses as biological weapons: amplification can increase the relative advantage of clone mates of lysogens but also the likelihood of saving susceptible cells from death, because the probability of lysogenization is higher. To test the usefulness of viruses as biological weapons, we performed competition experiments between lysogenic Escherichia coli cells carrying the λ virus and susceptible λ-free E. coli cells, either in a structured or unstructured habitat. In structured and sometimes in unstructured habitats, the λ virus qualitatively behaved as a “replicating toxin”. However, such toxic effect of λ viruses ceased after a few days of competition. This was due to the fact that many of initially susceptible cells became lysogenic. Massive lysogenization of susceptible cells occurred precisely under the conditions where the amplification of the virus was substantial. From then on, these cells and their descendants became immune to the λ virus. In conclusion, if at short term bacterial cells may use temperate viruses as biological weapons, after a few days only the classical view of temperate bacterial viruses as parasitic agents prevails. PMID:23536852

  20. Bacterial pneumonia as an influenza complication.

    PubMed

    Martin-Loeches, Ignacio; van Someren Gréve, Frank; Schultz, Marcus J

    2017-04-01

    The pathogenesis and impact of coinfection, in particular bacterial coinfection, in influenza are incompletely understood. This review summarizes results from studies on bacterial coinfection in the recent pandemic influenza outbreak. Systemic immune mechanisms play a key role in the development of coinfection based on the complexity of the interaction of the host and the viral and bacterial pathogens. Several studies were performed to determine the point prevalence of bacterial coinfection in influenza. Coinfection in influenza is frequent in critically ill patients with Streptococcus pneumoniae being the most frequent bacterial pathogen and higher rates of potentially resistant pathogens over the years. Bacterial pneumonia is certainly an influenza complication. The recent epidemiology findings have helped to partially resolve the contribution of different pathogens. Immunosuppression is a risk factor for bacterial coinfection in influenza, and the epidemiology of coinfection has changed over the years during the last influenza pandemic, and these recent findings should be taken into account during present outbreaks.

  1. Bacterial reproductive pathogens of cats and dogs.

    PubMed

    Graham, Elizabeth M; Taylor, David J

    2012-05-01

    With the notable exception of Brucella canis, exogenous bacterial pathogens are uncommon causes of reproductive disease in cats and dogs. Most bacterial reproductive infections are endogenous, and predisposing factors for infection are important. This article reviews the etiology, pathogenesis, clinical presentation, diagnosis, treatment, and public health significance of bacterial reproductive pathogens in cats and dogs.

  2. Bacterial Quorum Sensing and Microbial Community Interactions

    PubMed Central

    2018-01-01

    ABSTRACT Many bacteria use a cell-cell communication system called quorum sensing to coordinate population density-dependent changes in behavior. Quorum sensing involves production of and response to diffusible or secreted signals, which can vary substantially across different types of bacteria. In many species, quorum sensing modulates virulence functions and is important for pathogenesis. Over the past half-century, there has been a significant accumulation of knowledge of the molecular mechanisms, signal structures, gene regulons, and behavioral responses associated with quorum-sensing systems in diverse bacteria. More recent studies have focused on understanding quorum sensing in the context of bacterial sociality. Studies of the role of quorum sensing in cooperative and competitive microbial interactions have revealed how quorum sensing coordinates interactions both within a species and between species. Such studies of quorum sensing as a social behavior have relied on the development of “synthetic ecological” models that use nonclonal bacterial populations. In this review, we discuss some of these models and recent advances in understanding how microbes might interact with one another using quorum sensing. The knowledge gained from these lines of investigation has the potential to guide studies of microbial sociality in natural settings and the design of new medicines and therapies to treat bacterial infections. PMID:29789364

  3. Bacterial interactions in the rhizosphere of seagrass communities in shallow coastal lagoons.

    PubMed

    Donnelly, A P; Herbert, R A

    1998-12-01

    Rooted phanerogam communities in the shallow intertidal and subtidal coastal zone represent productive and healthy ecosystems. Inorganic nutrients are assimilated into seagrass biomass. Much of the organic matter resulting from moribund seagrass is rapidly mineralized, principally by bacteria. The microbial community of the rhizosphere is also highly active due to the supply of organic matter released during photosynthesis. This active sediment community plays an important role through carbon, nitrogen and phosphorous cycling in maintaining the stability and productivity of seagrass meadows. Over the last two decades, however, seagrass meadows in European coastal areas have declined due to increasing pollution. As eutrophication advances a trasition occurs from rooted phanerogram dominated communities to planktonic algal blooms and/or cyanobacterial blooms. Such changes represent the decline of a stable, high biodiversity habitat to an unstable one dominated by a few species. These changes of community structure can occur rapidly once the internal nutrient and organic matter control cycles are exceeded. A field investigation was undertaken to establish the spatial distribution of bacterial populations of Zostera noltii colonized and uncolonized sediment in the Bassin d'Arcachon, France. Bacteria were enumerated using both plate count and MPN techniques for different functional groups as well as determining the total bacterial populations present. Nitrogen fixation, ammonification, sulphate reduction rates, as well as alkaline phosphatase activity were also determined. Colonization of the Z. noltii roots and rhizomes was studied by light and scanning electron microscopy. Results confirmed that higher bacterial populations were present in the rhizosphere of Z. noltii compared to uncolonized sediments. Furthermore, electron microscopy identified the rhizome as the main site of colonization for a diverse range of morphological groups of bacteria. Sulphate reducing

  4. Bacterial communications in implant infections: a target for an intelligence war.

    PubMed

    Costerton, J W; Montanaro, L; Arciola, C R

    2007-09-01

    The status of population density is communicated among bacteria by specific secreted molecules, called pheromones or autoinducers, and the control mechanism is called "quorum-sensing". Quorum-sensing systems regulate the expression of a panel of genes, allowing bacteria to adapt to modified environmental conditions at a high density of population. The two known different quorum systems are described as the LuxR-LuxI system in gram-negative bacteria, which uses an N-acyl-homoserine lactone (AHL) as signal, and the agr system in gram-positive bacteria, which uses a peptide-tiolactone as signal and the RNAIII as effector molecules. Both in gram-negative and in gram-positive bacteria, quorum-sensing systems regulate the expression of adhesion mechanisms (biofilm and adhesins) and virulence factors (toxins and exoenzymes) depending on population cell density. In gram-negative Pseudomonas aeruginosa, analogs of signaling molecules such as furanone analogs, are effective in attenuating bacterial virulence and controlling bacterial infections. In grampositive Staphylococcus aureus, the quorum-sensing RNAIII-inhibiting peptide (RIP), tested in vitro and in animal infection models, has been proved to inhibit virulence and prevent infections. Attenuation of bacterial virulence by quorum-sensing inhibitors, rather than by bactericidal or bacteriostatic drugs, is a highly attractive concept because these antibacterial agents are less likely to induce the development of bacterial resistance.

  5. Changes in Soil Bacterial Communities and Diversity in ...

    EPA Pesticide Factsheets

    Silver-induced selective pressure is becoming increasingly important due to the growing use of silver (Ag) as an antimicrobial agent in biomedical and commercial products. With demonstrated links between environmental resistomes and clinical pathogens, it is important to identify microbial profiles related to silver tolerance/resistance. We investigated the effects of ionic Ag stress on soil bacterial communities and identified resistant/persistant bacterial populations. Silver treatments of 50 - 400 mg Ag kg-1 soil were established in five soils. Chemical lability measurements using diffusive gradients in thin-film devices confirmed that significant (albeit decreasing) labile Ag concentrations were present throughout the 9-month incubation period. Synchrotron X-ray absorption near edge structure spectroscopy demonstrate that this decreasing lability was due to changes in Ag speciation to less soluble forms such as Ag0 and Ag2S. Real-time PCR and Illumina MiSeq screening of 16S rRNA bacterial genes showed β-diversity in response to Ag pressure, and immediate and significant reductions in 16S rRNA gene counts with varying degrees of recovery. These effects were more strongly influenced by exposure time than by Ag dose at these rates. Ag-selected dominant OTUs principally resided in known persister taxa (mainly Gram positive), including metal-tolerant bacteria and slow-growing Mycobacteria. Soil microbial communities have been implicated as sources of an

  6. Diamagnetic levitation enhances growth of liquid bacterial cultures by increasing oxygen availability

    PubMed Central

    Dijkstra, Camelia E.; Larkin, Oliver J.; Anthony, Paul; Davey, Michael R.; Eaves, Laurence; Rees, Catherine E. D.; Hill, Richard J. A.

    2011-01-01

    Diamagnetic levitation is a technique that uses a strong, spatially varying magnetic field to reproduce aspects of weightlessness, on the Earth. We used a superconducting magnet to levitate growing bacterial cultures for up to 18 h, to determine the effect of diamagnetic levitation on all phases of the bacterial growth cycle. We find that diamagnetic levitation increases the rate of population growth in a liquid culture and reduces the sedimentation rate of the cells. Further experiments and microarray gene analysis show that the increase in growth rate is owing to enhanced oxygen availability. We also demonstrate that the magnetic field that levitates the cells also induces convective stirring in the liquid. We present a simple theoretical model, showing how the paramagnetic force on dissolved oxygen can cause convection during the aerobic phases of bacterial growth. We propose that this convection enhances oxygen availability by transporting oxygen around the liquid culture. Since this process results from the strong magnetic field, it is not present in other weightless environments, e.g. in Earth orbit. Hence, these results are of significance and timely to researchers considering the use of diamagnetic levitation to explore effects of weightlessness on living organisms and on physical phenomena. PMID:20667843

  7. Diamagnetic levitation enhances growth of liquid bacterial cultures by increasing oxygen availability.

    PubMed

    Dijkstra, Camelia E; Larkin, Oliver J; Anthony, Paul; Davey, Michael R; Eaves, Laurence; Rees, Catherine E D; Hill, Richard J A

    2011-03-06

    Diamagnetic levitation is a technique that uses a strong, spatially varying magnetic field to reproduce aspects of weightlessness, on the Earth. We used a superconducting magnet to levitate growing bacterial cultures for up to 18 h, to determine the effect of diamagnetic levitation on all phases of the bacterial growth cycle. We find that diamagnetic levitation increases the rate of population growth in a liquid culture and reduces the sedimentation rate of the cells. Further experiments and microarray gene analysis show that the increase in growth rate is owing to enhanced oxygen availability. We also demonstrate that the magnetic field that levitates the cells also induces convective stirring in the liquid. We present a simple theoretical model, showing how the paramagnetic force on dissolved oxygen can cause convection during the aerobic phases of bacterial growth. We propose that this convection enhances oxygen availability by transporting oxygen around the liquid culture. Since this process results from the strong magnetic field, it is not present in other weightless environments, e.g. in Earth orbit. Hence, these results are of significance and timely to researchers considering the use of diamagnetic levitation to explore effects of weightlessness on living organisms and on physical phenomena.

  8. Integrated analysis of bacterial and microeukaryotic communities from differentially active mud volcanoes in the Gulf of Cadiz

    NASA Astrophysics Data System (ADS)

    Coelho, Francisco J. R. C.; Louvado, António; Domingues, Patrícia M.; Cleary, Daniel F. R.; Ferreira, Marina; Almeida, Adelaide; Cunha, Marina R.; Cunha, Ângela; Gomes, Newton C. M.

    2016-10-01

    The present study assesses the diversity and composition of sediment bacterial and microeukaryotic communities from deep-sea mud volcanoes (MVs) associated with strike-slip faults in the South-West Iberian Margin (SWIM). We used a 16S/18S rRNA gene based pyrosequencing approach to characterize and correlate the sediment bacterial and microeukaryotic communities from MVs with differing gas seep regimes and from an additional site with no apparent seeping activity. In general, our results showed significant compositional changes of bacterial and microeukaryotic communities in sampling sites with different seepage regimes. Sediment bacterial communities were enriched with Methylococcales (putative methanotrophs) but had lower abundances of Rhodospirillales, Nitrospirales and SAR202 in the more active MVs. Within microeukaryotic communities, members of the Lobosa (lobose amoebae) were enriched in more active MVs. We also showed a strong correlation between Methylococcales populations and lobose amoeba in active MVs. This study provides baseline information on the diversity and composition of bacterial and microeukaryotic communities in deep-sea MVs associated with strike-slip faults.

  9. Integrated analysis of bacterial and microeukaryotic communities from differentially active mud volcanoes in the Gulf of Cadiz

    PubMed Central

    Coelho, Francisco J. R. C.; Louvado, António; Domingues, Patrícia M.; Cleary, Daniel F. R.; Ferreira, Marina; Almeida, Adelaide; Cunha, Marina R.; Cunha, Ângela; Gomes, Newton C. M.

    2016-01-01

    The present study assesses the diversity and composition of sediment bacterial and microeukaryotic communities from deep-sea mud volcanoes (MVs) associated with strike-slip faults in the South-West Iberian Margin (SWIM). We used a 16S/18S rRNA gene based pyrosequencing approach to characterize and correlate the sediment bacterial and microeukaryotic communities from MVs with differing gas seep regimes and from an additional site with no apparent seeping activity. In general, our results showed significant compositional changes of bacterial and microeukaryotic communities in sampling sites with different seepage regimes. Sediment bacterial communities were enriched with Methylococcales (putative methanotrophs) but had lower abundances of Rhodospirillales, Nitrospirales and SAR202 in the more active MVs. Within microeukaryotic communities, members of the Lobosa (lobose amoebae) were enriched in more active MVs. We also showed a strong correlation between Methylococcales populations and lobose amoeba in active MVs. This study provides baseline information on the diversity and composition of bacterial and microeukaryotic communities in deep-sea MVs associated with strike-slip faults. PMID:27762306

  10. Integrated analysis of bacterial and microeukaryotic communities from differentially active mud volcanoes in the Gulf of Cadiz.

    PubMed

    Coelho, Francisco J R C; Louvado, António; Domingues, Patrícia M; Cleary, Daniel F R; Ferreira, Marina; Almeida, Adelaide; Cunha, Marina R; Cunha, Ângela; Gomes, Newton C M

    2016-10-20

    The present study assesses the diversity and composition of sediment bacterial and microeukaryotic communities from deep-sea mud volcanoes (MVs) associated with strike-slip faults in the South-West Iberian Margin (SWIM). We used a 16S/18S rRNA gene based pyrosequencing approach to characterize and correlate the sediment bacterial and microeukaryotic communities from MVs with differing gas seep regimes and from an additional site with no apparent seeping activity. In general, our results showed significant compositional changes of bacterial and microeukaryotic communities in sampling sites with different seepage regimes. Sediment bacterial communities were enriched with Methylococcales (putative methanotrophs) but had lower abundances of Rhodospirillales, Nitrospirales and SAR202 in the more active MVs. Within microeukaryotic communities, members of the Lobosa (lobose amoebae) were enriched in more active MVs. We also showed a strong correlation between Methylococcales populations and lobose amoeba in active MVs. This study provides baseline information on the diversity and composition of bacterial and microeukaryotic communities in deep-sea MVs associated with strike-slip faults.

  11. Septic tank additive impacts on microbial populations.

    PubMed

    Pradhan, S; Hoover, M T; Clark, G H; Gumpertz, M; Wollum, A G; Cobb, C; Strock, J

    2008-01-01

    Environmental health specialists, other onsite wastewater professionals, scientists, and homeowners have questioned the effectiveness of septic tank additives. This paper describes an independent, third-party, field scale, research study of the effects of three liquid bacterial septic tank additives and a control (no additive) on septic tank microbial populations. Microbial populations were measured quarterly in a field study for 12 months in 48 full-size, functioning septic tanks. Bacterial populations in the 48 septic tanks were statistically analyzed with a mixed linear model. Additive effects were assessed for three septic tank maintenance levels (low, intermediate, and high). Dunnett's t-test for tank bacteria (alpha = .05) indicated that none of the treatments were significantly different, overall, from the control at the statistical level tested. In addition, the additives had no significant effects on septic tank bacterial populations at any of the septic tank maintenance levels. Additional controlled, field-based research iswarranted, however, to address additional additives and experimental conditions.

  12. Responses of Ammonia-Oxidizing Bacterial and Archaeal Populations to Organic Nitrogen Amendments in Low-Nutrient Groundwater ▿

    PubMed Central

    Reed, David W.; Smith, Jason M.; Francis, Christopher A.; Fujita, Yoshiko

    2010-01-01

    To evaluate the potential for organic nitrogen addition to stimulate the in situ growth of ammonia oxidizers during a field scale bioremediation trial, samples collected from the Eastern Snake River Plain Aquifer in Idaho before, during, and after the addition of molasses and urea were subjected to PCR analysis of ammonia monooxygenase subunit A (amoA) genes. Ammonia-oxidizing bacteria (AOB) and archaea (AOA) were present in all of the samples tested, with AOA amoA genes outnumbering AOB amoA genes in all of the samples. Following urea addition, nitrate levels rose and bacterial amoA copy numbers increased dramatically, suggesting that urea hydrolysis stimulated nitrification. Bacterial amoA diversity was limited to two Nitrosomonas phylotypes, whereas archaeal amoA analyses revealed 20 distinct operational taxonomic units, including several that were markedly different from all previously reported sequences. Results from this study demonstrate the likelihood of stimulating ammonia-oxidizing communities during field scale manipulation of groundwater conditions to promote urea hydrolysis. PMID:20190081

  13. Defining the Estimated Core Genome of Bacterial Populations Using a Bayesian Decision Model

    PubMed Central

    van Tonder, Andries J.; Mistry, Shilan; Bray, James E.; Hill, Dorothea M. C.; Cody, Alison J.; Farmer, Chris L.; Klugman, Keith P.; von Gottberg, Anne; Bentley, Stephen D.; Parkhill, Julian; Jolley, Keith A.; Maiden, Martin C. J.; Brueggemann, Angela B.

    2014-01-01

    The bacterial core genome is of intense interest and the volume of whole genome sequence data in the public domain available to investigate it has increased dramatically. The aim of our study was to develop a model to estimate the bacterial core genome from next-generation whole genome sequencing data and use this model to identify novel genes associated with important biological functions. Five bacterial datasets were analysed, comprising 2096 genomes in total. We developed a Bayesian decision model to estimate the number of core genes, calculated pairwise evolutionary distances (p-distances) based on nucleotide sequence diversity, and plotted the median p-distance for each core gene relative to its genome location. We designed visually-informative genome diagrams to depict areas of interest in genomes. Case studies demonstrated how the model could identify areas for further study, e.g. 25% of the core genes with higher sequence diversity in the Campylobacter jejuni and Neisseria meningitidis genomes encoded hypothetical proteins. The core gene with the highest p-distance value in C. jejuni was annotated in the reference genome as a putative hydrolase, but further work revealed that it shared sequence homology with beta-lactamase/metallo-beta-lactamases (enzymes that provide resistance to a range of broad-spectrum antibiotics) and thioredoxin reductase genes (which reduce oxidative stress and are essential for DNA replication) in other C. jejuni genomes. Our Bayesian model of estimating the core genome is principled, easy to use and can be applied to large genome datasets. This study also highlighted the lack of knowledge currently available for many core genes in bacterial genomes of significant global public health importance. PMID:25144616

  14. [The range of antagonistic effects of Lactobacillus bacterial strains on etiologic agents of bacterial vaginosis].

    PubMed

    Strus, M; Malinowska, M

    1999-01-01

    Bacterial vaginosis is caused by uncontrolled sequential overgrowth of some anaerobic bacteria: Gardnerella vaginalis, Prevotella bivia, Bacteroides spp., Peptostreptococcus spp., Mobiluncus sp. usually occurring in stable numbers in the bacterial flora of healthy women. On the other hand, different species of bacteria belonging to the genus Lactobacillus, most frequently L. plantarum, L. rhamnosus and L. acidophilus, form a group of aerobic bacteria dominating in the same environment. The diversity and density of their populations depend on the age and health conditions. Thanks to their antagonistic and adherence properties bacteria of the genus Lactobacillus can maintain a positive balance role in this ecosystem. The aim of this study was to assess the antagonistic properties of Lactobacillus strains isolated from the vagina of healthy women against most common agents of bacterial vaginosis. It was found that nearly all of the tested Lactobacillus strains exerted distinct antagonistic activity against anaerobic bacteria: Gardnerella vaginalis, Prevotella bivia and Peptostreptococcus anaerobius and quite a number also against Gram-negative rods, while only some of them were able to inhibit Gram-positive aerobic cocci as Enterococcus faecalis or Staphylococcus aureus.

  15. Neutral theory, microbial practice: challenges in bacterial population genetics.

    PubMed

    Rocha, Eduardo P C

    2018-04-19

    Kimura's outstanding contributions to population genetics included many elegant theoretical results on the vagaries of alleles in populations. Once polymorphism data showed extensive variation in natural populations, these results led naturally to the Neutral Theory. In this article, I'll depart from some of these results to focus on four major open problems in microbial population genetics with direct implications to the study of molecular evolution: the lack of neutral polymorphism, the modeling of genetic exchanges, the population genetics of ill-defined populations, and the difficulty of untangling selection and demography in the light of the previous issues. Whilst studies in population genetics usually focus on single nucleotide polymorphism and allelic recombination, ignoring even small indels, a large fraction of genetic diversification in Bacteria results from horizontal gene transfer. Ignoring this fact defeats the purpose of population genetics: to characterize the genetic variation in populations and their adaptive effects. I'll argue that, following on Kimura's life work, one may need to develop new approaches to study microbes that reproduce asexually but are able to engage in gene exchanges with very distantly related organisms in a context where random sampling is often unachievable, populations are ill-defined, genetic linkage is strong, and random drift is rare.

  16. Comparison of Bacterial Community Composition of Primary and Persistent Endodontic Infections Using Pyrosequencing.

    PubMed

    Tzanetakis, Giorgos N; Azcarate-Peril, M Andrea; Zachaki, Sophia; Panopoulos, Panos; Kontakiotis, Evangelos G; Madianos, Phoebus N; Divaris, Kimon

    2015-08-01

    Elucidating the microbial ecology of endodontic infections (EIs) is a necessary step in developing effective intracanal antimicrobials. The aim of the present study was to investigate the bacterial composition of symptomatic and asymptomatic primary and persistent infections in a Greek population using high-throughput sequencing methods. 16S amplicon pyrosequencing of 48 root canal bacterial samples was conducted, and sequencing data were analyzed using an oral microbiome-specific and a generic (Greengenes) database. Bacterial abundance and diversity were examined by EI type (primary or persistent), and statistical analysis was performed by using non-parametric and parametric tests accounting for clustered data. Bacteroidetes was the most abundant phylum in both infection groups. Significant, albeit weak associations of bacterial diversity were found, as measured by UniFrac distances with infection type (analyses of similarity, R = 0.087, P = .005) and symptoms (analyses of similarity, R = 0.055, P = .047). Persistent infections were significantly enriched for Proteobacteria and Tenericutes compared with primary ones; at the genus level, significant differences were noted for 14 taxa, including increased enrichment of persistent infections for Lactobacillus, Streptococcus, and Sphingomonas. More but less abundant phyla were identified using the Greengenes database; among those, Cyanobacteria (0.018%) and Acidobacteria (0.007%) were significantly enriched among persistent infections. Persistent infections showed higher phylogenetic diversity (PD) (asymptomatic: PD = 9.2, standard error [SE] = 1.3; symptomatic: PD = 8.2, SE = 0.7) compared with primary infections (asymptomatic: PD = 5.9, SE = 0.8; symptomatic: PD = 7.4, SE = 1.0). The present study revealed a high bacterial diversity of EI and suggests that persistent infections may have more diverse bacterial communities than primary infections. Copyright © 2015 American Association of Endodontists. Published by

  17. Comparison of the Rhizosphere Bacterial Communities of Zigongdongdou Soybean and a High-Methionine Transgenic Line of This Cultivar

    PubMed Central

    Ji, Jun; Wu, Haiying; Meng, Fang; Zhang, Mingrong; Zheng, Xiaobo; Wu, Cunxiang; Zhang, Zhengguang

    2014-01-01

    Previous studies have shown that methionine from root exudates affects the rhizosphere bacterial population involved in soil nitrogen fixation. A transgenic line of Zigongdongdou soybean cultivar (ZD91) that expresses Arabidopsis cystathionine γ-synthase resulting in an increased methionine production was examined for its influence to the rhizosphere bacterial population. Using 16S rRNA gene-based pyrosequencing analysis of the V4 region and DNA extracted from bacterial consortia collected from the rhizosphere of soybean plants grown in an agricultural field at the pod-setting stage, we characterized the populational structure of the bacterial community involved. In total, 87,267 sequences (approximately 10,908 per sample) were analyzed. We found that Acidobacteria, Proteobacteria, Bacteroidetes, Actinobacteria, Chloroflexi, Planctomycetes, Gemmatimonadetes, Firmicutes, and Verrucomicrobia constitute the dominant taxonomic groups in either the ZD91 transgenic line or parental cultivar ZD, and that there was no statistically significant difference in the rhizosphere bacterial community structure between the two cultivars. PMID:25079947

  18. Characterisation of the gill mucosal bacterial communities of four butterflyfish species: a reservoir of bacterial diversity in coral reef ecosystems.

    PubMed

    Reverter, Miriam; Sasal, Pierre; Tapissier-Bontemps, N; Lecchini, D; Suzuki, M

    2017-06-01

    While recent studies have suggested that fish mucus microbiota play an important role in homeostasis and prevention of infections, very few studies have investigated the bacterial communities of gill mucus. We characterised the gill mucus bacterial communities of four butterflyfish species and although the bacterial diversity of gill mucus varied significantly between species, Shannon diversities were high (H = 3.7-5.7) in all species. Microbiota composition differed between butterflyfishes, with Chaetodon lunulatus and C. ornatissimus having the most similar bacterial communities, which differed significantly from C. vagabundus and C. reticulatus. The core bacterial community of all species consisted of mainly Proteobacteria followed by Actinobacteria and Firmicutes. Chaetodonlunulatus and C. ornatissimus bacterial communities were mostly dominated by Gammaproteobacteria with Vibrio as the most abundant genus. Chaetodonvagabundus and C. reticulatus presented similar abundances of Gammaproteobacteria and Alphaproteobacteria, which were well represented by Acinetobacter and Paracoccus, respectively. In conclusion, our results indicate that different fish species present specific bacterial assemblages. Finally, as mucus layers are nutrient hotspots for heterotrophic bacteria living in oligotrophic environments, such as coral reef waters, the high bacterial diversity found in butterflyfish gill mucus might indicate external fish mucus surfaces act as a reservoir of coral reef bacterial diversity. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Taxonomic structure and stability of the bacterial community in belgian sourdough ecosystems as assessed by culture and population fingerprinting.

    PubMed

    Scheirlinck, Ilse; Van der Meulen, Roel; Van Schoor, Ann; Vancanneyt, Marc; De Vuyst, Luc; Vandamme, Peter; Huys, Geert

    2008-04-01

    A total of 39 traditional sourdoughs were sampled at 11 bakeries located throughout Belgium which were visited twice with a 1-year interval. The taxonomic structure and stability of the bacterial communities occurring in these traditional sourdoughs were assessed using both culture-dependent and culture-independent methods. A total of 1,194 potential lactic acid bacterium (LAB) isolates were tentatively grouped and identified by repetitive element sequence-based PCR, followed by sequence-based identification using 16S rRNA and pheS genes from a selection of genotypically unique LAB isolates. In parallel, all samples were analyzed by denaturing gradient gel electrophoresis (DGGE) of V3-16S rRNA gene amplicons. In addition, extensive metabolite target analysis of more than 100 different compounds was performed. Both culturing and DGGE analysis showed that the species Lactobacillus sanfranciscensis, Lactobacillus paralimentarius, Lactobacillus plantarum, and Lactobacillus pontis dominated the LAB population of Belgian type I sourdoughs. In addition, DGGE band sequence analysis demonstrated the presence of Acetobacter sp. and a member of the Erwinia/Enterobacter/Pantoea group in some samples. Overall, the culture-dependent and culture-independent approaches each exhibited intrinsic limitations in assessing bacterial LAB diversity in Belgian sourdoughs. Irrespective of the LAB biodiversity, a large majority of the sugar and amino acid metabolites were detected in all sourdough samples. Principal component-based analysis of biodiversity and metabolic data revealed only little variation among the two samples of the sourdoughs produced at the same bakery. The rare cases of instability observed could generally be linked with variations in technological parameters or differences in detection capacity between culture-dependent and culture-independent approaches. Within a sampling interval of 1 year, this study reinforces previous observations that the bakery environment

  20. Epidemiology, diagnosis, and antimicrobial treatment of acute bacterial meningitis.

    PubMed

    Brouwer, Matthijs C; Tunkel, Allan R; van de Beek, Diederik

    2010-07-01

    The epidemiology of bacterial meningitis has changed as a result of the widespread use of conjugate vaccines and preventive antimicrobial treatment of pregnant women. Given the significant morbidity and mortality associated with bacterial meningitis, accurate information is necessary regarding the important etiological agents and populations at risk to ascertain public health measures and ensure appropriate management. In this review, we describe the changing epidemiology of bacterial meningitis in the United States and throughout the world by reviewing the global changes in etiological agents followed by specific microorganism data on the impact of the development and widespread use of conjugate vaccines. We provide recommendations for empirical antimicrobial and adjunctive treatments for clinical subgroups and review available laboratory methods in making the etiological diagnosis of bacterial meningitis. Finally, we summarize risk factors, clinical features, and microbiological diagnostics for the specific bacteria causing this disease.

  1. [Bacterial vaginosis and spontaneous preterm birth].

    PubMed

    Brabant, G

    2016-12-01

    To determine if bacterial vaginosis is a marker for risk of spontaneous preterm delivery and if its detection and treatment can reduce this risk. Consultation of the database Pubmed/Medline, Science Direct, and international guidelines of medical societies. Bacterial vaginosis (BV) is a dysbiosis resulting in an imbalance in the vaginal flora through the multiplication of anaerobic bacteria and jointly of a disappearance of well-known protective Lactobacilli. His diagnosis is based on clinical Amsel criteria and/or a Gram stain with establishment of the Nugent score. The prevalence of the BV extraordinarily varies according to ethnic and/or geographical origin (4-58 %), in France, it is close to 7 % in the first trimester of pregnancy (EL2). The link between BV and spontaneous premature delivery is low with an odds ratio between 1.5 and 2 in the most recent studies (EL3). Metronidazole or clindamycin is effective to treat BV (EL3). It is recommended to prescribe one of these antibiotics in the case of symptomatic BV (Professional Consensus). The testing associated with the treatment of BV in the global population showed no benefit in the prevention of the risk of spontaneous preterm delivery (EL2). Concerning low-risk asymptomatic population (defined by the absence of antecedent of premature delivery), it has been failed profit to track and treat the BV in the prevention of the risk of spontaneous preterm delivery (EL1). Concerning the high-risk population (defined by a history of preterm delivery), it has been failed profit to track and treat the VB in the prevention of the risk of spontaneous preterm delivery (EL3). However, in the sub population of patients with a history of preterm delivery occurred in a context of materno-fetal bacterial infection, there may be a benefit to detect and treat early and systematically genital infection, and in particular the BV (Professional Consensus). The screening and treatment of BV during pregnancy in asymptomatic low

  2. Metagenomic analysis of the bacterial communities and their functional profiles in water and sediments of the Apies River, South Africa, as a function of land use.

    PubMed

    Abia, Akebe Luther King; Alisoltani, Arghavan; Keshri, Jitendra; Ubomba-Jaswa, Eunice

    2018-03-01

    Water quality is an important public health issue given that the presence of pathogenic organisms in such waters can adversely affect human and animal health. Despite the numerous studies conducted to assess the quality of environmental waters in many countries, limited efforts have been put on investigating the microbial quality of the sediments in developing countries and how this relates to different land uses. The present study evaluated the bacterial diversity in water and sediments in a highly used South African river to find out how the different land uses influenced the bacterial diversity, and to verify the human diseases functional classes of the bacterial populations. Samples were collected on river stretches influenced by an informal, a peri-urban and a rural settlement. Genomic DNA was extracted from water and sediment samples and sequenced on an Illumina® MiSeq platform targeting the 16S rRNA gene variable region V3-V4 from the genomic DNA. Metagenomic data analysis revealed that there was a great diversity in the microbial populations associated with the different land uses, with the informal settlement having the most considerable influence on the bacterial diversity in the water and sediments of the Apies River. The Proteobacteria (69.8%), Cyanobacteria (4.3%), Bacteroidetes (2.7%), and Actinobacteria (2.7%) were the most abundant phyla; the Alphaproteobacteria, Betaproteobacteria and Anaerolineae were the most recorded classes. Also, the sediments had a greater diversity and abundance in bacterial population than the water column. The functional profiles of the bacterial populations revealed an association with many human diseases including cancer pathways. Further studies that would isolate these potentially pathogenic organisms in the aquatic environment are therefore needed as this would help in protecting the lives of communities using such rivers, especially against emerging bacterial pathogens. Copyright © 2017 Elsevier B.V. All rights

  3. Modeling the Population Dynamics of Antibiotic-Resistant Bacteria:. AN Agent-Based Approach

    NASA Astrophysics Data System (ADS)

    Murphy, James T.; Walshe, Ray; Devocelle, Marc

    The response of bacterial populations to antibiotic treatment is often a function of a diverse range of interacting factors. In order to develop strategies to minimize the spread of antibiotic resistance in pathogenic bacteria, a sound theoretical understanding of the systems of interactions taking place within a colony must be developed. The agent-based approach to modeling bacterial populations is a useful tool for relating data obtained at the molecular and cellular level with the overall population dynamics. Here we demonstrate an agent-based model, called Micro-Gen, which has been developed to simulate the growth and development of bacterial colonies in culture. The model also incorporates biochemical rules and parameters describing the kinetic interactions of bacterial cells with antibiotic molecules. Simulations were carried out to replicate the development of methicillin-resistant S. aureus (MRSA) colonies growing in the presence of antibiotics. The model was explored to see how the properties of the system emerge from the interactions of the individual bacterial agents in order to achieve a better mechanistic understanding of the population dynamics taking place. Micro-Gen provides a good theoretical framework for investigating the effects of local environmental conditions and cellular properties on the response of bacterial populations to antibiotic exposure in the context of a simulated environment.

  4. Emerging bacterial pathogens: the past and beyond.

    PubMed

    Vouga, M; Greub, G

    2016-01-01

    Since the 1950s, medical communities have been facing with emerging and reemerging infectious diseases, and emerging pathogens are now considered to be a major microbiologic public health threat. In this review, we focus on bacterial emerging diseases and explore factors involved in their emergence as well as future challenges. We identified 26 major emerging and reemerging infectious diseases of bacterial origin; most of them originated either from an animal and are considered to be zoonoses or from water sources. Major contributing factors in the emergence of these bacterial infections are: (1) development of new diagnostic tools, such as improvements in culture methods, development of molecular techniques and implementation of mass spectrometry in microbiology; (2) increase in human exposure to bacterial pathogens as a result of sociodemographic and environmental changes; and (3) emergence of more virulent bacterial strains and opportunistic infections, especially affecting immunocompromised populations. A precise definition of their implications in human disease is challenging and requires the comprehensive integration of microbiological, clinical and epidemiologic aspects as well as the use of experimental models. It is now urgent to allocate financial resources to gather international data to provide a better understanding of the clinical relevance of these waterborne and zoonotic emerging diseases. Copyright © 2015. Published by Elsevier Ltd.

  5. Evolvable social agents for bacterial systems modeling.

    PubMed

    Paton, Ray; Gregory, Richard; Vlachos, Costas; Saunders, Jon; Wu, Henry

    2004-09-01

    We present two approaches to the individual-based modeling (IbM) of bacterial ecologies and evolution using computational tools. The IbM approach is introduced, and its important complementary role to biosystems modeling is discussed. A fine-grained model of bacterial evolution is then presented that is based on networks of interactivity between computational objects representing genes and proteins. This is followed by a coarser grained agent-based model, which is designed to explore the evolvability of adaptive behavioral strategies in artificial bacteria represented by learning classifier systems. The structure and implementation of the two proposed individual-based bacterial models are discussed, and some results from simulation experiments are presented, illustrating their adaptive properties.

  6. Characterisation of Arctic Bacterial Communities in the Air above Svalbard

    PubMed Central

    Cuthbertson, Lewis; Amores-Arrocha, Herminia; Malard, Lucie A.; Els, Nora; Sattler, Birgit; Pearce, David A.

    2017-01-01

    Atmospheric dispersal of bacteria is increasingly acknowledged as an important factor influencing bacterial community biodiversity, biogeography and bacteria–human interactions, including those linked to human health. However, knowledge about patterns in microbial aerobiology is still relatively scarce, and this can be attributed, in part, to a lack of consensus on appropriate sampling and analytical methodology. In this study, three different methods were used to investigate aerial biodiversity over Svalbard: impaction, membrane filtration and drop plates. Sites around Svalbard were selected due to their relatively remote location, low human population, geographical location with respect to air movement and the tradition and history of scientific investigation on the archipelago, ensuring the presence of existing research infrastructure. The aerial bacterial biodiversity found was similar to that described in other aerobiological studies from both polar and non-polar environments, with Proteobacteria, Actinobacteria, and Firmicutes being the predominant groups. Twelve different phyla were detected in the air collected above Svalbard, although the diversity was considerably lower than in urban environments elsewhere. However, only 58 of 196 bacterial genera detected were consistently present, suggesting potentially higher levels of heterogeneity. Viable bacteria were present at all sampling locations, showing that living bacteria are ubiquitous in the air around Svalbard. Sampling location influenced the results obtained, as did sampling method. Specifically, impaction with a Sartorius MD8 produced a significantly higher number of viable colony forming units (CFUs) than drop plates alone. PMID:28481257

  7. Cultivation of a bacterial consortium with the potential to degrade total petroleum hydrocarbon using waste activated sludge.

    PubMed

    Sivakumar, S; Song, Y C; Kim, S H; Jang, S H

    2015-11-01

    Waste activated sludge was aerobically treated to demonstrate multiple uses such as cultivating an oil degrading bacterial consortium; studying the influence of a bulking agent (peat moss) and total petroleum hydrocarbon concentration on bacterial growth and producing a soil conditioner using waste activated sludge. After 30 days of incubation, the concentration of oil-degrading bacteria was 4.3 x 10(8) CFU g(-1) and 4.5 x 10(8) CFU g(-1) for 5 and 10 g of total petroleum hydrocarbon, respectively, in a mixture of waste activated sludge (1 kg) and peat moss (0.1 kg). This accounts for approximately 88.4 and 91.1%, respectively, of the total heterotrophic bacteria (total-HB). The addition of bulking agent enhanced total-HB population and total petroleum hydrocarbon-degrading bacterial population. Over 90% of total petroleum hydrocarbon degradation was achieved by the mixture of waste activated sludge, bulking agent and total petroleum hydrocarbon. The results of physico-chemical parameters of the compost (waste activated sludge with and without added peat moss compost) and a substantial reduction in E. coli showed that the use of this final product did not exhibit risk when used as soil conditioner. Finally, the present study demonstrated that cultivation of total petroleum hydrocarbon-degrading bacterial consortium and production of compost from waste activated sludge by aerobic treatment was feasible.

  8. Dynamic Succession of Soil Bacterial Community during Continuous Cropping of Peanut (Arachis hypogaea L.)

    PubMed Central

    Chen, Mingna; Li, Xiao; Yang, Qingli; Chi, Xiaoyuan; Pan, Lijuan; Chen, Na; Yang, Zhen; Wang, Tong; Wang, Mian; Yu, Shanlin

    2014-01-01

    Plant health and soil fertility are affected by plant–microbial interactions in soils. Peanut is an important oil crop worldwide and shows considerable adaptability, but growth and yield are negatively affected by continuous cropping. In this study, 16S rRNA gene clone library analyses were used to study the succession of soil bacterial communities under continuous peanut cultivation. Six libraries were constructed for peanut over three continuous cropping cycles and during its seedling and pod-maturing growth stages. Cluster analyses indicated that soil bacterial assemblages obtained from the same peanut cropping cycle were similar, regardless of growth period. The diversity of bacterial sequences identified in each growth stage library of the three peanut cropping cycles was high and these sequences were affiliated with 21 bacterial groups. Eight phyla: Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Gemmatimonadetes, Planctomycetes, Proteobacteria and Verrucomicrobia were dominant. The related bacterial phylotypes dynamic changed during continuous cropping progress of peanut. This study demonstrated that the bacterial populations especially the beneficial populations were positively selected. The simplification of the beneficial microbial communities such as the phylotypes of Alteromonadales, Burkholderiales, Flavobacteriales, Pseudomonadales, Rhizobiales and Rhodospirillales could be important factors contributing to the decline in peanut yield under continuous cropping. The microbial phylotypes that did not successively changed with continuous cropping, such as populations related to Rhizobiales and Rhodospirillales, could potentially resist stress due to continuous cropping and deserve attention. In addition, some phylotypes, such as Acidobacteriales, Chromatiales and Gemmatimonadales, showed a contrary tendency, their abundance or diversity increased with continuous peanut cropping progress. Some bacterial phylotypes including Acidobacteriales

  9. Bacterial genomics reveal the complex epidemiology of an emerging pathogen in arctic and boreal ungulates

    USGS Publications Warehouse

    Forde, Taya L.; Orsel, Karin; Zadoks, Ruth N.; Biek, Roman; Adams, Layne G.; Checkley, Sylvia L.; Davison, Tracy; De Buck, Jeroen; Dumond, Mathieu; Elkin, Brett T.; Finnegan, Laura; Macbeth, Bryan J.; Nelson, Cait; Niptanatiak, Amanda; Sather, Shane; Schwantje, Helen M.; van der Meer, Frank; Kutz, Susan J.

    2016-01-01

    Northern ecosystems are currently experiencing unprecedented ecological change, largely driven by a rapidly changing climate. Pathogen range expansion, and emergence and altered patterns of infectious disease, are increasingly reported in wildlife at high latitudes. Understanding the causes and consequences of shifting pathogen diversity and host-pathogen interactions in these ecosystems is important for wildlife conservation, and for indigenous populations that depend on wildlife. Among the key questions are whether disease events are associated with endemic or recently introduced pathogens, and whether emerging strains are spreading throughout the region. In this study, we used a phylogenomic approach to address these questions of pathogen endemicity and spread for Erysipelothrix rhusiopathiae, an opportunistic multi-host bacterial pathogen associated with recent mortalities in arctic and boreal ungulate populations in North America. We isolated E. rhusiopathiae from carcasses associated with large-scale die-offs of muskoxen in the Canadian Arctic Archipelago, and from contemporaneous mortality events and/or population declines among muskoxen in northwestern Alaska and caribou and moose in western Canada. Bacterial genomic diversity differed markedly among these locations; minimal divergence was present among isolates from muskoxen in the Canadian Arctic, while in caribou and moose populations, strains from highly divergent clades were isolated from the same location, or even from within a single carcass. These results indicate that mortalities among northern ungulates are not associated with a single emerging strain of E. rhusiopathiae, and that alternate hypotheses need to be explored. Our study illustrates the value and limitations of bacterial genomic data for discriminating between ecological hypotheses of disease emergence, and highlights the importance of studying emerging pathogens within the broader context of environmental and host factors.

  10. Namib Desert edaphic bacterial, fungal and archaeal communities assemble through deterministic processes but are influenced by different abiotic parameters.

    PubMed

    Johnson, Riegardt M; Ramond, Jean-Baptiste; Gunnigle, Eoin; Seely, Mary; Cowan, Don A

    2017-03-01

    The central Namib Desert is hyperarid, where limited plant growth ensures that biogeochemical processes are largely driven by microbial populations. Recent research has shown that niche partitioning is critically involved in the assembly of Namib Desert edaphic communities. However, these studies have mainly focussed on the Domain Bacteria. Using microbial community fingerprinting, we compared the assembly of the bacterial, fungal and archaeal populations of microbial communities across nine soil niches from four Namib Desert soil habitats (riverbed, dune, gravel plain and salt pan). Permutational multivariate analysis of variance indicated that the nine soil niches presented significantly different physicochemistries (R 2  = 0.8306, P ≤ 0.0001) and that bacterial, fungal and archaeal populations were soil niche specific (R 2  ≥ 0.64, P ≤ 0.001). However, the abiotic drivers of community structure were Domain-specific (P < 0.05), with P, clay and sand fraction, and NH 4 influencing bacterial, fungal and archaeal communities, respectively. Soil physicochemistry and soil niche explained over 50% of the variation in community structure, and communities displayed strong non-random patterns of co-occurrence. Taken together, these results demonstrate that in central Namib Desert soil microbial communities, assembly is principally driven by deterministic processes.

  11. Bacterial diversity in a nonsaline alkaline environment: heterotrophic aerobic populations.

    PubMed

    Tiago, Igor; Chung, Ana Paula; Veríssimo, António

    2004-12-01

    Heterotrophic populations were isolated and characterized from an alkaline groundwater environment generated by active serpentinization, which results in a Ca(OH)2-enriched, extremely diluted groundwater with pH 11.4. One hundred eighty-five strains were isolated in different media at different pH values during two sampling periods. To assess the degree of diversity present in the environment and to select representative strains for further characterization of the populations, we screened the isolates by using random amplified polymorphic DNA-PCR profiles and grouped them based on similarities determined by fatty acid methyl ester analysis. Phenotypic characterization, determinations of G+C content, phylogenetic analyses by direct sequencing of 16S rRNA genes, and determinations of pH tolerance were performed with the selected isolates. Although 38 different populations were identified and characterized, the vast majority of the isolates were gram positive with high G+C contents and were affiliated with three distinct groups, namely, strains closely related to the species Dietzia natrolimnae (32% of the isolates), to Frigoribacterium/Clavibacter lineages (29% of the isolates), and to the type strain of Microbacterium kitamiense (20% of the isolates). Other isolates were phylogenetically related to strains of the genera Agrococcus, Leifsonia, Kytococcus, Janibacter, Kocuria, Rothia, Nesterenkonia, Citrococcus, Micrococcus, Actinomyces, Rhodococcus, Bacillus, and Staphylococcus. Only five isolates were gram negative: one was related to the Sphingobacteria lineage and the other four were related to the alpha-Proteobacteria lineage. Despite the pH of the environment, the vast majority of the populations were alkali tolerant, and only two strains were able to grow at pH 11.

  12. Bacterial biota in reflux esophagitis and Barrett’s esophagus

    PubMed Central

    Pei, Zhiheng; Yang, Liying; Peek, Richard M; Levine, Jr Steven M; Pride, David T; Blaser, Martin J

    2005-01-01

    AIM: To identify the bacterial flora in conditions such as Barrett’s esophagus and reflux esophagitis to determine if they are similar to normal esophageal flora. METHODS: Using broad-range 16S rDNA PCR, esophageal biopsies were examined from 24 patients [9 with normal esophageal mucosa, 12 with gastroesophageal reflux disease (GERD), and 3 with Barrett’s esophagus]. Two separate broad-range PCR reactions were performed for each patient, and the resulting products were cloned. In one patient with Barrett’s esophagus, 99 PCR clones were analyzed. RESULTS: Two separate clones were recovered from each patient (total = 48), representing 24 different species, with 14 species homologous to known bacteria, 5 homologous to unidentified bacteria, and 5 were not homologous (<97% identity) to any known bacterial 16S rDNA sequences. Seventeen species were found in the reflux esophagitis patients, 5 in the Barrett’s esophagus patients, and 10 in normal esophagus patients. Further analysis concentrating on a single biopsy from an individual with Barrett’s esophagus revealed the presence of 21 distinct bacterial species. Members of four phyla were represented, including Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria. Microscopic examination of each biopsy demonstrated bacteria in intimate association with the distal esophageal epithelium, suggesting that the presence of these bacteria is not transitory. CONCLUSION: These findings provide evidence for a complex, residential bacterial population in esophageal reflux-related disorders. While much of this biota is present in the normal esophagus, more detailed comparisons may help identify potential disease associations. PMID:16437628

  13. Evaluation of bacterial meningitis surveillance data of the northern region, Ghana, 2010-2015.

    PubMed

    Kaburi, Basil Benduri; Kubio, Chrysantus; Kenu, Ernest; Ameme, Donne Kofi; Mahama, Jacob Yakubu; Sackey, Samuel Oko; Afari, Edwin Andrew

    2017-01-01

    Bacterial meningitis is a disease of major public health importance especially for countries such as Ghana; whose northern part lies within the meningitis belt. The Northern region of Ghana has been recording cases with outbreaks over the years. In order to generate evidence to improve surveillance, we described the epidemiology of bacterial meningitis using surveillance data of the northern region. Bacterial meningitis datasets from January 2010 to December 2015 for all the 26 districts of the Northern region were retrieved from line lists. Data were analyzed in terms of person, place, time, and identity of causative organisms using descriptive statistics. The results were presented as proportions, rates, tables and graphs. A total of 1,176 cases were reported. Of these, 53.5% (629/1,176) were males. The proportion of cases aged 0 to 29 years was 77.4%. The Overall Case Fatality Rate (CFR) was 9.7% (114/1,176). About 65% of all cases were recorded from January to April. Only 23.7% (279/1,176) of cases were laboratory-confirmed. Neisseria meningitides and Streptococcus pneumonia accounted for 91.4% of confirmed cases. Over the period, the incidence reduced from 9.0/100,000 population to 3.8/100,000 population and CFR reduced from 16.6% to 5.7%. Most cases of bacterial meningitis were recorded in the dry season and in persons younger than 30 years. Less than a quarter of cases were laboratory confirmed, and no new bacteria species were identified. Both morbidity and mortality rates were on the decline. There is the need to consolidate these gains by intensifying meningitis surveillance and improving on the rate of laboratory case confirmation.

  14. Disturbance opens recruitment sites for bacterial colonization in activated sludge.

    PubMed

    Vuono, David C; Munakata-Marr, Junko; Spear, John R; Drewes, Jörg E

    2016-01-01

    Little is known about the role of immigration in shaping bacterial communities or the factors that may dictate success or failure of colonization by bacteria from regional species pools. To address these knowledge gaps, the influence of bacterial colonization into an ecosystem (activated sludge bioreactor) was measured through a disturbance gradient (successive decreases in the parameter solids retention time) relative to stable operational conditions. Through a DNA sequencing approach, we show that the most abundant bacteria within the immigrant community have a greater probability of colonizing the receiving ecosystem, but mostly as low abundance community members. Only during the disturbance do some of these bacterial populations significantly increase in abundance beyond background levels and in few cases become dominant community members post-disturbance. Two mechanisms facilitate the enhanced enrichment of immigrant populations during disturbance: (i) the availability of resources left unconsumed by established species and (ii) the increased availability of niche space for colonizers to establish and displace resident populations. Thus, as a disturbance decreases local diversity, recruitment sites become available to promote colonization. This work advances our understanding of microbial resource management and diversity maintenance in complex ecosystems. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Topical Corticosteroids in the Management of Bacterial Keratitis.

    PubMed

    Tuli, Sonal S

    2013-12-01

    Bacterial keratitis can cause significant morbidity from ulceration of the cornea and the resultant scarring. The use of steroids to decrease these complications is controversial with arguments for and against their use. The SCUT (Steroids for Corneal Ulcers Trial) was initiated in 2006 to definitively determine whether steroids in bacterial keratitis were beneficial or harmful. While the SCUT showed no benefit or harm overall, subgroup analyses showed that larger, more central ulcers with very poor initial visual acuity may benefit. On the other hand, Nocardia ulcers that were treated with steroids had worse outcomes. The study did have some limitations as the patient population was not typical for bacterial keratitis in the United States, and there were some criticisms of the therapeutic approach so the question is still not definitively answered.

  16. Bacterial Sepsis in Patients with Visceral Leishmaniasis in Northwest Ethiopia

    PubMed Central

    Takele, Yegnasew; Woldeyohannes, Desalegn; Tiruneh, Moges; Mohammed, Rezika; Lynen, Lutgarde; van Griensven, Johan

    2014-01-01

    Background and Objectives. Visceral leishmaniasis (VL) is one of the neglected diseases affecting the poorest segment of world populations. Sepsis is one of the predictors for death of patients with VL. This study aimed to assess the prevalence and factors associated with bacterial sepsis, causative agents, and their antimicrobial susceptibility patterns among patients with VL. Methods. A cross-sectional study was conducted among parasitologically confirmed VL patients suspected of sepsis admitted to the University of Gondar Hospital, Northwest Ethiopia, from February 2012 to May 2012. Blood cultures and other clinical samples were collected and cultured following the standard procedures. Results. Among 83 sepsis suspected VL patients 16 (19.3%) had culture confirmed bacterial sepsis. The most frequently isolated organism was Staphylococcus aureus (68.8%; 11/16), including two methicillin-resistant isolates (MRSA). Patients with focal bacterial infection were more likely to have bacterial sepsis (P < 0.001). Conclusions. The prevalence of culture confirmed bacterial sepsis was high, predominantly due to S. aureus. Concurrent focal bacterial infection was associated with bacterial sepsis, suggesting that focal infections could serve as sources for bacterial sepsis among VL patients. Careful clinical evaluation for focal infections and prompt initiation of empiric antibiotic treatment appears warranted in VL patients. PMID:24895569

  17. Influence of plant species and environmental conditions on epiphytic and endophytic pink-pigmented facultative methylotrophic bacterial populations associated with field-grown rice cultivars.

    PubMed

    Madhaiyan, Munusamy; Poonguzhali, Selvaraj; Sa, Tongmin

    2007-10-01

    The total methylotrophic population associated with rice plants from different cultivars was enumerated at three different stages: vegetative, flowering, and harvesting. The bacterial population in the leaf, rhizosphere soil, endophytic in the stem and roots, and epiphytic in the florets and grains were determined from four rice cultivars, Il-mi, Nam-pyeoung, O-dae, and Dong-jin, sampled from three different field sites. The methylotrophic bacteria isolated on AMS media containing 0.5% methanol as the sole carbon source uniformly showed three distinct morphologies, which were recorded as separate groups and their distribution among the various samples was determined using the ecophysiological index. The growth stage at the time of sampling had a more significant effect on the methylotrophic population and their distribution than the field site or cultivar. A similar effect was also observed for the PPFMs, where their population in different plant parts increased from V10 to R4 and then decreased towards stage R9. A canonical discriminant analysis of the PPFM population from different parts of rice showed clear variations among the cultivars, sampled sites, and growth stages, although the variations were more prominent among the growth stages.

  18. Release of bacterial alkaline phosphatase in the rumen of cattle fed a feedlot bloat-provoking diet or a hay diet.

    PubMed

    Cheng, K J; Hironaka, R; Costerton, J W

    1976-05-01

    Alkaline phosphatase (APase) was present in the bovine rumen in both cell-free and cell-associated states and levels of the enzyme varied with dietary regime. Reaction product deposition showed that the enzyme was associated with the mixed bacterial population. No enzyme was observed to be associated with protozoa. Trace activity of APase was also detected in the saliva. The presence of large amounts of APase in cell-free rumen fluid of cattle fed fine concentrate feed is believed to be due, in part, to the breakage of bacterial cells that occurs in the rumen.

  19. Epidemiology, Diagnosis, and Antimicrobial Treatment of Acute Bacterial Meningitis

    PubMed Central

    Brouwer, Matthijs C.; Tunkel, Allan R.; van de Beek, Diederik

    2010-01-01

    Summary: The epidemiology of bacterial meningitis has changed as a result of the widespread use of conjugate vaccines and preventive antimicrobial treatment of pregnant women. Given the significant morbidity and mortality associated with bacterial meningitis, accurate information is necessary regarding the important etiological agents and populations at risk to ascertain public health measures and ensure appropriate management. In this review, we describe the changing epidemiology of bacterial meningitis in the United States and throughout the world by reviewing the global changes in etiological agents followed by specific microorganism data on the impact of the development and widespread use of conjugate vaccines. We provide recommendations for empirical antimicrobial and adjunctive treatments for clinical subgroups and review available laboratory methods in making the etiological diagnosis of bacterial meningitis. Finally, we summarize risk factors, clinical features, and microbiological diagnostics for the specific bacteria causing this disease. PMID:20610819

  20. Characterization of Halophilic Bacterial Communities in Turda Salt Mine (Romania)

    NASA Astrophysics Data System (ADS)

    Carpa, Rahela; Keul, Anca; Muntean, Vasile; Dobrotă, Cristina

    2014-09-01

    Halophilic organisms are having adaptations to extreme salinity, the majority of them being Archaean, which have the ability to grow at extremely high salt concentrations, (from 3 % to 35 %). Level of salinity causes natural fluctuations in the halophilic populations that inhabit this particular habitat, raising problems in maintaining homeostasis of the osmotic pressure. Samples such as salt and water taken from Turda Salt Mine were analyzed in order to identify the eco-physiological bacterial groups. Considering the number of bacteria of each eco-physiological group, the bacterial indicators of salt quality (BISQ) were calculated and studied for each sample. The phosphatase, catalase and dehydrogenases enzymatic activities were quantitatively determined and the enzymatic indicators of salt quality (EISQ) were calculated. Bacterial isolates were analyzed using 16S rRNA gene sequence analysis. Universal bacterial primers, targeting the consensus region of the bacterial 16S rRNA gene were used. Analysis of a large fragment, of 1499 bp was performed to improve discrimination at the species level.

  1. Candida albicans and bacterial microbiota interactions in the cecum during recolonization following broad-spectrum antibiotic therapy.

    PubMed

    Mason, Katie L; Erb Downward, John R; Mason, Kelly D; Falkowski, Nicole R; Eaton, Kathryn A; Kao, John Y; Young, Vincent B; Huffnagle, Gary B

    2012-10-01

    Candida albicans is a normal member of the gastrointestinal (GI) tract microbiota of healthy humans, but during host immunosuppression or alterations in the bacterial microbiota, C. albicans can disseminate and cause life-threatening illness. The bacterial microbiome of the GI tract, including lactic acid bacteria (LAB), plays a vital role in preventing fungal invasion. However, little is known about the role of C. albicans in shaping the bacterial microbiota during antibiotic recovery. We investigated the fungal burdens in the GI tracts of germfree mice and mice with a disturbed microbiome to demonstrate the role of the microbiota in preventing C. albicans colonization. Histological analysis demonstrated that colonization with C. albicans during antibiotic treatment does not trigger overt inflammation in the murine cecum. Bacterial diversity is reduced long term following cefoperazone treatment, but the presence of C. albicans during antibiotic recovery promoted the recovery of bacterial diversity. Cefoperazone diminishes Bacteroidetes populations long term in the ceca of mice, but the presence of C. albicans during cefoperazone recovery promoted Bacteroidetes population recovery. However, the presence of C. albicans resulted in a long-term reduction in Lactobacillus spp. and promoted Enterococcus faecalis populations. Previous studies have focused on the ability of bacteria to alter C. albicans; this study addresses the ability of C. albicans to alter the bacterial microbiota during nonpathogenic colonization.

  2. Small-Scale Vertical Distribution of Bacterial Biomass and Diversity in Biological Soil Crusts from Arid Lands in the Colorado Plateau

    USGS Publications Warehouse

    Garcia-Pichel, F.; Johnson, S.L.; Youngkin, D.; Belnap, J.

    2003-01-01

    We characterized, at millimeter resolution, bacterial biomass, diversity, and vertical stratification of biological soil crusts in arid lands from the Colorado Plateau. Microscopic counts, extractable DNA, and plate counts of viable aerobic copiotrophs (VAC) revealed that the top centimeter of crusted soils contained atypically large bacterial populations, tenfold larger than those in uncrusted, deeper soils. The plate counts were not always consistent with more direct estimates of microbial biomass. Bacterial populations peaked at the immediate subsurface (1-2 mm) in light-appearing, young crusts, and at the surface (0-1 mm) in well-developed, dark crusts, which corresponds to the location of cyanobacterial populations. Bacterial abundance decreased with depth below these horizons. Spatially resolved DGGE fingerprints of Bacterial 16S rRNA genes demonstrated the presence of highly diverse natural communities, but we could detect neither trends with depth in bacterial richness or diversity, nor a difference in diversity indices between crust types. Fingerprints, however, revealed the presence of marked stratification in the structure of the microbial communities, probably a result of vertical gradients in physicochemical parameters. Sequencing and phylogenetic analyses indicated that most of the naturally occurring bacteria are novel types, with low sequence similarity (83-93%) to those available in public databases. DGGE analyses of the VAC populations indicated communities of lower diversity, with most types having sequences more than 94% similar to those in public databases. Our study indicates that soil crusts represent small-scale mantles of fertility in arid ecosystems, harboring vertically structured, little-known bacterial populations that are not well represented by standard cultivation methods.

  3. Seasonal changes in bacterial communities associated with healthy and diseased Porites coral in southern Taiwan.

    PubMed

    Lin, Chorng-Horng; Chuang, Chih-Hsiang; Twan, Wen-Hung; Chiou, Shu-Fen; Wong, Tit-Yee; Liu, Jong-Kang; Kao, Chyuan-Yao; Kuo, Jimmy

    2016-12-01

    We compared the bacterial communities associated with healthy scleractinian coral Porites sp. with those associated with coral infected with pink spot syndrome harvested during summer and winter from waters off the coast of southern Taiwan. Members of the bacterial community associated with the coral were characterized by means of denaturing gradient gel electrophoresis (DGGE) of a short region of the 16S rRNA gene and clone library analysis. Of 5 different areas of the 16S rRNA gene, we demonstrated that the V3 hypervariable region is most suited to represent the coral-associated bacterial community. The DNA sequences of 26 distinct bands extracted from DGGE gels and 269 sequences of the 16S rRNA gene from clone libraries were determined. We found that the communities present in diseased coral were more heterogeneous than the bacterial communities of uninfected coral. In addition, bacterial communities associated with coral harvested in the summer were more diverse than those associated with coral collected in winter, regardless of the health status of the coral. Our study suggested that the compositions of coral-associated bacteria communities are complex, and the population of bacteria varies greatly between seasons and in coral of differing health status.

  4. Vulvovaginitis- presentation of more common problems in pediatric and adolescent gynecology.

    PubMed

    Loveless, Meredith; Myint, Ohmar

    2018-04-01

    Vulvovaginitis is one of the most common gynecological complaints presenting in the pediatric and adolescent female. The common causes of vulvovaginitis in the pediatric patient differ than that considered in adolescent females. When a child present with vulvar itching, burning and irritation the most common etiology is non-specific and hygiene measures are recommended. However these symptoms can mimic more serious etiologies including infection, labial adhesion, lichen sclerosis, pinworms and foreign body must be considered. Yeast infection is rare in the pediatric population but common in the adolescent. In the adolescent patient infections are more common. Yeast and bacterial vaginosis are commonly seen but due to the higher rate of sexual activity in this population sexually transmitted infections must also be considered. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Exploitation of algal-bacterial associations in a two-stage biohydrogen and biogas generation process.

    PubMed

    Wirth, Roland; Lakatos, Gergely; Maróti, Gergely; Bagi, Zoltán; Minárovics, János; Nagy, Katalin; Kondorosi, Éva; Rákhely, Gábor; Kovács, Kornél L

    2015-01-01

    The growing concern regarding the use of agricultural land for the production of biomass for food/feed or energy is dictating the search for alternative biomass sources. Photosynthetic microorganisms grown on marginal or deserted land present a promising alternative to the cultivation of energy plants and thereby may dampen the 'food or fuel' dispute. Microalgae offer diverse utilization routes. A two-stage energetic utilization, using a natural mixed population of algae (Chlamydomonas sp. and Scenedesmus sp.) and mutualistic bacteria (primarily Rhizobium sp.), was tested for coupled biohydrogen and biogas production. The microalgal-bacterial biomass generated hydrogen without sulfur deprivation. Algal hydrogen production in the mixed population started earlier but lasted for a shorter period relative to the benchmark approach. The residual biomass after hydrogen production was used for biogas generation and was compared with the biogas production from maize silage. The gas evolved from the microbial biomass was enriched in methane, but the specific gas production was lower than that of maize silage. Sustainable biogas production from the microbial biomass proceeded without noticeable difficulties in continuously stirred fed-batch laboratory-size reactors for an extended period of time. Co-fermentation of the microbial biomass and maize silage improved the biogas production: The metagenomic results indicated that pronounced changes took place in the domain Bacteria, primarily due to the introduction of a considerable bacterial biomass into the system with the substrate; this effect was partially compensated in the case of co-fermentation. The bacteria living in syntrophy with the algae apparently persisted in the anaerobic reactor and predominated in the bacterial population. The Archaea community remained virtually unaffected by the changes in the substrate biomass composition. Through elimination of cost- and labor-demanding sulfur deprivation, sustainable

  6. Ancient human genomes suggest three ancestral populations for present-day Europeans.

    PubMed

    Lazaridis, Iosif; Patterson, Nick; Mittnik, Alissa; Renaud, Gabriel; Mallick, Swapan; Kirsanow, Karola; Sudmant, Peter H; Schraiber, Joshua G; Castellano, Sergi; Lipson, Mark; Berger, Bonnie; Economou, Christos; Bollongino, Ruth; Fu, Qiaomei; Bos, Kirsten I; Nordenfelt, Susanne; Li, Heng; de Filippo, Cesare; Prüfer, Kay; Sawyer, Susanna; Posth, Cosimo; Haak, Wolfgang; Hallgren, Fredrik; Fornander, Elin; Rohland, Nadin; Delsate, Dominique; Francken, Michael; Guinet, Jean-Michel; Wahl, Joachim; Ayodo, George; Babiker, Hamza A; Bailliet, Graciela; Balanovska, Elena; Balanovsky, Oleg; Barrantes, Ramiro; Bedoya, Gabriel; Ben-Ami, Haim; Bene, Judit; Berrada, Fouad; Bravi, Claudio M; Brisighelli, Francesca; Busby, George B J; Cali, Francesco; Churnosov, Mikhail; Cole, David E C; Corach, Daniel; Damba, Larissa; van Driem, George; Dryomov, Stanislav; Dugoujon, Jean-Michel; Fedorova, Sardana A; Gallego Romero, Irene; Gubina, Marina; Hammer, Michael; Henn, Brenna M; Hervig, Tor; Hodoglugil, Ugur; Jha, Aashish R; Karachanak-Yankova, Sena; Khusainova, Rita; Khusnutdinova, Elza; Kittles, Rick; Kivisild, Toomas; Klitz, William; Kučinskas, Vaidutis; Kushniarevich, Alena; Laredj, Leila; Litvinov, Sergey; Loukidis, Theologos; Mahley, Robert W; Melegh, Béla; Metspalu, Ene; Molina, Julio; Mountain, Joanna; Näkkäläjärvi, Klemetti; Nesheva, Desislava; Nyambo, Thomas; Osipova, Ludmila; Parik, Jüri; Platonov, Fedor; Posukh, Olga; Romano, Valentino; Rothhammer, Francisco; Rudan, Igor; Ruizbakiev, Ruslan; Sahakyan, Hovhannes; Sajantila, Antti; Salas, Antonio; Starikovskaya, Elena B; Tarekegn, Ayele; Toncheva, Draga; Turdikulova, Shahlo; Uktveryte, Ingrida; Utevska, Olga; Vasquez, René; Villena, Mercedes; Voevoda, Mikhail; Winkler, Cheryl A; Yepiskoposyan, Levon; Zalloua, Pierre; Zemunik, Tatijana; Cooper, Alan; Capelli, Cristian; Thomas, Mark G; Ruiz-Linares, Andres; Tishkoff, Sarah A; Singh, Lalji; Thangaraj, Kumarasamy; Villems, Richard; Comas, David; Sukernik, Rem; Metspalu, Mait; Meyer, Matthias; Eichler, Evan E; Burger, Joachim; Slatkin, Montgomery; Pääbo, Svante; Kelso, Janet; Reich, David; Krause, Johannes

    2014-09-18

    We sequenced the genomes of a ∼7,000-year-old farmer from Germany and eight ∼8,000-year-old hunter-gatherers from Luxembourg and Sweden. We analysed these and other ancient genomes with 2,345 contemporary humans to show that most present-day Europeans derive from at least three highly differentiated populations: west European hunter-gatherers, who contributed ancestry to all Europeans but not to Near Easterners; ancient north Eurasians related to Upper Palaeolithic Siberians, who contributed to both Europeans and Near Easterners; and early European farmers, who were mainly of Near Eastern origin but also harboured west European hunter-gatherer related ancestry. We model these populations' deep relationships and show that early European farmers had ∼44% ancestry from a 'basal Eurasian' population that split before the diversification of other non-African lineages.

  7. Acute bacterial and viral meningitis.

    PubMed

    Bartt, Russell

    2012-12-01

    Most cases of acute meningitis are infectious and result from a potentially wide range of bacterial and viral pathogens. The organized approach to the patient with suspected meningitis enables the prompt administration of antibiotics, possibly corticosteroids, and diagnostic testing with neuroimaging and spinal fluid analysis. Acute meningitis is infectious in most cases and caused by a potentially wide range of bacterial and viral pathogens. Shifts in the epidemiology of bacterial pathogens have been influenced by changes in vaccines and their implementation. Seasonal and environmental changes influence the likely viral and rickettsial pathogens. The organized approach to the patient with suspected meningitis enables the prompt administration of antibiotics, possibly corticosteroids, and diagnostic testing with neuroimaging and spinal fluid analysis. Pertinent testing and treatment can vary with the clinical presentation, season, and possible exposures. This article reviews the epidemiology, clinical presentation, diagnosis, and treatment of acute meningitis.

  8. Local environmental pollution strongly influences culturable bacterial aerosols at an urban aquatic superfund site.

    PubMed

    Dueker, M Elias; O'Mullan, Gregory D; Juhl, Andrew R; Weathers, Kathleen C; Uriarte, Maria

    2012-10-16

    In polluted environments, when microbial aerosols originate locally, species composition of the aerosols should reflect the polluted source. To test the connection between local environmental pollution and microbial aerosols near an urban waterfront, we characterized bacterial aerosols at Newtown Creek (NTC), a public waterway and Superfund site in a densely populated area of New York, NY, USA. Culturable bacterial aerosol fallout rate and surface water bacterial concentrations were at least an order of magnitude greater at NTC than at a neighboring, less polluted waterfront and a nonurban coastal site in Maine. The NTC culturable bacterial aerosol community was significantly different in taxonomic structure from previous urban and coastal aerosol studies, particularly in relative abundances of Actinobacteria and Proteobacteria. Twenty-four percent of the operational taxonomic units in the NTC overall (air + water) bacterial isolate library were most similar to bacterial 16S rRNA gene sequences previously described in terrestrial or aquatic environments contaminated with sewage, hydrocarbons, heavy metals, and other industrial waste. This study is the first to examine the community composition and local deposition of bacterial aerosols from an aquatic Superfund site. The findings have important implications for the use of aeration remediation in polluted aquatic environments and suggest a novel pathway of microbial exposure in densely populated urban communities containing contaminated soil and water.

  9. Genetic variation in bacterial kidney disease (BKD) susceptibility in Lake Michigan Chinook Salmon and its progenitor population from the Puget Sound.

    PubMed

    Purcell, Maureen K; Hard, Jeffrey J; Neely, Kathleen G; Park, Linda K; Winton, James R; Elliott, Diane G

    2014-03-01

    Mass mortality events in wild fish due to infectious diseases are troubling, especially given the potential for long-term, population-level consequences. Evolutionary theory predicts that populations with sufficient genetic variation will adapt in response to pathogen pressure. Chinook Salmon Oncorhynchus tshawytscha were introduced into Lake Michigan in the late 1960s from a Washington State hatchery population. In the late 1980s, collapse of the forage base and nutritional stress in Lake Michigan were thought to contribute to die-offs of Chinook Salmon due to bacterial kidney disease (BKD). Previously, we demonstrated that Lake Michigan Chinook Salmon from a Wisconsin hatchery have greater survival following BKD challenge relative to their progenitor population. Here, we evaluated whether the phenotypic divergence of these populations in BKD susceptibility was due to selection rather than genetic drift. Comparison of the overall magnitude of quantitative trait to neutral marker divergence between the populations suggested selection had occurred but a direct test of quantitative trait divergence was not significant, preventing the rejection of the null hypothesis of differentiation through genetic drift. Estimates of phenotypic variation (VP ), additive genetic variation (VA ) and narrow-sense heritability (h (2)) were consistently higher in the Wisconsin relative to the Washington population. If selection had acted on the Wisconsin population there was no evidence of a concomitant loss of genetic variation in BKD susceptibility. The Renibacterium salmoninarum exposures were conducted at both 14°C and 9°C; the warmer temperature accelerated time to death in both populations and there was no evidence of phenotypic plasticity or a genotype-by-environment (G × E) interaction. High h (2) estimates for BKD susceptibility in the Wisconsin population, combined with a lack of phenotypic plasticity, predicts that future adaptive gains in BKD resistance are still

  10. Genetic variation in bacterial kidney disease (BKD) susceptibility in Lake Michigan Chinook Salmon and its progenitor population from the Puget Sound

    USGS Publications Warehouse

    Purcell, Maureen K.; Hard, Jeffrey J.; Neely, Kathleen G.; Park, Linda K.; Winton, James R.; Elliott, Diane G.

    2014-01-01

    Mass mortality events in wild fish due to infectious diseases are troubling, especially given the potential for long-term, population-level consequences. Evolutionary theory predicts that populations with sufficient genetic variation will adapt in response to pathogen pressure. Chinook Salmon Oncorhynchus tshawytscha were introduced into Lake Michigan in the late 1960s from a Washington State hatchery population. In the late 1980s, collapse of the forage base and nutritional stress in Lake Michigan were thought to contribute to die-offs of Chinook Salmon due to bacterial kidney disease (BKD). Previously, we demonstrated that Lake Michigan Chinook Salmon from a Wisconsin hatchery have greater survival following BKD challenge relative to their progenitor population. Here, we evaluated whether the phenotypic divergence of these populations in BKD susceptibility was due to selection rather than genetic drift. Comparison of the overall magnitude of quantitative trait to neutral marker divergence between the populations suggested selection had occurred but a direct test of quantitative trait divergence was not significant, preventing the rejection of the null hypothesis of differentiation through genetic drift. Estimates of phenotypic variation (VP), additive genetic variation (VA) and narrow-sense heritability (h2) were consistently higher in the Wisconsin relative to the Washington population. If selection had acted on the Wisconsin population there was no evidence of a concomitant loss of genetic variation in BKD susceptibility. The Renibacterium salmoninarum exposures were conducted at both 14°C and 9°C; the warmer temperature accelerated time to death in both populations and there was no evidence of phenotypic plasticity or a genotype-by-environment (G × E) interaction. High h2 estimates for BKD susceptibility in the Wisconsin population, combined with a lack of phenotypic plasticity, predicts that future adaptive gains in BKD resistance are still possible and

  11. Comparison of epifluorescent viable bacterial count methods

    NASA Technical Reports Server (NTRS)

    Rodgers, E. B.; Huff, T. L.

    1992-01-01

    Two methods, the 2-(4-Iodophenyl) 3-(4-nitrophenyl) 5-phenyltetrazolium chloride (INT) method and the direct viable count (DVC), were tested and compared for their efficiency for the determination of the viability of bacterial populations. Use of the INT method results in the formation of a dark spot within each respiring cell. The DVC method results in elongation or swelling of growing cells that are rendered incapable of cell division. Although both methods are subjective and can result in false positive results, the DVC method is best suited to analysis of waters in which the number of different types of organisms present in the same sample is assumed to be small, such as processed waters. The advantages and disadvantages of each method are discussed.

  12. Arginine Metabolism in Bacterial Pathogenesis and Cancer Therapy

    PubMed Central

    Xiong, Lifeng; Teng, Jade L. L.; Botelho, Michael G.; Lo, Regina C.; Lau, Susanna K. P.; Woo, Patrick C. Y.

    2016-01-01

    Antibacterial resistance to infectious diseases is a significant global concern for health care organizations; along with aging populations and increasing cancer rates, it represents a great burden for government healthcare systems. Therefore, the development of therapies against bacterial infection and cancer is an important strategy for healthcare research. Pathogenic bacteria and cancer have developed a broad range of sophisticated strategies to survive or propagate inside a host and cause infection or spread disease. Bacteria can employ their own metabolism pathways to obtain nutrients from the host cells in order to survive. Similarly, cancer cells can dysregulate normal human cell metabolic pathways so that they can grow and spread. One common feature of the adaption and disruption of metabolic pathways observed in bacterial and cancer cell growth is amino acid pathways; these have recently been targeted as a novel approach to manage bacterial infections and cancer therapy. In particular, arginine metabolism has been illustrated to be important not only for bacterial pathogenesis but also for cancer therapy. Therefore, greater insights into arginine metabolism of pathogenic bacteria and cancer cells would provide possible targets for controlling of bacterial infection and cancer treatment. This review will summarize the recent progress on the relationship of arginine metabolism with bacterial pathogenesis and cancer therapy, with a particular focus on arginase and arginine deiminase pathways of arginine catabolism. PMID:26978353

  13. Quantitative Investigation of the Role of Intra-/Intercellular Dynamics in Bacterial Quorum Sensing.

    PubMed

    Leaman, Eric J; Geuther, Brian Q; Behkam, Bahareh

    2018-04-20

    Bacteria utilize diffusible signals to regulate population density-dependent coordinated gene expression in a process called quorum sensing (QS). While the intracellular regulatory mechanisms of QS are well-understood, the effect of spatiotemporal changes in the population configuration on the sensitivity and robustness of the QS response remains largely unexplored. Using a microfluidic device, we quantitatively characterized the emergent behavior of a population of swimming E. coli bacteria engineered with the lux QS system and a GFP reporter. We show that the QS activation time follows a power law with respect to bacterial population density, but this trend is disrupted significantly by microscale variations in population configuration and genetic circuit noise. We then developed a computational model that integrates population dynamics with genetic circuit dynamics to enable accurate (less than 7% error) quantitation of the bacterial QS activation time. Through modeling and experimental analyses, we show that changes in spatial configuration of swimming bacteria can drastically alter the QS activation time, by up to 22%. The integrative model developed herein also enables examination of the performance robustness of synthetic circuits with respect to growth rate, circuit sensitivity, and the population's initial size and spatial structure. Our framework facilitates quantitative tuning of microbial systems performance through rational engineering of synthetic ribosomal binding sites. We have demonstrated this through modulation of QS activation time over an order of magnitude. Altogether, we conclude that predictive engineering of QS-based bacterial systems requires not only the precise temporal modulation of gene expression (intracellular dynamics) but also accounting for the spatiotemporal changes in population configuration (intercellular dynamics).

  14. Bacterial autolysins trim cell surface peptidoglycan to prevent detection by the Drosophila innate immune system

    PubMed Central

    Atilano, Magda Luciana; Pereira, Pedro Matos; Vaz, Filipa; Catalão, Maria João; Reed, Patricia; Grilo, Inês Ramos; Sobral, Rita Gonçalves; Ligoxygakis, Petros; Pinho, Mariana Gomes; Filipe, Sérgio Raposo

    2014-01-01

    Bacteria have to avoid recognition by the host immune system in order to establish a successful infection. Peptidoglycan, the principal constituent of virtually all bacterial surfaces, is a specific molecular signature recognized by dedicated host receptors, present in animals and plants, which trigger an immune response. Here we report that autolysins from Gram-positive pathogenic bacteria, enzymes capable of hydrolyzing peptidoglycan, have a major role in concealing this inflammatory molecule from Drosophila peptidoglycan recognition proteins (PGRPs). We show that autolysins trim the outermost peptidoglycan fragments and that in their absence bacterial virulence is impaired, as PGRPs can directly recognize leftover peptidoglycan extending beyond the external layers of bacterial proteins and polysaccharides. The activity of autolysins is not restricted to the producer cells but can also alter the surface of neighboring bacteria, facilitating the survival of the entire population in the infected host. DOI: http://dx.doi.org/10.7554/eLife.02277.001 PMID:24692449

  15. Rare Presentations of Primary Melanoma and Special Populations: A Systematic Review

    PubMed Central

    Kottschade, Lisa A.; Grotz, Travis E.; Dronca, Roxana S.; Salomao, Diva R.; Pulido, Jose S.; Wasif, Nabil; Jakub, James W.; Bagaria, Sanjay P.; Kumar, Riten; Kaur, Judith S.; Morita, Shane Y.; Moran, Steven L.; Nguyen, Jesse T.; Nguyen, Emily C.; Hand, Jennifer L.; Erickson, Lori A.; Brewer, Jerry D.; Baum, Christian L.; Miller, Robert C.; Swanson, David L.; Lowe, Val; Markovic, Svetomir N.

    2013-01-01

    A subset of patients with melanoma present in rare and unique clinical circumstances requiring specific considerations with respect to diagnostic and therapeutic interventions. Herein we present our review of patients with: (1) primary mucosal melanoma of the head and neck, gastrointestinal and genitourinary tracts; (2) primary melanoma of the eye; (3) desmoplastic melanoma; (4) subungual melanoma; (5) melanoma in special populations: children, non-Caucasians, as well as a discussion of familial melanoma. PMID:23563206

  16. Analysis of bacterial growth by UV/Vis spectroscopy and laser reflectometry

    NASA Astrophysics Data System (ADS)

    Peña-Gomar, Mary Carmen; Viramontes-Gamboa, Gonzalo; Peña-Gomar, Grethel; Ortiz Gutiérrez, Mauricio; Hernández Ramírez, Mariano

    2012-10-01

    This work presents a preliminary study on an experimental analysis of the lactobacillus bacterial growth in liquid medium with and without the presence of silver nanoparticles. The study aims to quantify the bactericidal effect of nanoparticles. Quantification of bacterial growth at different times was analyzed by spectroscopy UV/visible and laser reflectometry near the critical angle. From these two techniques the best results were obtained by spectroscopy, showing that as the concentration of silver nanoparticles increases, it inhibits the growth of bacteria, it only grows 63% of the population. Regarding Laser Reflectometry, the variation of reflectance near the critical angle is measured in real time. The observed results at short times are reasonable, since they indicate a gradual growth of the bacteria and the stabilization stage of the population. But at long time, the observed results show abrupt changes caused by temperature effects. The bacteria were isolated from samples taken from commercial yougurth, and cultured in MRS broth at pH 6.5, and controlled with citric acid and constant temperature of 32 °C. Separately, silver nanoparticles were synthesized at 3 °C from aqueous solutions of 1.0 mM silver nitrate and chemically reduced with sodium borohydride to 2.0 mM, with magnetic stirring.

  17. Dysregulated luminal bacterial antigen-specific T-cell responses and antigen-presenting cell function in HLA-B27 transgenic rats with chronic colitis

    PubMed Central

    Qian, Bi-Feng; Tonkonogy, Susan L; Hoentjen, Frank; Dieleman, Levinus A; Sartor, R Balfour

    2005-01-01

    HLA-B27/β2 microglobulin transgenic (TG) rats spontaneously develop T-cell-mediated colitis when colonized with normal commensal bacteria, but remain disease-free under germ-free conditions. We investigated regulation of in vitro T-cell responses to enteric bacterial components. Bacterial lysates prepared from the caecal contents of specific pathogen-free (SPF) rats stimulated interferon-γ (IFN-γ) production by TG but not non-TG mesenteric lymph node (MLN) cells. In contrast, essentially equivalent amounts of interleukin-10 (IL-10) were produced by TG and non-TG cells. However, when cells from MLNs of non-TG rats were cocultured with TG MLN cells, no suppression of IFN-γ production was noted. Both non-TG and TG antigen-presenting cells (APC) pulsed with caecal bacterial lysate were able to induce IFN-γ production by TG CD4+ cells, although non-TG APC were more efficient than TG APC. Interestingly, the addition of exogenous IL-10 inhibited non-TG APC but not TG APC stimulation of IFN-γ production by cocultured TG CD4+ lymphocytes. Conversely, in the presence of exogenous IFN-γ, production of IL-10 was significantly lower in the supernatants of TG compared to non-TG APC cultures. We conclude that commensal luminal bacterial components induce exaggerated in vitro IFN-γ responses in HLA-B27 TG T cells, which may in turn inhibit the production of regulatory molecules, such as IL-10. Alterations in the production of IFN-γ, and in responses to this cytokine, as well as possible resistance of TG cells to suppressive regulation could together contribute to the development of chronic colitis in TG rats. PMID:16108823

  18. Pediatric bacterial meningitis in French Guiana.

    PubMed

    Elenga, N; Sicard, S; Cuadro-Alvarez, E; Long, L; Njuieyon, F; Martin, E; Kom-Tchameni, R; Balcaen, J; Moreau, B; Boukhari, R

    2015-01-01

    Controlling vaccine-preventable infectious diseases is a public health priority in French Guiana but there is currently no epidemiological data on pediatric bacterial meningitis in this overseas department. Our aim was to describe data related to pediatric bacterial meningitis in French Guiana and compare it with that of metropolitan France. We conducted a multicenter retrospective study from 2000 to 2010 to describe the clinical picture, biological data, epidemiology, and outcome of pediatric bacterial meningitis case patients in French Guiana. The median age of bacterial meningitis patients was 6months [0-15] and the sex ratio 1.06. We observed a total of 60 bacterial meningitis case patients. Most presented with pneumococcal meningitis (24 patients; 40%); 11 with Haemophilus influenzae type b meningitis (23%), five with group B streptococcal meningitis (8.5%), and five others (8.5%) with staphylococcal meningitis (three patients presented with coagulase-negative staphylococci and two with Staphylococcus aureus). Only one patient presented with group B meningococcal meningitis, an 18-month-old infant. We recorded 14 deaths (overall case fatality: 23%); eight were due to Streptococcus pneumoniae (case fatality: 33%). The overall sequelae rate was 28%. It was 32% for patients presenting with pneumococcal meningitis. We observed that 38% of children who had never been vaccinated were infected by a vaccine-preventable bacterium. We observed many differences in the distribution of the bacteria and in the patients' prognosis when comparing the French Guiana data with that of metropolitan France. Improving vaccination coverage would decrease the incidence of H. influenzae meningitis. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  19. Phenotypic Signatures Arising from Unbalanced Bacterial Growth

    PubMed Central

    Tan, Cheemeng; Smith, Robert Phillip; Tsai, Ming-Chi; Schwartz, Russell; You, Lingchong

    2014-01-01

    Fluctuations in the growth rate of a bacterial culture during unbalanced growth are generally considered undesirable in quantitative studies of bacterial physiology. Under well-controlled experimental conditions, however, these fluctuations are not random but instead reflect the interplay between intra-cellular networks underlying bacterial growth and the growth environment. Therefore, these fluctuations could be considered quantitative phenotypes of the bacteria under a specific growth condition. Here, we present a method to identify “phenotypic signatures” by time-frequency analysis of unbalanced growth curves measured with high temporal resolution. The signatures are then applied to differentiate amongst different bacterial strains or the same strain under different growth conditions, and to identify the essential architecture of the gene network underlying the observed growth dynamics. Our method has implications for both basic understanding of bacterial physiology and for the classification of bacterial strains. PMID:25101949

  20. Phenotypic signatures arising from unbalanced bacterial growth.

    PubMed

    Tan, Cheemeng; Smith, Robert Phillip; Tsai, Ming-Chi; Schwartz, Russell; You, Lingchong

    2014-08-01

    Fluctuations in the growth rate of a bacterial culture during unbalanced growth are generally considered undesirable in quantitative studies of bacterial physiology. Under well-controlled experimental conditions, however, these fluctuations are not random but instead reflect the interplay between intra-cellular networks underlying bacterial growth and the growth environment. Therefore, these fluctuations could be considered quantitative phenotypes of the bacteria under a specific growth condition. Here, we present a method to identify "phenotypic signatures" by time-frequency analysis of unbalanced growth curves measured with high temporal resolution. The signatures are then applied to differentiate amongst different bacterial strains or the same strain under different growth conditions, and to identify the essential architecture of the gene network underlying the observed growth dynamics. Our method has implications for both basic understanding of bacterial physiology and for the classification of bacterial strains.

  1. Linking bacterial community structure to advection and environmental impact along a coast-fjord gradient of the Sognefjord, western Norway

    NASA Astrophysics Data System (ADS)

    Storesund, Julia E.; Sandaa, Ruth-Anne; Thingstad, T. Frede; Asplin, Lars; Albretsen, Jon; Erga, Svein Rune

    2017-12-01

    Here we present novel data on bacterial assemblages along a coast-fjord gradient in the Sognefjord, the deepest (1308 m) and longest (205 km) ice-free fjord in the world. Data were collected on two cruises, one in November 2012, and one in May 2013. Special focus was on the impact of advective processes and how these are reflected in the autochthonous and allochthonous fractions of the bacterial communities. Both in November and May bacterial community composition, determined by Automated Ribosomal Intergenic Spacer Analyses (ARISA), in the surface and intermediate water appeared to be highly related to bacterial communities originating from freshwater runoff and coastal water, whereas the sources in the basin water were mostly unknown. Additionally, the inner part of the Sognefjord was more influenced by side-fjords than the outer part, and changes in bacterial community structure along the coast-fjord gradient generally showed higher correlation with environmental variables than with geographic distances. High resolution model simulations indicated a surprisingly high degree of temporal and spatial variation in both current speed and direction. This led to a more episodic/discontinuous horizontal current pattern, with several vortices (10-20 km wide) being formed from time to time along the fjord. We conclude that during periods of strong wind forcing, advection led to allochthonous species being introduced to the surface and intermediate layers of the fjord, and also appeared to homogenize community composition in the basin water. We also expect vortices to be active mixing zones where inflowing bacterial populations on the southern side of the fjord are mixed with the outflowing populations on the northern side. On average, retention time of the fjord water was sufficient for bacterial communities to be established.

  2. Taxonomic Structure and Stability of the Bacterial Community in Belgian Sourdough Ecosystems as Assessed by Culture and Population Fingerprinting▿ †

    PubMed Central

    Scheirlinck, Ilse; Van der Meulen, Roel; Van Schoor, Ann; Vancanneyt, Marc; De Vuyst, Luc; Vandamme, Peter; Huys, Geert

    2008-01-01

    A total of 39 traditional sourdoughs were sampled at 11 bakeries located throughout Belgium which were visited twice with a 1-year interval. The taxonomic structure and stability of the bacterial communities occurring in these traditional sourdoughs were assessed using both culture-dependent and culture-independent methods. A total of 1,194 potential lactic acid bacterium (LAB) isolates were tentatively grouped and identified by repetitive element sequence-based PCR, followed by sequence-based identification using 16S rRNA and pheS genes from a selection of genotypically unique LAB isolates. In parallel, all samples were analyzed by denaturing gradient gel electrophoresis (DGGE) of V3-16S rRNA gene amplicons. In addition, extensive metabolite target analysis of more than 100 different compounds was performed. Both culturing and DGGE analysis showed that the species Lactobacillus sanfranciscensis, Lactobacillus paralimentarius, Lactobacillus plantarum, and Lactobacillus pontis dominated the LAB population of Belgian type I sourdoughs. In addition, DGGE band sequence analysis demonstrated the presence of Acetobacter sp. and a member of the Erwinia/Enterobacter/Pantoea group in some samples. Overall, the culture-dependent and culture-independent approaches each exhibited intrinsic limitations in assessing bacterial LAB diversity in Belgian sourdoughs. Irrespective of the LAB biodiversity, a large majority of the sugar and amino acid metabolites were detected in all sourdough samples. Principal component-based analysis of biodiversity and metabolic data revealed only little variation among the two samples of the sourdoughs produced at the same bakery. The rare cases of instability observed could generally be linked with variations in technological parameters or differences in detection capacity between culture-dependent and culture-independent approaches. Within a sampling interval of 1 year, this study reinforces previous observations that the bakery environment

  3. Characterization of rumen bacterial diversity and fermentation parameters in concentrate fed cattle with and without forage.

    PubMed

    Petri, R M; Forster, R J; Yang, W; McKinnon, J J; McAllister, T A

    2012-06-01

    To determine the effects of the removal of forage in high-concentrate diets on rumen fermentation conditions and rumen bacterial populations using culture-independent methods. Detectable bacteria and fermentation parameters were measured in the solid and liquid fractions of digesta from cattle fed two dietary treatments, high concentrate (HC) and high concentrate without forage (HCNF). Comparison of rumen fermentation conditions showed that duration of time spent below pH 5·2 and rumen osmolality were higher in the HCNF treatment. Simpson's index of 16S PCR-DGGE images showed a greater diversity of dominant species in the HCNF treatment. Real-time qPCR showed populations of Fibrobacter succinogenes (P = 0·01) were lower in HCNF than HC diets. Ruminococcus spp., F. succinogenes and Selenomonas ruminantium were at higher (P ≤ 0·05) concentrations in the solid vs the liquid fraction of digesta regardless of diet. The detectable bacterial community structure in the rumen is highly diverse. Reducing diet complexity by removing forage increased bacterial diversity despite the associated reduction in ruminal pH being less conducive for fibrolytic bacterial populations. Quantitative PCR showed that removal of forage from the diet resulted in a decline in the density of some, but not all fibrolytic bacterial species examined. Molecular techniques such as DGGE and qPCR provide an increased understanding of the impacts of dietary changes on the nature of rumen bacterial populations, and conclusions derived using these techniques may not match those previously derived using traditional laboratory culturing techniques. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  4. Microbial population dynamics in the sediments of a eutrophic lake (Aydat, France) and characterization of some heterotrophic bacterial isolates.

    PubMed

    Mallet, C; Basset, M; Fonty, G; Desvilettes, C; Bourdier, G; Debroas, D

    2004-07-01

    The bacterial populations of anoxic sediments in a eutrophic lake (Aydat, Puy-de-Dôme-France) were studied by phospholipid fatty acid analysis (PLFA) and also by culturing heterotrophic bacteria under strictly anaerobic conditions. The mean PLFA concentrations of prokaryotes and microeukaryotes were 5.7 +/- 2.9 mgC g(-1) DS and 9.6 +/- 6.7 mgC g(-1) DS, respectively. The analysis of bacterial PLFA markers was used to determine the dynamics of the Gram-positive and Gram-negative species of anaerobic bacteria, Clostridiae, and sulfate-reducing bacteria. Throughout the sampling period the concentrations of i15:0 (from 20 nmol g(-1) DS to 130 nmol g(-1) DS), markers of Gram-positive bacteria, were higher than those for Gram-negative bacteria. The dynamics of Clostridiae (Cy15:0) paralleled those of sulfate-reducing bacteria that were marked by i17:1omega7. Partial 16S rDNA sequencing and the physiological study of the various fermenting strains, whose abundance in the superficial sediment layer was 1.1 +/- 0.4 x 10(6) cells mL(-1), showed that all the isolates belonged to the Clostridiae and related taxa ( Lactosphaera pasteurii, Clostridium vincentii, C. butyricum, C. algidixylanolyticum, C. puniceum, C. lituseburense, and C. gasigenes). All the isolates were capable of metabolizing a wide range of organic substrates.

  5. The effect of treating bacterial vaginosis on preterm labor.

    PubMed

    Tebes, Christine C; Lynch, Catherine; Sinnott, John

    2003-01-01

    Multiple studies suggest that bacterial vaginosis (BV) causes preterm labor; yet its routine treatment remains controversial. In order to help to elucidate this controversy, we performed a thorough review of studies with levels of evidence ranging from I to II-II. We searched for all of the studies from the years 1994 to 2001 via Medline's database, including MD Consult and Ovid Mednet. Several trials discovered a decrease in the incidence of preterm labor when BV was treated, but most of those trials were performed on women with a history of preterm labor. However, the majority of trials reviewed advise against treatment of a general low-risk obstetric population, as there was no significant decrease in preterm labor. Therefore, based on the above studies and the current guidelines of the Centers for Disease Control and Prevention (CDC), treating pregnant women in high-risk populations who are diagnosed with BV provides the clinician with an opportunity to possibly prevent preterm labor in this population. In nulliparous women without a history of preterm birth, treatment is recommended if other risk factors are present (e.g. gonorrhea or chlamydia). However, in the general low-risk populations, routine screening is not indicated.

  6. Biological consequences and advantages of asymmetric bacterial growth.

    PubMed

    Kysela, David T; Brown, Pamela J B; Huang, Kerwyn Casey; Brun, Yves V

    2013-01-01

    Asymmetries in cell growth and division occur in eukaryotes and prokaryotes alike. Even seemingly simple and morphologically symmetric cell division processes belie inherent underlying asymmetries in the composition of the resulting daughter cells. We consider the types of asymmetry that arise in various bacterial cell growth and division processes, which include both conditionally activated mechanisms and constitutive, hardwired aspects of bacterial life histories. Although asymmetry disposes some cells to the deleterious effects of aging, it may also benefit populations by efficiently purging accumulated damage and rejuvenating newborn cells. Asymmetries may also generate phenotypic variation required for successful exploitation of variable environments, even when extrinsic changes outpace the capacity of cells to sense and respond to challenges. We propose specific experimental approaches to further develop our understanding of the prevalence and the ultimate importance of asymmetric bacterial growth.

  7. Competition for space during bacterial colonization of a surface.

    PubMed

    Lloyd, Diarmuid P; Allen, Rosalind J

    2015-09-06

    Competition for space is ubiquitous in the ecology of both microorganisms and macro-organisms. We introduce a bacterial model system in which the factors influencing competition for space during colonization of an initially empty habitat can be tracked directly. Using fluorescence microscopy, we follow the fate of individual Escherichia coli bacterial cell lineages as they undergo expansion competition (the race to be the first to colonize a previously empty territory), and as they later compete at boundaries between clonal territories. Our experiments are complemented by computer simulations of a lattice-based model. We find that both expansion competition, manifested as differences in individual cell lag times, and boundary competition, manifested as effects of neighbour cell geometry, can play a role in colonization success, particularly when lineages expand exponentially. This work provides a baseline for investigating how ecological interactions affect colonization of space by bacterial populations, and highlights the potential of bacterial model systems for the testing and development of ecological theory. © 2015 The Authors.

  8. Competition for space during bacterial colonization of a surface

    PubMed Central

    Lloyd, Diarmuid P.; Allen, Rosalind J.

    2015-01-01

    Competition for space is ubiquitous in the ecology of both microorganisms and macro-organisms. We introduce a bacterial model system in which the factors influencing competition for space during colonization of an initially empty habitat can be tracked directly. Using fluorescence microscopy, we follow the fate of individual Escherichia coli bacterial cell lineages as they undergo expansion competition (the race to be the first to colonize a previously empty territory), and as they later compete at boundaries between clonal territories. Our experiments are complemented by computer simulations of a lattice-based model. We find that both expansion competition, manifested as differences in individual cell lag times, and boundary competition, manifested as effects of neighbour cell geometry, can play a role in colonization success, particularly when lineages expand exponentially. This work provides a baseline for investigating how ecological interactions affect colonization of space by bacterial populations, and highlights the potential of bacterial model systems for the testing and development of ecological theory. PMID:26333814

  9. Distribution and ecology of Frankliniella occidentalis (Thysanoptera: Thripidae) bacterial symbionts.

    PubMed

    Chanbusarakum, Lisa J; Ullman, Diane E

    2009-08-01

    Bacterial populations in Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) collected in diverse California environments consisted of two bacterial symbionts: BFo-1 and BFo-2 (B = bacteria, Fo = Frankliniella occidentalis, numbers reflect different types). Dual infections of BFo-1 and BFo-2 were found in 50% of the thrips, 18% had neither bacterium, and 24 and 8% were infected solely with BFo-1 and BFo-2, respectively. No other bacteria consistently infected F. occidentalis. Dual infections occurred more often in male thrips and in thrips of both sexes from southern mountain and valley sites. As average collection year or month minimum temperature decreased, infections of BFo-1, alone or in dual infections, increased significantly. As yearly precipitation increased, infection with BFo-1 alone also increased. F. occidentalis color morphology did not affect bacterial infection. BFo-1 created weak biofilms at 25 and 32 degrees C; BFo-2 made strong biofilms at 25 degrees C and no biofilms at 32 degrees C. When the bacteria were grown in culture together, weak biofilms formed at both temperatures studied, although there was no way to determine what each bacterium contributed to the biofilm. BFo-1 and BFo-2 grew at similar rates at 25 and 30 degrees C. Our data show BFo-1 and BFo-2 occur in natural populations of F. occidentalis and support the hypothesis BFo have a symbiotic relationship with F. occidentalis. Regional differences in bacterial prevalence suggest bacterial infection is associated with environmental conditions, and altitude, temperature, and precipitation may be important factors.

  10. Questions about the behaviour of bacterial pathogens in vivo.

    PubMed Central

    Smith, H

    2000-01-01

    Bacterial pathogens cause disease in man and animals. They have unique biological properties, which enable them to colonize mucous surfaces, penetrate them, grow in the environment of the host, inhibit or avoid host defences and damage the host. The bacterial products responsible for these five biological requirements are the determinants of pathogenicity (virulence determinants). Current knowledge comes from studies in vitro, but now interest is increasing in how bacteria behave and produce virulence determinants within the infected host. There are three aspects to elucidate: bacterial activities, the host factors that affect them and the metabolic interactions between the two. The first is relatively easy to accomplish and, recently, new methods for doing this have been devised. The second is not easy because of the complexity of the environment in vivo and its ever-changing face. Nevertheless, some information can be gained from the literature and by new methodology. The third aspect is very difficult to study effectively unless some events in vivo can be simulated in vitro. The objectives of the Discussion Meeting were to describe the new methods and to show how they, and conventional studies, are revealing the activities of bacterial pathogens in vivo. This paper sets the scene by raising some questions and suggesting, with examples, how they might be answered. Bacterial growth in vivo is the primary requirement for pathogenicity. Without growth, determinants of the other four requirements are not formed. Results from the new methods are underlining this point. The important questions are as follows. What is the pattern of a developing infection and the growth rates and population sizes of the bacteria at different stages? What nutrients are present in vivo and how do they change as infection progresses and relate to growth rates and population sizes? How are these nutrients metabolized and by what bacterial mechanisms? Which bacterial processes handle

  11. Bacterial vaginosis in threatened preterm, preterm and term labour.

    PubMed

    Chawanpaiboon, Saifon; Pimol, Kanjana

    2010-12-01

    To present the prevalence of bacterial vaginosis in threatened preterm, preterm, and term labor and results after treatment. Forty-four, 50, and 56 pregnant women with threatened preterm, preterm, and term labor respectively were participated. Bacterial vaginosis was diagnosed by Amsel's criteria. Treatment by metronidazole or clindamycin was used. A case record form recorded maternal age, obstetric history, gestational age at admission and delivery, examination data, the route of delivery, and the newborn birth weight and conditions. The patients in threatened preterm labor group had significantly positive bacterial vaginosis when compared to those in the term labor group. Prevalence of bacterial vaginosis in threatened preterm, preterm, and term labor were presented The prevalence of bacterial vaginosis in both preterm labor groups was higher than in the term labor group.

  12. Arthropod-borne bacterial diseases in pregnancy.

    PubMed

    Dotters-Katz, Sarah K; Kuller, Jeffrey; Heine, R Phillips

    2013-09-01

    Arthropod-borne bacterial diseases affect more than 25,000 Americans every year and thousands more around the world. These infections present a diagnostic dilemma for clinicians because they mimic many other pathologic conditions and are often low on or absent from the differential diagnosis list. Diagnosis is particularly challenging during pregnancy, as these infections may mimic common pregnancy-specific conditions, such as typical and atypical preeclampsia, or symptoms of pregnancy itself. Concerns regarding the safety in pregnancy of some indicated antibiotics add a therapeutic challenge for the prescriber, requiring knowledge of alternative therapeutic options for many arthropod-borne bacterial diseases. Physicians, especially those in endemic areas, must keep this class of infections in mind, particularly when the presentation does not appear classic for more commonly seen conditions. This article discusses presentation, diagnosis, and treatment of the most common of these arthropod-borne bacterial diseases, including Lyme disease, Rocky Mountain spotted fever, tick-borne relapsing fever, typhus, plague, cat-scratch disease, and Carrión disease.

  13. Variability of Bacterial Communities in the Moth Heliothis virescens Indicates Transient Association with the Host

    PubMed Central

    Staudacher, Heike; Kaltenpoth, Martin; Breeuwer, Johannes A. J.; Menken, Steph B. J.; Heckel, David G.; Groot, Astrid T.

    2016-01-01

    Microbes associated with insects can confer a wide range of ecologically relevant benefits to their hosts. Since insect-associated bacteria often increase the nutritive value of their hosts' diets, the study of bacterial communities is especially interesting in species that are important agricultural pests. We investigated the composition of bacterial communities in the noctuid moth Heliothis virescens and its variability in relation to developmental stage, diet and population (field and laboratory), using bacterial tag-encoded FLX pyrosequencing of 16S rRNA amplicons. In larvae, bacterial communities differed depending on the food plant on which they had been reared, although the within-group variation between biological replicates was high as well. Moreover, larvae originating from a field or laboratory population did not share any OTUs. Interestingly, Enterococcus sp. was found to be the dominant taxon in laboratory-reared larvae, but was completely absent from field larvae, indicating dramatic shifts in microbial community profiles upon cultivation of the moths in the laboratory. Furthermore, microbiota composition varied strongly across developmental stages in individuals of the field population, and we found no evidence for vertical transmission of bacteria from mothers to offspring. Since sample sizes in our study were small due to pooling of samples for sequencing, we cautiously conclude that the high variability in bacterial communities suggests a loose and temporary association of the identified bacteria with H. virescens. PMID:27139886

  14. The continuity of bacterial and physicochemical evolution: theory and experiments.

    PubMed

    Spitzer, Jan

    2014-01-01

    The continuity of chemical and biological evolution, incorporating life's emergence, can be explored experimentally by energizing 'dead' bacterial biomacromolecules with nutrients under cycling physicochemical gradients. This approach arises from three evolutionary principles rooted in physical chemistry: (i) broken bacterial cells cannot spontaneously self-assemble into a living state without the supply of external energy - 2nd law of thermodynamics, (ii) the energy delivery must be cycling - the primary mechanism of chemical evolution at rotating planetary surfaces under solar irradiation, (iii) the cycling energy must act on chemical mixtures of high molecular diversity and crowding - provided by dead bacterial populations. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  15. Evaluation of bacterial meningitis surveillance data of the northern region, Ghana, 2010-2015

    PubMed Central

    Kaburi, Basil Benduri; Kubio, Chrysantus; Kenu, Ernest; Ameme, Donne Kofi; Mahama, Jacob Yakubu; Sackey, Samuel Oko; Afari, Edwin Andrew

    2017-01-01

    Introduction Bacterial meningitis is a disease of major public health importance especially for countries such as Ghana; whose northern part lies within the meningitis belt. The Northern region of Ghana has been recording cases with outbreaks over the years. In order to generate evidence to improve surveillance, we described the epidemiology of bacterial meningitis using surveillance data of the northern region. Methods Bacterial meningitis datasets from January 2010 to December 2015 for all the 26 districts of the Northern region were retrieved from line lists. Data were analyzed in terms of person, place, time, and identity of causative organisms using descriptive statistics. The results were presented as proportions, rates, tables and graphs. Results A total of 1,176 cases were reported. Of these, 53.5% (629/1,176) were males. The proportion of cases aged 0 to 29 years was 77.4%. The Overall Case Fatality Rate (CFR) was 9.7% (114/1,176). About 65% of all cases were recorded from January to April. Only 23.7% (279/1,176) of cases were laboratory-confirmed. Neisseria meningitides and Streptococcus pneumonia accounted for 91.4% of confirmed cases. Over the period, the incidence reduced from 9.0/100,000 population to 3.8/100,000 population and CFR reduced from 16.6% to 5.7%. Conclusion Most cases of bacterial meningitis were recorded in the dry season and in persons younger than 30 years. Less than a quarter of cases were laboratory confirmed, and no new bacteria species were identified. Both morbidity and mortality rates were on the decline. There is the need to consolidate these gains by intensifying meningitis surveillance and improving on the rate of laboratory case confirmation. PMID:28904692

  16. In vitro fermentation of B-GOS: impact on faecal bacterial populations and metabolic activity in autistic and non-autistic children.

    PubMed

    Grimaldi, Roberta; Cela, Drinalda; Swann, Jonathan R; Vulevic, Jelena; Gibson, Glenn R; Tzortzis, George; Costabile, Adele

    2017-02-01

    Children with autism spectrum disorders (ASD) often suffer gastrointestinal problems consistent with imbalances in the gut microbial population. Treatment with antibiotics or pro/prebiotics has been postulated to regulate microbiota and improve gut symptoms, but there is a lack of evidence for such approaches, especially for prebiotics. This study assessed the influence of a prebiotic galactooligosaccharide (B-GOS) on gut microbial ecology and metabolic function using faecal samples from autistic and non-autistic children in an in vitro gut model system. Bacteriology was analysed using flow cytometry combined with fluorescence in situ hybridization and metabolic activity by HPLC and 1 H-NMR. Consistent with previous studies, the microbiota of children with ASD contained a higher number of Clostridium spp. and a lower number of bifidobacteria compared with non-autistic children. B-GOS administration significantly increased bifidobacterial populations in each compartment of the models, both with autistic and non-autistic-derived samples, and lactobacilli in the final vessel of non-autistic models. In addition, changes in other bacterial population have been seen in particular for Clostridium, Rosburia, Bacteroides, Atopobium, Faecalibacterium prausnitzii, Sutterella spp. and Veillonellaceae. Furthermore, the addition of B-GOS to the models significantly altered short-chain fatty acid production in both groups, and increased ethanol and lactate in autistic children. © FEMS 2016.

  17. In vitro fermentation of B-GOS: impact on faecal bacterial populations and metabolic activity in autistic and non-autistic children

    PubMed Central

    Cela, Drinalda; Swann, Jonathan R.; Vulevic, Jelena; Gibson, Glenn R.; Tzortzis, George; Costabile, Adele

    2016-01-01

    Abstract Children with autism spectrum disorders (ASD) often suffer gastrointestinal problems consistent with imbalances in the gut microbial population. Treatment with antibiotics or pro/prebiotics has been postulated to regulate microbiota and improve gut symptoms, but there is a lack of evidence for such approaches, especially for prebiotics. This study assessed the influence of a prebiotic galactooligosaccharide (B-GOS) on gut microbial ecology and metabolic function using faecal samples from autistic and non-autistic children in an in vitro gut model system. Bacteriology was analysed using flow cytometry combined with fluorescence in situ hybridization and metabolic activity by HPLC and 1H-NMR. Consistent with previous studies, the microbiota of children with ASD contained a higher number of Clostridium spp. and a lower number of bifidobacteria compared with non-autistic children. B-GOS administration significantly increased bifidobacterial populations in each compartment of the models, both with autistic and non-autistic-derived samples, and lactobacilli in the final vessel of non-autistic models. In addition, changes in other bacterial population have been seen in particular for Clostridium, Rosburia, Bacteroides, Atopobium, Faecalibacterium prausnitzii, Sutterella spp. and Veillonellaceae. Furthermore, the addition of B-GOS to the models significantly altered short-chain fatty acid production in both groups, and increased ethanol and lactate in autistic children. PMID:27856622

  18. Clinical Value of Assessing Cytokine Levels for the Differential Diagnosis of Bacterial Meningitis in a Pediatric Population

    PubMed Central

    Ye, Qing; Shao, Wen-Xia; Shang, Shi-Qiang; Shen, Hong-Qiang; Chen, Xue-Jun; Tang, Yong-Min; Yu, Yong-Lin; Mao, Jian-Hua

    2016-01-01

    Abstract We performed a prospective observational study to evaluate the utility of measuring inflammatory cytokine levels to discriminate bacterial meningitis from similar common pediatric diseases. Inflammatory cytokine levels and other cerebrospinal fluid (CSF) physicochemical indicators were evaluated in 140 patients who were diagnosed with bacterial meningitis via microbiological culture or PCR assay. The CSF concentrations of interleukin (IL)-6 and IL-10, CSF/blood IL-6 and IL-10 ratios, CSF white blood cell count, and CSF micro total protein were significantly elevated in bacterial meningitis patients compared with healthy children or patients with viral encephalitis, epilepsy, or febrile convulsions (P < 0.001). The area under the curve values for CSF concentrations of IL-6 and IL-10, CSF/blood IL-6 and IL-10 ratios, CSF white blood cell count, and CSF micro total protein to identify bacterial meningitis episodes by receiver-operating characteristic analysis were 0.988, 0.949, 0.995, 0.924, 0.945, and 0.928, respectively. The area under the curve for the combination of CSF IL-6 and CSF/blood IL-6 ratio was larger than that for either parameter alone, and the combination exhibited enhanced specificity and positive predictive value. After effective meningitis treatment, CSF IL-6 levels dropped significantly. These results suggest that CSF IL-6 and CSF/blood IL-6 ratio are good biomarkers in discriminating bacterial meningitis. Evaluating CSF IL-6 and CSF/blood IL-6 ratio in combination can improve diagnostic efficiency. Additionally, CSF IL-6 levels can be used to monitor the effects of bacterial meningitis treatment. PMID:27043692

  19. Clinical Value of Assessing Cytokine Levels for the Differential Diagnosis of Bacterial Meningitis in a Pediatric Population.

    PubMed

    Ye, Qing; Shao, Wen-Xia; Shang, Shi-Qiang; Shen, Hong-Qiang; Chen, Xue-Jun; Tang, Yong-Min; Yu, Yong-Lin; Mao, Jian-Hua

    2016-03-01

    We performed a prospective observational study to evaluate the utility of measuring inflammatory cytokine levels to discriminate bacterial meningitis from similar common pediatric diseases. Inflammatory cytokine levels and other cerebrospinal fluid (CSF) physicochemical indicators were evaluated in 140 patients who were diagnosed with bacterial meningitis via microbiological culture or PCR assay. The CSF concentrations of interleukin (IL)-6 and IL-10, CSF/blood IL-6 and IL-10 ratios, CSF white blood cell count, and CSF micro total protein were significantly elevated in bacterial meningitis patients compared with healthy children or patients with viral encephalitis, epilepsy, or febrile convulsions (P < 0.001). The area under the curve values for CSF concentrations of IL-6 and IL-10, CSF/blood IL-6 and IL-10 ratios, CSF white blood cell count, and CSF micro total protein to identify bacterial meningitis episodes by receiver-operating characteristic analysis were 0.988, 0.949, 0.995, 0.924, 0.945, and 0.928, respectively. The area under the curve for the combination of CSF IL-6 and CSF/blood IL-6 ratio was larger than that for either parameter alone, and the combination exhibited enhanced specificity and positive predictive value. After effective meningitis treatment, CSF IL-6 levels dropped significantly. These results suggest that CSF IL-6 and CSF/blood IL-6 ratio are good biomarkers in discriminating bacterial meningitis. Evaluating CSF IL-6 and CSF/blood IL-6 ratio in combination can improve diagnostic efficiency. Additionally, CSF IL-6 levels can be used to monitor the effects of bacterial meningitis treatment.

  20. Effect of flow and peristaltic mixing on bacterial growth in a gut-like channel

    PubMed Central

    Cremer, Jonas; Segota, Igor; Yang, Chih-yu; Arnoldini, Markus; Sauls, John T.; Zhang, Zhongge; Gutierrez, Edgar; Groisman, Alex; Hwa, Terence

    2016-01-01

    The ecology of microbes in the gut has been shown to play important roles in the health of the host. To better understand microbial growth and population dynamics in the proximal colon, the primary region of bacterial growth in the gut, we built and applied a fluidic channel that we call the “minigut.” This is a channel with an array of membrane valves along its length, which allows mimicking active contractions of the colonic wall. Repeated contraction is shown to be crucial in maintaining a steady-state bacterial population in the device despite strong flow along the channel that would otherwise cause bacterial washout. Depending on the flow rate and the frequency of contractions, the bacterial density profile exhibits varying spatial dependencies. For a synthetic cross-feeding community, the species abundance ratio is also strongly affected by mixing and flow along the length of the device. Complex mixing dynamics due to contractions is described well by an effective diffusion term. Bacterial dynamics is captured by a simple reaction–diffusion model without adjustable parameters. Our results suggest that flow and mixing play a major role in shaping the microbiota of the colon. PMID:27681630

  1. Improved outcome of bacterial meningitis associated with use of corticosteroid treatment.

    PubMed

    Baunbæk-Knudsen, Gertrud; Sølling, Mette; Farre, Annette; Benfield, Thomas; Brandt, Christian T

    2016-04-01

    Background The aim of this study was to evaluate the clinical outcome of patients with bacterial meningitis following the introduction of dexamethasone treatment in Denmark. Methods Adult patients with bacterial meningitis, admitted from 2003-2010 to two different university hospitals, were included retrospectively. Data at clinical presentation, Glasgow outcome scale (GOS), cerebrospinal fluid and blood biochemistry were collected. Relative risk (RR) with 95% confidence interval (CI) was computed by Cox proportional hazard regression analysis. Results One hundred and forty-seven patients were included in the study. The population had a median age of 62 years and 31% had an immunosuppressive co-morbidity. Eighty-nine patients had an unfavourable outcome (GOS score = 1-4). Adjuvant treatment with corticosteroids (RR = 0.48; 95% CI = 0.30-0.76) was associated with a favourable outcome (GOS score = 5), while altered mental status (RR = 2.36; 95% CI = 1.17-4.78) and age (RR = 1.03; 95% CI = 1.01-1.04) per year increment was associated with an unfavourable outcome. Adjuvant corticosteroid treatment did not affect short- or long-term survival. Short-term mortality was influenced by age (RR = 1.06; 95% CI = 1.04-1.09). Long-term mortality was influenced by age (RR = 1.06; 95% CI = 1.03-1.08) and female sex (RR = 1.81; 95% CI = 1.05-3.14). Conclusion This study indicated that adjuvant corticosteroid treatment in acute bacterial meningitis improves the outcome and can safely be administered in an elderly population with high levels of immunosuppressive co-morbidity.

  2. [A comparative presentation of the population policies of Burkina Faso, Mali and Senegal].

    PubMed

    Dabo, K

    1992-07-01

    Population policies are currently at the center of debates about demography and development, and are a preoccupation of most governments, international organizations, and research institutions working in the areas of population, development, and human resources. Between 1988-93, 4 Sahel countries adopted populations policies. this article compares the policies of Senegal, Mali, and Burkina Faso. The 3 policy documents have similar structures, with preambles recalling the international agreements concerning population and development entered into by their governments. A chapter on population and development describes the demo-economic problem in each country at regional, sectorial, and global levels. After the analysis of demo-economic problems, each of the 3 has a chapter presenting the population policy. Each presentation covers the foundations and basic principles of the policy, its objectives, the strategies to be pursued, and the organizational structure. Development of each policy was technically supervised by the Planning Ministry in collaboration with the national population councils. In general terms, the 3 countries recognize in their basic principles that the population is the primary source of wealth of a nation. Each country states its desire to translate the recommendations of different African and world population conferences into concrete acts. The principles avow respect for fundamental human rights including the right to informed decision making by couples on number and spacing of children. The principles also recognize the need for an integrated approach to population and development. The ultimate objective of the population policies is improvement in the standard and quality of life. The number of general objectives outlined in the policies varied from 7 in Senegal to 13 in Burkina Faso. Senegal was the only country of the 3 to specify reduction of the fertility rate and the growth rate as an objective. Senegal and Burkina Faso included

  3. Bacterial cheating limits the evolution of antibiotic resistance

    NASA Astrophysics Data System (ADS)

    Chao, Hui Xiao; Datta, Manoshi; Yurtsev, Eugene; Gore, Jeff

    2011-03-01

    The widespread use of antibiotics has led to the evolution of resistance in bacteria. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removing the antibiotic. The cooperative nature of this growth suggests that a cheater strain--which does not contribute to breaking down the antibiotic--may be able to take advantage of cells cooperatively inactivating the antibiotic. Here we experimentally find that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We observe stable coexistence between the two strains and find that a simple model successfully explains the behavior as a function of antibiotic concentration and cell density. We anticipate that our results will provide insight into the evolutionary origin of phenotypic diversity and cooperative behaviors found in nature.

  4. Screening the thermophilic and hyperthermophilic bacterial population of three Iranian hot-springs to detect the thermostable α-amylase producing strain

    PubMed Central

    Fooladi, J; Sajjadian, A

    2010-01-01

    Background Screening is a routine procedure for isolation of microorganisms which are able to produce special metabolites. Purified thermostable α-amylase from bacterial sources is widely used in different industries. In this study we analyzed samples collected from three different hot springs in Iran to detect any strains capable of producing thermostable α-amylase. Materials and Methods Hot water samples from Larijan (67°C, pH 6.5), Mahallat (46°C, pH 7), and Meshkinshahr (82°C, pH 6), were cultivated in screening starch agar plates and incubated at 65°C for 24 hours. Thereafter, the plates were stained with Gram's iodine solution. Results and Discussion The bacterial colonies from the Meshkinshahr hot-spring produced the largest haloforming zone. Based on the phenotypic tests, the strain was identified as Bacillus sp. The culture condition was optimized for biosynthesis of α-amylase. The enzyme was produced at maximum level when it was incubated at 70°C in the presence of soluble starch (1%) at pH 6. The addition of calcium (10 mM) and peptone (1%) to the mineral medium, shortened the lag period and improved the growth and α-amylase synthesis. The addition of glucose (1%) to the culture greatly diminished the syntheses of α -amylase. Importantly, the enzyme extract retained 100% activity when incubated for 45 minutes at 100°C. Conclusion The Meshkinshahr hot-spring is rich in the Bacillus spp thermostable α-amylase producing strain of the thermophilic bacterial population. Iranian hot-springs like Meshkinshahr, have large microbial storages and can be used as sources of different biological products like enzymes. The enzyme which was produced with Bacillus sp. could hydrolyse polymers like starch and was used at laboratory scale successfully. PMID:22347550

  5. Network-Based Identification of Adaptive Pathways in Evolved Ethanol-Tolerant Bacterial Populations

    PubMed Central

    Swings, Toon; Weytjens, Bram; Schalck, Thomas; Bonte, Camille; Verstraeten, Natalie; Michiels, Jan

    2017-01-01

    Abstract Efficient production of ethanol for use as a renewable fuel requires organisms with a high level of ethanol tolerance. However, this trait is complex and increased tolerance therefore requires mutations in multiple genes and pathways. Here, we use experimental evolution for a system-level analysis of adaptation of Escherichia coli to high ethanol stress. As adaptation to extreme stress often results in complex mutational data sets consisting of both causal and noncausal passenger mutations, identifying the true adaptive mutations in these settings is not trivial. Therefore, we developed a novel method named IAMBEE (Identification of Adaptive Mutations in Bacterial Evolution Experiments). IAMBEE exploits the temporal profile of the acquisition of mutations during evolution in combination with the functional implications of each mutation at the protein level. These data are mapped to a genome-wide interaction network to search for adaptive mutations at the level of pathways. The 16 evolved populations in our data set together harbored 2,286 mutated genes with 4,470 unique mutations. Analysis by IAMBEE significantly reduced this number and resulted in identification of 90 mutated genes and 345 unique mutations that are most likely to be adaptive. Moreover, IAMBEE not only enabled the identification of previously known pathways involved in ethanol tolerance, but also identified novel systems such as the AcrAB-TolC efflux pump and fatty acids biosynthesis and even allowed to gain insight into the temporal profile of adaptation to ethanol stress. Furthermore, this method offers a solid framework for identifying the molecular underpinnings of other complex traits as well. PMID:28961727

  6. Comparison on conjunctival sac bacterial flora of the seniors with dry eye in Ganzi autonomous prefecture

    PubMed Central

    Zhang, Yue; Liu, Zhi-Rong; Chen, Hui; Fan, Ying-Chuan; Duo, Ji; Zheng, Hong; Wang, Guang-Jin; Li, Yu-Chan; Jiachu, Dan-Ba; Zewang, Ge-Ma

    2013-01-01

    AIM To compare the bacterial flora in palpebral conjunctiva of xerophthalmia seniors of Tibetan, Yi and Han, and analyze the differences and similarities of the bacteria. METHODS The test subjects were selected from 2 Tibetan, 2 Yi and 3 Han populated places, respectively. Total 222 seniors (444 eyes) with dry eye were examined. Secretion was collected from the palpebral conjunctiva of the subjects and then inoculated onto a blood agar plate. After 48h of incubation, the bacteria were examined for the differences and similarities between different ethnics. RESULTS There was no significant difference (P>0.05) of Gram stain characterization, dominant bacteria and number of the bacterial species present in oxrophthalmia patients among Tibetan, Yi and Han nationalities. The bacteria presented in all groups include staphylococcus epidermidis, corynebacterium, micrococcus luteu, intracellular bacteria sphingomonas, pseudomonas aeruginosa. The bacteria detected from the two of three ethnic groups were staphylococcus aureus, staphylococcus haemolyticus, escherichia coli, kytococcus sedentarius, streptococcus angina, micrococcus lylae, and staphylococcus heads. The incidence rate of bacteria-associated dry eye in Tibetan population was significantly lower than that of Han and Yi population. CONCLUSION There is no significant difference in the bacteria flora of palpebral conjunctiva observed among dry eye elder populations of Tibetan, Yi and Han people. All of staphylococcus epidermidis, corynebacterium, micrococcus luteu, intracellular bacteria sphingomonas, pseudomonas aeruginosa, staphylococcus aureus, staphylococcus haemolyticus, escherichia coli, kytococcus sedentarius, streptococcus angina, micrococcus lylae and staphylococcus heads are common bacteria flora of the three nationalities inhibiting in this area. PMID:23991377

  7. Exploring bacterial diversity in hospital environments by GS-FLX Titanium pyrosequencing.

    PubMed

    Poza, Margarita; Gayoso, Carmen; Gómez, Manuel J; Rumbo-Feal, Soraya; Tomás, María; Aranda, Jesús; Fernández, Ana; Bou, Germán

    2012-01-01

    Understanding microbial populations in hospital environments is crucial for improving human health. Hospital-acquired infections are an increasing problem in intensive care units (ICU). In this work we present an exploration of bacterial diversity at inanimate surfaces of the ICU wards of the University Hospital A Coruña (Spain), as an example of confined hospital environment subjected to selective pressure, taking the entrance hall of the hospital, an open and crowded environment, as reference. Surface swab samples were collected from both locations and recovered DNA used as template to amplify a hypervariable region of the bacterial 16S rRNA gene. Sequencing of the amplicons was performed at the Roche 454 Sequencing Center using GS-FLX Titanium procedures. Reads were pre-processed and clustered into OTUs (operational taxonomic units), which were further classified. A total of 16 canonical bacterial phyla were detected in both locations. Members of the phyla Firmicutes (mainly Staphylococcus and Streptococcus) and Actinobacteria (mainly Micrococcaceae, Corynebacteriaceae and Brevibacteriaceae) were over-represented in the ICU with respect to the Hall. The phyllum Proteobacteria was also well represented in the ICU, mainly by members of the families Enterobacteriaceae, Methylobacteriaceae and Sphingomonadaceae. In the Hall sample, the phyla Proteobacteria, Bacteroidetes, Deinococcus-Thermus and Cyanobacteria were over-represented with respect to the ICU. Over-representation of Proteobacteria was mainly due to the high abundance of Enterobacteriaceae members. The presented results demonstrate that bacterial diversity differs at the ICU and entrance hall locations. Reduced diversity detected at ICU, relative to the entrance hall, can be explained by its confined character and by the existence of antimicrobial selective pressure. This is the first study using deep sequencing techniques made in hospital wards showing substantial hospital microbial diversity.

  8. Spectrum of gallstone disease in the veterans population.

    PubMed

    Stewart, Lygia; Griffiss, J McLeod; Way, Lawrence W

    2005-11-01

    Elderly male patients are thought to have a higher incidence of biliary infections. This demographic is common among veterans, so we analyzed the spectrum of gallstone disease in a large veteran population. A total of 285 patients with gallstone disease were studied. There were 27 women and 258 men, with an average age of 62 years. Gallstones, bile, and blood (as indicated) were cultured. Illness severity was staged as none (no clinical infection), moderate (fever, leukocytosis), or severe (cholangitis, bacteremia, abscess, hypotension, organ failure). Gallstones were grouped by appearance. Three bacterial groups were defined: EK (Escherichia coli or Klebsiella species), N (Enterococcus), or Oth (all other species). Biliary bacteria were present in 145 (51%) patients. Bacterial presence by patient age was 33% for those less than 50 years, 48% for those 50 to 70 years, and 65% for those more than 70 years (P <.02 vs. others). Bacterial presence by stone type was as follows: cholesterol, 11%; mixed, 51%; pigment, 71% (P <.01 vs. others). Illness severity by stone type was as follows for cholesterol: none, 73%; moderate, 27%; severe, 0%; for mixed: none, 62%; moderate, 25%; severe, 13%; for pigment: none, 41%; moderate, 17%; severe, 41% (P <.0001 vs. others). Illness severity by bacterial group was as follows for sterile: none, 77%; moderate, 23%; severe, 0%; for the Oth group: none, 57%; moderate, 22%; severe, 20%; for the N group: none, 32%; moderate, 16%; severe, 52%; for the EK group: none, 18%; moderate, 22%; severe, 60% (P <.0001 vs. sterile/Oth, P = .126 vs. N). Bacterial biliary tree colonization is prevalent in the veterans' population, it increases with age, and is more common with pigment stones. But not all bacterial species cause infectious manifestations. Patients with E coli and/or Klebsiella species commonly showed infectious manifestations, patients with Enterococcus were in an intermediate range, and those with other species had few infectious

  9. A novel approach to parasite population genetics: experimental infection reveals geographic differentiation, recombination and host-mediated population structure in Pasteuria ramosa, a bacterial parasite of Daphnia.

    PubMed

    Andras, J P; Ebert, D

    2013-02-01

    The population structure of parasites is central to the ecology and evolution of host-parasite systems. Here, we investigate the population genetics of Pasteuria ramosa, a bacterial parasite of Daphnia. We used natural P. ramosa spore banks from the sediments of two geographically well-separated ponds to experimentally infect a panel of Daphnia magna host clones whose resistance phenotypes were previously known. In this way, we were able to assess the population structure of P. ramosa based on geography, host resistance phenotype and host genotype. Overall, genetic diversity of P. ramosa was high, and nearly all infected D. magna hosted more than one parasite haplotype. On the basis of the observation of recombinant haplotypes and relatively low levels of linkage disequilibrium, we conclude that P. ramosa engages in substantial recombination. Isolates were strongly differentiated by pond, indicating that gene flow is spatially restricted. Pasteuria ramosa isolates within one pond were segregated completely based on the resistance phenotype of the host-a result that, to our knowledge, has not been previously reported for a nonhuman parasite. To assess the comparability of experimental infections with natural P. ramosa isolates, we examined the population structure of naturally infected D. magna native to one of the two source ponds. We found that experimental and natural infections of the same host resistance phenotype from the same source pond were indistinguishable, indicating that experimental infections provide a means to representatively sample the diversity of P. ramosa while reducing the sampling bias often associated with studies of parasite epidemics. These results expand our knowledge of this model parasite, provide important context for the large existing body of research on this system and will guide the design of future studies of this host-parasite system. © 2012 Blackwell Publishing Ltd.

  10. The effects of chemical interactions and culture history on the colonization of structured habitats by competing bacterial populations.

    PubMed

    van Vliet, Simon; Hol, Felix J H; Weenink, Tim; Galajda, Peter; Keymer, Juan E

    2014-05-07

    Bacterial habitats, such as soil and the gut, are structured at the micrometer scale. Important aspects of microbial life in such spatial ecosystems are migration and colonization. Here we explore the colonization of a structured ecosystem by two neutrally labeled strains of Escherichia coli. Using time-lapse microscopy we studied the colonization of one-dimensional arrays of habitat patches linked by connectors, which were invaded by the two E. coli strains from opposite sides. The two strains colonize a habitat from opposite sides by a series of traveling waves followed by an expansion front. When population waves collide, they branch into a continuing traveling wave, a reflected wave and a stationary population. When the two strains invade the landscape from opposite sides, they remain segregated in space and often one population will displace the other from most of the habitat. However, when the strains are co-cultured before entering the habitats, they colonize the habitat together and do not separate spatially. Using physically separated, but diffusionally coupled, habitats we show that colonization waves and expansion fronts interact trough diffusible molecules, and not by direct competition for space. Furthermore, we found that colonization outcome is influenced by a culture's history, as the culture with the longest doubling time in bulk conditions tends to take over the largest fraction of the habitat. Finally, we observed that population distributions in parallel habitats located on the same device and inoculated with cells from the same overnight culture are significantly more similar to each other than to patterns in identical habitats located on different devices inoculated with cells from different overnight cultures, even tough all cultures were started from the same -80°C frozen stock. We found that the colonization of spatially structure habitats by two interacting populations can lead to the formation of complex, but reproducible, spatiotemporal

  11. The effects of chemical interactions and culture history on the colonization of structured habitats by competing bacterial populations

    PubMed Central

    2014-01-01

    Background Bacterial habitats, such as soil and the gut, are structured at the micrometer scale. Important aspects of microbial life in such spatial ecosystems are migration and colonization. Here we explore the colonization of a structured ecosystem by two neutrally labeled strains of Escherichia coli. Using time-lapse microscopy we studied the colonization of one-dimensional arrays of habitat patches linked by connectors, which were invaded by the two E. coli strains from opposite sides. Results The two strains colonize a habitat from opposite sides by a series of traveling waves followed by an expansion front. When population waves collide, they branch into a continuing traveling wave, a reflected wave and a stationary population. When the two strains invade the landscape from opposite sides, they remain segregated in space and often one population will displace the other from most of the habitat. However, when the strains are co-cultured before entering the habitats, they colonize the habitat together and do not separate spatially. Using physically separated, but diffusionally coupled, habitats we show that colonization waves and expansion fronts interact trough diffusible molecules, and not by direct competition for space. Furthermore, we found that colonization outcome is influenced by a culture’s history, as the culture with the longest doubling time in bulk conditions tends to take over the largest fraction of the habitat. Finally, we observed that population distributions in parallel habitats located on the same device and inoculated with cells from the same overnight culture are significantly more similar to each other than to patterns in identical habitats located on different devices inoculated with cells from different overnight cultures, even tough all cultures were started from the same −80°C frozen stock. Conclusions We found that the colonization of spatially structure habitats by two interacting populations can lead to the formation of

  12. Bacterial prostatitis.

    PubMed

    Gill, Bradley C; Shoskes, Daniel A

    2016-02-01

    The review provides the infectious disease community with a urologic perspective on bacterial prostatitis. Specifically, the article briefly reviews the categorization of prostatitis by type and provides a distillation of new findings published on bacterial prostatitis over the past year. It also highlights key points from the established literature. Cross-sectional prostate imaging is becoming more common and may lead to more incidental diagnoses of acute bacterial prostatitis. As drug resistance remains problematic in this condition, the reemergence of older antibiotics such as fosfomycin, has proven beneficial. With regard to chronic bacterial prostatitis, no clear clinical risk factors emerged in a large epidemiological study. However, bacterial biofilm formation has been associated with more severe cases. Surgery has a limited role in bacterial prostatitis and should be reserved for draining of a prostatic abscess or the removal of infected prostatic stones. Prostatitis remains a common and bothersome clinical condition. Antibiotic therapy remains the basis of treatment for both acute and chronic bacterial prostatitis. Further research into improving prostatitis treatment is indicated.

  13. Bacterial Sialidase

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Data shows that elevated sialidase in bacterial vaginosis patients correlates to premature births in women. Bacterial sialidase also plays a significant role in the unusual colonization of Pseudomonas aeruginosa in cystic fibrosis patients. Crystals of Salmonella sialidase have been reproduced and are used for studying the inhibitor-enzyme complexes. These inhibitors may also be used to inhibit a trans-sialidase of Trypanosome cruzi, a very similar enzyme to bacterial sialidase, therefore preventing T. cruzi infection, the causitive agent of Chagas' disease. The Center for Macromolecular Crystallography suggests that inhibitors of bacterial sialidases can be used as prophylactic drugs to prevent bacterial infections in these critical cases.

  14. Diagnosis and treatment of bacterial prostatitis.

    PubMed

    Videčnik Zorman, Jerneja; Matičič, Mojca; Jeverica, Samo; Smrkolj, Tomaž

    2015-01-01

    Prostate inflammation is a common syndrome, especially in men under 50. It usually presents with voiding symptoms and pain in the genitourinary area, and sometimes as sexual dysfunction. Based on clinical and laboratory characteristics, prostatitis is classified as acute bacterial prostatitis, chronic bacterial prostatitis, chronic inflammatory and non-inflammatory prostatitis or chronic pelvic pain syndrome, and asymptomatic inflammatory prostatitis. Bacterial prostatitis is most often caused by infection with uropathogens, mainly Gram-negative bacilli, but Gram-positive and atypical microorganisms have also been identified as causative organisms of chronic prostatitis. According to reports by several authors, Chlamydia trachomatis and Trichomonas vaginalis are some of the most common pathogens, making chronic prostatitis a sexually transmitted disease. Diagnosis and treatment of acute and chronic bacterial prostatitis in particular can be challenging.

  15. Bacterial community analysis of an industrial wastewater treatment plant in Colombia with screening for lipid-degrading microorganisms.

    PubMed

    Silva-Bedoya, Lina Marcela; Sánchez-Pinzón, María Solange; Cadavid-Restrepo, Gloria Ester; Moreno-Herrera, Claudia Ximena

    2016-11-01

    The operation of wastewater treatment technologies depends on a combination of physical, chemical and biological factors. Microorganisms present in wastewater treatment plants play essential roles in the degradation and removal of organic waste and xenobiotic pollutants. Several microorganisms have been used in complementary treatments to process effluents rich in fats and oils. Microbial lipases have received significant industrial attention because of their stability, broad substrate specificity, high yields, and regular supply, as well as the fact that the microorganisms producing them grow rapidly on inexpensive media. In Colombia, bacterial community studies have focused on populations of cultivable nitrifying, heterotrophic and nitrogen-fixing bacteria present in constructed wetlands. In this study, culture-dependent methods, culture-independent methods (TTGE, RISA) and enzymatic methods were used to estimate bacterial diversity, to monitor temporal and spatial changes in bacterial communities, and to screen microorganisms that presented lipolytic activity. The dominant microorganisms in the Wastewater Treatment Plant (WWTP) examined in this study belonged to the phyla Firmicutes, Proteobacteria and Bacteroidetes. The enzymatic studies performed indicated that five bacterial isolates and three fungal isolates possessed the ability to degrade lipids; additionally, the Serratia, Kosakonia and Mucor genera presented lipase-mediated transesterification activity. The implications of these findings in regard to possible applications are discussed later in this paper. Our results indicate that there is a wide diversity of aerobic Gram-negative bacteria inhabiting the different sections of the WWTP, which could indicate its ecological condition, functioning and general efficiency. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Multi-fractal characterization of bacterial swimming dynamics: a case study on real and simulated Serratia marcescens

    PubMed Central

    Bogdan, Paul; Wei, Guopeng; Marculescu, Radu; Zhuang, Jiang; Carlsen, Rika Wright; Sitti, Metin

    2017-01-01

    To add to the current state of knowledge about bacterial swimming dynamics, in this paper, we study the fractal swimming dynamics of populations of Serratia marcescens bacteria both in vitro and in silico, while accounting for realistic conditions like volume exclusion, chemical interactions, obstacles and distribution of chemoattractant in the environment. While previous research has shown that bacterial motion is non-ergodic, we demonstrate that, besides the non-ergodicity, the bacterial swimming dynamics is multi-fractal in nature. Finally, we demonstrate that the multi-fractal characteristic of bacterial dynamics is strongly affected by bacterial density and chemoattractant concentration. PMID:28804259

  17. Bacterial diversity is strongly associated with historical penguin activity in an Antarctic lake sediment profile.

    PubMed

    Zhu, Renbin; Shi, Yu; Ma, Dawei; Wang, Can; Xu, Hua; Chu, Haiyan

    2015-11-25

    Current penguin activity in Antarctica affects the geochemistry of sediments and their microbial communities; the effects of historical penguin activity are less well understood. Here, bacterial diversity in ornithogenic sediment was investigated using high-throughput pyrosequencing. The relative abundances of dominant phyla were controlled by the amount of historical penguin guano deposition. Significant positive correlations were found between both the bacterial richness and diversity, and the relative penguin number (p < 0.01); this indicated that historical penguin activity drove the vertical distribution of the bacterial communities. The lowest relative abundances of individual phyla corresponded to lowest number of penguin population at 1,800-2,300 yr BP during a drier and colder period; the opposite was observed during a moister and warmer climate (1,400-1,800 yr BP). This study shows that changes in the climate over millennia affected penguin populations and the outcomes of these changes affect the sediment bacterial community today.

  18. Bacterial diversity is strongly associated with historical penguin activity in an Antarctic lake sediment profile

    PubMed Central

    Zhu, Renbin; Shi, Yu; Ma, Dawei; Wang, Can; Xu, Hua; Chu, Haiyan

    2015-01-01

    Current penguin activity in Antarctica affects the geochemistry of sediments and their microbial communities; the effects of historical penguin activity are less well understood. Here, bacterial diversity in ornithogenic sediment was investigated using high-throughput pyrosequencing. The relative abundances of dominant phyla were controlled by the amount of historical penguin guano deposition. Significant positive correlations were found between both the bacterial richness and diversity, and the relative penguin number (p < 0.01); this indicated that historical penguin activity drove the vertical distribution of the bacterial communities. The lowest relative abundances of individual phyla corresponded to lowest number of penguin population at 1,800–2,300 yr BP during a drier and colder period; the opposite was observed during a moister and warmer climate (1,400–1,800 yr BP). This study shows that changes in the climate over millennia affected penguin populations and the outcomes of these changes affect the sediment bacterial community today. PMID:26601753

  19. Outcomes of bacterial meningitis in children.

    PubMed

    Briand, C; Levy, C; Baumie, F; Joao, L; Béchet, S; Carbonnelle, E; Grimprel, E; Cohen, R; Gaudelus, J; de Pontual, L

    2016-06-01

    Pediatricians are well aware of the immediate risks of bacterial meningitis in children. However, the long-term outcome of the disease has not been extensively studied. We aimed: (i) to evaluate the duration and quality of the long-term follow-up of children diagnosed with bacterial meningitis in a general pediatric department, (ii) to estimate the incidence of sequelae at the various stages of follow-up, and (iii) to compare our data with that of other studies. We conducted a retrospective study and included 34 children (3 months-15 years) who had been hospitalized for bacterial meningitis in the pediatric department of a University Hospital between January 1st, 2001 and December 31st, 2013. Overall, 32% of patients presented with sequelae and 15% with seizures. Only one patient presented with hearing loss, but 23.5% of patients did not have any hearing test performed. Seven patients had a neuropsychological assessment performed and no severe neuropsychological sequela was observed in this group. The average follow-up duration increased during the study period (from 23 to 49months). The long-term follow-up modalities observed in other studies were highly variable. Assessing the incidence and severity of sequelae was therefore difficult. A standardized follow-up should be implemented by way of a national surveillance network of children presenting with bacterial meningitis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Synchronized cycles of bacterial lysis for in vivo delivery

    PubMed Central

    Prindle, Arthur; Skalak, Matt; Selimkhanov, Jangir; Allen, Kaitlin; Julio, Ellixis; Atolia, Eta; Tsimring, Lev S.; Bhatia, Sangeeta N.; Hasty, Jeff

    2016-01-01

    The pervasive view of bacteria as strictly pathogenic has given way to an appreciation of the widespread prevalence of beneficial microbes within the human body1–3. Given this milieu, it is perhaps inevitable that some bacteria would evolve to preferentially grow in environments that harbor disease and thus provide a natural platform for the development of engineered therapies4–6. Such therapies could benefit from bacteria that are programmed to limit bacterial growth while continually producing and releasing cytotoxic agents in situ7–10. Here, we engineer a clinically relevant bacterium to lyse synchronously at a threshold population density and to release genetically encoded cargo. Following quorum lysis, a small number of surviving bacteria reseed the growing population, thus leading to pulsatile delivery cycles. We use microfluidic devices to characterize the engineered lysis strain and we demonstrate its potential as a drug delivery platform via co-culture with human cancer cells in vitro. As a proof of principle, we track the bacterial population dynamics in ectopic syngeneic colorectal tumors in mice. The lysis strain exhibits pulsatile population dynamics in vivo, with mean bacterial luminescence that remained two orders of magnitude lower than an unmodified strain. Finally, guided by previous findings that certain bacteria can enhance the efficacy of standard therapies11, we orally administer the lysis strain, alone or in combination with a clinical chemotherapeutic, to a syngeneic transplantation model of hepatic colorectal metastases. We find that the combination of both circuit-engineered bacteria and chemotherapy leads to a notable reduction of tumor activity along with a marked survival benefit over either therapy alone. Our approach establishes a methodology for leveraging the tools of synthetic biology to exploit the natural propensity for certain bacteria to colonize disease sites. PMID:27437587

  1. Relative Abundance in Bacterial and Fungal Gut Microbes in Obese Children: A Case Control Study.

    PubMed

    Borgo, Francesca; Verduci, Elvira; Riva, Alessandra; Lassandro, Carlotta; Riva, Enrica; Morace, Giulia; Borghi, Elisa

    2017-02-01

    Differences in relative proportions of gut microbial communities in adults have been correlated with intestinal diseases and obesity. In this study we evaluated the gut microbiota biodiversity, both bacterial and fungal, in obese and normal-weight school-aged children. We studied 28 obese (mean age 10.03 ± 0.68) and 33 age- and sex-matched normal-weight children. BMI z-scores were calculated, and the obesity condition was defined according to the WHO criteria. Fecal samples were analyzed by 16S rRNA amplification followed by denaturing gradient gel electrophoresis (DGGE) analysis and sequencing. Real-time polymerase chain reaction (PCR) was performed to quantify the most representative microbial species and genera. DGGE profiles showed high bacterial biodiversity without significant correlations with BMI z-score groups. Compared to bacterial profiles, we observed lower richness in yeast species. Sequence of the most representative bands gave back Eubacterium rectale, Saccharomyces cerevisiae, Candida albicans, and C. glabrata as present in all samples. Debaryomyces hansenii was present only in two obese children. Obese children revealed a significantly lower abundance in Akkermansia muciniphyla, Faecalibacterium prausnitzii, Bacteroides/Prevotella group, Candida spp., and Saccharomyces spp. (P = 0.031, P = 0.044, P = 0.003, P = 0.047, and P = 0.034, respectively). Taking into account the complexity of obesity, our data suggest that differences in relative abundance of some core microbial species, preexisting or diet driven, could actively be part of its etiology. This study improved our knowledge about the fungal population in the pediatric school-age population and highlighted the need to consider the influence of cross-kingdom relationships.

  2. Impact of commonly used agrochemicals on bacterial diversity in cultivated soils.

    PubMed

    Ampofo, J A; Tetteh, W; Bello, M

    2009-09-01

    The effects of three selected agrochemicals on bacterial diversity in cultivated soil have been studied. The selected agrochemicals are Cerox (an insecticide), Ceresate and Paraquat (both herbicides). The effect on bacterial population was studied by looking at the total heterotrophic bacteria presence and the effect of the agrochemicals on some selected soil microbes. The soil type used was loamy with pH of 6.0-7.0. The soil was placed in opaque pots and bambara bean (Vigna subterranean) seeds cultivated in them. The agrochemicals were applied two weeks after germination of seeds at concentrations based on manufacturer's recommendation. Plant growth was assessed by weekly measurement of plant height, foliage appearance and number of nodules formed after one month. The results indicated that the diversity index (Di) among the bacteria populations in untreated soil and that of Cerox-treated soils were high with mean diversity index above 0.95. Mean Di for Ceresate-treated soil was 0.88, and that for Paraquattreated soil was 0.85 indicating low bacterial populations in these treatment-type soils. The study also showed that application of the agrochemicals caused reduction in the number of total heterotrophic bacteria population sizes in the soil. Ceresate caused 82.50% reduction in bacteria number from a mean of 40 × 10(5) cfu g(-1) of soil sample to 70 × 10(4) cfu g(-1). Paraquat-treated soil showed 92.86% reduction, from a mean of 56 × 10(5) cfu g(-1) to 40 × 10(4) cfu g(-1). Application of Cerox to the soil did not have any remarkable reduction in bacterial population number. Total viable cell count studies using Congo red yeast-extract mannitol agar indicated reduction in the number of Rhizobium spp. after application of the agrochemicals. Mean number of Rhizobium population numbers per gram of soil was 180 × 10(4) for the untreated soil. Cerox-treated soil recorded mean number of 138 × 10(4) rhizobial cfu g(-1) of soil, a 23.33% reduction. Ceresate- and

  3. Effect of exogenous inoculants on enhancing oil recovery and indigenous bacterial community dynamics in long-term field pilot of low permeability reservoir.

    PubMed

    Li, Jing; Xue, Shuwen; He, Chunqiu; Qi, Huixia; Chen, Fulin; Ma, Yanling

    2018-03-20

    Pseudomonas aeruginosa DN1 strain and Bacillus subtilis QHQ110 strain were chosen as rhamnolipid and lipopeptide producer respectively, to evaluate the efficiency of exogenous inoculants on enhancing oil recovery (EOR) and to explore the relationship between injected bacteria and indigenous bacterial community dynamics in long-term filed pilot of Hujianshan low permeability water-flooded reservoir for 26 months. Core-flooding tests showed that the oil displacement efficiency increased by 18.46% with addition of exogenous consortia. Bacterial community dynamics using quantitative PCR and high-throughput sequencing revealed that the exogenous inoculants survived and could live together with indigenous bacterial populations. They gradually became the dominant community after the initial activation, while their comparative advantage weakened continually after 3 months of the first injection. The bacterial populations did not exert an observable change in the process of the second injection of exogenous inoculants. On account of facilitating oil emulsification and accelerating bacterial growth with oil as the carbon source by the injection of exogenous consortia, γ-proteobacteria was finally the prominent bacterial community at class level varying from 25.55 to 32.67%, and the dominant bacterial populations were increased by 2-3 orders of magnitude during the whole processes. The content of organic acids and rhamnolipids in reservoir were promoted with the change of bacterial community diversity, respectively. Cumulative oil increments reached 26,190 barrels for 13 months after the first injection, and 55,947 barrels of oil had been accumulated in all of A20 wells block through two rounds of bacterial consortia injection. The performance of EOR has a cumulative improvement by the injection of exogenous inoculants without observable inhibitory effect on the indigenous bacterial populations, demonstrating the application potential in low permeability water

  4. The relationships between odd- and branched-chain fatty acids to ruminal fermentation parameters and bacterial populations with different dietary ratios of forage and concentrate.

    PubMed

    Zhang, Y; Liu, K; Hao, X; Xin, H

    2017-12-01

    The objectives of this study were to investigate the effect of different dietary ratios of forage and concentrate (F:C) on ruminal odd- and branched-chain fatty acids (OBCFAs) contents and to evaluate the relationships between OBCFA and ruminal fermentation parameters as well as bacterial populations tested by real-time PCR technique. The experimental design was a 3 × 3 Latin square. Three rumen-fistulated dry Holstein cows were fed three rations with different dietary F:C ratios (F:C; 30:70, 50:50 and 70:30). The rumen samples were collected every two hours (0600, 0800, 1000, 1200, 1400, 1600, 1800, 2000, 2200, 2400, 0200 and 0400 h) over three consecutive days in each sampling period. The results showed that rumen OBCFA profiles are significantly (p < 0.05) affected by the dietary F:C ratios. The concentrations of C11:0, C13:0, iso-C15:0, iso-C16:0, iso-C17:0 and C17:0 were higher in the cows fed dietary F:C ratio of 70:30 than those fed with other two rations. However, the concentrations of anteiso-C15:0, C15:0 and total OBCFA were on the lowest level in the high forage diet. Correlation and regression analysis showed that ruminal OBCFAs had strong relationships with ruminal fermentation parameters and bacterial populations. In particular, the iso-fatty acids had potential power to predict butyrate and isoacids metabolized in the rumen, whereas the fatty acids with 17 carbon atoms correlated with ruminal NH 3 -N content. The OBCFA contents have different relationships with fibrolytic and starch bacteria in the rumen. C17:0 and its isomers might be used to predict populations of fibrolytic bacteria. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  5. Alaska goose populations: Past, present and future

    USGS Publications Warehouse

    King, James G.; Derksen, Dirk V.

    1986-01-01

    Many people think Alaska remains a pristine wilderness and that wildlife populations are still at prehistoric levels. This very likely is not true for the 11 species and subspecies of geese that nest in Alaska. Large, widely dispersed populations of geese were observed near the turn of the century. Even in the early 1970s, it was estimated that Alaskan habitats were used by 915,000 nesting and 100,000 additional migrating geese each year (King and Lensink 1971). Since then the Alaskan populations of most of these species have declined, some to dramatically low levels (Raveling 1984), even though habitats within the state have remained largely unaltered by man.The U.S. has treaties with Canada, Mexico, Japan and the Soviet Union to protect geese and other shared migratory birds, confirming international concern for the welfare of this resource. Cooperative research on Alaskan geese during the past several decades has given understanding of their migration corridors, staging and wintering habitats, and the principle places where they are hunted, thereby providing information needed to develop effective management plans. The only attempt to re-introduce geese in Alaska has been in the Aleutian Islands. Other opportunities exist.It is our intent here to: (1) review the historic and current status and important habitats of geese that occur in Alaska; (2) identify existing and potential threats to these populations; and (3) offer alternative management approaches for geese in Alaska.

  6. Evaluation of clinical methods for diagnosing bacterial vaginosis.

    PubMed

    Gutman, Robert E; Peipert, Jeffrey F; Weitzen, Sherry; Blume, Jeffrey

    2005-03-01

    To determine whether the current clinical criteria for diagnosing bacterial vaginosis can be simplified by using 2 clinical criteria rather than the standard 3 of 4 criteria (Amsel's criteria). This was a prospective observational study of 269 women undergoing a vaginal examination in the Women's Primary Care Center, Division of Research, or Colposcopy Clinic at Women & Infants Hospital. All 4 clinical criteria for diagnosing bacterial vaginosis were collected, and Gram stain was used as the gold standard. Sensitivity and specificity were calculated for each individual criterion, combinations of criteria, and a colorimetric pH and amine card. Receiver operating characteristic curve was generated to estimate the preferred pH and percentage of clue cells for diagnosing bacterial vaginosis. The prevalence of bacterial vaginosis in our study population was 38.7%. Vaginal pH was the most sensitive of all the criteria, at 89%, and a positive amine odor was the individual criteria with the highest specificity, at 93%. Similar specificity was seen with combinations of 2 criteria and Amsel's criteria. Receiver operating characteristic curve analysis yielded a preferred pH and percentage of clue cells of 5.0 and 20%, respectively. However, a pH of 4.5 or greater improves sensitivity with minimal loss of specificity. The clinical criteria for diagnosing bacterial vaginosis can be simplified to 2 clinical criteria without loss of sensitivity and specificity.

  7. An integrated metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission and biogeography

    PubMed Central

    Nayfach, Stephen; Rodriguez-Mueller, Beltran; Garud, Nandita

    2016-01-01

    We present the Metagenomic Intra-species Diversity Analysis System (MIDAS), which is an integrated computational pipeline for quantifying bacterial species abundance and strain-level genomic variation, including gene content and single-nucleotide polymorphisms (SNPs), from shotgun metagenomes. Our method leverages a database of more than 30,000 bacterial reference genomes that we clustered into species groups. These cover the majority of abundant species in the human microbiome but only a small proportion of microbes in other environments, including soil and seawater. We applied MIDAS to stool metagenomes from 98 Swedish mothers and their infants over one year and used rare SNPs to track strains between hosts. Using this approach, we found that although species compositions of mothers and infants converged over time, strain-level similarity diverged. Specifically, early colonizing bacteria were often transmitted from an infant’s mother, while late colonizing bacteria were often transmitted from other sources in the environment and were enriched for spore-formation genes. We also applied MIDAS to 198 globally distributed marine metagenomes and used gene content to show that many prevalent bacterial species have population structure that correlates with geographic location. Strain-level genetic variants present in metagenomes clearly reveal extensive structure and dynamics that are obscured when data are analyzed at a coarser taxonomic resolution. PMID:27803195

  8. Bacterial-biota dynamics of eight bryophyte species from different ecosystems

    PubMed Central

    Koua, Faisal Hammad Mekky; Kimbara, Kazuhide; Tani, Akio

    2014-01-01

    Despite the importance of bryophyte-associated microorganisms in various ecological aspects including their crucial roles in the soil-enrichment of organic mass and N2 fixation, nonetheless, little is known about the microbial diversity of the bryophyte phyllospheres (epi-/endophytes). To get insights into bacterial community structures and their dynamics on the bryophyte habitats in different ecosystems and their potential biological roles, we utilized the 16S rRNA gene PCR-DGGE and subsequent phylogenetic analyses to investigate the bacterial community of eight bryophyte species collected from three distinct ecosystems from western Japan. Forty-two bacterial species belonging to γ-proteobacteria and Firmicutes with 71.4% and 28.6%, respectively, were identified among 90 DGGE gel band population. These DGGE-bands were assigned to 13 different genera with obvious predomination the genus Clostridium with 21.4% from the total bacterial community. These analyses provide new insights into bryophyte-associated bacteria and their relations to the ecosystems. PMID:25737654

  9. Organic carbon and nitrogen availability determine bacterial community composition in paddy fields of the Indo-Gangetic plain.

    PubMed

    Kumar, Arvind; Rai, Lal Chand

    2017-07-01

    Soil quality is an important factor and maintained by inhabited microorganisms. Soil physicochemical characteristics determine indigenous microbial population and rice provides food security to major population of the world. Therefore, this study aimed to assess the impact of physicochemical variables on bacterial community composition and diversity in conventional paddy fields which could reflect a real picture of the bacterial communities operating in the paddy agro-ecosystem. To fulfill the objective; soil physicochemical characterization, bacterial community composition and diversity analysis was carried out using culture-independent PCR-DGGE method from twenty soils distributed across eight districts. Bacterial communities were grouped into three clusters based on UPGMA cluster analysis of DGGE banding pattern. The linkage of measured physicochemical variables with bacterial community composition was analyzed by canonical correspondence analysis (CCA). CCA ordination biplot results were similar to UPGMA cluster analysis. High levels of species-environment correlations (0.989 and 0.959) were observed and the largest proportion of species data variability was explained by total organic carbon (TOC), available nitrogen, total nitrogen and pH. Thus, results suggest that TOC and nitrogen are key regulators of bacterial community composition in the conventional paddy fields. Further, high diversity indices and evenness values demonstrated heterogeneity and co-abundance of the bacterial communities.

  10. Changes in rhizosphere bacterial gene expression following glyphosate treatment.

    PubMed

    Newman, Molli M; Lorenz, Nicola; Hoilett, Nigel; Lee, Nathan R; Dick, Richard P; Liles, Mark R; Ramsier, Cliff; Kloepper, Joseph W

    2016-05-15

    In commercial agriculture, populations and interactions of rhizosphere microflora are potentially affected by the use of specific agrichemicals, possibly by affecting gene expression in these organisms. To investigate this, we examined changes in bacterial gene expression within the rhizosphere of glyphosate-tolerant corn (Zea mays) and soybean (Glycine max) in response to long-term glyphosate (PowerMAX™, Monsanto Company, MO, USA) treatment. A long-term glyphosate application study was carried out using rhizoboxes under greenhouse conditions with soil previously having no history of glyphosate exposure. Rhizosphere soil was collected from the rhizoboxes after four growing periods. Soil microbial community composition was analyzed using microbial phospholipid fatty acid (PLFA) analysis. Total RNA was extracted from rhizosphere soil, and samples were analyzed using RNA-Seq analysis. A total of 20-28 million bacterial sequences were obtained for each sample. Transcript abundance was compared between control and glyphosate-treated samples using edgeR. Overall rhizosphere bacterial metatranscriptomes were dominated by transcripts related to RNA and carbohydrate metabolism. We identified 67 differentially expressed bacterial transcripts from the rhizosphere. Transcripts downregulated following glyphosate treatment involved carbohydrate and amino acid metabolism, and upregulated transcripts involved protein metabolism and respiration. Additionally, bacterial transcripts involving nutrients, including iron, nitrogen, phosphorus, and potassium, were also affected by long-term glyphosate application. Overall, most bacterial and all fungal PLFA biomarkers decreased after glyphosate treatment compared to the control. These results demonstrate that long-term glyphosate use can affect rhizosphere bacterial activities and potentially shift bacterial community composition favoring more glyphosate-tolerant bacteria. Copyright © 2016 The Authors. Published by Elsevier B.V. All

  11. Bacterial filamentation accelerates colonization of adhesive spots embedded in biopassive surfaces

    NASA Astrophysics Data System (ADS)

    Möller, Jens; Emge, Philippe; Avalos Vizcarra, Ima; Kollmannsberger, Philip; Vogel, Viola

    2013-12-01

    Sessile bacteria adhere to engineered surfaces and host tissues and pose a substantial clinical and economical risk when growing into biofilms. Most engineered and biological interfaces are of chemically heterogeneous nature and provide adhesive islands for bacterial attachment and growth. To mimic either defects in a surface coating of biomedical implants or heterogeneities within mucosal layers (Peyer's patches), we embedded micrometre-sized adhesive islands in a poly(ethylene glycol) biopassive background. We show experimentally and computationally that filamentation of Escherichia coli can significantly accelerate the bacterial surface colonization under physiological flow conditions. Filamentation can thus provide an advantage to a bacterial population to bridge non-adhesive distances exceeding 5 μm. Bacterial filamentation, caused by blocking of bacterial division, is common among bacterial species and can be triggered by environmental conditions or antibiotic treatment. While great awareness exists that the build-up of antibiotic resistance serves as intrinsic survival strategy, we show here that antibiotic treatment can actually promote surface colonization by triggering filamentation, which in turn prevents daughter cells from being washed away. Our combined microfabrication and computational approaches provide quantitative insights into mechanisms that enable biofouling of biopassive surfaces with embedded adhesive spots, even for spot distances that are multiples of the bacterial length.

  12. Molecular investigation of bacterial communities during the manufacturing and ripening of semi-hard Iranian Liqvan cheese.

    PubMed

    Ramezani, M; Hosseini, S M; Ferrocino, I; Amoozegar, M A; Cocolin, L

    2017-09-01

    Liqvan (or Lighvan) is a traditional Iranian cheese from the East Azerbaijan province of Iran, which is made of raw ewe's milk without the addition of a starter. The grazing pastures, environmental conditions and the ancient regional production methods allocate a distinctive microbial ecology to this type of cheese, and these factors are consequently associated with the quality of the product. In this study, the microbiota of the milk, curd and cheese has been investigated using culture independent approaches. Denaturing gradient gel electrophoresis (DGGE) of the bacteria, 16S rRNA based high-throughput sequencing and enumeration of the live bacterial community by means of quantitative PCR (qPCR) have been used for this purpose. The results showed that the main bacterial population in the milk belonged to both microbial contaminants and lactic acid bacteria (LAB). However, both of these populations were totally replaced by LAB during ripening. The present survey contributes by describing the microbiota of this ancient cheese in more detail during fermentation and ripening. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Observations of Bacterial Behavior during Infection Using the ARGOS Method

    NASA Astrophysics Data System (ADS)

    Charest, A. J.; Algarni, S.; Iannacchione, G. S.

    2015-03-01

    This research employed the Area Recorded Generalized Optical Scattering (ARGOS) approach which allowed for the observation of bacterial changes in terms of individual particles and population dynamics in real time. This new approach allows for an aqueous environment to be manipulated while conducting time-specific measurements over an indefinite amount of time. This current study provides a more time-specific method in which the bacteria remained within the initial conditions and allows for more time precision than provided by analyzing concentrations of plaque-forming units (PFU). This study involved the bacteria (F-amp) during infection by bacteriophage (MS2). The relative total intensity allows for detailed measurements of the bacteria population over time. The bacteria characteristics were also evaluated such as the root mean square image difference (at specific wavevectors), fractal dimension and effective radius. The growth rate of the infected bacteria occurred at a rate higher than the uninfected bacteria similarly, the death rates were also higher for the infected bacteria than the uninfected bacteria. The present study indicates that bacteria may react to infection by increasing the rate of population growth.

  14. Spatial Distribution of Bacterial Communities and Phenanthrene Degradation in the Rhizosphere of Lolium perenne L.

    PubMed Central

    Corgié, S. C.; Beguiristain, T.; Leyval, C.

    2004-01-01

    Rhizodegradation of organic pollutants, such as polycyclic aromatic hydrocarbons, is based on the effect of root-produced compounds, known as exudates. These exudates constitute an important and constant carbon source that selects microbial populations in the plant rhizosphere, modifying global as well as specific microbial activities. We conducted an experiment in two-compartment devices to show the selection of bacterial communities by root exudates and phenanthrene as a function of distance to roots. Using direct DNA extraction, PCR amplification, and thermal gradient gel electrophoresis screening, bacterial population profiles were analyzed in parallel to bacterial counts and quantification of phenanthrene biodegradation in three layers (0 to 3, 3 to 6, and 6 to 9 mm from root mat) of unplanted-polluted (phenanthrene), planted-polluted, and planted-unpolluted treatments. Bacterial community differed as a function of the distance to roots, in both the presence and the absence of phenanthrene. In the planted and polluted treatment, biodegradation rates showed a strong gradient with higher values near the roots. In the nonplanted treatment, bacterial communities were comparable in the three layers and phenanthrene biodegradation was high. Surprisingly, no biodegradation was detected in the section of planted polluted treatment farthest from the roots, where the bacterial community structure was similar to those of the nonplanted treatment. We conclude that root exudates and phenanthrene induce modifications of bacterial communities in polluted environments and spatially modify the activity of degrading bacteria. PMID:15184156

  15. Colour of sputum is a marker for bacterial colonisation in chronic obstructive pulmonary disease.

    PubMed

    Miravitlles, Marc; Marín, Alicia; Monsó, Eduard; Vilà, Sara; de la Roza, Cristian; Hervás, Ramona; Esquinas, Cristina; García, Marian; Millares, Laura; Morera, Josep; Torres, Antoni

    2010-05-14

    Bacterial colonisation in chronic obstructive pulmonary disease (COPD) contributes to airway inflammation and modulates exacerbations. We assessed risk factors for bacterial colonisation in COPD. Patients with stable COPD consecutively recruited over 1 year gave consent to provide a sputum sample for microbiologic analysis. Bronchial colonisation by potentially pathogenic microorganisms (PPMs) was defined as the isolation of PPMs at concentrations of > or =102 colony-forming units (CFU)/mL on quantitative bacterial culture. Colonised patients were divided into high (>105 CFU/mL) or low (<105 CFU/mL) bacterial load. A total of 119 patients (92.5% men, mean age 68 years, mean forced expiratory volume in one second [FEV1] [% predicted] 46.4%) were evaluated. Bacterial colonisation was demonstrated in 58 (48.7%) patients. Patients with and without bacterial colonisation showed significant differences in smoking history, cough, dyspnoea, COPD exacerbations and hospitalisations in the previous year, and sputum colour. Thirty-six patients (62% of those colonised) had a high bacterial load. More than 80% of the sputum samples with a dark yellow or greenish colour yielded PPMs in culture. In contrast, only 5.9% of white and 44.7% of light yellow sputum samples were positive (P < 0.001). Multivariate analysis showed an increased degree of dyspnoea (odds ratio [OR] = 2.63, 95% confidence interval [CI] 1.53-5.09, P = 0.004) and a darker sputum colour (OR = 4.11, 95% CI 2.30-7.29, P < 0.001) as factors associated with the presence of PPMs in sputum. Almost half of our population of ambulatory moderate to very severe COPD patients were colonised with PPMs. Patients colonised present more severe dyspnoea, and a darker colour of sputum allows identification of individuals more likely to be colonised.

  16. Bacterial disease management: challenges, experience, innovation and future prospects: Challenges in Bacterial Molecular Plant Pathology.

    PubMed

    Sundin, George W; Castiblanco, Luisa F; Yuan, Xiaochen; Zeng, Quan; Yang, Ching-Hong

    2016-12-01

    Plant diseases caused by bacterial pathogens place major constraints on crop production and cause significant annual losses on a global scale. The attainment of consistent effective management of these diseases can be extremely difficult, and management potential is often affected by grower reliance on highly disease-susceptible cultivars because of consumer preferences, and by environmental conditions favouring pathogen development. New and emerging bacterial disease problems (e.g. zebra chip of potato) and established problems in new geographical regions (e.g. bacterial canker of kiwifruit in New Zealand) grab the headlines, but the list of bacterial disease problems with few effective management options is long. The ever-increasing global human population requires the continued stable production of a safe food supply with greater yields because of the shrinking areas of arable land. One major facet in the maintenance of the sustainability of crop production systems with predictable yields involves the identification and deployment of sustainable disease management solutions for bacterial diseases. In addition, the identification of novel management tactics has also come to the fore because of the increasing evolution of resistance to existing bactericides. A number of central research foci, involving basic research to identify critical pathogen targets for control, novel methodologies and methods of delivery, are emerging that will provide a strong basis for bacterial disease management into the future. Near-term solutions are desperately needed. Are there replacement materials for existing bactericides that can provide effective disease management under field conditions? Experience should inform the future. With prior knowledge of bactericide resistance issues evolving in pathogens, how will this affect the deployment of newer compounds and biological controls? Knowledge is critical. A comprehensive understanding of bacterial pathosystems is required to not

  17. Network-Based Identification of Adaptive Pathways in Evolved Ethanol-Tolerant Bacterial Populations.

    PubMed

    Swings, Toon; Weytjens, Bram; Schalck, Thomas; Bonte, Camille; Verstraeten, Natalie; Michiels, Jan; Marchal, Kathleen

    2017-11-01

    Efficient production of ethanol for use as a renewable fuel requires organisms with a high level of ethanol tolerance. However, this trait is complex and increased tolerance therefore requires mutations in multiple genes and pathways. Here, we use experimental evolution for a system-level analysis of adaptation of Escherichia coli to high ethanol stress. As adaptation to extreme stress often results in complex mutational data sets consisting of both causal and noncausal passenger mutations, identifying the true adaptive mutations in these settings is not trivial. Therefore, we developed a novel method named IAMBEE (Identification of Adaptive Mutations in Bacterial Evolution Experiments). IAMBEE exploits the temporal profile of the acquisition of mutations during evolution in combination with the functional implications of each mutation at the protein level. These data are mapped to a genome-wide interaction network to search for adaptive mutations at the level of pathways. The 16 evolved populations in our data set together harbored 2,286 mutated genes with 4,470 unique mutations. Analysis by IAMBEE significantly reduced this number and resulted in identification of 90 mutated genes and 345 unique mutations that are most likely to be adaptive. Moreover, IAMBEE not only enabled the identification of previously known pathways involved in ethanol tolerance, but also identified novel systems such as the AcrAB-TolC efflux pump and fatty acids biosynthesis and even allowed to gain insight into the temporal profile of adaptation to ethanol stress. Furthermore, this method offers a solid framework for identifying the molecular underpinnings of other complex traits as well. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. Bacterial Communities Associated with Host-Adapted Populations of Pea Aphids Revealed by Deep Sequencing of 16S Ribosomal DNA

    PubMed Central

    Gauthier, Jean-Pierre; Outreman, Yannick; Mieuzet, Lucie; Simon, Jean-Christophe

    2015-01-01

    Associations between microbes and animals are ubiquitous and hosts may benefit from harbouring microbial communities through improved resource exploitation or resistance to environmental stress. The pea aphid, Acyrthosiphon pisum, is the host of heritable bacterial symbionts, including the obligate endosymbiont Buchnera aphidicola and several facultative symbionts. While obligate symbionts supply aphids with key nutrients, facultative symbionts influence their hosts in many ways such as protection against natural enemies, heat tolerance, color change and reproduction alteration. The pea aphid also encompasses multiple plant-specialized biotypes, each adapted to one or a few legume species. Facultative symbiont communities differ strongly between biotypes, although bacterial involvement in plant specialization is uncertain. Here, we analyse the diversity of bacterial communities associated with nine biotypes of the pea aphid complex using amplicon pyrosequencing of 16S rRNA genes. Combined clustering and phylogenetic analyses of 16S sequences allowed identifying 21 bacterial OTUs (Operational Taxonomic Unit). More than 98% of the sequencing reads were assigned to known pea aphid symbionts. The presence of Wolbachia was confirmed in A. pisum while Erwinia and Pantoea, two gut associates, were detected in multiple samples. The diversity of bacterial communities harboured by pea aphid biotypes was very low, ranging from 3 to 11 OTUs across samples. Bacterial communities differed more between than within biotypes but this difference did not correlate with the genetic divergence between biotypes. Altogether, these results confirm that the aphid microbiota is dominated by a few heritable symbionts and that plant specialization is an important structuring factor of bacterial communities associated with the pea aphid complex. However, since we examined the microbiota of aphid samples kept a few generations in controlled conditions, it may be that bacterial diversity was

  19. The Effect of Treating Bacterial Vaginosis on Preterm Labor

    PubMed Central

    Tebes, Christine C.; Lynch, Catherine

    2003-01-01

    Objective: Multiple studies suggest that bacterial vaginosis (BV) causes preterm labor; yet its routine treatment remains controversial. In order to help to elucidate this controversy, we performed a thorough review of studies with levels of evidence ranging from I to II–II. Methods: We searched for all of the studies from the years 1994 to 2001 via Medline’s database, including MD Consult and Ovid Mednet. Results: Several trials discovered a decrease in the incidence of preterm labor when BV was treated, but most of those trials were performed on women with a history of preterm labor. However, the majority of trials reviewed advise against treatment of a general low-risk obstetric population, as there was no significant decrease in preterm labor. Conclusions: Therefore, based on the above studies and the current guidelines of the Centers for Disease Control and Prevention (CDC), treating pregnant women in high-risk populations who are diagnosed with BV provides the clinician with an opportunity to possibly prevent preterm labor in this population. In nulliparous women without a history of preterm birth, treatment is recommended if other risk factors are present (e.g. gonorrhea or chlamydia). However, in the general low-risk populations, routine screening is not indicated. PMID:14627219

  20. Similar Genetic Architecture with Shared and Unique Quantitative Trait Loci for Bacterial Cold Water Disease Resistance in Two Rainbow Trout Breeding Populations

    PubMed Central

    Vallejo, Roger L.; Liu, Sixin; Gao, Guangtu; Fragomeni, Breno O.; Hernandez, Alvaro G.; Leeds, Timothy D.; Parsons, James E.; Martin, Kyle E.; Evenhuis, Jason P.; Welch, Timothy J.; Wiens, Gregory D.; Palti, Yniv

    2017-01-01

    Bacterial cold water disease (BCWD) causes significant mortality and economic losses in salmonid aquaculture. In previous studies, we identified moderate-large effect quantitative trait loci (QTL) for BCWD resistance in rainbow trout (Oncorhynchus mykiss). However, the recent availability of a 57 K SNP array and a reference genome assembly have enabled us to conduct genome-wide association studies (GWAS) that overcome several experimental limitations from our previous work. In the current study, we conducted GWAS for BCWD resistance in two rainbow trout breeding populations using two genotyping platforms, the 57 K Affymetrix SNP array and restriction-associated DNA (RAD) sequencing. Overall, we identified 14 moderate-large effect QTL that explained up to 60.8% of the genetic variance in one of the two populations and 27.7% in the other. Four of these QTL were found in both populations explaining a substantial proportion of the variance, although major differences were also detected between the two populations. Our results confirm that BCWD resistance is controlled by the oligogenic inheritance of few moderate-large effect loci and a large-unknown number of loci each having a small effect on BCWD resistance. We detected differences in QTL number and genome location between two GWAS models (weighted single-step GBLUP and Bayes B), which highlights the utility of using different models to uncover QTL. The RAD-SNPs detected a greater number of QTL than the 57 K SNP array in one population, suggesting that the RAD-SNPs may uncover polymorphisms that are more unique and informative for the specific population in which they were discovered. PMID:29109734

  1. Similar Genetic Architecture with Shared and Unique Quantitative Trait Loci for Bacterial Cold Water Disease Resistance in Two Rainbow Trout Breeding Populations.

    PubMed

    Vallejo, Roger L; Liu, Sixin; Gao, Guangtu; Fragomeni, Breno O; Hernandez, Alvaro G; Leeds, Timothy D; Parsons, James E; Martin, Kyle E; Evenhuis, Jason P; Welch, Timothy J; Wiens, Gregory D; Palti, Yniv

    2017-01-01

    Bacterial cold water disease (BCWD) causes significant mortality and economic losses in salmonid aquaculture. In previous studies, we identified moderate-large effect quantitative trait loci (QTL) for BCWD resistance in rainbow trout ( Oncorhynchus mykiss ). However, the recent availability of a 57 K SNP array and a reference genome assembly have enabled us to conduct genome-wide association studies (GWAS) that overcome several experimental limitations from our previous work. In the current study, we conducted GWAS for BCWD resistance in two rainbow trout breeding populations using two genotyping platforms, the 57 K Affymetrix SNP array and restriction-associated DNA (RAD) sequencing. Overall, we identified 14 moderate-large effect QTL that explained up to 60.8% of the genetic variance in one of the two populations and 27.7% in the other. Four of these QTL were found in both populations explaining a substantial proportion of the variance, although major differences were also detected between the two populations. Our results confirm that BCWD resistance is controlled by the oligogenic inheritance of few moderate-large effect loci and a large-unknown number of loci each having a small effect on BCWD resistance. We detected differences in QTL number and genome location between two GWAS models (weighted single-step GBLUP and Bayes B), which highlights the utility of using different models to uncover QTL. The RAD-SNPs detected a greater number of QTL than the 57 K SNP array in one population, suggesting that the RAD-SNPs may uncover polymorphisms that are more unique and informative for the specific population in which they were discovered.

  2. Bacterial selection by mycospheres of Atlantic Rainforest mushrooms.

    PubMed

    Halsey, Joshua Andrew; de Cássia Pereira E Silva, Michele; Andreote, Fernando Dini

    2016-10-01

    This study focuses on the selection exerted on bacterial communities in the mycospheres of mushrooms collected in the Brazilian Atlantic Rainforest. A total of 24 paired samples (bulk soil vs. mycosphere) were assessed to investigate potential interactions between fungi and bacteria present in fungal mycospheres. Prevalent fungal families were identified as Marasmiaceae and Lepiotaceae (both Basidiomycota) based on ITS partial sequencing. We used culture-independent techniques to analyze bacterial DNA from soil and mycosphere samples. Bacterial communities in the samples were distinguished based on overall bacterial, alphaproteobacterial, and betaproteobacterial PCR-DGGE patterns, which were different in fungi belonging to different taxa. These results were confirmed by pyrosequencing the V4 region of the 16S rRNA gene (based on five bulk soil vs. mycosphere pairs), which revealed the most responsive bacterial families in the different conditions generated beneath the mushrooms, identified as Bradyrhizobiaceae, Burkholderiaceae, and Pseudomonadaceae. The bacterial families Acetobacteraceae, Chrhoniobacteraceae, Planctomycetaceae, Conexibacteraceae, and Burkholderiaceae were found in all mycosphere samples, composing the core mycosphere microbiome. Similarly, some bacterial groups identified as Koribacteriaceae, Acidobacteria (Solibacteriaceae) and an unclassified group of Acidobacteria were preferentially present in the bulk soil samples (found in all of them). In this study we depict the mycosphere effect exerted by mushrooms inhabiting the Brazilian Atlantic Rainforest, and identify the bacteria with highest response to such a specific niche, possibly indicating the role bacteria play in mushroom development and dissemination within this yet-unexplored environment.

  3. Bacterial detection of platelets: current problems and possible resolutions.

    PubMed

    Blajchman, Morris A; Beckers, Erik A M; Dickmeiss, Ebbe; Lin, Lilly; Moore, Gillian; Muylle, Ludo

    2005-10-01

    The greatest transfusion-transmitted disease risk facing a transfusion recipient is that of bacterial sepsis. The prevalence of bacterial contamination in platelets and red blood cells is approximately 1 in 3,000 units transfused. The available data indicate that transfusion-associated sepsis develops after 1 in 25,000 platelet transfusions and 1 in 250,000 red blood cell transfusions. One of the most widely used strategies for decreasing bacterial sepsis risk is bacterial detection. A roundtable meeting of experts was convened during the XXVIII Annual Congress of the International Society of Blood Transfusion (Edinburgh, UK, July 2004) to provide a forum for experts to share their experiences in the routine bacterial detection of platelet products. This article summarizes the presentations, discussions, and recommendations of the panel. The data presented indicate that some of the current bacterial screening technology is useful for blocking the issuance of platelet units that contain relatively high levels of contaminating bacteria. Platelet units are usually released based on a test-negative status, which often become test-positive only upon longer storage. These data thus suggest that bacterial screening may not prevent all transfusion-transmitted bacterial infections. Two transfusion-transmitted case reports further highlighted the limitation of the routine bacterial screening of platelet products. It was felt that newer technologies, such as pathogen inactivation, may represent a more reliable process, with a higher level of safety. The panel thus recommended that the Transfusion Medicine community may need to change its thinking (paradigm) about bacterial detection, toward the possibility of the pathogen inactivation of blood products, to deal with the bacterial contamination issue. It was suggested, where permitted by regulatory agencies, that blood centers should consider adopting first-generation pathogen inactivation systems as a more effective approach

  4. Bacterial Community Succession in Pine-Wood Decomposition.

    PubMed

    Kielak, Anna M; Scheublin, Tanja R; Mendes, Lucas W; van Veen, Johannes A; Kuramae, Eiko E

    2016-01-01

    Though bacteria and fungi are common inhabitants of decaying wood, little is known about the relationship between bacterial and fungal community dynamics during natural wood decay. Based on previous studies involving inoculated wood blocks, strong fungal selection on bacteria abundance and community composition was expected to occur during natural wood decay. Here, we focused on bacterial and fungal community compositions in pine wood samples collected from dead trees in different stages of decomposition. We showed that bacterial communities undergo less drastic changes than fungal communities during wood decay. Furthermore, we found that bacterial community assembly was a stochastic process at initial stage of wood decay and became more deterministic in later stages, likely due to environmental factors. Moreover, composition of bacterial communities did not respond to the changes in the major fungal species present in the wood but rather to the stage of decay reflected by the wood density. We concluded that the shifts in the bacterial communities were a result of the changes in wood properties during decomposition and largely independent of the composition of the wood-decaying fungal communities.

  5. Bacterial Community Succession in Pine-Wood Decomposition

    PubMed Central

    Kielak, Anna M.; Scheublin, Tanja R.; Mendes, Lucas W.; van Veen, Johannes A.; Kuramae, Eiko E.

    2016-01-01

    Though bacteria and fungi are common inhabitants of decaying wood, little is known about the relationship between bacterial and fungal community dynamics during natural wood decay. Based on previous studies involving inoculated wood blocks, strong fungal selection on bacteria abundance and community composition was expected to occur during natural wood decay. Here, we focused on bacterial and fungal community compositions in pine wood samples collected from dead trees in different stages of decomposition. We showed that bacterial communities undergo less drastic changes than fungal communities during wood decay. Furthermore, we found that bacterial community assembly was a stochastic process at initial stage of wood decay and became more deterministic in later stages, likely due to environmental factors. Moreover, composition of bacterial communities did not respond to the changes in the major fungal species present in the wood but rather to the stage of decay reflected by the wood density. We concluded that the shifts in the bacterial communities were a result of the changes in wood properties during decomposition and largely independent of the composition of the wood-decaying fungal communities. PMID:26973611

  6. Diet and Environment Shape Fecal Bacterial Microbiota Composition and Enteric Pathogen Load of Grizzly Bears

    PubMed Central

    Schwab, Clarissa; Cristescu, Bogdan; Northrup, Joseph M.; Stenhouse, Gordon B.; Gänzle, Michael

    2011-01-01

    Background Diet and environment impact the composition of mammalian intestinal microbiota; dietary or health disturbances trigger alterations in intestinal microbiota composition and render the host susceptible to enteric pathogens. To date no long term monitoring data exist on the fecal microbiota and pathogen load of carnivores either in natural environments or in captivity. This study investigates fecal microbiota composition and the presence of pathogenic Escherichia coli and toxigenic clostridia in wild and captive grizzly bears (Ursus arctos) and relates these to food resources consumed by bears. Methodology/Principal Findings Feces were obtained from animals of two wild populations and from two captive animals during an active bear season. Wild animals consumed a diverse diet composed of plant material, animal prey and insects. Captive animals were fed a regular granulated diet with a supplement of fruits and vegetables. Bacterial populations were analyzed using quantitative PCR. Fecal microbiota composition fluctuated in wild and in captive animals. The abundance of Clostridium clusters I and XI, and of C. perfringens correlated to regular diet protein intake. Enteroaggregative E. coli were consistently present in all populations. The C. sordellii phospholipase C was identified in three samples of wild animals and for the first time in Ursids. Conclusion This is the first longitudinal study monitoring the fecal microbiota of wild carnivores and comparing it to that of captive individuals of the same species. Location and diet affected fecal bacterial populations as well as the presence of enteric pathogens. PMID:22194798

  7. Diet and environment shape fecal bacterial microbiota composition and enteric pathogen load of grizzly bears.

    PubMed

    Schwab, Clarissa; Cristescu, Bogdan; Northrup, Joseph M; Stenhouse, Gordon B; Gänzle, Michael

    2011-01-01

    Diet and environment impact the composition of mammalian intestinal microbiota; dietary or health disturbances trigger alterations in intestinal microbiota composition and render the host susceptible to enteric pathogens. To date no long term monitoring data exist on the fecal microbiota and pathogen load of carnivores either in natural environments or in captivity. This study investigates fecal microbiota composition and the presence of pathogenic Escherichia coli and toxigenic clostridia in wild and captive grizzly bears (Ursus arctos) and relates these to food resources consumed by bears. Feces were obtained from animals of two wild populations and from two captive animals during an active bear season. Wild animals consumed a diverse diet composed of plant material, animal prey and insects. Captive animals were fed a regular granulated diet with a supplement of fruits and vegetables. Bacterial populations were analyzed using quantitative PCR. Fecal microbiota composition fluctuated in wild and in captive animals. The abundance of Clostridium clusters I and XI, and of C. perfringens correlated to regular diet protein intake. Enteroaggregative E. coli were consistently present in all populations. The C. sordellii phospholipase C was identified in three samples of wild animals and for the first time in Ursids. This is the first longitudinal study monitoring the fecal microbiota of wild carnivores and comparing it to that of captive individuals of the same species. Location and diet affected fecal bacterial populations as well as the presence of enteric pathogens.

  8. [Combination therapy of chronic bacterial prostatitis].

    PubMed

    Khryanin, A A; Reshetnikov, O V

    2016-08-01

    The article discusses the possible etiological factors in the development of chronic bacterial prostatitis. The authors presented a comparative long-term analysis of morbidity from non-viral sexually transmitted infections (STIs) in Russia. Against the background of general decline in STIs incidence, a significant percentage of them is made up by urogenital trichomoniasis. The findings substantiated the advantages of combination therapy (ornidazole and ofloxacin) for bacterial urinary tract infections.

  9. Vulvovaginal symptoms in women with bacterial vaginosis.

    PubMed

    Klebanoff, Mark A; Schwebke, Jane R; Zhang, Jun; Nansel, Tonja R; Yu, Kai-Fun; Andrews, William W

    2004-08-01

    A substantial, but highly variable, percentage of women with bacterial vaginosis are said to be asymptomatic. The purpose of this study was to estimate the prevalence of symptoms among women with bacterial vaginosis compared with women without bacterial vaginosis by direct, explicit, and detailed questioning of these women. Women presenting for a routine health care visit at 12 health department clinics in Birmingham, Alabama, were recruited to participate in a longitudinal study of vaginal flora. At the first visit, they underwent a pelvic examination, lower genital tract microbiological evaluation, and an interview that included detailed questions regarding lower genital tract symptoms. The prevalence of symptoms among women with and without bacterial vaginosis (Gram stain score 7 or higher) was compared. Among 2,888 women without gonorrhea, Chlamydia, or trichomonas, 75% of women with and 82% of women without bacterial vaginosis never noted any vaginal odor in the past 6 months (P <.001). The corresponding values were 63% and 65% for never noting vaginal "wetness" (P =.02); 58% and 57% for vaginal discharge (P =.65); 91% and 86% for irritation (P =.004); 88% and 85% for itching (P =.64); and 96% and 94% for dysuria (P =.002), respectively. Cumulatively, 58% of women with bacterial vaginosis noted odor, discharge, and/or wetness in the past 6 months compared with 57% of women without bacterial vaginosis (P =.70). The 2 classic symptoms of bacterial vaginosis discharge and odor are each reported by a minority of women with bacterial vaginosis and are only slightly more prevalent than among women without bacterial vaginosis.

  10. [Congenital skull base defect causing recurrent bacterial meningitis].

    PubMed

    Berliner, Elihay; Bar Meir, Maskit; Megged, Orli

    2012-08-01

    Bacterial meningitis is a life threatening disease. Most patients will experience only one episode throughout life. Children who experience bacterial meningitis more than once, require further immunologic or anatomic evaluation. We report a 9 year old child with five episodes of bacterial meningitis due to a congenital defect of the skull base. A two and a half year old boy first presented to our medical center with pneumococcal meningitis. He was treated with antibiotics and fully recovered. Two months later he presented again with a similar clinical picture. Streptococcus pneumoniae grew in cerebrospinal fluid (CSF) culture. CT scan and later MRI of the brain revealed a defect in the anterior middle fossa floor, with protrusion of brain tissue into the sphenoidal sinus. Corrective surgery was recommended but the parents refused. Three months later, a third episode of pneumococcal meningitis occurred. The child again recovered with antibiotics and this time corrective surgery was performed. Five years later, the boy presented once again with clinical signs and symptoms consistent with bacterial meningitis. CSF culture was positive, but the final identification of the bacteria was conducted by broad spectrum 16S ribosomal RNA PCR (16S rRNA PCR) which revealed a sequence of Neisseria lactamica. CT and MRI showed recurrence of the skull base defect with encephalocele in the sphenoid sinus. The parents again refused neurosurgical intervention. A year later the patient presented with bacterial meningitis. CSF culture obtained after initiation of antibiotics was negative, but actinobacillus was identified in the CSF by 16S rRNA PCR. The patient is scheduled for neurosurgical intervention. In patients with recurrent bacterial meningitis caused by organisms colonizing the oropharynx or nasopharynx, an anatomical defect should be carefully sought and surgically repaired.

  11. Intra- and inter-species interactions within biofilms of important foodborne bacterial pathogens

    PubMed Central

    Giaouris, Efstathios; Heir, Even; Desvaux, Mickaël; Hébraud, Michel; Møretrø, Trond; Langsrud, Solveig; Doulgeraki, Agapi; Nychas, George-John; Kačániová, Miroslava; Czaczyk, Katarzyna; Ölmez, Hülya; Simões, Manuel

    2015-01-01

    A community-based sessile life style is the normal mode of growth and survival for many bacterial species. Under such conditions, cell-to-cell interactions are inevitable and ultimately lead to the establishment of dense, complex and highly structured biofilm populations encapsulated in a self-produced extracellular matrix and capable of coordinated and collective behavior. Remarkably, in food processing environments, a variety of different bacteria may attach to surfaces, survive, grow, and form biofilms. Salmonella enterica, Listeria monocytogenes, Escherichia coli, and Staphylococcus aureus are important bacterial pathogens commonly implicated in outbreaks of foodborne diseases, while all are known to be able to create biofilms on both abiotic and biotic surfaces. Particularly challenging is the attempt to understand the complexity of inter-bacterial interactions that can be encountered in such unwanted consortia, such as competitive and cooperative ones, together with their impact on the final outcome of these communities (e.g., maturation, physiology, antimicrobial resistance, virulence, dispersal). In this review, up-to-date data on both the intra- and inter-species interactions encountered in biofilms of these pathogens are presented. A better understanding of these interactions, both at molecular and biophysical levels, could lead to novel intervention strategies for controlling pathogenic biofilm formation in food processing environments and thus improve food safety. PMID:26347727

  12. Work package 4 report: Broodfish testing for bacterial infections

    USGS Publications Warehouse

    Michel, Christian; Elliott, Diane G.; Jansson, Eva; Urdaci, Maria; Midtlyng, Paul J.

    2005-01-01

    This report summarises current scientific information and experience obtained with various methods for testing of salmonid broodfish or spawn for bacterial kidney disease (BKD - Renibacterium salmoninarum infection) in order to prevent vertical transmission of the organism to the offspring. Assessment is also being performed for Flavobacterium psychrophilum infections causing rainbow trout fry syndrome (RTFS) or bacterial coldwater disease (CWD), and for Piscirickettsia salmonis infection causing salmon rickettsial syndrome (SRS) in salmonid fish species. Methods for screening to document the absence of BKD in fish populations are well established. Some of them have also proven successful for testing individual fish from infected populations in order to avoid vertical transmission of the infectious agent. Several diagnostic methods for flavobacteriosis and piscirickettsiosis have also been established but none of them, as yet, has been validated for use in programmes to prevent vertical transmission of disease. Priority subjects for further research in order to improve the management and control of these vertically transmissible fish diseases are suggested.

  13. [Spontaneous bacterial peritonitis: impact of microbiological changes].

    PubMed

    Almeida, Paulo Roberto Lerias de; Camargo, Nutianne Schneider; Arenz, Maximilhano; Tovo, Cristiane Valle; Galperim, Bruno; Behar, Paulo

    2007-01-01

    Spontaneous bacterial peritonitis is a serious complication in cirrhotic patients, and the changes in the microbiological characteristics reported in the last years are impacting the choice of antibiotic used in the treatment. To evaluate the change in the epidemiology and antibiotic resistance of the bacteria causing spontaneous bacterial peritonitis in a 7 years period. All the cases of cirrhotic patients with spontaneous bacterial peritonitis with positive cultural examination were retrospectively studied. Two periods were evaluated: 1997-1998 and 2002-2003. The most frequent infecting organisms and the sensitivity in vitro to antibiotics were registered. In the first period (1997-1998) there were 33 cases, 3 (9%) with polymicrobial infection. The most common were: E.coli in 13 (36,11%), Staphylococcus coagulase-negative in 6 (16,66%), K. pneumoniae in 5 (13,88%), S. aureus in 4 (11,11%) and S. faecalis in 3 (8,33%). In 2003-2004, there were 43 cases, 2 (5%) with polymicrobial infection. The most frequent were: Staphylococus coagulase-negative in 16 (35,55%), S. aureus in 8 (17,77%), E. coli in 7 (15,55%) and K. pneumoniae in 3 (6,66%). No one was using antibiotic prophilaxys. The prevalence of S. aureus methicillin-resitant to quinolone and trimethoprim-sulfamethoxazole changed from 25% to 50%, and vancomicin was the only one with absolute activity during all the period. In the same way, the prevalence of E. coli resistant to third generation cephalosporin and to quinolone changed from 0% to 16%. There was a modification of the bacterial population causing spontaneous bacterial peritonitis, with high frequency of gram-positive organisms, as well as an increase in the resistance to the traditionally recommended antibiotics. This study suggests a probable imminent inclusion of a drug against gram-positive organisms in the empiric treatment of spontaneous bacterial peritonitis.

  14. Characterizing bacterial communities in paper production-troublemakers revealed.

    PubMed

    Zumsteg, Anita; Urwyler, Simon K; Glaubitz, Joachim

    2017-08-01

    Biofilm formation is a major cause of reduced paper quality and increased down time during paper manufacturing. This study uses Illumina next-generation sequencing to identify the microbial populations causing quality issues due to their presence in biofilms and slimes. The paper defects investigated contained traces of the films and/or slime of mainly two genera, Tepidimonas and Chryseobacterium. The Tepidimonas spp. found contributed on average 68% to the total bacterial population. Both genera have been described previously to be associated with biofilms in paper mills. There was indication that Tepidimonas spp. were present as compact biofilm in the head box of one paper machine and was filtered out by the paper web during production. On the other hand Tepidimonas spp. were also present to a large extent in the press and white waters of two nonproblematic paper machines. Therefore, the mere presence of a known biofilm producer alone is not sufficient to cause slimes and therefore paper defects and other critical factors are additionally at play. For instance, we identified Acidovorax sp., which is an early colonizer of paper machines, exhibiting the ability to form extracellular DNA matrices for attachment and biofilm formation. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  15. Modeling Physiological Processes That Relate Toxicant Exposure and Bacterial Population Dynamics

    PubMed Central

    Klanjscek, Tin; Nisbet, Roger M.; Priester, John H.; Holden, Patricia A.

    2012-01-01

    Quantifying effects of toxicant exposure on metabolic processes is crucial to predicting microbial growth patterns in different environments. Mechanistic models, such as those based on Dynamic Energy Budget (DEB) theory, can link physiological processes to microbial growth. Here we expand the DEB framework to include explicit consideration of the role of reactive oxygen species (ROS). Extensions considered are: (i) additional terms in the equation for the “hazard rate” that quantifies mortality risk; (ii) a variable representing environmental degradation; (iii) a mechanistic description of toxic effects linked to increase in ROS production and aging acceleration, and to non-competitive inhibition of transport channels; (iv) a new representation of the “lag time” based on energy required for acclimation. We estimate model parameters using calibrated Pseudomonas aeruginosa optical density growth data for seven levels of cadmium exposure. The model reproduces growth patterns for all treatments with a single common parameter set, and bacterial growth for treatments of up to 150 mg(Cd)/L can be predicted reasonably well using parameters estimated from cadmium treatments of 20 mg(Cd)/L and lower. Our approach is an important step towards connecting levels of biological organization in ecotoxicology. The presented model reveals possible connections between processes that are not obvious from purely empirical considerations, enables validation and hypothesis testing by creating testable predictions, and identifies research required to further develop the theory. PMID:22328915

  16. Differentiation of bacterial versus viral otitis media using a combined Raman scattering spectroscopy and low coherence interferometry probe (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhao, Youbo; Shelton, Ryan L.; Tu, Haohua; Nolan, Ryan M.; Monroy, Guillermo L.; Chaney, Eric J.; Boppart, Stephen A.

    2016-02-01

    Otitis media (OM) is a highly prevalent disease that can be caused by either a bacterial or viral infection. Because antibiotics are only effective against bacterial infections, blind use of antibiotics without definitive knowledge of the infectious agent, though commonly practiced, can lead to the problems of potential harmful side effects, wasteful misuse of medical resources, and the development of antimicrobial resistance. In this work, we investigate the feasibility of using a combined Raman scattering spectroscopy and low coherence interferometry (LCI) device to differentiate OM infections caused by viruses and bacteria and improve our diagnostic ability of OM. Raman spectroscopy, an established tool for molecular analysis of biological tissue, has been shown capable of identifying different bacterial species, although mostly based on fixed or dried sample cultures. LCI has been demonstrated recently as a promising tool for determining tympanic membrane (TM) thickness and the presence and thickness of middle-ear biofilm located behind the TM. We have developed a fiber-based ear insert that incorporates spatially-aligned Raman and LCI probes for point-of-care diagnosis of OM. As shown in human studies, the Raman probe provides molecular signatures of bacterial- and viral-infected OM and normal middle-ear cavities, and LCI helps to identify depth-resolved structural information as well as guide and monitor positioning of the Raman spectroscopy beam for relatively longer signal acquisition time. Differentiation of OM infections is determined by correlating in vivo Raman data collected from human subjects with the Raman features of different bacterial and viral species obtained from cultured samples.

  17. Composition of Bacterial Communities Associated with Aurelia aurita Changes with Compartment, Life Stage, and Population

    PubMed Central

    Weiland-Bräuer, Nancy; Neulinger, Sven C.; Pinnow, Nicole; Künzel, Sven; Baines, John F.

    2015-01-01

    The scyphozoan Aurelia aurita is recognized as a key player in marine ecosystems and a driver of ecosystem change. It is thus intensely studied to address ecological questions, although its associations with microorganisms remain so far undescribed. In the present study, the microbiota associated with A. aurita was visualized with fluorescence in situ hybridization (FISH) analysis, and community structure was analyzed with respect to different life stages, compartments, and populations of A. aurita by 16S rRNA gene amplicon sequencing. We demonstrate that the composition of the A. aurita microbiota is generally highly distinct from the composition of communities present in ambient water. Comparison of microbial communities from different developmental stages reveals evidence for life stage-specific community patterns. Significant restructuring of the microbiota during strobilation from benthic polyp to planktonic life stages is present, arguing for a restructuring during the course of metamorphosis. Furthermore, the microbiota present in different compartments of the adult medusa (exumbrella mucus and gastric cavity) display significant differences, indicating body part-specific colonization. A novel Mycoplasma strain was identified in both compartment-specific microbiota and is most likely present inside the epithelium as indicated by FISH analysis of polyps, indicating potential endosymbiosis. Finally, comparison of polyps of different populations kept under the same controlled laboratory conditions in the same ambient water showed population-specific community patterns, most likely due the genetic background of the host. In conclusion, the presented data indicate that the associated microbiota of A. aurita may play important functional roles, e.g., during the life cycle. PMID:26116680

  18. Acute bacterial prostatitis with osteomyelitis

    PubMed Central

    Nargund, V H; Stewart, P A Hamilton

    1995-01-01

    This short case presentation concerns the simultaneous occurrence of acute bacterial prostatitis and osteomyelitis due to staphylococcal bacteraemia hitherto unrecorded in the literature. ImagesFigure 1Figure 2 PMID:7629772

  19. [Polyvalence of bacteriophages isolated from fruit trees, affected by bacterial fire blight].

    PubMed

    Tovkach, F I; Moroz, S N; Korol', N A; Faĭdiuk, Iu V; Kushkina, A I

    2013-01-01

    Phage populations appearing as a result of a pathogenic process caused by Erwinia amylovora have been discovered and described. They accompany bacterial fire blight development in the process of quince, pear and apple trees vegetation in Zakarpattya region of Ukraine. Phage isolates of the affected pear and quince include polyvalent virulent phages able to develop on bacterial strains associated with plants--E. amylovora. E. "horticola" and Pantoea agglomerans. E. amylovora isolated from the plant tissues affected by the fire blight and detected at the same time as phages proved to be resistant to the viral infection. It is hard to explain now this characteristic however it was noticed that resistance to phages can change drastically in case of dissociation, lysogenization and mutagenesis of erwinia in laboratory conditions. Phage population study shows that they are heterogeneous and can obviously include not only polyvalent but also specific viruses. Further studies of biology and molecular genetics of pure lines of isolated phages will help to get closer to understanding the place and role of bacteriophages in the complicated network of relations between bacterial pathogens and plants.

  20. Genetic Diversity of Bacterial Communities and Gene Transfer Agents in Northern South China Sea

    PubMed Central

    Sun, Fu-Lin; Wang, You-Shao; Wu, Mei-Lin; Jiang, Zhao-Yu; Sun, Cui-Ci; Cheng, Hao

    2014-01-01

    Pyrosequencing of the 16S ribosomal RNA gene (rDNA) amplicons was performed to investigate the unique distribution of bacterial communities in northern South China Sea (nSCS) and evaluate community structure and spatial differences of bacterial diversity. Cyanobacteria, Proteobacteria, Actinobacteria, and Bacteroidetes constitute the majority of bacteria. The taxonomic description of bacterial communities revealed that more Chroococcales, SAR11 clade, Acidimicrobiales, Rhodobacterales, and Flavobacteriales are present in the nSCS waters than other bacterial groups. Rhodobacterales were less abundant in tropical water (nSCS) than in temperate and cold waters. Furthermore, the diversity of Rhodobacterales based on the gene transfer agent (GTA) major capsid gene (g5) was investigated. Four g5 gene clone libraries were constructed from samples representing different regions and yielded diverse sequences. Fourteen g5 clusters could be identified among 197 nSCS clones. These clusters were also related to known g5 sequences derived from genome-sequenced Rhodobacterales. The composition of g5 sequences in surface water varied with the g5 sequences in the sampling sites; this result indicated that the Rhodobacterales population could be highly diverse in nSCS. Phylogenetic tree analysis result indicated distinguishable diversity patterns among tropical (nSCS), temperate, and cold waters, thereby supporting the niche adaptation of specific Rhodobacterales members in unique environments. PMID:25364820

  1. Acute bacterial meningitis in Iran: Systematic review and meta-analysis

    PubMed Central

    Riahi, Seyed Mohammad; Nasiri, Mohammad Javad; Fallah, Fatemeh; Dabiri, Hossein; Pouriran, Ramin

    2017-01-01

    Introduction Bacterial meningitis persists in being a substantial cause of high mortality and severe neurological morbidity, despite the advances in antimicrobial therapy. Accurate data has not been available regarding the epidemiology of bacterial meningitis particularly in developing countries, yet. Indeed, the present systematic review provides a comprehensive data analysis on the prevalence and epidemiology of bacterial meningitis in Iran. Methods We systematically reviewed articles from 1994 to 2015. The reports which contained the prevalence and etiology of acute bacterial meningitis by valid clinical and laboratory diagnosis were comprised in the present study. Results Our analysis indicated that Streptococcus pneumoniae (30% [I2 = 56% p < 0.01]), Haemophilus influenza type b (15% [I2 = 82.75% p < 0.001]), coagulase negative staphylococci (CoNS) (14% [I2 = 60.5% p < 0.06]), and Neisseria meningitidis (13% [I2 = 74.16% p < 0.001]) were the most common cause of acute bacterial meningitis among meningitis cases in Iran. Notably, high frequency rates of nosocomial meningitis pathogens were detected in the present analysis. Conclusions It was magnificently attained that the majority of cases for bacterial meningitis in Iran could be avertable by public immunization schemes and by preventive care to inhibit the broadening of hospital acquired pathogens. PMID:28170400

  2. Acute bacterial meningitis in Iran: Systematic review and meta-analysis.

    PubMed

    Houri, Hamidreza; Pormohammad, Ali; Riahi, Seyed Mohammad; Nasiri, Mohammad Javad; Fallah, Fatemeh; Dabiri, Hossein; Pouriran, Ramin

    2017-01-01

    Bacterial meningitis persists in being a substantial cause of high mortality and severe neurological morbidity, despite the advances in antimicrobial therapy. Accurate data has not been available regarding the epidemiology of bacterial meningitis particularly in developing countries, yet. Indeed, the present systematic review provides a comprehensive data analysis on the prevalence and epidemiology of bacterial meningitis in Iran. We systematically reviewed articles from 1994 to 2015. The reports which contained the prevalence and etiology of acute bacterial meningitis by valid clinical and laboratory diagnosis were comprised in the present study. Our analysis indicated that Streptococcus pneumoniae (30% [I2 = 56% p < 0.01]), Haemophilus influenza type b (15% [I2 = 82.75% p < 0.001]), coagulase negative staphylococci (CoNS) (14% [I2 = 60.5% p < 0.06]), and Neisseria meningitidis (13% [I2 = 74.16% p < 0.001]) were the most common cause of acute bacterial meningitis among meningitis cases in Iran. Notably, high frequency rates of nosocomial meningitis pathogens were detected in the present analysis. It was magnificently attained that the majority of cases for bacterial meningitis in Iran could be avertable by public immunization schemes and by preventive care to inhibit the broadening of hospital acquired pathogens.

  3. Community-Acquired Bacterial Meningitis in Alcoholic Patients

    PubMed Central

    Weisfelt, Martijn; de Gans, Jan; van der Ende, Arie; van de Beek, Diederik

    2010-01-01

    Background Alcoholism is associated with susceptibility to infectious disease, particularly bacterial pneumonia. In the present study we described characteristics in alcoholic patients with bacterial meningitis and delineate the differences with findings in non-alcoholic adults with bacterial meningitis. Methods/Principal Findings This was a prospective nationwide observational cohort study including patients aged >16 years who had bacterial meningitis confirmed by culture of cerebrospinal fluid (696 episodes of bacterial meningitis occurring in 671 patients). Alcoholism was present in 27 of 686 recorded episodes of bacterial meningitis (4%) and alcoholics were more often male than non-alcoholics (82% vs 48%, P = 0.001). A higher proportion of alcoholics had underlying pneumonia (41% vs 11% P<0.001). Alcoholics were more likely to have meningitis due to infection with Streptococcus pneumoniae (70% vs 50%, P = 0.01) and Listeria monocytogenes (19% vs 4%, P = 0.005), whereas Neisseria meningitidis was more common in non-alcoholic patients (39% vs 4%, P = 0.01). A large proportion of alcoholics developed complications during clinical course (82% vs 62%, as compared with non-alcoholics; P = 0.04), often cardiorespiratory failure (52% vs 28%, as compared with non-alcoholics; P = 0.01). Alcoholic patients were at risk for unfavourable outcome (67% vs 33%, as compared with non-alcoholics; P<0.001). Conclusions/Significance Alcoholic patients are at high risk for complications resulting in high morbidity and mortality. They are especially at risk for cardiorespiratory failure due to underlying pneumonia, and therefore, aggressive supportive care may be crucial in the treatment of these patients. PMID:20161709

  4. Exposure to West Nile Virus Increases Bacterial Diversity and Immune Gene Expression in Culex pipiens.

    PubMed

    Zink, Steven D; Van Slyke, Greta A; Palumbo, Michael J; Kramer, Laura D; Ciota, Alexander T

    2015-10-27

    Complex interactions between microbial residents of mosquitoes and arboviruses are likely to influence many aspects of vectorial capacity and could potentially have profound effects on patterns of arbovirus transmission. Such interactions have not been well studied for West Nile virus (WNV; Flaviviridae, Flavivirus) and Culex spp. mosquitoes. We utilized next-generation sequencing of 16S ribosomal RNA bacterial genes derived from Culex pipiens Linnaeus following WNV exposure and/or infection and compared bacterial populations and broad immune responses to unexposed mosquitoes. Our results demonstrate that WNV infection increases the diversity of bacterial populations and is associated with up-regulation of classical invertebrate immune pathways including RNA interference (RNAi), Toll, and Jak-STAT (Janus kinase-Signal Transducer and Activator of Transcription). In addition, WNV exposure alone, without the establishment of infection, results in similar alterations to microbial and immune signatures, although to a lesser extent. Multiple bacterial genera were found in greater abundance inWNV-exposed and/or infected mosquitoes, yet the most consistent and notable was the genus Serratia.

  5. Can dead bacterial cells be defined and are genes expressed after cell death?

    PubMed

    Trevors, J T

    2012-07-01

    There is a paucity of knowledge on gene expression in dead bacterial cells. Why would this knowledge be useful? The cells are dead. However, the time duration of gene expression following cell death is often unknown, and possibly in the order of minutes. In addition, it is a challenge to determine if bacterial cells are dead, or viable but non-culturable (VBNC), and what is an agreed upon correct definition of dead bacteria. Cells in the bacterial population or community may die at different rates or times and this complicates both the viability and gene expression analysis. In this article, the definition of dead bacterial cells is discussed and its significance in continued gene expression in cells following death. The definition of living and dead has implications for possible, completely, synthetic bacterial cells that may be capable of growth and division. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Viral-bacterial associations in acute apical abscesses.

    PubMed

    Ferreira, Dennis C; Rôças, Isabela N; Paiva, Simone S M; Carmo, Flávia L; Cavalcante, Fernanda S; Rosado, Alexandre S; Santos, Kátia R N; Siqueira, José F

    2011-08-01

    Viral-bacterial and bacterial synergism have been suggested to contribute to the pathogenesis of several human diseases. This study sought to investigate the possible associations between 9 candidate endodontic bacterial pathogens and 9 human viruses in samples from acute apical abscesses. DNA extracts from purulent exudate aspirates of 33 cases of acute apical abscess were surveyed for the presence of 9 selected bacterial species using a 16S ribosomal RNA gene-based nested polymerase chain reaction (PCR) approach. Single or nested PCR assays were used for detection of the human papillomavirus (HPV) and herpesviruses types 1 to 8. Two-thirds of the abscess samples were positive for at least one of the target viruses. Specifically, the most frequently detected viruses were HHV-8 (54.5%); HPV (9%); and varicella zoster virus (VZV), Epstein-Barr virus (EBV), and HHV-6 (6%). Bacterial DNA was present in all cases and the most prevalent bacterial species were Treponema denticola (70%), Tannerella forsythia (67%), Porphyromonas endodontalis (67%), Dialister invisus (61%), and Dialister pneumosintes (57.5%). HHV-8 was positively associated with 7 of the target bacterial species and HPV with 4, but all these associations were weak. Several bacterial pairs showed a moderate positive association. Viral coinfection was found in 6 abscess cases, but no significant viral association could be determined. Findings demonstrated that bacterial and viral DNA occurred concomitantly in two-thirds of the samples from endodontic abscesses. Although this may suggest a role for viruses in the etiology of apical abscesses, the possibility also exists that the presence of viruses in abscess samples is merely a consequence of the bacterially induced disease process. Further studies are necessary to clarify the role of these viral-bacterial interactions, if any, in the pathogenesis of acute apical abscesses. Copyright © 2011 Mosby, Inc. All rights reserved.

  7. Sequencing-Based Analysis of the Bacterial and Fungal Composition of Kefir Grains and Milks from Multiple Sources

    PubMed Central

    Marsh, Alan J.; O’Sullivan, Orla; Hill, Colin; Ross, R. Paul; Cotter, Paul D.

    2013-01-01

    Kefir is a fermented milk-based beverage to which a number of health-promoting properties have been attributed. The microbes responsible for the fermentation of milk to produce kefir consist of a complex association of bacteria and yeasts, bound within a polysaccharide matrix, known as the kefir grain. The consistency of this microbial population, and that present in the resultant beverage, has been the subject of a number of previous, almost exclusively culture-based, studies which have indicated differences depending on geographical location and culture conditions. However, culture-based identification studies are limited by virtue of only detecting species with the ability to grow on the specific medium used and thus culture-independent, molecular-based techniques offer the potential for a more comprehensive analysis of such communities. Here we describe a detailed investigation of the microbial population, both bacterial and fungal, of kefir, using high-throughput sequencing to analyse 25 kefir milks and associated grains sourced from 8 geographically distinct regions. This is the first occasion that this technology has been employed to investigate the fungal component of these populations or to reveal the microbial composition of such an extensive number of kefir grains or milks. As a result several genera and species not previously identified in kefir were revealed. Our analysis shows that the bacterial populations in kefir are dominated by 2 phyla, the Firmicutes and the Proteobacteria. It was also established that the fungal populations of kefir were dominated by the genera Kazachstania, Kluyveromyces and Naumovozyma, but that a variable sub-dominant population also exists. PMID:23894461

  8. Sequencing-based analysis of the bacterial and fungal composition of kefir grains and milks from multiple sources.

    PubMed

    Marsh, Alan J; O'Sullivan, Orla; Hill, Colin; Ross, R Paul; Cotter, Paul D

    2013-01-01

    Kefir is a fermented milk-based beverage to which a number of health-promoting properties have been attributed. The microbes responsible for the fermentation of milk to produce kefir consist of a complex association of bacteria and yeasts, bound within a polysaccharide matrix, known as the kefir grain. The consistency of this microbial population, and that present in the resultant beverage, has been the subject of a number of previous, almost exclusively culture-based, studies which have indicated differences depending on geographical location and culture conditions. However, culture-based identification studies are limited by virtue of only detecting species with the ability to grow on the specific medium used and thus culture-independent, molecular-based techniques offer the potential for a more comprehensive analysis of such communities. Here we describe a detailed investigation of the microbial population, both bacterial and fungal, of kefir, using high-throughput sequencing to analyse 25 kefir milks and associated grains sourced from 8 geographically distinct regions. This is the first occasion that this technology has been employed to investigate the fungal component of these populations or to reveal the microbial composition of such an extensive number of kefir grains or milks. As a result several genera and species not previously identified in kefir were revealed. Our analysis shows that the bacterial populations in kefir are dominated by 2 phyla, the Firmicutes and the Proteobacteria. It was also established that the fungal populations of kefir were dominated by the genera Kazachstania, Kluyveromyces and Naumovozyma, but that a variable sub-dominant population also exists.

  9. Twenty Years of Active Bacterial Core Surveillance

    PubMed Central

    Schaffner, William; Farley, Monica M.; Lynfield, Ruth; Bennett, Nancy M.; Reingold, Arthur; Thomas, Ann; Harrison, Lee H.; Nichols, Megin; Petit, Susan; Miller, Lisa; Moore, Matthew R.; Schrag, Stephanie J.; Lessa, Fernanda C.; Skoff, Tami H.; MacNeil, Jessica R.; Briere, Elizabeth C.; Weston, Emily J.; Van Beneden, Chris

    2015-01-01

    Active Bacterial Core surveillance (ABCs) was established in 1995 as part of the Centers for Disease Control and Prevention Emerging Infections Program (EIP) network to assess the extent of invasive bacterial infections of public health importance. ABCs is distinctive among surveillance systems because of its large, population-based, geographically diverse catchment area; active laboratory-based identification of cases to ensure complete case capture; detailed collection of epidemiologic information paired with laboratory isolates; infrastructure that allows for more in-depth investigations; and sustained commitment of public health, academic, and clinical partners to maintain the system. ABCs has directly affected public health policies and practices through the development and evaluation of vaccines and other prevention strategies, the monitoring of antimicrobial drug resistance, and the response to public health emergencies and other emerging infections. PMID:26292067

  10. Bacterial discrimination by means of a universal array approach mediated by LDR (ligase detection reaction)

    PubMed Central

    Busti, Elena; Bordoni, Roberta; Castiglioni, Bianca; Monciardini, Paolo; Sosio, Margherita; Donadio, Stefano; Consolandi, Clarissa; Rossi Bernardi, Luigi; Battaglia, Cristina; De Bellis, Gianluca

    2002-01-01

    Background PCR amplification of bacterial 16S rRNA genes provides the most comprehensive and flexible means of sampling bacterial communities. Sequence analysis of these cloned fragments can provide a qualitative and quantitative insight of the microbial population under scrutiny although this approach is not suited to large-scale screenings. Other methods, such as denaturing gradient gel electrophoresis, heteroduplex or terminal restriction fragment analysis are rapid and therefore amenable to field-scale experiments. A very recent addition to these analytical tools is represented by microarray technology. Results Here we present our results using a Universal DNA Microarray approach as an analytical tool for bacterial discrimination. The proposed procedure is based on the properties of the DNA ligation reaction and requires the design of two probes specific for each target sequence. One oligo carries a fluorescent label and the other a unique sequence (cZipCode or complementary ZipCode) which identifies a ligation product. Ligated fragments, obtained in presence of a proper template (a PCR amplified fragment of the 16s rRNA gene) contain either the fluorescent label or the unique sequence and therefore are addressed to the location on the microarray where the ZipCode sequence has been spotted. Such an array is therefore "Universal" being unrelated to a specific molecular analysis. Here we present the design of probes specific for some groups of bacteria and their application to bacterial diagnostics. Conclusions The combined use of selective probes, ligation reaction and the Universal Array approach yielded an analytical procedure with a good power of discrimination among bacteria. PMID:12243651

  11. The Bacteriome of Bat Flies (Nycteribiidae) from the Malagasy Region: a Community Shaped by Host Ecology, Bacterial Transmission Mode, and Host-Vector Specificity

    PubMed Central

    Duron, Olivier; Cordonin, Colette; Gomard, Yann; Ramasindrazana, Beza; Mavingui, Patrick; Goodman, Steven M.; Tortosa, Pablo

    2016-01-01

    The Nycteribiidae are obligate blood-sucking Diptera (Hippoboscoidea) flies that parasitize bats. Depending on species, these wingless flies exhibit either high specialism or generalism toward their hosts, which may in turn have important consequences in terms of their associated microbial community structure. Bats have been hypothesized to be reservoirs of numerous infectious agents, some of which have recently emerged in human populations. Thus, bat flies may be important in the epidemiology and transmission of some of these bat-borne infectious diseases, acting either directly as arthropod vectors or indirectly by shaping pathogen communities among bat populations. In addition, bat flies commonly have associations with heritable bacterial endosymbionts that inhabit insect cells and depend on maternal transmission through egg cytoplasm to ensure their transmission. Some of these heritable bacteria are likely obligate mutualists required to support bat fly development, but others are facultative symbionts with unknown effects. Here, we present bacterial community profiles that were obtained from seven bat fly species, representing five genera, parasitizing bats from the Malagasy region. The observed bacterial diversity includes Rickettsia, Wolbachia, and several Arsenophonus-like organisms, as well as other members of the Enterobacteriales and a widespread association of Bartonella bacteria from bat flies of all five genera. Using the well-described host specificity of these flies and data on community structure from selected bacterial taxa with either vertical or horizontal transmission, we show that host/vector specificity and transmission mode are important drivers of bacterial community structure. PMID:26746715

  12. Assessing the Robustness of Complete Bacterial Genome Segmentations

    NASA Astrophysics Data System (ADS)

    Devillers, Hugo; Chiapello, Hélène; Schbath, Sophie; El Karoui, Meriem

    Comparison of closely related bacterial genomes has revealed the presence of highly conserved sequences forming a "backbone" that is interrupted by numerous, less conserved, DNA fragments. Segmentation of bacterial genomes into backbone and variable regions is particularly useful to investigate bacterial genome evolution. Several software tools have been designed to compare complete bacterial chromosomes and a few online databases store pre-computed genome comparisons. However, very few statistical methods are available to evaluate the reliability of these software tools and to compare the results obtained with them. To fill this gap, we have developed two local scores to measure the robustness of bacterial genome segmentations. Our method uses a simulation procedure based on random perturbations of the compared genomes. The scores presented in this paper are simple to implement and our results show that they allow to discriminate easily between robust and non-robust bacterial genome segmentations when using aligners such as MAUVE and MGA.

  13. Bacterial and fungal core microbiomes associated with small grain silages during ensiling and aerobic spoilage.

    PubMed

    Duniere, Lysiane; Xu, Shanwei; Long, Jin; Elekwachi, Chijioke; Wang, Yuxi; Turkington, Kelly; Forster, Robert; McAllister, Tim A

    2017-03-03

    Describing the microbial populations present in small grain silage and understanding their changes during ensiling is of interest for improving the nutrient value of these important forage crops. Barley, oat and triticale forages as well as an intercropped mixture of the 3 crops were harvested and ensiled in mini silos for a period of 90 days, followed by 14 days of aerobic exposure. Changes in fermentation characteristics and nutritive value were assessed in terminal silages and bacterial and fungal communities during ensiling and aerobic exposure were described using 16S and 18S rDNA sequencing, respectively. All small grain silages exhibited chemical traits that were associated with well ensiled forages, such as low pH value (4.09 ± 0.28) and high levels of lactic acid (59.8 ± 14.59 mg/g DM). The number of microbial core genome operational taxonomic units (OTUs) decreased with time of ensiling. Taxonomic bacterial community profiles were dominated by the Lactobacillales after fermentation, with a notable increase in Bacillales as a result of aerobic exposure. Diversity of the fungal core microbiome was shown to also be reduced during ensiling. Operational taxonomic units assigned to filamentous fungi were found in the core microbiome at ensiling and after aerobic exposure, whereas the Saccharomycetales were the dominate yeast population after 90 days of ensiling and aerobic exposure. Bacterial and fungal orders typically associated with silage spoilage were identified in the core microbiome after aerobic exposure. Next Generation Sequencing was successfully used to describe bacterial communities and the first record of fungal communities throughout the process of ensiling and utilization. Adequately describing the microbial ecology of silages could lead to improved ensiling practices and the selection of silage inoculants that act synergistically with the natural forage microbiome.

  14. Getting to the heart of rectal bleeding: subacute bacterial endocarditis presenting as anaemia and a GI bleed

    PubMed Central

    Cesari, Whitney; Stewart, Christy; Panda, Mukta

    2011-01-01

    In this case report, the authors demonstrate a case of subacute bacterial endocarditis presenting with anaemia. It is the first of its kind to describe a delay in diagnosis due to an initial patient investigation for a bleed rather than a cardiac evaluation. Astute clinicians need to be aware of the causes of anaemia in patients with endocarditis and consider that in Streptococcus bovis (S bovis) infection can be related to gastrointestinal polyps or malignancy resulting in bleeding. Although patients with S bovis endocarditis should undergo full gastrointestinal investigation after endocarditis is diagnosed, it should not delay medical treatment. In this article, the authors discuss the consequences of failing to achieve timely recognition of endocarditis along with common systemic complications. The authors also outline current recommendations for surgical intervention as heart valve replacement surgery was warranted in the patient to prevent fatal outcome. PMID:22674949

  15. Self-Organization in High-Density Bacterial Colonies: Efficient Crowd Control

    PubMed Central

    Campbell, Kyle; Melke, Pontus; Williams, Joshua W; Jedynak, Bruno; Stevens, Ann M; Groisman, Alex; Levchenko, Andre

    2007-01-01

    Colonies of bacterial cells can display complex collective dynamics, frequently culminating in the formation of biofilms and other ordered super-structures. Recent studies suggest that to cope with local environmental challenges, bacterial cells can actively seek out small chambers or cavities and assemble there, engaging in quorum sensing behavior. By using a novel microfluidic device, we showed that within chambers of distinct shapes and sizes allowing continuous cell escape, bacterial colonies can gradually self-organize. The directions of orientation of cells, their growth, and collective motion are mutually correlated and dictated by the chamber walls and locations of chamber exits. The ultimate highly organized steady state is conducive to a more-organized escape of cells from the chambers and increased access of nutrients into and evacuation of waste out of the colonies. Using a computational model, we suggest that the lengths of the cells might be optimized to maximize self-organization while minimizing the potential for stampede-like exit blockage. The self-organization described here may be crucial for the early stage of the organization of high-density bacterial colonies populating small, physically confined growth niches. It suggests that this phenomenon can play a critical role in bacterial biofilm initiation and development of other complex multicellular bacterial super-structures, including those implicated in infectious diseases. PMID:18044986

  16. Big Soda Lake (Nevada). 1. Pelagic bacterial heterotrophy and biomass

    USGS Publications Warehouse

    Zehr, Jon P.; Harvey, Ronald W.; Oremland, Ronald S.; Cloern, James E.; George, Leah H.; Lane, Judith L.

    1987-01-01

    Bacterial activities and abundance were measured seasonally in the water column of meromictic Big Soda Lake which is divided into three chemically distinct zones: aerobic mixolimnion, anaerobic mixolimnion, and anaerobic monimolimnion. Bacterial abundance ranged between 5 and 52 x 106 cells ml−1, with highest biomass at the interfaces between these zones: 2–4 mg C liter−1 in the photosynthetic bacterial layer (oxycline) and 0.8–2.0 mg C liter−1 in the chemocline. Bacterial cell size and morphology also varied with depth: small coccoid cells were dominant in the aerobic mixolimnion, whereas the monimolimnion had a more diverse population that included cocci, rods, and large filaments. Heterotrophic activity was measured by [methyl-3H]thymidine incorporation and [14C]glutamate uptake. Highest uptake rates were at or just below the photosynthetic bacterial layer and were attributable to small (<1 µm) heterotrophs rather than the larger photosynthetic bacteria. These high rates of heterotrophic uptake were apparently linked with fermentation; rates of other mineralization processes (e.g. sulfate reduction, methanogenesis, denitrification) in the anoxic mixolimnion were insignificant. Heterotrophic activity in the highly reduced monimolimnion was generally much lower than elsewhere in the water column. Therefore, although the monimolimnion contained most of the bacterial abundance and biomass (∼60%), most of the cells there were inactive.

  17. Phylogenetic Profiles of In-House Microflora in Drains at a Food Production Facility: Comparison and Biocontrol Implications of Listeria-Positive and -Negative Bacterial Populations

    PubMed Central

    Solomon, Katie; Moore, John E.; Wall, Patrick G.; Fanning, Séamus

    2014-01-01

    Listeria species experience complex interactions with other microorganisms, which may promote growth and colonization of the organism in local environments or negatively affect them. This study investigated the microbial community at a food production facility, examining interactions between Listeria and the associated microbiome. Listeria species can be transferred between zones in the production environment by individuals or equipment, and drains may act as a reservoir for the organism, reflecting the microbial flora potentially in the production environment. Drains that were colonized by Listeria species and those determined to be free of Listeria were examined. In each case, 16S rRNA gene analysis was performed using the PhyloChip platform. Some general similarities in bacterial population structure were observed when Listeria-negative and -positive drain communities were compared, with some distinct differences also noted. These included increased populations of the genera Prevotella and Janthinobacterium associated with the absence of Listeria species, whereas Enterococcus and Rhodococcus were in higher abundance in drains colonized by Listeria species. Based on these results, a selection of bacterial species were grown in coculture biofilm with a Listeria monocytogenes strain identified as having colonized a drain at the facility. Mixed-species biofilm experiments showed that Janthinobacterium inhibited attachment and subsequent biofilm formation of L. monocytogenes; however, Enterococcus gallinarum significantly increased it. The results of this study suggest the microbial community in food processing facilities can impact the colonization of Listeria species and that influencing the microbiome in favor of antilisterial species may reduce the colonization of Listeria species and limit the likelihood of product/process contamination. PMID:24657862

  18. Bacterial dynamics in intestines of the black tiger shrimp and the Pacific white shrimp during Vibrio harveyi exposure.

    PubMed

    Rungrassamee, Wanilada; Klanchui, Amornpan; Maibunkaew, Sawarot; Karoonuthaisiri, Nitsara

    2016-01-01

    The intestinal microbiota play important roles in health of their host, contributing to maintaining the balance and resilience against pathogen. To investigate effects of pathogen to intestinal microbiota, the bacterial dynamics upon a shrimp pathogen, Vibrio harveyi, exposures were determined in two economically important shrimp species; the black tiger shrimp (BT) and the Pacific white shrimp (PW). Both shrimp species were reared under the same diet and environmental conditions. Shrimp survival rates after the V. harveyi exposure revealed that the PW shrimp had a higher resistance to the pathogen than the BT shrimp. The intestinal bacterial profiles were determined by denaturing gradient gel electrophoresis (DGGE) and barcoded pyrosequencing of the 16S rRNA sequences under no pathogen challenge control and under pathogenic V. harveyi challenge. The DGGE profiles showed that the presence of V. harveyi altered the intestinal bacterial patterns in comparison to the control in BT and PW intestines. This implies that bacterial balance in shrimp intestines was disrupted in the presence of V. harveyi. The barcoded pyrosequencing analysis showed the similar bacterial community structures in intestines of BT and PW shrimp under a normal condition. However, during the time course exposure to V. harveyi, the relative abundance of bacteria belong to Vibrio genus was higher in the BT intestines at 12h after the exposure, whereas relative abundance of vibrios was more stable in PW intestines. The principle coordinates analysis based on weighted-UniFrac analysis showed that intestinal bacterial population in the BT shrimp lost their ability to restore their bacterial balance during the 72-h period of exposure to the pathogen, while the PW shrimp were able to reestablish their bacterial population to resemble those seen in the unexposed control group. This observation of bacterial disruption might correlate to different mortality rates observed between the two shrimp species

  19. Ancient human genomes suggest three ancestral populations for present-day Europeans

    PubMed Central

    Lazaridis, Iosif; Patterson, Nick; Mittnik, Alissa; Renaud, Gabriel; Mallick, Swapan; Kirsanow, Karola; Sudmant, Peter H.; Schraiber, Joshua G.; Castellano, Sergi; Lipson, Mark; Berger, Bonnie; Economou, Christos; Bollongino, Ruth; Fu, Qiaomei; Bos, Kirsten I.; Nordenfelt, Susanne; Li, Heng; de Filippo, Cesare; Prüfer, Kay; Sawyer, Susanna; Posth, Cosimo; Haak, Wolfgang; Hallgren, Fredrik; Fornander, Elin; Rohland, Nadin; Delsate, Dominique; Francken, Michael; Guinet, Jean-Michel; Wahl, Joachim; Ayodo, George; Babiker, Hamza A.; Bailliet, Graciela; Balanovska, Elena; Balanovsky, Oleg; Barrantes, Ramiro; Bedoya, Gabriel; Ben-Ami, Haim; Bene, Judit; Berrada, Fouad; Bravi, Claudio M.; Brisighelli, Francesca; Busby, George B. J.; Cali, Francesco; Churnosov, Mikhail; Cole, David E. C.; Corach, Daniel; Damba, Larissa; van Driem, George; Dryomov, Stanislav; Dugoujon, Jean-Michel; Fedorova, Sardana A.; Romero, Irene Gallego; Gubina, Marina; Hammer, Michael; Henn, Brenna M.; Hervig, Tor; Hodoglugil, Ugur; Jha, Aashish R.; Karachanak-Yankova, Sena; Khusainova, Rita; Khusnutdinova, Elza; Kittles, Rick; Kivisild, Toomas; Klitz, William; Kučinskas, Vaidutis; Kushniarevich, Alena; Laredj, Leila; Litvinov, Sergey; Loukidis, Theologos; Mahley, Robert W.; Melegh, Béla; Metspalu, Ene; Molina, Julio; Mountain, Joanna; Näkkäläjärvi, Klemetti; Nesheva, Desislava; Nyambo, Thomas; Osipova, Ludmila; Parik, Jüri; Platonov, Fedor; Posukh, Olga; Romano, Valentino; Rothhammer, Francisco; Rudan, Igor; Ruizbakiev, Ruslan; Sahakyan, Hovhannes; Sajantila, Antti; Salas, Antonio; Starikovskaya, Elena B.; Tarekegn, Ayele; Toncheva, Draga; Turdikulova, Shahlo; Uktveryte, Ingrida; Utevska, Olga; Vasquez, René; Villena, Mercedes; Voevoda, Mikhail; Winkler, Cheryl; Yepiskoposyan, Levon; Zalloua, Pierre; Zemunik, Tatijana; Cooper, Alan; Capelli, Cristian; Thomas, Mark G.; Ruiz-Linares, Andres; Tishkoff, Sarah A.; Singh, Lalji; Thangaraj, Kumarasamy; Villems, Richard; Comas, David; Sukernik, Rem; Metspalu, Mait; Meyer, Matthias; Eichler, Evan E.; Burger, Joachim; Slatkin, Montgomery; Pääbo, Svante; Kelso, Janet; Reich, David; Krause, Johannes

    2014-01-01

    We sequenced the genomes of a ~7,000 year old farmer from Germany and eight ~8,000 year old hunter-gatherers from Luxembourg and Sweden. We analyzed these and other ancient genomes1–4 with 2,345 contemporary humans to show that most present Europeans derive from at least three highly differentiated populations: West European Hunter-Gatherers (WHG), who contributed ancestry to all Europeans but not to Near Easterners; Ancient North Eurasians (ANE) related to Upper Paleolithic Siberians3, who contributed to both Europeans and Near Easterners; and Early European Farmers (EEF), who were mainly of Near Eastern origin but also harbored WHG-related ancestry. We model these populations’ deep relationships and show that EEF had ~44% ancestry from a “Basal Eurasian” population that split prior to the diversification of other non-African lineages. PMID:25230663

  20. Bacterial Population in Intestines of Litopenaeus vannamei Fed Different Probiotics or Probiotic Supernatant.

    PubMed

    Sha, Yujie; Liu, Mei; Wang, Baojie; Jiang, Keyong; Qi, Cancan; Wang, Lei

    2016-10-28

    The interactions of microbiota in the gut play an important role in promoting or maintaining the health of hosts. In this study, in order to investigate and compare the effects of dietary supplementation with Lactobacillus pentosus HC-2 (HC-2), Enterococcus faecium NRW-2, or the bacteria-free supernatant of a HC-2 culture on the bacterial composition of Litopenaeus vannamei , Illumina sequencing of the V1-V2 region of the 16S rRNA gene was used. The results showed that unique species exclusively existed in specific dietary groups, and the abundance of Actinobacteria was significantly increased in the intestinal bacterial community of shrimp fed with the bacteria-free supernatant of an HC-2 culture compared with the control. In addition, the histology of intestines of the shrimp from the four dietary groups was also described, but no obvious improvements in the intestinal histology were observed. The findings in this work will help to promote the understanding of the roles of intestinal bacteria in shrimps when fed with probiotics or probiotic supernatant.

  1. Long-term effects of timber harvesting on hemicellulolytic microbial populations in coniferous forest soils.

    PubMed

    Leung, Hilary T C; Maas, Kendra R; Wilhelm, Roland C; Mohn, William W

    2016-02-01

    Forest ecosystems need to be sustainably managed, as they are major reservoirs of biodiversity, provide important economic resources and modulate global climate. We have a poor knowledge of populations responsible for key biomass degradation processes in forest soils and the effects of forest harvesting on these populations. Here, we investigated the effects of three timber-harvesting methods, varying in the degree of organic matter removal, on putatively hemicellulolytic bacterial and fungal populations 10 or more years after harvesting and replanting. We used stable-isotope probing to identify populations that incorporated (13)C from labeled hemicellulose, analyzing (13)C-enriched phospholipid fatty acids, bacterial 16 S rRNA genes and fungal ITS regions. In soil microcosms, we identified 104 bacterial and 52 fungal hemicellulolytic operational taxonomic units (OTUs). Several of these OTUs are affiliated with taxa not previously reported to degrade hemicellulose, including the bacterial genera Methylibium, Pelomonas and Rhodoferax, and the fungal genera Cladosporium, Pseudeurotiaceae, Capronia, Xenopolyscytalum and Venturia. The effect of harvesting on hemicellulolytic populations was evaluated based on in situ bacterial and fungal OTUs. Harvesting treatments had significant but modest long-term effects on relative abundances of hemicellulolytic populations, which differed in strength between two ecozones and between soil layers. For soils incubated in microcosms, prior harvesting treatments did not affect the rate of incorporation of hemicellulose carbon into microbial biomass. In six ecozones across North America, distributions of the bacterial hemicellulolytic OTUs were similar, whereas distributions of fungal ones differed. Our work demonstrates that diverse taxa in soil are hemicellulolytic, many of which are differentially affected by the impact of harvesting on environmental conditions. However, the hemicellulolytic capacity of soil communities appears

  2. Long-term effects of timber harvesting on hemicellulolytic microbial populations in coniferous forest soils

    PubMed Central

    Leung, Hilary T C; Maas, Kendra R; Wilhelm, Roland C; Mohn, William W

    2016-01-01

    Forest ecosystems need to be sustainably managed, as they are major reservoirs of biodiversity, provide important economic resources and modulate global climate. We have a poor knowledge of populations responsible for key biomass degradation processes in forest soils and the effects of forest harvesting on these populations. Here, we investigated the effects of three timber-harvesting methods, varying in the degree of organic matter removal, on putatively hemicellulolytic bacterial and fungal populations 10 or more years after harvesting and replanting. We used stable-isotope probing to identify populations that incorporated 13C from labeled hemicellulose, analyzing 13C-enriched phospholipid fatty acids, bacterial 16 S rRNA genes and fungal ITS regions. In soil microcosms, we identified 104 bacterial and 52 fungal hemicellulolytic operational taxonomic units (OTUs). Several of these OTUs are affiliated with taxa not previously reported to degrade hemicellulose, including the bacterial genera Methylibium, Pelomonas and Rhodoferax, and the fungal genera Cladosporium, Pseudeurotiaceae, Capronia, Xenopolyscytalum and Venturia. The effect of harvesting on hemicellulolytic populations was evaluated based on in situ bacterial and fungal OTUs. Harvesting treatments had significant but modest long-term effects on relative abundances of hemicellulolytic populations, which differed in strength between two ecozones and between soil layers. For soils incubated in microcosms, prior harvesting treatments did not affect the rate of incorporation of hemicellulose carbon into microbial biomass. In six ecozones across North America, distributions of the bacterial hemicellulolytic OTUs were similar, whereas distributions of fungal ones differed. Our work demonstrates that diverse taxa in soil are hemicellulolytic, many of which are differentially affected by the impact of harvesting on environmental conditions. However, the hemicellulolytic capacity of soil communities appears

  3. Bacterial Communities of Surface Mixed Layer in the Pacific Sector of the Western Arctic Ocean during Sea-Ice Melting

    PubMed Central

    Ha, Ho Kyung; Kim, Hyun Cheol; Kim, Ok-Sun; Lee, Bang Yong; Cho, Jang-Cheon; Hur, Hor-Gil; Lee, Yoo Kyung

    2014-01-01

    From July to August 2010, the IBRV ARAON journeyed to the Pacific sector of the Arctic Ocean to monitor bacterial variation in Arctic summer surface-waters, and temperature, salinity, fluorescence, and nutrient concentrations were determined during the ice-melting season. Among the measured physicochemical parameters, we observed a strong negative correlation between temperature and salinity, and consequently hypothesized that the melting ice decreased water salinity. The bacterial community compositions of 15 samples, includicng seawater, sea-ice, and melting pond water, were determined using a pyrosequencing approach and were categorized into three habitats: (1) surface seawater, (2) ice core, and (3) melting pond. Analysis of these samples indicated the presence of local bacterial communities; a deduction that was further corroborated by the discovery of seawater- and ice-specific bacterial phylotypes. In all samples, the Alphaproteobacteria, Flavobacteria, and Gammaproteobacteria taxa composed the majority of the bacterial communities. Among these, Alphaproteobacteria was the most abundant and present in all samples, and its variation differed among the habitats studied. Linear regression analysis suggested that changes in salinity could affect the relative proportion of Alphaproteobacteria in the surface water. In addition, the species-sorting model was applied to evaluate the population dynamics and environmental heterogeneity in the bacterial communities of surface mixed layer in the Arctic Ocean during sea-ice melting. PMID:24497990

  4. Bacterial communities of surface mixed layer in the Pacific sector of the western Arctic Ocean during sea-ice melting.

    PubMed

    Han, Dukki; Kang, Ilnam; Ha, Ho Kyung; Kim, Hyun Cheol; Kim, Ok-Sun; Lee, Bang Yong; Cho, Jang-Cheon; Hur, Hor-Gil; Lee, Yoo Kyung

    2014-01-01

    From July to August 2010, the IBRV ARAON journeyed to the Pacific sector of the Arctic Ocean to monitor bacterial variation in Arctic summer surface-waters, and temperature, salinity, fluorescence, and nutrient concentrations were determined during the ice-melting season. Among the measured physicochemical parameters, we observed a strong negative correlation between temperature and salinity, and consequently hypothesized that the melting ice decreased water salinity. The bacterial community compositions of 15 samples, includicng seawater, sea-ice, and melting pond water, were determined using a pyrosequencing approach and were categorized into three habitats: (1) surface seawater, (2) ice core, and (3) melting pond. Analysis of these samples indicated the presence of local bacterial communities; a deduction that was further corroborated by the discovery of seawater- and ice-specific bacterial phylotypes. In all samples, the Alphaproteobacteria, Flavobacteria, and Gammaproteobacteria taxa composed the majority of the bacterial communities. Among these, Alphaproteobacteria was the most abundant and present in all samples, and its variation differed among the habitats studied. Linear regression analysis suggested that changes in salinity could affect the relative proportion of Alphaproteobacteria in the surface water. In addition, the species-sorting model was applied to evaluate the population dynamics and environmental heterogeneity in the bacterial communities of surface mixed layer in the Arctic Ocean during sea-ice melting.

  5. Effect of bacterial antagonists on lettuce: active biocontrol of Rhizoctonia solani and negligible, short-term effects on nontarget microorganisms.

    PubMed

    Scherwinski, Katja; Grosch, Rita; Berg, Gabriele

    2008-04-01

    The aim of this study was to assess the biocontrol efficacy against Rhizoctonia solani of three bacterial antagonists introduced into naturally Rhizoctonia-infested lettuce fields and to analyse their impact on the indigenous plant-associated bacteria and fungi. Lettuce seedlings were inoculated with bacterial suspensions of two endophytic strains, Serratia plymuthica 3Re4-18 and Pseudomonas trivialis 3Re2-7, and with the rhizobacterium Pseudomonas fluorescens L13-6-12 7 days before and 5 days after planting in the field. Similar statistically significant biocontrol effects were observed for all applied bacterial antagonists compared with the uninoculated control. Single-strand conformation polymorphism analysis of 16S rRNA gene or ITS1 fragments revealed a highly diverse rhizosphere and a less diverse endophytic microbial community for lettuce. Representatives of several bacterial (Alpha-, Beta- and Gammaproteobacteria, Firmicutes, Bacteriodetes), fungal (Ascomycetes, Basidiomycetes) and protist (Oomycetes) groups were present inside or on lettuce plants. Surprisingly, given that lettuce is a vegetable that is eaten raw, species of genera such as Flavobacterium, Burkholderia, Staphylococcus, Cladosporium and Aspergillus, which contain potentially human pathogenic strains, were identified. Analysis of the indigenous bacterial and endophytic fungal populations revealed only negligible, short-term effects resulting from the bacterial treatments, and that they were more influenced by field site, plant growth stage and microenvironment.

  6. Identification of Free-Living and Particle-Associated Microbial Communities Present in Hadal Regions of the Mariana Trench.

    PubMed

    Tarn, Jonathan; Peoples, Logan M; Hardy, Kevin; Cameron, James; Bartlett, Douglas H

    2016-01-01

    Relatively few studies have described the microbial populations present in ultra-deep hadal environments, largely as a result of difficulties associated with sampling. Here we report Illumina-tag V6 16S rRNA sequence-based analyses of the free-living and particle-associated microbial communities recovered from locations within two of the deepest hadal sites on Earth, the Challenger Deep (10,918 meters below surface-mbs) and the Sirena Deep (10,667 mbs) within the Mariana Trench, as well as one control site (Ulithi Atoll, 761 mbs). Seawater samples were collected using an autonomous lander positioned ~1 m above the seafloor. The bacterial populations within the Mariana Trench bottom water samples were dissimilar to other deep-sea microbial communities, though with overlap with those of diffuse flow hydrothermal vents and deep-subsurface locations. Distinct particle-associated and free-living bacterial communities were found to exist. The hadal bacterial populations were also markedly different from one another, indicating the likelihood of different chemical conditions at the two sites. In contrast to the bacteria, the hadal archaeal communities were more similar to other less deep datasets and to each other due to an abundance of cosmopolitan deep-sea taxa. The hadal communities were enriched in 34 bacterial and 4 archaeal operational taxonomic units (OTUs) including members of the Gammaproteobacteria, Epsilonproteobacteria, Marinimicrobia, Cyanobacteria, Deltaproteobacteria, Gemmatimonadetes, Atribacteria, Spirochaetes, and Euryarchaeota. Sequences matching cultivated piezophiles were notably enriched in the Challenger Deep, especially within the particle-associated fraction, and were found in higher abundances than in other hadal studies, where they were either far less prevalent or missing. Our results indicate the importance of heterotrophy, sulfur-cycling, and methane and hydrogen utilization within the bottom waters of the deeper regions of the Mariana Trench

  7. Identification of Free-Living and Particle-Associated Microbial Communities Present in Hadal Regions of the Mariana Trench

    PubMed Central

    Tarn, Jonathan; Peoples, Logan M.; Hardy, Kevin; Cameron, James; Bartlett, Douglas H.

    2016-01-01

    Relatively few studies have described the microbial populations present in ultra-deep hadal environments, largely as a result of difficulties associated with sampling. Here we report Illumina-tag V6 16S rRNA sequence-based analyses of the free-living and particle-associated microbial communities recovered from locations within two of the deepest hadal sites on Earth, the Challenger Deep (10,918 meters below surface-mbs) and the Sirena Deep (10,667 mbs) within the Mariana Trench, as well as one control site (Ulithi Atoll, 761 mbs). Seawater samples were collected using an autonomous lander positioned ~1 m above the seafloor. The bacterial populations within the Mariana Trench bottom water samples were dissimilar to other deep-sea microbial communities, though with overlap with those of diffuse flow hydrothermal vents and deep-subsurface locations. Distinct particle-associated and free-living bacterial communities were found to exist. The hadal bacterial populations were also markedly different from one another, indicating the likelihood of different chemical conditions at the two sites. In contrast to the bacteria, the hadal archaeal communities were more similar to other less deep datasets and to each other due to an abundance of cosmopolitan deep-sea taxa. The hadal communities were enriched in 34 bacterial and 4 archaeal operational taxonomic units (OTUs) including members of the Gammaproteobacteria, Epsilonproteobacteria, Marinimicrobia, Cyanobacteria, Deltaproteobacteria, Gemmatimonadetes, Atribacteria, Spirochaetes, and Euryarchaeota. Sequences matching cultivated piezophiles were notably enriched in the Challenger Deep, especially within the particle-associated fraction, and were found in higher abundances than in other hadal studies, where they were either far less prevalent or missing. Our results indicate the importance of heterotrophy, sulfur-cycling, and methane and hydrogen utilization within the bottom waters of the deeper regions of the Mariana Trench

  8. Bacterial diversity of surface sand samples from the Gobi and Taklamaken deserts.

    PubMed

    An, Shu; Couteau, Cécile; Luo, Fan; Neveu, Julie; DuBow, Michael S

    2013-11-01

    Arid regions represent nearly 30 % of the Earth's terrestrial surface, but their microbial biodiversity is not yet well characterized. The surface sands of deserts, a subset of arid regions, are generally subjected to large temperature fluctuations plus high UV light exposure and are low in organic matter. We examined surface sand samples from the Taklamaken (China, three samples) and Gobi (Mongolia, two samples) deserts, using pyrosequencing of PCR-amplified 16S V1/V2 rDNA sequences from total extracted DNA in order to gain an assessment of the bacterial population diversity. In total, 4,088 OTUs (using ≥97 % sequence similarity levels), with Chao1 estimates varying from 1,172 to 2,425 OTUs per sample, were discernable. These could be grouped into 102 families belonging to 15 phyla, with OTUs belonging to the Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria phyla being the most abundant. The bacterial population composition was statistically different among the samples, though members from 30 genera were found to be common among the five samples. An increase in phylotype numbers with increasing C/N ratio was noted, suggesting a possible role in the bacterial richness of these desert sand environments. Our results imply an unexpectedly large bacterial diversity residing in the harsh environment of these two Asian deserts, worthy of further investigation.

  9. Detection of Spiroplasma and Wolbachia in the bacterial gonad community of Chorthippus parallelus.

    PubMed

    Martínez-Rodríguez, P; Hernández-Pérez, M; Bella, J L

    2013-07-01

    We have recently detected the endosymbiont Wolbachia in multiple individuals and populations of the grasshopper Chorthippus parallelus (Orthoptera: acrididae). This bacterium induces reproductive anomalies, including cytoplasmic incompatibility. Such incompatibilities may help explain the maintenance of two distinct subspecies of this grasshopper, C. parallelus parallelus and C. parallelus erythropus, which are involved in a Pyrenean hybrid zone that has been extensively studied for the past 20 years, becoming a model system for the study of genetic divergence and speciation. To evaluate whether Wolbachia is the sole bacterial infection that might induce reproductive anomalies, the gonadal bacterial community of individuals from 13 distinct populations of C. parallelus was determined by denaturing gradient gel electrophoresis analysis of bacterial 16S rRNA gene fragments and sequencing. The study revealed low bacterial diversity in the gonads: a persistent bacterial trio consistent with Spiroplasma sp. and the two previously described supergroups of Wolbachia (B and F) dominated the gonad microbiota. A further evaluation of the composition of the gonad bacterial communities was carried out by whole cell hybridization. Our results confirm previous studies of the cytological distribution of Wolbachia in C. parallelus gonads and show a homogeneous infection by Spiroplasma. Spiroplasma and Wolbachia cooccurred in some individuals, but there was no significant association of Spiroplasma with a grasshopper's sex or with Wolbachia infection, although subtle trends might be detected with a larger sample size. This information, together with previous experimental crosses of this grasshopper, suggests that Spiroplasma is unlikely to contribute to sex-specific reproductive anomalies; instead, they implicate Wolbachia as the agent of the observed anomalies in C. parallelus.

  10. Evaluation of posttraumatic recurrent bacterial meningitis in adults.

    PubMed

    Deveci, Özcan; Uysal, Cem; Varol, Sefer; Tekin, Recep; Bozkurt, Fatma; Bekçibaşı, Muhammed; Hoşoğlu, Salih

    2015-07-01

    Acute bacterial meningitis may develop as a complication after head trauma. The aim of this study was to present the demographic, clinical, microbiological and radiological characteristics of adult patients who presented with recurrent bacterial meningitis attacks after trauma. Using a retrospective approach, the medical records of patients with acute recurrent bacterial meningitis (RBM) were reviewed, and those who had a history of trauma were included into the study. RBM was diagnosed based on clinical, bacteriologic and laboratory results. Demographic characteristics, clinical course, laboratory test results including cerebrospinal fluid analysis (CSF), radiological images, and the applied treatments were evaluated. A total of two hundred and twelve patients with acute bacterial meningitis were included into the study. RBM was diagnosed in twenty-five patients (11.8%), and in 18 of these patients (8.5%), the attacks had occurred subsequent to a trauma. In the CSF cultures of four patients, S. pneumoniae growth was observed. CT cisternography indicated CSF leaks in eleven patients. Moreover, bone fractures were observed in the CT images of ten patients. Ceftriaxone therapy was prescribed to 83% of the patients. Eight patients had a history of a fall in childhood, and five were involved in traffic accidents before acute bacterial meningitis. Four of the patients developed epilepsy and one developed deafness as sequelae. Since RBM attacks are frequently observed following trauma, in patients with a history of trauma who present with meningitis, the risk of recurrence should be considered.

  11. Response of bacterial community structure and function to experimental rainwater additions in a coastal eutrophic embayment

    NASA Astrophysics Data System (ADS)

    Teira, Eva; Hernando-Morales, Víctor; Martínez-García, Sandra; Figueiras, Francisco G.; Arbones, Belén; Álvarez-Salgado, Xosé Antón

    2013-03-01

    Although recognized as a potentially important source of both inorganic and organic nutrients, the impact of rainwater on microbial populations from marine planktonic systems has been poorly assessed. The effect of rainwater additions on bacterioplankton metabolism and community composition was evaluated in microcosm experiments enclosing natural marine plankton populations from the Ría de Vigo (NW Spain). The experiments were conducted during three different seasons (spring, autumn and winter) using rainwater collected at three different locations: marine, urban and rural sites. Bacterial abundance and production significantly increased up to 1.3 and 1.8-fold, respectively, after urban rainwater additions in spring, when ambient nutrient concentration was very low. Overall, the increments in bacterial production were higher than those in bacterial respiration, which implies that a higher proportion of carbon consumed by bacteria would be available to higher trophic levels. The response of the different bacterial groups to distinct rainwater types differed between seasons. The most responsive bacterial groups were Betaproteobacteria which significantly increased their abundance after urban (in spring and winter) and marine (in spring) rainwater additions, and Bacteroidetes which positively responded to all rainwater treatments in spring and to urban rainwater in autumn. Gammaproteobacteria and Roseobacter responded only to urban (in spring) and marine (in winter) rainwater treatment, respectively. The responses to rainwater additions were moderate and transient, and the resulting bacterial community structure was not importantly altered.

  12. Geographic variation in bacterial communities associated with the red turpentine beetle (Coleoptera: Curculionidae)

    Treesearch

    Aaron S. Adams; Sandye M. Adams; Cameron R. Currie; Nancy E. Gillette; Kenneth F. Raffa

    2010-01-01

    Bacterial communities are known to play important roles in insect life histories, yet their consistency or variation across populations is poorly understood. Bacteria associated with the bark beetle Dendroctonus valens LeConte from eight populations, ranging from Wisconsin to Oregon, were evaluated and compared. We used the culture-independent technique of denaturing...

  13. CONJUGAL GENE TRANSFER IN THE RHIZOSPHERE OF WATER GRASS (ECHINOCHLORA CRUSGALLI): INFLUENCE OF ROOT EXUDATE AND BACTERIAL ACTIVITY

    EPA Science Inventory

    The premise that genetic exchange is primarily localized in niches characterized by dense bacterial populations and high availability of growth substrates was tested by relating conjugal gene transfer of an RP4 derivative to availability of root exudates and bacterial metabolic a...

  14. Bacterial Succession in the Broiler Gastrointestinal Tract

    PubMed Central

    Lawley, Blair; Tannock, Gerald; Engberg, Ricarda M.

    2016-01-01

    A feeding trial was performed with broilers receiving a diet of wheat-based feed (WBF), maize-based feed (MBF), or maize-based concentrates supplemented with 15% or 30% crimped kernel maize silage (CKMS-15 or CKMS-30, respectively). The aim of the study was to investigate the bacterial community compositions of the crop, gizzard, ileum, and cecum contents in relation to the feeding strategy and age (8, 15, 22, 25, 29, or 36 days). Among the four dietary treatments, bacterial diversity was analyzed for MBF and CKMS-30 by 454 pyrosequencing of the 16S rRNA gene. Since the diets had no significant influence on bacterial diversity, data were pooled for downstream analysis. With increasing age, a clear succession of bacterial communities and increased bacterial diversity were observed. Lactobacillaceae (belonging mainly to the genus Lactobacillus) represented most of the Firmicutes at all ages and in all segments of the gut except the cecum. The development of a “mature” microbiota in broilers occurred during the period from days 15 to 22. Striking increases in the relative abundances of Lactobacillus salivarius (17 to 36%) and clostridia (11 to 18%), and a concomitant decrease in the relative abundance of Lactobacillus reuteri, were found in the ileum after day 15. The concentration of deconjugated bile salts increased in association with the increased populations of L. salivarius and clostridia. Both L. salivarius and clostridia deconjugate bile acids, and increases in the abundances of these bacteria might be associated with growth reduction and gastrointestinal (GI) disorders occurring in the critical period of broiler life between days 20 and 30. PMID:26873323

  15. Prevalence and prognostic influence of bacterial pyuria in elderly patients with pneumonia: A retrospective study.

    PubMed

    Oka, Hiroaki; Komiya, Kosaku; Ohama, Minoru; Kawano, Yoshiyuki; Uchida, Masahiro; Miyajima, Hajime; Iwashita, Tomohiko; Okabe, Eiji; Kawamura, Tadao; Yasuda, Kazuhiro; Matsumoto, Taisuke; Kadota, Jun-Ichi

    2017-07-01

    The number of elderly patients with pneumonia is significantly increasing as the populations in many countries age. Although elderly patients with pneumonia are at risk of developing urinary tract infections, no studies have examined the prevalence or the prognostic impact of this complication. The aim of the present study was to investigate the prevalence of comorbid bacterial pyuria and the impact on the prognosis of elderly patients with pneumonia. We retrospectively evaluated 132 patients aged >65 years who were hospitalized for pneumonia and who underwent a urinary sediment test on admission. The background characteristics, laboratory results and treatment regimens were documented, and the risk factors for the complication of bacterial pyuria and its association with 90-day mortality in pneumonia patients were elucidated. A total of 37 (28%) of 132 patients were complicated by bacterial pyuria. The patients with bacterial pyuria were more often women, showed a poorer performance status, were more frequently fed by percutaneous endoscopic gastrostomy, and more frequently used diapers and/or a bladder catheter. Regarding first-line drugs, 82.6% of the patients received beta-lactamase inhibitors and extended-spectrum penicillins. The use of a bladder catheter and a poor performance status were associated with bacterial pyuria. A multivariate analysis showed that a poor performance status was the only factor associated with 90-day mortality. Bacterial pyuria did not affect the prognosis of patients who were treated with penicillin-based regimens. Thus, broad-spectrum antibiotics are not necessarily required for elderly patients with pneumonia complicated by urinary tract infection. Geriatr Gerontol Int 2017; 17: 1076-1080. © 2016 Japan Geriatrics Society.

  16. Bacterial Endosymbionts of the Psyllid Cacopsylla pyricola (Hemiptera: Psyllidae) in the Pacific Northwestern United States.

    PubMed

    Cooper, W Rodney; Garczynski, Stephen F; Horton, David R; Unruh, Thomas R; Beers, Elizabeth H; Peter, W Shearer; Hilton, Richard J

    2017-04-01

    Insects often have facultative associations with bacterial endosymbionts, which can alter the insects' susceptibility to parasitism, pathogens, plant defenses, and certain classes of insecticides. We collected pear psylla, Cacopsylla pyricola (Förster) (Hemiptera: Psyllidae), from pear orchards in Washington and Oregon, and surveyed them for the presence of bacterial endosymbionts. Adult psyllids were collected on multiple dates to allow us to assay specimens of both the summer ("summerform") and the overwintering ("winterform") morphotypes. Two endosymbionts, Arsenophonus and Phytoplasma pyri, were detected in psyllids of both morphotypes in both states. A separate survey revealed similar associations present in psyllids collected in 1987. Arsenophonus was present in 80-100% of psyllids in all growing regions. A slightly lower proportion of summerform than winterform psyllids harbored the bacterium. Arsenophonus was present in the bacteriomes and developing oocytes of most psyllids, indicating that this endosymbiont is transovarially transmitted. This bacterium was also observed in the salivary glands and midguts of some psyllids. Phytoplasma pyri was present in a greater proportion of pear psylla from orchards near Yakima, WA, than from other regions, and was present in a higher proportion of winterforms than summerforms. We did not detect Wolbachia, Profftella, or Liberibacter europaeus, which are associated with other psyllid pests, including other species of Cacopsylla. Our study is the first to survey North American populations of C. pyricola for endosymbionts, and provides a foundation for further research on how bacterial associations may influence the ecology and management of this pest. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  17. Exploiting Quorum Sensing To Confuse Bacterial Pathogens

    PubMed Central

    LaSarre, Breah

    2013-01-01

    SUMMARY Cell-cell communication, or quorum sensing, is a widespread phenomenon in bacteria that is used to coordinate gene expression among local populations. Its use by bacterial pathogens to regulate genes that promote invasion, defense, and spread has been particularly well documented. With the ongoing emergence of antibiotic-resistant pathogens, there is a current need for development of alternative therapeutic strategies. An antivirulence approach by which quorum sensing is impeded has caught on as a viable means to manipulate bacterial processes, especially pathogenic traits that are harmful to human and animal health and agricultural productivity. The identification and development of chemical compounds and enzymes that facilitate quorum-sensing inhibition (QSI) by targeting signaling molecules, signal biogenesis, or signal detection are reviewed here. Overall, the evidence suggests that QSI therapy may be efficacious against some, but not necessarily all, bacterial pathogens, and several failures and ongoing concerns that may steer future studies in productive directions are discussed. Nevertheless, various QSI successes have rightfully perpetuated excitement surrounding new potential therapies, and this review highlights promising QSI leads in disrupting pathogenesis in both plants and animals. PMID:23471618

  18. Bacterial fitness shapes the population dynamics of antibiotic-resistant and -susceptible bacteria in a model of combined antibiotic and anti-virulence treatment

    PubMed Central

    Ternent, Lucy; Dyson, Rosemary J.; Krachler, Anne-Marie; Jabbari, Sara

    2015-01-01

    Bacterial resistance to antibiotic treatment is a huge concern: introduction of any new antibiotic is shortly followed by the emergence of resistant bacterial isolates in the clinic. This issue is compounded by a severe lack of new antibiotics reaching the market. The significant rise in clinical resistance to antibiotics is especially problematic in nosocomial infections, where already vulnerable patients may fail to respond to treatment, causing even greater health concern. A recent focus has been on the development of anti-virulence drugs as a second line of defence in the treatment of antibiotic-resistant infections. This treatment, which weakens bacteria by reducing their virulence rather than killing them, should allow infections to be cleared through the body׳s natural defence mechanisms. In this way there should be little to no selective pressure exerted on the organism and, as such, a predominantly resistant population should be less likely to emerge. However, before the likelihood of resistance to these novel drugs emerging can be predicted, we must first establish whether such drugs can actually be effective. Many believe that anti-virulence drugs would not be powerful enough to clear existing infections, restricting their potential application to prophylaxis. We have developed a mathematical model that provides a theoretical framework to reveal the circumstances under which anti-virulence drugs may or may not be successful. We demonstrate that by harnessing and combining the advantages of antibiotics with those provided by anti-virulence drugs, given infection-specific parameters, it is possible to identify treatment strategies that would efficiently clear bacterial infections, while preventing the emergence of antibiotic-resistant subpopulations. Our findings strongly support the continuation of research into anti-virulence drugs and demonstrate that their applicability may reach beyond infection prevention. PMID:25701634

  19. Highlights of session presentations. TSS / CST population IEC meeting.

    PubMed

    1995-01-01

    The great deal of documentation which was prepared for the recent TSS/CST Population IEC (information, education, and communication) meeting from research, field experiments, and action projects will be useful to TSS/CST advisors and individual countries undertaking IEC and population education work. This article summarizes the 12 sessions held during the open forum. To illustrate some of the latest trends in population and health communication, the "enter-educate" approach and use of the interactive computer software called SCOPE (Strategic Communication Planning and Evaluation) were discussed. Next, ways in which to apply research effectively in IEC and population education were considered. Examples were provided of 1) a workshop methodology used to help a multidisciplinary group design a problem-solving communication strategy in Malaysia and Dominica; 2) the counseling training evaluation technique based on the GATHER (greet, ask, tell, help, explain, and return for follow-up) model; and 3) four types of evaluation of population education in schools. The third session was concerned with the program approach used in IEC and population education. Session 4 dealt with the implication of UNFPA support to family planning (FP) IEC. Counseling skills training and interpersonal communication were next on the agenda, followed by a consideration of how knowledge and policies are applied in the area of youth. The seventh session concentrated on ways to involve men in FP and reproductive health and included a discussion of a case study on the attitude and behavior of men with regard to FP which had IEC implications. The next session described the need to reconceptualize population education and what such a reconceptualization would entail. Session 9 was devoted to a consideration of gender issues and the education of girls. The tenth session covered the use of participatory approaches and community involvement in population communication programs. Innovative methodologies

  20. Highly Heterogeneous Soil Bacterial Communities around Terra Nova Bay of Northern Victoria Land, Antarctica

    PubMed Central

    Lim, Hyoun Soo; Hong, Soon Gyu; Kim, Ji Hee; Lee, Joohan; Choi, Taejin; Ahn, Tae Seok; Kim, Ok-Sun

    2015-01-01

    Given the diminished role of biotic interactions in soils of continental Antarctica, abiotic factors are believed to play a dominant role in structuring of microbial communities. However, many ice-free regions remain unexplored, and it is unclear which environmental gradients are primarily responsible for the variations among bacterial communities. In this study, we investigated the soil bacterial community around Terra Nova Bay of Victoria Land by pyrosequencing and determined which environmental variables govern the bacterial community structure at the local scale. Six bacterial phyla, Actinobacteria, Proteobacteria, Acidobacteria, Chloroflexi, Cyanobacteria, and Bacteroidetes, were dominant, but their relative abundance varied greatly across locations. Bacterial community structures were affected little by spatial distance, but structured more strongly by site, which was in accordance with the soil physicochemical compositions. At both the phylum and species levels, bacterial community structure was explained primarily by pH and water content, while certain earth elements and trace metals also played important roles in shaping community variation. The higher heterogeneity of the bacterial community structure found at this site indicates how soil bacterial communities have adapted to different compositions of edaphic variables under extreme environmental conditions. Taken together, these findings greatly advance our understanding of the adaption of soil bacterial populations to this harsh environment. PMID:25799273

  1. No. 211-Screening and Management of Bacterial Vaginosis in Pregnancy.

    PubMed

    Yudin, Mark H; Money, Deborah M

    2017-08-01

    To review the evidence and provide recommendations on screening for and management of bacterial vaginosis in pregnancy. The clinical practice options considered in formulating the guideline. Outcomes evaluated include antibiotic treatment efficacy and cure rates, and the influence of the treatment of bacterial vaginosis on the rates of adverse pregnancy outcomes such as preterm labour and delivery and preterm premature rupture of membranes. Medline, EMBASE, CINAHL, and Cochrane databases were searched for articles, published in English before the end of June 2007 on the topic of bacterial vaginosis in pregnancy. The evidence obtained was rated using the criteria developed by the Canadian Task Force on Preventive Health Care. Guideline implementation will assist the practitioner in developing an approach to the diagnosis and treatment of bacterial vaginosis in pregnant women. Patients will benefit from appropriate management of this condition. These guidelines have been prepared by the Infectious Diseases Committee of the SOGC, and approved by the Executive and Council of the SOGC. The Society of Obstetricians and Gynaecologists of Canada. There is currently no consensus as to whether to screen for or treat bacterial vaginosis in the general pregnant population in order to prevent adverse outcomes, such as preterm birth. Copyright © 2017. Published by Elsevier Inc.

  2. Pyrosequencing analysis of the bacterial community in drinking water wells.

    PubMed

    Navarro-Noya, Yendi E; Suárez-Arriaga, Mayra C; Rojas-Valdes, Aketzally; Montoya-Ciriaco, Nina M; Gómez-Acata, Selene; Fernández-Luqueño, Fabián; Dendooven, Luc

    2013-07-01

    Wells used for drinking water often have a large biomass and a high bacterial diversity. Current technologies are not always able to reduce the bacterial population, and the threat of pathogen proliferation in drinking water sources is omnipresent. The environmental conditions that shape the microbial communities in drinking water sources have to be elucidated, so that pathogen proliferation can be foreseen. In this work, the bacterial community in nine water wells of a groundwater aquifer in Northern Mexico were characterized and correlated to environmental characteristics that might control them. Although a large variation was observed between the water samples, temperature and iron concentration were the characteristics that affected the bacterial community structure and composition in groundwater wells. Small increases in the concentration of iron in water modified the bacterial communities and promoted the growth of the iron-oxidizing bacteria Acidovorax. The abundance of the genera Flavobacterium and Duganella was correlated positively with temperature and the Acidobacteria Gp4 and Gp1, and the genus Acidovorax with iron concentrations in the well water. Large percentages of Flavobacterium and Pseudomonas bacteria were found, and this is of special concern as bacteria belonging to both genera are often biofilm developers, where pathogens survival increases.

  3. Investigating Bacterial-Animal Symbioses with Light Sheet Microscopy

    PubMed Central

    Taormina, Michael J.; Jemielita, Matthew; Stephens, W. Zac; Burns, Adam R.; Troll, Joshua V.; Parthasarathy, Raghuveer; Guillemin, Karen

    2014-01-01

    SUMMARY Microbial colonization of the digestive tract is a crucial event in vertebrate development, required for maturation of host immunity and establishment of normal digestive physiology. Advances in genomic, proteomic, and metabolomic technologies are providing a more detailed picture of the constituents of the intestinal habitat, but these approaches lack the spatial and temporal resolution needed to characterize the assembly and dynamics of microbial communities in this complex environment. We report the use of light sheet microscopy to provide high resolution imaging of bacterial colonization of the zebrafish intestine. The methodology allows us to characterize bacterial population dynamics across the entire organ and the behaviors of individual bacterial and host cells throughout the colonization process. The large four-dimensional datasets generated by these imaging approaches require new strategies for image analysis. When integrated with other “omics” datasets, information about the spatial and temporal dynamics of microbial cells within the vertebrate intestine will provide new mechanistic insights into how microbial communities assemble and function within hosts. PMID:22983029

  4. Isolation and prominent aboriginal maternal legacy in the present-day population of La Gomera (Canary Islands)

    PubMed Central

    Fregel, Rosa; Cabrera, Vicente M; Larruga, José M; Hernández, Juan C; Gámez, Alejandro; Pestano, Jose J; Arnay, Matilde; González, Ana M

    2015-01-01

    The present-day population structure of La Gomera is outstanding in its high aboriginal heritage, the greatest in the Canary Islands. This was earlier confirmed by both mitochondrial DNA and autosomal analyses, although genetic drift due to the fifteenth century European colonization could not be excluded as the main factor responsible. The present mtDNA study of aboriginal remains and extant samples from the six municipal districts of the island indeed demonstrates that the pre-Hispanic colonization of La Gomera by North African people involved a strong founder event, shown by the high frequency of the indigenous Canarian U6b1a lineage in the aboriginal samples (65%). This value is even greater than that observed in the extant population (44%), which in turn is the highest of all the seven Canary Islands. In contrast to previous results obtained for the aboriginal populations of Tenerife and La Palma, haplogroups related to secondary waves of migration were not detected in La Gomera aborigines, indicating that isolation also had an important role in shaping the current population. The rugged relief of La Gomera divided into several distinct valleys probably promoted subsequent aboriginal intra-insular differentiation that has continued after the European colonization, as seen in the present-day population structure observed on the island. PMID:25407001

  5. Metagenomic Analysis of a Biphenyl-Degrading Soil Bacterial Consortium Reveals the Metabolic Roles of Specific Populations

    PubMed Central

    Garrido-Sanz, Daniel; Manzano, Javier; Martín, Marta; Redondo-Nieto, Miguel; Rivilla, Rafael

    2018-01-01

    Achromobacter and Variovorax. We have isolated a Rhodococcus strain WAY2 from the consortium which contains the genes encoding the three biphenyl to benzoate pathways indicating that this strain is responsible for all the biphenyl to benzoate transformations. The presented results show that metagenomic analysis of consortia allows the identification of bacteria active in biodegradation processes and the assignment of specific reactions and pathways to specific bacterial groups. PMID:29497412

  6. A comprehensive review of glycosylated bacterial natural products

    PubMed Central

    Elshahawi, Sherif I.; Shaaban, Khaled A.; Kharel, Madan K.

    2015-01-01

    A systematic analysis of all naturally-occurring glycosylated bacterial secondary metabolites reported in the scientific literature up through early 2013 is presented. This comprehensive analysis of 15 940 bacterial natural products revealed 3426 glycosides containing 344 distinct appended carbohydrates and highlights a range of unique opportunities for future biosynthetic study and glycodiversification efforts. PMID:25735878

  7. Assessment of bacterial diversity during composting of agricultural byproducts

    PubMed Central

    2013-01-01

    Background Composting is microbial decomposition of biodegradable materials and it is governed by physicochemical, physiological and microbiological factors. The importance of microbial communities (bacteria, actinomycetes and fungi) during composting is well established. However, the microbial diversity during composting may vary with the variety of composting materials and nutrient supplements. Therefore, it is necessary to study the diversity of microorganisms during composting of different agricultural byproducts like wheat bran, rice bran, rice husk, along with grass clippings and bulking agents. Here it has been attempted to assess the diversity of culturable bacteria during composting of agricultural byproducts. Results The culturable bacterial diversity was assessed during the process by isolating the most prominent bacteria. Bacterial population was found to be maximum during the mesophilic phase, but decreased during the thermophilic phase and declined further in the cooling and maturation phase of composting. The bacterial population ranged from 105 to 109 cfu g-1 compost. The predominant bacteria were characterized biochemically, followed by 16S rRNA gene sequencing. The isolated strains, both Gram-positive and Gram-negative groups belonged to the order Burkholderiales, Enterobacteriales, Actinobacteriales and Bacillales, which includes genera e.g. Staphylococcus, Serratia, Klebsiella, Enterobacter, Terribacillus, Lysinibacillus Kocuria, Microbacterium, Acidovorax and Comamonas. Genera like Kocuria, Microbacterium, Acidovorax, Comamonas and some new species of Bacillus were also identified for the first time from the compost made from agricultural byproducts. Conclusion The use of appropriate nitrogen amendments and bulking agents in composting resulted in good quality compost. The culture based strategy enabled us to isolate some novel bacterial isolates like Kocuria, Microbacterium, Acidovorax and Comamonas first time from agro-byproducts compost

  8. Different bacterial communities in ectomycorrhizae and surrounding soil

    PubMed Central

    Vik, Unni; Logares, Ramiro; Blaalid, Rakel; Halvorsen, Rune; Carlsen, Tor; Bakke, Ingrid; Kolstø, Anne-Brit; Økstad, Ole Andreas; Kauserud, Håvard

    2013-01-01

    Several eukaryotic symbioses have shown to host a rich diversity of prokaryotes that interact with their hosts. Here, we study bacterial communities associated with ectomycorrhizal root systems of Bistorta vivipara compared to bacterial communities in bulk soil using pyrosequencing of 16S rRNA amplicons. A high richness of Operational Taxonomic Units (OTUs) was found in plant roots (3,571 OTUs) and surrounding soil (3,476 OTUs). The community composition differed markedly between these two environments. Actinobacteria, Armatimonadetes, Chloroflexi and OTUs unclassified at phylum level were significantly more abundant in plant roots than in soil. A large proportion of the OTUs, especially those in plant roots, presented low similarity to Sanger 16S rRNA reference sequences, suggesting novel bacterial diversity in ectomycorrhizae. Furthermore, the bacterial communities of the plant roots were spatially structured up to a distance of 60 cm, which may be explained by bacteria using fungal hyphae as a transport vector. The analyzed ectomycorrhizae presents a distinct microbiome, which likely influence the functioning of the plant-fungus symbiosis. PMID:24326907

  9. Promiscuity in mice is associated with increased vaginal bacterial diversity

    NASA Astrophysics Data System (ADS)

    Macmanes, Matthew David

    2011-11-01

    Differences in the number of sexual partners (i.e., mating system) have the potential to exert a strong influence on the bacterial communities present in reproductive structures like the vagina. Because this structure serves as a conduit for gametes, bacteria present there may have a pronounced, direct effect on host reproductive success. As a first step towards the identification of the relationship between sexual behavior and potentially pathogenic bacterial communities inhabiting vital reproductive structures, as well as their potential effects on fitness, I sought to quantify differences in bacterial diversity in a promiscuous and monogamous mammal species. To accomplish this, I used two sympatric species of Peromyscus rodents— Peromyscus californicus and Peromyscus maniculatus that differ with regard to the number of sexual partners per individual to test the hypothesis that bacterial diversity should be greater in the promiscuous P. maniculatus relative to the monogamous P. californicus. As predicted, phylogenetically controlled and operational taxonomic unit-based indices of bacterial diversity indicated that diversity is greater in the promiscuous species. These results provide important new insights into the effects of mating system on bacterial diversity in free-living vertebrates, and may suggest a potential cost of promiscuity.

  10. Bacterial Community Structure and Physiological State within an Industrial Phenol Bioremediation System

    PubMed Central

    Whiteley, Andrew S.; Bailey, Mark J.

    2000-01-01

    The structure of bacterial populations in specific compartments of an operational industrial phenol remediation system was assessed to examine bacterial community diversity, distribution, and physiological state with respect to the remediation of phenolic polluted wastewater. Rapid community fingerprinting by PCR-based denaturing gradient gel electrophoresis (DGGE) of 16S rDNA indicated highly structured bacterial communities residing in all nine compartments of the treatment plant and not exclusively within the Vitox biological reactor. Whole-cell targeting by fluorescent in situ hybridization with specific oligonucleotides (directed to the α, β and γ subclasses of the class Proteobacteria [α-, β-, and γ-Proteobacteria, respectively], the Cytophaga-Flavobacterium group, and the Pseudomonas group) tended to mirror gross changes in bacterial community composition when compared with DGGE community fingerprinting. At the whole-cell level, the treatment compartments were numerically dominated by cells assigned to the Cytophaga-Flavobacterium group and to the γ-Proteobacteria. The α subclass Proteobacteria were of low relative abundance throughout the treatment system whilst the β subclass of the Proteobacteria exhibited local dominance in several of the processing compartments. Quantitative image analyses of cellular fluorescence was used as an indicator of physiological state within the populations probed with rDNA. For cells hybridized with EUB338, the mean fluorescence per cell decreased with increasing phenolic concentration, indicating the strong influence of the primary pollutant upon cellular rRNA content. The γ subclass of the Proteobacteria had a ribosome content which correlated positively with total phenolics and thiocyanate. While members of the Cytophaga-Flavobacterium group were numerically dominant in the processing system, their abundance and ribosome content data for individual populations did not correlate with any of the measured chemical

  11. Evaluation of free-stall mattress bedding treatments to reduce mastitis bacterial growth.

    PubMed

    Kristula, M A; Dou, Z; Toth, J D; Smith, B I; Harvey, N; Sabo, M

    2008-05-01

    Bacterial counts were compared in free-stall mattresses and teat ends exposed to 5 treatments in a factorial study design on 1 dairy farm. Mattresses in five 30-cow groups were subjected to 1 of 5 bedding treatments every other day: 0.5 kg of hydrated limestone, 120 mL of commercial acidic conditioner, 1 kg of coal fly ash, 1 kg of kiln-dried wood shavings, and control (no bedding). Counts of coliforms, Klebsiella spp., Escherichia coli, and Streptococcus spp. were lowest on mattresses bedded with lime. Mattresses bedded with the commercial acidic conditioner had the next lowest counts for coliforms, Klebsiella spp., and Streptococcus spp. Wood shavings and the no-bedding control had the highest counts for coliform and Klebsiella spp. Compared with wood shavings or control, fly ash reduced the counts of coliforms, whereas for the other 3 bacterial groups, the reduction was not always significant. Streptococcus spp. counts were greatest in the control group and did not differ among the shavings and fly ash groups. Teat swab results indicated that hydrated lime was the only bedding treatment that significantly decreased the counts of both coliforms and Klebsiella spp. There were no differences in Streptococcus spp. numbers on the teats between any of the bedding treatments. Bacterial populations grew steadily on mattresses and were generally higher at 36 to 48 h than at 12 to 24 h, whereas bacterial populations on teats grew rapidly by 12 h and then remained constant. Hydrated lime was the only treatment that significantly reduced bacterial counts on both mattresses and teat ends, but it caused some skin irritation.

  12. Evaluation of free-stall mattress bedding treatments to reduce mastitis bacterial growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristula, M.A.; Dou, Z.; Toth, J.D.

    2008-05-15

    Bacterial counts were compared in free-stall mattresses and teat ends exposed to 5 treatments in a factorial study design on 1 dairy farm. Mattresses in five 30-cow groups were subjected to 1 of 5 bedding treatments every other day: 0.5 kg of hydrated limestone, 120 mL of commercial acidic conditioner, 1 kg of coal fly ash, 1 kg of kiln-dried wood shavings, and control (no bedding). Counts of coliforms, Klebsiella spp., Escherichia coli, and Streptococcus spp. were lowest on mattresses bedded with lime. Mattresses bedded with the commercial acidic conditioner had the next lowest counts for coliforms, Klebsiella spp., andmore » Streptococcus spp. Wood shavings and the no-bedding control had the highest counts for coliform and Klebsiella spp. Compared with wood shavings or control, fly ash reduced the counts of coliforms, whereas for the other 3 bacterial groups, the reduction was not always significant. Streptococcus spp. counts were greatest in the control group and did not differ among the shavings and fly ash groups. Teat swab results indicated that hydrated lime was the only bedding treatment that significantly decreased the counts of both coliforms and Klebsiella spp. There were no differences in Streptococcus spp. numbers on the teats between any of the bedding treatments. Bacterial populations grew steadily on mattresses and were generally higher at 36 to 48 h than at 12 to 24 h, whereas bacterial populations on teats grew rapidly by 12 h and then remained constant. Hydrated lime was the only treatment that significantly reduced bacterial counts on both mattresses and teat ends, but it caused some skin irritation.« less

  13. Bacterial community analysis of swine manure treated with autothermal thermophilic aerobic digestion.

    PubMed

    Han, Il; Congeevaram, Shankar; Ki, Dong-Won; Oh, Byoung-Taek; Park, Joonhong

    2011-02-01

    Due to the environmental problems associated with disposal of livestock sludge, many stabilization studies emphasizing on the sludge volume reduction were performed. However, little is known about the microbial risk present in sludge and its stabilized products. This study microbiologically explored the effects of anaerobic lagoon fermentation (ALF) and autothermal thermophilic aerobic digestion (ATAD) on pathogen-related risk of raw swine manure by using culture-independent 16S rDNA cloning and sequencing methods. In raw swine manure, clones closely related to pathogens such as Dialister pneumosintes, Erysipelothrix rhusiopathiae, Succinivibrioan dextrinosolvens, and Schineria sp. were detected. Meanwhile, in the mesophilic ALF-treated swine manure, bacterial community clones closely related to pathogens such as Schineria sp. and Succinivibrio dextrinosolvens were still detected. Interestingly, the ATAD treatment resulted in no detection of clones closely related to pathogens in the stabilized thermophilic bacterial community, with the predominance of novel Clostridia class populations. These findings support the superiority of ATAD in selectively reducing potential human and animal pathogens compared to ALF, which is a typical manure stabilization method used in livestock farms.

  14. Archaeal and bacterial community analysis of several Yellowstone National Park hot springs

    NASA Astrophysics Data System (ADS)

    Colman, D. R.; Takacs-Vesbach, C. D.

    2012-12-01

    The hot springs of Yellowstone National Park (YNP) are home to a diverse assemblage of microorganisms. Culture-independent studies have significantly expanded our understanding of the diversity of both Bacteria and Archaea present in YNP springs as well as the geochemical and ecological controls on communities. While the ecological analysis of Bacteria among the physicochemically heterogenous springs of YNP has been previously conducted, less is known about the extent of diversity of Archaeal communities and the chemical and ecological controls on their populations. Here we report a culture-independent analysis of 31 hot spring archaeal and bacterial communities of YNP springs using next generation sequencing. We found the phylogenetic diversity of Archaea to be generally comparable to that of co-occurring bacterial communities although overall, in the springs we investigated, diversity was higher for Bacteria than Archaea. Chemical and physical controls were similar for both domains with pH correlating most strongly with community composition. Community differences reflected the partitioning of taxonomic groups in low or high pH springs for both domains. Results will be discussed in a geochemical and ecological context.

  15. Influence of uranium on bacterial communities: a comparison of natural uranium-rich soils with controls.

    PubMed

    Mondani, Laure; Benzerara, Karim; Carrière, Marie; Christen, Richard; Mamindy-Pajany, Yannick; Février, Laureline; Marmier, Nicolas; Achouak, Wafa; Nardoux, Pascal; Berthomieu, Catherine; Chapon, Virginie

    2011-01-01

    This study investigated the influence of uranium on the indigenous bacterial community structure in natural soils with high uranium content. Radioactive soil samples exhibiting 0.26% - 25.5% U in mass were analyzed and compared with nearby control soils containing trace uranium. EXAFS and XRD analyses of soils revealed the presence of U(VI) and uranium-phosphate mineral phases, identified as sabugalite and meta-autunite. A comparative analysis of bacterial community fingerprints using denaturing gradient gel electrophoresis (DGGE) revealed the presence of a complex population in both control and uranium-rich samples. However, bacterial communities inhabiting uraniferous soils exhibited specific fingerprints that were remarkably stable over time, in contrast to populations from nearby control samples. Representatives of Acidobacteria, Proteobacteria, and seven others phyla were detected in DGGE bands specific to uraniferous samples. In particular, sequences related to iron-reducing bacteria such as Geobacter and Geothrix were identified concomitantly with iron-oxidizing species such as Gallionella and Sideroxydans. All together, our results demonstrate that uranium exerts a permanent high pressure on soil bacterial communities and suggest the existence of a uranium redox cycle mediated by bacteria in the soil.

  16. Influence of Uranium on Bacterial Communities: A Comparison of Natural Uranium-Rich Soils with Controls

    PubMed Central

    Mondani, Laure; Benzerara, Karim; Carrière, Marie; Christen, Richard; Mamindy-Pajany, Yannick; Février, Laureline; Marmier, Nicolas; Achouak, Wafa; Nardoux, Pascal; Berthomieu, Catherine; Chapon, Virginie

    2011-01-01

    This study investigated the influence of uranium on the indigenous bacterial community structure in natural soils with high uranium content. Radioactive soil samples exhibiting 0.26% - 25.5% U in mass were analyzed and compared with nearby control soils containing trace uranium. EXAFS and XRD analyses of soils revealed the presence of U(VI) and uranium-phosphate mineral phases, identified as sabugalite and meta-autunite. A comparative analysis of bacterial community fingerprints using denaturing gradient gel electrophoresis (DGGE) revealed the presence of a complex population in both control and uranium-rich samples. However, bacterial communities inhabiting uraniferous soils exhibited specific fingerprints that were remarkably stable over time, in contrast to populations from nearby control samples. Representatives of Acidobacteria, Proteobacteria, and seven others phyla were detected in DGGE bands specific to uraniferous samples. In particular, sequences related to iron-reducing bacteria such as Geobacter and Geothrix were identified concomitantly with iron-oxidizing species such as Gallionella and Sideroxydans. All together, our results demonstrate that uranium exerts a permanent high pressure on soil bacterial communities and suggest the existence of a uranium redox cycle mediated by bacteria in the soil. PMID:21998695

  17. Role of antibiotic therapy for bacterial vaginosis and intermediate flora in pregnancy.

    PubMed

    Ugwumadu, Austin

    2007-06-01

    Bacterial vaginosis and intermediate flora are associated with late miscarriage and preterm delivery. The mechanisms involved are not yet fully understood. Clinical trials of antibiotic therapy to reduce these complications have yielded conflicting results. These trials, however, were conducted in mixed populations of pregnant women with variable risk profiles for preterm delivery. Furthermore, investigators used different criteria for diagnosis, treated with different antibiotics at different doses and via different routes, and initiated treatment at different gestational ages. Over 80% of pregnant women with abnormal vaginal flora have a good outcome, and in some populations the presence of bacterial vaginosis is not associated with preterm delivery, suggesting that other host factors may modify the risk. Recent studies have examined the roles of genetic regulation of host immune response, bacterial pathogenic factors, and enzymes in the vagina, and how these factors interact to drive a given outcome. These markers have the potential to better define the women at maximal risk and therefore guide future interventions. This chapter aims to appraise the current state of treatment of abnormal vaginal flora in pregnancy and suggest appropriate management based on the available evidence.

  18. Histo-FISH protocol to detect bacterial compositions and biofilms formation in vivo.

    PubMed

    Madar, M; Slizova, M; Czerwinski, J; Hrckova, G; Mudronova, D; Gancarcikova, S; Popper, M; Pistl, J; Soltys, J; Nemcova, R

    2015-01-01

    The study of biofilm function in vivo in various niches of the gastrointestinal tract (GIT) is rather limited. It is more frequently used in in vitro approaches, as an alternative to the studies focused on formation mechanisms and function of biofilms, which do not represent the actual in vivo complexity of microbial structures. Additionally, in vitro tests can sometimes lead to unreliable results. The goal of this study was to develop a simple approach to detect bacterial populations, particularly Lactobacillus and Bifidobacterium in biofilms, in vivo by the fluorescent in situ hybridisation (FISH) method. We standardised a new Histo-FISH method based on specific fluorochrome labelling probes which are able to detect Lactobacillus spp. and Bifidobacterium spp. within biofilms on the mucosal surface of the GIT embedded in paraffin in histological slices. This method is also suitable for visualisation of bacterial populations in the GIT internal content. Depending on the labelling probes, the Histo-FISH method has the potential to detect other probiotic strains or pathogenic bacteria. This original approach permits us to analyse bacterial colonisation processes as well as biofilm formation in stomach and caecum of BALB/c and germ-free mice.

  19. Bacterial meningitis.

    PubMed

    Heckenberg, Sebastiaan G B; Brouwer, Matthijs C; van de Beek, Diederik

    2014-01-01

    Bacterial meningitis is a neurologic emergency. Vaccination against common pathogens has decreased the burden of disease. Early diagnosis and rapid initiation of empiric antimicrobial and adjunctive therapy are vital. Therapy should be initiated as soon as blood cultures have been obtained, preceding any imaging studies. Clinical signs suggestive of bacterial meningitis include fever, headache, meningismus, and an altered level of consciousness but signs may be scarce in children, in the elderly, and in meningococcal disease. Host genetic factors are major determinants of susceptibility to meningococcal and pneumococcal disease. Dexamethasone therapy has been implemented as adjunctive treatment of adults with pneumococcal meningitis. Adequate and prompt treatment of bacterial meningitis is critical to outcome. In this chapter we review the epidemiology, pathophysiology, and management of bacterial meningitis. © 2014 Elsevier B.V. All rights reserved.

  20. Culture dependent and independent analysis of bacterial communities associated with commercial salad leaf vegetables.

    PubMed

    Jackson, Colin R; Randolph, Kevin C; Osborn, Shelly L; Tyler, Heather L

    2013-12-01

    culture-dependent methods. The use of pyrosequencing allowed for the identification of low abundance bacteria in leaf salad vegetables not detected by culture-dependent methods. The presence of a range of bacterial populations as endophytes presents an interesting phenomenon as these microorganisms cannot be removed by washing and are thus ingested during salad consumption.